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Chapter 1

Introduction

A motor task can be represented by the degree of spatiotemporal accuracy needed to achieve

a certain goal. For geometrically constrained motor tasks the goal is usually represented by a

geometrical template (e.g. ‘trace that ellipse’) while more voluntary tasks usually involve the

requirement to achieve a high level goal (e.g. ‘cut the tomatoes’). The question how the nervous

system is capable of generating complicated motion patterns by selecting among an enormous

number of competing executions is an open question for all such motor tasks. One of the main

goals of motor control research is to describe the repertoire of constrained and voluntary human

movements in terms of basic elementary movements, i.e motion primitives (Bernstein (1967) and for

a review see Flash and Hochner (2005)). Here we suggest a mathematical framework for geometric

and kinematic descriptions of trajectories and algorithms for the segmentation of human task level

trajectories. The described models were tested for path-constrained human drawing and locomotion

trajectories.

The structure of the deliverable

In this deliverable we describe three motor control approaches to motor segmentation, kinematic

representation and regularity extraction in highly noisy complex motor production. The underlying

motivation is that geometry plays a central role in a↵ecting and shaping the behavioral regularities

in human end-e↵ector movements.

The first study theoretically establishes the mathematical and computational tools for extracting

di↵erential a�ne properties from recorded data. Additionally, a relationship between the minimum

jerk model and the mixed geometry model was proved for a special group of basic a�ne curves

called a�ne orbits. An a�ne invariant segmentation of movements in task space is then suggested

based on this family of orbits, subserving as candidate movement primitives. In future work we
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intend to examine the robustness of this approach by studying whether such primitives consistently

appear in repeated motor tasks, whether they are specific to individual performers and how well

they generalize across geometrically related motor tasks. Additionally the minimum jerk profiles

associated with the a�ne primitives will be studied and matched with human production kinematics.

In the second study we focus on the kinematic representation of human movement, comple-

menting the purely geometric approach undertaken in the first study. The representation is based

on the mixed geometry kinematic prediction (Bennequin et al. (2009)) which suggests a tensorial

combination of velocity profiles based on the classical group transformations. We suggest here that

adequate kinematic representation of drawing movements can be construed from specific control

parameters at the critical points along the path, at which the geometry attains singularities. This

descriptive study suggests a characterization of the kinematics by mixing geometries at the critical

points and inferring the output profile by the interpolation of the mixtures along the entire path

thus inferring the kinematics based on the use of the Euclidean and equi-a�ne curvatures.

In the third study we demonstrate how we can implement certain aspects of our approach in nat-

ural noisy and highly complex human trajectories recorded from the wrists movement of Israeli Sign

Language (ISL) users. We demonstrate that equi-a�ne and other generalized power law regularities

can be lawfully extracted from the recorded trajectories by assuming an underlying segment-wise

polynomial time development of the end-e↵ector’s Cartesian trajectory. We employed a Bayesian

Binning approach (Endres et al. (2008)) because the high time derivatives of position in the highly

complex natural data are extremely noisy and no other previous work has attempted to uncover

underlying power law segmentation by assuming a polynomial model. It appears that kinematic

regularities can be reliably identified by Bayesian Binning and that the previously reported results

relating minimum jerk to the generalized power laws by Richardson and Flash (2002) are valid also

for the internal structure of those complex movement data.

Power Laws, Smoothness Maximization and Isochrony

In the following section we review several previous findings related to the approach described in

this manuscript while focusing on the theoretical relationships between the di↵erent models and

empirical findings.

Previous studies focused on the stereotyped kinematic output of human movements, known

as human kinematic regularities. One important motor regularity representing the relationship

between the path and kinematics followed by the end-e↵ector is based on the empirical finding

concerning the coupling between curvature and speed in di↵erent motor tasks. This relationship was

described by the “Two Thirds Power Law” which expresses the observation that the movement speed

is piecewise proportional to the radii of curvature raised to the one third. The robust properties of

this law established it as a kinematic regularity in humans and in other primates and as a biomarker
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of biological motion. Later, this empirical finding was mathematically expressed by using equi-a�ne

geometry (Handzel and Flash (1996), and Pollick and Sapiro (1996)). Another observed regularity is

the tendency of reaching movements to follow nearly straight hand paths with bell-shaped velocity

profiles. Using a first principles approach, these empirical observations were accounted for based

on the minimization of hand jerk (Flash and Hogan (1985); Richardson and Flash (2002)).

Another global regularity, reported in the literature, is related to the finding that durations

of human movements sub-linearly depend on movement amplitudes, e.g. when two figural forms,

di↵ering only in their spatial scales are drawn they have roughly equal durations. This is called the

isochrony principle (Viviani and McCollum (1983); Viviani and Flash (1995)). Related temporal

regularities appear also within the production of goal directed movements, e.g. in obstacle avoidance

or movements constrained to pass through a via-point movements where approximately half of the

total duration is devoted to reaching the via-point even though the via point is not placed half

way along the axis connecting the initial and final via points (Flash and Hogan (1985)). These

related phenomena are thought to stem from a temporal regulation by which total timing is equally

shared by di↵erent motor subtasks. These phenomena were collectively termed under one principle

– Isochrony (Viviani and Flash (1995)).

A further work examining the relation between smoothness maximization (minimum jerk) and

equi-a�ne geometry (and in particular, the two thirds power law ) was represented in two papers by

Polyakov and colleagues which identified di↵erent movement paths which obey both the minimum

jerk model and the two-thirds power law (Polyakov et al. (2009a,b)). These studies found that

equi-a�ne geodesics, parabolic paths, minimize hand jerk, obey the two-thirds power law and are

invariant under a�ne transformations. Also, it was observed that a�ne transformations can be used

to generate any parabolic stroke from an arbitrary parabolic template, and a few parabolic strokes

may be concatenated to compactly form a complex path. To test the possibility that parabolic

elements were used to generate planar movements, they analyzed monkeys’ scribbling trajectories.

Practiced scribbles were well approximated by long parabolic strokes. Of the motor cortical neurons

recorded during scribbling more were related to equi-a�ne than to Euclidean speeds. Unsupervised

segmentation of simultaneously recorded multiple neuron activities yielded states related to distinct

parabolic elements (Polyakov et al. (2009a,b)).

Finally, Bennequin et al. (2009) presented a theory of movement generation based on movement

invariance with respect to geometrical transformations, integrating several of the previous empirical

findings, namely, the two thirds power law and the isochrony principle into one motor theory. Their

study employs three classical transformation groups, Euclidean, equi-a�ne and full a�ne. Full

a�ne transformations preserve only parallelisms of lines and their incidence whereas equi-a�ne

transformations preserve also area. A further restriction is given by the Euclidean transformations

which preserve also lengths and angles. According to their motor theory, movement timing is

continuously prescribed by the brain by combining di↵erent ”geometrical times” each assumed to be
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proportional to the measure of distance of the corresponding geometry. Movements are constructed

by using a series of instantaneous (Cartan) moving coordinate frames. The predictions of this theory

were validated based on experimental observations of human drawing and walking. Three prominent

motor behaviors are modulated by mixing among geometries, the equi-a�ne geometry (representing

the 2/3 power law) the full-a�ne geometry (representing the isochrony principle) and the Euclidean

geometry (representing constant speed movements). The three geometries were suggested to be

combined either by segmenting the movement serially in time (inter-segment) or within the same

segment by a tensorial operation (intra-segment multiplication). It was experimentally validated

that modulating the movement by selecting each of the geometries for each segment was insu�cient

to account for the kinematic and temporal features of di↵erent motor tasks. However, the tensorial

operation, which enabled a mixture of the geometries within a segment, was highly successful in

explaining the data. For the tensorial combination they used exponent weights, which added degrees

of freedom to the computational model. Furthermore, the tensorial operation enabled an identity

in dimensions between time and space, selectively entailed by the particular mixture. For instance,

executing movement based on a purely a�ne law yields profiles of Euclidean, equi-a�ne, and a�ne

speeds. By an a�ne transformation of the movement, such as scaling of the spatial dimensions by

a fixed factor and keeping the time dimension intact, the a�ne profile is unchanged (the Euclidean

profile will be scaled by the factor and the equi-a�ne profile will be scaled by the factor raised to

the power of two-thirds).
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Chapter 2

The current geometrical approach

for a�ne segmentation

The fact that earlier observations have shown that various movements are stereotypical (Lashley

(1951), Bernstein (1967), Abend et al. (1982), Flash (1983), Flash and Hogan (1985), Harris and

Wolpert (1998), Mussa-Ivaladi FA (2000), Bizzi et al. (2000), Flash and Hochner (2005)) has guided

the study of motor organization which traditionally looked for unifying organizing principles. Here

we are suggesting the use of a purely geometrical approach for defining a family of prototypical

figural forms that can be used to represent and segment complex human end-e↵ectors trajecto-

ries. The idea motivating this research is that di↵erent geometries unify empirical observations

concerning human movement, specifically the two-thirds power law, the isochrony principle and the

stereotypical maximally smoothed movements (Bennequin et al. (2009)).

Typical figural forms defined by A�ne Orbits

In previous studies by Olver et al. (1994) and Calabi et al. (1998) it has proven useful to study the

osculating fundamental curves of a given path. It was noted that the point-wise geometric properties

of the target curve are captured by the respective properties of the osculating one. For example,

when studying Euclidean invariants, one considers the fundamental Euclidean curves, which are

circles and straight lines. In equi-a�ne geometry, the fundamental curves are parabolas, hyperbolas

and ellipses (conic sections). Respectively to each of the mentioned geometries, these curves are the

ones having constant curvatures and are the orbits of the corresponding transformation groups. The

di↵erential properties of an orbit that are defined by the geometry are always constant functions

of the arc-length parameter and all points of the orbit are the same from the point of view of the
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Geometry Orbits Di↵erential Invariant

Euclidean Circles, straight lines Euclidean curvature
Equi-a�ne Conic sections (ellipses, parabolas, hyperbolas) Equi-a�ne curvature

A�ne
Conic sections, monomials (parabolic, hyper-
bolic), log spirals, exp. curves, straight lines

A�ne curvature

respective geometry; the Euclidean curvatures of circles and straight lines are constant functions of

the Euclidean arc-length parameter and the equi-a�ne curvatures of the conic sections are constant

functions of the equi-a�ne arc-length parameter. Therefore, in each of these geometries, studying

the osculating orbits of a general path provides us with the invariants of the geometries.

To study the full a�ne invariants of a general curve, we must ask what are the fundamental

curves of planar (full) a�ne geometry; we find that these are mainly the Lie group orbits generated

by the 1-dimensional Lie algebras of 2-by-2 matrices (Guggenheimer (1977), Faugeras and Keriven

(1996), Bennequin et al. (2009)),

GA = {A& |& 2 R},

where A 2 R2⇥2 is a fixed matrix. The resulting trajectory of the a�ne orbit, r(&) is:

r(&) = exp(A&)p0.

Geometric Parameterization of A�ne Orbits

In order to develop the framework relating the a�ne orbits and the Mixed Geometry model (Ben-

nequin et al. (2009)) and the Minimum-Jerk model, we first calculated the Euclidean, equi-a�ne

and a�ne parameterizations of the a�ne orbits. Based on the mixed geometry model, we defined

a new parameter, z , that takes into account the tensor contributions of the three geometries,

Euclidean, equi-a�ne and a�ne:

dz = C

�2
2 C

�1
1 C

�0
0 ds

�2
d�

�1
1 d�

�0
0 (2.1)

where C2, C1, C0 are the constant Euclidean, equi-a�ne and a�ne velocities, respectively.

A�ne orbits, Mixed Geometry and Minimum-Jerk descrip-

tions

The inspection of the a�ne orbits was initiated in our research in order to derive the a�ne curva-

ture of a general curve. Although methods for doing so existed based on analytic expressions, the
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Geometry Orbit Parametrization

Equi-A�ne & = 3
traceA ln

⇣
trace(A)

3 |p1 ⇥ p2|�1/3
�1 + 1

⌘

A�ne & = |↵|�1/2
�

Mixed Geometry
restricted to �2 = 0

& = 3
traceA�1

ln
⇣

traceA�1

3c |p1 ⇥ p2|��1 |↵|�1/2�0
z + 1

⌘

Mixed Geometry
not restricted

& = 1
1
3 traceA�1+u�2

ln
⇣

1
3 traceA�1+u�2

c |p1 ⇥ p2|��1 |↵|�1/2�0
y

��2
1 z + 1

⌘
,

only circular spirals

Table 2.1: ↵ = detA� 2
9Trace

2(A), y1 is related to the initial conditions, u
is a real part of an eigenvalue of A and C is a constant which is determined
by the individual contributions of the three geometries (see Bennequin
et al. (2009)).

geometric approach of using osculating orbits has proved useful in previous studies (Olver et al.

(1994), Calabi et al. (1998)). Yet, during this computational pursuit, we have discovered an impor-

tant theoretical result about the mixed geometry and the minimum jerk models which is particularly

resurfacing for a�ne orbits. It is possible to obtain a movement that is both in compliance with

the minimum-jerk and the mixed geometry models, and furthermore that the full a�ne curvature

of these trajectories is constant. The mixed geometry model provides a set of parameters with

which a path can be traversed. Here is a schematic description of our solution. A parametrization

is defined by a set of values �2, �1 and �0 which represent constant tensorial weights of the Eu-

clidean, equi-a�ne and a�ne geometries, respectively. In addition, those weights are subject to the

convexity constraint �i � 0,
P
�i = 1, 1  i  3. We separate our inspection according to the dif-

ferent families of a�ne orbits, namely, to conic sections, monomials, standard log-spiral and elliptic

log-spirals. Surprisingly, for all (standard) log-spirals there exists a set {�i} such that the induced

movement is a solution of the constrained minimum-jerk model. Depending on the rate-of-growth

of the argument of the spiral, we selectively receive that either �0,�1,�2 � 0 or that at least one

weight is negative, �i < 0. In other words, the log-spirals are divided to those for which there exist

a mixed-geometry parameter (with �i � 0) such that the resulting movement is a minimum-jerk

movement, and to those for which the same holds except that the constraint �i � 0 is violated.

For monomials, which include parabolas and hyperbolas and generally a�ne transformation of the

standard Cartesian Equation Y = X

↵ for some fixed ↵, we get that there exists a finite family

{↵i} for which the minimum-jerk and the mixed geometry descriptions coincide. In any case, the

relation between the tensorial mixture of the mixed geometry model and the minimum-jerk model

is given analytically.

We now describe the analytic solution for the mixed-geometry - minimum-jerk mapping. First

we show how to find a minimizing jerk mixed geometry parameter (z) for non-elliptic logarithmic

spirals by assuming that �2 = 0 (we assume absence of Euclidean geometry contribution). In fact,
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we proved that there could not be any Euclidean contribution that minimizes jerk, for strictly

elliptic logarithmic spirals.

Non-Elliptic Logarithmic spirals

Consider the orbit given by the full a�ne Lie algebra generator:

 
1 b

�b 1

!

The jerk-minimizing mixed geometry set of parameters (defined by the betas) are expressed as a

function of b as in the matrix above which is the inverse of the orbit rate-of-growth parameter by,

�1 = 117/160+
1

160
31/2Y +

1

160
(3858 +

36000b2 � 120X � 226800/Xb

2 � 8760/X

� 963000/Xb

4 + 378000/Y 31/2b2 + 37422/Y 31/2)1/2 (2.2)

Y = (643 + 6000b2 + 40X + 75600/Xb

2 + 2920/X + 321000/Xb

4)1/2

X = (169245b4 + 22275b2 + 595 + 118125b6 + 6(�158724750b6�

5916900b4 � 1838769600b8� 103005b2 � 9032428125b10� 972� 13968375000b12)1/2)1/3

And vice-versa, the variable b defining the non-elliptic orbit can be expressed as a function of mixed

geometry parameters (defined by betas)

b = ±1/30(900+ 9000�1�2 + 3000�2
1 + 6750�2

2

� 3600�1 � 5400�2 ± 10

(6480 + 333720�2
2 + 390825�4

2 + 1042200�2
1�

2
2 � 803520�2

1

�2 � 1205280�1�
2
2 + 463200

�

3
1�2 + 1042200�1�

3
2 + 444960

�1�2 + 148320�2
1 � 178560�3

1 � 602640

�

3
2 + 77200�4

1 � 51840�1 � 77760�2)
1/2)1/2 (2.3)
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β0 β1

β2

(a)

β0 β1

β2

(b)

Figure 2.1: The minimum-jerk map of logarithmic spirals with respect to the mixed geometry
parametrization. Color designates the spirals’ parameter rate-of-growth (real part of the eigenvalue
of generating matrix). For each spiral there is a straight line of appropriate �’s of the form �1 =
� 2

3�2 + constant where the constant depends on the spiral’s parameter. In (a) three di↵erent
solutions are depicted: the black solution is independent with the spiral (and hence colored in a
neutral color) the two other solutions and the solution in (b) are continuous in the rate-of-growth-
parameter. Finally, the fifth solution lies outside of the mixed-parameter triangle.
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β0 β1

β2

1/3 3/8

3/7 1/2 3/5

3/4 1

 

 

data1
F: y = x1/4

F: y = x4

F: y = x3/2

F: y = x2/3

F: y = x2

F: y = x3

F: y = x5

F: y = x5/4

F: y = x3/4

F: y = x1/2

F: y = x1/3

F: y = x4/3

F: y = x5/3

F: y = x1/2

F: y = x5/2

F: y = x2

F: y = x4/5

F: y = x2/5

F: y = x1/5

F: y = x3/5

(a)

Figure 2.2: The minimum-jerk map of monomials with respect to the mixed geometry parametriza-
tion. For specific values of �1 (�1 = 1/3, 3/8, 3/7, 1/2, 3/5, 3/4, 1, �2 = 0) there exist monomials
for which the respective parametrization attains a minimum jerk solution. Importantly, these solu-
tions are invariant under a�ne transformations - the respective mixed parametrization assumes a
minimum-jerk for a given monomial indi↵erently to a�ne transformation

Monomials

Consider the monomial orbit for which the matrix A has the following form:

 
1 b

0 d

!

Solutions for the jerk minimizing mixed geometry parameters impose that d in the matrix above

satisfies d

±1 2 {4/5, 3/4, 2/5, 3/4, 1/5, 1/2, 1/4, 2/3, 1/3, 1}. These correspond, up to a�ne trans-

formations, to the following free minimum jerk solutions (Flash and Hogan (1985)): Y

n = X

m,

where n,m = 1, 2, 3, 4, 5. The mixed geometry parameters are given in the following table:
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�1:
1
3

3
8

3
7

1
2

3
5

3
4 1 (equi-a�ne or 2/3 power law)

d: 4
5

3
5

2
5 ,

3
4

1
5 , 2 (parabolas) 1

4 ,
2
3

1
3 2 (parabolas)

Table 2.2: Monomials and their jerk-minimizing mixture of geometries (�2 = 0).

Generalization of previous works

The intimate relations we have discovered between the mixed geometry and the minimum-jerk mod-

els were already partially addressed by previous works ((Polyakov et al. (2009a), Bright (2007))).

Since the mixed geometry model was not established at that time, most of the theoretical consider-

ation was confined to the connection between the equi-a�ne parametrization and the minimum-jerk

model. Our analytic expressions revalidate and generalize Polyakov Polyakov (2001), Polyakov et al.

(2009a) and Bright Bright (2007) results. Polyakov found that all parabolas can be traversed so

that the equi-a�ne speed is constant, as well as a minimum-jerk parametrization is attained. Bright

added another special spiral for which this property holds and further spirals for which Euclidean

and full a�ne speed profiles are constant, all attaining a minimum-jerk parametrization for their

respective paths. Since Euclidean, equi-a�ne and (full) a�ne parameterizations are special cases

of the mixed geometry model, our results generalize all of these previous findings. We also prove

that this agreement between the models does not hold for any of the non-planar full a�ne orbits.

Law of Motion Minimum-Jerk Curves (a�ne orbits)

Euclidean (constant speed) Straight lines, log spiral b = 1p
5

Equi-A�ne (2/3 power law) Parabolas, log. spiral: b =
p
7
3

A�ne (Isochrony) Log spiral: b = 1p
5±2

p
5

Mixed Geometry
Log spirals mapped by geometric mixtures
b = fi(�0,�1,�2) : i = 1, ..., 5, All circular
Log spirals conditioned by: �1 = 1

2 � 3
2

Table 2.3:

 
1 b

�b 1

!
is the generator of the orbits in the table. The five

equations fi that map mixed geometry parameterizations into minimum-jerk
trajectories is complicated and hence left out of this report.

The equi-a�ne moving frame

We shall express the equi-a�ne moving frame in terms of the osculating conic to the curve and the

Euclidean curvature at that point. First, as explained also by Bennequin et al. Bennequin et al.
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(2009), using the method of Cartan moving frame, the equi-a�ne moving frame is expressed as:

dM

d�1
= I1, (2.4)

dI1

d�1
= I2, (2.5)

dI2

d�1
= 1I1, (2.6)

where 1 is the equi-a�ne curvature, �1 the equi-a�ne arclength, I1 the equi-a�ne tangent and I2

the equi-a�ne normal.

Let us demonstrate that the equi-a�ne moving frame can be found using geometric entities

alone. The coe�cients of the osculating conic are easily expressed in Cartesian coordinates using

simple algebraic operations Calabi et al. (1998). It can be shown that the equi-a�ne normal lies in

the direction of the aberrancy of a plane curve (see also in Schot (1979)). As elegantly shown by

Schot, the aberrancy of a curve, which measures the asymmetry of a curve about its normal Schot

(1978), is an a�ne invariant, thus its direction agrees with the equi-a�ne normal, I2. Also, the axis

of aberrancy of a curve at the point of interest coincides with the axis of aberrancy of the osculant

conic, which is passing through the center of the conic for ellipses and hyperbolas and through the

point at infinity for parabolas (i.e. the axis of the parabola which is perpendicular to the directrix

of the parabola). Once the direction of I2 is geometrically obtained from the osculant conic, its

magnitude can be obtained using the radius of curvature. We develop the equi-a�ne frame in terms

of the Euclidean arch-length, s, using the known relation between the equi-a�ne arclength and the

Euclidean arclength Bennequin et al. (2009), d�1 = 

1
3
ds:

I1 = 

� 1
3
T, (2.7)

I2 = 

� 5
3
sT + 

1
3
N, (2.8)

where T and N stand for the Euclidean tangent and normal, respectively, and k is the Euclidean

curvature and s subscripts denote derivatives with respect to the Euclidean arclength parameter,

s. The size of I2 is now given a geometrical meaning:

|I2| =


1
3

cos↵
,

where ↵ is the angle between the axis of aberrancy and the (Euclidean) normal. In addition, we get

a nice geometric interpretation of the derivative of the Euclidean curvature with resect to Euclidean

arclength,

s = 

2 tan↵.
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Finding the osculant a�ne orbit

The one item which is not geometric in our procedure is the calculation of the full a�ne curvature.

As detailed in Bennequin et al. (2009), the full a�ne curvature can be calculated by di↵erentiating

the equi-a�ne curvature,

0 =
d

d�1


� 1
2

1 . (2.9)

The full a�ne curvature, taken together with the previous items that were calculated geometrically,

gives us a closed form expression of A, the generator of the orbit. In the Supplementary Materials

Section, we develop in detail this analytic formulation calculated in terms of the point of osculation,

the Euclidean tangent and equi-a�ne normal as well as the curvatures, 0, 1,2.

Segmentation Based on A�ne Osculant Primitives

The properties of a�ne orbits in terms of the minimum-jerk and the mixed geometry models make

them natural candidates for subserving as building blocks of complex human trajectories. We pro-

pose a segmentation based on locally defined geometric properties as expressed by the full a�ne

moving frame. A set of a�ne orbits was defined in relation to each of the points on a general curve

and a measure of distance between those orbits and the curve was calculated (Figure 2.3(a)). An

optimality criterion was used to pick subsets from those osculant segments that reliably represent

the parameterized trajectories (Meirovitch (2008)). Figure 2.3(b) depicts an example of this seg-

mentation for the original and an a�nely transformed lemniscate.

The following description assumes a sampled trajectory, r(n) 2 R2, n = 1, ..., N .

1. For each data point i

(a) Calculate  i(⌫), the osculating a�ne orbit.

(b) Find the maximal boundaries ⌫1 < ⌫2 such that

Hausdor↵({ i(⌫)}⌫2⌫=⌫1 , r(n)
N
n=1) < ✏0

(c) Project the boundaries  i(⌫1) and  i(⌫2) on data points r(n1), r(n2) .

(d) Store Si = (n1, n2).

2. Use dynamic programming to choose a subset of {Si}Ni=1 that is temporally compatible (no

overlaps of segments) while maximizing the number of samples in each Si (Meirovitch (2008)).

Examining a�ne invariance, the osculating orbits to the transformed shape are the a�ne trans-

formations of the osculating orbits to the original shape. Indeed, the result of segmenting the

15



a�nely transformed lemniscate is the a�ne transformation of the segmentation of the original lem-

niscate, indicating the success of the numerical procedure, in spite of the fact that the trimming of

the orbits based on a threshold corresponding to some Euclidean Hausdor↵ distance is not a�nely

invariant.
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(b) Osculating orbits - a�nely transformed Lemniscate.
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(c) Trimmed osculating orbits - Lemniscate.

Figure 2.3: In (a) and in (b), the osculating a�ne orbits were calculated for every tenth point on
two Lemniscates, which are related to each other by an a�ne transformation. Each osculation point
divided the osculating curve into two branches, referred to here as ”left” and ”right” branches and
colored in blue and red, respectively. In (c), the osculating orbits were calculated and subsequently
restricted using Hausdor↵ distance on a large scaled Lemniscate.
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(b) A�nely transformed Lemniscate.

Figure 2.4: The optimal segmentation method in Meirovitch and Flash (2013) was adapted and used
to select a subset of osculating segments, where for each osculation point three segments were gener-
ated according to ”left”, ”right” and ”left-right” branches of the osculating curve, where ”left-right”
included both the ”eft” and ”right” sides of the osculating orbit (see Figure 2.3). Graphical trian-
gles, diamonds and squares mark the osculation points in correspondence to whether the selected
segments was ”left”, ”right” or ”left-right”, respectively. The similarity between the segmentations
in (a) and (b) with respect to the geometry of the Lemniscates stems from the a�ne invariance of
the osculating orbit. It should be noted that the trimming according to the Hausdor↵ distance is
not an a�ne invariant, but still under the threshold of the algorithm the di↵erence seems negligible.
The colors of the segments are given for the sake of illustration.
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Chapter 3

From geometric singularities to

kinematic representation

The kinematics of human drawing and locomotion movement is well represented by the classical

geometries (i.e Euclidean, equi-a�ne, a�ne, paper in prep. and Bennequin et al. (2009)). However

one of the di�culties with fitting movements based on any specific non-Euclidean geometry is in the

exceptional cases where one of the local geometries attains singularity. In this section we will define

these singularities and show how to use them in order to constrain the kinematic representation.

There are no singularities of the Euclidean geometry so in the following part we will focus on the

geometrical singularities of the equi-a�ne and full a�ne geometries.

Equi-a�ne singularities

The equi-a�ne geometry (the geometry describing the 2/3 power law) is not suitable for movements

whose curvature changes sign. These changes in direction occur at path-points,  , called inflection

points. The geometry in the neighborhood of an inflection point is special and admits the limit

lim
 ! 

( ) = 0,

where  is the Euclidean curvature of the path parameterized by  . This equation can be expressed

in terms of Euclidean and equi-a�ne geometries. For the Euclidean and equi-a�ne arc-lengths, ds

and d�, respectively, one (equivalently) has

lim
 ! 

d�

ds

= 0,
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which simply means that the equi-a�ne arc-length vanishes faster than the Euclidean arc-length at

inflection points. The last equation constrains the equi-a�ne speed which is readily observed when

parameterizing the trajectory with time (marked by t),

�̇( )

ṡ( )
= 0, (3.1)

where (̇) is the derivative with respect to time so that �̇ is the equi-a�ne speed and ṡ is the Euclidean

speed. It is thus impossible to travel through inflection points with non-zero constant equi-a�ne

speed. In terms of the mixed geometry model this constraint translates to the mixing constraint

�1 6= 1. However it is a-priori not clear whether other values 0  �1 < 1 are possible. Interestingly,

infection points can be traveled with a general mixture such that

�1 = 3�0. (3.2)

This is known to be the only mixture that is valid for an arbitrary inflection point (Bennequin et al.

(2009); and we found that specific inflection points can be constructed from a�ne orbits and be

traveled with other mixtures).

Full a�ne singularities

The full a�ne geometry (which accounts for the isochrony principle) is not suitable for describing

the kinematics along parabolic points which correspond to neighborhoods with vanishing points of

the equi-a�ne curvature. A parabolic point admits the limit,

lim
 ! 

1( ) = 0,

where 1 is the equi-a�ne curvature. Analogously to the case above for equi-a�ne geometry, one

has



1
3


1
2
1 = 0 ! d�1

ds

= 0,

which means that the full-a�ne arc-length, �1, vanishes faster than the Euclidean arc-length, ds.

In kinematic terms, this translates to
�̇1( )

ṡ( )
= 0,

which entails that a non-vanishing full a�ne speed is not possible (see the analogous calculation

above for the equi-a�ne geometry). The equivalent mixing constraint of the mixed-geometry model
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is that �0 6= 1. It appears that for parabolic points the only general mixing constraint is

�0 = 0. (3.3)

Reduced degrees of freedom

The idea that human movement is segmented according to the locations of inflection points was

originally suggested in Lacquaniti et al. (1983) and was later developed as a segmentation criterion

Viviani and Cenzato (1985) based on the breakdown of the 2/3 power law. This was however

shown to be equally predicted by a constrained minimum jerk model (Todorov and Jordan (1998))

that does not explicitly represent any segmentation of the trajectory Richardson and Flash (2002).

The mixed geometry model Bennequin et al. (2009) also suggests that inflection points are not

necessarily breakdowns of a kinematic regularity (e.g. 2/3 power law). A segment, containing an

inflection point, can be parameterized by a mixture of the type �1 = 3�0 (Equation 3.2), without

breaking down the regularity. This representation, we suggest here, may constrain the kinematic

degrees of freedom of an otherwise complex mixed geometry kinematic representation of a longer

path. Moreover the following is a di↵erent intuition than the one developed in the case of discrete

segments – an inflection point is a via-point in the kinematic representation and not a discrete point

at which segments abruptly change. The same reasoning is equally applied to parabolic points with

the mixing constraint �0 = 0 (Equation 3.3).

The mixed geometry equations model the kinematics using three tensorial weights �i � 0, such

that
P
�i = 1. As we have seen, geometric singularities add another constraint so that the total

number of degrees of freedom per singularity is 1 – this is called here the Mixture Model Target at

the Singularity (MTS).

Using {↵
k

}-SIK) for representation

Human kinematics is known to be locally related to the geometric properties of the path (Bennequin

et al. (2009)) however it is not clear how much information is required for the representation of the

complex human kinematics. Here we examine whether assigning control variables to the singularities

may be used for kinematic representation of the entire trajectory using interpolation of the beta

weights.

The set of parameters {↵k}-SIK) suggests a modulation in the kinematics along a path which

is based on fixed control parameters at the singularities, which were called MTS. It is a-priori

unknown whether there exist a set of parameters {↵k} such that the interpolated weight functions,

�i( ), adequately represent the mapping from path to kinematics. To examine this, we formulate

the task as a fitting problem by incorporating a cost function to be minimized. For simplicity the
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cost function used is the average squared residual of the SIK speed profile and the parameter space

is RN whose coordinates are the {↵k} sets, where N is the number of singularity points.

Algorithm

The algorithm used is now described in a bullet style. Here r(t) is a human trajectory.

1. Preprocess:

• Fit the path traversed by r(t) with an analytic function ⌦( ) in the least squares sense,

e.g. by a least-square decomposition over a set of Fourier basis functions (from the

pseudo inverse). The choice of the basis functions may have e↵ect on the performance

of the algorithm. Here we used n = 18 for the cosine and sine components for each

coordinate and a basic fundamental frequency which was optimized. Notes: (a) Care

should be taken to avoid over-fitting. (b) For enhanced e�ciency the total equi-a�ne

archlength of r(t) can be used for scaling the number of points whose error is considered.

• Obtain ⌦(t) by characterizing ⌦( ) to comply with r(t). The solution can be derived

by a descent method since ⌦ is known everywhere. For our data it worked better to

employ such an approach for a sunset of points and fill in the rest of the points using

spline reparameterizations.

• Calculate, (t),1(t) the geometric profiles of in the analytic representation ⌦ for the

time parameter, t.

• Obtain the singularity points  k and group according to the corresponding geometries

(i.e., equi-a�ne full a�ne).

2. Minimize the expected error E
h
(|ṙ(t)|� v̂(t))2

i
:

• Consider a set of parameters {↵k}.

• Compute �̂i( k) according to Equation ?? and interpolate for t.

• Compute v̂(t) based on the mixed geometry expression

v̂(t) =
Y

i

Vi(t)
�̂i(t)

The evaluation of the predicted mixed profile can be done from the geometric profiles by (Bennequin

et al. (2009)):

v̂(t) = C(t)�
1
3 (�1(t)+�0(t))

1(t)
��0(t)

.
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Figure 3.1: Scribing example. The first three panels correspond to di↵erent resolutions. The shape
of the raw data is well represented by the path Fourier curve (16 harmonics of a basic frequency
with X two phases X 2 coordinates). Raw data were projected on the analytic curve using non
linear regression for each data point (panel (c)). The representation of the kinematics is a critical
issue in this work; panel (d) shows that the velocity profile of the raw data is accurately projected
on the Fourier curve.

Results

The algorithm is currently tested in an ongoing study of human locomotion. We now demonstrate

the accuracy of the di↵erent steps of the algorithm on several examples of drawing movements.
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Figure 3.2: The kinematic representation of a the scribing example (Figure 3. The kinematics are
quite well represented by the geometry of the path while the beta parameters are optimized at the
singularities according to the SIK representation described in the text.
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Chapter 4

The geometrical redundancy in the

mixed geometry model

In Bennequin et al. (2009) the human drawings of several shapes (see Viviani and Flash (1995)) were

compared against the kinematic predictions of the mixed geometry model. It was shown that the

humans path were segmented according to the kinematic fit given by the three coe�cient weights,

�0,�1 and �2, as described in the Introduction and in Bennequin et al. (2009). Those beta weights

were plotted for each of the shapes (cloverleaf, limacon and lemniscate) and modality (drawing,

walking) across all trials subjects.

Here we reexamined the origins of the variability in these data, assessing whether the model

itself exhibits statistical redundancies in the model’s parameter space. To this end, we discovered

that for the cloverleaf there exists a linear relation between the �0 and �1 such that the velocity

profiles defined by each of the respective beta weights are statistically indistinguishable (R2
> 0.98),

as depicted in Figure 4.1(a).

The redundancy map appearing in the upper left panel was calculated using the following

patching algorithm. The parameter space was quantized in obtaining a discrete set of possible

beta values that represent distinct, statistically distinguishable speed profiles. The speed profile

corresponding to �1 = 1 was calculated (equi-a�ne parametrization, or the 2/3rd power law), which

is referred to as the representative profile of the first equivalence group of parameters. Then all beta

weights whose speed profiles are statistically indistinguishable from this representative profile are

marked as belonging to the first group. A representative for the next equivalence group is chosen

as the one giving the best agreement, in terms of R2, with the previous representative. The process

is iterated until all beta weights are examined. Each of the groups for an analytic cloverleaf were

plotted as in Figure 4.1(a) where the colors designate the beta weights using an RGB scheme for

triplets [�0,�1,�2].
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(a) The velocity profiles were calculated for the analytic cloverleaf. The top-
right panel depicts the shape of the cloverleaf. The mixed geometry trian-
gle in the top-left panel is colored according to the statistical equivalence of
parametrizations of the cloverleaf. The bottom panel depicts the di↵erent speed
profiles that match the di↵erent groups of speed profiles (see the text for more
information)

(b) The trajectories were adopted from Bennequin
et al. (2009). The points in the triangle desig-
nate the mixed geometry parametrization for the
cloverleaf across subjects.

Figure 4.1: The variance of the data presented in the bottom panel is mostly explained by one
equivalence group in the top panel, which suggests that the di↵erent segments in the human data
employed mixed geometry wights that are statistically indistinguishable. See the text for a detailed
description.
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Figure 4.2: The analysis described in Figure 4.1 was carried out for an example if subject trajectory
adopted from Bennequin et al. (2009). The patter appearing in the analytic example of cloverleaf
in Figure 4.1 applies also for the subject data.

The distribution of beta values appearing in Bennequin et al. (2009) for the drawing of the

cloverleaf (Figure 4.1(b)) can be explained by the redundancy map (Figure 4.1(a)). We suggest

here that the control procedure must be invariant with respect to the profiles belonging to the same

equivalence class. In particular, the profiles represented in Figure 4.1(b) are similar from a motor

control point of view. This suggests that the humans may select a straight line in the parameters

space rather than a unique point.

To check the last claim on real data, the groups of speed profiles were calculated for the analytic

cloverleaf that was used as stimulus in Bennequin et al. (2009) (Figure 4.1(a)) and for the subject’s

actual speed profiles in Figure (4.1(b) were calculated using regression on the real paths produced

by the subjects. To elucidate whether the redundancy is well apparent in real data, the above

statistical grouping was further carried out on a real trajectory from Bennequin et al. (2009). The

same statistical tendency was seen also in the real data, as shown by Figure 4.2. An example of

another shape adopted from Bennequin et al. (2009), the limacon, is depicted in Figure 4.3(a).
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(a) The velocity profiles were calculated for the analytic limacon. The top-right
panel depicts the shape of the limacon. The mixed geometry triangle in the top-
left panel is colored according to the statistical equivalence of parametrizations
of the limacon. The bottom panel depicts the di↵erent speed profiles that match
the di↵erent groups of speed profiles (see the text for more information)

(b) The trajectories were adopted from Bennequin
et al. (2009). The points in the triangle designate
the mixed geometry parametrization for the lima-
con across subjects.

Figure 4.3: Most of the variance in the fitted beta weights (lower panel) is explained by one equiva-
lence class (top panel). The mixed geometry segments that were found in the cloverleaf movements
(Bennequin et al. (2009)) correspond to beta wights that predict statistically indistinguishable
kinematic profiles. See the text for a detailed description.
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Chapter 5

Segmenting sign language into

motor primitives with Bayesian

binning

The endpoint trajectories of sign language movements fulfill characteristic power laws linking ve-

locity and curvature Meirovitch (2008), Meirovitch and Flash (2013). The parameters of these

power laws typically vary between di↵erent segments of longer action sequences. These parame-

ters might thus be exploited for the unsupervised segmentation of signs into movement primitives.

We investigated whether such segments can be identified by Bayesian binning Endres and Földiák

(2005), using a Gaussian observation model whose mean has polynomial time dependence. We

showed that this method yields reasonable segmentation and correctly models individual segments

of ground-truth data. Importantly, polynomial orders between 3 and 5 defined models with op-

timal trade-o↵ between complexity and accuracy of the trajectory approximation, in accordance

with general principles from motor control, the minimum jerk model and the minimum acceleration

model.

“Ground Truth” Segmentation

Our main goal was to examine whether the Bayesian binning (BB) approach may subserve the

segmentation of natural movements into segments that are consistent with the known power law

kinematic regularity that was shown to organize various kinds of human movement and sign lan-

guage movements in particular Meirovitch and Flash (2013). To achieve this objective, the raw

data were reparameterized to adhere with the power laws along segments whose boundaries, from
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a motor control point of view, were arbitrarily chosen. From a computational point of view, we

used regularity criteria to ascertain that biologically implausible segmentations were left out of the

analysis based on the smoothness of the data near the segmentation points, the compliance with

the power law and the degree of agreement with the timing of the subjects segments. In practice,

we randomly picked a segmentation, assigned beta values for each of the segments, and discarded

those segmentations that violated one of those regularity requirements. The main pitfall in our

methodology is that our ground truth segmentation does not yield motion primitives and thus the

resulting consistency with the BB is particularly an agreement between the kinematic regularities

of the power laws and the polynomial observation model. To better examine the question of agree-

ment with motion primitives, the organization of power law segment, as appearing in the raw data,

should be used instead of the arbitrary decomposition. The problem in applying the BB on real

trajectories, without following a “ground truth” synthesis, is that decomposition into primitives,

and particularly power law segmentation, is still an open question in motor control research. For

example, it is widely accepted that primitives generally co-articulate in time in forming complex

movements Meirovitch and Flash (2013) which as well include time transitions in between seg-

mented kinematic regularities. This complexity also applies to the case of motor segmentation in

terms of power laws (Meirovitch and Flash (2013)). This co-articulatory compliance with respect

to power laws is demonstrated in Figure 5 for one sign language trajectory; the blue colors in the

figure mark good compliance and the red colors mark poor compliance. It is readily seen that,

although power laws imply on a discrete organization of the motor articulation, there is still no

unique and obvious way to define the resulting segmentation. As our objective is to examine the

possible contribution of BB to motor control questions, the analysis must rely on computationally

well posed motor segmentations. The compliance with the power laws for a trajectory with syn-

thesized kinematics is shown in Figure 5. It is readily seen that there is less ambiguity about the

possible power law segmentation of the trajectory. In e↵ect, comparing to Figure 5, it is rather

straight forward to automatically identify those right-angle vertices of the blue triangles in Figure 5,

which designate the synthesized segments. The full details of the study are described in a separate

manuscript (submitted).

30



0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

Segment Initiation [s]

Se
gm

en
t T

er
m

in
at

io
n 

[s
]

Compliance with the power law (Rsqr)

Figure 5.1: The compliance with the power law is demonstrated for a sign language trajectory
adopted from Meirovitch (2008). Each point in the graph designates a trajectory segment where
blue colors designate high compliance with the power law and red colors degradation of the law. It
is readily seen that although power laws imply on a discrete organization of the motor articulation,
there is still no unique and obvious way to define the resulting segmentation.
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Figure 5.2: The compliance with the power laws is shown for a trajectory with synthesized kine-
matics. Each point in the graph designates a trajectory segment where blue colors designate high
compliance with the power law and red colors degradation of the law. It it readily seen that there
is less ambiguity as to do with the possible segmentation of the trajectory in comparison to the real
subject trajectory (see Figure 5). In e↵ect, comparing to Figure 5, it is rather straight forward to
automatically identify those right-angle vertices of the blue triangles in Figure 5, which designate
the synthesized segments.
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Chapter 6

Discussion

In this deliverable we presented a new theory for motion primitives based on the composition of

the classical Euclidean, equi-a�ne and full a�ne geometries. The shapes of these primitives are

governed by the orbits of 1-parameter subgroups acting on fixed points in task space. Examples of

such orbits are straight lines and circles (Euclidean geometry), parabolas, ellipses and hyperbolas

(equi-a�ne geometry), elliptic logarithmic spirals and monomials (full a�ne geometry).

Representation of geometry

Representing complex movements based on such geometrical primitives is plausible for several

reasons.

First, from a theoretical point of view, the geometrical simplicity of orbits makes them attractive

candidates for serving as primitives because they generalize the symmetry of points, straight lines

and circles to other non-Euclidean geometries which were studied before in computer vision research

(Calabi et al. (1998); Olver et al. (1994)). The orbits map among themselves by specific transfor-

mations for each individual geometry. Moreover, any two points on a parabola can be mapped one

upon the other, and the parabolas can map on other parabolas, by equi-a�ne transformations.

Second, among these orbits some were already suggested as movement primitives in motor con-

trol research. For example parabolas were extensively studied before (Polyakov et al. (2009b),

Handzel and Flash (1999)). It was shown that parabolas are geodesics of equi-a�ne geometry

(Guggenheimer (1977)) and that moving at a constant equi-a�ne speed along parabolas (i.e., obey-

ing the 2/3 power law) automatically minimizes the jerk of the movement (Polyakov et al. (2009a))

and that any parabola can be obtained from one parabolic prototype by applying a�ne transfor-

mations.

The third reason to use orbits is related to invariance and optimal kinematics. We developed the
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di↵erential geometry tools needed for representing the geometry-dependent kinematics along orbits

(Euclidean, equi-a�ne and full a�ne) and discovered that the natural kinematic rules of a specific

geometry, namely moving at a constant speed under that geometry, along several a�ne orbits

coincides with the predictions of the constrained minimum jerk. Moreover, the mixed geometry

model (Bennequin et al. (2009)) and the constrained minimum jerk model (Todorov and Jordan

(1998)) are mutually obeyed for a large family of a�ne orbits. For each circular logarithmic spiral

there exists a special mixture of Euclidean, equi-a�ne and full-a�ne geometries (called mixed

parameter) that minimizes the jerk along that orbit, suggesting that invariance and smoothness are

closely related motor concepts. The invariance of the a�ne orbits under all a�ne transformations

suggests that along orbits representation of the movement and its segmentation are especially

compact. A movement can be represented independently of the choice of Cartesian frame because

all full a�ne invariants do not depend on any choice of a global frame used for representation - a

movement can be automatically recognized from di↵erent points of view (even when it follows non

Euclidean yet a�ne transformations).

To allow representation of complex tasks we o↵ered the notion of using the orbit primitives

as building blocks which can be temporally concatenated. However we do not approximate the

observed behavioral movements based on the best fitting primitive but rather use as candidate

for segmentation only the orbits that (locally) osculate with points along the orbits in task space

behavioral trajectories. This new approach for segmentation enables to find segmentations of com-

plex movements that are invariant to a�ne transformations and not only having a primitive that

is invariant. The reason is that best fitting primitives will not remain optimal following a�ne

transformations while the a�ne di↵erential properties defining the osculating orbit are una↵ected

by any such manipulation.

Representation of kinematics

We later moved on to the representation of the behavioral kinematics based on mixing geometrical

rules of the classical geometries (Bennequin et al. (2009)). It is a-priori not clear whether the

curvature profiles can predict the kinematics of a complex movement and what variables are required

for a successful representation. Here we suggest that very little information should be modulated

at the extremal points of the equi-a�ne and full a�ne geometries, called geometric singularities.

Based on several theorems developed in Bennequin et al. (2009) we suggest that one parameter

per singularity point should be assigned and can be used in determining the mixture of geometries

and that the weights of the three geometries governing the movement in between singularities are

constructed by interpolation of these weights. For now we examined these kinematic representations

in drawing movements and started to work also with data from locomotion. In an ongoing work

we attempt to determine the mixture of geometries at the singularity points based on the overall
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smoothness along the complex movement.

This idea of reducing the number of parameters needed for kinematic representation (here 1 per

singularity) was also implemented for a constant mixture of geometries. In Bennequin et al. (2009) it

was found that human trajectories tend to use specific mixtures of geometries that tend to be linearly

related. We found out that these mixtures are in fact statistically related and that their kinematic

predictions are quite similar, especially for highly symmetric shapes such as the cloverleaf. In fact

this linear relationship in the space of mixture of geometrical rules resurfaces in several di↵erent

studies: one of the jerk-minimizing solutions over circular a�ne orbits is admitted by a family of

mixtures of geometrical rules that are linearly related to each other (in the beta space), the mixtures

that enable movements along inflection singularities and those through parabolic singularities are

also linearly related and finally both human movement and the statistical properties of the model

suggest redundant representations of the mixing of di↵erent geometries that are special to the case

of symmetrical paths. Taken together this meeting point of theoretical and behavioral findings

suggests that optimal mixtures are met by linear relations among the weights used for the di↵erent

geometries and that the laws of movement derived from the mixed geometries model are simpler

than previously thought.

Extracting di↵erential invariants from highly complex motor tasks

Finally, in the last section (Endres et al. (2013)) we went further to implement the ideas discussed

here (and in the literature, see Viviani and Flash (1995); Richardson and Flash (2002)), suggesting

that di↵erential invariants and optimization are related principles in highly complex movements

and that these may be applicable even in the case of noisy end-e↵ector recordings. We recorded

the wrist movements of two Israeli Sign Language (ISL) users and time warped their kinematics so

that they perfectly adhere to, segment-wise, generalized power laws. To maintain biological realism

we made sure that unreliable kinematics were not analyzed and that the durations of movement

in each segment were the same in the real data and in the time-warping. We discovered that

Bayesian Binning (BB), using a Gaussian observation model whose mean has polynomial time

dependence, may uncover the power law underlying segmentation. We therefore revalidate and

extend previous findings that showed convergence between the 2/3 power law and the minimum

jerk models because the BB model partitions the data according to the most probable polynomial

segmentation optimizing for the degree of polynomial needed for segmentation.
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