
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D4.3
Executable formal semantics of back-end

intermediate languages

Version 1.1

Main Authors:
Dominic P. Mulligan and Claudio Sacerdoti Coen

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Abstract We describe the encoding in the Calculus of Constructions of the semantics of
the CerCo compiler’s back-end intermediate languages. The CerCo back-end consists of five
distinct languages: RTL, RTLntl, ERTL, LTL and LIN. We describe a process of heavy
abstraction of the intermediate languages and their semantics. We hope that this process will
ease the burden of Deliverable D4.4, the proof of correctness for the compiler.

CerCo, FP7-ICT-2009-C-243881 3

Contents

1 Task 4
1.1 Connections with other deliverables . 4

2 The back-end intermediate languages’ semantics in Matita 4
2.1 Abstracting related languages . 4
2.2 Type parameters, and their purpose . 5
2.3 Use of monads . 11
2.4 Memory models . 12

3 Future work 13

4 Code listing 13
4.1 Listing of files . 13
4.2 Listing of important functions and axioms . 17

CerCo, FP7-ICT-2009-C-243881 4

1 Task

The Grant Agreement states that Task T4.3, entitled ‘Formal semantics of intermediate lan-
guages’ has associated Deliverable D4.3, consisting of the following:

Executable Formal Semantics of back-end intermediate languages: This pro-
totype is the formal counterpart of deliverable D2.1 for the back end side of the
compiler and validates it.

This report details our implementation of this deliverable.

1.1 Connections with other deliverables

Deliverable D4.3 enjoys a close relationship with three other deliverables, namely deliverables
D2.2, D4.3 and D4.4.

Deliverable D2.2, the OCaml implementation of a cost preserving compiler for a large
subset of the C programming language, is the basis upon which we have implemented the
current deliverable. In particular, the architecture of the compiler, its intermediate languages
and their semantics, and the overall implementation of the Matita encodings has been taken
from the OCaml compiler. Any variations from the OCaml design are due to bugs identified
in the prototype compiler during the Matita implementation, our identification of code that
can be abstracted and made generic, or our use of Matita’s much stronger type system to
enforce invariants through the use of dependent types.

Deliverable D4.2 can be seen as a ‘sister’ deliverable to the deliverable reported on herein.
In particular, where this deliverable reports on the encoding in the Calculus of Constructions
of the back-end semantics, D4.2 is the encoding in the Calculus of Constructions of the mutual
translations of those languages. As a result, a substantial amount of Matita code is shared
between the two deliverables.

Deliverable D4.4, the back-end correctness proofs, is the immediate successor of this de-
liverable.

2 The back-end intermediate languages’ semantics in Matita

2.1 Abstracting related languages

As mentioned in the report for Deliverable D4.2, a systematic process of abstraction, over the
OCaml code, has taken place in the Matita encoding. In particular, we have merged many
of the syntaxes of the intermediate languages (i.e. RTL, ERTL, LTL and LIN) into a single
‘joint’ syntax, which is parameterised by various types. Equivalent intermediate languages to
those present in the OCaml code can be recovered by specialising this joint structure.

As mentioned in the report for Deliverable D4.2, there are a number of advantages that
this process of abstraction brings, from code reuse to allowing us to get a clearer view of
the intermediate languages and their structure. However, the semantics of the intermediate
languages allow us to concretely demonstrate this improvement in clarity, by noting that the
semantics of the LTL and the semantics of the LIN languages are identical. In particular,
the semantics of both LTL and LIN are implemented in exactly the same way. The only
difference between the two languages is how the next instruction to be interpreted is fetched.

CerCo, FP7-ICT-2009-C-243881 5

In LTL, this involves looking up in a graph, whereas in LTL, this involves fetching from a list
of instructions.

As a result, we see that the semantics of LIN and LTL are both instances of a single, more
general language that is parametric in how the next instruction is fetched. Furthermore, any
prospective proof that the semantics of LTL and LIN are identical is now almost trivial, saving
a deal of work in Deliverable D4.4.

2.2 Type parameters, and their purpose

We mentioned in the Deliverable D4.2 report that all joint languages are parameterised by a
number of types, which are later specialised to each distinct intermediate language. As this
parameterisation process is also dependent on designs decisions in the language semantics, we
have so far held off summarising the role of each parameter.

We begin the abstraction process with the params record. This holds the types of the
representations of the different register varieties in the intermediate languages:

record params__: Type[1] :=

{

acc_a_reg: Type[0];

acc_b_reg: Type[0];

dpl_reg: Type[0];

dph_reg: Type[0];

pair_reg: Type[0];

generic_reg: Type[0];

call_args: Type[0];

call_dest: Type[0];

extend_statements: Type[0]

}.

We summarise what these types mean, and how they are used in both the semantics and the
translation process:

CerCo, FP7-ICT-2009-C-243881 6

Type Explanation

acc a reg The type of the accumulator A register. In some languages this is
implemented as the hardware accumulator, whereas in others this
is a pseudoregister.

acc b reg Similar to the accumulator A field, but for the processor’s auxil-
liary accumulator, B.

dpl reg The type of the representation of the low eight bit register of the
MCS-51’s single 16 bit register, DPL. Can be either a pseudoreg-
ister or the hardware DPL register.

dph reg Similar to the DPL register but for the eight high bits of the 16-bit
register.

pair reg Various different ‘move’ instructions have been merged into a sin-
gle move instruction in the joint language. A value can either be
moved to or from the accumulator in some languages, or moved to
and from an arbitrary pseudoregister in others. This type encodes
how we should move data around the registers and accumulators.

generic reg The representation of generic registers (i.e. those that are not
devoted to a specific task).

call args The actual arguments passed to a function. For some languages
this is simply the number of arguments passed to the function.

call dest The destination of the function call.
extend statements Instructions that are specific to a particular intermediate language,

and which cannot be abstracted into the joint language.

As mentioned in the report for Deliverable D4.2, the record params is enough to be able
to specify the instructions of the joint languages:

inductive joint_instruction (p: params__) (globals: list ident): Type[0] :=

| COMMENT: String → joint_instruction p globals

| COST_LABEL: costlabel → joint_instruction p globals

...

| OP1: Op1 → acc_a_reg p → acc_a_reg p → joint_instruction p globals

| COND: acc_a_reg p → label → joint_instruction p globals

...

Here, we see that the instruction OP1 (a unary operation on the accumulator A) can be given
quite a specific type, through the use of the params data structure.

Joint statements can be split into two subclasses: those who simply pass the flow of control
onto their successor statement, and those that jump to a potentially remote location in the
program. Naturally, as some intermediate languages are graph based, and others linearised,
the passing act of passing control on to the ‘successor’ instruction can either be the act of
following a graph edge in a control flow graph, or incrementing an index into a list. We make
a distinction between instructions that pass control onto their immediate successors, and
those that jump elsewhere in the program, through the use of succ, denoting the immediate
successor of the current instruction, in the params record described below.

record params_: Type[1] :=

{

pars__ :> params__;

succ: Type[0]

}.

CerCo, FP7-ICT-2009-C-243881 7

The type succ corresponds to labels, in the case of control flow graph based languages, or
is instantiated to the unit type for the linearised language, LIN. Using param we can define
statements of the joint language:

inductive joint_statement (p:params_) (globals: list ident): Type[0] :=

| sequential: joint_instruction p globals → succ p → joint_statement p globals

| GOTO: label → joint_statement p globals

| RETURN: joint_statement p globals.

Note that in the joint language, instructions are ‘linear’, in that they have an immediate
successor. Statements, on the other hand, consist of either a linear instruction, or a GOTO

or RETURN statement, both of which can jump to an arbitrary place in the program. The
conditional jump instruction COND is ‘linear’, since it has an immediate successor, but it also
takes an arbitrary location (a label) to jump to.

For the semantics, we need further parametererised types. In particular, we parameterise
the result and parameter type of an internal function call in params0:

record params0: Type[1] :=

{

pars__’ :> params__;

resultT: Type[0];

paramsT: Type[0]

}.

Here, paramsT and resultT typically are the (pseudo)registers that store the parameters and
result of a function.

We further extend params0 with a type for local variables in internal function calls:

record params1 : Type[1] :=

{

pars0 :> params0;

localsT: Type[0]

}.

Again, we expand our parameters with types corresponding to the code representation (either
a control flow graph or a list of statements). Further, we hypothesise a generic method for
looking up the next instruction in the graph, called lookup. Note that lookup may fail, and
returns an option type:

record params (globals: list ident): Type[1] :=

{

succ_ : Type[0];

pars1 :> params1;

codeT : Type[0];

lookup: codeT → label → option (joint_statement (mk_params_ pars1 succ_) globals)

}.

We now have what we need to define internal functions for the joint language. The first two
‘universe’ fields are only used in the compilation process, for generating fresh names, and
do not affect the semantics. The rest of the fields affect both compilation and semantics. In
particular, we have a description of the result, parameters and the local variables of a function.
Note also that we have lifted the hypothesised lookup function from params into a dependent
sigma type, which combines a label (the entry and exit points of the control flow graph or
list) combined with a proof that the label is in the graph structure:

CerCo, FP7-ICT-2009-C-243881 8

record joint_internal_function (globals: list ident) (p:params globals) : Type[0] :=

{

joint_if_luniverse: universe LabelTag;

joint_if_runiverse: universe RegisterTag;

joint_if_result : resultT p;

joint_if_params : paramsT p;

joint_if_locals : localsT p;

joint_if_stacksize: nat;

joint_if_code : codeT ... p;

joint_if_entry : Σl: label. lookup ... joint_if_code l 6= None ?;

joint_if_exit : Σl: label. lookup ... joint_if_code l 6= None ?

}.

Naturally, a question arises as to why we have chosen to split up the parameterisation into
so many intermediate records, each slightly extending earlier ones. The reason is because
some intermediate languages share a host of parameters, and only differ on some others. For
instance, in instantiating the ERTL language, certain parameters are shared with RTL, whilst
others are ERTL specific:

...

definition ertl_params__: params__ :=

mk_params__ register register register register (move_registers × move_registers)

register nat unit ertl_statement_extension.

...

definition ertl_params1: params1 := rtl_ertl_params1 ertl_params0.

definition ertl_params: ∀globals. params globals := rtl_ertl_params ertl_params0.

...

definition ertl_statement := joint_statement ertl_params_.

definition ertl_internal_function :=

λglobals.joint_internal_function ... (ertl_params globals).

Here, rtl ertl params1 are the common parameters of the ERTL and RTL languages:

definition rtl_ertl_params1 := λpars0. mk_params1 pars0 (list register).

The record more sem params bundles together functions that store and retrieve values in
various forms of register:

record more_sem_params (p:params_): Type[1] :=

{

framesT: Type[0];

empty_framesT: framesT;

regsT: Type[0];

empty_regsT: regsT;

call_args_for_main: call_args p;

call_dest_for_main: call_dest p;

greg_store_: generic_reg p → beval → regsT → res regsT;

greg_retrieve_: regsT → generic_reg p → res beval;

acca_store_: acc_a_reg p → beval → regsT → res regsT;

acca_retrieve_: regsT → acc_a_reg p → res beval;

...

CerCo, FP7-ICT-2009-C-243881 9

dpl_store_: dpl_reg p → beval → regsT → res regsT;

dpl_retrieve_: regsT → dpl_reg p → res beval;

...

pair_reg_move_: regsT → pair_reg p → res regsT;

}.

Here, the fields empty framesT, empty regsT, call args for main and call dest for main

are used for state initialisation.
The fields greg store and greg retrieve store and retrieve values from a generic reg-

ister, respectively. Similarly, pair reg move implements the generic move instruction of the
joint language. Here framesT is the type of stack frames, with empty framesT an empty stack
frame.

The two hypothesised values call args for main and call dest for main deal with
problems with the main function of the program, and how it is handled. In particular, we
need to know when the main function has finished executing. But this is complicated, in C,
by the fact that the main function is explicitly allowed to be recursive (disallowed in C++).
Therefore, to understand whether the exiting main function is really exiting, or just recur-
sively calling itself, we need to remember the address to which main will return control once
the initial call to main has finished executing. This is done with call dest for main, whereas
call args for main holds the main function’s arguments.

We extend more sem params with yet more parameters via more sem params2:

record more_sem_params1 (globals: list ident) (p: params globals) : Type[1] :=

{

more_sparams1 :> more_sem_params p;

succ_pc: succ p → address → res address;

pointer_of_label: genv ... p → pointer →
label → res (Σp:pointer. ptype p = Code);

...

fetch_statement:

genv ... p → state (mk_sem_params ... more_sparams1) →
res (joint_statement (mk_sem_params ... more_sparams1) globals);

...

save_frame:

address → nat → paramsT ... p → call_args p → call_dest p →
state (mk_sem_params ... more_sparams1) →
res (state (mk_sem_params ... more_sparams1));

pop_frame:

genv globals p → state (mk_sem_params ... more_sparams1) →
res ((state (mk_sem_params ... more_sparams1)));

...

set_result:

list val → state (mk_sem_params ... more_sparams1) →
res (state (mk_sem_params ... more_sparams1));

exec_extended:

genv globals p → extend_statements (mk_sem_params ... more_sparams1) →
succ p → state (mk_sem_params ... more_sparams1) →
IO io_out io_in (trace × (state (mk_sem_params ... more_sparams1)))

}.

The field succ pc takes an address, and a ‘successor’ label, and returns the address of the

CerCo, FP7-ICT-2009-C-243881 10

instruction immediately succeeding the one at hand.
Here, fetch statement fetches the next statement to be executed. The fields save frame

and pop frame manipulate stack frames. In particular, save frame creates a new stack frame
on the top of the stack, saving the destination and parameters of a function, and returning an
updated state. The field pop frame destructively pops a stack frame from the stack, returning
an updated state. Further, set result saves the result of the function computation, and
exec extended is a function that executes the extended statements, peculiar to each individual
intermediate language.

We bundle params and sem params together into a single record. This will be used in the
function eval statement which executes a single statement of the joint language:

record sem_params2 (globals: list ident): Type[1] :=

{

p2 :> params globals;

more_sparams2 :> more_sem_params2 globals p2

}.

The state record holds the current state of the interpreter:

record state (p: sem_params): Type[0] :=

{

st_frms: framesT ? p;

pc: address;

sp: pointer;

isp: pointer;

carry: beval;

regs: regsT ? p;

m: bemem

}.

Here st frms represent stack frames, pc the program counter, sp the stack pointer, isp the
internal stack pointer, carry the carry flag, regs the registers (hardware and pseudoregisters)
and m external RAM. Note that we have two stack pointers, as we have two stacks: the physical
stack of the MCS-51 microprocessor, and an emulated stack in external RAM. The MCS-51’s
own stack is minuscule, therefore it is usual to emulate a much larger, more useful stack in
external RAM. We require two stack pointers as the MCS-51’s PUSH and POP instructions
manipulate the physical stack, and not the emulated one.

We use the function eval statement to evaluate a single joint statement:

definition eval_statement:

∀globals: list ident.∀p:sem_params2 globals.

genv globals p → state p → IO io_out io_in (trace × (state p)) :=

...

We examine the type of this function. Note that it returns a monadic action, IO, denoting that
it may have an IO side effect, where the program reads or writes to some external device or
memory address. Monads and their use are further discussed in Subsection 2.3. Further, the
function returns a new state, updated by the single step of execution of the program. Finally,
a trace is also returned, which records externally observable ‘events’, such as the calling of
external functions and the emission of cost labels.

CerCo, FP7-ICT-2009-C-243881 11

2.3 Use of monads

Monads are a categorical notion that have recently gained an amount of traction in functional
programming circles. In particular, it was noted by Moggi that monads could be used to
sequence effectful computations in a pure manner. Here, ‘effectful computations’ cover a lot
of ground, from writing to files, generating fresh names, or updating an ambient notion of
state.

A monad can be characterised by the following:

• A data type, M . For instance, the option type in OCaml or Matita.

• A way to ‘inject’ or ‘lift’ pure values into this data type (usually called return). We
call this function return and say that it must have type α → Mα, where M is the
name of the monad. In our example, the ‘lifting’ function for the option monad can be
implemented as:

let return x = Some x

• A way to ‘sequence’ monadic functions together, to form another monadic function,
usually called bind. Bind has type Mα → (α → Mβ) → Mβ. We can see that bind
‘unpacks’ a monadic value, applies a function after unpacking, and ‘repacks’ the new
value in the monad. In our example, the sequencing function for the option monad can
be implemented as:

let bind o f =

match o with

None -> None

Some s -> f s

• A series of algebraic laws that relate return and bind, ensuring that the sequencing
operation ‘does the right thing’ by retaining the order of effects. These monad laws
should also be useful in reasoning about monadic computations in the proof of correctness
of the compiler.

In the semantics of both front and back-end intermediate languages, we make use of monads.
This monadic infrastructure is shared between the front-end and back-end languages.

In particular, an ‘IO’ monad, signalling the emission of a cost label, or the calling of
an external function, is heavily used in the semantics of the intermediate languages. Here,
the monad’s sequencing operation ensures that cost label emissions and function calls are
maintained in the correct order. We have already seen how the eval statement function of
the joint language is monadic, with type:

definition eval_statement:

∀globals: list ident.∀p:sem_params2 globals.

genv globals p → state p → IO io_out io_in (trace × (state p)) :=

...

If we examine the body of eval statement, we may also see how the monad sequences effects.
For instance, in the case for the LOAD statement, we have the following:

definition eval_statement:

∀globals: list ident. ∀p:sem_params2 globals.

CerCo, FP7-ICT-2009-C-243881 12

genv globals p → state p → IO io_out io_in (trace × (state p)) :=

λglobals, p, ge, st.

...

match s with

| LOAD dst addrl addrh ⇒
! vaddrh ← dph_retrieve ... st addrh;

! vaddrl ← dpl_retrieve ... st addrl;

! vaddr ← pointer_of_address 〈vaddrl,vaddrh〉;
! v ← opt_to_res ... (msg FailedLoad) (beloadv (m ... st) vaddr);

! st ← acca_store p ... dst v st;

! st ← next ... l st ;

ret ? 〈E0, st〉

Here, we employ a certain degree of syntactic sugaring. The syntax

...

! vaddrh ← dph_retrieve ... st addrh;

! vaddrl ← dpl_retrieve ... st addrl;

...

is sugaring for the IO monad’s binding operation. We can expand this sugaring to the following
much more verbose code:

...

bind (dph_retrieve ... st addrh) (λvaddrh. bind (dpl_retrieve ... st addrl)

(λvaddrl. ...))

Note also that the function ret is implementing the ‘lifting’, or return function of the IO

monad.
We believe the sugaring for the monadic bind operation makes the program much more

readable, and therefore easier to reason about. In particular, note that the functions dph retrieve,
pointer of address, acca store and next are all monadic.

Note, however, that inside this monadic code, there is also another monad hiding. The
res monad signals failure, along with an error message. The monad’s sequencing operation
ensures the order of error messages does not get rearranged. The function opt to res lifts
an option type into this monad, with an error message to be used in case of failure. The res

monad is then coerced into the IO monad, ensuring the whole code snippet typechecks.

2.4 Memory models

Currently, the semantics of the front and back-end intermediate languages are built around
two distinct memory models. The front-end languages reuse the CompCert 1.6 memory model,
whereas the back-end languages employ a version tailored to their needs. This split between
the memory models reflects the fact that the front-end and back-end languages have different
requirements from their memory models.

In particular, the CompCert 1.6 memory model places quite heavy restrictions on where
in memory one can read from. To read a value in this memory model, you must supply an
address, complete with the size of ‘chunk’ to read following that address. The read is only
successful if you attempt to read at a genuine ‘value boundary’, and read the appropriate
amount of memory for that value. As a result, with that memory model you are unable to
read the third byte of a 32-bit integer value directly from memory, for instance. This has some
consequences for the compiler, namely an inability to write a memcpy routine.

CerCo, FP7-ICT-2009-C-243881 13

However, the CerCo memory model operates differently, as we need to move data ‘piece-
meal’ between stacks in the back-end of the compiler. As a result, the back-end memory model
allows one to read data at any memory location, not just on value boundaries. This has the
advantage that we can successfully give a semantics to a memcpy routine in the back-end of the
CerCo compiler (remembering that memcpy is nothing more than ‘read a byte, copy a byte’
repeated in a loop), an advantage over CompCert. However, the front-end of CerCo cannot
because its memory model and values are the similar to CompCert 1.6.

More recent versions of CompCert’s memory model have evolved in a similar direction,
with a byte-by-byte representation of memory blocks. However, there remains an important
difference in the handling of pointer values in the rest of the formalisation. In particular,
in CompCert 1.10 only complete pointer values can be loaded in all of the languages in the
compiler, whereas in CerCo we need to represent individual bytes of a pointer in the back-end
to support our 8-bit target architecture.

Right now, the two memory models are interfaced during the translation from RTLabs to
RTL. It is an open question whether we will unify the two memory models, using only the
back-end, bespoke memory model throughout the compiler, as the CompCert memory model
seems to work fine for the front-end, where such byte-by-byte copying is not needed. However,
should we decide to port the front-end to the new memory model, it has been written in such
an abstract way that doing so would be relatively straightforward.

3 Future work

Most things related to external function calls are currently axiomatised. This is due to there
being a difficulty with how stackframes are handled with external function calls. We leave this
for further work, due to there being no pressing need to implement this feature at the present
time.

There is also, as mentioned, an open problem as to whether the front-end languages should
use the same memory model as the back-end languages, as opposed to reusing the CompCert
memory model. Should this decision be taken, this will likely be straightforward but poten-
tially time consuming1.

4 Code listing

4.1 Listing of files

Syntax specific files are presented in Table 1 (files relating to language translations omitted).
Here, the OCaml column denotes the OCaml source file(s) in the prototype compiler’s imple-
mentation that corresponds to the Matita script in question. The ratios are the linecounts of
the Matita file divided by the line counts of the corresponding OCaml file. These are computed
with wc -l, a standard Unix tool.

Individual file’s ratios are an over approximation, due to the fact that it’s hard to relate
an individual OCaml file to the abstracted Matita code that has been spread across multiple

1After the original version of this deliverable was written we ported the front-end languages’ semantics to
the back-end memory model. This turned out not to be time consuming, and moreover used definitions linking
front-end and back-end values that are required for the correctness proofs anyway. However, the front-end
still cannot give a semantics to memcpy, for the same reason as CompCert 1.10; the language currently has no
representation for a single byte of a pointer.

CerCo, FP7-ICT-2009-C-243881 14

files. The ratio between total Matita code lines and total OCaml code lines is more reflective
of the compressed and abstracted state of the Matita translation.

Semantics specific files are presented in Table 2.

CerCo, FP7-ICT-2009-C-243881 15

D
es

cr
ip

ti
on

M
at

it
a

L
in

es
O

C
a
m

l
L

in
es

R
a
ti

o

A
b

st
ra

ct
ed

sy
n
ta

x
fo

r
b

ac
k
-e

n
d

la
n

g
u
ag

es
j
o
i
n
t
/
J
o
i
n
t
.
m
a

17
3

N
/
A

N
/
A

N
/
A

T
h

e
sy

n
ta

x
o
f

R
T

L
a
b

s
R
T
L
a
b
s
/
s
y
n
t
a
x
.
m
a

73
R
T
L
a
b
s
/
R
T
L
a
b
s
.
m
l
i

1
1
3

0
.6

5
T

h
e

sy
n
ta

x
o
f

R
T

L
R
T
L
/
R
T
L
.
m
a

49
R
T
L
/
R
T
L
.
m
l
i

1
2
0

1
.8

5a

T
h

e
sy

n
ta

x
o
f

E
R

T
L

E
R
T
L
/
E
R
T
L
.
m
a

25
E
R
T
L
/
E
R
T
L
.
m
l
i

1
9
1

1
.0

4a

T
h

e
sy

n
ta

x
o
f

th
e

ab
st

ra
ct

ed
co

m
b

in
ed

L
T

L
an

d
L

IN
la

n
gu

ag
e

L
I
N
/
j
o
i
n
t
L
T
L
L
I
N
.
m
a

10
N

/A
N

/
A

N
/
A

T
h

e
sp

ec
ia

li
sa

ti
on

o
f

th
e

ab
ov

e
fi

le
to

th
e

sy
n
ta

x
of

L
T

L
L
T
L
/
L
T
L
.
m
a

10
L
T
L
/
L
T
L
.
m
l
i

1
0
4

1
.8

6b

T
h

e
sp

ec
ia

li
sa

ti
o
n

of
th

e
a
b

ov
e

fi
le

to
th

e
sy

n
ta

x
of

L
IN

L
I
N
/
L
I
N
.
m
a

17
L
I
N
/
L
I
N
.
m
l
i

8
8

2
.2

7b

a
A

ft
er

in
li

n
in

g
o
f
j
o
i
n
t
/
J
o
i
n
t
.
m
a
.

b
A

ft
er

in
li

n
in

g
o
f
j
o
i
n
t
/
J
o
i
n
t
L
T
L
L
I
N
.
m
a

an
d
j
o
i
n
t
/
J
o
i
n
t
.
m
a
.

T
ot

a
l

li
n

es
of

M
a
ti

ta
co

d
e

fo
r

th
e

a
b

ov
e

fi
le

s:
34

7
T

ot
a
l

li
n

es
of

O
C

a
m

l
co

d
e

fo
r

th
e

ab
ov

e
fi

le
s:

61
6

R
at

io
o
f

to
ta

l
li

n
es

:
0.

56

T
a
b

le
1:

S
y
n
ta

x
sp

ec
ifi

c
fi

le
s

in
th

e
in

te
rm

ed
ia

te
la

n
gu

ag
e

se
m

a
n
ti

cs

CerCo, FP7-ICT-2009-C-243881 16

D
es

cr
ip

ti
on

M
at

it
a

L
in

es
O

C
a
m

l
L

in
es

R
a
ti

o

S
em

an
ti

cs
o
f

th
e

ab
st

ra
ct

ed
la

n
g
u

a
ge

s
j
o
i
n
t
/
s
e
m
a
n
t
i
c
s
.
m
a

4
34

N
/A

N
/
A

N
/
A

G
en

er
ic

u
ti

li
ti

es
u

se
d

in
se

m
a
n
ti

cs
‘j

oi
n
t’

la
n

gu
ag

es
j
o
i
n
t
/
S
e
m
a
n
t
i
c
U
t
i
l
s
.
m
a

70
N

/A
N

/
A

N
/
A

S
em

a
n
ti

cs
of

R
T

L
ab

s
R
T
L
a
b
s
/
s
e
m
a
n
t
i
c
s
.
m
a

2
23

R
T
L
a
b
s
/
R
T
L
a
b
s
I
n
t
e
r
p
r
e
t
.
m
l

3
5
5

0
.6

3
S

em
an

ti
cs

o
f

R
T

L
R
T
L
/
s
e
m
a
n
t
i
c
s
.
m
a

1
73

R
T
L
/
R
T
L
I
n
t
e
r
p
r
e
t
.
m
l

3
2
4

2
.0

1a

S
em

an
ti

cs
o
f

E
R

T
L

E
R
T
L
/
s
e
m
a
n
t
i
c
s
.
m
a

1
30

E
R
T
L
/
E
R
T
L
I
n
t
e
r
p
r
e
t
.
m
l

5
0
4

1
.2

6a

S
em

an
ti

cs
o
f

th
e

jo
in

t
L
T

L
-L

IN
la

n
g
u

a
ge

L
I
N
/
j
o
i
n
t
L
T
L
L
I
N
s
e
m
a
n
t
i
c
s
.
m
a

6
7

N
/
A

N
/
A

N
/
A

S
em

a
n
ti

cs
of

L
T

L
L
T
L
/
s
e
m
a
n
t
i
c
s
.
m
a

5
L
T
L
/
L
T
L
I
n
t
e
r
p
r
e
t
.
m
l

4
1
6

1
.3

8b

S
em

an
ti

cs
o
f

L
IN

L
I
N
/
s
e
m
a
n
t
i
c
s
.
m
a

43
L
I
N
/
L
I
N
I
n
t
e
r
p
r
e
t
.
m
l

3
7
9

1
.6

2b

a
In

cl
u

d
es

j
o
i
n
t
/
s
e
m
a
n
t
i
c
s
.
m
a

a
n

d
j
o
i
n
t
/
S
e
m
a
n
t
i
c
U
t
i
l
s
.
m
a
.

b
In

cl
u

d
es

j
o
i
n
t
/
s
e
m
a
n
t
i
c
s
.
m
a
,
j
o
i
n
t
/
S
e
m
a
n
t
i
c
U
t
i
l
s
.
m
a

an
d
j
o
i
n
t
/
j
o
i
n
t
L
T
L
L
I
N
s
e
m
a
n
t
i
c
s
.
m
a
.

T
o
ta

l
li

n
es

o
f

M
at

it
a

co
d

e
fo

r
th

e
ab

ov
e

fi
le

s:
11

45
T

o
ta

l
li

n
es

o
f

O
C

am
l

co
d

e
fo

r
th

e
a
b

ov
e

fi
le

s:
19

78
R

a
ti

on
o
f

to
ta

l
li

n
es

:
0.

58

T
ab

le
2
:

S
em

an
ti

cs
sp

ec
ifi

c
fi

le
s

in
th

e
in

te
rm

ed
ia

te
la

n
gu

ag
e

se
m

an
ti

cs

CerCo, FP7-ICT-2009-C-243881 17

4.2 Listing of important functions and axioms

We list some important functions and axioms in the back-end semantics:

From RTLabs/semantics.ma

Title Description

make initial state Build an initial state
eval statement Evaluate a single RTLabs statement
is final Check whether a state is in a ‘final’ configuration
RTLabs exec Execute an RTLabs program

From RTL/semantics.ma

Title Description

rtl exec extended Execute a single step of the RTL language’s ex-
tended instructions

rtl fullexec Execute an RTL program

From ERTL/semantics.ma

Title Description

ertl exec extended Execute a single step of the ERTL language’s
extended instructions

ertl fullexec Execute an ERTL program

From LTL/semantics.ma

Title Description

ltl fullexec Execute an LTL program

From LIN/semantics.ma

Title Description

lin fullexec Execute a LIN program

From LIN/joint LTL LIN semantics.ma

Title Description

ltl lin exec extended Execute a single step of the joint LTL-LIN lan-
guage’s extended instructions

ltl lin fullexec Execute a joint LTL-LIN language program

From joint/semantics.ma

Title Description

eval statement Evaluate a single joint language statement
is final Check whether a state is in a ‘final’ configuration
joint fullexec Execute a joint language program

CerCo, FP7-ICT-2009-C-243881 18

From joint/SemanticUtils.ma

Title Description

graph fetch statement Fetch a statement from a control flow graph

	Task
	Connections with other deliverables

	The back-end intermediate languages' semantics in Matita
	Abstracting related languages
	Type parameters, and their purpose
	Use of monads
	Memory models

	Future work
	Code listing
	Listing of files
	Listing of important functions and axioms

