
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D2.1

Addendum: survey of related work

Version 1.0

Main Author:
Nicolas Ayache

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1



The CerCo project addresses three different problems that are often con-
sidered separately in the literature: formal compiler certification (section
1), the determination of upper bounds on processors’ execution time, also
known as worst-case execution time (WCET, section 2), and the automatic
inference of upper bounds for recurrence relations (section 3). In the follow-
ing, we survey the state of the art of each of these problems, and we then
relate them to the CerCo’s project in section 4.

1 Formal compiler certification

Early work on formal compiler certification can be traced back to 1967.
In [1], McCarthy presents the compilation of a language composed of arith-
metic expressions to a simple assembly language, and gives formal evidence
that this translation is sound, i.e., that the generated assembly code indeed
computes the result of the original arithmetic expression. The proof includes
a formalisation of the semantics of the source and object languages and a
related simulation property of the compilation function.

With the increasing number and complexity of critical embedded soft-
ware, compiler verification has gained a great interest over the years (see [2]
for a rather complete bibliography up to 2003), and a number of research
projects and approaches are nowadays dedicated to this task.

Amongst them, many still follow McCarthy’s approach to certified com-
pilation. A notable example is the Piton project which relies upon the ACL2
(Boyer-Moore) prover [10]. It concerns the formalization of a series of com-
pilers from high-level languages to an assembly language. Because, reasoning
is conducted in a fragment of first-order logic, the formalization of the sim-
ulation property in ACL2 is based on a so-called clock function that, given
a high-level program and a status, returns the number of low level steps
required to simulate the execution of the next high level instruction. In-
terestingly, this is similar to the so called direct approach to certifying cost
annotations that we describe in deliverable D2.1 and that we eventually
reject because of its poor modularity properties.

More recently, Strecker [3] certifies a compiler from Java to bytecode
in the Isabelle system proof assistant, and the CompCert project [4], led by
Leroy, certifies a moderately optimising compiler from C to the PowerPc
assembly language in the Coq proof assistant. In both cases, the challenge
is to decompose the compilation in several elementary passes, where each
pass is proved sound in a sense close to McCarthy’s (but also taking into

2



consideration potential errors in the source program). Then the soundness
of the whole compiler is obtained by the composition of the soundness of
each pass; modularity is a crucial issue in the engineering of the proof.

Compiler certification is also a central task in the Verisoft project (see,
e.g., [9]) which aims at a so called pervasive verification of computer systems
including the hardware and the operating system. Their results are based
on the Isabelle/HOL proof assistant and concern the compiler for a fragment
of the C language called C0 (close to Pascal).

Another trend in certified compilation is that of translation validation [5]:
instead of proving once and for all that the translation is correct whatever the
input program, a checker verifies after compilation that the produced code
correctly implements the source program. For instance, Necula [6] applies
this technique to an optimizing GNU C compiler. The formal certification
of the validators has also been considered, e.g., in [7].

Rival [8] considers a related approach where an invariant property on the
source program is translated into a corresponding invariant property on the
assembly code [8]. The translation is based on debugging information (a cor-
respondence between variables and memory location, and a correspondence
between some program points) and abstract interpretation. Then, abstract
interpretation is used again to verify that the property on the assembly code
indeed holds.

2 Worst-case execution time

Wilhelm et al. [11] provide a rather complete survey of the worst-case ex-
ecution time (WCET) problem and its tools (up to 2008). Not only is the
problem undecidable, but also, today’s complex architectures are challeng-
ing in precisely predicting the execution time of a sequence of instructions,
because of features such as caches [12, 13], pipelines [14], and branch predic-
tion that may contribute to timing anomalies [15, 16]: the local worst case
may not be the global one. There exist two main approaches to solving the
WCET problem: static analysis and measurement-based tools (and some-
times hybrid). Static analysis tools intend to compute safe timing bounds,
i.e., an upper bound of the actual WCET, but at the cost of precision,
and relying on a model of the architecture. On the other hand, dynamic
tools are often able to find precise unsafe bounds, i.e. close but sometimes
under-estimated, by measuring the executions on a concrete microprocessor.
The WCET analysis problem is often broken down into two sub-problems:

3



data-dependent control flow (what path will be executed) and context of
execution (state of the cache for instance).

Static analysis tools — which are clearly more relevant to certified cost
bounds — all rely on more or less advanced techniques borrowed from ab-
stract interpretation, the main issues being the abstraction of the architec-
ture, e.g., the cache and the replacement policy, and the computation of a
bound for the number of iterations of each loop [17, 18]. Some tools that are
dedicated to specific languages can infer these bounds automatically [19, 20],
but tools for general purpose languages require the user to insert explicit
bounds. In the cited work, Wilhelm et al. present several tools dedicated
to WCET analysis, be they static or measurement-based. In the following
we shall focus on two belonging to the first class which are representative
of the state of the art and whose functionalities are of particular interest to
us.

AbsInt [21]. This commercial tool performs stack consumption and WCET
analyses. It works at the assembly level by control flow graph (CFG) re-
construction and abstract interpretation, and targets several architectures.
Also, it is able to consider complex architectural features, such as caches,
pipelines, branch prediction. For WCET analysis, AbsInt is able to give
tight upper bounds on the number of processor cycles needed to execute a
program from its entry point.

AbsInt has been successfully integrated in the Scade tool suite [20], a
model-based environment used to design synchronous systems. The inte-
gration consists in translating the high level model into C code (this is a
feature of Scade), compiling it to assembly code, performing the WCET
analysis and finally sending the result back to Scade where it is presented
to the user. The efficiency of the integration comes from the properties of
the generated C code from Scade; in particular, bounds on the number of
iterations of loops are statically known, which greatly simplifies the analysis.

AbsInt can be used on generic C files, though it may face imprecision
inherent to abstract interpretation. In this case, the kind of information
that the WCET analysis needs for precision can be added manually through
specification files.

Chronos [22]. It is an open source tool for computing safe WCET of C
programs. The analysis operates at the assembly level through CFG re-
construction and handles complex architectural features, such as caches,
pipelines, and branch prediction. The tool builds a mapping between source

4



and assembly program points, estimates the cost of basic blocks of code, and
then computes the WCET relying on integer linear programming. One of
the strengths of Chronos, as claimed by the authors, is the fact that it tar-
gets the SimpleScalar [23] computer architecture simulator which is a widely
used model of a processor with CPU, cache memory, and memory hierarchy.

3 Tools for automatic cost inference

Cost inference consists in statically determining an upper bound on the
usage of some resource during program execution. Most analyses found
in the literature operate on the source language (hence at a higher level
than WCET analysis) and count some supposedly O(1) operations such as
assignments, function calls, memory allocations,. . . while ignoring the details
of the compilation process. The techniques used to infer the costs vary from
the analytic solution of recurrence equations to abstract interpretation. In
the following we mention some examples which are representative of the
state of the art.

The COSTA tool [27] is concerned with the analysis of Java code (actu-
ally of Java bytecode). COSTA is based on the classical approach to static
cost analysis which consists of two phases. First, given a program and a de-
scription of the resource, the analysis produces cost relations, which are sets
of recursive equations. Second, closed-form solutions are found, if possible
and for this task a form of abstract interpretation is used.

Barthe and Pavlova [25] work on memory consumption annotations for
Java. They define the Bytecode Specification Language, resembling JML,
that allows to describe memory consumption properties in bytecode pro-
grams with annotations (comments) à la Hoare. Then, a weakest precon-
dition calculus computes some verification conditions that, if discharged
through automatic provers for instance, ensure that the program verifies
its memory consumption specification. They also design an algorithm that
automatically infers the memory consumption annotations in some simple
cases. On the same topic, Cachera et al. [26] design a certified memory
usage analyser in Coq for bytecode-like programs, that mixes abstract inter-
pretation techniques and CFG-based loop detection.

The Speed tool [28] synthesizes complexity bounds for a Pascal-like pro-
gramming language. Its strength appears to be the handling of loops for
which the tool proposes various kinds of loop transformations and abstract

5



interpretation techniques that turn out to be effective even in the presence of
non-linear operators (logarithm, exponential, square root, maximum, etc).

4 CerCo’s approach

The CerCo project is an original combination of the problems and the tech-
niques we have described.

CerCo vs. compiler certification CerCo appears to be the first large
scale attempt at certifying the intentional properties of a compiler. To this
end, it proposes a so called labelling approach to the certification of cost
annotations which has very good modularity properties. It also proposes a
refined approach called dependent labelling that can account for sophisticated
optimisations.

Another original feature of the CerCo approach is the heavy exploitation
of dependent types and executable semantics in the formalization. Small
examples of compilers implemented using dependent types already exist,
but the CerCo compiler is the first large-scale formalization to employ them.
The combination of both techniques yields a new proving style (“Russell-
style”) where CerCo’s developers simply write the code and the system opens
relevant proof obligations. At the moment this approach is supported only
by the Coq and Matita interactive theorem provers. Whilst support for
the former is implemented in an external layer of the system, this style is
implemented in the latter at the so-called refiner level and is therefore much
more flexible.

CerCo vs. WCET From a formal certification viewpoint, the approaches
to WCET described in section 2 are not quite satisfying. First, there is no
formal certification of the fact that the abstract interpretation method does
indeed produce correct results for a given processor. This in turn supposes a
formal modelling of the processor and a proof that the abstract interpreta-
tion method does indeed abstracts the processor’s behaviour. Second, there
is no formal certification of the fact that the annotations on the loops are
indeed correct. More generally, the relationship between the source code
and the generated binary is not even formalised.

However, the most severe limitation seems to be that the WCET analysis
are not compositional (at least in the case of AbsInt and Chronos tools we
have considered) in that it is not possible to have a form of assume-guarantee

6



reasoning on the WCET of, say, a procedure. Instead, the whole program
must be analysed at once.

For this reason, the CerCo project focuses on processors with a simple ar-
chitecture for which manufacturers can provide accurate information on the
execution cost of the binary instructions. In particular, CerCo’s experiments
are based on the 80511. This is a widely popular 8-bits processor developed
by Intel for use in embedded systems with no cache and no pipeline. An
important characteristic of the processor is that its cost model is ‘additive’:
the cost of a sequence of instructions is exactly the sum of the cost of each
instruction.

An interesting benefit of this approach is that cost information on short
sequences of instructions can be lifted to the level of the source C code and
general purpose tools can be used to reason on them. Thus while AbsInt
builds an abstract interpretation for each processor, we can just work with
one abstract interpretation tool for the source C language. Clearly this
avoids an annoying (but commercially justified) duplication of work and
increases the trust we can have in the results.

CerCo vs. automatic cost inference Here CerCo’s contribution is not in
providing new abstract interpretation techniques or new methods for solving
recurrence relations but rather in building an extensible infrastructure which
can handle realistic C programs as found in embedded applications and
certify the validity of the asserted bounds with respect to the compiled code.

In particular, the CerCo’s approach builds upon the Frama− C software
analyzers and it consists of a so-called plug-in which in first approximation
takes the following actions: (1) it receives as input a C program, (2) it applies
the CerCo compiler to produce a related C program with cost annotations,
(3) it applies some heuristics based on abstract interpretation to produce a
tentative bound on the cost of executing the C functions of the program as
a function of the value of their parameters, (4) it calls an automatic tool
(Jessie) to discharge the related proof obligations.

Unlike usual cost analysis tools which act as black boxes that may suc-
ceed or fail, the proposed approach provides the user with human readable
information at the level of the source code and supports interactive theorem
proving.

1The recently proposed ARM Cortex M series would be another obvious candidate.

7



References

[1] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. In
Math. aspects of Comp. Sci. 1, vol. 19 of Symp. in Appl. Math., AMS, 1967.

[2] M. A. Dave. Compiler verification: a bibliography. 2003

[3] Martin Strecker. Formal Verification of a Java Compiler in Isabelle. In proceedings
of the 18th International Conference on Automated Deduction (CADE). 2002

[4] X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115,
2009.

[5] Amir Pnueli, Michael Siegel and Eli Singerman. Translation Validation. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS). 1998

[6] George C. Necula. Translation validation for an optimizing compiler. In Programming
language design and implementation (PLDI). 2000

[7] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation validators:
a case study on instruction scheduling optimizations. In Principles of programming
languages (POPL). 2008

[8] Xavier Rival. Abstract Interpretation-Based Certification of Assembly Code. In
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2003.

[9] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach, N. W. Schirmer, A. Storastin
and A. Tsyban. Balancing the Load: Leveraging a Semantics Stack for Systems
Verification. Journal of Automated Reasoning: Special Issue on Operating Systems
Verification, 42(2-4) 2009.

[10] Matt Kaufmann and J Strother Moore. Design goals for ACL2. Technical report.
2000

[11] R. Wilhelm et al. The worst-case execution-time problem - overview of methods and
survey of tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[12] Franck Mueller. Timing Analysis for Instruction Caches. In Real-Time Syst., 18(2/3).
2000

[13] Jan Staschulat and and Rolf Ernst. Worst case timing analysis of input dependent
data cache behavior. In Euromicro Conference on Real-Time Systems (ECRTS). 2006

[14] Stephan Thesing Safe and precise WCET determination by abstract interpretation
of pipeline models. PhD thesis. 2004

[15] Thomas Lundqvist and Per Stenström. Timing Anomalies in Dynamically Scheduled
Microprocessors. In Real-Time Systems Symposium (RTSS). 2009

[16] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger and B. Becker
A Definition and Classification of Timing Anomalies In Worst-Case Execution Time
Analisys (WCET). 2006

[17] C. Healy, M. Sjödin, V. Rustagi and D. Whalley. Bounding Loop Iterations for
Timing Analysis. In Real-Time Technology and Applications Symposium (RTAS).
1998

[18] C. Healy, M. Sjödin, V. Rustagi, D. Whalley and E. R. Van. Supporting timing
analysis by automatic bounding of loop iterations. In Real-Time Systems, 18(2-3).
2000

8



[19] R. Kirner, R. Lang, G. Freiberger and P. Puschner. Fully Automatic Worst-Case
Execution Time Analysis for Matlab/Simulink Models. In Euromicro Conference on
Real-Time Systems (ECRTS). 2002

[20] C. Ferdinand, R. Heckmann, T. Le Sergent, D. Lopes, B. Martin, X. Fornari, and
F. Martin. Combining a high level design tool for safety-critical systems with a tool
for WCET analysis of executables. In Embedded Real Time Software (ERTS), 2008.

[21] AbsInt Angewandte Informatik. http://www.absint.com/.

[22] Xianfeng Li, Yun Liang, Tulika Mitra and Abhik Roychoudhury. Chronos: A timing
analyzer for embedded software. Science of Computer Programming. 2007

[23] SimpleScalar LLC. http://www.simplescalar.com

[24] Karl Crary and Stephanie Weirich. Resource Bound Certification. ACM-POPL, 2000

[25] Gilles Barthe and Mariela Pavlova. Precise Analisys of Memory Consumption using
Program Logics. In Software Engineering and Formal Methods (SEFM), 2005.

[26] David Cachera, Thomas Jensen, David Pichardie and Gerardo Schneider. Certified
Memory Usage Analysis. In Formal Methods (FM), 2005

[27] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, D. Ramı́rez,
G. Román and D. Zanardini. Termination and Cost Analysis with COSTA and
its User Interfaces. Electron. Notes Theor. Comput. Sci., 258(1) 2009.

[28] Sumit Gulwani. SPEED: symbolic complexity bound analysis. In Computed Aided
Verification CAV. 2009

9


