
EU – FP7

AMARSi

Adaptive Modular Architectures for Rich Motor Skills

ICT-248311

D 6.2

September 2012 (30 months)

Technical report on dynamic extensibility methods

Authors: Herbert Jaeger (Jacobs University), Mostafa Ajallooeian (EPFL- A), Aude
Billard (EPFL-B), Thomas Schack (University of Bielefeld), Felix Reinhart
(University of Bielefeld), Francis wyffels (University of Gent)

Due date of deliverable 1st October 2012

Actual submission date 1st October 2012

Lead Partner Jacobs University Bremen

Revision final

Dissemination level Public

  
Introduction.. 2 
1 Overview of relevant technical research... 3 
1.1 EPFL­A (Ijspeert) ... 3 
EPFL­B (Billard).. 5 
UGent (collaboration with Jacobs) ... 8 
UniBi (Cor Lab)..10 
Resume ..15 

2 Some coordinates in the research space of motor repertoire extension .16 
2.1 The wide and unwieldy field of "extending" a motor repertoire......................16 
2.2 Toward large and extensible repertoires of motor skills23 

References ...26 

Introduction 

At the time of writing the project proposal and subsequently the Technical Annex, the
topic of extending a robot control system by new adaptive modules was primarily
considered in the light of the distinction between extension by human design vs.
extension by robot-autonomous learning. We quote from the description of
deliverable 6.2. from the Technical Annex:

Given some operational architecture, methods have to be developed to extend it by
new adaptive modules while keeping it viable. All partners will develop their
architecture toward two modes of extension: (i) the addition of externally specified
modules – important for engineering and applications, (ii) the autonomous
differentiation of the existing architecture into a larger number of adaptive modules.
In both cases, the extension will have a structural aspect (how and where to insert the
new module and initialize its internal and communication parameters) and a
behavioral aspect (in what behavioral setting the new parameters are quickly
adjusted).

In the meantime, as Amarsi research has led to increasingly flexible and complex
motor behavior systems, this early view has differentiated substantially. In particular,
it has become clear that no clear-cut distinction can be made between a gradual
enrichment of an existing motor pattern and the insertion of an entirely new one. We
will argue below that the growth of a motor repertoire is analog to how evolution
proceeds: first there may be a slight differentiation of an existing pattern into variants
(the metaphor would be races of a species), which over time may lead to a segregation
into clearly distinct patterns (metaphor: branchings in the evolutionary tree of
species). Therefore, in our overview of relevant ongoing work in Amarsi, we report
on both "gradual enrichment" and "plain addition".

Some further nontrivial issues have become apparent:

– A single adaptive module may be controlled into different functional
modes (by inducing bifurcations but also in other ways). This leads to a
conceptual distinction between adaptive modules (as encapsulated
computational mechanisms) and motor primitives (as external descriptors
of functional behaviors).

– When the motor repertoire grows, a motor "primitive" cannot be described
or understood in isolation anymore. It will be executed in varying contexts
determined by other motor patterns which precede it, follow it, or overlap
in time. These variable contexts will induce a rich execution time
variability in a motor primitive, again blurring clear-cut definitions.

This report is structured as follows. First we provide an overview of technical
research in the robotics partner groups which has a bearing on extensibility (Section
1). Then we will attempt an in-depth discussion of the engineering and conceptual
problems which have now emerged more clearly, and suggest a guiding framework to
steer our future investigations (Section 2).

1 Overview of relevant technical research 

1.1 EPFL‐A (Ijspeert) 
We report on two lines of research in Ijspeert's group which are relevant for our topic,
(i) the differentiation of an existing central pattern generator (CPG) module by
stochastic optimization, yielding a "family" of CPGs with a shared "ancestor"; (ii) the
creation of behavioral sequences by changing control parameters in a CPG such the
qualitatively different behaviors result.

Differentiation of an existing central pattern generator module. This research line
arose from experiments with the Cheetah robot. The starting observation was that
when one has a working CPG-based gait controller, it is not trivial to use that
controller to induce forward speed changes. The naive solution – i.e., to simply speed
up the CPG by adjusting its time constant – quickly leads to instable gaits. Different
forward speeds, even when the same basic gait is used, require re-adjustment of
shape-determining parameters and re-calibration of sensory feedback gains. More
specifically, in this line of work gait controllers were used which were designed
according to the dynamical movement primitive (DMP) scheme (detailed e.g. in
Chapter 2 of deliverable 4.1). DMP based gait generators transform the raw
oscillation of an underlying Hopf oscillator into a set of target trajectories for the
various joints. The DMP parameters allow one to modulate frequency, amplitude,
offset, waveform, and sensory feedback gains. For quadruped locomotion, each leg is
controlled by a separate such DMP system, which in turn are mutually coupled
through phase-coupling their underlying oscillators. Let θ denote the set of parameters
for the controller. Then is, if one wishes to control a robot through increasing forward
speeds for an experiment duration t = 0 ... T, where at time t = 0 the speed is slowest
and at time t = T it is fastest, one needs a path θ(t) through parameter space wich
provides efficient and stable gait variants for each speed. The approach taken to
obtain such parameter paths θ(t) is to apply a stochastic optimization search. One
starts from a working controller for the slowest speed V(0) at experiment time 0, with
an associated functional parameter set θ(0). By particle swarm optimization search a

working solution θ(0 + δ) is found for a slightly higher speed V(0 + δ). This search is
based on evaluating the performance (speed and stability) of parameters θ in
simulation. The procedure is iterated, until a parameter path θ(t) is established. Figure
1 shows an example of how the search area in parameter space is being explored, and
a progression through the space is established. The work is part of an ongoing PhD
project with no publications yet.

Figure 1: snapshot from swarm-based evaluating parameter settings for increasing
speed in a DMP controller. (Taken from a PhD project presentation by Mostafa
Ajallooeian)

Creation of behavioral sequences by changing control parameters in a CPG. This
work has been detailed before in deliverable 7.2, so we are brief. We mention this
work here because it is instructive for our theme. In this research, a simulated Cheetah
robot was equipped with a CPG which was obtained by the dynamical movement
primitive (DMP) method [1]. Such CPGs root in a Hopf oscillator which can be
pushed through a bifurcation by adjusting a control parameter r0. On the one side of
the bifurcation, the CPG exhibits a single stable fixed point, which renders the CPG
useful, e.g., for controlling a reaching motion. On the other side of the bifurcation a
stable oscillation is generated, e.g., as a basis for a trotting gait. A second control
parameter g allows one to change the location of the fixed point (or the center of
oscillation, respectively). Both in the oscillatory and the point stabilization regime,
assured stability properties are obtained. A single instance of this "double-faced" CPG
is employed to control a sequence of two behaviors, where the robot first trots along,
then stops and points a foreleg to a target. A handcoded sequencer module generates
the necessary slow dynamics of the control parameters r0 and g, the first of which
induces the transition from trotting to pointing and the second of which determines
the pointing direction in the second phase. Figure 2 depicts how the core CPG (before
further transformations needed to steer the motor apparatus) transits between different
regimes.

Figure 2: Output of the modulatable "two-faced" core CPG, subject to different
settings of the two control parameters. (Re-used from deliverable 7.2)

This example is illuminating in that it points to a conceptual difficulty: namely, a
segregation of mechanism from behavior. Intuitively, as an outside observer one
would refer to trotting and pointing as two distinct behavioral entities (and naturally
assume that they are controlled by different adaptive modules). However, here we see
that such apparently very distinct "behaviors" can spring from an identical, simple
CPG module. We will comment on this multifunctionality theme in Section 2.

EPFL‐B (Billard) 
In the group of Aude Billard, two lines of work contribute to extending adaptive
modules: (i), the addition of obstacle-avoidance capabilities to an existing, functional
motor primitive, and (ii) the adaptive combination of separately learnt motor
primitives. Both approaches are demonstrated with iCub reaching motions which are
designed using the SEDS method, likewise developed in Billard's group. We briefly
recapitulate essentials of SEDS and then present the two lines of work.

The SEDS approach to motor behavior learning. This method has been detailed in
previous deliverables and a number of publications (e.g. [2]), and we are brief. SEDS
stands for "Stable Estimator for Dynamical Systems" and represents a learning
method by which a dynamical systems representation of a discrete motion can be
learnt from a small number of demonstrations. The core idea is to capture the
state/velocity information contained in the demonstrations first in a probabilistic
Gaussian Mixture Model (GMM), from which then a differentiably smooth vector
field with assured convergence and stability properties is extracted. This vector field
represents a dynamical system (DS) which in the exploitation phase delivers target
trajectories for the modeled motion. The crucial benefits of this DS are that due to its
rooting in machine learning, it generalizes well from a small number of training
demonstrations, assures stability properties, and that it enables a fast recovery from
perturbations without the need for explicit replanning.

A gradual enrichment mechanism: incorporating obstacle avoidance into a motion
primitive. A situation which arises ubiquitously in robotics is that a learnt motor
pattern is confronted, in a particular application situation, with obstacles that have to
be avoided. Many solutions to this problem have been proposed in the literature.
When the native target trajectories are generated from a DS, these solutions typically
place repellor-like objects into the vector field at the obstacle locations. These

repellors prevent the target trajectories from approaching the obstacle. In this
tradition, Billard's group has developed a particularly refined mathematical approach
for adjusting the native vector field. It admits to place convex forbidden regions into
the field, such that the resulting dynamics preserves the stability properties of the
original system, and also preserves the locations of stable fixed points (e.g. the targets
for reaching). Figure 3 gives one schematic example. This work is documented in
more detail in [4] and also in deliverable 7.2. The method is independent on how the
native vector field was obtained, and applies to both discrete and periodic movements.
The critical avoidance objects can be analytically described, matched/fetched from an
object database, or be modeled from point clouds on the fly. The computation of the
adapted vector field only requires small computational resources and can be done in a
few milliseconds, enabling fast reaction to moving obstacles. In [4] numerous
demonstrations are provided, analytical ones and with a redundant robot arm (one
example in Figure 4).

Figure 3: Example of the post-hoc vector field modulation method from EPFL
(Billard group). Left: native (originally learnt) vector field, yielding a stable periodic
motion. Right: the vector field after two obstacles, with a safety margin each, have
been added. (Taken from [4])

Figure 4: Robot demonstration of the obstacle avoidance method. See text in image
for explantation. (Taken from [4])

Coupling reaching with grasping motor primitives. EPFL (Billard group) has
investigated how reaching motions (defined and trained for an entire arm) can be
combined with grasping motions (defined and trained on the hand/finger level). It is
known that when a human reaches for an object to be grasped, the hand/fingers start
preparing for the grasping act while the reaching motion is underway. The two motion
control systems are temporally coupled in a systematic way (references in [3]). More
generally, one may consider the task to coordinate two motion patterns A and B,
where A and B are using different degrees of freedom of the robot (here: the arm
reaching A uses arm joints, the finger preshaping B uses finger joints). For a
replication in robots, this seemingly leads to the following design strategy
alternatives:

– First train separate adaptive modules for A and B, respectively, then add
suitable coordination mechanisms.

– Train the coupled A + B system directly.

Both alternatives appear not to be ultimately promising. The difficulty with the first
one is that the requisite coordination mechanisms can be expected to be nontrivial,
especially with regard to stability, requiring substantial insight and engineering in
each and every new application case. The problem with the second approach is an
explosion of training complexity (the addition of number of concerned state variables
leads to a multiplication of required numbers of training samples).

In this apparent impasse situation, EPFL-B explores an intermediate approach. The
strategy is to first train A and B individually from a small number of demonstrations
of the combined A + B behavior, using the SEDS methodology. Then, use the
available training data to estimate an essentially 1-dimensional coupling function Ψ,
again based on a probabilistic GMM obtained from the same training data. Ψ maps
the current state of the DoF's of A into a scalar phase variable for B. Due to its low
dimensionality, estimating this coupling function does not blow up the required
training data size. The coupling of A with B is directed: while A (here: the reaching
motion of the arm) unfolds autonomously, the motor pattern B evolves under the
additional influence of the phase variable Ψ.

This coupled dynamical system (CDS) model can be mathematically set up in a way
which (i) ensures that the termination times for both A and B coincide: when A
finishes, B finishes too (in the reaching case: when the hand arrives at the target
position, the fingers have completed their pre-shaping for the grasp), (ii) preserves the
assured stability conditions that the native A and B controllers enjoy due to their
SEDS training, and (iii) preserves the original recovery-from-perturbations
characteristics of A and B.

The CDS model has been first introduced and demonstrated in a reach-and-grasp task
setting where the grasp objects are stationary or slowly moving, and where the pose of
the grasp object is fixed ([3], funded outside Amarsi). In one of the demonstrations
(on the physical iCub), there were two variants of B to choose from (pinch grasp for a
thin object vs. power grasp for a bulk object). When the grasp object is exchanged by
the experimenter while the reach-grasp motion unfolds, the finger preshaping adapts
on the fly too, simply following the target trajectories supplied by the CDS, with no
need for explicit replanning (Figure 5).

Figure 5: Online adaptive change of finger preshaping from pinch to power grasp,
while arm reaching motion smoothly continues. (Taken from [3])

Current research at EPFL-B is extending this CDS approach to tasks where the grasp
object is quickly moving while changing its pose. An extreme case is catching flying,
rotating objects of asymmetric shape. As an important step toward this demanding
task, EPFL-B has developed methods for the fast online estimation of the pose of such
objects from video input [5]. In very recent work [6], imitation learning is used to
allow learning of skills enabling the robot to catch objects in flight. There, the human
user helps the robot to acquire this in an incremental manner by dividing the tasks into
different modules. The robot first learns to estimate the dynamics of flight of the
object by observing the objects being tossed about 20 times. The robot then learns to
compound primitive behaviors for reach and grasp motion through human
demonstration. Finally, the robot learns where to place its fingers on the object
through static demonstration of a human placing her fingers on the relevant part of the
object, while the object lies flat on a surface. Figure 6 shows a demonstration.

Figure 6: a KUKA robot arm catches a bottle thrown by a human from about 3 m
distance. (Taken from [6])

UGent (collaboration with Jacobs) 

One important line of work at the Reservoir Lab in Gent concerns methods by which
an existing neural CPG can be made modulatable for characteristics like amplitude,
shift, waveform or frequency. This general objective is similar to research goals
pursued at EPFL-A and EPFL-B, but a crucial difference lies in the mathematical
nature of the used CPGs. At EPFL the CPGs are instantiated as analytical ODEs (the
DMP methodology at EPFL-A) or as ODEs extracted from training data via
intermediate GMMs. In contrast, the pattern generating systems explored in Gent are
implemented as (large) recurrent neural networks (RNNs), following the reservoir
computing (RC) paradigm. ODE based models and RNN based models have
complementary benefits:

– ODE based models (often) admit an analytical guarantee of stability
properties and are lightweight in their computational costs at exploitation
time. Speeding-up or slowing-down of such pattern generators can be
easily achieved by modulating the ODE's time constant.

– RC based pattern generators can be easily trained to exhibit almost
arbitrary waveforms. Arguably they are closer to biology than ODEs
(admittedly a hairy argument). It is possible to train multifunctionality
into a single neural CPG: by simple control input settings such systems
can be made to switch between entirely different output patterns ("neural
CPG", documented in D.4.1 Section 9). Furthermore, RC based pattern
generating modules can be run bi-directionally, incorporating in a single
dynamical system a model for forward as well as inverse kinematics (this
line of investigation is pursued at UniBi, see below).

An intriguing difficulty with RC based CPGs is that it is not straightforward how to
speed them up or slow them down. Of course this could be easily done if the used
neurons are individually modeled by ODEs (e.g. as leaky integrators): then one could
tune the neuron's time constants and achieve a proportional speed change in the entire
network. But, first, often neuron models without a time constant are employed, and
second, it is not biologically plausible that neurons should have a tuneable (and
externally addressable) time constant.

Accordingly, it turns out that while it is rather easy to modulate a neural CPG with
respect to geometric characteristics like waveform, amplitude, or offset, it is hard to
find robust methods to modulate its main temporal characteristic, i.e. its frequency.
Here we report on ongoing work concerning this challenge. This research has a
bearing on extensibility because one starts by training a fixed-frequency periodic
pattern generator, which then is afterwards made frequency-controllable by adding
(and training) a separate control loop.

The basic control scheme is the same as the one that is used for modulating the
(easier) geometric output pattern properties. It has been documented before in
deliverable D.5.1, so we will only give a brief resume. First, a reservoir is trained as
an oscillator: at its output unit it then produces a fixed sinewave pattern. Then an
external observer of the quantity that is to be made controllable is added – it outputs
an online measurement e.g. of the oscillator's amplitude, shift, or frequency. Based on
this observer, an external feedback control loop is added – in early versions a simple
P-controller. It is fed with a reference signal for the target observable and can
influence the ongoing reservoir dynamics by inserting a bias vector c which is
weighted with the error signal (in the case of a simple P-controller). The efficiency of
this scheme hinges on finding a bias vector c which, when weighted-added, influences
the critical observable. Figure 7 depicts this general architecture. A number of
different methods for training this vector have been developed. The universal finding
is that amplitude and shift are easy to control in this way while frequency is hard to
master. Very recently however, research at UGent has been successful in also making
frequency controllable. The keys to success are relatively large reservoirs (800+ units)
and a careful regularization – fostering structural stability of the oscillation – in the
training of the native oscillator (the FORCE learning scheme introduced in [8] was
found to work particularly well). In this way, frequency became tunable by a factor of
3.

The body of experience collected about modulating neural oscillator patterns by
external controllers has now reached a level where it can be brought to bear on robot
motor control tasks. In [9] it is demonstrated how the core oscillator is trained by
demonstration to control an Oncilla robot leg. The external controller here is not a
simple linear feedback controller anymore but is itself realized as a nonlinear, online
adaptive RC-based controller (based on the methods described in [10]). The controller
generates a multi-component output waveform whose offset and amplitude can be
controlled. The adaptivity of the controller allows the system to accomodate to
perturbations – in [9], a weight of 100g was attached to the leg at some point. After
adaptation, amplitude and offset control were largely re-gained.

Figure 7: general layout of controlling a reservoir-based periodic pattern generator.
(Taken from [7])

UniBi (Cor Lab) 

Several lines of work at the Cor Lab have a bearing on extensibility. Generally
speaking, like in the current work of other partners, the complexity and modulation
richness of motor patterns realized at the Cor Lab is continuously increasing. Here we
report on two strands of research. First, a hierarchical analysis of how a complex
behavior can be understood to result from a cascade of transformations and
modulations was carried out, which led to particularly efficient training from a small
number of presentations. Second, the question of how separate motor patterns, which
command mostly "private" joint variables but also share some of them, can be
coupled in a way that leads to natural-looking combined execution and does not
require a separate training for the coupling. We sketch these two lines of work in turn,
and conclude with a brief note on sequencing methods employed at the Cor Lab.

Cascaded transformations of movement primitives. In this line of ongoing research
[11], UniBi investigated how a maximally reduced (hence, maximally
invariant/general) representation of a movement primitive can be expanded and
modulated in stages, until it finally yields a runnable motion control loop for a
specific task setting. The demonstration scenario involves bimanual object
manipulation by the iCub robot: handling a long rod in the fashion of weightlifting or
paddling. These tasks are learnt from human demonstrations. UniBi models this
control task by a series of task representations of increasing complexity, linked by
modulations and transformations. The order of these transitions between
representations is variable to some extent. Different orders of cascading lead to
different generalization properties and requirements on the amount of training data.

More specifically, the approach taken uses the following representation formats and
transformations / modulations:

– The core and most compact representation describes the movement in task
space as a movement primitive with normalized positions, using only the
coordinates g of the "leading" hand. Technically, the movement is cast as a
dynamical system, whose vector field is trained into a particularly fast-
trainable neural network of the "Extreme Learning Machine" (ELM) type
[12].

– The execution speed is adjusted by modulating the movement primitive
representation by a scalar speed gain α.

– At some point in the cascade, this single-hand based representation has to
be expanded to full two-handed task space coordinates p.

– The geometrical adaptation of the movement primitive to the particular
task instance (shift and orientation transforms H) can be applied at the
level of the core primitive g or later in the expanded representation p,
yielding g' or p', respectively.

– Finally, the full-sized task-space representation p' has to be transformed to
joint coordinates q through an inverse kinematics solver, which
simultaneously performs redundancy resolution. This solver is likewise
realized as an ELM.

All three of the core movement primitive, the task expansion, and the inverse
kinematics are trained in ELMs, using the same set of human demonstration data. A
number of alternatives for sequencing these stages have been investigated. They are
shown in Figure 8. In variants (a) and (b), the first two stages are identical and yield
full-sized and task instance specific task coordinates g'. In variant (a), a single further
transformation which combines the expansion with the inverse kinematics is learnt,
whereas in (b) these stages are delegated to separate ELM modules. Version (b) can
benefit from the structural bias that these stages can be separated and connected by
the intermediate representation p', and hence has been found to offer better
generalization than (a). Version (c) switches the order of expansion and geometrical
adaptation in (b) and thus can benefit from yet another valuable structural bias,
namely, that the expansion can be done invariantly from the geometric adaptation. In
the ensuing robot experiments, (c) was found to be the superior strategy w.r.t.
generalization. Figure 9 gives an impression of the final performance under (c).

Figure 8: three investigated schemes for cascading transformations which expand and
modulate a core invariant movement primitive to a runnable task controller. For
explanation see text. (Taken from [11])

Figure 9: Execution of three learned skills according to the architectural design in Fig.
8 (c): Two periodic paddling skills taught on the left and right side of the robot are
depicted in the left and middle image, respectively. A sequence of two discrete
motions forms a weight lifting skill (right). Green lines are the end effector
trajectories in the training area and blue lines the generalized skill displaced by (0, 5,
5) cm from the training condition. (Taken from [11])

Semi-automatic extension of skill library: The robotic system implemented at UniBi
facilitates the semi-automatic creation of skills and automatic addition of the new skill
to the overall architecture. For this purpose, a quite general procedure has to be
followed: First, training data has to be acquired (here by recording joint angles by
kinesthetic teaching through a human tutor). Then, the data is processed and several
important features of the motion are detected. For instance, whether the taught motion
is a periodic pattern or comprises a sequence of discrete primitives and, also, which
bodyparts participate in the motion. This analysis is in principle fully automatic, but -
for safety reasons - the human operator is asked to confirm the results. This renders
the overall procedure semi-automatic. With the data and detected features, an
automatic construction and learning process is triggered (following the ideas of

automatic module creation proposed in D6.1). Ultimately, the new skill is added to
the architecture and can be exploited immediately.

Coupling body subsystems which share joints. Motor tasks are often defined in a way
that primarily concerns only a part of the body. For example, humanoid walking, at
first sight, mainly concerns the legs and torso while the arms and hands appear less
directly involved; likewise, a pointing gesture primarily involves the arm/hand
subsystem and not so much the legs. Such a primary association of two motor patterns
with two separate portions of the body often makes it feasible to perform two motor
tasks simultaneously, e.g. pointing while walking. However, the segregation will
rarely be perfect. In a natural human walk, the arms become entrained to the walking
and contribute to balancing, and when a standing human points s/he will also bend the
torso and move the legs, albeit only slighty. Thus, when one wishes to add new motor
patterns to a robot control system, one should have an understanding of how its
execution interferes with the execution of other motor patterns, even if at first sight
there is a segregation of affected body parts.

Addressing this kind of problem, UniBi (Cor Lab) has studied the arm-torso-arm
interaction of motor tasks for a (simulated) iCub robot, where the motor pattern
controllers were primarily defined and trained for each arm individually [13]. That is,
two subsystem controllers were individually trained in the beginning. The first
subsystem comprised the four left arm joints and three torso joints, the second
subsystems the right arm and the same three torso joints again. Thus, the two
controllers shared three joints in their respective 7-dim control spaces. The objective
of this research was to couple the two controllers in a non-disruptive and natural way
in the exploitation phase.

Before we explain the coupling and the demonstrations, we sketch the design of each
partial controller. The core component for each 7-dim subsystem is a bidirectional
representation of the inverse + forward kinematics. Its basic functioning principles are
analog to the RNN based bidirectional controllers explored previously in this group
([16], also documented in deliverable 4.1 Chapter 6 and deliverable 6.1 Section 1.2).
For better computational and statistical efficiency, the previously used sigmoid-unit
RNN-based representation has now been replaced by a feedforward RBF network.
The network is trained on inputs consisting in exhaustively sampled pairs of 7-dim
joint coordinates q and 3-dim task space coordinates x. The trained output values are
again the same 7-dim and 3-dim coordinates. When the trained network is used in an
output feedback mode where the desired task space target x* is clamped to the x
inputs and the estimated joint values

€

ˆ q are fed back to the input, a redundancy-
resolved inverse kinematics trajectory is obtained. See Figure 10 for a schematic.

(a) (b)

Figure 10: (a) Setup for the bidirectional task/joint coordinate training. Cinp and Cout

are fixed input weights, Winp and Wout are trained output weights. The mapping h is

realized by a RBF network and trained on the identity mapping. (b) Exploiting the
trained network for computing inverse kinematics by partial output feedback. (Taken
from [13])

Each of these two (symmetric) modules can be used to compute joint trajectories for
the 3 torso plus the 4 arm joints, given a desired task space trajectory. But how can
these two control modules be combined? Figure 11 shows how it was done at UniBi.
Both the left arm and the right arm module are executed in parallel. They will
typically generate different joint targets for the 3 torso joints that they share. These
two commands are simply averaged before being sent to the robot. Like in Figure 10
(b), the controllers are run in a joint space feedback loop; the values that are fed back
are the measured actual joint readings.

Figure 11: combining the right and left arm/torso controllers. For explanation see text.
(Taken from [13])

This negotiation scheme leads to natural-looking interactions between the two arms.
Figure 12 depicts some demonstrations. In (a), the task target was to bring both hands
to positions left front to the robot. In (b), the same target position was requested for
the left hand, while no target was prescribed for the right hand (this is realized by
closing the upper x-feedback loop in the right arm controller). These two different
sets of requirements lead to different degrees of turn and bend in the torso. Similarly,
in (c) the two arms had to reach out far in front of the robot, while in (d) only the left
arm had to do this. Again, this leads to natural-looking differences in torso posture.

Figure 12: demonstration of combined right/left arm/torso controllers. See text for
explanation. (Taken from [13])

Sequencing motor primitives. A short note on how motor primitives are currently
sequenced at UniBi. This task arises frequently in various lines of work. It may refer
to sequencing very elementary motor primitives, condensing them into what one
might call a "behavior" – an example is the weight-lifting pattern sketched in Figure
9c, which is composed of two sequenced directed movements. Or it may refer to
organizing sequences of higher-level behaviors. All of these sequencing issues are
currently dealt with by hand-coded sequencer modules. A standard finite-state
machine serves the sequencing of movement primitives, where convergence of a
discrete primitive triggers the transition to the next state. Here, convergence of a
movement primitive means the reaching of a target position, which is monitored by a
simple criterion (implementing the concepts laid down earlier in D6.1). More
sophisticated representations of sequences, e.g. Hidden Markov Models [14], can in
principle be plugged into the architecture. However, this simple state transition
scheme together with bottom-up feedback of actual joint angles renders the
architecture responsive to perturbations and assures that a primitive is finished before
the next primitive starts. Smooth transitions in speed between successive primitives
can be achieved by additional mechanisms, e.g. switching primitives before they
terminate [15].

Resume 

Here is a summary of our walk through extension-related research in Amarsi:

1. The primary level of extending motor repertoirs is the differentiation of an
existing adaptive module. We saw instances of this in

a. the establishment of a path in module control parameter space by
stochastic swarm optimization, enabling walking speed adaptation (EPFL-
A),

b. the ad-hoc modification of DS vector fields by convex obstacle inclusions
(EPFL-B),

c. frequency modulation of a large RNN oscillator by an external control
loop (UGent & Jacobs),

d. transformation cascades which enrich a core low-dimensional DS
representation by task- and joint-space variables.

2. On a higher level of extension complexity, Amarsi is investigating two aspects of
coupling two simpler motor patterns into a more complex one:

a. coupling hand/finger pose preparation to an arm reaching motion by a
coupling phase variable (EPFL-B),

b. coupling two single-arm motion controllers into a two-arm controller by
averaging the control input to the shared torso joints, plus dynamic
negotiation by feedback dynamics, a procedure enabled by bidirectional
representations of foward/inverse kinematics (UniBi).

3. Having an available repertoire of more than one motor behavior immediately
leads to sequencing:

a. This can sometimes be achieved by driving a single adaptive module
through a bifurcation (EPFL-A).

b. At UniBi, separate sequencer modules (hand-coded as yet) assemble
elementary motor primitives into a functional behavior ("weight lifting"
example), or assemble high-level functional behavior sequences.

This list indicates that under the headline of "extension" we are tapping a large variety
of phenomena, mechanisms, and scientific approaches. In the next section we
endeavour to draw a more systematic picture of this field.

2 Some coordinates in the research space of motor repertoire extension 

At the time of formulating the Amarsi proposal and the Technical Annex, our view of
what it means to extend a motor repertoire was conceptually straightforward:

– One would start with an initial architecture that hosts a few adaptive
modules, basically engineered by the human designer, with possibly some
learnt optimization within or between the modules.

– Then, further modules would be incrementally added, either by the human
engineer or by some autonomous learning scheme.

– A few obvious challenges were foreseen, especially the two related
questions of (i) how new modules should be coupled into the existing
system, and (ii) how should the execution of an increasingly rich repertoire
of available modules be scheduled / sequenced / planned? The rough early
ideas in these two respects were that (i) is just a matter of tuning coupling
constants (by hand or by automated learning / optimization), and that (ii)
will be effected by some high-level planner (e.g. a finite state machine or
an AI-style symbolic planner), or by human commands. At any rate, issue
(ii) was regarded as peripheral to the project.

We did not (and could not) build on a detailed analysis of the extension challenge at
the beginning of the project. But, as of today, the need for a deeper understanding has
become clear. And, we are in a much better position to tackle these issues because we
afford of a substantial, shared basis of experimental tools and experiences. In this
section of D.6.2 we endeavour to draw a much more detailed and better informed
picture of the extension challenge (subsection 2.1), and to offer a unifying perspective
(subsection 2.2) which will guide our future efforts in this arena.

2.1 The wide and unwieldy field of "extending" a motor repertoire 

Just a list of questions in this subsection... with comments but not with answers.

Q1: How do we define / delimit adaptive modules?

This is certainly not a settled question. The multitude of terms used by consortium
partners is instructive: central pattern generator, neural central pattern generator,
neural motor primitive control, neural dynamical motion primitives generator, neural

dynamic movement primitives, dynamical movement primitives, motor primitives,
motor skill, motor pattern, adaptive module, behavior (overview and discussion in
deliverable D.6.1). One reason for this variety is that different researchers use
different criteria for defining their objects: functional, implementation-oriented,
outward-phenomenal, control-oriented. Another reason is that different names may
point to different levels of (hierarchical) organization. In the further discussion we
will simply use the generic term module if we want to cover any or all of these.

An implicit assumption behind the usage of all of these terms is the discreteness of
modules. When thinking of a motor repertoire, one thinks of a finite collection of
well-defined modules. In robot control programs, these modules would be represented
by circumscribed functions, subroutines, or objects (in the sense of object-oriented
programming). It is worth pointing out that this idea of dealing with well-defined,
discrete objects is a very strong assumption, and it may be inadequate. One might also
conceive of a picture where the observable variety of motor behavior is organized in a
continuum, with smooth transformation chains ultimately connecting every
"behavior" with every other. Internally, such a continuum of motor phenomena might
be subserved by a comprehensively coupled, extensive neural substrate which would
be steerable to produce any observable behavior by smooth parametric changes. A
glimpse of this possibility became apparent in the parameter paths investigated at
EPFL-A. In this line of complex dynamical systems thinking, one may hope to
recover discrete items in terms of attractors – this is a standard scientific move to
make. But, neural motor control systems are surely strongly co-determined by sensory
input. The bad news, then, is that rigorous attractor concepts for input-driven systems
are hard to obtain, and mathematical research on such nonautonomous dynamical
systems is in its infancy. Ongoing research at Jacobs aims at providing useful
mathematical foundations for describing such systems [17].

Closely connected to the question of how to define modules is the question of how to
dissect or compose modules. Only very few of the modules explored and exploited in
Amarsi are "atomic" or "unitary" in a sense of being represented by a single
mathematical formula or a single computational routine. Most modules which are
practically used are composite and can be dissected, e.g. into transformation stages (as
in the cascaded transformations presented above for UniBi), or into a core CPG plus
some added control or sequencing machinery (as in the controlled RNN pattern
generators from UGent/Jacobs or UniBi's weight-lifting controller), or into a basic
vector field in which obstacle representations can be immersed on the fly (EPFL-B),
or into sub-control loops which are coupled by a few shared controlled variables
(UniBi's two-arm controllers) – just an arbitrary choice. These ways to compose parts
into larger wholes are well motivated in every single case, but overall there is no
systematic understanding of what types of composition mechanisms exist and how to
describe them formally.

If we assume a composition hierarchy for modules, how might the "high" end look
like? How complex may composite modules become while still being accountable as
identifiable, stable units? Is there a highest degree of compositional complexity
beyond which behavioral modules cannot stably exist – e.g., for reasons of practical
unlearnability or inavailability of sufficiently complex control mechanisms at
execution time? What would be plausible examples of most complex human motor
skills which a naive observer would still conceive as identifiable "wholes" (as

opposed to perceiving the observed action as composite)? Is the external observer
perspective appropriate to define "wholeness" of executed skills? This seems
questionable. Consider a pianist practicing a demanding passage which requires a
non-standard fingering which the pianist cannot recall or assemble from his/her large
collection of highly trained, stereotyped fingerings. A large number of exercising
repetitions of this passage, starting slowly and increasing in fastness, will be
necessary until mastery. The entire passage will then be automatically executed after
it is started, and experienced by the pianist as a whole. Figure 13 gives an example,
which covers 18 third-notes extending over two bars. An external observer seeing the
printed score might judge this to be a sequencing job of 18 movement "primitives"; an
external observer listening to the performance may prefer to segment this into six
trioles (corresponding to the main characteristic of the rhythmic experience). The
pianist – after the practicing – will rather classify it as a unit. Does this example come
close to the limits of complexity of human motor modules? It surely is close to the
limits of what the writer of these lines (amateur hobby pianist) can attain.

Figure 13: A passage from Bach's prelude in E flat major from the well-tempered
clavier, book II. This passage is difficult for the left hand and requires an
ideosyncratic fingering which has to be explicitly practiced. (Image taken from
www.dlib.indiana.edu)

Q2: How many motor skills does a human have?

This question is not directly critical for Amarsi, because we do not aspire to capture a
complete human motor repertoire in our robots. However, it is an illuminating
question, closely connected to the first question but shedding a new light on our
affair.

To make this question productive, we first have to agree on some criterion of how we
delimit motor skills from each other, in order to obtain discrete, countable items.

When I tie my sneakers, the movements and control gains that I employ are different
from the ones that are called upon when I tie my heavy hiking boots. But we would
rather not want to count this as two different skills – intuitively it seems more
appropriate to think of two modulations of one skill. On the other hand, knotting the
two ends of a broken kite line together appears intuitively another skill than tying a
shoe. Why do we intuitively think so? For the sake of bringing this discussion to life,
we propose the following criterion for separating skills: A motor skill A is different
from another motor skill B if mastery of A does not imply good performance in B; B
has essentially to be learnt de novo even when A is already mastered. Of course this
learning-effort based criterion leaves gray zones, but it is a helpful first step. For

instance, it allows us to clearly separate the following two skills from each other,
which on the surface look closely related. The example is taken from the author's
hobby world of RC helicopter flying. Learning to remote-control a forward horizontal
circling maneuver is one of the first steps in learning to fly an RC helicopter. It is
however not simple for a novice and takes some weeks of daily training (and a
significant investment in crash repairs). A helicopter is an almost holonomic device
and flying it backwards (tail leading) requires almost exactly the same control inputs,
except for two sign changes (effects of nick and roll commands are reversed). Now it
turns out that for the human RC pilot trainee it is immensely difficult to learn steering
circles backward. In fact, the previously acquired skill of forward cycling tends to
interfere with the learning, inducing wrongly oriented reactions (and more repair).
Also the author can report a distinctly different experiential quality: backward
versions of forward maneuvres "feel" entirely different. Altogether, this suggests that
backward vs. forward circling should be considered two distinct skills, not modulated
versions of one underlying skill. This is an interesting example because from a
mathematical or engineering view, the two skills are closely related: one could re-use
the same controller, with only two gain signs switched.

Further exploring how far the learning-based definition of motor skills may carry, let
us consider sequenced motor behavior. An attack move in the sport of volleyball can
be seen as (and is indeed explicitly trained as) a sequence of two or three steps
forward toward the net, lowering the CoG while decelerating to prepare a jump, then
jump while raising the arm, then hitting the ball, and finally, landing. Compare this to
the similarly complex sequence of movements that occur when a polite person hears a
knock at the office door: s/he gets up from the chair, takes a few steps to the door,
extends the arm to the handle, pushes it down, then opens the door. Interestingly, the
attack move has to be extensively trained even though the individual sequence
components are well mastered before. In contrast, the door-opening maneuvre does
not need any specific training for a person who already knows how to get up from a
chair, walk a few steps, etc. The apparent reason for this difference is that the
sequencing of component movements for the volleyball attack requires a precise,
situation-dependent timing and force control and admits no pausing, while the success
of the door-opening maneuvre is almost entirely insensitive to speed and force
variations, and allows for pausing. Based on the "definition by required learning"
criterion we would classify the attack move a distinct motor skill, but not the door-
opening sequence, even though over the years it might be repeated hundreds of times
and may look stereotyped to an external observer.

After these propaedeutics, let us return to the question of how many separately
trained motor skills a human possesses. If one starts thinking about it, one will find
that there are numerous "basic" skills which are broadly useful in many situations and
which every healthy human acquires very early in life – like crawling, reaching with
an arm, bending or shaking the head, sitting up, standing, walking, various grips and
hand/finger gestures, etc. It is hard to come up with a narrow estimate of how many of
such "generic childhood" skills humans have, but it seems reasonable to say that their
number seems larger than 20 and smaller than 1000. Beyond these basic skills, a
human is trained or trains himself/herself on a much larger number of composite
skills, distinctly addressable by our tentative separate training criterion. These differ
with culture and individual life history and would include items like shoelace tying,
volleyball attacks, or RC helicopter circling. Modern life environments feature a large
number of artefacts, social situations, body care routines, pastime activities,

craftmanship and sports involvement, and other dimensions of function and purpose,
each of which triggers specific motor learning episodes resulting in distinct motor
skills. Again, coming up with a number estimate is daring, but an intuitive guess that
seems defendable would put that number larger than 200 and smaller than 100,000.
Let us boldly agree that a healthy grown-up human commands of motor skills in the
order of 10^3 or more.

Thus, the ultimate challenge for cognitive neuroscientists and roboticists is to
understand how a motor repertoire of 1,000+ can be learnt, represented, coordinated
and used. This is surely not what Amarsi sets forth to achieve, but Amarsi research
should have this ultimate horizon in view and aim for first steps which, in principle,
have hooks to scale to this level.

Q3: How many CPGs does a human have?

Of course this question only makes sense to the degree that one specifies what is
understood by "central pattern generator". While the term is not precisely defined, its
usage in the biological literature (e.g. surveys [18] [19]) is quite consistent and refers
to extracortical, localized, small neural circuits which can produce rhythmic output in
the absence of rhythmic input. The list of standard examples comprises pulmonary,
ingestive and digestive, cardial, eye-saccadic and limb control (mostly locomotor)
instances. Only the latter are relevant in our current context of discussion. While we
have not found a concrete number stated for humans (or other animals), it appears that
the number of attested limb-controlling CPGs is quite small, in the order of magnitude
of 10.

Contrasting this small number with the order of 1,000+ of distinct motor skills
gleaned from the previous question leads us to some cautionary remarks and further
questions:

– Terminological hygiene: roboticists should maybe use the term "CPG" not
so liberally for non-periodic motor control modules as they sometimes do.

– Is it likely that all motor skills ultimately root in CPGs? The sheer
numerical mismatch in order of magnitude, and the non-periodic nature of
most motor skills suggest that this idea is hard to defend. Abstractly, there
seem to be two methodological approaches to deal with the CPG vs. motor
skill juxtaposition:
o One may strive to reduce all motor skills to CPGs, ultimately. "Higher"

skills, then, would use CPGs as the distal interface to the motor
apparatus, modulating them (up to the point where control input to
CPGs changes the native rhythmic dynamics to a discrete one), and
possibly growing a hierarchical architecture of increasingly complex
controllers above the primary CPG level. Much of the work at EPFL-
A&B could be seen in this light. Also, the classical engineering
perspective on hierarchical control is of this kind ([20]).

o Alternatively, one may think of architectures where CPGs are just one
kind of, but not the basis for all, motor skills. This leads to conceptual
heterogeneity and likely diminishes the elegance of architecture
models, but may provide more flexibility for learning and design.
CPGs may be seen as evolutionary more archaic and stereotyped,
while "higher" cortically based skills may be seen as arbitrarily

addable and shapeable. The numerical hiatus between orders of
magnitude of 10 vs. 1,000 raises no fundamental question. However,
an answer must be found on how the two subsystems (CPGs and
cortical control) interact.

Q4: How are modules addressed/selected for execution?

Assuming a discrete, but large (1000+) repertoire of motor skills, it becomes a
nontrivial question of how these are selected for execution. This problem does not
surface in current-day robotic systems because their repertoire is slim and they have
to perform only in limited scenarios for which finite state automata based action
schedulers or simple rule-based planners are readily designed by hand. It seems
however unlikely that these explicit, discrete schedulers/planners can be scaled to
very large repertoires to be used in unmodeled and fast evolving environments.

The problem is aggreviated if motor skills can be modulated (which seems
inevitable). Then, in a given evolving situation, not only the applicable skills per se
have to be identified, but also their appropriate modulation.

In classical symbolic AI planning systems, action selection is seen as a discrete
sequencing task. This task is addressed by creating goal-subgoal hierarchies by means
of a symbolic planner. At the finest resolution level, elementary subgoals are attained
by executing elementary actions. The set of eligible actions to reach a given subgoal
is predefined (and hand-coded). Which candidate action among a set of subgoal-
relevant actions becomes "fired" is handled in various ways, using some management
scheme for precondition monitoring, heuristics for estimating success, or even
random choice. To make all of this work, each available action needs to be tagged by
goals that may be achived by the action, and possibly furthermore by enabling
conditions and other characteristics. Seen globally, the repertoire of available actions
is organized by goals, and it is this goal tagging which renders the actions
addressable.

This cleanly-discrete approach of classical AI does not easily transfer to robotic
scenarios. Crucial differences to the classical AI scenarios include:

– The environment is partly unmodeled and unpredictable and sometimes
requires almost instantaneous, not plannable, reflex-like reactions.

– The robot as well as the environment have a large number of degrees of
freedom, which need to be negotiated concurrently and in a graded, gain-
calibrated fashion.

– Several motor skills may need to be executed simultaneously, or with
gradual fading-in / fading-out.

Challenges of this kind have historically led to the "New AI" approaches of behavior-
based robotics, and a rekindled interest in cognitive agent theories that address the
immersion of an agent in a dynamic environment, e.g. theories based on concepts of
affordances or on concepts of autopoietic self-organization. However, neither
behavior-based robots nor such immersive theories have so far been developed far
enough to sustain motor repertoires of 1000+ items (multiplied by modulations...).

To make large repertoires function in a situated agent, a computationally efficient
structuring scheme for motor skills is needed which makes it possible to identify the
current most appropriate skill(s) – plus, possibly, their appropriate modulation –
extremely quickly. A hint to be taken from classical AI is that such a structuring may
involve some sort of goal tagging. A hint from computer science solutions for
database organization might be that a hierarchical tree-oriented organization of the
"skill base" may be helpful for fast access.

Considerations of this kind are not immediately relevant for Amarsi, because our
motor repertoires will remain small enough to be organized by heuristics on a case by
case basis. But it would be desirable to invest in principled organization schemes
which have a potential for scalability. Furthermore, a part of the extensibility
challenge lies in an answer to the question of "where to place" newly acquired skills.

Q5: How can we define and quantify similarity between motor skills?

One theme in human motor learning research is to investigate motor transference and
motor interference. The first refers to a facilitation of learning a new skill by
previously acquired skills, the latter to detrimental effects. A common explanatory
strategy is to attribute this to similarities vs. dissimilarities between motor skills. For
instance, "learning to crawl could generally facilitate skills like canoeing because of
similarities in motor structures (transference), while the learning of higher level, more
finely-tuned technique in sports like tennis and badminton may at the same time
suffer from interference because of significant differences between the relevant
sensory-motor structures" (quoted from [21]; see also).

Such observations lead to considering similarity measures on motor skills. There is no
obvious best way to define such a measure. For instance, two motor skills might be
deemed similar,

– if they employ the same effectors, or
– if they serve similar goals (which however spins off the question of

finding similarity measures for goals), or
– if they are controlled by identical or overlapping neural circuits, or
– if the mathematical descriptions of the resulting mechanical dynamics are

similar (leads to the question of finding similarity measures on dynamical
systems – topological equivalence of high-dimensional phase portraits
might be a guide), or

– if external human observers judge the skills as similar, or
– if they mutually facilitate learning of the respective other.

This list indicates that here we are confronted with a hairy business. The example of
controlling RC helicopter circling forward vs. backward demonstrates how involved
this issue may be – the two skills would be classified similar by all of the criteria
listed above except the last, but there is very strong interference w.r.t. learning
between the two.

A similarity measure might be useful for organizing (large) skill repertoires. Feeding
a similarity measure to a clustering algorithm could be exploited to arrange the

repertoire in a tree whose structure would mirror the similarity clustering of the skills.
Such a tree could then become useful for the addressing task pointed out in Q4.

2.2 Toward large and extensible repertoires of motor skills 

In this subsection we consider how a truly large (size 1,000+) repertoire of motor
skills could be organized in a way that holds some answers to the questions posed
above. Such large repertoires are far beyond what is targetted in Amarsi or elsewhere.
However, even merely hypothetical thinking in such grand scales may lead to insights
that help us to better understand the organization of smaller-sized repertoires, in
particular with respect to facilitating their extensibility.

We start by extracting the core challenges from the previous questions section:

– Discrete set or continuous "skillscape". How do we delimit skills from
each other, given modulation pathways that may gradually transform one
skill to another?

– Complex skills: agglomerates or glues? Novel skills often arise from the
combination of previously available ones. One view on such combinations
is to conceive of a limited set of combination operators (sequencing, multi-
limb coordination, timed phasing-in-phasing-out) by which available skills
can become systematically agglomerated. Another view is that each new
skill, if it is worth being called new and worth being memorized,
constitutes an innovative whole whose essence lies in a unique dynamical
coupling ("glue") of previously available constituents. This coupling has to
be explicitly trained and tuned and cannot be understood as a stereotyped
application of combination operators.

– Hierarchical ordering criteria. It is a common intuition that a motor skill
repertoire should be hierarchically organized. There are several natural
criteria to define hierarchical "subsumption" relationships. One is
abstraction: a generic periodic arm swinging (e.g. exhibited by toddlers,
presumably due to a "raw" CPG activity) would be considered more
abstract than a conductor's highly differentiated swinging of the baton.
Another is composition: a composite skill is "higher" in the hierarchy than
its component skills.

– Addressability. There must be almost instantaneous mechanisms by which
a situation-adequate skill can be identified. Computer science informs us
that an overall hierarchical organization enables fast search. But, it is not
clear whether a fast search (e.g. down a decision tree) is what happens in
humans. Other options to account for addressability would be attentional
mechanisms in which the ongoing stream of situated experience maintains
a "torchlight" focus on a small set of currently eligible skills. At any rate,
whatever access strategy is deployed, each skill must in some way be
connected with or tagged by conditions for executability.

These challenges look strikingly related to issues concerning conceptual hierarchies
that have been investigated since long in Cognitive Science and AI. A difference is
that the hierarchies encountered in those fields are typically made of perceptive
concepts, used in pattern recognition tasks and semantic processing of sensory input.

In Amarsi we are confronted with motor pattern generation hierarchies. There is a
theoretical danger that we might be fundamentally misled if we seek inspiration from
conceptual hierarchies. However, the temptation to learn from similarities between
the two domains is stronger than a hypothetical doubt. Therefore we will conclude
this essay by inspecting one of the main paradigms from Cognitive Science and AI for
conceptual hierarchies which may be instructive for our purposes.

Abstraction hierarchies and semantic networks

The core ordering principle for concepts in classical, logic-based AI and numerous
CogSci models is abstraction. In the extensional view of concept semantics, a concept
A is more abstract than a concept B if the extension of A is a superset of the extension
of B. This view directly connects concepts to first-order logic, which in turn enables
the use of rigorous, powerful and well-understood inference algorithms. The
abstraction relation leads to a lattice ordering on the set of all concepts. Along the
parent-child links of such trees, inheritance mechanisms enable compact
computational representations of large concept spaces. Finally, Boolean operations on
concepts allow one to generate new concepts in a transparent and general fashion.

Once a conceptual space is ordered by abstraction, different concepts in the
abstraction hierarchy can be "laterally" connected by relations. Relations can often be
inherited downwards, leading to additional gains in compactness and transparency.
The ensemble of a core abstraction hierarchy, additional relational structure, and
inference algorithms forms a semantic network. The theory of semantic networks is a
traditional field of research in AI and offers riches of insight and tools.

How could robotics benefit from all of this? Are there chances to transfer ideas from
semantic networks to motor skill repertoires?

There are two alternative ways of how one could understand this question:

– Given a repertoire of motor skills, one could describe each skill by
asserting properties that is has; these descriptions then are of the same
logical-extensional kind as the concept definitions used in logic-based AI.
One could then use available semantic network methods to arrange these
skill concepts in an abstraction hierarchy, with the associated benefits of
inference and search mechanisms. There is a body of evidence from
human motor skill research to the effect that humans indeed maintain
cognitive representations of motor skills in manual action or other domains
which are represented and processed like other object concepts too
[22][23][24]. These representations are, so to speak, "about" the skills and
mostly elements of the skilled performance itself but must not be
confounded with the motor skills at a level of physical entities. They allow
a human to reason about his own skills, but they are not directly
executable. A blunt example: I know that I have the knee extension reflex,
and I know a number of facts about it. But, this explicit conceptual
representation is not the patellar reflex itself.

– A more daring modeling effort would strive to order not skill descriptors,
but the executable skills themselves (e.g. CPGs, controllers, neural
networks, attractors in neural networks) in a hierarchical way that can be
formally understood as an abstraction ordering. For sure, engineers have
proposed numerous hierarchical control architectures, but the ordering is

defined by composition in these systems, not by abstraction. Potential
benefits of an abstraction-analog ordering of motor skills executables are
intriguing:
o Such an ordering might reflect a learning history, similar to an

evolutionary tree, where more abstract skills are "raw" skills acquired
earlier, which then differentiate in a personal learning history,
branching into more and more refined, "special" skills.

o In situated action, the abstraction ordering might support a fast
adaptation of an ongoing execution of a skill, either by specialization
(going down the tree) if the situation allows or requires this; or by
abstraction (going up the tree), resorting to a more raw version of the
skill in error conditions, enabling a subsequent modified re-try (down
again on an alternative specialization branch).

o Acquiring new skills might often be effected by specialization from an
existing one. It would be immediately clear where in the overall
repertoire the new skill would be placed. Known conflicts or synergies
that the parent skill "laterally" relates to other skills may become
inherited.

All of these potential benefits are specific to abstraction hierarchies and
cannot be obtained from the standard compositional hierarchies.

The crucial ingredient for the second alternative would be to establish a notion of
motor skill abstraction. Such a notion should have the same formal properties as
extensionally defined concept abstraction. That is, we would need a way to associate
with each motor skill a formal set of some sort, where the set can be used to define the
skill, and with set inclusion defining motor skill abstraction.

From defining sets, the Boolean operations of union and intersection would
immediately provide elementary constructions of new skills from existing ones. If
furthermore there would exist a maximal set that includes all others, we would earn
set complement operations, and from that, "negation" of motor skills and the full
Boolean logic combinators for creating new skills. This may sound too abstract, and
finding a plausible construction of defining sets associated with skills is not
immediate.

At Jacobs there is ongoing work close to fruition which aims at exactly this. This
work relies on recurrent neural network modules for generating motor patterns. The
guiding idea is to use for the abstraction-defining sets, roughly speaking, the set of all
network states that may arise during the execution of a given skill. At the time of
writing, this approach has already been implemented in proof-of-principle synthetic
skill repertoires ordered by abstraction, with the possibility to use Boolean operations
to create, on the fly, novel and immediately executable patterns (publication in
preparation).

References 
[1] Degallier S., Righetti, L., Gay, S., Ijspeert, A. (2011), Towards simple control for
complex, autonomous robotic applications: Combining discrete and rhythmic motor
primitives. Autonomous Robots 31 (2), 155-181

[2] Khansari Zadeh, S. M., Billard, A. (2011), Learning Stable Non-Linear Dynamical
Systems with Gaussian Mixture Models. IEEE Transaction on Robotics, vol. 27(5),
943-957

[3] Shukla, A., Billard, A. (2012), Coupled dynamical system based arm-hand
grasping model for learning fast adaptation strategies. Robotics and Autnomous
Systems 60, 424-440

[4] Khansari Zadeh, S. M., Billard, A. (2012), A Dynamical System Approach to
Realtime Obstacle Avoidance. Autonomous Robots, 32(4), 433-454

[5] Kim, S., Billard, A. (2012), Estimating the non-linear dynamics of free-flying
objects. Robotics and Autonomous Systems 60, 1108 – 1122

[6] Kim, S., Shukla, A., Billard, A. (submitted): Catching objects in flight.

[7] Li, J., Jaeger, H. (2011), Minimal Energy Control of an ESN Pattern Generator.
Technical report 26, School of Engineering and Science, Jacobs University Bremen

[8] Sussillo, D., Abbott, L.F. (2009), Generating Coherent Patterns of Activity from
Chaotic Neural Networks. Neuron 63, 544-557.

[9] Waegeman, T., wyffels, F., Schrauwen, B. (2012), Towards a Neural Hierarchy of
Time Scales for Motor Control, in Simulation of Adaptive Behavior (Springer LNCS
7426), pp. 146-155

[10] Waegeman, T., Schrauwen, B. (2011), Towards learning inverse kinematics with
a neural network based tracking controller. In: Neural Information Processing
(Springer LNCS 7064), 441–448

[11] Reinhart, R. F., Lemme, A., Steil, J. J. (submitted), Representation and
Generalization of Bi-manual Skills from Kinesthetic Teaching

[12] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K. (2004), Extreme learning machine: a new
learning scheme of feedforward neural networks,” in IEEE International Joint
Conference on Neural Networks, 985–990

[13] Reinhart, R. F., Steil, J. J. (submitted), Learning Whole Upper Body Control
with Dynamic Redundancy Resolution in Coupled Associative Radial Basis Function
Networks

[14] Kuli, D., Ott, C., Lee, D., Ishikawa, J., Nakamura, Y. (2012), Incremental
learning of full body motion primitives and their sequencing through human motion
observation. The International Journal of Robotics Research, vol. 31, no. 3, pp. 330–
345

[15] Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009), Learning and
generalization of motor skills by learning from demonstration. In: IEEE Intern.
Conference on Robotics and Automation, 2009, pp. 763 –768

[16] S. Wrede, S, Johannfunke, M, Lemme, A., Nordmann, A., Rüther, S., Weirich,
A., Steil, J. J. (2010), Interactive learning of inverse kinematics with nullspace
constraints using recurrent neural networks. In 20. Workshop on Computational
Intelligence, Dortmund, 2010. Fachausschuss Computational Intelligence der
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik

[17] Manjunath, G., Jaeger, H. (submitted), The Dynamics of Random Difference
Equations is Remodeled by Closed Relations

[18] Ijspeert, A. (2008), Central pattern generators for locomotion control in animals
and robots: A review. Neural Networks 21, 642-653

[19] Büschges, A., Scholz, H., El Manira, A. (2011), New Moves in Motor Control.
Current Biology 21, R513-R524

[20] Albus, J. S. (1993), A Reference Model Architecture for Intelligent Systems
Design. In: Antsaklis, P. J., Passino, K. M. (eds.), An Introduction to Intelligent and
Autonomous Control, Kluwer Academic Publishers, chapter 2, 27-56

[21] Schack, T. (2014 – planned), yet untitled contributed article in: Tenenbaum, G.
& Eklund, R. Encyclopedia of Sport and Exercise Psychology

[22] Schack, T. & Ritter, H. (2009). The Cognitive Nature of Action – Functional
Links between Cognitive Psychology, Movement Science and Robotics. Progress in
Brain research: Mind and Motion - The Bidirectional Link between Thought and
Action. (pp 231-252). Elsevier.

[23] Güldenpenning, I., Koester, D., Kunde, W., Weigelt, M., & Schack, T. (2011).
Motor Expertise Modulates the Unconscious Processing of Human Body Postures.
Experimental Brain Research, 213, (4), 383-391.

[24] Stöckel, T., Hughes, C.M.L. & Schack, T. (2012). Representation of grasp
postures and anticipatory motor planning in children. Psychological Research. DOI
10.1007/s00426-011-0387-7.

