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Introduction 
 

At the time of writing the project proposal and subsequently the Technical Annex, the 
topic of extending a robot control system by new adaptive modules was primarily 
considered in the light of the distinction between extension by human design vs. 
extension by robot-autonomous learning. We quote from the description of 
deliverable 6.2. from the Technical Annex: 

Given some operational architecture, methods have to be developed to extend it by 
new adaptive modules while keeping it viable. All partners will develop their 
architecture toward two modes of extension: (i) the addition of externally specified 
modules – important for engineering and applications, (ii) the autonomous 
differentiation of the existing architecture into a larger number of adaptive modules. 
In both cases, the extension will have a structural aspect (how and where to insert the 
new module and initialize its internal and communication parameters) and a 
behavioral aspect (in what behavioral setting the new parameters are quickly 
adjusted). 

In the meantime, as Amarsi research has led to increasingly flexible and complex 
motor behavior systems, this early view has differentiated substantially. In particular, 
it has become clear that no clear-cut distinction can be made between a gradual 
enrichment of an existing motor pattern and the insertion of an entirely new one. We 
will argue below that the growth of a motor repertoire is analog to how evolution 
proceeds: first there may be a slight differentiation of an existing pattern into variants 
(the metaphor would be races of a species), which over time may lead to a segregation 
into clearly distinct patterns (metaphor: branchings in the evolutionary tree of 
species). Therefore, in our overview of relevant ongoing work in Amarsi, we report 
on both "gradual enrichment" and "plain addition".  

Some further nontrivial issues have become apparent: 



– A single adaptive module may be controlled into different functional 
modes (by inducing bifurcations but also in other ways). This leads to a 
conceptual distinction between adaptive modules (as encapsulated 
computational mechanisms) and motor primitives (as external descriptors 
of functional behaviors). 

– When the motor repertoire grows, a motor "primitive" cannot be described 
or understood in isolation anymore. It will be executed in varying contexts 
determined by other motor patterns which precede it, follow it, or overlap 
in time. These variable contexts will induce a rich execution time 
variability in a motor primitive, again blurring clear-cut definitions.  

This report is structured as follows. First we provide an overview of technical 
research in the robotics partner groups which has a bearing on extensibility (Section 
1). Then we will attempt an in-depth discussion of the engineering and conceptual 
problems which have now emerged more clearly, and suggest a guiding framework to 
steer our future investigations (Section 2).  

 

1 Overview of relevant technical research 
 

1.1 EPFL‐A (Ijspeert) 
We report on two lines of research in Ijspeert's group which are relevant for our topic, 
(i) the differentiation of an existing central pattern generator (CPG) module by 
stochastic optimization, yielding a "family" of CPGs with a shared "ancestor"; (ii) the 
creation of behavioral sequences by changing control parameters in a CPG such the 
qualitatively different behaviors result.  

Differentiation of an existing central pattern generator module. This research line 
arose from experiments with the Cheetah robot. The starting observation was that 
when one has a working CPG-based gait controller, it is not trivial to use that 
controller to induce forward speed changes. The naive solution – i.e., to simply speed 
up the CPG by adjusting its time constant – quickly leads to instable gaits. Different 
forward speeds, even when the same basic gait is used, require re-adjustment of 
shape-determining parameters and re-calibration of sensory feedback gains. More 
specifically, in this line of work gait controllers were used which were designed 
according to the dynamical movement primitive (DMP) scheme (detailed e.g. in 
Chapter 2 of deliverable 4.1). DMP based gait generators transform the raw 
oscillation of an underlying Hopf oscillator into a set of target trajectories for the 
various joints. The DMP parameters allow one to modulate frequency, amplitude, 
offset, waveform, and sensory feedback gains. For quadruped locomotion, each leg is 
controlled by a separate such DMP system, which in turn are mutually coupled 
through phase-coupling their underlying oscillators. Let θ denote the set of parameters 
for the controller. Then is, if one wishes to control a robot through increasing forward 
speeds for an experiment duration t = 0 ... T, where at time t = 0 the speed is slowest 
and at time t = T it is fastest, one needs a path θ(t) through parameter space wich 
provides efficient and stable gait variants for each speed. The approach taken to 
obtain such parameter paths θ(t) is to apply a stochastic optimization search. One 
starts from a working controller for the slowest speed V(0) at experiment time 0, with 
an associated functional parameter set θ(0). By particle swarm optimization search a 



working solution θ(0 + δ) is found for a slightly higher speed V(0 + δ). This search is 
based on evaluating the performance (speed and stability) of parameters θ in 
simulation. The procedure is iterated, until a parameter path θ(t) is established. Figure 
1 shows an example of how the search area in parameter space is being explored, and 
a progression through the space is established. The work is part of an ongoing PhD 
project with no publications yet.  

Figure 1: snapshot from swarm-based evaluating parameter settings for increasing 
speed in a DMP controller. (Taken from a PhD project presentation by Mostafa 
Ajallooeian) 

 

Creation of behavioral sequences by changing control parameters in a CPG. This 
work has been detailed before in deliverable 7.2, so we are brief. We mention this 
work here because it is instructive for our theme. In this research, a simulated Cheetah 
robot was equipped with a CPG which was obtained by the dynamical movement 
primitive (DMP) method [1]. Such CPGs root in a Hopf oscillator which can be 
pushed through a bifurcation by adjusting a control parameter r0. On the one side of 
the bifurcation, the CPG exhibits a single stable fixed point, which renders the CPG 
useful, e.g., for controlling a reaching motion. On the other side of the bifurcation a 
stable oscillation is generated, e.g., as a basis for a trotting gait. A second control 
parameter g allows one to change the location of the fixed point (or the center of 
oscillation, respectively). Both in the oscillatory and the point stabilization regime, 
assured stability properties are obtained. A single instance of this "double-faced" CPG 
is employed to control a sequence of two behaviors, where the robot first trots along, 
then stops and points a foreleg to a target. A handcoded sequencer module generates 
the necessary slow dynamics of the control parameters r0 and g, the first of which 
induces the transition from trotting to pointing and the second of which determines 
the pointing direction in the second phase. Figure 2 depicts how the core CPG (before 
further transformations needed to steer the motor apparatus) transits between different 
regimes.  



Figure 2: Output of the modulatable "two-faced" core CPG, subject to different 
settings of the two control parameters. (Re-used from deliverable 7.2) 

This example is illuminating in that it points to a conceptual difficulty: namely, a 
segregation of mechanism from behavior. Intuitively, as an outside observer one 
would refer to trotting and pointing as two distinct behavioral entities (and naturally 
assume that they are controlled by different adaptive modules). However, here we see 
that such apparently very distinct "behaviors" can spring from an identical, simple 
CPG module. We will comment on this multifunctionality theme in Section 2.  

 

EPFL‐B (Billard) 
In the group of Aude Billard, two lines of work contribute to extending adaptive 
modules: (i), the addition of obstacle-avoidance capabilities to an existing, functional 
motor primitive, and (ii) the adaptive combination of separately learnt motor 
primitives. Both approaches are demonstrated with iCub reaching motions which are 
designed using the SEDS method, likewise developed in Billard's group. We briefly 
recapitulate essentials of SEDS and then present the two lines of work. 

The SEDS approach to motor behavior learning. This method has been detailed in 
previous deliverables and a number of publications (e.g. [2]), and we are brief. SEDS 
stands for "Stable Estimator for Dynamical Systems" and represents a learning 
method by which a dynamical systems representation of a discrete motion can be 
learnt from a small number of demonstrations. The core idea is to capture the 
state/velocity information contained in the demonstrations first in a probabilistic 
Gaussian Mixture Model (GMM), from which then a differentiably smooth vector 
field with assured convergence and stability properties is extracted. This vector field 
represents a dynamical system (DS) which in the exploitation phase delivers target 
trajectories for the modeled motion. The crucial benefits of this DS are that due to its 
rooting in machine learning, it generalizes well from a small number of training 
demonstrations, assures stability properties, and that it enables a fast recovery from 
perturbations without the need for explicit replanning.  

A gradual enrichment mechanism: incorporating obstacle avoidance into a motion 
primitive. A situation which arises ubiquitously in robotics is that a learnt motor 
pattern is confronted, in a particular application situation, with obstacles that have to 
be avoided. Many solutions to this problem have been proposed in the literature. 
When the native target trajectories are generated from a DS, these solutions typically 
place repellor-like objects into the vector field at the obstacle locations. These 



repellors prevent the target trajectories from approaching the obstacle. In this 
tradition, Billard's group has developed a particularly refined mathematical approach 
for adjusting the native vector field. It admits to place convex forbidden regions into 
the field, such that the resulting dynamics preserves the stability properties of the 
original system, and also preserves the locations of stable fixed points (e.g. the targets 
for reaching). Figure 3 gives one schematic example. This work is documented in 
more detail in [4] and also in deliverable 7.2. The method is independent on how the 
native vector field was obtained, and applies to both discrete and periodic movements. 
The critical avoidance objects can be analytically described, matched/fetched from an 
object database, or be modeled from point clouds on the fly. The computation of the 
adapted vector field only requires small computational resources and can be done in a 
few milliseconds, enabling fast reaction to moving obstacles. In [4] numerous 
demonstrations are provided, analytical ones and with a redundant robot arm (one 
example in Figure 4).  

 

Figure 3: Example of the post-hoc vector field modulation method from EPFL 
(Billard group). Left: native (originally learnt) vector field, yielding a stable periodic 
motion. Right: the vector field after two obstacles, with a safety margin each, have 
been added. (Taken from [4]) 

Figure 4: Robot demonstration of the obstacle avoidance method. See text in image 
for explantation. (Taken from [4]) 

 



Coupling reaching with grasping motor primitives. EPFL (Billard group) has 
investigated how reaching motions (defined and trained for an entire arm) can be 
combined with grasping motions (defined and trained on the hand/finger level). It is 
known that when a human reaches for an object to be grasped, the hand/fingers start 
preparing for the grasping act while the reaching motion is underway. The two motion 
control systems are temporally coupled in a systematic way (references in [3]). More 
generally, one may consider the task to coordinate two motion patterns A and B, 
where A and B are using different degrees of freedom of the robot (here: the arm 
reaching A uses arm joints, the finger preshaping B uses finger joints). For a 
replication in robots, this seemingly leads to the following design strategy 
alternatives:  

– First train separate adaptive modules for A and B, respectively, then add 
suitable coordination mechanisms. 

– Train the coupled A + B system directly.  

Both alternatives appear not to be ultimately promising. The difficulty with the first 
one is that the requisite coordination mechanisms can be expected to be nontrivial, 
especially with regard to stability, requiring substantial insight and engineering in 
each and every new application case. The problem with the second approach is an 
explosion of training complexity (the addition of number of concerned state variables 
leads to a multiplication of required numbers of training samples).  

In this apparent impasse situation, EPFL-B explores an intermediate approach. The 
strategy is to first train A and B individually from a small number of demonstrations 
of the combined A + B behavior, using the SEDS methodology. Then, use the 
available training data to estimate an essentially 1-dimensional coupling function Ψ, 
again based on a probabilistic GMM obtained from the same training data. Ψ maps 
the current state of the DoF's of A into a scalar phase variable for B. Due to its low 
dimensionality, estimating this coupling function does not blow up the required 
training data size. The coupling of A with B is directed: while A (here: the reaching 
motion of the arm) unfolds autonomously, the motor pattern B evolves under the 
additional influence of the phase variable Ψ.  

This coupled dynamical system (CDS) model can be mathematically set up in a way 
which (i) ensures that the termination times for both A and B coincide: when A 
finishes, B finishes too (in the reaching case: when the hand arrives at the target 
position, the fingers have completed their pre-shaping for the grasp), (ii) preserves the 
assured stability conditions that the native A and B controllers enjoy due to their 
SEDS training, and (iii) preserves the original recovery-from-perturbations 
characteristics of A and B.  

The CDS model has been first introduced and demonstrated in a reach-and-grasp task 
setting where the grasp objects are stationary or slowly moving, and where the pose of 
the grasp object is fixed ([3], funded outside Amarsi). In one of the demonstrations 
(on the physical iCub), there were two variants of B to choose from (pinch grasp for a 
thin object vs. power grasp for a bulk object). When the grasp object is exchanged by 
the experimenter while the reach-grasp motion unfolds, the finger preshaping adapts 
on the fly too, simply following the target trajectories supplied by the CDS, with no 
need for explicit replanning (Figure 5).  



 

Figure 5: Online adaptive change of finger preshaping from pinch to power grasp, 
while arm reaching motion smoothly continues. (Taken from [3])  

Current research at EPFL-B is extending this CDS approach to tasks where the grasp 
object is quickly moving while changing its pose. An extreme case is catching flying, 
rotating objects of asymmetric shape. As an important step toward this demanding 
task, EPFL-B has developed methods for the fast online estimation of the pose of such 
objects from video input [5]. In very recent work [6], imitation learning is used to 
allow learning of skills enabling the robot to catch objects in flight. There, the human 
user helps the robot to acquire this in an incremental manner by dividing the tasks into 
different modules. The robot first learns to estimate the dynamics of flight of the 
object by observing the objects being tossed about 20 times. The robot then learns to 
compound primitive behaviors for reach and grasp motion through human 
demonstration. Finally, the robot learns where to place its fingers on the object 
through static demonstration of a human placing her fingers on the relevant part of the 
object, while the object lies flat on a surface. Figure 6 shows a demonstration. 

 

Figure 6: a KUKA robot arm catches a bottle thrown by a human from about 3 m 
distance. (Taken from [6]) 

 

UGent (collaboration with Jacobs) 
 

One important line of work at the Reservoir Lab in Gent concerns methods by which 
an existing neural CPG can be made modulatable for characteristics like amplitude, 
shift, waveform or frequency. This general objective is similar to research goals 
pursued at EPFL-A and EPFL-B, but a crucial difference lies in the mathematical 
nature of the used CPGs. At EPFL the CPGs are instantiated as analytical ODEs (the 
DMP methodology at EPFL-A) or as ODEs extracted from training data via 
intermediate GMMs. In contrast, the pattern generating systems explored in Gent are 
implemented as (large) recurrent neural networks (RNNs), following the reservoir 
computing (RC) paradigm. ODE based models and RNN based models have 
complementary benefits: 



– ODE based models (often) admit an analytical guarantee of stability 
properties and are lightweight in their computational costs at exploitation 
time. Speeding-up or slowing-down of such pattern generators can be 
easily achieved by modulating the ODE's time constant. 

– RC based pattern generators can be easily trained to exhibit almost 
arbitrary waveforms. Arguably they are closer to biology than ODEs 
(admittedly a hairy argument). It is possible to train multifunctionality 
into a single neural CPG: by simple control input settings such systems 
can be made to switch between entirely different output patterns ("neural 
CPG", documented in D.4.1 Section 9). Furthermore, RC based pattern 
generating modules can be run bi-directionally, incorporating in a single 
dynamical system a model for forward as well as inverse kinematics (this 
line of investigation is pursued at UniBi, see below).  

An intriguing difficulty with RC based CPGs is that it is not straightforward how to 
speed them up or slow them down. Of course this could be easily done if the used 
neurons are individually modeled by ODEs (e.g. as leaky integrators): then one could 
tune the neuron's time constants and achieve a proportional speed change in the entire 
network. But, first, often neuron models without a time constant are employed, and 
second, it is not biologically plausible that neurons should have a tuneable (and 
externally addressable) time constant.  

Accordingly, it turns out that while it is rather easy to modulate a neural CPG with 
respect to geometric characteristics like waveform, amplitude, or offset, it is hard to 
find robust methods to modulate its main temporal characteristic, i.e. its frequency. 
Here we report on ongoing work concerning this challenge. This research has a 
bearing on extensibility because one starts by training a fixed-frequency periodic 
pattern generator, which then is afterwards made frequency-controllable by adding 
(and training) a separate control loop.  

The basic control scheme is the same as the one that is used for modulating the 
(easier) geometric output pattern properties. It has been documented before in 
deliverable D.5.1, so we will only give a brief resume. First, a reservoir is trained as 
an oscillator: at its output unit it then produces a fixed sinewave pattern. Then an 
external observer of the quantity that is to be made controllable is added – it outputs 
an online measurement e.g. of the oscillator's amplitude, shift, or frequency. Based on 
this observer, an external feedback control loop is added – in early versions a simple 
P-controller.  It is fed with a reference signal for the target observable and can 
influence the ongoing reservoir dynamics by inserting a bias vector c which is 
weighted with the error signal (in the case of a simple P-controller). The efficiency of 
this scheme hinges on finding a bias vector c which, when weighted-added, influences 
the critical observable. Figure 7 depicts this general architecture. A number of 
different methods for training this vector have been developed. The universal finding 
is that amplitude and shift are easy to control in this way while frequency is hard to 
master. Very recently however, research at UGent has been successful in also making 
frequency controllable. The keys to success are relatively large reservoirs (800+ units) 
and a careful regularization – fostering structural stability of the oscillation – in the 
training of the native oscillator (the FORCE learning scheme introduced in [8] was 
found to work particularly well). In this way, frequency became tunable by a factor of 
3.  



The body of experience collected about modulating neural oscillator patterns by 
external controllers has now reached a level where it can be brought to bear on robot 
motor control tasks. In [9] it is demonstrated how the core oscillator is trained by 
demonstration to control an Oncilla robot leg. The external controller here is not a 
simple linear feedback controller anymore but is itself realized as a nonlinear, online 
adaptive RC-based controller (based on the methods described in [10]). The controller 
generates a multi-component output waveform whose offset and amplitude can be 
controlled. The adaptivity of the controller allows the system to accomodate to 
perturbations – in [9], a weight of 100g was attached to the leg at some point. After 
adaptation, amplitude and offset control were largely re-gained.   

 

 

Figure 7: general layout of controlling a reservoir-based periodic pattern generator. 
(Taken from [7]) 

 

UniBi (Cor Lab) 
 

Several lines of work at the Cor Lab have a bearing on extensibility. Generally 
speaking, like in the current work of other partners, the complexity and modulation 
richness of motor patterns realized at the Cor Lab is continuously increasing. Here we 
report on two strands of research. First, a hierarchical analysis of how a complex 
behavior can be understood to result from a cascade of transformations and 
modulations was carried out, which led to particularly efficient training from a small 
number of presentations. Second, the question of how separate motor patterns, which 
command mostly "private" joint variables but also share some of them, can be 
coupled in a way that leads to natural-looking combined execution and does not 
require a separate training for the coupling. We sketch these two lines of work in turn, 
and conclude with a brief note on sequencing methods employed at the Cor Lab. 



Cascaded transformations of movement primitives. In this line of ongoing research 
[11], UniBi investigated how a maximally reduced (hence, maximally 
invariant/general) representation of a movement primitive can be expanded and 
modulated in stages, until it finally yields a runnable motion control loop for a 
specific task setting. The demonstration scenario involves bimanual object 
manipulation by the iCub robot: handling a long rod in the fashion of weightlifting or 
paddling. These tasks are learnt from human demonstrations. UniBi models this 
control task by a series of task representations of increasing complexity, linked by 
modulations and transformations. The order of these transitions between 
representations is variable to some extent. Different orders of cascading lead to 
different generalization properties and requirements on the amount of training data.  

More specifically, the approach taken uses the following representation formats and 
transformations / modulations: 

– The core and most compact representation describes the movement in task 
space as a movement primitive with normalized positions, using only the 
coordinates g of the "leading" hand. Technically, the movement is cast as a 
dynamical system, whose vector field is trained into a particularly fast-
trainable neural network of the "Extreme Learning Machine" (ELM) type 
[12].  

– The execution speed is adjusted by modulating the movement primitive 
representation by a scalar speed gain α. 

– At some point in the cascade, this single-hand based representation has to 
be expanded to full two-handed task space coordinates p.  

– The geometrical adaptation of the movement primitive to the particular 
task instance (shift and orientation transforms H) can be applied at the 
level of the core primitive g or later in the expanded representation p, 
yielding g' or p', respectively. 

– Finally, the full-sized task-space representation p' has to be transformed to 
joint coordinates q through an inverse kinematics solver, which 
simultaneously performs redundancy resolution. This solver is likewise 
realized as an ELM. 

All three of the core movement primitive, the task expansion, and the inverse 
kinematics are trained in ELMs, using the same set of human demonstration data. A 
number of alternatives for sequencing these stages have been investigated. They are 
shown in Figure 8. In variants (a) and (b), the first two stages are identical and yield 
full-sized and task instance specific task coordinates g'. In variant (a), a single further 
transformation which combines the expansion with the inverse kinematics is learnt, 
whereas in (b) these stages are delegated to separate ELM modules. Version (b) can 
benefit from the structural bias that these stages can be separated and connected by 
the intermediate representation p', and hence has been found to offer better 
generalization than (a). Version (c) switches the order of expansion and geometrical 
adaptation in (b) and thus can benefit from yet another valuable structural bias, 
namely, that the expansion can be done invariantly from the geometric adaptation. In 
the ensuing robot experiments, (c) was found to be the superior strategy w.r.t. 
generalization. Figure 9 gives an impression of the final performance under (c). 



Figure 8: three investigated schemes for cascading transformations which expand and 
modulate a core invariant movement primitive to a runnable task controller. For 
explanation see text. (Taken from [11]) 

 

Figure 9: Execution of three learned skills according to the architectural design in Fig. 
8 (c): Two periodic paddling skills taught on the left and right side of the robot are 
depicted in the left and middle image, respectively. A sequence of two discrete 
motions forms a weight lifting skill (right). Green lines are the end effector 
trajectories in the training area and blue lines the generalized skill displaced by (0, 5, 
5) cm from the training condition. (Taken from [11]) 

Semi-automatic extension of skill library:  The robotic system implemented at UniBi 
facilitates the semi-automatic creation of skills and automatic addition of the new skill 
to the overall architecture. For this purpose, a quite general procedure has to be 
followed: First, training data has to be acquired (here by recording joint angles by 
kinesthetic teaching through a human tutor). Then, the data is processed and several 
important features of the motion are detected. For instance, whether the taught motion 
is a periodic pattern or comprises a sequence of discrete primitives and, also, which 
bodyparts participate in the motion. This analysis is in principle fully automatic, but - 
for safety reasons - the human operator is asked to confirm the results. This renders 
the overall procedure semi-automatic. With the data and detected features, an 
automatic construction and learning process is triggered (following the ideas of 



automatic module creation proposed in D6.1). Ultimately, the new skill is added to 
the architecture and can be exploited immediately. 

Coupling body subsystems which share joints. Motor tasks are often defined in a way 
that primarily concerns only a part of the body. For example, humanoid walking, at 
first sight, mainly concerns the legs and torso while the arms and hands appear less 
directly involved; likewise, a pointing gesture primarily involves the arm/hand 
subsystem and not so much the legs. Such a primary association of two motor patterns 
with two separate portions of the body often makes it feasible to perform two motor 
tasks simultaneously, e.g. pointing while walking. However, the segregation will 
rarely be perfect. In a natural human walk, the arms become entrained to the walking 
and contribute to balancing, and when a standing human points s/he will also bend the 
torso and move the legs, albeit only slighty. Thus, when one wishes to add new motor 
patterns to a robot control system, one should have an understanding of how its 
execution interferes with the execution of other motor patterns, even if at first sight 
there is a segregation of affected body parts.  

Addressing this kind of problem, UniBi (Cor Lab) has studied the arm-torso-arm 
interaction of motor tasks for a (simulated) iCub robot, where the motor pattern 
controllers were primarily defined and trained for each arm individually [13]. That is, 
two subsystem controllers were individually trained in the beginning. The first 
subsystem comprised the four left arm joints and three torso joints, the second 
subsystems the right arm and the same three torso joints again. Thus, the two 
controllers shared three joints in their respective 7-dim control spaces. The objective 
of this research was to couple the two controllers in a non-disruptive and natural way 
in the exploitation phase.  

Before we explain the coupling and the demonstrations, we sketch the design of each 
partial controller. The core component for each 7-dim subsystem is a bidirectional 
representation of the inverse + forward kinematics. Its basic functioning principles are 
analog to the RNN based bidirectional controllers explored previously in this group 
([16], also documented in deliverable 4.1 Chapter 6 and deliverable 6.1 Section 1.2). 
For better computational and statistical efficiency, the previously used sigmoid-unit 
RNN-based representation has now been replaced by a feedforward RBF network. 
The network is trained on inputs consisting in exhaustively sampled pairs of 7-dim 
joint coordinates q and 3-dim task space coordinates x. The trained output values are 
again the same 7-dim and 3-dim coordinates. When the trained network is used in an 
output feedback mode where the desired task space target x* is clamped to the x 
inputs and the estimated joint values 

€ 

ˆ q  are fed back to the input, a redundancy-
resolved inverse kinematics trajectory is obtained. See Figure 10 for a schematic.  

(a)  (b)  

Figure 10: (a) Setup for the bidirectional task/joint coordinate training. Cinp and Cout 

are fixed input weights, Winp and Wout are trained output weights. The mapping h is 



realized by a RBF network and trained on the identity mapping. (b) Exploiting the 
trained network for computing inverse kinematics by partial output feedback. (Taken 
from [13]) 

Each of these two (symmetric) modules can be used to compute joint trajectories for 
the 3 torso plus the 4 arm joints, given a desired task space trajectory. But how can 
these two control modules be combined? Figure 11 shows how it was done at UniBi. 
Both the left arm and the right arm module are executed in parallel. They will 
typically generate different joint targets for the 3 torso joints that they share. These 
two commands are simply averaged before being sent to the robot. Like in Figure 10 
(b), the controllers are run in a joint space feedback loop; the values that are fed back 
are the measured actual joint readings.  

 
 
 
 
 

 

Figure 11: combining the right and left arm/torso controllers. For explanation see text.  
(Taken from [13]) 

This negotiation scheme leads to natural-looking interactions between the two arms. 
Figure 12 depicts some demonstrations. In (a), the task target was to bring both hands 
to positions left front to the robot. In (b), the same target position was requested for 
the left hand, while no target was prescribed for the right hand (this is realized by 
closing the upper x-feedback loop in the right arm controller). These two different 
sets of requirements lead to different degrees of turn and bend in the torso. Similarly, 
in (c) the two arms had to reach out far in front of the robot, while in (d) only the left 
arm had to do this. Again, this leads to natural-looking differences in torso posture.  

 



Figure 12: demonstration of combined right/left arm/torso controllers. See text for 
explanation. (Taken from [13]) 

 

Sequencing motor primitives. A short note on how motor primitives are currently 
sequenced at UniBi. This task arises frequently in various lines of work. It may refer 
to sequencing very elementary motor primitives, condensing them into what one 
might call a "behavior" – an example is the weight-lifting pattern sketched in Figure 
9c, which is composed of two sequenced directed movements. Or it may refer to 
organizing sequences of higher-level behaviors. All of these sequencing issues are 
currently dealt with by hand-coded sequencer modules. A standard finite-state 
machine serves the sequencing of movement primitives, where convergence of a 
discrete primitive triggers the transition to the next state. Here, convergence of a 
movement primitive means the reaching of a target position, which is monitored by a 
simple criterion (implementing the concepts laid down earlier in D6.1). More 
sophisticated representations of sequences, e.g. Hidden Markov Models [14], can in 
principle be plugged into the architecture. However, this simple state transition 
scheme together with bottom-up feedback of actual joint angles renders the 
architecture responsive to perturbations and assures that a primitive is finished before 
the next primitive starts. Smooth transitions in speed between successive primitives 
can be achieved by additional mechanisms, e.g. switching primitives before they 
terminate [15]. 

 

Resume 
 

Here is a summary of our walk through extension-related research in Amarsi: 

1. The primary level of extending motor repertoirs is the differentiation of an 
existing adaptive module. We saw instances of this in 

a. the establishment of a path in module control parameter space by 
stochastic swarm optimization, enabling walking speed adaptation (EPFL-
A), 

b. the ad-hoc modification of DS vector fields by convex obstacle inclusions 
(EPFL-B),  

c. frequency modulation of a large RNN oscillator by an external control 
loop (UGent & Jacobs),  

d. transformation cascades which enrich a core low-dimensional DS 
representation by task- and joint-space variables. 

2. On a higher level of extension complexity, Amarsi is investigating two aspects of 
coupling two simpler motor patterns into a more complex one: 

a. coupling hand/finger pose preparation to an arm reaching motion by a 
coupling phase variable (EPFL-B), 

b. coupling two single-arm motion controllers into a two-arm controller by 
averaging the control input to the shared torso joints, plus dynamic 
negotiation by feedback dynamics, a procedure enabled by bidirectional 
representations of foward/inverse kinematics (UniBi). 

3. Having an available repertoire of more than one motor behavior immediately 
leads to sequencing: 



a. This can sometimes be achieved by driving a single adaptive module 
through a bifurcation (EPFL-A).  

b. At UniBi, separate sequencer modules (hand-coded as yet) assemble 
elementary motor primitives into a functional behavior ("weight lifting" 
example), or assemble high-level functional behavior sequences. 

This list indicates that under the headline of "extension" we are tapping a large variety 
of phenomena, mechanisms, and scientific approaches. In the next section we 
endeavour to draw a more systematic picture of this field. 

 

2 Some coordinates in the research space of motor repertoire extension 
 

At the time of formulating the Amarsi proposal and the Technical Annex, our view of 
what it means to extend a motor repertoire was conceptually straightforward: 

– One would start with an initial architecture that hosts a few adaptive 
modules, basically engineered by the human designer, with possibly some 
learnt optimization within or between the modules. 

– Then, further modules would be incrementally added, either by the human 
engineer or by some autonomous learning scheme. 

– A few obvious challenges were foreseen, especially the two related 
questions of (i) how new modules should be coupled into the existing 
system, and (ii) how should the execution of an increasingly rich repertoire 
of available modules be scheduled / sequenced / planned? The rough early 
ideas in these two respects were that (i) is just a matter of tuning coupling 
constants (by hand or by automated learning / optimization), and that (ii) 
will be effected by some high-level planner (e.g. a finite state machine or 
an AI-style symbolic planner), or by human commands. At any rate, issue 
(ii) was regarded as peripheral to the project. 

We did not (and could not) build on a detailed analysis of the extension challenge at 
the beginning of the project. But, as of today, the need for a deeper understanding has 
become clear. And, we are in a much better position to tackle these issues because we 
afford of a substantial, shared basis of experimental tools and experiences. In this 
section of D.6.2 we endeavour to draw a much more detailed and better informed 
picture of the extension challenge (subsection 2.1), and to offer a unifying perspective 
(subsection 2.2) which will guide our future efforts in this arena. 

 

2.1 The wide and unwieldy field of "extending" a motor repertoire 
 

Just a list of questions in this subsection... with comments but not with answers. 

Q1: How do we define / delimit adaptive modules?  
 
This is certainly not a settled question. The multitude of terms used by consortium 
partners is instructive: central pattern generator, neural central pattern generator, 
neural motor primitive control, neural dynamical motion primitives generator, neural 



dynamic movement primitives, dynamical movement primitives, motor primitives, 
motor skill, motor pattern, adaptive module, behavior (overview and discussion in 
deliverable D.6.1). One reason for this variety is that different researchers use 
different criteria for defining their objects: functional, implementation-oriented, 
outward-phenomenal, control-oriented. Another reason is that different names may 
point to different levels of (hierarchical) organization. In the further discussion we 
will simply use the generic term module if we want to cover any or all of these. 
 
An implicit assumption behind the usage of all of these terms is the discreteness of 
modules. When thinking of a motor repertoire, one thinks of a finite collection of 
well-defined modules. In robot control programs, these modules would be represented 
by circumscribed functions, subroutines, or objects (in the sense of object-oriented 
programming). It is worth pointing out that this idea of dealing with well-defined, 
discrete objects is a very strong assumption, and it may be inadequate. One might also 
conceive of a picture where the observable variety of motor behavior is organized in a 
continuum, with smooth transformation chains ultimately connecting every 
"behavior" with every other. Internally, such a continuum of motor phenomena might 
be subserved by a comprehensively coupled, extensive neural substrate which would 
be steerable to produce any observable behavior by smooth parametric changes. A 
glimpse of this possibility became apparent in the parameter paths investigated at 
EPFL-A. In this line of complex dynamical systems thinking, one may hope to 
recover discrete items in terms of attractors – this is a standard scientific move to 
make. But, neural motor control systems are surely strongly co-determined by sensory 
input. The bad news, then, is that rigorous attractor concepts for input-driven systems 
are hard to obtain, and mathematical research on such nonautonomous dynamical 
systems is in its infancy. Ongoing research at Jacobs aims at providing useful 
mathematical foundations for describing such systems [17].  
 
Closely connected to the question of how to define modules is the question of how to 
dissect or compose modules. Only very few of the modules explored and exploited in 
Amarsi are "atomic" or "unitary" in a sense of being represented by a single 
mathematical formula or a single computational routine. Most modules which are 
practically used are composite and can be dissected, e.g. into transformation stages (as 
in the cascaded transformations presented above for UniBi), or into a core CPG plus 
some added control or sequencing machinery (as in the controlled RNN pattern 
generators from UGent/Jacobs or UniBi's weight-lifting controller), or into a basic 
vector field in which obstacle representations can be immersed on the fly (EPFL-B), 
or into sub-control loops which are coupled by a few shared controlled variables 
(UniBi's two-arm controllers) – just an arbitrary choice. These ways to compose parts 
into larger wholes are well motivated in every single case, but overall there is no 
systematic understanding of what types of composition mechanisms exist and how to 
describe them formally.  
 
If we assume a composition hierarchy for modules, how might the "high" end look 
like? How complex may composite modules become while still being accountable as 
identifiable, stable units? Is there a highest degree of compositional complexity 
beyond which behavioral modules cannot stably exist – e.g., for reasons of practical 
unlearnability or inavailability of sufficiently complex control mechanisms at 
execution time? What would be plausible examples of most complex human motor 
skills which a naive observer would still conceive as identifiable "wholes" (as 



opposed to perceiving the observed action as composite)? Is the external observer 
perspective appropriate to define "wholeness" of executed skills? This seems 
questionable. Consider a pianist practicing a demanding passage which requires a 
non-standard fingering which the pianist cannot recall or assemble from his/her large 
collection of highly trained, stereotyped fingerings. A large number of exercising 
repetitions of this passage, starting slowly and increasing in fastness, will be 
necessary until mastery. The entire passage will then be automatically executed after 
it is started, and experienced by the pianist as a whole. Figure 13 gives an example, 
which covers 18 third-notes extending over two bars. An external observer seeing the 
printed score might judge this to be a sequencing job of 18 movement "primitives"; an 
external observer listening to the performance may prefer to segment this into six 
trioles (corresponding to the main characteristic of the rhythmic experience). The 
pianist – after the practicing – will rather classify it as a unit. Does this example come 
close to the limits of complexity of human motor modules? It surely is close to the 
limits of what the writer of these lines (amateur hobby pianist) can attain.  
 

 
 
Figure 13: A passage from Bach's prelude in E flat major from the well-tempered 
clavier, book II. This passage is difficult for the left hand and requires an 
ideosyncratic fingering which has to be explicitly practiced. (Image taken from 
www.dlib.indiana.edu) 
 
 
Q2: How many motor skills does a human have? 

This question is not directly critical for Amarsi, because we do not aspire to capture a 
complete human motor repertoire in our robots. However, it is an illuminating 
question, closely connected to the first question but shedding a new light on our 
affair.  

To make this question productive, we first have to agree on some criterion of how we 
delimit motor skills from each other, in order to obtain discrete, countable items.  

When I tie my sneakers, the movements and control gains that I employ are different 
from the ones that are called upon when I tie my heavy hiking boots. But we would 
rather not want to count this as two different skills – intuitively it seems more 
appropriate to think of two modulations of one skill. On the other hand, knotting the 
two ends of a broken kite line together appears intuitively another skill than tying a 
shoe. Why do we intuitively think so? For the sake of bringing this discussion to life, 
we propose the following criterion for separating skills: A motor skill A is different 
from another motor skill B if mastery of A does not imply good performance in B; B 
has essentially to be learnt de novo even when A is already mastered. Of course this 
learning-effort based criterion leaves gray zones, but it is a helpful first step. For 



instance, it allows us to clearly separate the following two skills from each other, 
which on the surface look closely related. The example is taken from the author's 
hobby world of RC helicopter flying. Learning to remote-control a forward horizontal 
circling maneuver is one of the first steps in learning to fly an RC helicopter. It is 
however not simple for a novice and takes some weeks of daily training (and a 
significant investment in crash repairs). A helicopter is an almost holonomic device 
and flying it backwards (tail leading) requires almost exactly the same control inputs, 
except for two sign changes (effects of nick and roll commands are reversed). Now it 
turns out that for the human RC pilot trainee it is immensely difficult to learn steering 
circles backward. In fact, the previously acquired skill of forward cycling tends to 
interfere with the learning, inducing wrongly oriented reactions (and more repair). 
Also the author can report a distinctly different experiential quality: backward 
versions of forward maneuvres "feel" entirely different. Altogether, this suggests that 
backward vs. forward circling should be considered two distinct skills, not modulated 
versions of one underlying skill. This is an interesting example because from a 
mathematical or engineering view, the two skills are closely related: one could re-use 
the same controller, with only two gain signs switched.  

Further exploring how far the learning-based definition of motor skills may carry, let 
us consider sequenced motor behavior. An attack move in the sport of volleyball can 
be seen as (and is indeed explicitly trained as) a sequence of two or three steps 
forward toward the net, lowering the CoG while decelerating to prepare a jump, then 
jump while raising the arm, then hitting the ball, and finally, landing. Compare this to 
the similarly complex sequence of movements that occur when a polite person hears a 
knock at the office door: s/he gets up from the chair, takes a few steps to the door, 
extends the arm to the handle, pushes it down, then opens the door. Interestingly, the 
attack move has to be extensively trained even though the individual sequence 
components are well mastered before. In contrast, the door-opening maneuvre does 
not need any specific training for a person who already knows how to get up from a 
chair, walk a few steps, etc. The apparent reason for this difference is that the 
sequencing of component movements for the volleyball attack requires a precise, 
situation-dependent timing and force control and admits no pausing, while the success 
of the door-opening maneuvre is almost entirely insensitive to speed and force 
variations, and allows for pausing. Based on the "definition by required learning" 
criterion we would classify the attack move a distinct motor skill, but not the door-
opening sequence, even though over the years it might be repeated hundreds of times 
and may look stereotyped to an external observer.  

After these propaedeutics, let us return to the question of how many separately 
trained motor skills a human possesses. If one starts thinking about it, one will find 
that there are numerous "basic" skills which are broadly useful in many situations and 
which every healthy human acquires very early in life – like crawling, reaching with 
an arm, bending or shaking the head, sitting up, standing, walking, various grips and 
hand/finger gestures, etc. It is hard to come up with a narrow estimate of how many of 
such "generic childhood" skills humans have, but it seems reasonable to say that their 
number seems larger than 20 and smaller than 1000. Beyond these basic skills, a 
human is trained or trains himself/herself on a much larger number of composite 
skills, distinctly addressable by our tentative separate training criterion. These differ 
with culture and individual life history and would include items like shoelace tying, 
volleyball attacks, or RC helicopter circling. Modern life environments feature a large 
number of artefacts, social situations, body care routines, pastime activities, 



craftmanship and sports involvement, and other dimensions of function and purpose, 
each of which triggers specific motor learning episodes resulting in distinct motor 
skills. Again, coming up with a number estimate is daring, but an intuitive guess that 
seems defendable would put that number larger than 200 and smaller than 100,000. 
Let us boldly agree that a healthy grown-up human commands of motor skills in the 
order of 10^3 or more.  

Thus, the ultimate challenge for cognitive neuroscientists and roboticists is to 
understand how a motor repertoire of 1,000+ can be learnt, represented, coordinated 
and used. This is surely not what Amarsi sets forth to achieve, but Amarsi research 
should have this ultimate horizon in view and aim for first steps which, in principle, 
have hooks to scale to this level. 

Q3: How many CPGs does a human have?  

Of course this question only makes sense to the degree that one specifies what is 
understood by "central pattern generator". While the term is not precisely defined, its 
usage in the biological literature (e.g. surveys [18] [19]) is quite consistent and refers 
to extracortical, localized, small neural circuits which can produce rhythmic output in 
the absence of rhythmic input. The list of standard examples comprises pulmonary, 
ingestive and digestive, cardial, eye-saccadic and limb control (mostly locomotor) 
instances. Only the latter are relevant in our current context of discussion. While we 
have not found a concrete number stated for humans (or other animals), it appears that 
the number of attested limb-controlling CPGs is quite small, in the order of magnitude 
of 10.  

Contrasting this small number with the order of 1,000+ of distinct motor skills 
gleaned from the previous question leads us to some cautionary remarks and further 
questions: 

– Terminological hygiene: roboticists should maybe use the term "CPG" not 
so liberally for non-periodic motor control modules as they sometimes do.  

– Is it likely that all motor skills ultimately root in CPGs? The sheer 
numerical mismatch in order of magnitude, and the non-periodic nature of 
most motor skills suggest that this idea is hard to defend. Abstractly, there 
seem to be two methodological approaches to deal with the CPG vs. motor 
skill juxtaposition: 
o One may strive to reduce all motor skills to CPGs, ultimately. "Higher" 

skills, then, would use CPGs as the distal interface to the motor 
apparatus, modulating them (up to the point where control input to 
CPGs changes the native rhythmic dynamics to a discrete one), and 
possibly growing a hierarchical architecture of increasingly complex 
controllers above the primary CPG level. Much of the work at EPFL-
A&B could be seen in this light. Also, the classical engineering 
perspective on hierarchical control is of this kind ([20]). 

o Alternatively, one may think of architectures where CPGs are just one 
kind of, but not the basis for all, motor skills. This leads to conceptual 
heterogeneity and likely diminishes the elegance of architecture 
models, but may provide more flexibility for learning and design. 
CPGs may be seen as evolutionary more archaic and stereotyped, 
while "higher" cortically based skills may be seen as arbitrarily 



addable and shapeable. The numerical hiatus between orders of 
magnitude of 10 vs. 1,000 raises no fundamental question. However, 
an answer must be found on how the two subsystems (CPGs and 
cortical control) interact.  

 

Q4: How are modules addressed/selected for execution? 

Assuming a discrete, but large (1000+) repertoire of motor skills, it becomes a 
nontrivial question of how these are selected for execution. This problem does not 
surface in current-day robotic systems because their repertoire is slim and they have 
to perform only in limited scenarios for which finite state automata based action 
schedulers or simple rule-based planners are readily designed by hand. It seems 
however unlikely that these explicit, discrete schedulers/planners can be scaled to 
very large repertoires to be used in unmodeled and fast evolving environments.  

The problem is aggreviated if motor skills can be modulated (which seems 
inevitable). Then, in a given evolving situation, not only the applicable skills per se 
have to be identified, but also their appropriate modulation.  

In classical symbolic AI planning systems, action selection is seen as a discrete 
sequencing task. This task is addressed by creating goal-subgoal hierarchies by means 
of a symbolic planner. At the finest resolution level, elementary subgoals are attained 
by executing elementary actions. The set of eligible actions to reach a given subgoal 
is predefined (and hand-coded). Which candidate action among a set of subgoal-
relevant actions becomes "fired" is handled in various ways, using some management 
scheme for precondition monitoring, heuristics for estimating success, or even 
random choice. To make all of this work, each available action needs to be tagged by 
goals that may be achived by the action, and possibly furthermore by enabling 
conditions and other characteristics. Seen globally, the repertoire of available actions 
is organized by goals, and it is this goal tagging which renders the actions 
addressable.  

This cleanly-discrete approach of classical AI does not easily transfer to robotic 
scenarios. Crucial differences to the classical AI scenarios include: 

– The environment is partly unmodeled and unpredictable and sometimes 
requires almost instantaneous, not plannable, reflex-like reactions. 

– The robot as well as the environment have a large number of degrees of 
freedom, which need to be negotiated concurrently and in a graded, gain-
calibrated fashion. 

– Several motor skills may need to be executed simultaneously, or with 
gradual fading-in / fading-out. 

Challenges of this kind have historically led to the "New AI" approaches of behavior-
based robotics, and a rekindled interest in cognitive agent theories that address the 
immersion of an agent in a dynamic environment, e.g. theories based on concepts of 
affordances or on concepts of autopoietic self-organization. However, neither 
behavior-based robots nor such immersive theories have so far been developed far 
enough to sustain motor repertoires of 1000+ items (multiplied by modulations...).  



To make large repertoires function in a situated agent, a computationally efficient 
structuring scheme for motor skills is needed which makes it possible to identify the 
current most appropriate skill(s) – plus, possibly, their appropriate modulation – 
extremely quickly. A hint to be taken from classical AI is that such a structuring may 
involve some sort of goal tagging. A hint from computer science solutions for 
database organization might be that a hierarchical tree-oriented organization of the 
"skill base" may be helpful for fast access.  

Considerations of this kind are not immediately relevant for Amarsi, because our 
motor repertoires will remain small enough to be organized by heuristics on a case by 
case basis. But it would be desirable to invest in principled organization schemes 
which have a potential for scalability. Furthermore, a part of the extensibility 
challenge lies in an answer to the question of "where to place" newly acquired skills.  

 

Q5: How can we define and quantify similarity between motor skills? 

One theme in human motor learning research is to investigate motor transference and 
motor interference. The first refers to a facilitation of learning a new skill by 
previously acquired skills, the latter to detrimental effects. A common explanatory 
strategy is to attribute this to similarities vs. dissimilarities between motor skills. For 
instance, "learning to crawl could generally facilitate skills like canoeing because of 
similarities in motor structures (transference), while the learning of higher level, more 
finely-tuned technique in sports like tennis and badminton may at the same time 
suffer from interference because of significant differences between the relevant 
sensory-motor structures" (quoted from [21]; see also ). 

Such observations lead to considering similarity measures on motor skills. There is no 
obvious best way to define such a measure. For instance, two motor skills might be 
deemed similar,  

– if they employ the same effectors, or 
– if they serve similar goals (which however spins off the question of 

finding similarity measures for goals), or 
– if they are controlled by identical or overlapping neural circuits, or 
– if the mathematical descriptions of the resulting mechanical dynamics are 

similar (leads to the question of finding similarity measures on dynamical 
systems – topological equivalence of high-dimensional phase portraits 
might be a guide), or 

– if external human observers judge the skills as similar, or 
– if they mutually facilitate learning of the respective other. 

This list indicates that here we are confronted with a hairy business. The example of 
controlling RC helicopter circling forward vs. backward demonstrates how involved 
this issue may be – the two skills would be classified similar by all of the criteria 
listed above except the last, but there is very strong interference w.r.t. learning 
between the two.  

A similarity measure might be useful for organizing (large) skill repertoires. Feeding 
a similarity measure to a clustering algorithm could be exploited to arrange the 



repertoire in a tree whose structure would mirror the similarity clustering of the skills. 
Such a tree could then become useful for the addressing task pointed out in Q4.  

 

2.2 Toward large and extensible repertoires of motor skills 
 

In this subsection we consider how a truly large (size 1,000+) repertoire of motor 
skills could be organized in a way that holds some answers to the questions posed 
above. Such large repertoires are far beyond what is targetted in Amarsi or elsewhere. 
However, even merely hypothetical thinking in such grand scales may lead to insights 
that help us to better understand the organization of smaller-sized repertoires, in 
particular with respect to facilitating their extensibility. 

We start by extracting the core challenges from the previous questions section: 

– Discrete set or continuous "skillscape". How do we delimit skills from 
each other, given modulation pathways that may gradually transform one 
skill to another? 

– Complex skills: agglomerates or glues? Novel skills often arise from the 
combination of previously available ones. One view on such combinations 
is to conceive of a limited set of combination operators (sequencing, multi-
limb coordination, timed phasing-in-phasing-out) by which available skills 
can become systematically agglomerated. Another view is that each new 
skill, if it is worth being called new and worth being memorized, 
constitutes an innovative whole whose essence lies in a unique dynamical 
coupling ("glue") of previously available constituents. This coupling has to 
be explicitly trained and tuned and cannot be understood as a stereotyped 
application of combination operators.  

– Hierarchical ordering criteria. It is a common intuition that a motor skill 
repertoire should be hierarchically organized. There are several natural 
criteria to define hierarchical "subsumption" relationships. One is 
abstraction: a generic periodic arm swinging (e.g. exhibited by toddlers, 
presumably due to a "raw" CPG activity) would be considered more 
abstract than a conductor's highly differentiated swinging of the baton. 
Another is composition: a composite skill is "higher" in the hierarchy than 
its component skills.  

– Addressability. There must be almost instantaneous mechanisms by which 
a situation-adequate skill can be identified. Computer science informs us 
that an overall hierarchical organization enables fast search. But, it is not 
clear whether a fast search (e.g. down a decision tree) is what happens in 
humans. Other options to account for addressability would be attentional 
mechanisms in which the ongoing stream of situated experience maintains 
a "torchlight" focus on a small set of currently eligible skills. At any rate, 
whatever access strategy is deployed, each skill must in some way be 
connected with or tagged by conditions for executability.  

These challenges look strikingly related to issues concerning conceptual hierarchies 
that have been investigated since long in Cognitive Science and AI. A difference is 
that the hierarchies encountered in those fields are typically made of perceptive 
concepts, used in pattern recognition tasks and semantic processing of sensory input. 



In Amarsi we are confronted with motor pattern generation hierarchies. There is a 
theoretical danger that we might be fundamentally misled if we seek inspiration from 
conceptual hierarchies. However, the temptation to learn from similarities between 
the two domains is stronger than a hypothetical doubt. Therefore we will conclude 
this essay by inspecting one of the main paradigms from Cognitive Science and AI for 
conceptual hierarchies which may be instructive for our purposes. 

Abstraction hierarchies and semantic networks 

The core ordering principle for concepts in classical, logic-based AI and numerous 
CogSci models is abstraction. In the extensional view of concept semantics, a concept 
A is more abstract than a concept B if the extension of A is a superset of the extension 
of B. This view directly connects concepts to first-order logic, which in turn enables 
the use of rigorous, powerful and well-understood inference algorithms. The 
abstraction relation leads to a lattice ordering on the set of all concepts. Along the 
parent-child links of such trees, inheritance mechanisms enable compact 
computational representations of large concept spaces. Finally, Boolean operations on 
concepts allow one to generate new concepts in a transparent and general fashion.  

Once a conceptual space is ordered by abstraction, different concepts in the 
abstraction hierarchy can be "laterally" connected by relations. Relations can often be 
inherited downwards, leading to additional gains in compactness and transparency. 
The ensemble of a core abstraction hierarchy, additional relational structure, and 
inference algorithms forms a semantic network. The theory of semantic networks is a 
traditional field of research in AI and offers riches of insight and tools. 

How could robotics benefit from all of this? Are there chances to transfer ideas from 
semantic networks to motor skill repertoires?  

There are two alternative ways of how one could understand this question: 

– Given a repertoire of motor skills, one could describe each skill by 
asserting properties that is has; these descriptions then are of the same 
logical-extensional kind as the concept definitions used in logic-based AI. 
One could then use available semantic network methods to arrange these 
skill concepts in an abstraction hierarchy, with the associated benefits of 
inference and search mechanisms. There is a body of evidence from 
human motor skill research to the effect that humans indeed maintain 
cognitive representations of motor skills in manual action or other domains 
which are represented and processed like other object concepts too 
[22][23][24]. These representations are, so to speak, "about" the skills and 
mostly elements of the skilled performance itself but must not be 
confounded with the motor skills at a level of physical entities. They allow 
a human to reason about his own skills, but they are not directly 
executable. A blunt example: I know that I have the knee extension reflex, 
and I know a number of facts about it. But, this explicit conceptual 
representation is not the patellar reflex itself.  

– A more daring modeling effort would strive to order not skill descriptors, 
but the executable skills themselves (e.g. CPGs, controllers, neural 
networks, attractors in neural networks) in a hierarchical way that can be 
formally understood as an abstraction ordering. For sure, engineers have 
proposed numerous hierarchical control architectures, but the ordering is 



defined by composition in these systems, not by abstraction. Potential 
benefits of an abstraction-analog ordering of motor skills executables are 
intriguing: 
o Such an ordering might reflect a learning history, similar to an 

evolutionary tree, where more abstract skills are "raw" skills acquired 
earlier, which then differentiate in a personal learning history, 
branching into more and more refined, "special" skills.  

o In situated action, the abstraction ordering might support a fast 
adaptation of an ongoing execution of a skill, either by specialization 
(going down the tree) if the situation allows or requires this; or by 
abstraction (going up the tree), resorting to a more raw version of the 
skill in error conditions, enabling a subsequent modified re-try (down 
again on an alternative specialization branch).  

o Acquiring new skills might often be effected by specialization from an 
existing one. It would be immediately clear where in the overall 
repertoire the new skill would be placed. Known conflicts or synergies 
that the parent skill "laterally" relates to other skills may become 
inherited.  

All of these potential benefits are specific to abstraction hierarchies and 
cannot be obtained from the standard compositional hierarchies. 

The crucial ingredient for the second alternative would be to establish a notion of 
motor skill abstraction. Such a notion should have the same formal properties as 
extensionally defined concept abstraction. That is, we would need a way to associate 
with each motor skill a formal set of some sort, where the set can be used to define the 
skill, and with set inclusion defining motor skill abstraction.  

From defining sets, the Boolean operations of union and intersection would 
immediately provide elementary constructions of new skills from existing ones. If 
furthermore there would exist a maximal set that includes all others, we would earn 
set complement operations, and from that, "negation" of motor skills and the full 
Boolean logic combinators for creating new skills. This may sound too abstract, and 
finding a plausible construction of defining sets associated with skills is not 
immediate.  

At Jacobs there is ongoing work close to fruition which aims at exactly this. This 
work relies on recurrent neural network modules for generating motor patterns. The 
guiding idea is to use for the abstraction-defining sets, roughly speaking, the set of all 
network states that may arise during the execution of a given skill. At the time of 
writing, this approach has already been implemented in proof-of-principle synthetic 
skill repertoires ordered by abstraction, with the possibility to use Boolean operations 
to create, on the fly, novel and immediately executable patterns (publication in 
preparation). 
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