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Introduction 
Human movement execution requires consideration of both geometry (the path it 
follows) and timing (the velocity profile along this path) an end effector follows. How 
the central nervous system selects geometry and determines timing is still unclear, 
but the concept of invariance can shed light on both aspects of movement 
generation. The influence of path’s geometry on timing is best exemplified by the 
two thirds power law [Lacquaniti et. al., 1983],    𝑣 = 𝛾𝜅ିଵ/ଷ  . This rule of motion is 
an example of invariance, because motion satisfying the two thirds power law is a 
motion whose equi-affine velocity is constant ([Pollick & Shapiro,1996], [Flash & 
Handzel, 1997]) . Equi-affine geometry is not the only geometry that plays a role in 
movement generation [Bennequin et. al., 2010], but it certainly is the most robust 
example of invariance (evidence supporting the two thirds power law was found in 
eye pursuit [de'Sparti & Viviani, 1997], gait [Hicheur et al., 2005], leg motions 
[Ivanenko et. al., 2002], speech [Tasko et. al., 2004] and in visual perception of 
motion [Viviani and Stucchi, 1992]) . 
 
The two thirds power law can be explained from two opposing perspectives. On one 
hand bio-mechanical explanations were provided as plausible causes for the 
emergence of this law. The two thirds power law may be a by-product of oscillatory 
movement generators in joint space [Schaal and Sternad, 2001] or may  arise as a 
result of limb dynamics or muscle’s  mechanical properties [Gribble and Ostry, 1996] . 
On the other hand, the two thirds power law may reflect a central phenomenon, 
arising due to the inherent encoding of trajectory planning within the central 
nervous system. This is supported by prior evidence that has indicated that the 
encoding of kinematic features of hand trajectories is reflected by the variations in 
size and direction of the neuronal population vector representing the activities of a 
large population of cells within the primary motor cortex and other cortical areas 
[Schwartz and Moran, 2000]. Additionally, as was shown by a recent fMRI study 
[Dayan et al., 2007],  the visual perception of motion of a dot moving along elliptical 
trajectories according to the two thirds law seems to evoke wider and stronger brain 
responses than the perception of movements  complying with other laws of motion. 
 
Motor imagery refers to the process of mentally simulating a motion without 
executing it. We assume (following [Jeannerod, 1995]) that motor imagery is 
functionally equivalent to the covert part of movement generation, without the 
following overt action. This assumption implies that the rules governing the 
kinematics of movement production should also apply to motor imagery. This was 
shown to be the case for Fitts's law [Decety and Jeannerod, 1995].  The assumption 
that the total durations of imagined and actually generated movements are similar 
(see [Guillot et. al., 2012] for a review) was well examined and was generally found 
to be valid (some interesting exceptions are described in [Rodriguez et al., 2008]). 
However, the well understood intermediate timing of movement production (such 
as the two thirds power law) has had a little matching evidence as far as motor 
imagery is concerned. Even the recent work by [Papaxanthis et. al., 2012] which 
directly examined the two thirds power law in motor imagery employed the same 
indirect strategy of comparing global movement durations of imagined and 



generated movements and based on those observations, made inference with 
respect to the internal strategy used by the subjects. In the present study we present 
a more direct paradigm for examining the kinematics of internally imagined 
movements. Applying this paradigm we present evidence supporting the notion that 
the velocity profiles of imagined movement trajectories are non-Euclidean, similarly 
to those of movement production. Our findings support the central origins of the 
two thirds power law and our methods open a new frontier of addressing the timing 
and geometry of continuous movements during motor imagery. 
 

Methods 

Participants and settings 

53 healthy subjects (19 males and 34 females, ages 18-33) participated in a three 

hour experiment including imagery, drawing and questionnaires. 

All subjects gave their informed consent and were paid for participation. 

Subjects sat in front of a WACOM tablet placed on top of a 100 cm high table. The 

tablet's surface was tilted to 65 degrees from the horizontal plane. Subjects adjusted 

the chair height, the distance from the tablet and the keyboard location to a 

comfortable position. The subjects held a pen in their right hand and had their left 

hand being placed on the keyboard. Templates displayed on top of the tablet 

included an ellipse ((ELL), radii 14 and 3:5 cm with major axis directed at 45 degrees), 

two limaçons (with ratios of 1:3 (L13) and 2:3 (L23) between the arc lengths of their 

inner (smaller) loop and outer  (larger) loop, scaled bigger by a ratio of 1.7 than the 

limaçons used in [Viviani and Flash, 1995]), and a circle (radius 10 cm, (CIR)). A red 

mark was displayed on the figural forms (on the top right extremity of ELL and on the 

rightmost extremity of the other templates). 

Data acquisition paradigm 

During imagery recording, each subject imagined drawing a single shape for 1 

training session and 4 recording sessions containing 30 trials each were conducted. 

We instructed the subjects to keep a constant pace of about 3 to 4 seconds per lap, 

to avoid moving their right hand (which they imagined to be moving), and to discard 

any trial that they were uncertain of its quality being good enough.  

 



All imagery trials contained a complex task aimed at extracting the duration and 

extent of a segment as well as the duration of a full cycle for imagery of the figural 

form (see figure 1). The subjects watched the template, which was displayed on the 

tablet with a red dot marking the cycle start. Then an auditory cue was played and 

the subjects closed their eyes and imagined a clockwise movement at a constant 

pace. Each time the imagery movement passed through the red dot, the subjects 

pressed a key with their left hand. At a random time another auditory cue was 

played. The subject memorized the imagined arm position at that time and 

continued the imagined movement and actual key pressing. Two more laps after the 

auditory cue a third longer auditory cue was played, and the subjects stopped the 

imagined movement and opened their eyes. The subjects marked on the screen the 

memorized position that his imagery trace has reached at the time of the second 

auditory cue, unless any interference to their memory or pressing has occurred. In 

this case, the subjects marked a box on the upper right corner of the screen to 

discard this record. Each trial consisted of the above measurement process and was 

followed by a short resting period. 

 

The above description is for the main experiment (referred to as MEM), during which 

the subject had to memorize the imagined position at the time of the second 

auditory cue for 2 laps. We conducted another version of the experiment that served 

as a control for testing the involvement of memory in the experiment (referred to as 

NO MEM). This version differed from the MEM experiment by the fact that upon 

hearing the second auditory cue the subjects immediately opened their eyes and 

marked their hand's imagined position on the tablet, without continuing imagery 

motion. 

 

During the trials involving the recording of actual hand trajectories (referred to as 

DRAW), the subjects drew the same template they have used for imagery. There 

were 2 sessions of the DRAW task, each composed of 6 trials of 6 laps each (all 

together 36 repetitions).  



The subjects were instructed to draw as continuously and as smoothly as possible, to 

keep a constant pace while drawing and not to pay attention to the precision of their 

drawing. 

The subjects rapidly traced the shapes with their right hand and opened eyes, and 

key pressed with their left hand each time the pen passed through the red dot 

marking to starting location.  

 

The subjects were also asked to take the Edinborough questionnaire [Oldfield, 1971], 

and the MIQ-RS questionnaire [Gregg et al., 2010] and a follow up questionnaire in 

which the subjects reported, only for the imagery task, whether they have moved 

any of their body parts. 

The drawing part, the follow up questionnaire and the MIQ-RS questionnaire were 

always administered after full completion of the imagery task. Subjects were 

instructed to never actually draw the shape prior to the completion of the imagery 

part of the experiment. This was done to prevent influence of prior execution on the 

imagery task. 

 

Subject’s selection protocol 

We eliminated data of subjects who failed to comply with one of the following four 

requirements. We excluded data of subjects whose number of non-discarded data 

points was smaller than 80, or their MIQ score was lower than 4, or their LQ score 

was ≤ 0.7, and of one subject who marked all but one of the marks on the outer part 

of the shape L23. After elimination the remaining data were comprised of 7,7, 8,3 

MEM subjects and  of 5,3,5,5 NO MEM subjects, for the ELL, L13, L23,CIR templates 

respectively. 

 

Data correction and normalization 

The imagery data collected for each trial included the duration of the entire lap 

containing the beep (T, for MEM only), duration of the entire lap prior to the beep 

(Tp) and the duration of the segment from key press to the beep (t). Also recorded 



were the constant arc lengths of the entire lap (S) and of the segments connecting 

the red dot marking the start point with and the point on the path which was closest 

to the mark produced by the subject (s). We calculated the normalized segment 

duration relative to the total duration of the same lap  𝑡̃ = ௧
்

   , and the normalized 

segment duration relative to the total duration of the prior lap 𝑡௣෥ = ௧

೛்
   , as well as 

the normalized segment arc length 𝑠̃ = ௦
ௌ

   , all for each trial separately.  

 

It is of importance that 𝑡̃,  𝑡̃௣ and 𝑠̃ are by definition all cyclic with a period 1, because 

our analysis considers only movement from the last passage through the starting 

point to the position of hearing the second auditory cue. By default the values of 𝑡̃ 

are taken within the range [0, 1]. As for the 𝑠̃ values, they were also taken to be 

within the range of [0, 1] except for two cases. If for a data point 𝑡̃ <   0.25 and 

𝑠̃   > 0.75, we interpreted this as 𝑠̃ belonging within the prior lap (which indicates 

smaller discrepancy between 𝑡̃ and 𝑠̃ ), and took 𝑠̃ to be 𝑠̃ − 1 which is in the range 

of [-0.25,0]. Similarly, if 𝑡̃> 0.75 and 𝑠̃  < 0.25, we took 𝑠̃ to be 𝑠̃ + 1 which is in range 

[1,1.25].  

 

For the self-intersection point of the limaçon shapes we removed all data points 

within a 1 cm radius around it, to avoid ambiguity in the interpretation of the 

location of the marked position as a point on the curve.  

 

The drawing data included all trials of the second session, taking all but the first two 

repetitions and the last one (except for one repetition of a single subject which we 

manually removed due to an extreme deviation from the template). This left us with 

18 laps for each subject. 

 

Distribution analysis for 𝒕෤ and 𝒔෤ 

We calculated the data distribution of 𝑡̃ and 𝑠̃  within bins covering the range of 

[0.05,0.95]. We calculated the predicted distributions of 𝑠̃ based on two possible 

laws of motion: moving at a constant velocity or moving according to the two thirds 



power law. Each law of motion establishes a specific distribution of the predicted 

values of 𝑠̃, for each of the measured distributions of 𝑡̃. This prediction is done by 

using the normalized velocity profile defined by the law of motion. Integration of this 

velocity profile gives a prediction of a 𝑠̃ value for each value of 𝑡̃ and hence a 

distribution of 𝑠̃ values for each distribution of 𝑡̃ values. For each subject we 

compared his measured distribution of 𝑠̃    with his predicted distribution of 𝑠̃ (based 

on his measured 𝑡̃ values) using the 𝜒ଶ goodness of fit test, for each of the 

movement laws. 

 

In order to present group data for all subjects for a single template (this was done 

for the MEM subjects only, both for MEM and for DRAW data, see figure 2.) the 

distributions of 𝑡̃ and 𝑠̃ were resampled such that the 𝑡̃  distribution will become 

uniform. The resulting resampled distributions represent the distribution of 𝑠̃ used 

by subjects, with the random effect of the 𝑡̃  distribution eliminated. Therefore these 

distributions can be compared to the 𝑠̃ predictions of the two power laws which 

assume 𝑡̃ is uniformly distributed. This resampling was done by repeating for 10000 

times for each bin of the 𝑡̃ variable the process of randomly selecting one data point 

(meaning, a couple (𝑡̃,𝑠̃) with 𝑡̃  within the bin) from each bin and collecting the 

resulting 𝑠̃ values in a histogram for each template.   

 

In order to qualitatively compare the extent to which each of the two laws of motion 

(the two thirds power law versus the constant velocity law) matches the measured 

data, we derived for each individual subject the likelihood ratio for the two predicted 

distributions, calculated as follows:  

ln 𝜆 =   ෍𝑑௜ ln𝑃௜ா௨

௜

−෍𝑑௜ ln𝑃௜ா஺

௜

 

where 𝜆 is the likelihood ratio, 𝑑௜ is the number of observed data points in bin 𝑖, 𝑃௜ா௨ 

is the number of data points predicted by to the constant Euclidean velocity law of 

motion (𝛽 = 0) and 𝑃௜ா஺ is the number of data points predicted by the constant equi-

affine velocity model (𝛽 = ଵ
ଷ
). The likelihood ratio test was performed by comparing 

𝜆 to a 𝜒ଶ distribution with a 1 degree of freedom. 

 



Estimating velocity profiles as power laws 

In addition to analysis of distributions of marked locations we also look into the 

correlation between durations and location of each segment. We consider models of 

normalized velocity  𝑣̃ =   
𝑑𝑠̃

𝑑𝑡̃
     as power laws of the form  𝑣෤ = 𝛾𝜅ିఉ. We want to 

estimate 𝛽, which is the only free parameter of this model (because  ∫ 𝑣෤  𝑑𝑡̃ଵ
଴ = 1, so 

𝛾  is uniquely determined). We define an error term, the Cyclic Mean Squared Error 

(CMSE) in 𝑡̃  to be: 

𝐶𝑀𝑆𝐸(𝑡̃, 𝑠̃) =෍𝑑൫𝑓௠௢ௗ௘௟൫𝑠̃௝ௗ௔௧௔൯, 𝑡̃௝ௗ௔௧௔  ൯
௝

2

 

where 𝑡̃௝ௗ௔௧௔, 𝑠̃௝ௗ௔௧௔ are the measured data points, 𝑓௠௢ௗ௘௟(𝑠) is a function calculating 

predicted 𝑡̃ values for given 𝑠̃ values and for a given value of 𝛽, and  

𝑑(x, y) =   𝑚𝑖𝑛(|𝑥 −   𝑦|, 1 − |𝑥 − 𝑦|) is the cyclic distance (which we use due to the 

periodic nature of our variables). We use nonlinear regression to estimate the 𝛽  

values within the range of [−1,1] by minimizing the CMSE error, along with 

confidence intervals for 𝛽  using 𝑝 = 0.05.  
  



Results 

Actual motion during imagery  

During the imagery part of the experiments, the subjects kept their eyes closed and 

their right hand rested on the table. This was visually checked by the experimenter. 

Due to technical difficulties we have not recorded E.M.G. nor E.O.G..  Nine out of 

forty three subjects reported moving their right hand during the imagery trials 

(always reporting a total movement smaller than 5 cm). Five subjects reported 

moving their closed eyes but not their head. Five subjects reported moving their 

head but not their eyes. Nineteen subjects reported moving both. Two subjects 

reported moving the leg. One subject reported moving the tongue.  

Distribution  of  subjects’  marked  locations 

Data of two selected subjects for each template is shown in figure 4, accompanied 

by their matching 𝑠̃ distributions.  

For each shape the observed grouped 𝑡̃  distribution and the observed grouped 𝑠̃ 

distribution were not uniform (based on a 𝜒ଶ goodness of fit results of 𝑝 ≤   0.001 

for each of the three shapes, checking for 18 bins of size 0.05 covering the range 

[0.05, 0.95]).  The grouped resampled distributions of 𝑠̃ for MEM and DRAW are 

shown in figure 2. This figure shows that both the number of peaks and their 

location seem to fit well the two thirds power law, indicating that the subjects' 

tendency to move slower in the more curved segments of the shape is evident from 

the fact that the subjects stopped more often while passing through the curved 

regions of the shape. For the DRAW data the two thirds power law describes the 

data better than for the MEM data, which is not surprising given the much larger 

number of samples for the DRAW versus the MEM data.  

 

  



For each shape the values of 𝑡̃  were used as inputs to the two power laws 

considered here, namely 𝑣෤ = 𝛾𝜅ିఉ using the specific 𝛽 values of 0 and ଵ
ଷ
 

corresponding to the constant velocity and the two thirds power law, respectively. 

For none of the two power law models the predicted distribution of 𝑠̃ matched the 

observed distribution of 𝑠̃ (based on a 𝜒ଶ goodness of fit results of 𝑝   <   0.001 for 

each of the three shapes and each of the 𝛽  values, using the same method). It is 

reasonable that even though there was no perfect match to the predicted 

distributions and the 𝜒ଶ goodness of fit test has failed, one of the two movement 

laws may still provide a significantly better explanation of the observed distributions 

than the other model. Hence for each subject we separately compared the outputs 

of the two power law models using the likelihood ratio test. We tested whether the 

𝛽 = ଵ
ଷ
  model outperforms the null 𝛽 = 0  model. We obtained significantly positive 

results for the majority of subjects for each of the templates (See the results shown 

in table 1, for both MEM 𝑡̃ data, MEM 𝑡௣෥  data and NO MEM 𝑡௣෥   data). 

 

 Shape 𝑝 <   0.05 𝑝 > 0.05  Invalid total 

MEM, 

 𝑡̃  

L13 2 4 1y 7 

L23 2 5 1 z 8 

ELL 2 5 0 7 

MEM, 

𝑡௣෥  

L13 0 6 1 ɩ 7 

L23 4 3 1 ʇ 8 

ELL 1 6 0 7 

NO 

MEM,  

𝑡௣෥   

L13  1 2 0 3 

L23 1 4 0 5 

ELL 2 3 0 5 

 

Table 1: Single subject results of the likelihood ratio test: Number of subjects for 

each shape and 𝑝 values range, calculated for 14 bins covering the range [0.05,0.95]. 

Analysis of three data sets is shown in three corresponding rows. The first (MEM, 𝑡̃) 

row shows to the MEM subjects, with time normalization done in respect to the 

same lap. The second row (MEM, 𝑡௣෥ ) shows analysis of the MEM subjects, with time 



normalization done in respect to the previous lap. The third row (NO MEM, 𝑡௣෥ )  

shows to the NO MEM subjects, with time normalization done in respect to the 

previous lap (this is the only option for the NO MEM subjects, who do not complete 

the lap in which they are stopped by the beep).  

For 4 subjects the test failed due to a technical problem– when there exists a bin 

which is predicted to be empty by the movement law yet it turns out to be 

nonempty in the observation, the likelihood ratio test forces a zero division. In this 

case we checked a different binning scheme, dividing the range [0.05,0.95] to a 

different number of same-sized bins: 

y. gave  𝑝   <   0.05  value for the test on 12 bins, but failed the tests on 13 and 14 bins.  

z. failed the test on bin numbers 11 to 18.   

ɩ. gave 𝑝   <   0.05 value for the test on 11 bins but failed on 12-18 bins.  

ʇ. gave 𝑝   > 0.05 value for the tests on 11,12,13 bins but failed on 14 bins. 

 

Fisher's combined probability test gave a significant overall effect (𝑝   < 0.001 for 

each shape, for MEM 𝑡̃ , MEM  𝑡௣෥  and for NO MEM separately). Hence we see that 

the effect of curvature on the subjects' marked positions is robust to the choice of a 

normalization procedure and is also independent of the effect of memory. These 

results therefore indicate that the number of marked locations within each bin is 

correlated with the curvature of this location on the template. The number of 

marked locations is an indication of the velocity of the imagined movement, because 

the probability of being stopped within a specific bin is directly related to the time 

the subject has spent imagining movement within this bin, which is inversely related 

to the velocity. So a correlation between velocity and curvature is evident in our 

data. This correlation is interpreted as providing evidence in support of  our 

hypothesized model, namely the two thirds power law. 

 

Using a similar likelihood ratio test for distributions we also compared how the MEM 

𝑡̃ data fits the two thirds power law of motion (𝛽 = ଵ
ଷ
) compared to the best of three 

alternative models (𝛽 = ଶ
ଷ
, 0, − ଵ

ଷ
). For 3,3,3 out of the 7,8,7 MEM subjects of 

L13,L23,ELL respectively, the test gave statistically significant  (𝑝 < 0.05) results, 



indicating that the two thirds power law is the best descriptor of motion for the 

respective subject.  

Quantitative analysis of power laws for drawing and imagery 

For the drawing and imagery data of each subject we performed the nonlinear 

regression procedure, obtaining optimal 𝛽 values as well as confidence intervals for 

𝑝 = 0.05. The resulting estimations of optimal 𝑝 values as well as confidence 

intervals for these estimations are shown in figure 3. Unlike the distribution analysis 

this analysis takes advantage of the pairing of the 𝑡̃ and 𝑠̃ variables which allows 

matching a velocity profile and not merely a distribution of values. 

  

For the DRAW data all subjects had a confidence interval for 𝑝   =   0.05  contained 

within the range  0.08 ≤ 𝛽 ≤   0.58. For each shape the mean of optimal 𝛽  values 

across MEM subjects were 0.38;   0.31;   0.28, and the mean across NO MEM subjects 

of optimal 𝛽  values were 0.33,0.38,0.33, both for L13, L23 and ELL templates 

respectively. 

 

For imagery MEM 4,1,7 out of the 7,8,7  L13,L23,ELL subjects respectively had a 

confidence interval contained within the range 0.1 ≤ 𝛽 ≤ 1.1. For each shape the 

mean across MEM subjects of optimal 𝛽  values were 0.33;   0.28    (0.04);     0.72 for 

L13, L23 (L23 excluding the 8th subject) and ELL templates, respectively. 

 

For imagery NOMEM 0,0,4 out of the 7,8,7 L13,L23,ELL subjects respectively had a 

confidence interval contained within the range 0.1 ≤ 𝛽 ≤ 1.1. For each shape the 

mean of optimal 𝛽  values across NO MEM subjects were 0.18,0.24,0.78 for L13, L23 

and ELL templates respectively.  

 

 

Discussion 
Our results demonstrated how the local velocity of continuous imagery drawing 
movements depends upon local curvature of the imagined shape. We found out that 
the two thirds power law is a better description of the observed normalized location 
distributions than movements with a constant Euclidean speed. We also estimated 𝛽 



values for the power law and those had a strong tendency for positive values, with 
group means of 0.18 to 0.78. Overall, these results suggest that the source of the 
two thirds power law is in the planning stages of motion and that this law is not only 
a byproduct of motor execution. This joins a large body of evidence reaching a 
similar conclusion ([Cassile et al., 2010], [Schwartz and Moran, 1999],  [Papaxanthis 
et al., 2012]). 

 

Our observations suggest the two thirds power law has a central origin  
For movement execution, the curvature-velocity relation can be well quantified as a 
power law (as seen in various studies, starting with [Lacquaniti et al.,1983],  and 
reported for many end effectors, tasks and geometric shapes). A crucial question is 
to what extent the exponent of the power law, 𝛽, truly equals 1/3. This is important 

because 𝛽 = ଵ
ଷ
  implies a constant equi-affine velocity, suggesting that movement is 

planned in an equi-affine invariant manner. For production data the specific values 
of 𝛽 seem to vary with age (see [Viviani and Schneider, 1995]), and in adults they are 

closer to  ଵ
ଷ
  . Our nonlinear regression analysis of drawing agrees with such an 

analysis, giving mean group 𝛽 values ranging from 0.28 to 0.38. 

Our results demonstrate that a similar curvature-velocity relation strongly exists for 
imagery as well. This is evident from the distributions of the subjects' marked 
positions. A quantification of this relation using nonlinear regression seems to 
suggest that the group’s mean 𝛽 values are positive.  However, the resolution of our 
data does not allow for a precise determination of the 𝛽 values of imagery 
movements. It is known (see [Sternad and Schaal, 2001]) that using nonlinear 

regression  to extract the 𝛽 values gives results which diverge more from 𝛽 = ଵ
ଷ
  than 

using a linear fit in the log-log space. This means that our method of nonlinear 
regression is stricter than the standard methods commonly used in the motor 
control literature, which are inapplicable for our sparse imagery data which do not 
include well sampled velocity profiles.  

A possible relation of the two thirds power law to biomechanical smoothing was 
suggested by [Gribble and Ostry 1996] who suggested that the two thirds power law 
may reflect smoothing by the low-pass filtering properties of muscles. However, such 
smoothing properties of muscle activations are unlikely to contribute to our 
observations due to the absence of actual motion during imagery. 

As to the possibility that the two thirds power law may result from movements being 
produced as oscillatory movements in joint space (see [Schaal and Sternad 2001]), 
the difficulty in using this explanation to account for our findings is that one has to 
assume that the subjects’ mental representations include a manner of using the 



imagery joint movements for the representation of the resulting movement in task 
space during movement imagery. In that case, the forward kinematics for an imagery 
arm, including its mechanical properties should have been well represented within 
the motor system and as a byproduct of this process a power law would have been 
observed in the imagined task space. Here again the justification for using this 
explanation to account for our findings which were obtained in the absence of actual 
motor action, is unclear.   

 

Our paradigm extends the methodology of recent studies  
The recent study by [Papaxanthis et al. ,2012] providing evidence for the two thirds 
power law appearance in imagery, is complementary to our current study. 
Nevertheless, the two studies differ along several significant aspects. Our paradigm 
allows one to measure the internal velocity profile of movement, providing a 
resolution inaccessible when relying upon measuring total movement duration, or 
durations of pre-specified segments defined by the experimenter. We strived 
towards a description of the internal temporal structure of a continuous motion. A 
methodology similar to ours [Rodriguez et al.,2009], showed that the velocity 
profiles of movement imagery for straight reaching  movements did not follow the 
bell shape characteristic of actual movement for the same reaching tasks. Although 
at a first glance this may seem to be contradictory to our results, there is no inherent 
contradiction. That study emphasized that the failure is probably due to the  fact 
that actual and imagined movements may have different durations during simple 
automatic tasks like reaching while such differences in durations may vanish in the 
case of complex attention demanding tasks (such as ours).  

It was recently qualitatively shown that the cumulative turning angle ∫ |𝜅|  𝑑𝑠  plays 
a role in determining the duration of motor imagery [Papaxanthis et al.,2012]. It is 
possible that the similarity in global durations between imagery and production 
reported there has more to do with the global properties of time allocation for 
motor tasks than with the local coupling between curvature and velocity, which is 
the essence of the two thirds power law. This global relation hints to a local 
curvature-velocity relation, but is by no means equivalent to it. It is worth 
mentioning that (starting with [Shepard and Metzler,1971]), a well-document  
relationship  between the duration of imagined rotations (measured as a reaction 
time) and the angle of imagined rotations was reported for a variety of mental 
rotation tasks. 

Another technical yet essential issue is that in order to study the two thirds power 
law we must limit ourselves to shapes whose curvature is never 0. The mathematical 
prediction of the two thirds power law is that  along zero curvature segments the 
velocity should go to infinity. Unfortunately, the shapes used in [Papaxanthis et al., 



2012], were composed of concatenated straight segments (whose curvature is 0), 
connected by curved segments of a constant curvature. Modeling of movement 
along such complex shapes may be done by models relating timing and geometries 
(such as the one proposed in [Bennequin et al., 2009]). However this is non-trivial, 
and will definitely require divergence from the two thirds power law during some 
sections of the movements. In addition the shapes used in that study [Papaxanthis et 
al., 2012], contained cusp points, ate which the subject had to stop and move back 
along the direction from which he has come (because each subject traced each 
shape 3 times in a sequence, so he had to pass, for example, from drawing a line 
from left to right to drawing it from right to left), for which the two thirds power law 
has no prediction.  

 

Can motor imagery be used to detect motion segments? 
Many studies looked into  the question whether real and imagined movements have 
similar durations or to what extent the durations of motor imagery and production 
are positively correlated ([Guillot, 2012]). Consistent deviations from real-virtual 
isochrony (which is the common term in the imagery literature for description of this 
similarity, not to be confused with the usage of the word "isochrony" in the motor 
control literature) were reported to exist, and were attributed to several factors. 
Some such deviations seem to be due to non-proficiency in imagery skills, and 
diminish with the expertise of subjects in either motor imagery of the task or in the 
actual performance of the task. However, another kind of discrepancy between the 
durations of imagined versus executed movements may arise which may originate 
from an  inherent difference between well performed imagery and production. In 
the cases that such differences are found they may provide useful information as to 
the characteristics and structure of the motor plan.  

Assuming subjects follow a segmented plan (as in [Morasso and Mussa Ivaldi, 1982], 
[Viviani,1986],[Flash and Hochner, 2005 ],[Polyakov et al., 2009]) , it may prove that 
imagery tasks provide additional information of this plan. An important issue is 
peripheral smoothing effects which may cause a divergence of imagery 
segmentation patterns from those of production. Possibly other essential 
discrepancies in the manner the plan is expressed exist between imagery and 
production. Each such discrepancy may shed a new light on segmentation, revealing 
new aspects of motion planning unapproachable via the use of other paradigms. 

Further analysis of continuous and discrete movements 
The paradigm we described here is far from being exhausted. The appearance of 
Fitts's law in motor imagery [Decety and Jeannerod, 1995], followed by that of the 
two thirds power law, may lead to the question whether other rules of motion will 
also appear in motor imagery. For example, the minimum jerk model ([Flash & 



Hogan, 1985]) has predictions with regard to both movement timing and movement 
geometry of movement which can be examined in motor imagery. A main benefit of 
imagery studies of kinematics can be that it may allow distinguishing between the 
properties of movement arising from feed forward trajectory execution versus 
properties of movement arising from online motor execution and feedback 
mechanisms. These major questions are yet to be resolved in future studies. 

 

    



Figure 1: Experimental procedure 

Each subjects preformed the experimental procedure on 1 out of the 4 templates 

(shown on the left), for 4 sessions each containing 30 trials (each trial is described in 

the middle). For each trial, one measurement of each of the 8 parameters (shown on 

the right) is recorded.   

 
 

 

 

  



Figure 2: Group distributions of 𝑠̃ 

For each of the three templates, we show a resampled distribution of 𝑠̃ values (EXP), 

such that 𝑡̃ distribution is uniform, for imagery (upper row) and drawing (lower raw) 

data. Also shown are model predicted distributions for movement according to the 

two thirds power law (Model 2/3PL) and for movement with a constant Euclidean 

velocity (Model const v) assuming a uniform distribution of 𝑡̃. 

  

  



Figure 3: Nonlinear regression results for 𝛽 

For each of the three templates and  for each of the subjects we show the results of 

the 𝛽 values derived by the nonlinear regression process along with confidence 

intervals for 𝑝 = 0.05, for imagery (upper row) and drawing (lower raw) data. We 

separate MEM subjects (in blue) from NO MEM subjects (in black).  

Also shown for comparison are the constant 𝛽 values of the two thirds power law (ଵ
ଷ
, 

dotted pink line) and of movement with a constant Euclidean velocity (0, red line). 

 

 
  



Figure 4: Single subject profiles and distributions 

For two selected subjects for each template we show the  subject’s  (𝑡̃  , 𝑠̃) profile 

(columns 1 and 3) along with a distribution of the subject's 𝑠̃ data. Also shown are 

model predicted distributions for movement according to the two thirds power law 

(Model 2/3PL) and for movement with a constant Euclidean velocity (Model const v), 

assuming a uniform distribution for 𝑡̃.
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