
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report D5.3 Case study

Version 1.0

Main Authors:
Roberto M. Amadio, Nicolas Ayache, François Bobot,

Antoine Madet, Yann Régis-Gianas

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Outline The deliverable D5.3 is composed of the following parts:

1. A summary.

2. The papers [1] and [3] and the related software Cost1.

3. The paper [2] and the related software LamCost2.

4. The papers [5, 4].

References
[1] N. Ayache, R.M. Amadio, Y. Régis-Gianas. Certifying and Reasoning on Cost Annotations in C Programs. Proc.

FMICS, Springer LNCS 7437: 32-46, 2012.

[2] R.M. Amadio, Y. Régis-Gianas. Certifying and reasoning on cost annotations of functional programs. In Journal
Higher-order and Symbolic Computation, 61 pages, to appear.

[3] F. Bobot, J.-C.. Filliatre. Separation Predicates: A Taste of Separation Logic in First-Order Logic. Proc. ICFEM,
Springer LNCS 7635:167-181, 2012.

[4] A. Brunel, A. Madet. Indexed Realizability for Bounded-Time Programming with References and Type Fixpoints.
Proc. APLAS, Springer LNCS 7705:264-279 , 2012.

[5] A. Madet. A polynomial time λ-calculus with multithreading and side effects. In Proc. ACM-PPDP, pages 55-66,
2012.

1http://www.pps.univ-paris-diderot.fr/∼yrg/cerco/
2http://www.pps.univ-paris-diderot.fr/∼yrg/fun-cca/index.php

CerCo, FP7-ICT-2009-C-243881 3

Summary

The main aim of WP5 is to develop proof of concept prototypes where the (untrusted) compiler
implemented in WP2 is interfaced with existing tools and languages in order to synthesize
complexity assertions on the execution time of programs.

In particular, Deliverable 5.3 should contain a case study (under the form of a software
prototype) which is described as follows in the contract.

Case study: analysis of synchronous code. Automatic generation of invariants
for the C code generated by a synchronous language compiler. Application to
the computation of a certified reaction time bound for synchronous programs and
testing on significant examples.

The synchronous language we chose to carry on this case study is Lustre. Lustre is a
synchronous language where reactive systems are described by flow of values. It comes with a
compiler that transforms a Lustre node (any part of or the whole system) into a C step function
that represents one synchronous cycle of the node. A WCET for the step function is thus a
worst case reaction time for the component. The generated C step function neither contains
loops nor is recursive, which makes it particularly well suited for a completely automatic
application of the Cost plug-in (cf. Deliverable D5.1).

We designed a wrapper that has for inputs a Lustre file and a node inside the file, and
outputs the cost of the C step function corresponding to the node. Optionally, verification
with Jessie or testing can be toggled. The flow of the wrapper is described in figure 1. It
simply executes a command line, reads the results, and sends them to the next command.

Lustre �le
C �le with

step function

C �le with
step function

+
CerCo annotations

+
ACSL WCET speci�cation

Frama− C/Jessie

Output

Test

lus2c Cost plug-in

Figure 1: Flow of the Lustre wrapper

A typical run of the wrapper looks as follows (we use the parity example from our distri-
bution of Lustre; it computes the parity bit of a boolean array):

frama-c lustre -verify -test parity.lus parity

Invoking the above command line produces the following output:

WCET of parity step: 2220+ cost of parity O parity+ cost of parity O done

(not verified).

Verifying the result (this may take some time)...

WCET is proven correct.

Testing the result (this may take some time)...

Estimated WCET: 2220

Minimum: 2144

Maximum: 2220

Average: 2151

Estimated WCET is correct for these executions.

CerCo, FP7-ICT-2009-C-243881 4

• All the intermediary results of the wrapper are stored in files. Verbosity can be turned
on to show the different commands invoked and the resulting files.

• The step function generated with the Lustre compiler for the node parity is called
parity step. It might call functions that are not defined but only prototyped, such
as parity O parity or parity O done. Those are functions that the user of the Lustre
compiler can use for debugging, but that are not part of the parity system. Therefore,
we leave their cost abstract in the expression of the cost of the step function, and we set
their cost to 0 when testing (this can be changed by the user).

• Testing consists in adding a main function to the C file, that will run the step function
on a parameterized number of input states for a parameterized number of cycles. The
C file contains information that allows to syntactically distinguish integer variables used
as booleans, which helps in generating interesting input states. After each iteration of
the step function, the value of the cost variable is fetched in order to compute its overall
minimum, maximum and average value for one step. If the maximum were to be greater
than the WCET computed by the Cost plug-in, then we could conclude of an error in
the plug-in.

The prototype described above was already completed and presented at the second review
along with an unplanned case study on applying the labelling method to a functional language.
In particular, the work on the Lustre case study has been published in [1] along with results
that relate to Deliverables 2.2 (untrusted compiler implementing the labelling method) and
5.1 (Cost plug-in). Therefore the human power left during the third period was dedicated to
develop case studies which were unplanned in the contract and which are described below.

Enlarge the scope of the Cost synthesis tool.

At mentioned above the structure of the C programs produced by a Lustre compiler is particu-
larly simple. During the third period of the project, we worked to extend the class of programs
that can be handled in an automatic way. The two main contributions are as follows:

1. We showed [1] that the Cost tool can handle automatically programs with simple loops
such as stream ciphers and sorting (the quoted paper got the best paper award at the
conference).

2. In order to handle simple programs with pointers (such as in-place list reversal), we
have developed a proof methodology that adapts some ideas of separation logic to the
Frama− C tool [3].

Along the way, the internals of the Cost plug-in have also been revisited. In particular,
the abstract interpretation technique described in [1] has been streamlined and a program
instrumentation to measure stack bounds has been added. This work is not described in the
quoted papers [1, 3] but it is part of the prototype software deliverable and was demonstrated
at the third and final review. We stress that all this work is based on the untrusted CerCo
compiler developed in WP2 as the partially trusted CerCo compiler was delivered when the
man power devoted to this task was exhausted.

CerCo, FP7-ICT-2009-C-243881 5

The labelling approach for a higher-order functional language.

At the second review meeting, we had presented an adaptation of the so called labelling method
to a standard compiler for a higher-order functional language. The target code produced by
this compiler corresponds to the source code of the back-end of the CerCo C compiler. During
the third period, we have shown that the method can be enhanced to account for the cost of
safe memory management. Specifically, we have relied on a region based management system
and this in turn has required an analysis of the way the compilation chain preserves typing.
The whole approach is described in the included paper [2].

Feasible bounds

We have worked on a type system for a multi-threaded functional language that guarantees
termination in polynomial time [5, 4]. A long term goal of this work is to establish a connection
between the research on implicit computational complexity (ICC) and worst case execution
time (WCET). Researchers in ICC design type/logical systems that guarantee asymptotic
bounds for the source language. What needs to be done is to develop methods to turn these
asymptotic bounds for the source language into certified and concrete bounds for the compiled
code. We also believe that in a practical approach one should be able to mix ‘well-typed’
programs whose resource bounds are guaranteed with ‘untyped’ ones whose resource bounds
must be explicitly proved in a general purpose logic. The realizability framework developed in
[4] appears as a promising approach to this task.

Certifying and Reasoning on Cost Annotations

in C Programs

Nicolas Ayache1,2, Roberto M. Amadio1, and Yann Régis-Gianas1,2

1 Université Paris Diderot (UMR-CNRS 7126)
2 INRIA (Team πr2)

Abstract. We present a so-called labelling method to enrich a compiler
in order to turn it into a “cost annotating compiler”, that is, a compiler
which can lift pieces of information on the execution cost of the object
code as cost annotations on the source code. These cost annotations
characterize the execution costs of code fragments of constant complexity.
The first contribution of this paper is a proof methodology that extends
standard simulation proofs of compiler correctness to ensure that the
cost annotations on the source code are sound and precise with respect
to an execution cost model of the object code.

As a second contribution, we demonstrate that our label-based instru-
mentation is scalable because it consists in a modular extension of the
compilation chain. To that end, we report our successful experience in
implementing and testing the labelling approach on top of a prototype
compiler written in ocaml for (a large fragment of) the C language.

As a third and last contribution, we provide evidence for the usability
of the generated cost annotations as a mean to reason on the concrete
complexity of programs written in C. For this purpose, we present a
Frama-C plugin that uses our cost annotating compiler to automatically
infer trustworthy logic assertions about the concrete worst case execution
cost of programs written in a fragment of the C language. These logic
assertions are synthetic in the sense that they characterize the cost of
executing the entire program, not only constant-time fragments. (These
bounds may depend on the size of the input data.) We report our ex-
perimentations on some C programs, especially programs generated by
a compiler for the synchronous programming language Lustre used in
critical embedded software.

1 Introduction

The formal description and certification of software components is reaching a
certain level of maturity with impressing case studies ranging from compilers
to kernels of operating systems. A well-documented example is the proof of
functional correctness of a moderately optimizing compiler from a large subset
of the C language to a typical assembly language of the kind used in embedded
systems [11].

In the framework of the Certified Complexity (CerCo) project1 [4], we aim
to refine this line of work by focusing on the issue of the execution cost of

1 CerCo project http://cerco.cs.unibo.it

M. Stoelinga and R. Pinger (Eds.): FMICS 2012, LNCS 7437, pp. 32–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Certifying and Reasoning on Cost Annotations in C Programs 33

the compiled code. Specifically, we aim to build a formally verified C compiler
that given a source program produces automatically a functionally equivalent
object code plus an annotation of the source code which is a sound and precise
description of the execution cost of the object code.

We target in particular the kind of C programs produced for embedded appli-
cations; these programs are eventually compiled to binaries executable on specific
processors.The current state of the art in commercial products such as Scade2 [8] is
that the reaction time of the program is estimated bymeans of abstract interpreta-
tion methods (such as those developed byAbsInt3 [7]) that operate on the binaries.
Thesemethods rely on a specific knowledge of the architecture of the processor and
may require explicit (and uncertified) annotations of the binaries to determine the
number of times a loop is iterated (see, e.g., [14] for a survey of the state of the art).

In this context, our aim is to produce amechanically verified compiler which can
lift in a provably correct way the pieces of information on the execution cost of the
binary code to cost annotations on the sourceC code.Then the produced cost anno-
tations are manipulated with the Frama− C4 [5] automatic tool to infer synthetic
cost annotations. We stress that the practical relevance of the proposed approach
depends on the possibility of obtaining accurate information on the execution cost
of relatively short sequences of binary instructions. This seems beyond the scope
of current Worst-Case Execution Time (WCET) tools such as AbsInt or Chronos5

which do not support a compositional analysis of WCET. For this reason, we fo-
cus on processors with a simple architecture for which manufacturers can provide
accurate information on the execution cost of the binary instructions. In particu-
lar, our experiments are based on the 8051 [10]6. This is a widely popular 8-bits
processor developed by Intel for use in embedded systems with no cache and no
pipeline. An important characteristic of the processor is that its cost model is ‘ad-
ditive’: the cost of a sequence of instructions is exactly the sum of the costs of each
instruction.

The rest of the paper is organized as follows. Section 2 describes the labelling
approachand its formal application to a toy compiler.The report [2] gives standard
definitions for the toy compiler and sketches the proofs. A formal and browsable
Coq development composed of 1 Kloc of specifications and 3.5 Kloc of proofs is
available at http://www.pps.univ-paris-diderot.fr/cerco. Section 3 reports
our experience in implementing and testing the labelling approach for a compiler
from C to 8051 binaries. The CerCo compiler is composed of 30Kloc of ocaml code;
it can be both downloaded and tested as a web application at theURL above.More
details are available in report [2] Section 4 introduces the automatic Cost tool that
starting from the cost annotations produces certified synthetic cost bounds. This
is a Frama− C plug-in composed of 5 Kloc of ocaml code also available at the URL
above.

2 Esterel Technologies. http://www.esterel-technologies.com
3 AbsInt Angewandte Informatik. http://www.absint.com/
4 Frama− C software analyzers. http://frama-c.com/
5 Chronos tool. www.comp.nus.edu.sg/~rpembed/chronos
6 The recently proposed ARM Cortex M series would be another obvious candidate.

34 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

2 A “Labelling” Method for Cost Annotating
Compilation

In this section, we explain in general terms the so-called “labelling” method to
turn a compiler into a cost annotating compiler while minimizing the impact
of this extension on the proof of the semantic preservation. Then to make our
purpose technically precise, we apply the method to a toy compiler.

2.1 Overview

As a first step, we need a clear and flexible picture of: (i) the meaning of cost
annotations, (ii) the method to provide them being sound and precise, and (iii)
the way such proofs can be composed. The execution cost of the source pro-
grams we are interested in depends on their control structure. Typically, the
source programs are composed of mutually recursive procedures and loops and
their execution cost depends, up to some multiplicative constant, on the num-
ber of times procedure calls and loop iterations are performed. Producing a cost
annotation of a source program amounts to:

– enrich the program with a collection of global cost variables to measure re-
source consumption (time, stack size, heap size,. . .)

– inject suitable code at some critical points (procedures, loops,. . .) to keep
track of the execution cost.

Thus, producing a cost-annotation of a source program P amounts to build an
annotated program An(P) which behaves as P while self-monitoring its execution
cost. In particular, if we do not observe the cost variables then we expect the
annotated program An(P) to be functionally equivalent to P . Notice that in the
proposed approach an annotated program is a program in the source language.
Therefore, the meaning of the cost annotations is automatically defined by the
semantics of the source language and tools developed to reason on the source
programs can be directly applied to the annotated programs too. Finally, notice
that the annotated program An(P) is only meant to reason on the execution
cost of the unannotated program P and it will never be compiled or executed.

Soundness and precision of cost annotations. Suppose we have a functionally
correct compiler C that associates with a program P in the source language a
program C(P) in the object language. Further suppose we have some obvious
way of defining the execution cost of an object code. For instance, we have a good
estimate of the number of cycles needed for the execution of each instruction of
the object code. Now, the annotation of the source program An(P) is sound if its
prediction of the execution cost is an upper bound for the ‘real’ execution cost.
Moreover, we say that the annotation is precise with respect to the cost model
if the difference between the predicted and real execution costs is bounded by a
constant which only depends on the program.

Certifying and Reasoning on Cost Annotations in C Programs 35

Compositionality. In order to master the complexity of the compilation process
(and its verification), the compilation function C must be regarded as the result of
the composition of a certain number of program transformations C = Ck ◦· · ·◦C1.
When building a system of cost annotations on top of an existing compiler, a
certain number of problems arise. First, the estimated cost of executing a piece
of source code is determined only at the end of the compilation process. Thus,
while we are used to define the compilation functions Ci in increasing order,
the annotation function An is the result of a progressive abstraction from the
object to the source code. Second, we must be able to foresee in the source
language the looping and branching points of the object code. Missing a loop
may lead to unsound cost annotations while missing a branching point may lead
to rough cost predictions. This means that we must have a rather good idea
of the way the source code will eventually be compiled to object code. Third,
the definition of the annotation of the source code depends heavily on contextual
information. For instance, the cost of the compiled code associated with a simple
expression such as x+1 will depend on the place in the memory hierarchy where
the variable x is allocated. A previous experience described in [1] suggests that
the process of pushing ‘hidden parameters’ in the definitions of cost annotations
and of manipulating directly numerical cost is error prone and produces complex
proofs. For this reason, we advocate next a ‘labelling approach’ where costs are
handled at an abstract level and numerical values are produced at the very end
of the construction.

2.2 The Labelling Approach, Formally

The ‘labelling’ approach to the problem of building cost annotations is summa-
rized in the following diagram.

L1 L1,�I
��

er1

��

C1 �� L2,�

er2

��

. . .
Ck �� Lk+1,�

erk+1

��
L1

L

��

C1 �� L2 . . .
Ck �� Lk+1

er i+1 ◦ Ci = Ci ◦ er i
er1 ◦ L = idL1

An = I ◦ L

For each language Li considered in the compilation process, we define an ex-
tended labelled language Li,� and an extended operational semantics. The labels
are used to mark certain points of the control. The semantics makes sure that
whenever we cross a labelled control point a labelled and observable transition
is produced.

For each labelled language there is an obvious function er i erasing all labels
and producing a program in the corresponding unlabelled language. The com-
pilation functions Ci are extended from the unlabelled to the labelled language
so that they enjoy commutation with the erasure functions. Moreover, we lift

36 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

the soundness properties of the compilation functions from the unlabelled to the
labelled languages and transition systems.

A labelling L of the source language L1 is a function such that erL1 ◦L is the
identity function. An instrumentation I of the source labelled language L1,� is a
function replacing the labels with suitable increments of, say, a fresh global cost
variable. Then, an annotation An of the source program can be derived simply as
the composition of the labelling and the instrumentation functions: An = I ◦L.

Suppose s is some adequate representation of the state of a program. Let P
be a source program. The judgement (P, s) ⇓ s′ is the big-step evaluation of P
transforming state s into a state s′. Let us write s[v/x] to denote a state s in
which the variable x is assigned a value v. Suppose now that its annotation
satisfies the following property:

(An(P), s[c/cost]) ⇓ s′[c+ δ/cost] (1)

where c and δ are some non-negative numbers. Then, the definition of the instru-
mentation and the fact that the soundness proofs of the compilation functions
have been lifted to the labelled languages allows to conclude that

(C(L(P)), s[c/cost]) ⇓ (s′[c/cost], λ) (2)

where C = Ck ◦ · · · ◦ C1 and λ is a sequence (or a multi-set) of labels whose ‘cost’
corresponds to the number δ produced by the annotated program. Then, the
commutation properties of erasure and compilation functions allows to conclude
that the erasure of the compiled labelled code erk+1(C(L(P))) is actually equal
to the compiled code C(P) we are interested in. Given this, the following question
arises: under which conditions the sequence λ, i.e., the increment δ, is a sound
and possibly precise description of the execution cost of the object code?

To answer this question, we observe that the object code we are interested in
is some kind of assembly code and its control flow can be easily represented as a
control flow graph. The idea is then to perform two simple checks on the control
flow graph. The first check is to verify that all loops go through a labelled node.
If this is the case then we can associate a finite cost with every label and prove
that the cost annotations are sound. The second check amounts to verify that
all paths starting from a label have the same cost. If this check is successful then
we can conclude that the cost annotations are precise.

2.3 A Toy Compiler

As a first case study, we apply the labelling approach to a toy compiler.
The syntax of the source, intermediate and target languages is given in Fig-

ure 1. The three languages considered can be shortly described as follows: Imp is
a very simple imperative language with pure expressions, branching and looping
commands, Vm is an assembly-like language enriched with a stack, and Mips is
a Mips-like assembly language [9] with registers and main memory.

The semantics of Imp is defined over configurations (S,K, s) where S is a
statement, K is a continuation and s is a state. A continuation K is a list of

Certifying and Reasoning on Cost Annotations in C Programs 37

Syntax for Imp

id ::= x || y || . . .
n ::= 0 || −1 || +1 || . . .
v ::= n || true || false
e ::= id || n || e+ e
b ::= e < e
S ::= skip || id := e || S;S
|| if b then S else S
|| while b do S

P ::= prog S

Syntax for Vm

instrVm ::= cnst(n) || var(n)
|| setvar(n) || add
|| branch(k) || bge(k) || halt

Syntax for Mips

instrMips ::= loadiR,n || loadR, l
|| storeR, l || addR,R,R
|| branch k || bgeR,R, k || halt

Fig. 1. Syntax definitions

commands which terminates with a special symbol halt. The semantics of Vm
is defined over stack-based machine configurations C � (i, σ, s) where C is a
program, i is a program counter, σ is a stack and s is a state. The semantics of
Mips is defined over register-based machine configurations C � (i,m) where C is
a program, i is a program counter and m is a machine memory (with registers
and main memory).

The first compilation function C relies on the stack of the Vm language to
implement expression evaluation while the second compilation function C′ al-
locates (statically) the base of the stack in the registers and the rest in main
memory. This is of course a naive strategy but it suffices to expose some of the
problems that arise in defining a compositional approach. The formal definitions
of these compilation functions C from Imp to Vm and C′ from Vm to Mips are
standard and thus eluded. (See report [2] for formal details about semantics and
the compilation chain.)

Applying the labelling approach to this toy compiler results in the following
diagram. The next sections aim at describing this diagram in details.

Imp Imp�I
��

er Imp

��

C �� Vm�

erVm

��

C′
�� Mips�

erMips

��
Imp

L

��

C �� Vm C′
�� Mips

erVm ◦ C = C ◦ er Imp

erMips ◦ C′ = C′ ◦ erVm

er Imp ◦ L = idImp

An Imp = I ◦ L

2.4 Labelled languages: Syntax and Semantics

Syntax The syntax of Imp is extended so that statements can be labelled: S ::=
. . . || � : S. A new instruction emit(�) (resp. (emit �)) is introduced in the syntax
of Vm (resp. Mips).

38 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

Semantics. The small step semantics of Imp statements is extended as described
by the following rule.

(� : S,K, s)
�−→ (S,K, s)

We denote with λ, λ′, . . . finite sequences of labels. In particular, the empty
sequence is written ε. We also identify an unlabelled transition with a transition
labelled with ε. Then, the small step reduction relation we have defined on
statements becomes a labelled transition system. We derive a labelled big-step

semantics as follows: (S, s) ⇓ (s′, λ) if (S, halt, s)
λ1−→ · · · λn−−→ (skip, halt, s′) and

λ = λ1 · · ·λn.
Following the same pattern, the small step semantics of Vm and Mips are

turned into a labelled transition system as follows:

C � (i, σ, s)
�−→ (i+ 1, σ, s) if C[i] = emit(�) .

M � (i,m)
�−→ (i+ 1,m) if M [i] = (emit �) .

The evaluation predicate for labelled Vm is defined as (C, s) ⇓ (s′, λ) if C �
(0, ε, s)

λ1−→ · · · λn−−→ (i, ε, s′), λ = λ1 · · ·λn and C[i] = halt. The evaluation

predicate for labelled Mips is defined as (M,m) ⇓ (m′, λ) if M � (0,m)
λ1−→

· · · λn−−→ (j,m′), λ = λ1 · · ·λn and M [j] = halt.

2.5 Erasure Functions

There is an obvious erasure function er Imp from the labelled language to the
unlabelled one which is the identity on expressions and boolean conditions, and
traverses commands removing all labels.

The erasure function erVm amounts to remove from a Vm code C all the emit(�)
instructions and recompute jumps accordingly. Specifically, let n(C, i, j) be the
number of emit instructions in the interval [i, j]. Then, assuming C[i] = branch(k)
we replace the offset k with an offset k′ determined as follows:

k′ =

{
k − n(C, i, i+ k) if k ≥ 0
k + n(C, i+ 1 + k, i) if k < 0

The erasure function erMips is also similar to the one of Vm as it amounts to
remove from a Mips code all the (emit �) instructions and recompute jumps ac-
cordingly. The compilation function C′ is extended to Vm� by simply translating
emit(�) as (emit �):

C′(i, C) = (emit �) if C[i] = emit(�)

2.6 Compilation of Labelled Languages

The compilation function C is extended to Imp� by defining:

C(� : b, k) = (emit(�)) · C(b, k) C(� : S) = (emit(�)) · C(S) .

Certifying and Reasoning on Cost Annotations in C Programs 39

Proposition 1. For all commands S in Imp�, we have that:

(1) erVm(C(S)) = C(er Imp(S)).

(2) If (S, s) ⇓ (s′, λ) then (C(S), s) ⇓ (s′, λ).

The following proposition relates Vm� code and its compilation and it is similar
to proposition 1. Here m ‖−σ, s means “the low-level Mips memory m realizes
the Vm stack σ and state s”.

Proposition 2. Let C be a Vm� code. Then:

(1) erMips(C′(C)) = C′(erVm(C)).

(2) If (C, s) ⇓ (s′, λ) and m ‖−ε, s then (C′(C),m) ⇓ (m′, λ) and m′ ‖−ε, s′.

2.7 Labellings and Instrumentations

Assuming a function κ which associates an integer number with labels and a
distinct variable cost which does not occur in the program P under consideration,
we abbreviate with inc(�) the assignment cost := cost + κ(�). Then we define
the instrumentation I (relative to κ and cost) as follows:

I(� : S) = inc(�); I(S) .
The function I just distributes over the other operators of the language. We
extend the function κ on labels to sequences of labels by defining κ(�1, . . . , �n) =
κ(�1) + · · · + κ(�n). The instrumented Imp program relates to the labelled one
as follows.

Proposition 3. Let S be an Imp� command. If (I(S), s[c/cost]) ⇓ s′[c+ δ/cost]
then ∃λ κ(λ) = δ and (S, s[c/cost]) ⇓ (s′[c/cost], λ).

Definition 1. A labelling is a function L from an unlabelled language to the
corresponding labelled one such that er Imp ◦L is the identity function on the Imp
language.

Proposition 4. For any labelling function L, and Imp program P , the following
holds:

erMips(C′(C(L(P))) = C′(C(P)) . (3)

Proposition 5. Given a function κ for the labels and a labelling function L, for
all programs P of the source language if (I(L(P)), s[c/cost]) ⇓ s′[c+ δ/cost] and
m ‖−ε, s[c/cost] then (C′(C(L(P))),m) ⇓ (m′, λ), m′ ‖−ε, s′[c/cost] and
κ(λ) = δ.

2.8 Sound and Precise Labellings

With any Mips� code M , we can associate a directed and rooted (control flow)
graph whose nodes are the instruction positions {0, . . . , |M | − 1}, whose root
is the node 0, and whose directed edges correspond to the possible transitions
between instructions. We say that a node is labelled if it corresponds to an
instruction emit �.

40 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

Definition 2. A simple path in a Mips� code M is a directed finite path in
the graph associated with M where the first node is labelled, the last node is
the predecessor of either a labelled node or a leaf, and all the other nodes are
unlabelled.

Definition 3. A Mips� code M is soundly labelled if in the associated graph the
root node 0 is labelled and there are no loops that do not go through a labelled
node. Besides, we say that a soundly labelled code is precise if for every label �
in the code, the simple paths starting from a node labelled with � have the same
cost.

In a soundly labelled graph there are finitely many simple paths. Thus, given a
soundly labelled Mips code M , we can associate with every label � a number κ(�)
which is the maximum (estimated) cost of executing a simple path whose first
node is labelled with �. Thus for a soundly labelled Mips code the sequence of
labels associated with a computation is a significant information on the execution
cost.

For an example of command which is not soundly labelled, consider � :
while 0 < x do x := x + 1, which when compiled, produces a loop that does
not go through any label. On the other hand, for an example of a program
which is not precisely labelled consider � : (if 0 < x then x := x+1 else skip). In
the compiled code, we find two simple paths associated with the label � whose
cost will be quite different in general.

Proposition 6. If M is soundly (resp. precisely) labelled and (M,m) ⇓ (m′, λ)
then the cost of the computation is bounded by κ(λ) (resp. is exactly κ(λ)).

The next point we have to check is that there are labelling functions (of the source
code) such that the compilation function does produce sound and possibly precise
labelled Mips code. To discuss this point, we introduce in table 1 a labelling
function Lp for the Imp language. This function relies on a function “new” which
is meant to return fresh labels and on an auxiliary function L′

p which returns a
labelled command and a binary directive d ∈ {0, 1}. If d = 1 then the command
that follows (if any) must be labelled.

Table 1. A labelling for the Imp language

Lp(prog S) = prog Lp(S)
Lp(S) = let � = new , (S′, d) = L′

p(S) in � : S′

L′
p(S) = (S, 0) if S = skip or S = (x := e)
L′

p(if b then S1 else S2) = (if b then Lp(S1) else Lp(S2), 1)
L′

p(while b do S) = (while b do Lp(S), 1)
L′

p(S1;S2) = let (S′
1, d1) = L′

p(S1), (S′
2, d2) = L′

p(S2) in
case d1
0 : (S′

1;S
′
2, d2)

1 : let � = new in (S′
1; � : S

′
2, d2)

Certifying and Reasoning on Cost Annotations in C Programs 41

Proposition 7. For all Imp programs P , C′(C(Lp(P)) is a soundly and precisely
labelled Mips code.

Once a sound and possibly precise labelling L has been designed, we can deter-
mine the cost of each label and define an instrumentation I whose composition
with L will produce the desired cost annotation.

Definition 4. Given a labelling function L for the source language Imp and a
program P in the Imp language, we define an annotation for the source program
as follows:

An Imp(P) = I(L(P)) .

Proposition 8. If P is a program and C′(C(L(P))) is a sound (sound and pre-
cise) labelling then (An Imp(P), s[c/cost]) ⇓ s′[c + δ/cost] and m ‖−ε, s[c/cost]
entails that (C′(C(P)),m) ⇓ m′, m′ ‖−ε, s′[c/cost] and the cost of the execution
is bounded by (is exactly) δ.

3 A C Compiler Producing Cost Annotations

We now consider an untrusted C compiler prototype in ocaml in order to exper-
iment with the scalability of our approach. Its architecture is described below:

C → Clight → Cminor → RTLAbs (front end)
↓

Mips or 8051 ← LIN ← LTL ← ERTL ← RTL (back-end)

The most notable difference with CompCert [11] is that we target the Intel
8051 [10] and Mips assembly languages (rather than PowerPc). The compila-
tion from C to Clight relies on the CIL front-end [13]. The one from Clight to RTL
has been programmed from scratch and it is partly based on the Coq definitions
available in the CompCert compiler. Finally, the back-end from RTL to Mips is
based on a compiler developed in ocaml for pedagogical purposes7; we extended
this back-end to target the Intel 8051. The main optimizations the back-end per-
forms are liveness analysis and register allocation, and graph compression. We
ran some benchmarks to ensure that our prototype implementation is realistic.
The results are given in report [2].

This section informally describes the labelled extensions of the languages in
the compilation chain (see report [2] for details), the way the labels are propa-
gated by the compilation functions, and the (sound and precise) labelling of the
source code. A related experiment concerning a higher-order functional language
of the ML family is described in [3].

3.1 Labelled Languages

Both the Clight and Cminor languages are extended in the same way by labelling
both statements and expressions (by comparison, in the toy language Imp we

7 http://www.enseignement.polytechnique.fr/informatique/INF564/

42 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

just used labelled statements). The labelling of expressions aims to capture pre-
cisely their execution cost. Indeed, Clight and Cminor include expressions such
as a1?a2; a3 whose evaluation cost depends on the boolean value a1. As both
languages are extended in the same way, the extended compilation does nothing
more than sending Clight labelled statements and expressions to those of Cminor.

The labelled versions of RTLAbs and the languages in the back-end simply
consist in adding a new instruction whose semantics is to emit a label without
modifying the state. For the CFG based languages (RTLAbs to LTL), this new
instruction is emit label → node. For LIN, Mips and 8051, it is emit label . The
translation of these label instructions is immediate.

3.2 Labelling of the Source Language

As for the toy compiler, the goals of a labelling are soundness, precision, and
possibly economy. Our labelling for Clight resembles that of Imp for their common
instructions (e.g. loops). We only consider the instructions of Clight that are not
present in Imp8.

Ternary expressions. They may introduce a branching in the control flow. We
achieve precision by associating a label with each branch.

Program Labels and Gotos. Program labels and gotos are intraprocedural. Their
only effect on the control flow is to potentially introduce an unguarded loop.
This loop must contain at least one cost label in order to satisfy the soundness
condition, which we ensure by adding a cost label right after each program label.

Function calls. In the general case, the address of the callee cannot be inferred
statically. But in the compiled assembly code, we know for a fact that the callee
ends with a return statement that transfers the control back to the instruction
following the function call in the caller. As a result, we treat function calls ac-
cording to the following invariants: (1) the instructions of a function are covered
by the labels inside this function, (2) we assume a function call always returns
and runs the instruction following the call. Invariant (1) entails in particular
that each function must contain at least one label. Invariant (2) is of course an
over-approximation of the program behavior as a function might fail to return
because of an error or an infinite loop. In this case, the proposed labelling re-
mains correct: it just assumes that the instructions following the function call
will be executed, and takes their cost into consideration. The final computed
cost is still an over-approximation of the actual cost.

4 A Tool for Reasoning on Cost Annotations

Frama− C is a set of analysers for C programs with a specification language
called ACSL. New analyses can be dynamically added through a plug-in system.

8 We do not consider expressions with side-effects because they are eliminated by CIL.

Certifying and Reasoning on Cost Annotations in C Programs 43

For instance, the Jessie plug-in allows deductive verification of C programs with
respect to their specification in ACSL, with various provers as back-end tools.

We developed the Cost plug-in for the Frama− C platform as a proof of con-
cept of an automatic environment exploiting the cost annotations produced by
the CerCo compiler. It consists of an ocaml program of 5 Kloc which in first
approximation takes the following actions: (1) it receives as input a C program,
(2) it applies the CerCo compiler to produce a related C program with cost anno-
tations, (3) it applies some heuristics to produce a tentative bound on the cost
of executing the C functions of the program as a function of the value of their
parameters, (4) the user can then call the Jessie tool to discharge the related
proof obligations. In the following we elaborate on the soundness of the frame-
work, the algorithms underlying the plug-in, and the experiments we performed
with the Cost tool.

4.1 Soundness

The soundness of the whole framework depends on the cost annotations added
by the CerCo compiler, the synthetic costs produced by the Cost plug-in, the
verification conditions (VCs) generated by Jessie, and the external provers dis-
charging the VCs. The synthetic costs being in ACSL format, Jessie can be used
to verify them. Thus, even if the added synthetic costs are incorrect (relatively
to the cost annotations), the process in its globality is still correct: indeed, Jessie
will not validate incorrect costs and no conclusion can be made about the WCET
of the program in this case. In other terms, the soundness does not really depend
on the action of the Cost plug-in, which can in principle produce any synthetic
cost. However, in order to be able to actually prove a WCET of a C function,
we need to add correct annotations in a way that Jessie and subsequent auto-
matic provers have enough information to deduce their validity. In practice this
is not straightforward even for very simple programs composed of branching
and assignments (no loops and no recursion) because a fine analysis of the VCs
associated with branching may lead to a complexity blow up.

4.2 Inner Workings

The cost annotations added by the CerCo compiler take the form of C instruc-
tions that update by a constant a fresh global variable called the cost variable.
Synthesizing a WCET of a C function thus consists in statically resolving an
upper bound of the difference between the value of the cost variable before and
after the execution of the function, i.e. find in the function the instructions that
update the cost variable and establish the number of times they are passed
through during the flow of execution. The plug-in proceeds as follows.

– Each function is independently processed and is associated a WCET that
may depend on the cost of the other functions. This is done with a mix
between abstract interpretation [6] and syntactic recognition of specific loops.

44 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

– As result of the previous step, a system of inequations is built and its solution
is attempted by an iterative process. At each iteration, one replaces in all
the inequations the references to the cost of a function by its associated cost
if it is independent of the other functions. This step is repeated till a fixpoint
is reached.

– ACSL annotations are added to the program according to the result of the
above fixpoint. The two previous steps may fail in finding a concrete WCET
for some functions, because of imprecision inherent in abstract interpreta-
tion, and because of recursive definitions in the source program not solved
by the fixpoint. At each program point that requires an annotation (function
definitions and loops), annotations are added if a solution was found for the
program point.

– The most difficult instructions to handle are loops. We consider loops for
which we can syntactically find a counter (its initial, increment and last
values are domain dependent). Other loops are associated an undefined cost
(). When encountering a loop, the analysis first sets the cost of its entry
point to 0. The cost inside the loop is thus relative to the loop. Then, for
each exit point, we fetch the value of the cost at that point and multiply it
by an upper bound of the number of iterations (obtained through arithmetic
over the initial, increment and last values of the counter); this results in an
upper bound of the cost of the whole loop, which is sent to the successors of
the considered exit point.

Figure 2 shows the action of the Cost plug-in on a C program. The most no-
table differences are the added so-called cost variable, some associated update
(increment) instructions inside the code, and an ensures clause that specifies
the WCET of the is sorted function with respect to the cost variable. One can
notice that this WCET depends on the inputs of the function. Running Jessie
on the annotated and specified program generates VCs that are all proved by
the automatic prover AltErgo9.

4.3 Experiments

The Cost plug-in has been developed in order to validate CerCo’s framework for
modular WCET analysis. The plug-in allows (semi-)automatic generation and
certification of WCET for C programs. Also, we designed a wrapper for support-
ing Lustre files. Indeed, Lustre is a data-flow language to program synchronous
systems and the language comes with a compiler to C. The C function pro-
duced by the compiler implements the step function of the synchronous system
and computing the WCET of the function amounts to obtain a bound on the
reaction time of the system.

We tested the Cost plug-in and the Lustre wrapper on the C programs gen-
erated by the Lustre compiler. We also tested it on some basic algorithms and
cryptographic functions; these examples, unlike those generated by the Lustre

9 AltErgo prover. http://ergo.lri.fr/

Certifying and Reasoning on Cost Annotations in C Programs 45

int is sorted (int *tab, int size) {
int i, res = 1;

for (i = 0 ; i < size-1 ; i++) if (tab[i] > tab[i+1]) res = 0;

return res; }

(a) The initial C source code.

int cost = 0;

/*@ ensures (cost ≤ \old(cost)+(101+(0<size-1?(size-1)*195:0))); */

int is sorted (int *tab, int size) {
int i, res = 1, cost tmp0;

cost += 97; cost tmp0 = cost;

/*@ loop invariant (0 < size-1) ⇒ (i ≤ size-1);

@ loop invariant (0 ≥ size-1) ⇒ (i ≡ 0);

@ loop invariant (cost ≤ cost tmp0+i*195);

@ loop variant (size-1)-i; */

for (i = 0; i < size-1; i++) {
cost += 91;

if (tab[i] > tab[i+1]) { cost += 104; res = 0; }
else cost += 84; }

cost += 4; return res; }

(b) The annotated source code generated by Cost.

Fig. 2. An example of the Cost plug-in action

File Type Description LOC VCs

3-way.c C Three way block cipher 144 34

a5.c C A5 stream cipher, used in GSM cellular 226 18

array sum.c S Sums the elements of an integer array 15 9

fact.c S Factorial function, imperative implementation 12 9

is sorted.c S Sorting verification of an array 8 8

LFSR.c C 32-bit linear-feedback shift register 47 3

minus.c L Two modes button 193 8

mmb.c C Modular multiplication-based block cipher 124 6

parity.lus L Parity bit of a boolean array 359 12

random.c C Random number generator 146 3

S: standard algorithm C: cryptographic function
L: C generated from a Lustre file

Fig. 3. Experiments on CerCo and the Cost plug-in

46 N. Ayache, R.M. Amadio, and Y. Régis-Gianas

compiler include arrays and for-loops. Table 3 provides a list of concrete pro-
grams and describes their type, functionality, the number of lines of the source
code, and the number of VCs generated. In each case, the Cost plug-in computes
a WCET and AltErgo is able to discharge all VCs. Obviously the generation of
synthetic costs is an undecidable and open-ended problem. Our experience just
shows that there are classes of C programs which are relevant for embedded ap-
plications and for which the synthesis and verification tasks can be completely
automatized.

Acknowledgement. The master students Kayvan Memarian and Ronan Sail-
lard contributed both to the Coq proofs and the CerCo compiler in the early
stages of their development.

References

1. Amadio, R.M., Ayache, N., Memarian, K., Saillard, R., Régis-Gianas, Y.: Compiler
Design and Intermediate Languages. Deliverable 2.1 of [4]

2. Ayache, N., Amadio, R.M., Régis-Gianas, Y.: Certifying and reasoning on cost
annotations of C programs. Research Report 00702665 (June 2012)

3. Amadio, R.M., Régis-Gianas, Y.: Certifying and Reasoning on Cost Annotations
of Functional Programs. In: Peña, R., van Eekelen, M., Shkaravska, O. (eds.)
FOPARA 2011. LNCS, vol. 7177, pp. 72–89. Springer, Heidelberg (2012)

4. Certified complexity (Project description). ICT-2007.8.0 FET Open, Grant 243881
5. Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A., Signoles, J.,

Yakobowski, B.: Frama-C user manual. CEA-LIST, Software Safety Laboratory,
Saclay, F-91191, http://frama-c.com/

6. Cousot, P., Cousot, R.: Abstract Interpretation Frameworks. Jou. of Logic and
Computation 2(4), 511–547 (1992)

7. Ferdinand, C., Heckmann, R., Le Sergent, T., Lopes, D., Martin, B., Fornari, X.,
Martin, F.: Combining a high-level design tool for safety-critical systems with a
tool for WCET analysis of executables. In: Embedded Real Time Software (2008)

8. Fornari, X.: Understanding how SCADE suite KCG generates safe C code. White
paper, Esterel Technologies (2010)

9. Larus, J.: Assemblers, linkers, and the SPIM simulator. Appendix of Computer
Organization and Design: the hw/sw interface. Hennessy and Patterson (2005)

10. MCS 51 Microcontroller Family User’s Manual. Publication number 121517. Intel
Corporation (1994)

11. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115
(2009)

12. Leroy, X.: Mechanized semantics, with applications to program proof and compiler
verification. In: Marktoberdorf Summer School (2009)

13. Necula, G., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.) CC
2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

14. Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embedded Comput. Syst. 7(3) (2008)

Separation Predicates: A Taste

of Separation Logic in First-Order Logic�

François Bobot and Jean-Christophe Filliâtre

LRI, Univ Paris-Sud, CNRS, Orsay F-91405
INRIA Saclay-̂Ile-de-France, ProVal, Orsay F-91893

Abstract. This paper introduces separation predicates, a technique to
reuse some ideas from separation logic in the framework of program ver-
ification using a traditional first-order logic. The purpose is to benefit
from existing specification languages, verification condition generators,
and automated theorem provers. Separation predicates are automatically
derived from user-defined inductive predicates. We illustrate this idea on
a non-trivial case study, namely the composite pattern, which is speci-
fied in C/ACSL and verified in a fully automatic way using SMT solvers
Alt-Ergo, CVC3, and Z3.

1 Introduction

Program verification has recently entered a new era. It is now possible to prove
rather complex programs in a reasonable amount of time, as demonstrated in
recent program verification competitions [17,12,10]. One of the reasons for this is
tremendous progress in automated theorem provers. SMT solvers, in particular,
are tools of choice to discharge verification conditions, for they combine full first-
order logic with equality, arithmetic, and a handful of other theories relevant to
program verification, such as arrays, bit vectors, or tuples. Notable examples of
SMT solvers include Alt-Ergo [4], CVC3 [1], Yices [9], and Z3 [8].

Yet, when it comes to verifying programs involving pointer-based data struc-
tures, such as linked lists, trees, or graphs, the use of traditional first-order logic
to specify, and of SMT solvers to verify, shows some limitations. Separation
logic [22] is then an elegant alternative. Designed at the turn of the century, it is
a program logic with a new notion of conjunction to express spatial separation.
Separation logic requires dedicated theorem provers, implemented in tools such
as Smallfoot [2] or VeriFast [13,15]. One drawback of such provers, however, is to
either limit the expressiveness of formulas (e.g. to the so-called symbolic heaps),
or to require some user-guidance (e.g. open/close commands in Verifast).

In an attempt to conciliate both approaches, we introduce the notion of sep-
aration predicates. The idea is to introduce some ideas from separation logic
into a traditional verification framework where the specification language, the

� This work was (partially) supported by the Information and Communication Tech-
nologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo and by the
U3CAT project (ANR-08-SEGI-021) of the French national research organization.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 167–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 F. Bobot and J.-C. Filliâtre

verification condition generator, and the theorem provers were not designed with
separation logic in mind. Separation predicates are automatically derived from
user-defined inductive predicates, on demand. Then they can be used in program
annotations, exactly as other predicates, i.e., without any constraint. Simply
speaking, where one would write P �Q in separation logic, one will here ask for
the generation of a separation predicate sep and then use it as P ∧Q∧sep(P,Q).

We have implemented separation predicates within Frama-C’s plug-in Jessie
for deductive verification [21]. This paper demonstrates the usefulness of sep-
aration predicates on a realistic, non-trivial case study, namely the composite
pattern from the VACID-0 benchmark [20]. We achieve a fully automatic proof
using three existing SMT solvers.

This paper is organized as follows. Section 2 gives a quick overview of what
separation predicates are, using the classic example of list reversal. Section 3
formalizes the notion of separation predicates and briefly describes our imple-
mentation. Then, Section 4 goes through the composite pattern case study. Sec-
tion 5 presents how this framework can be extended to express the set of pointers
modified by a function. We conclude with related work in Section 6.

2 Motivating Example

As an example, let us consider the classic in-place list reversal algorithm:

rev(p) ≡
q := NULL

while p �= NULL do t := p→next; p→next := q; q := p; p := t done
return q

We may want to verify that, whenever p points to a finite singly-linked list,
then rev(p) returns a finite list. (Proving that lists are indeed reversed requires
more space than available here.) To do so, we first define the notion of finite
singly-linked lists, for instance using the following inductive predicate islist :

inductive islist(p) ≡
| C0 : islist(NULL)
| C1 : ∀p. p �= NULL ⇒ islist(p→next) ⇒ islist(p)

Then we specify function rev using the following Hoare triple:

{islist(p)} q := rev(p) {islist(q)}
To perform the proof, we need a loop invariant. A natural invariant expresses
that both p and q are finite lists, that is islist(p) ∧ islist(q).

Unfortunately, this is not enough for the proof to be carried out. Indeed, we
lack the crucial information that assigning p→next will not modify lists q and t.
Therefore, we cannot prove that the invariant above is preserved.

Separation Predicates: A Taste of Separation Logic in First-Order Logic 169

Separation logic proposes an elegant solution to this problem. It introduces a
new logical connective P � Q that acts as the conjunction P ∧ Q and expresses
spatial separation of P and Q at the same time. In the list reversal example, it
is used at two places. First, it is used in the definition of islist to express that
the first node of a list is disjoint from the remaining nodes:

islist(p) ≡ if p = NULL then emp else ∃q. p→next 	→ q � islist(q)

This way, we can now prove that list t is preserved when p→ next is assigned.
Second, the connective � is also used in the loop invariant to express that lists p
and q do not share any pointer:

islist(p) � islist(q).

This way, we can now prove that list q is preserved when p→next is assigned.
Using a dedicated prover for separation logic, list reversal can be proved correct
using this loop invariant.

In our attempt to use traditional SMT solvers instead, we introduce the notion
of separation predicates : the � connective of separation logic is replaced by new
predicate symbols, which are generated on a user-demand basis. Our annotated
C code for list reversal using separation predicates is given in Fig. 1.

We define predicate islist inductively (lines 4–8), as we did earlier in this
section. In this definition \valid(p) express that p is a pointer that can be
safely dereferenced (allocated and not freed). It captures finite lists only and,
consequently, the first node of a list is disjoint from the remaining nodes. How-
ever, such a proof requires induction and thus is out of reach of SMT solvers.
We add this property as a lemma (lines 11–12), using a separation predicate
sep_node_islist (introduced at line 10). This lemma is analogous to the �
used in the definition of islist in separation logic. To account for the � in the
loop invariant, we first introduce a new separation predicate sep_islist_islist
(line 14) and then we use it in the loop invariant (line 21).

With these annotations, the axiomatizations and the definitions automati-
cally generated for sep_node_islist and sep_islist_islist allow a general-
purpose SMT solver such as Alt-Ergo or CVC3 to discharge all verification con-
ditions obtained by weakest precondition for the code in Fig. 1, in no time.

3 Separation Predicates

3.1 Inductive Definitions

A separation predicate is generated from user-defined inductive predicates. The
generation is sound only if the definitions of the inductive predicates obey sev-
eral constraints, the main one being that two distinct cases should not overlap.
Fortunately, this is the case for most common inductive predicates. For instance,
predicate islist from Fig. 1 (lines 4–8) trivially satisfies the non-overlapping
constraint, since p cannot be both null and non-null.

Generally speaking, we consider inductive definitions following the syntax
given in Fig. 2. The constraints are then the following:

170 F. Bobot and J.-C. Filliâtre

1 struct node { int hd; struct node *next; };

2
3 /*@

4 inductive islist (struct node *p) {

5 case nil: islist (\ null);

6 case cons: \forall struct node *p; p != \null ==> \valid(p) ==>

7 islist (p->next) ==> islist (p);

8 }

9
10 # Gen_Separation sep_node_islist(struct node*, islist)

11 lemma list_sep:

12 \forall struct node *p; p!= null ==>

13 islist (p) ==> sep_node_islist(p, p->next);

14
15 # Gen_Separation sep_islist_islist(islist , islist)

16 @*/

17
18 /*@ requires islist (p); ensures islist (\ result); @*/

19 struct node * rev(struct node *p) {

20 struct node *q = NULL;

21 /*@ loop invariant

22 islist (p) && islist (q) && sep_islist_islist(p,q); @*/

23 while(p != NULL) {

24 struct node *tmp = p->next;

25 p->next = q;

26 q = p;

27 p = tmp;

28 }

29 return q;

30 }

Fig. 1. List Reversal

(terms) t ::= x | t→field | φ(t)
(formulas) f ::= t = t | ¬(t = t) | p(x)

(inductive case) c ::= C : ∀x.f ⇒ . . . ⇒ f ⇒ p(x)
(inductive definition) d ::= inductive p(x) = c| . . . |c

Fig. 2. Inductive Definitions

– in a term t, a function symbol φ cannot refer to the memory state;
– in a formula f , a predicate symbol p can refer to the memory state only if it

is an inductively defined predicate following the constraints (which includes
the predicate being defined);

– if Ci : ∀x.fi,1 ⇒ . . . ⇒ fi,ni ⇒ p(x) and Cj : ∀x.fj,1 ⇒ . . . ⇒ fj,nj ⇒ p(x)
are two distinct cases of inductivep(x) = c1| . . . |cn, then we should have

∀x.¬(fi,1 ∧ · · · ∧ fi,ni ∧ fj,1 ∧ · · · ∧ fj,nj).

It is worth pointing out that an inductive predicate which is never used to define
a separation predicate does not have to follow these restrictions.

Separation Predicates: A Taste of Separation Logic in First-Order Logic 171

3.2 An Axiomatization of Footprints

The footprint of an inductive predicate p is the set of pointers which it depends
on. More precisely, in a memory state m where p(x) is true, the pointer q is in
the footprint of p(x) if we can modify the value q points at such that p(x) does
not hold anymore. Such a definition is too precise to be used in practice. We use
instead a coarser notion of footprint, which is derived from the definition of p
and over-approximates the precise footprint.

Let us consider the definition of islist. First, we introduce a new type ft for
footprints. Then we declare a function symbol ftislist and a predicate symbol
∈. The intended semantics is the following: ftislist(m, p) is the footprint of
islist(p) in memory state m and q ∈ ftislist(m, p) means that q belongs to
the footprint ftislist(m, p). Both symbols are axiomatized simultaneously as
follows:

∀q.∀m.∀p. q ∈ ftislist(m, p) ⇔
(

p �= NULL∧ islist(m, {p→next}m)

∧(q = p ∨ q ∈ ftislist(m, {p→next}m))

)

where {p→next}m stands for expression p→next in memory state m.
Then separation predicates are easily defined from footprints. The pragma

from line 10 in Fig. 1 generates the definition

sep_node_islist(m, q, p) � q �∈ ftislist(m, p)

and pragma from line 14 generates the definition

sep_islist_islist(m, p1, p2) �
∀q. q �∈ ftislist(m, p1) ∨ q �∈ ftislist(m, p2)

(where q �∈ s stands for ¬(q ∈ s)). The predicate symbols and the types that
appears in the pragma specify the signature of the separation predicate and
which inductive predicate must be used to defined the separation predicate. A
type is viewed as the predicate symbol of an unary predicate of this type whose
footprint is reduced to its argument. The signature of the defined separation
predicate is the concatenation of the signature of the predicate symbols.

Generally speaking, in order to axiomatize the footprint of an inductive predi-
cate, we first introduce a meta-operation FTm,q(e) that builds a formula express-
ing that q is in the footprint of a given expression e in memory state m:

FTm,q(x) =⊥
FTm,q(t→j) = FTm,q(t) ∨ q = t

FTm,q(φ(t)) =
∨

j

FTm,q(tj)

FTm,q(t1 = t2) = FTm,q(¬(t1 = t2)) = FTm,q(t1) ∨ FTm,q(t2)

FTm,q(p(t)) =
∨

j

FTm,q(tj) ∨ q ∈ ftp(m, t)

172 F. Bobot and J.-C. Filliâtre

We pose q ∈ ftp(m, t) � ⊥ whenever predicate p does not depend on the memory
state. Then the footprint of an inductive predicate p defined by inductivep(x) =
c1| . . . |cn with ci being Ci : ∀x.fi,1 ⇒ . . . ⇒ fi,ni ⇒ p(x) is axiomatized as fol-
lows:

∀q.∀m.∀x. q ∈ ftp(m,x) ⇔
∨

i

⎛
⎝∧

j

fi,j ∧
∨

j

FTm,q(fi,j)

⎞
⎠

where fi,j is the version of fi,j with the memory explicited (eg. t→j = {t→j}m).
In the axiom above for the footprint of islist, we simplified the NULL case since
it is equivalent to ⊥.

With the footprints of the inductive predicates you can now define the separa-
tion predicate. A separation predicate that define the separation of n inductive
predicates is defined as the conjunction of all the disjunction q ∈ ftpi

(m,xi)∨q ∈
ftpj

(m,xj) between the footprint of the inductive predicate. The soundness of
this construction have been proved in [3].

The separation predicates allow you to translate a large set of separation logic
formulas, namely first-order separation logic formula without magic wand and
with separation conjunction used only on inductive predicates which definitions
satisfy our constraints.

3.3 Mutation Axioms

The last ingredient we generate is a mutation axiom. It states the main property
of the footprint, namely that an assignment outside the footprint does not in-
validate the corresponding predicate. In the case of islist, the mutation axiom
is

∀m, p, q, v. q �∈ ftislist(m, p) ⇒ islist(m, p) ⇒ islist(m[q→next := v], p)

where m[q→ next := v] stands for a new memory state obtained from m by
assigning value v to memory location q→next. Actually, this property could be
proved from the definition of ftislist, but this would require induction. Since this
is out of reach of SMT solvers, we state it as an axiom. We do not require the user
to discharge it as a lemma, since it is proved sound in the meta-theory [3]. This
is somehow analogous to the mutation rule of separation logic, which is proved
sound in the meta-theory. The mutation rule of separation logic also allows
proving that two formulas stay separated if you modify something separated
from both of them. We can prove the same by adding an autoframe axiom,
which is reminiscent of the autoframe concept in dynamic frames [16]:

∀m, p, q, v. q �∈ ftislist(m, p) ⇒ islist(m, p) ⇒
ftislist(m, p) = ftislist(m[q→next := v], p)

Generally speaking, for each inductive predicate p and for each field field we
add the following axioms :

∀q.∀v.∀m.∀x.¬q ∈ ftp(m,x) ⇒ p(m,x) ⇒ p(m[q→field := v],x)

Separation Predicates: A Taste of Separation Logic in First-Order Logic 173

and
∀q.∀v.∀m.∀x. ¬q ∈ ftcp(m,x) ⇒ p(m,x) ⇒

ftp(m,x) = ftp(m[q→field := v],x).

The distinctness of the cases of the inductive predicate p appears in the proof of
the autoframe property.

3.4 Implementation

Our generation of separation predicates is implemented in the Frama-C/Jessie
tool chain for the verification of C programs [11,21,5]. This tool chain can be
depicted as follows:

From a technical point of view, our implementation is located in the Jessie tool,
since this is the first place where the memory model is made explicit1. Jessie
uses the component-as-array model also known as the Burstall-Bornat memory
model [7,6]. Each structure field is modeled using a distinct applicative array.
Consequently, function and predicate symbols such as ftislist or islist do not
take a single argument m to denote memory state, but one or several applicative
arrays instead, one for each field mentioned in the inductive definition. Similarly,
a quantification ∀m in our meta-theory (Sec. 3.2 and 3.3 above) is materialized in
the implementation by one or several quantifications over applicative arrays, one
for each field appearing in the formula. In the case of islist, for instance, quan-
tification ∀m becomes ∀next, expression {p→next}m becomes get(next, p), and
expression m[q→next := v] becomes set(next, p, v), where get and set are ac-
cess and update operations over applicative arrays. Additionally, we have to
define one footprint symbol for each field.

It is worth pointing out that we made no modification at all in Why3 to
support our separation predicates. Only Jessie has been modified.

4 A Case Study: Composite Pattern

To show the usefulness of separation predicates, we consider the problem of
verifying an instance of the Composite Pattern, as proposed in the VACID-0
benchmark [20].

4.1 The Problem

We consider a forest, whose nodes are linked upward through parent links. Each
node carries an integer value, as well as the sum of the values for all nodes in
its subtree (including itself). The corresponding C structure is thus defined as
follows:
1 Since we could not extend the ACSL language with the new pragmas for separation,

we have to modify the Jessie input file manually at each run. Furthermore we use in
the assigns clauses the keyword \all that does not exist yet in ACSL.

174 F. Bobot and J.-C. Filliâtre

struct node {

int val , sum;

struct node *parent;

};

typedef struct node *NODE;

The operations considered here are the following: NODE create(int v);, cre-
ates a new node; void update(NODE p, int v);, assigns value v to node p;
void addChild(NODE p, NODE q);, set node p as q’s parent, assuming node q

has no parent; void dislodge(NODE p);, disconnects p from its parent, if any.
One challenge with such a data structure is that operations update, addChild,

and dislodge have non-local consequences, as the sum field must be updated for
all ancestors. Another challenge is to prevent addChild from creating a cycle,
i.e., to express that node q is not already an ancestor of node p. Thus we prove
the memory safety and the correct behavior of these operations.

4.2 Code and Specification

Our annotated C code for this instance of the composite pattern is given in
the appendix. In this section, we comment on the key aspects of our solution.
The annotations are written in the ACSL specification language. The behavior
of the functions are defined by contract: the keyword requires introduces the
precondition expressed by a first-order formula, the keyword ensures introduces
the post-conditions, and the keyword assigns introduces the set of memory
location that can be modified by a call to the function. The precondition and
this set are interpreted before the execution of the function, the post-conditions
is interpreted after. One can refer in the post-condition to the state before the
execution of the function using the keyword \old. It must be remarked that
if a field of a type is never modified in the body of a function you don’t need
to mention it in the assigns clauses. Moreover the component-as-array memory
model ensures without reasoning that any formulas that depend only of such
fields remain true after a call to the function.

Separation Predicate. For the purpose of addChild’s specification, we use a sepa-
ration predicate. It states that a given node is disjoint from the list of ancestors of
another node. Such a list is defined using predicate parents (lines 7–12), which
is similar to predicate islist in the previous section. The separation predicate,
sep_node_parents, is then introduced on line 14 and used in the precondition
of addChild on line 84.

This is a crucial step, since otherwise assignment q->parent = p on line 95
could break property parents(p). Such a property is indeed required by upd_inv
to ensure its termination.

Restoring the Invariant. As suggested in VACID-0 [20], we introduce a function
to restore the invariant (function upd_inv on lines 68–77). Given a node p and
an offset delta, it adds delta to the sum field of p and of all its ancestors.

Separation Predicates: A Taste of Separation Logic in First-Order Logic 175

This way, we reuse this function in addChild (with the new child’s sum), in
update (with the difference), and in dislodge (with the opposite of the child’s
sum).

Local and Global Invariant. Another key ingredient of the proof is to ensure the
invariant property that, for each node, the sum field contains the sum of values
in all nodes beneath, including itself. To state such a property, we need to access
children nodes. Since the data structure does not provide any way to do that (we
only have parent links), we augment the data structure with ghost children links.
To make it simple, we assume that each node has at most two children, stored in
ghost fields left and right (line 4). Structural invariants relating fields parent,
left, and right are gathered in predicate wf (lines 28–37).

To state the invariant for sum fields, we first introduce a predicate good (lines
20–23). It states that the sum field of a given node p has a correct value when
delta is added to it. It is important to notice that predicate good is a local
invariant, which assumes that the left and right children of p have correct sums.
Then we introduce a predicate inv (lines 25–26) to state that any node p verifies
good(p, 0), with the possible exception of node except. Using an exception
is convenient to state that the invariant is locally violated during upd_inv. To
state that the invariant holds for all nodes, we simply use inv(NULL).

Our local invariant is convenient, as it does not require any induction. How-
ever, to convince the reader that we indeed proved the expected property, we
also show that this local invariant implies a global, inductively-defined invari-
ant. Lines 130–137 introduce the sum of all values in a tree, as an inductive
predicate treesum, and a lemma to state that local invariant inv(NULL) implies
treesum(p, p→sum) for any node p.

4.3 Proof

The proof was performed using Frama-C Carbon2 and its Jessie plug-in [21],
using SMT solvers Alt-Ergo 0.92.3, CVC3 2.2, and Z3 2.19, on an Intel Core Duo
2.4 GHz. As explained in Sec. 3.4, we first run Frama-C on the annotated C code
and then we insert the separation pragmas in the generated Jessie code (this is
a benign modification). All verification conditions are discharged automatically
within a total time of 30 seconds.

The two lemmas parents_sep and global_invariant were proved interac-
tively using the Coq proof assistant version 8.3pl3 [26]. A total of 100 lines of
tactics is needed. It doesn’t take more than three days for one of the author to
find the good specifications and make the proofs.

5 Function Footprints

In the case of the composite pattern, it is easy to specify the footprints of the
C functions. Indeed, we can simply say that any sum field may be modified

2 http://frama-c.com/

176 F. Bobot and J.-C. Filliâtre

(using \all->sum in assigns clauses), since the invariant provides all necessary
information regarding the contents of sum fields. For a function such as list
reversal, however, we need to be more precise. We want to know that any list
separated from the one being reversed is left unmodified. For instance, we would
like to be able to prove the following piece of code:

1 /*@
2 requires islist(p) && islist(q) && sep_list_list(p,q);
3 ensures islist(p) && islist(q) && sep_list_list(p,q);
4 @*/
5 void bar(struct node * p, struct node * q) {
6 p = rev(p);
7 }

For that purpose we must strengthen the specification and loop invariant of
function rev with a suitable frame property. One possibility is to proceed as
follows:

1 /*@
2 #Gen_Frame : list_frame list
3 #Gen_Sub: list_sub list list
4
5 requires list(p);
6 ensures list (\result) && list_frame {Old ,Here }(p,result);
7 @*/
8 struct node * rev(struct node * p);
9 ...

10 /*@ loop invariant
11 list(p) && list(q) && sep_list_list (p,q)
12 && list_frame {Init ,Here }(\at(p,Init),q)
13 && list_sub {Init ,Here }(\at(p,Init),p); @*/
14 ...

Two pragmas introduce new predicates list_frame and list_sub. Both de-
pend on two memory states. The formula list_frame{Old,Here}(p,result)

expresses in the post-condition that, between pre-state Old and post-state Here,
all modified pointers belong to list p. It also specifies that the footprint of list
result is included in the (old) footprint of list p. On the example of function
bar, we now know that only pointers from p have been modified, so we can
conclude that islist(q) is preserved. Additionally, we know that the footprint
of islist(p) has not grown so we can conclude that it is still separated from
islist(q). The formula list_sub{Init,Here}(\at(p,Init),p) specifies only
the inclusion of the footprint of the lists.

These two predicates could be axiomatized using membership only. For in-
stance, list_sub(p, q) could be simply axiomatized as ∀x, x ∈ ftislist(p) ⇒
x ∈ ftislist(q). But doing so has a rather negative impact on SMT solvers,
as they have to first instantiate this axiom and then to resort to other axioms
related to membership. Moreover this axiom is very generic and can be applied
when not needed. For that reason we provide, in addition to axioms related
to membership, axioms for footprint inclusion, to prove either s ⊂ ftp(p) or

Separation Predicates: A Taste of Separation Logic in First-Order Logic 177

ftp(p) ⊂ s directly. With such axioms, functions rev and bar are proved correct
automatically.

6 Related and Future Work

VeriFast [13,15] allows user-defined predicates but requires user annotations to
fold or unfold these predicates. In our work, we rely instead on the capability of
first-order provers to fold and unfold definitions. VeriFast uses the SMT solver
Z3, but only as a constraint solver on ground terms.

The technique of implicit dynamic frames [24] is closer to our work, except
that formulas are restricted. Additionally, implicit dynamic frames make use of
a set theory, whereas we do not require any, as we directly encode the relevant
parts of set theory inside our footprint definition axioms.

Both these works do not allow a function to access (and thus modify) a pointer
that is not in the footprint of the function’s precondition — except if it is allo-
cated inside the function. In our work, we do not have such a restriction. When
necessary, we may define the footprint of a function using separation predicates,
as explained in the first author’s thesis [3].

There exist already several proofs of the composite pattern. One is performed
using VeriFast [14]. It requires many lemmas and many open/close statements,
whereas our proof does not contain much proof-related annotations.

The use of a local invariant in our proof is not new. It was first described
in [19]. The proof by Rosenberg, Banerjee, and Naumann [23] also makes use
of it. In order to prove that addChild is not creating cycles, the latter proof
introduces two ghost fields, one for the set of descendants and one for the root
node of the tree. Updating these ghost fields must be done at several places. In
our case, we could manage to perform the case only with the generated predicate
sep_node_parents without need of extra ghost fields which leads to a simpler
proof.

The composite pattern has also been proved using considerate reasoning [25],
a technique that advocates for local invariant like the one we used. Our predicate
inv is similar to their broken declaration. As far as we understand, this proof is
not mechanized, though.

Our future work includes generalizing the frame pragma used to describe the
footprint of a function. One solution is to compute the footprint directly from
ACSL’s assigns clause, if any. Another is to describe the footprint using the
linear maps framework [18]. One valuable future work would be to formally prove
the consistency of our axioms, either using a meta-theoretical formalization, or,
in a more tractable way, by producing proofs for each generated axiom.

References

1. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

178 F. Bobot and J.-C. Filliâtre

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

3. Bobot, F.: Logique de séparation et vérification déductive. Thèse de doctorat, Uni-
versité Paris-Sud (December 2011)

4. Bobot, F., Conchon, S., Contejean, É., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/

5. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

6. Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

7. Burstall, R.: Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence 7, 23–50 (1972)

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. de Moura, L., Dutertre, B.: Yices: An SMT Solver, http://yices.csl.sri.com/
10. Filliâtre, J.-C., Paskevich, A., Stump, A.: The 2nd Verified Software Competition

(November 2011), https://sites.google.com/site/vstte2012/compet
11. The Frama-C platform for static analysis of C programs (2008),

http://www.frama-c.cea.fr/

12. Huisman, M., Klebanov, V., Monahan, R.: (October 2011),
http://foveoos2011.cost-ic0701.org/verification-competition

13. Jacobs, B., Piessens, F.: The verifast program verifier. CW Reports CW520, De-
partment of Computer Science, K.U.Leuven (August 2008)

14. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using sepa-
ration logic. In: Workshop on Specification and Verification of Component-Based
Systems, Challenge Problem Track (November 2008)

15. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010)

16. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

17. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience Report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011), Materials available at www.vscomp.org

18. Lahiri, S.K., Qadeer, S., Walker, D.: Linear maps. In: Proceedings of the 5th ACM
Workshop on Programming Languages Meets Program Verification, PLPV 2011,
pp. 3–14. ACM, New York (2011)

19. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing (2007)

20. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invari-
ants of data-structures, edition 0. In: Proceedings of Tools and Experiments Work-
shop at VSTTE (2010)

Separation Predicates: A Taste of Separation Logic in First-Order Logic 179

21. Moy, Y., Marché, C.: The Jessie plugin for Deduction Verification in Frama-C —
Tutorial and Reference Manual. INRIA & LRI (2011), http://krakatoa.lri.fr/

22. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc.
Press (2002)

23. Rosenberg, S., Banerjee, A., Naumann, D.A.: Local Reasoning and Dynamic Fram-
ing for the Composite Pattern and Its Clients. In: Leavens, G.T., O’Hearn, P.,
Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 183–198. Springer, Hei-
delberg (2010)

24. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic
Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

25. Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite
Design Pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,
vol. 5944, pp. 328–344. Springer, Heidelberg (2010)

26. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.3 (2010), http://coq.inria.fr

A Annotated Source Code

1 typedef struct node {

2 int val , sum;

3 struct node *parent;

4 //@ ghost struct node *left , *right;

5 } *NODE;

6
7 /*@ inductive parents (NODE p) {

8 case nil: \forall NODE p; p== NULL ==> parents (p);

9 case cons: \forall NODE p;

10 p != NULL ==> \valid(p) ==>

11 parents (p->parent) ==> parents (p);

12 }

13
14 #Gen_Separation sep_node_parents(NODE , parents)

15
16 lemma parents_sep:

17 \forall NODE p; p!= NULL ==>

18 parents (p) ==> sep_node_parents(p, p->parent);

19
20 predicate good(NODE p, int delta) =

21 p->sum + delta == p->val +

22 (p->left == NULL? 0 : p->left ->sum) +

23 (p->right == NULL? 0 : p->right ->sum);

24
25 predicate inv(NODE except) =

26 \forall NODE p; \valid(p) ==> p != except ==> good(p, 0);

27
28 predicate wf(NODE except) =

29 \forall NODE p; \valid(p) ==> p != except ==>

30 (p->right != NULL ==>

31 p->right ->parent == p && \valid(p->right)) &&

32 (p->left != NULL ==>

33 p->left ->parent == p && \valid(p->left)) &&

34 (p->right == p->left ==> p->right == NULL) &&

180 F. Bobot and J.-C. Filliâtre

35 (p->parent != NULL ==> \valid(p->parent)) &&

36 (p->parent != NULL ==>

37 p->parent ->left == p || p->parent ->right == p);

38
39 predicate newnode (NODE p, integer v) =

40 parents (p) && p->right == NULL && p->left == NULL &&

41 p->parent == NULL && p->val == v && \valid(p);

42 @*/

43
44 /*@ requires

45 inv(NULL) && wf(NULL);

46 ensures

47 inv(NULL) && wf(NULL) && newnode (\result , v) &&

48 \forall NODE n; \old (\valid(n)) ==>

49 \result != n && \valid(n) &&

50 \old(n->val) == n->val && \old(n->parent) == n->parent &&

51 \old(n->left) == n->left && \old(n->right) == n->right;

52 @*/

53 NODE create(int v) {

54 Before:

55 {

56 NODE p = (NODE)malloc(sizeof(struct node));

57 /*@ assert \forall NODE n; n != p ==>

58 \valid(n) ==> \at(\valid(n),Before); @*/

59 p->val = p->sum = v;

60 p->parent = p->left = p->right = NULL;

61 return p;

62 }}

63
64 /*@ requires inv(p) && parents (p) && wf(NULL) && good(p,delta);

65 ensures inv(NULL);

66 assigns \all ->sum;

67 @*/

68 void upd_inv(NODE p, int delta) {

69 NODE n = p;

70 /*@ loop invariant

71 inv(n) && parents (n) && (n != NULL ==> good(n,delta));

72 @*/

73 while (n != NULL) {

74 n->sum = n->sum + delta;

75 n = n->parent;

76 }

77 };

78
79 /*@

80 requires

81 inv(NULL) && wf(NULL) &&

82 \valid(q) && q->parent == NULL &&

83 parents (p) && p != NULL && sep_node_parents(p, p->parent) &&

84 (p->left == NULL || p->right == NULL) && sep_node_parents(q,p);

85 ensures

86 parents (q) && parents (p) && inv(NULL) && wf(NULL) &&

87 (\old(p->left) == NULL ==>

88 p->left == q && \old(p->right) == p->right) &&

89 (\old(p->left) != NULL ==>

90 p->right == q && \old(p->left) == p->left);

91 assigns p->left , p->right , q->parent , \all ->sum;

92 @*/

93 void addChild(NODE p, NODE q) {

94 if (p->left == NULL) p->left = q; else p->right = q;

Separation Predicates: A Taste of Separation Logic in First-Order Logic 181

95 q->parent = p;

96 upd_inv(p, q->sum);

97 }

98
99 /*@ requires parents (p) && p != NULL && inv(NULL) && wf(NULL);

100 ensures p->val == v && parents (p) && inv(NULL) && wf(NULL);

101 assigns p->val , \all ->sum;

102 @*/

103 void update(NODE p, int v) {

104 int delta = v - p->val;

105 p->val = v;

106 upd_inv(p, delta);

107 }

108
109 /*@

110 requires

111 parents (p) && p != NULL && p->parent != NULL &&

112 inv(NULL) && wf(NULL);

113 ensures

114 parents (p) && p->parent == NULL && inv(NULL) && wf(NULL) &&

115 (\old(p->parent ->left) == p ==>

116 \old(p->parent)->left == NULL) &&

117 (\old(p->parent ->right) == p ==>

118 \old(p->parent)->right == NULL);

119 assigns p->parent ->left , p->parent ->right , p->parent , \all ->sum;

120 @*/

121 void dislodge(NODE p) {

122 NODE n = p->parent;

123 if(p->parent ->left == p) p->parent ->left = NULL;

124 if(p->parent ->right == p) p->parent ->right = NULL;

125 p->parent = NULL;

126 upd_inv(n, -p->sum);

127 }

128
129 /*@

130 inductive treesum {L}(NODE p, integer v) {

131 case treesum_null{L}:

132 treesum (NULL , 0);

133 case treesum_node{L}:

134 \forall NODE p; p != NULL ==> \forall integer sl , sr;

135 treesum (p->left , sl) ==> treesum (p->right , sr) ==>

136 treesum (p, p->val + sl + sr);

137 }

138
139 lemma global_invariant{L}:

140 inv(NULL) ==> wf(NULL) ==>

141 \forall NODE p; \valid(p) ==> treesum (p, p->sum);

142 @*/

Certifying and reasoning about

cost annotations of functional programs ∗

Roberto M. Amadio(1) Yann Régis-Gianas(2)

(1) Université Paris Diderot (UMR-CNRS 7126)
(2) Université Paris Diderot (UMR-CNRS 7126) and INRIA (Team πr2)

January 11, 2013

Abstract

We present a so-called labelling method to insert cost annotations in a higher-order
functional program, to certify their correctness with respect to a standard, typable com-
pilation chain to assembly code including safe memory management, and to reason about
them in a higher-order Hoare logic.

1 Introduction

In previous work [2, 3], we have discussed the problem of building a C compiler which can
lift in a provably correct way pieces of information on the execution cost of the object code
to cost annotations on the source code. To this end, we have introduced a so called labelling
approach and presented its application to a prototype compiler written in OCaml from a large
fragment of the C language to the assembly languages of Mips and 8051, a 32 bits and 8 bits
processor, respectively.

In the following, we are interested in extending the approach to (higher-order) functional
languages. On this issue, a common belief is well summarized by the following epigram by
A. Perlis [22]: A Lisp programmer knows the value of everything, but the cost of nothing.
However, we shall show that, with some ingenuity, the methodology developed for the C
language can be lifted to functional languages.

1.1 A standard compilation chain

Specifically, we shall focus on a rather standard compilation chain from a call-by-value λ-
calculus to a register transfer level (RTL) language. Similar compilation chains have been
explored from a formal viewpoint by Morrisett et al. [21] (with an emphasis on typing but
with no simulation proofs) and by Chlipala [9] (for type-free languages but with machine
certified simulation proofs).

∗An extended abstract with the same title without proofs and not accounting for the typing of the compi-
lation chain and the memory management of the compiled code has appeared in [4]. Also the present version
introduces a prototype implementation available in [24]. The authors were supported by the Information and
Communication Technologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo.

1

λM λ`
Ioo Ccps //

er

		

λ`cps

Cvn --

er

��

λ`cps,vnRkk
Ccc //

er

��

λ`cc,vn
Ch //

er

��

λ`h,vn

er

��
λ

L

II

Ccps //Ccps // λcps

Cvn --
λcps,vnRkk

Ccc // λcc,vn
Ch // λh,vn

Table 1: The compilation chain with its labelling and instrumentation.

The compilation chain is described in the lower part of Table 1. Starting from a standard
call-by-value λ-calculus with pairs, one performs first a CPS translation, then a transformation
that gives names to values, followed by a closure conversion, and a hoisting transformation.
All languages considered are subsets of the initial one though their evaluation mechanism is
refined along the way. In particular, one moves from an ordinary substitution to a specialized
one where variables can only be replaced by other variables. One advantage of this approach,
as already noted for instance by Fradet and Le Métayer [14], is to have a homogeneous
notation that makes correctness proofs simpler.

Notable differences with respect to Chlipala’s compilation chain [9] is a different choice of
the intermediate languages and the fact that we rely on a small-step operational semantics. We
also diverge from Chlipala [9] in that our proofs, following the usual mathematical tradition,
are written to explain to a human why a certain formula is valid rather than to provide a
machine with a compact witness of the validity of the formula.

The final language of this compilation chain can be directly mapped to a RTL language:
functions correspond to assembly level routines and the functions’ bodies correspond to se-
quences of assignments on pseudo-registers ended by a tail recursive call.

1.2 The labelling approach to cost certification

While the extensional properties of the compilation chain have been well studied, we are not
aware of previous work focusing on more intensional properties relating to the way the com-
pilation preserves the complexity of the programs. Specifically, in the following we will apply
to this compilation chain the ‘labelling approach’ to building certified cost annotations. In a
nutshell the approach consists in identifying, by means of labels, points in the source program
whose cost is constant and then determining the value of the constants by propagating the
labels along the compilation chain and analysing small pieces of object code with respect to
a target architecture.

Technically the approach is decomposed in several steps. First, for each language con-
sidered in the compilation chain, we define an extended labelled language and an extended
operational semantics (upper part of Table 1). The labels are used to mark certain points
of the control. The semantics makes sure that, whenever we cross a labelled control point, a
labelled and observable transition is produced.

Second, for each labelled language there is an obvious function er erasing all labels and
producing a program in the corresponding unlabelled language. The compilation functions
are extended from the unlabelled to the labelled language so that they commute with the
respective erasure functions. Moreover, the simulation properties of the compilation functions
are lifted from the unlabelled to the labelled languages and transition systems.

Third, assume a labelling L of the source language is a right inverse of the respective

2

erasure function. The evaluation of a labelled source program produces both a value and
a sequence of labels, written Λ, which intuitively stands for the sequence of labels crossed
during the program’s execution. The central question we are interested in is whether there is
a way of labelling the source programs so that the sequence Λ is a sound and possibly precise
representation of the execution cost of the program.

To answer this question, we observe that the object code is some kind of RTL code and
that its control flow can be easily represented as a control flow graph. The fact that we have
to prove the soundness of the compilation function means that we have plenty of information
on the way the control flows in the compiled code, in particular as far as procedure calls
and returns are concerned. These pieces of information allow to build a rather accurate
representation of the control flow of the compiled code at run time.

The idea is then to perform some simple checks on the control flow graph. The main check
consists in verifying that all ‘loops’ go through a labelled node. If this is the case then we
can associate a ‘cost’ with every label which over-approximates the actual cost of running a
sequence of instructions. An optional check amounts to verify that all paths starting from a
label have the same abstract cost. If this check is successful then we can conclude that the
cost annotations are ‘precise’ in an abstract sense (and possibly concrete too, depending on
the processor considered).

In our previous work [2, 3], we have showed that it is possible to produce a sound and
precise (in an abstract sense) labelling for a large class of C programs with respect to a mod-
erately optimising compiler. In the following we show that a similar result can be obtained for
a higher-order functional language with respect to the standard compilation chain described
above. Specifically we show that there is a simple labelling of the source program that guar-
antees that the labelling of the generated object code is sound and precise. The labelling of
the source program can be informally described as follows: it associates a distinct label with
every abstraction and with every application which is not ‘immediately surrounded’ by an
abstraction.

In this paper our analysis will stop at the level of an abstract RTL language, however our
previously quoted work [2, 3] shows that the approach extends to the back-end of a typical
moderately optimising compiler including, e.g., dead-code elimination and register allocation.
Concerning the source language, preliminary experiments suggest that the approach scales
to a larger functional language such as the one considered in Chlipala’s Coq development [9]
including fixpoints, sums, exceptions, and side effects. Let us also mention that our approach
has been implemented for a simpler compilation chain that bypasses the CPS translation. In
this case, the function calls are not necessarily tail-recursive and the compiler generates a
Cminor program which, roughly speaking, is a type-free, stack aware fragment of C defined in
the Compcert project [17].

1.3 Reasoning about the certified cost annotations

If the check described above succeeds every label has a cost which in general can be taken as
an element of a ‘cost’ monoid. Then an instrumentation of the source labelled language is a
monadic transformation I (left upper part of Table 1) in the sense of Gurr’s PhD thesis [15]
that replaces labels with the associated elements of the cost monoid. Following this monadic
transformation we are back into the source language (possibly enriched with a ‘cost monoid’
such as integers with addition). As a result, the source program is instrumented so as to
monitor its execution cost with respect to the associated object code. In the end, general

3

logics developed to reason about functional programs such as the higher-order Hoare logic co-
developed by one of the authors [25] can be employed to reason about the concrete complexity
of source programs by proving properties on their instrumented versions (see Table 11 for an
example of a source program with complexity assertions).

1.4 Accounting for the cost of memory management

In a realistic implementation of a functional programming language, the runtime environment
usually includes a garbage collector. In spite of considerable progress in real-time garbage
collectors (see, e.g., the work of Bacon et al. [6]), it seems to us that this approach does
not offer yet a viable path to a certified and usable WCET prediction of the running time
of functional programs. Instead, the approach we shall adopt, following the seminal work of
Tofte et al. [27], is to enrich the last calculus of the compilation chain described in Table 1, (1)
with a notion of memory region, (2) with operations to allocate and dispose memory regions,
and (3) with a type and effect system that guarantees the safety of the dispose operation. This
allows to further extend to the right with one more commuting square the compilation chain
mentioned above and then to include the cost of safe memory management in our analysis.
Actually, because effects are intertwined with types, what we shall actually do, following the
work of Morrisett et al. [21], is to extend a typed version of the compilation chain.

1.5 Related work

There is a long tradition starting from the work of Wegbreit [30] which reduces the complexity
analysis of first-order functional programs to the solution of finite difference equations. Much
less is known about higher-order functional programs. Most previous work on building cost
annotations for higher-order functional programs we are aware of does not take formally into
account the compilation process. For instance, in an early work D. Sands [26] proposes an
instrumentation of call-by-value λ-calculus in order to describe its execution cost. However
the notion of cost adopted is essentially the number of function calls in the source code. In a
standard implementation such as the one considered in this work, different function calls may
have different costs and moreover there are ‘hidden’ function calls which are not immediately
apparent in the source code.

A more recent work by Bonenfant et al. [7] addresses the problem of determining the worst
case execution time of a specialised functional language called Hume. The compilation chain
considered consists in first compiling Hume to the code of an intermediate abstract machine,
then to C, and finally to generate the assembly code of the Resenas M32C/85 processor using
standard C compilers. Then for each instruction of the abstract machine, one computes an
upper bound on the worst-case execution time (WCET) of the instruction relying on a well-
known aiT tool [5] that uses abstract interpretation to determine the WCET of sequences of
binary instructions.

While we share common motivations with this work, we differ significantly in the technical
approach. First, the Hume approach follows a tradition of compiling functional programs to
the instructions of an abstract machine which is then implemented in a C like language. In
contrast, we have considered a compilation chain that brings a functional program directly
to RTL form. Then the back-end of a C like compiler is used to generate binary instructions.
Second, the cited work [7] does not address at all the proof of correctness of the cost annota-
tions; this is left for future work. Third, the problem of producing synthetic cost statements

4

starting from the cost estimations of the abstract instructions of the Hume machine is not
considered. Fourth, the cost of dynamic memory management, which is crucial in higher-order
functional programs, is not addressed at all. Fifth, the granularity of the cost annotations is
fixed in Hume [7] (the instructions of the Hume abstract machine) while it can vary in our
approach.

We also share with the Hume approach one limitation. The precision of our analyses
depends on the possibility of having accurate predictions of the execution time of relatively
short sequences of binary code on a given processor. Unfortunately, as of today, user interfaces
for WCET systems such as the aiT tool mentioned above or Chronos [19] do not support
modular reasoning on execution times and therefore experimental work focuses on processors
with simple and predictable architectures. In a related direction, another potential loss of
precision comes from the introduction of aggressive optimisations in the back-end of the
compiler such as loop transformations. An ongoing work by Tranquilli [28] addresses this
issue by introducing a refinement of the labelling approach.

1.6 Paper organisation

In the following, section 2 describes the certification of the cost-annotations, section 3 a
method to reason about the cost annotations, section 4 the typing of the compilation chain,
and section 5 an extension of the compilation chain to account for safe memory deallocation.
Proofs are available in the appendix A.

2 The compilation chain: commutation and simulation

We describe the intermediate languages and the compilation functions from an ordinary λ-
calculus to a hoisted, value named λ-calculus. For each step we check that: (i) the compilation
function commutes with the function that erases labels and (ii) the object code simulates the
source code.

2.1 Conventions

The reader is assumed to be acquainted with the type-free and typed λ-calculus, its evaluation
strategies, and its continuation passing style translations [29]. In the following calculi, all
terms are manipulated up to α-renaming of bound names. We denote with ≡ syntactic
identity up to α-renaming. Whenever a reduction rule is applied, it is assumed that terms
have been renamed so that all binders use distinct variables and these variables are distinct
from the free ones. With this assumption, we can omit obvious side conditions on binders
and free variables. Similar conventions are applied when reasoning about a substitution, say
[T/x]T ′, of a term T for a variable x in a term T ′. We denote with fv(T) the set of variables
occurring free in a term T .

Let C,C1, C2, . . . be one hole contexts and T a term. Then C[T] is the term resulting
from the replacement in the context C of the hole by the term T and C1[C2] is the one hole
context resulting from the replacement in the context C1 of the hole by the context C2.

For each calculus, we assume a syntactic category id of identifiers with generic elements
x, y, . . . and a syntactic category ` of labels with generic elements `, `1, . . . For each calculus,
we specify the syntactic categories and the reduction rules. For the sake of clarity, the meta-
variables of these syntactic categories are sometimes shared between several calculus: the

5

context is always sufficiently precise to determine to which syntax definitions we refer. We
let α range over labels and the empty word ε. We write M

α−→ N if M rewrites to N with a
transition labelled by α. We abbreviate M

ε−→ N with M → N . We write
∗→ for the reflexive

and transitive closure of →. We also define M
α⇒ N as M

∗→ N if α = ε and as M
∗→ α−→ ∗→ N

otherwise.
Given a term M in one of the labelled languages we write M ⇓Λ N if M

α1−→ · · · αn−−→ N ,
Λ = α1 · · ·αn, and N cannot reduce (in general this does not imply that N is a value). We
write M ⇓Λ for ∃N M ⇓Λ N . Also, if the term M is unlabelled, Λ is always the empty word
and we abbreviate M ⇓ε N with M ⇓ N .

We shall write X+ (resp. X∗) for a non-empty (possibly empty) finite sequence X1, . . . , Xn

of symbols. By extension, λx+.M stands for λx1 . . . xn.M , [V +/x+]M stands for
[V1/x1, . . . , Vn/xn]M , and let (x = V)+ in M stands for let x1 = V1 in · · · let xn = Vn in M .

2.2 The source language

Table 2 introduces a type-free, left-to-right call-by-value λ-calculus. The calculus includes let-
definitions and polyadic abstraction and tupling with the related application and projection
operators. Any term M can be pre-labelled by writing ` > M or post-labelled by writing
M > `. In the pre-labelling, the label ` is emitted immediately while in the post-labelling it
is emitted after M has reduced to a value. It is tempting to reduce the post-labelling to the
pre-labelling by writing M > ` as @(λx.` > x,M), however the second notation introduces
an additional abstraction and a related reduction step which is not actually present in the
original code. Roughly speaking, every λ-abstraction is a potential starting point for a loop in
the control-flow graph. Thus, we will need the body of every λ-abstraction to be pre-labelled
so as to maintain the invariant that all loops go through a labelled node in the control-flow
graph. As the CPS translation introduces new λ-abstractions that are not present in the
source code but correspond to the image of some applications, we will also need to post-label
these particular applications so that the freshly introduced λ-abstraction can be assigned a
label.

Table 2 also introduces an erasure function er from the λ`-calculus to the λ-calculus. This
function simply traverses the term and erases all pre and post labellings. Similar definitions
arise in the following calculi of the compilation chain and are omitted.

2.3 Compilation to CPS form

Table 3 introduces a fragment of the λ`-calculus described in Table 2 and a related CPS
translation. To avoid all ambiguity, let us assume that (V1, . . . , Vn) | K is translated according
to the case for values, but note that if we follow the general case for tuples we obtain the
same result. We recall that in a CPS translation each function takes its evaluation context
as a fresh additional parameter (see, e.g., the work of Wand [29], for an elaboration of this
idea). The results of the evaluation of subterms (of tuples and of applications) are also
named using fresh parameters x0, . . . , xn. The initial evaluation context is defined relatively
to a fresh variable named ’halt ’. Then the evaluation context is always trivial. Notice that
the reduction rules are essentially those of the λ`-calculus modulo the fact that we drop the
rule to reduce V > ` since post-labelling does not occur in CPS terms and the fact that we
optimize the rule for the projection to guarantee that CPS terms are closed under reduction.
For instance, the term let x = π1(V1, V2) in M reduces directly to [V1/x]M rather than going

6

Syntax

V ::= id || λid+.M || (V ∗) (values)
M ::= V || @(M,M+) || let id = M in M || (M∗) || πi(M) || ` > M ||M > ` (terms)
E ::= [] || @(V ∗, E,M∗) || let id = E in M || (V ∗, E,M∗) || πi(E) || E > ` (eval. cxts.)

Reduction Rules

E[@(λx1 . . . xn.M, V1, . . . , Vn)] → E[[V1/x1, . . . , Vn/xn]M]
E[let x = V in M] → E[[V/x]M]
E[πi(V1, . . . , Vn)] → E[Vi] 1 ≤ i ≤ n
E[` > M]

`−→ E[M]

E[V > `]
`−→ E[V]

Label erasure (selected equations)

er(` > M) = er(M > `) = er(M)

Table 2: An ordinary call-by-value λ-calculus: λ`

through the intermediate term let x = V1 in M which does not belong to the CPS terms.
We study next the properties enjoyed by the CPS translation. In general, the commu-

tation of the compilation function with the erasure function only holds up to call-by-value
η-conversion, namely λx.@(V, x) =η V if x /∈ fv(V). This is due to the fact that post-labelling
introduces an η-expansion of the continuation if and only if the continuation is a variable. To
cope with this problem, we introduce next the notion of well-labelled term. We will see later
(section 3.1) that terms generated by the initial labelling are well-labelled.

Definition 1 (well-labelling) We define two predicates Wi, i = 0, 1 on the terms of the
λ`-calculus as the least sets such that W1 is contained in W0 and the following conditions
hold:

x ∈W1

M ∈W0

M > ` ∈W0

M ∈W1

λx+.M ∈W1

M ∈Wi i ∈ {0, 1}
` > M ∈Wi

N ∈W0,M ∈Wi i ∈ {0, 1}
let x = N in M ∈Wi

Mi ∈W0 i = 1, . . . , n

@(M1, . . . ,Mn) ∈W1

Mi ∈W0 i = 1, . . . , n

(M1, . . . ,Mn) ∈W1

M ∈W0

πi(M) ∈W1
.

The intuition is that we want to avoid the situation where a post-labelling receives as
continuation the continuation variable generated by the translation of a λ-abstraction. To
that end, we make sure that post-labelling is only applied to terms M ∈ W0, that is, terms
that are not the immediate body of a λ-abstraction (which are in W1).

Example 2 (labelling and commutation) Let M ≡ λx.(@(x, x) > `). Then M /∈ W0

because the rule for abstraction requires @(x, x) > ` ∈ W1 while we can only show @(x, x) >
` ∈W0. Notice that we have:

er(Ccps(M)) ≡ @(halt , λx, k.@(x, x, λx.@(k, x)))
Ccps(er(M)) ≡ @(halt , λx, k.@(x, x, k)) .

7

So, for M , the commutation of the CPS translation and the erasure function only holds up
to η.

Proposition 3 (CPS commutation) Let M ∈ W0 be a term of the λ`-calculus (Table 2).
Then: er(Ccps(M)) ≡ Ccps(er(M)).

The proof of the CPS simulation is non-trivial but rather standard since Plotkin’s seminal
work [23]. The general idea is that the CPS translation pre-computes many ‘administrative’
reductions so that the translation of a term, say E[@(λx.M, V)] is a term of the shape
@(ψ(λx.M), ψ(V),KE) for a suitable continuationKE depending on the evaluation context E.

Proposition 4 (CPS simulation) Let M be a term of the λ`-calculus. If M
α−→ N then

Ccps(M)
α⇒ Ccps(N).

We illustrate this result on the following example.

Example 5 (CPS) Let M ≡ @(λx.@(x,@(x, x)), I), where I ≡ λx.x. Then

Ccps(M) ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H)

where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x). The term M is simulated by Ccps(M) as
follows:

M → @(I,@(I, I)) → @(I, I) → I
Ccps(M) → @(I ′, I ′, λy.@(I ′, y,H)) →+ @(I ′, I ′, H) →+ @(halt , I ′) .

2.4 Transformation in value named CPS form

Table 4 introduces a value named λ-calculus in CPS form: λ`cps,vn . In the ordinary λ-calculus,
the application of a λ-abstraction to an argument (which is a value) may duplicate the argu-
ment as in: @(λx.M, V)→ [V/x]M . In the value named λ-calculus, all values are named and
when we apply the name of a λ-abstraction to the name of a value we create a new copy of the
body of the function and replace its formal parameter name with the name of the argument
as in:

let y = V in let f = λx.M in @(f, y) → let y = V in let f = λx.M in [y/x]M .

We also remark that in the value named λ-calculus the evaluation contexts are a sequence
of let definitions associating values to names. Thus, apart for the fact that the values are
not necessarily closed, the evaluation contexts are similar to the environments of abstract
machines for functional languages (see, e.g., [13]).

Table 5 defines the compilation into value named form along with a readback translation.
(Only the case for the local binding of values is interesting.) The latter is useful to state the

simulation property. Indeed, it is not true that if M →M ′ in λ`cps then Cvn(M)
∗→ Cvn(M ′) in

λ`cps,vn . For instance, consider M ≡ (λx.xx)I where I ≡ (λy.y). Then M → II but Cvn(M)
does not reduce to Cvn(II) but rather to a term where the ‘sharing’ of the duplicated value
I is explicitly represented.

8

Syntax CPS terms

V ::= id || λid+.M || (V ∗) (values)
M ::= @(V, V +) || let id = πi(V) in M || ` > M (CPS terms)
K ::= id || λid .M (continuations)

Reduction rules

@(λx1 . . . xn.M, V1, . . . , Vn) → [V1/x1, . . . , Vn/xn]M
let x = πi(V1, . . . , Vn) in M → [Vi/x]M 1 ≤ i ≤ n
` > M

`−→ M

CPS translation

ψ(x) = x
ψ(λx+.M) = λx+, k.(M | k)
ψ((V1, . . . , Vn)) = (ψ(V1), . . . , ψ(Vn))

V | k = @(k, ψ(V))
V | (λx.M) = [ψ(V)/x]M
@(M0, . . . ,Mn) | K = M0 | λx0. . . . (Mn | λxn.@(x0, . . . , xn,K))
let x = M1 in M2 | K = M1 | λx.(M2 | K)
(M1, . . . ,Mn) | K = M1 | λx1. . . . (Mn | λxn.(x1, . . . , xn) | K)
πi(M) | K = M | λx.let y = πi(x) in y | K
(` > M) | K = ` > (M | K)
(M > `) | K = M | (λx.` > (x | K))

Ccps(M) = M | λx.@(halt , x), halt fresh variable

Table 3: CPS λ-calculus (λ`cps) and CPS translation

Example 6 (value named form) Suppose

N ≡ @(λx, k.@(x, x, λy.@(x, y, k)), I ′, H))

where: I ′ ≡ λx, k.@(k, x) and H ≡ λx.@(halt , x). (This is the term resulting from the CPS
translation in example 5.) The corresponding term in value named form is:

let z1 = λx, k.(let z11 = λy.@(x, y, k) in @(x, x, z11)) in
let z2 = I ′ in
let z3 = H in
@(z1, z2, z3) .

Proposition 7 (VN commutation) Let M be a λ-term in CPS form. Then:

(1) R(Cvn(M)) ≡M .

(2) er(Cvn(M)) ≡ Cvn(er(M)).

Proposition 8 (VN simulation) Let N be a λ-term in CPS value named form. If R(N) ≡
M and M

α−→M ′ then there exists N ′ such that N
α−→ N ′ and R(N ′) ≡M ′.

9

Syntax

V ::= λid+.M || (id∗) (values)
C ::= V || πi(id) (let-bindable terms)
M ::= @(id , id+) || let id = C in M || ` > M (CPS terms)
E ::= [] || let id = V in E (evaluation contexts)

Reduction Rules

E[@(x, z1, . . . , zn)] → E[[z1/y1, . . . , zn/yn]M] if E(x) = λy1 . . . yn.M
E[let z = πi(x) in M] → E[[yi/z]M]] if E(x) = (y1, . . . , yn), 1 ≤ i ≤ n

E[` > M]
`−→ E[M]

where: E(x) =





V if E = E′[let x = V in []]
E′(x) if E = E′[let y = V in []], x 6= y
undefined otherwise

Table 4: A value named CPS λ-calculus: λ`cps,vn

2.5 Closure conversion

The next step is called closure conversion. It consists in providing each functional value with
an additional parameter that accounts for the names free in the body of the function and in
representing functions using closures. Our closure conversion implements a closure using a
pair whose first component is the code of the translated function and whose second component
is a tuple of the values of the free variables.

It will be convenient to write “let (y1, . . . , yn) = x in M” for “let y1 = π1(x) in · · · let yn =
πn(x) in M” and “let x1 = C1 . . . xn = Cn in M” for “let x1 = C1 in . . . let xn = Cn in M”.
The transformation is described in Table 6. The output of the transformation is such that
all functional values are closed. In our opinion, this is the only compilation step where the
proofs are rather straightforward.

Example 9 (closure conversion) Let M ≡ Cvn(Ccps(λx.y)), namely

M ≡ let z1 = λx, k.@(k, y) in @(halt , z1) .

Then Ccc(M) is the following term:

let c = λe, x, k.(let (y) = e, (c, e) = k in @(c, e, y)) in
let e = (y), z1 = (c, e), (c, e) = halt in
@(c, e, z1) .

Proposition 10 (CC commutation) Let M be a CPS term in value named form. Then
er(Ccc(M)) ≡ Ccc(er(M)).

Proposition 11 (CC simulation) Let M be a CPS term in value named form. If M
α−→M ′

then Ccc(M)
α⇒ Ccc(M ′).

10

Transformation in value named form (from λ`
cps to λ`

cps,vn)

Cvn(@(x0, . . . , xn)) = @(x0, . . . , xn)
Cvn(@(x∗, V, V ∗)) = Evn(V, y)[Cvn(@(x∗, y, V ∗))] V 6= id , y fresh
Cvn(let x = πi(y) in M) = let x = πi(y) in Cvn(M)
Cvn(let x = πi(V) in M) = Evn(V, y)[let x = πi(y) in Cvn(M)] V 6= id , y fresh
Cvn(` > M) = ` > Cvn(M)

Evn(λx+.M, y) = let y = λx+.Cvn(M) in []
Evn((x∗), y) = let y = (x∗) in []
Evn((x∗, V, V ∗), y) = Evn(V, z)[Evn((x∗, z, V ∗), y)] V 6= id , z fresh

Readback translation (from λ`
cps,vn to λ`

cps)

R(λx+.M) = λx+.R(M)
R(x∗) = (x∗)
R(@(x, x1, . . . , xn)) = @(x, x1, . . . , xn)
R(let x = πi(y) in M) = let x = πi(y) in R(M)
R(let x = V in M) = [R(V)/x]R(M)
R(` > M) = ` > R(M)

Table 5: Transformations in value named CPS form and readback

2.6 Hoisting

The last compilation step consists in moving all functions definitions at top level. In Table 7,
we formalise this compilation step as the iteration of a set of program transformations that
commute with the erasure function and the reduction relation. Denote with λz+.T a function
that does not contain function definitions. The transformations consist in hoisting (moving
up) the definition of a function λz+.T with respect to either a definition of a pair or a pro-
jection, or another including function, or a labelling. Note that the hoisting transformations
do not preserve the property that all functions are closed. Therefore the hoisting transforma-
tions are defined on the terms of the λ`cps,vn -calculus. As a first step, we analyse the hoisting
transformations.

Proposition 12 (on hoisting transformations) The iteration of the hoisting transforma-
tion on a term in λ`cc,vn (all function are closed) terminates and produces a term satisfying
the syntactic restrictions specified in Table 7.

Next we check that the hoisting transformations commute with the erasure function.

Proposition 13 (hoisting commutation) Let M be a term of the λ`cps,vn-calculus.

(1) If M ; N then er(M) ; er(N) or er(M) ≡ er(N).

(2) If M 6; · then er(M) 6; ·.
(3) er(Ch(M)) ≡ Ch(er(M)).

The proof of the simulation property requires some work because to close the diagram we
need to collapse repeated definitions, which may occur, as illustrated in the example below.

Example 14 (hoisting transformations and transitions) Let

M ≡ let x1 = λy1.N in @(x1, z)

11

Syntactic restrictions on λ`
cps,vn after closure conversion

All functional values are closed.

Closure Conversion

Ccc(@(x, y+)) = let (c, e) = x in @(c, e, y+)

Ccc(let x = C in M) =

let c = λe, x+.let (z1, . . . , zk) = e in Ccc(N) in
let e = (z1, . . . , zk) in
let x = (c, e) in
Ccc(M) (if C = λx+.N, fv(C) = {z1, . . . , zk})

Ccc(let x = C in M) = let x = C in Ccc(M) (if C not a function)

Ccc(` > M) = ` > Ccc(M)

Table 6: Closure conversion on value named CPS terms

where N ≡ let x2 = λy2.T2 in T1 and y1 /∈ fv(λy2.T2). Then we either reduce and then hoist:

M → let x1 = λy1.N in [z/y1]N
≡ let x1 = λy1.N in let x2 = λy2.T2 in [z/y1]T1

; let x2 = λy2.T2 in let x1 = λy1.T1 in let x2 = λy2.T2 in [z/y1]T1 6;
or hoist and then reduce:

M ; let x2 = λy2.T2 in let x1 = λy1.T1 in @(x1, z)
→ let x2 = λy2.T2 in let x1 = λy1.T1 in [z/y1]T1 6;

In the first case, we end up duplicating the definition of x2.

We proceed as follows. First we introduce a relation Sh that collapses repeated definitions
and show that it is a simulation. Second, we show that the hoisting transformations induce a

‘simulation up to Sh’. Namely if M
`−→M ′ and M ; N then there is a N ′ such that N

`−→ N ′

and M ′ (;∗ ◦Sh) N ′. Third, we iterate the previous property to derive the following one.

Proposition 15 (hoisting simulation) There is a simulation relation Th on the terms of
the λ`cps,vn-calculus such that for all terms M of the λ`cc,vn-calculus we have M Th Ch(M).

2.7 Composed commutation and simulation properties

Let C be the composition of the compilation steps we have considered:

C = Ch ◦ Ccc ◦ Cvn ◦ Ccps .
We also define a relation RC between terms in λ` and terms in λ`h as:

MRCP if ∃N Ccps(M) ≡ R(N) and Ccc(N) Th P .

Notice that for all M , M RC C(M).

Theorem 16 (commutation and simulation) Let M ∈ W0 be a term of the λ`-calculus.
Then:

(1) er(C(M)) ≡ C(er(M)).

(2) If M RC N and M
α−→M ′ then N

α⇒ N ′ and M ′ RC N ′.

12

Syntax for λ`
h

Syntactic restrictions on λ`
cps,vn after hoisting

All function definitions are at top level.

C ::= (id∗) || πi(id) (restricted let-bindable terms)
T ::= @(id , id+) || let id = C in T || ` > T (restricted terms)
P ::= T || let id = λid+.T in P (programs)

Specification of the hoisting transformation

Ch(M) = N if M ; · · ·; N 6;, where:

D ::= [] || let id = C in D || let id = λid+.D in M || ` > D (hoisting contexts)

(h1) D[let x = C in let y = λz+.T in M] ;
D[let y = λz+.T in let x = C in M] if x /∈ fv(λz+.T)

(h2) D[let x = (λw+.let y = λz+.T in M) in N] ;
D[let y = λz+.T in let x = λw+.M in N] if {w+} ∩ fv(λz+.T) = ∅

(h3) D[` > let y = λz+.T in M] ;
D[let y = λz+.T in ` > M]

Table 7: Hoisting transformation

3 Reasoning about the cost annotations

We describe an initial labelling of the source code leading to a sound and precise labelling
of the object code and an instrumentation of the labelled source program which produces a
source program monitoring its own execution cost. Then, we explain how to obtain static
guarantees on this execution cost by means of a Hoare logic for purely functional programs.

3.1 Initial labelling

We define a labelling function L of the source code (terms of the λ-calculus) which guarantees
that the associated RTL code satisfies the conditions necessary for associating a cost with
each label. We set L(M) = L0(M), where the functions Li are specified in Table 8. When
the index i in Li is equal to 1, it attests that M is an immediate body of a λ-abstraction. In
that case, even if M is an application, it is not post-labelled. Otherwise, when i is equal to 0,
the term M is not an immediate body of a λ-abstraction, and, thus is post-labelled if it is an
application.

Example 17 (labelling application) Let M ≡ λx.@(x,@(x, x)). Then L(M) ≡ λx.`0 >
@(x,@(x, x) > `1). Notice that only the inner application is post-labelled.

Proposition 18 (labelling properties) Let M be a term of the λ-calculus.

(1) The function L is a labelling and produces well-labelled terms, namely:

er(Li(M)) ≡M and Li(M) ∈Wi for i = 0, 1.

(2) We have: C(M) ≡ er(C(L(M))).

13

L(M) = L0(M) where:

Li(x) = x
Li(λx

+.M) = λx+.` > L1(M) ` fresh
Li((M1, . . . ,Mn)) = (L0(M1), . . . ,L0(Mn))
Li(πj(M)) = πj(L0(M))

Li(@(M,N+)) =

{
@(L0(M), (L0(N))+) > ` i = 0, ` fresh
@(L0(M), (L0(N))+) i = 1

Li(let x = M in N) = let x = L0(M) in Li(N)

Table 8: A sound and precise labelling of the source code

(3) Labels occur exactly once in the body of each function definition and nowhere else, namely,
C(L(M)) is a term P specified by the following grammar:

P ::= T || let id = λid+.Tlab in P
Tlab ::= ` > T || let id = C in Tlab
T ::= @(id , id+) || let id = C in T
C ::= (id∗) || πi(id)

Point (2) of the proposition above depends on the commutation property of the compila-
tion function (theorem 16(1)). The point (3) entails that a RTL program generated by the
compilation function is composed of a set of routines and that each routine is composed of a
sequence of assignments on pseudo-registers and a terminal call to another routine. Points (2)
and (3) entail that the only difference between the compiled code and the compiled labelled
code is that in the latter, upon entering a routine, a label uniquely associated with the routine
is emitted.

Now suppose we can compute the cost of running once each routine, where the cost is
an element of a suitable commutative monoid M with binary operation ⊕ and identity 0
(the reader may just think of the natural numbers). Then we can define a function costof
which associates with every label the cost of running once the related routine; the function
costof is extended to words of labels in the standard way. A run of a terminating program
M corresponds to a finite sequence of routine calls which in turn correspond to the finite
sequence of labels that we can observe when running the labelled program. We summarise
this argument in the following proviso (a modelling hypothesis rather than a mathematical
proposition).

Proviso 19 For any term M of the source language, if C(L(M)) ⇓Λ then costof(Λ) is the
cost of running M .

We stress that the model at the level of the RTL programs is not precise enough to obtain
useful predictions on the execution cost in terms, say, of CPU cycles. However, the compilation
chain of this paper can be composed with the back-end of a moderately optimising C compiler
described in our previous work [2, 3]. For RTL programs such as those characterized by the
grammar above, the back end produces binary code which satisfies the checks for soundness
and precision that we outlined in the introduction. This remains true even if the source
language is enriched with other constructions such as branching and loops as long as the
labelling function is extended to handle these cases.

14

ψ(x) = x
ψ(λx+.M) = λx+.I(M)
ψ(V1, . . . , Vn) = (ψ(V1), . . . , ψ(Vn))

I(V) = (0, ψ(V))
I(@(M0, . . . ,Mn)) = let (m0, x0) = I(M0) · · · (mn, xn) = I(Mn),

(mn+1, xn+1) = @(x0, . . . , xn) in
(m0 ⊕m1 ⊕ · · · ⊕mn+1, xn+1)

I((M1, . . . ,Mn)) = let (m1, x1) = I(M1) · · · (mn, xn) = I(Mn) in
(m1 ⊕ · · · ⊕mn, (x1, . . . , xn)) ((M1, . . . ,Mn) not a value)

I(πi(M)) = let (m,x) = I(M) in (m,πi(x))
I(let x = M1 in M2) = let (m1, x) = I(M1) in (m2, x2) = I(M2) in

(m1 ⊕m2, x2)
I(` > M) = let (m,x) = I(M) in (m` ⊕m,x)
I(M > `) = let (m,x) = I(M) in (m⊕m`, x)

Table 9: Instrumentation of labelled λ-calculus.

3.2 Instrumentation

As already mentioned, given a cost monoid M, we assume the analysis of the RTL code
associates with each label ` in the term an element m` = costof(`) of the cost monoid.
Table 9 describes a monadic transformation, extensively analysed in Gurr’s PhD thesis [15],
which instruments a program (in our case λ`) with the cost of executing its instructions. We
are then back to a standard λ-calculus (without labels) which includes a basic data type to
represent the cost monoid.

We assume that the reduction rules of the source language (λ) are extended to account
for a call-by-value evaluation of the monoidal expressions, where each element of the monoid
is regarded as a value. Then instrumentation and labelling are connected as follows.

Proposition 20 (instrumentation vs. labelling) Let M be a term of the source labelled
language λ`. If I(M) ⇓ (m,V) where V is a value then M ⇓Λ U , costof(Λ) = m, and
I(U) = (0, V).

The following result summarizes the labelling approach to certified cost annotations.

Theorem 21 (certified cost) Let M be a term of the source language λ. If π1(I(L(M))) ⇓
m then the cost of running C(M) is m.

Proof. We take the following steps:

π1(I(L(M))) ⇓ m
implies L(M) ⇓Λ and costof(Λ) = m (by proposition 20 above)
implies C(L(M)) ⇓Λ and costof(Λ) = m (by the simulation theorem 16(2)).

By proposition 18 and the following proviso 19, we conclude that m is the cost of running the
compiled code C(M). 2

3.3 Higher-order Hoare Logic

Many proof systems can be used to obtain static guarantees on the evaluation of a purely
functional program. In our setting, such systems can also be used to obtain static guarantees
on the execution cost of a functional program by reasoning about its instrumentation.

15

Syntax

F ::= True || False || x || F ∧ F || F = F || (F, F) (formulae)
|| π1 || π2 || λ(x : θ).F || F F || F ⇒ F || ∀(x : θ).F

θ ::= prop || ι || θ × θ || θ → θ (types)

V ::= id || λ(id : A)+/F : (id : A)/F.M || (V ∗) (values)
M ::= V || @(M,M+) || let id : A/F = M in M || (M∗) || πi(M) (terms)

Logical reflection of types

dιe = ι
dA1 × . . .×Ane = dA1e × . . . dAne

dA1 → A2e = (dA1e → prop)× (dA1e × dA2e → prop)

Logical reflection of values

dide = id
d(V1, . . . , Vn)e = (dV1e, . . . , dVne)

dλ(x1 : A1)/F1 : (x2 : A2)/F2. Me = (F1, F2)

Table 10: The surface language.

We illustrate this point using a Hoare logic dedicated to call-by-value purely functional
programs [25]. Given a well-typed program annotated by logic assertions, this system com-
putes a set of proof obligations, whose validity ensures the correctness of the logic assertions
with respect to the evaluation of the functional program.

Logic assertions are written in a typed higher-order logic whose syntax is given in Table 10.
From now on, we assume that our source language is also typed. The metavariable A ranges
over simple types, whose syntax is A ::= ι || A × A || A → A where ι are the basic types
including a data type cm for the values of the cost monoid. The metavariable θ ranges over
logical types. prop is the type of propositions. Notice that the inhabitants of arrow types
on the logical side are purely logical (and terminating) functions, while on the programming
language’s side they are computational (and potentially non-terminating) functions. Types
are lifted to the logical level through a logical reflection d•e defined in Table 10.

We write “let x : A/F = M in M” to annotate a let definition by a postcondition F of
type dAe → prop. We write “λ(x1 : A1)/F1 : (x2 : A2)/F2. M” to ascribe to a λ-abstraction
a precondition F1 of type dA1e → prop and a postcondition F2 of type dA1e × dA2e → prop.
Computational values are lifted to the logical level using the reflection function defined in
Table 10. The key idea of this definition is to reflect a computational function as a pair
of predicates consisting of its precondition and its postcondition. Given a computational
function f , a formula can refer to the precondition (resp. the postcondition) of f using the
predicate pre f (resp. post f). Thus, pre (resp. post) is a synonymous for π1 (resp. π2).

To improve the usability of our tool, we define in Table 10 a surface language by extending
λ with several practical facilities. First, terms are explicitly typed. Therefore, the labelling L
must be extended to convey type annotations in an explicitly typed version of λ` (the typing
system of λ` is quite standard and will be presented formally in the following section 4). The
instrumentation I defined in Table 9 is extended to types by replacing each type annotation A
by its monadic interpretation I(A) defined by I(A) = cm × A, ι = ι, A1 ×A2 = (A1 × A2)
and A1 → A2 = A1 → I(A2).

Second, since the instrumented version of a source program would be cumbersome to

16

reason about because of the explicit threading of the cost value, we keep the program in its
initial form while allowing logic assertions to implicitly refer to the instrumented version of
the program. Thus, in the surface language, in the term “let x : A/F = M in M”, F has
type dI(A)e → prop, that is to say a predicate over pairs of which the first component is the
execution cost.

Third, we allow labels to be written in source terms as a practical way of giving names
to the labels introduced by the labelling L. By these means, the constant cost assigned to a
label ` can be symbolically used in specifications by writing costof(`).

Finally, as a convenience, we write “x : A/F” for “x : A/λ(cost : cm, x : dI(A)e).F”.
This improves the conciseness of specifications by automatically allowing reference to the
cost variable in logic assertions without having to introduce it explicitly.

3.4 Prototype implementation

We implemented a prototype compiler [24] in OCaml (∼ 3.5Kloc). In addition to the dis-
tributed source code, a web application enables basic experiments without any installation
process.

This compiler accepts a program P written in the surface language extended with fixpoints
and algebraic datatypes. We found no technical difficulty in handling these extensions and
this is the reason why they are excluded from the core language in the presented formal
development. Specifications are written in the Coq proof assistant [11]. A logic keyword is
used to include logical definitions written in Coq to the source program.

Type checking is performed on P and, upon success, it produces a type annotated pro-
gram Pt. Then, the labelled program P` = L(Pt) is generated. Following the same treatment
of branching as in our previous work on imperative programs [2, 3], the labelling introduces
a label at the beginning of each pattern matching branch.

By erasure of specifications and type annotations, we obtain a program Pλ of λ (Table 2).
Using the compilation chain presented earlier, Pλ is compiled into a program Ph of λh,vn
(Table 7) . The annotating compiler uses the cost model that counts for each label ` the
number of primitive operations that belong to execution paths starting from ` (and ending
in another label or in an instruction without successor).

Finally, the instrumented version of P` as well as the actual cost of each label is given
as input to a verification condition generator to produce a set of proof obligations implying
the validity of the user-written specifications. These proof obligations are either proved
automatically using first-order theorem provers or manually in Coq.

3.5 Examples

In this section, we present two examples that are idiomatic of functional programming: an
inductive function and a higher-order function. These examples were checked using our
prototype implementation. More involved examples are distributed with the software. These
examples include several standard functions on lists (fold, map, . . .), combinators written in
continuation-passing style, and functions over binary search trees.

An inductive function Table 11 contains an example of a simple inductive function: the
standard concatenation of two lists. In the code, one can distinguish three kinds of toplevel

17

definitions: the type definitions prefixed by the type keyword, the definitions at the logical
level surrounded by logic { . . . }, and the program definitions introduced by the let keyword.

On lines 1 and 2, the type definitions introduce a type list for lists of natural numbers as
well as a type bool for booleans. Between lines 3 and 9, at the logical level, a Coq inductive
function defines the length of lists so that we can use this measure in the cost annotation of
concat. Notice that the type definitions are automatically lifted at the Coq level, provided
that they respect the strict positivity criterion imposed by Coq to ensure well-foundedness of
inductive definitions.

The concatenation function takes two lists l1 and l2 as input, and it is defined, as usual,
by induction on l1. In order to write a precise cost annotation, each part of the func-
tion body is labelled so that every piece of code is dominated by a label: `match domi-
nates “match l1 with Nil ⇒ • | Cons(x, xs) ⇒ •”, `nil dominates “Nil”, `cons dominates
“Cons(x, •)”, and `rec dominates “concat(xs, l2)”. Looking at the compiled code in Table 12,
it is easy to check that the covering of the code by the labels is preserved through the com-
pilation process. One can also check that the computed costs are correct with respect to a
cost model that simply counts the number of instructions, i.e., costof(`nil) = 2, costof(`rec)
= 6, costof(`cons) = 5 and costof(`match) = 1. Here we are simply assuming one unit of time
per low-level instruction, but a more refined analysis is possible by propagating the binary
instructions till the binary code (cf. [2, 3]).

Finally, the specification says that the cost of executing concat (l1, l2) is proportional
to the size of l1. Recall that the ‘cost’ and ‘result’ variables are implicitly bound in the
post-condition. Notice that the specification is very specific on the concrete time constants
that are involved in that linear function. Following the proof system of the higher-order
Hoare logic [25], the verification condition generator produces 37 proof obligations out of this
annotated code. All of them are automatically discharged by Coq (using, in particular, the
linear arithmetic decision procedure omega).

A higher-order function Let us consider a higher-order function pexists that looks for
an integer x in a list l such that x validates a predicate p. In addition to the functional
specification, we want to prove that the cost of this function is linear in the length n of the
list l. The corresponding program written in the surface language can be found in Table 13.

A prelude declares the type and logical definitions used by the specifications. On lines 1
and 2, two type definitions introduce data constructors for lists and booleans. Between lines
4 and 5, a Coq definition introduces a predicate bound over the reflection of computational
functions from nat to nat × bool that ensures that the cost of a computational function p is
uniformly bounded by a constant k.

On line 9, the precondition of function pexists requires the function p to be total. Between
lines 10 and 11, the postcondition first states a functional specification for pexists: the boolean
result witnesses the existence of an element x of the input list l that is related to BTrue by
the postcondition of p. The second part of the postcondition characterizes the cost of pexists
in case of a negative result: assuming that the cost of p is bounded by a constant k, the cost of
pexists is proportional to k ·n. Notice that there is no need to add a label in front of BTrue
in the first branch of the inner pattern-matching since the specification only characterizes the
cost of an unsuccessful search.

The verification condition generator produces 53 proof obligations out of this annotated
program; 46 of these proof obligations are automatically discharged and 7 of them are man-

18

01 type list = Nil | Cons (nat, list)
02 type bool = BTrue | BFalse
03 logic {
04 Fixpoint length (l : list) : nat : =
05 match l with
06 | Nil ⇒ 0
07 | Cons (x, xs) ⇒ 1 + length (xs)
08 end.
09 }
10 let rec concat (l1 : list, l2 : list) : list {
11 cost = costof(`match) + costof(`nil)
12 + (costof(`rec) + costof(`match) + costof(`cons)) × length (l1)
13 }
14 =
15 `match >
16 match l1 with
17 | Nil → `nil > l2
18 | Cons (x, xs) → `cons > Cons (x, concat (xs, l2) > `rec)
19 end

with





costof(`nil) = 2
costof(`rec) = 6
costof(`cons) = 5
costof(`match) = 1

Table 11: A function that concatenates two lists, and its cost annotation.

01 routine x19 (c20, x7)
02 `rec:
03 k2 ← proj 1 c20 ;
04 x ← proj 2 c20 ;
05 x14 ← make int 1 ;
06 x15 ← make tuple (x14, x, x7) ;
07 x22 ← proj 0 k2 ;
08 call x22 (k2, x15)

09 routine x16 (c17, l1, l2, k2)
10 `match:
11 switch l1
12 0 : `nil :
13 x18 ← proj 0 k2 ;
14 call x18 (k2, l2)
15 1 : `cons :
16 xs ← proj 2 l1 ;
17 x ← proj 1 l1 ;
18 x13 ← make tuple (x19, k2, x) ;
19 x21 ← proj 0 c17 ;
20 call x21 (c17, xs, l2, x13)

Table 12: The compiled code of concat.

19

01 type list = Nil | Cons (nat, list)
02 type bool = BTrue | BFalse
03 logic {
04 Definition bound (p : nat −→ (nat ∗ bool)) (k : nat) : Prop : =
05 ∀ x m : nat, ∀ r : bool, post p x (m, r) ⇒ m ≤ k.
06 Definition k0 : = costof(`m) + costof(`nil).
07 Definition k1 : = costof(`m) + costof(`p) + costof(`c) + costof(`f) + costof(`r).
08 }
09 let rec pexists (p : nat → bool, l : list) { ∀ x, pre p x } : bool {
10 ((result = BTrue) ⇔ (∃ x c : nat, mem x l ∧ post p x (c, BTrue))) ∧
11 (∀ k : nat, bound p k ∧ (result = BFalse) ⇒ cost ≤ k0 + (k + k1) × length (l))
12 } = `m> match l with
13 | Nil → `nil> BFalse
14 | Cons (x, xs) → `c> match p (x) > `p with
15 | BTrue → BTrue
16 | BFalse → `f> (pexists (p, xs) > `r)

Table 13: A higher-order function and its specification.

ually proved in Coq.

4 Typing the compilation chain

We describe a (simple) typing of the compilation chain. Specifically, each λ-calculus of the
compilation chain is equipped with a type system which enjoys subject reduction: if a term
has a type then all terms to which it reduces have the same type. Then the compilation
functions are extended to types and are shown to be type preserving: if a term has a type
then its compilation has the corresponding compiled type.

Besides providing insight into the compilation chain, typing is used in two ways. First, the
tool for reasoning about cost annotations presented in section 3 takes as input a typed λ-term
and second, and more importantly, in section 5, we rely on an enrichment of a type system
which is expressive enough to type a compiled code with explicit memory deallocations.

The two main steps in typing the compilation chain are well studied, see, e.g., the work
of Morrisett et al. [21], and concern the CPS and the closure conversion steps. In the former,
the basic idea is to type the continuation/the evaluation context of a term of type A with its
negated type (A → R), where R is traditionally taken as the type of ‘results’. In the latter,
one relies on existential types to hide the details of the representation of the ‘environment’ of
a function, i.e. the tuple of variables occurring free in its body.

4.1 Typing conventions

We shall denote with tid the syntactic category of type variables with generic elements t, s, . . .
and with A the syntactic category of types with generic elements A,B, . . . A type context is
denoted with Γ,Γ′, . . ., and it stands for a finite domain partial function from variables to
types. To explicit a type context, we write x1 : A1, . . . , xn : An where the variables x1, . . . , xn
must be all distinct and the order is irrelevant. Also we write x∗ : A∗ for a possibly empty
sequence x1 : A1, . . . , xn : An, and Γ, x∗ : A∗ for the context resulting from Γ by adding

20

Syntax types

A ::= tid || A+ → A || ×(A∗) (types)

Typing rules

x : A ∈ Γ

Γ ` x : A

Γ, x : A ` N : B
Γ `M : A

Γ ` let x = M in N : B

Γ, x+ : A+ `M : B

Γ ` λx+.M : A+ → B

Γ `M : A+ → B
Γ ` N+ : A+

Γ ` @(M,N+) : B

Γ `M∗ : A∗

Γ ` (M∗) : ×(A∗)
Γ `M : ×(A1, . . . , An) 1 ≤ i ≤ n

Γ ` πi(M) : Ai

Γ `M : A

Γ ` ` > M : A

Γ `M : A

Γ `M > ` : A

Restricted syntax CPS types, R type of results

A ::= tid || A+ → R || ×(A∗) (CPS types)

CPS type compilation

Ccps(t) = t
Ccps(×(A∗)) = ×(Ccps(A)∗)
Ccps(A+ → B) = (Ccps(A))+,¬Ccps(B)→ R

where: ¬A ≡ (A→ R)

Table 14: Type system for λ` and λ`cps

the sequence x∗ : A∗. Hence the variables in x∗ must not be in the domain of Γ. If A is a
type, we write ftv(A) for the set of type variables occurring free in it and, by extension, if Γ
is a type context ftv(Γ) is the union of the sets ftv(A) where A is a type in the codomain
of Γ. A typing judgement is typically written as Γ ` M : A where M is some term. We
shall write Γ ` M∗ : A∗ for Γ ` M1 : A1, . . . ,Γ ` Mn : An. Similar conventions apply
if we replace the symbol ‘∗′ with the symbol ‘+′ except that in this case the sequence is
assumed not-empty. A type transformation, say T , is lifted to type contexts by defining
T (x1 : A1, . . . xn : An) = x1 : T (A1), . . . , xn : T (An). Whenever we write:

if Γ `S1 M : A then T (Γ) `S2 T (M) : T (A)

what we actually mean is that if the judgement in the hypothesis is derivable in a certain
‘type system S1’ then the transformed judgement in derivable in the ‘type system S2’.

4.2 The type system of the source language

Table 14 describes the typing rules for the source language defined in Table 2. These rules are
standard except those for the labellings, and, as announced, they are preserved by reduction.

Proposition 22 (subject reduction) If M is a term of the λ` calculus, Γ ` M : A and
M → N then Γ ` N : A.

21

The typing rules described in Table 14 apply to the CPS λ-calculus too. Table 14 describes
the restricted syntax of the CPS types and the CPS type translation. Then the CPS term
translation defined in Table 3 preserves typing in the following sense.

Proposition 23 (type CPS) If Γ `M : A then Ccps(Γ), halt : ¬Ccps(A) ` Ccps(M) : R.

4.3 Type system for the value named calculi

Table 15 describes the typing rules for the value named calculi. For the sake of brevity, we
shall omit the type of a term since this type is always the type of results R and write Γ `vn M
rather than Γ `vn M : R. The first 6 typing rules are just a specialization of the corresponding
rules in Table 14. The last two rules allow for the introduction and elimination of existential
types; we shall see shortly how they are utilised in typing closure conversion.

In the proposed formalisation, we rely on the tuple constructor to introduce an existential
type and the first projection to eliminate it. This has the advantage of leaving unchanged
the syntax and the operational semantics of the value named λ-calculus. An alternative
presentation consists in introducing specific operators to introduce and eliminate existential
types which are often denoted with pack and unpack, respectively. The reader who is familiar
with this notation may just read (x) as pack(x) and π1(x) as unpack(x) when x has an
existential type. With this convention, the rewriting rule which allows to unpack a packed
value is just a special case of the rule for projection.

As in the previous system, typing is preserved by reduction.

Proposition 24 (subject reduction, value named) If M is a term of the λ`cps,vn-calculus,
Γ `vn M and M → N then Γ `vn N .

The transformation into value named CPS form specified in Table 5 affects the terms but
not the types.

Proposition 25 (type value named) If M is a term of the λ`cps-calculus and Γ ` M : R
then Γ `vn Cvn(M).

On the other hand, to type the closure conversion we rely on existential types to ab-
stract/hide the type of the environment as specified in Table 15. Then the term translation
of the function definition and application given in Table 6 has to be slightly modified to ac-
count for the introduction and elimination of existential types. The revised definition is as
follows:

Ccc(@(x, y+)) =
let x = π1(x) in (← existential elimination)
let (c, e) = x in @(c, e, y+)

Ccc(let x = C in M) =

let c = λe, x+.let (z1, . . . , zk) = e in Ccc(N) in
let e = (z1, . . . , zk) in
let x = (c, e) in
let x = (x) in (← existential introduction)
Ccc(M) (if C = λx+.N, fv(C) = {z1, . . . , zk})

This modified closure conversion does not affect the commutation and simulation proper-
ties stated in propositions 10 and 11 and moreover it preserves typing as follows.

22

Syntax types

A ::= tid || (A+ → R) || ×(A∗) || ∃tid .A

Typing rules

Γ, x+ : A+ `vn M
Γ `vn λx+.M : A+ → R

x : A+ → R, y+ : A+ ∈ Γ

Γ `vn @(x, y+)

x∗ : A∗ ∈ Γ

Γ `vn (x∗) : ×(A∗)

y : ×(A1, . . . , An) ∈ Γ 1 ≤ i ≤ n
Γ, x : Ai `vn M

Γ `vn let x = πi(y) in M

Γ `vn V : A Γ, x : A `vn M
Γ `vn let x = V in M

Γ `vn M
Γ `vn ` > M

x : [B/t]A ∈ Γ

Γ `vn (x) : ∃t.A
y : ∃t.A ∈ Γ Γ, x : A `vn M t /∈ ftv(Γ)

Γ `vn let x = π1(y) in M

Closure conversion type compilation

Ccc(t) = t
Ccc(×(A∗)) = ×(Ccc(A)∗)
Ccc(A+ → R) = ∃t.× ((t, Ccc(A)+ → R), t)
Ccc(∃t.A) = ∃t.Ccc(A)

Table 15: Type system for the value named calculi and closure conversion

Proposition 26 (type closure conversion) If M is a term in λ`cps,vn and Γ `vn M then
Ccc(Γ) `vn Ccc(M).

Similarly to the transformation in value named form, the hoisting transformations affect
the terms but not the types.

Proposition 27 (type hoisting) If M is a term in λ`cps,vn , Γ `vn M , and M ; N then
Γ `vn N .

4.4 Typing the compiled code

We can now extend the compilation function to types by defining:

C(A) = Ccc(Ccps(A))

and by composing the previous results we derive the following type preservation property of
the compilation function.

Theorem 28 (type preserving compilation) If M is a term of the λ`-calculus and Γ `
M : A then

C(Γ), halt : ∃t.× (t, C(A)→ R, t) `vn C(M) .

Remark 29 The ‘halt’ variable introduced by the CPS translation can occur only in a subterm
of the shape @(halt , x) in the intermediate code prior to closure conversion. Then in the
closure conversion translation, it suffices that Ccc(@(halt , x)) = @(halt , x) and give to ‘halt ′ a
functional rather than an existential type. With this proviso, theorem 28 above can be restated
as follows:

23

If M is a term of the λ`-calculus and Γ `M : A then C(Γ), halt : ¬C(A) `vn C(M).

Example 30 (typing the compiled code) We consider again the compilation of the term
λx.y (cf. example 9) which can be typed, e.g., as follows:

y : t1 ` λx.y : (t2 → t1) .

Its CPS translation is then typed as:

y : t1, halt : ¬Ccps(t2 → t1) ` @(halt , λx, k.@(k, y)) : R .

The value named translation does not affect the types:

y : t1, halt : ¬Ccps(t2 → t1) `vn let z1 = λx, k.@(k, y) in @(halt , z1) .

After closure conversion we obtain the following term M :

let c = λe, x, k.let y = π1(e), k = π1(k), c = π1(k), e = π2(k) in @(c, e, y) in
let e = (y), z1 = (c, e), z1 = (z1), halt = π1(halt), c = π1(halt), e = π2(halt) in
@(c, e, z1)

which is typed as follows:

y : t1, halt : ∃t.× (t, C(t2 → t1)→ R, t) `vn M .

In this case no further hoisting transformation applies. If we adopt the optimised compilation
strategy sketched in remark 29 then after closure conversion we obtain the following term M ′:

let c = λe, x, k.let y = π1(e), k = π1(k), c = π1(k), e = π2(k) in @(c, e, y) in
let e = (y), z1 = (c, e), z1 = (z1), in
@(halt , z1)

which is typed as follows:

y : t1, halt : C(t2 → t1)→ R `vn M ′ .

5 Memory management

We describe an enrichment of the λ`h,vn -calculus called λ`,rh,vn -calculus which explicitly handles
allocation and deallocation of memory regions. At our level of abstraction, the memory
regions are just names r, r′, . . . of a countable set. Intuitively, the ‘live’ locations of a memory
are partitioned into regions. The three new operations the enriched calculus may perform
are: (1) allocate a new region, (2) allocate a value (in our case a non-empty tuple) in a region,
and (3) dispose a region. The additional operation of reading a value from a region is implicit
in the projection operation which is already available in the non-enriched calculus λ`h,vn . In
order to gain some expressivity we shall also allow a function to be parametric in a collection
of region names which are provided as arguments at the moment of the function call.

From our point of view, the important property of this approach to memory management is
both its cost predictability and the possibility of formalising and certifying it using techniques
similar to those presented in section 2. Indeed the operations (1-3) inject short sequences of

24

instructions in the compiled code that can be executed in constant time as stressed by Tofte
and Talpin [27] (more on this at the end of section 5.2).

Because of the operation (3) described above (dispose), the following memory errors may
arise at run-time: (i) write a value in a disposed region, (ii) access (project) a value in a dis-
posed region, and (iii) dispose an already disposed region. To avoid these errors, we formulate
a type and effect system in the sense of Lucassen and Gifford [18] that over-approximates the
visible set of regions and guarantees safe memory disposal, following Tofte and Talpin [27].
This allows to further extend to the right with one more commuting square a typed version
of the compilation chain described in Table 1 and then to include the cost of safe memory
management in our analysis.

5.1 Region conventions

We introduce a syntactic category of regions rid with generic elements r, r′, . . . and a syntactic
category of effects e with generic elements e, e′, . . . An effect is a finite set of region variables.
We keep denoting types with A,B, . . . However types may depend on both regions and effects.
Regions can be bound when occurring either in types or in terms. In the first case, the binder
is a universal quantifier ∀r.A, while in the second it is either a new region allocation operator
let all(r) in T or a region λ-abstraction. On the other hand, we stress that the disposal operator
dis(r) in T is not a binder. Because of the universal quantification and the λ-abstraction both
the untyped and the typed region enriched calculi include a notion of region substitution.
Note that such a substitution operates on the effects contained in the types too and that, as
a result, it may reduce the cardinality of the set of regions which composes an effect. The
change of cardinality however, can only arise in the untyped calculus. In the typed calculus,
all the region substitutions are guaranteed to be injective. We denote with frv(A) the set
of regions occurring free in the type A, and frv(Γ) denotes the obvious extension to type
contexts.

5.2 A region enriched calculus

A formalisation of the operations and the related memory errors is given through the region
enriched calculus presented in Tables 16 and 17. Notice that an empty tuple is stored in a
local variable rather than in a region and that a similar stategy would be adopted for basic
data values such as booleans or integers. The usual formalisation of the operational semantics
relies on a rather concrete representation of a heap as a (finite domain) function mapping
regions to stores which are (finite domain) functions from locations to values satisfying some
coherence conditions (see, e.g. [27, 1, 8]). In the following, we will take a slightly more
abstract approach by representing the heap implicitly as a heap context H. The latter is
simply a list of region allocations, value allocations at a region, and region disposals.

It turns out that it is possible to formulate the coherence conditions on the memory
directly on this list so that we do not have to commit to a concrete representation of the heap
as the one sketched above. A first consequence of this design choice, is that we can dispense
with the introduction of additional syntactic entities like that of ‘location’ or ‘address’ and
consequently avoid the non-deterministic rules that choose fresh regions or locations (as in,
say, the π-calculus, α-renaming will take care of that). A second consequence is that the
proof of the simulation property of the standard calculus by the region-enriched calculus is
rather direct.

25

Coherent heap context relative to live regions

Coh([], L)

Coh(H,L)

Coh(let x = () in H,L)

Coh(H,L) r ∈ L
Coh(let x = (y+)at(r) in H,L)

Coh(H,L ∪ {r})
Coh(let all(r) in H,L)

Coh(H,L\{r}) r ∈ L
Coh(dis(r) in H,L)

Region not-disposed in a heap context

NDis(r, [])

NDis(r,H)

NDis(r, let x = () in H)

NDis(r,H)

NDis(r, let x = (y+)at(r′) in H)

(r = r′) or (r 6= r′ and NDis(r,H))

NDis(r, let all(r′) in H)

r 6= r′ NDis(r,H)

NDis(r, dis(r′) in H)

Table 16: Coherence predicate on heap contexts

Continuing the comparison with formalisations found in the literature, we notice that the
fact that region disposal is decoupled from allocation avoids the introduction of a special
‘disposed’ or ‘free’ region which is sometimes used in the operational semantics to represent
the situation where a region becomes inaccessible (see, e.g., [27, 1]). What we do instead is
to keep track of the disposal operation in the heap context.

Finally, let us notice that we certainly take advantage of the fact that our formalisation
of region management targets an intermediate RTL language where the execution order and
the operations of writing and reading a value from memory are completely explicit. The
formalisation of region management at the level of the source language, e.g., the λ-calculus,
appears a bit more involved because one has to enrich the language with operations that really
refer to the way the language is compiled. For instance, one has to distinguish between the
act of storing a value in memory and the act of referring to it without exploring its internal
structure.

Table 16 specifies the coherence predicate Coh(H,L) of the heap context H relatively to
a set of ‘live’ regions L. Briefly, a heap context is coherent if whenever the context contains
an allocation for a tuple in a region, or a disposal of a region, the region in question is alive.
This is defined by induction on the structure of the heap context H.

The reduction rules in Table 17 are a refinement of those of the value named λ-calculus
described in Table 4. The main novelties are that a transition can be fired only if the heap
context is coherent relatively to an empty set of regions in the sense described above and
moreover that a tuple can be projected only if it is allocated in a region which has not been
disposed. To formalise this last property we have refined the definition of the function E(x)
which looks for the value bound to a variable in an evaluation context. The refined function,
upon success, returns both the value and the part of the heap context, say H, which has been
explored. Then the predicate NDis(r,H) defined in Table 16 checks that the region r where
the tuple is allocated is not disposed by H. Again, this predicate is defined by induction on
the structure of the heap context H.

We remark the following decomposition property of region-enriched programs.

Proposition 31 (decomposition) A program P in the region enriched λ-calculus can be
uniquely decomposed as F [H[∆]] where F is a function context, H a heap context, and ∆ is
either an application of the shape @(x, r∗, y+) or a projection of the shape let x = πi(y) in T ,

26

Syntax

rid ::= r || r′ || · · · (region identifiers)
C ::= () || (id+)at(rid) || πi(id) (restricted let-bindable terms)
T ::= @(id , rid∗, id+) || let id = C in T || ` > T ||

let all(rid) in T || dis(rid) in T (restricted terms)
P ::= T || let id = λrid∗, id+.T in P (programs)
F ::= [] || let id = λrid∗, id+.T in F (function contexts)
H ::= [] || let id = () in H || let id = (id+)at(rid) in H ||

let all(rid) in H || dis(rid) in H (heap contexts)
E ::= F [H] (evaluation contexts)

Reduction rules

E[@(x, r′1, . . . , r
′
m, z1, . . . , zn)]→ E[[r′1/r1, . . . , r

′
m/rm, z1/y1, . . . , zn/yn]T]

if π1(E(x)) ≡ λr1, . . . , rm, y1, . . . , yn.T, E ≡ F [H], Coh(H, ∅)

E[let z = πi(x) in T]→ E[[yi/z]T]]
if E(x) = ((y1, . . . , yn)at(r), H ′), 1 ≤ i ≤ n, E ≡ F [H], Coh(H, ∅), NDis(r,H ′)

E[` > T]
`−→ E[T] if E ≡ F [H],Coh(H, ∅)

where:




E(x) =





(V, []) if E = E′[let x = V in []]
(V,E′′[El]) otherwise if E = E′[El], E′(x) = (V,E′′)
undefined otherwise

V ::= () || (id∗)at(rid) || λrid∗, id+.T
El ::= let id = V in [] || let all(rid) in [] || dis(rid) in []




Table 17: The region-enriched calculus: λ`,rh,vn

27

or a labelling of the shape ` > T .

We define an obvious erasure function on the region-enriched types, values, and terms that
just erases all the region related pieces of information (please refer to the formal definition in
Table 19 of the appendix for details).

Because of the possible memory errors described above, a region enriched program does
not necessarily simulate its region erasure.

Example 32 (memory errors) Consider the following program P in λ`h,vn (not necessarily
the result of a compilation):

P ≡ F [@(pair , v1, v2)]
F ≡ let prj1 = λx.let y = π1(x) in @(halt , y) in

let pair = λx1, x2.let y = (x1, x2) in @(prj1 , y) in [] .

One strategy to manage memory regions in P is to allocate a region upon entering the pair
function and to dispose it just before calling the prj1 function as in the following program P1

in λ`,rh,vn .

P1 ≡ F1[@(pair , v1, v2)]
F1 ≡ let prj1 = λx.let z = π1(x) in @(halt , z) in

let pair = λx1, x2.let all(r) in let y = (x1, x2)at(r) in dis(r) in @(prj1 , y) in [] .

Unfortunately this strategy leads to a memory error as:

P1
∗→ F1[H1[let z = π1(y) in @(halt , z)]]

H1 ≡ let all(r) in let y = (v1, v2)at(r) in dis(r) in []

Formally, F1[H1](y) = ((v1, v2)at(r), H2), H2 = dis(r) in [], and the predicate NDis(r,H2)
does not hold. In plain words, the problem with this strategy is that it disposes the region r
before the value (v1, v2) allocated into it is projected. A better strategy is to pass the region
created in the function pair to the function prj1 and let this function dispose the region once
the value (v1, v2) has been projected. This strategy is described by the following program P2 in

λ`,rh,vn .

P2 ≡ F2[@(pair , v1, v2)]
F2 ≡ let prj1 = λr, x.let z = π1(x) in dis(r) in @(halt , z) in

let pair = λx1, x2.let all(r) in let y = (x1, x2)at(r) in @(prj1 , r, y) in [] .

This time the reduction leads to a normal termination:

P2
∗→ F2[H2[@(halt , v1)]]

H2 ≡ let all(r) in let y = (v1, v2)at(r) in dis(r) in [] .

We conclude this section with an overview of a rather standard implementation scheme
of region based memory management (see, e.g., [20] for more details). Initially, the available
memory is partitioned in pages which constitute a free list. A region is a pointer to a ‘region
descriptor’ that contains a pointer to the beginning and the end of a list of pages and a
counter which gives the amount of memory available in the last page of the list. A value (a
non-empty tuple in our case) is just a pointer to a memory address and an access to a value is

28

direct. Storing a value in a region means storing the value in the last page of the list related
to the region and updating the region descriptor. If the space available is not sufficient, then
one or more pages are taken from the free list and appended to the end of the region list and
again the region descriptor is updated. This operation can be executed in constant time as
long as the size of the values to be allocated can be determined at compile time (which is
obviously true in our case). Deallocating a region means concatenating the list related to the
region to the free list. We refrain from going into the details of the implementation scheme
mentioned above which really belong to the backend of the compiler. Indeed, the scheme is
rather independent from the source language (for instance, Christiansen et al. [10] rely on it
to implement an object-oriented language) while depending for its efficiency on the memory
organisation of the processor and possibly the operating system.

5.3 A type and effect system

In order to have the simulation property, we require that the region-enriched program is
typable with respect to an enhanced type and effect system described in Table 18 whose
purpose is precisely to avoid memory errors at run time. The system defines judgment (i)
Γ `rg T : e read “restricted term T has effect e under Γ” ; (ii) Γ `rg C : A read “restricted
let-bindable term C has type A under Γ” and (iii) Γ `rg P : e read “program P has effect
e under Γ”. The formalisation follows the work of Aiken et al. [1] in that allocation and
disposal of a region are decoupled (see also Henglein et al. [16] for a survey and Boudol [8]
for a discussion). Then a region can be disposed only if the following computation neither
accesses nor disposes it. Note that in typing values we omit the effect (which is always empty)
and in typing terms we omit the type (which is always the type of results R). The typing
rules are designed to maintain several invariants. First, if a program P has effect e then
the set of regions e over-approximates the visible regions that the program P may dispose
or access for allocating or reading a value. Second, all the region names have been allocated
(and possibly disposed afterwards). Third, distinct region names in the program correspond
at run time to different regions, i.e., all region substitutions are injective. With respect to
the system described in Table 15, we notice that we distinguish the rules for typing an empty
and a non-empty tuple as the former has no effect on the heap. For similar reasons, we split
the rule for typing a value definition in three depending on whether the value is an empty
tuple, a function, or a non-empty tuple (possibly of existential type). Only in the last case an
effect on the heap is recorded. As already mentioned, empty tuples do not affect the heap and
function definitions eventually become sequences of assembly language instructions which are
stored in a statically allocated and read-only zone of memory separated by the data memory.

Example 33 (types and effects) Going back to example 32, let us assume the types ti : vi,

i = 1, 2 and halt : t1
∅−→ R. Then the reader may check that the program P2 is typable (has an

effect) assuming the following types for the functions:

pair : t1, t2
∅−→ R prj1 : ∀r.× (t1, t2)at(r)

{r}−−→ R

On the other hand, any attempt at typing P1 fails trivially because the type of the function prj1

must be of the shape ×(t1, . . .)at(r)
{r}−−→ R and it cannot match the type of the pair allocated

by the function pair in a new region. If we fix this problem by abstracting the function prj1

w.r.t. a region so that it has the type ∀r. × (t1, . . .)at(r)
{r}−−→ R we stumble on the main

29

Types and effects syntax

e ::= {rid , . . . , rid} (effects)

A ::= tid || ∀rid∗.A+ e−→ R || ×() || ×(A+)at(rid) || (∃tid .A)at(rid) (types)

Typing rules

Γ, y+ : A+ `rg T : e
{r∗} ∩ frv(Γ) = ∅ frv(λr∗, y+.T) = ∅

Γ `rg λr∗, y+.T : ∀r∗.A+ e−→ R

B ≡ ∀r∗1 .A+ e−→ R x : B ∈ Γ y+ : [r∗/r∗1]A+ ∈ Γ
r∗ distinct frv(B) = ∅

Γ `rg @(x, r∗, y+) : [r∗/r∗1]e

x+ : A+ ∈ Γ

Γ `rg (x+)at(r) : ×(A+)at(r)

y : ×(A1, . . . , An)at(r) ∈ Γ
1 ≤ i ≤ n Γ, x : Ai `rg T : e

Γ `rg let x = πi(y) in T : e ∪ {r}

x : [B/t]A ∈ Γ

Γ `rg (x)at(r) : (∃t.A)at(r)

y : (∃t.A)at(r) ∈ Γ Γ, x : A `rg T : e t /∈ ftv(Γ)

Γ `rg let x = π1(y) in T : e ∪ {r}

Γ `rg () : ×()

Γ `rg () : A
Γ, x : A `rg T : e

Γ `rg let x = () in T : e

Γ `rg λr∗, y+.T : A
Γ, x : A `rg P : e

Γ `rg let x = λr∗, y+.T in P : e

Γ `rg (y+)at(r) : A
Γ, x : A `rg T : e

Γ `rg let x = (y+)at(r) in T : e ∪ {r}

Γ `rg T : e ∪ {r} r /∈ frv(Γ), e

Γ `rg let all(r) in T : e

Γ `rg T : e r /∈ e
Γ `rg dis(r) in T : e ∪ {r}

Γ `rg T : e

Γ `rg ` > T : e

Γ `rg P : e e ⊆ e′
Γ `rg P : e′

Table 18: Type and effect system for the region-enriched calculus

30

problem, namely the function pair disposes a region which is used in the continuation; this is
forbidden by the typing rule for region disposal.

Example 34 (injective region substitutions) The soundness and relative simplicity of
the type and effect system bear on the fact that region substitutions are injective. Technically
this property is enforced by the rules for typing an application and an abstraction. In an
application, say @(x, r∗, y+), the region variables r∗ are distinct and the type of x is region
closed. In an abstraction, say λr∗, x+.T , the function is region closed. It is instructive to see
what can go wrong if we drop these conditions. Consider a function x of the following shape
with its possible (region closed) type:

x = λr1, r2, y.dis(r1) in let z = (y)at(r2) in T : ∀r1, r2.× ()
{r1,r2}−−−−→ R .

An application @(x, r, r, y) where we pass twice the same region name r will produce a memory
error since we dispose r before writing into it. A similar phenomenon arises with a function
of the following shape and related (region open!) type:

x = λr1, y.dis(r1) in let z = (y)at(r2) in T : ∀r1.× ()
{r1,r2}−−−−→ R .

Then an application @(x, r2, y) where we pass a region name which is free in the type of the
function will also produce a memory error. As a final example, consider a function

x = λr1, y.let z = () in @(y, r1, r2, z)

with a free region variable r2. Note that r1, r2 may not appear in the type of the function x
because, e.g., y makes no use of them. Then if we apply x as in @(x, r2, y) we end up with
an application @(y, r2, r2, z) which is not typable because it violates the condition that all the
region variables passed as arguments are distinct.

5.4 Properties of the type and effect system

We notice that the region erasing function preserves typing.

Proposition 35 (region erasure) If Γ `rg P : e then rer(Γ) `vn rer(P).

In the other direction, it is always possible to insert region annotations in a typable
program of λ`h,vn so as to produce a typable region-enriched program. A simple but not very
interesting way to do this is to allocate one region at the very beginning of the computation
which is never disposed and which is shared by all functions.

Proposition 36 (region enrichment) Let Γ0 be a type context such that if x : A ∈ Γ0 then
A is not a type of the shape ×(B+) or ∃t.B. If Γ0 `vn P then it is always possible to find a
region enriched typable program P ′ such rer(P ′) ≡ P .

Fortunately, more interesting strategies are available; we refer to Aiken et al. [1] for
their description and for an encouraging experimental evaluation and to Henglein et al. [16]
for a survey of region inference techniques. For our purposes, it is enough to know that it is
always possible to define a compilation function Crg from the typed λ`h,vn -calculus to the typed

λ`,rh,vn -calculus which is a right inverse of the region erasing function, i.e., rer(Crg(P)) ≡ P ,

31

and which commutes with the label erasure functions, i.e., er(Crg(P)) ≡ Crg(er(P)). Also,
following remark 29, we notice that the typing context of the compiled code satisfies the
conditions in proposition 36 provided that if Γ is the typing context of the source code and
x : A ∈ Γ then the type A is not of the shape ×(B+).

Next we remark that the type system entails the coherence of the heap context of a
program; this leads to the following progress property.

Proposition 37 (progress) Let P be a typable program in the region enriched calculus such
that frv(P) = ∅. Then P decomposes as F [H[∆]] (proposition 31) and either (i) P reduces or
(ii) ∆ has the shape @(x, r∗, y+) or let y = πi(x) in T , where x ∈ fv(P).

Of course, we must also prove that the region enriched types are preserved by reduction.

Proposition 38 (subject reduction, types and effects) If Γ `rg P : e and P → P ′ then
Γ `rg P ′ : e.

Finally, we can show that a well-typed region enriched program does indeed simulate its
region erasure.

Theorem 39 (region simulation) If Γ `rg P : e, frv(P) = ∅, and rer(P)
α−→ Q then

P
α−→ P ′ and rer(P ′) ≡ Q.

6 Conclusion

We have shown that our approach, that we call the ‘labelling’ approach, can be used to obtain
certified execution costs on functional programs following a standard compilation chain which
composes well with the back-end of a moderately optimising C compiler. The technique
allows to compute the cost of the compiled code while reasoning abstractly at the level of the
source language and it accounts precisely for the cost of memory management for a particular
memory management strategy that uses regions. To provide technical evidence for this claim
has required to have an in-depth and sometimes novel look at the formal properties of the
compilation chain; notable examples are the commutation property of the CPS transformation
and the simulation property for the hoisting and the region aware transformations.

Acknowledgements The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions that significantly helped to improve this paper, as well
as Anindya Banerjee and Olivier Danvy for their efficient work in the edition process.

References
[1] A. Aiken, M. Fähndrich, R. Levien. Better static memory management: improving region-based analysis of higher-

order languages. In Proc. ACM-PLDI, pp 174-185, 1995.

[2] R.M. Amadio, N. Ayache, Y. Régis-Gianas, R. Saillard. Certifying cost annotations in compilers. Université Paris
Diderot, Research Report, http://hal.archives-ouvertes.fr/hal-00524715/fr/, 2010.

[3] N. Ayache, R.M. Amadio, Y. Régis-Gianas. Certifying and reasoning on cost annotations in C programs. In Proc.
Formal Methods for Industrial Critical Systems (FMICS), Springer-Verlag 7437:32–46, 2012.

[4] R.M. Amadio, Y. Régis-Gianas. Certifying and reasoning on cost annotations of functional programs. In Proc.
FOPARA, Springer LNCS 7177:72–88, 2012.

32

[5] AbsInt Angewandte Informatik. http://www.absint.com/.

[6] D. Bacon, P. Cheng, V. Rajan. A real-time garbage collector with low overhead and consistent utilization. In Proc.
ACM-POPL, pp 285-298, 2003.

[7] A. Bonenfant, C. Ferdinand, K. Hammond, R. Heckmann. Worst-case execution times for a purely functional
language. In Proc. IFL, Springer LNCS 4449:235-252, 2006.

[8] G. Boudol. Typing safe deallocation. In Proc. ESOP, Springer LNCS 4960:116-130, 2008.

[9] A. Chlipala. A verified compiler for an impure functional language. In Proc. ACM-POPL:93-106, 2010.

[10] M. Christiansen, F. Henglein, H. Niss, P. Velshow. Safe region-based memory management for objects. TOPPS
Report D-397 Department of Computer Science, University of Copenhagen (DIKU), October 1998.

[11] The Coq Development Team. The Coq proof assistant. INRIA-Rocquencourt, December 2001. http://coq.inria.
fr.

[12] K. Crary, D. Walker, G. Morrisett. Typed memory management in a calculus of capabilities. In Proc. ACM-POPL,
pp 262-275, 1999.

[13] P.-L. Curien. An abstract framework for environment machines. Theoret. Comput. Sci., 82(2):389-402, 1991.

[14] P. Fradet, D. Le Métayer. Compilation of functional languages by program transformation. ACM Transactions on
Programming Languages and Systems, 13(1):21–51, 1991.

[15] D. Gurr. Semantic frameworks for complexity. PhD thesis, University of Edinburgh, 1991.

[16] F. Henglein, H. Makholm, H. Niss. Effect types and region-based memory management. In Advanced topics in
types and programming languages, B. Pierce (ed.), MIT Press, 2005.

[17] X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115, 2009.

[18] J. Lucassen, D. Gifford. Polymorphic effect systems. In Proc. ACM-POPL, pp 47-57, 1988.

[19] X. Li, L. Yun, T. Mitra, A. Roychoudhury. Chronos: A timing analyzer for embedded software. Sci. Comput.
Program. 69(1-3): 56–67, 2007.

[20] H. Makholm. A language-independent framework for region inference. PhD thesis, University of Copenhagen, 2003.

[21] J. Morrisett, D. Walker, K. Crary, N. Glew. From system F to typed assembly language. ACM Trans. Program.
Lang. Syst. 21(3): 527-568, 1999.

[22] A. Perlis. Epigrams on programming. SIGPLAN Notices Vol. 17(9):7-13, 1982.

[23] G. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci. 1(2):125-159, 1975.

[24] Y. Régis-Gianas. An annotating compiler for MiniML. http://www.pps.univ-paris-diderot.fr/~yrg/fun-cca.

[25] Y. Régis-Gianas, F. Pottier. A Hoare logic for call-by-value functional programs. In Proc. Mathematics of Program
Construction, pp 305-335, 2008.

[26] D. Sands. Complexity analysis for a lazy higher-order language. In Proc. ESOP, Springer LNCS 432:361-376, 1990.

[27] M. Tofte, J.-P. Talpin. Region-based memory management. Information and Computation. 132(2):109-176, 1997.

[28] P. Tranquilli. Indexed labelling for loop iteration dependent costs. Deliverable 5.1, Project CerCo, FP7-ICT-2009-
C-243881, 2012.

[29] M. Wand. Continuation-based program transformation strategies. Journal of ACM, 27(1):164–180, 1980.

[30] B. Wegbreit. Mechanical Program Analysis. Commun. ACM, 18(9):528–539, 1975.

A Proofs

We outline the proofs of the results we have stated.

33

Proof of proposition 3 [CPS commutation]

The proof takes the following steps:

1. We remark that if V is a value in λ` and K a continuation in λ`cps then so are er(V)
and er(K). The proof is a direct induction on the structure of V and K, respectively.

2. For all values V and terms M of the λ`-calculus, we check that:

er([V/x]M) ≡ [er(V)/x]er(M) .

The proof proceeds by induction on the structure of M .

3. We notice that λx.(x | K) ≡ K holds, for all continuations K such that K is an
abstraction.

4. For all terms M and continuations K such that either M ∈W0 and K is an abstraction
or M ∈W1 the following holds:

er(M | K) ≡ er(M) | er(K) .

We proceed by induction on M .

x We expand the definition of x | K depending on whether K is a variable or a function
and we rely on step 2.

λx+.M We have λx+.M ∈ W1 and M ∈ W1. We analyse λx+.M | K depending on
whether K is a variable or a function and we apply the inductive hypothesis on
M and step 2. Notice that it is essential that M ∈ W1 to apply the inductive
hypothesis.

@(M0, . . . ,Mn) We know M0, . . . ,Mn ∈ W0. We apply the inductive hypothesis on
Mn, . . . ,M0 to conclude that:

er(@(M0, . . . ,Mn)) | er(K)
≡ er(M0) | λx0. . . . er(Mn) | λxn.@(x0, . . . , xn, er(K))
≡ er(M0) | λx0. . . . er(Mn | λxn.@(x0, . . . , xn,K))
≡ · · ·
≡ er(M0 | λx0. . . .Mn | λxn.@(x0, . . . , xn,K))
≡ er(@(M0, . . . ,MN) | K) .

` > M We know that if ` > M ∈ Wi then M ∈ Wi and we apply the inductive
hypothesis on M .

M > ` By definition, we must have M > ` ∈W0. Hence K is a function and M ∈W0.
Then we apply the inductive hypothesis on M and step 3.

(M1, . . . ,Mn) We know that Mi ∈W0 for i = 1, . . . , n. First we notice that:

er(λxn.(x1, . . . , xn) | K) ≡ λxn.(x1, . . . , xn) | er(K) .

34

Then we apply the inductive hypothesis on Mn, . . . ,M0 to conclude that:

er((M1, . . . ,Mn)) | er(K)
≡ er(M1) | λx1 . . . er(Mn) | λxn.(x1, . . . , xn) | er(K)
≡ er(M1) | λx1 . . . er(Mn) | er(λxn.(x1, . . . , xn) | K)
≡ er(M1) | λx1 . . . er(Mn | λxn.(x1, . . . , xn) | K)
≡ · · ·
≡ er(M1 | λx1 . . .Mn | λxn.(x1, . . . , xn) | K)
≡ er((M1, . . . ,Mn) | K) .

πi(M) We know M ∈ W0. We observe that er(y | K) ≡ y | er(K). Then we apply the
inductive hypothesis on M to conclude that:

er(πi(M)) | er(K)
≡ πi(er(M)) | er(K)
≡ er(M) | λx.let y = πi(x) in y | er(K)
≡ er(M) | er(λx.let y = πi(x) in y | K)
≡ er(M | λx.let y = πi(x) in y | K)
≡ er(πi(M) | K) .

let x = N in M If let x = N in M ∈Wi then we know N ∈W0 and M ∈Wi. We apply
the inductive hypothesis on N and M to conclude that:

er(let x = N in M | K)
≡ er(N | λx.(M | K))
≡ er(N) | λx.er(M | K)
≡ er(N) | λx.er(M) | er(K)
≡ er(let x = N in M) | er(K) .

5. Then we prove the assertion for M ∈W0 as follows:

er(Ccps(M)) ≡ er(M | λx.@(halt , x)) (by definition)
≡ er(M) | λx.@(halt , x) (by point 4)
≡ Ccps(er(M)) (by definition).

2

Proof of proposition 4 [CPS simulation]

The proof takes the following steps.

1. We show that for all values V , terms M , and continuations K 6= x:

[V/x]M | [ψ(V)/x]K ≡ [ψ(V)/x](M | K) .

We proceed by induction on M .

M is a variable. By case analysis: M ≡ x or M ≡ y 6= x.

35

λz+.M By case analysis on K which is either a variable or a function. We develop the
second case with K ≡ λy.N . We observe:

[V/x](λz+.M) | [ψ(V)/x]K
≡ [λz+, k.([V/x]M | k)/y][ψ(V)/x]N
≡ [λz+, k.[ψ(V)/x](M | k)/y][ψ(V)/x]N
≡ [ψ(V)/x][λz+, k.(M | k)/y]N
≡ [ψ(V)/x]((λz+.M) | K) .

@(M0, . . . ,Mn) We apply the inductive hypothesis on M0, . . . ,Mn as follows:

[ψ(V)/x](@(M0, . . . ,Mn) | K)
≡ [ψ(V)/x](M0 | λx0 . . .Mn | λxn.@(x0, . . . , xn,K))
· · ·
≡ [V/x]M0 | λx0 . . . [ψ(V)/x](Mn | λxn.@(x0, . . . , xn,K))
≡ [V/x]M0 | λx0 . . . [V/x]Mn | λxn.@(x0, . . . , xn, [ψ(V)/x]K)
≡ [V/x]@(M0, . . . ,Mn) | [ψ(V)/x]K .

Note that in this case the substitution [ψ(V)/x] may operate on the continua-
tion. The remaining cases (pairing, projection, let, pre and post labelling) follow
a similar pattern and are omitted.

2. The evaluation contexts for the λ`-calculus described in Table 2 can also be specified
‘bottom up’ as follows:

E ::= [] || E[@(V ∗, [],M∗)] || E[let id = [] in M] || E[(V ∗, [],M∗)] ||
E[πi([])] || E[[] > `] .

Following this specification, we associate a continuation KE with an evaluation context
as follows:

K[] = λx.@(halt , x)

KE[@(V ∗,[],M∗)] = λx.M∗ | λy∗.@(ψ(V)∗, x, y∗,KE)

KE[let x=[] in N] = λx.N | KE

KE[(V ∗,[],M∗)] = λx.M∗ | λy∗.(ψ(V)∗, x, y∗) | KE

KE[πi([]) = λx.let y = πi(x) in y | KE

KE[[]>`] = λx.` > x | KE

where M∗ | λx∗.N stands for M0 | λx0 . . .Mn | λxn.N with n ≥ 0.

3. For all terms M and evaluation contexts E,E′ we prove by induction on the evaluation
context E that the following holds:

E[M] | KE′ ≡M | KE′[E] .

For instance, we detail the case where the context has the shape E[@(V ∗, [],M∗)].

E[@(V ∗, [M],M∗)] | KE′

≡ @(V ∗, [M],M∗) | KE′[E] (by inductive hypothesis)

≡M | λx.M∗ | λx∗.@(ψ(V)∗, x, x∗,KE′[E])

≡M | KE′[E[@(V ∗,[],M∗)]] .

36

4. For all terms M , continuations K,K ′, and variable x /∈ fv(M) we prove by induction
on M and case analysis that the following holds:

[K/x](M | K ′)
{
→M | K ′ if K abstraction,M value,K ′ = x
≡ (M | [K/x]K ′) otherwise.

5. Finally, we prove the assertion by proceeding by case analysis on the reduction rule.

• E[@(λx+.M, V +)]→ E[[V +/x+]M]. We have:

E[@(λx+.M, V +)] | K[]

≡ @(λx+.M, V +) | KE

≡ @(λx+, k.M | k, ψ(V)+,KE)
→ [KE/k, ψ(V)+/x+](M | k)
≡ [KE/k]([V +/x+]M | k)
∗→ [V +/x+]M | KE

≡ E[[V +/x+]M] | K[] .

• E[let x = V in M]→ E[[V/x]M]. We have:

E[let x = V in M] | K[]

≡ let x = V in M | KE

≡ V | λx.(M | KE)
≡ [ψ(V)/x](M | KE)
≡ [V/x]M | KE

≡ E[[V/x]M] | K[] .

• E[πi(V)]→ E[Vi], where V ≡ (V1, . . . , Vn) and 1 ≤ i ≤ n. We have:

E[πi(V)] | K[]

≡ πi(V) | KE

≡ V | λx.let y = πi(x) in y | KE

≡ let y = πi(ψ(V1), . . . , ψ(Vn)) in y | KE

→ [ψ(Vi)/y](y | KE)
≡ Vi | KE

≡ E[Vi] | K[] .

• E[` > M]
`−→ E[M]. We have:

E[` > M] | K[]

≡ ` > M | KE

≡ ` > (M | KE)
`−→ (M | KE)
≡ E[M] | K[] .

37

• E[V > `]
`−→ E[V]. We have:

E[V > `] | K[]

≡ V > ` | KE

≡ V | λx.` > x | KE

≡ ` > (V | KE)
`−→ V | KE

≡ E[V] | K[] .

2

Proof of proposition 7 [VN commutation]

(1) We show that for every P which is either a term or a value of the λ`cps-calculus the
following properties hold:

A If P is a term then R(Cvn(P)) ≡ P .

B If P is a value then for any term N , R(Evn(P, x)[N]) ≡ [P/x]R(N).

We prove the two properties at once by induction on the structure of P .

@(x, x+) We are in case A and by definition we have:

R(Cvn(@(x, x+))) ≡ R(@(x, x+)) ≡ @(x, x+) .

@(x∗, V, V ∗), V 6= id Again in case A. We have:

R(Cvn(@(x∗, V, V ∗)))
≡ R(Evn(V, y)[Cvn(@(x∗, y, V ∗))])
≡ [V/y]R(Cvn(@(x∗, y, V ∗))) (by ind. hyp. on B)
≡ [V/y]@(x∗, y, V ∗) (by ind. hyp. on A)
≡ @(x∗, V, V ∗) .

let x = πi(z) in M Again in case A. We have:

R(Cvn(let x = πi(z) in M))
≡ R(let x = πi(z) in Cvn(M))
≡ let x = πi(z) in R(Cvn(M))
≡ let x = πi(z) in M (by ind. hyp. on A) .

let x = πi(V) in M,V 6= id Again in case A. We have:

R(Cvn(let x = πi(V) in M))
≡ R(Evn(V, y)[let x = πi(y) in Cvn(M)])
≡ [V/y]R(let x = πi(y) in Cvn(M)) (by ind. hyp. on B)
≡ [V/y]let x = πi(y) in R(Cvn(M))
≡ [V/y]let x = πi(y) in M (by ind. hyp. on A)
≡ let x = πi(V) in M .

38

` > M Last case for A. We have:

R(Cvn(` > M))
≡ R(` > Cvn(M))
≡ ` > R(Cvn(M))
≡ ` > M (by ind. hyp. on A) .

λy+.M We now turn to case B. We have:

R(Evn(λy+.M, x)[N])
≡ R(let x = λy+.Cvn(M) in N)
≡ [R(λy+.Cvn(M))/x]R(N)
≡ [λy+.R(Cvn(M))/x]R(N)
≡ [λy+.M/x]R(N) (by ind. hyp. on A) .

(y∗) Again in case B. We have:
R(Evn((y∗), x)[N])
≡ R(let x = (y∗) in N)
≡ [(y∗)/x]R(N) .

(y∗, V, V ∗), V 6= id Last case for B. We have:

R(Evn((y∗, V, V ∗), x)[N])
≡ R(Evn(V, z)[Evn((y∗, z, V ∗), x)[N]])
≡ [V/z]R(Evn((y∗, z, V ∗), x)[N]) (by ind. hyp. on B)
≡ [V/z]([(y∗, z, V ∗)/x]R(N)) (by ind. hyp. on B)
≡ [(y∗, V, V ∗)/x]R(N) .

(2) The proof is similar to the previous one. We show that for every P which is either a term
or a value of the λ`cps-calculus the following properties hold:

A If P is a term then er(Cvn(P)) ≡ Cvn(er(P)).

B If P is a value then for any term N , er(Evn(P, x)[N]) ≡ Evn(er(P), x)[er(N)].

We prove the two properties at once by induction on the structure of P .

@(x, x+) We are in case A and by definition we have:

er(Cvn(@(x, x+))) ≡ er(@(x, x+)) ≡ @(x, x+) ≡ Cvn(er(@(x, x+))) .

@(x∗, V, V ∗), V 6= id Again in case A. We have:

er(Cvn(@(x∗, V, V ∗)))
≡ er(Evn(V, y)[Cvn(@(x∗, y, V ∗))])
≡ Evn(er(V), y)[er(Cvn(@(x∗, y, V ∗)))] (by ind. hyp. on B)
≡ Evn(er(V), y)[Cvn(er(@(x∗, y, V ∗)))] (by ind. hyp. on A)
≡ Cvn(er(@(x∗, V, V ∗))) .

39

let x = πi(z) in M Again in case A. We have:

er(Cvn(let x = πi(z) in M))
≡ er(let x = πi(z) in Cvn(M))
≡ let x = πi(z) in er(Cvn(M))
≡ let x = πi(z) in Cvn(er(M)) (by ind. hyp. on A)
≡ Cvn(er(let x = πi(z) in M)) .

let x = πi(V) in M,V 6= id Again in case A. We have:

er(Cvn(let x = πi(V) in M))
≡ er(Evn(V, z)[let x = πi(z) in Cvn(M)])
≡ Evn(er(V), z)[let x = πi(z) in er(Cvn(M))] (by ind. hyp. on B)
≡ Evn(er(V), z)[let x = πi(z) in Cvn(er(M))] (by ind. hyp. on A)
≡ Cvn(er(let x = πi(V) in M)) .

` > M Last case for A. We have:

er(Cvn(` > M))
≡ er(` > Cvn(M))
≡ er(Cvn(M))
≡ Cvn(er(M)) (by ind. hyp. on A)
≡ Cvn(er(` > M)) .

λy+.M We now turn to case B. We have:

er(Evn(λy+.M, x)[N])
≡ er(let x = λy+.Cvn(M) in N)
≡ let x = λy+.er(Cvn(M)) in er(N)
≡ let x = λy+.Cvn(er(M)) in er(N) (by ind. hyp. on A)
≡ Evn(er(λy+.M), x)[er(N)] .

(y∗) Again in case B. We have:

er(Evn((y∗), x)[N])
≡ er(let x = (y∗) in N)
≡ let x = (y∗) in er(N)
≡ Evn(er((y∗)), x)[er(N)] .

(y∗, V, V ∗), V 6= id Last case for B. We have:

er(Evn((y∗, V, V ∗), x)[N])
≡ er(Evn(V, z)[Evn((y∗, z, V ∗), x)[N]])
≡ Evn(er(V), x)[er(Evn((y∗, z, V ∗), x)[N])] (by ind. hyp. on B)
≡ Evn(er(V), x)[Evn(er((y∗, z, V ∗)), x)[er(N)]] (by ind. hyp. on B)
≡ Evn(er((y∗, V, V ∗)), x)[er(N)] .

2

40

Proof of proposition 8 [VN simulation]

First we fix some notation. We associate a substitution σE with an evaluation context E of
the λ`cps,vn -calculus as follows:

σ[] = Id σlet x=V in E = [R(V)/x] ◦ σE .

Then we prove the property by case analysis.

• If R(N) ≡ @(λy+.M, V +) → [V +/y+]M then N ≡ E[@(x, x+)], σE(x) ≡ λy+.M , and
σE(x+) ≡ V +.

Moreover, E ≡ E1[let x = λy+.M ′ in E2] and σE1(λy+.M ′) ≡ λy+.M .

Therefore, N → E[[x+/y+]M ′] ≡ N ′ and we check that R(N ′) ≡ σE([x+/y+]M ′) ≡
[V +/y+]M .

• If R(N) ≡ let x = πi((V1, . . . , Vn)) in M → [Vi/x]M then N ≡ E[let x = πi(y) in N ′′],
σE(y) ≡ (V1, . . . , Vn), and σE(N ′′) ≡M .

Moreover, E ≡ E1[let y = (z1, . . . , zn) in E2] and σE1(z1, . . . , zn) ≡ (V1, . . . , Vn).

Therefore, N → E[[zi/x]N ′′] ≡ N ′ and we check that R(N ′) ≡ σE([zi/x]N ′′) ≡
[Vi/x]M .

• If R(N) ≡ ` > M
`−→ M then N ≡ E[` > N ′′] and σE(N ′′) ≡ M . We conclude by

observing that N
`−→ E[N ′′]. 2

Proof of proposition 10 [CC commutation]

This is a simple induction on the structure of the term M .

@(x, y+) We have:
er(Ccc(@(x, y+)))
≡ er(let (c, e) = x in @(c, e, y+))
≡ let (c, e) = x in @(c, e, y+)
≡ Ccc(@(x, y+))
≡ er(Ccc(@(x, y+))) .

let x = C in M , C not a function We have:

er(Ccc(let x = C in M))
≡ er(let x = C in Ccc(M))
≡ let x = C in er(Ccc(M))
≡ let x = C in Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(let x = C in M)) .

41

let x = λx+.N in M, fv(λx+.N) = {z1, . . . , zk} We have:

er(Ccc(let x = λx+.N in M))
≡ er(let c = λe, x+.let (z1, . . . , zk) = e in Ccc(N) in

let e = (z1, . . . , zk), x = (c, e) in Ccc(M))
≡ let c = λe, x+.let (z1, . . . , zk) = e in er(Ccc(N)) in

let e = (z1, . . . , zk), x = (c, e) in er(Ccc(M))
≡ let c = λe, x+.let (z1, . . . , zk) = e in Ccc(er(N)) in

let e = (z1, . . . , zk), x = (c, e) in Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(let x = λx+.N in M)) .

` > M We have:
er(Ccc(` > M))
≡ er(` > Ccc(M))
≡ er(Ccc(M))
≡ Ccc(er(M)) (by ind. hyp.)
≡ Ccc(er(` > M)) .

2

Proof of proposition 11 [CC simulation]

As a first step we check that the closure conversion function commutes with name substitution:

Ccc([x/y]M) ≡ [x/y]Ccc(M) .

This is a direct induction on the structure of the term M . Then we extend the closure
conversion function to contexts as follows:

Ccc([]) = []
Ccc(let x = (y∗) in E) = let x = (y∗) in Ccc(E)
Ccc(let x = λx+.M in E) = let c = λe, x+.let (z1, . . . , zk) = e in Ccc(M) in

let e = (z1, . . . , zk), x = (c, e) in Ccc(E)
where: fv(λx+.M) = {z1, . . . , zk} .

We note that for any evaluation context E, Ccc(E) is again an evaluation context, and more-
over for any term M we have:

Ccc(E[M]) ≡ Ccc(E)[Ccc(M)] .

Finally we prove the simulation property by case analysis of the reduction rule being applied.

• Suppose M ≡ E[@(x, y+)] → E[[y+/x+]M] where E(x) = λx+.M and fv(λx+.M) =
{z1, . . . , zk}. Then:

Ccc(E[@(x, y+)]) ≡ Ccc(E)[let (c, e) = x in @(c, e, y+)]

with Ccc(E)(x) = (c, e), Ccc(E)(c) = λe, x+.let (z1, . . . , zk) = e in Ccc(M) and Ccc(E)(e) =
(z1, . . . , zk). Therefore:

Ccc(E)[let (c′, e′) = x in @(c′, e′, y+)]
∗→ Ccc(E)[let (z1, . . . , zk) = e in [y+/x+]Ccc(M)]
∗→ Ccc(E)[[y+/x+]Ccc(M)]
≡ Ccc(E)[Ccc([y+/x+]M)] (by substitution commutation)
≡ Ccc(E[[y+/x+]M]) .

42

• Suppose M ≡ E[let x = πi(y) inM]→ E[[zi/x]M] where E(y) = (z1, . . . , zk), 1 ≤ i ≤ k.
Then:

Ccc(E[let x = πi(y) in M]) ≡ Ccc(E)[let x = πi(y) in Ccc(M)]

with Ccc(E)(y) = (z1, . . . , zk). Therefore:

Ccc(E)[let x = πi(y) in Ccc(M)]
→ Ccc(E)[[zi/x]Ccc(M)]
≡ Ccc(E)[Ccc([zi/x]M)] (by substitution commutation)
≡ Ccc(E[[zi/x]M]) .

• Suppose M ≡ E[` > M]
`−→ E[M]. Then:

Ccc(E[` > M])
≡ Ccc(E)[Ccc(` > M)]
≡ Ccc(E)[` > Ccc(M)]
`−→ Ccc(E)[Ccc(M)]
≡ Ccc(E[M]) .

2

Proof of proposition 12 [on hoisting transformations]

As a preliminary remark, note that the hoisting contexts D can be defined in an equivalent
way as follows:

D ::= [] || D[let x = C in []] || D[let x = λy+.[] in M] || D[` > []]

If D is a hoisting context and x is a variable we define D(x) as follows:

D(x) =





λz+.T if D = D′[let x = λz+.T in []]
D′(x) o.w. if D = D′[let y = C in []], x 6= y
D′(x) o.w. if D = D′[let y = λy+.[] in M], x /∈ {y+}
undefined o.w.

The intuition is that D(x) checks whether D binds x to a simple function λz+.T . If this is
the case it returns the simple function as a result, otherwise the result is undefined.

Let I be the set of terms of the λ`cps,vn such that if M ≡ D[let x = λy+.T in N] and
z ∈ fv(λy+.T) then D(z) = λz+.T ′. Thus a name free in a simple function must be bound to
another simple function. We prove the following properties:

1. The hoisting transformations terminate.

2. The hoisting transformations are confluent (hence the result of the hoisting transforma-
tions is unique).

3. If a term M of the λ`cps,vn -calculus contains a function definition then M ≡ D[let x =
λy+.T in N] for some D,T,N .

4. All terms in λ`cc,vn belong to the set I (trivially).

43

5. The set I is an invariant of the hoisting transformations, i.e., if M ∈ I and M ; N
then N ∈ I.

6. If a term satisfying the invariant above is not a program then a hoisting transformation
applies.

(1) To prove the termination of the hoisting transformations we introduce a size function
from terms to positive natural numbers as follows:

|@(x, x+)| = 1
|let x = λy+.M in N | = 2 · |M |+ |N |
|let x = C in N | = 2 · |N |
|` > N | = 2 · |N | .

Then we check that if M ; N then |M | > |N |. Note that the hoisting context D induces a
function which is strictly monotone on natural numbers. Thus it is enough to check that the
size of the redex term is larger than the size of the reduced term.

(h1)
|let x = C in let y = λz+.T in M |
= 2 · (2 · |T |+ |M |)
> 2 · |T |+ 2 · |M |
= |let y = λz+.T in let x = C in M | .

(h2)
|let x = λw+.let y = λz+.T in M in N |
= 2 · (2 · |T |+ |M |) + |N |
> 2 · |T |+ 2 · |M |+ |N |
= |let y = λz+.T in let x = λw+.M in N | .

(h3)
|` > let y = λz+.T in M |
= 2 · (2 · |T |+ |M |)
> 2 · |T |+ 2 · |M |
= |let y = λz+.T in ` > M | .

(2) Since the hoisting transformation is terminating, by Newman’s lemma it is enough to
prove local confluence. There are 9 = 3 · 3 cases to consider. In each case one checks that the
two redexes cannot superpose. Moreover, since the hoisting transformations neither duplicate
nor erase terms, one can close the diagrams in one step.

For instance, suppose the term D[let x = λw+.let y = λz+.T inM in N] contains a distinct
redex ∆ of the same type (a function definition containing a simple function definition). Then
the root of this redex can be in the subterms M or N or in the context D. Moreover if it is in
D, then either it is disjoint from the first redex or it contains it strictly. Indeed, the second
let of the second redex cannot be the first let of the first redex since the latter is not defining
a simple function.

(3) By induction on M . Let F be an abbreviation for let x = λy+.T in N .

44

@(x, x+) The property holds trivially.

let y = C in M Then M must contain a function definition. Then by inductive hypothesis,
M ≡ D′[F]. We conclude by taking D ≡ let y = C in D′.

let y = λx+.M ′ in M If M is a restricted term then we take D ≡ []. Otherwise, M ′ must
contain a function definition and by inductive hypothesis, M ′ ≡ D′[F]. Then we take
D ≡ let y = λx+.D′ in M .

` > M Then M contains a function definition and by inductive hypothesis M ≡ D′[F]. We
conclude by taking D ≡ ` > D′.

(4) In the terms of the λ`cc,vn calculus all functions are closed and therefore the condition is
vacuously satisfied.

(5) We proceed by case analysis on the hoisting transformations.

(6) We proceed by induction on the structure of the term M .

@(x, y+) This is a program.

let x = C in M ′ There are two cases:

• If M ′ is not a program then by inductive hypothesis a hoisting transformation
applies and the same transformation can be applied to M .

• If M ′ is a program then it has a function definition on top (otherwise M is a
program). Because M belongs to I the side condition of (h1) is satisfied.

let x = λy+.M ′ in M ′′ Again there are two cases:

• If M ′ or M ′′ are not programs then by inductive hypothesis a hoisting transforma-
tion applies and the same transformation can be applied to M .

• Otherwise, M ′ is a program with a function definition on top (otherwise M is a
program). Because M belongs to I the side condition of (h2) is satisfied.

` > M ′ Again there are two cases:

• If M ′ is not a program then by inductive hypothesis a hoisting transformation
applies and the same transformation can be applied to M .

• If M ′ is a program then it has a function definition on top (otherwise M is a
program) and (h3) applies to M . 2

Proof of proposition 13 [hoisting commutation]

As a preliminary step, extend the erasure function to the hoisting contexts in the obvious
way and notice that (i) if D is a hoisting context then er(D) is a hoisting context too, and
(ii) er(D[M]) ≡ er(D)[er(M)].

45

(1) We proceed by case analysis on the hoisting transformation applied to M . The case
where er(M) ≡ er(N) arises in (h3):

D[` > let x = λy+.T in M] ; D[let x = λy+.T in ` > M]
er(D[` > let x = λy+.T in M]) ≡ er(D[let x = λy+.T in ` > M])

(2) We show that er(M) ; entails that M ;. Since er(M) has no labels, either (h1) or (h2)
apply. Then M is a term that is derived from er(M) by inserting (possibly empty) sequences
of pre-labelling before each subterm. We check that either the hoisting transformation applied
to er(M) can be applied to M too or (h3) applies.

(3) If Ch(M) ≡ N then by definition we have M ;∗ N 6;. By (1) er(M) ;∗ er(N), and by
(2) er(N) 6;. Hence Ch(er(M)) ≡ er(N) ≡ er(Ch(M)). 2

Proof of proposition 15 [hoisting simulation]

Definition 40 A (strong) simulation on the terms of the λ`cps,vn-calculus is a binary relation

R such that if M R N and M
α−→M ′ then there is N ′ such that N

α−→ N ′ and M ′ R N ′.

Definition 41 A (pre-)congruence on the terms of the λ`cps,vn-calculus is an equivalence re-
lation (a pre-order) which is preserved by the operators of the calculus.

Definition 42 Let ' be the smallest congruence on terms of the λ`cps,vn-calculus which is
induced by structural equivalence and the following commutation of let-definitions:

let x1 = V1 in let x2 = V2 in M ' let x2 = V2 in let x1 = V1 in M

where: x1 6= x2, x1 /∈ fv(V2), x2 /∈ fv(V1).

The relation ' is preserved by name substitution and it is a simulation.

Definition 43 Let � the smallest pre-congruence on terms of the λ`cps,vn-calculus which is
induced by structural equivalence and the following collapse of let-definitions:

let x = V in let x = V in M ' let x = V in M

where: x /∈ fv(V).

The relation � is preserved by name substitution and it is a simulation.

Definition 44 Let Sh be the relation ' ◦ �.

Note that Sh is a simulation too. Then we can state the main lemma.

Lemma 45 Let M be a term of the λ`cps,vn-calculus. If M
α−→M ′ and M ; N then there is

N ′ such that N
α−→ N ′ and M ′ (;∗) ◦ Sh N ′.

Proof. As a preliminary remark we notice that the hoisting transformations are preserved
by name substitution. Namely if M ; N then [y+/x+]M ; [y+/x+]N .

There are three reduction rules and three hoisting transformations hence there are 9 cases
to consider and for each case we have to analyse how the two redexes can superpose.

As usual a term can be regarded as a tree and an occurrence in the tree is identified by a
path π which is a sequence of natural numbers.

46

• The reduction rule is
E[@(x, y+)]→ E[[y+/z+]M]

where E(x) = λz+.M . We suppose that π is the path which corresponds to the let-
definition of the variable x and π′ is that path that determines the redex of the hoisting
transformation.

(h1) There are two critical cases.

1. The let-definition that defines a function of the hoisting transformation coin-
cides with the let-definition of x. In this case M is actually a restricted term
T . The diagram is closed in one step.

2. The path π′ determines a subterm of M . If we reduce first then we have to
apply the hoisting transformation twice to close the diagram using the fact
that these transformations are preserved by name substitution.

(h2) Again there are two critical situations.

1. The top level let-definition of the hoisting transformation coincides with the
let-definition of the variable x in the reduction. This is the case illustrated by
the example 14. If we reduce first then we have to apply the hoisting transfor-
mation twice (again using preservation under name substitution). After this
we have to commute the let-definitions and finally collapse two identical ones.

2. The path π′ determines a subterm of M . If we reduce first then we have to
apply the hoisting transformation twice to close the diagram using the fact
that these transformations are preserved by name substitution.

(h3) There are two critical cases.

1. The function let-definition in the hoisting transformation coincides with the
let-definition of the variable x in the reduction. We close the diagram in one
step.

2. The path π′ determines a subterm of M . If we reduce first then we have to
apply the hoisting transformation twice to close the diagram using the fact
that these transformations are preserved by name substitution.

• The reduction rule is

E[let x = πi(y) in M]→ E[[zi/x]M]

where E(y) = (z1, . . . zn) and 1 ≤ i ≤ n.

(h1) There are two critical cases.

1. The first let-definition in the hoisting transformation coincides with the let-
definition of the tuple in the reduction. We close the diagram in one step.

2. The first let-definition in the hoisting transformation coincides with the projec-
tion in the reduction. If we reduce first then there is no need to apply a hoisting
transformation to close the diagram because the projection disappears.

(h2) The only critical case arises when the redex for the hoisting transformation is
contained in M . We close the diagram in one step using the fact that the trans-
formations are preserved by name substitution.

47

(h3) Same argument as in the previous case.

• The reduction rule is
E[` > M]

`−→ E[M]

The hoisting transformations can be either in E or in M . In both cases we close the
diagram in one step. 2

We conclude by proving by diagram chasing the following proposition. We rely on the
previous lemma and the fact that Sh is a simulation.

Proposition 46 The relation Th = ((;∗) ◦ Sh)∗ is a simulation and for all terms of the
λ`cc,vn-calculus, M Th Ch(M).

Proof of theorem 16 [commutation and simulation]

By composition of the commutation and simulation properties of the four compilation steps.

Proof of proposition 18 [labelling properties]

(1) Both properties are proven by induction on M . The first is immediate. We spell out the
second.

x Then Li(x) = x ∈W1 ⊆W0.

λx+.M Then Li(λx+.M) = λx+.` > L1(M) and by inductive hypothesis L1(M) ∈W1.

Hence, ` > L1(M) ∈W1 and λx+.` > L1(M) ∈W1.

(M1, . . . ,Mn) Then Li((M1, . . . ,Mn)) = (L0(M1), . . . ,L0(Mn)) and by inductive hypothesis
L0(Mj) ∈W0 for j = 1, . . . , n.

Hence, (L0(M1), . . . ,L0(Mn)) ∈W1 ⊆W0.

πj(M) Same argument as for the pairing.

let x = M in N Then Li(let x = M in N) = let x = L0(M) in Li(N) and by inductive
hypothesis L0(M) ∈W0 and Li(N) ∈Wi. Hence let x = L0(M) in Li(N) ∈Wi.

@(M1, . . . ,Mn) and i = 0 Then L0(@(M1, . . . ,Mn)) = @(L0(M1), . . . ,L0(Mn)) > ` and by
inductive hypothesis L0(Mj) ∈ W0 for j = 1, . . . , n. Hence @(L0(M1), . . . ,L0(Mn)) >
` ∈W0.

@(M1, . . . ,Mn) and i = 1 Same argument as in the previous case to conclude that
@(L0(M1), . . . ,L0(Mn)) ∈W1.

(2) By (1) we know that er(L(M)) ≡M and L(M) ∈W0. Then:

P ≡ C(M)
≡ C(er(L(M)))
≡ er(C(L(M))) (by theorem 16(1)) .

48

(3) The main point is to show that the CPS compilation of a labelled term is a term where
a pre-labelling appears exactly after each λ-abstraction. The following compilation steps
(value named, closure conversion, hoisting) neither destroy nor introduce new λ-abstractions
while maintaining the invariant that the body of each function definition contains exactly one
pre-labelling.

As a preliminary step, we define a restricted syntax for the λ`cps-calculus where labels
occur exactly after each λ-abstraction.

V ::= id || λid+.` > M || (V ∗) (restricted values)
M ::= @(V, V +) || let id = πi(V) in M (restricted CPS terms)
K ::= id || λid .M (restricted continuations)

Let us call this language λ`cps,r (r for restricted). First we remark that if V is a restricted
value and M is a restricted CPS term then [V/x]M is again a restricted CPS term. Then we
show the following property.

For all terms M of the λ-calculus and all continuations K of the λ`cps,r-calculus

the term Li(M) | K is again a term of the λ`cps,r-calculus provided that i = 0 if
K is a function and i = 1 if K is a variable.

Notice that the initial continuation K0 = λx.@(halt , x) is a functional continuation in the
restricted calculus and recall that by definition Ccps(L(M)) = L0(M) | K0. We proceed by
induction on M and case analysis assuming that if i = 0 then K = λy.N .

x, i = 0 We have: L0(x) | K = x | K = [x/y]N .

x, i = 1 We have: Li(x) | k = x | k = @(k, x).

λx+.M , i = 0 We have:

L0(λx+.M) | K = λx+.` > L1(M) | K = [λx+, k.` > L1(M) | k/y]N

and we apply the inductive hypothesis on L1(M) | k and closure under value substitu-
tion.

λx+.M , i = 1 We have:

L1(λx+.M) | k = λx+.` > L1(M) | k = @(k, λx+, k.` > L1(M) | k)

and we apply the inductive hypothesis on L1(M) | k.

@(M1, . . . ,Mn), i = 0 We have:

Li(@(M1, . . . ,Mn)) | K
≡ @(L0(M1), . . . ,L0(Mn)) > ` | K
≡ @(L0(M1), . . . ,L0(Mn)) | K ′
≡ L0(M1) | λx1 . . .L0(Mn) | λxn.@(x1, . . . , xn,K

′)

where K ′ = λy.` > N . Then we apply the inductive hypothesis on Mn, . . . ,M1 with
the suitable functional continuations.

49

@(M1, . . . ,Mn), i = 1 We have:

Li(@(M1, . . . ,Mn)) | K
≡ @(L0(M1), . . . ,L0(Mn)) | K
≡ L0(M1) | λx1 . . .L0(Mn) | λxn.@(x1, . . . , xn,K) .

Again we apply the inductive hypothesis on Mn, . . . ,M1 with the suitable functional
continuations.

(M1, . . . ,Mn) We have:

Li((M1, . . . ,Mn)) | K
≡ (L0(M1), . . . ,L0(Mn)) | K
≡ L0(M1) | λx1 . . .L0(Mn) | λxn.(x1, . . . , xn) | K .

We apply the inductive hypothesis on Mn, . . . ,M1 with the suitable functional contin-
uations.

πj(M) We have:

Li(πj(M)) | K
≡ πj(L0(M)) | K
≡ L0(M) | λx.let y = πj(x) in y | K .

We apply the inductive hypothesis on M with a functional continuation.

let x = N in M We have:
Li(let x = N in M) | K
≡ let x = L0(N) in Li(M) | K
≡ L0(N) | λx.Li(M) | K .

We apply the inductive hypothesis on M and then on N with a functional continuation.
2

Proof of proposition 20 [instrumentation vs. labelling]

As a preliminary step, we show that for all terms M and values V, V ′ of the λ`-calculus the
following (mutually dependent) properties hold.

1. [ψ(V)/x]ψ(V ′) ≡ ψ([V/x]V ′).

2. [ψ(V)/x]I(M) ≡ I([V/x]M).

Let S = [V1/x1, . . . , Vn/xn] denote a substitution in the λ`-calculus. Then let ψ(S) be the
substitution [ψ(V1)/x1, . . . , ψ(Vn)/xn]. We prove the following generalisation of the proposi-
tion.

For all terms M and substitutions S, if ψ(S)I(M) ⇓ (m,V) then I(SM) ⇓Λ V ′,
costof(Λ) = m and ψ(V ′) ≡ V .

We proceed by induction on the length of the derivation of the judgement ψ(S)I(M) ⇓ (m,V)
and case analysis on M .

50

We consider the case for application which explains the need for the generalisation. Sup-
pose ψ(S)I(@(M0,M1, . . . ,Mn)) ⇓ (m,V). By the shape of I(@(M0,M1, . . . ,Mn)) this en-
tails that ψ(S)I(Mi) ⇓ (mi, Vi) for i = 0, . . . , n. By induction hypothesis, I(SMi) ⇓Λi V

′
i ,

costof(Λi) = mi, and ψ(V ′i) = Vi, for i = 0, . . . , n. We also have @(V0, V1, . . . , Vn) ⇓ (mn+1, V)
and m = m0 ⊕ · · · ⊕ mn+1. Since ψ(V ′0) = V0, this requires V ′0 = λx1 · · ·xn.M ′ and
V0 = λx1 · · ·xn.I(M ′). So we must have [V1/x1, . . . , Vn/xn]I(M ′) ⇓ (mn+1, V). Again by in-
ductive hypothesis, this entails that I([V ′1/x1, . . . , V

′
n/xn]M ′) ⇓Λn+1 V

′, costof(Λn+1) = mn+1,
and ψ(V ′) = V . We conclude that I(S(@(M0,M1, . . . ,Mn))) ⇓Λ V

′ with Λ = Λ0 · · ·Λn+1. 2

Proof of proposition 22 [subject reduction]

The proof of this result is standard, so we just recall the main steps.

1. Prove a weakening lemma: Γ `M : A implies Γ, x : B `M : A for x fresh.

2. Prove a substitution lemma: Γ, x : A ` M : B and Γ ` N : A implies Γ ` [N/x]M : B;
by induction on the proof of M .

3. Derive by iteration the following substitution lemma: Γ, x1 : A1, . . . , xn : An ` M : B
and Γ ` Ni : Ai for i = 1, . . . , n implies Γ ` [N1/x1, . . . , Nn/xn]M : B.

4. With reference to Table 2, notice that in an evaluation context one does not cross
any binder. Then we have that E[M] ≡ [M/x]E[x] for x fresh variable. Moreover, if
Γ ` E[M] : A then for some B, Γ `M : B.

5. Now examine the 5 possibilities for reduction specified in Table 2. They all have the
shape E[∆] → E[∆′]. By the previous remark, it suffices to show that if Γ ` ∆ : B
then Γ ` ∆′ : B. Note that the typing rules in Table 14 are driven by the syntax of the
term. Then the property is checked by case analysis while appealing, for the first two
rewriting rules, to the substitution properties mentioned above.

Proof of proposition 23 [type CPS]

First, we prove the following properties at once by induction on the structure of the term
(possibly a value).

1. If Γ ` V : A then Ccps(Γ) ` ψ(V) : Ccps(A).

2. If Γ `M : A then Ccps(Γ), k : ¬Ccps(A) ` (M | k) : R.

3. If Γ `M : A and Ccps(Γ),Γ′, x : Ccps(A) ` N : R then Ccps(Γ),Γ′ ` (M | (λx.N)) : R.

We illustrate the analysis for the cases of abstraction and application.

Abstraction Suppose Γ ` λx+.M : A+ → B is derived from Γ, x+ : A+ `M : B. We prove
the 3 properties above.

(1) By induction hypothesis (property 2), we know:

Ccps(Γ), x+ : Ccps(A)+, k : ¬Ccps(B) ` (M | k) : R .

51

Then, recalling that:

ψ(λx+.M) ≡ λx+, k.(M | k) and Ccps(A+ → B) = Ccps(A)+,¬Ccps(B)→ R ,

we derive:
Ccps(Γ) ` ψ(λx+.M) : Ccps(A+ → B) .

(2) Recall that (λx+.M) | k ≡ @(k, ψ(λx+.M)). By property 1, we derive:

Ccps(Γ) ` ψ(λx+.M) : Ccps(A+ → B)

Then by weakening and substitution we derive

Ccps(Γ), k : ¬Ccps(A+ → B) ` ψ(λx+.M) : Ccps(A+ → B)

Finally the application rule gives

Ccps(Γ), k : ¬Ccps(A+ → B) ` ((λx+.M) : k) : R .

(3) Suppose additionally that Ccps(Γ),Γ′, y : Ccps(A+ → B) ` N : R. Recall that
(λx+.M | λy.N) ≡ [ψ(λx+.M)/y]N . By property 1, we know that:

Ccps(Γ) ` ψ(λx+.M) : Ccps(A+ → B) .

Then by weakening and substitution we derive that:

Ccps(Γ),Γ′ ` [ψ(λx+.M)/y]N : R .

Application Suppose Γ ` @(M0, . . . ,Mn) : B is derived from Γ `M0 : A, A ≡ A1, . . . , An →
B, and Γ `Mi : Ai for i = 1, . . . , n. In this case, we just look at the last two properties
since an application cannot be a value.

(2) Clearly:
Ccps(Γ),Γ′, xn : Ccps(An) ` @(x0, x1, . . . , xn, k) : R ,

where Γ′ ≡ x0 : Ccps(A), . . . , xn−1 : Ccps(An−1), k : ¬Ccps(B). By induction hy-
pothesis (property 3) on Mn, we derive:

Ccps(Γ),Γ′ ` (Mn : λxn.@(x0, x1, . . . , xn, k)) : R .

Then by applying the inductive hypothesis (property 3) on Mn−1, . . . ,M0 we ob-
tain:

Ccps(Γ), k : ¬Ccps(B) ` (M0 | λx0. · · ·Mn | λxn.@(x0, x1, . . . , xn, k)) : R .

(3) Suppose additionally that Ccps(Γ),Γ′′, y : Ccps(B) ` N : R. Then we have:

Ccps(Γ),Γ′,Γ′′, xn : Ccps(An) ` @(x0, x1, . . . , xn, λy.N) : R ,

where Γ′ ≡ x0 : Ccps(A), . . . , xn−1 : Ccps(An−1). Then proceed as in the previous
case by applying the inductive hypothesis (property 3) on Mn, . . . ,M0.

The proof of the omitted cases follows a similar pattern. Now to derive proposition 23, recall
that Ccps(M) ≡M | λx.@(halt , x). Then we obtain the desired statement from the property 3
above observing that if Γ ` M : A and Ccps(Γ), halt : ¬Ccps(A), x : Ccps(A) ` @(halt , x) : R
then Ccps(Γ), halt : ¬Ccps(A) ` Ccps(M) : R.

52

Proof of proposition 24 [subject reduction, value named]

First, we prove some standard properties for the type system described in Table 15.

Weakening If Γ `vn M then Γ, x : A `vn M with x fresh.

Variable substitution If Γ, x : A `vn M and y : A ∈ Γ then Γ `vn [y/x]M . This property
generalizes to Γ, x+ : A+ `vn M and y+ : A+ ∈ Γ implies Γ `vn [y+/x+]M .

Type substitution If Γ `vn M then [B/t]Γ `vn M .

Next, suppose Γ `vn M and M → N according to the rules specified in Table 4. This
means M ≡ E[∆] where for some Γ′, we have Γ,Γ′ `vn ∆ and ∆ is either an application, or
a projection or a labelling. We consider each case in turn.

∆ ≡ @(x, y+). Then y+ : A+ ∈ Γ,Γ′, Γ′ ≡ Γ1, x : A+ → R,Γ2, x is bound to some function
λz+.M ′, and Γ,Γ1, z

+ : A+ `vn M ′. By weakening, we have Γ,Γ′, z+ : A+ `vn M ′ and
by substitution Γ,Γ′ `vn [y+/z+]M ′. Then we derive Γ `vn E[[y+/z+]M ′] as required.

∆ ≡ let x = πi(y) in M ′. This case splits in two sub-cases: the first for product types and
the second for existential types.

Product Γ′ ≡ Γ1, y : ×(A1, . . . , An),Γ2, 1 ≤ i ≤ n, Γ,Γ′, x : Ai `vn M ′, and for some
z1, . . . , zn, z1 : A1, . . . , zn : An ∈ Γ,Γ1. By substitution, Γ,Γ′ `vn [zi/x]M ′. Then
we derive Γ `vn E[[zi/x]M ′] as required.

Existential i = 1, Γ′ ≡ Γ1, y : ∃t.A,Γ2, Γ,Γ′, x : A `vn M ′ with t /∈ ftv(Γ,Γ′), and for
some z,B, we have z : [B/t]A ∈ Γ,Γ1. By type substitution, Γ,Γ′, x : [B/t]A `vn
M ′ and by substitution, Γ,Γ′ `vn [z/x]M ′. Then we derive Γ `vn E[[z/x]M ′] as
required.

∆ ≡ ` > M ′. Then Γ,Γ′ `vn M ′ and we derive Γ `vn E[M ′] as required.

Proof of proposition 25 [type value named]

We prove at once the following two properties:

1. If Γ `M : R then Γ `vn Cvn(M).

2. If Γ ` V : A, V 6= id and Γ, y : A `vn N : R then Γ `vn Evn(V, y)[N].

We proceed by induction on the structure of M and V along the pattern of the definition
of the value named translation in Table 5. We spell out two typical cases.

M ≡ @(x∗, V, V ∗), V 6= id . Suppose Γ ` @(x∗, V, V ∗) : R. This entails Γ ` V : A for some
type A. We also have Γ, y : A ` @(x∗, y, V ∗) : R and by inductive hypothesis (prop-
erty 1) Γ, y : A `vn Cvn(@(x∗, y, V ∗)). Then, we apply the inductive hypothesis on V
(property 2) to derive that: Γ `vn Evn(V, y)[Cvn(@(x∗, y, V ∗))], and this last term equals
Cvn(@(x∗, V, V ∗)).

53

V ≡ (x∗, V ′, V ∗), V ′ 6= id . Suppose Γ, y : A `vn N and Γ ` (x∗, V ′, V ∗) : A. This entails
Γ ` V ′ : B for some type B and Γ, z : B ` (x∗, z, V ∗) : A. By weakening and inductive
hypothesis (property 2) on (x∗, z, V ∗) we derive Γ, z : B `vn Evn((x∗, z, V ∗), y)[N]. Then
by inductive hypothesis on V ′ (again by property 2) we derive:

Γ `vn Evn(V ′, z)[Evn((x∗, z, V ∗), y)[N]] ,

and this last term equals Evn((x∗, V ′, V ∗), y)[N].

Proof of proposition 26 [type closure conversion]

By induction on the typing of Γ `vn M according to the rules specified in Table 15. We detail
the cases of abstraction and application.

Abstraction Suppose Γ `vn let x = λy+.M in N is derived from Γ, y+ : A+ `vn M and
Γ, x : A+ → R `vn N . Let us pose {z∗} = fv(λy+.M). Then for some C∗ we have
z∗ : C∗ ∈ Γ. We have to show that:

Ccc(Γ) `vn let c = λe, y+.let (z∗) = e in Ccc(M) in
let e = (z∗) in
let x′ = (c, e) in
let x = (x′) in Ccc(N) .

By inductive hypothesis onM , variable substitution, and weakening we derive: Ccc(Γ),Γ′ `vn
Ccc(M), with Γ′ ≡ c : ×(C∗), Ccc(A)+ → R, e : ×(C∗).

Also, by inductive hypothesis on N and weakening we derive:

Ccc(Γ),Γ′,Γ′′ `vn Ccc(N) ,

with Γ′′ ≡ x′ : [×(C∗)/t]B, x : ∃t.B and B ≡ ×((t, Ccc(A)+ → R), t).

Application Suppose Γ `vn @(x, y+) is derived from x : A+ → R, y+ : A+ ∈ Γ. We have to
show:

Ccc(Γ) `vn let x′ = π1(x) in
let (c, e) = x′ in @(c, e, y+) .

Since Ccc(A+ → R) ≡ ∃t.× ((t, Ccc(A)+ → R), t), the judgement above is derived from:

Ccc(Γ), x′ : ×((t, Ccc(A)+ → R), t), c : (t, Ccc(A)+ → R), e : t `vn @(c, e, y+) .

Proof of proposition 27 [type hoisting]

First, we show the following property.

Strengthening If Γ, x : A `vn P and x /∈ fv(P) then Γ `vn P .

Then we proceed by case analysis (3 cases) on the hoisting transformations specified in
Table 7. They all have the shape D[∆] ; D[∆′], so it suffices to show that if Γ `vn ∆ then
Γ `vn ∆′. We detail the analysis for the transformation (h2). Suppose:

Γ `vn let x = λw+.let y = λz+.T in M in N,

54

rer(t) = t

rer(A+ e−→ R) = rer(A)+ → R
rer(×()) = ×()
rer(×(A+)at(r)) = ×(rer(A)+)
rer((∃t.A)at(r)) = ∃t.rer(A)

rer(λr∗, x+.T) = λx+.rer(T)
rer(()) = ()
rer((x+)at(r)) = (x+)

rer(let x = V in P) = let x = rer(V) in rer(P)
rer(@(x, r∗, y+)) = @(x, y+)
rer(let x = πi(y) in T) = let x = πi(y) in rer(T)

Table 19: Region erasure for types, values and terms.

with {w+} ∩ fv(λz+.T) = ∅, is derived from:

(1) Γ, x : A+ → R `vn N ,
(2) Γ, w+ : A+, z+ : B+ `vn T ,
(3) Γ, w+ : A+, y : B+ → R `vn M .

Then we derive:
Γ `vn let y = λz+.T in let x = λw+.M in N .

as follows:

(1′) Γ, x : A+ → R, y : B+ → R `vn N (by (1) and weakening)
(2′) Γ, z+ : B+ `vn T (by (2) and strengthening)
(3′) Γ, w+ : A+, y : B+ → R `vn M (by (3)) .

Proof theorem 28 [type preserving compilation]

Suppose M term of the λ`-calculus and Γ `M : A. Then:

Ccps(Γ), halt : ¬Ccps(A) ` Ccps(M) : R (by proposition 23)
Ccps(Γ), halt : ¬Ccps(A) `vn Cvn(Ccps(M)) (by proposition 25)
C(Γ), halt : ∃t.× ((t, C(A)→ R), t) `vn Ccc(Cvn(Ccps(M))) (by proposition 26)

Next recall that the compiled term C(M) is the result of iterating the hoisting transformations
on the term Ccc(Cvn(Ccps(M))) a finite number of times. Hence, by proposition 27 we conclude:

C(Γ), halt : ∃t.× ((t, C(A)→ R), t) `vn C(M) .

Proof of proposition 31 [decomposition]

With reference to Table 17, we know that a program P is a list of function definitions, deter-
mining the function context F , followed by a term T . The latter is a list of value definitions
and region allocations and disposals, determining the heap context H, and ending either in
an application or a projection or a labelling. This last part of the program corresponds to
the redex ∆.

55

Proof of proposition 35 [region erasure]

First, we notice that the region erasure function is invariant under region substitutions:
rer([r′/r]A) = rer(A). Then we prove at once the following two properties where it is in-
tended that the judgements on the left are derivable in the type and effect system described
in Table 18 and the ones on the right in the type system described in Table 15.

1. If Γ `rg P : e then rer(Γ) `vn rer(P).

2. If Γ `rg V : A then rer(Γ) `vn rer(V) : rer(A).

We detail the cases of abstraction and application.

Abstraction Suppose Γ `rg λr∗, y+.T : ∀r∗.A+ e−→ R is derived from Γ, y+ : A+ `rg T : e.
Then by inductive hypothesis, rer(Γ), y+ : rer(A)+ `vn rer(T). And we conclude:
rer(Γ) `vn λy+.T : rer(A)+ → R as required.

Application Suppose Γ `rg @(x, r+, y+) is derived from x : B ∈ Γ, B ≡ ∀r∗1.A+ e−→ R, y+ :
[r∗/r∗1]A+ ∈ Γ. Then, by the invariance property of the region erasure function noticed
above, x : rer(A)+ → R, y+ : rer(A)+ ∈ rer(Γ). So we conclude: rer(Γ) `vn @(x, y+)
as required.

Proof of proposition 36 [region enrichment]

We define a region enrichment function ren from the programs of the λ`h,vn -calculus to those

of the λ`,rh,vn -calculus. With reference to Table 7, we recall that a program P of the λ`h,vn is
composed of a list of function definitions and a term. Thus P is decomposed uniquely as F [T]
where F is a functional context defined as follows

F ::= [] || let id = λid+.T in F .

We fix one region variable r and define the region enrichment function relatively to it as
follows:

ren(F [T]) = ren(F)[let all(r) in ren(T)] (Programs)

ren([]) = [] (Function contexts)
ren(let x = λy+.T in F) = let x = λr, y+.ren(T) in ren(F)

ren(@(x, y+)) = @(x, r, y+) (Restricted terms)
ren(let x = C in T) = let x = ren(C) in ren(T)
ren(` > T) = ` > ren(T)

ren(()) = () (Restricted let-bindable terms)
ren((x+)) = (x+)at(r)
ren(πi(x)) = πi(x)

The intuition is that a region r is created initially and never disposed, that all tuples are
allocated in this region, and that at every function call we pass this region as a parameter.
Then all functions when applied will produce (at most) an effect {r}.

Next we extend the region enrichment function to types as follows:

56

ren(t) = t

ren(A+ → R) = ∀r.ren(A)+
{r}−−→ R

ren(×()) = ×()
ren(×(A+)) = ×(ren(A)+)at(r)
ren((∃t.A)) = (∃t.ren(A))at(r)

We notice that function definitions are region closed and so are the functional types in
the image of the function ren. Let us denote with Γ0 a type context such that if x : A ∈ Γ0

then A is not a type of the shape ×(B+) or ∃t.B. It follows that frv(ren(Γ0)) = ∅.
We show the following enrichment property:

If Γ0,Γ `vn T then ren(Γ0,Γ) `rg ren(T) : {r}.

We detail three cases.

Tuple construction Suppose Γ0,Γ `vn let x = (y+) in T is derived from

Γ0,Γ `vn (y+) : A+ and Γ0,Γ, x : ×(A+) `vn T .

Then we derive:

ren(Γ0,Γ) `rg let x = (y+)at(r) in ren(T) : {r}

from:

ren(Γ0,Γ) `rg (y+)at(r) : ×(ren(A)+)at(r) and
ren(Γ0,Γ), x : ×(ren(A)+)at(r) `rg ren(T) : {r} (inductive hypothesis).

Projection Suppose Γ0,Γ `vn let x = πi(y) in T is derived from y : ×(A1, . . . , An) ∈ Γ,
1 ≤ i ≤ n, and Γ0,Γ, x : Ai `vn T . Then:

y : ×(ren(A1), . . . , ren(An))at(r) ∈ ren(Γ) and ren(Γ0,Γ, x : Ai) `vn ren(T) : {r} .

Hence:
ren(Γ0,Γ) `vn ren(let x = πi(y) in T) : {r} .

Application Suppose Γ0,Γ `vn @(x, y+) is derived from x : A+ → R, y+ : A+ ∈ Γ0,Γ. Then
we derive ren(Γ0,Γ) `rg @(x, r, y+) : {r} from:

x : ∀r.ren(A)+ {r}−−→ R, y+ : ren(A)+ ∈ ren(Γ0,Γ) .

Finally, we derive from the enrichment property above the following two properties which
suffice to derive the statement:

• If Γ0 `vn λx+.T : A+ → R then ren(Γ0) `rg ren(λx+.T) : ren(A+ → R).

• If Γ0 `vn T then ren(Γ0) `rg let all(r) in ren(T) : ∅.

57

Proof of proposition 37 [progress]

First we prove by induction on the structure of a heap context the following monotonicity
property of the coherence predicate:

if Coh(H,L) and L ⊆ L′ then Coh(H,L′).

Let frv(H) denote the set of region variables free in a heap context. If the program
P ≡ F [H[∆]] is typable then a judgement of the form Γ `rg H[∆] : e is derivable. We show
by induction on the typing of such judgement the following two properties:

1. Coh(H, frv(H)).

2. If r ∈ frv(H) then r ∈ e.

Because we assumed frv(P) = ∅ we must have frv(H) = ∅ and by the first property we
derive Coh(H, ∅). In other terms, in a typable program without free region variables the heap
context is coherent relatively to the empty set. We look at the shape of ∆.

Labelling If ∆ is a labelling then the program may reduce.

Application If ∆ is an application @(x, r∗, y+) then either the variable x is not bound in
the function context or it is bound to a function value. The fact that the number of
parameters matches the number of arguments is forced (as usual) by typing. Then a
reduction is possible.

Projection The last case is when the redex is a projection let x = πi(y) in T . Similarly to
the previous case, either y is not bound or it is bound to a tuple allocated at a region
r. Then we must be able to type a term of the shape:

Γ, y : (A)at(r) `rg H[let x = πi(y) in T] (1)

The fact that the projection is in the right range is forced (as usual) by typing. To fire
the transition we need to check that NDis(r,H) holds. In fact let us argue that if the
predicate does not hold then the judgement (1) above cannot be typed. By inspecting
the definition of NDis(r,H) we see that for the predicate to fail, H must have the
shape H1[dis(r) in [H2]] for a heap context H1 which contains neither allocations nor
disposals on the region r. But then H2[let x = πi(y) in T] must produce a visible effect
on r. Indeed the typing system records an effect on r when projecting y and this effect
cannot be hidden by an allocation because the region variable r is free in the context
Γ, y : (A)at(r). Then the typing of dis(r) in [H2[let x = πi(y) in T]] fails because the
typing forbids disposing a region which is in the effect of the continuation.

Proof of proposition 38 [subject reduction, types and effects]

First we prove some standard properties (cf. proof of proposition 24) and a specific property
on injective region substitutions.

Weakening If Γ `rg P : e then Γ, x : A `rg P : e with x fresh.

Variable substitution If Γ, x : A `rg P : e and y : A ∈ Γ then Γ `rg [y/x]P : e.

58

Type substitution If Γ `rg P : e then [B/t](Γ) `rg P : e.

Injective region substitution If Γ `rg T : e and σ is a (finite domain) region substitution
which is injective on frv(T) ∪ e then σΓ `rg σT : σe.

We detail the proof of the last property which proceeds by induction on the typing proof
of Γ `rg T : e.

Application Suppose Γ `rg @(x, r∗, y+) : [r∗/r∗1]e is derived from x : B, y+ : [r∗/r∗1]A+ ∈ Γ,

B ≡ ∀r1.A
+ e−→ R, frv(B) = ∅, r∗ distinct variables. Notice that frv(A+) ∪ e ⊆ {r∗1}. It

follows that frv(@(x, r∗, y+))∪ [r∗/r∗1]e = {r∗}. So suppose σ is an injective substitution
on r∗ so that r′∗ = (σr)∗. We remark:

σB ≡ B
σ[r∗/r∗1]A+ ≡ [r′∗/r∗1]A+

σ[r∗/r∗1]e ≡ [r′∗/r∗1]e
σ@(x, r∗, y+) ≡ @(x, r′∗, y+)
σr∗ distinct

Then we can prove σΓ `rg σ@(x, r∗, y+) : σ([r∗/r∗1]e) by the typing rule for application.

Unit Suppose Γ `rg let x = () in T : e is derived from Γ, x : ×() `rg T : e and σ is injective
on frv(let x = () in T) ∪ e. Then σ is injective on frv(T) ∪ e, by inductive hypothesis
σΓ, x : ×() `rg σT : σe, and we conclude σΓ `rg σ(let x = () in T) : σe.

Product Suppose
Γ `rg let x = (y+)at(r) in T : e ∪ {r}

is derived from
Γ, x : ×(A+)at(r) `rg T : e,

y+ : A+ ∈ Γ and σ is injective on the set:

frv(let x = (y+)at(r) in T) ∪ e ∪ {r} = frv(T) ∪ e ∪ {r} .

Then σ is injective on frv(T) ∪ e. By inductive hypothesis:

σΓ, x : (×(σA+))at(σr) `rg σT : σe .

Moreover y+ : (σA)+ ∈ σΓ. So we conclude:

σΓ `rg (let x = (y+)at(σr) in T) : σe ∪ {σr} .

Existential This case is similar to the previous one. Suppose:

Γ `rg let x = (y)at(r) in T : e ∪ {r}

is derived from:
Γ, x : (∃t.A)at(r) `rg T : e ,

y : [B/t]A ∈ Γ and σ is injective on the set:

frv(let x = (y)at(r) in T) ∪ e ∪ {r} = frv(T) ∪ e ∪ {r} .

59

Then σ is injective on frv(T) ∪ e. By inductive hypothesis:

σΓ, x : (∃t.σA)at(σr) `rg σT : σe .

Moreover y : σ[B/t]A ∈ σΓ. We notice σ[B/t]A ≡ [σB/t]σA and σ(∃t.A) ≡ ∃t.σA.
Then we conclude:

σΓ `rg (let x = (y)at(σr) in T) : σe ∪ {σr} .

Projection Suppose:
Γ `rg let x = πi(y) in T : e ∪ {r}

is derived from y : ×(A1, . . . , An)at(r) ∈ Γ, 1 ≤ i ≤ n, Γ, x : Ai `rg T : e, and σ is
injective on frv(let x = πi(y) in T) ∪ e ∪ {r}. Then σ is injective on frv(T) ∪ e and by
inductive hypothesis:

σΓ, x : σ(×(A1, . . . , An)at(r)) `rg σT : σe .

We conclude:
σΓ `rg σ(let x = πi(y) in T) : σe ∪ {σr} .

The case where y has an existential type is similar.

Disposal Suppose Γ `rg dis(r) in T : e ∪ {r} is derived from Γ `rg T : e, r /∈ e, and σ is
injective on frv(dis(r) in T)∪ e∪ {r}. Then σ is injective on frv(T)∪ e and by inductive
hypothesis σΓ `rg σT : σe. Also σr /∈ σe. We conclude:

σΓ `rg σ(dis(r) in T) : σe ∪ {σr} .

Allocation Suppose Γ `rg let all(r) in T : e is derived from Γ `rg T : e ∪ {r}, r /∈ e ∪ frv(Γ),
and σ is injective on frv(let all(r) in T) ∪ e. Up to renaming, we can choose r so that
it is not in the domain or image of σ. Then σ is injective on frv(T) ∪ e ∪ {r} and by
inductive hypothesis σΓ `rg σT : σe ∪ {σr}. Also, by the choice above, σr /∈ σe ∪ σΓ.
We conclude σΓ `rg σ(let all(r) in T) : σe.

Labelling Suppose Γ `rg ` > T : e is derived from Γ `rg T : e and σ is injective on frv(` >
T)∪{e}. By inductive hypothesis σΓ `rg σT : σe and we conclude σΓ `rg σ(` > T) : σe.

Subeffect Suppose Γ `rg P : e is derived from Γ `rg P : e′, e′ ⊆ e, and σ is injective on
frv(P) ∪ e. By inductive hypothesis σΓ `rg σP : σe′ and we conclude σΓ `rg σP : σe.

If ΓP `rg P : eP then we know that P ≡ F [H[∆]] and the reduced term has the shape
F [H[∆′]]. For some Γ we have Γ `rg ∆ : e′. We show that then Γ `rg ∆′ : e′ and frv(∆′) ⊆
frv(∆). Then we claim that the typing proof for the surrounding context F [H] can be ported
to the program F [H[∆′]].

We proceed by case analysis on the reduction rule applied and its typing. Notice that
the typing is syntax directed except for the subeffect rule. So for instance, if Γ `rg ∆ : e′

and ∆ is an application then for some e′′ ⊆ e′ we can derive Γ `rg ∆ : e′′ where the last rule
being applied is the one for application. A similar argument holds for the cases where ∆ is a
projection or a labelling.

60

Application Suppose Γ `rg @(x, r∗, y+) : e′′ with e′′ = [r∗/r∗1]e is derived from x : B, y+ :

[r∗/r∗1]A+ ∈ Γ, B ≡ ∀r1.A
+ e−→ R, frv(B) = ∅, r∗ distinct variables. Since the program

reduces, x must be bound to a region closed function λr∗1, z
+.T in the functional context

F and Γ1, z
+ : A+ `rg T : e where Γ1 is a prefix of Γ and {r∗1} ∩ frv(Γ1) = ∅. We notice

that the substitution σ = [r∗/r∗1] is injective on frv(T)∪e ⊆ {r∗1}, hence by the injective
substitution property we derive:

Γ1, z
+ : (σA)+ `rg σT : σe .

Notice that we must have y+ : (σA)+ ∈ Γ1 hence by the variable substitution property
and weakening we derive:

Γ `rg σ[r∗/r∗1, y
+/z+]T : [r∗/r∗1]e .

We conclude by noticing that:

frv([r∗/r∗1, y
+/z+]T) ⊆ frv(@(x, r∗, y+)) = {r∗} .

Projection Suppose Γ `rg let x = πi(y) in T : e∪ {r} is derived from y : ×(A1, . . . , An) ∈ Γ,
1 ≤ i ≤ n Γ, x : Ai `rg T : e. Since the program reduces, y must be bound to a tuple
(z1, . . . , zn)at(r) in the heap context H and z1 : A1, . . . , zn : An ∈ Γ. Then by variable
substitution we derive Γ `rg [zi/x]T : e. Also notice that frv([zi/x]T) = frv(let x =
πi(y) in T).

The case where y has an existential type is similar except that it relies on type substi-
tution too (cf. proof of proposition 24).

Labelling Suppose Γ `rg ` > T : e is derived from Γ `rg T : e. Since ∆ ≡ ` > T
`−→ T , the

conclusion is immediate.

Proof of theorem 39 [region simulation]

First, we observe that the region erasure function commutes with variable substitution:

[x/y]rer(T) ≡ rer([x/y]T) .

By proposition 31, P decomposes as F [H[∆]] where ∆ is either an application, or a projection,
or a labelling. The region erasure function commutes with this decomposition too, so that we
can write rer(P) as rer(F)[rer(H)[rer(∆)]], where rer(F)[rer(H)] is an evaluation context.
If rer(P)

α−→ Q then we proceed by case analysis on the reduction rule being applied. We
detail the case where ∆ is an application @(x, r∗, y+). Then we must have F ≡ F1[let x =
λr∗1, z

+.T in F2] and

rer(P) ≡ rer(F1)[let x = λz+.rer(T) in rer(F2)[rer(H)[@(x, y+)]]
→ rer(F1)[let x = λz+.rer(T) in rer(F2)[rer(H)[[y+/z+]rer(T)]] .

Since P is typable, the heap context is coherent and then P can simulate the reduction above
as follows:

P → F [H[[r∗/r∗1, y
+/z+]T]]

noticing that rer([r∗/r∗1, y
+/z+]T) ≡ [y+/z+]rer(T) (initial remark and invariance of the

region erasure function under region substitutions).

61

A Polynomial Time λ-calculus
with Multithreading and Side Effects ∗

Antoine Madet
Univ Paris Diderot, Sorbonne Paris Cité

PPS, UMR 7126, CNRS, F-75205 Paris, France
madet@pps.univ-paris-diderot.fr

Abstract
The framework of light logics has been extensively studied to con-
trol the complexity of higher-order functional programs. We pro-
pose an extension of this framework to multithreaded programs
with side effects, focusing on the case of polynomial time. After
introducing a modal λ-calculus with parallel composition and re-
gions, we prove that a realistic call-by-value evaluation strategy
can be computed in polynomial time for a class of well-formed
programs. The result relies on the simulation of call-by-value by
a polynomial shallow-first strategy which preserves the evaluation
order of side effects. Then, we provide a polynomial type system
that guarantees that well-typed programs do not go wrong. Finally,
we illustrate the expressivity of the type system by giving a pro-
gramming example of concurrent iteration producing side effects
over an inductive data structure.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]: Formal Definitions and Theory; F.2 [Analysis of Algo-
rithms and Problem Complexity]: General

Keywords λ-calculus, side effect, region, thread, resource analy-
sis.

1. Introduction
Quantitative resource analysis of programs is a challenging task
in computer science. Besides being essential for the development
of safety-critical systems, it provides interesting viewpoints on the
structure of programs.

The framework of light logics (see e.g. LLL [12], ELL [10],
SLL [13]) which originates from Linear Logic [11], have been
deeply studied to control the complexity of higher-order functional
programs. In particular, polynomial time λ-calculi [5, 18] have
been proposed as well as various type systems [8, 9] guaranteeing
complexity bounds of functional programs. Recently, Amadio and

∗ Work partially supported by project ANR-08-BLANC-0211-01 “COM-
PLICE” and the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the European
Commission, under FET-Open grant number: 243881 (project CerCo).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’12, September 19–21, 2012, Leuven, Belgium.
Copyright c© 2012 ACM 978-1-4503-1522-7/12/09. . . $10.00

the author proposed an extension of the framework to a higher-
order functional language with multithreading and side effects [16],
focusing on the case of elementary time (ELL).

In this paper, we consider a more reasonable complexity class:
polynomial time. The functional core of the language is the light
λ-calculus [18] that features the modalities bang (written ‘!’) and
paragraph (written ‘§’) of LLL. The notion of depth (the number
of nested modalities) which is standard in light logics is used to
control the duplication of data during the execution of programs.
The language is extended with side effects by means of read and
write operations on regions which were introduced to represent
areas of the store [15]. Threads can be put in parallel and interact
through a shared state.

There appears to be no direct combinatorial argument to bound
a call-by-value evaluation strategy by a polynomial. However,
the shallow-first strategy (i.e. redexes are eliminated in a depth-
increasing order) is known to be polynomial in the functional
case [4, 12]. Using this result, Terui shows [18] that a class of
well-formed light λ-terms strongly terminates in polynomial time
(i.e. every reduction strategy is polynomial) by proving that any
reduction sequence can be simulated by a longer one which is
shallow-first. Following this method, our contribution is to show
that a class of well-formed call-by-value programs with side ef-
fects and multithreading can be simulated in polynomial time by
shallow-first reductions. The bound covers any scheduling policy
and takes thread generation into account.

Reordering a reduction sequence into a shallow-first one is non-
trivial: the evaluation order of side effects must be kept unchanged
in order to preserve the semantics of the program. An additional
difficulty is that reordering produces non call-by-value sequences
but fails for an arbitrary larger relation (which may even require
exponential time). We identify an intermediate outer-bang relation
−→ob which can be simulated by shallow-first ordering and this
allows us to simulate the call-by-value relation −→v which is
contained in the outer-bang relation. We illustrate this development
in Figure 1.

The paper is organized as follows. We start by presenting the
language with multithreading and regions in Section 2 and define
the largest reduction relation. Then, we introduce a polynomial
depth system in Section 3 to control the depth of program occur-
rences. Well-formed programs in the depth system follow Terui’s
discipline [18] on the functional side and the stratification of re-
gions by depth level that we introduced previously [16]. We prove
in Section 4 that the class of outer-bang strategies (containing call-
by-value) can be simulated by shallow-first reductions of exactly
the same length. We review the proof of polynomial soundness of
the shallow-first strategy in Section 5. We provide a polynomial
type system in Section 6 which results from a simple decoration of
the polynomial depth system with linear types. We derive the stan-

PTIME

(

−→v (−→ob (−→

fail

−→v (−→ob ⊆ PTIME

implies

: reordering into shallow-first preserving
length and semantics of reductions

Figure 1. Simulation by shallow-first ordering

dard subject reduction proposition and progress proposition which
states that well-types programs reduce to values. Finally, we illus-
trate the expressivity of the type system in Section 7 by showing
that it is polynomially complete in the extensional sense and we
give a programming example of a concurrent iteration producing
side effects over an inductive data structure.

2. A modal λ-calculus
with multithreading and regions
As mentioned previously, the functional core of the language is a
modal λ-calculus with constructors and destructors for the modali-
ties ‘!’ and ‘§’ that are used to control the duplication of data. The
global store is partitioned into a finite number of regions where
each region abstracts a set of memory locations. Following [1],
side effects are produced by read and write operators on regions.
A parallel operator allows to evaluate concurrently several terms
which can communicate through regions. As we shall see in Sec-
tion 7, this abstract non-deterministic language entails complexity
bounds for languages with concrete memory locations representing
e.g. references, channels or signals.

The syntax of the language is presented in Figure 2. We have

-variables x, y, . . .
-regions r, r′, . . .
-terms M ::= x | r | ⋆ | λx.M | MM | !M | §M

let !x = M in M | let §x = M in M
get(r) | set(r,M) | (M ‖ M)

-stores S ::= r ⇐ M | (S ‖ S)
-programs P ::= M | S | (P ‖ P)

Figure 2. Syntax of the language

the usual set of variables x, y, . . . and a set of regions r, r′, . . .
The set of terms M contains variables, regions, the terminal value
(unit) ⋆, λ-abstractions, applications, modal terms !M and §M
(resp. called !-terms and §-terms) and the associated let !-binders
and let §-binders. We have an operator get(r) to read a region r, an
operator set(r,M) to assign a term M to a region r and a parallel
operator (M ‖ N) to evaluate M and N in parallel. A store S is
the composition of several assignments r ⇐ M in parallel and
a program P is the combination of several terms and stores in
parallel. Note that stores are global, i.e. they always occur in empty
contexts.

In the following we write † for † ∈ {!, §} and we define †0M =
M and †n+1M = †(†nM). Terms λx.M and let †x = N in M
bind occurrences of x in M . The set of free variables of M is

denoted by FV(M). The number of free occurrences of x in M
is denoted by FO(x,M). The number of free occurrences in M is
denoted by FO(M). M [N/x] denotes the term M in which each
free occurrence of x has been substituted by N .

Each program has an abstract syntax tree where variables, re-
gions and unit constants are leaves, λ-abstractions and †-terms have
one child, and applications and let †-binders have two children. An
example is given in Figure 3. A path starting from the root to a

P = let !x = get(r) in set(r, (!x)(§x)) ‖ r ⇐ !(λx.x⋆)

‖ǫ

let !x0

get(r)00 set(r)01

@010

!0100

x01000

§0101

x01010

r ⇐1

!10

λx100

@1000

x10000 ⋆10001

Figure 3. Syntax tree and addresses of P

node of the tree denotes an occurrence of the program whose ad-
dress is a word w ∈ {0, 1}∗ hereby denoted in exponent form. We
write w ⊑ w′ when w is a prefix of w′. We denote the number of
occurrences in P by |P |.

The operational semantics of the language is given in Figure 4.
In order to prove the later simulation result, the largest reduction
relation −→ (which shall contain call-by-value) is presented.

-structural rules-
P ‖ P ′ ≡ P ′ ‖ P

(P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

-evaluation contexts-
E ::= [·] | λx.E | EM | ME | !E | §E

let !x = E in M | let §x = E in M
let !x = M in E | let §x = M in E
set(r,E) | r ⇐ E | (E ‖ P) | (P ‖ E)

-reduction rules-
(β) E[(λx.M)N] −→ E[M [N/x]]
(!) E[let !x = !N inM] −→ E[M [N/x]]
(§) E[let §x = §N in M] −→ E[M [N/x]]
(get) E[get(r)] ‖ r ⇐ M −→ E[M]
(set) E[set(r,M)] −→ E[⋆] ‖ r ⇐ M–if FV(M) = ∅
(gc) E[⋆ ‖ M] −→ E[M]

Figure 4. Operational semantics

Programs are considered up to a structural equivalence ≡ which
contains the equations for α-renaming, commutativity and associa-
tivity of parallel composition. Reduction rules apply modulo struc-
tural equivalence, in an evaluation context E which can be any pro-
gram with exactly one occurrence of a special variable ‘[·]’, called
the hole. We write E[M] for E[M/[·]]. Each rule is identified by its
name. (β) is the usual β-reduction. (†) are rules for filtering modal
terms. (get) is for consuming a term from a region. (set) is for as-
signing a closed term to a region. (gc) is for erasing a terminated
thread.

First, note that the reduction rule (set) generates a global assign-
ment, that is out of the evaluation context E. In turn, we require M

to be closed such that it does not contain variables bound in E. Sec-
ond, several terms can be assigned to a single region. This cumu-
lative semantics allows the simulation of several memory locations
by a single region. In turn, reading a region consists in consuming
non-deterministically one of the assigned terms.

The reduction is very ‘liberal’ with side effects. The contexts
(P ‖ E) and (E ‖ P) embed any scheduling of threads. Moreover,
contexts of the shape r ⇐ E allow evaluation in the store as
exemplified in the following possible reduction:

set(r, λx.get(r)) ‖ r ⇐ M −→ ⋆ ‖ r ⇐ λx.get(r) ‖ r ⇐ M
−→ ⋆ ‖ r ⇐ λx.M

In the rules (β), (†), (gc), the redex denotes the term inside the
context of the left hand-side and the contractum denotes the term
inside the context of the right hand-side. In the rule (get), the redex
is get(r) and the contractum is M . In the rule (set), the redex
is set(r,M) and the contractum is M . Finally, −→+ denotes the
transitive closure of −→ and −→∗ denotes the reflexive closure of
−→+.

3. A polynomial depth system
In this section, we first review the principles of well-formed light
λ-terms (Subsection 3.1) and then the stratification of regions by
depth level (Subsection 3.2). Eventually we combine the two as
a set of inference rules that characterizes a class of well-formed
programs (Subsection 3.3).

3.1 On light λ-terms
First, we define the notion of depth.

Definition 1. The depth d(w) of an occurrence w in a program
P is the number of † labels that the path leading to the end node
crosses. The depth d(P) of program P is the maximum depth of its
occurrences.

With reference to Figure 3, d(01000) = d(01010) = d(100) =
d(1000) = d(10000) = d(10001) = 1, whereas other occur-
rences have depth 0. In particular, d(0100) = d(0101) = d(10) =
0; what matters in computing the depth of an occurrence is the num-
ber of †’s that precede strictly the end node. Thus d(P) = 1. In the
sequel, we say that a program occurs at depth i when it corresponds
to an occurrence of depth i. For example, get(r) occur at depth 0
in P . We write i−→ when the redex occurs at depth i; we write |P |i
for the number of occurrences at depth i of P .

Then we can define shallow-first reductions.

Definition 2. A shallow-first reduction sequence P1
i1−→ P2

i2−→
. . .

in−→ Pn is such that m < n implies im ≤ in. A shallow-first
strategy is a strategy that produces shallow-first sequences.

The polynomial soundness of shallow-first strategies relies on

the following properties: when P
i

−→∗ P ′,

d(P ′) ≤ d(P) (3.1)

|P ′|j ≤ |P |j for j < i (3.2)

|P ′|i < |P |i (3.3)

|P ′| ≤ |P |2 (3.4)

To see this in a simple way, assume P is a program such that
d(P) = 2. By properties (3.1),(3.2),(3.3) we can eliminate all the

redexes of P with the shallow-first sequence P
0

−→∗ P ′ 1

−→∗

P ′′ 2

−→∗ P ′′′. By property (3.4), |P ′′′| ≤ |P |8. By properties (3.3)
the length l of the sequence is such that l ≤ |P |+ |P ′|+ |P ′′| = p.

Since we can show that p ≤ |P |8 we conclude that the shallow-first
evaluation of P can be computed in polynomial time.

The well-formedness criterions of light λ-terms are intended to
ensure the above four properties. These criterions can be summa-
rized as follows:

• λ-abstraction is affine: in λx.M , x may occur at most once and
at depth 0 in M .

• let !-binders are for duplication: in let !x = M in N , x may
occur arbitrarily many times and at depth 1 in N .

• let §-binders are affine: in let §x = M in N , x may occur at
most once and at depth 1 in N . The depth of x must be due to a
§ modality.

• a !-term may contain at most one occurrence of free variable,
whereas a §-term can contain many occurrences of free vari-
ables.

By the first three criterions, we observe the following. The depth
of a term never increases (property (3.1)) since the reduction rules
(β),(!) and (§) substitute a term for a variable occurring at the same
depth. Reduction rules (β) and (§) are strictly size-decreasing since
the corresponding binders are affine. A reduction (!) is strictly size-
decreasing at the depth where the redex occurs but potentially size-
increasing at deeper levels. Therefore properties (3.2) and (3.3)
are also guaranteed. The fourth criterion is intended to ensure a
quadratic size increase (property (3.4)). Indeed, take the term Z
borrowed from [18] that respects the first three criterions but not
the fourth:

Z = λx.let !x = x in !(xx)

Z . . . (Z(Z︸ ︷︷ ︸
n times

!y)) −→∗ !(yy . . . y︸ ︷︷ ︸
2n times

) (3.5)

It may trigger an exponential size explosion by repeated application
of the duplicating rule (!). The following term

Y = λx.let !x = x in §(xx)
Y . . . (Y (Y︸ ︷︷ ︸

n times

!y))

−→∗ Y . . . (Y (Y︸ ︷︷ ︸
n−2 times

(let !x = §(yy) in §(xx)))) 9
(3.6)

respects the four criterions but cannot be used to apply (!) expo-
nentially.

3.2 On the stratification of regions by depth
In our previous work on elementary time [16], we analyzed the
impact of side effects on the depth of occurrences and remarked that
arbitrary reads and writes could increase the depth of programs. In
the reduction sequence

(λx.set(r, x) ‖ §get(r))!M −→∗ §get(r) ‖ r ⇐ !M

−→ §!M (3.7)

the occurrence M moves from depth 1 to depth 2 during the last
reduction step, because the read occurs at depth 0 while the write
occurs at depth 1.

Following this analysis, we introduced region contexts in order
to constrain the depth at which side effects occur. A region context

R = r1 : δ1, . . . , rn : δn

associates a natural number δi to each region ri in a finite set of
regions {r1, . . . , rn} that we write dom(R). We write R(ri) for
δi. Then, the rules of the elementary depth system were designed
in such a way that get(ri) and set(ri,M) may only occur at depth
δi, thus rejecting (3.7).

Moreover, we remarked that since stores are global, that is
they always occur at depth 0, assigning a term to a region breaks
stratification whenever δi > 0. Indeed, in the reduction

§set(r,M) −→ §⋆ ‖ r ⇐ M (3.8)

where R(r) should be 1, the occurrence M moves from depth 1 to
depth 0. Therefore, we revised the definition of depth as follows.

Definition 3. Let P be a program and R a region context where
dom(R) contains all the regions of P . The revised depth d(w) of
an occurrence w of P is the number of † labels that the path leading
to the end node crosses, plus R(r) if the path crosses a store label
r ⇐. The revised depth d(P) of a program P is the maximum
revised depth of its occurrences.

By considering this revised definition of depth, in (3.8) the oc-
currence M stays at depth 1. In Figure 3 we now get d(01000) =
d(01010) = 1, d(10) = R(r) and d(100) = d(1000) =
d(10000) = d(10001) = R(r) + 1. Other occurrences have depth
0. From now on we shall say depth for the revised definition of
depth.

3.3 Inference rules
Now we introduce the inference rules of the polynomial depth
system. First, we define region contexts R and variable contexts
Γ as follows:

R = r1 : δ1, . . . , rn : δn
Γ = x1 : u1, . . . , xn : un

Regions contexts are described in the previous subsection. A vari-
able context associates each variable with a usage u ∈ {λ, §, !}
which constrains the variable to be bound by a λ-abstraction, a
let §-binder or a let !-binder respectively. We write Γu if dom(Γ)
only contains variables with usage u. A depth judgement has the
shape

R; Γ ⊢δ P

where δ is a natural number. It should entail the following:

• if x : λ ∈ Γ then x occurs at depth δ in †δP ,

• if x : † ∈ Γ then x occurs at depth δ + 1 in †δP ,

• if r : δ′ ∈ R then get(r)/set(r) occur at depth δ′ in †δP .

The inference rules of the depth system are presented in Fig-
ure 5. We comment on the handling of usages. Variables are intro-
duced with usage λ. The construction of !-terms updates the usage
of variables to ! if they all previously had usage λ. The construc-
tion of §-terms updates the usage of variables to § for one part and
! for the other part if they all previously had usage λ. In both con-
structions, contexts with other usages can be weakened. As a re-
sult, λ-abstractions bind variables occurring at depth 0, let !-binders
bind variables occurring at depth 1 in !-terms or §-terms, and let §-
binders bind variables occurring at depth 1 in §-terms.

To control the duplication of data, the rules for binders have
predicates which specify how many occurrences can be bound. λ-
abstractions and let §-binders are linear by predicate FO(x,M) =
1 and let !-binders are at least linear by predicate FO(x,M) ≥ 1.

The depth δ of the judgement is decremented when constructing
†-terms. This allows to stratify regions by depth level by requiring
that δ = R(r) in the rules for get(r) and set(r,M). A store
assignment r ⇐ M is global hence its judgement has depth 0
whereas the premise has depth R(r) (this reflects the revised notion
of depth).

Definition 4. (Well-formedness) A program P is well-formed if a
judgement R; Γ ⊢δ P can be derived for some R, Γ and δ.

x : λ ∈ Γ

R; Γ ⊢δ x R; Γ ⊢δ ⋆ R; Γ ⊢δ r

FO(x,M) = 1
R; Γ, x : λ ⊢δ M

R; Γ ⊢δ λx.M

R; Γ ⊢δ M R; Γ ⊢δ N

R; Γ ⊢δ MN

FO(M) ≤ 1
R; Γλ ⊢δ+1 M

R; Γ!,∆§,Ψλ ⊢δ !M

FO(x,N) ≥ 1 R; Γ ⊢δ M
R; Γ, x : ! ⊢δ N

R; Γ ⊢δ let !x = M in N

R; Γλ,∆λ ⊢δ+1 M

R; Γ!,∆§,Ψλ ⊢δ §M

FO(x,N) = 1 R; Γ ⊢δ M
R; Γ, x : § ⊢δ N

R; Γ ⊢δ let §x = M in N

r : δ ∈ R

R; Γ ⊢δ get(r)

r : δ ∈ R R; Γ ⊢δ M

R; Γ ⊢δ set(r,M)

r : δ ∈ R R; Γ ⊢δ M

R; Γ ⊢0 r ⇐ M

i = 1, 2 R; Γ ⊢δ Pi

R; Γ ⊢δ (P1 ‖ P2)

Figure 5. A polynomial depth system

Example 1. The program P of Figure 3 is well-formed by compo-
sition of the two derivation trees of Figure 6. The program Z given
in (3.5) is not well-formed.

The depth system is strictly linear in the sense that it is not
possible to bind 0 occurrences. We shall see in Section 4 that it
allows for a major simplification of the proof of simulation. How-
ever, this impossibility to discard data is a notable restriction over
light λ-terms. In a call-by-value setting, the sequential composition
M ;N is usually encoded as the non well-formed term (λz.N)M
where z /∈ FV(N) is used to discard the terminal value of M .
We show that side effects can be used to simulate the discarding of
data even though the depth system is strictly linear. Assume that we
dispose of a specific region gr collecting ‘garbage’ values at each
depth level of a program. Then M ;N could be encoded as the well-
formed program (λz.set(gr, z) ‖ N)M . Using a call-by-value se-
mantics, we would observe the following reduction sequence

M ;N −→∗ V ;N −→ set(gr, V) ‖ N −→ ⋆ ‖ N ‖ gr ⇐ V

−→ N ‖ gr ⇐ V

where ⋆ has been erased by (gc) and V has been garbage collected
into gr.

Finally we derive the following lemmas on the depth system in
order to get the subject reduction proposition.

Lemma 1 (Weakening and Substitution).

1. If R; Γ ⊢δ P then R; Γ,Γ′ ⊢δ P .
2. If R; Γ, x : λ ⊢δ M and R; Γ ⊢δ N

then R; Γ ⊢δ M [N/x].
3. If R; Γ, x : § ⊢δ M and R; Γ ⊢δ §N

then R; Γ ⊢δ M [N/x].
4. If R; Γ, x : ! ⊢δ M and R; Γ ⊢δ !N

then R; Γ ⊢δ M [N/x].

Proposition 1 (Subject reduction). If R; Γ ⊢δ P and P −→ P ′

then R; Γ ⊢δ P ′ and d(P) ≥ d(P ′).

r : 0;− ⊢0 r

r : 0;− ⊢0 get(r)

r : 0; x : ! ⊢0 r

r : 0;x : λ ⊢1 x

r : 0; x : ! ⊢0 !x

r : 0; x : λ ⊢1 x

r : 0;x : ! ⊢0 §x
r : 0;x : ! ⊢0 !x§x

r : 0; x : ! ⊢0 set(r, !x§x)
r : 0;− ⊢0 let !x = get(r) in set(r, !x§x)

r : 0;x : λ ⊢1 x r : 0; x : λ ⊢1 ⋆

r : 0;x : λ ⊢1 x⋆

r : 0;− ⊢1 λx.x⋆

r : 0;− ⊢0 !(λx.x⋆)

r : 0;− ⊢0 r ⇐ !(λx.x⋆)

Figure 6. Derivation trees

4. Simulation by shallow-first
In this section, we first explain why we need a class of outer-bang
reduction strategies (Subsection 4.1). Then, we prove that shallow-
first simulates any outer-bang strategy and that the result applies to
call-by-value (Subsection 4.2).

4.1 Towards outer-bang strategies
Reordering a reduction sequence into a shallow-first one is an
iterating process where each iteration consists in commuting two
consecutive reduction steps which are applied in ‘deep-first’ order.

First, we show that this process requires a reduction which
is strictly larger than an usual call-by-value relation. Informally,
assume †V denotes a value. The following two reduction steps in
call-by-value style

set(r, †M)
1−→ set(r, †V)

0−→ ⋆ ‖ r ⇐ †V
commute into the shallow-first sequence

set(r, †M)
0−→ ⋆ ‖ r ⇐ †M 1−→ ⋆ ‖ r ⇐ †V

which is obviously not call-by-value: first, we write a non-value
†M to the store and second we reduce in the store! As another
example, the following two reduction steps in call-by-value style

(λx.λy.xy)†M 1−→ (λx.λy.xy)†V 0−→ λy.(†V)y

commute into the shallow-first sequence

(λx.λy.xy)†M 0−→ λy.(†M)y
i−→ λy.(†V)y

which is not call-by-value: we need to reduce inside a λ-abstraction
and this is not compatible with the usual notion of value.

Second, we show that an arbitrary relation like −→ is too large
to be simulated by shallow-first sequences. For instance, consider
the following reduction of a well-formed program:

let !x = !get(r) in §(xx) ‖ r ⇐ M

1−→ let !x = !M in §(xx)
0−→ §(MM)

(4.1)

This sequence is deep-first; it can be reordered into a shallow-first
one as follows:

let !x = !get(r) in §(xx) ‖ r ⇐ M

0−→ §(get(r)get(r)) ‖ r ⇐ M

1−→ §(Mget(r)) 9

(4.2)

However, the sequence cannot be confluent with the previous one
for we try to read the region two times by duplicating the redex
get(r). It turns out that a non shallow-first strategy may require
exponential time in the presence of side effects. Consider the well-
formed λ-abstraction

F = λx.let §x = x in §set(r, x); !get(r)
which transforms a §-term into a !-term (think of the type §A ⊸ !A
that would be rejected in LLL). Then, building on program Z given

in (3.5), take

Z′ = λx.let !x = x in F §(xx)
We observe an exponential explosion of the size of the following
well-formed program:

Z′Z′ . . . Z′
︸ ︷︷ ︸

n times

!⋆

−→∗ Z′Z′ . . . Z′
︸ ︷︷ ︸

n−1 times

(F §(⋆⋆))

−→∗ Z′Z′ . . . Z′
︸ ︷︷ ︸

n−1 times

(!(⋆⋆)) ‖ gr ⇐ §⋆

−→∗ !(⋆ ⋆ . . . ⋆︸ ︷︷ ︸)
2n times

‖ gr ⇐ §⋆ ‖ . . . ‖ gr ⇐ §⋆︸ ︷︷ ︸
n times

where gr is a region collecting the garbage produced by the se-
quential composition operator of F . This previous sequence is not
shallow-first since the redexes set(r,M) and get(r) occurring at
depth 1 are alternatively applied with other redexes occurring at
depth 0. A shallow-first strategy would produce the reduction se-
quence

Z′Z′ . . . Z′
︸ ︷︷ ︸

n times

!⋆ −→∗ !(⋆ ⋆ get(r)get(r) . . . get(r)︸ ︷︷ ︸
n−1 times

) ‖ S

where S is the same garbage store as previously but we observe no
size explosion.

Following these observations, our contribution is to identify an
intermediate outer-bang reduction relation that can be simulated
by shallow-first sequences. The keypoint is to prevent reductions
inside !-terms like in sequence (4.1). For this, we define the outer-
bang evaluation contexts F in Figure 7. They are not decomposable

F ::= [·] | λx.F | FM | MF | §F
let †x = F in M | let †x = M in F
set(r, F) | (F ‖ M) | (M ‖ F) | r ⇐ F

Figure 7. Outer-bang evaluation contexts

in a context of the shape E[!E′] and thus cannot be used to reduce
in !-terms. In the sequel, −→ob denotes reduction modulo evalua-
tion contexts F .

4.2 Simulation of outer-bang strategies
After identifying a proper outer-bang relation −→ob, the main
difficulty is to preserve the evaluation order of side effects by
shallow-first reordering. For example, the following two reduction
steps do not commute:

F1[set(r,Q)] ‖ F2[get(r)]

i−→ F1[⋆] ‖ F2[get(r)] ‖ r ⇐ Q

j−→ F1[⋆] ‖ F2[Q]

(4.3)

We claim that this is not an issue since the depth system enforces
that side effects on a given region can only occur at fixed depth,
hence that i = j. Therefore, we should never need to ‘swap’ a read
with a write on the same region.

We can prove the following crucial lemma.

Lemma 2 (Swapping). Let P be a well-formed program such that
P

i−→ob P1
j−→ob P2 and i > j. Then, there exists P ′ such that

P
j−→ob P ′ i−→ob P2.

Proof. We write M the contractum of the reduction P
i−→ob P1

and N the redex of the reduction P1
j−→ob P2. Assume they occur

at addresses wm and wn in P1. We distinguish three cases: (1) M
and N are separated (neither wm ⊑ wn nor wm ⊒ wn); (2) M
contains N (wm ⊑ wn); (3) N strictly contains M (wm ⊒ wn and
wm 6= wn). For each of them we discuss a crucial subcase:

1. Assume M is the contractum of a (set) rule and that N is
the redex of a (get) rule related to the same region. This case
has been introduced in example (4.3) where M and N are
separated by a parallel node. By well-formedness of P , the
redexes get(r) and set(r,Q) must occur at the same depth, that
is i = j, and we conclude that we do not need to swap the
reductions.

2. If the contractum M contains the redex N , N may not exist yet
in P which makes the swapping impossible. We remark that,
for any well-formed program Q such that Q d−→ob Q′, both the
redex and the contractum occur at depth d. In particular, this is
true when a contractum occurs in the store as follows:

Q = F [set(r, T)]
d−→ob Q′ = F [⋆] ‖ r ⇐ T

By well-formedness of Q, there exists a region context R such
that R(r) = d and the redex set(r, T) occurs at depth d. By the
revised definition of depth, the contractum T occurs at depth d
in the store. As a result of this remark, M occurs at depth i and
N occurs at depth j. Since i > j, it is clear that the contractum
M cannot contain the redex N and this case is void.

3. Let N be the redex let §x = §R in Q and let the contractum
M appears in R as in the following reduction sequence

P = F [let §x = §R′ in Q]

i−→ob P1 = F [let §x = §R in Q]

j−→ob P2 = F [Q[R/x]]

By well-formedness, x occurs exactly once in Q. This implies
that applying first P

j−→ P ′ cannot discard the redex in R′.
Hence, we can produce the following shallow-first sequence of
the same length:

P = F [let §x = §R′ in Q]
j−→ob P ′ = F [Q[R′/x]]
i−→ob P2 = F [Q[R/x]]

Moreover, the reduction P ′ i−→ob P2 must be outer-bang for x
cannot occur in a !-term in Q.

There are two notable differences with Terui’s swapping pro-
cedure. First, our procedure returns sequences of exactly the same
length as the original ones while his may return longer sequences.
The reason is that outer-bang contexts force redexes to be dupli-
cated before being reduced, as in reduction (4.2), hence our swap-
ping procedure cannot lengthen sequences more. The other differ-
ence is that his calculus is affine whereas ours is strictly linear.

Therefore his procedure might shorten sequences by discarding re-
dexes and this breaks the argument for strong polynomial termina-
tion. His solution is to introduce an auxiliary calculus with explicit
discarding for which swapping lengthens sequences. This is at the
price of introducing commutation rules which require quite a lot of
extra work to obtain the simulation result. We conclude that strict
linearity brings major proof simplifications while we have seen it
does not cause a loss of expressivity if we use garbage collecting
regions.

Using the swapping lemma, we show that any reduction se-
quence that uses outer-bang evaluation contexts can be simulated
by a shallow-first sequence.

Proposition 2 (Simulation by shallow-first). To any reduction se-
quence P1 −→∗

ob Pn corresponds a shallow-first reduction se-
quence P1 −→∗

ob Pn of the same length.

Proof. By simple application of the bubble sort algorithm: traverse
the original sequence from P1 to Pn, compare the depth of each
consecutive reduction steps, swap them by Lemma 2 if they are
in deep-first order. Repeat the traversal until no swap is needed.
Note that we never need to swap two reduction steps of the same
depth, which implies that we never need to reverse the order of
dependent side effects. For example, in Figure 8, the sequence
P

2−→ob P ′ 1−→ob P ′′ 0−→ob P ′′′ is reordered into P
0−→ob

C
1−→ob B

2−→ob P ′′′ by 3 traversals.

P
2−→ob P ′ 1−→ob P ′′ 0−→ob P ′′′

P
1−→ob A

2−→ob P ′′ 0−→ob P ′′′

P
1−→ob A

0−→ob B
2−→ob P ′′′

P
0−→ob C

1−→ob B
2−→ob P ′′′

Figure 8. Reordering of P −→∗
ob P ′′′ in shallow-first

As an application, we show that the simulation result applies to
a call-by-value operational semantics that we define in Figure 9. We

-values V ::= x | ⋆ | r | λx.M | †V
-terms M ::= V | MM | §M | let †x = M in M

get(r) | set(r,M) | (M ‖ M)
-stores S ::= r ⇐ V | (S ‖ S)
-programs P ::= M | S | (P ‖ P)
-contexts Fv ::= [·] | FvM | V Fv | §Fv

let †x = Fv in M | set(r, Fv)
(Fv ‖ P) | (P ‖ Fv)

-reduction rules-
(βv) Fv[(λx.M)V] −→v Fv[M [V/x]]
(!v) Fv[let !x = !V in M] −→v Fv[M [V/x]]
(§v) Fv[let §x = §V in M] −→v Fv[M [V/x]]
(getv) Fv[get(r)] ‖ r ⇐ V −→v Fv[V]
(setv) Fv[set(r, V)] −→v Fv[⋆] ‖ r ⇐ V
(gcv) Fv[⋆ ‖ M] −→v Fv[M]

Figure 9. CBV syntax and operational semantics

revisit the syntax of programs with a notion of value V that may be
a variable, unit, a region, a λ-abstraction or a †-value. Terms and
programs are defined as previously (see Figure 2) except that !M
cannot be constructed unless M is a value. Store assignments are
restricted to values. Evaluation contexts Fv are left-to-right call-by-
value (obviously we do not evaluate in stores). The call-by-value

reduction relation is denoted by −→v and is defined modulo Fv

and ≡.
From a programming viewpoint, we shall only duplicate values.

This explains why we do not want to construct !M if M is not a
value.

Call-by-value contexts Fv are outer-bang contexts since Fv can-
not be decomposed as E[!E′]. This allows the relation −→ob to
contain the relation −→v. As a result, we obtain the following
corollary.

Corollary 1 (Simulation of CBV). To any reduction sequence
P1 −→∗

v Pn corresponds a shallow-first reduction sequence
P1 −→∗

ob Pn of the same length.

Remark that we may obtain a non call-by-value sequence but
that the semantics of the program is preserved (we compute Pn).

5. Polynomial soundness of shallow-first
In this section we prove that well-formed programs admit polyno-
mial bounds with a shallow-first strategy. We stress that this subsec-
tion is similar to Terui’s [18]; the main difficulty has been to design
the polynomial depth system such that we could adopt a similar
proof method.

As a first step, we define an unfolding transformation on pro-
grams.

Definition 5. (Unfolding) The unfolding at depth i of a program
P , written ♯i(P), is defined as follows:

♯i(x) = x
♯i(r) = r
♯i(⋆) = ⋆

♯i(λx.M) = λx.♯i(M)
♯i(MN) = ♯i(M)♯i(N)

♯i(†M) =

{
†♯i−1(M) if i > 0
†M if i = 0

♯i(let †x = M in N) =





if i = 0,M = !M ′ and † = ! :
let !x = MM . . .M︸ ︷︷ ︸

k times

in ♯0(N)

where k = FO(x, ♯0(N))

otherwise:
let †x = ♯i(M) in ♯i(N)

♯i(get(r)) = get(r)
♯i(set(r,M)) = set(r, ♯i(M))
♯i(r ⇐ M) = r ⇐ ♯i(M)
♯i(P1 ‖ P2) = ♯i(P1) ‖ ♯i(P2)

This unfolding procedure is intended to duplicate statically the
occurrences that will be duplicated by redexes occurring at depth i.
For example, in the following reductions occurring at depth 0:

P = let !x = !M in (let !y = !x in §(yy) ‖ let !y = !x in §(yy))
0

−→∗ §(MM) ‖ §(MM)

the well-formed program P duplicates the occurrence M four
times. We observe that the unfolding at depth 0 of P reflects this
duplication:

♯0(P) = let !x = !M !M !M !M in

(let !y = !x!x in §(yy) ‖ let !y = !x!x in §(yy))

Unfolded programs are not intended to be reduced. However, the
size of an unfolded program can be used as a non increasing
measure in the following way.

Lemma 3. Let P be a well-formed program such that
P

i−→ P ′. Then |♯i(P ′)| ≤ |♯i(P)|.

Proof. First, we assume the occurrences labelled with ‘‖’ and
‘r ⇐’ do not count in the size of a program and that ‘set(r)’
counts for two occurrences, such that the size strictly decreases by
the rule (set). Then, it is clear that (!) is the only reduction rule that
can make the size of a program increase, so let

P = F [let !x = !N in M]
i−→ P ′ = F [M [N/x]]

We have

♯i(P) = F ′[let !x = !N !N . . . !N︸ ︷︷ ︸
n times

in ♯0(M)]

♯i(P ′) = F ′[♯0(M [N/x])]

for some context F ′ and n = FO(x, ♯0(M)). Therefore we are left
to show

|♯0(M [N/x])| ≤ |let !x = !N !N . . . !N︸ ︷︷ ︸
n times

in ♯0(M)|

which is clear since N must occur n times in ♯0(M [N/x]).

We observe in the following lemma that the size of an unfolded
program bounds quadratically the size of the original program.

Lemma 4. If P is well-formed, then for any depth i ≤ d(P):

1. FO(♯i(P)) ≤ |P |,
2. |♯i(P)| ≤ |P | · (|P | − 1),

Proof. By induction on P and i.

We can then bound the size of a program after reduction.

Lemma 5 (Squaring). Let P be a well-formed program such that

P
i

−→∗ P ′. Then:

1. |P ′| ≤ |P | · (|P | − 1)
2. the length of the sequence is bounded by |P |

Proof.

1. By Lemma 3 it is clear that |♯i(P ′)| ≤ |♯i(P)|. Then by
Lemma 4-2 we obtain |♯i(P ′)| ≤ |P | · (|P | − 1). Finally it
is clear that |P ′| ≤ |♯i(P ′)| thus |P ′| ≤ |P | · (|P | − 1).

2. It suffices to remark |P ′|i < |P |i ≤ |P |.

Finally we obtain the following theorem for a shallow-first
strategy using any evaluation context.

Theorem 1 (Polynomial bounds). Let P be a well-formed program
such that d(P) = d and P −→∗ P ′ is shallow-first. Then:

1. |P ′| ≤ |P |2d

2. the length of the reduction sequence is bounded by |P |2d

Proof. The reduction P −→∗ P ′ can be decomposed as P =

P0

0

−→∗ P1

1

−→∗ . . .
d−1

−→∗ Pd

d

−→∗ Pd+1 = P ′. To prove (1),
we observe that by iterating Lemma 5-1 we obtain |Pd| ≤ |P0|2

d

.
Moreover it is clear that |Pd+1| ≤ |Pd|. Hence |P ′| ≤ |P |2d . To
prove (2), we first prove by induction on d that |P0|+ |P1|+ . . .+

|Pd| ≤ |P0|2
d

. By Lemma 5-2, it is clear that the length of the

reduction P −→∗ P ′ is bounded by |P0| + |P1| + . . . + |Pd|,
which is in turn bounded by |P0|2

d

.

It is worth noticing that the first bound takes the size of all the
threads into account and that the second bound is valid for any
thread interleaving.

Corollary 2 (Call-by-value is polynomial). The call-by-value eval-
uation of a well-formed program P of size n and depth d can be
computed in time O(n2d).

Proof. Let P −→∗
v P ′ be the call-by-value reduction sequence of

the well-formed program P . By Corollary 1 we can reorder the
sequence into a shallow-first sequence P −→∗

ob P ′ of the same
length. By Theorem 1 we know that its length is bounded by |P |2d

and that |P ′| ≤ |P |2d .

6. A polynomial type system
The depth system entails termination in polynomial time but does
not guarantee that programs ‘do not go wrong’. In particular, the
well-formed program in (3.6) get stuck on a non-value. In this sec-
tion, we propose a solution to this problem by introducing a poly-
nomial type system as a simple decoration of the polynomial depth
system with linear types. Then, we derive a progress proposition
which guarantees that well-typed programs cannot deadlock (ex-
cept when trying to read an empty region).

We define the syntax of types and contexts in Figure 10. Types

-type variables t, t′, . . .
-types α ::= B | A
-res. types A ::= t | 1 | A ⊸ α | †A | ∀t.A | RegrA
-var. contexts Γ ::= x1 : (u1, A1), . . . , xn : (un, An)
-reg. contexts R ::= r1 : (δ1, A1), . . . , rn : (δn, An)

Figure 10. Syntax of types, effects and contexts

are denoted with α, α′, Note that we distinguish a special
behaviour type B which is given to the entities of the language
which are not supposed to return a result (such as a store or several
terms in parallel) while types of entities that may return a result are
denoted with A. Among the types A, we distinguish type variables
t, t′, . . ., a terminal type 1, a linear functional type A ⊸ α, the
type !A of terms of type A that may be duplicated, the type §A
of terms of type A that may have been duplicated, the type ∀t.A
of polymorphic terms and the type RegrA of regions r containing
terms of type A. Hereby types may depend on regions.

In contexts, usages play the same role as in the depth system.
Writing x : (u,A) means that the variable x ranges on terms
of type A and can be bound according to u. Writing r : (δ,A)
means that the region r contain terms of type A and that get(r)
and set(r,M) may only occur at depth δ. The typing system will
additionally guarantee that whenever we use a type RegrA the
region context contains a hypothesis r : (δ,A).

Because types depend on regions, we have to be careful in stat-
ing in Figure 11 when a region-context and a type are compati-
ble (R ↓ α), when a region context is well-formed (R ⊢), when
a type is well-formed in a region context (R ⊢ α) and when a
context is well-formed in a region context (R ⊢ Γ). A more in-
formal way to express the condition is to say that a judgement
r1 : (δ1, A1), . . . , rn : (δn, An) ⊢ α is well formed provided that:
(1) all the region constants occurring in the types A1, . . . , An, α
belong to the set {r1, . . . , rn}, (2) all types of the shape RegriB
with i ∈ {1, . . . , n} and occurring in the types A1, . . . , An, α are
such that B = Ai.

R ↓ t R ↓ 1 R ↓ B

R ↓ A R ↓ α

R ↓ (A ⊸ α)

R ↓ A

R ↓ †A
r : (δ,A) ∈ R

R ↓ RegrA

R ↓ A t /∈ R

R ↓ ∀t.A

∀r : (δ,A) ∈ R
R ↓ A

R ⊢
R ⊢ R ↓ α

R ⊢ α

∀x : (δ,A) ∈ Γ
R ⊢ A
R ⊢ Γ

Figure 11. Types and contexts

Example 2. One may verify that the judgment r : (δ,1 ⊸
1) ⊢ Regr (1 ⊸ 1) can be derived while judgements r : (δ,1) ⊢
Regr (1 ⊸ 1) and r : (δ,Regr1) ⊢ 1 cannot.

We notice the following substitution property on types.

Proposition 3. If R ⊢ ∀t.A and R ⊢ B then R ⊢ A[B/t].

A typing judgement takes the form: R; Γ ⊢δ P : α. It attributes
a type α to the program P occurring at depth δ, according to
region context R and variable context Γ. Figure 12 introduces the
polynomial type system. We comment on some of the rules. A
λ-abstraction may only take a term of result-type as argument,
i.e. two threads in parallel are not considered an argument. The
typing of †-terms is limited to result-types for we may not duplicate
several threads in parallel. There exists two rules for typing parallel
programs. The one on the left indicates that a program P2 in parallel
with a store or a thread producing a terminal value should have the
type of P2 since we might be interested in its result (note that we
omit the symmetric rule for the program (P2 ‖ P1)). The one on
the right indicates that two programs in parallel cannot reduce to a
single result.

Example 3. The program of Figure 3 is well-typed according to
the following derivable judgement:

R;− ⊢δ let !x = get(r) in set(r, (!x)(§x)) ‖ r ⇐ !(λx.x⋆) : 1

where R = r : (δ,∀t.!((1 ⊸ t) ⊸ t)). Whereas the program
in (3.6) is not.

Remark 1. We can easily see that a well-typed program is also
well-formed.

The polynomial type system enjoys the subject reduction prop-
erty for the largest relation −→⊇−→ob⊇−→v.

Lemma 6 (Substitution).

1. If R; Γ, x : (λ,A) ⊢δ M : B and R; Γ ⊢δ N : A then
R; Γ ⊢δ M [N/x] : B.

2. If R; Γ, x : (§, A) ⊢δ M : B and R; Γ ⊢δ §N : §A then
R; Γ ⊢δ M [N/x] : B.

3. If R; Γ, x : (!, A) ⊢δ M : B and R; Γ ⊢δ !N : !A then
R; Γ ⊢δ M [N/x] : B.

Proposition 4 (Subject Reduction). If R; Γ ⊢δ P : α and P −→
P ′ then R; Γ ⊢δ P ′ : α.

R ⊢ Γ x : (λ,A) ∈ Γ

R; Γ ⊢δ x : A

R ⊢ Γ

R; Γ ⊢δ ⋆ : 1

R ⊢ Γ

R; Γ ⊢δ r : RegrA

FO(x,M) = 1
R; Γ, x : (λ,A) ⊢δ M : α

R : Γ ⊢δ λx.M : A ⊸ α

R; Γ ⊢δ M : A ⊸ α
R; Γ ⊢δ N : A

R; Γ ⊢δ MN : α

FO(M) ≤ 1
R; Γλ ⊢δ+1 M : A

R; Γ!,∆§,Ψλ ⊢δ !M : !A

R; Γ ⊢δ M : !A FO(x,N) ≥ 1
R; Γ, x : (!, A) ⊢δ N : α

R; Γ ⊢δ let !x = M in N : α

R; Γλ,∆λ ⊢δ+1 M : A

R; Γ§,∆!,Ψλ ⊢δ §M : §A

R; Γ ⊢δ M : §A FO(x,N) = 1
R; Γ, x : (§, A) ⊢δ N : α

R; Γ ⊢δ let §x = M in N : α

t /∈ (R; Γ)
R; Γ ⊢δ M : A

R; Γ ⊢δ M : ∀t.A
R; Γ ⊢δ M : ∀t.A R ⊢ B

R; Γ ⊢δ M : A[B/t]

R ⊢ Γ r : (δ,A) ∈ R

R; Γ ⊢δ get(r) : A

r : (δ,A)
R; Γ ⊢δ M : A

R; Γ ⊢δ set(r,M) : 1

r : (δ,A)
R; Γ ⊢δ M : A

R; Γ ⊢0 r ⇐ M : B

R; Γ ⊢δ P1 : 1 or P1 = S
R; Γ ⊢δ P2 : α

R; Γ ⊢δ (P1 ‖ P2) : α

R; Γ ⊢δ Pi : αi

R; Γ ⊢δ (P1 ‖ P2) : B

Figure 12. A polynomial type system

Finally, we establish a progress proposition which shows that
any well-typed call-by-value program (i.e. defined from Figure 9)
reduces to several threads in parallel which are values or deadlock-
ing reads.

Proposition 5 (Progress). Suppose P is a closed typable call-
by-value program which cannot reduce. Then P is structurally
equivalent to a program

M1 ‖ · · · ‖ Mm ‖ S1 ‖ · · · ‖ Sn m,n ≥ 0

where Mi is either a value or can only be decomposed as a term
Fv[get(r)] such that no value is associated with the region r in the
stores S1, . . . , Sn.

7. Expressivity
We now illustrate the expressivity of the polynomial type sys-
tem. First we show that our system is complete in the extensional
sense: every polynomial time function can be represented (Subsec-
tion 7.1). Then we introduce a language with memory locations
representing higher-order references for which the type system can
be easily adapted (Subsection 7.2). Building on this language, we
give an example of polynomial programming (Subsection 7.3).

As a first step, we define some Church-like encodings in Fig-
ure 13 where we abbreviate λx.let †x = x in M by λ†x.M . We
have natural numbers of type Nat, binary natural number of type
BNat and lists of type List A that contain values of type A.

7.1 Polynomial completeness
The representation of polynomial functions relies on the repre-
sentation of binary words. The precise notion of representation is
spelled out in the following definitions.

Definition 6. (Binary word representation) Let − ⊢δ M : §pBNat
for some δ, p ∈ N. We say M represents w ∈ {0, 1}∗, written
M
 w, if M −→∗ §pw.

Definition 7. (Function representation) Let − ⊢δ F : BNat ⊸
§dBNat where δ, d ∈ N and f : {0, 1}∗ → {0, 1}∗. We say F
represents f , written F
 f , if for any M and w ∈ {0, 1}∗ such
that − ⊢δ M : BNat and M
 w, FM
 f(w).

The following theorem is a restatement of Girard [12] and
Asperti [4].

Nat = ∀t.!(t ⊸ t) ⊸ §(t ⊸ t)
n : Nat
n = λ!f.§(λx.f(. . . (f︸ ︷︷ ︸

n times

x)))

add : Nat ⊸ Nat ⊸ Nat
add = λm.λn.λ!f.let §y = m!f in

let §z = n!f in §(λx.y(zx))

BNat = ∀t.!(t ⊸ t) ⊸ !(t ⊸ t) ⊸ §(t ⊸ t)
for w = i0 . . . in ∈ {0, 1}∗

w : BNat
w = λ!x0.λx

!
1.§(λz.xi0(. . . (xinz)))

List A = ∀t.!(A ⊸ t ⊸ t) ⊸ §(t ⊸ t)
[u1, . . . , un] : List A
[u1, . . . , un] = λf !.§(λx.fu1(fu2 . . . (funx)))

list it : ∀u.∀t.!(u ⊸ t ⊸ t) ⊸ List u ⊸ §t ⊸ §t
list it = λf.λl.λ§x.let §y = lf in §(yx)

Figure 13. Church encodings

Theorem 2 (Polynomial completeness).
Every function f : {0, 1}∗ → {0, 1}∗ which can be computed by
a Turing machine in time bounded by a polynomial of degree d can
be represented by a term of type BNat ⊸ §dBNat.

7.2 A language with higher-order references
Next, we give an application of the language with abstract regions
by presenting a connection with a language with dynamic memory
locations representing higher-order references.

The differences with the region-based system are presented in
Figure 14. We introduce terms of the form νx.M to generate a
fresh memory location x whose scope is M . Contexts are call-by-
value and allow evaluation under ν binders. The structural rule (ν)
is for scope extrusion. Region constants have been removed from
the syntax of terms hence reduction rules (getν) and (setν) relate
to memory locations. The operational semantics of references is
adopted: when assigning a value to a memory location, the previous
value is overwritten, and when reading a memory location, the

M ::= . . . | νx.M
Fν ::= Fv | νx.Fν

(ν) Fν [νx.M] ≡ νx.Fν [M]
if x /∈ FV(Fν)

(getν) Fν [get(x)] ‖ x ⇐ V −→ν Fν [V] ‖ x ⇐ V
(setν) Fν [set(x, V)] ‖ x ⇐ V ′ −→ν Fν [⋆] ‖ x ⇐ V

R; Γ, x : (u,Regr!A) ⊢δ M : B

R; Γ ⊢δ νx.M : B

R(r) = (δ, !A)
R; Γ ⊢δ x : Regr!A

R; Γ ⊢δ get(x) : !A

R(r) = (δ, !A)
R; Γ ⊢δ x : Regr!A
R; Γ ⊢δ M : !A

R; Γ ⊢δ set(x,M) : 1

R(r) = (δ, !A)
R; Γ ⊢δ x : Regr!A
R; Γ ⊢δ V : !A

R; Γ ⊢0 x ⇐ V : B

Figure 14. A call-by-value system with references

value is copied from the store. We see in the typing rules that region
constants still appear in region types and that a memory location
must be a free variable that relates to an abstract region r by having
the type RegrA.

There is a simple translation from the language with memory
locations to the language with regions. It consists in replacing the
(free or bound) variables with a region type of the shape RegrA by
the constant r. We then observe that read access and assignments to
references are mapped to several reduction steps in the system with
regions. It requires the following observation: in the typing rules,
memory locations only relate to regions with duplicable content
of type !A. This allows us to simulate the copy from memory
mechanism of references by decomposing it into a consume and
duplicate mechanism in the language with regions. More precisely:
an occurrence of get(x) where x relates to region r is translated
into

let !y = get(r) in set(r, !y) ‖ !y

such that

Fv[let !y = get(r) in set(r, !y) ‖ !y] ‖ r ⇐ !V

−→+
v F [!V] ‖ r ⇐ !V

simulates the reduction (getν). Also, it is easy to see that a re-
duction step (setν) can be simulated by exactly one reduction step
(setv). Since typing is preserved by translation, we conclude that
any time complexity bound can be lifted to the language with ref-
erences.

Note that this also works if we adopt the operational seman-
tics of communication channels; in that case, memory locations can
also relate to regions containing non-duplicable content since read-
ing a channel means consuming the value.

7.3 Polynomial programming
Using higher-order references, we show that it is possible to pro-
gram the iteration of operations producing a side effect on an in-
ductive data structure, possibly in parallel.

Here is the function update taking as argument a memory
location x related to region r and incrementing the numeral stored
at that location:

r : (3, !Nat);− ⊢2 update : !Regr!Nat ⊸ §1 ⊸ §1
update = λ!x.λ§z.§(set(x, let !y = get(x) in !(add 2 y)) ‖ z)

The second argument z is to be garbage collected. Then we de-
fine the program run that iterates the function update over a list
[!x, !y, !z] of 3 memory locations:

r : (3, !Nat) ⊢1 run : §§1
run = list it !update [!x, !y, !z] §§⋆

All addresses have type !Regr!Nat and thus relate to the same
region r. Finally, the program run in parallel with some store
assignments reduces as expected:

run ‖ x ⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗

ν §§⋆ ‖ x ⇐ !2 +m ‖ y ⇐ !2 + n ‖ z ⇐ !2 + p

Note that due to the Church-style encoding of numbers and lists,
we assume that the relation −→ν may reduce under binders when
required.

Building on this example, suppose we want to write a program
of three threads where each thread concurrently increments the
numerals pointed by the memory locations of the list. Here is
the function gen threads taking a functional f and a value x as
arguments and generating three threads where x is applied to f :

r : (3, !Nat) ⊢0 gen threads : ∀t.∀t′.!(t ⊸ t′) ⊸ !t ⊸ B
gen threads = λ!f.λ!x.§(fx) ‖ §(fx) ‖ §(fx)

We define the functional F like run but parametric in the list:

r : (3, !Nat) ⊢1 F : List !Regr!Nat ⊸ §§1
F = λl.list it !update l §§⋆

Finally the concurrent iteration is defined in run threads:

r : (3, !Nat) ⊢0 run threads : B
run threads = gen threads !F ![!x, !y, !z]

The program is well-typed for side effects occurring at depth 3 and
it reduces as follows:

run threads ‖ x ⇐ !m ‖ y ⇐ !n ‖ z ⇐ !p
−→∗

ν §§§⋆ ‖ x ⇐ !6 +m ‖ y ⇐ !6 + n ‖ z ⇐ !6 + p

Note that different thread interleavings are possible but in this
particular case they are confluent.

8. Conclusion and Related work
We have proposed a type system for a higher-order functional lan-
guage with multithreading and side effects that guarantees termi-
nation in polynomial time, covering any scheduling of threads and
taking account of thread generation. To the best of our knowledge,
there appears to be no other characterization of polynomial time
in such a language. The polynomial soundness of the call-by-value
strategy relies on the simulation of call-by-value by a shallow-first
strategy which is proved to be polynomial. The proof is a signifi-
cant adaptation of Terui’s methodology [18]: it is greatly simplified
by a strict linearity condition and based on a clever analysis of the
evaluation order of side effects which is shown to be preserved.

Related work The framework of light logics has been previously
applied to a higher-order π-calculus [14] and a functional language
with pattern-matching and recursive definitions [6]. The notion of
stratified region1 has been proposed [1, 7] to ensure the termination
of a higher-order multithreaded language with side effects . In
the setting of synchronous computing, static analyses have been
developed to bound resource consumption in a synchronous π-
calculus [2] and a multithreaded first-order language [3]. Recently,
the framework of complexity information flow have been applied to
characterize polynomial multithreaded imperative programs [17].

1 Here we speak of stratification by means of a type-and-effect discipline,
this is not to be confused with the notion of stratification by depth level that
is used in the present paper.

Acknowledgments The author wishes to thank Roberto Amadio
for his precious help on the elaboration of this work and Patrick
Baillot for his careful reading of the paper.

References
[1] R. M. Amadio. On stratified regions. In Z. Hu, editor, APLAS,

volume 5904 of Lecture Notes in Computer Science, pages
210–225. Springer, 2009. ISBN 978-3-642-10671-2. 2, 8

[2] R. M. Amadio and F. Dabrowski. Feasible reactivity in a
synchronous pi-calculus. In M. Leuschel and A. Podelski,
editors, PPDP, pages 221–230. ACM, 2007. ISBN 978-1-
59593-769-8. 8

[3] R. M. Amadio and S. Dal-Zilio. Resource control for syn-
chronous cooperative threads. Theoretical Computer Science,
358(2-3):229–254, 2006. 8

[4] A. Asperti. Light affine logic. In LICS, pages 300–308. IEEE
Computer Society, 1998. ISBN 0-8186-8506-9. 1, 7.1

[5] P. Baillot and V. Mogbil. Soft lambda-calculus: A language
for polynomial time computation. In I. Walukiewicz, editor,
FoSSaCS, volume 2987 of Lecture Notes in Computer Sci-
ence, pages 27–41. Springer, 2004. ISBN 3-540-21298-1. 1

[6] P. Baillot, M. Gaboardi, and V. Mogbil. A polytime functional
language from light linear logic. In A. D. Gordon, editor,
ESOP, volume 6012 of Lecture Notes in Computer Science,
pages 104–124. Springer, 2010. ISBN 978-3-642-11956-9. 8

[7] G. Boudol. Typing termination in a higher-order concurrent
imperative language. Information and Computation, 208(6):
716–736, 2010. 8

[8] P. Coppola and S. Martini. Optimizing optimal reduction: A
type inference algorithm for elementary affine logic. ACM
Transaction on Computational Logic, 7:219–260, April 2006.
ISSN 1529-3785. 1

[9] P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca. Light
logics and the call-by-value lambda calculus. Logical Meth-
ods in Computer Science, 4(4), 2008. 1

[10] V. Danos and J.-B. Joinet. Linear logic and elementary time.
Information and Computation, 183(1):123 – 137, 2003. ISSN
0890-5401. 1

[11] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:
1–102, 1987. 1

[12] J.-Y. Girard. Light linear logic. Information and Computation,
143(2):175–204, 1998. 1, 7.1

[13] Y. Lafont. Soft linear logic and polynomial time. Theoretical
Computer Science, 318(1-2):163–180, 2004. 1

[14] U. D. Lago, S. Martini, and D. Sangiorgi. Light logics and
higher-order processes. In S. B. Fröschle and F. D. Valencia,
editors, EXPRESS, volume 41 of EPTCS, pages 46–60, 2010.
8

[15] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. In J. Ferrante and P. Mager, editors, POPL, pages 47–
57. ACM, 1988. ISBN 0-89791-252-7. 1

[16] A. Madet and R. M. Amadio. An elementary affine λ-calculus
with multithreading and side effects. In C.-H. L. Ong, editor,
TLCA, volume 6690 of Lecture Notes in Computer Science,
pages 138–152. Springer, 2011. ISBN 978-3-642-21690-9. 1,
1, 3.2

[17] J.-Y. Marion and R. Péchoux. Complexity information flow in
a multi-threaded imperative language. CoRR, abs/1203.6878,
2012. 8

[18] K. Terui. Light affine lambda calculus and polynomial time
strong normalization. Archive for Mathematical Logic, 46(3-
4):253–280, 2007. 1, 1, 3.1, 5, 8

Indexed Realizability for Bounded-Time

Programming with References
and Type Fixpoints�

Alöıs Brunel1 and Antoine Madet2

1 Laboratoire d’Informatique de Paris-Nord, Université Paris 13
2 Univ Paris Diderot, Sorbonne Paris Cité,

PPS, UMR 7126, CNRS, F-75205 Paris, France

Abstract. The field of implicit complexity has recently produced sev-
eral bounded-complexity programming languages. This kind of language
allows to implement exactly the functions belonging to a certain com-
plexity class. We present a realizability semantics for a higher-order
functional language based on a fragment of linear logic called LAL
which characterizes the complexity class PTIME. This language fea-
tures recursive types and higher-order store. Our realizability is based
on biorthogonality, indexing and is quantitative. This last feature enables
us not only to derive a semantical proof of termination, but also to give
bounds on the number of computational steps of typed programs.

1 Introduction

Implicit Computational Complexity — This research field aims at
providing machine-independent characterizations of complexity classes (such as
polynomial time or logspace functions). One approach is to use type systems
based on linear logic to control the complexity of higher-order functional pro-
grams. In particular, the so-called light logics (e.g. LLL [7], SLL [10]) have led to
various type systems for the λ-calculus guaranteeing that a well-typed term has a
bounded complexity [3]. These logics introduce the modalities ‘!’ (read bang) and
‘§’ (read paragraph). By a fine control of the nesting of these modalities, which
is called the depth, the duplication of data can be made explicit and the com-
plexity of programs can be tamed. This framework has been recently extended
to a higher-order process calculus [6] and a functional language with recursive
definitions [19]. Also, Amadio and Madet have proposed [15] a multi-threaded
λ-calculus with higher-order store that enjoys an elementary time termination.

Quantitative Realizability — Starting from Kleene, the concept of real-
izability has been introduced in different forms and has been shown very useful to

� Work partially supported by the Future and Emerging Technologies (FET) pro-
gramme within the Seventh Framework Programme for Research of the European
Commission, under FET-Open grant number: 243881 (project CerCo).

R. Jhala and A. Igarashi (Eds.): APLAS 2012, LNCS 7705, pp. 264–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Indexed Realizability for Bounded-Time Programming 265

build models of computational systems. In a series of works [13,12], Dal Lago and
Hofmann have shown how to extend Kleene realizability with quantitative infor-
mations in order to interpret subsystems of linear logic with restricted complex-
ity. The idea behind Dal Lago and Hofmann’s work is to consider bounded-time
programs as realizers, where bounds are represented by elements of a resource
monoid. In [5] the first author has shown how this quantitative extension fits
well in a biorthogonality based framework (namely Krivine’s classical realizabil-
ity [9]) and how it relates to the notion of forcing.

Step-Indexing — In order to give a semantical account of features like
recursive or reference types, one has to face troublesome circularity issues. To
solve this problem, Appel and McAllester [2] have proposed step-indexed mod-
els. The idea is to define the interpretation of a type as a predicate on terms
indexed by numbers. Informally, a term t belongs to the interpretation of a type
τ with the index k ∈ N if when t is executed for k steps, it satisfies the predicate
associated to τ . Then, it is possible to define by induction on the index k the
interpretation of recursive or reference types. Step-indexing has been related to
Gödel-Löb logic and the later operator � [17].

Contributions — In this paper, we present a typed λ-calculus called
λReg,μ
LAL whose functional core is based on the light logicLAL [3]. We extend it with

recursive types and higher-order store. Even in presence of these features, every
program typable in λReg,μ

LAL terminates in polynomial time. To prove termination
in bounded-time, we propose a new quantitative realizability semantics with the
following features:

– It is biorthogonality based, which permits a simple presentation and allows
the possibility to interpret control operators (though it is only discussed
informally in the conclusion of this paper).

– It is indexed, which permits to interpret higher-order store and recursive
types. The particularity is that our model is indexed by depths (the nesting
of modalities) instead of computational steps (like in step-indexing).

To our knowledge, this is the first semantics presenting at the same time quan-
titative, indexed and biorthogonality features.

Outline — Section 2 introduces the language λReg,μ
LAL and its type system.

In Section 3, we introduce the indexed quantitative realizability. It is then used
to obtain a semantic model for λReg,μ

LAL , which in turn implies termination in
polynomial time of typed programs. Finally, we mention related works in Section
4 and in Section 5 we discuss future research directions and conclude.

2 The Language

This section presents the language λReg,μ
LAL and its type system. Before going into

details, we give some intuitions on the modalities and explain how we deal with
side-effects with the notion of region.

266 A. Brunel and A. Madet

On Modalities — The functional core of the language is an affine λ-
calculus which means that λ-abstractions can use their argument at most once.
To provide some duplication power, we introduce two modal constructors ‘!’ and
‘§’ that originate from LAL. Values of the shape !V and §V can then be de-
structed against specific let ! and let §-expressions.

On Regions — Following a standard practice in effect systems [14], the
state of a program is abstracted into a finite set of regions where each region
may represents several dynamically allocated values. Then, side-effects are pro-
duced by read and write operations on these regions. As noted by Amadio [1],
the reduction rules of an abstract language with regions can be formalized such
that they simulate the reduction rules of a concrete language with dynamic al-
location. Working at the abstract level of regions allows to encompass several
interaction mechanisms like references and channels (for the latter, the language
should dispose of concurrency constructs). Moreover, termination in polynomial
time of the language with regions entails termination in polynomial time of the
language with dynamic allocation since the simulation preserves the number of
reduction steps. Finally, we find it easier to give a semantic model of a type
system with regions instead of dynamic locations.

How these modalities relate to polynomial time and how regions simulate dy-
namic locations is further explained in Section 2.2.

2.1 Syntax and Operational Semantics

The syntax of the language is the following:

V alues V ::= x | λx.M | r | () | !V | §V
Terms M ::= V | M1M2 | !M | §M | get(r) | set(r, V)

let !x = V in M | let §x = V in M

We suppose having a countable set of variables denoted x, y, . . . and of regions
denoted by the letters r, r′, The terminal value unit is denoted by (). Modal
terms and modal values are built with the unary constructors ! and § and are
destructed by the respective let ! and let §-expressions. The terms get(r) and
set(r, V) are respectively used to read a value from a region r and to assign a
value V to a region r. We denote by M [N/x] the term M in which each free
occurrence of x has been substituted by N .

The operational semantics of the language is presented in the form of an abstract
machine. We first define the configurations of the abstract machine:

Environments E ::= � | V ·E | M � E | ! · E | § · E
Stores S ::= r ⇐ V | S1 � S2

Configurations C ::= 〈M,E, S〉
Programs are intended to be executed with a right-to-left call-by-value strategy.
Hence, an environmentE is either an empty frame �, a stack of frames to evaluate

Indexed Realizability for Bounded-Time Programming 267

on the left of a value (V · E), on the right of a term (M � E) or in-depth of
a term (! · E and § · E). Finally, a store S is a multiset of region assignments
r ⇐ V . A configuration of the abstract machine is executed according to the
following rules:

〈λx.M, V · E, S〉 −→ 〈M [V/x], E, S〉
〈MN,E, S〉 −→ 〈N,M � E, S〉

〈V,M � E, S〉 −→ 〈M,V ·E, S〉
〈†M,E, S〉 −→ 〈M, † ·E, S〉 if M is not a value
〈V, † · E, S〉 −→ 〈†V,E, S〉

〈let †x = †V in M,E, S〉 −→ 〈M [V/x], E, S〉
〈get(r), E, (r ⇐ V) � S〉 −→ 〈V,E, S〉

〈set(r, V), E, S〉 −→ 〈(), E, (r ⇐ V) � S〉
For the sake of conciseness we wrote † for † ∈ {!, §}. Observe that let †-expressions
destruct modal values †V and propagate V . Reading a region amounts to con-
sume the value from the store and writing to a region amounts to add the value
to the store. We consider programs up to α-renaming and in the sequel −→∗

denotes the reflexive and transitive closure of −→.

Example 1. Here is a function F = λx.let !y = x in set(r1, §y); set(r2, §y) that
duplicates its argument and assign it to regions r1 and r2. It can be used to
duplicate a value from another region r3 as follows:

〈Fget(r3), �, r3 ⇐ !V 〉 −→∗ 〈(), �, (r1 ⇐ §V) � (r2 ⇐ §V)〉
Remark 1. As usual, we can encode the sequential composition M ;N by the
application (λx.N)M where x does not occur free in N . Thus, the reduction
rule 〈V ;M,E, S〉 −→ 〈M,E, S〉 can be assumed.

Definition 1. We define the notation 〈M,E, S〉 ⇓n as the following statement:

– The evaluation of 〈M,E, S〉 in the abstract machine terminates.
– The number of steps needed by 〈M,E, S〉 to terminate is n.

2.2 Type System

The light logic LAL relies on a stratification principle which is at the basis of
our type system. We first give an informal explanation of this principle.

On Stratification — Each occurrence of a program can be given a depth
which is the number of nested modal constructors for which the occurrence is in
scope. Here is an example for the program P where each occurrence is labeled
with its depth:

P = (λx.let !y = x in set(r, §y))!V ; get(r)

;0

@0

λx0 let !y0

x0

set(r)0 §0 y1

!0 V 1

get(r)0

268 A. Brunel and A. Madet

The depth d(M) of a term M is the maximum depth of its occurrences. The
stratification principle is that the depth of every occurrence is preserved by
reduction. On the functional side, it can be ensured by these two constraints:
(1) if a λ-abstraction occurs at depth d, then the bound variable must occur at
depth d; (2) if a let †-expression occurs at depth d, then the bound variable must
occur at depth d+1. These two constraints are respected by the program P and
we observe in the following reduction

〈P, �, ∅〉 −→∗ 〈set(r, §V); get(r), �, ∅〉

that the depth of V is preserved. In order to preserve the depth of occurrences
that go through the store, this third constraint is needed: (3) for each region r,
get(r) and set(r) must occur at a fixed depth dr. We observe that this is the case
of program P where dr = 0. Consequently, the reduction terminates as follows

〈set(r, §V); get(r), �, ∅〉 −→∗ 〈get(r), �, r ⇐ §V 〉 −→∗ 〈§V, �, ∅〉

where the depth of V is still preserved. Stratification on the functional side has
been deeply studied by Terui with the Light Affine λ-calculus [20] and extended
to regions by Amadio and the second author [15].

Types and Contexts — The syntax of types and contexts is the following:

Types A,B,C ::= X | Unit | A � B | !A | §A | μX.A | RegrA
V ariable contexts Γ,Δ ::= x1 : (u1, A1), . . . , xn : (un, An)
Region contexts R ::= r1 : (δ1, A1), . . . , rn : (δn, An)

We have a countable set of type variables X,X ′, . . . We distinguish the terminal
type Unit, the affine functional type A � B, the type !A of terms which reduce
on a duplicable value, the type §A of terms containing values that may have been
duplicated, recursive types μX.A and the type RegrA of terms which reduce to
region r that contains values of type A. Hereby types may depend on regions.
Following [15], a region context associates a natural number δi to each region ri
of a finite set of regions {r1, . . . , rn} that we write dom(R). Writing r : (δ, A)
means that the region r contains values of type A and that gets and sets on r
may only happen at a fixed depth depending on δ. A variable context associates
each variable with an usage u ∈ {λ, §, !} which constraints the variable to be
bound by a λ-abstraction, a let §-expression or a let !-expression respectively. In
the sequel we write Γu for x1 : (u,A1), . . . , xn : (u,An). Writing x : (u,A) means
that the variable x ranges on values of type A and can be bound according to u.

Types depend on region names. Therefore, we have to be careful in stating when
a type A is well-formed with respect to a region context R, written R � A. Infor-
mally, the judgment r1 : (δ1, A1), . . . , rn : (δn, An) � B is well formed provided
that: (1) all the region names occurring in the types A1, . . . , An, B belong to
the set {r1, . . . , rn}, (2) all types of the shape RegriB with i ∈ {1, . . . , n} and
occurring in the types A1, . . . , An, B are such that B = Ai. The judgment R � Γ

Indexed Realizability for Bounded-Time Programming 269

is well-formed if R � A is well-formed for every x : (u,A) ∈ Γ . We invite the
reader to check in [1] that these judgements can be easily defined.

Typing Rules — A typing judgment takes the form R;Γ �δ P : A and
is indexed by an integer δ. The rules are given in Figure 1. They should entail
the following:

– if x : (λ,A) ∈ Γ then x occurs at most once and it must be at depth 0 in P ,
– if x : (§, A) ∈ Γ then x occurs at most once and it must be at depth 1 in the

scope of a § constructor in P ,
– if x : (!, A) ∈ Γ then x occurs arbitrarily many times and it must be at depth

1 in the scope of a † constructor in P ,
– if r : (δ′, A) ∈ R then get(r) and set(r) occur at depth δ − δ′ in P .

v R �
R;x : (λ,A) �δ x : A

u R �
R;− �δ () : Unit

r
R � r : (δ,A) ∈ R

R;− �δ r : RegrA

c
R;Γ, x : (!, A), y : (!, A) �δ M : B

R;Γ, z : (!, A) �δ M [z/x, z/y] : B
w

R;Γ �δ M : B R � Γ, x : (u,A)

R;Γ, x : (u, A) �δ M : B

lam
R;Γ, x : (λ,A) �δ M : B

R : Γ �δ λx.M : A � B
app

R;Γ �δ M1 : A � B R;Δ �δ M2 : A

R;Γ,Δ �δ M1M2 : B

!-prom
R;x : (λ,A) �δ V : A

R;x : (!, A) �δ+1 !V : !A
§-prom R;Γλ,Δλ �δ M : A

R;Γ§,Δ! �δ+1 §M : §A

†-elim
R;Γ �δ V : †A

R;Δ,x : (†, A) �δ M : B

R;Γ,Δ �δ let †x = V in M : B
get

R;− �δ r : RegrA

R;− �δ get(r) : A

set

R;− �δ r : RegrA
R;Γ �δ V : A

R;Γ �δ set(r, V) : Unit
un/fold

R;Γ �δ M : μX.A

R;Γ �δ M : A[μX.A/X]

Fig. 1. Typing rules

Here are several crucial remarks on the rules:

– In binary rules, we implicitly require that contexts Γ and Δ are disjoint.
There are explicit rules (w) and (c) for the weakening and contraction of
variables and we may only contract variables with usage ‘!’. Therefore, λ-
abstractions and let §-expressions can bind at most one occurrence of free
variable while let !-expressions can bind several occurrences.

270 A. Brunel and A. Madet

– The rule !-prom entails that !V may contain at most one occurrence of free
variable. This is to rule out a term like Z = λx.let !y = x in !(λz.yy) whose
n-th application (Z . . . (Z(Z!V))) would duplicate 2n times the value !V .
To recover some duplication power, the rule §-prom allows a term of the
shape §M to contain many occurrences of free variable. On the other hand,
let §-expressions cannot bind many occurrences of free variable.

– It is important that the type §A � !A is not inhabited, otherwise from a
value of the shape §(λz.yy) we can produce a value !(λz.yy) and we loose
the subject reduction property for there are two occurrences of y under a
bang. Also, the rule !-prom must only applies to values so that the program
λx.let !y = x in §set(r, x); !get(r) cannot be given type §A � !A.

– The depth δ of a judgment is incremented when we construct a modal term.
This allows to count the number of nested modalities and to stratify regions
by requiring that the depth of a region matches the depth of the judgment
in the rule r.

– For space consideration the rule un/fold can be used upside down.

Definition 2. We say that a program M is well-typed if a judgment R;Γ �δ

M : A can be derived for some R, Γ and δ such that:

(1) If r : (δr, B) ∈ R then B = §C.
(2) For every type fixpoint μX.B that appears in R, Γ and A, the occurrences

of X in B are guarded by (occur under) a modality †.
(3) Every depth index in the derivation is positive. Note that if it is not the case,

we can always find δ′ > δ and R′ such that it is true for R′;Γ �δ′ M : A.

Remark 2. The above three conditions are required to give a well-founded inter-
pretation. The fact that region types can only be guarded by a paragraph is due
to properties of the light monoid (see Lemma 2).

The following progress property can be derived as long as the program does not
try to read an empty region.

Proposition 1 (Progress). If R;Γ �δ M : A then 〈C, �, ∅〉 −→∗ 〈V, �, S〉 and
R;Γ �δ V : A and every assigned value in S can be typed.

Remark 3. A program whose state is partionned into a fixed number of regions
can simulate a program with a statically unknown number of dynamic allo-
cations. In fact, there is a typed translation from the language with dynamic
locations to the language with regions. Let us consider a small example where
for the sake simplicity we do not care about the multiplicity of variables. Here
is a program that generates two references à la ML with the same value V :

((λf.λx.fx; fx)(λy.ref y))V

A single region r can be used to abstract both references by assigning the type
RegrA to the subterm (ref y). It then suffices to translate (ref y) into (set(r, y); r)
and observe that the translated program reduces to the configuration

〈r, �, (r ⇐ V) � (r ⇐ V)〉

Indexed Realizability for Bounded-Time Programming 271

Regions simulate references as long as the values written to regions do not over-
write the previous ones. This is the case in our abstract machine, but also,
reading a region amounts to consume a value from the region while the values
stored in references should be persistent. We note that it is enough to duplicate,
use and rewrite the value to the store to simulate this phenomenon.

The goal of the next section is to prove the following theorem

Theorem 1 (Polynomial termination). There exists a family of polynomi-
als {Pd}d∈N such that if M is well-typed then 〈M, �, �〉 terminates in at most
Pd(M)(size(M)) steps.

3 “Indexed” Quantitative Realizability

We now present a biorthogonality-based interpretation of λReg,μ
LAL . Apart from the

use of biorthogonality, this interpretation has two particularities:

– First, the realizability model is quantitative. A type is interpreted by a set
of weighted realizers (that is a program together with a store and a quantity
bounding its normalization time). This allows to prove complexity properties
of programs.

– Secondly, the semantics is indexed (or stratified), meaning that we interpret
a type by a family of sets indexed by N. Moreover the interpretation of a
type is defined by double induction, first on the index n, and secondly on
the size of the type. This allows to interpret recursive types and references.

It is worth noticing that while our interpretation is similar to the so-called ”step-
indexed” models, the meaning of indexes is not (directly) related to the number
of computation steps but to the depth of terms (and so our model could be
described as a ”depth-indexed” model). It is the quantitative part which is used
to keep track of the number of computational steps.

3.1 The Light Monoid

The realizability model is parametrized by a quantitative monoid, whose elements
represent an information about the amount of time needed by a program to
terminate.

Definition 3. A quantitative monoid is a structure (M,+,0,1,≤, ‖.‖) where:

– (M,+,0,≤) is a preordered monoid.
– ‖.‖ : M −→ N is a function such that:

• for every p, q ∈ M, we have ‖p‖+ ‖q‖ ≤ ‖p+ q‖.
• Morever, ‖.‖ is compatible with ≤.

– 1 ∈ M is such that 1 ≤ ‖1‖.

272 A. Brunel and A. Madet

Example 2. A simple instance of a quantitative monoid is given by the set N of
positive integers, endowed with the usual addition on integers, the elements 0
and 1, and the operation ‖.‖ defined by ‖n‖ = n.

From now on, we will often denote a quantitative monoid by its carrier M,
and we use lower-case consonnes letters p, q,m, v, . . . to denote its elements.
Moreover, n denotes the element of M defined as 1+ · · ·+ 1︸ ︷︷ ︸

n times

.

Remark 4. Here are some intuitions about the previous definition.

– The operation + is used to obtain the resource consumption resulting of the
interaction of two programs.

– The elements ofM are abstract quantities, so given such an abstract quantity
p ∈ M, ‖p‖ provides the concrete quantity associated to it.

– The inequality ∀p, q, ‖p‖+ ‖q‖ ≤ ‖p+ q‖ informally represents the fact that
the amount of resource consumed by the interaction of two programs is
potentially more important than the total amount of resource used by the
two programs alone.

Definition 4. Given a quantitative monoid, we say that a function f : M −→
M is sensible if whenever p ∈ M we have f(p) ≤ f(p + 1) and ‖f(p)‖ �=
‖f(p+ 1)‖. The set of sensible functions on M is denoted by M[.].

We now define the notion of light monoid, which will be used to describe the
execution time of λReg,μ

LAL programs.

Definition 5. We call light monoid a quantitative monoid M equipped with
three sensible functions !, §, F : M −→ M such that for every p, q ∈ M, the
following properties hold:

– There is some p′ such that p ≤ p′ and §p′ ≤!p
– §(p+ q) ≤ §p+ §q
– There are p′, q′ such that p ≤ p′ and q ≤ q′, that enjoy §p′ + §q′ ≤ §(p+ q)
– !p+!p ≤!p+ 1
– !(p+ q) ≤ F (p)+!q

Those inequations will be needed to prove that our realizability interpretation
is sound with respect to the typing rules involving the modalities ! and §. Such
a light monoid exists, as witnessed by the following example and property.

Example 3. We define the structure (Ml,+,0,1,≤, ‖.‖) where

– M is the set of triples (n,m, f) ∈ N× N× NN where f is a polynomial.
– (n,m, f) + (l, k, g) = (n+ l,max(m, k),max(f, g)).
– 0 = (0, 0, x �→ 0)
– 1 = (1, 0, x �→ x)
– (n,m, f) ≤ (l, k, g) iff n ≤ l ∧ n+m ≤ l + k ∧ f ≤ g
– If (n,m, f) ∈ M, ‖(n,m, f)‖ = n f(m+ n).

Indexed Realizability for Bounded-Time Programming 273

Then Ml is a quantitative monoid. Moreover, we can define the three following
operations !, §, F on Ml:

– § = (n,m, f) �→ (n/m,m, x �→ x2f(x2))
– ! = (n,m, f) �→ (1, n+m,x �→ x3f(x3))
– F = (n,m, f) �→ (1 + n+m,m, x �→ x3f(x3))

Property 1. The three operations !, § and F endow Ml with a structure of light
monoid.

Notice that in the monoid Ml, the operations !, § and F make the degree of the
third component of any element of Ml grow.

3.2 Orthogonality

The main technical tool used to define our model is orthogonality. Whereas it
is usually defined as a relation between a program and an environment, in our
work it is a relation between weighted programs and weighted environments.
From now on, M denotes a light monoid.

Definition 6. – A weighted term is a tuple (M,p) where M is a term and p
an element of M. The set of weighted terms is denoted by ΛM.

– A weighted stack is a pair (E, e) where E is a stack and e an element of
M[.]. The set of weighted stacks is denoted by ΠM.

We choose a pole ‚ ⊆ Conf×M as the set of bounded-time terminating weighted
configurations:

‚ = {(〈M,E, S〉, p) | 〈M,E, S〉 ⇓n ∧n ≤ ‖p‖}
In orthogonality-based models, fixing a pole, also called observable, corresponds
to choosing a notion of correct computation.

Proposition 2. This pole satisfies some important properties:

1. (≤-saturation) If (〈M,E, S〉, p) ∈ ‚ and p ≤ q then (〈M,E, S〉, q) ∈ ‚.
2. (−→-saturation) If (〈M,E, S〉, p) ∈ ‚ and 〈M ′, E, S′〉 −→ 〈M,E, S〉 then

(〈M ′, E′, S′〉, p+ 1) ∈ ‚.

The pole induces a notion of orthogonality. In contrast with usual models, since
we need to deal with references, the orthogonality relation is parametrized by a
set S of stores.

Definition 7. The orthogonality relation ⊥S ⊆ ΛM ×ΠM is defined as:

(M,p)⊥S(E, e) iff ∀(S, s) ∈ S, (〈M,E, S〉, e(p+ s)) ∈ ‚

This orthogonality relation lifts to sets of weighted terms and weighted stacks. If
X ⊆ ΛM (resp X ⊆ ΠM),

X⊥S = { (E, e) ∈ ΠM | ∀(M,p) ∈ X, (M,p)⊥S(E, e) }
(resp. X⊥S = { (M,p) ∈ ΛM | ∀(E, e) ∈ X, (M,p)⊥S(E, e) })

274 A. Brunel and A. Madet

The operation (.)⊥S satisfies the usual orthogonality properties.

Lemma 1. Suppose X,Y ⊆ ΛM or X,Y ⊆ ΠM:

1. X ⊆ Y implies Y ⊥S ⊆ X⊥S

2. X ⊆ X⊥S⊥S

3. X⊥S⊥S⊥S = X⊥S

Definition 8. If X is a set of weighted realizers, we define its ≤-closure X =
{ (M,p) | ∃q ≤ p, (M, q) ∈ X }.

Remark 5. Notice that for any S, we have X ⊆ X⊥S⊥S .

We say that a set X ⊆ ΛM is a S-behavior if X = X⊥S⊥S . Finally, we can
define the set of S-reducibility candidates. To do that, we first need to extend
the language of terms with a new constant

M ::= . . . | �

This constant comes with no particular reduction rule. It can be seen as a special
variable considered as a closed term and is in a sense the dual of the empty stack.
Notice that none of the previous constructions are modified. Moreover, at the
end of the day, because we only consider typable terms (that do not contain any
�), � is only a technical intermediate.

Definition 9. The set of S-reducibility candidates, denoted by CRS is the set
of S-behaviors X such that (�,0) ∈ X ⊆ {(�, x �→ x)}⊥S

Remark 6. If (M,p) ∈ X where X is a S-reducibility candidate and if (�,0) ∈ S,
then 〈M, �, �〉 terminates in at most ‖p‖ steps. In fact our notion of reducibility
candidate extends the usual notion in the non-quantitative case.

Finally, suppose R is a set of regions and suppose SR is a set of stores whose
domain is restricted to a R. We say that :

SR � S ′ ⇔ S ′ contains SR and if (S, s) ∈ S ′ and if we write S = Sδ �S′′,
then there is a decomposition s = s′ + s′′ such that (Sδ, s′) ∈ SR, dom(S′′) =
{ ri | δi > δ } and moreover, if (SR, sR) ∈ SR then (S′′ � SR, s

′′ + sR) ∈ S ′.

Remark 7. This quite involved definition will permit to the interpretation of a
type to enjoy properties similar to the one called extension/restriction in [1]. In
other words, given a store, it gives a way to say what substore can be removed
safely and what stores can be added to it safely.

3.3 Interpretation of λReg,µ
LAL

Using the orthogonality machinery previously defined, we can give an interpreta-
tion of λReg,μ

LAL types as reducibility candidates. Suppose R is the following region
context:

R = r1 : (δ1, §A1), . . . , rn : (δn, §An)

Indexed Realizability for Bounded-Time Programming 275

We define three indexed sets: the interpretation |R|δ of the region context R, the
pre-interpretation ‖R � A‖δ of a type A and its interpretation |R � A|Sδ with
respect to a set of stores S. These three notions are defined by mutual induction,
first on the index δ, and then on the size of the type A.

|R|=δ = { (S,
∑

δi=δ

∑

1≤j≤ki

§qij) | dom(S) = { ri | ri : (δi, §Ai) ∈ R ∧ δi = δ }

∧ ∀ri ∈ dom(S), S(ri) = {§V i
1 , §V i

2 , . . . , §V i
ki
}

∧ ∀j ∈ [1, ki], (V
i
j , q

i
j) ∈ ‖R � Ai‖δi−1 }

|R|δ+1 = { (S1 � Sδ, s1 + §sδ) | (S1, s1) ∈ |R|=δ+1, (Sδ, sδ) ∈ |R|δ }

For convenience, we start the indexing of the interpretation at −1 instead of 0.

‖R � A‖−1 = {(�,0)}

For δ ≥ 0, we define the pre-interpretation as:

‖R 	 Unit‖δ = {((), 0)}
‖R 	 RegrA‖δ = {(r, 0)}

‖R 	 A � B‖δ = { (λx.M, p) | ∀(V, v) ∈ ‖R 	 A‖δ, ∀S, |R|δ � S, (M [V/x], p + v) ∈ |R 	 B|Sδ }
‖R 	 §A‖δ = { (§V, §v) | (V, v) ∈ ‖R 	 A‖δ−1 }
‖R 	 !A‖δ = { (!V, !v) | (V, v) ∈ ‖R 	 A‖δ−1 }

‖R 	 μX.A‖δ = ‖R 	 A[μX.A/X]‖δ

The interpretation of a type with respect to a set S is just defined as the bi-
orthogonal of the pre-interpretation:

|R � A|Sδ = ‖R � A‖⊥S⊥S
δ

Remark 8. Because of the presence of type fixpoints and regions, there are sev-
eral circularities that could appear in the definition of ‖R � A‖δ. Yet, the inter-
pretation is well defined for the following reasons:

– The type fixpoints μX.A we consider are such that every occurrence of X
in A is guarded by a modality ! or §. But these modalities make the index
of the interpretation decrease by one. Hence, ‖R � μX.A‖δ+1 is well defined
as soon as ‖R � μX.A‖δ is.

– To define ‖R � A‖δ+1, we need |R|δ+1 to be already defined. But here again,
in R each type is guarded by a modality §. This implies that to define |R|δ+1,
we only need to know each ‖R � Ai‖δ.

An important point is that the interpretation of a formula A with respect to
a region context R and to an index δ ∈ N is a |R|δ-reducibility candidate (it will
be used to prove bounded-time termination).

Proposition 3. For all δ ∈ N we have |R � A||R|δ
δ ∈ CR|R|δ .

276 A. Brunel and A. Madet

Table 1. Inferring a bound from a λReg,μ
LAL typing judgment

v
�δ x : 0

r
�δ r : 0

u
�δ () : 0

get
�δ get(r) : 5

set
�δ V : �V �

�δ+1 set(r, §V) : §�V � + 1
fold

�δ M : �M�
�δ M : �M�

unfold
�δ M : �M�
�δ M : �M�

c
x : !, y : ! �δ M : �M�

z : ! �δ M [z/x, z/y] : �M� + 1
w

�δ M : �M�
x : δ �δ M : �M�

lam
�δ M : �M�

�δ λx.M : �M�
app

�δ M1 : �M1� �δ M2 : �M2�
�δ M1M2 : �M1� + �M2� + 3

§-prom �δ M : �M�
�δ+1 §M : §�M� + 4

§-elim �δ V : �V � Γ �δ M : �M�
�δ let §x = V in M : �M� + �V � + 3

!-prom
�δ M : �M�

�δ+1 !M : F (�M�)
!-elim

�δ V : �V � Γ �δ M : �M�
�δ let !x = V in M : �M� + �V � + 3

3.4 Adequacy and Bounded-Time Termination

We now prove the soundness of our model with respect to λReg,μ
LAL and as a corol-

lary the bounded-time termination theorem. In Table 1 is described how to infer
an element of M from a λReg,μ

LAL typing judgment: the notation �M� corresponds
to the element of M already inferred from the typing judgment of �M�, and
each rule corresponds to the way �M� is built.

Definition 10. We use the notations V , p and y to denote respectively a list
of values [V1, . . . , Vn], a list [p1, . . . , pn] of elements of M and a list of variables
[y1, . . . , yn]. If M is a term, we denote by M [V /y] the term M [V1/y1, . . . , Vn/yn].
If p is a list of elements of M and † ∈ {!, §}, we denote by †p the list [†p1, . . . , †pn].
We also define

∑
p to be the sum

∑
1≤i≤n pi.

If A is a type then we define λA as A itself. Suppose Γ = x1 : (e1, A1), . . . , xn :
(en, An). Then the notation (V , p) �δ Γ stands for (Wi, pi) ∈ ‖R � eiAi‖δ for
1 ≤ i ≤ n with Wi = Vi if ei = λ and Wi = †Vi if ei = †.
Example 4. If we have (V , p) �δ (x1 : (λ,A1), x2 : (§, A2), x3 : (!, A3)) then V =
[V1, V2,M3] and p = [p1, §p2, !p3] such that (V1, p1) ∈ ‖R � A1‖δ, (§V2, §p2) ∈
‖R � §A2‖δ and (!V3, !p3) ∈ ‖R � !A3‖δ.
Theorem 2 (Adequacy). Suppose that R;Γ �δ M : C. Let (V , p) �δ Γ , Then,
for any S such that |R|δ � S,

(M [V /x], �M� +
∑

p) ∈ |R � C|Sδ
Moreover, if M is a value, then we have (M [V /x], �M� +∑

p) ∈ ‖R � C‖δ.

Indexed Realizability for Bounded-Time Programming 277

Proof. The proof is done by induction on the typing judgment.

One of the inductive cases here is particularly interesting, namely the §-promotion
rule. It requires to prove the following lemma.

Lemma 2 (§-prom). Suppose that for any S such that |R|δ � S, (M,m) ∈
|R � A|Sδ holds. Then for any S such that |R|δ+1 � S, we have (§M, §m+ 4) ∈
|R � §A|Sδ+1.

This case is very important, since it justifies many definitions.

– Its proof crucially relies on the fact that in the definition of the region context
interpretation |R|δ, each value is guarded by a modality § and not by a
modality !. Indeed, it requires the monoidality property, which is true for §
but not for !: ∀p, q ∈ M, §(p+ q) ≤ §p+ §q.

– It also relies on the fact that we can consider any set of store S such that
|R|δ � S, which is also built-in in our interpretation of the linear arrow �.

As a corollary of the adequacy theorem, we obtain the announced bounded-time
termination theorem for λReg,μ

LAL programs. As we have proved adequacy for any
choice of a light monoid, we now consider a particular one, that is the light
monoid defined in Example 3.

Proof (Termination theorem (Theorem 1)). This theorem is proved using ade-
quacy together with Property 3. Indeed, we know that 〈M, �, �〉 terminates in
at most ‖�M�‖ steps. Now, because we use the light monoid Ml of Example
3, it is easy to see that only the promotion rules for § and ! make the value of
‖�M�‖ increase significantly: the degree of the third component of �M� (which is
a polynomial) is bounded by a function of the depth of M . A similar argument
is made more precise in [11], for instance.

4 Related Work

Approximation Modality — In a series of two papers, Nakano intro-
duced a normalizing intuitionistic type system that features recursive types,
which are guarded by a modality • (the approximation modality). Nakano also
defines an indexed realizability semantics for this type system. The modality §
plays in our work almost the same role as •: it makes the index increase. We
claim that when we forget the quantitative part of our model, we obtain a model
for a language with guarded references, that can be extended to handle control
operators, based on a fragment of Nakano’s type system: the only difference is
that the • modality does not enjoy digging anymore (in presence of control op-
erators, this principle would break normalization).

Stratified Semantics for Light Logics — Several semantics for the
”light” logics have been proposed, beginning with fibered phase models [16], a
truth-value semantics for LLL. We can also mention stratified coherent spaces [4].

278 A. Brunel and A. Madet

These two models are indexed, like ours, but while the indexing is used to achieve
completeness with respect to the logic, we use it to interpret fixpoints and ref-
erences.

Reactive Programming — In [18], Krishnaswami & al. have proposed
a type system for a discrete-time reactive programming language that bounds
the size of the data flow graph produced by programs. It is based on linear types
and a Nakano-style approximation modality, thus bounding space consumption
and allowing recursive definitions at the same time. They provide a denotational
semantics based on both ultrametric semantics and length spaces. These lat-
ter, introduced by Hofmann [8] constitute the starting point of the quantitative
realizability presented here.

5 Research Directions

We see several possible directions we plan to explore.

Control Operators — Since we use a biorthogonality-based model, it
is natural to extend the language with control operators. Adding the call-cc
operator can be done, but it requires to add a modality type ? for duplicable
contexts. This involves some technical subtleties in the quantitative part, like
the symmetrization of the notion of M-contexts. Indeed, in our framework, a
M-context can be used to promote a weight associated to a term, but with this
new ? type, a weight associated to a term would need to be able to promote a
weight associated to a stack.

Multithreading — In the original work of Amadio and Madet [15], the
language features regions but also multithreading. It is possible to add it to
λReg,μ
LAL but so far, it seems difficult to adapt the quantitative framework for this

extension. It may be possible to adapt the notion of saturated store presented in
[1], but with a boundedness requirement on it. We plan to explore this direction
in the future.

References

1. Amadio, R.M.: On Stratified Regions. In: Hu, Z. (ed.) APLAS 2009. LNCS,
vol. 5904, pp. 210–225. Springer, Heidelberg (2009)

2. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on Programming Languages and Systems
(TOPLAS) 23(5), 657–683 (2001)

3. Asperti, A.: Light affine logic. In: Proceedings of the Thirteenth Annual IEEE
Symposium on Logic in Computer Science, pp. 300–308 (1998)

4. Baillot, P.: Stratified coherence spaces: a denotational semantics for light linear
logic. Theoretical Computer Science 318(1), 29–55 (2004)

5. Brunel, A.: Quantitative classical realizability (submitted, 2012)

Indexed Realizability for Bounded-Time Programming 279

6. Dal Lago, U., Martini, S., Sangiorgi, D.: Light logics and higher-order processes.
Electronic Proceedings in Theoretical Computer Science 41 (2010)

7. Girard, J.-Y.: Light Linear Logic. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960,
pp. 145–176. Springer, Heidelberg (1995)

8. Hofmann, M.: Linear types and non-size-increasing polynomial time computation.
Information and Computation 183(1), 57–85 (2003)

9. Krivine, J-L.: Realizability in classical logic. Course notes of a series of lectures
given in the University of Marseille (May 2004) (last revision: July 2005), Panora-
mas et syntheses, Société Mathéematique de France (2005)

10. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Sci-
ence 318(1-2), 163–180 (2004)

11. Dal Lago, U., Hofmann, M.: Bounded Linear Logic, Revisited. In: Curien, P.-L.
(ed.) TLCA 2009. LNCS, vol. 5608, pp. 80–94. Springer, Heidelberg (2009)

12. Dal Lago, U., Hofmann, M.: A semantic proof of polytime soundness of light affine
logic. Theory of Computing Systems 46, 673–689 (2010)

13. Dal Lago, U., Hofmann, M.: Realizability models and implicit complexity. Theo-
retical Computer Science 412(20), 2029–2047 (2011), Girard’s Festschrift

14. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1988, pp. 47–57. ACM, New York (1988)

15. Madet, A., Amadio, R.M.: An Elementary Affine λ-Calculus with Multithreading
and Side Effects. In: Ong, L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 138–152.
Springer, Heidelberg (2011)

16. Okada, M., Kanovich, M.I., Scedrov, A.: Phase semantics for light linear logic.
Theoretical Computer Science 294(3), 525–549 (2003)

17. Nakano, H.: A modality for recursion. In: Proceedings of the 15th Annual IEEE
Symposium on Logic in Computer Science, pp. 255–266. IEEE (2000)

18. Benton, N., Krishnaswami, N.R., Hoffmann, J.: Higher-order functional reac-
tive programming in bounded space. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 45–
58. ACM (2012)

19. Baillot, P., Gaboardi, M., Mogbil, V.: A PolyTime Functional Language from Light
Linear Logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 104–124.
Springer, Heidelberg (2010)

20. Terui, K.: Light affine lambda calculus and polynomial time strong normalization.
Archive for Mathematical Logic 46(3-4), 253–280 (2007)

