
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report

D5.1 Untrusted CerCo Prototype

and

D5.3 Case study: analysis of synchronous code

Version 1.0

Main Authors:
Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas, Paolo Tranquilli

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Summary The deliverable D5.1-D5.3 is composed of the following parts:

1. This summary.

2. The paper [1] and the related software Cost.

3. The paper [4] and the related prototype compiler IndLabAcc (and the its Cost branch,
IndLabCost).

4. The paper [2] and the related software LamCost.

5. The paper [3].

This document and the softwares mentioned above can be downloaded at the page:

http://cerco.cs.unibo.it/

References
[1] N. Ayache. Synthesis of certified cost bounds. Université Paris Diderot. Internal report documenting the Cost

software, 2012.

[2] R.M. Amadio, Y. Régis-Gianas. Certifying and reasoning on cost annotations of functional programs.
In Proc. FOPARA, Springer LNCS (to appear), 2012. Also Research Report, Université Paris Diderot,
http://hal.inria.fr/inria-00629473/en/, 2011.

[3] A. Madet, R.M. Amadio. An Elementary Affine λ-Calculus with Multithreading and Side Effects.
In Proc. TLCA, Springer LNCS 6690:138-152, 2011. Also Research Report, Université Paris Diderot,
http://hal.archives-ouvertes.fr/hal-00569095/fr/, 2011.

[4] P. Tranquilli. Indexed labels for loop iteration dependent costs. Università di Bologna. Internal report documenting
the indexed labels software, 2012.

CerCo, FP7-ICT-2009-C-243881 3

Aim The main aim of WP5 is to develop proof of concept prototypes where the (untrusted)
compiler implemented in WP2 is interfaced with existing tools in order to synthesize complex-
ity assertions on the execution time of programs. Eventually, the approach should be adapted
to the trusted compiler developed in WP3 and WP4 (cf. deliverable D5.2 at month 36).

Synthesis of certified cost bounds The main planned contribution of deliverable D5.1 is
a tool that takes as input an annotated C program produced by the CerCo compiler and tries
to synthesize a certified bound on the execution time of the program. The related expected
contribution of deliverable D5.3 amounts to apply the developed tool to the C programs gener-
ated by a Lustre compiler. This work is described in the first document [1] which accompanies
a software distribution called Cost. The development takes the form of a ‘Frama− C plug-in’.
Frama− C is an open source and well-established platform to reason formally on C programs.
The proof obligations generated from Hoare style assertions on C programs are passed to a
small number of provers that try to discharge them automatically. The platform has been
designed to be extensible by means of so called plug-in’s written in ocaml. The Cost software
is a Frama− C plug-in which in first approximation takes the following actions: (1) it receives
as input a C program, (2) it applies the CerCo compiler to produce a related C program with
cost annotations, (3) it applies some heuristics to produce a tentative bound on the cost of
executing a C function as a function of the value of its parameters, (4) it calls the provers
embedded in the Frama− C tool to discharge the related proof obligations. The current size
of the Cost plug-in is 4K lines of ocaml code. More details are available in the first part of
the document [1]. The second part of the document (formally, corresponding to deliverable
D5.3) tries to delimit the practical applicability of the plug-in. To this end, the tool has been
applied to the C code generated by the Lustre compiler and to some other simple C programs.

We pause to recall a redistribution of the workforce of the UPD site. Following the res-
ignation of the doctoral student at the end of year 1, the contract of the post-doc has been
extended till month 33. It follows that in the UPD site there has been a shift of manpower from
the third to the second year. Because of this shift we decided to anticipate the presentation of
deliverable D5.3 at month 24 rather than month 36. Besides this contingent reason, it is clear
that the development of the synthesis tool must go hand in hand with its experimentation
on larger and larger classes of programs. The UPD post-doc is expected to continue work on
D5.1 and D5.3 till the end of its contract.

Indexed labels for loop iteration dependent costs The first year scientific review re-
port, among other things, contrasts the CerCo approach with the one adopted in tools such
as AbsInt which are used by the WCET community and it recommends that the approach to
cost annotations described in WP2 is made coarser, i.e., that a label covers a larger portion
of code. During the second year, most of the work of a post-doc at UNIBO was aimed at
addressing this remark [4]. This has resulted in a refinement of the labelling approach into
a so called indexed labelling. It consists in formally indexing cost labels with the iterations
of the containing loops they occur in within the source code. These indexes can be trans-
formed during the compilation, and when lifted back to source code they produce dependent
costs. Preliminary experiments suggest that this refinement allows to retain preciseness when
the program is subject to loop transformations such as loop peeling and loop unrolling. A
prototype implementation has been developed on top of the untrusted CerCo compiler D2.2.

CerCo, FP7-ICT-2009-C-243881 4

Certifying and reasoning on cost annotations of functional programs During the
second year some unplanned work related to deliverables D5.1 and D5.3 has taken place at
UPD. The main development [2] concerns the extension of the CerCo labelling approach
described in D2.1 to a standard compilation chain from a higher-order functional language
of the ML family to C. This work shows that the approach is sufficiently general to be
applied to higher-order programs whose concrete complexity is generally regarded as difficult
to estimate. Moreover, the introduction of higher-order functions calls for a higher-order logic
to reason on the cost annotations. In this respect, we have built on previous work by one
of the authors on a higher-order Hoare logic. Starting from a (higher-order) specification
of the expected cost of a function our tool LamCost produces automatically a list of proof
obligations. Preliminary experiments suggest that a large part of these proof obligations can
be discharged automatically and that the remaining ones can be proved in a proof assistant
such as Coq. Ongoing work that should be completed within the third year of the project is
extending the compilation chain and the cost analysis to include garbage collection using a
region based memory management à la Tofte-Talpin.

An Elementary Affine λ-Calculus with Multithreading and Side Effects. A second
development at UPD is of a more speculative nature and is concerned with the design of a
type system for a functional language with side effects that guarantees complexity bounds.
As far as we know, this is the first work that accounts for side effects. The obtained result
concerns elementary time and ongoing work that should be completed within the third year
of the project concerns a similar result for polynomial time. We regard this work as a step
towards bridging the CerCo approach with the work on Implicit computational complexity
(ICC) in which our universities are also involved (in 2011, the CerCo project organised in
Paris a joint workshop with an ICC oriented project). As a matter of fact, there is still a large
gap to be filled before the results in ICC can have an impact on the practice of programming.

Synthesis of certified cost bounds

Nicolas Ayache

Abstract

The CerCo project aims at building a certified compiler for the C language that can
lift in a provably correct way information on the execution cost of the object code to cost
annotations on the source code. These annotations are added at specific program points
(e.g. inside loops). In this article, we describe a plug-in of the Frama− C plateform that,
starting from CerCo’s cost annotation of a C function, synthesizes a cost bound for the
function. We report our experimentations on standard C code and C code generated from
Lustre files.

1 Introduction

Estimating the worst case execution time (WCET) of an embedded software is an important
task, especially in a critical system. The micro-controller running the system must be effi-
ciently used: money and reaction time depend on it. However, computing the WCET of a
program is undecidable in the general case, and static analysis tools dedicated to this task
often fail when the program involves complicated loops, living few hopes for the user to obtain
a result.

In this article, we present experiments that validate the new approach introduced by the
CerCo project1 for WCET prediction. With CerCo, the user is provided raw and certified cost
annotations. We design a tool that uses these annotations to generate WCET bounds. When
the tool fails, we show how the user can complete the required information, so as to never be
stuck. The tool is able to compute and certify fully automatically a WCET for a C function
with loops and whose cost is dependent on its parameters. We briefly recall the goal of CerCo,
and we present the plate-form used both to develop our tool and verify its results, before
describing our contributions.

CerCo. The CerCo project aims at building a certified compiler for the C language that
lifts in a provably correct way information on the execution cost of the object code to cost
annotations on the source code. An untrusted compiler has been developed [2] that targets
the 8051, a popular micro-controller typically used in embedded systems. The compiler relies
on the labelling approach to compute the cost annotations: at the C level, specific program
points — called cost labels — are identified in the control flow of the program. Each cost label
is a symbolic value that represents the cost of the instructions following the label and before
the next one. Then, the compilation keeps track of the association between program points
and cost labels. In the end, a concrete cost is computed for each cost label from the object
code, and the information is sent up to the C level for instrumentation. Figure 1a shows a C
code, and figure 1b presents its transformation through CerCo.

1http://cerco.cs.unibo.it/

1

int is sorted (int *tab, int size) {
int i, res = 1;

for (i = 0 ; i < size-1 ; i++) if (tab[i] > tab[i+1]) res = 0;

return res;

}
(a) before CerCo

int cost = 0;

void cost incr (int incr) { cost = cost + incr; }

int is sorted (int *tab, int size) {
int i, res = 1;

cost incr(97);

for (i = 0; i < size-1; i++) {
cost incr(91);

if (tab[i] > tab[i+1]) { cost incr(104); res = 0; }
else cost incr(84);

}

cost incr(4);

return res;

}
(b) after CerCo

Figure 1: An example of CerCo’s action

As one notices, the result of CerCo is an instrumentation of the input C program:

• a global variable called cost is added. Its role is to hold the cost information during
execution;

• a cost incr function is defined; it will be used to update the cost information;

• finally, update instructions are inserted inside the functions of the program: those are
the cost annotations. In the current state of the compiler, they represent the number
of processor’s cycles that will be spent executing the following instructions before the
next annotation. But other kind of information could be computed using the labelling
approach, such as stack size for instance.

Frama− C. In order to deduce an upper bound of the WCET of a C function, we need a
tool that can analyse C programs and relate the value of the cost variable before and after
the function is executed. We chose to use the Frama− C verification tool [4] for the following
reasons:

2

• the platform allows all sorts of analyses in a modular and collaborative way: each analysis
is a plug-in that can reuse the results of existing ones. The authors of Frama− C provide
a development guide for writing new plug-ins. Thus, if existing plug-ins experience
difficulties in synthesizing the WCET of C functions annotated with CerCo, we can
define a new analysis dedicated to this task;

• it supports ACSL, an expressive specification language à la Hoare logic as C comments.
Expressing WCET specification using ACSL is very easy;

• the Jessie plug-in builds verification conditions (VCs) from a C program with ACSL
annotations. The VCs can be sent to various provers, be they automatic or interactive.
When they are discharged, the program is guaranteed to respect its specification.

Figure 2 shows the program of figure 1b with ACSL annotations added manually. The
most important is the post-condition attached to the is sorted function:

ensures cost <= \old(cost) + 101 + (size-1)*195;

It means that executing the function yields the value of the cost variable to be incremented
by at most 101 + (size-1)*195: this is the WCET specification of the function. Running
the Jessie plug-in on this program creates 8 VCs that an automatic prover such as Alt− Ergo2

is able to fully discharged, which proves that the WCET specification is indeed correct.

Contributions. This paper describes a possible back-end for CerCo’s framework. It vali-
dates the approach with a tool that uses CerCo’s results to automatically or semi-automatically
compute and verify the WCET of C functions. It is yet one of the many possibilities of using
CerCo for WCET validation, and shows its benefit: WCET computation is not a black box
as it is usually, and the user can understand and complete manually what the tool failed to
compute.

In the remaining of the article, we present a Frama− C plug-in called Cost that adds
a WCET specification to the functions of a CerCo-annotated C program. Section 2 briefly
details the inner workings of the plug-in and discusses its soundness. Section 3 compares our
approach with other WCET tools. Section 4 presents a case study for the plug-in on the
Lustre synchronous language. Section 5 shows some benchmarks on standard C programs,
on C programs for cryptography (typically used in embedded software) and on C programs
originated from Lustre files. Finally, section 6 concludes.

2 The Cost plug-in

The Cost plug-in for the Frama− C platform has been developed in order to automatically
synthesize the cost annotations added by the CerCo compiler on a C source program into
assertions of the WCET of the functions in the program. The architecture of the plug-in is
depicted in figure 3. It accepts a C source file for parameter and creates a new C file that is the
former with additional cost annotations (C code) and WCET assertions (ACSL annotations).
First, the input file is fed to Frama− C that will in turn send it to the Cost plug-in. The
action of the plug-in is then:

2http://ergo.lri.fr/

3

int cost = 0;

/*@ ensures cost == \old(cost) + incr; */

void cost incr (int incr) { cost = cost + incr; }

/*@ requires size >= 1;

@ ensures cost <= \old(cost) + 101 + (size-1)*195; */

int is sorted (int *tab, int size) {
int i, res = 1;

cost incr(97);

/*@ loop invariant i < size;

@ loop invariant cost <= \at(cost, Pre) + 97 + i*195;

@ loop variant size-i; */

for (i = 0; i < size-1; i++) {
cost incr(91);

if (tab[i] > tab[i+1]) { cost incr(104); res = 0; }
else cost incr(84);

}

cost incr(4);

return res;

}

Figure 2: Annotations with ACSL

1. apply the CerCo compiler to the source file;

2. synthesize an upper bound of the WCET of each function of the source program by
reading the cost annotations added by CerCo;

3. add the results in the form of post-conditions in ACSL format, relating the cost of the
function before and after its execution.

C source

Frama− C/Cost

CerCo

Synthesis

add ACSL annotations

C source
+

cost synthesis
annotations

Frama− C/Jessie

Synthesis is correct
√

Figure 3: the Cost plug-in

Then, the user can either trust the results (the WCET of the functions), or want to verify
them, in which case he can call Jessie.

4

We continue our description of the plug-in by discussing the soundness of the framework,
because, as we will see, the action of the plug-in is not involved in this issue. Then, the details
of the plug-in will be presented.

2.1 Soundness

As figure 3 suggests, the soundness of the whole framework depends on the cost annotations
added by CerCo, the synthesis made by the Cost plug-in, the VCs generated by Jessie, and the
VCs discharged by external provers. Since the Cost plug-in adds annotations in ACSL format,
Jessie (or other verification plug-ins for Frama− C) can be used to verify these annotations.
Thus, even if the added annotations are incorrect, the process in its globality is still correct:
indeed, Jessie will not validate incorrect annotations and no conclusion can be made about the
WCET of the program in this case. This means that the Cost plug-in can add any annotation
for the WCET of a function, the whole framework will still be correct and thus its soundness
does not depend on the action of the Cost plug-in. However, in order to be able to actually
prove a WCET of a function, we need to add correct annotations in a way that Jessie and
subsequent automatic provers have enough information to deduce validity.

2.2 Inner workings

The cost annotations added by the CerCo compiler take the form of C instructions that update
by a constant a fresh global variable called the cost variable. Synthesizing a WCET of a C
function thus consists in statically resolving an upper bound of the difference between the value
of the cost variable before and after the execution of the function, i.e. find in the function the
instructions that update the cost variable and establish the number of times they are passed
through during the flow of execution. This raises two main issues: indecidability caused by
loop constructs, and function calls. Indeed, a side effect of function calls is to change the
value of the cost variable. When a function calls another one, the cost of the callee is part of
the cost of the caller. This means that the computation of a WCET of each function of a C
program is subject to the calling dependencies. To cope with the issues of loops and function
calls, the Cost plug-in proceeds as follows:

• each function is independently processed and associated a WCET that may depend on
the cost of the other functions. This is done with a mix between abstract interpretation
[5] and syntactic recognition of specific loops for which we can decide the number of
iterations. The abstract domain used is made of expressions whose variables can only
be formal parameters of the function;

• a system of inequations is built from the result of the previous step, and is tried to be
solved with a fixpoint. At each iteration, the fixpoint replaces in all the inequations the
references to the cost of a function by its associated cost if it is independent of the other
functions;

• ACSL annotations are added to the program according to the result of the above fixpoint.
Note that the two previous steps may fail in finding a concrete WCET for some functions,
because of imprecision inherent to abstract interpretation, and recursion in the source
program not solved by the fixpoint. At each program point that requires an annotation
(function definitions and loops), annotations are added if a solution was found for the
program point.

5

Figure 4 shows the result of the Cost plug-in when fed the program in figure 1a. There are
several differences from the manually annotated program, the most noticeable being:

• the manually annotated program had a pre-condition that the size formal parameter
needed to be greater or equal to 1. The Cost plug-in does not make such an assumption,
but instead considers both the case where size is greater or equal to 1, and the case
where it is not. This results in a ternary expression inside the WCET specification (the
post-condition or ensures clause), and some new loop invariants;

• the loop invariant specifying the value of the cost variable depending on the iteration
number refers to a new local variable named cost tmp0. It represents the value of the
cost variable right before the loop is executed. It allows to express the cost inside the
loop with regards to the cost before the loop, instead of the cost at the beginning of the
function; it often makes the expression a lot shorter and eases the work for nested loops.

Running Jessie on the program generates VCs that are all proved by Alt− Ergo: the WCET
computed by the Cost plug-in is correct.

int cost = 0;

/*@ ensures cost ≡ \old(cost) + incr; */

void cost incr (int incr) { cost = cost + incr; }

/*@ ensures (cost ≤ \old(cost)+(101+(0<size-1?(size-1)*195:0))); */

int is sorted (int *tab, int size) {
int i, res = 1, cost tmp0;

cost incr(97);

cost tmp0 = cost;

/*@ loop invariant (0 < size-1) ⇒ (i ≤ size-1);

@ loop invariant (0 ≥ size-1) ⇒ (i ≡ 0);

@ loop invariant (cost ≤ cost tmp0+i*195);

@ loop variant (size-1)-i; */

for (i = 0; i < size-1; i++) {
cost incr(91);

if (tab[i] > tab[i+1]) { cost incr(104); res = 0; }
else cost incr(84);

}

cost incr(4);

return res;

}

Figure 4: Result of the Cost plug-in

3 Related work

There exist a lot of tools for WCET analysis. Yet, the framework encompassing the Cost
plug-in is the only one, to our knowledge, that enjoys the following features:

6

• The results of the plug-in have a very high level of trust. First, because the cost an-
notations added by CerCo are proven correct (this is on-going research in the Matita3

system). Second, because verification with Jessie is deductive and VCs can be discharged
with various provers. The more provers discharge a VC, the more trustful is the result.
When automatic provers fail in discharging a VC, the user can still try to verify them
manually, with an interactive theorem prover such as Coq4 that Jessie outputs to.

• While other WCET tools act as black boxes, the Cost plug-in provides the user with
as many information as it can. When a WCET tool fails, the user generally have few
hopes, if any, of understanding and resolving the issue in order to obtain a result. When
the Cost plug-in fails to add an annotation, the user can still try to complete it. And
since the results of CerCo is C code, it is much easier to understand the behavior of the
annotations.

• The results of the Cost plug-in being added to the source C file, it allows to easily identify
the cost of parts of the code and the cost of the functions of the program. The user can
modify parts that are too costly and observe their precise influence on the overall cost.

• The framework is modular: the Cost plug-in is yet one possible synthesis, and Jessie is
one possible back-end for verification. We can use other synthesis strategies, and choose
for each result the one that seems the most precise. The same goes for Jessie: we can
use the WP plug-in of Frama− C instead, and even merge the results of both. Similarly,
if we were to support more complex architectures, computing the cost of object code
instructions could be dedicated to an external tool that is able to provide precise results
even in the presence of cache, pipelines, etc [6].

4 Lustre case study

Lustre is a synchronous language where reactive systems are described by flow of values. It
comes with a compiler that transforms a Lustre node (any part of or the whole system) into
a C step function that represents one synchronous cycle of the node. A WCET for the step
function is thus a worst case reaction time for the component. The generated C step function
neither contains loops nor is recursive, which makes it particularly well suited for a use with
the Cost plug-in with a complete support.

We designed a wrapper that has for inputs a Lustre file and a node inside the file, and
outputs the cost of the C step function corresponding to the node. Optionally, verification
with Jessie or testing can be toggled. The flow of the wrapper is described in figure 5. It
simply executes a command line, reads the results, and sends them to the next command.

Lustre �le
C �le with

step function

C �le with
step function

+
CerCo annotations

+
ACSL WCET speci�cation

Frama− C/Jessie

Output

Test

lus2c Cost plug-in

Figure 5: Flow of the Lustre wrapper

3http://matita.cs.unibo.it/
4http://coq.inria.fr/

7

A typical run of the wrapper looks as follows (we use the parity example from our distri-
bution of Lustre; it computes the parity bit of a boolean array):

frama-c lustre -verify -test parity.lus parity

Invoking the above command line produces the following output:

WCET of parity step: 2220+ cost of parity O parity+ cost of parity O done

(not verified).

Verifying the result (this may take some time)...

WCET is proven correct.

Testing the result (this may take some time)...

Estimated WCET: 2220

Minimum: 2144

Maximum: 2220

Average: 2151

Estimated WCET is correct for these executions.

• All the intermediary results of the wrapper are stored in files. Verbosity can be turned
on to show the different commands invoked and the resulting files.

• The step function generated with the Lustre compiler for the node parity is called
parity step. It might call functions that are not defined but only prototyped, such
as parity O parity or parity O done. Those are functions that the user of the Lustre
compiler can use for debugging, but that are not part of the parity system. Therefore,
we leave their cost abstract in the expression of the cost of the step function, and we set
their cost to 0 when testing (this can be changed by the user).

• Testing consists in adding a main function to the C file, that will run the step function
on a parameterized number of input states for a parameterized number of cycles. The
C file contains information that allows to syntatically distinguish integer variables used
as booleans, which helps in generating interesting input states. After each iteration of
the step function, the value of the cost variable is fetched in order to compute its overall
minimum, maximum and average value for one step. If the maximum were to be greater
than the WCET computed by the Cost plug-in, then we could conclude of an error in
the plug-in.

5 Experiments

The Cost plug-in and the Lustre wrapper have been developed in order to validate CerCo’s
framework for modular WCET analysis, by showing the results that could be obtained with
this approach. Through CerCo, they allow (semi-)automatic generation and certification of
WCET for C and Lustre programs. For the latter, the WCET represents a bound for the
reaction time of a component. This section presents results obtained on C programs typically
found in embedded software, where WCET is of great importance.

The Cost plug-in is written in 3895 lines of ocaml. They mainly cover an abstract interpre-
tation of C together with a syntactic recognition of specific loops, in a modular fashion: the
abstract domains (one for C values and another for cost values) can be changed. The Lustre

8

wrapper is made of 732 lines of ocaml consisting in executing a command, reading the results
and sending them to the next command.

We ran the plug-in and the Lustre wrapper on some files found on the web, from the Lustre
distribution or written by hand. For each file, we report its type (either a standard algorithm
written in C, a cryptographic protocol for embedded software, or a C program generated from
Lustre file), a quick description of the program, the number of lines of the original code and
the number of VCs generated. A WCET is found by the Cost plug-in for everyone of these
programs, and Alt− Ergo was able to discharge all VCs.

File Type Description LOC VCs

3-way.c C Three way block cipher 144 34

a5.c C A5 stream cipher, used in GSM cellular 226 18

array sum.c S Sums the elements of an integer array 15 9

fact.c S Factorial function, imperative implementation 12 9

is sorted.c S Sorting verification of an array 8 8

LFSR.c C 32-bit linear-feedback shift register 47 3

minus.c L Two modes button 193 8

mmb.c C Modular multiplication-based block cipher 124 6

parity.lus L Parity bit of a boolean array 359 12

random.c C Random number generator 146 3

S: standard algorithm C: cryptographic protocol
L: C generated from a Lustre file

Programs fully automatically supported. Since the goal of the Cost plug-in is a proof of
concept of a full framework with CerCo, we did not put too much effort or time for covering a
wide range of programs. CerCo always succeeds, but the Cost plug-in may fail in synthesizing
a WCET, and automatic provers may fail in discharging some VCs. We can improve the
abstract domains, the form of recognized loops, or the hints that help automatic provers.
For now, a typical program that is processed by the Cost plug-in and whose VCs are fully
discharged by automatic provers is made of loops with a counter incremented or decremented
at the end of the loop, and where the guard condition is a comparison of the counter with
some expression. The expressions incrementing or decrementing the counter and used in the
guard condition must be so that the abstract interpretation succeeded in relating them to an
arithmetic expressions whose variables are parameters of the function. With a flat domain
currently used, this means that the values of these expressions may not be modified during a
loop.

6 Conclusion

We have described a plug-in for Frama− C that relies on the CerCo compiler to automatically
or semi-automatically synthesize a WCET for C programs. The soundness of the overall
process is guaranteed through the Jessie plug-in. Finally, we successfully used the plug-in on
C programs generated from Lustre files; the result is an automatically computed and certified
reaction time for the Lustre nodes. This experience validates the modular approach of CerCo
for WCET computation with a high level of trust.

9

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and
implementation of a cost and termination analyzer for java bytecode. In Formal Methods
for Components and Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24-26, 2007, Revised Lectures, volume 5382 of Lecture Notes in
Computer Science, pages 113–132. Springer, 2008.

[2] R. M. Amadio, N. Ayache, and Y. Régis-Gianas. Deliverable 2.2: Prototype implemen-
tation. Technical report, ICT Programme, Feb. 2011. Project FP7-ICT-2009-C-243881
CerCo - Certified Complexity.

[3] R. M. Amadio, N. Ayache, Y. Régis-Gianas, K. Memarian, and R. Saillard. Deliverable
2.1: Compiler design and intermediate languages. Technical report, ICT Programme, July
2010. Project FP7-ICT-2009-C-243881 CerCo - Certified Complexity.

[4] L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti, J. Signoles, and
B. Yakobowski. Frama-C user manual. CEA-LIST, Software Safety Laboratory, Saclay,
F-91191. http://frama-c.com/.

[5] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4):511–547, 1992.

[6] R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static program
analysis. In In 18th International Parallel and Distributed Processing Symposium (IPDPS
2004, pages 26–30. IEEE Computer Society.

10

Indexed Labels for Loop Iteration Dependent Costs

Paolo Tranquilli

Abstract

We present an extension to the labelling approach to lift resource consumption infor-
mation from compiled to source code [3]. Such an approach consists in inserting cost labels
at key points of the source code and keeping track of them during compilation. However,
the plain labelling approach looses preciseness when differences arise as to the cost of the
same portion of code, whether due to code transformation such as loop optimisation or
advanced architecture features (e.g. cache). Our approach addresses this weakness, allow-
ing to retain preciseness even when applying some loop transformations that rearrange the
iterations of a loop (namely loop peeling and unrolling). It consists in formally indexing
cost labels with the iterations of the containing loops they occur in within the source code.
These indexes can be transformed during the compilation, and when lifted back to source
code they produce dependent costs.

The proposed changes have been implemented in CerCo’s untrusted prototype compiler
from a large fragment of C to 8051 assembly [4].

1 Introduction

In [3], Armadio et al propose an approach for building a compiler for a large fragment of the
c programming language. The novelty of their proposal lies in the fact that their proposed
design is capable of lifting execution cost information from the compiled code and presenting
it to the user. This idea is foundational for the CerCo project, which strives to produce a
mechanically certified version of such a compiler.

To summarise, Armadio’s proposal consisted of ‘decorations’ on the source code, along
with the insertion of labels at key points. These labels are preserved as compilation progresses,
from one intermediate language to another. Once the final object code is produced, such labels
should correspond to the parts of the compiled code that have a constant cost.

Two properties must hold of any cost estimate. The first property, paramount to the
correctness of the method, is soundness, that is, that the actual execution cost is bounded by
the estimate. In the labelling approach, this is guaranteed if every loop in the control flow of
the compiled code passes through at least one cost label. The second property, optional but
desirable, is preciseness: the estimate is the actual cost. In the labelling approach, this will
be true if, for every label, every possible execution of the compiled code starting from such
a label yields the same cost before hitting another one. In simple architectures such as the
8051 micro-controller this can be guaranteed by placing labels at the start of any branch in
the control flow, and by ensuring that no labels are duplicated.

The reader should note that the above mentioned requirements must hold when executing
the code obtained at the end of the compilation chain. So even if one is careful about injecting
the labels at suitable places in the source code, the requirements might still fail because of
two main obstacles:

1

• The compilation process introduces important changes in the control flow, inserting
loops or branches. For example, the insertion of functions in the source code replacing
instructions that are unavailable in the target architecture. This require loops to be
inserted (for example, for multi-word division and generic shift in the 8051 architecture),
or effort spent in providing unbranching translations of higher level instructions [4].

• Even when the compiled code does—as far as the the syntactic control flow graph is
concerned—respect the conditions for soundness and preciseness, the cost of blocks of
instructions might not be independent of context, so that different passes through a label
might have different costs. This becomes a concern if one wishes to apply the approach
to more complex architectures, for example one with caching or pipelining.

The first point unveils a weakness of the current labelling approach when it comes to some
common code transformations performed along a compilation chain. In particular, most loop
optimisations are disruptive, in the sense outlined in the first bulletpoint above. An example
optimisation of this kind is loop peeling. This optimisation is employed by compilers in order
to trigger other optimisations, for example, dead code elimination or invariant code motion.
Here, a first iteration of the loop is hoisted out of the body of the loop, possibly being assigned
a different cost than later iterations.

The second bulletpoint above highlights another weakness. Different tools allow to predict
up to a certain extent the behaviour of cache. For example, the well known tool aiT [1]—based
on abstract interpretation—allows the user to estimate the worst-case execution time (wcet)
of a piece of source code, taking into account advanced features of the target architecture.
While such a tool is not fit for a compositional approach which is central to CerCo’s project1,
aiT’s ability to produce tight estimates of execution costs would sthill enhance the effectiveness
of the CerCo compiler, e.g. by integrating such techniques in its development. A typical case
where cache analysis yields a difference in the execution cost of a block is in loops: the first
iteration will usually stumble upon more cache misses than subsequent iterations.

If one looks closely, the source of the weakness of the labelling approach as presented in [3] is
common to both points: the inability to state different costs for different occurrences of labels,
where the difference might be originated by labels being duplicated along the compilation, or
the costs being sensitive to the current state of execution. The preliminary work we present
here addresses this weakness by introducing cost labels that are dependent on which iteration
of its containing loops it occurs in. This is achieved by means of indexed labels; all cost labels
are decorated with formal indices coming from the loops containing such labels. These indices
allow us to rebuild, even after multiple loop transformations, which iterations of the original
loops in the source code a particular label occurrence belongs to. During the annotation stage
of the source code, this information is presented to the user by means of dependent costs.

We concentrate on integrating the labelling approach with two loop transformations. For
general information on general compiler optimisations (and loop optimisations in particular)
we refer the reader to the vast literature on the subject (e.g. [8, 7]).

Loop peeling As already mentioned, loop peeling consists in preceding the loop with a copy
of its body, appropriately guarded. This is used, in general, to trigger further optimisations,
such as those that rely on execution information which can be computed at compile time,

1aiT assumes the cache is empty at the start of computation, and treats each procedure call separately,
unrolling a great part of the control flow.

2

but which is erased by further iterations of the loop, or those that use the hoisted code to
be more effective at eliminating redundant code. Integrating this transformation in to the
labelling approach would also allow the integration of the common case of cache analysis
explained above; the analysis of cache hits and misses usually benefits from a form of virtual
loop peeling [5].

Loop unrolling This optimisation consists of the repetition of several copies of the body
of the loop inside the loop itself (inserting appropriate guards, or avoiding them altogether
if enough information about the loop’s guard is available at compile time). This can limit
the number of (conditional or unconditional) jumps executed by the code and trigger further
optimisations dealing with pipelining, if appropriate for the architecture.

Whilst we cover only two loop optimisations in this report, we argue that the work presented
herein poses a good foundation for extending the labelling approach, in order to cover more
and more common optimisations, as well as gaining insight into how to integrate advanced cost
estimation techniques, such as cache analysis, into the CerCo compiler. Moreover loop peeling
itself has the fortuitous property of enhancing and enabling other optimisations. Experimen-
tation with CerCo’s untrusted prototype compiler, which implements constant propagation
and partial redundancy elimination [6, 8], show how loop peeling enhances those other opti-
misations.

Outline We will present our approach on a minimal ‘toy’ imperative language, Imp with
gotos, which we present in Section 2 along with formal definitions of the loop transformations.
This language already presents most of the difficulties encountered when dealing with c, so we
stick to it for the sake of this presentation. In Section 3 we summarize the labelling approach
as presented in [3]. Section 4 presents indexed labels, our proposal for dependent labels which
are able to describe precise costs even in the presence of the various loop transformations we
consider. Finally Section 5 goes into more detail regarding the implementation of indexed
labels in CerCo’s untrusted compiler and speculates on further work on the subject.

2 Imp with goto

We briefly outline the toy language, Imp with gotos. The language was designed in order to
pose problems for the existing labelling approach, and as a testing ground for our new notion
of indexed labels.

The syntax and operational semantics of our toy language are presented in 1. Note, we
may augment the language further, with break and continue, at no further expense. The
precise grammar for expressions is not particularly relevant so we do not give one in full. For
the sake of conciseness we also treat boolean and arithmetic expressions together (with the
usual c convention of an expression being true iff non-zero). We may omit the else clause of
a conditional if it leads to a skip statement.

We will presuppose that all programs are well-labelled, i.e. every label labels at most one
occurrence of a statement in a program, and every goto points to a label actually present in
the program. The find helper function has the task of not only finding the labelled statement
in the program, but also building the correct continuation. The continuation built by find
replaces the current continuation in the case of a jump.

3

Further down the compilation chain We abstract over the rest of the compilation chain.
We posit the existence of a suitable notion of ‘sequential instructions’, wherein each instruction
has a single natural successor to which we can add our own, for every language L further down
the compilation chain.

2.1 Loop transformations

We call a loop L single-entry in P if there is no goto to P outside of L which jumps into
L.2 Many loop optimisations do not preserve the semantics of multi-entry loops in general, or
are otherwise rendered ineffective. Usually compilers implement a single-entry loop detection
which avoids the multi-entry ones from being targeted by optimisations [8, 7]. The loop
transformations we present are local, i.e. they target a single loop and transform it. Which
loops are targeted may be decided by some ad hoc heuristic. However, the precise details of
which loops are targetted and how is not important here.

Loop peeling
while b do S 7→ if b then S; while b do S[`′i/`i]

where `′i is a fresh label for any `i labelling a statement in S. This relabelling is safe for
gotos occurring outside the loop because of the single-entry condition. Note that for break
and continue statements, those should be replaced with gotos in the peeled body S.

Loop unrolling

while b do S 7→ while b do (S; if b then (S[`1i /`i]; · · · if b then S[`ni /`i]) · · ·)

where `ji are again fresh labels for any `i labelling a statement in S. This is a wilfully
näıve version of loop unrolling, which usually targets less general loops. The problem this
transformation poses to CerCo’s labelling approach are independent of the sophistication of
the actual transformation.

Example 1 In Figure 2 we show a program (a wilfully inefficient computation of of the sum
of the first n factorials) and a possible transformation of it, combining loop peeling and loop
unrolling.

3 Labelling: a quick sketch of the previous approach

Plainly labelled Imp is obtained by adding to the code cost labels (with metavariables α, β, . . .),
and cost-labelled statements:

S, T ::= · · · | α : S

Cost labels allow us to track some program points along the compilation chain. For further
details we refer to [3].

2This is a reasonable aproximation: it defines a loop as multi-entry if it has an external but unreachable
goto jumping into it.

4

With labels the small step semantics turns into a labelled transition system along with a
natural notion of trace (i.e. lists of labels) arises. The evaluation of statements is enriched
with traces, so that rules follow a pattern similar to the following:

(α : S,K, s)
α→P (S,K, s)

(skip, S ·K, s) ε→P (S,K, s)
etc.

Here, we identify cost labels α with singleton traces and we use ε for the empty trace. Cost

labels are emitted by cost-labelled statements only3. We then write
λ→∗ for the transitive

closure of the small step semantics which produces by concatenation the trace λ.

Labelling Given an Imp program P its labelling α : L(P) in ` − Imp is defined by putting
cost labels after every branching statement, at the start of both branches, and a cost label
at the beginning of the program. Also, every labelled statement gets a cost label, which is a
conservative approach to ensuring that all loops have labels inside them, as a loop might be
done with gotos. The relevant cases are

L(if e then S else T) = if e then α : L(S) else β : L(T)

L(while e do S) = (while e do α : L(S));β : skip

L(` : S) = (` : α : L(S))

where α, β are fresh cost labels. In all other cases the definition just passes to substatements.

Labels in the rest of the compilation chain All languages further down the chain get a
new sequential statement emit α whose effect is to be consumed in a labelled transition while
keeping the same state. All other instructions guard their operational semantics and do not
emit cost labels.

Preservation of semantics throughout the compilation process is restated, in rough terms,
as:

starting state of P
λ→∗ halting state ⇐⇒ starting state of C(P)

λ→∗ halting state

Here P is a program of a language along the compilation chain, starting and halting states
depend on the language, and C is the compilation function4.

Instrumentations Let C be the whole compilation from `Imp to the labelled version of
some low-level language L. Supposing such compilation has not introduced any new loop or
branching, we have that:

• Every loop contains at least a cost label (soundness condition)

• Every branching has different labels for the two branches (preciseness condition).

3In the general case the evaluation of expressions can emit cost labels too (see 5).
4The case of divergent computations needs to be addressed too. Also, the requirement can be weakened by

demanding some sort weaker form of equivalence of the traces than equality. Both of these issues are beyond
the scope of this presentation.

5

With these two conditions, we have that each and every cost label in C(P) for any P cor-
responds to a block of sequential instructions, to which we can assign a constant cost5 We
therefore may assume the existence of a cost mapping κP from cost labels to natural numbers,
assigning to each cost label α the cost of the block containing the single occurrance of α.

Given any cost mapping κ, we can enrich a labelled program so that a particular fresh
variable (the cost variable c) keeps track of the summation of costs during the execution. We
call this procedure instrumentation of the program, and it is defined recursively by:

I(α : S) = c := c+ κ(α); I(S)

In all other cases the definition passes to substatements.

The problem with loop optimisations Let us take loop peeling, and apply it to the
labelling of a program without any prior adjustment:

(while e do α : S);β : skip 7→ (if b then α : S; while b do α : S[`′i/`i]);β : skip

What happens is that the cost label α is duplicated with two distinct occurrences. If these
two occurrences correspond to different costs in the compiled code, the best the cost mapping
can do is to take the maximum of the two, preserving soundness (i.e. the cost estimate still
bounds the actual one) but losing preciseness (i.e. the actual cost could be strictly less than
its estimate).

4 Indexed labels

This section presents the core of the new approach. In brief points it amounts to the following:

4.1. Enrich cost labels with formal indices corresponding, at the beginning of the process,
to which iteration of the loop they belong to.

4.2. Each time a loop transformation is applied and a cost labels is split in different occur-
rences, each of these will be reindexed so that every time they are emitted their position
in the original loop will be reconstructed.

4.3. Along the compilation chain, alongside the emit instruction we add other instructions
updating the indices, so that iterations of the original loops can be rebuilt at the oper-
ational semantics level.

4.4. The machinery computing the cost mapping will still work, but assigning costs to in-
dexed cost labels, rather than to cost labels as we wish. However, dependent costs can
be calculated, where dependency is on which iteration of the containing loops we are in.

4.1 Indexing the cost labels

Formal indices and ι`Imp Let i0, i1, . . . be a sequence of distinguished fresh identifiers that
will be used as loop indices. A simple expression is an affine arithmetical expression in one
of these indices, that is a ∗ ik + b with a, b, k ∈ N. Simple expressions e1 = a1 ∗ ik + b1,

5This in fact requires the machine architecture to be ‘simple enough’, or for some form of execution analysis
to take place.

6

e2 = a2∗ ik+b2 in the same index can be composed, yielding e1 ◦e2 := (a1a2)∗ ik+(a1b2+b1),
and this operation has an identity element in idk := 1 ∗ ik + 0. Constants can be expressed as
simple expressions, so that we identify a natural c with 0 ∗ ik + c.

An indexing (with metavariables I, J , . . .) is a list of transformations of successive formal
indices dictated by simple expressions, that is a mapping6

i0 7→ a0 ∗ i0 + b0, . . . , ik−1 7→ ak−1 ∗ ik−1 + bk−1

An indexed cost label (metavariables α, β, . . .) is the combination of a cost label α and
an indexing I, written α〈I〉. The cost label underlying an indexed one is called its atom. All
plain labels can be considered as indexed ones by taking an empty indexing.

Imp with indexed labels (ι`Imp) is defined by adding to Imp statements with indexed labels,
and by having loops with formal indices attached to them:

S, T, . . . ::= · · · ik : while e do S | α : S

Note than unindexed loops still exist in the language: they will correspond to multi-entry
loops which are ignored by indexing and optimisations. We will discuss the semantics later.

Indexed labelling Given an Imp program P , in order to index loops and assign indexed
labels, we must first distinguish single-entry loops. We sketch how this can be computed in
the sequel.

A first pass of the program P can easily compute two maps: loopofP from each label ` to
the occurrence (i.e. the path) of a while loop containing `, or the empty path if none exists;
and gotosofP from a label ` to the occurrences of gotos pointing to it. Then the set multientryP
of multi-entry loops of P can be computed by

multientryP := { p | ∃`, q.p = loopofP (`), q ∈ gotosofP (`), q 6≤ p }

Here ≤ is the prefix relation7.
Let Idk be the indexing of length k made from identity simple expressions, i.e. the sequence

i0 7→ id0, . . . , ik−1 7→ idk−1. We define the tiered indexed labelling LιP (S, k) in program P for
occurrence S of a statement in P and a natural k by recursion, setting:

LιP (S, k) :=

(ik : while b do α〈Idk+1〉 : LιP (T, k + 1));β〈Idk〉 : skip
if S = while b do T and S /∈ multientryP ,

(while b do α〈Idk〉 : LιP (T, k));β〈Idk〉 : skip
otherwise, if S = while b do T ,

if b then α〈Idk〉 : LιP (T1, k) else β〈Idk〉 : LιP (T2, k)
if S = if b then T1 else T2,

` : α〈Idk〉 : LιP (T, k) if S = ` : T ,

. . .

6Here we restrict each mapping to be a simple expression on the same index. This might not be the case if
more loop optimisations are accounted for (for example, interchanging two nested loops).

7Possible simplifications to this procedure include keeping track of just the while loops containing labels and
gotos (rather than paths in the syntactic tree of the program), and making two passes while avoiding building
the map to sets gotosof

7

Here, as usual, α and β are fresh cost labels, and other cases just keep making the recursive calls
on the substatements. The indexed labelling of a program P is then defined as α〈〉 : LιP (P, 0),
i.e. a further fresh unindexed cost label is added at the start, and we start from level 0.

In plainer words: each single-entry loop is indexed by ik where k is the number of other
single-entry loops containing this one, and all cost labels under the scope of a single-entry
loop indexed by ik are indexed by all indices i0, . . . , ik, without any transformation.

4.2 Indexed labels and loop transformations

We define the reindexing I ◦ (ik 7→ a ∗ ik + b) as an operator on indexings by setting:

(i0 7→ e0, . . . , ik 7→ ek, . . . , in 7→ en) ◦ (ik 7→ a ∗ ik + b) :=

i0 7→ e0, . . . , ik 7→ ek ◦ (a ∗ ik + b), . . . , in 7→ en,

We further extend to indexed labels (by α〈I〉 ◦ (ik 7→ e) := α〈I ◦ (ik 7→ e)〉) and also to
statements in ι`Imp (by applying the above transformation to all indexed labels).

We can then redefine loop peeling and loop unrolling, taking into account indexed labels.
It will only be possible to apply the transformation to indexed loops, that is loops that are
single-entry. The attentive reader will notice that no assumptions are made on the labelling
of the statements that are involved. In particular the transformation can be repeated and
composed at will. Also, note that after erasing all labelling information (i.e. indexed cost
labels and loop indices) we recover exactly the same transformations presented in 2.

Indexed loop peeling

ik : while b do S 7→ if b then S ◦ (ik 7→ 0); ik : while b do S[`′i/`i] ◦ (ik 7→ ik + 1)

As can be expected, the peeled iteration of the loop gets reindexed, always being the first
iteration of the loop, while the iterations of the remaining loop are shifted by 1. Notice
that this transformation can lower the actual depth of some loops, however their index is left
untouched.

Indexed loop unrolling

ik : while b do S7→

ik : while b do
(S ◦ (ik 7→ n ∗ ik);
if b then

(S[`1i /`i] ◦ (ik 7→ n ∗ ik + 1);
...
if b then
S[`ni /`i] ◦ (ik 7→ n ∗ ik + n− 1)) · · ·)

Again, the reindexing is as expected: each copy of the unrolled body has its indices remapped
so that when they are executed, the original iteration of the loop to which they correspond
can be recovered.

8

4.3 Semantics and compilation of indexed labels

In order to make sense of loop indices, one must keep track of their values in the state. A
constant indexing (metavariables C, . . .) is an indexing which employs only constant simple
expressions. The evaluation of an indexing I in a constant indexing C, noted I|C , is defined
by:

I ◦ (i0 7→ c0, . . . , ik−1 7→ ck−1) := α ◦ (i0 7→ c0) ◦ · · · ◦ (ik−1 7→ ck−1)

Here, we are using the definition of − ◦ − given in 4.1. We consider the above defined only if
the the resulting indexing is a constant one too8. The definition is extended to indexed labels
by α〈I〉|C := α〈I|C〉.

Constant indexings will be used to keep track of the exact iterations of the original code
that the emitted labels belong to. We thus define two basic actions to update constant
indexings: C[ik↑] increments the value of ik by one, and C[ik↓0] resets it to 0.

We are ready to update the definition of the operational semantics of indexed labelled Imp.
The emitted cost labels will now be ones indexed by constant indexings. We add a special
indexed loop construct for continuations that keeps track of active indexed loop indices:

K, . . . ::= · · · |ik : while b do S then K

The difference between the regular stack concatenation ik : while b do S · K and the new
constructor is that the latter indicates the loop is the active one in which we already are, while
the former is a loop that still needs to be started9. The find function is updated accordingly
with the case

find(`, ik : while b do S,K) := find(`, S, ik : while b do S then K)

The state will now be a 4-tuple (S,K, s, C) which adds a constant indexing to the triple of the
regular semantics. The small-step rules for all statements remain the same, without touching
the C parameter (in particular unindexed loops behave the same as usual), apart from the
ones regarding cost-labels and indexed loops. The remaining cases are:

(α : S,K, s, C)
α|C→ P (S,K, s, C)

(ik : while b do S,K,C)
ε→P

(S, ik : while b do S then K, s,C[ik↓0])

if (b, s) ⇓ v 6= 0,

(skip, K, s, C) otherwise

(skip, ik : while b do S then K,C)
ε→P

(S, ik : while b do S then K, s,C[ik↑])
if (b, s) ⇓ v 6= 0,

(skip, K, s, C) otherwise

Some explanations are in order:

• Emitting a label always instantiates it with the current indexing.

• Hitting an indexed loop the first time initializes the corresponding index to 0; continuing
the same loop increments the index as expected.

8For example (i0 7→ 2 ∗ i0, i1 7→ i1 + 1)|i0 7→2 is undefined, but (i0 7→ 2 ∗ i0, i1 7→ 0)|i0 7→2 = i0 7→ 4, i1 7→ 2, is
indeed a constant indexing, even if the domain of the original indexing is not covered by the constant one.

9In the presence of continue and break statements active loops need to be kept track of in any case.

9

• The find function ignores the current indexing: this is correct under the assumption that
all indexed loops are single entry, so that when we land inside an indexed loop with a
goto, we are sure that its current index is right.

• The starting state with store s for a program P is (P, halt, s, (i0 7→ 0, . . . , in−1 7→ 0)
where i0, . . . , in−1 cover all loop indices of P 10.

Compilation Further down the compilation chain the loop structure is usually partially
or completely lost. We cannot rely on it anymore to keep track of the original source code
iterations. We therefore add, alongside the emit instruction, two other sequential instructions
indreset k and indinc k whose sole effect is to reset to 0 (resp. increment by 1) the loop index
ik, as kept track of in a constant indexing accompanying the state.

The first step of compilation from ι`Imp consists of prefixing the translation of an indexed
loop ik : while b do S with indreset k and postfixing the translation of its body S with indinc k.
Later in the compilation chain we must propagate the instructions dealing with cost labels.

We would like to stress the fact that this machinery is only needed to give a suitable
semantics of observables on which preservation proofs can be done. By no means are the
added instructions and the constant indexing in the state meant to change the actual (let us
say denotational) semantics of the programs. In this regard the two new instruction have a
similar role as the emit one. A forgetful mapping of everything (syntax, states, operational
semantics rules) can be defined erasing all occurrences of cost labels and loop indices, and the
result will always be a regular version of the language considered.

Stating the preservation of semantics In fact, the statement of preservation of semantics
does not change at all, if not for considering traces of evaluated indexed cost labels rather
than traces of plain ones.

4.4 Dependent costs in the source code

The task of producing dependent costs from constant costs induced by indexed labels is quite
technical. Before presenting it here, we would like to point out that the annotations produced
by the procedure described in this Subsection, even if correct, can be enormous and unreadable.
In Section 5, where we detail the actual implementation, we will also sketch how we mitigated
this problem.

Having the result of compiling the indexed labelling Lι(P) of an Imp program P , we may
still suppose that a cost mapping can be computed, but from indexed labels to naturals. We
want to annotate the source code, so we need a way to express and compute the costs of cost
labels, i.e. group the costs of indexed labels to ones of their atoms. In order to do so we
introduce dependent costs. Let us suppose that for the sole purpose of annotation, we have
available in the language ternary expressions of the form

e ? f1 : f2,

and that we have access to common operators on integers such as equality, order and modulus.

10For a program which is the indexed labelling of an Imp one this corresponds to the maximum nesting of
single-entry loops. We can also avoid computing this value in advance if we define C[i↓0] to extend C’s domain
as needed, so that the starting constant indexing can be the empty one.

10

Simple conditions First, we need to shift from transformations of loop indices to conditions
on them. We identify a set of conditions on natural numbers which are able to express the
image of any composition of simple expressions. Simple conditions are of three possible forms:

• Equality ik = n for some natural n.

• Inequality ik ≥ n for some natural n.

• Modular equality together with inequality ik mod a = b ∧ ik ≥ n for naturals a, b, n.

The ‘always true’ simple condition is given by ik ≥ 0. We write ik mod a = b as a simple
condition for ik mod a = b ∧ ik ≥ 0.

Given a simple condition p and a constant indexing C we can easily define when p holds
for C (written p ◦C). A dependent cost expression is an expression built solely out of integer
constants and ternary expressions with simple conditions at their head. Given a dependent
cost expression e where all of the loop indices appearing in it are in the domain of a constant
indexing C, we can define the value e ◦ C ∈ N by:

n ◦ C := n, (p ? e : f) ◦ C :=

{
e ◦ C if p ◦ C,

f ◦ C otherwise.

From indexed costs to dependent ones Every simple expression e corresponds to a
simple condition p(e) which expresses the set of values that e can take. Following is the
definition of such a relation. We recall that in this development, loop indices are always
mapped to simple expressions over the same index. If it was not the case, the condition
obtained from an expression should be on the mapped index, not the indeterminate of the
simple expression. We leave all generalisations of what we present here for further work:

p(a ∗ ik + b) :=

ik = b if a = 0,

ik ≥ b if a = 1,

ik mod a = b′ ∧ ik ≥ b otherwise, where b′ = b mod a.

Now, suppose we are given a mapping κ from indexed labels to natural numbers. We will
transform it in a mapping (identified, via abuse of notation, with the same symbol κ) from
atoms to Imp expressions built with ternary expressions which depend solely on loop indices.
To that end we define an auxiliary function καL, parameterized by atoms and words of simple
expressions, and defined on sets of n-uples of simple expressions (with n constant across each
such set, i.e. each set is made of words all with the same length).

We will employ a bijection between words of simple expressions and indexings, given by:11

i0 7→ e0, . . . , ik−1 7→ ek−1 ∼= e0 · · · ek−1.

As usual, ε denotes the empty word/indexing, and juxtaposition is used to denote word
concatenation.

For every set s of n-uples of simple expressions, we are in one of the following three exclusive
cases:

11Lists of simple expressions are in fact how indexings are -represented in CerCo’s current implementation
of the compiler.

11

• S = ∅.

• S = {ε}.

• There is a simple expression e such that S can be decomposed in eS′ + S′′, with S′ 6= ∅
and none of the words in S′′ starting with e.

Here eS′ denotes prepending e to all elements of S′ and + is disjoint union. This classification
can serve as the basis of a definition by recursion on n+]S where n is the size of tuples in S
and]S is its cardinality. Indeed in the third case in S′ the size of tuples decreases strictly (and
cardinality does not increase) while for S′′ the size of tuples remains the same but cardinality
strictly decreases. The expression e of the third case will be chosen as minimal for some total
order12.

Following is the definition of the auxiliary function καL, which follows the recursion scheme
presented above:

καL(∅) := 0

καL({ε}) := κ(α〈L〉)
καL(eS′ + S′′) := p(e) ? καLe(S

′) : καL(S′′)

Finally, the wanted dependent cost mapping is defined by

κ(α) := καε ({L | α〈L〉 appears in the compiled code })

Indexed instrumentation The indexed instrumentation generalises the instrumentation
presented in 3. We described above how cost atoms can be mapped to dependent costs. The
instrumentation must also insert code dealing with the loop indices. As instrumentation is
done on the code produced by the labelling phase, all cost labels are indexed by identity
indexings. The relevant cases of the recursive definition (supposing c is the cost variable) are
then:

Iι(α〈Idk〉 : S) = c := c+ κ(α); Iι(S)

Iι(ik : while b do S) = ik := 0; while b do (Iι(S); ik := ik + 1)

4.5 A detailed example

Take the program in Figure 2. Its initial labelling will be:

α〈〉 : s := 0;
i := 0;
i0 : while i < n do

β〈i0〉 : p := 1;
j := 1;
i1 : while j ≤ i do

γ〈i0, i1〉 : p := j ∗ p
j := j + 1;

δ〈i0〉 : s := s+ p;
i := i+ 1;

ε〈〉 : skip

12The specific order used does not change the correctness of the procedure, but different orders can give more
or less readable results. A “good” order is the lexicographic one, with a ∗ ik + b ≤ a′ ∗ ik + b′ if a < a′ or a = a′

and b ≤ b′.

12

(a single skip after the δ label has been suppressed, and we are using the identification between
indexings and tuples of simple expressions explained in subsection 4.4). Supposing for example,
n = 3 the trace of the program will be

α〈〉β〈0〉 δ〈0〉β〈1〉 γ〈1, 0〉 δ〈1〉β〈2〉 γ〈2, 0〉 γ〈2, 1〉 δ〈2〉 ε〈〉

Now let as apply the transformations of Figure 2 with the additional information detailed in
subsection 4.2. The result is shown in Figure 3. One can check that the transformed code
leaves the same trace when executed.

Now let us compute the dependent cost of γ, supposing no other loop transformations are
done. Ordering its indexings we have the following list:

0, i1

2 ∗ i0 + 1, 0

2 ∗ i0 + 1, 1

2 ∗ i0 + 1, 2 ∗ i1 + 2

2 ∗ i0 + 1, 2 ∗ i1 + 3

2 ∗ i0 + 2, 2 ∗ i1
2 ∗ i0 + 2, 2 ∗ i1 + 1

(1)

The resulting dependent cost will then be

κι(γ) = (i0 = 0) ?
(i1 ≥ 0) ? a : 0 :
(i0 mod 2 = 1 ∧ i0 ≥ 1) ?

(i1 = 0) ?
b :
(i1 = 1) ?

c :
(i1 mod 2 = 0 ∧ i1 ≥ 2) ?

d :
(i1 mod 2 = 1 ∧ i1 ≥ 3) ? e : 0

:

(i0 mod 2 = 0 ∧ i0 ≥ 2) ?
(i1 mod 2 = 0 ∧ i1 ≥ 0) ?

f :
(i1 mod 2 = 1 ∧ i1 ≥ 1) ? g : 0

:

0

(2)

We will see later on page 15 how such an expression can be simplified.

5 Notes on the implementation and further work

Implementing the indexed label approach in CerCo’s untrusted Ocaml prototype does not
introduce many new challenges beyond what has already been presented for the toy language,
Imp with gotos. Clight, the C fragment source language of CerCo’s compilation chain [3], has
several more fetaures, but few demand changes in the indexed labelled approach.

13

Indexed loops vs. index update instructions In our presentation we have indexed loops
in ι`Imp, while we hinted that later languages in the compilation chain would have specific
index update instructions. In CerCo’s actual compilation chain from Clight to 8051 assembly,
indexed loops are only in Clight, while from Cminor onward all languages have the same three
cost-involving instructions: label emitting, index resetting and index incrementing.

Loop transformations in the front end We decided to implement the two loop transfor-
mations in the front end, namely in Clight. This decision is due to user readability concerns:
if costs are to be presented to the programmer, they should depend on structures written by
the programmer himself. If loop transformation were performed later it would be harder to
create a correspondence between loops in the control flow graph and actual loops written in
the source code. However, another solution would be to index loops in the source code and
then use these indices later in the compilation chain to pinpoint explicit loops of the source
code: loop indices can be used to preserve such information, just like cost labels.

Break and continue statements Clight’s loop flow control statements for breaking and
continuing a loop are equivalent to appropriate goto statements. The only difference is that we
are assured that they cannot cause loops to be multi-entry, and that when a transformation
such as loop peeling is complete, they need to be replaced by actual gotos (which happens
further down the compilation chain anyway).

Function calls Every internal function definition has its own space of loop indices. Exe-
cutable semantics must thus take into account saving and resetting the constant indexing of
current loops upon hitting a function call, and restoring it upon return of control. A pecu-
liarity is that this cannot be attached to actions that save and restore frames: namely in the
case of tail calls the constant indexing needs to be saved whereas the frame does not.

Cost-labelled expressions In labelled Clight, expressions also get cost labels, due to the
presence of ternary conditional expressions (and lazy logical operators, which get translated to
ternary expressions too). Adapting the indexed labelled approach to cost-labelled expressions
does not pose any particular problems.

Simplification of dependent costs As previously mentioned, the näıve application of the
procedure described in 4.4 produces unwieldy cost annotations. In our implementation several
transformations are used to simplify such complex dependent costs.

Disjunctions of simple conditions are closed under all logical operations, and it can be
computed whether such a disjunction implies a simple condition or its negation. This can
be used to eliminate useless branches of dependent costs, to merge branches that share the
same value, and possibly to simplify the third case of simple condition. Examples of the three
transformations are respectively:

• (_i_0 == 0)?x:(_i_0 >= 1)?y:z 7→ (_i_0 == 0)?x:y,

• c?x:(d?x:y) 7→ (c || d)?x:y,

• (_i_0 == 0)?x:(_i_0 % 2 == 0 && _i_0 >= 2)?y:z 7→
(_i_0 == 0)?x:(_i_0 % 2 == 0)?y:z.

14

The second transformation tends to accumulate disjunctions, to the detriment of readability.
A further transformation swaps two branches of the ternary expression if the negation of the
condition can be expressed with fewer clauses. For example:

(_i_0 % 3 == 0 || _i_0 % 3 == 1)?x:y 7→ (_i_0 % 3 == 2)?y:x.

Picking up again the example depicted in subsection 4.5, we can see that the cost in (2) can
be simplified to the following, using some of the transformation described above:

κι(γ) = (i0 = 0) ?
a :
(i0 mod 2 = 1) ?

(i1 = 0) ?
b :
(i1 = 1) ?

c :
(i1 mod 2 = 0) ?

d :
e

:

(i1 mod 2 = 0) ?
f :
g

One should keep in mind that the example was wilfully complicated, in practice the cost
expressions produced have rarely more clauses than the number of nested loops containing the
annotation.

Updates to the frama-C cost plugin Cerco’s frama-C [2] cost plugin has been updated
to take into account our new notion of dependent costs. The frama-c framework expands
ternary expressions to branch statements, introducing temporaries along the way. This makes
the task of analyzing ternary cost expressions rather daunting. It was deemed necessary to
provide an option in the compiler to use actual branch statements for cost annotations rather
than ternary expressions, so that at least frama-C’s use of temporaries in cost annotation
could be avoided. The cost analysis carried out by the plugin now takes into account such
dependent costs.

The only limitation (which actually simplifies the code) is that, within a dependent cost,
simple conditions with modulus on the same loop index should not be modulo different num-
bers. This corresponds to a reasonable limitation on the number of times loop unrolling may
be applied to the same loop: at most once.

Further work For the time being, indexed labels are only implemented in the untrusted
Ocaml compiler, while they are not present yet in the Matita code. Porting them should pose
no significant problem. Once ported, the task of proving properties about them in Matita can
begin.

Because most of the executable operational semantics of the languages across the frontend
and the backend are oblivious to cost labels, it should be expected that the bulk of the
semantic preservation proofs that still needs to be done will not get any harder because of

15

indexed labels. The only trickier point that we foresee would be in the translation of Clight to
Cminor, where we pass from structured indexed loops to atomic instructions on loop indices.

An invariant which should probably be proved and provably preserved along the compila-
tion chain is the non-overlap of indexings for the same atom. Then, supposing cost correctness
for the unindexed approach, the indexed one will just need to amend the proof that

∀C constant indexing.∀α〈I〉 appearing in the compiled code.κ(α) ◦ (I ◦ C) = κ(α〈I〉).
Here, C represents a snapshot of loop indices in the compiled code, while I ◦ C is the cor-
responding snapshot in the source code. Semantics preservation will ensure that when, with
snapshot C, we emit α〈I〉 (that is, we have α〈I ◦ C〉 in the trace), α must also be emitted in
the source code with indexing I ◦ C, so the cost κ(α) ◦ (I ◦ C) applies.

Aside from carrying over the proofs, we would like to extend the approach to more loop
transformations. Important examples are loop inversion (where a for loop is reversed, usually
to make iterations appear to be truly independent) or loop interchange (where two nested
loops are swapped, usually to have more loop invariants or to enhance strength reduction).
This introduces interesting changes to the approach, where we would have indexings such as:

i0 7→ n− i0 or i0 7→ i1, i1 7→ i0.

In particular dependency over actual variables of the code would enter the frame, as indexings
would depend on the number of iterations of a well-behaving guarded loop (the n in the first
example).

Finally, as stated in the introduction, the approach should allow some integration of tech-
niques for cache analysis, a possibility that for now has been put aside as the standard 8051
target architecture for the CerCo project lacks a cache. Two possible developments for this
line of work present themselves:

1. One could extend the development to some 8051 variants, of which some have been
produced with a cache.

2. One could make the compiler implement its own cache: this cannot apply to ram ac-
cesses of the standard 8051 architecture, as the difference in cost of accessing the two
types of ram is only one clock cycle, which makes any implementation of cache counter-
productive. So for this proposal, we could either artificially change the accessing cost of
ram of the model just for the sake of possible future adaptations to other architectures,
or otherwise model access to an external memory by means of the serial port.

References

[1] Absint angewandte informatik. http://www.absint.com/.

[2] Frama-c software analyzers. http://frama-c.com/.

[3] R. M. Amadio, N. Ayache, Y. Régis-Gianas, and R. Saillard. Certifying cost annotations in
compilers. Deliverable 2.1 of Project FP7-ICT-2009-C-243881 CerCo, Available at http:

//hal.archives-ouvertes.fr/hal-00524715.

[4] R. M. Amadio, N. Ayache, Y. Régis-Gianas, and R. Saillard. Prototype implementation.
Deliverable 2.2 of Project FP7-ICT-2009-C-243881 CerCo, Available at http://cerco.

cs.unibo.it/.

16

[5] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction for real-
timesystems. Real-Time Syst., 17:131–181, December 1999.

[6] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Commun. ACM, 22:96–103, February 1979.

[7] R. Morgan. Building an Optimizing Compiler. Digital Press, 1998.

[8] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

17

Syntax
`, . . . (labels) x, y, . . . (identifiers) e, f, . . . (expression)
P, S, T, . . . ::= skip | s; t | if e then s else t | while e do s | x := e

| ` : s | goto `
(statements)

Semantics
K, . . . ::= halt | S ·K (continuations)

find(`, S,K) :=

⊥ if S = skip, goto `′ or x := e,
(T,K) if S = ` : T ,
find(`, T,K) otherwise, if S = `′ : T ,
find(`, T1, T2 ·K) if defined and S = T1;T2,
find(`, T1,K) if defined and S = if b then T1 else T2,
find(`, T2,K) otherwise, if S = T1;T2 or if b then T1 else T2,
find(`, T, S ·K) if S = while b do T .

(x := e,K, s) →P (skip,K, s[v/x]) if (e, s) ⇓ v

(S;T,K, s) →P (S, T ·K, s)

(if b then S else T,K, s)→P

{
(S,K, s) if (b, s) ⇓ v 6= 0
(T,K, s) if (b, s) ⇓ 0

(while b do S,K, s) →P

{
(S,while b do S ·K, s) if (b, s) ⇓ v 6= 0
(skip,K, s) if (b, s) ⇓ 0

(skip, S ·K, s) →P (S,K, s)

(` : S,K, s) →P (S,K, s)

(goto `,K, s) →P (find(`, P, halt), s)

Figure 1: The syntax and operational semantics of Imp.

18

s := 0;
i := 0;
while i < n do

p := 1;
j := 1;
while j ≤ i do

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;

7→

s := 0;
i := 0;
if i < n then

p := 1;
j := 1;
while j ≤ i do

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;
while i < n do

p := 1;
j := 1;
if j ≤ i then

p := j ∗ p
j := j + 1;
if j ≤ i then

p := j ∗ p
j := j + 1;
while j ≤ i do

p := j ∗ p
j := j + 1;
if j ≤ i then

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;
if i < n then

p := 1;
j := 1;
while j < i do

p := j ∗ p
j := j + 1;
if j < i then

p := j ∗ p
j := j + 1;

s := s+ p;
i := i+ 1;

p
eeled

u
n
rolled

u
n
rolled

u
n
rolled

p
eeled

Figure 2: An example of loop transformations done on an Imp program. Parentheses are
omitted in favour of blocks by indentation.

19

α〈〉 : s := 0;
i := 0;
if i < n then

β〈0〉 : p := 1;
j := 1;
i1 : while j ≤ i do

γ〈0, i1〉 : p := j ∗ p
j := j + 1;

δ〈0〉 : s := s+ p;
i := i+ 1;
i0 : while i < n do

β〈2 ∗ i0 + 1〉 : p := 1;
j := 1;
if j ≤ i then

γ〈2 ∗ i0 + 1, 0〉 : p := j ∗ p
j := j + 1;
if j ≤ i then

γ〈2 ∗ i0 + 1, 1〉 : p := j ∗ p
j := j + 1;
i1 : while j ≤ i do

γ〈2 ∗ i0 + 1, 2 ∗ i1 + 2〉 : p := j ∗ p
j := j + 1;
if j ≤ i then

γ〈2 ∗ i0 + 1, 2 ∗ i1 + 3〉 : p := j ∗ p
j := j + 1;

δ〈2 ∗ i0 + 1〉 : s := s+ p;
i := i+ 1;
if i < n then

β〈2 ∗ i0 + 2〉 : p := 1;
j := 1;
i1 : while j < i do

γ〈2 ∗ i0 + 2, 2 ∗ i1〉 : p := j ∗ p
j := j + 1;
if j < i then

γ〈2 ∗ i0 + 2, 2 ∗ i1 + 1〉 : p := j ∗ p
j := j + 1;

δ〈2 ∗ i0 + 2〉 : s := s+ p;
i := i+ 1;

ε〈〉 : skip

Figure 3: The result of applying reindexing loop transformations on the program in Figure 2.

20

ar
X

iv
:1

11
0.

23
50

v1
 [

cs
.P

L
]

 1
1

O
ct

 2
01

1

Certifying and reasoning on

cost annotations of functional programs

Roberto M. Amadio1 and Yann Régis-Gianas1,2

1 Université Paris Diderot (UMR-CNRS 7126)
2 INRIA (Team πr2)

Abstract We present a so-called labelling method to insert cost anno-
tations in a higher-order functional program, to certify their correctness
with respect to a standard compilation chain to assembly code, and to
reason on them in a higher-order Hoare logic.

1 Introduction

In [1] we have discussed the problem of building a C compiler which can lift in
a provably correct way pieces of information on the execution cost of the object
code to cost annotations on the source code. To this end, we have introduced a
so called labelling approach and presented its application to a prototype com-
piler written in Ocaml from a large fragment of the C language to the assembly
languages of Mips and 8051, a 32 bits and 8 bits processor, respectively.

In the following, we are interested in extending the approach to (higher-
order) functional languages. On this issue, a common belief is well summarized
by the following epigram [9]: A Lisp programmer knows the value of everything,
but the cost of nothing. However, we shall show that, with some ingenuity, the
methodology developed for the C language can be lifted to functional languages.
Specifically, we shall focus on a rather standard compilation chain from a call-by-
value λ-calculus to a register transfer level (RTL) language. Similar compilation
chains have been explored from a formal viewpoint in [8] (with an emphasis on
typing but with no simulation proofs) and in [4] (for type-free languages but
with machine certified simulation proofs).

The compilation chain is described in the lower part of table 1. Starting
from a standard call-by-value λ-calculus with pairs, one performs first a CPS
translation, then a transformation into administrative form, followed by a closure
conversion, and a hoisting transformation. All languages considered are subsets
of the initial one though their evaluation mechanism is refined along the way. In
particular, one moves from an ordinary substitution to a specialized one where
variables can only be replaced by other variables. Notable differences with respect
to [4] is a different choice of the intermediate languages and the fact that we
rely on a small-step operational semantics. We also diverge from [4] in that our
proofs, following the usual mathematical tradition, are written to explain to a
human why a certain formula is valid rather than to provide a machine with a
compact witness of the validity of the formula.

λM λℓ
Ioo Ccps //

er

��

λℓ
cps

Cad ,,

er

��

λℓ
cps,aRkk

Ccc //

er

��

λℓ
cc,a

Ch //

er

��

λℓ
h,a

er

��
λ

L

II

Ccps //Ccps // λcps

Cad ,,
λcps,aRkk

Ccc // λcc,a
Ch // λh,a

Table1. The compilation chain with its labelling and instrumentation.

The final language of this compilation chain can be directly mapped to an
RTL language: functions correspond to assembly level routines and the functions’
bodies correspond to sequences of assignments on pseudo-registers ended by a
tail recursive call.

While the extensional properties of the compilation chain have been well stud-
ied, we are not aware of previous work focusing on more intensional properties
relating to the way the compilation preserves the complexity of the programs.
Specifically, in the following we will apply to this compilation chain the ‘labelling
approach’ to building certified cost annotations. In a nutshell the approach con-
sists in identifying, by means of labels, points in the source program whose cost
is constant and then determining the value of the constants by propagating the
labels along the compilation chain and analysing small pieces of object code with
respect to a target architecture.

Technically the approach is decomposed in several steps. First, for each lan-
guage considered in the compilation chain, we define an extended labelled lan-
guage and an extended operational semantics (upper part of Table 1). The labels
are used to mark certain points of the control. The semantics makes sure that
whenever we cross a labelled control point a labelled and observable transition
is produced.

Second, for each labelled language there is an obvious function er erasing all
labels and producing a program in the corresponding unlabelled language. The
compilation functions are extended from the unlabelled to the labelled language
so that they commute with the respective erasure functions. Moreover, the sim-
ulation properties of the compilation functions are lifted from the unlabelled to
the labelled languages and transition systems.

Third, assume a labelling L of the source language is a right inverse of the
respective erasure function. The evaluation of a labelled source program produces
both a value and a sequence of labels, say Λ, which intuitively stands for the
sequence of labels crossed during the program’s execution. The central question
we are interested in is whether there is a way of labelling the source programs
so that the sequence Λ is a sound and possibly precise representation of the
execution cost of the program.

To answer this question, we observe that the object code is some kind of
RTL code and that its control flow can be easily represented as a control flow
graph. The fact that we have to prove the soundness of the compilation function
means that we have plenty of information on the way the control flows in the

compiled code, in particular as far as procedure calls and returns are concerned.
These pieces of information allow to build a rather accurate representation of
the control flow of the compiled code at run time.

The idea is then to perform some simple checks on the control flow graph.
The main check consists in verifying that all ‘loops’ go through a labelled node. If
this is the case then we can associate a ‘cost’ with every label which overapprox-
imates the actual cost of running a sequence of instructions. An optional check
amounts to verify that all paths starting from a label have the same abstract
cost. If this check is successful then we can conclude that the cost annotations
are ‘precise’ in an abstract sense (and possibly concrete too depending on the
processor considered).

If the check described above succeeds every label has a cost which in general
can be taken as an element of a ‘cost’ monoid. Then an instrumentation of
the source labelled language is a monadic transformation I (left upper part of
Table 1) in the sense of [6] that replaces labels with the associated elements of
the cost monoid. Following this monadic transformation we are back into the
source language (possibly enriched with a ‘cost monoid’ such as integers with
addition). As a result, the source program is instrumented so as to monitor its
execution cost with respect to the associated object code. In the end, general
logics developed to reason about functional programs such as higher-order Hoare
logic [11] can be employed to reason about the concrete complexity of source
programs by proving properties on their instrumented versions.

We stress that previous work on building cost annotations for higher-order
functional programs we are aware of does not take formally into account the
compilation process. For instance, in an early work D. Sands [12] proposes an
instrumentation of call-by-value λ-calculus in order to describe its execution cost.
However the notion of cost adopted is essentially the number of function calls
in the source code. In a standard implementation such as the one considered in
this work, different function calls may have different costs and moreover there
are ‘hidden’ function calls which are not immediately apparent in the source
code. In a more recent work, [3] addresses the problem of determining the worst
case execution time of a a specialised functional language called Hume. The
compilation chain considered consists in compiling first Hume to the code of an
intermediate abstract machine, then to C, and finally to generate the assembly
code of the Resenas M32C/85 processor using standard C compilers. Then for
each instruction of the abstract machine, one computes an upper bound on
the worst-case execution time (WCET) of the instruction relying on a well-
known aiT tool [2] that uses abstract interpretation to determine the WCET of
sequences of binary instructions. While we share common motivations with this
work, we differ significantly in the technical approach. In particular, (i) [3] does
not address at all the proof of correctness of the cost annotations as we do, and
(ii) the granularity of the cost annotations is fixed in [3] (the instructions of the
Hume abstract machine) while it can vary in our approach.

In [1] we have showed that it is possible to produce a sound and precise
(in an abstract sense) labelling for a large class of C programs with respect

to a moderately optimising compiler. In the following we show that a similar
result can be obtained for a higher-order functional language with respect to the
standard compilation chain described above. Specifically we show that there is a
simple labelling of the source program that guarantees that the generated object
code is sound and precise. The labelling of the source program can be informally
described as follows: it associates a distinct label with every abstraction and
with every application which is not ‘immediately surrounded’ by an abstraction.

In this paper our analysis will stop at the level of an abstract RTL language,
however our previously quoted work [1] shows that the approach extends to the
back-end of a typical moderately optimising compiler including, e.g., dead-code
elimination and register allocation. Concerning the source language, preliminary
experiments suggest that the approach scales to a larger functional language such
as the one considered in [4] including sums, exceptions, and side effects. Finally,
we mention that the approach has also been implemented for a simpler compi-
lation chain that bypasses the CPS translation. In this case, the function calls
are not necessarily tail-recursive and the compiler generates a Cminor program.1

In the following, section 2 describes the certification of the cost-annotations
and section 3 a method to reason on them. Examples and proofs are available
in appendices A and B, respectively.

2 The compilation chain: commutation and simulation

This section describes the intermediate languages and the compilation functions
from an ordinary λ-calculus to a hoisted, administrative λ-calculus. For each
step we check that: (i) the compilation function commutes with the function
that erases labels and (ii) the object code simulates the source code.

2.1 Conventions

The reader is supposed to be acquainted with the λ-calculus and its evaluation
strategies and continuation passing style translations. In the following calculi,
all terms are manipulated up to α-renaming of bound names. We denote with ≡
syntactic identity up to α-renaming. Whenever a reduction rule is applied, it is
assumed that terms have been renamed so that all binders use distinct variables
and these variables are distinct from the free ones. Similar conventions are ap-
plied when performing a substitution, say [T/x]T ′, of a term T for a variable x in
a term T ′. We denote with fv(T) the set of variables occurring free in a term T .

Let C,C1, C2, . . . be one hole contexts and T a term. Then C[T] is the term
resulting from the replacement in the context C of the hole by the term T and
C1[C2] is the one hole context resulting from the replacement in the context C1

of the hole by the context C2.
For each calculus, we assume a syntactic category id of identifiers with generic

elements x, y, . . . and a syntactic category ℓ of labels with generic elements

1 Cminor is a type-free, memory aware fragment of C defined in [7].

Syntax

V ::= id || λid+.M || (V +) (values)
M ::= V || @(M,M+) || let id =M in M || (M+) || πi(M) || ℓ > M || M > ℓ (terms)
E ::= [] || @(V ∗, E,M∗) || let id = E in M || (V ∗, E,M∗) || πi(E) || E > ℓ (eval. cxts.)

Reduction Rules

E[@(λx1 . . . xn.M, V1, . . . , Vn)] → E[[V1/x1, . . . , Vn/xn]M]
E[let x = V in M] → E[[V/x]M]
E[πi(V1, . . . , Vn)] → E[Vi] 1 ≤ i ≤ n

E[ℓ > M]
ℓ−→ E[M]

E[V > ℓ]
ℓ−→ E[V]

Label erasure

er(ℓ > M) = er(M > ℓ) = er(M) .

Table2. An ordinary call-by-value λ-calculus: λℓ

ℓ, ℓ1, . . . For each calculus, we specify the syntactic categories and the reduc-
tion rules. We let α range over labels and the empty word. We write M

α−→ N if
M rewrites to N with a transition labelled by α. We abbreviate M

ǫ−→ N with
M → N . We also define M

α⇒ N as M
∗→ N if α = ǫ and as M

∗→ α−→ ∗→ N
otherwise.

We shall write X+ (resp. X∗) for a non-empty (possibly empty) finite se-
quence X1, . . . , Xn of symbols. By extension, λx+.M stands for λx1 . . . λxn.M ,
[V +/x+]M stands for [V1/x1](· · · [Vn/xn]M · · ·), and let (x = V)+ in M stands
for let x1 = V1 in · · · let xn = Vn in M .

2.2 The source language

Table 2 introduces a type-free, call-by-value λ-calculus. The calculus includes
let-definitions and polyadic abstraction and pairing with the related application
and projection operators. Any term M can be pre-labelled by writing ℓ > M
or post-labelled by writing M > ℓ. In the pre-labelling, the label ℓ is emitted
immediately while in the post-labelling it is emitted after M has reduced to a
value. It is tempting to reduce the post-labelling to the pre-labelling by writing
M > ℓ as @(λx.ℓ > x,M), however the second notation introduces an additional
abstraction and a related reduction step which is not actually present in the
original code. Table 2 also introduces an erasure function er from the λℓ-calculus
to the λ-calculus. This function simply traverses the term and erases all pre and
post labellings. Similar definitions arise in the following calculi of the compilation
chain and are omitted.

2.3 Compilation to CPS form

Table 3 introduces a fragment of the λℓ-calculus described in Table 2 and a
related CPS translation. We recall that in a CPS translation each function takes
its evaluation context as an additional parameter. Then the evaluation context
is always trivial. Notice that the reduction rules are essentially those of the
λℓ-calculus modulo the fact that we drop the rule to reduce V > ℓ since post-
labelling does not occur in CPS terms and the fact that we optimize the rule
for the projection to guarantee that CPS terms are closed under reduction. For
instance, the term let x = π1(V1, V2) in M reduces directly to [V1/x]M rather
than going through the intermediate term let x = V1 inM which does not belong
to the CPS terms.

We study next the properties enjoyed by the CPS translation. In general, the
commutation of the compilation function with the erasure function only holds
up to call-by-value η-conversion, namely λx.@(V, x) =η V if x /∈ fv(V). This is
due to the fact that post-labelling introduces an η-expansion of the continuation
if and only if the continuation is a variable. To cope with this problem, we
introduce next the notion of well-labelled term. We will see later (section 3.1)
that terms generated by the initial labelling are well-labelled.

Definition 1 (well-labelling). We define two predicates Wi, i = 0, 1 on the
terms of the λℓ-calculus as the least sets such that W1 is contained in W0 and
the following conditions hold:

x ∈ W1

M ∈ W0

M > ℓ ∈ W0

M ∈W1

λx+.M ∈ W1

M ∈ Wi i ∈ {0, 1}
ℓ > M ∈Wi

N ∈W0,M ∈ Wi i ∈ {0, 1}
let x = N in M ∈ Wi

Mi ∈W0 i = 1, . . . , n

@(M1, . . . ,Mn) ∈W1

Mi ∈W0 i = 1, . . . , n

(M1, . . . ,Mn) ∈W1

M ∈W0

πi(M) ∈W1
.

The intuition is that we want to avoid the situation where a post-labelling
receives as continuation the continuation variable generated by the translation
of a λ-abstraction.

Proposition 1 (CPS commutation). Let M ∈ W0 be a term of the λℓ-
calculus (Table 2). Then: er(Ccps(M)) ≡ Ccps(er (M)).

The proof of the CPS simulation is non-trivial but rather standard since [10].
The general idea is that the CPS translation pre-computes many ‘administrative’
reductions so that the translation of a term, say E[@(λx.M, V)] is a term of the
shape @(ψ(λx.M), ψ(V),KE) for a suitable continuation KE depending on the
evaluation context E.

Proposition 2 (CPS simulation). Let M be a term of the λℓ-calculus. If

M
α−→ N then Ccps(M)

α⇒ Ccps(N).

Syntax CPS terms

V ::= id || λid+.M || (V +) (values)
M ::= @(V, V +) || let id = πi(V) in M || ℓ > M (CPS terms)
K ::= id || λid .M (continuations)

Reduction rules

@(λx1, . . . , xn.M, V1, . . . , Vn) → [V1/x1, . . . , Vn/xn]M
let x = πi(V1, . . . , Vn) in M → [Vi/x]M 1 ≤ i ≤ n

ℓ > M
ℓ−→ M

CPS translation

ψ(x) = x
ψ(λx+.M) = λx+, k.(M : k)
ψ(V1, . . . , Vn) = (ψ(V1), . . . , ψ(Vn))

V : k = @(k, ψ(V))
V : (λx.M) = [ψ(V)/x]M
@(M0, . . . ,Mn) : K = M0 : λx0. . . . (Mn : λxn.@(x0, . . . , xn,K))
let x =M1 in M2 : K = M1 : λx.(M2 : K)
(M1, . . . ,Mn) : K = M1 : λx1. . . . (Mn : λxn.(x1, . . . , xn) : K)
πi(M) : K = M : λx.let y = πi(x) in y : K
(ℓ > M) : K = ℓ > (M : K)
(M > ℓ) : K = M : (λx.ℓ > (x : K))

Ccps(M) = M : λx.@(halt , x), halt fresh

Table3. CPS λ-calculus (λℓcps) and CPS translation

2.4 Transformation in administrative CPS form

Table 4 introduces an administrative λ-calculus in CPS form: λℓcps,a. In the or-
dinary λ-calculus, the application of a λ-abstraction to an argument (which
is value) may produce the duplication of the argument as in: @(λx.M, V) →
[V/x]M . In the administrative λ-calculus, all values are named and when we ap-
ply the name of a λ-abstraction to the name of a value we create a new copy of
the body of the function and replace its formal parameter name with the name
of the argument as in:

let y = V in let f = λx.M in @(f, y) → let y = V in let f = λx.M in [y/x]M .

We also remark that in the administrative λ-calculus the evaluation contexts are
a sequence of let definitions associating values to names. Thus, apart for the fact
that the values are not necessarily closed, the evaluation contexts are similar to
the environments of abstract machines for functional languages.

Table 5 defines the compilation into administrative form along with a read-
back translation. The latter is useful to state the simulation property. Indeed,

Syntax

V ::= λid+.M || (id+) (values)
B ::= V || πi(id) (let-bindable terms)
M ::= @(id , id+) || let id = B in M || ℓ > M (CPS terms)
E ::= [] || let id = V in E (evaluation contexts)

Reduction Rules

E[@(x, z1, . . . , zn)] → E[[z1/y1, . . . , zn/yn]M] if E(x) = λy1, . . . , yn.M
E[let z = πi(x) in M] → E[[yi/z]M]] if E(x) = (y1, . . . , yn), 1 ≤ i ≤ n

E[ℓ > M]
ℓ−→ E[M]

where: E(x) =

V if E = E′[let x = V in []]
E′(x) if E = E′[let y = V in []], x 6= y
undefined otherwise

Table4. An administrative CPS λ-calculus: λℓcps,a

it is not true that if M → M ′ in λℓcps then Cad(M)
∗→ Cad(M ′) in λℓcps,a. For

instance, consider M ≡ (λx.xx)I where I ≡ (λy.y). Then M → II but Cad (M)
does not reduce to Cad(II) but rather to a term where the ‘sharing’ of the du-
plicated value I is explicitly represented.

Proposition 3 (AD commutation). Let M be a λ-term in CPS form. Then:

(1) R(Cad (M)) ≡M .

(2) er(Cad (M)) ≡ Cad(er (M)).

Proposition 4 (AD simulation). Let N be a λ-term in CPS administrative

form. If R(N) ≡M and M
α−→M ′ then N

α−→ N ′ and R(N ′) ≡M ′.

2.5 Closure conversion

The next step is called closure conversion, it consists in providing each functional
value with an additional parameter that accounts for the names free in the body
of the function. Following this transformation which is described in Table 6, all
functional values are closed. In our opinion, this is the only compilation step
where the proofs are rather straightforward.

Proposition 5 (CC commutation). Let M be a CPS term in administrative
form. Then er (Ccc(M)) ≡ Ccc(er (M)).

Proposition 6 (CC simulation). Let M be a CPS term in administrative

form. If M
α−→M ′ then Ccc(M)

α⇒ Ccc(M ′).

Transformation in administrative form (from λℓ
cps to λℓ

cps,a)

Cad(@(x0, . . . , xn)) = @(x0, . . . , xn)
Cad(@(x∗, V, V ∗)) = Ead (V, y)[Cad(@(x∗, y, V ∗))] V 6= id , y fresh
Cad(let x = πi(y) in M) = let x = πi(y) in Cad(M)
Cad(let x = πi(V) in M) = Ead (y, V)[let x = πi(y) in Cad(M)] V 6= id , y fresh
Cad(ℓ > M) = ℓ > Cad(M)

Ead(λx
+.M, y) = let y = λx+.Cad (M) in []

Ead((x
+), y) = let y = (x+) in []

Ead((x
∗, V, V ∗), y) = Ead (V, z)[Ead((x

∗, z, V ∗), y)] V 6= id , z fresh

Readback translation (from λℓ
cps,a to λℓ

cps)

R(λx+.M) = λx+.R(M)
R(x+) = (x+)
R(@(x, x1, . . . , xn)) = @(x, x1, . . . , xn)
R(let x = πi(y) in M) = let x = πi(y) in R(M)
R(let x = V in M) = [R(V)/x]R(M)
R(ℓ > M) = ℓ > R(M)

Table5. Transformations in administrative CPS form and readback

2.6 Hoisting

The last compilation step consists in moving all functions definitions at top
level. In Table 7, we formalise this compilation step as the iteration of a set
of program transformations that commute with the erasure function and the
reduction relation. Denote with λz+.T a function that does not contain function
definitions. The transformations consist in hoisting (moving up) the definition of
a function λz+.T with respect to either a definition of a pair or a projection, or
another including function, or a labelling. Note that the hoisting transformations
do not preserve the property that all functions are closed. Therefore the hoisting
transformations are defined on the terms of the λℓcps,a-calculus. As a first step,
we analyse the hoisting transformations.

Proposition 7 (on hoisting transformations). The iteration of the hoist-
ing transformation on a term in λℓcc,a (all function are closed) terminates and
produces a term satisfying the syntactic restrictions specified in table 7.

Next we check that the hoisting transformations commute with the erasure
function.

Proposition 8 (hoisting commutation). Let M be a term of the λℓcps,a-
calculus.

(1) If M ❀ N then er(M) ❀ er(N) or er(M) ≡ er(N).

(2) If M 6❀ · then er(M) 6❀ ·.
(3) er(Ch(M)) ≡ Ch(er (M)).

Syntactic restrictions on λℓ
cps,a after closure conversion

All functional values are closed.

Closure Conversion

Ccc(@(x, y+)) = let z = π1(x) in @(z, x, y+)

Ccc(let x = B in M) =
let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(N) in
let x = (y, z1, . . . , zk) in
Ccc(M) (if B = λx+.N, fv(B) = {z1, . . . , zk})

Ccc(let x = B in M) = let x = B in Ccc(M) (if B not a function)

Ccc(ℓ > M) = ℓ > Ccc(M)

Table6. Closure conversion on administrative CPS terms

The proof of the simulation property requires some work because to close the
diagram we need to collapse repeated definitions. We proceed as follows. First
we introduce a relation Sh that collapses repeated definitions and show that
it is a simulation. Second, we show that the hoisting transformations induce a

‘simulation up to Sh’. Namely if M
ℓ−→M ′ and M ❀ N then there is a N ′ such

that N
ℓ−→ N ′ and M ′ (❀∗ ◦Sh) N

′. Third, we iterate the previous property to
derive the following one.

Proposition 9 (hoisting simulation). There is a simulation relation Th on
the terms of the λℓcps,a-calculus such that for all terms M of the λℓcc,a-calculus
we have M Th Ch(M).

2.7 Composed commutation and simulation properties

Let C be the composition of the compilation steps we have considered:

C = Ch ◦ Ccc ◦ Cad ◦ Ccps .

We also define a relation RC between terms in λℓ and terms in λℓh as:

MRCP if ∃N Ccps(M) ≡ R(N) and Ccc(N) Th P

Note that for all M , M RC C(M).

Theorem 1 (commutation and simulation). Let M ∈ W0 be a term of the
λℓ-calculus. Then:

(1) er(C(M)) ≡ C(er(M)).

(2) If M RC N and M
α−→M ′ then N

α⇒ N ′ and M ′ RC N ′.

Syntactic restrictions on λℓ
cps,a after hoisting

All function definitions are at top level.

C ::= (id+) || πi(id) (restricted let-bindable terms)
T ::= @(id , id+) || let id = C in T || ℓ > T (restricted terms)
P ::= T || let id = λid+.T in P (programs)

Specification of the hoisting transformation

Ch(M) = N if M ❀ · · · ❀ N 6❀, where:

D ::= [] || let id = B in D || let id = λid+.D in M || ℓ > D (hoisting contexts)

(h1) D[let x = C in let y = λz+.T in M] ❀
D[let y = λz+.T in let x = C in M] if x /∈ fv(λz+.T)

(h2) D[let x = λw+.let y = λz+.T in M in N] ❀
D[let y = λz+.T in let x = λw+.M in N] if {w+} ∩ fv(λz+.T) = ∅

(h3) D[ℓ > let y = λz+.T in M] ❀
D[let y = λz+.T in ℓ > M]

Table7. Hoisting transformation

3 Reasoning on the cost annotations

We describe an initial labelling of the source code leading to a sound and precise
labelling of the object code and an instrumentation of the labelled source pro-
gram which produces a source program monitoring its own execution cost. Then,
we explain how to obtain static guarantees on this execution cost by means of a
Hoare logic for purely functional programs.

3.1 Initial labelling

We define a labelling function L of the source code (terms of the λ-calculus)
which guarantees that the associated RTL code satisfies the conditions neces-
sary for associating a cost with each label. We set L(M) = L0(M), where the
functions Li are specified in Table 8.

Proposition 10 (labelling properties). Let M be a term of the λ-calculus
and let P ≡ C(M) be its compilation.

(1) The function L is a labelling and produces well-labelled terms, namely:

er(Li(M)) ≡M and Li(M) ∈Wi for i = 0, 1.

(2) We have: P ≡ er(C(L(M))).

L(M) = L0(M) where:

Li(x) = x
Li(λid

+.M) = λid+.ℓ > L1(M) ℓ fresh
Li((M1, . . . ,Mn)) = (L0(M1), . . . ,L0(Mn))
Li(πi(M)) = πi(L0(M))

Li(@(M,M+)) =

{
@(L0(M), (L0(M))+) > ℓ i = 0, ℓ fresh
@(L0(M), (L0(M))+) i = 1

Li(let x =M in N) = let x = L0(M) in Li(N)

Table8. A sound and precise labelling of the source code

(3) Labels occur exactly once in the body of each function definition and nowhere
else, namely, with reference to Table 7, P is generated by the following grammar:

P ::= T || let id = λid+.Tlab in P
Tlab ::= ℓ > T || let id = C in Tlab
T ::= @(id , id+) || let id = C in T

The associated RTL program is composed of a set of routines which in turn
is composed of a sequence of assignments on pseudo-registers and a terminal call
to another routine. For such programs the back end of the moderately optimis-
ing compiler described in [1] produces assembly code which satisfies the checks
outlined in the introduction.

3.2 Instrumentation

Given a cost monoid M with identity 1, we assume the analysis of the RTL code
associates with each label ℓ an element mℓ of the cost monoid. This element is
an upper bound on the cost of running the code starting from a control point
labelled by ℓ and leading either to a control point without successors or to
another labelled control point. Table 9 describes a monadic transformation which
has been extensively analysed in [6] which instruments a program (in our case
λℓ) with the cost of executing its instructions. We are then back to a standard
λ-calculus (without labels) which includes a basic data type to represent the cost
monoid.

3.3 Higher-order Hoare Logic

Many proof systems can be used to obtain static guarantees on the evaluation
of a purely functional program. In our setting, such systems can also be used
to obtain static guarantees on the execution cost of a functional program by
reasoning on its instrumentation.

We illustrate this point using an Hoare logic dedicated to call-by-value purely
functional programs [11]. Given a well-typed program annotated by logic asser-
tions, this system computes a set of proof obligations, whose validity ensures the

[[x]] = (1, x)
[[λx+.M]] = (1, λx+.[[M]])
[[@(M0, . . . ,Mn)]] = let (m0, x0) = [[M0]] · · · (mn, xn) = [[Mn]],

(mn+1, xn+1) = @(x0, . . . , xn) in
(mn+1 ·mn · · ·m0, xn+1)

[[(M1, . . . ,Mn)]] = let (m1, x1) = [[M1]] · · · (mn, xn) = [[Mn]] in
(mn · · ·m1, (x1, . . . , xn))

[[πi(M)]] = let (m,x) = [[M]] in (m,πi(x))
[[let x =M1 in M2]] = let (m1, x) = [[M1]] in (m2, x2) = [[M2]] in

(m2 ·m1, x2)
[[ℓ > M]] = let (m,x) = [[M]] in (m ·mℓ, x)
[[M > ℓ]] = let (m,x) = [[M]] in (mℓ ·m,x)

Table9. Instrumentation of labelled λ-calculus.

correctness of the logic assertions with respect to the evaluation of the functional
program.

Logic assertions are written in a typed higher-order logic whose syntax is
given in Table 10. From now on, we assume that our source language is also
typed. The metavariable τ ranges over simple types, whose syntax is τ ::= ι |
| τ × τ || τ → τ where ι are the basic types including a data type cm for the
values of the cost monoid. Types are lifted to the logical level through a logical
reflection ⌈•⌉ defined in Table 10.

We write “let x : τ/F =M inM” to annotate a let definition by a postcondi-
tion F of type ⌈τ⌉ → prop. We write “λ(x1 : τ1)/F1 : (x2 : τ2)/F2. M” to ascribe
to a λ-abstraction a precondition F1 of type ⌈τ1⌉ → prop and a postcondition F2

of type ⌈τ1⌉ × ⌈τ2⌉ → prop. Computational values are lifted to the logical level
using the reflection function defined in Table 10. The key idea of this definition
is to reflect a computational function as a pair of predicates consisting in its pre-
condition and its postcondition. Given a computational function f , a formula can
refer to the precondition (resp. the postcondition) of f using the predicate pre f
(resp. post f). Thus, pre (resp. post) is a synonymous for π1 (resp. π2).

To improve the usability of our tool, we define in Table 10 a surface language
by extending λ with several practical facilities. First, terms are explicitly typed.
Therefore, the labelling L must be extended to convey type annotations in an ex-
plicitly typed version of λℓ. The instrumentation I defined in Table 9 is extended
to types by replacing each type annotation τ by its monadic interpretation [[τ]]
defined by [[τ]] = cm× τ, ι = ι, τ1 × τ2 = ([[τ1]]× [[τ2]]) and τ1 → τ2 = τ1 → [[τ2]].

Second, since the instrumented version of a source program would be cum-
bersome to reason about because of the explicit threading of the cost value, we
keep the program in its initial form while allowing logic assertions to implicitly
refer to the instrumented version of the program. Thus, in the surface language,
in the term “let x : τ/F = M in M”, F has type ⌈[[τ]]⌉ → prop, that is to say a
predicate over pairs of which the first component is the execution cost.

Syntax

F ::= True || False || x || F ∧ F || F = F || (F, F) (formulae)
|| π1 || π2 || λ(x : θ).F || F F || F ⇒ F || ∀(x : θ).F

θ ::= prop || ι || θ × θ || θ → θ (types)

V ::= id || λ(id : τ)+/F : (id : τ)/F.M || (V +) (values)
M ::= V || @(M,M+) || let id : τ/F =M in M || (M+) || πi(M) (terms)

Logical reflection of types

⌈ι⌉ = ι
⌈τ1 × . . .× τn⌉ = ⌈τ1⌉ × . . . ⌈τn⌉

⌈τ1 → τ2⌉ = (⌈τ1⌉ → prop)× (⌈τ1⌉ × ⌈τ2⌉ → prop)

Logical reflection of values

⌈id⌉ = id
⌈(V1, . . . , Vn)⌉ = (⌈V1⌉, . . . , ⌈Vn⌉)

⌈λ(x1 : τ1)/F1 : (x2 : τ2)/F2. M⌉ = (F1, F2)

Table10. The surface language.

Third, we allow labels to be written in source terms as a practical way of
giving names to the labels introduced by the labelling L. By that means, the
constant cost assigned to a label ℓ can be symbolically used in specifications by
writing costof(ℓ).

Finally, as a convenience, we write “x : τ/F” for “x : τ/λ(cost : cm, x :
⌈[[τ]]⌉).F”. This improves the conciseness of specifications by automatically al-
lowing reference to the cost variable in logic assertions without having to intro-
duce it explicitly.

3.4 Prototype implementation

We implemented a prototype compiler [13] in OCaml (∼ 3.5Kloc). This compiler
accepts a program P written in the surface language extended with fixpoint and
algebraic datatypes. Specifications are written in the Coq proof assistant [5]. A
logic keyword is used to include logical definitions written in Coq to the source
program.

Type checking is performed on P and, upon success, it produces a type
annotated program Pt. Then, the labelled program Pℓ = L(Pt) is generated.
Following the same treatment of branching as in our previous work on imperative
programs [1], the labelling introduces a label at the beginning of each pattern
matching branch.

By erasure of specifications and type annotations, we obtain a program Pλ

of λ (Table 2). Using the compilation chain presented earlier, Pλ is compiled into
a program Ph of λh,a (Table 7) . The annotating compiler uses the cost model
that consists in counting for each label ℓ the number of primitive operations that

belong to execution paths starting from ℓ (and ending in another label or in an
instruction without successor).

Finally, the instrumented version of Pℓ as well as the actual cost of each label
is given as input to a verification condition generator to produce a set of proof
obligations. These proof obligations are either proved automatically using first
order theorem provers or manually in Coq.

3.5 Example

Let us consider an higher-order function pexists that looks for an integer x
in a list l such that x validates a predicate p. In addition to the functional
specification, we want to prove that the cost of this function is linear in the
length n of the list l. The corresponding program written in the surface language
can be found in Table 11.

A prelude declares the type and logical definitions used by the specifications.
On lines 1 and 2, two type definitions introduce data constructors for lists and
booleans. Between lines 4 and 5, a Coq definition introduces a predicate bound
over the reflection of computational functions from nat to nat×bool that ensures
that the cost of a computational function p is uniformly bounded by a constant k.

On line 9, the precondition of function pexists requires the function p to be
total. Between lines 10 and 11, the postcondition first states a functional specifi-
cation for pexists: the boolean result witnesses the existence of an element x of
the input list l that is related to BTrue by the postcondition of p. The second
part of the postcondition characterizes the cost of pexists in case of a negative
result: assuming that the cost of p is bounded by a constant k, the cost of pexists
is proportional to k.n.

The verification condition generator produces 53 proof obligations out of this
annotated program; 46 of these proof obligations are automatically discharged
and 7 of them are manually proved in Coq.

4 Conclusion

We have shown that the so-called ’labelling’ approach can be used to obtain
certified execution costs on functional programs. In a realistic implementation
of a functional programming language though, the runtime environment usually
includes a garbage collector. The execution cost of such an automatic memory
deallocation algorithm is a priori proportional to the size of the heap, which is
not a sufficiently precise bound for practical use. An accurate static tracking of
memory allocation, following region based or linear logic approaches, would be
necessary to get relevant worst-case execution costs for memory deallocation.

Acknowledgements We are indebted to our Master students Guillaume Claret
and David Giron for their implementation effort which provided valuable feed-
back. This work was supported by the Information and Communication Tech-
nologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo.

01 type list = Nil | Cons (nat, list)
02 type bool = BTrue | BFalse
03 logic {
04 Definition bound (p : nat −→ (nat × bool)) (k : nat) : Prop : =
05 ∀ x m : nat, ∀ r : bool, post p x (m, r) ⇒ m ≤ k.
06 Definition k0 : = costof(ℓm) + costof(ℓnil).
07 Definition k1 : = costof(ℓm) + costof(ℓp) + costof(ℓc) + costof(ℓf) + costof(ℓr).
08 }
09 let rec pexists (p : nat → bool, l : list) { ∀ x, pre p x } : bool {
10 ((result = BTrue) ⇔ (∃ x c : nat, mem x l ∧ post p x (c, BTrue))) ∧
11 (∀ k : nat, bound p k ∧ (result = BFalse) ⇒ cost ≤ k0 + (k + k1) × length (l))
12 } = ℓm> match l with
13 | Nil → ℓnil> BFalse
14 | Cons (x, xs) → ℓc> match p (x) > ℓp with
15 | BTrue → BTrue
16 | BFalse → ℓf> (pexists (p, xs) > ℓr)

Table11. An higher-order function and its specification.

References

1. R.M. Amadio, N. Ayache, Y. Régis-Gianas, R. Saillard. Certifying cost
annotations in compilers. Université Paris Diderot, Research Report,
http://hal.archives-ouvertes.fr/hal-00524715/fr/ , 2010.

2. AbsInt Angewandte Informatik. http://www.absint.com/.
3. A. Bonenfant, C. Ferdinand, K. Hammond, R. Heckmann. Worst-case execution

times for a purely functional language. In Proc. IFL, Springer LNCS 4449:235-252,
2006.

4. A. Chlipala. A verified compiler for an impure functional language. In Proc.
ACM-POPL:93-106, 2010.

5. The Coq Development Team. The Coq Proof Assistant. INRIA-Rocquencourt,
December 2001. http://coq.inria.fr.

6. D. Gurr. Semantic frameworks for complexity. PhD thesis, University of Edin-
burgh, 1991.

7. X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-
115, 2009.

8. J. Morrisett, D. Walker, K. Crary, N. Glew. From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3): 527-568, 1999.

9. A. Perlis. Epigrams on programming. SIGPLAN Notices Vol. 17(9):7-13, 1982.
10. G. Plotkin. Call-by-name, Call-by-value and the lambda-Calculus. Theor. Comput.

Sci. 1(2):125-159, 1975.
11. Y. Régis-Gianas, F. Pottier. A Hoare logic for call-by-value functional programs.

In Proc. Mathematics of Program Construction, pp 305-335, 2008.
12. D. Sands. Complexity analysis for a lazy higher-order language. In Proc. ESOP,

Springer LNCS 432:361-376, 1990.
13. Y. Régis-Gianas. An annotating compiler for MiniML.

http://www.pps.jussieu.fr/~yrg/fun-cca.

A Examples

This section collects some examples.

Example 1 (labelling and commutation). Let M ≡ λx.xx > ℓ. Then M /∈ W0

because the rule for abstraction requires xx > ℓ ∈ W1 while we can only show
xx > ℓ ∈ W0. Notice that we have:

er(Ccps(M)) ≡ @(halt , λx, k.@(x, x, λx.@(k, x)))
Ccps(er(M)) ≡ @(halt , λx, k.@(x, x, k)) .

So for M the commutation of the cps-compilation and the erasure function only
holds up to η.

Example 2 (CPS). Let M ≡ @(λx.@(x,@(x, x)), I), where I ≡ λx.x. Then

Ccps(M) ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H))

where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x). The term M is simulated by
Ccps(M) as follows:

M → @(I,@(I, I)) → @(I, I) → I
Ccps(M) → @(I ′, I ′, λy.@(I ′, y,H)) →+ @(I ′, I ′, H) →+ @(halt , I ′) .

Example 3 (administrative form). SupposeN ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H))
where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x) (this is the term resulting from
the CPS translation in example 2). The corresponding term in administrative
form is:

let z1 = λx, k.let z2 = λy.@(x, y, k) in @(x, x, z2) in
let z3 = I ′ in
let z4 = H in
@(z1, z3, z4) .

Example 4 (closure conversion). Let M ≡ Cad(Ccps(λx.y)), namely

M ≡ let z1 = λx, k.@(k, y) in @(halt , z1) .

Then Ccc(M) is the following term:

let z2 = λz, x, k.let y = π2(z) in let z = π1(k) in @(z, k, y) in
let z1 = (z2, y) in
let z = π1(halt) in @(z, halt , z1) .

Example 5 (hosting transformations and transitions). LetM ≡ let x1 = λy1.N in@(x1, z)
where N ≡ let x2 = λy2.T2 in T1 and y1 /∈ fv(λy2.T2). Then we either reduce
and then hoist:

M → let x1 = λy1.N in [z/y1]N
≡ let x1 = λy1.N in let x2 = λy2.T2 in [z/y1]T1
❀ let x2 = λy2.T2 in let x1 = λy1.T1 in let x2 = λy2.T2 in [z/y1]T1 6❀

or hoist and then reduce:

M ❀ let x2 = λy2.T2 in let x1 = λy1.T1 in @(x1, z)
→ let x2 = λy2.T2 in let x1 = λy1.T1 in [z/y1]T1 6❀

In the first case, we end up duplicating the definition of x2.

Example 6 (labelling application). Let M ≡ λx.@(x,@(x, x)). Then L(M) ≡
λx.ℓ0 > @(x,@(x, x) > ℓ1). Notice that only the inner application is post-
labelled.

B Proofs

This section collects the proofs of the results we have stated.

B.1 Proof of proposition 1 [CPS commutation]

The proof takes the following steps:

1. We remark that if V is a value in λℓ and K a continuation in λℓcps then so
are er(V) and er(K). The proof is a direct induction on the structure of V
and K, respectively.

2. For all values V and terms M of the λℓ-calculus, we check that:

er([V/x]M) ≡ [er(V)/x]er(M) .

The proof proceeds by induction on the structure of M .
3. We notice that for all continuations K such that K is an abstraction, λx.(x :
K) ≡ K.

4. For all terms M and continuations K such that either M ∈ W0 and K is an
abstraction or M ∈W1 the following holds:

er(M : K) ≡ er(M) : er(K) .

We proceed by induction on M .
x We expand the definition of x : K depending on whether K is a variable

or a function and we rely on step 2.
λx+.M We have λx+.M ∈ W1 and M ∈ W1. We analyse λx+.M : K

depending on whether K is a variable or a function and we apply the
inductive hypothesis on M and step 2. Notice that it is essential that
M ∈W1 to apply the inductive hypothesis.

@(M0, . . . ,Mn) We know M0, . . . ,Mn ∈ W0. We apply the inductive hy-
pothesis on Mn, . . . ,M0 to conclude that:

er(@(M0, . . . ,Mn)) : er(K)
≡ er(M0) : λx0. . . . er(Mn) : λxn.@(x0, . . . , xn, er(K))
≡ er(M0) : λx0. . . . er(Mn : λxn.@(x0, . . . , xn,K))
≡ · · ·
≡ er(M0 : λx0. . . .Mn : λxn.@(x0, . . . , xn,K))
≡ er(@(M0, . . . ,MN) : K) .

ℓ > M We know that if ℓ > M ∈ Wi then M ∈ Wi and we apply the
inductive hypothesis on M .

M > ℓ By definition, we must haveM > ℓ ∈W0. Hence K is a function and
M ∈W0. Then we apply the inductive hypothesis on M and step 3.

(M1, . . . ,Mn) We know that Mi ∈ W0 for i = 1, . . . , n. First we notice that:

er(λxn.(x1, . . . , xn) : K) ≡ λxn.(x1, . . . , xn) : er(K) .

Then we apply the inductive hypothesis onMn, . . . ,M0 to conclude that:

er ((M1, . . . ,Mn)) : er(K)
≡ er(M1) : λx1 . . . er(Mn) : λxn.(x1, . . . , xn) : er(K)
≡ er(M1) : λx1 . . . er(Mn) : er(λxn.(x1, . . . , xn) : K)
≡ er(M1) : λx1 . . . er(Mn : λxn.(x1, . . . , xn) : K)
≡ · · ·
≡ er(M1 : λx1 . . .Mn : λxn.(x1, . . . , xn) : K)
≡ er((M1, . . . ,Mn) : K) .

πi(M) We know M ∈W0. We observe that er(y : K) ≡ y : er (K). Then we
apply the inductive hypothesis on M to conclude that:

er(πi(M)) : er(K)
≡ πi(er(M)) : er(K)
≡ er(M) : λx.let y = πi(x) in y : er(K)
≡ er(M) : er(λx.let y = πi(x) in y : K)
≡ er(M : λx.let y = πi(x) in y : K)
≡ er(πi(M) : K) .

let x = N in M If let x = N inM ∈Wi then we knowN ∈ W0 andM ∈ Wi.
We apply the inductive hypothesis on N and M to conclude that:

er (let x = N in M : K)
≡ er(N : λx.(M : K))
≡ er(N) : λx.er (M : K)
≡ er(N) : λx.er (M) : er(K)
≡ er(let x = N in M) : er(K) .

5. Then we prove the assertion for M ∈W0 as follows:

er(Ccps(M)) ≡ er(M : λx.@(halt , x)) (by definition)
≡ er(M) : λx.@(halt , x) (by point 4)
≡ Ccps(er(M)) (by definition).

⊓⊔

B.2 Proof of proposition 2 [CPS simulation]

The proof takes the following steps.

1. We show that for all values V , terms M , and continuations K 6= x:

[V/x]M : [ψ(V)/x]K ≡ [ψ(V)/x](M : K) .

We proceed by induction on M .

variable By case analysis: M ≡ x or M ≡ y 6= x.
λz+.M By case analysis on K which is either a variable or a function. We

develop the second case with K = λy.N . We observe:

[V/x](λz+.M) : [ψ(V)/x]K
≡ [λz+, k.([V/x]M : k)/y][ψ(V)/x]N
≡ [λz+, k.[ψ(V)/x](M : k)/y][ψ(V)/x]N
≡ [ψ(V)/x][λz+, k.(M : k)/y]N
≡ [ψ(V)/x]((λz+.M) : K) .

@(M0, . . . ,Mn) We apply the inductive hypothesis on M0, . . . ,Mn as fol-
lows:

[ψ(V)/x](@(M0, . . . ,Mn) : K)
≡ [ψ(V)/x](M0 : λx0 . . .Mn : λxn.@(x0, . . . , xn,K))
· · ·
≡ [V/x]M0 : λx0 . . . [ψ(V)/x](Mn : λxn.@(x0, . . . , xn,K))
≡ [V/x]M0 : λx0 . . . [V/x]Mn : λxn.@(x0, . . . , xn, [ψ(V)/x]K)
≡ [V/x]@(M0, . . . ,Mn) : [ψ(V)/x]K .

Note that in this case the substitution [ψ(V)/x] may operate on the
continuation. The remaining cases (pairing, projection, let, pre and post
labelling) follow a similar pattern and are omitted.

2. The evaluation contexts for the λℓ-calculus described in table 2 can also be
specified ‘bottom up’ as follows:

E ::= [] || E[@(V ∗, [],M∗)] || E[let id = [] in M] || E[(V ∗, [],M∗)] ||
E[πi([])] || E[[] > ℓ] .

Following this specification, we associate a continuation KE with an evalu-
tion context as follows:

K[] = λx.@(halt , x)
KE[@(V ∗,[],M∗)] = λx.M∗ : λy∗.@(ψ(V)∗, x, y∗,KE)
KE[let x=[] in N] = λx.N : KE

KE[(V ∗,[],M∗)] = λx.M∗ : λy∗.(ψ(V)∗, x, y∗) : KE

KE[πi([]) = λx.let y = πi(x) in y : KE

KE[[]>ℓ] = λx.ℓ > x : KE

where M∗ : λx∗.N stands for M0 : λx0 . . .Mn : λxn.N with n ≥ 0.
3. For all terms M and evaluation contexts E,E′ we prove by induction on the

evaluation context E that the following holds:

E[M] : KE′ ≡M : KE′[E] .

For instance we detail the case the context has the shape E[@(V ∗, [],M∗).

E[@(V ∗, [M],M∗) : KE′

≡ @(V ∗, [M],M∗) : KE′[E] (by inductive hypothesis)
≡M : λx.M∗ : λx∗.@(ψ(V)∗, x, x∗,KE′[E])
≡M : KE′[E[@(V ∗,[],M∗)]] .

4. For all terms M , continuations K,K ′, and variable x /∈ fv(M) we prove by
induction on M and case analysis that the following holds:

[K/x](M : K ′)

{
→M : K ′ if K abstraction,M value,K ′ = x
≡ (M : [K/x]K ′) otherwise.

5. Finally, we prove the assertion by proceeding by case analysis on the reduc-
tion rule.
– E[@(λx+.M, V +)] → E[[V +/x+]M]. We have:

E[@(λx+.M, V +)] : K[]

≡ @(λx+.M, V +) : KE

≡ @(λx+, k.M : k, ψ(V)+,KE)
→ [KE/k, ψ(V)+/x+](M : k)
≡ [KE/k]([V/x]M : k)
∗→ [V/x]M : KE

≡ E[[V/x]M] : K[] .

– E[let x = V in M] → E[[V/x]M]. We have:

E[let x = V in M] : K[]

≡ let x = V in M : KE

≡ V : λx.(M : KE)
≡ [ψ(V)/x](M : KE)
≡ [V/x]M : KE

≡ E[[V/x]M] : K[] .

– E[πi(V)] → E[Vi], where V ≡ (V1, . . . , Vn) and 1 ≤ i ≤ n. We have:

E[πi(V)] : K[]

≡ πi(V) : KE

≡ V : λx.let y = πi(x) in y : KE

≡ let y = πi(ψ(V1), . . . , ψ(Vn)) in y : KE

→ [ψ(Vi)/y](y : KE)
≡ Vi : KE

≡ E[Vi] : K[] .

– E[ℓ > M]
ℓ−→ E[M]. We have:

E[ℓ > M] : K[]

≡ ℓ > M : KE

≡ ℓ > (M : KE)
ℓ−→ (M : KE)
≡ E[M] : K[] .

– E[V > ℓ]
ℓ−→ E[V]. We have:

E[V > ℓ] : K[]

≡ V > ℓ : KE

≡ V : λx.ℓ > x : KE

≡ ℓ > (V : KE)
ℓ−→ V : KE

≡ E[V] : K[] .
⊓⊔

B.3 Proof of proposition 3 [AD commutation]

(1) We show that for every P which is either a term or a value of the λℓcps-
calculus the following properties hold:

A If P is a term then R(Cad (P)) ≡ P .
B If P is a value then for any term N , R(Ead (P, x)[N]) ≡ [P/x]R(N).

We prove the two properties at once by induction on the structure of P .

@(x, x+) We are in case A and by definition we have:

R(Cad (@(x, x+))) ≡ R(@(x, x+)) ≡ @(x, x+) .

@(x∗, V, V ∗), V 6= id Again in case A. We have:

R(Cad (@(x∗, V, V ∗)))
≡ R(Ead (V, y)[Cad (@(x∗, y, V ∗))])
≡ [V/y]R(Cad (@(x∗, y, V ∗))) (by ind. hyp. on B)
≡ [V/y]@(x∗, y, V ∗) (by ind. hyp. on A)
≡ @(x∗, V, V ∗) .

let x = πi(z) in M Again in case A. We have:

R(Cad (let x = πi(z) in M))
≡ R(let x = πi(z) in Cad(M))
≡ let x = πi(z) in R(Cad (M))
≡ let x = πi(z) in M (by ind. hyp. on A) .

let x = πi(V) in M,V 6= id Again in case A. We have:

R(Cad (let x = πi(V) in M))
≡ R(Ead (V, y)[let x = πi(y) in Cad(M)])
≡ [V/y]R(let x = πi(y) in Cad (M)) (by ind. hyp. on B)
≡ [V/y]let x = πi(y) in R(Cad (M))
≡ [V/y]let x = πi(y) in M (by ind. hyp. on A)
≡ let x = πi(V) in M .

ℓ > M Last case for A. We have:

R(Cad (ℓ > M))
≡ R(ℓ > Cad (M))
≡ ℓ > R(Cad (M))
≡ ℓ > M (by ind. hyp. on A) .

λy+.M We now turn to case B. We have:

R(Ead (λy+.M, x)[N])
≡ R(let x = λy+.Cad (M) in N)
≡ [R(λy+.Cad(M))/x]R(N)
≡ [λy+.R(Cad (M))/x]R(N)
≡ [λy+.M/x]R(N) (by ind. hyp. on A) .

(y+) Again in case B. We have:

R(Ead ((y+), x)[N])
≡ R(let x = (y+) in N)
≡ [(y+)/x]R(N) .

(y∗, V, V ∗), V 6= id Last case for B. We have:

R(Ead ((y∗, V, V ∗), x)[N])
≡ R(Ead (V, z)[Ead((y∗, z, V ∗), x)[N]])
≡ [V/z]R(Ead ((y∗, z, V ∗), x)[N]) (by ind. hyp. on B)
≡ [V/z]([(y∗, z, V ∗)/x]R(N)) (by ind. hyp. on B)
≡ [(y∗, V, V ∗)/x]R(N) .

(2) The proof is similar to the previous one. We show that for every P which is
either a term or a value of the λℓcps-calculus the following properties hold:

A If P is a term then er(Cad(P)) ≡ Cad(er (P)).
B If P is a value then for any term N , er(Ead (P, x)[N]) ≡ Ead (er(P), x)[er (N)].

We prove the two properties at once by induction on the structure of P .

@(x, x+) We are in case A and by definition we have:

er(Cad (@(x, x+))) ≡ er (@(x, x+)) ≡ @(x, x+) ≡ Cad(er(@(x, x+))) .

@(x∗, V, V ∗), V 6= id Again in case A. We have:

er(Cad (@(x∗, V, V ∗)))
≡ er(Ead (V, y)[Cad(@(x∗, y, V ∗))])
≡ Ead(er (V), y)[er(Cad (@(x∗, y, V ∗)))] (by ind. hyp. on B)
≡ Ead(er (V), y)[Cad(er (@(x∗, y, V ∗)))] (by ind. hyp. on A)
≡ Cad(er(@(x∗, V, V ∗))) .

let x = πi(z) in M Again in case A. We have:

er (Cad(let x = πi(z) in M))
≡ er(let x = πi(z) in Cad(M))
≡ let x = πi(z) in er (Cad(M))
≡ let x = πi(z) in Cad (er(M)) (by ind. hyp. on A)
≡ Cad(er (let x = πi(z) in M)) .

let x = πi(V) in M,V 6= id Again in case A. We have:

er(Cad (let x = πi(V) in M))
≡ er(Ead (V, z)[let x = πi(z) in Cad(M)])
≡ Ead(er (V), z)[let x = πi(z) in er(Cad (M))] (by ind. hyp. on B)
≡ Ead(er (V), z)[let x = πi(z) in Cad (er(M))] (by ind. hyp. on A)
≡ Cad(er (let x = πi(V) in M)) .

ℓ > M Last case for A. We have:

er(Cad (ℓ > M))
≡ er(ℓ > Cad (M))
≡ er(Cad(M))
≡ Cad(er(M)) (by ind. hyp. on A)
≡ Cad(er(ℓ > M)) .

λy+.M We now turn to case B. We have:

er(Ead (λy+.M, x)[N])
≡ er(let x = λy+.Cad (M) in N)
≡ let x = λy+.er(Cad (M)) in er(N)
≡ let x = λy+.Cad(er (M)) in er(N) (by ind. hyp. on A)
≡ Ead(er (λy+.M), x)[er (N)] .

(y+) Again in case B. We have:

er(Ead ((y+), x)[N])
≡ er (let x = (y+) in N)
≡ let x = (y+) in er (N)
≡ Ead (er((y+)), x)[er (N)] .

(y∗, V, V ∗), V 6= id Last case for B. We have:

er(Ead ((y∗, V, V ∗), x)[N])
≡ er(Ead (V, z)[Ead((y∗, z, V ∗), x)[N]])
≡ Ead(er (V), x)[er (Ead ((y∗, z, V ∗), x)[N])] (by ind. hyp. on B)
≡ Ead(er (V), x)[Ead (er ((y∗, z, V ∗)), x)[er (N)]] (by ind. hyp. on B)
≡ Ead(er ((y∗, V, V ∗)), x)[er (N)] .

⊓⊔

B.4 Proof of proposition 4 [AD simulation]

First we fix some notation. We associate a substitution σE with an evaluation
context E of the λℓcps,a-calculus as follows:

σ[] = Id σlet x=V in E = [R(V)/x] ◦ σE .

Then we prove the property by case analysis.

– If R(N) ≡ @(λy+.M, V +) → [V +/y+]M then N ≡ E[@(x, x+)], σE(x) ≡
λy+.M , and σE(x

+) ≡ V +.
Moreover, E ≡ E1[let x = λy+.M ′ in E2] and σE1(λy

+.M ′) ≡ λy+.M .
Therefore,N → E[[x+/y+]M ′] ≡ N ′ and we check thatR(N ′) ≡ σE([x

+/y+]M ′) ≡
[V +/y+]M .

– If R(N) ≡ let x = πi((V1, . . . , Vn)) in M → [Vi/x]M then N ≡ E[let x =
πi(y) in N

′′], σE(y) ≡ (V1, . . . , Vn), and σE(N
′′) ≡M .

Moreover,E ≡ E1[let y = (z1, . . . , zn) inE2] and σE1(z1, . . . , zn) ≡ (V1, . . . , Vn).
Therefore,N → E[[zi/x]N

′′] ≡ N ′ and we check thatR(N ′) ≡ σE([zi/x]N
′′) ≡

[Vi/x]M .

– If R(N) ≡ ℓ > M
ℓ−→ M then N ≡ E[ℓ > N ′′] and σE(N

′′) ≡ M . We

conclude by observing that N
ℓ−→ E[N ′′]. ⊓⊔

B.5 Proof of proposition 5 [CC commutation]

This is a simple induction on the structure of the term M .

@(x, y+) We have:
er(Ccc(@(x, y+)))
≡ er(let z = π1(x) in @(z, x, y+))
≡ let z = π1(x) in @(z, x, y+)
≡ Ccc(@(x, y+))
≡ er(Ccc(@(x, y+))) .

let x = B in M , B not a function We have:

er(Ccc(let x = B in M))
≡ er (let x = B in Ccc(M))
≡ let x = B in er(Ccc(M))
≡ let x = B in Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(let x = B in M)) .

let x = λx+.N in M, fv(λx+.N) = {z1, . . . , zk} We have:

er(Ccc(let x = λx+.N in M))
≡ er (let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(N) in

let x = (y, z1, . . . , zk) in Ccc(M))
≡ let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in er(Ccc(N)) in

let x = (y, z1, . . . , zk) in er (Ccc(M))
≡ let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(er (N)) in

let x = (y, z1, . . . , zk) in Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(let x = λx+.N in M)) .

ℓ > M We have:
er(Ccc(ℓ > M))
≡ er(ℓ > Ccc(M))
≡ er(Ccc(M))
≡ Ccc(er (M)) (by ind. hyp.)
≡ Ccc(er (ℓ > M)) .

⊓⊔

B.6 Proof of proposition 6 [CC simulation]

As a first step we check that the closure conversion function commutes with
name substitution:

Ccc([x/y]M) ≡ [x/y]Ccc(M) .

This is a direct induction on the structure of the term M . Then we extend the
closure conversion function to contexts as follows:

Ccc([]) = []
Ccc(let x = (y+) in E) = let x = (y+) in Ccc(E)
Ccc(let x = λx+.M in E) = let y = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(M) in

let x = (y, z1, . . . , zk) in Ccc(E)
where: fv(λx+.M) = {z1, . . . , zk} .

We note that for any evaluation context E, Ccc(E) is again an evaluation context,
and moreover for any term M we have:

Ccc(E[M]) ≡ Ccc(E)[Ccc(M)] .

Finally we prove the simulation property by case analysis of the reduction rule
being applied.

– Suppose M ≡ E[@(x, y+)] → E[[y+/x+]M] where E(x) = λx+.M . Then:

Ccc(E[@(x, y)]) ≡ Ccc(E)[let z = π1(z) in @(z, x, y+)]

with Ccc(E)(x) = (y, z1, . . . , zk) and
Ccc(E)(y) = λz, x+.let z1 = π2(z), . . . , zk = πk+1(z) in Ccc(M). Therefore:

Ccc(E)[let z = π1(z) in @(z, x, y+)]
→ Ccc(E)[@(y, x, y+)]
→ Ccc(E)[let z1 = π2(x), . . . , zk = πk+1(x) in [y+/x+]Ccc(M)]
∗→ Ccc(E)[[y+/x+]Ccc(M)]
≡ Ccc(E)[Ccc([y+/x+]M)] (by substitution commutation)
≡ Ccc(E[[y+/x+]M]) .

– SupposeM ≡ E[let x = πi(y) inM] → E[[zi/x]M] whereE(y) = (z1, . . . , zk),
1 ≤ i ≤ k. Then:

Ccc(E[let x = πi(y) in M]) ≡ Ccc(E)[let x = πi(y) in Ccc(M)]

with Ccc(E)(y) = (z1, . . . , zk). Therefore:

Ccc(E)[let x = πi(y) in Ccc(M)]
→ Ccc(E)[[zi/x]Ccc(M)]
≡ Ccc(E)[Ccc([zi/x]M)] (by substitution commutation)
≡ Ccc(E[[zi/x]M]) .

– Suppose M ≡ E[ℓ > M]
ℓ−→ E[M]. Then:

Ccc(E[ℓ > M])
≡ Ccc(E)[Ccc(ℓ > M)]
≡ Ccc(E)[ℓ > Ccc(M)]
ℓ−→ Ccc(E)[Ccc(M)]
≡ Ccc(E[M]) .

⊓⊔

B.7 Proof of proposition 7 [on hoisting transformations]

As a preliminary remark, note that the hoisting contexts D can be defined in an
equivalent way as follows:

D ::= [] || D[let x = B in []] || D[let x = λy+.[] in M] || D[ℓ > []]

If D is a hoisting context and x is a variable we define D(x) as follows:

D(x) =

λz+.T if D = D′[let x = λz+.T in []]
D′(x) o.w. if D = D′[let y = B in []], x 6= y
D′(x) o.w. if D = D′[let y = λy+.[] in M], x /∈ {y+}
undefined o.w.

The intuition is that D(x) checks whether D binds x to a simple function λz+.T .
If this is the case it returns the simple function as a result, otherwise the result
is undefined.

Let I be the set of terms of the λℓcps,a such that ifM ≡ D[let x = λy+.T in N]
and z ∈ fv(λy+.T) then D(z) = λz+.T ′. Thus a name free in a simple function
must be bound to another simple function. We prove the following properties:

1. The hoisting transformations terminate.
2. The hoisting transformations are confluent (hence the result of the hoisting

transformations is unique).
3. If a term M of the λℓcps,a-calculus contains a function definition then M ≡
D[let x = λy+.T in N] for some D,T,N .

4. All terms in λℓcc,a belong to the set I (trivially).
5. The set I is an invariant of the hoisting transformations, i.e., if M ∈ I and
M ❀ N then N ∈ I.

6. If a term satisfying the invariant above is not a program then a hoisting
transformation applies.

(1) To prove the termination of the hoisting transformations we introduce a size
function from terms to positive natural numbers as follows:

|@(x, x+)| = 1
|let x = λy+.M in N | = 2 · |M |+ |N |
|let x = C in N | = 2 · |N |
|ℓ > N | = 2 · |N | .

Then we check that if M ❀ N then |M | > |N |. Note that the hoisting context
D induces a function which is strictly monotone on natural numbers. Thus it
is enough to check that the size of the redex term is larger than the size of the
reduced term.

(h1)

|let x = C in let y = λz+.T in M |
= 2 · (2 · |T |+ |M |)
> 2 · |T |+ 2 · |M |
= |let y = λz+.T in let x = C in M | .

(h2)

|let x = λw+.let y = λz+.T in M in N |
= 2 · (2 · |T |+ |M |) + |N |
> 2 · |T |+ 2 · |M |+ |N |
= |let y = λz+.T in let x = λw+.M in N | .

(h3)

|ℓ > let y = λz+.T in M |
= 2 · (2 · |T |+ |M |)
> 2 · |T |+ 2 · |M |
= |let y = λz+.T in ℓ > M | .

(2) Since the hoisting transformation is terminating, by Newman’s lemma it
is enough to prove local confluence. There are 9 = 3 · 3 cases to consider. In
each case one checks that the two redexes cannot superpose. Moreover, since
the hoisting transformations neither duplicate nor erase terms, one can close the
diagrams in one step.

For instance, suppose the term D[let x = λw+.let y = λz+.T in M in N]
contains a distinct redex ∆ of the same type (a function definition containing a
simple function definition). Then the root of this redex can be in the subterms
M or N or in the context D. Moreover if it is in D, then either it is disjoint
from the first redex or it contains it strictly. Indeed, the second let of the second
redex cannot be the first let of the first redex since the latter is not defining a
simple function.

(3) By induction on M . Let F be an abbreviation for let x = λy+.T in N

@(x, x+) The property holds trivially.

let y = C in M Then M must contain a function definition. Then by inductive
hypothesis, M ≡ D′[F]. We conclude by taking D ≡ let y = C in D.

let y = λx+.M ′ in M If M is a restricted term then we take D ≡ []. Otherwise,
M ′ must contain a function definition and by inductive hypothesis, M ′ ≡
D′[F]. Then we take D ≡ let y = λx+.D′ in M .

ℓ > M Then M contains a function definition and by inductive hypothesisM ≡
D′[F]. We conclude by taking D ≡ ℓ > D′.

(4) In the terms of the λℓcc,a calculus all functions are closed and therefore the
condition is vacuously satisfied.

(5) We proceed by case analysis on the hoisting transformations.

(6) We proceed by induction on the structure of the term M .

@(x, y+) This is a program.
let x = B in M ′ There are two cases:

– If M ′ is not a program then by inductive hypothesis a hoisting transfor-
mation applies and the same transformation can be applied to M .

– If M ′ is a program then it has a function definition on top (otherwise
M is a program). Because M belongs to I the side condition of (h1) is
satisfied.

let x = λy+.M ′ in M ′′ Again there are two cases:

– If M ′ or M ′′ are not programs then by inductive hypothesis a hoisting
transformation applies and the same transformation can be applied to
M .

– Otherwise, M ′ is a program with a function definition on top (otherwise
M is a program). Because M belongs to I the side condition of (h2) is
satisfied.

ℓ > M ′ Again there are two cases:

– If M ′ is not a program then by inductive hypothesis a hoisting transfor-
mation applies and the same transformation can be applied to M .

– If M ′ is a program then it has a function definition on top (otherwiseM
is a program) and (h3) applies to M . ⊓⊔

B.8 Proof of proposition 8 [hoisting commutation]

As a preliminary step, extend the erasure function to the hoisting contexts in
the obvious way and notice that (i) if D is a hoisting context then er (D) is a
hoisting context too, and (ii) er (D[M]) ≡ er(D)[er (M)].

(1) We proceed by case analysis on the hoisting transformation applied to M .
The case where er (M) ≡ er (N) arises in (h3):

D[ℓ > let x = λy+.T in M] ❀ D[let x = λy+.T in ℓ > M]
er(D[ℓ > let x = λy+.T in M]) ≡ er(D[let x = λy+.T in ℓ > M])

(2) We show that er(M) ❀ entails thatM ❀. Since er(M) has no labels, either
(h1) or (h2) apply. Then M is a term that is derived from er (M) by inserting
(possibly empty) sequences of pre-labelling before each subterm. We check that
either the hoisting transformation applied to er(M) can be applied to M too or
(h3) applies.

(3) If Ch(M) ≡ N then by definition we have M ❀∗ N 6❀. By (1) er(M) ❀∗

er(N), and by (2) er(N) 6❀. Hence Ch(er(M)) ≡ er(N) ≡ er (Ch(M)). ⊓⊔

B.9 Proof of proposition 9 [hoisting simulation]

Definition 2. A (strong) simulation on the terms of the λℓcps,a-calculus is a

binary relation R such that if M R N and M
α−→ M ′ then there is N ′ such that

N
α−→ N ′ and M ′ R N ′.

Definition 3. A (pre-)congruence on the terms of the λℓcps,a-calculus is an equiv-
alence relation (a pre-order) which is preserved by the operators of the calculus.

Definition 4. Let ≃ be the smallest congruence on terms of the λℓcps,a-calculus
which is induced by structural equivalence and the following commutation of let-
definitions:

let x1 = V1 in let x2 = V2 in M ≃ let x2 = V2 in let x1 = V1 in M

where: x1 6= x2, x1 /∈ fv(V2), x2 /∈ fv(V1).

The relation ≃ is preserved by name substitution and it is a simulation.

Definition 5. Let � the smallest pre-congruence on terms of the λℓcps,a-calculus
which is induced by structural equivalence and the following collapse of let-
definitions:

let x = V in let x = V in M ≃ let x = V in M

where: x /∈ fv(V).

The relation � is preserved by name substitution and it is a simulation.

Definition 6. Let Sh be the relation ≃ ◦ �.

Note that Sh is a simulation too. Then we can state the main lemma.

Lemma 1. Let M be a term of the λℓcps,a-calculus. If M
α−→ M ′ and M ❀ N

then there is N ′ such that N
α−→ N ′ and M ′ (❀∗) ◦ Sh N

′.

Proof. As a preliminary remark we notice that the hoisting transformations
are preserved by name substitution. Namely if M ❀ N then [y+/x+]M ❀

[y+/x+]N .
There are three reduction rules and three hoisting transformations hence

there are 9 cases to consider and for each case we have to analyse how the two
redexes can superpose.

As usual a term can be regarded as a tree and an occurrence in the tree is
identified by a path π which is a sequence of natural numbers.

– The reduction rule is

E[@(x, y+)] → E[[y+/z+]M]

where E(x) = λz+.M . We suppose that π is the path which corresponds to
the let-definition of the variable x and π′ is that path that determines the
redex of the hoisting transformation.

(h1) There are two critical cases.
1. The let-definition that defines a function of the hoisting transforma-

tion coincides with the let-definition of x. In this case M is actually
a restricted term T . The diagram is closed in one step.

2. The path π′ determines a subterm of M . If we reduce first then we
have to apply the hoisting transformation twice to close the diagram
using the fact that these transformations are preserved by name sub-
stitution.

(h2) Again there are two critical situations.
1. The top level let-definition of the hoisting transformation coincides

with the let-definition of the variable x in the reduction. This is the
case illustrated by the example 5. If we reduce first then we have
to apply the hoisting transformation twice (again using preservation
under name substitution). After this we have to commute the let-
definitions and finally collapse two identical ones.

2. The path π′ determines a subterm of M . If we reduce first then we
have to apply the hoisting transformation twice to close the diagram
using the fact that these transformations are preserved by name sub-
stitution.

(h3) There are two critical cases.
1. The function let-definition in the hoisting transformation coincides

with the let-definition of the variable x in the reduction. We close
the diagram in one step.

2. The path π′ determines a subterm of M . If we reduce first then we
have to apply the hoisting transformation twice to close the diagram
using the fact that these transformations are preserved by name sub-
stitution.

– The reduction rule is

E[let x = πi(y) in M] → E[[zi/x]M]

where E(y) = (z1, . . . zn) and 1 ≤ i ≤ n.

(h1) There are two critical cases.
1. The first let-definition in the hoisting transformation coincides with

the let-definition of the tuple in the reduction. We close the diagram
in one step

2. The first let-definition in the hoisting transformation coincides with
the projection in the reduction. If we reduce first then there is no
need to apply a hoisting transformation to close the diagram because
the projection disappears.

(h2) The only critical case arises when the redex for the hoisting transfor-
mation is contained in M . We close the diagram in one step using the
fact that the transformations are preserved by name substitution.

(h3) Same argument as in the previous case.

– The reduction rule is

E[ℓ > M]
ℓ−→ E[M]

The hoisting transformations can be either in E or in M . In both cases we
close the diagram in one step. ⊓⊔

We conclude by proving by diagram chasing the following proposition. We
rely on the previous lemma and the fact that Sh is a simulation.

Proposition 11. The relation Th = ((❀∗) ◦ Sh)
∗ is a simulation and for all

terms of the λℓcc,a-calculus, M Th Ch(M).

B.10 Proof of theorem 1 [commutation and simulation]

By composition of the commutation and simulation properties of the four com-
pilation steps.

B.11 Proof of proposition 10 [labelling properties]

(1) Both properties are proven by induction on M . The first is immediate. We
spell out the second.

x Then Li(x) = x ∈W1 ⊆W0.

λx+.M Then Li(λx
+.M) = λx+.ℓ > L1(M) and by inductive hypothesis L1(M) ∈

W1.

Hence, ℓ > L1(M) ∈W1 and λx+.ℓ > L1(M) ∈ W1.

(M1, . . . ,Mn) Then Li((M1, . . . ,Mn)) = (L0(M1), . . . ,L0(Mn)) and by induc-
tive hypothesis L0(Mj) ∈ W0 for j = 1, . . . , n.

Hence, (L0(M1), . . . ,L0(Mn)) ∈W1 ⊆W0.

πj(M) Same argument as for the pairing.

let x =M in N Then Li(let x = M in N) = let x = L0(M) in Li(N) and
by inductive hypothesis L0(M) ∈ W0 and Li(N) ∈ W1. Hence let x =
L0(M) in Li(N) ∈ Wi.

@(M1, . . . ,Mn) and i = 0 Then L0(@(M1, . . . ,Mn)) = @(L0(M1), . . . ,L0(Mn)) >
ℓ and by inductive hypothesis L0(Mj) ∈W0 for j = 1, . . . , n. Hence @(L0(M1), . . . ,L0(Mn)) >
ℓ ∈W0.

@(M1, . . . ,Mn) and i = 1 Same argument as in the previous case to conclude
that
@(L1(M1), . . . ,L1(Mn)) ∈W1.

(2) By (1) we know that er(L(M)) ≡M and L(M) ∈W0. Then:

P ≡ C(M)
≡ C(er(L(M)))
≡ er (C(L(M))) (by 1(1)) .

(3) The main point is to show that the CPS compilation of a labelled term
is a term where a pre-labelling appears exactly after each λ-abstraction. The
following compilation steps (administrative, closure conversion, hoisting) neither
destroy nor introduce new λ-abstractions while maintaining the invariant that
the body of each function definition contains exactly one pre-labelling.

As a preliminary step, we define a restricted syntax for the λℓcps-calculus
where labels occur exactly after each λ-abstraction.

V ::= id || λid+.ℓ > M || (V +) (restricted values)
M ::= @(V, V +) || let id = πi(V) in M (restricted CPS terms)
K ::= id || λid .M (restricted continuations)

Let us call this language λℓcps,r (r for restricted). First we remark that if V
is a restricted value and M is a restricted CPS term then [V/x]M is again a
restricted CPS term. Then we show the following property.

For all terms M of the λ-calculus and all continuations K of the λℓcps,r-

calculus the term Li(M) : K is again a term of the λℓcps,r-calculus pro-
vided that i = 0 if K is a function and i = 1 if K is a variable.

Notice that the initial continuation K0 = λx.@(halt , x) is a functional con-
tinuation in the restricted calculus and recall that by definition Ccps(L(M)) =
L0(M) : K0. We proceed by induction on M and case analysis assuming that if
i = 0 then K = λy.N .

x, i = 0 We have: L0(x) : K = x : K = [x/y]N .
x, i = 1 We have: L0(x) : k = x : k = @(k, x).
λx+.M , i = 0 We have:

L0(λx
+.M) : K = λx+.ℓ > L1(M) : K = [λx+, k.ℓ > L1(M) : k/y]N

and we apply the inductive hypothesis on L1(M) : k and closure under value
substitution.

λx+.M , i = 1 We have:

L1(λx
+.M) : k = λx+.ℓ > L1(M) : k = @(k, λx+, k.ℓ > L1(M) : k)

and we apply the inductive hypothesis on L1(M) : k.
@(M1, . . . ,Mn), i = 0 We have:

Li(@(M1, . . . ,Mn)) : K
≡ @(L0(M1), . . . ,L0(Mn)) > ℓ : K
≡ @(L0(M1), . . . ,L0(Mn)) : K

′

≡ L0(M1) : λx1 . . .L0(Mn) : λxn.@(x1, . . . , xn,K
′)

whereK ′ = λy.ℓ > N . Then we apply the inductive hypothesis onMn, . . . ,M1

with the suitable functional continuations.
@(M1, . . . ,Mn), i = 1 We have:

Li(@(M1, . . . ,Mn)) : K
≡ @(L0(M1), . . . ,L0(Mn)) : K
≡ L0(M1) : λx1 . . .L0(Mn) : λxn.@(x1, . . . , xn,K) .

Again we apply the inductive hypothesis on Mn, . . . ,M1 with the suitable
functional continuations.

(M1, . . . ,Mn) We have:

Li((M1, . . . ,Mn)) : K
≡ (L0(M1), . . . ,L0(Mn)) : K
≡ L0(M1) : λx1 . . .L0(Mn) : λxn.@(x1, . . . , xn,K) .

We apply the inductive hypothesis on Mn, . . . ,M1 with the suitable func-
tional continuations.

πj(M) We have:
Li(πj(M)) : K
≡ πj(L0(M)) : K
≡ L0(M) : λx.let y = πj(x) in y : K .

We apply the inductive hypothesis on M with a functional continuation.
let x = N in M We have:

Li(let x = N in M) : K
≡ let x = L0(N) in Li(M) : K
≡ L0(N) : λx.Li(M) : K .

We apply the inductive hypothesis on M and then on N with a functional
continuation. ⊓⊔

An Elementary Affine λ-calculus

with Multithreading and Side Effects∗

Antoine Madet Roberto M. Amadio

Laboratoire PPS, Université Paris Diderot

{madet,amadio}@pps.jussieu.fr

Abstract

Linear logic provides a framework to control the complexity of higher-

order functional programs. We present an extension of this framework

to programs with multithreading and side effects focusing on the case of

elementary time. Our main contributions are as follows. First, we provide

a new combinatorial proof of termination in elementary time for the func-

tional case. Second, we develop an extension of the approach to a call-by-

value λ-calculus with multithreading and side effects. Third, we introduce

an elementary affine type system that guarantees the standard subject re-

duction and progress properties. Finally, we illustrate the programming

of iterative functions with side effects in the presented formalism.

∗Work partially supported by project ANR-08-BLANC-0211-01 “COMPLICE” and the
Future and Emerging Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-Open grant number: 243881
(project CerCo).

1

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Contents

1 Introduction 3

2 Elementary Time in a Modal λ-calculus 4

2.1 A Modal λ-calculus . 4
2.1.1 Syntax . 4
2.1.2 Operational Semantics . 5

2.2 Depth System . 5
2.3 Elementary Bound . 7

3 Elementary Time in a Modal λ-calculus with Side Effects 10

3.1 A Modal λ-calculus with Multithreading and Regions 10
3.1.1 Syntax . 10
3.1.2 Operational Semantics . 11

3.2 Extended Depth System . 12
3.3 Elementary Bound . 14

4 An Elementary Affine Type System 16

5 Expressivity 19

5.1 Completeness . 19
5.2 Iteration with Side Effects . 19

6 Conclusion 21

A Proofs 23

A.1 Proof of theorem 3.5 . 23
A.2 Proof of proposition 3.6 . 27
A.3 Proof of lemma 2.8 . 28
A.4 Proof of theorem 3.7 . 29
A.5 Proof of proposition 4.1 . 31
A.6 Proof of theorem 4.4 . 32

A.6.1 Substitution . 32
A.6.2 Subject Reduction . 33
A.6.3 Progress . 34

A.7 Proof of theorem 5.3 . 36
A.7.1 Successor, addition and multiplication 37
A.7.2 Iteration schemes . 38
A.7.3 Coercion . 39
A.7.4 Predecessor and subtraction 39
A.7.5 Composition . 40
A.7.6 Bounded sums and products 41

2

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

1 Introduction

There is a well explored framework based on Linear Logic to control the com-
plexity of higher-order functional programs. In particular, light logics [11, 10, 3]
have led to a polynomial light affine λ-calculus [13] and to various type sys-
tems for the standard λ-calculus guaranteeing that a well-typed term has a
bounded complexity [9, 8, 5]. Recently, this framework has been extended to a
higher-order process calculus [12] and a functional language with recursive def-
initions [4]. In another direction, the notion of stratified region [7, 1] has been
used to prove the termination of higher-order multithreaded programs with side
effects.

Our general goal is to extend the framework of light logics to a higher-order
functional language with multithreading and side effects by focusing on the
case of elementary time [10]. The key point is that termination does not rely
anymore on stratification but on the notion of depth which is standard in light
logics. Indeed, light logics suggest that complexity can be tamed through a fine
analysis of the way the depth of the occurrences of a λ-term can vary during
reduction.

Our core functional calculus is a λ-calculus extended with a constructor ‘!’
(the modal operator of linear logic) marking duplicable terms and a related let !
destructor. The depth of an occurrence in a λ-term is the number of !′s that
must be crossed to reach the occurrence. Our contribution can be described as
follows.

1. In Section 2 we propose a formal system called depth system that con-
trols the depth of the occurrences and which is a variant of a system
proposed in [13]. We show that terms well-formed in the depth system are
guaranteed to terminate in elementary time under an arbitrary reduction
strategy. The proof is based on an original combinatorial analysis of the
depth system ([10] assumes a specific reduction strategy while [13] relies
on a standardization theorem).

2. In Section 3, following previous work on an affine-intuitionistic system [2],
we extend the functional core with parallel composition and operations
producing side effects on an ‘abstract’ notion of state. We analyse the im-
pact of side-effects operations on the depth of the occurrences and deduce
an extended depth system. We show that it still guarantees termination
of programs in elementary time under a natural call-by-value evaluation
strategy.

3. In Section 4, we refine the depth system with a second order (polymorphic)
elementary affine type system and show that the resulting system enjoys
subject reduction and progress (besides termination in elementary time).

4. Finally, in Section 5, we discuss the expressivity of the resulting type
system. On the one hand we check that the usual encoding of elementary
functions goes through. On the other hand, and more interestingly, we
provide examples of iterative (multithreaded) programs with side effects.

3

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

The λ-calculi introduced are summarized in Table 1.1. For each concur-
rent language there is a corresponding functional fragment and each language
(functional or concurrent) refines the one on its left hand side. The elementary
complexity bounds are obtained for the λ!

δ and λ!R
δ calculi while the progress

property and the expressivity results refer to their typed refinements λ!
EA and

λ!R
EA, respectively. Proofs are available in Appendix A.

Functional λ! ⊃ λ!
δ ⊃ λ!

EA

∩
Concurrent λ!R ⊃ λ!R

δ ⊃ λ!R
EA

Table 1.1: Overview of the λ-calculi considered

2 Elementary Time in a Modal λ-calculus

In this section, we present our core functional calculus, a related depth system,
and show that every term which is well-formed in the depth system terminates
in elementary time under an arbitrary reduction strategy.

2.1 A Modal λ-calculus

We introduce a modal λ-calculus called λ!. It is very close to the light affine

λ-calculus of Terui [13] where the paragraph modality ‘§’ used for polynomial
time is dropped and where the ‘!’ modality is relaxed as in elementary linear
logic [10].

2.1.1 Syntax

Terms are described by the grammar in Table 2.1: We find the usual set of

M,N ::= x, y, z . . . | λx.M |MN | !M | let !x = N in M

Table 2.1: Syntax of λ!

variables, λ-abstraction and application, plus a modal operator ‘!’ (read bang)
and a let ! operator. We define !0M = M and !n+1M = !(!nM). In the terms
λx.M and let !x = N in M the occurrences of x in M are bound. The set of
free variables of M is denoted by FV(M). The number of free occurrences of x
in M is denoted by FO(x,M). M [N/x] denotes the term M in which each free
occurrence of x has been substituted by the term N .

Each term has an abstract syntax tree as exemplified in Figure 2.1(a). A
path starting from the root to a node of the tree denotes an occurrence of the
program that is denoted by a word w ∈ {0, 1}∗ (see Figure 2.1(b)).

We define the notion of depth:

4

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

λx

let !y

x !

@

y y

(a)

ǫ

0

00 01

010

0100 0101

(b)

0

0

0 0

1

1 1

(c)

Figure 2.1: Syntax tree of the term λx.let !y = x in !(yy), addresses and depths

Definition 2.1 (depth). The depth d(w) of an occurrence w is the number of
!’s that the path leading to w crosses. The depth d(M) of a term M is the
maximum depth of its occurrences.

In Figure 2.1(c), each occurrence is labelled with its depth. Thus d(λx.let !y =
x in !(yy)) = 1. In particular, the occurrence 01 is at depth 0; what matters in
computing the depth of an occurrence is the number of ! that precedes strictly
the occurrence.

2.1.2 Operational Semantics

We consider an arbitrary reduction strategy. Hence, an evaluation context E
can be any term with exactly one occurrence of a special variable [], the ‘hole’.
E[M] denotes E where the hole has been substituted by M . The reduction rules
are given in Table 2.2. The let ! is ‘filtering’ modal terms and ‘destructs’ the

E[(λx.M)N] → E[M [N/x]]
E[let !x = !N in M] → E[M [N/x]]

Table 2.2: Operational semantics of λ!

bang of the term !N after substitution. In the sequel,
∗
→ denotes the reflexive

and transitive closure of →.

2.2 Depth System

By considering that deeper occurrences have less weight than shallow ones, the
proof of termination in elementary time [10] relies on the observation that when
reducing a redex at depth i the following holds:

(1) the depth of the term does not increase,

(2) the number of occurrences at depth j < i does not increase,

5

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

(3) the number of occurrences at depth i strictly decreases,

(4) the number of occurrences at depth j > i may be increased by a multi-
plicative factor k bounded by the number of occurrences at depth i+ 1.

Theses properties can be guaranteed by the following requirements:

(i) in λx.M , x may occur at most once in M and at depth 0,

(ii) in let !x = M in N , x may occur arbitrarily many times in N and at depth
1.

Hence, the rest of this section is devoted to the introduction of a set of
inferences rules called depth system. Every term which is valid in the depth
system will terminate in elementary time. First, we introduce the judgement:

Γ ⊢δ M

where δ is a natural number and the context Γ is of the form x1 : δ1, . . . , xn : δn.
We write dom(Γ) for the set {x1, . . . , xn}. It should be interpreted as follows:

The free variables of !δM may only occur at the depth specified
by the context Γ.

The inference rules of the depth system are presented in Table 2.3.

Γ, x : δ ⊢δ x

Γ, x : δ ⊢δ M FO(x,M) ≤ 1

Γ ⊢δ λx.M

Γ ⊢δ M Γ ⊢δ N

Γ ⊢δ MN

Γ ⊢δ N Γ, x : (δ + 1) ⊢δ M

Γ ⊢δ let !x = N in M

Γ ⊢δ+1 M

Γ ⊢δ !M

Table 2.3: Depth system: λ!
δ

We comment on the rules. The variable rule says that the current depth of a
free variable is specified by the context. The λ-abstraction rule requires that the
occurrence of x in M is at the same depth as the formal parameter; moreover
it occurs at most once so that no duplication is possible at the current depth
(Property (3)). The application rule says that we may only apply two terms if
they are at the same depth. The let ! rule requires that the bound occurrences of
x are one level deeper than the current depth; note that there is no restriction
on the number of occurrences of x since duplication would happen one level
deeper than the current depth. Finally, the bang rule is better explained in
a bottom-up way: crossing a modal occurrence increases the current depth by
one.

6

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Definition 2.2 (well-formedness). A term M is well-formed if for some Γ and
δ a judgement Γ ⊢δ M can be derived.

Example 2.3. The term of Figure 1(a) is well-formed according to our depth
system:

x : δ ⊢δ x

x : δ, y : δ + 1 ⊢δ+1 y x : δ, y : δ + 1 ⊢δ+1 y

x : δ, y : δ + 1 ⊢δ+1 yy

x : δ, y : δ + 1 ⊢δ !(yy)

x : δ ⊢δ let !y = x in !(yy)

⊢δ λx.let !y = x in !(yy)

On the other hand, the followings term is not valid:

P = λx.let !y = x in !(y!(yz))

Indeed, the second occurrence of y in !(y!(yz)) is too deep of one level, hence
reduction may increase the depth by one. For example, P !!N of depth 2 reduces
to !(!N !(!N)z) of depth 3.

Proposition 2.4 (properties on the depth system). The depth system satisfies

the following properties:

1. If Γ ⊢δ M and x occurs free in M then x : δ′ belongs to Γ and all occur-

rences of x in !δM are at depth δ′.

2. If Γ ⊢δ M then Γ,Γ′ ⊢δ M .

3. If Γ, x : δ′ ⊢δ M and Γ ⊢δ
′

N then d(!δM [N/x]) ≤ max (d(!δM), d(!δ
′

N))
and Γ ⊢δ M [N/x].

4. If Γ ⊢0 M and M → N then Γ ⊢0 N and d(M) ≥ d(N).

2.3 Elementary Bound

In this section, we prove that well-formed terms terminate in elementary time
under an arbitrary reduction strategy. To this end, we define a measure on
terms based on the number of occurrences at each depth.

Definition 2.5 (measure). Given a term M and 0 ≤ i ≤ d(M), let ωi(M) be
the number of occurrences in M of depth i increased by 2 (so ωi(M) ≥ 2). We
define µi

n(M) for n ≥ i ≥ 0 as follows:

µi
n(M) = (ωn(M), . . . , ωi+1(M), ωi(M))

We write µn(M) for µ0
n(M). We order the vectors of n+1 natural number with

the (well-founded) lexicographic order > from right to left.

We derive a termination property by observing that the measure strictly
decreases during reduction.

7

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Proposition 2.6 (termination). If M is well-formed, M →M ′ and n ≥ d(M)
then µn(M) > µn(M

′).

Proof. We do this by case analysis on the reduction rules:

• M = E[(λx.M1)M2]→M ′ = E[M1[M2/x]]
Let the occurrence of the redex (λx.M1)M2 be at depth i. The restrictions
on the formation of terms require that x occurs at most once in M1 at
depth 0. Then ωi(M) − 3 ≥ ωi(M

′) because we remove the nodes for
application and λ-abstraction and either M2 disappears or the occurrence
of the variable x in M1 disappears (both being at the same depth as the
redex). Clearly ωj(M) = ωj(M

′) if j 6= i, hence

µn(M
′) ≤ (ωn(M), . . . , ωi+1(M), ωi(M)− 3, µi−1(M)) (2.1)

and µn(M) > µn(M
′).

• M = E[let !x =!M2 in M1]→M ′ = E[M1[M2/x]]
Let the occurrence of the redex let !x =!M2 in M1 be at depth i. The
restrictions on the formation of terms require that x may only occur in M1

at depth 1 and hence in M at depth i+1. We have that ωi(M) = ωi(P)−2
because the let ! node disappear. Clearly, ωj(M) = ωj(M

′) if j < i. The
number of occurrences of x in M1 is bounded by k = ωi+1(M) ≥ 2. Thus
if j > i then ωj(M

′) ≤ k · ωj(M). Let’s write, for 0 ≤ i ≤ n:

µi
n(M) · k = (ωn(M) · k, ωn−1(M) · k, . . . , ωi(M) · k)

Then we have

µn(M
′) ≤ (µi+1

n (M) · k, ωi(M)− 2, µi−1(M)) (2.2)

and finally µn(M) > µn(M
′).

We now want to show that termination is actually in elementary time. We
recall that a function f on integers is elementary if there exists a k such that
for any n, f(n) can be computed in time O(t(n, k)) where:

t(n, 0) = 2n, t(n, k + 1) = 2t(n,k) .

Definition 2.7 (tower functions). We define a family of tower functions
tα(x1, . . . , xn) by induction on n where we assume α ≥ 1 and xi ≥ 2:

tα() = 0

tα(x1, x2, . . . , xn) = (α · x1)
2tα(x2,...,xn)

n ≥ 1

Then we need to prove the following crucial lemma.

8

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Lemma 2.8 (shift). Assuming α ≥ 1 and β ≥ 2, the following property holds

for the tower functions with x,x ranging over numbers greater or equal to 2:

tα(β · x, x
′,x) ≤ tα(x, β · x

′,x)

Now, by a closer look at the shape of the lexicographic ordering during
reduction, we are able to compose the decreasing measure with a tower function.

Theorem 2.9 (elementary bound). Let M be a well-formed term with α =
d(M) and let tα denote the tower function with α + 1 arguments. If M → M ′

then tα(µα(M)) > tα(µα(M
′)).

Proof. We illustrate the proof for α = 2 and the crucial case where

M = let !x = !M1 in M2 →M ′ = M1[M2/x]

Let µ2(M) = (x, y, z) such that x = ω2(M), y = ω1(M) and z = ω0(M). We
want to show that:

t2(µ2(M
′)) < t2(µ2(M))

We have:

t2(µ2(M
′)) ≤ t2(x · y, y · y, z − 2) by inequality (2.2)

≤ t2(x, y
3, z − 2) by Lemma 2.8

Hence we are left to show that:

t2(y
3, z − 2) < t2(y, z) i.e. (2y3)2

2(z−2)

< (2y)2
2z

We have:

(2y3)2
2(z−2)

≤ (2y)3·2
2(z−2)

Thus we need to show:
3 · 22(z−2) < 22z

Dividing by 22z we get:
3 · 2−4 < 1

which is obviously true. Hence t2(µ2(M
′)) < t2(µ2(M)).

This shows that the number of reduction steps of a term M is bound by an
elementary function where the height of the tower depends on d(M). We also

note that if M
∗
→ M ′ then tα(µα(M)) bounds the size of M ′. Thus we can

conclude with the following corollary.

Corollary 2.10 (elementary time normalisation). The normalisation of terms

of bounded depth can be performed in time elementary in the size of the terms.

9

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

3 Elementary Time in a Modal λ-calculus with

Side Effects

In this section, we extend our functional language with side effects operations.
By analysing the way side effects act on the depth of occurrences, we extend our
depth system to the obtained language. We can then lift the proof of termination
in elementary time to programs with side effects that run with a call-by-value
reduction strategy.

3.1 A Modal λ-calculus with Multithreading and Regions

We introduce a call-by-value modal λ-calculus endowed with parallel compo-
sition and operations to read and write regions. We call it λ!R. A region
is an abstraction of a set of dynamically generated values such as imperative
references or communication channels. We regard λ!R as an abstract, highly
non-deterministic language which entails complexity bounds for more concrete
languages featuring references or channels (we will give an example of such a
language in Section 5). To this end, it is enough to map the dynamically gen-
erated values to their respective regions and observe that the reductions in the
concrete languages are simulated in λ!R (see, e.g., [2]).

3.1.1 Syntax

The syntax of the language is described in Table 3.1. We describe the new

x, y, . . . (Variables)
r, r′, . . . (Regions)
V ::= ∗ | r | x | λx.M | !V (Values)
M ::= V |MM | !M | let !x = M in M

set(r, V) | get(r) | (M |M) (Terms)
S ::= (r ← V) | (S | S) (Stores)
P ::= M | S | (P | P) (Programs)
E ::= [] | EM | V E | !E | let !x = E in M (Evaluation Contexts)
C ::= [] | (C | P) | (P | C) (Static Contexts)

Table 3.1: Syntax of programs: λ!R

operators. We have the usual set of variable x, y, . . . and a set of regions r, r′,
The set of values V contains the unit constant ∗, variables, regions, λ-abstraction
and modal values !V which are marked with the bang operator ‘!’. The set of
terms M contains values, application, modal terms !M , a let ! operator, set(r, V)
to write the value V at region r, get(r) to fetch a value from region r and
(M | N) to evaluate M and N in parallel. A store S is the composition of
several stores (r ← V) in parallel. A program P is a combination of terms and

10

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

stores. Evaluation contexts follow a call-by-value discipline. Static contexts
C are composed of parallel compositions. Note that stores can only appear
in a static context, thus M(M ′ | (r ← V)) is not a legal term. We define
!n(P | P) = (!nP | !nP), and !n(r ← V) = (r ← V). As usual, we abbreviate
(λz.N)M with M ;N , where z is not free in N .

Each program has an abstract syntax tree as exemplified in Figure 3.1(a).

|

let !x

get(r) set(r)

!

x

r ←

!

λx

@

x ∗

(a)

ǫ

0

00 01

010

0100

1

10

100

1000

10000 10001

(b)

Figure 3.1: Syntax tree and addresses of P = let !x = get(r) in set(r, !x) | (r ←
!(λx.x∗))

3.1.2 Operational Semantics

The operational semantics of the language is described in Table 3.2. Programs

P | P ′ ≡ P ′ | P (Commutativity)
(P | P ′) | P ′′ ≡ P | (P ′ | P ′′) (Associativity)

E[(λx.M)V] → E[M [V/x]]
E[let !x = !V in M] → E[M [V/x]]
E[set(r, V)] → E[∗] | (r ← V)
E[get(r)] | (r ← V) → E[V]
E[let !x = get(r) in M] | (r ← !V) → E[M [V/x]] | (r ← !V)

Table 3.2: Semantics of λ!R programs

are considered up to a structural equivalence ≡ which is the least equivalence
relation preserved by static contexts, and which contains the equations for α-
renaming and for the commutativity and associativity of parallel composition.
The reduction rules apply modulo structural equivalence and in a static context
C.

When writing to a region, values are accumulated rather than overwritten
(remember that λ!R is an abstract language that can simulate more concrete ones
where values relating to the same region are associated with distinct addresses).

11

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

On the other hand, reading a region amounts to select non-deterministically
one of the values associated with the region. We distinguish two rules to read
a region. The first consumes the value from the store, like when reading a
communication channel. The second copies the value from the store, like when
reading a reference. Note that in this case the value read must be duplicable
(of the shape !V).

Example 3.1. Program P of Figure 3.1 reduces as follows:

let !x = get(r) in set(r, !x) | (r ← !(λx.x∗))
→ set(r, !(λx.x∗)) | (r ← !(λx.x∗))
→ ∗ | (r ← !(λx.x∗)) | (r ← !(λx.x∗))

3.2 Extended Depth System

We start by analysing the interaction between the depth of the occurrences and
side effects. We observe that side effects may increase the depth or generate
occurrences at lower depth than the current redex, which violates Property (1)
and (2) (see Section 2.2) respectively. Then to find a suitable notion of depth, it
is instructive to consider the following program examples where Mr = let !z =
get(r) in !(z∗).

(A) E[set(r, !V)]
(B) λx.set(r, x); !get(r)
(C) !(Mr) | (r ← !(λy.Mr′)) | (r′ ← !(λy.∗))
(D) !(Mr) | (r ← !(λy.Mr))

(A) Suppose the occurrence set(r, !V) is at depth δ > 0 in E. Then when
evaluating such a term we always end up in a program of the shape E[∗] |
(r ← !V) where the occurrence !V , previously at depth δ, now appears at
depth 0. This contradicts Property (2).

(B) If we apply this program to !V we obtain !!V , hence Property (1) is violated
because from a program of depth 1, we reduce to a program of depth 2. We
remark that this is because the read and write operations do not execute
at the same depth.

(C) According to our definition, this program has depth 2, however when we
reduce it we obtain a term !3∗ which has depth 3, hence Property (1) is
violated. This is because the occurrence λy.Mr′ originally at depth 1 in
the store, ends up at depth 2 in the place of z applied to ∗.

(D) If we accept circular stores, we can even write diverging programs whose
depth is increased by 1 every two reduction steps.

Given these remarks, the rest of this section is devoted to a revised notion

of depth and to depth system extended with side effects. First, we introduce
the following contexts:

Γ = x1 : δ1, . . . , xn : δn R = r1 : δ1, . . . , rn : δn

12

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

where δi is a natural number. We write dom(R) for the set {r1, . . . , rn}. We
write R(ri) for the depth δi associated with ri in the context R.

In the sequel, we shall call the notion of depth introduced in Definition 2.1
naive depth. We revisit the notion of naive depth as follows.

Definition 3.2 (revised depth). Let P be a program, R a region context where
dom(R) contains all the regions of P and dn(w) the naive depth of an occurrence
w of P . If w does not appear under an occurrence r ← (a store), then the revised
depth dr(w) of w is dn(w). Otherwise, dr(w) is R(r)+dn(w). The revised depth
dr(P) of the program is the maximum revised depth of its occurrences.

Note that the revised depth is relative to a fixed region context. In the sequel
we write d() for dr(). On functional terms, this notion of depth is equivalent
to the one given in Definition 2.1. However, if we consider the program of
Figure 3.1, we now have d(10) = R(r) and d(100) = d(1000) = d(10000) =
d(10001) = R(r) + 1.

A judgement in the depth system has the shape

R; Γ ⊢δ P

and it should be interpreted as follows:

The free variables of !δP may only occur at the depth specified
by the context Γ, where depths are computed according to R.

The inference rules of the extended depth system are presented in Table 3.3.
We comment on the new rules. A region and the constant ∗ may appear at

R; Γ, x : δ ⊢δ x R; Γ ⊢δ r R; Γ ⊢δ ∗

FO(x,M) ≤ 1 R; Γ, x : δ ⊢δ M

R; Γ ⊢δ λx.M

R; Γ ⊢δ Mi i = 1, 2

R; Γ ⊢δ M1M2

R; Γ ⊢δ+1 M

R; Γ ⊢δ !M

R; Γ ⊢δ M1 R; Γ, x : (δ + 1) ⊢δ M2

R; Γ ⊢δ let !x = M1 in M2

R, r : δ; Γ ⊢δ get(r)

R, r : δ; Γ ⊢δ V

R, r : δ; Γ ⊢δ set(r, V)

R, r : δ; Γ ⊢δ V

R, r : δ; Γ ⊢0 (r ← V)

R; Γ ⊢δ Pi i = 1, 2

R; Γ ⊢δ (P1 | P2)

Table 3.3: Depth system for programs: λ!R
δ

any depth. The key cases are those of read and write: the depth of these two
operations is specified by the region context. The current depth of a store is

13

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

always 0, however, the depth of the value in the store is specified by R (note
that it corresponds to the revised definition of depth). We remark that R is
constant in a judgement derivation.

Definition 3.3 (well-formedness). A program P is well-formed if for some R,
Γ, δ a judgement R; Γ ⊢δ P can be derived.

Example 3.4. The program of Figure 3.1 is well-formed with the following
derivation where R(r) = 0:

R; Γ ⊢0 get(r)

R; Γ, x : 1 ⊢1 x

R; Γ, x : 1 ⊢0 !x

R; Γ, x : 1 ⊢0 set(r, !x)

R; Γ ⊢0 let !x = get(r) in set(r, !x)

...

R; Γ ⊢0 (r ← !(λx.x∗))

R; Γ ⊢0 let !x = get(r) in set(r, !x) | (r ← !(λx.x∗))

We reconsider the troublesome programs with side effects. Program (A) is
well-formed with judgement (i):

R; Γ ⊢0 E[set(r, !V)] with R = r : δ (i)
R; Γ ⊢0 !Mr | (r ← !(λy.Mr′)) | (r′ ← !(λy.∗)) with R = r : 1, r′ : 2 (ii)

Indeed, the occurrence !V is now preserved at depth δ in the store. Program (B)
is not well-formed since the read operation requires R(r) = 1 and the write
operations require R(r) = 0. Program (C) is well-formed with judgement (ii);
indeed its depth does not increase anymore because !Mr has depth 2 but since
R(r) = 1 and R(r′) = 2, (r ← !(λy.Mr′)) has depth 3 and (r′ ← !(λy.∗)) has
depth 2. Hence program (C) has already depth 3. Finally, it is worth noticing
that the diverging program (D) is not well-formed since get(r) appears at depth
1 in !Mr and at depth 2 in the store.

Theorem 3.5 (properties on the extended depth system). The following prop-

erties hold:

1. If R; Γ ⊢δ M and x occurs free in M then x : δ′ belongs to Γ and all

occurrences of x in !δM are at depth δ′.

2. If R; Γ ⊢δ P then R; Γ,Γ′ ⊢δ P .

3. If R; Γ, x : δ′ ⊢δ M and R; Γ ⊢δ
′

V then R; Γ ⊢δ M [V/x] and
d(!δM [V/x]) ≤ max(d(!δM), d(!δ

′

V)).

4. If R; Γ ⊢0 P and P → P ′ then R; Γ ⊢0 P ′ and d(P) ≥ d(P ′).

3.3 Elementary Bound

In this section, we prove that well-formed programs terminate in elementary
time. The measure of Definition 2.5 extends trivially to programs except that

14

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

to simplify the proofs of the following properties, we assume the occurrences la-
belled with | and r ← do not count in the measure and that set(r) counts for two
occurrences such that the measure strictly decreases on the rule E[set(r, V)]→
E[∗] | (r ← V).

We derive a similar termination property:

Proposition 3.6 (termination). If P is well-formed, P → P ′ and n ≥ d(P)
then µn(P) > µn(P

′).

Proof. By a case analysis on the new reduction rules.

• P ≡ E[set(r, V)]→ P ′ ≡ E[∗] | (r ← V)
If R; Γ ⊢δ set(r, V) then by 3.5(4) we have R; Γ ⊢0 (r ← V) with R(r) = δ.
Hence, by definition of the depth, the occurrences in V stay at depth δ in
(r ← V). However, the node set(r, V) disappears, and both ∗ and (r ← V)
are null occurrences, thus ωδ(P

′) = ωδ(P)−1. The number of occurrences
at other depths stay unchanged, hence µn(P) > µn(P

′).

• P ≡ E[get(r)] | (r ← V)→ P ′ ≡ E[V]
If R; Γ ⊢0 (r ← V) with R(r) = δ, then get(r) must be at depth δ in
E[]. Hence, by definition of the depth, the occurrences in V stay at
depth δ, while the node get(r) and | disappear. Thus ωδ(P

′) = ωδ(P)− 1
and the number of occurrences at other depths stay unchanged, hence
µn(P) > µn(P

′).

• P ≡ E[let !x = get(r) in M] | (r ← !V)→ P ′ ≡ E[M [V/x]] | (r ← !V)
This case is the only source of duplication with the reduction rule on let !.
Suppose R; Γ ⊢δ let !x = get(r) in M . Then we must have R; Γ ⊢δ+1 V .
The restrictions on the formation of terms require that x may only occur
in M at depth 1 and hence in P at depth δ+1. Hence the occurrences in V
stay at the same depth in M [V/x], while the let, get(r) and some x nodes
disappear, hence ωδ(P) ≤ ωδ(P

′)− 2. The number of occurrences of x in
M is bound by k = ωδ+1(P) ≥ 2. Thus if j > δ then ωj(P

′) ≤ k · ωj(P).
Clearly, ωj(M) = ωj(M

′) if j < i. Hence, we have

µn(P
′) ≤ (µi+1

n (P) · k, ωi(P)− 2, µi−1(P)) (3.1)

and µn(P) > µn(P
′).

Then we have the following theorem.

Theorem 3.7 (elementary bound). Let P be a well-formed program with α =
d(P) and let tα denote the tower function with α+1 arguments. Then if P → P ′

then tα(µα(P)) > tα(µα(P
′)).

15

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Proof. From the proof of termination, we remark that the only new rule that
duplicates occurrences is the one that copies from the store. Moreover, the
derived inequality (3.1) is exactly the same as the inequality (2.2). Hence the
arithmetic of the proof is exactly the same as in the proof of elementary bound
for the functional case.

Corollary 3.8. The normalisation of programs of bounded depth can be per-

formed in time elementary in the size of the terms.

4 An Elementary Affine Type System

The depth system entails termination in elementary time but does not guarantee
that programs ‘do not go wrong’. In particular, the introduction and elimination
of bangs during evaluation may generate programs that deadlock, e.g.,

let !y = (λx.x) in !(yy) (4.1)

is well-formed but the evaluation is stuck. In this section we introduce an ele-
mentary affine type system (λ!R

EA) that guarantees that programs cannot dead-
lock (except when trying to read an empty store).

The upper part of Table 4.1 introduces the syntax of types and contexts.
Types are denoted with α, α′, Note that we distinguish a special behaviour

t, t′, . . . (Type variables)
α ::= B | A (Types)
A ::= t | 1 | A ⊸ α | !A | ∀t.A | Reg

r
A (Value-types)

Γ ::= x1 : (δ1, A1), . . . , xn : (δn, An) (Variable contexts)
R ::= r1 : (δ1, A1), . . . , rn : (δn, An) (Region contexts)

R ↓ t R ↓ 1 R ↓ B

R ↓ A R ↓ α

R ↓ (A ⊸ α)

R ↓ A

R ↓ !A

r : (δ, A) ∈ R

R ↓ Reg
r
A

R ↓ A t /∈ R

R ↓ ∀t.A

∀r : (δ, A) ∈ R R ↓ A

R ⊢

R ⊢ R ↓ α

R ⊢ α

∀x : (δ, A) ∈ Γ R ⊢ A

R ⊢ Γ

Table 4.1: Types and contexts

type B which is given to the entities of the language which are not supposed

16

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

to return a value (such as a store or several terms in parallel) while types of
entities that may return a value are denoted with A. Among the types A, we
distinguish type variables t, t′, . . ., a terminal type 1, an affine functional type
A ⊸ α, the type !A of terms of type A that can be duplicated, the type ∀t.A
of polymorphic terms and the type Reg

r
A of the region r containing values of

type A. Hereby types may depend on regions.
In contexts, natural numbers δi play the same role as in the depth system.

Writing x : (δ, A) means that the variable x ranges on values of type A and
may occur at depth δ. Writing r : (δ, A) means that addresses related to region
r contain values of type A and that read and writes on r may only happen at
depth δ. The typing system will additionally guarantee that whenever we use a
type Reg

r
A the region context contains an hypothesis r : (δ, A).

Because types depend on regions, we have to be careful in stating in Table 4.1
when a region-context and a type are compatible (R ↓ α), when a region context
is well-formed (R ⊢), when a type is well-formed in a region context (R ⊢ α)
and when a context is well-formed in a region context (R ⊢ Γ). A more informal
way to express the condition is to say that a judgement r1 : (δ1, A1), . . . , rn :
(δn, An) ⊢ α is well formed provided that: (1) all the region names occurring in
the types A1, . . . , An, α belong to the set {r1, . . . , rn}, (2) all types of the shape
Reg

ri
B with i ∈ {1, . . . , n} and occurring in the types A1, . . . , An, α are such

that B = Ai. We notice the following substitution property on types.

Proposition 4.1. If R ⊢ ∀t.A and R ⊢ B then R ⊢ A[B/t].

Example 4.2. One may verify that r : (δ,1 ⊸ 1) ⊢ Reg
r
(1 ⊸ 1) can be

derived while the following judgements cannot: r : (δ,1) ⊢ Reg
r
(1 ⊸ 1), r :

(δ,Reg
r
1) ⊢ 1.

A typing judgement takes the form:

R; Γ ⊢δ P : α

It attributes a type α to the program P at depth δ, in the region context R
and the context Γ. Table 4.2 introduces an elementary affine type system with

regions. One can see that the δ’s are treated as in the depth system. Note that
a region r may occur at any depth. In the let ! rule, M should be of type !A
since x of type A appears one level deeper. A program in parallel with a store
should have the type of the program since we might be interested in the value
the program reduces to; however, two programs in parallel cannot reduce to a
single value, hence we give them a behaviour type. The polymorphic rules are
straightforward where t /∈ (R; Γ) means t does not occur free in a type of R or
Γ.

Example 4.3. The well-formed program (C) can be given the following typing
judgement: R; ⊢0 !(Mr) | (r ← !(λy.Mr′)) | (r

′ ← !(λy.∗)) : !!1 where:
R = r : (1, !(1 ⊸ 1)), r′ : (2, !(1 ⊸ 1)). Also, we remark that the deadlocking
program (4.1) admits no typing derivation.

17

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

R ⊢ Γ
x : (δ, A) ∈ Γ

R; Γ ⊢δ x : A

R ⊢ Γ

R; Γ ⊢δ ∗ : 1

R ⊢ Γ
r : (δ′, A) ∈ R

R; Γ ⊢δ r : Reg
r
A

FO(x,M) ≤ 1
R; Γ, x : (δ, A) ⊢δ M : α

R; Γ ⊢δ λx.M : A ⊸ α

R; Γ ⊢δ M : A ⊸ α R; Γ ⊢δ N : A

R; Γ ⊢δ MN : α

R; Γ ⊢δ+1 M : A

R; Γ ⊢δ !M : !A

R; Γ ⊢δ M : !A R; Γ, x : (δ + 1, A) ⊢δ N : B

R; Γ ⊢δ let !x = M in N : B

R; Γ ⊢δ M : A t /∈ (R; Γ)

R; Γ ⊢δ M : ∀t.A

R; Γ ⊢δ M : ∀t.A R ⊢ B

R; Γ ⊢δ M : A[B/t]

r : (δ, A) ∈ R
R ⊢ Γ

R; Γ ⊢δ get(r) : A

r : (δ, A) ∈ R
R; Γ ⊢δ V : A

R; Γ ⊢δ set(r, V) : 1

r : (δ, A) ∈ R
R; Γ ⊢δ V : A

R; Γ ⊢0 (r ← V) : B

R; Γ ⊢δ P : α R; Γ ⊢δ S : B

R; Γ ⊢δ (P | S) : α

Pi not a store i = 1, 2
R; Γ ⊢δ Pi : αi

R; Γ ⊢δ (P1 | P2) : B

Table 4.2: An elementary affine type system: λ!R
EA

Theorem 4.4 (subject reduction and progress). The following properties hold.

1. (Well-formedness) Well-typed programs are well-formed.

2. (Weakening) If R; Γ ⊢δ P : α and R ⊢ Γ,Γ′ then R; Γ,Γ′ ⊢δ P : α.

3. (Substitution) If R; Γ, x : (δ′, A) ⊢δ M : α and R; Γ′ ⊢δ
′

V : A and

R ⊢ Γ,Γ′ then R; Γ,Γ′ ⊢δ M [V/x] : α.

4. (Subject Reduction) If R; Γ ⊢δ P : α and P → P ′ then R; Γ ⊢δ P ′ : α.

5. (Progress) Suppose P is a closed typable program which cannot reduce.

Then P is structurally equivalent to a program

M1 | · · · |Mm | S1 | · · · | Sn m,n ≥ 0

where Mi is either a value or can be decomposed as a term E[get(r)] such
that no value is associated with the region r in the stores S1, . . . , Sn.

18

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

5 Expressivity

In this section, we consider two results that illustrate the expressivity of the
elementary affine type system. First we show that all elementary functions can
be represented and second we develop an example of iterative program with side
effects.

5.1 Completeness

The representation result just relies on the functional core of the language λ!
EA.

Building on the standard concept of Church numeral, Table 5.1 provides a repre-
sentation for natural numbers and the multiplication function. We denote with

N = ∀t.!(t ⊸ t) ⊸ !(t ⊸ t) (type of numerals)

n : N (numerals)
n = λf.let !f = f in !(λx.f(· · · (fx) · · ·))

mult : N ⊸ (N ⊸ N) (multiplication)
mult = λn.λm.λf.let !f = f in n(m!f)

Table 5.1: Representation of natural numbers and the multiplication function

N the set of natural numbers. The precise notion of representation is spelled out
in the following definitions where by strong β-reduction we mean that reduction
under λ’s is allowed.

Definition 5.1 (number representation). Let ∅ ⊢δ M : N. We sayM represents

n ∈ N, written M n, if, by using a strong β-reduction relation, M
∗
→ n.

Definition 5.2 (function representation). Let ∅ ⊢δ F : (N1 ⊸ . . . ⊸ Nk) ⊸

!pN where p ≥ 0 and f : Nk → N. We say F represents f , written F f , if
for all Mi and ni ∈ N where 1 ≤ i ≤ k such that ∅ ⊢δ Mi : N and Mi ni,
FM1 . . .Mk f(n1, . . . , nk).

Elementary functions are also characterized as the smallest class of functions
containing zero, successor, projection, subtraction and which is closed by com-
position and bounded summation/product. These functions can be represented
in the sense of Definition 5.2 by adapting the proofs from Danos and Joinet [10].

Theorem 5.3 (completeness). Every elementary function is representable in

λ!
EA.

5.2 Iteration with Side Effects

We rely on a slightly modified language where reads, writes and stores relate to
concrete addresses rather than to abstract regions. In particular, we introduce

19

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

terms of the form νx M to generate a fresh address name x whose scope is M .
One can then write the following program:

νx ((λy.set(y, V))x)
∗
→ νx ∗ | (x← V)

where x and y relate to a region r, i.e. they are of type RegrA. Our type system
can be easily adapted by associating region types with the address names. Next
we show that it is possible to program the iteration of operations producing a
side effect on an inductive data structure. Specifically, in the following we show
how to iterate, possibly in parallel, an update operation on a list of addresses of
the store. The examples have been tested on a running implementation of the
language.

Following Church encodings, we define the representation of lists and the
associated iterator in Table 5.2. Here is the function multiplying the numeral

ListA = ∀t.!(A ⊸ t ⊸ t) ⊸ !(t ⊸ t) (type of lists)

[u1, . . . , un] : ListA (list represent.)
[u1, . . . , un] = λf.let !f = f in !(λx.fu1(fu2 . . . (funx))

list it : ∀u.∀t.!(u ⊸ t ⊸ t) ⊸ List u ⊸ !t ⊸ !t (iterator)
list it = λf.λl.λz.let !z = z in let !y = lf in !(yz)

Table 5.2: Representation of lists

pointed by an address at region r:

update : !RegrN ⊸ !1 ⊸ !1
update = λx.let !x = x in λz.!((λy.set(x, y))(mult 2 get(x))

Consider the following list of addresses and stores:

[!x, !y, !z] | (x← m) | (y ← n) | (z ← p)

Note that the bang constructors are needed to match the type !RegrN of the
argument of update. Then we define the iteration as:

run : !!1 run = list it !update [!x, !y, !z] !!∗

Notice that it is well-typed with R = r : (2,N) since both the read and the
write appear at depth 2. Finally, the program reduces by updating the store as
expected:

run | (x← m) | (y ← n) | (z ← p)
∗
→ !!1 | (x← 2m) | (y ← 2n) | (z ← 2p)

Building on this example, suppose we want to write a program with three con-
current threads where each thread multiplies by 2 the memory cells pointed by

20

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

a list. Here is a function waiting to apply a functional f to a value x in three
concurrent threads:

gen threads : ∀t.∀t′.!(t ⊸ t′) ⊸ !t ⊸ B

gen threads = λf.let !f = f in λx.let !x = x in !(fx) | !(fx) | !(fx)

We define the functional F as run but parametric in the list:

F : List !RegrN ⊸ !!1 F = λl.list it !update l !!∗

And the final term is simply:

run threads : B run threads = gen threads !F ![!x, !y, !z]

where R = r : (3, !N). Our program then reduces as follows:

run threads | (x← m) | (y ← n) | (z ← p)
∗
→ !!!1 | !!!1 | !!!1 | (x← 8m) | (y ← 8n) | (z ← 8p)

Note that different thread interleavings are possible but in this particular case
the reduction is confluent.

6 Conclusion

We have introduced a type system for a higher-order functional language with
multithreading and side effects that guarantees termination in elementary time
thus providing a significant extension of previous work that had focused on
purely functional programs. In the proposed approach, the depth system plays
a key role and allows for a relatively simple presentation. In particular we notice
that we can dispense both with the notion of stratified region that arises in recent
work on the termination of higher-order programs with side effects [1, 7] and
with the distinction between affine and intuitionistic hypotheses [6, 2].

As a future work, we would like to adapt our approach to polynomial time.
In another direction, one could ask if it is possible to program in a simplified
language without bangs and then try to infer types or depths.

Acknowledgements We would like to thank Patrick Baillot for numerous
helpful discussions and a careful reading on a draft version of this report.

References

[1] R. M. Amadio. On stratified regions. In APLAS’09, volume 5904 of LNCS,
pages 210–225. Springer, 2009.

[2] R. M. Amadio, P. Baillot, and A. Madet. An affine-intuitionistic system of
types and effects: confluence and termination. Technical report, Labora-
toire PPS, 2009. http://hal.archives-ouvertes.fr/hal-00438101/.

21

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

[3] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Trans.

Comput. Log., 3(1):137–175, 2002.

[4] P. Baillot, M. Gaboardi, and V. Mogbil. A polytime functional language
from light linear logic. In ESOP’10, volume 6012 of LNCS, pages 104–124.
Springer, 2010.

[5] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine
logic. In TLCA’05, volume 3461 of LNCS, pages 55–70. Springer, 2005.

[6] A. Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-
96-347, The Laboratory for Foundations of Computer Science, University
of Edinburgh, 1996.

[7] G. Boudol. Typing termination in a higher-order concurrent imperative
language. Inf. Comput., 208(6):716–736, 2010.

[8] P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca. Light logics and the
call-by-value lambda calculus. Logical Methods in Computer Science, 4(4),
2008.

[9] P. Coppola and S. Martini. Optimizing optimal reduction: A type inference
algorithm for elementary affine logic. ACM Trans. Comput. Log., 7:219–
260, 2006.

[10] V. Danos and J.-B. Joinet. Linear logic and elementary time. Inf. Comput.,
183(1):123 – 137, 2003.

[11] J.-Y. Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998.

[12] U. D. Lago, S. Martini, and D. Sangiorgi. Light logics and higher-order
processes. In EXPRESS’10, volume 41 of EPTCS, pages 46–60, 2010.

[13] K. Terui. Light affine lambda calculus and polynomial time strong normal-
ization. Archive for Mathematical Logic, 46(3-4):253–280, 2007.

22

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

A Proofs

A.1 Proof of theorem 3.5

1. We consider the last rule applied in the typing of M .

• Γ, x : δ ⊢δ x. The only free variable is x and indeed it is at depth δ
in !δx.

• Γ ⊢δ λy.M is derived from Γ, y : δ ⊢δ M . If x is free in λy.M then
x 6= y and x is free in M . By inductive hypothesis, x : δ′ ∈ Γ, y : δ
and all occurrences of x in !δM are at depth δ′. By definition of
depth, the same is true for !δ(λy.M).

• Γ ⊢δ (M1M2) is derived from Γ ⊢δ Mi for i = 1, 2. By inductive
hypothesis, x : δ′ ∈ Γ and all occurrences of x in !δMi, i = 1, 2 are at
depth δ′. By definition of depth, the same is true for !δ(M1M2).

• Γ ⊢δ !M is derived from Γ ⊢δ+1 M . By inductive hypothesis, x : δ′ ∈
Γ and all occurrences of x in !δ+1M are at depth δ′ and notice that
!δ+1M = !δ(!M).

• Γ ⊢δ let !y = M1 in M2 is derived from Γ ⊢δ M1 and Γ, y : (δ +
1) ⊢δ M2. Without loss of generality, assume x 6= y. By inductive
hypothesis, x : δ′ ∈ Γ and all occurrences of x in !δMi, i = 1, 2 are
at depth δ′. By definition of depth, the same is true for !δ(let !y =
M1 in M2).

• M ≡ ∗ or M ≡ r or M ≡ get(r). There is no free variable in these
terms.

• M ≡ let !y = get(r) in N . We have

R, r : δ; Γ, y : (δ + 1) ⊢δ N

R, r : δ; Γ ⊢δ let !y = get(r) in N

If x occurs free in M then x occurs free in N . By induction hypoth-
esis, x : δ′ ∈ Γ and all occurrences of x in !δN are at depth δ′. By
definition of the depth, this is also true for !δ(let !y = get(r) in N).

• M ≡ set(r, V). We have

R, r : δ; Γ ⊢δ V

R, r : δ; Γ ⊢δ set(r, V)

If x occurs free in set(r, V) then x occurs free in V . By induction
hypothesis, x : δ′ ∈ Γ and all occurrences of x in !δV are at depth δ′.
By definition of the depth, this is also true for !δ(set(r, V)).

• M ≡ (M1 |M2). We have

R; Γ ⊢δ Mi i = 1, 2

R; Γ ⊢δ (M1 |M2)

23

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

If x occurs free in M then x occurs free in Mi, i = 1, 2. By induction
hypothesis, x : δ′ ∈ Γ and all occurrences of x in !δMi, i = 1, 2, are
at depth δ′. By definition of depth, the same is true of !δ(M1 |M2).

2. All the rules can be weakened by adding a context Γ′.

3. If x is not free in M , we just have to check that any proof of Γ, x : δ′ ⊢δ M
can be transformed into a proof of Γ ⊢δ M .

So let us assume x is free in M .

We consider first the bound on the depth. By (1), we know that all
occurrences of x in !δM are at depth δ′. By definition of depth, it follows
that δ′ ≥ δ and the occurrences of x in M are at depth (δ′ − δ). An
occurrence in !δ

′

V at depth δ′+δ′′ will generate an occurrence in !δM [V/x]
at the same depth δ + (δ′ − δ) + δ′′.

Next, we proceed by induction on the derivation of Γ, x : δ′ ⊢δ M .

• Γ, x : δ ⊢δ x. Then δ = δ′, x[V/x] = V , and by hypothesis Γ ⊢δ
′

V .

• Γ, x : δ′ ⊢δ λy.M is derived from Γ, x : δ′, y : δ ⊢δ M , with x 6= y and
y not occurring in N . By (2), Γ, y : δ ⊢δ

′

V . By inductive hypothesis,
Γ, y : δ ⊢δ M [V/x], and then we conclude Γ ⊢δ (λy.M)[V/x].

• Γ, x : δ′ ⊢δ (M1M2) is derived from Γ, x : δ′ ⊢δ Mi, for i = 1, 2. By
inductive hypothesis, Γ ⊢δ Mi[V/x], for i = 1, 2 and then we conclude
Γ ⊢δ (M1M2)[V/x].

• Γ, x : δ′ ⊢δ !M is derived from Γ, x : δ′ ⊢δ+1 M . By inductive
hypothesis, Γ ⊢δ+1 M [V/x], and then we conclude Γ ⊢δ !M [V/x].

• Γ, x : δ′ ⊢δ let !y = M1 in M2, with x 6= y and y not free in V is
derived from Γ, x : δ′ ⊢δ M1 and Γ, x : δ′, y : (δ + 1) ⊢δ M2. By
inductive hypothesis, Γ ⊢δ M1[V/x] Γ, y : (δ + 1) ⊢δ M2[V/x], and
then we conclude Γ ⊢δ (let !y = M1 in M2)[V/x].

• M ≡ let !y = get(r) in M1. We have

R, r : δ; Γ, x : δ′, y : (δ + 1) ⊢δ M1

R, r : δ; Γ, x : δ′ ⊢δ let !y = get(r) in M1

By induction hypothesis we get

R, r : δ; Γ, y : (δ + 1) ⊢δ M1[V/x]

and hence we derive

R, r : δ; Γ ⊢δ (let !y = get(r) in M1)[V/x]

• M ≡ set(r, V ′). We have

R, r : δ; Γ, x : δ′ ⊢δ V ′

R, r : δ; Γ, x : δ′ ⊢δ set(r, V ′)

24

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

By induction hypothesis we get

R, r : δ; Γ ⊢δ V ′[V/x]

and hence we derive

R, r : δ; Γ ⊢δ (set(r, V ′))[V/x]

• M ≡ (M1 |M2). We have

R; Γ, x : δ′ ⊢δ Mi i = 1, 2

R; Γ, x : δ′ ⊢δ (M1 |M2)

By induction hypothesis we derive

R; Γ ⊢δ Mi[V/x]

and hence we derive

R; Γ ⊢δ (M1 |M2)[V/x]

4. We proceed by case analysis on the reduction rules.

• Suppose Γ ⊢0 E[(λx.M)V]. Then for some Γ′ extending Γ and δ ≥ 0
we must have Γ′ ⊢δ (λx.M)V . This must be derived from Γ′, x : δ ⊢δ

M and Γ′ ⊢δ V . By (3), with δ = δ′, it follows that Γ′ ⊢δ M [V/x]
and that the depth of an occurrence in E[M [V/x]] is bounded by the
depth of an occurrence which is already in E[(λx.M)V]. Moreover,
we can derive Γ ⊢0 E[M [V/x]].

• Suppose Γ ⊢0 E[let !x = !V in M]. Then for some Γ′ extending Γ and
δ ≥ 0 we must have Γ′ ⊢δ let !x = !V in M . This must be derived
from Γ′, x : (δ + 1) ⊢δ M and Γ′ ⊢(δ+1) V . By (3), with (δ + 1) = δ′,
it follows that Γ′ ⊢δ M [V/x] and that the depth of an occurrence in
E[M [V/x]] is bounded by the depth of an occurrence which is already
in E[let !x = !V in M]. Moreover, we can derive Γ ⊢0 E[M [V/x]].

• E[set(r, V)]→ E[∗] | (r ← V)
We have R; Γ ⊢0 E[set(r, V)] from which we derive

R; Γ ⊢δ V

R; Γ ⊢δ set(r, V)

for some δ ≥ 0, with r : δ ∈ R. Hence we can derive

R; Γ ⊢δ V

R; Γ ⊢0 (r ← V)

Moreover, we have as an axiom R; Γ ⊢δ ∗ thus we can derive R; Γ ⊢0

E[∗]. Applying the parallel rule we finally get

R; Γ ⊢0 E[∗] | (r ← V)

Concerning the depth bound, clearly we have d(E[∗] | (r ← V)) =
d(E[set(r, V)]).

25

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

• E[get(r)] | (r ← V)→ E[M [V/x]]
We have R; Γ ⊢0 E[get(r)] | (r ← V) from which we derive

R; Γ ⊢δ get(r)

and

R; Γ, x : δ ⊢δ M

for some δ ≥ 0, with r : δ ∈ R, and

R; Γ ⊢δ V

R; Γ ⊢0 (r ← V)

Hence we can derive
R; Γ ⊢0 E[V]

Concerning the depth bound, clearly we have d(E[V]) = d(E[get(r)] |
(r ← V)).

• E[let !x = get(r) in M] | (r ← !V)→ E[M [V/x]] | (r ← !V)
We have R; Γ ⊢0 E[let !x = get(r) in M] | r!V from which we derive

R; Γ′, x : (δ + 1) ⊢δ M

R; Γ′ ⊢δ let !x = get(r) in M

for some δ ≥ 0 with r : δ ∈ R, and some Γ′ extending Γ. We also
derive

R; Γ ⊢δ+1 V

R; Γ ⊢δ !V

R; Γ ⊢0 (r ← !V)

By (2) we get R; Γ′ ⊢δ+1 V . By (3) we derive

R; Γ′ ⊢δ M [V/x]

hence
R; Γ ⊢0 E[M [V/x]]

and finally
R; Γ ⊢0 E[M [V/x]] | (r ← !V)

Concerning the depth bound, by (3), the depth of an occurrence
in E[M [V/x]] | (r ← !V) is bounded by the depth of an occur-
rence which is already in E[let !x = get(r) in M] | (r ← !V), hence
d(E[M [V/x]] | (r ← !V)) ≤ d(E[let !x = get(r) in M] | (r ← !V)).

26

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

A.2 Proof of proposition 3.6

We do this by case analysis on the reduction rules.

• P = E[(λx.M)V]→ P ′ = E[M [V/x]]
Let the occurrence of the redex (λx.M)V be at depth i. The restrictions
on the formation of terms require that x occurs at most once in M at
depth 0. Then ωi(P) − 3 ≥ ωi(P

′) because we remove the nodes for
application and λ-abstraction and either V disappears or the occurrence
of the variable x in M disappears (both being at the same depth as the
redex). Clearly ωj(P) = ωj(P

′) if j 6= i, hence

µn(P
′) ≤ (ωn(P), . . . , ωi+1(P), ωi(P)− 3, µi−1(P)) (A.1)

and µn(P) > µn(P
′).

• P = E[let !x =!V in M]→ P ′ = E[M [V/x]]
Let the occurrence of the redex let !x =!V in M be at depth i. The
restrictions on the formation of terms require that x may only occur in M
at depth 1 and hence in P at depth i+1. We have that ωi(P

′) = ωi(P)−2
because the let ! node disappear. Clearly, ωj(P) = ωj(P

′) if j < i. The
number of occurrences of x in M is bounded by k = ωi+1(P) ≥ 2. Thus
if j > i then ωj(P

′) ≤ k · ωj(P). Let’s write, for 0 ≤ i ≤ n:

µi
n(P) · k = (ωn(P) · k, ωn−1(P) · k, . . . , ωi(P) · k)

Then we have

µn(P
′) ≤ (µi+1

n (P) · k, ωi(P)− 2, µi−1(P)) (A.2)

and finally µn(P) > µn(P
′).

• P ≡ E[set(r, V)]→ P ′ ≡ E[∗] | (r ← V)
If R; Γ ⊢δ set(r, V) then by 3.5(4) we have R; Γ ⊢0 (r ← V) with R(r) = δ.
Hence, by definition of the depth, the occurrences in V stay at depth δ
in (r ← V). Moreover, the node set(r, V) disappears and the nodes ∗, |,
and r ← appear. Recall that we assume the occurrences | and r ← do not
count in the measure and that set(r) counts for two occurrences. Thus
ωδ(P

′) = ωδ(P)−2+1+0+0. The number of occurrences at other depths
stay unchanged, hence µn(P) > µn(P

′).

• P ≡ E[get(r)] | (r ← V)→ P ′ ≡ E[V]
If R; Γ ⊢0 (r ← V) with R(r) = δ, then get(r) must be at depth δ in
E[]. Hence, by definition of the depth, the occurrences in V stay at
depth δ, while the node get(r) and | disappear. Thus ωδ(P

′) = ωδ(P)− 1
and the number of occurrences at other depths stay unchanged, hence
µn(P) > µn(P

′).

27

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

• P ≡ E[let !x = get(r) in M] | (r ← !V)→ P ′ ≡ E[M [V/x]] | (r ← !V)
This case is the only source of duplication with the reduction rule on let !.
Suppose R; Γ ⊢δ let !x = get(r) in M . Then we must have R; Γ ⊢δ+1 V .
The restrictions on the formation of terms require that x may only occur
in M at depth 1 and hence in P at depth δ+1. Hence the occurrences in V
stay at the same depth in M [V/x], while the let, get(r) and some x nodes
disappear, hence ωδ(P) ≤ ωδ(P

′)− 2. The number of occurrences of x in
M is bounded by k = ωδ+1(P) ≥ 2. Thus if j > δ then ωj(P

′) ≤ k ·ωj(P).
Clearly, ωj(M) = ωj(M

′) if j < i. Hence, we have

µn(P
′) ≤ (µi+1

n (P) · k, ωi(P)− 2, µi−1(P)) (A.3)

and µn(P) > µn(P
′).

A.3 Proof of lemma 2.8

We start by remarking some basic inequalities.

Lemma A.1 (some inequalities). The following properties hold on natural num-

bers.

1. ∀x ≥ 2, y ≥ 0 (y + 1) ≤ xy

2. ∀x ≥ 2, y ≥ 0 (x · y) ≤ xy

3. ∀x ≥ 2, y, z ≥ 0 (x · y)z ≤ x(y·z)

4. ∀x ≥ 2, y ≥ 0, z ≥ 1 xz · y ≤ x(y·z)

5. If x ≥ y ≥ 0 then (x− y)k ≤ (xk − yk)

Proof. 1. By induction on y. The case for y = 0 is clear. For the inductive
case, we notice:

(y + 1) + 1 ≤ 2y + 2y = 2y+1 ≤ xy+1 .

2. By induction on y. The case y = 0 is clear. For the inductive case, we
notice:

x · (y + 1) ≤ x · (xy) (by (1))

= x(y+1)

3. By induction on z. The case z = 0 is clear. For the inductive case, we
notice:

(x · y)z+1 = (x · y)z(x · y)
≤ xy·z(x · y) (by inductive hypothesis)
≤ xy·z(xy) (by (2))

= xy·(z+1)

28

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

4. From z ≥ 1 we derive y ≤ yz. Then:

xz · y ≤ xz · yz

= (x · y)z

≤ xy·z (by (3))

5. By the binomial law, we have xk = ((x− y)+ y)k = (x− y)k + yk+ p with
p ≥ 0. Thus (x− y)k = xk − yk − p which implies (x− y)k ≤ xk − yk.

We also need the following property.

Lemma A.2 (pre-shift). Assuming α ≥ 1 and β ≥ 2, the following property

holds for the tower functions with x,x ranging over numbers greater or equal

than 2:
β · tα(x,x) ≤ tα(β · x,x)

Proof. This follows from:

β ≤ β2tα(x)

Then we can derive the proof of the shift lemma as follows.
Let k = tα(x

′,x) ≥ 2. Then

tα(β · x, x′,x) = β · (α · x)2
k

≤ (α · x)β·2
k

(by lemma A.1(3))

≤ (α · x)(β·2)
k

≤ (α · x)2
(β·k)

(by lemma A.1(3))

and by lemma A.2 β · tα(x
′,x) ≤ tα(β · x

′,x).
Hence

(α · x)2
(β·k)

≤ (α · x)2
tα(β·x′,x)

= tα(x, β · x
′,x)

A.4 Proof of theorem 3.7

Suppose µα(P) = (x0, . . . , xα) so that xi corresponds to the occurrences at
depth (α − i) for 0 ≤ i ≤ α. Also assume the reduction is at depth (α − i).
By looking at equations (A.1) and (A.2) in the proof of termination (Proposi-
tion 3.6), we see that the components i+1, . . . , α of µα(P) and µα(P

′) coincide.
Hence, let k = 2tα(xi+1,...,xα). By definition of the tower function, k ≥ 1.

We proceed by case analysis on the reduction rules.

• P ≡ let !x = !V in M → P ′ ≡M [V/x]
By inequality (A.2) we know that:

tα(µα(P
′)) ≤ tα(x0 · xi−1, . . . , xi−1 · xi−1, xi − 2, xi+1, . . . , xα)

= tα(x0 · xi−1, . . . , xi−1 · xi−1, xi − 2)k

29

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

By iterating lemma 2.8, we derive:

tα(x0 · xi−1, x1 · xi−1, . . . , xi−1 · xi−1, xi − 2)
≤ tα(x0, x1 · x2

i−1, . . . , xi−1 · xi−1, xi − 2)
≤ . . .
≤ tα(x0, x1, . . . , x

i
i−1, xi − 2)

Renaming xi−1 with x and xi with y, we are left to show that:

(αxi)2
(α·(y−2))k

< (αx)2
(α·y)k

Since i ≤ α the first quantity is bounded by:

(αx)α·2
(α·(y−2))k

We notice:

α · 2(α·(y−2))k

= α · 2(α·y−α·2)k

≤ α · 2(α·y)
k−(α·2)k (by lemma A.1(5))

So we are left to show that:

α2(α·y)
k−(α·2)k) ≤ 2(α·y)

k

Dividing by 2(α·y)
k

and recalling that k ≥ 1, it remains to check:

α · 2−(α·2)k ≤ α · 2−(α·2) < 1

which is obviously true for α ≥ 1.

• P ≡ (λx.M)V → P ′ ≡M [V/x]
By equation (A.1), we have that:

tα(µα(P
′)) ≤ tα(x0, . . . , xi−1, xi − 2, xi+1, . . . , xα)

and one can check that this quantity is strictly less than:

tα(µα(P)) = tα(x0, . . . , xi−1, xi, xi+1, . . . , xα)

• P ≡ let !x = get(r) in M | (r ← !V)→ P ′ ≡M [V/x] | (r ← !V)
Let k = 2tα(xi+1,...,xα). By definition of the tower function, k ≥ 1. By
equation (A.3) we have

tα(µα(P
′)) ≤ tα(x0 · xi−1, . . . , xi−1 · xi−1, xi − 2, xi+1, . . . , xα)

= tα(x0 · xi−1, . . . , xi−1 · xi−1, xi − 2)k

And we end up in the case of the rule for let !.

30

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

• For the read that consume a value from the store, by looking at the proof of
termination, we see that exactly one element of the vector µα(P) is strictly
decreasing during the reduction, hence one can check that tα(µα(P)) >
tα(µα(P

′)).

• The case for the write is similar to the read.

We conclude with the following remark that shows that the size of a program
is proportional to its number of occurrences.

Remark A.3. The size of a program |P | of depth d is at most twice the sum of
its occurrences: |P | ≤ 2 ·

∑

0≤i≤d ωi(P).

Hence the size of a program P is bounded by td(µd(P)).

A.5 Proof of proposition 4.1

By induction on A.

• A ≡ t′

We have
R ⊢ t′ t /∈ R

R ⊢ ∀t.t′

If t 6= t′ we have t′[B/t] ≡ t′ hence R ⊢ [B/t]t′. If t ≡ t′ then we have
t′[B/t] ≡ B hence R ⊢ t′[B/t].

• A ≡ 1

We have
R ⊢ 1 t /∈ R

R ⊢ ∀t.1

from which we deduce R ⊢ 1[B/t].

• A ≡ (C ⊸ D)
By induction hypothesis we have R ⊢ C[B/t] and R ⊢ D[B/t]. We then
derive

R ⊢ C[B/t] R ⊢ D[B/t]

R ⊢ (C ⊸ D)[B/t]

• A ≡ !C
By induction hypothesis we have R ⊢ C[B/t], from which we deduce

R ⊢ C[B/t]

R ⊢ !C[B/t]

• A ≡ Reg
r
C

We have
R ⊢ r : C ∈ R

R ⊢ Reg
r
C t /∈ R

R ⊢ ∀t.Reg
r
C

31

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

As t /∈ R and r : (δ, C) ∈ R, we have r : (δ, C[B/t]) ∈ R, from which we
deduce

R ⊢ r : (δ, C[B/t] ∈ R

R ⊢ Reg
r
C [B/t]

• A ≡ ∀t′.C
If t 6= t′: From R ⊢ ∀t.(∀t′.C) we have t′ /∈ R and by induction hypothesis
we have R ⊢ C[B/t], from which we deduce

R ⊢ C[B/t] t′ /∈ R

R ⊢ (∀t′.C)[B/t]

If t ≡ t′ we have (∀t′.C)[B/t] ≡ ∀t′.C. Since we have

R ⊢ ∀t′.C t /∈ R
R ⊢ ∀t.(∀t′.C)

we conclude R ⊢ (∀t′.C)[B/t].

A.6 Proof of theorem 4.4

Properties 1 and 2 are easily checked.

A.6.1 Substitution

If x is not free in M , we just have to check that any proof of Γ, x : (δ′, A) ⊢δ M
can be transformed into a proof of Γ ⊢δ M .

So let us assume x is free in M . Next, we proceed by induction on the
derivation of Γ, x : δ′ ⊢δ M .

• Γ, x : (δ, A) ⊢δ x : A. Then δ = δ′, x[V/x] = V , and by hypothesis
Γ ⊢δ V : A.

• Γ, x : (δ′, A) ⊢δ λy.M : B ⊸ C is derived from Γ, x : (δ′, A), y : (δ, B) ⊢δ

M : C, with x 6= y and y not occurring in V . By (2), Γ, y : (δ, B) ⊢δ
′

V : A.
By inductive hypothesis, Γ, (y : δ, B) ⊢δ M [V/x] : C, and then we conclude
Γ ⊢δ (λy.M)[V/x] : B ⊸ C.

• Γ, x : (δ′, A) ⊢δ (M1M2) : C is derived from Γ, x : (δ′, A) ⊢δ M1 : B ⊸

C and Γ, x : (δ′, A) ⊢δ M1 : B ⊸ C. By inductive hypothesis, Γ ⊢δ

M1[V/x] : B ⊸ C and Γ ⊢δ M2[V/x] : C, and then we conclude Γ ⊢δ

(M1M2)[V/x] : C.

• Γ, x : (δ′, A) ⊢δ !M : !B is derived from Γ, x : (δ′, A) ⊢δ+1 M : B. By
inductive hypothesis, Γ ⊢δ+1 M [V/x] : B, and then we conclude Γ ⊢δ

!M [V/x] : !B.

• Γ, x : (δ′, A) ⊢δ let !y = M1 in M2 : B, with x 6= y and y not free in V
is derived from Γ, x : (δ′, A) ⊢δ M1 : C and Γ, x : (δ′, A), y : (δ + 1, C) ⊢δ

M2 : B. By inductive hypothesis, Γ ⊢δ M1[V/x] : C Γ, y : (δ + 1, C) ⊢δ

M2[V/x] : B, and then we conclude Γ ⊢δ (let !y = M1 in M2)[V/x] : B.

32

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

• M ≡ get(r). We have R, r : (δ, B); Γ, x : (δ′, A) ⊢δ get(r) : B. Since
get(r)[V/x] = get(r) and x /∈ FV(get(r)) then R, r : (δ, B); Γ ⊢δ get(r)[V/x] :
B.

• M ≡ set(r, V ′). We have

R, r : (δ, C); Γ, x : (δ′, A) ⊢δ V ′ : C

R, r : (δ, C); Γ, x : (δ′, A) ⊢δ set(r, V ′) : 1

By induction hypothesis we get

R, r : (δ, C); Γ ⊢δ V ′[V/x] : C

and hence we derive

R, r : (δ, C); Γ ⊢δ (set(r, V ′))[V/x] : 1

• M ≡ (M1 |M2). We have

R; Γ, x : (δ′, A) ⊢δ Mi : Ci i = 1, 2

R; Γ, x : (δ′, A) ⊢δ (M1 |M2) : B

By induction hypothesis we derive

R; Γ ⊢δ Mi[V/x] : Ci

and hence we derive

R; Γ ⊢δ (M1 |M2)[V/x] : B

A.6.2 Subject Reduction

We first state and sketch the proof of 4 lemmas.

Lemma A.4 (structural equivalence preserves typing). If R; Γ ⊢δ P : α and

P ≡ P ′ then R; Γ ⊢δ P ′ : α.

Proof. Recall that structural equivalence is the least equivalence relation in-
duced by the equations stated in Table 3.2 and closed under static contexts.
Then we proceed by induction on the proof of structural equivalence. This is is
mainly a matter of reordering the pieces of the typing proof of P so as to obtain
a typing proof of P ′.

Lemma A.5 (evaluation contexts and typing). Suppose that in the proof of

R; Γ ⊢δ E[M] : α we prove R; Γ′ ⊢δ
′

M : α′. Then replacing M with a M ′ such

that R; Γ′ ⊢δ
′

M ′ : α′, we can still derive R; Γ ⊢δ E[M ′] : α.

Proof. By induction on the structure of E.

33

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Lemma A.6 (functional redexes). If R; Γ ⊢δ E[∆] : α where ∆ has the shape

(λx.M)V or let !x = !V in M then R; Γ ⊢δ E[M [V/x]] : α.

Proof. We appeal to the substitution lemma 3. This settles the case where the
evaluation context E is trivial. If it is complex then we also need lemma A.5.

Lemma A.7 (side effects redexes). If R; Γ ⊢δ ∆ : α where ∆ is one of the

programs on the left-hand side then R; Γ ⊢δ ∆′ : α where ∆′ is the corresponding

program on the right-hand side:

(1) E[set(r, V)] E[∗] | (r ← V)
(2) E[get(r)] | (r ← V) E[V]
(3) E[let !x = get(r) in M] | (r ← !V) E[M [V/x]] | (r ← !V)

Proof. We proceed by case analysis.

1. Suppose we derive R; Γ ⊢δ E[set(r, V)] : α from R; Γ′ ⊢δ
′

set(r, V) : 1. We
can derive R; Γ′ ⊢δ

′

∗ : 1 and by Lemma A.5 we derive R; Γ ⊢δ E[∗] : α
and finally R; Γ ⊢δ E[set(r, V)] | (r ← V) : α.

2. Suppose R; Γ ⊢δ E[get(r)] : α is derived from R; Γ ⊢δ
′

get(r) : A, where
r : (δ′, A) ∈ R. Hence R; Γ ⊢0 (r ← V) : B is derived from R; Γ ⊢δ

′

V : A.
Finally, by Lemma A.5 we derive R; Γ ⊢δ E[V] : α.

3. Suppose R; Γ ⊢δ E[let !x = get(r) in M] : α is derived from

R; Γ′ ⊢δ
′

get(r) : !A R; Γ′, x : (δ′ + 1, A) ⊢δ
′

M : α′

R; Γ′ ⊢δ
′

let !x = get(r) in M : α′

where r : (δ′, !A) ∈ R. Hence R; Γ ⊢0 (r ← !V) : B is derived from
R; Γ ⊢δ

′+1 V : A. By Lemma 3 we can derive R; Γ′ ⊢δ
′

M [V/x] : α′. Then
by Lemma A.5 we derive R; Γ ⊢δ E[M [V/x]] : α.

We are then ready to prove subject reduction. We recall that P → P ′ means
that P is structurally equivalent to a program C[∆] where C is a static context,
∆ is one of the programs on the left-hand side of the rewriting rules specified
in Table 3.2, ∆′ is the respective program on the right-hand side, and P ′ is
syntactically equal to C[∆′].

By lemma A.4, we know that R; Γ ⊢δ C[∆] : α. This entails that R′; Γ′ ⊢δ
′

∆ : α′ for suitable R′,Γ′, α′, δ′. By lemmas A.6 and A.7, we derive thatR′; Γ′ ⊢δ
′

∆′ : α′. Then by induction on the structure of C we argue thatR; Γ ⊢δ C[∆′] : α.

A.6.3 Progress

To derive the progress property we first determine for each closed type A where
A = A1 ⊸ A2 or A = !A1 the shape of a closed value of type A with the
following classification lemma.

34

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Lemma A.8 (classification). Assume R;− ⊢δ V : A. Then:

• if A = A1 ⊸ A2 then V = λx.M ,

• if A = !A1 then V = !V1

Proof. By case analysis on the typing rules.

• if A = A1 ⊸ A2, the only typing rule that can be applied is

R;x : (δ, A1) ⊢δ M : A2

R;− ⊢δ λx.M : A1 ⊸ A2

hence V = λx.M .

• if A = !A1, the only typing rule that can be applied is

R;− ⊢δ+1 V1 : A1

R;− ⊢δ !V1 : !A1

hence V = !V1.

Then we proceed by induction on the structure of the threads Mi to show that
each one of them is either a value or a stuck get of the form E[∆] where ∆ can
be (λx.M)get(r) or let !x = get(r) in M .

• Mi = x
the case of variables is void since they are not closed terms.

• Mi = ∗ or Mi = r or Mi = λx.M
these cases are trivial since ∗, r and λx.M are already values.

• Mi = PQ
We know that PQ cannot reduce, which by looking at the evaluation
contexts means that P cannot reduce. Then by induction hypothesis we
have two cases: either P is a value or P is a stuck get.

– assume P is a value. We have

R;− ⊢δ P : A ⊸ B R;− ⊢δ Q : A

R;− ⊢δ PQ : B

By Lemma A.8 we have P = λx.M . Since PQ cannot reduce and
P = λx.M , by looking at the evaluation contexts we have that Q
cannot reduce. Moreover Q cannot be a value, otherwise PQ is a
redex. Hence by induction hypothesis Q is a stuck get of the form
E1[∆]. Hence PQ is of the form E[∆] where E = PE1.

35

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

– assume P is a stuck get of the form E1[∆]. Then PQ is of the form
E[∆] where E = E1Q.

• Mi = let !x = P in Q
We know that let !x = P in Q cannot reduce, which by looking at the
evaluation contexts means that P cannot reduce. Then by induction hy-
pothesis we have two cases: either P is a value or P is a stuck get.

– assume P is a value. We have

R;− ⊢δ P : !A R;x : (δ + 1, A) ⊢δ Q : B

R;− ⊢δ let !x = P in Q : B

By Lemma A.8 we have P = !V hence let !x = !V in Q is a redex and
this contradicts the hypothesis that let !x = P in Q cannot reduce.
Thus P cannot be a value.

– assume P is a stuck get of the form E1[∆]. Then let !x = P in Q is
of the form E[∆] where E = let !x = E1 in Q.

• Mi = !P
We know that !P cannot reduce, which by looking at the evaluation con-
texts means that P cannot reduce. Then by induction hypothesis we have
two cases: either P is a value or P is a stuck get.

– assume P is a value. Then !P is also a value and we are done.

– assume P is of the form E1[∆]. Then !P is of the shape E[∆] where
E = !E1.

• Mi = get(r′)
We know that get(r′) cannot reduce which means that Mi is of the form
E[∆] where r′ = r and E = [] and that no value is associated with r in
the store.

• Mi = set(r, V)
This case is void since set(r, V) can reduce is any case.

A.7 Proof of theorem 5.3

Elementary functions are characterized as the smallest class of functions contain-
ing zero, successor, projection, subtraction and which is closed by composition
and bounded summation/product. We will need the arithmetic functions de-
fined in Table A.1. We will abbreviate λ!x.M for λx.let !x = x in M . Moreover,
in order to represent some functions, we need to manipulate pairs in the lan-
guage. We define the representation of pairs in Table A.2. In the following, we
show that the required functions can be represented in the sense of Definition 5.2
by adapting the proofs from Danos and Joinet [10].

36

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

N = ∀t.!(t ⊸ t) ⊸ !(t ⊸ t) (type of numerals)

zero : N (zero)
zero = λf.!(λx.x)

succ : N ⊸ N (successor)
succ = λn.λf.let !f = f in

let !y = n!f in!(λx.f(yx))

n : N (numerals)
n = λf.let !f = f in !(λx.f(· · · (fx) · · ·))

add : N ⊸ (N ⊸ N) (addition)
add = λn.λm.λf.let !f = f in

let !y = n!f in

let !y′ = m!f in !(λx.y(y′x))

mult : N ⊸ (N ⊸ N) (multiplication)
mult = λn.λm.λf.let !f = f in

n(m!f)

int it : N ⊸ ∀t.!(t ⊸ t) ⊸ !t ⊸ !t (iteration)
int it = λn.λg.λx.let !y = ng in

let !y′ = x in !(yy′)

int git : ∀t.∀t′.!(t ⊸ t) ⊸ (!(t ⊸ t) ⊸ t′) ⊸ N ⊸ t′

int git = λs.λe.λn.e(nts)

Table A.1: Representation of some arithmetic functions

A.7.1 Successor, addition and multiplication

We check that succ represents the successor function s:

s : N 7→ N

s(x) = x+ 1

Proposition A.9. succ s.

Proof. Take ∅ ⊢δ M : N and M n. We have ∅ ⊢δ succ : N ⊸ N. We can show
that succM

∗
→ s(n), hence succM s(n). Thus succ s.

We check that add represents the addition function a:

a : N2 7→ N

a(x, y) = x+ y

37

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

A×B = ∀t.(A ⊸ B ⊸ t) ⊸ t (type of pairs)

〈M,N〉 : A×B (pair representation)
〈M,N〉 = λx.xMN

fst : ∀t, t′.t× t′ ⊸ t (left destructor)
fst = λp.p(λx.λy.x)

snd : ∀t, t′.t× t′ ⊸ t′ (right destructor)
snd = λp.p(λx.λy.y)

Table A.2: Representation of pairs

Proposition A.10. add a.

Proof. For i = 1, 2 take ∅ ⊢δ Mi : N and Mi ni. We have ∅ ⊢δ add : N ⊸

N ⊸ N. We can show that addM1M2
∗
→ a(n1, n2), hence addM1M2 a(n1, n2).

Thus A a.

We check that mult represents the multiplication function m:

m : N2 7→ N

m(x, y) = x ∗ y

Proposition A.11. mult m.

Proof. For i = 1, 2 take ∅ ⊢δ Mi : N and Mi ni. We have ∅ ⊢δ mult : N ⊸

N ⊸ N. We can show that mult M1M2
∗
→ m(n1, n2), hence mult M1M2

m(n1, n2). Thus mult m.

A.7.2 Iteration schemes

We check that int it represents the following iteration function it:

it : (N 7→ N) 7→ N 7→ N 7→ N

it(f, n, x) = fn(x)

Proposition A.12. int it it.

Proof. We have ∅ ⊢δ int it : N ⊸ ∀t.!(t ⊸ t) ⊸ !t ⊸ !t. Given ∅ ⊢δ M : N
with M n, ∅ ⊢δ F : N ⊸ N with F f and ∅ ⊢δ X : N with X x,
we observe that int it M(!F)(!X)

∗
→ FnX . Since F f and X x, we get

FnX
∗
→ it(f, n, x). Hence int it it.

The function it is an instance of the more general iteration scheme git:

git : (N 7→ N) 7→ ((N 7→ N) 7→ N) 7→ N 7→ N

git(step, exit, n) = exit(λx.stepn(x))

38

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

Indeed, we have:

git(f, λf.fx, n) = (λf.fx)(λx.fn(x)) = it(f, n, x)

Proposition A.13. int git git.

Proof. Take ∅ ⊢δ M : N with M n, ∅ ⊢δ E : ((N ⊸ N) ⊸ N) ⊸ N with E

exit, ∅ ⊢δ S : N ⊸ N with S step. Then we have int gitS EM
∗
→ E(λx.Snx).

Since S step and E exit we have E(λx.Snx)
∗
→ exit(λx.stepn(x). Hence

int git git.

A.7.3 Coercion

Let S = λnN .S′. For 0 ≥ i, we define S′
i inductively:

S′
0 = S′

S′
i = let !n = n in !S′

i−1

Let Si = λn.S′
i. We can derive ∅ ⊢δ Si : !

iN ⊸ !iN. For i ≥ 0, we define Ci

inductively:
C0 = λx.x
Ci+1 = λn.int it(!Si)(!

i+10)n
∅ ⊢δ Ci : N ⊸ !iN

Lemma A.14 (integer representation is preserved by coercion). Let ∅ ⊢δ M : N
and M n. We can derive ∅ ⊢δ CiM : !iN. Moreover CiM n.

Proof. By induction on i.

Lemma A.15 (function representation is preserved by coercion). Let

∅ ⊢δ F : !i1N1 ⊸ . . . ⊸ !ikNk ⊸ !pN

and ∅ ⊢δ Mj : N with Mj nj for 1 ≤ j ≤ k such that F (!i1M1 . . . (!
ikMk))

∗
→

f(n1, . . . , nk). Then we can find a term C(F) = λ~xN.F ((Ci1x1) . . . (Cikxk)) such
that

∅ ⊢δ C(F) : N ⊸ N ⊸ . . . ⊸ N ⊸ !pN

and C(F) f .

A.7.4 Predecessor and subtraction

We first want to represent predecessor :

p : N 7→ N

p(0) = 0
p(x) = x− 1

39

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

We define the following terms:

ST = !(λz.〈snd z, f(snd z)〉)
f : (δ + 1, t ⊸ t) ⊢δ ST : !(t× t ⊸ t× t)

EX = λg.let !g = g in !(λx.fst g〈x, x〉)
∅ ⊢δ EX : !(t× t ⊸ t× t) ⊸ !(t ⊸ t)

P = λn.λf.let !f = f in int git ST EX n
∅ ⊢δ P : N ⊸ N

Proposition A.16 (predecessor is representable). P p.

Proof. Take ∅ ⊢δ M : N and M n. We can show that (PM)−
∗
→ p(n), hence

PM p(n). Thus P p.

Now we want to represent (positive) subtraction s:

s : N2 7→ N

s(x, y) =

{

x− y if x ≥ y
0 if y ≥ x

Take
SUB = λm.let !m = m in λn.int it !P !mn : !N ⊸ N ⊸ !N
∅ ⊢δ SUB : !N ⊸ N ⊸ !N

Proposition A.17 (subtraction is representable). C(SUB) s.

Proof. For i = 1, 2 take ∅ ⊢δ Mi : N and Mi ni. We can show that
(SUB(!M1)M2)

− ∗
→ s(n1, n2). Hence by Lemma A.15, C(SUB) s.

A.7.5 Composition

Let g be a m-ary function and G be a term such that ∅ ⊢δ G : N1 ⊸ . . . ⊸
Nm ⊸ !pN (where p ≥ 0) and G g. For 1 ≤ i ≤ m, let fi be a k-ary function
and Fi a term such that ∅ ⊢δ Fi : N1 ⊸ . . . ⊸ Nk!

qiN (where qi ≥ 0) and
Fi fi. We want to represent the composition function h such that:

h : Nk 7→ N

h(x1, . . . , xk) = g(f1(x1, . . . , xk), . . . , fm(x1, . . . , xk))

For i ≥ 0 and a term T , we define T i inductively as:

T 0 = T

T i = λ~x!iN.let !~x = ~x in !(T i−1~x)

Let q = max(qi). We can derive

∅ ⊢δ Gq+1 : !q+1N1 ⊸ . . . ⊸ !q+1Nm ⊸ !p+q+1N

40

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

We can also derive

∅ ⊢δ F q−qi
i : !q−qiN1 ⊸ . . . ⊸ !q−qiNk ⊸ !qN

Then, applying coercion we get

∅ ⊢δ C(F q−qi
i) : N1 ⊸ . . .Nk ⊸ !qN

and we derive

x1 : (δ + 1,N), . . . , xk : (δ + 1,N) ⊢δ !(C(F q−qi
i)x1 . . . xk) : !

q+1N

Let F ′
i ≡ !(C(F q−qi

i)x1 . . . xk). By application we get

x1 : (δ + 1,N), . . . , xk : (δ + 1,N) ⊢δ Gq+1F ′
1 . . . F

′
m : !p+q+1N

We derive

∅ ⊢δ λ~x.let !~x = ~x in Gq+1F ′
1 . . . F

′
m : !N1 ⊸ . . . ⊸ !Nm ⊸ !p+q+1N

Applying coercion we get

∅ ⊢δ C(λ~x!N.let !~x = ~x in Gq+1F ′
1 . . . F

′
m) : N1 ⊸ . . . ⊸ Nm ⊸ !p+q+1N

Take
H = C(λ~x!N.let !~x = ~x in Gq+1F ′

1 . . . F
′
m)

Proposition A.18 (composition is representable). H h.

Proof. We now have to show that for all Mi and ni where 1 ≤ i ≤ k such that
Mi ni and ∅ ⊢δ Mi : N, we have HM1 . . .Mk h(n1, . . . , nk). Since Fi fi,
we have FiM1 . . .Mk fi(n1, . . . , nk). Moreover G g, hence

G(F1M1 . . .Mk) . . . (FmM1 . . .Mk) g(f1(n1, . . . , nk), . . . , fm(n1, . . . , nk))

We can show that HM1 . . .Mk
∗
→ G(F1M1 . . .Mk) . . . (FmM1 . . .Mk), hence

HM1 . . .Mk g(f1(n1, . . . , nk), . . . , fm(n1, . . . , nk))

Thus H h.

A.7.6 Bounded sums and products

Let f be a k + 1-ary function f : Nk+1 → N, where

∅ ⊢ F : Ni ⊸ N1 ⊸ . . . ⊸ Nk ⊸ !pN

with p ≥ 0 and F f . We want to represent

• bounded sum:
∑

1≤i≤n f(i, x1, . . . , xk)

• bounded product:
∏

1≤i≤n f(i, x1, . . . , xk)

41

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

For this we are going to represent h : Nk+1 → N:

h(0, x1, . . . , xk) = f(0, x1, . . . , xk)
h(n+ 1, x1, . . . , xk) = g(f(n+ 1, x1, . . . , xk), h(n, x1, . . . , xk))

where g is a binary function standing for addition or multiplication, thus rep-
resentable. More precisely we have g : N2 → N such that ∅ ⊢δ G : N ⊸ N ⊸ N

and G g.
For i ≥ 0 and a term T we define T i inductively:

T 0 = Tx1 . . . xk

T i = let !x1 = x1 in . . . let !xk = xk in !T i−1

We define the following terms:

ST = λz.〈S(fst z), Gp(Fx1 . . . xk(S(fst z)))(snd z)〉
∅;x1 : (δ,N), . . . , xk : (δ,N) ⊢δ ST : N× !pN ⊸ N× !pN

EX = λh.let !h = h in !snd h〈0, Fx1 . . . xk0〉
∅;x1 : (δ + 1,N), . . . , xk : (δ + 1,N) ⊢δ EX : !(N× !pN ⊸ N× !pN) ⊸ !p+1N

We derive

n : (N), ~x : (δ,N) ⊢δ let !~x = ~x in let !n = n in int git !ST EX n : !p+1N

Let R = let !~x = ~x in let !n = n in int git !ST EX n. By coercion and
abstractions we get

∅ ⊢δ C(λn.λ~x.R) : Ni ⊸ N1 ⊸ . . . ⊸ Nk ⊸ !p+1N

Take H = C(λn.λ~x.R).

Proposition A.19 (bounded sum/product is representable). H h.

Proof. Given Mi i and Mj nj with 1 ≤ j ≤ k and taking G for addition,
we remark that

HMiM1 . . .Mk
∗
→ f(i, n1, . . . , nk) + . . .+ f(1, n1, . . . , nk) + f(0, n1, . . . , nk)

Hence H h.

42

ha
l-0

05
69

09
5,

 v
er

si
on

 2
 -

10
 J

un
 2

01
1

