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Outline The deliverable D5.3 is composed of the following parts:

1. A summary.

[\

. The papers [1] and [3] and the related software Cost!.

w

. The paper [2] and the related software LamCost?.

o

. The papers [5, 4].
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Summary

The main aim of WP5 is to develop proof of concept prototypes where the (untrusted) compiler
implemented in WP2 is interfaced with existing tools and languages in order to synthesize
complexity assertions on the execution time of programs.

In particular, Deliverable 5.3 should contain a case study (under the form of a software
prototype) which is described as follows in the contract.

Case study: analysis of synchronous code. Automatic generation of invariants
for the C code generated by a synchronous language compiler. Application to
the computation of a certified reaction time bound for synchronous programs and
testing on significant examples.

The synchronous language we chose to carry on this case study is Lustre. Lustre is a
synchronous language where reactive systems are described by flow of values. It comes with a
compiler that transforms a Lustre node (any part of or the whole system) into a C step function
that represents one synchronous cycle of the node. A WCET for the step function is thus a
worst case reaction time for the component. The generated C step function neither contains
loops nor is recursive, which makes it particularly well suited for a completely automatic
application of the Cost plug-in (cf. Deliverable D5.1).

We designed a wrapper that has for inputs a Lustre file and a node inside the file, and
outputs the cost of the C step function corresponding to the node. Optionally, verification
with Jessie or testing can be toggled. The flow of the wrapper is described in figure 1. It
simply executes a command line, reads the results, and sends them to the next command.

C file with
step function

lus2c C file with Cost plug-in ; .
step function CerCo annotations | | > Frama — C/Jessie

+

ACSL WCET specification

Output

Figure 1: Flow of the Lustre wrapper

A typical run of the wrapper looks as follows (we use the parity example from our distri-
bution of Lustre; it computes the parity bit of a boolean array):

frama-c_lustre -verify -test parity.lus parity
Invoking the above command line produces the following output:

WCET of parity_step: 2220+_cost_of_parity_O_parity+_cost_of_parity_O_done
(not verified).

Verifying the result (this may take some time)...

WCET is proven correct.

Testing the result (this may take some time)...

Estimated WCET: 2220

Minimum: 2144

Maximum: 2220

Average: 2151

Estimated WCET is correct for these executioms.
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e All the intermediary results of the wrapper are stored in files. Verbosity can be turned
on to show the different commands invoked and the resulting files.

e The step function generated with the Lustre compiler for the node parity is called
parity_step. It might call functions that are not defined but only prototyped, such
as parity_O_parity or parity_-0_done. Those are functions that the user of the Lustre
compiler can use for debugging, but that are not part of the parity system. Therefore,
we leave their cost abstract in the expression of the cost of the step function, and we set
their cost to 0 when testing (this can be changed by the user).

e Testing consists in adding a main function to the C file, that will run the step function
on a parameterized number of input states for a parameterized number of cycles. The
C file contains information that allows to syntactically distinguish integer variables used
as booleans, which helps in generating interesting input states. After each iteration of
the step function, the value of the cost variable is fetched in order to compute its overall
minimum, maximum and average value for one step. If the maximum were to be greater
than the WCET computed by the Cost plug-in, then we could conclude of an error in
the plug-in.

The prototype described above was already completed and presented at the second review
along with an unplanned case study on applying the labelling method to a functional language.
In particular, the work on the Lustre case study has been published in [1] along with results
that relate to Deliverables 2.2 (untrusted compiler implementing the labelling method) and
5.1 (Cost plug-in). Therefore the human power left during the third period was dedicated to
develop case studies which were unplanned in the contract and which are described below.

Enlarge the scope of the Cost synthesis tool.

At mentioned above the structure of the C programs produced by a Lustre compiler is particu-
larly simple. During the third period of the project, we worked to extend the class of programs
that can be handled in an automatic way. The two main contributions are as follows:

1. We showed [1] that the Cost tool can handle automatically programs with simple loops
such as stream ciphers and sorting (the quoted paper got the best paper award at the
conference).

2. In order to handle simple programs with pointers (such as in-place list reversal), we
have developed a proof methodology that adapts some ideas of separation logic to the
Frama — C tool [3].

Along the way, the internals of the Cost plug-in have also been revisited. In particular,
the abstract interpretation technique described in [1] has been streamlined and a program
instrumentation to measure stack bounds has been added. This work is not described in the
quoted papers [1, 3] but it is part of the prototype software deliverable and was demonstrated
at the third and final review. We stress that all this work is based on the untrusted CerCo
compiler developed in WP2 as the partially trusted CerCo compiler was delivered when the
man power devoted to this task was exhausted.



CerCo, FP7-ICT-2009-C-243881 5

The labelling approach for a higher-order functional language.

At the second review meeting, we had presented an adaptation of the so called labelling method
to a standard compiler for a higher-order functional language. The target code produced by
this compiler corresponds to the source code of the back-end of the CerCo C compiler. During
the third period, we have shown that the method can be enhanced to account for the cost of
safe memory management. Specifically, we have relied on a region based management system
and this in turn has required an analysis of the way the compilation chain preserves typing.
The whole approach is described in the included paper [2].

Feasible bounds

We have worked on a type system for a multi-threaded functional language that guarantees
termination in polynomial time [5, 4]. A long term goal of this work is to establish a connection
between the research on implicit computational complezity (ICC) and worst case execution
time (WCET). Researchers in ICC design type/logical systems that guarantee asymptotic
bounds for the source language. What needs to be done is to develop methods to turn these
asymptotic bounds for the source language into certified and concrete bounds for the compiled
code. We also believe that in a practical approach one should be able to mix ‘well-typed’
programs whose resource bounds are guaranteed with ‘untyped’ ones whose resource bounds
must be explicitly proved in a general purpose logic. The realizability framework developed in
[4] appears as a promising approach to this task.
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Abstract. We present a so-called labelling method to enrich a compiler
in order to turn it into a “cost annotating compiler”, that is, a compiler
which can lift pieces of information on the execution cost of the object
code as cost annotations on the source code. These cost annotations
characterize the execution costs of code fragments of constant complexity.
The first contribution of this paper is a proof methodology that extends
standard simulation proofs of compiler correctness to ensure that the
cost annotations on the source code are sound and precise with respect
to an execution cost model of the object code.

As a second contribution, we demonstrate that our label-based instru-
mentation is scalable because it consists in a modular extension of the
compilation chain. To that end, we report our successful experience in
implementing and testing the labelling approach on top of a prototype
compiler written in ocaml for (a large fragment of) the C language.

As a third and last contribution, we provide evidence for the usability
of the generated cost annotations as a mean to reason on the concrete
complexity of programs written in C. For this purpose, we present a
FraMA-C plugin that uses our cost annotating compiler to automatically
infer trustworthy logic assertions about the concrete worst case execution
cost of programs written in a fragment of the C language. These logic
assertions are synthetic in the sense that they characterize the cost of
executing the entire program, not only constant-time fragments. (These
bounds may depend on the size of the input data.) We report our ex-
perimentations on some C programs, especially programs generated by
a compiler for the synchronous programming language LUSTRE used in
critical embedded software.

1 Introduction

The formal description and certification of software components is reaching a
certain level of maturity with impressing case studies ranging from compilers
to kernels of operating systems. A well-documented example is the proof of
functional correctness of a moderately optimizing compiler from a large subset
of the C language to a typical assembly language of the kind used in embedded
systems [11].

In the framework of the Certified Complexity (CerCo) project! [4], we aim
to refine this line of work by focusing on the issue of the execution cost of

! CerCo project http://cerco.cs.unibo.it

M. Stoelinga and R. Pinger (Eds.): FMICS 2012, LNCS 7437, pp. 32-46, 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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the compiled code. Specifically, we aim to build a formally verified C compiler
that given a source program produces automatically a functionally equivalent
object code plus an annotation of the source code which is a sound and precise
description of the execution cost of the object code.

We target in particular the kind of C programs produced for embedded appli-
cations; these programs are eventually compiled to binaries executable on specific
processors. The current state of the art in commercial products such as Scade? [8] is
that the reaction time of the program is estimated by means of abstract interpreta-
tion methods (such as those developed by AbsInt? [7]) that operate on the binaries.
These methods rely on a specific knowledge of the architecture of the processor and
may require explicit (and uncertified) annotations of the binaries to determine the
number of times a loop is iterated (see, e.g., [14] for a survey of the state of the art).

In this context, our aim is to produce a mechanically verified compiler which can
lift in a provably correct way the pieces of information on the execution cost of the
binary code to cost annotations on the source C code. Then the produced cost anno-
tations are manipulated with the Frama — C* [5] automatic tool to infer synthetic
cost annotations. We stress that the practical relevance of the proposed approach
depends on the possibility of obtaining accurate information on the execution cost
of relatively short sequences of binary instructions. This seems beyond the scope
of current Worst-Case Execution Time (WCET) tools such as Abslnt or Chronos®
which do not support a compositional analysis of WCET. For this reason, we fo-
cus on processors with a simple architecture for which manufacturers can provide
accurate information on the execution cost of the binary instructions. In particu-
lar, our experiments are based on the 8051 [10]®. This is a widely popular 8-bits
processor developed by Intel for use in embedded systems with no cache and no
pipeline. An important characteristic of the processor is that its cost model is ‘ad-
ditive’: the cost of a sequence of instructions is exactly the sum of the costs of each
instruction.

The rest of the paper is organized as follows. Section 2 describes the labelling
approach and its formal application to a toy compiler. The report [2] gives standard
definitions for the toy compiler and sketches the proofs. A formal and browsable
Coq development composed of 1 Kloc of specifications and 3.5 Kloc of proofs is
availableat http://www.pps.univ-paris-diderot.fr/cerco. Section 3 reports
our experience in implementing and testing the labelling approach for a compiler
from C to 8051 binaries. The CerCo compiler is composed of 30 Kloc of ocaml code;
it can be both downloaded and tested as a web application at the URL above. More
details are available in report [2] Section 4 introduces the automatic Cost tool that
starting from the cost annotations produces certified synthetic cost bounds. This
is a Frama — C plug-in composed of 5 Kloc of ocaml code also available at the URL
above.

2 Esterel Technologies. http://www.esterel-technologies.com

3 AbsInt Angewandte Informatik. http://www.absint.com/

4 Frama — C software analyzers. http://frama-c.com/

® Chronos tool. www.comp.nus.edu.sg/~rpembed/chronos

6 The recently proposed ARM Cortex M series would be another obvious candidate.
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2 A “Labelling” Method for Cost Annotating
Compilation

In this section, we explain in general terms the so-called “labelling” method to
turn a compiler into a cost annotating compiler while minimizing the impact
of this extension on the proof of the semantic preservation. Then to make our
purpose technically precise, we apply the method to a toy compiler.

2.1 Overview

As a first step, we need a clear and flexible picture of: (i) the meaning of cost
annotations, (i) the method to provide them being sound and precise, and (iii)
the way such proofs can be composed. The execution cost of the source pro-
grams we are interested in depends on their control structure. Typically, the
source programs are composed of mutually recursive procedures and loops and
their execution cost depends, up to some multiplicative constant, on the num-
ber of times procedure calls and loop iterations are performed. Producing a cost
annotation of a source program amounts to:

— enrich the program with a collection of global cost variables to measure re-
source consumption (time, stack size, heap size,. . .)

— inject suitable code at some critical points (procedures, loops,...) to keep
track of the execution cost.

Thus, producing a cost-annotation of a source program P amounts to build an
annotated program An(P) which behaves as P while self-monitoring its execution
cost. In particular, if we do not observe the cost variables then we expect the
annotated program An(P) to be functionally equivalent to P. Notice that in the
proposed approach an annotated program is a program in the source language.
Therefore, the meaning of the cost annotations is automatically defined by the
semantics of the source language and tools developed to reason on the source
programs can be directly applied to the annotated programs too. Finally, notice
that the annotated program An(P) is only meant to reason on the execution
cost of the unannotated program P and it will never be compiled or executed.

Soundness and precision of cost annotations. Suppose we have a functionally
correct compiler C that associates with a program P in the source language a
program C(P) in the object language. Further suppose we have some obvious
way of defining the execution cost of an object code. For instance, we have a good
estimate of the number of cycles needed for the execution of each instruction of
the object code. Now, the annotation of the source program An(P) is sound if its
prediction of the execution cost is an upper bound for the ‘real’ execution cost.
Moreover, we say that the annotation is precise with respect to the cost model
if the difference between the predicted and real execution costs is bounded by a
constant which only depends on the program.
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Compositionality. In order to master the complexity of the compilation process
(and its verification), the compilation function C must be regarded as the result of
the composition of a certain number of program transformations C = Cro---0Cj.
When building a system of cost annotations on top of an existing compiler, a
certain number of problems arise. First, the estimated cost of executing a piece
of source code is determined only at the end of the compilation process. Thus,
while we are used to define the compilation functions C; in increasing order,
the annotation function An is the result of a progressive abstraction from the
object to the source code. Second, we must be able to foresee in the source
language the looping and branching points of the object code. Missing a loop
may lead to unsound cost annotations while missing a branching point may lead
to rough cost predictions. This means that we must have a rather good idea
of the way the source code will eventually be compiled to object code. Third,
the definition of the annotation of the source code depends heavily on contextual
information. For instance, the cost of the compiled code associated with a simple
expression such as x+ 1 will depend on the place in the memory hierarchy where
the variable x is allocated. A previous experience described in [1] suggests that
the process of pushing ‘hidden parameters’ in the definitions of cost annotations
and of manipulating directly numerical cost is error prone and produces complex
proofs. For this reason, we advocate next a ‘labelling approach’ where costs are
handled at an abstract level and numerical values are produced at the very end
of the construction.

2.2 The Labelling Approach, Formally

The ‘labelling” approach to the problem of building cost annotations is summa-
rized in the following diagram.

C

1 K
Ly < Ly, > Loy > Lpy1e
€Tri+1 OCZ‘ = Ci o er;
LC )e” ery erh41 eriol = idy,
Y % An = ZoL
Cq Ck
I > Lo - > Ljq1

For each language L; considered in the compilation process, we define an ex-
tended labelled language L; » and an extended operational semantics. The labels
are used to mark certain points of the control. The semantics makes sure that
whenever we cross a labelled control point a labelled and observable transition
is produced.

For each labelled language there is an obvious function er; erasing all labels
and producing a program in the corresponding unlabelled language. The com-
pilation functions C; are extended from the unlabelled to the labelled language
so that they enjoy commutation with the erasure functions. Moreover, we lift
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the soundness properties of the compilation functions from the unlabelled to the
labelled languages and transition systems.

A labelling L of the source language L is a function such that ery, o £ is the
identity function. An instrumentation I of the source labelled language L ¢ is a
function replacing the labels with suitable increments of, say, a fresh global cost
variable. Then, an annotation An of the source program can be derived simply as
the composition of the labelling and the instrumentation functions: An =Zo L.

Suppose s is some adequate representation of the state of a program. Let P
be a source program. The judgement (P, s) |} s’ is the big-step evaluation of P
transforming state s into a state s’. Let us write s[v/z] to denote a state s in
which the variable x is assigned a value v. Suppose now that its annotation
satisfies the following property:

(An(P), slc/ cost]) | s'[c + &/ cost] (1)

where ¢ and ¢ are some non-negative numbers. Then, the definition of the instru-
mentation and the fact that the soundness proofs of the compilation functions
have been lifted to the labelled languages allows to conclude that

(C(L(P)), slc/ cost]) I (s'[c/ cost], A) (2)

where C = Ci0---0Cy and A is a sequence (or a multi-set) of labels whose ‘cost’
corresponds to the number  produced by the annotated program. Then, the
commutation properties of erasure and compilation functions allows to conclude
that the erasure of the compiled labelled code ery4+1(C(L(P))) is actually equal
to the compiled code C(P) we are interested in. Given this, the following question
arises: under which conditions the sequence ), i.e., the increment J, is a sound
and possibly precise description of the execution cost of the object code?

To answer this question, we observe that the object code we are interested in
is some kind of assembly code and its control flow can be easily represented as a
control flow graph. The idea is then to perform two simple checks on the control
flow graph. The first check is to verify that all loops go through a labelled node.
If this is the case then we can associate a finite cost with every label and prove
that the cost annotations are sound. The second check amounts to verify that
all paths starting from a label have the same cost. If this check is successful then
we can conclude that the cost annotations are precise.

2.3 A Toy Compiler

As a first case study, we apply the labelling approach to a toy compiler.

The syntax of the source, intermediate and target languages is given in Fig-
ure 1. The three languages considered can be shortly described as follows: Imp is
a very simple imperative language with pure expressions, branching and looping
commands, Vm is an assembly-like language enriched with a stack, and Mips is
a Mips-like assembly language [9] with registers and main memory.

The semantics of Imp is defined over configurations (S, K,s) where S is a
statement, K is a continuation and s is a state. A continuation K is a list of
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Syntax for Imp Syntax for Vm
ida=zx|y]... instrym ::= cnst(n) | var(n)
nu=0]-1]+1]... | setvar(n)|add
v == n | true | false | branch(k) | bge(k) | halt
ex=1id|n|le+e
bi=e<e
S u=skip|id :=e]|S;S Syntax for Mips
| if b then S else S instrmips := loadi R,n | load R,
| while bdo S | storeR,l|addR,R,R
P ::= prog S | branchk |bge R, R,k |halt

Fig. 1. Syntax definitions

commands which terminates with a special symbol halt. The semantics of Vm
is defined over stack-based machine configurations C' + (i,0,s) where C' is a
program, i is a program counter, o is a stack and s is a state. The semantics of
Mips is defined over register-based machine configurations C' F (i, m) where C is
a program, ¢ is a program counter and m is a machine memory (with registers
and main memory).

The first compilation function C relies on the stack of the Vm language to
implement expression evaluation while the second compilation function C’ al-
locates (statically) the base of the stack in the registers and the rest in main
memory. This is of course a naive strategy but it suffices to expose some of the
problems that arise in defining a compositional approach. The formal definitions
of these compilation functions C from Imp to Vm and C’ from Vm to Mips are
standard and thus eluded. (See report [2] for formal details about semantics and
the compilation chain.)

Applying the labelling approach to this toy compiler results in the following
diagram. The next sections aim at describing this diagram in details.

c c’ .
Imp < ; Imp, >Vmy > Mips, ervm 0 C = C o erimp
ermips ©C' = C' 0 erym
er ermi .
L Imp veT‘Vm y Mips e’rlmp O£ — ldlmp
c ! . An = ZoLl
Imp >Vm > Mips Imp

2.4 Labelled languages: Syntax and Semantics

Syntax The syntax of Imp is extended so that statements can be labelled: S ::=
... €:S. A new instruction emit(¢) (resp. (emit ¢)) is introduced in the syntax
of Vm (resp. Mips).
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Semantics. The small step semantics of Imp statements is extended as described
by the following rule.

(£:S,K,s) RN (S, K, s)

We denote with A, X, ... finite sequences of labels. In particular, the empty
sequence is written e. We also identify an unlabelled transition with a transition
labelled with e. Then, the small step reduction relation we have defined on
statements becomes a labelled transition system. We derive a labelled big-step
semantics as follows: (S, s) | (s',\) if (S, halt, s) My Ay (skip, halt, s’) and
A=A1 Ay

Following the same pattern, the small step semantics of Vm and Mips are
turned into a labelled transition system as follows:

Ct(i,0,8) 5 (i+1,0,8)  if C[i] = emit(¢) .
MF (i,m) 5 (i+1,m) if M[i] = (emit £) .

The evaluation predicate for labelled Vm is defined as (C,s) | (s',\) if C

n

(0,€, s) Ay Ay (i,6,8"), A = A1--- A, and CJi] = halt. The evaluation

predicate for labelled Mips is defined as (M, m) | (m/,\) if M + (0,m) A

) A_"> (j?m/)a A= )\1 )\n and M[]] = halt.

2.5 Erasure Functions

There is an obvious erasure function erjmp from the labelled language to the
unlabelled one which is the identity on expressions and boolean conditions, and
traverses commands removing all labels.

The erasure function eryy, amounts to remove from a Vm code C' all the emit(?)
instructions and recompute jumps accordingly. Specifically, let n(C,1i,j) be the
number of emit instructions in the interval [7, j]. Then, assuming C[i] = branch(k)
we replace the offset k with an offset &’ determined as follows:

p_ [E=n(Ciitk) k>0
T k+n(Ci+1+ki0)ifk<0

The erasure function erwmips is also similar to the one of Vm as it amounts to
remove from a Mips code all the (emit ¢) instructions and recompute jumps ac-
cordingly. The compilation function C’ is extended to Vm, by simply translating
emit(¢) as (emit ¢):

C'(i,C) = (emit £) if C[i] = emit(¥)

2.6 Compilation of Labelled Languages
The compilation function C is extended to Imp, by defining:
Cl:bk) = (emit(£))-C(b,k) C(£:S) = (emit(£))-C(S) .
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Proposition 1. For all commands S in Imp,, we have that:
(1) ervm(C(95)) = C(ermp(5))-
(2) IF (S.5) U (', ) then (C(S),5) I (', M.

The following proposition relates Vm, code and its compilation and it is similar
to proposition 1. Here m ||-o0,s means “the low-level Mips memory m realizes
the Vm stack o and state s”.

Proposition 2. Let C' be a Vmy code. Then:
(1) ermips(C'(C)) = C'(ervm(C)).
(2) If (C,s) I (s, A) and m ||—¢€, s then (C'(C),m) | (m',A) and m' |—¢,s’.

2.7 Labellings and Instrumentations

Assuming a function s which associates an integer number with labels and a
distinct variable cost which does not occur in the program P under consideration,
we abbreviate with inc(¢) the assignment cost := cost + r(¢). Then we define
the instrumentation Z (relative to x and cost) as follows:

Z(l:S)="inc(€);Z(9) .

The function Z just distributes over the other operators of the language. We
extend the function x on labels to sequences of labels by defining x(¢1,...,¢,) =
k(l1) + -+ + k(£,). The instrumented Imp program relates to the labelled one
as follows.

Proposition 3. Let S be an Imp, command. If (Z(S), s[c/cost]) | s'[c+ 6/ cost]
then 3N Kk(X) =6 and (S, s[c/cost]) | (s'[c/ cost], N).

Definition 1. A labelling is a function £ from an unlabelled language to the
corresponding labelled one such that erymp o L is the identity function on the Imp
language.

Proposition 4. For any labelling function L, and Imp program P, the following
holds:
ermips(C'(C(L(P))) = C'(C(P)) - (3)

Proposition 5. Given a function k for the labels and a labelling function L, for
all programs P of the source language if (Z(L(P)), s[c/cost]) || s'[c+ 6/ cost] and
m |[—¢, s[c/cost] then (C'(C(L(P))),m) | (m',\), m'|—e¢ s'[c/cost] and
K(A) = 0.

2.8 Sound and Precise Labellings

With any Mips, code M, we can associate a directed and rooted (control flow)
graph whose nodes are the instruction positions {0,...,|M| — 1}, whose root
is the node 0, and whose directed edges correspond to the possible transitions
between instructions. We say that a node is labelled if it corresponds to an
instruction emit £.
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Definition 2. A simple path in a Mips, code M is a directed finite path in
the graph associated with M where the first node is labelled, the last node is
the predecessor of either a labelled node or a leaf, and all the other nodes are
unlabelled.

Definition 3. A Mips, code M is soundly labelled if in the associated graph the
root node 0 s labelled and there are no loops that do not go through a labelled
node. Besides, we say that a soundly labelled code is precise if for every label ¢
in the code, the simple paths starting from a node labelled with ¢ have the same
cost.

In a soundly labelled graph there are finitely many simple paths. Thus, given a
soundly labelled Mips code M, we can associate with every label £ a number x(¥)
which is the maximum (estimated) cost of executing a simple path whose first
node is labelled with £. Thus for a soundly labelled Mips code the sequence of
labels associated with a computation is a significant information on the execution
cost.

For an example of command which is not soundly labelled, consider ¢ :
while 0 < z do x := x + 1, which when compiled, produces a loop that does
not go through any label. On the other hand, for an example of a program
which is not precisely labelled consider ¢ : (if 0 < x then x := x + 1 else skip). In
the compiled code, we find two simple paths associated with the label ¢ whose
cost will be quite different in general.

Proposition 6. If M is soundly (resp. precisely) labelled and (M,m) I} (m', \)
then the cost of the computation is bounded by k(\) (resp. is exactly k() ).

The next point we have to check is that there are labelling functions (of the source
code) such that the compilation function does produce sound and possibly precise
labelled Mips code. To discuss this point, we introduce in table 1 a labelling
function £, for the Imp language. This function relies on a function “new” which
is meant to return fresh labels and on an auxiliary function £’, which returns a
labelled command and a binary directive d € {0,1}. If d = 1 then the command
that follows (if any) must be labelled.

Table 1. A labelling for the Imp language

Ly (prog S) = prog L,(S)

L,(S) = let £ = new, (S',d)=L',(S)inl:S

L'5(S) = (5,0) if S=skipor S=(z:=e¢)

L', (if b then S; else S2) = (if b then L£,(S1) else £,(S2),1)

L', (while b do S) = (while b do £,(S5),1)

L'p(S1; S2) = let (S1,d1) = L'p(S1), (S2,d2) = L'p(S2) in
case dy

0:(S51;53,d2)
1:let £ =new in (S1;£: S3,d2)
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Proposition 7. For all Imp programs P, C'(C(L,(P)) is a soundly and precisely
labelled Mips code.

Once a sound and possibly precise labelling £ has been designed, we can deter-
mine the cost of each label and define an instrumentation Z whose composition
with £ will produce the desired cost annotation.

Definition 4. Given a labelling function L for the source language Imp and a
program P in the Imp language, we define an annotation for the source program

as follows:
Animp(P) = Z(L(P)) .

Proposition 8. If P is a program and C'(C(L(P))) is a sound (sound and pre-
cise) labelling then (Animp(P ) slc/cost]) |} s'[c + §/cost] and m ||—¢, s[c/ cost]
entails that (C'(C(P)),m) 4 m/, m’ ||—¢, s'[c/cost] and the cost of the execution
is bounded by (is exactly) §.

3 A C Compiler Producing Cost Annotations

We now consider an untrusted C compiler prototype in ocaml in order to exper-
iment with the scalability of our approach. Its architecture is described below:

C — Clight = Cminor — RTLAbs (front end)

1
Mips or 8051 «<— LIN <~ LTL <« ERTL « RTL (back-end)

The most notable difference with CompCert [11] is that we target the Intel
8051 [10] and Mips assembly languages (rather than PowerPc). The compila-
tion from C to Clight relies on the CIL front-end [13]. The one from Clight to RTL
has been programmed from scratch and it is partly based on the Coq definitions
available in the CompCert compiler. Finally, the back-end from RTL to Mips is
based on a compiler developed in ocaml for pedagogical purposes’; we extended
this back-end to target the Intel 8051. The main optimizations the back-end per-
forms are liveness analysis and register allocation, and graph compression. We
ran some benchmarks to ensure that our prototype implementation is realistic.
The results are given in report [2].

This section informally describes the labelled extensions of the languages in
the compilation chain (see report [2] for details), the way the labels are propa-
gated by the compilation functions, and the (sound and precise) labelling of the
source code. A related experiment concerning a higher-order functional language
of the ML family is described in [3].

3.1 Labelled Languages

Both the Clight and Cminor languages are extended in the same way by labelling
both statements and expressions (by comparison, in the toy language Imp we

" http://www.enseignement.polytechnique.fr/informatique/INF564/
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just used labelled statements). The labelling of expressions aims to capture pre-
cisely their execution cost. Indeed, Clight and Cminor include expressions such
as a1?a9; a3 whose evaluation cost depends on the boolean value a;. As both
languages are extended in the same way, the extended compilation does nothing
more than sending Clight labelled statements and expressions to those of Cminor.

The labelled versions of RTLAbs and the languages in the back-end simply
consist in adding a new instruction whose semantics is to emit a label without
modifying the state. For the CFG based languages (RTLAbs to LTL), this new
instruction is emit label — node. For LIN, Mips and 8051, it is emit label. The
translation of these label instructions is immediate.

3.2 Labelling of the Source Language

As for the toy compiler, the goals of a labelling are soundness, precision, and
possibly economy. Our labelling for Clight resembles that of Imp for their common
instructions (e.g. loops). We only consider the instructions of Clight that are not
present in Imp?8.

Ternary expressions. They may introduce a branching in the control flow. We
achieve precision by associating a label with each branch.

Program Labels and Gotos. Program labels and gotos are intraprocedural. Their
only effect on the control flow is to potentially introduce an unguarded loop.
This loop must contain at least one cost label in order to satisfy the soundness
condition, which we ensure by adding a cost label right after each program label.

Function calls. In the general case, the address of the callee cannot be inferred
statically. But in the compiled assembly code, we know for a fact that the callee
ends with a return statement that transfers the control back to the instruction
following the function call in the caller. As a result, we treat function calls ac-
cording to the following invariants: (1) the instructions of a function are covered
by the labels inside this function, (2) we assume a function call always returns
and runs the instruction following the call. Invariant (1) entails in particular
that each function must contain at least one label. Invariant (2) is of course an
over-approximation of the program behavior as a function might fail to return
because of an error or an infinite loop. In this case, the proposed labelling re-
mains correct: it just assumes that the instructions following the function call
will be executed, and takes their cost into consideration. The final computed
cost is still an over-approximation of the actual cost.

4 A Tool for Reasoning on Cost Annotations

Frama — C is a set of analysers for C programs with a specification language
called ACSL. New analyses can be dynamically added through a plug-in system.

8 We do not consider expressions with side-effects because they are eliminated by CIL.
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For instance, the Jessie plug-in allows deductive verification of C programs with
respect to their specification in ACSL, with various provers as back-end tools.

We developed the Cost plug-in for the Frama — C platform as a proof of con-
cept of an automatic environment exploiting the cost annotations produced by
the CerCo compiler. It consists of an ocaml program of 5 Kloc which in first
approximation takes the following actions: (1) it receives as input a C program,
(2) it applies the CerCo compiler to produce a related C program with cost anno-
tations, (3) it applies some heuristics to produce a tentative bound on the cost
of executing the C functions of the program as a function of the value of their
parameters, (4) the user can then call the Jessie tool to discharge the related
proof obligations. In the following we elaborate on the soundness of the frame-
work, the algorithms underlying the plug-in, and the experiments we performed
with the Cost tool.

4.1 Soundness

The soundness of the whole framework depends on the cost annotations added
by the CerCo compiler, the synthetic costs produced by the Cost plug-in, the
verification conditions (VCs) generated by Jessie, and the external provers dis-
charging the VCs. The synthetic costs being in ACSL format, Jessie can be used
to verify them. Thus, even if the added synthetic costs are incorrect (relatively
to the cost annotations), the process in its globality is still correct: indeed, Jessie
will not validate incorrect costs and no conclusion can be made about the WCET
of the program in this case. In other terms, the soundness does not really depend
on the action of the Cost plug-in, which can in principle produce any synthetic
cost. However, in order to be able to actually prove a WCET of a C function,
we need to add correct annotations in a way that Jessie and subsequent auto-
matic provers have enough information to deduce their validity. In practice this
is not straightforward even for very simple programs composed of branching
and assignments (no loops and no recursion) because a fine analysis of the VCs
associated with branching may lead to a complexity blow up.

4.2 Inner Workings

The cost annotations added by the CerCo compiler take the form of C instruc-
tions that update by a constant a fresh global variable called the cost variable.
Synthesizing a WCET of a C function thus consists in statically resolving an
upper bound of the difference between the value of the cost variable before and
after the execution of the function, i.e. find in the function the instructions that
update the cost variable and establish the number of times they are passed
through during the flow of execution. The plug-in proceeds as follows.

— Each function is independently processed and is associated a WCET that
may depend on the cost of the other functions. This is done with a mix
between abstract interpretation [6] and syntactic recognition of specific loops.
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— Asresult of the previous step, a system of inequations is built and its solution
is attempted by an iterative process. At each iteration, one replaces in all
the inequations the references to the cost of a function by its associated cost
if it is independent of the other functions. This step is repeated till a fixpoint
is reached.

— ACSL annotations are added to the program according to the result of the
above fixpoint. The two previous steps may fail in finding a concrete WCET
for some functions, because of imprecision inherent in abstract interpreta-
tion, and because of recursive definitions in the source program not solved
by the fixpoint. At each program point that requires an annotation (function
definitions and loops), annotations are added if a solution was found for the
program point.

— The most difficult instructions to handle are loops. We consider loops for
which we can syntactically find a counter (its initial, increment and last
values are domain dependent). Other loops are associated an undefined cost
(T). When encountering a loop, the analysis first sets the cost of its entry
point to 0. The cost inside the loop is thus relative to the loop. Then, for
each exit point, we fetch the value of the cost at that point and multiply it
by an upper bound of the number of iterations (obtained through arithmetic
over the initial, increment and last values of the counter); this results in an
upper bound of the cost of the whole loop, which is sent to the successors of
the considered exit point.

Figure 2 shows the action of the Cost plug-in on a C program. The most no-
table differences are the added so-called cost variable, some associated update
(increment) instructions inside the code, and an ensures clause that specifies
the WCET of the is sorted function with respect to the cost variable. One can
notice that this WCET depends on the inputs of the function. Running Jessie
on the annotated and specified program generates VCs that are all proved by
the automatic prover AltErgo®.

4.3 Experiments

The Cost plug-in has been developed in order to validate CerCo’s framework for
modular WCET analysis. The plug-in allows (semi-)automatic generation and
certification of WCET for C programs. Also, we designed a wrapper for support-
ing Lustre files. Indeed, Lustre is a data-flow language to program synchronous
systems and the language comes with a compiler to C. The C function pro-
duced by the compiler implements the step function of the synchronous system
and computing the WCET of the function amounts to obtain a bound on the
reaction time of the system.

We tested the Cost plug-in and the Lustre wrapper on the C programs gen-
erated by the Lustre compiler. We also tested it on some basic algorithms and
cryptographic functions; these examples, unlike those generated by the Lustre

 AltErgo prover. http://ergo.lri.fr/
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int is sorted (int *tab, int size) {
int i, res = 1;
for (i =0 ; i < size-1 ; i++) if (tab[i] > tab[i+1]) res = 0;
return res; }

(a) The initial C source code.

int cost = 0;

/%@ ensures ( cost < \old( cost)+(101+(0<size-17(size-1)%195:0))); */
int is sorted (int *tab, int size) {
int i, res = 1, cost tmpO;
cost += 97; cost tmp0 = cost;
/*@ loop invariant (0 < size-1) = (i < size-1);
@ loop invariant (0 > size-1) = (i = 0);
@ loop invariant ( cost < cost tmpO+i*195);
@ loop variant (size-1)-i; */
for (i = 0; i < size-1; i++) {
cost += 91;
if (tab[i] > tab[i+1]) { cost += 104; res = 0; }
else cost += 84; }
cost += 4; return res; }

(b) The annotated source code generated by Cost.

Fig. 2. An example of the Cost plug-in action

File Type Description LOC VCs
3-way.c C Three way block cipher 144 34
ab.c C Ab stream cipher, used in GSM cellular 226 18
array sum.c S Sums the elements of an integer array 15 9
fact.c S Factorial function, imperative implementation 12 9
is sorted.c S Sorting verification of an array 8 8
LFSR.c C  32-bit linear-feedback shift register 47 3
minus.c L Two modes button 193 8
mmb. c C Modular multiplication-based block cipher 124 6
parity.lus L Parity bit of a boolean array 359 12
random.c C Random number generator 146 3

S: standard algorithm  C: cryptographic function
L: C generated from a Lustre file

Fig. 3. Experiments on CerCo and the Cost plug-in
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compiler include arrays and for-loops. Table 3 provides a list of concrete pro-
grams and describes their type, functionality, the number of lines of the source
code, and the number of VCs generated. In each case, the Cost plug-in computes
a WCET and AltErgo is able to discharge all VCs. Obviously the generation of
synthetic costs is an undecidable and open-ended problem. Our experience just
shows that there are classes of C programs which are relevant for embedded ap-
plications and for which the synthesis and verification tasks can be completely
automatized.

Acknowledgement. The master students Kayvan Memarian and Ronan Sail-
lard contributed both to the Coq proofs and the CerCo compiler in the early
stages of their development.
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Abstract. This paper introduces separation predicates, a technique to
reuse some ideas from separation logic in the framework of program ver-
ification using a traditional first-order logic. The purpose is to benefit
from existing specification languages, verification condition generators,
and automated theorem provers. Separation predicates are automatically
derived from user-defined inductive predicates. We illustrate this idea on
a non-trivial case study, namely the composite pattern, which is speci-
fied in C/ACSL and verified in a fully automatic way using SMT solvers
Alt-Ergo, CVC3, and Z3.

1 Introduction

Program verification has recently entered a new era. It is now possible to prove
rather complex programs in a reasonable amount of time, as demonstrated in
recent program verification competitions [17,12,10]. One of the reasons for this is
tremendous progress in automated theorem provers. SMT solvers, in particular,
are tools of choice to discharge verification conditions, for they combine full first-
order logic with equality, arithmetic, and a handful of other theories relevant to
program verification, such as arrays, bit vectors, or tuples. Notable examples of
SMT solvers include Alt-Ergo [4], CVC3 [1], Yices [9], and Z3 [8].

Yet, when it comes to verifying programs involving pointer-based data struc-
tures, such as linked lists, trees, or graphs, the use of traditional first-order logic
to specify, and of SMT solvers to verify, shows some limitations. Separation
logic [22] is then an elegant alternative. Designed at the turn of the century, it is
a program logic with a new notion of conjunction to express spatial separation.
Separation logic requires dedicated theorem provers, implemented in tools such
as Smallfoot [2] or VeriFast [13,15]. One drawback of such provers, however, is to
either limit the expressiveness of formulas (e.g. to the so-called symbolic heaps),
or to require some user-guidance (e.g. open/close commands in Verifast).

In an attempt to conciliate both approaches, we introduce the notion of sep-
aration predicates. The idea is to introduce some ideas from separation logic
into a traditional verification framework where the specification language, the

* This work was (partially) supported by the Information and Communication Tech-
nologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo and by the
U3CAT project (ANR-08-SEGI-021) of the French national research organization.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 167-181, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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verification condition generator, and the theorem provers were not designed with
separation logic in mind. Separation predicates are automatically derived from
user-defined inductive predicates, on demand. Then they can be used in program
annotations, exactly as other predicates, i.e., without any constraint. Simply
speaking, where one would write P * () in separation logic, one will here ask for
the generation of a separation predicate sep and then use it as PAQ A sep(P, Q).

We have implemented separation predicates within Frama-C’s plug-in Jessie
for deductive verification [21]. This paper demonstrates the usefulness of sep-
aration predicates on a realistic, non-trivial case study, namely the composite
pattern from the VACID-0 benchmark [20]. We achieve a fully automatic proof
using three existing SMT solvers.

This paper is organized as follows. Section 2 gives a quick overview of what
separation predicates are, using the classic example of list reversal. Section 3
formalizes the notion of separation predicates and briefly describes our imple-
mentation. Then, Section 4 goes through the composite pattern case study. Sec-
tion 5 presents how this framework can be extended to express the set of pointers
modified by a function. We conclude with related work in Section 6.

2 Motivating Example

As an example, let us consider the classic in-place list reversal algorithm:

rev(p) =
q := NULL
while p £ NULL do ¢ := p—next; p—next :=q; ¢ :== p; p :=t done
return q

We may want to verify that, whenever p points to a finite singly-linked list,
then rev(p) returns a finite list. (Proving that lists are indeed reversed requires
more space than available here.) To do so, we first define the notion of finite
singly-linked lists, for instance using the following inductive predicate islist:

inductive islist(p) =
| Co : islist(NULL)
| Cy : Vp.p # NULL = islist(p—next) = islist(p)

Then we specify function rev using the following Hoare triple:

{islist(p)} q := rev(p) {islist(q)}

To perform the proof, we need a loop invariant. A natural invariant expresses
that both p and ¢ are finite lists, that is islist(p) A islist(q).

Unfortunately, this is not enough for the proof to be carried out. Indeed, we
lack the crucial information that assigning p— next will not modify lists ¢ and ¢.
Therefore, we cannot prove that the invariant above is preserved.

S i I N [ s N s N s
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Separation logic proposes an elegant solution to this problem. It introduces a
new logical connective P x () that acts as the conjunction P A () and expresses
spatial separation of P and () at the same time. In the list reversal example, it
is used at two places. First, it is used in the definition of islist to express that
the first node of a list is disjoint from the remaining nodes:

islist(p) = if p = NULL then emp else Jq. p—next > q * islist(q)

This way, we can now prove that list ¢ is preserved when p— next is assigned.
Second, the connective x is also used in the loop invariant to express that lists p
and ¢ do not share any pointer:

islist (p) * islist(q).

This way, we can now prove that list ¢ is preserved when p— next is assigned.
Using a dedicated prover for separation logic, list reversal can be proved correct
using this loop invariant.

In our attempt to use traditional SMT solvers instead, we introduce the notion
of separation predicates: the x connective of separation logic is replaced by new
predicate symbols, which are generated on a user-demand basis. Our annotated
C code for list reversal using separation predicates is given in Fig. 1.

We define predicate islist inductively (lines 4-8), as we did earlier in this
section. In this definition \valid(p) express that p is a pointer that can be
safely dereferenced (allocated and not freed). It captures finite lists only and,
consequently, the first node of a list is disjoint from the remaining nodes. How-
ever, such a proof requires induction and thus is out of reach of SMT solvers.
We add this property as a lemma (lines 11-12), using a separation predicate
sep_node_islist (introduced at line 10). This lemma is analogous to the x
used in the definition of islist in separation logic. To account for the % in the
loop invariant, we first introduce a new separation predicate sep_islist_islist
(line 14) and then we use it in the loop invariant (line 21).

With these annotations, the axiomatizations and the definitions automati-
cally generated for sep_node_islist and sep_islist_islist allow a general-
purpose SMT solver such as Alt-Ergo or CVC3 to discharge all verification con-
ditions obtained by weakest precondition for the code in Fig. 1, in no time.

3 Separation Predicates

3.1 Inductive Definitions

A separation predicate is generated from user-defined inductive predicates. The
generation is sound only if the definitions of the inductive predicates obey sev-
eral constraints, the main one being that two distinct cases should not overlap.
Fortunately, this is the case for most common inductive predicates. For instance,
predicate islist from Fig. 1 (lines 4-8) trivially satisfies the non-overlapping
constraint, since p cannot be both null and non-null.

Generally speaking, we consider inductive definitions following the syntax
given in Fig. 2. The constraints are then the following:
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struct node { int hd; struct node *next; };

/*@

inductive islist (struct node *p) {
case nil: 4slist (\null);
case cons: \forall struct mnode *p; p != \null ==> \valid(p) ==>
islist (p->next) ==> islist(p);

}

#Gen_Separation sep_node_islist(struct node*, islist)
lemma list_sep:
\forall struct mnode *p; pl!=null ==>
islist (p) ==> sep_node_islist(p, p->next);

#Gen_Separation sep_islist_islist(islist, 4slist)
ox*/

/%@ requires tslist(p); ensures islist (\result); @*/
struct node * rev(struct node *p) {
struct mnode *q = NULL;

/*@ loop invartiant
islist (p) &8 islist(q) &8 sep_islist_islist(p,q); @*/
while(p != NULL) {
struct node *tmp = p->next;
p->next = q;
q = p;
p = tmp;
}
return q;
}

Fig. 1. List Reversal

(terms) ¢ == x|t—field| ¢(t)
(formulas) f == t=t|-(t=1t)]|p(x)
(inductive case) c¢ == C:Ve.f = ...= f = p(x)
(inductive definition) d ::= inductivep(x)=cl...lc

Fig. 2. Inductive Definitions

in a term ¢, a function symbol ¢ cannot refer to the memory state;

in a formula f, a predicate symbol p can refer to the memory state only if it
is an inductively defined predicate following the constraints (which includes
the predicate being defined);

if C; :V.fi1 = ... = fin, = p(x) and Cy : Va.fj1 = ... = fjn, = p(x)
are two distinct cases of inductivep(x) =cil ... |l¢y, then we should have

V. _‘(fi,l A A fi,ni A fj,1 VANCIIVAN fj,nj)-

It is worth pointing out that an inductive predicate which is never used to define
a separation predicate does not have to follow these restrictions.
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3.2 An Axiomatization of Footprints

The footprint of an inductive predicate p is the set of pointers which it depends
on. More precisely, in a memory state m where p(x) is true, the pointer ¢ is in
the footprint of p(x) if we can modify the value ¢ points at such that p(x) does
not hold anymore. Such a definition is too precise to be used in practice. We use
instead a coarser notion of footprint, which is derived from the definition of p
and over-approximates the precise footprint.

Let us consider the definition of islist. First, we introduce a new type ft for
footprints. Then we declare a function symbol ft, ;s and a predicate symbol
€. The intended semantics is the following: ft,  ;..(m,p) is the footprint of
islist(p) in memory state m and ¢ € ft,;..(m,p) means that ¢ belongs to
the footprint ft; ;. (m,p). Both symbols are axiomatized simultaneously as
follows:

p # NULL A islist(m, {p—next},,) )

Vqg.Ym.Vp.q € £ti5;5(m,p) &
q p-q 1sllst( p) (/\(q =pVgqe ftislist(m7 {p—>next}m))

where {p—next},, stands for expression p—next in memory state m.
Then separation predicates are easily defined from footprints. The pragma
from line 10 in Fig. 1 generates the definition

sep_node_islist(m, qvp) é q ¢ ftislist(m7p)
and pragma from line 14 generates the definition

sep_islist_islist(m,p1,p2) =
Vq.q & £tig566(M,01) V @ € £ti51550 (M, D2)

(where ¢ ¢ s stands for =(q € s)). The predicate symbols and the types that
appears in the pragma specify the signature of the separation predicate and
which inductive predicate must be used to defined the separation predicate. A
type is viewed as the predicate symbol of an unary predicate of this type whose
footprint is reduced to its argument. The signature of the defined separation
predicate is the concatenation of the signature of the predicate symbols.

Generally speaking, in order to axiomatize the footprint of an inductive predi-
cate, we first introduce a meta-operation FT,, ,(e) that builds a formula express-
ing that ¢ is in the footprint of a given expression e in memory state m:

FTpq(z) =L
FTqu(t—ﬂj) = FTqu(t) Vg=1

Fng(6(t) = \/ Fnalt;)

FTy q(t1 = t2) =FTp, q(—(t1 =t2)) = FTyq(t1) V FTp 4(t2)
FTm,q(p(t) = \/ FTmq(t;) V q € £1,(m,t)
j
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We pose g € £ tp(m, t) £ | whenever predicate p does not depend on the memory
state. Then the footprint of an inductive predicate p defined by inductive p(x) =
c1]...|cn, with ¢; being C; : Va.fi1 = ... = fin, = p(x) is axiomatized as fol-
lows:

Vg.Vm.Vx.q € £t,(m,x) < \/ /\ fij A \/FTm,q(fz',j)

? J J

where f; ; is the version of f; ; with the memory explicited (eg. t—j = {t—=j}m)-
In the axiom above for the footprint of islist, we simplified the NULL case since
it is equivalent to L.

With the footprints of the inductive predicates you can now define the separa-
tion predicate. A separation predicate that define the separation of n inductive
predicates is defined as the conjunction of all the disjunction ¢ € £t,, (m,x;)Vq €
ft, (m,x;) between the footprint of the inductive predicate. The soundness of
this construction have been proved in [3].

The separation predicates allow you to translate a large set of separation logic
formulas, namely first-order separation logic formula without magic wand and
with separation conjunction used only on inductive predicates which definitions
satisfy our constraints.

3.3 Mutation Axioms

The last ingredient we generate is a mutation axiom. It states the main property
of the footprint, namely that an assignment outside the footprint does not in-
validate the corresponding predicate. In the case of islist, the mutation axiom
is

Vm,p,q,v.q € £t;5:sc (M, p) = islist(m,p) = islist(m[¢—next := v],p)

where m[g— next := v] stands for a new memory state obtained from m by
assigning value v to memory location ¢—next. Actually, this property could be
proved from the definition of ft,;;.,, but this would require induction. Since this
is out of reach of SMT solvers, we state it as an axiom. We do not require the user
to discharge it as a lemma, since it is proved sound in the meta-theory [3]. This
is somehow analogous to the mutation rule of separation logic, which is proved
sound in the meta-theory. The mutation rule of separation logic also allows
proving that two formulas stay separated if you modify something separated
from both of them. We can prove the same by adding an autoframe axiom,
which is reminiscent of the autoframe concept in dynamic frames [16]:

Vm,p, q?”' q g ftislist(mJP) = iSliSt(m7p) =
ftigise (M, p) = £tig55(M[g—next = v],p)

Generally speaking, for each inductive predicate p and for each field field we
add the following axioms :

Vq.Yo.¥Nm.Ne.—q € £t,(m,x) = p(m, ) = p(mlg—field := v], x)
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and
Vg.Vv.Vm.Vx. =q € £t5(m,x) = p(m,z) =
ft,(m,x) = ft,(m[g—field := v], ).

The distinctness of the cases of the inductive predicate p appears in the proof of
the autoframe property.

3.4 Implementation

Our generation of separation predicates is implemented in the Frama-C/Jessie
tool chain for the verification of C programs [11,21,5]. This tool chain can be
depicted as follows:

file.c —>—>—> Why3 |=—=>» theorem provers

From a technical point of view, our implementation is located in the Jessie tool,
since this is the first place where the memory model is made explicit!. Jessie
uses the component-as-array model also known as the Burstall-Bornat memory
model [7,6]. Each structure field is modeled using a distinct applicative array.
Consequently, function and predicate symbols such as ft, ;. or islist do not
take a single argument m to denote memory state, but one or several applicative
arrays instead, one for each field mentioned in the inductive definition. Similarly,
a quantification Vm in our meta-theory (Sec. 3.2 and 3.3 above) is materialized in
the implementation by one or several quantifications over applicative arrays, one
for each field appearing in the formula. In the case of islist, for instance, quan-
tification Vm becomes Vnext, expression {p— next},, becomes get(next, p), and
expression m[g—next := v] becomes set(next, p,v), where get and set are ac-
cess and update operations over applicative arrays. Additionally, we have to
define one footprint symbol for each field.

It is worth pointing out that we made no modification at all in Why3 to
support our separation predicates. Only Jessie has been modified.

4 A Case Study: Composite Pattern

To show the usefulness of separation predicates, we consider the problem of
verifying an instance of the Composite Pattern, as proposed in the VACID-0
benchmark [20].

4.1 The Problem

We consider a forest, whose nodes are linked upward through parent links. Each
node carries an integer value, as well as the sum of the values for all nodes in
its subtree (including itself). The corresponding C structure is thus defined as
follows:

! Since we could not extend the ACSL language with the new pragmas for separation,
we have to modify the Jessie input file manually at each run. Furthermore we use in
the assigns clauses the keyword \all that does not exist yet in ACSL.
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struct node {
int val, sum;
struct node *parent;
s
typedef struct node *NODE;

The operations considered here are the following: NODE create(int v);, cre-
ates a new node; void update(NODE p, int v);, assigns value v to node p;
void addChild(NODE p, NODE q);, set node p as q’s parent, assuming node q
has no parent; void dislodge(NODE p) ;, disconnects p from its parent, if any.

One challenge with such a data structure is that operations update, addChild,
and dislodge have non-local consequences, as the sum field must be updated for
all ancestors. Another challenge is to prevent addChild from creating a cycle,
i.e., to express that node q is not already an ancestor of node p. Thus we prove
the memory safety and the correct behavior of these operations.

4.2 Code and Specification

Our annotated C code for this instance of the composite pattern is given in
the appendix. In this section, we comment on the key aspects of our solution.
The annotations are written in the ACSL specification language. The behavior
of the functions are defined by contract: the keyword requires introduces the
precondition expressed by a first-order formula, the keyword ensures introduces
the post-conditions, and the keyword assigns introduces the set of memory
location that can be modified by a call to the function. The precondition and
this set are interpreted before the execution of the function, the post-conditions
is interpreted after. One can refer in the post-condition to the state before the
execution of the function using the keyword \old. It must be remarked that
if a field of a type is never modified in the body of a function you don’t need
to mention it in the assigns clauses. Moreover the component-as-array memory
model ensures without reasoning that any formulas that depend only of such
fields remain true after a call to the function.

Separation Predicate. For the purpose of addChild’s specification, we use a sepa-
ration predicate. It states that a given node is disjoint from the list of ancestors of
another node. Such a list is defined using predicate parents (lines 7-12), which
is similar to predicate islist in the previous section. The separation predicate,
sep_node_parents, is then introduced on line 14 and used in the precondition
of addChild on line 84.

This is a crucial step, since otherwise assignment q->parent = p on line 95
could break property parents(p). Such a property is indeed required by upd_inv
to ensure its termination.

Restoring the Invariant. As suggested in VACID-0 [20], we introduce a function
to restore the invariant (function upd_inv on lines 68-77). Given a node p and
an offset delta, it adds delta to the sum field of p and of all its ancestors.
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This way, we reuse this function in addChild (with the new child’s sum), in
update (with the difference), and in dislodge (with the opposite of the child’s
sum).

Local and Global Invariant. Another key ingredient of the proof is to ensure the
invariant property that, for each node, the sum field contains the sum of values
in all nodes beneath, including itself. To state such a property, we need to access
children nodes. Since the data structure does not provide any way to do that (we
only have parent links), we augment the data structure with ghost children links.
To make it simple, we assume that each node has at most two children, stored in
ghost fields left and right (line 4). Structural invariants relating fields parent,
left, and right are gathered in predicate wf (lines 28-37).

To state the invariant for sum fields, we first introduce a predicate good (lines
20-23). It states that the sum field of a given node p has a correct value when
delta is added to it. It is important to notice that predicate good is a local
invariant, which assumes that the left and right children of p have correct sums.
Then we introduce a predicate inv (lines 25-26) to state that any node p verifies
good(p, 0), with the possible exception of node except. Using an exception
is convenient to state that the invariant is locally violated during upd_inv. To
state that the invariant holds for all nodes, we simply use inv(NULL).

Our local invariant is convenient, as it does not require any induction. How-
ever, to convince the reader that we indeed proved the expected property, we
also show that this local invariant implies a global, inductively-defined invari-
ant. Lines 130-137 introduce the sum of all values in a tree, as an inductive
predicate treesum, and a lemma to state that local invariant inv(NULL) implies
treesum(p, p— sum) for any node p.

4.3 Proof

The proof was performed using Frama-C Carbon? and its Jessie plug-in [21],
using SMT solvers Alt-Ergo 0.92.3, CVC3 2.2, and Z3 2.19, on an Intel Core Duo
2.4 GHz. As explained in Sec. 3.4, we first run Frama-C on the annotated C code
and then we insert the separation pragmas in the generated Jessie code (this is
a benign modification). All verification conditions are discharged automatically
within a total time of 30 seconds.

The two lemmas parents_sep and global_invariant were proved interac-
tively using the Coq proof assistant version 8.3pl3 [26]. A total of 100 lines of
tactics is needed. It doesn’t take more than three days for one of the author to
find the good specifications and make the proofs.

5 Function Footprints

In the case of the composite pattern, it is easy to specify the footprints of the
C functions. Indeed, we can simply say that any sum field may be modified

2 http://frama-c.com/
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(using \all->sum in assigns clauses), since the invariant provides all necessary
information regarding the contents of sum fields. For a function such as list
reversal, however, we need to be more precise. We want to know that any list
separated from the one being reversed is left unmodified. For instance, we would
like to be able to prove the following piece of code:

1 /*e

2 requires islist(p) €6 tslist(q) &6 sep_list_list(p,q);
3 ensures islist(p) &6 tslist(q) &6 sep_list_list(p,q);
4 ox/

5 void bar(struct node * p, struct node * q) {

6 p = rev(p);

7}

For that purpose we must strengthen the specification and loop invariant of
function rev with a suitable frame property. One possibility is to proceed as
follows:

1 /xe

2 #Gen_Frame: list_frame list

3 #Gen_Sub: list_sub list list

4

5 requires list(p);

6 ensures list(\result) &8 list_frame{Old,Here}(p,result);
7T ex/

8 struct node * rev(struct node * p);

9 ce

10 /*@ loop tinmvariant

11 list(p) &8 list(q) &8 sep_list_list (p,q)
12 €35 list_frame{Init,Here}(\at(p,Init),q)

13 66 list_sub{Init,Here}t(\at(p,Init),p); ©@*/
14

Two pragmas introduce new predicates list_frame and list_sub. Both de-
pend on two memory states. The formula 1ist_frame{01ld,Here}(p,result)
expresses in the post-condition that, between pre-state 01d and post-state Here,
all modified pointers belong to list p. It also specifies that the footprint of list
result is included in the (old) footprint of list p. On the example of function
bar, we now know that only pointers from p have been modified, so we can
conclude that islist(q) is preserved. Additionally, we know that the footprint
of islist(p) has not grown so we can conclude that it is still separated from
islist(q). The formula 1ist_sub{Init,Here}(\at(p,Init),p) specifies only
the inclusion of the footprint of the lists.

These two predicates could be axiomatized using membership only. For in-
stance, list_sub(p, q) could be simply axiomatized as Vx,z € ft, ;. (p) =
x € ft,q;.:(¢). But doing so has a rather negative impact on SMT solvers,
as they have to first instantiate this axiom and then to resort to other axioms
related to membership. Moreover this axiom is very generic and can be applied
when not needed. For that reason we provide, in addition to axioms related
to membership, axioms for footprint inclusion, to prove either s C ftp(p) or



Separation Predicates: A Taste of Separation Logic in First-Order Logic 177

ft,(p) C s directly. With such axioms, functions rev and bar are proved correct
automatically.

6 Related and Future Work

VeriFast [13,15] allows user-defined predicates but requires user annotations to
fold or unfold these predicates. In our work, we rely instead on the capability of
first-order provers to fold and unfold definitions. VeriFast uses the SMT solver
73, but only as a constraint solver on ground terms.

The technique of implicit dynamic frames [24] is closer to our work, except
that formulas are restricted. Additionally, implicit dynamic frames make use of
a set theory, whereas we do not require any, as we directly encode the relevant
parts of set theory inside our footprint definition axioms.

Both these works do not allow a function to access (and thus modify) a pointer
that is not in the footprint of the function’s precondition — except if it is allo-
cated inside the function. In our work, we do not have such a restriction. When
necessary, we may define the footprint of a function using separation predicates,
as explained in the first author’s thesis [3].

There exist already several proofs of the composite pattern. One is performed
using VeriFast [14]. It requires many lemmas and many open/close statements,
whereas our proof does not contain much proof-related annotations.

The use of a local invariant in our proof is not new. It was first described
in [19]. The proof by Rosenberg, Banerjee, and Naumann [23] also makes use
of it. In order to prove that addChild is not creating cycles, the latter proof
introduces two ghost fields, one for the set of descendants and one for the root
node of the tree. Updating these ghost fields must be done at several places. In
our case, we could manage to perform the case only with the generated predicate
sep_node_parents without need of extra ghost fields which leads to a simpler
proof.

The composite pattern has also been proved using considerate reasoning [25],
a technique that advocates for local invariant like the one we used. Our predicate
inv is similar to their broken declaration. As far as we understand, this proof is
not mechanized, though.

Our future work includes generalizing the frame pragma used to describe the
footprint of a function. One solution is to compute the footprint directly from
ACSL’s assigns clause, if any. Another is to describe the footprint using the
linear maps framework [18]. One valuable future work would be to formally prove
the consistency of our axioms, either using a meta-theoretical formalization, or,
in a more tractable way, by producing proofs for each generated axiom.
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Annotated Source Code

typedef struct node {

int val, sum;

struct node *parent;

//@ ghost struct node *left, *right;
} *NODE;

/*%@ inductive parents (NODE p) {
case nil: \forall NODE p; p==NULL ==> parents (p);
case cons: \forall NODE p;
p != NULL ==> \walid(p) ==>
parents (p->parent) ==> parents (p);
}

#Gen_Separation sep_node_parents (NODE, parents)

lemma parents_sep:

\forall NODE p; p!=NULL ==>
parents (p) ==> sep_node_parents(p, p->parent);
predicate good (NODE p, int delta) =
p->sum + delta == p->val +
(p->left == NULL? 0 : p->left->sum) +
(p->right == NULL? 0 : p->right->sum);
predicate inv (NODE exzcept) =
\forall NODE p; \wvalid(p) ==> p != except ==> good(p, 0);
predicate wf (NODE exzcept) =
\forall NODE p; \valid(p) ==> p != except ==>
(p->right != NULL ==>
p->right ->parent == p &8 \valid(p->right)) &&
(p->left != NULL ==>
p->left->parent == p &8 \valid(p->left)) &&

(p->right == p->left ==> p->right == NULL) &
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(p->parent != NULL ==> \walid(p->parent)) &€
(p->parent != NULL ==>
p->parent ->left == p [| p->parent->right == p);

predicate newnode (NODE p, tinteger v) =
parents (p) &8 p->right == NULL && p->left == NULL &&
p->parent == NULL && p->val == v &8 \valid(p);

ex/

/*@ requires
inv (NULL) &€& wf (NULL);
ensures
inv (NULL) &€ wf (NULL) €€ newnode (\result, v) &&
\forall NODE n; \old (\wvalid(n)) ==>

\result != n & \valid(n) &&
\old(n->val) == n->val && \old(n->parent) == n->parent &
\old(n->left) == n->left & \old(n->right) == n->right;
ex*/
NODE create(int v) {
Before:
{

NODE p = (NODE)malloc(sizeof(struct node));
/%@ assert \forall NODE n; n != p ==>
\valid(n) ==> \at (\valid(n),Before); @*/
p->val = p->sum = V;
p->parent = p->left = p->right = NULL;
return p;

13

/*@ requires inv(p) & parents(p) €& wf(NULL) &8 good(p,delta);
ensures inv (NULL) ;
assigns \all->sum;

ex*/
void upd_inv(NODE p, int delta) {
NODE n = p;
/%@ loop invariant
inv(n) &8 parents (n) & (n != NULL ==> good(n,delta));
ex/
while (n != NULL) {
n->sum = n->sum + delta;
n = n->parent;
}
};
/*@

requires
inv (NULL) &8 wf(NULL) &6

\valid (q) &8 gq->parent == NULL &
parents (p) &8 p != NULL &6 sep_node_parents(p, p->parent) &€&
(p->left == NULL || p->right == NULL) &€& sep_node_parents(q,p);
ensures
parents (q) &6 parents (p) &8 inv(NULL) €& wf(NULL) &€&
(\old(p->left) == NULL ==>
p->left == q &6 \old(p->right) == p->right) &
(\old(p->left) != NULL ==>
p->right == q &8 \old(p->left) == p->left);
assigns p->left, p->right, g->parent, \all->sum;

ex*/
void addChild(NODE p, NODE q) {
if (p->left == NULL) p->left = q; else p->right = q;
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g->parent = p;
upd_inv(p, gq->sum);
}

/*0@ requires parents (p) && p != NULL && +<inv (NULL) &€& wf (NULL);
ensures p->val == v &Y parents (p) && inv (NULL) &€& wf(NULL);

assigns p->val, \all->sum;
ex/
void update(NODE p, int v) {
int delta = v - p->val;
p->val = v;
upd_inv(p, delta);

}
/*@
requires
parents (p) &6 p != NULL &€& p->parent != NULL &
inv (NULL) &€ wf (NULL);
ensures
parents (p) &8 p->parent == NULL && <nv (NULL) &6 wf (NULL) &6
(\old(p->parent ->left) == p ==>
\old(p->parent)->left == NULL) &6
(\old(p->parent ->right) == p ==>
\old(p->parent)->right == NULL);
assigns p->parent ->left, p->parent->right, p->parent, \all->sum;
ex/

void dislodge(NODE p) {
NODE n = p->parent;

if (p->parent->left == p) p->parent->left = NULL;
if (p->parent->right == p) p->parent->right = NULL
p->parent = NULL;
upd_inv(n, -p->sum);

}

/*@

inductive treesum{L}(NODE p, integer v) {
case treesum_null{L}:
treesum (NULL, 0);
case treesum_node{L}:
\forall NODE p; p != NULL ==> \forall integer s
treesum(p->left, sl) ==> treesum(p->right, sr)
treesum(p, p->val + sl + sr);

}

lemma global_invariant{L}:

inv (NULL) ==> wf(NULL) ==>

\forall NODE p; \valid(p) ==> treesum(p, p->sum);
ex/

>

Z‘:
==>

sr;
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Abstract

We present a so-called labelling method to insert cost annotations in a higher-order
functional program, to certify their correctness with respect to a standard, typable com-
pilation chain to assembly code including safe memory management, and to reason about
them in a higher-order Hoare logic.

1 Introduction

In previous work [2, 3|, we have discussed the problem of building a C compiler which can
lift in a provably correct way pieces of information on the execution cost of the object code
to cost annotations on the source code. To this end, we have introduced a so called labelling
approach and presented its application to a prototype compiler written in OCaml from a large
fragment of the C language to the assembly languages of Mips and 8051, a 32 bits and 8 bits
processor, respectively.

In the following, we are interested in extending the approach to (higher-order) functional
languages. On this issue, a common belief is well summarized by the following epigram by
A. Perlis [22]: A Lisp programmer knows the value of everything, but the cost of nothing.
However, we shall show that, with some ingenuity, the methodology developed for the C
language can be lifted to functional languages.

1.1 A standard compilation chain

Specifically, we shall focus on a rather standard compilation chain from a call-by-value \-
calculus to a register transfer level (RTL) language. Similar compilation chains have been
explored from a formal viewpoint by Morrisett et al. [21] (with an emphasis on typing but
with no simulation proofs) and by Chlipala [9] (for type-free languages but with machine
certified simulation proofs).

*An extended abstract with the same title without proofs and not accounting for the typing of the compi-
lation chain and the memory management of the compiled code has appeared in [4]. Also the present version
introduces a prototype implementation available in [24]. The authors were supported by the Information and
Commaunication Technologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo.
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Table 1: The compilation chain with its labelling and instrumentation.

The compilation chain is described in the lower part of Table 1. Starting from a standard
call-by-value A-calculus with pairs, one performs first a CPS translation, then a transformation
that gives names to values, followed by a closure conversion, and a hoisting transformation.
All languages considered are subsets of the initial one though their evaluation mechanism is
refined along the way. In particular, one moves from an ordinary substitution to a specialized
one where variables can only be replaced by other variables. One advantage of this approach,
as already noted for instance by Fradet and Le Métayer [14], is to have a homogeneous
notation that makes correctness proofs simpler.

Notable differences with respect to Chlipala’s compilation chain [9] is a different choice of
the intermediate languages and the fact that we rely on a small-step operational semantics. We
also diverge from Chlipala [9] in that our proofs, following the usual mathematical tradition,
are written to explain to a human why a certain formula is valid rather than to provide a
machine with a compact witness of the validity of the formula.

The final language of this compilation chain can be directly mapped to a RTL language:
functions correspond to assembly level routines and the functions’ bodies correspond to se-
quences of assignments on pseudo-registers ended by a tail recursive call.

1.2 The labelling approach to cost certification

While the extensional properties of the compilation chain have been well studied, we are not
aware of previous work focusing on more intensional properties relating to the way the com-
pilation preserves the complexity of the programs. Specifically, in the following we will apply
to this compilation chain the ‘labelling approach’ to building certified cost annotations. In a
nutshell the approach consists in identifying, by means of labels, points in the source program
whose cost is constant and then determining the value of the constants by propagating the
labels along the compilation chain and analysing small pieces of object code with respect to
a target architecture.

Technically the approach is decomposed in several steps. First, for each language con-
sidered in the compilation chain, we define an extended labelled language and an extended
operational semantics (upper part of Table 1). The labels are used to mark certain points
of the control. The semantics makes sure that, whenever we cross a labelled control point, a
labelled and observable transition is produced.

Second, for each labelled language there is an obvious function er erasing all labels and
producing a program in the corresponding unlabelled language. The compilation functions
are extended from the unlabelled to the labelled language so that they commute with the
respective erasure functions. Moreover, the simulation properties of the compilation functions
are lifted from the unlabelled to the labelled languages and transition systems.

Third, assume a labelling L of the source language is a right inverse of the respective



erasure function. The evaluation of a labelled source program produces both a value and
a sequence of labels, written A, which intuitively stands for the sequence of labels crossed
during the program’s execution. The central question we are interested in is whether there is
a way of labelling the source programs so that the sequence A is a sound and possibly precise
representation of the execution cost of the program.

To answer this question, we observe that the object code is some kind of RTL code and
that its control flow can be easily represented as a control flow graph. The fact that we have
to prove the soundness of the compilation function means that we have plenty of information
on the way the control flows in the compiled code, in particular as far as procedure calls
and returns are concerned. These pieces of information allow to build a rather accurate
representation of the control flow of the compiled code at run time.

The idea is then to perform some simple checks on the control flow graph. The main check
consists in verifying that all ‘loops’ go through a labelled node. If this is the case then we
can associate a ‘cost’ with every label which over-approximates the actual cost of running a
sequence of instructions. An optional check amounts to verify that all paths starting from a
label have the same abstract cost. If this check is successful then we can conclude that the
cost annotations are ‘precise’ in an abstract sense (and possibly concrete too, depending on
the processor considered).

In our previous work [2, 3], we have showed that it is possible to produce a sound and
precise (in an abstract sense) labelling for a large class of C programs with respect to a mod-
erately optimising compiler. In the following we show that a similar result can be obtained for
a higher-order functional language with respect to the standard compilation chain described
above. Specifically we show that there is a simple labelling of the source program that guar-
antees that the labelling of the generated object code is sound and precise. The labelling of
the source program can be informally described as follows: it associates a distinct label with
every abstraction and with every application which is not ‘immediately surrounded’ by an
abstraction.

In this paper our analysis will stop at the level of an abstract RTL language, however our
previously quoted work [2, 3] shows that the approach extends to the back-end of a typical
moderately optimising compiler including, e.g., dead-code elimination and register allocation.
Concerning the source language, preliminary experiments suggest that the approach scales
to a larger functional language such as the one considered in Chlipala’s Coq development [9]
including fixpoints, sums, exceptions, and side effects. Let us also mention that our approach
has been implemented for a simpler compilation chain that bypasses the CPS translation. In
this case, the function calls are not necessarily tail-recursive and the compiler generates a
Cminor program which, roughly speaking, is a type-free, stack aware fragment of C defined in
the COMPCERT project [17].

1.3 Reasoning about the certified cost annotations

If the check described above succeeds every label has a cost which in general can be taken as
an element of a ‘cost’” monoid. Then an instrumentation of the source labelled language is a
monadic transformation Z (left upper part of Table 1) in the sense of Gurr’s PhD thesis [15]
that replaces labels with the associated elements of the cost monoid. Following this monadic
transformation we are back into the source language (possibly enriched with a ‘cost monoid’
such as integers with addition). As a result, the source program is instrumented so as to
monitor its execution cost with respect to the associated object code. In the end, general



logics developed to reason about functional programs such as the higher-order Hoare logic co-
developed by one of the authors [25] can be employed to reason about the concrete complexity
of source programs by proving properties on their instrumented versions (see Table 11 for an
example of a source program with complexity assertions).

1.4 Accounting for the cost of memory management

In a realistic implementation of a functional programming language, the runtime environment
usually includes a garbage collector. In spite of considerable progress in real-time garbage
collectors (see, e.g., the work of Bacon et al. [6]), it seems to us that this approach does
not offer yet a viable path to a certified and usable WCET prediction of the running time
of functional programs. Instead, the approach we shall adopt, following the seminal work of
Tofte et al. [27], is to enrich the last calculus of the compilation chain described in Table 1, (1)
with a notion of memory region, (2) with operations to allocate and dispose memory regions,
and (3) with a type and effect system that guarantees the safety of the dispose operation. This
allows to further extend to the right with one more commuting square the compilation chain
mentioned above and then to include the cost of safe memory management in our analysis.
Actually, because effects are intertwined with types, what we shall actually do, following the
work of Morrisett et al. [21], is to extend a typed version of the compilation chain.

1.5 Related work

There is a long tradition starting from the work of Wegbreit [30] which reduces the complexity
analysis of first-order functional programs to the solution of finite difference equations. Much
less is known about higher-order functional programs. Most previous work on building cost
annotations for higher-order functional programs we are aware of does not take formally into
account the compilation process. For instance, in an early work D. Sands [26] proposes an
instrumentation of call-by-value A-calculus in order to describe its execution cost. However
the notion of cost adopted is essentially the number of function calls in the source code. In a
standard implementation such as the one considered in this work, different function calls may
have different costs and moreover there are ‘hidden’ function calls which are not immediately
apparent in the source code.

A more recent work by Bonenfant et al. [7] addresses the problem of determining the worst
case execution time of a specialised functional language called Hume. The compilation chain
considered consists in first compiling Hume to the code of an intermediate abstract machine,
then to C, and finally to generate the assembly code of the Resenas M32C/85 processor using
standard C compilers. Then for each instruction of the abstract machine, one computes an
upper bound on the worst-case execution time (WCET) of the instruction relying on a well-
known aiT tool [5] that uses abstract interpretation to determine the WCET of sequences of
binary instructions.

While we share common motivations with this work, we differ significantly in the technical
approach. First, the Hume approach follows a tradition of compiling functional programs to
the instructions of an abstract machine which is then implemented in a C like language. In
contrast, we have considered a compilation chain that brings a functional program directly
to RTL form. Then the back-end of a C like compiler is used to generate binary instructions.
Second, the cited work [7] does not address at all the proof of correctness of the cost annota-
tions; this is left for future work. Third, the problem of producing synthetic cost statements



starting from the cost estimations of the abstract instructions of the Hume machine is not
considered. Fourth, the cost of dynamic memory management, which is crucial in higher-order
functional programs, is not addressed at all. Fifth, the granularity of the cost annotations is
fixed in Hume [7] (the instructions of the Hume abstract machine) while it can vary in our
approach.

We also share with the Hume approach one limitation. The precision of our analyses
depends on the possibility of having accurate predictions of the execution time of relatively
short sequences of binary code on a given processor. Unfortunately, as of today, user interfaces
for WCET systems such as the aiT tool mentioned above or Chronos [19] do not support
modular reasoning on execution times and therefore experimental work focuses on processors
with simple and predictable architectures. In a related direction, another potential loss of
precision comes from the introduction of aggressive optimisations in the back-end of the
compiler such as loop transformations. An ongoing work by Tranquilli [28] addresses this
issue by introducing a refinement of the labelling approach.

1.6 Paper organisation

In the following, section 2 describes the certification of the cost-annotations, section 3 a
method to reason about the cost annotations, section 4 the typing of the compilation chain,
and section 5 an extension of the compilation chain to account for safe memory deallocation.
Proofs are available in the appendix A.

2 The compilation chain: commutation and simulation

We describe the intermediate languages and the compilation functions from an ordinary A-
calculus to a hoisted, value named A-calculus. For each step we check that: (i) the compilation
function commutes with the function that erases labels and (ii) the object code simulates the
source code.

2.1 Conventions

The reader is assumed to be acquainted with the type-free and typed A-calculus, its evaluation
strategies, and its continuation passing style translations [29]. In the following calculi, all
terms are manipulated up to a-renaming of bound names. We denote with = syntactic
identity up to a-renaming. Whenever a reduction rule is applied, it is assumed that terms
have been renamed so that all binders use distinct variables and these variables are distinct
from the free ones. With this assumption, we can omit obvious side conditions on binders
and free variables. Similar conventions are applied when reasoning about a substitution, say
[T/z]T’, of a term T for a variable z in a term 7. We denote with fv(T) the set of variables
occurring free in a term 7.

Let C,C4,Cy,... be one hole contexts and T a term. Then C[T] is the term resulting
from the replacement in the context C' of the hole by the term 7" and C[Cs] is the one hole
context resulting from the replacement in the context C7 of the hole by the context Cs.

For each calculus, we assume a syntactic category id of identifiers with generic elements
x,y, ... and a syntactic category £ of labels with generic elements /¢, ¢1, ... For each calculus,
we specify the syntactic categories and the reduction rules. For the sake of clarity, the meta-
variables of these syntactic categories are sometimes shared between several calculus: the



context is always sufficiently precise to determine to which syntax definitions we refer. We
let o range over labels and the empty word e. We write M % N if M rewrites to N with a
transition labelled by . We abbreviate M — N with M — N. We write — for the reflexive
and transitive closure of —. We also define M = N as M = N ifa = e and as M 555 N
otherwise.

Given a term M in one of the labelled languages we write M {o N if M =5 ... 2% N,
A =y, and N cannot reduce (in general this does not imply that IV is a value). We
write M o for AN M | N. Also, if the term M is unlabelled, A is always the empty word
and we abbreviate M || N with M |} N.

We shall write X ™ (resp. X*) for a non-empty (possibly empty) finite sequence X1, ..., X,
of symbols. By extension, Axz*.M stands for A\zy ...x,. M, [V /2T|M stands for
Vi/z1,..., Vo oM, and let (x = V)T in M stands for let z1 = Vi in ---let 2, = V,, in M.

2.2 The source language

Table 2 introduces a type-free, left-to-right call-by-value A-calculus. The calculus includes let-
definitions and polyadic abstraction and tupling with the related application and projection
operators. Any term M can be pre-labelled by writing ¢ > M or post-labelled by writing
M > /¢. In the pre-labelling, the label £ is emitted immediately while in the post-labelling it
is emitted after M has reduced to a value. It is tempting to reduce the post-labelling to the
pre-labelling by writing M > ¢ as Q(Ax.f > x, M), however the second notation introduces
an additional abstraction and a related reduction step which is not actually present in the
original code. Roughly speaking, every A-abstraction is a potential starting point for a loop in
the control-flow graph. Thus, we will need the body of every A-abstraction to be pre-labelled
so as to maintain the invariant that all loops go through a labelled node in the control-flow
graph. As the CPS translation introduces new A-abstractions that are not present in the
source code but correspond to the image of some applications, we will also need to post-label
these particular applications so that the freshly introduced A-abstraction can be assigned a
label.

Table 2 also introduces an erasure function er from the Af-calculus to the A-calculus. This
function simply traverses the term and erases all pre and post labellings. Similar definitions
arise in the following calculi of the compilation chain and are omitted.

2.3 Compilation to CPS form

Table 3 introduces a fragment of the A’-calculus described in Table 2 and a related CPS
translation. To avoid all ambiguity, let us assume that (Vi,...,V},,) | K is translated according
to the case for values, but note that if we follow the general case for tuples we obtain the
same result. We recall that in a CPS translation each function takes its evaluation context
as a fresh additional parameter (see, e.g., the work of Wand [29], for an elaboration of this
idea). The results of the evaluation of subterms (of tuples and of applications) are also
named using fresh parameters xg,...,x,. The initial evaluation context is defined relatively
to a fresh variable named ’halt’. Then the evaluation context is always trivial. Notice that
the reduction rules are essentially those of the A-calculus modulo the fact that we drop the
rule to reduce V' > £ since post-labelling does not occur in CPS terms and the fact that we
optimize the rule for the projection to guarantee that CPS terms are closed under reduction.
For instance, the term let x = m1(V1, Va) in M reduces directly to [Vi/z]M rather than going



SYNTAX

id | Midt.M | (V*) (values)
ViaM, M"Y |letid =M in M| (M*)|m(M)|£>M|M >£ (terms)

Vo=
M
E ==[]|QV*",E,M")|letid=Ein M| (V" E,M")|m(E)|E>{ (eval. cxts.)

REDUCTION RULES

ElQAzy...xn. M, Vi,..., V)] — E[Vi/z1,...,Va/zn]M]
Ellet z =V in M] —  E[[V/z]M]
Elri(Vi,..., V)] —  E[Vi] 1<i<n

E[¢ > M) 5 EM]

E[V > (] L EV]

LABEL ERASURE (SELECTED EQUATIONS)

er(0 > M) =er(M >{)=er(M)

Table 2: An ordinary call-by-value A-calculus: ¢

through the intermediate term let x = V; in M which does not belong to the CPS terms.

We study next the properties enjoyed by the CPS translation. In general, the commu-
tation of the compilation function with the erasure function only holds up to call-by-value
n-conversion, namely A\z.Q(V,z) =, V if « ¢ fv(V'). This is due to the fact that post-labelling
introduces an n-expansion of the continuation if and only if the continuation is a variable. To
cope with this problem, we introduce next the notion of well-labelled term. We will see later
(section 3.1) that terms generated by the initial labelling are well-labelled.

Definition 1 (well-labelling) We define two predicates W;, i = 0,1 on the terms of the

X-calculus as the least sets such that W, is contained in Wy and the following conditions
hold:

M e Wy M e W,
x e W M >/t e Wy Ax+.M€W1
Mew, ie{0,1} NeWo,MeW, ic{0,1}
{>MeW; letz=NinMecW,;
M,eWy i=1,....,n M, eWy i=1,....,n M e Wy
@(Ml,...,Mn)Ewl (Ml,.4.7Mn)€W1 TI'Z'(M)GW1

The intuition is that we want to avoid the situation where a post-labelling receives as
continuation the continuation variable generated by the translation of a A-abstraction. To
that end, we make sure that post-labelling is only applied to terms M € W), that is, terms
that are not the immediate body of a A-abstraction (which are in W7).

Example 2 (labelling and commutation) Let M = \z.(Q(x,z) > ¢). Then M ¢ W,

because the rule for abstraction requires Q(z,x) > ¢ € Wy while we can only show Q(z,x) >
¢ € Wy. Notice that we have:

er(Ceps(M))
Ceps(er(M))

Q(halt, A\, k.Q(x, z, \x.Q(k, x)))
Q(halt, \x, k.Q(x, 2, k)) .



So, for M, the commutation of the CPS translation and the erasure function only holds up
to .

Proposition 3 (CPS commutation) Let M € Wy be a term of the A-calculus (Table 2).
Then: er(Ceps(M)) = Ceps(er(M)).

The proof of the CPS simulation is non-trivial but rather standard since Plotkin’s seminal
work [23]. The general idea is that the CPS translation pre-computes many ‘administrative’
reductions so that the translation of a term, say F[@Q(Ax.M,V)] is a term of the shape
Q(p(A\x.M),(V), Kg) for a suitable continuation K i depending on the evaluation context E.

Proposition 4 (CPS simulation) Let M be a term of the X-calculus. If M % N then
Ceps(M) = Ceps(N).

We illustrate this result on the following example.
Example 5 (CPS) Let M = Q(\x.Q(z, Q(x,x)),I), where [ = \x.x. Then
Ceps(M) = Q(\z, k.Q(z, 2, \y.Q(z, y, k)), I', H)

where: I' = Az, k.Q(k,z) and H = A\x.Q(halt,x). The term M is simulated by C.ps(M) as
follows:

M Q(1,@(I,1)) S QU - I
Cops (M) — Q(I', ', \y.Q(I',y, H)) —*+ QI',I'H) —* Q(halt,T') .

2.4 Transformation in value named CPS form

Table 4 introduces a value named A-calculus in CPS form: )‘t;ps,'vn' In the ordinary A-calculus,
the application of a A-abstraction to an argument (which is a value) may duplicate the argu-
ment as in: Q(A\z.M, V) — [V/z|M. In the value named A-calculus, all values are named and
when we apply the name of a A-abstraction to the name of a value we create a new copy of the
body of the function and replace its formal parameter name with the name of the argument

as in:
let y=Vinlet f=Xx.M inQ(f,y) — lety=Vinlet f=Ax.M in [y/x]M .

We also remark that in the value named A-calculus the evaluation contexts are a sequence
of let definitions associating values to names. Thus, apart for the fact that the values are
not necessarily closed, the evaluation contexts are similar to the environments of abstract
machines for functional languages (see, e.g., [13]).

Table 5 defines the compilation into value named form along with a readback translation.
(Only the case for the local binding of values is interesting.) The latter is useful to state the
simulation property. Indeed, it is not true that if M — M’ in A, then Cpp (M) = Cyp (M) in

cps

N For instance, consider M = (Az.zx)l where I = (Ay.y). Then M — II but C,,(M)

cps,un”
does not reduce to Cy,(II) but rather to a term where the ‘sharing’ of the duplicated value

I is explicitly represented.



SYNTAX CPS TERMS

Vo ou=dd | XidT.M | (V) (values)
M =@V, V') |letid =mi(V)in M|£>M (CPS terms)
K u=id|Xid.M (continuations)

REDUCTION RULES

QA1 ...zn. M, V1,..., Vo) = [Vi/x1,...,Va/an|M
let z =m(Vi,...,Va)in M — [Vi/z]M 1<:i<n

(> M LM

CPS TRANSLATION

() = =z

Az T.M) = A" k(M| k)
P((Vi,..., Vi) = @), 9(Va))
vk Ak, w(V)

V| (Az.M) [b(V) /] M

Q(Mo, ..., M) | K
let z = M, inM2|K
(My,..., My) | K

Mo | Axo. ... (Mn | A@n.Q(zo, ..., 2n, K))
M1 | )\{E.(Mz ‘ K)
M| Azy. ... (My | Azn.(z1,. .. 20) | K)

m(M) | K M| dzlety=mi(z)iny| K

>M)| K > (M| K)

(M>4¥) | K M| (Azt> (x| K))

Ceps(M) = M | Az.Q(halt, x), halt fresh variable

Table 3: CPS A-calculus (XY, ,) and CPS translation

cps

Example 6 (value named form) Suppose
N = Q(\r, k.Q(z, 2, \y.Q(z, y, k), I', H))

where: I' = \x, k.Q(k,z) and H = A\x.Q(halt,x). (This is the term resulting from the CPS
translation in example 5.) The corresponding term in value named form is:

let z1 = Az, k.(let 211 = A\y.Q(z,y, k) in Q(x,z,211)) in
let 2o = I’ in
let z3 = H in
@(21722,2:3) .

Proposition 7 (VN commutation) Let M be a A-term in CPS form. Then:
(2) er(Con(M)) = Cyn(er(M)).

Proposition 8 (VN simulation) Let N be a A-term in CPS value named form. If R(N) =
M and M = M’ then there exists N’ such that N % N’ and R(N') = M.



SYNTAX

Vo ou=XidT .M | (id*) (values)

C ==V |m(id) (let-bindable terms)

M :=Q(id,id") |let id =Cin M|£> M (CPS terms)

E :=]]|letid=VinE (evaluation contexts)

REDUCTION RULES
ElQ(z,z1,...,20)] — Ellz1/y1,-.-,zn/yn)M] if E(x) =Ay1...yn.M
Ellet z = mi(z) in M] — Elly:/z)M]] if B(z) = (y1,...,9yn),1 <i<n
E[¢ > M)] 4 E[M]
1% if B=FEletz="Vin|]
where: E(z) ={ FE'(z) fE=FElety=Vin[],z#y
undefined otherwise
Table 4: A value named CPS A-calculus: /\ﬁps,m

2.5 Closure conversion

The next step is called closure conversion. It consists in providing each functional value with
an additional parameter that accounts for the names free in the body of the function and in
representing functions using closures. Our closure conversion implements a closure using a
pair whose first component is the code of the translated function and whose second component
is a tuple of the values of the free variables.

It will be convenient to write “let (y1,...,yn) = x in M” for “let y; = w1 (x) in ---let y, =
Tn(x) in M” and “let 1 = Cy...2p, = Cy in M” for “let 1 = Cy in...let z, = C), in M”.
The transformation is described in Table 6. The output of the transformation is such that
all functional values are closed. In our opinion, this is the only compilation step where the
proofs are rather straightforward.

Example 9 (closure conversion) Let M = Cy(Ceps(Ax.y)), namely
M =let z1 = Az, k.Q(k,y) in Q(halt, z1) .
Then Co.(M) is the following term:
let ¢ = Xe,z,k.(let (y) =e,(c,e) =k in Q(c,e,y)) in

let e = (y),21 = (c,e), (c,e) = halt in
@(07 €, Zl) :

Proposition 10 (CC commutation) Let M be a CPS term in value named form. Then
er(Cee(M)) = Cee(er(M)).

Proposition 11 (CC simulation) Let M be a CPS term in value named form. If M < M’
then Ceo(M) = Ceo(M').

10



¢ ¢
TRANSFORMATION IN VALUE NAMED FORM (FROM A¢ps TO Acps om)

Con(Q(zo, ..., 2n)) = Q(zoy...,%n)

Conl@(z",V, V")) = En(V,)[Con ("5, V)]V £ id,y fresh
Con(let z=mi(y) in M) = letxz=m(y) in Con(M)

Cm(let z =m(V)in M) = Ewm(V,y)llet x =mi(y) in Con(M)] V # id,y fresh
Con(£ > M) = {>Cuwm(M)

oAzt M y)

&
En((2"),y)
Eun((z",V, V), y)

let y = AzT.Con (M) in []
let y = (") in []
Enmn(V,2)[Eun((z,2,V™),y)] V #id,z fresh

L 4
READBACK TRANSLATION (FROM Aips o TO Agps)

R(Azt.M) = Mt R(M)

R(z") = (=7
R(Q(z,z1,...,%n)) = Q(z,z1,...,Zn)
R(let x =m;i(y) in M) = letx=mi(y) in R(M)
R(let z =V in M) = [R(V)/z]R(M)

R > M) = {>R(M)

Table 5: Transformations in value named CPS form and readback

2.6 Hoisting

The last compilation step consists in moving all functions definitions at top level. In Table 7,
we formalise this compilation step as the iteration of a set of program transformations that
commute with the erasure function and the reduction relation. Denote with Az™.T" a function
that does not contain function definitions. The transformations consist in hoisting (moving
up) the definition of a function Az*.T with respect to either a definition of a pair or a pro-
jection, or another including function, or a labelling. Note that the hoisting transformations
do not preserve the property that all functions are closed. Therefore the hoisting transforma-
tions are defined on the terms of the )\ﬁpsym—calculus. As a first step, we analyse the hoisting
transformations.

Proposition 12 (on hoisting transformations) The iteration of the hoisting transforma-
tion on a term in )\ﬁcﬂm (all function are closed) terminates and produces a term satisfying
the syntactic restrictions specified in Table 7.

Next we check that the hoisting transformations commute with the erasure function.

¢

cps,on ~Calculus.

Proposition 13 (hoisting commutation) Let M be a term of the A
(1) If M ~ N then er(M)~> er(N) or er(M) = er(N).

(2) If M + - then er(M) + -

(3) er(Cn(M)) = Cp(er(M)).

The proof of the simulation property requires some work because to close the diagram we
need to collapse repeated definitions, which may occu