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Summary The deliverable D4.4 is composed of the following parts:

1. This summary.

2. The paper [1].

3. The paper [2].

4. The paper [3].

5. The paper [4].

This document and all the related matita developments can be downloaded at the page:

http://cerco.cs.unibo.it/
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Aim The aim of WP4 is is to build the trusted version of the compiler back-end, from the
intermediate RTLabs language down to assembly. The development is made in matita, and it
allows the trusted compiler to be extracted to OCaml.

The main planned contributions of deliverable D4.4 are formally checked proof of the
semantics correspondence between the intermediate code and the target code, and of the
preservation/modification of the control flow for complexity analysis.

Preservation of structure In [1] we present a genric approach to proving a forward sim-
ulation preserving the intensional structure of traces.

When a language starts to be able to meddle with return addresses that live in memory, the
call structure is no more guaranteed to be preserved after the high-level, structured languages.
This has little meaning as far as pure extensional semantic preservation is required—after all,
if the source language meddles with the call structure there is no problem as long as the target
language will follow. However in our approach we have cost labels spanning multiple calls, so
that the cost of what follows a call is “paid” in advance. This has no hope of being correct if
there is no guarantee that upon return from a call we land after the call itself.

In this part of the deliverable we will present our approach to this problem, which goes by
including in semantic traces structural conditions, and giving generic proof obligations that
enrich the classic step-by-step extensional preservation proof with the necessary hypotheses
to ensure the preservation of the call and label structures. This approach can be applied on
all passes starting from the RTLabs to RTL down to the assembly one.

The back-end correctness proof In [2], we give an outline of the actual correctness proof
for the passes from RTLabs down to assembly. We skip the details of the extensional parts
of each pass and we concentrate on two main aspects: how we deal with stack and how we
ensure the conditions explained in [1] in the passes involving graph languages.

The assembler correctness proof In [3], we present a proof of correctness of our assembler
to object code, given a correct policy for branch expansion (see next paragraph).

A branch expansion policy maker In [4] we finally present our algorithm for branch
expansion, that is how generic assembly jumps are expanded to the different type of jumps
available in the 8051 architecture (short, absolute and long). The correctness of this algorithm
is proved, and is what required by the correctness of the whole assembler.
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Abstract. The labelling approach is a technique to lift cost models
for non-functional properties of programs from the object code to the
source code. It is based on the preservation of the structure of the high
level program in every intermediate language used by the compiler. Such
structure is captured by observables that are added to the semantics and
that needs to be preserved by the forward simulation proof of correctness
of the compiler. Additional special observables are required for function
calls. In this paper we present a generic forward simulation proof that
preserves all these observables. The proof statement is based on a new
mechanised semantics that traces the structure of execution when the
language is unstructured. The generic semantics and simulation proof
have been mechanised in the interactive theorem prover Matita.

1 Introduction

The labelling approach has been introduced in [5] as a technique to lift cost
models for non-functional properties of programs from the object code to the
source code. Examples of non-functional properties are execution time, amount
of stack/heap space consumed and energy required for communication. The basic
idea of the approach is that it is impossible to provide a uniform cost model for
an high level language that is preserved precisely by a compiler. For instance,
two instances of an assignment x = y in the source code can be compiled very
differently according to the place (registers vs stack) where x and y are stored at
the moment of execution. Therefore a precise cost model must assign a different
cost to every occurrence, and the exact cost can only be known after compilation.

According to the labelling approach, the compiler is free to compile and
optimise the source code without any major restriction, but it must keep trace
of what happens to basic blocks during the compilation. The cost model is then
computed on the object code. It assigns a cost to every basic block. Finally, the
compiler propagates back the cost model to the source level, assigning a cost to
each basic block of the source code.

Implementing the labelling approach in a certified compiler allows to reason
formally on the high level source code of a program to prove non-functional
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ing Technologies (FET) programme within the Seventh Framework Programme for
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properties that are granted to be preserved by the compiler itself. The trusted
code base is then reduced to 1) the interactive theorem prover (or its kernel) used
in the certification of the compiler and 2) the software used to certify the property
on the source language, that can be itself certified further reducing the trusted
code base. In [5] the authors provide an example of a simple certified compiler
that implements the labelling approach for the imperative While language [11],
that does not have pointers and function calls.

The labelling approach has been shown to scale to more interesting scenarios.
In particular in [2] it has been applied to a functional language and in [13] it has
been shown that the approach can be slightly complicated to handle loop opti-
misations and, more generally, program optimisations that do not preserve the
structure of basic blocks. On-going work also shows that the labelling approach
is also compatible with the complex analyses required to obtain a cost model
for object code on processors that implement advanced features like pipelining,
superscalar architectures and caches.

In the European Project CerCo (Certified Complexity 1) [1] we are certifying
a labelling approach based compiler for a large subset of C to 8051 object code.
The compiler is moderately optimising and implements a compilation chain that
is largely inspired to that of CompCert [7,9]. Compared to work done in [5], the
main novelty and source of difficulties is due to the presence of function calls.
Surprisingly, the addition of function calls require a revisitation of the proof
technique given in [5]. In particular, at the core of the labelling approach there
is a forward simulation proof that, in the case of While, is only minimally more
complex than the proof required for the preservation of the functional properties
only. In the case of a programming language with function calls, instead, it turns
out that the forward simulation proof for the back-end languages must grant a
whole new set of invariants.

In this paper we present a formalisation in the Matita interactive theorem
prover [3,4] of a generic version of the simulation proof required for unstructured
languages. All back-end languages of the CerCo compiler are unstructured lan-
guages, so the proof covers half of the correctness of the compiler. The statement
of the generic proof is based on a new semantics for imperative unstructured lan-
guages that is based on structured traces and that restores the preservation of
structure in the observables of the semantics. The generic proof allows to almost
completely split the part of the simulation that deals with functional properties
only from the part that deals with the preservation of structure.

The plan of this paper is the following. In Section 2 we sketch the labelling
method and the problems derived from the application to languages with func-
tion calls. In Section 3 we introduce a generic description of an unstructured
imperative language and the corresponding structured traces (the novel seman-
tics). In Section 4 we describe the forward simulation proof. Conclusions and
future works are in Section 5

1 http://cerco.cs.unibo.it
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2 The labelling approach

We briefly sketch here a simplified version of the labelling approach as introduced
in [5]. The simplification strengthens the sufficient conditions given in [5] to allow
a simpler explanation. The simplified conditions given here are also used in the
CerCo compiler to simplify the proof.

Let P be a programming language whose semantics is given in terms of
observables: a run of a program yields a finite or infinite stream of observables.
We also assume for the time being that function calls are not available in P.
We want to associate a cost model to a program P written in P. The first step
is to extend the syntax of P with a new construct emit L where L is a label
distinct from all observables of P. The semantics of emit L is the emission of
the observable L that is meant to signal the beginning of a basic block.

There exists an automatic procedure that injects into the program P an
emit L at the beginning of each basic block, using a fresh L for each block. In
particular, the bodies of loops, both branches of if-then-elses and the targets
of gotos must all start with an emission statement.

Let now C be a compiler from P to the object code M, that is organised in
passes. Let Qi be the i-th intermediate language used by the compiler. We can
easily extend every intermediate language (and its semantics) with an emit L

statement as we did for P. The same is possible for M too, with the additional
difficulty that the syntax of object code is given as a sequence of bytes. The
injection of an emission statement in the object code can be done using a map
that maps two consecutive code addresses with the statement. The intended
semantics is that, if (pc1, pc2) 7→ emit L then the observable L is emitted after
the execution of the instruction stored at pc1 and before the execution of the
instruction stored at pc2. The two program counters are necessary because the
instruction stored at pc1 can have multiple possible successors (e.g. in case of a
conditional branch or an indirect call). Dually, the instruction stored at pc2 can
have multiple possible predecessors (e.g. if it is the target of a jump).

The compiler, to be functionally correct, must preserve the observational
equivalence, i.e. executing the program after each compiler pass should yield the
same stream of observables. After the injection of emission statements, observ-
ables now capture both functional and non-functional behaviours. This correct-
ness property is called in the literature a forward simulation and is sufficient
for correctness when the target language is deterministic [8]. We also require a
stronger, non-functional preservation property: after each pass all basic blocks
must start with an emission statement, and all labels L must be unique.

Now let M be the object code obtained for the program P . Let us suppose
that we can statically inspect the code M and associate to each basic block a
cost (e.g. the number of clock cycles required to execute all instructions in the
basic block, or an upper bound to that time). Every basic block is labelled with
an unique label L, thus we can actually associate the cost to L. Let call it k(L).

The function k is defined as the cost model for the object code control blocks.
It can be equally used as well as the cost model for the source control blocks.
Indeed, if the semantics of P is the stream L1L2 . . ., then, because of forward
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simulation, the semantics of M is also L1L2 . . . and its actual execution cost is
Σik(Li) because every instruction belongs to a control block and every control
block is labelled. Thus it is correct to say that the execution cost of P is also
Σik(Li). In other words, we have obtained a cost model k for the blocks of the
high level program P that is preserved by compilation.

How can the user profit from the high level cost model? Suppose, for instance,
that he wants to prove that the WCET of his program is bounded by c. It is
sufficient for him to prove that Σik(Li) ≤ c, which is now a purely functional
property of the code. He can therefore use any technique available to certify
functional properties of the source code. What is suggested in [5] is to actually
instrument the source code P by replacing every label emission statement emit L

with the instruction cost += k(L) that increments a global fresh variable cost.
The bound is now proved by establishing the program invariant cost ≤ c, which
can be done for example using the Frama-C [6] suite if the source code is some
variant of C.

2.1 Labelling function calls

We now want to extend the labelling approach to support function calls. On
the high level, structured programming language P there is not much to change.
When a function is invoked, the current basic block is temporarily exited and the
basic block the function starts with take control. When the function returns, the
execution of the original basic block is resumed. Thus the only significant change
is that basic blocks can now be nested. Let E be the label of the external block
and I the label of a nested one. Since the external starts before the internal,
the semantics observed will be E I and the cost associated to it on the source
language will be k(E)+k(I), i.e. the cost of executing all instructions in the block
E first plus the cost of executing all the instructions in the block I. However,
we know that some instructions in E are executed after the last instruction in I.
This is actually irrelevant because we are here assuming that costs are additive,
so that we can freely permute them2. Note that, in the present discussion, we are
assuming that the function call terminates and yields back control to the basic
block E. If the call diverges, the instrumentation cost += k(E) executed at the
beginning of E is still valid, but just as an upper bound to the real execution
cost: only precision is lost.

Let now consider what happens when we move down the compilation chain to
an unstructured intermediate or final language. Here unstructured means that
the only control operators are conditional and unconditional jumps, function
calls and returns. Unlike a structured language, though, there is no guarantee
that a function will return control just after the function call point. The se-
mantics of the return statement, indeed, consists in fetching the return address
from some internal structure (typically the control stack) and jumping directly

2 The additivity assumption fails on modern processors that have stateful subsystems,
like caches and pipelines. The extension of the labelling approach to those systems
is therefore non trivial and under development in the CerCo project.
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to it. The code can freely manipulate the control stack to make the procedure
returns to whatever position. Indeed, it is also possible to break the well nesting
of function calls/returns.

Is it the case that the code produced by a correct compiler must respect the
additional property that every function returns just after its function call point?
The answer is negative and the property is not implied by forward simulation
proofs. For instance, imagine to modify a correct compiler pass by systematically
adding one to the return address on the stack and by putting a NOP (or any other
instruction that takes one byte) after every function call. The obtained code will
be functionally indistinguishable, and the added instructions will all be dead
code.

This lack of structure in the semantics badly interferes with the labelling
approach. The reason is the following: when a basic block labelled with E contains
a function call, it no longer makes any sense to associate to a label E the sum
of the costs of all the instructions in the block. Indeed, there is no guarantee
that the function will return into the block and that the instructions that will
be executed after the return will be the ones we are paying for in the cost model.

How can we make the labelling approach work in this scenario? We only see
two possible ways. The first one consists in injecting an emission statement after
every function call: basic blocks no longer contain function calls, but are now
terminated by them. This completely solves the problem and allows the compiler
to break the structure of function calls/returns at will. However, the technique
has several drawbacks. First of all, it greatly augments the number of cost labels
that are injected in the source code and that become instrumentation statements.
Thus, when reasoning on the source code to prove non-functional properties, the
user (or the automation tool) will have to handle larger expressions. Second, the
more labels are emitted, the more difficult it becomes to implement powerful
optimisations respecting the code structure. Indeed, function calls are usually
implemented in such a way that most registers are preserved by the call, so that
the static analysis of the block is not interrupted by the call and an optimisation
can involve both the code before and after the function call. Third, instrumenting
the source code may require unpleasant modification of it. Take, for example,
the code f(g(x));. We need to inject an emission statement/instrumentation
instruction just after the execution of g. The only way to do that is to rewrite
the code as y = g(x); emit L; f(y); for some fresh variable y. It is pretty
clear how in certain situations the obtained code would be more obfuscated and
then more difficult to manually reason on.

For the previous reasons, in this paper and in the CerCo project we adopt
a different approach. We do not inject emission statements after every function
call. However, we want to propagate a strong additional invariant in the forward
simulation proof. The invariant is the propagation of the structure of the original
high level code, even if the target language is unstructured. The structure we
want to propagate, that will become more clear in the next section, comprises 1)
the property that every function should return just after the function call point,
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which in turns imply well nesting of function calls; 2) the property that every
basic block starts with a code emission statement.

In the original labelling approach of [5], the second property was granted syn-
tactically as a property of the generated code. In our revised approach, instead,
we will impose the property on the runs: it will be possible to generate code
that does not respect the syntactic property, as soon as all possible runs respect
it. For instance, dead code will no longer be required to have all basic blocks
correctly labelled. The switch is suggested from the fact that the first of the two
properties — that related to function calls/returns — can only be defined as
property of runs, not of the static code. The switch is beneficial to the proof
because the original proof was made of two parts: the forward simulation proof
and the proof that the static property was granted. In our revised approach the
latter disappears and only the forward simulation is kept.

In order to capture the structure semantics so that it is preserved by a forward
simulation argument, we need to make the structure observable in the semantics.
This is the topic of the next section.

3 Structured traces

The program semantics adopted in the traditional labelling approach is based
on labelled deductive systems. Given a set of observables O and a set of states
S, the semantics of one deterministic execution step is defined as a function
S → S ×O∗ where O∗ is a (finite) stream of observables. The semantics is then
lifted compositionally to multiple (finite or infinite) execution steps. Finally, the
semantics of a a whole program execution is obtained by forgetting about the
final state (if any), yielding a function S → O∗ that given an initial status
returns the finite or infinite stream of observables in output.

We present here a new definition of semantics where the structure of ex-
ecution, as defined in the previous section, is now observable. The idea is to
replace the stream of observables with a structured data type that makes ex-
plicit function call and returns and that grants some additional invariants by
construction. The data structure, called structured traces, is defined inductively
for terminating programs and coinductively for diverging ones. In the paper we
focus only on the inductive structure, i.e. we assume that all programs that are
given a semantics are total. The Matita formalisation also shows the coinductive
definitions. The semantics of a program is then defined as a function that maps
an initial state into a structured trace.

In order to have a definition that works on multiple intermediate languages,
we abstract the type of structure traces over an abstract data type of abstract
statuses:

record abstract_status := { S: Type[0];

as_execute: S → S → Prop; as_classify: S → classification;

as_costed: S → Prop; as_label: ∀ s. as_costed S s → label;

as_call_ident: ∀ s. as_classify S s = cl_call → label;
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as_after_return:

(Σs:as_status. as_classify s = Some ? cl_call) → as_status → Prop }
The predicate as execute s1 s2 holds if s1 evolves into s2 in one step;
as classify s c holds if the next instruction to be executed in s is classified
according to c ∈ {cl return,cl jump,cl call,cl other} (we omit tail-calls
for simplicity); the predicate as costed s holds if the next instruction to be
executed in s is a cost emission statement (also classified as cl other); finally
(as after return s1 s2) holds if the next instruction to be executed in s2 fol-
lows the function call to be executed in (the witness of the Σ-type) s1. The two
functions as label and as cost ident are used to extract the cost label/func-
tion call target from states whose next instruction is a cost emission/function
call statement.

The inductive type for structured traces is actually made by three multiple
inductive types with the following semantics:

1. (trace label return s1 s2) is a trace that begins in the state s1 (included)
and ends just before the state s2 (excluded) such that the instruction to
be executed in s1 is a label emission statement and the one to be executed
in the state before s2 is a return statement. Thus s2 is the state after the
return. The trace may contain other label emission statements. It captures
the structure of the execution of function bodies: they must start with a
cost emission statement and must end with a return; they are obtained by
concatenating one or more basic blocks, all starting with a label emission
(e.g. in case of loops).

2. (trace any label b s1 s2) is a trace that begins in the state s1 (included)
and ends just before the state s2 (excluded) such that the instruction to be
executed in s2/in the state before s2 is either a label emission statement
or or a return, according to the boolean b. It must not contain any label
emission statement. It captures the notion of a suffix of a basic block.

3. (trace label label b s1 s2) is the special case of (trace any label b s1 s2)
such that the instruction to be executed in s1 is a label emission statement.
It captures the notion of a basic block.

trace label label true s1 s2

trace label return s1 s2
(tlr base)

trace label label false s1 s2 trace label return s2 s3

trace label return s1 s3
(tlr step)

trace any label b s1 s2 as costed s1

trace label label b s1 s2
(tll base)

as execute s1 s2 as classify s1 ∈ {cl jump,cl other} as costed s2

trace any label false s1 s2
(tal base not return)
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as execute s1 s2 as classify s1 = cl return

trace any label true s1 s2
(tal base return)

as execute s1 s2 as classify s1 = cl call

as after return s1 s3 trace label return s2 s3 as costed s3

trace any label false s1 s3
(tal base call)

as execute s1 s2 as classify s1 = cl call

as after return s1 s3 trace label return s2 s3
¬as costed s3 trace any label b s3 s4

trace any label b s1 s4
(tal step call)

as execute s1 s2 ¬as costed s2
trace any label b s2 s3as classify s1 = cl other

trace any label b s1 s3
(tal step default)

A trace label return is isomorphic to a list of trace label labels that
ends with a cost emission followed by a return terminated trace label label.
The interesting cases are those of trace any label b s1 s2. A trace any label

is a sequence of steps built by a syntax directed definition on the classification
of s1. The constructors of the datatype impose several invariants that are meant
to impose a structure to the otherwise unstructured execution. In particular, the
following invariants are imposed:

1. the trace is never empty; it ends with a return iff b is true
2. a jump must always be the last instruction of the trace, and it must be

followed by a cost emission statement; i.e. the target of a jump is always the
beginning of a new basic block; as such it must start with a cost emission
statement

3. a cost emission statement can never occur inside the trace, only in the status
immediately after

4. the trace for a function call step is made of a subtrace for the function body
of type trace label return s1 s2, possibly followed by the rest of the trace
for this basic block. The subtrace represents the function execution. Being
an inductive datum, it grants totality of the function call. The status s2 is
the one that follows the return statement. The next instruction of s2 must
follow the function call instruction. As a consequence, function calls are also
well nested.

The three mutual structural recursive functions flatten trace label return,

flatten trace label label and flatten trance any label allow to extract
from a structured trace the list of states whose next instruction is a cost emission
statement. We only show here the type of one of them:

flatten_trace_label_return:

∀S: abstract_status. ∀s 1, s 2.
trace_label_return s 1 s 2 → list (as_cost_label S)

8



Cost prediction on structured traces The first main theorem of CerCo about
traces (theorem compute max trace label return cost ok with trace) holds
for the instantiation of the structured traces to the concrete status of object
code programs. Simplifying a bit, it states that

∀s1, s2.∀τ : trace label return s1 s2.
clock s2 = clock s1 +Σs∈(flatten trace label return τ) k(L(s))

(1)

where L maps a labelled state to its emitted label, and the cost model k is
statically computed from the object code by associating to each label L the sum
of the cost of the instructions in the basic block that starts at L and ends before
the next labelled instruction. The theorem is proved by structural induction
over the structured trace, and is based on the invariant that iff the function
that computes the cost model has analysed the instruction to be executed at
s2 after the one to be executed at s1, and if the structured trace starts with
s1, then eventually it will contain also s2. When s1 is not a function call, the
result holds trivially because of the (as execute s1 s2) condition obtained by
inversion on the trace. The only non trivial case is the one of function calls:
the cost model computation function does recursion on the first instruction that
follows that function call; the as after return condition of the tal base call

and tal step call grants exactly that the execution will eventually reach this
state.

Structured traces similarity and cost prediction invariance A compiler pass maps
source to object code and initial states to initial states. The source code and
initial state uniquely determine the structured trace of a program, if it exists.
The structured trace fails to exists iff the structural conditions are violated by
the program execution (e.g. a function body does not start with a cost emission
statement). Let us assume that the target structured trace exists.

What is the relation between the source and target structured traces? In
general, the two traces can be arbitrarily different. However, we are interested
only in those compiler passes that maps a trace τ1 to a trace τ2 such that

flatten trace label return τ1 = flatten trace label return τ2 (2)

The reason is that the combination of 1 with 2 yields the corollary

∀s1, s2.∀τ : trace label return s1 s2.
clock s2 − clock s1

= Σs∈(flatten trace label return τ1)
k(L(s))

= Σs∈(flatten trace label return τ2)
k(L(s))

(3)

This corollary states that the actual execution time of the program can be com-
puted equally well on the source or target language. Thus it becomes possible
to transfer the cost model from the target to the source code and reason on the
source code only.
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We are therefore interested in conditions stronger than 2. Therefore we in-
troduce here a similarity relation between traces with the same structure. Theo-
rem tlr rel to traces same flatten in the Matita formalisation shows that 2
holds for every pair (τ1, τ2) of similar traces.

Intuitively, two traces are similar when one can be obtained from the other
by erasing or inserting silent steps, i.e. states that are not as costed and that
are classified as other. Silent steps do not alter the structure of the traces.
In particular, the relation maps function calls to function calls to the same
function, label emission statements to emissions of the same label, concatenation
of subtraces to concatenation of subtraces of the same length and starting with
the same emission statement, etc.

In the formalisation the three similarity relations — one for each trace kind
— are defined by structural recursion on the first trace and pattern matching
over the second. Here we turn the definition into inference rules for the sake of
readability. We also omit from trace constructors all arguments, but those that
are traces or that are used in the premises of the rules.

tll rel tll1 tll2

tlr rel (tlr base tll1) (tlr base tll2)

tll rel tll1 tll2 tlr rel tlr1 tlr2

tlr rel (tlr step tll1 tlr1) (tlr step tll2 tlr2)

as label H1 = as label H2 tal rel tal1 tal2

tll rel (tll base tal1 H1) (tll base tal2 H2)

tal rel tal base not return (taa@tal base not return

tal rel tal base return (taa@tal base return

tlr rel tlr1 tlr2 as call ident H1 = as call ident H2

tal rel (tal base call H1 tlr1) (taa@tal base call H2 tlr2)

tlr rel tlr1 tlr2 as call ident H1 = as call ident H2 tal collapsable tal2

tal rel (tal base call tlr1) (taa@tal step call tlr2 tal2)

tlr rel tlr1 tlr2 as call ident H1 = as call ident H2 tal collapsable tal1

tal rel (tal step call tlr1 tal1) (taa@tal base call tlr2)

tlr rel tlr1 tlr2 tal rel tal1 tal2 as call ident H1 = as call ident H2

tal rel (tal step call tlr1 tal1) (taa@tal step call tlr2 tal2)
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tal rel tal1 tal2

tal rel (tal step default tal1) tal2

In the preceding rules, a taa is an inhabitant of the trace any any s1 s2
inductive data type whose definition is not in the paper for lack of space. It is
the type of valid prefixes (even empty ones) of trace any labels that do not
contain any function call. Therefore it is possible to concatenate (using “@”) a
trace any any to the left of a trace any label. A trace any any captures a
sequence of silent moves.

The tal collapsable unary predicate over trace any labels holds when
the argument does not contain any function call and it ends with a label (not a
return). The intuition is that after a function call we can still perform a sequence
of silent actions while remaining similar.

4 Forward simulation

We summarise here the results of the previous sections. Each intermediate un-
structured language can be given a semantics based on structured traces, that
single out those runs that respect a certain number of invariants. A cost model
can be computed on the object code and it can be used to predict the execution
costs of runs that produce structured traces. The cost model can be lifted from
the target to the source code of a pass if the pass maps structured traces to
similar structured traces. The latter property is called a forward simulation.

As for labelled transition systems, in order to establish the forward simula-
tion we are interested in (preservation of observables), we are forced to prove
a stronger notion of forward simulation that introduces an explicit relation be-
tween states. The classical notion of a 1-to-0-or-many forward simulation is the
existence of a relation R over states such that if s1Rs2 and s1 →1 s′1 then there
exists an s′2 such that s2 →∗ s′2 and s′1Rs

′
2. In our context, we need to replace

the one and multi step transition relations→n with the existence of a structured
trace between the two states, and we need to add the request that the two struc-
tured traces are similar. Thus what we would like to state is something like:
for all s1, s2, s

′
1 such that there is a τ1 from s1 to s′1 and s1Rs2 there exists an

s′2 such that s′1Rs
′
2 and a τ2 from s2 to s′2 such that τ1 is similar to τ2. We call

this particular form of forward simulation trace reconstruction.
The statement just introduced, however, is too simplistic and not provable in

the general case. To understand why, consider the case of a function call and the
pass that fixes the parameter passing conventions. A function call in the source
code takes in input an arbitrary number of pseudo-registers (the actual param-
eters to pass) and returns an arbitrary number of pseudo-registers (where the
result is stored). A function call in the target language has no input nor output
parameters. The pass must add explicit code before and after the function call
to move the pseudo-registers content from/to the hardware registers or the stack
in order to implement the parameter passing strategy. Similarly, each function
body must be augmented with a preamble and a postamble to complete/initiate
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the parameter passing strategy for the call/return phase. Therefore what used
to be a call followed by the next instruction to execute after the function return,
now becomes a sequence of instructions, followed by a call, followed by another
sequence. The two states at the beginning of the first sequence and at the end
of the second sequence are in relation with the status before/after the call in the
source code, like in an usual forward simulation. How can we prove however the
additional condition for function calls that asks that when the function returns
the instruction immediately after the function call is called? To grant this in-
variant, there must be another relation between the address of the function call
in the source and in the target code. This additional relation is to be used in
particular to relate the two stacks.

Another example is given by preservation of code emission statements. A
single code emission instruction can be simulated by a sequence of steps, followed
by a code emission, followed by another sequence. Clearly the initial and final
statuses of the sequence are to be in relation with the status before/after the
code emission in the source code. In order to preserve the structured traces
invariants, however, we must consider a second relation between states that
traces the preservation of the code emission statement.

Therefore we now introduce an abstract notion of relation set between ab-
stract statuses and an abstract notion of 1-to-0-or-many forward simulation con-
ditions. These two definitions enjoy the following remarkable properties:

1. they are generic enough to accommodate all passes of the CerCo compiler
2. the conjunction of the 1-to-0-or-many forward simulation conditions are just

slightly stricter than the statement of a 1-to-0-or-many forward simulation
in the classical case. In particular, they only require the construction of very
simple forms of structured traces made of silent states only.

3. they allow to prove our main result of the paper: the 1-to-0-or-many forward
simulation conditions are sufficient to prove the trace reconstruction theorem

Point 3. is the important one. First of all it means that we have reduced the
complex problem of trace reconstruction to a much simpler one that, moreover,
can be solved with slight adaptations of the forward simulation proof that is
performed for a compiler that only cares about functional properties. Therefore
we have successfully splitted as much as possible the proof of preservation of
functional properties from that of non-functional ones. Secondly, combined with
the results in the previous section, it implies that the cost model can be computed
on the object code and lifted to the source code to reason on non-functional
properties, assuming that the 1-to-0-or-many forward simulation conditions are
fulfilled for every compiler pass.

Relation sets We introduce now the four relations S, C,L,R between abstract
statuses that are used to correlate the corresponding statues before and after
a compiler pass. The first two are abstract and must be instantiated by every
pass. The remaining two are derived relations.

The S relation between states is the classical relation used in forward simu-
lation proofs. It correlates the data of the status (e.g. registers, memory, etc.).
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The C relation correlates call states. It allows to track the position in the
target code of every call in the source code.

The L relation simply says that the two states are both label emitting states
that emit the same label. It allows to track the position in the target code of
every cost emitting statement in the source code.

Finally the R relation is the more complex one. Two states s1 and s2 are R
correlated if every time s1 is the successors of a call state that is C-related to a
call state s′2 in the target code, then s2 is the successor of s′2. We will require all
pairs of states that follow a related call to be R-related. This is the fundamental
requirement to grant that the target trace is well structured, i.e. that function
calls are well nested and always return where they are supposed to.

record status_rel (S1,S2 : abstract_status) : Type[1] := {
S: S1 → S2 → Prop;

C: (Σs.as_classifier S1 s cl_call) →
(Σs.as_classifier S2 s cl_call) → Prop }.

definition L S1 S2 st1 st2 := as_label S1 st1 = as_label S2 st2.

definition R S1 S2 (R: status_rel S1 S2) s1_ret s2_ret

∀s1_pre,s2_pre.
as_after_return s1_pre s1_ret → s1_pre R s2_pre →
as_after_return s2_pre s2_ret.

1-to-0-or-many forward simulation conditions

Condition 1 (Cases cl other and cl jump) For all s1, s
′
1, s2 such that s1Ss′1,

and as execute s1 s
′
1, and as classify s1 = cl other or as classify s1 =

cl other and as costed s′1, there exists an s′2 and a trace any any free s2 s
′
2

called taaf such that s′1(S ∩ L)s′2 and either taaf is non empty, or one among
s1 and s′1 is as costed.

In the above condition, a trace any any free s1 s2 is an inductive type
of structured traces that do not contain function calls or cost emission state-
ments. Differently from a trace any any, the instruction to be executed in the
lookahead state s2 may be a cost emission statement.

The intuition of the condition is that one step can be replaced with zero
or more steps if it preserves the relation between the data and if the two final
statuses are labelled in the same way. Moreover, we must take special care of the
empty case to avoid collapsing two consecutive states that emit the same label
to just one state, missing one of the two emissions.

Condition 2 (Case cl call) For all s1, s
′
1, s2 s.t. s1Ss′1 and as execute s1 s

′
1

and as classify s1 = cl call, there exists s′2, sb, sa, a trace any any s2 sb,
and a trace any any free sa s

′
2 such that: sa is classified as a cl call, the

as identifiers of the two call states are the same, s1Csb, as execute sb sa
holds, s′1Lsb and s′1Ss′2.
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The condition says that, to simulate a function call, we can perform a se-
quence of silent actions before and after the function call itself. The old and new
call states must be C-related, the old and new states at the beginning of the
function execution must be L-related and, finally, the two initial and final states
must be S-related as usual.

Condition 3 (Case cl return) For all s1, s
′
1, s2 s.t. s1Ss′1, as execute s1 s

′
1

and as classify s1 = cl return, there exists s′2, sb, sa, a trace any any s2 sb,
a trace any any free sa s

′
2 called taaf such that: sa is classified as a cl return,

s1Csb, the predicate as execute sb sa holds, s′1Rsa and s′1(S ∩ L)s′2 and either
taaf is non empty, or sa is not as costed.

Similarly to the call condition, to simulate a return we can perform a sequence
of silent actions before and after the return statement itself. The old and the new
statements after the return must be R-related, to grant that they returned to
corresponding calls. The two initial and final states must be S-related as usual
and, moreover, they must exhibit the same labels. Finally, when the suffix is
non empty we must take care of not inserting a new unmatched cost emission
statement just after the return statement.

Main result: the 1-to-0-or-many forward simulation conditions are sufficient to
trace reconstruction Let us assume that a relation set is given such that the 1-to-
0-or-many forward simulation conditions are satisfied. Under this assumption we
can prove the following three trace reconstruction theorems by mutual structural
induction over the traces given in input between the s1 and s′1 states.

In particular, the status simulation produce tlr theorem applied to the
main function of the program and equal s2b and s2 states shows that, for every
initial state in the source code that induces a structured trace in the source code,
the compiled code produces a similar structured trace.

Theorem 1 (status simulation produce tlr). For every s1, s
′
1, s2b , s2 s.t.

there is a trace label return s1 s
′
1 called tlr1 and a trace any any s2b s2 and

s1Ls2b and s1Ss2, there exists s2m , s
′
2 s.t. there is a trace label return s2b s2m

called tlr2 and there is a trace any any free s2m s′2 called taaf s.t. if taaf is
non empty then ¬(as costed s2m), and tlr rel tlr1 tlr2 and s′1(S ∩ L)s′2 and
s′1Rs2m .

The theorem states that a trace label return in the source code together
with a precomputed preamble of silent states (the trace any any) in the target
code induces a similar trace label return trace in the target code which can
be followed by a sequence of silent states. Note that the statement does not
require the produced trace label return trace to start with the precomputed
preamble, even if this is likely to be the case in concrete implementations. The
preamble in input is necessary for compositionality, e.g. because the 1-to-0-or-
many forward simulation conditions allow in the case of function calls to execute
a preamble of silent instructions just after the function call.
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Theorem 2 (status simulation produce tll). For every s1, s
′
1, s2b , s2 s.t.

there is a trace label label b s1 s
′
1 called tll1 and a trace any any s2b s2

and s1Ls2b and s1Ss2, there exists s2m , s
′
2 s.t.

– if b (the trace ends with a return) then there exists s2m , s
′
2 and a trace

trace label label b s2b s2m called tll2 and a trace any any free s2m s′2
called taa2 s.t. s′1(S ∩ L)s′2 and s′1Rs2m and tll rel tll1 tll2 and if taa2 is
non empty then ¬(as costed s2m)

– else there exists s′2 and a trace label label b s2b s
′
2 called tll2 such that

s′1(S ∩ L)s′2 and tll rel tll1 tll2.

The statement is similar to the previous one: a source trace label label

and a given target preamble of silent states in the target code induce a similar
trace label label in the target code, possibly followed by a sequence of silent
moves that become the preamble for the next trace label label translation.

Theorem 3 (status simulation produce tal). For every s1, s
′
1, s2 s.t. there

is a trace any label b s1 s
′
1 called tal1 and s1Ss2

– if b (the trace ends with a return) then there exists s2m , s
′
2 and a trace

trace any label b s2 s2m called tal2 and a trace any any free s2m s′2
called taa2 s.t. s′1(S ∩L)s′2 and s′1Rs2m and tal rel tal1 tal2 and if taa2 is
non empty then ¬(as costed s2m)

– else there exists s′2 and a trace any label b s2 s
′
2 called tal2 such that either

s′1(S ∩L)s′2 and tal rel tal1 tal2 or s′1(S ∩L)s2 and tal collapsable tal1
and ¬(as costed s1)

The statement is also similar to the previous ones, but for the lack of the
target code preamble.

5 Conclusions and future works

The labelling approach is a technique to implement compilers that induce on
the source code a non uniform cost model determined from the object code
produced. The cost model assigns a cost to each basic block of the program.
The main theorem of the approach says that there is an exact correspondence
between the sequence of basic blocks started in the source and object code, and
that no instruction in the source or object code is executed outside a basic block.
Thus the cost of object code execution can be computed precisely on the source.

In this paper we scale the labelling approach to cover a programming lan-
guage with function calls. This introduces new difficulties only when the lan-
guage is unstructured, i.e. it allows function calls to return anywhere in the
code, destroying the hope of a static prediction of the cost of basic blocks. We
restore static predictability by introducing a new semantics for unstructured pro-
grams that single outs well structured executions. The latter are represented by
structured traces, a generalisation of streams of observables that capture several
structural invariants of the execution, like well nesting of functions or the fact
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that every basic block must start with a code emission statement. We show that
structured traces are sufficiently structured to statically compute a precise cost
model on the object code.

We introduce a similarity relation on structured traces that must hold be-
tween source and target traces. When the relation holds for every program, we
prove that the cost model can be lifted from the object to the source code.

In order to prove that similarity holds, we present a generic proof of forward
simulation that is aimed at pulling apart as much as possible the part of the
simulation related to non-functional properties (preservation of structure) from
that related to functional properties. In particular, we reduce the problem of
preservation of structure to that of showing a 1-to-0-or-many forward simula-
tion that only adds a few additional proof obligations to those of a traditional,
function properties only, proof.

All results presented in the paper are part of a larger certification of a C
compiler which is based on the labelling approach. The certification, done in
Matita, is the main deliverable of the FET-Open Certified Complexity (CerCo).

The short term future work consists in the completion of the certification of
the CerCo compiler exploiting the main theorem of this paper.

Related works CerCo is the first project that explicitly tries to induce a precise
cost model on the source code in order to establish non-functional properties
of programs on an high level language. Traditional certifications of compilers,
like [9,10], only explicitly prove preservation of the functional properties.

Usually forward simulations take the following form: for each transition from
s1 to s2 in the source code, there exists an equivalent sequence of transitions in
the target code of length n. The number n of transition steps in the target code
can just be the witness of the existential statement. An equivalent alternative
when the proof of simulation is constructive consists in providing an explicit
function, called clock function in the literature [12], that computes n from s1.
Every clock function constitutes then a cost model for the source code, in the
spirit of what we are doing in CerCo. However, we believe our solution to be
superior in the following respects: 1) the machinery of the labelling approach is
insensible to the resource being measured. Indeed, any cost model computed on
the object code can be lifted to the source code (e.g. stack space used, energy
consumed, etc.). On the contrary, clock functions only talk about number of
transition steps. In order to extend the approach with clock functions to other
resources, additional functions must be introduced. Moreover, the additional
functions would be handled differently in the proof. 2) the cost models induced by
the labelling approach have a simple presentation. In particular, they associate
a number to each basic block. More complex models can be induced when the
approach is scaled to cover, for instance, loop optimisations [13], but the costs are
still meant to be easy to understand and manipulate in an interactive theorem
prover or in Frama-C. On the contrary, a clock function is a complex function
of the state s1 which, as a function, is an opaque object that is difficult to reify
as source code in order to reason on it.
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Abstract

We present the certifying effort of the back-end of the CerCo annotating compiler to
8051 assembly. Apart from the proofs needed for propagating the extensional part of
execution traces, additional care must be taken in order to ensure a form of intensional
correctness of the pass, necessary to prove that the lifting of computational costs is correct.
We concentrate here on two aspects of the proof: how stack is dealt with during the pass,
and how generic graph language passes can be proven correct from an extensional and
intensional point of view.

1 The Back-End Correctness Proof at a Glance

The back-end part of the compiler takes an RTLabs program together with an initialising cost
label and gives the assembly code to be fed to the assembler. From the semantic point of view,
at this stage of the compiler, we are interested in propagating structured traces, as explained
in [2].

A schema with all the back-end passes and the salient and common points of each one is
the following:

abstract status︷ ︸︸ ︷

RTLabs −→

joint languages︷ ︸︸ ︷
stack merge︷︸︸︷

RTL −→ ERTL −→ LTL︸ ︷︷ ︸
joint graph languages

−→
linearisation︷ ︸︸ ︷

LIN −→ ASM︸ ︷︷ ︸
linear map

First, here all language semantics share a common interface via abstract_status, which is
at the base of the definition of structured traces. The generic shape of each pass of the back-
end is thus the same: we get in input an unstructured prefix trace followed by a structured
one which we want to measure in the source language, and we need to prove the existence
of the corresponding unstructured and structured traces in the target language, with the two
traces producing the same observables.

From RTL down to LIN we are in the common syntactic and semantic language we call
joint. Inside the first of these languages, RTL, we pass from separate local memory spaces
for each function call to a unique one. Even though parameters are passed on stack only in
ERTL and variable allocation and spilling is done in LTL, we already have values on stack at
this stage, and we ensure all the stack space that will eventually be needed is allocated at each
call.
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� �
record ft_and_tlr (S : abstract_status) (prefix, subtrace : list intensional_event)

(fn : ident) (st1 : S) : Prop :=

{ st2 : S

; st3 : S

; ft : flat_trace S st1 st2

; tlr : trace_label_return S st2 st3

; tlr_unrpt : tlr_unrepeating ... tlr

; ft_is_prefix : ft_observables ... ft = prefix

; fn_is_current : ft_current_function ... ft = Some ? fn

; tlr_is_subtrace : observables_trace_label_return ... tlr fn = subtrace

}.� �
Figure 1: The ft_and_tlr record (which stands for flat_trace and trace_label_return), which
abstracts the kind of invariant that all back-end passes need to preserve.

The next two passes live in the graph part of joint, and can benefit from a generic approach
to graph translation and its proof of correctness, as described in section 3.

Next, a generic joint linearisation pass is performed to go from LTL to LIN. The proof is
generic too, with reasonable and straightforward proof obligations asking that the common
semantic operations of the two languages depend on program counters in memory only to
control the flow. Program counters are indeed the only semantic entity that changes during
this pass.

The last pass is, as far as function bodies are concerned, a simple linear map—every LIN
instruction is mapped to a single ASM instruction, so that we may say that LIN is a subset of
ASM. Less straightforward is that function bodies are merged together, and that pointers pass
from formal data to actual one. Values in memory need therefore to be remapped to relate
the states in the two languages.

1.1 A common invariant

This block of traces with properties is recurrent enough to merit the matita definition in
Figure 1. We rely on the fact that all semantics from RTLabs down to object code can be
expressed with the abstract_status record, by which all our definitions of traces are expressed.
The parameters of the record fix respectively the intensional events encountered in the prefix
(as stated by ft_is_prefix), the ones in the structured trace (tlr_is_subtrace) and the name
of the function in which tlr takes place (fn_is_current), and the initial state. The additional
property tlr_unrpt tells that program counters do not repeat locally (i.e. between two labels)
in tlr, a property needed for the soundness of the cost static analysis.

1.2 The statement

The back-end correctness theorem proves the matita statement in Figure 2. The output of the
a proof is a ft_and_tlr structure as outlined before, which constitutes the preconditions of
the assembly proof. The sigma and pol parameters are passed to ASM’s semantics, however
they have significance only with respect to the ASM to object code correctness 1.

1sigma and pol are what allows to maps instructions between ASM and the produced object code. This
information is gained during the jump expansion pass, cf. [1].
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� �
theorem back_end_correct :

∀ observe,init_cost,p_rtlabs,p_asm,stack_m,max_stack,prefix,subtrace,fn.
back_end observe init_cost p_rtlabs =

return 〈p_asm, stack_m, max_stack 〉→
back_end_preconditions p_rtlabs (stack_sizes stack_m) max_stack prefix subtrace fn →
∀ sigma,pol.
ft_and_tlr (ASM_status p_asm sigma pol)

prefix subtrace fn (initialise_status ? p_asm).� �
(a) The statement.� �

record back_end_preconditions (p_rtlabs : RTLabs_program)

(stacksizes : ident → option N) (max_stack : N)
(prefix, subtrace : list intensional_event) (fn : ident) : Prop :=

{ ra_init : RTLabs_status (make_global p_rtlabs)

; ra_init_ok : make_ext_initial_state p_rtlabs = return ra_init

; ra_max :

le (maximum (update_stacksize_info stacksizes (mk_stacksize_info 0 0)

(extract_call_ud_from_observables (prefix @ subtrace)))) max_stack

; ra_ft_tlr : ft_and_tlr (RTLabs_status (make_global p_rtlabs))

prefix subtrace fn ra_init

}.� �
(b) The definition of preconditions for the correctness of the back-end.

Figure 2: The statement of the back-end correctness result.
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Care must be taken in dealing with the stack. The back-end pass produces a stack model :
the amount of stack needed by each function (stack_m), together with the maximal usable
stack (max_stack, 216 minus the size occupied by global variables). While programs in the
front end do not fail for stack overflow, the stack information is lifted to source much in the
same ways as time consumption information, so that we can actually use as a hypothesis on
input source traces that they do not use more stack than allowed. This hypothesis is included
in the measurable predicate over front-end traces, and we put it to use during the back-end
pass, where we pass to a unique bounded stack space for all functions. More details will be
presented in section 2.

The above explanation is why the back-end correctness results requires some additional
preconditions with respect to a ft_and_tlr for RTLabs. This is accomplished by the ra_max

field in the record back_end_preconditions (Figure 2b). The other fields hold the initial state
ra_init of the program in RTLabs (with a proof that it is actually the initial state).

2 Dealing with the Stack

Setting apart the extensional details of the proofs, a delicate point is how we deal with stack.
A first minor issue is that the information we have about stack usage of each function call

evolves along the back-end passes:

• in RTL we must allocate some stack for what where referenced local variables (including
local arrays) in source code;

• in ERTL we add up the stack used to pass parameters that overflow the hardware registers
available for the task;

• finally in LTL we add the space necessary for spilled pseudo-registers, and the stack
usage of functions is finally fixed.

Another issue that we already mentioned above is that somewhere during the back-end
pass we must pass from a semantics with no stack overflow error to one that can fail.

In the following we describe the approach we have taken to these issues.

2.1 An evolving stack usage

The stack size we know each function must at least have is written in a field of joint internal
functions (called joint_if_stacksize), and as already said evolves during the back-end pass.
The näıve approach to defining semantics of these languages is to allocate the minimal nec-
essary space for each function call, reading it from this syntactic field. The drawback is that
then at each update of the stack size we must remap the data pointers in memory, moreover
in a way that is dependent on the call stack. This is exemplified by the picture in Figure 3a.

We decided to take another approach, where stack sizes of each function call are a pa-
rameter to the semantics, and all passes are proved correct for the same stack sizes in source
and target language, possibly with a hypothesis on these “semantic” stack sizes to be greater
than the “syntactic” ones (but not all passes require it). The picture becomes thus the one in
Figure 3b. The advantage is that now the data in memory does not change along the evolving
of stack usage, apart from the first time we pass from separate independent stack spaces and
a unique one, a situation we describe in the next subsection.
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(b) Constant stack usage taken as a semantic pa-
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Figure 3: Comparison between using tight stack sizes across languages, i.e. reading how much
stack is required from the function, and using the same stack sizes provided as a parameter
to the semantics. We suppose the call stack is main, f, g, f .

2.2 From an unbounded to a bounded stack

The way the ft_and_tlr is propagated is almost everywhere by means of the proof of existence
of a special relation between states that is a simulation with respect to execution. There are
more details involved than in a usual extensional proof, regarding the intensional preservation.
The details are contained in [2].

Here we concentrate on a particular aspect that eludes the generic treatment: the moment
when we pass from an unbounded stack to a bounded one. This passage is delicate for two
reasons. Firstly, while usually we can assure forward simulation of an execution step by simply
depending on that step not producing an error, here is no more the case, as the stack overflow
error must start happening somewhere in the back-end. Secondly, merging the stack spaces
of the function calls requires mapping the pointer values contained in memory.

In order to tackle these subtleties, we firstly decided to isolate this passage, without min-
gling it with other pass-dependent semantic preservation proofs. Rather than performing the
proof when passing from a language to another, we decided to split in three the semantics of
a single language (RTL).

The first one, called RTL_semantics_separate, mimics how stack is modelled in RTLabs:
each function call gets allocated an independent stack space. Passing from RTLabs to this
semantics involves the usual simulation relation. A peculiarity is that data pointers in memory
need not change.

The middle, second one, is called RTL_semantics_separate_overflow, and it has separate
allocated stack spaces just as above. However the execution is defined so that if the call stack
as a whole uses more space than (later) physically available (as provided by a parameter), an
error is issued. The actual states are identical, and the simulation is an almost trivial 1-to-1,
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where the stack correctness inherited from back_end_preconditions can be easily put to use
even if the generic results for structure preserving simulation actually cannot be used here.

The third one, defined as RTL_semantics_unique, switches to a semantics with a single,
bounded stack space, where moreover memory has already been granted to global variables
too. From this semantics down to LIN, all data in memory excluding pieces of program counters
remain the same, as specified in subsection 2.1. However in order to show a forwarding
simulation from RTL_semantics_separate_overflow, one needs to remap data pointers. No
further hypothesis on stack usage needs to be employed, as it is integrated in the fact that the
execution step does not fail.

3 A Modular Approach to the Correctness of the Graph Passes

We will now outline how the proof can be carried out generally in the graph passes of the
back-end that share the joint language interface.

An instance of the record sem_graph_params contains all common information about pro-
grams of a joint-language whose source code can be logically organized as a graph. Thus,
every program of this kind will be an inhabitant of the type joint_program p, where p is an
instance of sem_graph_params. We want to stress that such a record is in a sub-type relation
with the record params, which was explained in Deliverable 4.3.

In order to establish the correctness of our cost-model in each compiler’s back-end pass,
where both source and target programs are joint-graph-programs, i.e. the source program src

(resp. the target program out) is such that there is a p_in (resp. p_out) of type sem_graph_params
such that src : joint_program p_in (resp. out : joint_program p_out), we would like to
prove a statement similar to this shape.� �
theorem joint_correctness : ∀ p_in,p_out : sem_graph_params.

∀ prog : joint_program p_in.∀ stack_size.
let trans_prog :=transform_program ... prog in

∀ init_in.
make_initial_state (mk_prog_params p_in prog stack_size) = OK ? init_in →
∃ init_out.
make_initial_state (mk_prog_params p_out trans_prog stack_size) = OK ? init_out ∧
∃ [1] R : status_rel (joint_abstract_status (mk_prog_params p_in prog stack_size))

(joint_abstract_status (mk_prog_params p_out trans_prog stack_size)).

status_simulation_with_init

(joint_abstract_status (mk_prog_params p_in prog stack_size))

(joint_abstract_status (mk_prog_params p_out trans_prog stack_size))

R init_in init_out.� �
When proving this statement (for each concrete instance of language), we need to proceed by
cases according the classification of each state in the source program (cl_jmp, cl_other, cl_call
and cl_return) and then prove the suitable conditions explained in [2], according to the case
we are currently considering (Condition 1 for cl_other and cl_jump case, Condition 2 for
cl_call or Condition 3 for cl_return case). Roughly speaking, proving these conditions means
producing traces of some kind in the target language that are in a suitable correspondence
with an execution step in the source language.

Since traces carry both extensional and intensional information, the main disadvantage
with this approach is that the extensional part of the proof (for example the preservation the
semantic relation between states of the program under evaluation) and the intensional part
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(for example, all proof obligation dealing with the presence of a cost label in some point of
the code) are mixed together in a not very clear way.

Furthermore, some proof obligations concerning the relation among program counters (for
example, the call relation between states which is one of the field of status_rel record) depend
only on the way the translation from source to target program is done. In particular if the
translation satisfies some suitable properties, then it is possible to define some “standard
relations” that automatically satisfy these proof obligations, in an independent way from the
specific source and target languages.

So our question is whether there is a way to use these observation in order to factorize
all common aspects of all correctness proofs of each pass involving joint languages. The aim
is having a layer on top of the one talking about traces, that ask the user wishing to prove
the correctness of a single pass involving two joint-languages, to provide some semantic state
relation that satisfies some conditions. These conditions never speak about traces and they
are mostly extensional, with the intensional part being limited to some additional required
properties of the translation. This layer will use the trace machinery in order to deliver the
desired correctness proof of the pass.

In order to reach this goal, we have to analyse first whether there is a common way to
perform language translation for each pass. After having defined and specified the translation
machinery, we will explain how it is possible to use it in order to build such a layer. So this
section is organized as follows: in the first part we explain the translation machinery while in
the second part we explain such a layer.

3.1 Graph translation

Since a program is just a collection of functions, the compositional approach suggests us to
define the translation of a program in terms of the way we translate each internal func-
tion. Thus, if we let src_g_pars and dst_g_pars being the graph parameters of respec-
tively the source and the target program, the aim is writing a matita’s function that takes
as input an object of type joint_closed_internal_function src_g_pars together with addi-
tional information (that we will explain better later) and gives as output an object of type
joint_closed_internal_function dst_g_pars with some properties, that corresponds to the
result of the translation (for the definition of joint_closed_internal_function, see Deliver-
able 4.2 and 4.3) . The signature of the definition is the following one.� �
definition b_graph_translate :

∀ src_g_pars,dst_g_pars : graph_params.

∀ globals: list ident.

∀ data : bound_b_graph_translate_data src_g_pars dst_g_pars globals.

∀ def_in : joint_closed_internal_function src_g_pars globals.

Σdef_out : joint_closed_internal_function dst_g_pars globals.

∃ data’,regs,f_lbls,f_regs.
bind_new_instantiates ?? data’ data regs ∧
b_graph_translate_props ... data’ def_in def_out f_lbls f_regs.� �
Let us now discuss in detail what are the parameter to be provide in input and what is

the output of the translation process.
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3.1.1 Input requested by the translation process

Clearly, b_graph_translate takes as input the internal function of the source language we want
to translate. But it also takes in input some useful information which will be used in order
to dictate the translation process. These informations are all contained in an instance of the
following record, where we skip some technical details.� �
record b_graph_translate_data

(src, dst : graph_params)

(globals : list ident) : Type[0] :=

{ init_ret : call_dest dst

; init_params : paramsT dst

; init_stack_size : N
; added_prologue : list (joint_seq dst globals)

; new_regs : list register

; f_step : label → joint_step src globals → bind_step_block dst globals

; f_fin : label → joint_fin_step src → bind_fin_block dst globals

; good_f_step : ...

; good_f_fin : ...

; f_step_on_cost :

∀ l,c.f_step l (COST_LABEL ... c) =

bret ? (step_block ??) 〈[ ], λ _.COST_LABEL dst globals c, [ ] 〉
; cost_in_f_step :

∀ l,s,c.
bind_new_P ??

(λ block.∀ l’.\snd (\fst block) l’ = COST_LABEL dst globals c →
s = COST_LABEL ... c) (f_step l s)

}� �
Table 1 summarizes what each field means and how it is used in the translation process. We
will say that an identifier of a pseudo-register (resp. a code label) is fresh when it never appears
in the code of the source function.

3.1.2 Output given the translation process

Clearly g_graph_translate gives in output the translated internal function. Unfortunately,
for what we are going to develop later, this information is insufficient because we need some
information about the correspondence between the source internal function and the translated
one. Such an information is given by the second component of the Σ-type returned by the
translation process. We remind that the return type of b_graph_translate is the following.� �
Σdef_out : joint_closed_internal_function dst_g_pars globals.

∃ data’,regs,f_lbls,f_regs.
bind_new_instantiates ?? data’ data regs ∧
b_graph_translate_props ... data’ def_in def_out f_lbls f_regs.� �

The correspondence between the source internal function and the translated one is made
explicit by two functions: f_lbls : code_point src_g_pars → list (code_point dst_g_pars)

and f_regs : code_point src_g_pars → list (register). To understand their meaning, we
need to stress the fact that the translation process translates every statement appearing in
the code of the source internal function in a given code point l into a block of statements
in the code of the translated function where the first instruction of the block has l as code
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Field Explanation

init ret It tells where the result for the translated function is stored.

init params It tells what is the translation of the formal parameters.

init stack size It tells how to fill the field joint if stacksize of the translated func-
tion, which tells how much stack is required by the function at the
given stage of compilation.

added prologue It is a list of sequential statements of the target language which is
always added at the beginning of the translated function.

new regs It is a list of identifiers for fresh pseudo-registers that are generated
when instantiating this record. They are typically used to store data
that must be saved across the call (e.g. the return address popped from
the internal stack).

f step It is a function that tells how to translate all step statements i.e. state-
ments admitting a syntactical successor. Statements of this kind are
sequential statements, a cost emission statement, a call statement or
a conditional statement: in the two latter cases the syntactical succes-
sors are respectively the returning address (at the end of a function
call) and the point where the flow will continue in case the guard is
false.

f fin As above, but for final statements i.e. statements do not admitting a
syntactical successor. Statements of this kind are return and uncondi-
tioned jump statements.

good f step It tells that the translation function of all step statement is well formed
in the sense that the block f_step I for a step I only uses code labels
and register appearing in I, new_regs or generated by the appropriate
identifier universe fields of the translated function.

good f fin As above, but for f_fin.

f step on cost,
cost in f step

They give a particular restriction on the translation of a cost-emission
statement: it tells that the translation of a cost-emission has to be the
identity, i.e. it should be translated as the same cost-emission state-
ment. Furthermore, the translation never introduce new cost-emission
statements which do not correspond to a cost emission in the source.

Table 1: The explanation of the various fields of the b_graph_translate_data record.
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point identifier and all succeeding instructions of the block have fresh code points identifiers.
Furthermore statements of this block may use fresh identifiers of pseudo-registers or (even
worse) they may use some fresh code-point identifiers being generated by the translation (we
will see later that this will be important when translating a call statement). We will use the
above mentioned functions to retrieve this information. f_lbls takes in input an identifier l
for a code point in the source code and it gives back the list of all fresh code point identifiers
generated by the translation process of the statement in the source located in l. f_regs takes
in input an identifier l for a code point in the source code and it gives back the list of all fresh
register identifiers generated by the translation process of the statement in the source located
in l.

The above mentioned properties about the functions f_lbls and f_regs, together with
some other ones, are expressed and formalized by the following propositional record.� �
record b_graph_translate_props

(src_g_pars, dst_g_pars : graph_params)

(globals: list ident)

(data : b_graph_translate_data src_g_pars dst_g_pars globals)

(def_in : joint_closed_internal_function src_g_pars globals)

(def_out : joint_closed_internal_function dst_g_pars globals)

(f_lbls : label → list label)

(f_regs : label → list register) : Prop :=

{ res_def_out_eq :

joint_if_result ... def_out = init_ret ... data

; pars_def_out_eq :

joint_if_params ... def_out = init_params ... data

; ss_def_out_eq :

joint_if_stacksize ... def_out = init_stack_size ... data

; partition_lbls : partial_partition ... f_lbls

; partition_regs : partial_partition ... f_regs

; freshness_lbls :

(∀ l.All ...

(λ lbl.¬ in_universe ... lbl (joint_if_luniverse ... def_in) ∧
in_universe ... lbl (joint_if_luniverse ... def_out)) (f_lbls l))

; freshness_regs :

(∀ l.All ...

(λ reg.¬ in_universe ... reg (joint_if_runiverse ... def_in) ∧
in_universe ... reg (joint_if_runiverse ... def_out)) (f_regs l))

; freshness_data_regs :

All ... (λ reg.¬ in_universe ... reg (joint_if_runiverse ... def_in) ∧
in_universe ... reg (joint_if_runiverse ... def_out))

(new_regs ... data)

; data_regs_disjoint : ∀ l,r.r ∈f_regs l → r ∈new_regs ... data → False

; multi_fetch_ok :

∀ l,s.stmt_at ... (joint_if_code ... def_in) l = Some ? s →
let lbls :=f_lbls l in let regs :=f_regs l in

match s with

[ sequential s’ nxt ⇒
let block :=

if not_emptyb ... (added_prologue ... data) ∧
eq_identifier ... (joint_if_entry ... def_in) l then

bret ... [ ]

else
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f_step ... data l s’ in

l -(block, l::lbls, regs)→ nxt in joint_if_code ... def_out

| final s’ ⇒
l -(f_fin ... data l s’, l::lbls, regs)→ it in joint_if_code ... def_out

| FCOND abs _ _ _ ⇒⊗
abs

]

; prologue_ok :

if not_emptyb ... (added_prologue ... data) then

∃ lbl.¬ in_universe ... lbl (joint_if_luniverse ... def_in) ∧
joint_if_entry ... def_out

-( 〈 [ ],λ _.COST_LABEL ... (get_first_costlabel ... def_in),

added_prologue ... data 〉,
f_lbls ... lbl)→ joint_if_entry ... def_in in joint_if_code ... def_out

else (joint_if_entry ... def_out = joint_if_entry ... def_in)

}.� �
Table 2 summarizes the meaning of each field of the record.

3.2 A general correctness proof

In order to prove our general result, we need to define the usual semantic (data) relation
among states of the source and target language and call relation between states. We remind
that two states are in call relation whenever a call statement is fetched at state’s current
program counter. These two relations have to satisfy some condition, already explained at
the beginning of this deliverable (see Section ??). In this section we will give some general
conditions that these two relations have to satisfy in order to obtain the desired simulation
result. We begin our analysis from the latter relation (the call one) and then we show how to
relate it with a semantic relation satisfying some conditions that allow us to prove our general
result.

3.2.1 A standard calling relation

Two states are in call relation whenever it is possible to fetch a call statement at the program
counter given by the two states. We will exploit the properties of the translation explained
in previous subsection in order to define a standard calling relation. We remind that the
translation of a given statement I is a block of statements b = 〈I1, . . . In〉 with n ≥ 1. When I
is a call, then we will require that there is a unique k ∈ [1, n] such Ik has to be a call statement
(we will see the formalization of this condition in the following subsection when we relate the
calling relation with the semantic one). The idea of defining a standard calling relation is
to compute the code-point identifier of this Ik, starting from the code-point identifier of the
statement I in the code of the source internal function. We will see how to use the information
provided by the translation process (in particular the function f_lbls) in order to obtain this
result. We will see that, for technical reason, we will compute the code point of I starting
from the code point of Ik.

In order to explain how this machinery work. we need to enter more in the detail of the
translation process. Given a step-statement I, formally its translation is a triple f step(s) =
〈pre, p, post〉 such that pre is a list of sequential statements called preamble, p is a step-
statement (we call it pivot) and post is again a list of sequential statements called postamble.
When pre = [s1, . . . , sn] and post = [s′1, . . . , s

′
m], the corresponding block being the translation
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Field Explanation

res def out eq,
pars def out eq,
ss def out eq

The return value location, the formal parameters and the syn-
tactic stack size are all as dictated by the corresponding
b_graph_translate_data fields.

partition lbls,
partition regs

f_lbls and f_regs are partial partitions, i.e. all lists in their image are
repetition-free and disjoint for different input values.

freshness lbls,
freshness regs,
freshness data regs

All lists of code-point identifiers and register generated at a source
code-point, and the registers in new_regs are fresh: they were not in
the former source universe and they are in the new one.

All identifiers of pseudo-register being element of the field new regs of
the record of type b_graph_translate_data provided in input are fresh.

data regs disjoint All pseudo-register in new regs never appear in f_regs.

multi fetch ok Given a statement I and a code-point identifier l of the source internal
function such that I is located in l, if the translation process translate
I into a statement block 〈I1, . . . , In〉 then f lbls(l) = [l1, . . . , ln−1] in
the translated source code we have that I1 is located in l with l1 as
syntactical successor, I2 is located in l1 with l2 as syntactical successor,
and so on with the last statement In located in ln−1 and it may have a
syntactical successor depending whether I is a step-statement or not:
in the former case we have that the syntactical successor of In is the
syntactical successor of I, in the latter case, In is a final statement.

prologue ok If the field added prologue of the record of type
b_graph_translate_data provided in input is empty, then the
code-point identifier of the first instruction of the translated function
is the same of the one of the source internal function. Otherwise
the two code points are different, with the first instruction of the
translated function being a cost-emission statement followed by the in-
structions of added prologue; the last instruction of added prologue

has an identifier l as syntactical successor and l is the same identifier
as the one of the first instruction of the source internal function and
in l we fetch a NOP instruction.

Table 2: The explanation of the various fields of the b_graph_translate_props record.
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of I is 〈s1, . . . , sn, p, s′1, . . . , s′m〉. In case I is a final statement, than its translation does not
have postamble, i.e. it is a pair f fin(s) = 〈pre, p〉 where the pivot p is a final statement.

Given a statement I at a given code point l in the source internal function and given the
pivot statement p of the translation of I staying at code-point l′ in the translated internal
function, there is an easy way to relate l and l′. Notice that, in case the preamble is empty, for
the property of the translation process we have then l = l′, while if the preamble is non-empty.
then l′ is n−1-th element of f lbls(l), where n ≥ 0 is the length of the preamble. The matita’s
definition computing the code points according to the above mentioned specification is the
following one.� �
definition sigma_label : ∀ p_in,p_out : sem_graph_params.

joint_program p_in → (ident → option N) →
(∀ globals.joint_closed_internal_function p_in globals

→ bound_b_graph_translate_data p_in p_out globals) →
(block → list register) → lbl_funct_type → regs_funct_type →
block → label → option label :=

λ p_in,p_out,prog,stack_size,init,init_regs,f_lbls,f_regs,bl,searched.
! bl ← code_block_of_block bl ;

! <id,fn> ←res_to_opt ... (fetch_internal_function ...

(joint_globalenv p_in prog stack_size) bl);

! <res,s> ←find ?? (joint_if_code ?? fn)

(λ lbl.λ _.
match preamble_length ... prog stack_size init init_regs f_regs bl lbl with

[ None ⇒false

| Some n ⇒match nth_opt ? n (lbl::(f_lbls bl lbl)) with

[ None ⇒false

| Some x ⇒eq_identifier ... searched x

]

]);

return res.� �
This function takes in input all the information provided by the translation process (in par-
ticular the function f lbls), a function location and a code-point identifier l; it fetches the
internal function of the source language in the corresponding location. Then it unfolds the
code of the fetched function looking for a label l′ and a statement I located in l′, such that,
either l = l′ in case the preamble of the translation of I is empty or l′ is the n − 1-th where
n ≥ 0 is the length of the preamble of I. The function find is the procedure realizing this
search. If preamble length is the function giving in output the length of the preamble and if
nth opt is the function giving the n-th element of a list, then this condition can be summarized
as following: we are looking for a label l′ such that l is the n-th element of the list l :: f lbls(l),
where n is the length of the preamble.

We can prove that, starting from a code point identifier of the translated internal function,
whenever there exists a code-point identifier in the source internal function satisfying the
above condition, then it is always unique. The properties partition_lbls and freshness_lbls

provided by the translation process are crucial in the proof of this statement. We can wrap
this function inside the definition of the desired relation between program counter states in the
following way The conditional at the beginning is put to deal with the pre-main case, which is
translated without following the standard translation process we explained in previous section.� �
definition sigma_pc_opt :

∀ p_in,p_out : sem_graph_params.
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joint_program p_in → (ident → option N) →
(∀ globals.joint_closed_internal_function p_in globals

→ bound_b_graph_translate_data p_in p_out globals) →
(block → list register) → lbl_funct_type → regs_funct_type →
program_counter → option program_counter :=

λ p_in,p_out,prog,stack_size,init,init_regs,f_lbls,f_regs,pc.
let target_point :=point_of_pc p_out pc in

if eqZb (block_id (pc_block pc)) (-1) then

return pc

else

! source_point ←sigma_label p_in p_out prog stack_size init init_regs

f_lbls f_regs (pc_block pc) target_point;

return pc_of_point p_in (pc_block pc) source_point.

definition sigma_stored_pc :=

λ p_in,p_out,prog,stack_size,init,init_regs,f_lbls,f_regs,pc.
match sigma_pc_opt p_in p_out prog stack_size init init_regs f_lbls f_regs pc with

[None ⇒null_pc (pc_offset ... pc) | Some x ⇒x].� �
The main result about the program counter relation we have defined is the following. If we

fetch a statement I in at a given program counter pc in the source program, then there is a pro-
gram counter pc′ in the target program which is in relation with pc (i.e. sigma stored pcpc′ =
pc) and the fetched statement at pc′ is the pivot statement of the translation. The formaliza-
tion of this statement in matita is given in the following.� �
lemma fetch_statement_sigma_stored_pc :

∀ p_in,p_out,prog,stack_sizes,
init,init_regs,f_lbls,f_regs,pc,f,fn,stmt.

b_graph_transform_program_props p_in p_out stack_sizes

init prog init_regs f_lbls f_regs →
block_id ... (pc_block pc) 6=-1 →
let trans_prog :=b_graph_transform_program p_in p_out init prog in

fetch_statement p_in ... (joint_globalenv p_in prog stack_sizes) pc =

return 〈f,fn,stmt 〉→
∃ data.bind_instantiate ?? (init ... fn) (init_regs (pc_block pc)) = return data ∧
match stmt with

[ sequential step nxt ⇒
∃ step_block : step_block p_out (prog_names ... trans_prog).

bind_instantiate ?? (f_step ... data (point_of_pc p_in pc) step)

(f_regs (pc_block pc) (point_of_pc p_in pc)) = return step_block ∧
∃ pc’.sigma_stored_pc p_in p_out prog stack_sizes init

init_regs f_lbls f_regs pc’ = pc ∧
∃ fn’,nxt’.
fetch_statement p_out ... (joint_globalenv p_out trans_prog stack_sizes) pc’ =

if not_emptyb ... (added_prologue ... data) ∧
eq_identifier ... (point_of_pc p_in pc) (joint_if_entry ... fn)

then OK ? <f,fn’,sequential ?? (NOOP ... ) nxt’>

else OK ? <f,fn’,

sequential ?? ((\snd(\fst step_block)) (point_of_pc p_in pc’)) nxt’>

| final fin ⇒
∃ fin_block.bind_instantiate ?? (f_fin ... data (point_of_pc p_in pc) fin)

(f_regs (pc_block pc) (point_of_pc p_in pc)) = return fin_block ∧
∃ pc’.sigma_stored_pc p_in p_out prog stack_sizes init
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init_regs f_lbls f_regs pc’ = pc ∧
∃ fn’.fetch_statement p_out ...

(joint_globalenv p_out trans_prog stack_sizes) pc’

= return 〈f,fn’,final ?? (\snd fin_block) 〉
| FCOND abs _ _ _ ⇒⊗

abs

].� �
If we combine the statement above with the fact that the pivot statement of the translation

of a call statement is always a call statement (which we will formalize better in the following
section), then we can define our standard calling relation in the following way.� �
(λ s1:Σs: (joint_abstract_status (mk_prog_params p_in ??)).as_classifier ? s cl_call.

λ s2:Σs:(joint_abstract_status (mk_prog_params p_out ??)).as_classifier ? s cl_call.

pc ? s1 = sigma_stored_pc

p_in p_out prog stack_sizes init init_regs f_lbls f_regs (pc ? s2)).� �
We stress the fact that such a call relation will be always defined in this way for all joint-

languages, in an independent way from the specific pass. The only condition we will ask is
that the pass should use the translation process we explain in the previous section.

3.2.2 The semantic relation

The semantic relation between states is the classical relation used in forward simulation proofs.
It correlates the data of the status (e.g. register, memory, etc). We remind that the notion of
state in joint language is summarized in the following record.� �
record state_pc (semp : sem_state_params) : Type[0] :=

{ st_no_pc :>state semp

; pc : program_counter

; last_pop : program_counter

}.� �
It consists of three fields: the field st_no_pc contains all data information of the state (the
content of the registers, of the memory and so on), the field pc contains the current pro-
gram counter, while the field last_pop is the address of the last popped calling address when
executing a return instruction.

The type of the semantic relation between state is the following.� �
definition joint_state_pc_relation :=

λ P_in,P_out : sem_graph_params.state_pc P_in → state_pc P_out → Prop.� �
We would like to state some conditions the semantic relation between states have to satisfy

in order to get our simulation result. We would like that this relation have some flavour of
compositionality. In particular we would like that it depends strictly on the contents of the
field st_no_pc, i.e. the field that really contains data information of the state. So we need also
a data relation, i.e. a relation of this type.� �
definition joint_state_relation :=

λ P_in,P_out.program_counter → state P_in → state P_out → Prop.� �
Notice that the data relation cab depend on a specific program counter of the source. This

is done to capture complex data relations like the ones in the ERTL to LTL pass, in which you
need to know where data in pseudo-registers of ERTL are stored by the translation (either
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in hardware register or in memory) and this information depends on the code point on the
statement being translated.

The compositionality requirement is expressed by several conditions (which are part of
a bigger record). Condition fetch ok sigma state ok postulates that two state that are in
semantic relation should have their data field also in relation. Condition fetch ok pc ok pos-
tulates that two states that are in semantic relation should have the same program counter.
This is due to the way the translation is performed. In fact a statement I at a code point
l in the source internal function is translated with a block of instructions in the trans-
lated internal function whose initial statement is at the same code point l. The condition
fetch ok sigma last pop ok postulates that two states that are in semantic relation have
the last popped calling address in call relation. Finally st rel def postulates that given two
states having the same program counter, the last pop fields in call relation and the data fields
also in data relation, then they are in semantic relation.

Another important condition is that the pivot statement of the translation of a call state-
ment is always a call statement. This is important in order to obtain the correctness of the
call relation and return relation between state. We call this condition call is call.

The conditions we are going to present now are standard semantic commutation lemmas
that are commonly used when proving the correctness of the operational semantics of many
imperative languages. We introduce some notation. We will use I, J . . . to range over by
statements. We will use l1, . . . , ln to range over by code point identifiers. We will use r1, . . . , rn
to range over by register identifiers. We will use s1, s

′
1, s
′′
1, . . . to range over by states of

programs of the source language. We will use s2, s
′
2, s
′′
2, . . . to range over by states of programs

of the target language. We denote respectively with 'S , 'C and 'L the semantic relation, the
call relation and the cost-label relation between states. These relations have been introduced at
the beginning of this Deliverable (see Section ??). If instr = [I1, . . . , In] is a list of instructions,

then we write si
instr−→ s′i (i ∈ [1, 2]) when s′i is the state being the result of the evaluation of the

sequence of instructions instr (performed in the order they appear in the list) starting from
the initial state si. When instr = [I] is a singleton, we use to omit square brackets and we

write si
I−→ s′i. We will denote with πi (i ∈ [1, t]) the projecting functions of t-uples. We will

denote with f step and f fin the translating functions of respectively step-statements and
final statements. We remind that f step gives a triple as output (a list of instruction called
preamble,an instruction called pivot and a list of instructions called postamble) while f fin
gives a pair as output (a list of instruction called preamble and an instruction called pivot).
Furthermore, we denote with prologue the content of the field added prologue of the record
provided in input to the translation process.

Many commutation conditions can be depicted using diagrams. We will use them to give a
pictorial flavour of the conditions we will ask in order to obtain the final correctness statement.
Given the states s1, s

′
1, s2, s

′
2 and the instructions I, J1, . . . , Jk, the following diagram

s1
I //

'S

s′1

'S

s2
[J1,...,Jk] // s′2

depicts a situation in which the state s1
I−→ s′1, s2

I−→ s′2, s1 'S s2 and s′1 'S s′2.
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Commutation of pre-main instructions (pre_main_ok). In order to get the commutation
of pre-main instructions (states whose function location of program counter is -1), we have to

prove the following condition: for all s1, s
′
1, s2 such that s1

I−→ s′1 and s1 'S s2, then there

exists an s′2 such that s2
J−→ s′2 and s1 'S s′2 i.e. such that the following diagram commutes.

s1
I //

'S

s′1

'S

s2
J // s′2

Commutation of conditional jump (cond_commutation). For all s1, s
′
1 and s2 such that

s1
COND r l−→ s′1 and s1 'S s2 then

• there are sfin2 and s′2 such that s2
π1(f step(COND r l))−→ sfin2 , sfin2

π2(f step(COND r l))
s

′
2 and

s′1 'S s′2, i.e. the following diagram commutes

s1
COND l r //

'S

s′1

'S

s2
π1(f step(COND r l))// sfin2

π2(f step(COND r l)) // s′2

• π3(f step(COND r l)) is empty, while π2(f step(COND r l)) = COND r′ l′ is a
conditional jump such that l = l′.

Commutation of sequential statements (seq_commutation). In case of a sequential state-
ment I, its translation f step(I) = 〈pre, J, post〉 is coerced into a list of sequential statements
pre @ [J ] @ post. Then we can state the condition in the following way. For all s1, s

′
1, s2 such

that s1
I−→ s′1 and s1 'S s2 then there is s′2 such that s2

f step(I)−→ s′s and s′1 'S s′2, i.e. such
that the following diagram commutes.

s1
I //

'S

s′1

'S

s2
f step(I) // s′2

Commutation of call statement (call_commutation). For all s1, s
′
1, s2 such that we have

s1
CALL id arg dst−→ s′1, s1 'S s2 and the statement fetched in the target function at the program

counter in call relation with the program counter of s1 is π2(f step(CALL id arg dst)) =

CALL id′ arg′ dst′ for some id′, ags′, dst′, then there are spre2 , safter2 , s′2 such that

• s2
π1(f step(CALL id arg dst))−→ spre2 ,

• spre2
CALL id′ arg′ dst′−→ safter2 ,

• safter2
prologue−→ s′2,
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• s′1 'L safter2 and s′1 'S s′2.
The situation is depicted by the following diagram.

s1

'S'S

CALL id arg dst // s′1

'S

s2
π1(f step(CALL id arg dst))// spre2

CALL id′ arg′ dst′ // safter2

prologue // s′2

Commutation of return statement (return_commutation). For all s1, s
′
1, s2 such that

s1
RETURN−→ s′1, s1 'S s2, if CALL id arg dst is the call statement that caused the func-

tion call ened by the current return (i.e. it is the statement whose code point identifier is
the syntactical predecessor of the program counter of s′1), then π2(f fin(RETURN)) =

RETURN , there are spre2 , safter2 , s′2 such that s2
π1(f fin(RETURN))−→ spre2 , spre2

RETURN−→ safter2 ,

safter2

π3(f step(CALL id arg dst))−→ s′2 and s′1 'S s′2. The following diagram depicts the above
described requested situation.

s1

'S'S

RETURN // s′1

'S

s2
π1(f fin(RETURN)) // spre2

RETURN // safter2

π3(f step(CALL id arg dst)) // s′2

3.2.3 Conclusion

After having provided a semantic relation among states that satisfies some conditions that
correspond to commutation lemmas that are commonly proved in a forward simulation proof, it
is possible to prove the general theorem. All these condition are summarized in a propositional
record called good_state_relation. The statement we are able to prove have the following
shape.� �
theorem joint_correctness : ∀ p_in,p_out : sem_graph_params.

∀ prog : joint_program p_in.∀ stack_size : ident → option N.
∀ init : (∀ globals.joint_closed_internal_function p_in globals →

bound_b_graph_translate_data p_in p_out globals).

∀ init_regs : block → list register.∀ f_lbls : lbl_funct_type.

∀ f_regs : regs_funct_type.∀ st_no_pc_rel : joint_state_relation p_in p_out.

∀ st_rel : joint_state_pc_relation p_in p_out.

good_state_relation p_in p_out prog stack_size init init_regs

f_lbls f_regs st_no_pc_rel st_rel →
let trans_prog :=b_graph_transform_program ... init prog in

∀ init_in.
make_initial_state (mk_prog_params p_in prog stack_size) = OK ? init_in →
∃ init_out.
make_initial_state (mk_prog_params p_out trans_prog stack_size) = OK ? init_out ∧
∃ [1] R.

status_simulation_with_init

(joint_abstract_status (mk_prog_params p_in prog stack_size))

(joint_abstract_status (mk_prog_params p_out trans_prog stack_size))

R init_in init_out.� �
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The module formalizing the formal machinery we described in this document consists of about
3000 lines of matita code. We stress the fact that this machinery proves general properties
that do not depend on the specific back-end graph compiler pass.
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On the correctness of an optimising assembler
for the Intel MCS-51 microprocessor?

Dominic P. Mulligan and Claudio Sacerdoti Coen
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Abstract. We present a proof of correctness in Matita for an optimising
assembler for the MCS-51 microcontroller. The efficient expansion of
pseudoinstructions, namely jumps, into machine instructions is complex.
We isolate the decision making over how jumps should be expanded from
the expansion process itself as much as possible using ‘policies’, making
the proof of correctness for the assembler more straightforward.

Our proof strategy contains a tracking facility for ‘good addresses’ and
only programs that use good addresses have their semantics preserved
under assembly, as we observe that it is impossible for an assembler to
preserve the semantics of every assembly program. Our strategy offers
increased flexibility over the traditional approach to proving the correct-
ness of assemblers, wherein addresses in assembly are kept opaque and
immutable. In particular, we may experiment with allowing the benign
manipulation of addresses.

Keywords: Verified software, CerCo (Certified Complexity), MCS-51
microcontroller, Matita proof assistant

1 Introduction

We consider the formalisation of an assembler for the Intel MCS-51 8-bit mi-
croprocessor in the Matita proof assistant [1]. This formalisation forms a major
component of the EU-funded CerCo (‘Certified Complexity’) project [3], con-
cerning the construction and formalisation of a concrete complexity preserving
compiler for a large subset of the C programming language.

The MCS-51 dates from the early 1980s and is commonly called the 8051/8052.
Derivatives are still widely manufactured by a number of semiconductor foundries,
with the processor being used especially in embedded systems.

The MCS-51 has a relative paucity of features compared to its more modern
brethren, with the lack of any caching or pipelining features meaning that timing
of execution is predictable, making the MCS-51 very attractive for CerCo’s
ends. However, the MCS-51’s paucity of features—though an advantage in many

? The project CerCo acknowledges the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.



respects—also quickly becomes a hindrance, as the MCS-51 features a relatively
minuscule series of memory spaces by modern standards. As a result our C
compiler, to be able to successfully compile realistic programs for embedded
devices, ought to produce ‘tight’ machine code.

To do this, we must solve the ‘branch displacement’ problem—deciding how
best to expand pseudojumps to labels in assembly language to machine code jumps.
The branch displacement problem arises when pseudojumps can be expanded in
different ways to real machine instructions, but the different expansions are not
equivalent (e.g. differ in size or speed) and not always correct (e.g. correctness
is only up to global constraints over the compiled code). For instance, some
jump instructions (short jumps) are very small and fast, but they can only reach
destinations within a certain distance from the current instruction. When the
destinations are too far away, larger and slower long jumps must be used. The
use of a long jump may augment the distance between another pseudojump and
its target, forcing another long jump use, in a cascade. The job of the optimising
compiler (assembler) is to individually expand every pseudo-instruction in such a
way that all global constraints are satisfied and that the compiled program is
minimal in size and faster in concrete time complexity. This problem is known to
be computationally hard for most CISC architectures (see [4]).

To simplify the CerCo C compiler we have chosen to implement an optimising
assembler whose input language the compiler will target. Labels, conditional
jumps to labels, a program preamble containing global data and a MOV instruction
for moving this global data into the MCS-51’s one 16-bit register all feature in
our assembly language. We further simplify by ignoring linking, assuming that
all our assembly programs are pre-linked.

Another complication we have addressed is that of the cost model. CerCo
imposes a cost model on C programs or, more specifically, on simple blocks of
instructions. This cost model is induced by the compilation process itself, and
its non-compositional nature allows us to assign different costs to identical C
statements depending on how they are compiled. In short, we aim to obtain a very
precise costing for a program by embracing the compilation process, not ignoring
it. At the assembler level, this is reflected by our need to induce a cost model
on the assembly code as a function of the assembly program and the strategy
used to solve the branch displacement problem. In particular, our optimising
assembler should also return a map that assigns a cost (in clock cycles) to every
instruction in the source program. We expect the induced cost to be preserved by
the assembler: we will prove that the compiled code tightly simulates the source
code by taking exactly the predicted amount of time.

Note that the temporal tightness of the simulation is a fundamental pre-
requisite of the correctness of the simulation because some functions of the
MCS-51—timers and I/O—depend on the microprocessor’s clock. If the pseudo-
and concrete clock differ the result of an I/O operation may not be preserved.

Branch displacement algorithms must have a deep knowledge of the way the
rest of the assembler works in order to build globally correct solutions. Proving
their correctness is quite a complex task (see, for instance, the companion
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paper [2]). Nevertheless, the correctness of the whole assembler only depends on
the correctness of the branch displacement algorithm. Therefore, in the rest of
the paper, we presuppose the existence of a correct policy, to be computed by a
branch displacement algorithm if it exists. A policy is the decision over how any
particular jump should be expanded; it is correct when the global constraints are
satisfied. The assembler fails to assemble an assembly program if and only if a
correct policy does not exist. This is stated in an elegant way in the dependent
type of the assembler: the assembly function is total over a program, a policy
and the proof that the policy is correct for that program.

A final complication in the proof is due to the kind of semantics associated
to pseudo-assembly programs. Should assembly programs be allowed to freely
manipulate addresses? The traditional answer is ‘no’: values stored in memory
or registers are either concrete data or symbolic addresses. The latter can only
be manipulated in very restricted ways and programs that do not do so are not
assigned a semantics and cannot be reasoned about. All programs that have a
semantics have it preserved by the assembler. We take an alternative approach,
allowing programs to freely manipulate addresses non-symbolically but only
granting a preservation of semantics to those programs that act in ‘well-behaved’
ways. In principle, this should allow some reasoning on the actual semantics of
malign programs. In practice, we note how our approach facilitates more code
reuse between the semantics of assembly code and object code.

The formalisation of the assembler and its correctness proof are given in
Sect. 2. Sect. 3 presents the conclusions and relations with previous work.

Matita Matita is a proof assistant based on a variant of the Calculus of
(Co)inductive Constructions [1]. It features dependent types that we exploit
in the formalisation. The (simplified) syntax of the statements and definitions in
the paper should be self-explanatory. Pairs are denoted with angular brackets,
〈−,−〉.

Matita features a liberal system of coercions. It is possible to define a uniform
coercion λx.〈x, ?〉 from every type T to the dependent product Σx : T.P x. The
coercion opens a proof obligation that asks the user to prove that P holds for x.
When a coercion must be applied to a complex term (a λ-abstraction, a local
definition, or a case analysis), the system automatically propagates the coercion
to the sub-terms For instance, to apply a coercion to force λx.M : A → B to
have type ∀x : A.Σy : B.P x y, the system looks for a coercion from M : B to
Σy : B.P x y in a context augmented with x : A. This is significant when the
coercion opens a proof obligation, as the user will be presented with multiple, but
simpler proof obligations in the correct context. In this way, Matita supports the
‘Russell’ proof methodology developed by Sozeau in [12], with an implementation
that is lighter and more tightly integrated with the system than that of Coq.

2 Certification of an optimising assembler

Our aim here is to explain the main ideas and steps of the certified proof of
correctness for an optimising assembler for the MCS-51.
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In Subsect. 2.1 we sketch an operational semantics (a realistic and efficient
emulator) for the MCS-51. We also introduce a syntax for decoded instructions
that will be reused for the assembly language.

In Subsect. 2.2 we describe the assembly language and its operational se-
mantics. The latter is parametric in the cost model that will be induced by the
assembler, reusing the semantics of the machine code on all ‘real’ instructions.

Branch displacement policies are introduced in Subsect. 2.3 where we also
describe the assembler as a function over policies as previously described.

To prove our assembler correct we show that the object code given in output,
together with a cost model for the source program, simulates the source program
executed using that cost model. The proof can be divided into two main lemmas.
The first is correctness with respect to fetching, described in Subsect. 2.4. Roughly
it states that a step of fetching at the assembly level, returning the decoded
instruction I, is simulated by n steps of fetching at the object level that returns
instructions J1, . . . , Jn, where J1, . . . , Jn is, amongst the possible expansions of I,
the one picked by the policy. The second lemma states that J1, . . . , Jn simulates
I but only if I is well-behaved, i.e. manipulates addresses in ‘good’ ways. To
keep track of well-behaved address manipulations we record where addresses are
currently stored (in memory or an accumulator). We introduce a dynamic checking
function that inspects this map to determine if the operation is well-behaved, with
an affirmative answer being the pre-condition of the lemma. The second lemma
is detailed in Subsect. 2.5 where we also establish correctness of our assembler as
a composition of the two lemmas: programs that are well-behaved when executed
under the cost model induced by the compiler are correctly simulated by the
compiled code.

2.1 Machine code and its semantics

We implemented a realistic and efficient emulator for the MCS-51 microprocessor.
An MCS-51 program is just a sequence of bytes stored in the read-only code
memory of the processor, represented as a compact trie of bytes addressed by
the program counter. The Status of the emulator is a record that contains the
microprocessor’s program counter, registers, stack pointer, clock, special function
registers, data memory, and so on. The value of the code memory is a parameter
of the record since it is not changed during execution.

The Status records is itself an instance of a more general datatype PreStatus
that abstracts over the implementation of code memory in order to reuse the
same datatype for the semantics of the assembly language in the next section.

The execution of a single instruction is performed by the execute 1 function,
parametric over the content cm of the code memory:

definition execute_1: ∀cm. Status cm → Status cm

The function execute 1 closely matches the fetch-decode-execute cycle of the
MCS-51 hardware, as described by a Siemen’s manufacturer’s data sheet [11].
Fetching and decoding are performed simultaneously: we first fetch, using the
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program counter, from code memory the first byte of the instruction to be
executed, decoding the resulting opcode, fetching more bytes as is necessary to
decode the arguments. Decoded instructions are represented by the instruction

data type which extends a data type of preinstructions that will be reused for
the assembly language.

inductive preinstruction (A: Type[0]): Type[0] :=

| ADD: Jacc_aK → Jregistr; direct; indirect; dataK → preinstruction A

| DEC: Jacc_a; registr; direct; indirectK → preinstruction A

| JB: Jbit_addrK → A → preinstruction A

| . . .
inductive instruction: Type[0] :=

| LCALL: Jaddr16K → instruction

| AJMP: Jaddr11K → instruction

| RealInstruction: preinstruction JrelativeK → instruction.

| . . .

The MCS-51 has many operand modes, but an unorthogonal instruction set:
every opcode is only enable for a finite subset of the possible operand modes.
Here we exploit dependent types and an implicit coercion to synthesise the type
of arguments of opcodes from a vector of names of operand modes. For example,
ACC has two operands, the first one constrained to be the A accumulator, and the
second one to be a disjoint union of register, direct, indirect and data operand
modes.

The parameterised type A of preinstruction represents the addressing mode
allowed for conditional jumps; in the RealInstruction constructor we constraint
it to be a relative offset. A different instantiation (labels) will be used in the next
section for assembly programs.

Once decoded, execution proceeds by a case analysis on the decoded instruc-
tion, following the operation of the hardware. For example, the DEC preinstruction
(‘decrement’) is executed as follows:

| DEC addr ⇒
let s := add_ticks1 s in

let 〈result, flags〉 := sub_8_with_carry (get_arg_8 s true addr)

(bitvector_of_nat 8 1) false in

set_arg_8 s addr result

Here, add ticks1 models the incrementing of the internal clock of the micro-
processor; it is a parameter of the semantics of preinstructions that is fixed in
the semantics of instructions according to the manufacturer datasheet.

2.2 Assembly code and its semantics

An assembly program is a list of potentially labelled pseudoinstructions, bundled
with a preamble consisting of a list of symbolic names for locations in data
memory (i.e. global variables). All preinstructions are pseudoinstructions, but
conditional jumps are now only allowed to use Identifiers (labels) as their
target.
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inductive pseudo_instruction: Type[0] :=

| Instruction: preinstruction Identifier → pseudo_instruction

. . .
| Jmp: Identifier → pseudo_instruction

| Call: Identifier → pseudo_instruction

| Mov: JdptrK → Identifier → pseudo_instruction.

The pseudoinstructions Jmp, Call and Mov are generalisations of machine code
unconditional jumps, calls and move instructions respectively, all of whom act
on labels, as opposed to concrete memory addresses. The object code calls and
jumps that act on concrete memory addresses are ruled out of assembly programs
not being included in the preinstructions (see previous Section).

Execution of pseudoinstructions is an endofunction on PseudoStatus. A
PseudoStatus is an instance of PreStatus that differs from a Status only in the
datatype used for code memory: a list of optionally labelled pseudoinstructions
versus a trie of bytes. The PreStatus type is crucial for sharing the majority of
the semantics of the two languages.

Emulation for pseudoinstructions is handled by execute 1 pseudo instruction:

definition execute_1_pseudo_instruction:

∀cm. ∀costing:(∀ppc: Word. ppc < |snd cm| → nat × nat).

∀s:PseudoStatus cm. program_counter s < |snd cm| → PseudoStatus cm

The type of execute 1 pseudo instruction is more involved than that of
execute 1. The first difference is that execution is only defined when the program
counter points to a valid instruction, i.e. it is smaller than the length |snd cm|
of the program. The second difference is the abstraction over the cost model,
abbreviated here as costing. The costing is a function that maps valid program
counters to pairs of natural numbers representing the number of clock ticks used
by the pseudoinstructions stored at those program counters. For conditional
jumps the two numbers differ to represent different costs for the ‘true branch’ and
the ‘false branch’. In the next section we will see how the optimising assembler
induces the only costing (induced by the branch displacement policy deciding
how to expand pseudojumps) that is preserved by compilation.

Execution proceeds by first fetching from pseudo-code memory using the
program counter—treated as an index into the pseudoinstruction list. This index
is always guaranteed to be within the bounds of the pseudoinstruction list due
to the dependent type placed on the function. No decoding is required. We then
proceed by case analysis over the pseudoinstruction, reusing the code for object
code for all instructions present in the MCS-51’s instruction set. For all newly
introduced pseudoinstructions, we simply translate labels to concrete addresses
before behaving as a ‘real’ instruction.

We do not perform any kind of symbolic execution, wherein data is the disjoint
union of bytes and addresses, with addresses kept opaque and immutable. Labels
are immediately translated before execution to concrete addresses, and registers
and memory locations only ever contain bytes, never labels. As a consequence,
we allow the programmer to mangle, change and generally adjust addresses as
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they want, under the proviso that the translation process may not be able to
preserve the semantics of programs that do this. This will be further discussed in
Subsect. 2.5. The only limitation introduced by this approach is that the size of
assembly programs is bounded by 216.

2.3 The assembler

The assembler takes in input an assembly program made of pseudoinstructions
and a branch displacement policy for it. It returns both the object code (a list of
bytes to be loaded in code memory for execution) and the costing for the source.

Conceptually the assembler works in two passes. The first pass expands every
pseudoinstruction into a list of machine code instructions using the function
expand pseudo instruction. The policy determines which expansion among
the alternatives will be chosen for pseudo-jumps and pseudo-calls. Once the
expansion is performed, the cost of the pseudoinstruction is defined as the cost of
the expansion. The second pass encodes as a list of bytes the expanded instruction
list by mapping the function assembly1 across the list, and then flattening.

[P1, . . . Pn]


Pi

Pi

expand pseudo instruction−−−−−−−−−−−−−−−−→[I1i,...I
q
i]

assembly1∗−−−−−−−−−−−−−−→[0110]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
assembly 1 pseudo instruction

[0110]




∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
assembly

[. . . 0110 . . .]

In order to understand the type for the policy, we briefly hint at the branch
displacement problem for the MCS-51. A detailed description is found in [2]. The
MCS-51 features three unconditional jump instructions: LJMP and SJMP—‘long
jump’ and ‘short jump’ respectively—and an 11-bit oddity of the MCS-51, AJMP.
Each of these three instructions expects arguments in different sizes and behaves
in markedly different ways: SJMP may only perform a ‘local jump’ to an address
closer then 27 bytes; LJMP may jump to any address in the MCS-51’s memory
space and AJMP may jump to any address in the current memory page. Memory
pages partition the code memory into 28 disjoint areas. The size of each opcode
is different, with long jumps being larger than the other two. Because of the
presence of AJMP, an optimal global solution may be locally unoptimal, employing
a long jump where a shorter one could be used to force later jumps to stay inside
single memory pages.

Similarly, a conditional pseudojump must be translated potentially into a
configuration of machine code instructions, depending on the distance to the
jump’s target. For example, to translate a jump to a label, a single conditional
jump pseudoinstruction may be translated into a block of three real instructions
as follows (here, JZ is ‘jump if accumulator is zero’):

JZ label JZ size of SJMP instruction
. . . translates to SJMP size of LJMP instruction

label : MOV A B =⇒ LJMP address of label
. . .
MOV A B

7



Naturally, if label is ‘close enough’, a conditional jump pseudoinstruction is
mapped directly to a conditional jump machine instruction; the above translation
only applies if label is not sufficiently local.

The cost returned by the assembler for a pseudoinstruction is set to be the
cost of its expansion in clock cycles. For conditional jumps that are expanded as
just shown, the costs of taking the true and false branches are different and both
need to be returned.

The expand pseudo instruction function is driven by a policy in the choice
of expansion of pseudoinstructions. The simplest idea is then to define policies as
functions that maps jumps to their size. This simple idea, however, is impractical
because short jumps require the offset of the target. For instance, suppose that
at address ppc in the assembly program we found Jmp l such that l is associated
to the pseudo-address a and the policy wants the Jmp to become a SJMP δ. To
compute δ, we need to know what the addresses ppc+1 and a will become in the
assembled program to compute their difference. The address a will be associated
to is a function of the expansion of all the pseudoinstructions between ppc and
a, which is still to be performed when expanding the instruction at ppc.

To solve the issue, we define the policy policy as a map from a valid pseudo-
address to the corresponding address in the assembled program. Therefore, δ in
the example above can be computed simply as policy(a) - policy(ppc + 1).
Moreover, the expand pseudo instruction emits a SJMP only after verifying for
each Jmp that δ < 128. When this is not the case, the function emits an AJMP if
possible, or an LJMP otherwise, therefore always picking the locally best solution.
In order to accommodate those optimal solutions that require local sub-optimal
choices, the policy may also return a Boolean used to force the translation of a
Jmp into a LJMP even if δ < 128. An essentially identical mechanism exists for
call instructions and conditional jumps.

In order for the translation of a jump to be correct, the address associated
to a by the policy and by the assembler must coincide. The latter is the sum of
the size of all the expansions of the pseudo-instructions that precede the one at
address a: the assembler just concatenates all expansions sequentially. To grant
this property, we impose a correctness criterion over policies. A policy is correct
when policy(0) = 0 and for all valid pseudoaddresses ppc

policy(ppc+1) = policy(ppc) + instruction size(ppc) ≤ 216

Here instruction size(ppc) is the size in bytes of the expansion of the pseudoin-
struction found at pcc, i.e. the length of assembly 1 pseudo instruction(ppc).

2.4 Correctness of the assembler with respect to fetching

We now begin the proof of correctness of the assembler. Correctness consists of
two properties: firstly that the assembly process never fails when fed a correct
policy and secondly the object code returned simulates the source code when the
latter is executed according to the cost model also returned by the assembler. This
second property can be further decomposed into two main properties: correctness
with respect to fetching and decoding and correctness with respect to execution.

8



Informally, correctness with respect to fetching is the following statement:
when we fetch an assembly pseudoinstruction I at address ppc, then we can fetch
the expanded pseudoinstruction(s) [J1, ..., Jn] = fetch pseudo instruction

... I ppc from policy ppc in the code memory obtained by loading the assem-
bled object code. This section reviews the main steps to prove correctness with
respect to fetching. Subsect. 2.5 deals with correctness with respect to execution:
the instructions [J1, ..., Jn] simulate the pseudoinstruction I.

The (slightly simplified) Russell type for the assembly function is:

definition assembly:

∀program: pseudo_assembly_program. ∀policy.
Σassembled: list Byte × (BitVectorTrie nat 16).

|program| ≤ 216 → policy is correct for program →
policy (|program|) = |fst assembled| ≤ 216 ∧
∀ppc: pseudo_program_counter. ppc < 216 →
let pseudo_instr := fetch from program at ppc in

let assembled_i := assemble pseudo_instr in

|assembled_i| ≤ 216 ∧
∀n: nat. n < |assembled_i| → ∃k: nat.

nth assembled_i n = nth assembled (policy ppc + k).

In plain words, the type of assembly states the following. Given a correct policy
for the program to be assembled, the assembler never fails and returns some
object code and a costing function. Under the condition that the policy is ‘correct’
for the program and the program is fully addressable by a 16-bit word, the object
code is also fully addressable by a 16-bit word. Moreover, the result of assembling
the pseudoinstruction obtained fetching from the assembly address ppc is a list
of bytes found in the generated object code starting from the object code address
policy(ppc).

Essentially the type above states that the assembly function correctly expands
pseudoinstructions, and that the expanded instruction reside consecutively in
memory. The fundamental hypothesis is correctness of the policy which allows
us to prove the inductive step of the proof, which proceeds by induction over
the assembly program. It is then straightforward to lift the property from lists
of bytes (object code) to tries of bytes (i.e. code memories after loading). The
assembly ok lemma does the lifting.

We have established that every pseudoinstruction is compiled to a sequence of
bytes that is found in memory at the expect place. This does not trivially imply
that those bytes will be decoded in a correct way to recover the pseudoinstruction
expansion. Indeed, we first need to prove a lemma that establishes that the fetch
function is the left inverse of the assembly1 function:

lemma fetch_assembly:

∀pc: Word.

∀i: instruction.

∀code_memory: BitVectorTrie Byte 16.

∀assembled: list Byte.

assembled = assemble i →
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let len := |assembled| in
let pc_plus_len := pc + len in

encoding_check pc pc_plus_len assembled →
let 〈instr, pc’, ticks〉 := fetch pc in

instr = i ∧ ticks = (ticks_of_instruction instr) ∧ pc’ = pc_plus_len.

We read fetch assembly as follows. Any time the encoding assembled of an
instruction i is found in code memory starting at position pc (the hypothesis
encoding check . . . ), when we fetch at address pc retrieving the instruction i,
the new program counter is pc plus the length of the encoding, and the cost of the
fetched instruction is the one predicted for i. Or, in plainer words, assembling,
storing and then immediately fetching gets you back to where you started.

Remembering that assembly 1 pseudo instruction is the composition of
assembly1 with expand pseudo instruction, we can lift the previous result
from instructions (already expanded) to pseudoinstructions (to be expanded):

lemma fetch_assembly_pseudo:

∀program: pseudo_assembly_program.

∀policy,ppc,code_memory.
let 〈preamble, instr_list〉 := program in

let pi := π1 (fetch_pseudo_instruction instr_list ppc) in

let pc := policy ppc in

let instructions := expand_pseudo_instruction policy ppc pi in

let 〈l, a〉 := assembly_1_pseudoinstruction policy ppc pi in

let pc_plus_len := pc + l in

encoding_check code_memory pc pc_plus_len a →
fetch_many code_memory pc_plus_len pc instructions.

Here, l is the number of machine code instructions the pseudoinstruction at hand
has been expanded into. We assemble a single pseudoinstruction with assembly -

1 pseudoinstruction, which internally calls expand pseudo instruction. The
function fetch many fetches multiple machine code instructions from code mem-
ory and performs some routine checks.

Intuitively, Lemma fetch assembly pseudo says that expanding a pseudoin-
struction into n instructions, encoding the instructions and immediately fetching
n instructions back yield exactly the expansion.

Combining assembly ok with the previous lemma and a proof of correctness
of loading object code in memory, we finally get correctness of the assembler
with respect to fetching:

lemma fetch_assembly_pseudo2:

∀program. |snd program| ≤ 216 →
∀policy. policy is correct for program →
∀ppc. ppc < |snd program| →
let 〈assembled, costs’〉 := π1 (assembly program policy) in

let cmem := load_code_memory assembled in

let 〈pi, newppc〉 := fetch_pseudo_instruction program ppc in

let instructions := expand_pseudo_instruction policy ppc pi in

fetch_many cmem (policy newppc) (policy ppc) instructions.
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Here we use π1 to project the existential witness from the Russell-typed function
assembly. We read fetch assembly pseudo2 as follows. Suppose we are given
an assembly program which can be addressed by a 16-bit word and a policy
that is correct for this program. Suppose we are able to successfully assemble
an assembly program using assembly and produce a code memory, cmem. Then,
fetching a pseudoinstruction from the pseudo-code memory stored in the interval
[ppc, newppc] corresponds to fetching a sequence of instructions from the real code
memory, stored in the interval [policy(ppc), policy(ppc+ 1)]. The correspondence
is precise: the fetched instructions are exactly those obtained expanding the
pseudoinstruction according to policy.

In order to complete the proof of correctness of the assembler, we need to
prove that each pseudoinstruction is simulated by the execution of its expansion
(correctness with respect to execution). In general this is not the case when
instructions freely manipulate program addresses. Characterising well-behaved
programs and proving correctness with respect to expansion is discussed next.

2.5 Correctness for ‘well-behaved’ assembly programs

Most assemblers can map a single pseudoinstruction to zero or more machine
instructions, whose size (in bytes) is not independent of the expansion. The
assembly process therefore always produces a map (which for us is just the policy)
that associates to each assembly address a a code memory address policy(a)

where the instructions that correspond to the pseudoinstruction at a are located.
Ordinarily, the map is not just a linear function, but depends on the local choices
and global optimisations performed.

During execution of assembly code, addresses can be stored in memory
locations or in the registers. Moreover, arithmetical operations can be applied to
addresses, for example to compare them or to shift a function pointer in order to
implement C switch statements. In order to show that the object code simulates
the assembly code we must compute the processor status that corresponds to the
assembly status. In particular, those a in memory that are used as data should
be preserved as a, but those used as addresses should be changed into policy(a).
Moreover, every arithmetic operation should commute with policy in order for
the semantics to be preserved.

Following the previous observation, we can ask if it is possible at all for an
assembler to preserve the semantics of an assembly program. The traditional
approach to the verification of assemblers answers the question in the affirmative
by restricting the semantics of assembly programs. In particular, the type of
memory cells and registers is set to the disjoint union of data and symbolic
addresses, and the semantics is always forced to consider all possible combinations
of arguments (data vs. data, data vs. addresses, and so on), rejecting operations
whose semantics cannot be preserved.

Mem : Addr→ Bytes + Addr J−K : Instr→ Mem→ option Mem
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JMUL @A1 @A2KM =





Byte b1, Byte b2 → Some(M with accumulator := b1 + b2)

−, Addr a → None

Addr a, − → None

This approach has two main limitations. The first one is that it does not assign
any semantics to interesting programs that could intentionally mangle addresses
for malign (e.g. viruses) or benign (e.g. operating systems) purposes. The second
is that it does not allow one to adequately share the semantics of assembly
pseudoinstructions and object code instructions: only the Byte-Byte branch
above can share the semantics with the object code MUL.

In this paper we have already taken a different approach from Sect. 2.2, where
we have assigned a semantics to every assembly program by not distinguishing
at all between data and symbolic addresses. Memory cells and registers always
hold bytes, and symbolic labels are mapped to absolute addresses before exe-
cution. Consequently we do not expect that all assembly programs will have
their semantics respected by object code. We call those programs that do well-
behaved. Further, we can now reason over the semantics of programs that are
not well-behaved, and that we can handle well-behavedness as an open predicate,
recognising more and more good behaviours as required. Naturally, compilers
that target our assembler will need to produce well-behaved programs, which is
usually the case by construction.

The definition of well-behavedness we employ uses a map to keep track of
the memory locations and registers that hold addresses during execution of an
assembly program. The map acts as a sort of dynamic typing system sitting
atop memory. This approach seems similar to one taken by Tuch et al [13] for
reasoning about low-level C code.

The semantics of an assembly program is then augmented with a function that
at each execution step updates the map, signalling an error when the program
performs an ill-behaved operation. The actual computation is not performed by
this mechanism, being already part of the assembly semantics.

AddrMap : Addr→ {Data,Addr} J−K : Instr→ AddrMap→ option AddrMap

JMUL @A1 @A2KM =





Data, Data → Some(Mwith accumulator :=Data)

−, Addr a → None

Addr a, − → None

To prove semantic preservation we must associate an object code status to each
assembly pseudostatus. This operation is driven by the current AddrMap: if at
address a the assembly level memory holds d, then if AddrMap(a) = Data the ob-
ject code memory will hold d (data is preserved), otherwise it will hold policy(d).
If all the operations accepted by the address update map are well-behaved, this
is sufficient to show preservation of the semantics for those computation steps
that are well-behaved, i.e. such that the map update does not fail.

We now apply the previous idea to the MCS-51, an 8-bit processor whose
code memory is word addressed. All MCS-51 operations can therefore only
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manipulate and store one half of the address at a time (lower or higher bits). For
instance, a memory cell could contain just the lower 8 bits of an address a. The
corresponding cell at object code level must therefore hold the lower 8 bits of
policy(a), which can be computed only if we can also retrieve the higher 8 bits
of a. We achieve this by storing the missing half of an address in the AddrMap —
called internal pseudo address map in the formalisation.

definition address_entry := upper_lower × Byte.

definition internal_pseudo_address_map :=

(BitVectorTrie address_entry 7) × (BitVectorTrie address_entry 7)

× (option address_entry).

Here, upper lower is an inductive type with two constructors: Upper and Lower.
The map consists of three components to track addresses in lower and upper
internal ram and also in the accumulator A. If an assembly address a holds h and
if the current internal pseudo address map maps a to 〈 Upper, l〉, then h is
the upper part of the h·l address and a will hold the upper part of policy(h·l)
in the object code status.

The relationship between assembly pseudostatus and object code status is
computed by the following function which deterministically maps each pseudosta-
tus into a corresponding status. It takes in input the policy and both the current
pseudostatus and the current tracking map in order to identify those memory
cells and registers that hold fragments of addresses to be mapped using policy

as previously explained. It also calls the assembler to replace the code memory of
the assembly status (i.e. the assembly program) with the object code produced
by the assembler.

definition status_of_pseudo_status:

internal_pseudo_address_map → ∀pap. ∀ps: PseudoStatus pap.

∀policy. Status (code_memory_of_pseudo_assembly_program pap policy)

The function that implements the tracking map update, previously denoted by
J−K, is called next internal pseudo address map in the formalisation. For the
time being, we accept as good behaviours address copying amongst memory cells
and the accumulator (MOV pseudoinstruction) and the use of the CJNE conditional
jump that compares two addresses and jumps to a given label if the two labels are
equal. Moreover, RET to return from a function call is well-behaved iff the lower
and upper parts of the return address, fetched from the stack, are both marked
as complementary parts of the same address (i.e. h is tracked as 〈Upper,l〉 and
l is tracked as 〈Lower,h〉. These three operations are sufficient to implement the
backend of the CerCo compiler. Other good behaviours could be recognised in
the future, for instance in order to implement the C branch statement efficiently.

definition next_internal_pseudo_address_map: internal_pseudo_address_map →
∀cm. (Identifier → PseudoStatus cm → Word) → ∀s: PseudoStatus cm.

program_counter s < 216 → option internal_pseudo_address_map

We now state the (simplified) statement of correctness of our compiler, whose
proofs combines correctness with respect to fetching and correctness with respect
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to execution. It states that the well-behaved execution of a single assembly
pseudoinstruction according to the cost model induced by compilation is correctly
simulated by the execution of (possibly) many machine code instructions.

theorem main_thm:

∀M, M’: internal_pseudo_address_map.

∀program: pseudo_assembly_program.

∀program_in_bounds: |program| ≤ 216.

∀policy. policy is correct for program.

∀ps: PseudoStatus program. ps < |program|.
next_internal_pseudo_address_map M program . . .= Some M’ →
∃n. execute n (status_of_pseudo_status M ps policy) =

status_of_pseudo_status M’

(execute_1_pseudo_instruction program (ticks_of program policy) ps)

policy.

The statement is standard for forward simulation, but restricted to PseudoStatuses
ps whose tracking map is M and who are well-behaved according to internal -

pseudo address map M. The ticks of program policy function returns the
costing computed by assembling the program using the given policy. An obvious
corollary of main thm is the correct simulation of n well-behaved steps by some
number of steps m, where each step must be well-behaved with respect to the
tracking map returned by the previous step.

3 Conclusions

We are proving the correctness of an assembler for MCS-51 assembly language.
Our assembly language features labels, arbitrary conditional and unconditional
jumps to labels, global data and instructions for moving this data into the MCS-
51’s single 16-bit register. Expanding these pseudoinstructions into machine code
instructions is not trivial, and the proof that the assembly process is ‘correct’, in
that the semantics of a subset of assembly programs are not changed is complex.

The formalisation is a component of CerCo which aims to produce a verified
concrete complexity preserving compiler for a large subset of the C language. The
verified assembler, complete with the underlying formalisation of the semantics
of MCS-51 machine code, will form the bedrock layer upon which the rest of
CerCo will build its verified compiler platform.

We may compare our work to an ‘industrial grade’ assembler for the MCS-51:
SDCC [10], the only open source C compiler that targets the MCS-51 instruction
set. It appears that all pseudojumps in SDCC assembly are expanded to LJMP

instructions, the worst possible jump expansion policy from an efficiency point of
view. Note that this policy is the only possible policy in theory that makes every
assembly program well-behaved, preserving its the semantics during the assembly
process. This comes at the expense of assembler completeness as the generated
program may be too large for code memory, there being a trade-off between the
completeness of the assembler and the efficiency of the assembled program. The
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definition and proof of a terminating, correct jump expansion policy is described
elsewhere [2].

Verified assemblers could also be applied to the verification of operating system
kernels and other formalised compilers. For instance the verified seL4 kernel [5],
CompCert [7] and CompCertTSO [14] all explicitly assume the existence of
trustworthy assemblers. The fact that an optimising assembler cannot preserve
the semantics of all assembly programs may have consequences for these projects.

Our formalisation exploits dependent types in different ways and for multiple
purposes. The first purpose is to reduce potential errors in the formalisation of the
microprocessor. Dependent types are used to constrain the size of bitvectors and
tries that represent memory quantities and memory areas respectively. They are
also used to simulate polymorphic variants in Matita, in order to provide precise
typings to various functions expecting only a subset of all possible addressing
modes that the MCS-51 offers. Polymorphic variants nicely capture the absolutely
unorthogonal instruction set of the MCS-51 where every opcode must accept its
own subset of the 11 addressing mode of the processor.

The second purpose is to single out sources of incompleteness. By abstracting
our functions over the dependent type of correct policies, we were able to manifest
the fact that the compiler never refuses to compile a program where a correct
policy exists. This also allowed to simplify the initial proof by dropping lemmas
establishing that one function fails if and only if some previous function does so.

Finally, dependent types, together with Matita’s liberal system of coercions,
allow us to simulate almost entirely in user space the proof methodology ‘Russell’
of Sozeau [12]. Not every proof has been carried out in this way: we only used
this style to prove that a function satisfies a specification that only involves that
function in a significant way. It would not be natural to see the proof that fetch
and assembly commute as the specification of one of the two functions.

Related work We are not the first to consider the correctness of an assembler
for a non-trivial assembly language. The most impressive piece of work in this
domain is Piton [8], a stack of verified components, written and verified in ACL2,
ranging from a proprietary FM9001 microprocessor verified at the gate level,
to assemblers and compilers for two high-level languages—Lisp and µGypsy [9].
Klein and Nipkow also provide a compiler, virtual machine and operational
semantics for the Jinja [6] language and prove that their compiler is semantics
and type preserving.

Though other verified assemblers exist what sets our work apart from that
above is our attempt to optimise the generated machine code. This complicates a
formalisation as an attempt at the best possible selection of machine instructions
must be made—especially important on devices with limited code memory. Care
must be taken to ensure that the time properties of an assembly program are
not modified by assembly lest we affect the semantics of any program employing
the MCS-51’s I/O facilities. This is only possible by inducing a cost model on
the source code from the optimisation strategy and input program.
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Resources Our source files are available at http://cerco.cs.unibo.it. We
assumed several properties of ‘library functions’, e.g. modular arithmetic and
datastructure manipulation. We axiomatised various small functions needed to
complete the main theorems, as well as some ‘routine’ proof obligations of the
theorems themselves, in focusing on the main meat of the theorems. We believe
that the proof strategy is sound and that all axioms can be closed, up to minor
bugs that should have local fixes that do not affect the global proof strategy.

The complete development is spread across 29 files with around 20,000 lines of
Matita source. Relevant files are: AssemblyProof.ma, AssemblyProofSplit.ma
and AssemblyProofSplitSplit.ma, consisting of approximately 4500 lines of
Matita source. Numerous other lines of proofs are spread all over the development
because of dependent types and the Russell proof style, which does not allow
one to separate the code from the proofs. The low ratio between source lines
and the number of lines of proof is unusual, but justified by the fact that the
pseudo-assembly and the assembly language share most constructs and large
swathes of the semantics are shared.
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On the correctness of a branch displacement
algorithm?
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Abstract The branch displacement problem is a well-known problem
in assembler design. It revolves around the feature, present in several
processor families, of having different instructions, of different sizes, for
jumps of different displacements. The problem, which is provably NP-
hard, is then to select the instructions such that one ends up with the
smallest possible program.
During our research with the CerCo project on formally verifying a C
compiler, we have implemented and proven correct an algorithm for this
problem. In this paper, we discuss the problem, possible solutions, our
specific solutions and the proofs.

Keywords: formal verification, assembler, branch displacement optim-
isation

1 Introduction

The problem of branch displacement optimisation, also known as jump encoding,
is a well-known problem in assembler design [4]. It is caused by the fact that in
many architecture sets, the encoding (and therefore size) of some instructions
depends on the distance to their operand (the instruction ’span’). The branch
displacement optimisation problem consists of encoding these span-dependent
instructions in such a way that the resulting program is as small as possible.

This problem is the subject of the present paper. After introducing the prob-
lem in more detail, we will discuss the solutions used by other compilers, present
the algorithm we use in the CerCo assembler, and discuss its verification, that
is the proofs of termination and correctness using the Matita proof assistant [1].

The research presented in this paper has been executed within the CerCo
project which aims at formally verifying a C compiler with cost annotations. The
target architecture for this project is the MCS-51, whose instruction set contains
span-dependent instructions. Furthermore, its maximum addressable memory
size is very small (64 Kb), which makes it important to generate programs that
are as small as possible.

? Research supported by the CerCo project, within the Future and Emerging Techno-
logies (FET) programme of the Seventh Framework Programme for Research of the
European Commission, under FET-Open grant number 243881



With this optimisation, however, comes increased complexity and hence in-
creased possibility for error. We must make sure that the branch instructions are
encoded correctly, otherwise the assembled program will behave unpredictably.

2 The branch displacement optimisation problem

In most modern instruction sets that have them, the only span-dependent in-
structions are branch instructions. Taking the ubiquitous x86-64 instruction set
as an example, we find that it contains eleven different forms of the unconditional
branch instruction, all with different ranges, instruction sizes and semantics (only
six are valid in 64-bit mode, for example). Some examples are shown in Figure 1.

Instruction Size (bytes) Displacement range

Short jump 2 -128 to 127 bytes
Relative near jump 5 −232 to 232 − 1 bytes
Absolute near jump 6 one segment (64-bit address)
Far jump 8 entire memory

Figure 1. List of x86 branch instructions

The chosen target architecture of the CerCo project is the Intel MCS-51,
which features three types of branch instructions (or jump instructions; the two
terms are used interchangeably), as shown in Figure 2.

Instruction Size Execution time Displacement range
(bytes) (cycles)

SJMP (‘short jump’) 2 2 -128 to 127 bytes
AJMP (‘absolute jump’) 2 2 one segment (11-bit address)
LJMP (‘long jump’) 3 3 entire memory

Figure 2. List of MCS-51 branch instructions

Conditional branch instructions are only available in short form, which means
that a conditional branch outside the short address range has to be encoded using
three branch instructions (for instructions whose logical negation is available, it
can be done with two branch instructions, but for some instructions this is not
available); the call instruction is only available in absolute and long forms.

Note that even though the MCS-51 architecture is much less advanced and
simpler than the x86-64 architecture, the basic types of branch instruction re-
main the same: a short jump with a limited range, an intra-segment jump and
a jump that can reach the entire available memory.



Generally, in code fed to the assembler as input, the only difference between
branch instructions is semantics, not span. This means that a distinction is made
between an unconditional branch and the several kinds of conditional branch,
but not between their short, absolute or long variants.

The algorithm used by the assembler to encode these branch instructions into
the different machine instructions is known as the branch displacement algorithm.
The optimisation problem consists of finding as small an encoding as possible,
thus minimising program length and execution time.

This problem is known to be NP-complete [8,11], which could make finding
an optimal solution very time-consuming.

The canonical solution, as shown by Szymanski [11] or more recently by
Dickson [2] for the x86 instruction set, is to use a fixed point algorithm that
starts with the shortest possible encoding (all branch instruction encoded as
short jumps, which is likely not a correct solution) and then iterates over the
program to re-encode those branch instructions whose target is outside their
range.

Adding absolute jumps

In both papers mentioned above, the encoding of a jump is only dependent on
the distance between the jump and its target: below a certain value a short jump
can be used; above this value the jump must be encoded as a long jump.

Here, termination of the smallest fixed point algorithm is easy to prove. All
branch instructions start out encoded as short jumps, which means that the
distance between any branch instruction and its target is as short as possible.
If, in this situation, there is a branch instruction b whose span is not within the
range for a short jump, we can be sure that we can never reach a situation where
the span of j is so small that it can be encoded as a short jump. This argument
continues to hold throughout the subsequent iterations of the algorithm: short
jumps can change into long jumps, but not vice versa, as spans only increase.
Hence, the algorithm either terminates early when a fixed point is reached or
when all short jumps have been changed into long jumps.

Also, we can be certain that we have reached an optimal solution: a short
jump is only changed into a long jump if it is absolutely necessary.

However, neither of these claims (termination nor optimality) hold when we
add the absolute jump, as with absolute jumps, the encoding of a branch in-
struction no longer depends only on the distance between the branch instruction
and its target: in order for an absolute jump to be possible, they need to be in
the same segment (for the MCS-51, this means that the first 5 bytes of their
addresses have to be equal). It is therefore entirely possible for two branch in-
structions with the same span to be encoded in different ways (absolute if the
branch instruction and its target are in the same segment, long if this is not the
case).

This invalidates our earlier termination argument: a branch instruction, once
encoded as a long jump, can be re-encoded during a later iteration as an absolute
jump. Consider the program shown in Figure 3. At the start of the first iteration,



jmp X
...

L0:
...

jmp L0

Figure 3. Example of a program where a long jump becomes absolute

both the branch to X and the branch to L0 are encoded as small jumps. Let us
assume that in this case, the placement of L0 and the branch to it are such that
L0 is just outside the segment that contains this branch. Let us also assume
that the distance between L0 and the branch to it are too large for the branch
instruction to be encoded as a short jump.

All this means that in the second iteration, the branch to L0 will be encoded
as a long jump. If we assume that the branch to X is encoded as a long jump as
well, the size of the branch instruction will increase and L0 will be ‘propelled’ into
the same segment as its branch instruction, because every subsequent instruction
will move one byte forward. Hence, in the third iteration, the branch to L0 can
be encoded as an absolute jump. At first glance, there is nothing that prevents
us from constructing a configuration where two branch instructions interact in
such a way as to iterate indefinitely between long and absolute encodings.

This situation mirrors the explanation by Szymanski [11] of why the branch
displacement optimisation problem is NP-complete. In this explanation, a condi-
tion for NP-completeness is the fact that programs be allowed to contain patho-
logical jumps. These are branch instructions that can normally not be encoded
as a short(er) jump, but gain this property when some other branch instructions
are encoded as a long(er) jump. This is exactly what happens in Figure 3. By
encoding the first branch instruction as a long jump, another branch instruction
switches from long to absolute (which is shorter).

In addition, our previous optimality argument no longer holds. Consider the
program shown in Figure 4. Suppose that the distance between L0 and L1 is such
that if jmp X is encoded as a short jump, there is a segment border just after L1.
Let us also assume that the three branches to L1 are all in the same segment,
but far enough away from L1 that they cannot be encoded as short jumps.

Then, if jmp X were to be encoded as a short jump, which is clearly possible,
all of the branches to L1 would have to be encoded as long jumps. However,
if jmp X were to be encoded as a long jump, and therefore increase in size, L1
would be ‘propelled’ across the segment border, so that the three branches to L1
could be encoded as absolute jumps. Depending on the relative sizes of long and
absolute jumps, this solution might actually be smaller than the one reached by
the smallest fixed point algorithm.



L0: jmp X

X:
...

L1:
...

jmp L1
...

jmp L1
...

jmp L1
...

Figure 4. Example of a program where the fixed-point algorithm is not optimal

3 Our algorithm

3.1 Design decisions

Given the NP-completeness of the problem, to arrive at an optimal solution
(using, for example, a constraint solver) will potentially take a great amount of
time.

The SDCC compiler [9], which has a backend targetting the MCS-51 instruc-
tion set, simply encodes every branch instruction as a long jump without taking
the distance into account. While certainly correct (the long jump can reach any
destination in memory) and a very fast solution to compute, it results in a less
than optimal solution.

On the other hand, the gcc compiler suite [3], while compiling C on the x86
architecture, uses a greatest fix point algorithm. In other words, it starts with
all branch instructions encoded as the largest jumps available, and then tries to
reduce the size of branch instructions as much as possible.

Such an algorithm has the advantage that any intermediate result it returns is
correct: the solution where every branch instruction is encoded as a large jump is
always possible, and the algorithm only reduces those branch instructions whose
destination address is in range for a shorter jump. The algorithm can thus be
stopped after a determined number of steps without sacrificing correctness.

The result, however, is not necessarily optimal. Even if the algorithm is run
until it terminates naturally, the fixed point reached is the greatest fixed point,
not the least fixed point. Furthermore, gcc (at least for the x86 architecture)
only uses short and long jumps. This makes the algorithm more efficient, as
shown in the previous section, but also results in a less optimal solution.

In the CerCo assembler, we opted at first for a least fixed point algorithm,
taking absolute jumps into account.



Here, we ran into a problem with proving termination, as explained in the
previous section: if we only take short and long jumps into account, the jump
encoding can only switch from short to long, but never in the other direction.
When we add absolute jumps, however, it is theoretically possible for a branch
instruction to switch from absolute to long and back, as previously explained.

Proving termination then becomes difficult, because there is nothing that
precludes a branch instruction from oscillating back and forth between absolute
and long jumps indefinitely.

In order to keep the algorithm in the same complexity class and more easily
prove termination, we decided to explicitly enforce the ‘branch instructions must
always grow longer’ requirement: if a branch instruction is encoded as a long
jump in one iteration, it will also be encoded as a long jump in all the following
iterations. This means that the encoding of any branch instruction can change
at most two times: once from short to absolute (or long), and once from absolute
to long.

There is one complicating factor. Suppose that a branch instruction is en-
coded in step n as an absolute jump, but in step n + 1 it is determined that
(because of changes elsewhere) it can now be encoded as a short jump. Due
to the requirement that the branch instructions must always grow longer, this
means that the branch encoding will be encoded as an absolute jump in step
n+ 1 as well.

This is not necessarily correct. A branch instruction that can be encoded as
a short jump cannot always also be encoded as an absolute jump, as a short
jump can bridge segments, whereas an absolute jump cannot. Therefore, in this
situation we have decided to encode the branch instruction as a long jump, which
is always correct.

The resulting algorithm, while not optimal, is at least as good as the ones
from SDCC and gcc, and potentially better. Its complexity remains the same
(there are at most 2n iterations, where n is the number of branch instructions
in the program).

3.2 The algorithm in detail

The branch displacement algorithm forms part of the translation from pseudo-
code to assembler. More specifically, it is used by the function that translates
pseudo-addresses (natural numbers indicating the position of the instruction in
the program) to actual addresses in memory.

Our original intention was to have two different functions, one function
policy : N → {short jump, absolute jump, long jump} to associate jumps to
their intended encoding, and a function σ : N → Word to associate pseudo-
addresses to machine addresses. σ would use policy to determine the size of
jump instructions.

This turned out to be suboptimal from the algorithmic point of view and
impossible to prove correct.

From the algorithmic point of view, in order to create the policy function,
we must necessarily have a translation from pseudo-addresses to machine ad-



dresses (i.e. a σ function): in order to judge the distance between a jump and
its destination, we must know their memory locations. Conversely, in order to
create the σ function, we need to have the policy function, otherwise we do not
know the sizes of the jump instructions in the program.

Much the same problem appears when we try to prove the algorithm correct:
the correctness of policy depends on the correctness of σ, and the correctness
of σ depends on the correctness of policy.

We solved this problem by integrating the policy and σ algorithms. We
now have a function σ : N → Word × bool which associates a pseudo-address
to a machine address. The boolean denotes a forced long jump; as noted in the
previous section, if during the fixed point computation an absolute jump changes
to be potentially re-encoded as a short jump, the result is actually a long jump.
It might therefore be the case that jumps are encoded as long jumps without
this actually being necessary, and this information needs to be passed to the
code generating function.

The assembler function encodes the jumps by checking the distance between
source and destination according to σ, so it could select an absolute jump in a
situation where there should be a long jump. The boolean is there to prevent
this from happening by indicating the locations where a long jump should be
encoded, even if a shorter jump is possible. This has no effect on correctness,
since a long jump is applicable in any situation.

function f(labels,old sigma,instr,ppc,acc)
〈added, pc, sigma〉 ← acc
if instr is a backward jump to j then

length← jump size(pc, sigma1(labels(j)))
else if instr is a forward jump to j then

length← jump size(pc, old sigma1(labels(j)) + added)
else

length← short jump

end if
old length← old sigma1(ppc)
new length← max(old length, length)
old size← old sigma2(ppc)
new size← instruction size(instr, new length)
new added← added+ (new size− old size)
new sigma1(ppc+ 1)← pc+ new size
new sigma2(ppc)← new length

return 〈new added, pc+ new size, new sigma〉
end function

Figure 5. The heart of the algorithm

The algorithm, shown in Figure 5, works by folding the function f over the
entire program, thus gradually constructing sigma. This constitutes one step in



the fixed point calculation; successive steps repeat the fold until a fixed point is
reached.

Parameters of the function f are:

– a function labels that associates a label to its pseudo-address;
– old sigma, the σ function returned by the previous iteration of the fixed

point calculation;
– instr, the instruction currently under consideration;
– ppc, the pseudo-address of instr;
– acc, the fold accumulator, which contains pc (the highest memory address

reached so far), added (the number of bytes added to the program size with
respect to the previous iteration), and of course sigma, the σ function under
construction.

The first two are parameters that remain the same through one iteration, the
final three are standard parameters for a fold function (including ppc, which is
simply the number of instructions of the program already processed).

The σ functions used by f are not of the same type as the final σ function:
they are of type σ : N→ N× {short jump, absolute jump, long jump}; a func-
tion that associates a pseudo-address with a memory address and a jump length.
We do this to be able to ease the comparison of jump lengths between iterations.
In the algorithm, we use the notation sigma1(x) to denote the memory address
corresponding to x, and sigma2(x) to denote the jump length corresponding to
x.

Note that the σ function used for label lookup varies depending on whether
the label is behind our current position or ahead of it. For backward branches,
where the label is behind our current position, we can use sigma for lookup,
since its memory address is already known. However, for forward branches, the
memory address of the address of the label is not yet known, so we must use
old sigma.

We cannot use old sigma without change: it might be the case that we have
already increased the size of some branch instructions before, making the pro-
gram longer and moving every instruction forward. We must compensate for this
by adding the size increase of the program to the label’s memory address ac-
cording to old sigma, so that branch instruction spans do not get compromised.

Note also that we add the pc to sigma at location ppc+ 1, whereas we add
the jump length at location ppc. We do this so that sigma(ppc) will always
return a pair with the start address of the instruction at ppc and the length of
its branch instruction (if any); the end address of the program can be found at
sigma(n+ 1), where n is the number of instructions in the program.

4 The proof

In this section, we present the correctness proof for the algorithm in more detail.
The main correctness statement is as follows (slightly simplified, here):



definition sigma_policy_specification :=

λprogram: pseudo_assembly_program.

λsigma: Word → Word.

λpolicy: Word → bool.

sigma (zero . . .) = zero . . . ∧
∀ppc: Word.∀ppc_ok.
let 〈preamble, instr_list〉 := program in

let pc := sigma ppc in

let instruction :=

\fst (fetch_pseudo_instruction instr_list ppc ppc_ok) in

let next_pc := \fst (sigma (add ? ppc (bitvector_of_nat ? 1))) in

(nat_of_bitvector . . . ppc ≤ |instr_list| →
next_pc = add ? pc (bitvector_of_nat . . .
(instruction_size . . . sigma policy ppc instruction)))

∧
((nat_of_bitvector . . . ppc < |instr_list| →
nat_of_bitvector . . . pc < nat_of_bitvector . . . next_pc)
∨ (nat_of_bitvector . . . ppc = |instr_list| → next_pc = (zero . . .))).

Informally, this means that when fetching a pseudo-instruction at ppc, the
translation by σ of ppc+ 1 is the same as σ(ppc) plus the size of the instruction
at ppc. That is, an instruction is placed consecutively after the previous one, and
there are no overlaps.

Instructions are also stocked in order: the memory address of the instruction
at ppc should be smaller than the memory address of the instruction at ppc+ 1.
There is one exeception to this rule: the instruction at the very end of the
program, whose successor address can be zero (this is the case where the program
size is exactly equal to the amount of memory).

Finally, we enforce that the program starts at address 0, i.e. σ(0) = 0.

Since our computation is a least fixed point computation, we must prove ter-
mination in order to prove correctness: if the algorithm is halted after a number
of steps without reaching a fixed point, the solution is not guaranteed to be
correct. More specifically, branch instructions might be encoded which do not
coincide with the span between their location and their destination.

Proof of termination rests on the fact that the encoding of branch instructions
can only grow larger, which means that we must reach a fixed point after at most
2n iterations, with n the number of branch instructions in the program. This
worst case is reached if at every iteration, we change the encoding of exactly one
branch instruction; since the encoding of any branch instructions can change
first from short to absolute and then from absolute to long, there can be at most
2n changes.

The proof has been carried out using the “Russell” style from [10]. We have
proven some invariants of the f function from the previous section; these invari-
ants are then used to prove properties that hold for every iteration of the fixed
point computation; and finally, we can prove some properties of the fixed point.



4.1 Fold invariants

These are the invariants that hold during the fold of f over the program, and
that will later on be used to prove the properties of the iteration.

Note that during the fixed point computation, the σ function is implemen-
ted as a trie for ease of access; computing σ(x) is achieved by looking up the
value of x in the trie. Actually, during the fold, the value we pass along is a pair
N × ppcpcmap. The first component is the number of bytes added to the pro-
gram so far with respect to the previous iteration, and the second component,
ppc pc map, is a pair consisting of the current size of the program and our σ
function.

definition out_of_program_none :=

λprefix:list labelled_instruction.λsigma:ppc_pc_map.
∀i.i < 2^16 → (i > |prefix| ↔
bvt_lookup_opt . . . (bitvector_of_nat ? i) (\snd sigma) = None ?).

This invariant states that any pseudo-address not yet examined is not present
in the lookup trie.

definition not_jump_default :=

λprefix:list labelled_instruction.λsigma:ppc_pc_map.
∀i.i < |prefix| →
¬ is_jump (\snd (nth i ? prefix 〈None ?, Comment []〉)) →
\snd (bvt_lookup . . . (bitvector_of_nat ? i) (\snd sigma)

〈0,short_jump〉) = short_jump.

This invariant states that when we try to look up the jump length of a
pseudo-address where there is no branch instruction, we will get the default
value, a short jump.

definition jump_increase :=

λprefix:list labelled_instruction.λop:ppc_pc_map.λp:ppc_pc_map.
∀i.i ≤ |prefix| →
let 〈opc,oj〉 :=

bvt_lookup . . . (bitvector_of_nat ? i) (\snd op) 〈0,short_jump〉 in

let 〈pc,j〉 :=

bvt_lookup . . . (bitvector_of_nat ? i) (\snd p) 〈0,short_jump〉 in

jmpleq oj j.

This invariant states that between iterations (with op being the previous
iteration, and p the current one), jump lengths either remain equal or increase.
It is needed for proving termination.



definition sigma_compact_unsafe :=

λprogram:list labelled_instruction.λlabels:label_map.λsigma:ppc_pc_map.
∀n.n < |program| →
match bvt_lookup_opt . . . (bitvector_of_nat ? n) (\snd sigma) with

[ None ⇒ False

| Some x ⇒ let 〈pc,j〉 := x in

match bvt_lookup_opt . . . (bitvector_of_nat ? (S n)) (\snd sigma) with

[ None ⇒ False

| Some x1 ⇒ let 〈pc1,j1〉 := x1 in

pc1 = pc + instruction_size_jmplen j

(\snd (nth n ? program 〈None ?, Comment []〉)))
]

].

This is a temporary formulation of the main property
(sigma policy specification); its main difference from the final version is
that it uses instruction size jmplen to compute the instruction size. This
function uses j to compute the span of branch instructions (i.e. it uses the σ
function under construction), instead of looking at the distance between source
and destination. This is because σ is still under construction; later on we will
prove that after the final iteration, sigma compact unsafe is equivalent to the
main property.

definition sigma_safe :=

λprefix:list labelled_instruction.λlabels:label_map.λadded:N.
λold_sigma:ppc_pc_map.λsigma:ppc_pc_map.
∀i.i < |prefix| → let 〈pc,j〉 :=

bvt_lookup . . . (bitvector_of_nat ? i) (\snd sigma) 〈0,short_jump〉 in

let pc_plus_jmp_length := bitvector_of_nat ? (\fst (bvt_lookup . . .
(bitvector_of_nat ? (S i)) (\snd sigma) 〈0,short_jump〉)) in

let 〈label,instr〉 := nth i ? prefix 〈None ?, Comment [ ]〉 in

∀dest.is_jump_to instr dest →
let paddr := lookup_def . . . labels dest 0 in

let addr := bitvector_of_nat ? (if leb i paddr (* forward jump *)

then \fst (bvt_lookup . . . (bitvector_of_nat ? paddr) (\snd old_sigma)

〈0,short_jump〉) + added

else \fst (bvt_lookup . . . (bitvector_of_nat ? paddr) (\snd sigma)

〈0,short_jump〉)) in

match j with

[ short_jump ⇒ ¬is_call instr ∧
\fst (short_jump_cond pc_plus_jmp_length addr) = true

| absolute_jump ⇒ ¬is_relative_jump instr ∧
\fst (absolute_jump_cond pc_plus_jmp_length addr) = true ∧
\fst (short_jump_cond pc_plus_jmp_length addr) = false

| long_jump ⇒ \fst (short_jump_cond pc_plus_jmp_length addr) = false

∧ \fst (absolute_jump_cond pc_plus_jmp_length addr) = false

].



This is a more direct safety property: it states that branch instructions are
encoded properly, and that no wrong branch instructions are chosen.

Note that we compute the distance using the memory address of the instruc-
tion plus its size: this follows the behaviour of the MCS-51 microprocessor, which
increases the program counter directly after fetching, and only then executes the
branch instruction (by changing the program counter again).

\fst (bvt_lookup . . . (bitvector_of_nat ? 0) (\snd policy)

〈0,short_jump〉) = 0)

\fst policy = \fst (bvt_lookup . . .
(bitvector_of_nat ? (|prefix|)) (\snd policy) 〈0,short_jump〉)

These two properties give the values of σ for the start and end of the program;
σ(0) = 0 and σ(n), where n is the number of instructions up until now, is equal
to the maximum memory address so far.

(added = 0 → policy_pc_equal prefix old_sigma policy))

(policy_jump_equal prefix old_sigma policy → added = 0))

And finally, two properties that deal with what happens when the previous
iteration does not change with respect to the current one. added is a variable
that keeps track of the number of bytes we have added to the program size by
changing the encoding of branch instructions. If added is 0, the program has not
changed and vice versa.

We need to use two different formulations, because the fact that added is 0
does not guarantee that no branch instructions have changed. For instance, it is
possible that we have replaced a short jump with an absolute jump, which does
not change the size of the branch instruction.

Therefore policy pc equal states that old sigma1(x) = sigma1(x), whereas
policy jump equal states that old sigma2(x) = sigma2(x). This formulation is
sufficient to prove termination and compactness.

Proving these invariants is simple, usually by induction on the prefix length.

4.2 Iteration invariants

These are invariants that hold after the completion of an iteration. The main
difference between these invariants and the fold invariants is that after the com-
pletion of the fold, we check whether the program size does not supersede 64
Kb, the maximum memory size the MCS-51 can address.

The type of an iteration therefore becomes an option type: None in case the
program becomes larger than 64 Kb, or Some σ otherwise. We also no longer
use a natural number to pass along the number of bytes added to the program
size, but a boolean that indicates whether we have changed something during
the iteration or not.

If an iteration returns None, we have the following invariant:



definition nec_plus_ultra :=

λprogram:list labelled_instruction.λp:ppc_pc_map.
¬ (∀i.i < |program| →
is_jump (\snd (nth i ? program 〈None ?, Comment []〉)) →
\snd (bvt_lookup . . . (bitvector_of_nat 16 i) (\snd p) 〈0,short_jump〉) =

long_jump).

This invariant is applied to old sigma; if our program becomes too large for
memory, the previous iteration cannot have every branch instruction encoded as
a long jump. This is needed later in the proof of termination.

If the iteration returns Some σ, the invariants out of program none,
not jump default, jump increase, and the two invariants that deal with σ(0)
and σ(n) are retained without change.

Instead of using sigma compact unsafe, we can now use the proper invariant:

definition sigma_compact :=

λprogram:list labelled_instruction.λlabels:label_map.λsigma:ppc_pc_map.
∀n.n < |program| →
match bvt_lookup_opt . . . (bitvector_of_nat ? n) (\snd sigma) with

[ None ⇒ False

| Some x ⇒ let 〈pc,j〉 := x in

match bvt_lookup_opt . . . (bitvector_of_nat ? (S n)) (\snd sigma) with

[ None ⇒ False

| Some x1 ⇒ let 〈pc1,j1〉 := x1 in

pc1 = pc + instruction_size

(λid.bitvector_of_nat ? (lookup_def ?? labels id 0))

(λppc.bitvector_of_nat ?

(\fst (bvt_lookup . . . ppc (\snd sigma) 〈0,short_jump〉)))
(λppc.jmpeqb long_jump (\snd (bvt_lookup . . . ppc
(\snd sigma) 〈0,short_jump〉))) (bitvector_of_nat ? n)

(\snd (nth n ? program 〈None ?, Comment []〉))
]

].

This is almost the same invariant as sigma compact unsafe, but differs in
that it computes the sizes of branch instructions by looking at the distance
between position and destination using σ.

In actual use, the invariant is qualified: σ is compact if there have been no
changes (i.e. the boolean passed along is true). This is to reflect the fact that
we are doing a least fixed point computation: the result is only correct when we
have reached the fixed point.

There is another, trivial, invariant if the iteration returns Some σ:

\fst p < 2^16

The invariants that are taken directly from the fold invariants are trivial to
prove.

The proof of nec plus ultra works as follows: if we return None, then the
program size must be greater than 64 Kb. However, since the previous iteration



did not return None (because otherwise we would terminate immediately), the
program size in the previous iteration must have been smaller than 64 Kb.

Suppose that all the branch instructions in the previous iteration are encoded
as long jumps. This means that all branch instructions in this iteration are long
jumps as well, and therefore that both iterations are equal in the encoding of
their branch instructions. Per the invariant, this means that added = 0, and
therefore that all addresses in both iterations are equal. But if all addresses
are equal, the program sizes must be equal too, which means that the program
size in the current iteration must be smaller than 64 Kb. This contradicts the
earlier hypothesis, hence not all branch instructions in the previous iteration are
encoded as long jumps.

The proof of sigma compact follows from sigma compact unsafe and the
fact that we have reached a fixed point, i.e. the previous iteration and the current
iteration are the same. This means that the results of instruction size jmplen

and instruction size are the same.

4.3 Final properties

These are the invariants that hold after 2n iterations, where n is the pro-
gram size (we use the program size for convenience; we could also use the
number of branch instructions, but this is more complex). Here, we only need
out of program none, sigma compact and the fact that σ(0) = 0.

Termination can now be proved using the fact that there is a k ≤ 2n, with n
the length of the program, such that iteration k is equal to iteration k+1. There
are two possibilities: either there is a k < 2n such that this property holds, or
every iteration up to 2n is different. In the latter case, since the only changes
between the iterations can be from shorter jumps to longer jumps, in iteration 2n
every branch instruction must be encoded as a long jump. In this case, iteration
2n is equal to iteration 2n+ 1 and the fixpoint is reached.

5 Conclusion

In the previous sections we have discussed the branch displacement optimisation
problem, presented an optimised solution, and discussed the proof of termination
and correctness for this algorithm, as formalised in Matita.

The algorithm we have presented is fast and correct, but not optimal; a true
optimal solution would need techniques like constraint solvers. While outside the
scope of the present research, it would be interesting to see if enough heuristics
could be found to make such a solution practical for implementing in an exist-
ing compiler; this would be especially useful for embedded systems, where it is
important to have as small solution as possible.

In itself the algorithm is already useful, as it results in a smaller solution than
the simple ‘every branch instruction is long’ used up until now—and with only
64 Kb of memory, every byte counts. It also results in a smaller solution than



the greatest fixed point algorithm that gcc uses. It does this without sacrificing
speed or correctness.

This algorithm is part of a greater whole, the CerCo project, which aims to
completely formalise and verify a concrete cost preserving compiler for a large
subset of the C programming language. More information on the formalisation of
the assembler, of which the present work is a part, can be found in a companion
publication [7].

5.1 Related work

As far as we are aware, this is the first formal discussion of the branch displace-
ment optimisation algorithm.

The CompCert project is another verified compiler project. Their backend [5]
generates assembly code for (amongst others) subsets of the PowerPC and x86
(32-bit) architectures. At the assembly code stage, there is no distinction between
the span-dependent jump instructions, so a branch displacement optimisation
algorithm is not needed.

An offshoot of the CompCert project is the CompCertTSO project, who add
thread concurrency and synchronisation to the CompCert compiler [12]. This
compiler also generates assembly code and therefore does not include a branch
displacement algorithm.

Finally, there is also the Piton stack [6], which not only includes the formal
verification of a compiler, but also of the machine architecture targeted by that
compiler, a bespoke microprocessor called the FM9001. However, this architec-
ture does not have different jump sizes (branching is simulated by assigning
values to the program counter), so the branch displacement problem is irrelev-
ant.

5.2 Formal development

All Matita files related to this development can be found on the CerCo web-
site, http://cerco.cs.unibo.it. The specific part that contains the branch
displacement algorithm is in the ASM subdirectory, in the files PolicyFront.ma,
PolicyStep.ma and Policy.ma.
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