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Executive Summary

This document reports on D3.4: Front-end Correctness Proofs, the final deliverable of
CerCo work package 3 Verified Compiler - front end. That work package was devoted to
the formalisation and verification of the front-end of the CerCo cost lifting compiler, and
Deliverable 3.4 is a machine-checked formal correctness proof of the compiler front-end, written
in the Matita proof assistant.

The proof itself is contained in a series of Matita files, listed in Appendix A and culminating
in the lemma front_end_correct and the theorem correct in the file correctness.ma. This
document accompanies the deliverable and briefly reports on the work carried out in the
development of that proof.

Abstract We report on the correctness proofs for the front-end of the CerCo cost lifting
compiler. First, we identify the core result we wish to prove, which says that the we correctly
predict the precise execution time for particular parts of the execution called measurable
subtraces. Then we consider the three distinct parts of the task: showing that the annotated
source code output by the compiler has equivalent behaviour to the original input (up to the
annotations); showing that a measurable subtrace of the annotated source code corresponds
to an equivalent measurable subtrace in the code produced by the front-end, including costs;
and finally showing that the enriched structured execution traces required for cost correctness
in the back-end can be constructed from the properties of the code produced by the front-end.

A key part of our work is that the intensional correctness results which show that we
get consistent cost measurements throughout the intermediate languages of the compiler can
be layered on top of normal forward simulation results, if we split those results into local
call-structure preserving simulations. This split allowed us to concentrate on the intensional
proofs by axiomatising some of the extensional simulation results that are very similar to
existing compiler correctness results, such as CompCert.

This report is about the correctness results that are deliverable D3.4, which are about the
formalised compiler described in D3.2, using the source language semantics from D3.1 and
intermediate language semantics from D3.3. It builds on earlier work on the correctness of
a toy compiler built to test the labelling approach in D2.1. Together with the companion
deliverable about the correctness of the back-end, D4.4, we obtain results about the whole
formalised compiler.
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1 Introduction

The CerCo compiler produces a version of the source code containing annotations describing
the timing behaviour of the object code, as well as the object code itself. It compiles C code,
targeting microcontrollers implementing the Intel 8051 architecture. There are two versions:
first, an initial prototype was implemented in OCaml [3], then a version was formalised in the
Matita proof assistant [5, 8] and extracted to OCaml code to produce an executable compiler.
In this document we present results from Deliverable 3.4, the formalised proofs in Matita
about the front-end of the latter version of the compiler (culminating in the front_end_correct

lemma), and describe how that fits into the verification of the whole compiler.
A key part of this work was to layer the intensional correctness results that show that

the costs produced are correct on top of the proofs about the compiled code’s extensional
behaviour (that is, the functional correctness of the compiler). Unfortunately, the ambitious
goal of completely verifying the entire compiler was not feasible within the time available, but
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Figure 1: Languages in the CerCo compiler

thanks to this separation of extensional and intensional proofs we are able to axiomatise some
extensional simulation results which are similar to those in other compiler verification projects
and concentrate on the novel intensional proofs. We were also able to add stack space costs to
obtain a stronger result. The proofs were made more tractable by introducing compile-time
checks for the ‘sound and precise’ cost labelling properties rather than proving that they are
preserved throughout.

The overall statement of correctness says that the annotated program has the same be-
haviour as the input, and that for any suitably well-structured part of the execution (which
we call measurable), the object code will execute the same behaviour taking precisely the time
given by the cost annotations in the annotated source program.

In the next section we recall the structure of the compiler and make the overall statement
more precise. Following that, in Section 3 we describe the statements we need to prove about
the intermediate RTLabs programs for the back-end proofs. Section 4 covers the compiler
passes which produce the annotated source program and Section 5 the rest of the transfor-
mations in the front-end. Then the compile-time checks for good cost labelling are detailed
in Section 6 and the proofs that the structured traces required by the back-end exist are
discussed in Section 7.

2 The compiler and its correctness statement

The uncertified prototype OCaml CerCo compiler was originally described in Deliverables
2.1 and 2.2. Its design was replicated in the formal Matita code, which was presented in
Deliverables 3.2 and 4.2, for the front-end and back-end respectively.

The compiler uses a number of intermediate languages, as outlined the middle two lines of
Figure 1. The upper line represents the front-end of the compiler, and the lower the back-end,
finishing with Intel 8051 binary code. Not all of the front-end compiler passes introduce a new
language, and Figure 2 presents a list of every pass involved.

The annotated source code is produced by the cost labelling phase. Note that there is
a pass to replace C switch statements before labelling — we need to remove them because
the simple form of labelling used in the formalised compiler is not quite capable of capturing
their execution time costs, largely due to C’s ‘fall-through’ behaviour where execution from
one branch continues in the next unless there is an explicit break.

The cast removal phase which follows cost labelling simplifies expressions to prevent un-
necessary arithmetic promotion, which is specified by the C standard but costly for an 8-bit
target. The transformation to Cminor and subsequently RTLabs bear considerable resemblance
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C (unformalised)
↓ CIL parser (unformalised OCaml)

Clight
↓ switch removal
↓ labelling
↓ cast removal
↓ stack variable allocation and control structure simplification

Cminor
↓ transform to RTL graph

RTLabs
↓ check cost labelled properties of RTL graph
↓ start of target specific back-end

...

Figure 2: Front-end languages and compiler passes

to some passes of the CompCert compiler [4, 6], although we use a simpler Cminor where all
loops use goto statements, and the RTLabs language retains a target-independent flavour. The
back-end takes RTLabs code as input.

The whole compilation function returns the following information on success:

record compiler_output : Type[0] :=

{ c_labelled_object_code: labelled_object_code

; c_stack_cost: stack_cost_model

; c_max_stack: nat

; c_init_costlabel: costlabel

; c_labelled_clight: clight_program

; c_clight_cost_map: clight_cost_map

}.

It consists of annotated 8051 object code, a mapping from function identifiers to the function’s
stack space usage, the space available for the stack after global variable allocation, a cost label
covering the execution time for the initialisation of global variables and the call to the main

function, the annotated source code, and finally a mapping from cost labels to actual execution
time costs.

An OCaml pretty printer is used to provide a concrete version of the output code and
annotated source code. In the case of the annotated source code, it also inserts the actual
costs alongside the cost labels, and optionally adds a global cost variable and instrumentation
to support further reasoning in external tools such as Frama-C.

2.1 Revisions to the prototype compiler

Our focus on intensional properties prompted us to consider whether we could incorporate
stack space into the costs presented to the user. We only allocate one fixed-size frame per
function, so modelling this was relatively simple. It is the only form of dynamic memory
allocation provided by the compiler, so we were able to strengthen the statement of the goal
to guarantee successful execution whenever the stack space obeys the c_max_stack bound
calculated by subtracting the global variable requirements from the total memory available.
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The cost labelling checks at the end of Figure 2 have been introduced to reduce the proof
burden, and are described in Section 6.

The use of dependent types to capture simple intermediate language invariants makes every
front-end pass a total function, except Clight to Cminor and the cost checks. Hence various
well-formedness and type safety checks are performed only once between Clight and Cminor,
and the invariants rule out any difficulties in the later stages. With the benefit of hindsight
we would have included an initial checking phase to produce a ‘well-formed’ variant of Clight,
conjecturing that this would simplify various parts of the proofs for the Clight stages which
deal with potentially ill-formed code.

Following D2.2, we previously generated code for global variable initialisation in Cminor,
for which we reserved a cost label to represent the execution time for initialisation. However,
the back-end must also add an initial call to the main function, whose cost must also be
accounted for, so we decided to move the initialisation code to the back-end and merge the
costs.

2.2 Main correctness statement

Informally, our main intensional result links the time difference in a source code execution
to the time difference in the object code, expressing the time for the source by summing the
values for the cost labels in the trace, and the time for the target by a clock built in to the
8051 executable semantics.

The availability of precise timing information for 8501 implementations and the design
of the compiler allow it to give exact time costs in terms of processor cycles, not just upper
bounds. However, these exact results are only available if the subtrace we measure starts and
ends at suitable points. In particular, pure computation with no observable effects may be
reordered and moved past cost labels, so we cannot measure time between arbitrary statements
in the program.

There is also a constraint on the subtraces that we measure due to the requirements of the
correctness proof for the object code timing analysis. To be sure that the timings are assigned
to the correct cost label, we need to know that each return from a function call must go to
the correct return address. It is difficult to observe this property locally in the object code
because it relies on much earlier stages in the compiler. To convey this information to the
timing analysis extra structure is imposed on the subtraces, which is described in Section 3.

These restrictions are reflected in the subtraces that we give timing guarantees on; they
must start at a cost label and end at the return of the enclosing function of the cost label1. A
typical example of such a subtrace is the execution of an entire function from the cost label
at the start of the function until it returns. We call such any such subtrace measurable if it
(and the prefix of the trace from the start to the subtrace) can also be executed within the
available stack space.

Now we can give the main intensional statement for the compiler. Given a measurable
subtrace for a labelled Clight program, there is a subtrace of the 8051 object code program
where the time differences match. Moreover, observable parts of the trace also match — these
are the appearance of cost labels and function calls and returns.

More formally, the definition of this statement in Matita is

1We expect that this would generalise to more general subtraces by subtracting costs for unwanted measur-
able suffixes of a measurable subtrace.
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definition simulates :=

λp: compiler_output.

let initial_status := initialise_status ... (cm (c_labelled_object_code ... p)) in

∀m1,m2.
measurable Clight_pcs (c_labelled_clight ... p) m1 m2

(stack_sizes (c_stack_cost ... p)) (c_max_stack ... p) →
∀c1,c2.
clock_after Clight_pcs (c_labelled_clight ... p) m1 (c_clight_cost_map ... p) = OK ... c1 →
clock_after Clight_pcs (c_labelled_clight ... p) (m1+m2) (c_clight_cost_map ... p) = OK ... c2 →
∃n1,n2.
observables Clight_pcs (c_labelled_clight ... p) m1 m2 =

observables (OC_preclassified_system (c_labelled_object_code ... p))
(c_labelled_object_code ... p) n1 n2

∧
clock ?? (execute (n1+n2) ? initial_status) =

clock ?? (execute n1 ? initial_status) + (c2-c1).

where the measurable, clock_after and observables definitions are generic definitions for
multiple languages; in this case the Clight_pcs record applies them to Clight programs.

There is a second part to the statement, which says that the initial processing of the input
program to produce the cost labelled version does not affect the semantics of the program:

∀input_program,output.
compile input_program = return output →
not_wrong ... (exec_inf ... clight_fullexec input_program) →
sim_with_labels

(exec_inf ... clight_fullexec input_program)

(exec_inf ... clight_fullexec (c_labelled_clight ... output))

That is, any successful compilation produces a labelled program that has identical behaviour
to the original, so long as there is no ‘undefined behaviour’.

Note that this statement provides full functional correctness, including preservation of
(non-)termination. The intensional result above does not do this directly — it does not
guarantee the same result or same termination. There are two mitigating factors, however:
first, to prove the intensional property you need local simulation results — these can be pieced
together to form full behavioural equivalence, only time constraints have prevented us from
doing so. Second, if we wish to confirm a result, termination, or non-termination we could add
an observable witness, such as a function that is only called if the correct result is given. The
intensional result guarantees that the observable witness is preserved, so the program must
behave correctly.

These two results are combined in the the correct theorem in the file correctness.ma.

3 Correctness statement for the front-end

The essential parts of the intensional proof were outlined during work on a toy compiler in
Task 2.1 [1, 2]. These are

1. functional correctness, in particular preserving the trace of cost labels,

2. the soundness and precision of the cost labelling on the object code, and
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3. the timing analysis on the object code produces a correct mapping from cost labels to
time.

However, that toy development did not include function calls. For the full CerCo compiler
we also need to maintain the invariant that functions return to the correct program location
in the caller, as we mentioned in the previous section. During work on the back-end timing
analysis (describe in more detail in the companion deliverable, D4.4) the notion of a struc-
tured trace was developed to enforce this return property, and also most of the cost labelling
properties too.

Jointly, we generalised the structured traces to apply to any of the intermediate languages
which have some idea of program counter. This means that they are introduced part way
through the compiler, see Figure 3. Proving that a structured trace can be constructed at
RTLabs has several virtues:

• This is the first language where every operation has its own unique, easily addressable,
statement.

• Function calls and returns are still handled implicitly in the language and so the struc-
tural properties are ensured by the semantics.

• Many of the back-end languages from RTL onwards share a common core set of defini-
tions, and using structured traces throughout increases this uniformity.

A structured trace is a mutually inductive data type which contains the steps from a
normal program trace, but arranged into a nested structure which groups entire function calls
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together and aggregates individual steps between cost labels (or between the final cost label
and the return from the function), see Figure 4. This captures the idea that the cost labels
only represent costs within a function — calls to other functions are accounted for in the
nested trace for their execution, and we can locally regard function calls as a single step.

These structured traces form the core part of the intermediate results that we must prove
so that the back-end can complete the main intensional result stated above. In full, we provide
the back-end with

1. A normal trace of the prefix of the program’s execution before reaching the measurable
subtrace. (This needs to be preserved so that we know that the stack space consumed
is correct, and to set up the simulation results.)

2. The structured trace corresponding to the measurable subtrace.

3. An additional property about the structured trace that no ‘program counter’ is repeated
between cost labels. Together with the structure in the trace, this takes over from
showing that cost labelling is sound and precise.

4. A proof that the observables have been preserved.

5. A proof that the stack limit is still observed by the prefix and the structure trace.
(This is largely a consequence of the preservation of observables.)

The front_end_correct lemma in the correctness.ma file provides a record containing these.
Following the outline in Figure 3, we will first deal with the transformations in Clight that

produce the source program with cost labels, then show that measurable traces can be lifted
to RTLabs, and finally show that we can construct the properties listed above ready for the
back-end proofs.

4 Input code to cost labelled program

As explained on page 4, the costs of complex C switch statements cannot be represented with
the simple labelling used in the formalised compiler. Our first pass replaces these statements
with simpler C code, allowing our second pass to perform the cost labelling. We show that
the behaviour of programs is unchanged by these passes using forward simulations2.

4.1 Switch removal

We compile away switch statements into more basic Clight code. Note that this transformation
does not necessarily deteriorate the efficiency of the generated code. For instance, compilers
such as GCC introduce balanced trees of “if-then-else” constructs for small switches. However,
our implementation strategy is much simpler. Let us consider the following input statement.

switch(e) {

case v1:

stmt1;

case v2:

stmt2;

2All of our languages are deterministic, which can be seen directly from their executable definitions. Thus
we know that forward simulations are sufficient because the target cannot have any other behaviour.
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default:

stmt_default;

}

Note that stmt1, stmt2, . . . stmt default may contain break statements, which have the
effect of exiting the switch statement. In the absence of break, the execution falls through
each case sequentially. In our implementation, we produce an equivalent sequence of “if-then”
chained by gotos:

fresh = e;

if(fresh == v1) {

Jstmt1K;
goto lbl_case2;

};

if(fresh == v2) {

lbl_case2:

Jstmt2K;
goto lbl_case2;

};

Jstmt_defaultK;
exit_label:

The proof had to tackle the following points:

• the source and target memories are not the same (due to the fresh variable),

• the flow of control is changed in a non-local way (e.g. goto instead of break).

In order to tackle the first point, we implemented a version of memory extensions similar to
those of CompCert.

For the simulation we decided to prove a sufficient amount to give us confidence in the
definitions and approach, but to curtail the proof because this pass does not contribute to the
intensional correctness result. We tackled several simple cases, that do not interact with the
switch removal per se, to show that the definitions were usable, and part of the switch case
to check that the approach is reasonable. This comprises propagating the memory extension
through each statement (except switch), as well as various invariants that are needed for the
switch case (in particular, freshness hypotheses). The details of the evaluation process for the
source switch statement and its target counterpart can be found in the file switchRemoval.ma,
along more details on the transformation itself.

Proving the correctness of the second point would require reasoning on the semantics of
goto statements. In the Clight semantics, this is implemented as a function-wide lookup of the
target label. The invariant we would need is the fact that a global label lookup on a freshly
created goto is equivalent to a local lookup. This would in turn require the propagation of some
freshness hypotheses on labels. As discussed, we decided to omit this part of the correctness
proof.

4.2 Cost labelling

The simulation for the cost labelling pass is the simplest in the front-end. The main argument
is that any step of the source program is simulated by the same step of the labelled one, plus
any extra steps for the added cost labels. The extra instructions do not change the memory
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or local environments, although we have to keep track of the extra instructions that appear
in continuations, for example during the execution of a while loop.

We do not attempt to capture any cost properties of the labelling3 in the simulation proof,
which allows the proof to be oblivious to the choice of cost labels. Hence we do not have to
reason about the threading of name generation through the labelling function, greatly reducing
the amount of effort required.

5 Finding corresponding measurable subtraces

There follow the three main passes of the front-end:

1. simplification of casts in Clight code

2. Clight to Cminor translation, performing stack variable allocation and simplifying control
structures

3. transformation to RTLabs control flow graph

We have taken a common approach to each pass: first we build (or axiomatise) forward
simulation results that are similar to normal compiler proofs, but which are slightly more
fine-grained so that we can see that the call structure and relative placement of cost labels is
preserved.

Then we instantiate a general result which shows that we can find a measurable subtrace in
the target of the pass that corresponds to the measurable subtrace in the source. By repeated
application of this result we can find a measurable subtrace of the execution of the RTLabs
code, suitable for the construction of a structured trace (see Section 7). This is essentially an
extra layer on top of the simulation proofs that provides us with the additional information
required for our intensional correctness proof.

5.1 Generic measurable subtrace lifting proof

Our generic proof is parametrised on a record containing small-step semantics for the source
and target language, a classification of states (the same form of classification is used when
defining structured traces), a simulation relation which respects the classification and cost
labelling and four simulation results. The simulations are split by the starting state’s classifi-
cation and whether it is a cost label, which will allow us to observe that the call structure is
preserved. They are:

1. a step from a ‘normal’ state (which is not classified as a call or return) which is not a
cost label is simulated by zero or more ‘normal’ steps;

2. a step from a ‘call’ state followed by a cost label step is simulated by a step from a ‘call’
state, a corresponding label step, then zero or more ‘normal’ steps;

3. a step from a ‘call’ state not followed by a cost label similarly (note that this case
cannot occur in a well-labelled program, but we do not have enough information locally
to exploit this); and

3We describe how the cost properties are established in Section 6.



CerCo, FP7-ICT-2009-C-243881 12

Cost label

Call

Simulation

relation

Figure 5: Tiling of simulation for a measurable subtrace

4. a cost label step is simulated by a cost label step.

Finally, we need to know that a successfully translated program will have an initial state in
the simulation relation with the original program’s initial state.

The back-end has similar requirements for lifting simulations to structured traces. For-
tunately, our treatment of calls and returns can be slightly simpler because we have special
call and return states that correspond to function entry and return that are separate from the
actual instructions. This was originally inherited from our port of CompCert’s Clight seman-
tics, but proves useful here because we only need to consider adding extra steps after a call
or return state, because the instruction step deals with extra steps that occur before. The
back-end makes all of the call and return machinery explicit, and thus needs more complex
statements about extra steps before and after each call and return.

To find the measurable subtrace in the target program’s execution we walk along the
original program’s execution trace applying the appropriate simulation result by induction on
the number of steps. While the number of steps taken varies, the overall structure is preserved,
as illustrated in Figure 5. By preserving the structure we also maintain the same intensional
observables. One delicate point is that the cost label following a call must remain directly
afterwards4 (both in the program code and in the execution trace), even if we introduce extra
steps, for example to store parameters in memory in Cminor. Thus we have a version of the
call simulation that deals with both the call and the cost label in one result.

In addition to the subtrace we are interested in measuring, we must prove that the earlier
part of the trace is also preserved in order to use the simulation from the initial state. This
proof also guarantees that we do not run out of stack space before the subtrace we are interested
in. The lemmas for this prefix and the measurable subtrace are similar, following the pattern
above. However, the measurable subtrace also requires us to rebuild the termination proof.
This is defined recursively:

let rec will_return_aux C (depth:nat)

(trace:list (cs_state ... C × trace)) on trace : bool :=

match trace with

[ nil ⇒ false

| cons h tl ⇒
let 〈s,tr〉 := h in

match cs_classify C s with

[ cl_call ⇒ will_return_aux C (S depth) tl

| cl_return ⇒
match depth with

[ O ⇒ match tl with [ nil ⇒ true | _ ⇒ false ]

| S d ⇒ will_return_aux C d tl

4The prototype compiler allowed some straight-line code to appear before the cost label until a later stage
of the compiler, but we must move the requirement forward to fit with the structured traces.
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]

| _ ⇒ will_return_aux C depth tl

]

].

The depth is the number of return states we need to see before we have returned to the original
function (initially zero) and trace the measurable subtrace obtained from the running the
semantics for the correct number of steps. This definition unfolds tail recursively for each
step, and once the corresponding simulation result has been applied a new one for the target
can be asserted by unfolding and applying the induction hypothesis on the shorter trace.

Combining the lemmas about the prefix and the measurable subtrace requires a little care
because the states joining the two might not be related in the simulation. In particular, if the
measurable subtrace starts from the cost label at the beginning of the function there may be
some extra instructions in the target code to execute to complete function entry before the
states are back in the relation. Hence we carefully phrased the lemmas to allow for such extra
steps.

Together, these then gives us an overall result for any simulation fitting the requirements
above (contained in the meas_sim record):

theorem measured_subtrace_preserved :

∀MS:meas_sim.
∀p1,p2,m,n,stack_cost,max.
ms_compiled MS p1 p2 →
measurable (ms_C1 MS) p1 m n stack_cost max →
∃m’,n’.
measurable (ms_C2 MS) p2 m’ n’ stack_cost max ∧
observables (ms_C1 MS) p1 m n = observables (ms_C2 MS) p2 m’ n’.

The stack space requirement that is embedded in measurable is a consequence of the preserva-
tion of observables, because it is determined by the functions called and returned from, which
are observable.

5.2 Simulation results for each pass

We now consider the simulation results for the passes, each of which is used to instantiate
the measured_subtrace_preserved theorem to construct the measurable subtrace for the next
language.

5.2.1 Cast simplification

The parser used in CerCo introduces a lot of explicit type casts. If left as they are, these
constructs can greatly hamper the quality of the generated code – especially as the architecture
we consider is an 8-bit one. In Clight, casts are expressions. Hence, most of the work of this
transformation proceeds on expressions. The transformation proceeds by recursively trying to
coerce an expression to a particular integer type, which is in practice smaller than the original
one. This functionality is implemented by two mutually recursive functions whose signature
is the following.

let rec simplify_expr (e:expr) (target_sz:intsize) (target_sg:signedness)

: Σresult:bool×expr.
∀ge,en,m. simplify_inv ge en m e (\snd result) target_sz target_sg (\fst result) := . . .
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and simplify_inside (e:expr) : Σresult:expr. conservation e result := . . .

The simplify inside acts as a wrapper for simplify expr. Whenever simplify inside encounters
a Ecast expression, it tries to coerce the sub-expression to the desired type using simplify expr,
which tries to perform the actual coercion. In return, simplify expr calls back simplify inside in
some particular positions, where we decided to be conservative in order to simplify the proofs.
However, the current design allows to incrementally revert to a more aggressive version, by re-
placing recursive calls to simplify inside by calls to simplify expr and proving the corresponding
invariants – where possible.

The simplify inv invariant encodes either the conservation of the semantics during the trans-
formation corresponding to the failure of the coercion (Inv eq constructor), or the successful
downcast of the considered expression to the target type (Inv coerce ok).

inductive simplify_inv

(ge : genv) (en : env) (m : mem)

(e1 : expr) (e2 : expr) (target_sz : intsize) (target_sg : signedness) : bool → Prop :=

| Inv_eq : ∀result_flag. . . .
simplify_inv ge en m e1 e2 target_sz target_sg result_flag

| Inv_coerce_ok : ∀src_sz,src_sg.
typeof e1 = Tint src_sz src_sg →
typeof e2 = Tint target_sz target_sg →
smaller_integer_val src_sz target_sz src_sg (exec_expr ge en m e1) (exec_expr ge en m e2) →
simplify_inv ge en m e1 e2 target_sz target_sg true.

The conservation invariant for simplify inside simply states the conservation of the seman-
tics, as in the Inv eq constructor of the previous invariant.

definition conservation := λe,result. ∀ge,en,m.
res_sim ? (exec_expr ge en m e) (exec_expr ge en m result)

∧ res_sim ? (exec_lvalue ge en m e) (exec_lvalue ge en m result)

∧ typeof e = typeof result.

This invariant is then easily lifted to statement evaluations. The main problem encountered
with this particular pass was dealing with inconsistently typed programs, a canonical case
being a particular integer constant of a certain size typed with another size. This prompted
the need to introduce numerous type checks, making both the implementation and the proof
more complex, even though more comprehensive checks are made in the next stage.

5.2.2 Clight to Cminor

This pass is the last one operating on the Clight language. Its input is a full Clight program, and
its output is a Cminor program. Note that we do not use an equivalent of CompCert’s C#minor
language: we translate directly to a variant of Cminor. This presents the advantage of not
requiring the special loop constructs, nor the explicit block structure. Another salient point
of our approach is that a significant number of the properties needed for the simulation proof
were directly encoded in dependently typed translation functions. In particular, freshness
conditions and well-typedness conditions are included. The main effects of the transformation
from Clight to Cminor are listed below.

• Variables are classified as being either globals, stack-allocated locals or potentially
register-allocated locals. The value of register-allocated local variables is moved out
of the modelled memory and stored in a dedicated environment.
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• In Clight, each local variable has a dedicated memory block, whereas stack-allocated
locals are bundled together on a function-by-function basis.

• Loops are converted to jumps.

The first two points require memory injections which are more flexible that those needed in
the switch removal case. In the remainder of this section, we briefly discuss our implementation
of memory injections, and then the simulation proof.

Memory injections. Our memory injections are modelled after the work of Blazy & Leroy.
However, the corresponding paper is based on the first version of the CompCert memory
model [7], whereas we use a much more concrete model, allowing byte-level manipulations (as
in the later version of CompCert’s memory model). We proved roughly 80 % of the required
lemmas. Notably, some of the difficulties encountered were due to overly relaxed conditions
on pointer validity (fixed during development). Some more side conditions had to be added to
take care of possible overflows when converting from Z block bounds to 16 bit pointer offsets
(in practice, such overflows only occur in edge cases that are easily ruled out – but this fact
is not visible in memory injections). Concretely, some of the lemmas on the preservation of
simulation of loads after writes were axiomatised, due to a lack of time.

Simulation proof. We proved the simulation result for expressions and a representative
selection of statements. In particular we tackled while statements to ensure that we correctly
translate loops because our approach differs from CompCert by converting directly to Cminor
gotos rather than maintaining a notion of loop in Cminor. We also have a partial proof for
function entry, covering the setup of the memory injection, but not function exit. Exits, and
the remaining statements, have been axiomatised.

Careful management of the proof state was required because proof terms are embedded
in Cminor code to show that invariants are respected. These proof terms appear in the proof
state when inverting the translation functions, and they can be large and awkward. While
generalising them away is usually sufficient, it can be difficult when they appear under a
binder.

5.2.3 Cminor to RTLabs

The translation from Cminor to RTLabs is a fairly routine control flow graph (CFG) construc-
tion. As such, we chose to axiomatise the associated extensional simulation results. However,
we did prove several properties of the generated programs:

• All statements are type correct with respect to the declared pseudo-register type envi-
ronment.

• The CFG is closed, and has a distinguished entry node and a unique exit node.

These properties rely on similar properties about type safety and the presence of goto-labels
for Cminor programs which are checked at the preceding stage. As a result, this transformation
is total and any compilation failures must occur when the corresponding Clight source is
available and a better error message can be generated.

The proof obligations for these properties include many instances of graph inclusion. We
automated these proofs using a small amount of reflection, making the obligations much easier
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to handle. One drawback to enforcing invariants throughout is that temporarily breaking
them can be awkward. For example, return statements were originally used as placeholders
for goto destinations that had not yet been translated. However, this made establishing the
single exit node property rather difficult, and a different placeholder was chosen instead. In
other circumstances it is possible to prove a more complex invariant then simplify it at the
end of the transformation.

6 Checking cost labelling properties

Ideally, we would provide proofs that the cost labelling pass always produces programs that
are soundly and precisely labelled and that each subsequent pass preserves these properties.
This would match our use of dependent types to eliminate impossible sources of errors during
compilation, in particular retaining intermediate language type information.

However, given the limited amount of time available we realised that implementing a
compile-time check for a sound and precise labelling of the RTLabs intermediate code would
reduce the proof burden considerably. This is similar in spirit to the use of translation val-
idation in certified compilation, which makes a similar trade-off between the potential for
compile-time failure and the volume of proof required.

The check cannot be pushed into a later stage of the compiler because much of the infor-
mation is embedded into the structured traces. However, if an alternative method was used to
show that function returns in the compiled code are sufficiently well-behaved, then we could
consider pushing the cost property checks into the timing analysis itself. We leave this as a
possible area for future work.

6.1 Implementation and correctness

For a cost labelling to be sound and precise we need a cost label at the start of each function,
after each branch and at least one in every loop. The first two parts are trivial to check by
examining the code. In RTLabs the last part is specified by saying that there is a bound on the
number of successive instruction nodes in the CFG that you can follow before you encounter
a cost label, and checking this is more difficult.

The implementation progresses through the set of nodes in the graph, following successors
until a cost label is found or a label-free cycle is discovered (in which case the property does
not hold and we return an error). This is made easier by the prior knowledge that every
successor of a branch instruction is a cost label, so we do not need to search each branch.
When a label is found, we remove the chain of program counters from the set and continue
from another node in the set until it is empty, at which point we know that there is a bound
for every node in the graph.

Directly reasoning about the function that implements this procedure would be rather
awkward, so an inductive specification of a single step of its behaviour was written and proved
to match the implementation. This was then used to prove the implementation sound and
complete.

While we have not attempted to prove that the cost labelled properties are established
and preserved earlier in the compiler, we expect that the effort for the Cminor to RTLabs
stage alone would be similar to the work outlined above, because it involves the change from
requiring a cost label at particular positions to requiring cost labels to break loops in the
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CFG. As there are another three passes to consider (including the labelling itself), we believe
that using the check above is much simpler overall.

7 Existence of a structured trace

The structured trace idea introduced in Section 3 enriches the execution trace of a program
by nesting function calls in a mixed-step style and embedding the cost labelling properties of
the program. See Figure 4 on page 8 for an illustration of a structured trace. It was originally
designed to support the proof of correctness for the timing analysis of the object code in the
back-end, then generalised to provide a common structure to use from the end of the front-end
to the object code.

To make the definition generic we abstract over the semantics of the language,

record abstract_status : Type[1] :=

{ as_status :> Type[0]

; as_execute : relation as_status

; as_pc : DeqSet

; as_pc_of : as_status → as_pc

; as_classify : as_status → status_class

; as_label_of_pc : as_pc → option costlabel

; as_after_return : (Σs:as_status. as_classify s = cl_call) → as_status → Prop

; as_result: as_status → option int

; as_call_ident : (Σs:as_status.as_classify s = cl_call) → ident

; as_tailcall_ident : (Σs:as_status.as_classify s = cl_tailcall) → ident

}.

which requires a type of states, an execution relation5, some notion of abstract program
counter with decidable equality, the classification of states, and functions to extract the ob-
servable intensional information (cost labels and the identity of functions that are called).
The as_after_return property links the state before a function call with the state after re-
turn, providing the evidence that execution returns to the correct place. The precise form
varies between stages; in RTLabs it insists the CFG, the pointer to the CFG node to execute
next, and some call stack information is preserved.

The structured traces are defined using three mutually inductive types. The core data
structure is trace_any_label, which captures some straight-line execution until the next cost
label or the return from the enclosing function. Any function calls are embedded as a single
step, with its own trace nested inside and the before and after states linked by as_after_return;
and states classified as a ‘jump’ (in particular branches) must be followed by a cost label.

The second type, trace_label_label, is a trace_any_label where the initial state is cost
labelled. Thus a trace in this type identifies a series of steps whose cost is entirely accounted
for by the label at the start.

Finally, trace_label_return is a sequence of trace_label_label values which end in the
return from the function. These correspond to a measurable subtrace, and in particular include
executions of an entire function call (and so are used for the nested calls in trace_any_label).

5All of our semantics are executable, but using a relation was simpler in the abstraction.
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7.1 Construction

The construction of the structured trace replaces syntactic cost labelling properties, which
place requirements on where labels appear in the program, with semantic properties that
constrain the execution traces of the program. The construction begins by defining versions of
the sound and precise labelling properties on states and global environments (for the code that
appears in each of them) rather than whole programs, and showing that these are preserved
by steps of the RTLabs semantics.

Then we show that each cost labelling property required by the definition of structured
traces is locally satisfied. These proofs are broken up by the classification of states. Similarly,
we prove a step-by-step stack preservation result, which states that the RTLabs semantics
never changes the lower parts of the stack.

The core part of the construction of a structured trace is to use the proof of termination
from the measurable trace (defined on page 12) to ‘fold up’ the execution into the nested form.
The results outlined above fill in the proof obligations for the cost labelling properties and the
stack preservation result shows that calls return to the correct location.

The structured trace alone is not sufficient to capture the property that the program is
soundly labelled. While the structured trace guarantees termination, it still permits a loop
to be executed a finite number of times without encountering a cost label. We eliminate this
by proving that no ‘program counter’ repeats within any trace_any_label section by showing
that it is incompatible with the property that there is a bound on the number of successor
instructions you can follow in the CFG before you encounter a cost label (from Section 6.1).

7.1.1 Complete execution structured traces

The development of the construction above started relatively early, before the measurable
subtrace preservation proofs. To be confident that the traces were well-formed at that time,
we also developed a complete execution form that embeds the traces above. This includes
non-terminating program executions, where an infinite number of the terminating structured
traces are embedded. This construction confirmed that our definition of structured traces was
consistent, although we later found that we did not require the whole execution version for
the compiler correctness results.

To construct these we need to know whether each function call will eventually terminate,
requiring the use of the excluded middle. This classical reasoning is local to the construction
of whole program traces and is not necessary for our main results.

8 Conclusion

In combination with the work on the CerCo back-end and by concentrating on the novel in-
tensional parts of the proof, we have shown that it is possible to construct certifying compilers
that correctly report execution time and stack space costs. The layering of intensional cor-
rectness proofs on top of normal simulation results provides a useful separation of concerns,
and could permit the reuse of existing results.

A Files

The following table gives a high-level overview of the Matita source files in Deliverable 3.4:
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compiler.ma Top-level compiler definitions, in particular front_end, and the
whole compiler definition compile.

correctness.ma Correctness results: front_end_correct and correct, respectively.
Clight/* Clight: proofs for switch removal, cost labelling, cast simplification

and conversion to Cminor.
Cminor/* Cminor: axioms of conversion to RTLabs.
RTLabs/* RTLabs: definitions and proofs for compile-time cost labelling

checks, construction of structured traces.
common/Measurable.ma Definitions for measurable subtraces.

common/FEMeasurable.ma Generic measurable subtrace lifting proof.
common/* Other common definitions relevant to many parts of the compiler

and proof.
utilities/* General purpose definitions used throughout, including extensions

to the standard Matita library.
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