
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D5.2
Trusted CerCo Prototype

Version 1.0

Main Authors:
Roberto M. Amadio, Nicolas Ayache, François Bobot, Jaap Boender, Brian Campbell,
Ilias Garnier, Antoine Madet, James McKinna, Dominic P. Mulligan, Mauro Piccolo,

Yann Régis-Gianas, Claudio Sacerdoti Coen, Ian Stark and Paolo Tranquilli

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Abstract The trusted CerCo Prototype is meant to be the last piece of software produced
in the CerCo project. It consists of

1. A compiler from a large subset of C to the Intel HEX format for the object code of
the 8051 microprocessor family. The compiler also computes the cost models for the
time spent in basic blocks and the stack space used by the functions in the source code.
The cost models are exposed to the user by producing an instrumented C code obtained
injecting in the original source code some instructions to update three global variables
that record the current clock, the current stack usage and the maximum stack usage so
far.

2. A plug-in for the Frama-C Software Analyser architecture. The plug-in takes in input a
C file, compiles it with the CerCo compiler and then automatically infers cost invariants
for every loop and every function in the source code. The invariants can be fed by
Frama-C to various theorem provers to automatically verify them. Those that are not
automatically verified can be manually checked by the user using a theorem prover.

3. A wrapper that interfaces and integrates the two pieces of software above with the
Frama-C Jessie plugin and with the Why3 platform.

The plug-in is fully functional and it does not need to be formally verified because it does
not belong to the trusted code base of programs verified using CerCo’s technology. A bug in
the plug-in can just infer wrong time/space invariants and bounds that will be rejected by the
automatic provers.

The compiler is currently fully functional, even if not fully certified yet. The certification
will continue after the end of the project.

In this deliverable we discuss the status of the Trusted CerCo Prototype at the time of
the official end of the project.

CerCo, FP7-ICT-2009-C-243881 3

Contents

1 Task 4

2 The Trusted CerCo Compiler 4
2.1 Command line interface . 4
2.2 Code structure . 7
2.3 Functional differences w.r.t. the untrusted compiler 8
2.4 Implementation differences w.r.t. the untrusted compiler 9
2.5 Quality of the extracted code . 10

3 The Cost-Annotating Plug-In 13

4 The cerco Wrapper 14

5 Connection with other deliverables 14

CerCo, FP7-ICT-2009-C-243881 4

char a[] = {3, 2, 7, -4};

char treshold = 4;

int main() {

char j;

char *p = a;

int found = 0;

for (j=0; j < 4; j++) {

if (*p <= treshold) { found++; }

p++;

}

return found;

}

Figure 1: A simple C program.

1 Task

The Grant Agreement describes deliverable D5.2 as follows:

Trusted CerCo Prototype: Final, fully trusted version of the system.

This report describes the state of the implementation of the Trusted CerCo Prototype at
the official end of the project.

2 The Trusted CerCo Compiler

2.1 Command line interface

The Trusted CerCo Compiler is the first component of the Trusted CerCo Prototype, the
second one being the Frama-C plug-in already developed in D5.1 and not modified. The
Trusted CerCo compiler replaces the Untrusted CerCo Compiler already delivered in D5.1 as
part of the Untrusted CerCo Prototype. The Trusted and Untrusted compilers are meant to
provide the same command line interface, so that they can be easily swapped without affecting
the plug-in. Actually, the two compilers share the following minimal subset of options which
are sufficient to the plug-in:

Usage: acc [options] file...

-a Add cost annotations on the source code.

-is Outputs and interprets all the compilation passes,

showing the execution traces

-o Prefix of the output files.

Let the file test.c contains the code presented in Figure 1. By calling acc -a test.c,
the user obtains the following files:

• test-instrumented.c (Figure 2): the file is a copy of test.c obtained by adding code
that keeps track of the amount of time and space used by the source code.

CerCo, FP7-ICT-2009-C-243881 5

int __cost = 33;

int __stack_size = 5, __stack_size_max = 5;

void __cost_incr(int incr) {

__cost = __cost + incr;

}

void __stack_size_incr(int incr) {

__stack_size = __stack_size + incr;

__stack_size_max = __stack_size_max < __stack_size ? __stack_size : __stack_size_max;

}

unsigned char a[4] = { 3, 2, 7, 252, };

unsigned char treshold = 4;

int main(void)

{

unsigned char j;

unsigned char *p;

int found;

__stack_size_incr(0);

__cost_incr(91);

p = a;

found = 0;

for (j = (unsigned char)0; (int)j < 4; j = (unsigned char)((int)j + 1)) {

__cost_incr(76);

if ((int)*p <= (int)treshold) {

__cost_incr(144);

found = found + 1;

} else {

__cost_incr(122);

/*skip*/;

}

p = p + 1;

}

__cost_incr(37);

/*skip*/;

__stack_size_incr(-0);

return found;

__stack_size_incr(-0);

}

Figure 2: The instrumented version of the program in Figure 1.

CerCo, FP7-ICT-2009-C-243881 6

The global variable cost records the number of clock cycles used by the microprocessor.
Its initial value may not be zero because we emit object code to initialize the global
variables of the program. The initialization code is not part of main (to allow main

to be recursive, even if it is not clear from the standard if this should be allowed or
not). The initial value of cost is the time spent in the initialization code. The cost

variable is incremented at the beginning of every basic block using the cost incr

function, whose argument is the number of clock cycles that will be spent by the basic
block that is beginning. Therefore the value stored in the variable is always a safe upper
bound of the actual time. Moreover, the difference at the begin and end of a function
of the value of the clock variable is also exact. The latter statement — with several
technical complications — is the one that will be eventually certified in Matita.

The global variables stack size and stack size max are handled similarly to cost.
Their value is meant to represent the amount of external data memory currently in use
and the maximum amount of memory used so far by the program. The two values are
updated by the stack size incr function at the beginning of every function body, at
its end and just before every return. A negative increment is used to represent stack re-
lease. The initial value of the two variables may not be zero because some external data
memory is used for global and static variables. Moreover, the last byte of external data
memory may not be addressable in the 8051, so we avoid using it. The compiled code
runs correctly only until stack overflow, which happens when the value of stack size

reaches 216. It is up to the user to state and maintain the invariant that no stack overflow
occurs. In case of stack overflow, the compiled code does no longer simulate the source
code. Automatic provers are often able to prove the invariant in simple cases.

In order to instrument the code, all basic blocks that are hidden in the source code
but that will contain code in the object code need to be made manifest. In particular,
if-then instructions without an explicit else are given one (compare Figures 1 and 2).

• test.hex: the file is an Intel HEX representation of the object code for an 8051 micro-
processor. The file can be loaded in any 8051 emulator (like the MCU 8051 IDE) for
running or disassembling it. Moreover, an executable semantics (an emulator) for the
8051 is linked with the CerCo compilers and can be used to run the object code at the
end of the compilation.

• test.cerco and test.stack cerco: these two files are used to pass information from
the CerCo compilers to the Frama-C plug-in and they are not interesting to the user.
They just list the global variables and increment functions inserted by the compiler and
used later by the plug-in to compute the cost invariants.

When the option -is is used, the compilers run the program after every intermediate
compilation pass. The untrusted compiler only outputs the trace of (cost) observables and
the final value returned by main; the trusted compiler also observes every function call and
return (the stack-usage observables) and therefore allows to better track program execution.
The traces observed after every pass should always be equal up to the initial observable
that corresponds to the initialization of global variables. That observable is currently only
emitted in back-end languages. The preservation of the traces will actually be granted by the
main theorem of the formalization (the forward simulation theorem) when the proof will be
completed.

CerCo, FP7-ICT-2009-C-243881 7

The compilers also create a file for each pass with the intermediate code. However, the
syntaxes used by the two compilers for the intermediate passes are not the same and we do
not output yet any intermediate syntax for the assembly code. The latter can be obtained by
disassembling the object code, e.g. by using the MCU 8051 IDE.

2.2 Code structure

The code of the trusted compiler is made of three different parts:

• Code extracted to OCaml from the formalization of the compiler in Matita. This is
the code that will eventually be fully certified using Matita. It is fully contained in the
extracted directory (not comprising the subdirectory untrusted). It translates the
source C-light code to:

– An instrumented version of the same C-light code. The instrumented version is
obtained inserting cost emission statements COST k at the beginning of basic blocks.
The emitted labels are the ones that are observed calling acc -is. They will be
replaced in the final instrumented code with increments of the cost variable.

– The object code for the 8051 as a list of bytes to be loaded in code memory. The
code is coupled with a trie over bit vectors that maps program counters to cost
labels k. The intended semantics is that, when the current program counter is
associated to k, the observable label k should be emitted during the execution of
the next object code instruction. Similarly, a second trie, reminiscent of a symbol
table, maps program counters to function names to emit the observables associated
to stack usage.

During the ERTL to RTL pass that deals with register allocation, the source code calls
two untrusted components that we are now going to describe.

• Untrusted code called by trusted compiler (directory extracted/untrusted). The two
main untrusted components in this directory are

– The Fix.ml module by François Pottier that provides a generic algorithm to com-
pute the least solution of a system of monotonic equations, described in the paper
[?]. The trusted code uses this piece of code to do liveness analysis and only assumes
that the module computes a pre-fix point of the system of equations provided. The
performance of this piece of code is critical to the compiler and the implementation
used exploits some clever programming techniques and imperative data structures
that would be difficult to prove correct. Checking if the result of the computation
is actually a pre-fixpoint is instead very simple to do using low computational com-
plexity functional code only. Therefore we do not plan to prove this piece of code
correct. Instead, we will certify a verifier for the results of the computation.

Note: this module, as well as the next one, have been reused from the untrusted
compiler. Therefore they have been thoroughly tested for bugs during the last year
of the project.

– The coloring.ml module taken from François Pottier PP compiler, used in a com-
piler’s course for undergraduates. The module takes an interference graph (data
structure implemented in module untrusted interference.ml) and colors it, as-
signing to nodes of the interference graph either a color or the constant Spilled.

CerCo, FP7-ICT-2009-C-243881 8

An heuristic is used to drive the algorithm: the caller must provide a function
that returns the number of times a register is accessed, to decrease it likelihood of
being spilled. To minimise bugs and reduce code size, we actually implement the
heuristics in Matita and then extract the code. Therefore the untrusted code also
calls back extracted code for untrusted computations.

Finally, module compute colouring.ml is the one that actually computes the
colouring of an interference graph of registers given the result of the liveness anal-
ysis. The code first creates the interference graph; then colours it once using real
registers as colours to determine which pseudo-registers need spilling; finally it
colours it again using real registers and spilling slots as colours to assign to each
pseudo-register either a spilling slot or a real register.

The directory also contains a few more files that provide glue code between OCaml’s
data structures from the standard library (e.g. booleans and lists) and the corresponding
data structures extracted from Matita. The glue is necessary to translate results back
and forth between the trusted (extracted) and untrusted components, because the latter
have been written using data structures from the standard library of OCaml.

• Untrusted code that drives the trusted compiler (directory driver). The directory
contains the acc.ml module that implements the command line interface of the trusted
compiler. It also contains or links three untrusted components which are safety critical
and that enter the trusted code base of CerCo:

– The CIL parser [?] that parses standard C code and simplifies it to C-light code.

– A pretty-printer for C-light code, used to print the -instrumented.c file.

– The instrumenter module (integrated with the pretty-printer for C-light code). It
takes the output of the compiler and replaces every statement COST k (that emits
the cost label k) with cost incr(n) where n is the cost associated to k in the
map returned by the compiler. A similar operation is performed to update the
stack-related global variables. Eventually this modules needs to be certified with
the following specification: if a run of the labelled program produces the trace
τ = k1 . . . kn, the equivalent run of the instrumented program should yield the
same result and be such that at the end the value of the cost variable is equal to
Σk∈τK(k) where K(k) is the lookup of the cost of k in the cost map K returned
by the compiler. A similar statement is expected for stack usage.

2.3 Functional differences w.r.t. the untrusted compiler

From the user perspective, the trusted and untrusted compiler have some differences:

• The untrusted compiler put the initialization code for global variables at the beginning
of main. The trusted compiler uses a separate function. Therefore only the trusted
compiler allows recursive calls. To pay for the initialization code, the cost variable is
not always initialized to 0 in the trusted compiler, while it is always 0 in the untrusted
code.

• The two compilers do not compile the code in exactly the same way, even if they adopt
the same compilation scheme. Therefore the object code produced is different and the

CerCo, FP7-ICT-2009-C-243881 9

control blocks are given different costs. On average, the code generated by the trusted
compiler is about 3 times faster and may use less stack space.

• The trusted compiler is slightly slower than the untrusted one and the trusted executable
semantics are also slightly slower than the untrusted ones. The only passes that at the
moment are significantly much slower are the policy computation pass, which is a pre-
liminary to the assembly, and the assembly pass. These are the passes that manipulate
the largest quantity of data, because assembly programs are much larger than the cor-
responding Clight sources. The reason for the slowness is currently under investigation.
It is likely to be due to the quality of the extracted code (see subsection 2.5).

• The back-ends of both compilers do not handle external functions because we have not
implemented a linker. The trusted compiler fails during compilation, while the untrusted
compiler silently turns every external function call into a NOP.

• The untrusted compiler had ad hoc options to deal with C files generated from a Lustre
compiler. The ad hoc code simplified the C files by avoiding some calls to external
functions and it was adding some debugging code to print the actual reaction time of
every Lustre node. The trusted compiler does not implement any ad hoc Lustre option
yet.

2.4 Implementation differences w.r.t. the untrusted compiler

The code of the trusted compiler greatly differs from the code of the untrusted prototype. The
main architectural difference is the one of representation of back-end languages. In the trusted
compiler we have adopted a unified syntax (data-structure), semantics and pretty-printing
for every back-end language. In order to accommodate the differences between the original
languages, the syntax and semantics have been abstracted over a number of parameters, like
the type of arguments of the instructions. For example, early languages use pseudo-registers
to hold data while late languages store data into real machine registers or stack locations. The
unification of the languages have brought a few benefits and can potentially bring new ones
in the future:

• Code size reduction and faster detection and correction of bugs.

About the 3/4th of the code for the semantics and pretty-printing of back-end languages
is shared, while 1/4th is pass-dependent. Sharing the semantics automatically implies
sharing semantic properties, i.e. reducing to 1/6th the number of lemmas to be proved
(6 is the number of back-end intermediate languages). Moreover, several back-end passes
—a pass between two alternative semantics for RTL, the RTL to ERTL pass and the
ERTL to LTL pass— transform a graph instance of the generic back-end intermediate
language to another graph instance. The graph-to-graph transformation has also been
generalized and parametrised over the pass-specific details. While the code saved in
this way is not much, several significant lemmas are provided once and for all on the
transformation. At the time this deliverable has been written, the generalized languages,
semantics, transformations and relative properties take about 3,900 lines of Matita code
(definitions and lemmas).

We also benefit from the typical advantage of code sharing over cut&paste: once a bug is
found and fixed, the fix immediately applies to every instance. This becomes particularly

CerCo, FP7-ICT-2009-C-243881 10

significant for code certification, where one simple bug fix usually requires a complex
work to fix the related correctness proofs.

• Some passes and several proofs can be given in greater generality, allowing more reuse.

For example, in the untrusted prototype the LTL to LIN pass was turning a graph lan-
guage into a linearised language with the very same instructions and similar semantics.
In particular, the two semantics shared the same execute phase, while fetching was dif-
ferent. The pass consisted in performing a visit of the graph, emitting the instructions
in visit order. When the visit detected a cycle, the back-link arc was represent with a
new explicitly introduced GOTO statement.

Obviously, the transformation just described could be applied as well to any language
with a GOTO statement. In our formalization in Matita, we have rewritten and proved
correct the translation between any two instances of the generalized back-end languages
such that: 1) the fetching-related parameters of the two passes are instantiated respec-
tively with graphs and linear operations; 2) the execute-related parameters are shared.

Obviously, we could also prove correct the reverse translation, from a linear to a graph-
based version of the same language. The two combined passes would allow to temporarily
switch to a graph based representation only when a data-flow analysis over the code is
required. In our compiler, for example, at the moment only the RTL to ERTL pass
is based on a data flow analysis. A similar pair of translations could be also provided
between one of the two representations and a static single assignment (SSA) one. As
a final observation, the insertion of another graph-based language after the LTL one is
now made easy: the linearisation pass needs not be redone for the new pass.

• Pass commutation and reuse. Every pass is responsible for reducing a difference between
the source and target languages. For example, the RTL to ERTL pass is responsible
for the parameter passing conversion, while the ERTL to LTL pass performs pseudo-
registers allocation. At the moment, both CompCert and CerCo fix the relative order
of the two passes in an opposite and partially arbitrary way and it is not possible to
simply switch the two passes. We believe instead that it should be possible to generalize
most passes in such a way that they could be freely composed in any order, also with
repetitions. For example, real world compilers like GCC perform some optimizations like
constant propagation multiple times, after every optimization that is likely to trigger
more constant propagation. Thanks to our generalized intermediate language, we can
already implement a generic constant propagation pass that can be freely applied.

2.5 Quality of the extracted code

We have extracted the Matita code of the compiler to OCaml in order to compile and execute
it in an efficient way and without any need to install Matita. The implementation of code
extraction for Matita has been obtained by generalizing the one of Coq over the data structures
of Coq, and then instantiating the resulting code for Matita. Differences in the two calculi have
also been taken in account during the generalization. Therefore we can expect the extraction
procedure to be reasonably bug free, because bugs in the core of the code extraction would
be likely to be detected in Coq also.

The quality of the extracted code ranges from sub-optimal to poor, depending on the part
of the formalization. We analyse here the causes for the poor quality:

CerCo, FP7-ICT-2009-C-243881 11

• Useless computations. The extraction procedure removes from the extracted code almost
all of the non computational parts, replacing the ones that are not removed with code
with a low complexity. However, following Coq’s tradition, detection of the useless parts
is not done according to the computationally expensive algorithm by Berardi [?, ?]. In-
stead, the user decides which data structures should be assigned computation interest by
declaring them in one of the Type i sorts of the Calculus of (Co)Inductive Constructions.
The non computational structures are declared in Prop, the sort of impredicative, pos-
sibly classical propositions. Every computation that produces a data structure in Prop

is granted to be computationally irrelevant. Computations that produce data structures
in Type i, instead, may actually be relevant of irrelevant, even if the extraction code
conservatively consider them relevant. The result consists in extracted OCaml code that
computes values that will be passed to functions that do not use the result, or that will
be returned to the caller that will ignore the result.

The phenomenon is particularly visible when the dependently typed discipline is em-
ployed, which is our choice for CerCo. Under this discipline, terms can be passed to type
formers. For example, the data type for back-end languages in CerCo is parametrised
over the list of global variables that may be referred to by the code. Another example is
the type of vectors that is parametrised over a natural which is the size of the vector, or
the type of vector tries which is parametrised over the fixed height of the tree and that
can be read and updated only using keys (vectors of bits) whose length is the height
of the trie. Functions that compute these dependent types also have to compute the
new indexes (parameters) for the types, even if this information is used only for typing.
For example, appending two vectors require the computation of the length of the result
vector just to type the result. In turn, this computation requires the lengths of the two
vectors in input. Therefore, functions that call append have to compute the length of
the vectors to append even if the lengths will actually be ignored by the extracted code
of the append function.

In the literature there are proposals for allowing the user to more accurately distinguish
computational from non computational arguments of functions. The proposals introduce
two different types of λ-abstractions and ad hoc typing rules to ensure that computa-
tionally irrelevant bound variables are not used in computationally relevant positions.
An OCaml prototype that implements these ideas for Coq is available [?], but heavily
bugged. We did not try yet to do anything along these lines in Matita. To avoid mod-
ifying the system, another approach based on the explicit use of a non computational
monad has been also proposed in the literature, but it introduces many complications
in the formalization and it cannot be used in every situation.

Improvement of the code extraction to more aggressively remove irrelevant code from
code extracted from Matita is left as future work. At the moment, it seems that useless
computations are indeed responsible for poor performances of some parts of the extracted
code. We have experimented with a few manual optimizations of the extracted code and
we saw that a few minor patches already allow a 25% speed up of the assembly pass. The
code released with this deliverable is the one without the manual patches to maximize
reliability.

• Poor typing. A nice theoretical result is that the terms of the Calculus of Constructions
(CoC), the upper-right corner of Barendregt cube, can be re-typed in System Fω, the

CerCo, FP7-ICT-2009-C-243881 12

corresponding typed lambda calculus without dependent types [?]. The calculi imple-
mented by Coq and Matita, however, are more expressive than CoC, and several type
constructions have no counterparts in System Fω. Moreover, core OCaml does not even
implement Fω, but only the Hindley-Milner fragment of it. Therefore, in all situations
listed below, code extraction is not able to type the extracted code using informative
types, but it uses the super-type Obj.magic of OCaml — abbreviated in the extracted
code. The lack of more precise typing has very limited impact on the performance of
the compiler OCaml code, but it makes very hard to plug the extracted code together
with untrusted code. The latter needs to introduce explicit unsafe casts between the
super-type and the concrete types used by instances of the generic functions. The code
written in this is very error prone. For this reason we have decided to write in Matita also
parts of the untrusted code of the CerCo compiler (e.g. the pretty-printing functions),
in order to benefit from the type checker of Matita.

The exact situations that triggers uses of the super-type are:

1. They calculi feature a cumulative hierarchy of universes that allows to write func-
tions that can be used both as term formers and type formers, according to the
arguments that are passed to them. In System Fω, instead, terms and types are
syntactically distinct. Extracting terms according to all their possible uses may be
impractical because the number of uses is exponential in the number of arguments
of sort Typei with i ≥ 2.

2. Case analysis and recursion over inhabitants of primitive inductive types can be
used in types (strong elimination), which is not allowed in Fω. In the CerCo com-
piler we largely exploit type formers declared in this way, for example to provide the
same level of type safety achieved in the untrusted compiler via polymorphic vari-
ants [?]. In particular, we have terms to syntactically describe as first class citizens
the large number of combinations of operand modes of object code instructions. On
the instructions we provide “generic” functions that work on some combinations
of the operand modes, and whose type is computed by primitive recursion on the
syntactic description of the operand modes of the argument of the function.

3. Σ-types and, more generally, dependently typed records can have at the same time
fields that are type declarations and fields that are terms. This situation happens
all the time in CerCo because we are sticking to the dependently typed discipline
and because we often generalize our data structures over the types used in them.
Concretely, the generalization happens over a record containing a type — e.g. the
type of (pseudo)-registers for back-end languages — some terms working on the type
— e.g. functions to set/get values from (pseudo)-registers — and properties over
them. In System Fω terms and types abstractions are kept syntactically separate
and there is no way to pack them in records.

4. The type of the extracted function does not belong to the Hindley-Milner frag-
ment. Sometimes simple code transformations could be used to make the function
typeable, but the increased extraction code complexity would outweigh the benefits.

We should note how other projects, in particular CompCert, have decided from the be-
ginning to avoid dependent types to grant high quality of the extracted code and maximal
control over it. Therefore, at the current state of the art of code extraction, there seems to

CerCo, FP7-ICT-2009-C-243881 13

be a huge trade-off between extracted code quality and exploitation of advanced typing and
proving techniques in the source code. In the near future, the code base of CerCo can provide
an interesting example of a large formalization based on dependent types and in need of high
quality of extracted code. Therefore we plan to use it as a driver and test bench for future
works in the improvement of code extraction. In particular, we are planning to study the
following improvements to the code extraction of Matita:

• We already have a prototype that extracts code from Matita to GHC plus several exten-
sions that allow GHC to use a very large subset of System Fω. However, the prototype
is not fully functional yet because we still need to solve at the theoretical level a prob-
lem of interaction between Fω types and strong elimination. Roughly speaking, the two
branches of a strong elimination always admit a most general unifier in Hindley-Milner
plus the super-type Obj.magic, but the same property is lost for Fω. As a consequence,
we loose modularity in code extraction and we need to figure out static analysis tech-
niques to reduce the impact of the loss of modularity.

• The two most recent versions of OCaml have introduced first class modules, which
are exactly the feature needed for extracting code that uses records containing both
types and term declarations. However, the syntax required for first class modules is
extremely cumbersome and it requires the explicit introduction of type expressions to
make manifest the type declaration/definition fields of the module. This complicates
code extraction with the needs of performing some computations at extraction time,
which are not in the tradition of code extraction. Moreover, the actual performance
of OCaml code that uses first class modules heavily is unknown to us. We plan to
experiment with first class modules for extraction very soon.

• Algebraic data types are generalized to families of algebraic data types in the calculi
implemented by Coq and Matita, even if the two generalizations are different. Families
of algebraic data type are traditionally not supported by programming languages, but
some restrictions have been recently considered under the name of Generalized Abstract
Data Types (GADTs) and they are now implemented in recent versions of OCaml and
GHCs. A future work is the investigation on the possibility of exploiting GADTs during
code extraction.

3 The Cost-Annotating Plug-In

The functionalities of the Cost Annotating Plug-In have already been described in Deliver-
ables D5.1 and D5.3. The plug-in interfaces with the CerCo compiler via the command line.
Therefore there was no need to update the plug-in code for integration in the Trusted CerCo
Prototype. Actually, it is even possible to install at the same time the untrusted and the
trusted compilers. The -cost-acc flag of the plug-in can be used to select the executable to
be used for compilation. The code of the plug-in has been modified w.r.t. D5.1 to address
two issues.

On the one side, the analysis of the stack-size consumption has been integrated into it.
From the user point of view, time and space cost annotations and invariants are handled in
a similar way. Nevertheless, we expect automated theorem provers to face more difficulties
in dealing with stack usage because elapsed time is additive, whereas what is interesting for
space usage is the maximum amount of stack used, which is not additive. On the other hand,

CerCo, FP7-ICT-2009-C-243881 14

programs produced by our compiler require more stack only at function calls. Therefore the
proof obligations generated to bound the maximum stack size for non recursive programs are
trivial. Most C programs, and in particular those used in time critical systems, avoid recursive
functions.

On the other side, the plug-in has been updated to take advantage of the new Why3
platform.

4 The cerco Wrapper

The Why3 platform is a complete rewrite of the old Why2 one. The update has triggered
several additional passages to enable the use of the cost plug-in in conjunction with the Jessie
one and the automatic and interactive theorem provers federated by the Why3 platform,
mainly because the Jessie plug-in still uses Why2. These passages, which required either
tedious manual commands or a complicated makefile, have prompted us to write a script
wrapping all the functionalities provided by the software described in this deliverable.

Syntax: cerco [-ide] [-untrusted] filename.c

The C file provided is processed via the cost plug-in and then to the Why3 platform. The two
available options command the following features.

• -ide: launch the Why3 interactive graphical interface for a fine-grained control on
proving the synthesised program invariants. If not provided, the script will launch all
available automatic theorem provers with a 5 second time-out, and just report failure or
success.

• -untrusted: if it is installed, use the untrusted prototype rather than the trusted one
(which is the default behaviour).

The minimum dependencies for the use of this script are

• either the trusted or the untrusted acc CerCo compiler;

• both Why2 and Why3;

• the cost and Jessie plus-ins.

However it is recommended to install as much Why3-compatible automatic provers as possible
to maximise the effectiveness of the command. The provers provided by default were not very
effective in our experience.

5 Connection with other deliverables

This deliverable represents the final milestone of the CerCo project. The software delivered
links together most of the software already developed in previous deliverables, and it benefits
from the studies performed in other deliverables. In particular:

• The compiler links the code extracted from the executable formal semantics of C (D3.1),
machine code (D4.1), front-end intermediate languages (D3.3) and back-end intermedi-
ate languages (D4.3). The -is flag of the compiler invokes the semantics of every

CerCo, FP7-ICT-2009-C-243881 15

intermediate representation of the program to be compiled. The executability of the C
and machine code languages has been important to debug the the two semantics, that
are part of the trusted code base of the compiler. The executability of the intermediate
languages has been important during development for early detection of bugs both in the
semantics and in the compiler passes. They are also useful to users to profile programs
in early compilation stages to detect where the code spends more time. Those semantics,
however, are not part of the trusted code base.

• The compiler links the code extracted from the CIC encoding of the Front-end (D3.2)
and Back-end (D4.2). The two encodings have been partially proved correct in D3.4
(Front End Correctness Proof) and D4.4 (Back End Correctness Proof). The formal
proofs to be delivered in those deliverables have not been completed. The most urgent
future work after the end of the project will consist in completing those proofs.

• Debian Packages have been provided in D6.6 for the Cost-Annotating Plug-In, the Un-
trusted CerCo Compiler and the Trusted CerCo Compiler. The first and third installed
together form a full installation of the Trusted CerCo Prototype. In order to allow in-
terested people to test the prototype more easily, we also provided in D6.6 a Live CD
based on Debian with the CerCo Packages pre-installed.

	Task
	The Trusted CerCo Compiler
	Command line interface
	Code structure
	Functional differences w.r.t. the untrusted compiler
	Implementation differences w.r.t. the untrusted compiler
	Quality of the extracted code

	The Cost-Annotating Plug-In
	The cerco Wrapper
	Connection with other deliverables

