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1. Introduction  

 
The Sim-e-Child project proposes to develop a grid-enabled platform for large scale 
simulations in paediatric cardiology, providing a collaborative environment for constructing 
and validating multi-scale and personalized models of the growing heart and vessels. The 
objective of the Sim-e-Child is to strengthen the impact of the Health-e-Child project by 
creating an international simulation and validation environment for paediatric cardiology, 
supported by integrated data repositories. The project will advance the state-of-the-art by 
providing comprehensive and patient specific models for the dynamic and longitudinal 
interactions occurring in the left heart, with a focus on the congenital aortic arch disease and 
repair. 

1.1. Purpose of the Document 
The purpose of this document is to report on the extension of the Health-e-Child models for 
the left part of the heart. The left heart extension focuses on the mitral valve (MV) model and 
the complete aortic model (aortic root, ascending aorta, aortic arch and descending aorta) 
estimated from 3D and sparse 3D+t MRI images from patients affected by congenital heart 
disease. The results reported within this document are accepted as technical paper to be 
presented at the 14th International Conference on Medical Image Computing and Computer 
Assisted Intervention, Toronto, Canada 18-22 September, 2011. 

1.2. Scope of the Document 
This document presents the methods developed within the Sim-e-Child project to extend the 
Health-e-Child models for the left part of the heart. It is organized as follows: 

• Section 1 introduces the developed regression-based algorithm for patient-specific 
mitral valve model estimation from 2D+t MRI images. 

• Section 2 gives details about the hierarchical classification-based method developed 
to estimate patient-specific complete aortic model from 3D MRI images. 

• In Section 3 we introduce how such estimated models can be used for personalized 
hemodynamic model computation. 

1.3. References 
[Vitanovski et al. 2011] Vitanovski, D., Tsymbal, A., Ionasec, R., Greiser, A., Schmidt, M., 
Mueller, E., Lu, X., Funka-Lea, G., Hornegger, J., Comaniciu, D., Accurate Regression-based 
4D Mitral Valve Surface Reconstruction from 2D+t MRI Slices; in Machine Learning in 
Medical Imaging, MICCAI Workshop 2011. 
 
[Ralovich et al. 2011] Ralovich, K., Ionasec, R. I., Mihalef, V., Georgescu, B., Everett, A., 
Navab, N., and Comaniciu, D., Computational Fluid Dynamics Framework for Large-Scale 
Simulation in Pediatric Cardiology; in Computational Biomechanics for Medicine VI (CBM6), 
MICCAI Workshop, 2011 
 
[Vitanovski et al. 2010] Vitanovski, D., Tsymbal, A., Ionasec, R., Georgescu, B., Huber, M., 
Taylor, A., Schievano, S., Zhou, S.K., Hornegger, J., Comaniciu, D., Cross-modality 
Assessment and Planning for Pulmonary Trunk Treatment using CT and MRI Imaging; in 
MICCAI 2010. 
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[Mihalef et al. 2010] Mihalef, V., Ionasec, R., Wang, T., Zheng, Y., Georgescu, B., 
Comaniciu D. - Patient-specific modeling of left heart anatomy, dynamics and hemodynamics 
from high resolution 4D CT, Proceedings of ISBI 2010. 
 
[Ionasec et al. 2009] Ionasec, R. I., Voigt, I., Georgescu, B., Houle, H., Navab, N., 
Comaniciu, D. Personalized Modeling and Assessment of the Aortic-Mitral Coupling from 4D 
TEE and CT; in International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI)], 2009 
 
[Mihalef et al. 2009] Mihalef, V., Metaxas, D., Sussman, M. , Hurmusiadis, V., Axel L. - 
Atrioventricular blood flow simulation based on patient-specific data, in Proceedings of FIMH 
2009 
 
[Ionasec et al. 2008] Ionasec, R. I., Georgescu, B., Gassner, E., Vogt, S., Kutter, O., 
Scheuering, M., Navab, N., and Comaniciu, D., Dynamic model-driven quantication and visual 
evaluation of the aortic valve from 4D CT; in International Conference on Medical Image 
Computing and Computer-Assisted Intervention (MICCAI)], 2008 
 
[Zheng et al. 2008] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, D. Comaniciu: Four-
Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes using 
Marginal Space Learning and Steerable Features, IEEE Trans. Medical Imaging, 2008 
 
[Wang et al. 2007] Wang F, Bourgué PE, Hackenberg G, et al: “SciPort: An Adaptable 
Scientific Data Integration Platform for Collaborative Scientific Research“. Proc. VLDB, 1310-
1313. 2007 
 
[Zheng et al. 2007] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. 
Fast automatic heart chamber segmentation from 3D CT data using marginal space learning 
and steerable features. In ICCV, 2007. 
 

1.4. Abbreviations 

CE-MRA Contrast Enhanced MR angiography 

CFD Computational Fluid Dynamics 

CT   Computed Tomography 

DF Desktop Fusion 

DLL Dynamic-link library 

HeC Health-e-Child  

LA Left Atrium 

LV Left Ventricle 

MRI Magnetic Resonance Imaging 

http://portal.acm.org/citation.cfm?id=1325851.1326001
http://portal.acm.org/citation.cfm?id=1325851.1326001
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MSL Marginal Space Learning 

MV Mitral Valve 

PBT Probabilistic Boosting Tree 

RV Right Ventricle 

SeC Sim-e-Child  

TEE Transesophageal Echo 

UI User Interface 

US Ultrasound 

WSS Wall Shear Stress 
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2. Mitral Valve Model Estimation from 2D+t MRI Images 

2.1. Brief Overview of the Method 
The multi-plane ability of MRI to acquire tomographic images in any plane, the capabilities to 
measure blood flow velocity in all three dimensions within a single slice and the non-ionizing 
radiation represent a significant advantage over other imaging modalities. However, 
estimating personalized valve models from standard MRI protocols is very challenging due to 
the slice-based imaging paradigm of MRI that may vary significantly across different 
application scenarios. To enable accurate and robust cardiac valve modeling, we have 
experimented with existing MRI protocols Siemens-internally by adapting them to optimize 
mitral valve model estimation. Based on these MRI acquisition protocol adaptations, we 
developed a novel regression-based method for patient-specific 4D MV model estimation. 
Based on extensive experiments on simulated data, we first defined the acquisition protocol 
and optimized it with respect to the number and spatial configuration of the 2D+t MRI slices 
resulting in reduced acquisition time and 4D MV estimation error. Second, we developed a 
novel regression-based algorithm to estimate a complete patient-specific mitral valve model 
from incomplete 2D+t MRI images. The main idea of our algorithm developed consists of 
learning a regression model from existing mitral valve models from other imaging modalities, 
CT and Ultrasound, which then can be utilized to estimate personalized MV models from 
2D+t MRI images. This work was submitted in a form of a technical paper and accepted as an 
oral presentation at the Machine Learning In Medical Imaging Workshop of the 14th 
International Conference on Medical Image Computing and Computer Assisted Intervention, 
Toronto, Canada 18-22 September, 2011.  

2.2. MRI Acquisition Protocol Definition 
A Cardiac MR scanner (1.5T) with phased-array receiver coil and breath-hold acquisition was 
used to acquire cine images for MV function analysis. We covered the full cardiac cycle by 
using a retrospectively gated ECG signal. Data were collected during a multiple breath-holds 
(8 heart beats, slice thickness 4.5 mm, echo time 1.39 ms, pixel bandwidth 925 Hz, matrix 
208x124, excitation angle 59 degree, field of view 276mm-340mm).  
The mitral valve imaging plane was defined by acquiring four-chamber, three-chamber and 
short-axis view in the diastolic phase of the cardiac cycle. Initial orientation of the imaging 
plane is given by the short-axis view, where the plane normal passes through the MV 
commissures (Figure 1). Subsequently, parallel slices were defined along the normal between 
the commissures. 
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Figure 1: MRI Acquisition Protocol Definition 
 
Within this study we also exam the best trade-off between MV model estimation error and 
acquisition time by experimenting with different MRI imaging protocols on simulated data. For 
the different MRI acquisition protocols we estimated the mitral valve model in the end-
diastolic (ED) and end-systolic (ES) cardiac phases. Based on the experiments from the 
simulated data (see Table 1) a stack of 6 parallel LA planes results in best trade-off between 
MV model estimation error and acquisition time. We also considered a protocol with 6 radial 
LA planes as an option. However, due to the long acquisition planning time, the complicated 
plane settings and the plane mis-registration characteristic for this acquisition protocol, we 
found that a stack of 6 parallel planes is more appropriate for MV model estimation.  
 
No. 
Planes 2 3 4 5 6 7 8 9 10 

ED 
(mm) 6.7±1.1 5.6±1.0 4.4±0.9 3.5±0.68 3.1±1.1 2.6±1.0 2.3±1.0 2.1±1.0 1.8±0.8 

ES 
(mm) 2.9±1.2 2.6±2.2 2.2±1.5 2.1±1.4 2.1±1.2 2.3±1.6 2.5±2.3 2.1±1.1 1.9±1.0 

Table 1: MRI acquisition protocol optimization: analyzing the reconstruction error for different 
number of MRI imaging planes defined parallel between the MV commissures. 

2.3. Regression-Based Mitral Valve Surface Reconstruction 
The regression-based algorithm for complete mitral valve model estimation from sparse 2D+t 
MRI images consists of a hierarchical workflow, from modeling to quantification, which 
includes three stages: landmark detection (Figure 3), detection of contours (Figure 3) and 
model estimation (Figure 4). In order to accurately represent morphology and dynamics, our 
model design is consistent with the anatomy and physiology of the mitral valve (Figure 2). 
The architecture of the model is anatomy-based and includes all clinical relevant structures. 
In the following detailed introduction of our idea, developed algorithms and workflow 
supported by the User Interface integrated into SimSys are introduced. 
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Figure 2: Morphological and physiological representation of our mitral valve model 
 
 
Stage 1: Mitral Valve Landmarks Estimation. [Lu et al. 2010] proposed a framework for 
landmarks detection from 2D MRI images by their joint context. In our mitral valve landmarks 
detection phase from 2D+t parallel oriented MRI images we define our joint context landmark 
set between the posterior annulus and the free edge landmarks (PA, PFE) and the anterior 
leaflet (AA, AFE), respectively (Figure 2(middle)). On each 2D MRI slice we apply the 
developed 2D landmark classifiers, trained with PBT [Tu et al. 2005] and 2D Haar-like 
features to detect the annulus and free edge landmarks independently. Furthermore, we have 
integrated in the SimSys platform a graphical user interface which simultaneously displays all 
6 MRI images fused with the estimated landmarks and provides the user interactive 
correction of sub optimally estimated landmarks (Figure 3).   
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Figure 3: Graphical user interface integrated into SimSys platform for interactive correction of 
badly estimated landmarks or contours  
 
Stage 2: Mitral Valve Contours Estimation. From previously detected landmarks, we 
initialize the contours, parameterized by 17 discrete points, as a straight line and search for 
edges along the normal. A least-squares approach is used to fit a parametric NURBS curve to 
the discrete set of detected contour points. An interactive graphical UI of the SimSys platform 
allows the correction of incorrectly estimated contours by the user (Figure 3). 
 
Stage 3: Mitral Valve Model Estimation. In the last stage of the hierarchical mitral valve 
model estimation workflow, we incorporate the detected landmarks and contours from each 
cardiac phase (t) into the learned regression model. As a result a full patient-specific mitral 
valve model is estimated over the cardiac cycle from six parallel 2D+t MRI images. Figure 4 
illustrates an example of the estimated mitral valve model together with quantitative analysis 
of the valve and annulus area over the cardiac cycle.  
 

( ) ε+ℜ= ContoursLandmarksModelMV ,  
Equation 1: Mathematical representation of the regression based MV model estimation 
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Figure 4: Personalized mitral valve model regressed from six parallel oriented 2D+t MRI slices.  

2.4. Results 
We evaluated the developed algorithm for personalized 4D MV model estimation in sparse 
MRI data on a large set of simulated data (200 US TEE and 20 cardiac CT sequences) and 
on 15 ECG gated MRI studies acquired according to our developed protocol. Each volume in 
the data set is associated with annotation, manually generated, which is considered as 
ground truth for the learning algorithm. The personalized MV model estimation accuracy was 
evaluated by using the point-to-mesh metric. For each point of the estimated model we 
compute the Euclidean distance to the closest point of the associated, manually generated, 
ground-truth model. 
Intra and inter modality accuracy of the developed method with respect to different algorithm 
settings and parameters was evaluated. The inter modality accuracy was evaluated by 
learning the regression model on images simulated from US TEE data and tested on 
simulated sparse 2D+t images from CT data. For the intra modality accuracy a 3-fold cross 
validation was used to divide the US TEE data set into training (used to learn the regression 
model) and test data (used to evaluate the model estimation accuracy). For the best plane 
configuration protocol (stack of 6 parallel images) we achieved mitral valve model estimation 
accuracy of 1.9 ± 0.5 mm for the intra modality evaluation and 2.3 ± 0.5 mm for the inter 
modality. The intra and inter modality evaluation was important for two reasons: we had to 
prove our concept of cross-modality learning and we had to exam the best configuration of 
the imaging planes before we start to acquire real MRI data. 
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Figure 5: Example of the reconstructed 4D MV model over the cardiac cycle from 6 parallel 2D+t 
MRI slices which only partially cover the MV anatomy. 
 
With the results of the inter modality accuracy we prove the applicability of the MV anatomical 
model across different imaging modalities. In addition, we have shown that a regression 
model can be learned from one imaging modality (US) and used to estimate a patient-specific 
MV model in other imaging modality (CT). Finally, the regression model was learned with the 
best parameter configuration on all available US and CT data (1295 3D volumes). We then 
applied the learned regression model to estimate patient-specific MV models from the 15 MRI 
studies acquired according to the developed protocol and evaluate the model estimation 
accuracy by computing the point-to-mesh distance between the estimated and the associated 
ground-truth model. Our method achieved MV model estimation accuracy of 1.5 ± 0.2 mm 
within 10 sec per volume. Figure 5 illustrates the estimated MV models for the ED and ES 
phase of the cardiac cycle for the 2D+t MRI studies. 
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3. Patient-Specific Anatomical Model Estimation of the Aorta  

3.1. Brief Overview of the Method 
Within the SeC project we have developed hierarchical three-stage classification-based 
method for estimating patient-specific models of the aorta. We learned classifiers with PBT 
[Tu et al. 2005] and MSL [Zheng et al. 2007, Ralovich et al. 2011] to first localize the aortic 
root and arch in given 3D MRI volume, then to determine the center line along the aorta and 
finally to estimate the patent-specific aortic model (Figure 6). The estimated model provides a 
better understanding of the geometry of the aortic anomaly, especially in coarctation and 
bicuspid aortic valve patients, and can be utilized during preoperative planning. This work 
was submitted in a form of a technical paper and accepted as an oral presentation at the 
Computational Biomechanics for Medicine VI Workshop of the 14th International Conference 
on Medical Image Computing and Computer Assisted Intervention (MICCAI), Toronto, 
Canada 18-22 September, 2011. 
 

 
Figure 6: Hierarchical aortic model estimation workflow. (Left) Aortic root and arch localization 
phase. (Middle) Centre line extraction step. (Right) Aortic model fitted into the patient-specific 
MRI anatomy.  
 

3.2. Classification-Based Complete Aortic Model 
In SeC we employ a part-based aorta model (as shown in Figure 7) by splitting the whole 
aorta into four parts: aortic root, ascending aorta, aortic arch, and descending aorta similar to 
[Zheng et al. 2010]. The aortic root is required to be present in SeC image data; therefore, it 
is detected and segmented as the first step. More specifically, we use the recently proposed 
marginal space learning (MSL) method to segment the aortic root. MSL is an efficient method 
to detect and segment a 3D anatomical structure in medical images based on a robust 
discriminative machine learning technique. As shown in the system diagram inFehler! 
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Verweisquelle konnte nicht gefunden werden., the aortic root is detected first. If no aortic 
root is detected, the input volume is rejected. We then detect the aortic arch. Similarly, MSL is 
exploited to train a separate detector for the aortic arch. The length of the ascending and 
descending aorta segments captured in a volume varies significantly. It is difficult to detect 
them as whole objects. Therefore, we propose to use a tracking technique to deal with this 
variation. Since the intersection of the ascending and descending aorta segments with an 
image slice is close to a circular shape, we train a 2D circle detector using Haar wavelet 
features and the boosting learning algorithm to detect aortic circles as primitive structures for 
tracking. Starting from the aortic root, we detect an aortic circle on the next slice (toward the 
patient’s head). The detector outputs multiple circle candidates around the true position. We 
pick the one closest to the circle on the current slice. If the aortic arch is detected in the 
volume, the tracking procedure stops on the slice touching the aortic arch. Otherwise, it stops 
when no aortic circle is detected or it reaches the top volume border. Tracking of the 
descending aorta is similar except that it starts from the aortic arch and moves toward the 
patient’s toe. It stops on the slice with no aortic circle detected. 
 

 
Figure 7: Part-based aorta model (right) and automatic segmentation workflow (left) 
 
 
 

3.3. Results 
Timing and type of surgical or catheter-based repair of aortic wall complications (AWC) in 
patients with aortic coarctation (COA) and/or bicuspid aortic valve (BAV) are presently being 
debated, as associated morbidity and mortality can still occur. Automatic, patient-specific 3D 
aortic arch model estimation from MRI images provides a better understanding of the 
geometry of the aortic arch anomaly and might be utilized to evaluate preoperatively the best 
treatment. Clinicians from JHU and OPBG validated the accuracy of the estimated patient-
specific 3D aortic model by comparing manual with model-based derived aortic 
measurements. 
 
The system performance is demonstrated on 32 patients with aortic arch anomalies (age: 5-
36 years), 17 with COA and 15 with BAV and ascending aorta dilation.  The aortic arch min 
and max diameter were measured manually from 3D SSFP MRI sequence at aortic sinus 
(AS), sino-tubular junction (STJ), ascending aorta (AAO), transverse arch (TA), and 
descending aorta (DA). Measurements at the same regions were automatically derived from 
the computer-based model for each patient. 
 
Statistical results significantly correlated (p < 0.001, r = 0.94) between min and max manual 
and automatic aortic measurements: AS (min p < 0.001 r = 0.85; max p < 0.001 r = 0.94), STJ 
(min p < 0.001 r = 0.88; max p < 0.001 r = 0.90), AAO (min p < 0.001 r = 0.94; max p < 0.001 
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r = 0.94), TA (min p < 0.001 r = 0.89; max p < 0.001 r = 0.93), DA (min p < 0.001 r = 0.90; 
max p < 0.001 r = 0.92). 
 
Mean measurement error of 1.59±0.6 mm was achieved for the min diameter and 1.44±0.9 
mm for the max diameter. The maximal error occurred at the minimum diameter of each 
segment with the STJ the greatest (min 2.07±2.53) and the DA the least (min 0.8±0.83).  
Mean processing time for fully-automatic aortic model estimation and measurement extraction 
was 1.5 s. 
 
Our fully-automated method for personalized aortic model estimation markedly reduced the 
time necessary to complete volumetric assessment of the aorta. From the results, we have 
concluded that the aortic measurements automatically derived from our model are reliable, 
fully-reproducible and faster as compared to manual methods. The developed system for 3D 
aortic model estimation can be useful tool to improve therapeutic decision making in COA 
and/or BAV patients. 
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4. Patient-Specific Hemodynamic Model Computation of the Aorta 

4.1. Brief Overview of the Method 
We have developed a unified computational framework for large-scale hemodynamic 
modelling and simulations to aid diagnostic and therapy decision making. Our method 
provides a deterministic and streamlined processing pipeline to perform Computational Fluid 
Dynamics (CFD) simulations from the estimated patient-specific models. The developed 
method includes an automated approach to segment the inlet and outlet flow profiles over the 
entire cardiac cycle. CFD simulations are performed using an embedded boundary method 
solved within a level-set formulation. This work was submitted in a form of a technical paper 
and accepted as an oral presentation at the Computational Biomechanics for Medicine VI 
Workshop of the 14th International Conference on Medical Image Computing and Computer 
Assisted Intervention (MICCAI), Toronto, Canada 18-22 September, 2011. 
 

4.2. Patient-Specific Aorta Flow Estimation 
In the aorta flow estimation phase we extract the patient-specific flow profiles over the entire 
cardiac cycle at the aortic inflow and outflow from the 2D PC-MRI cine images. Typically, the 
PC-MRI sequence is easily registered with the anatomy image and aortic segmentation using 
the MR machine coordinates. The intersection of the PC-MRI image plane and the vessel 
geometry defines two 2D closed contours. These planar patches are densely triangulated and 
treated as an inflow and outflow profile, respectively. Inside each patch a uniform grid 
sampling of the PC-MRI image is performed at the pixel centre locations to obtain spatially 
constrained velocity values over the entire cardiac cycle (Figure 8). The whole simulation 
pipeline is illustrated in Figure 9. 
 

 
Figure 8: Pipeline of the simulation: (a) Volume rendering of a clear, high contrast CE-MRA 
image displayed together with a PC-MRI slice used for depicting an aortic arch. (b) Extracted 
centerline and segmentation of the aorta (c) Patient specific systolic in- and outflow rates 
derived from PC-MRI measurement. (d) Simulated blood flow velocities and vorticity magnitude. 
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Figure 9: Detailed CFD simulation pipeline 
 

4.3. Patient-Specific CFD of Aortic Blood Flow 
We model the blood flow dynamics in the aorta using 3D incompressible Navier-Stokes 
equations with viscous terms – the standard continuum mechanics model for fluid flow. The 
equations are discretized and solved with the embedded boundary method. We use both 
finite difference and finite volume techniques to solve the fractional step combined with an 
approximate projection method for the pressure. The blood is modelled as a Newtonian fluid, 
which is generally accepted as a reasonable first approximation to the actual behavior of 
blood at shear rates observed in large arteries. 
 
The boundary conditions used in the simulations are as follows: at the aortic walls we use no-
slip for the velocity and the appropriate normal balance (translating into a Neumann boundary 
condition) for the pressure. The inflow velocity is extrapolated from the MRI, using smooth 
kernels, to all the inlet nodes, while pressure proportional to the flow is set as a Dirichlet 
boundary condition on the outlet faces. The inflow velocities are also interpolated in time 
using second order accurate interpolation. 
 
The developed algorithm starts at a given time step n from the velocity and pressure 
information at the previous time step un-1, pn-1 and computes un, pn following a fractional step 
projection. Figure 10 summarizes the computation setup together with CFD visualization 
results. 
 

 
Figure 10: (a) our computational setup: the Lagrangian aortic mesh is embedded in an Eulerian 
domain using level set. Visible here are a cross-section of the domain, color-coded with the 
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level set values, and the embedded aortic mesh (in transparent yellow) together with its outlet 
extension (in transparent white). The blood flow velocity field during early systole, simulated 
using CFD, is also visualized as a vector field. Below, coarctation with vortex formation. (b) 
Enhanced helical rotation due to bicuspid valve. (c) Simulation results overlaid with anatomical 
images. 
 

4.4. Results 
With the developed CFD simulation framework we have performed a series of simulations 
using the geometric constraints of the aortic meshes as static boundary conditions, and the 
sampled MRI-derived velocity as the inflow profiles. The aortic data was selected from 
patients with various pathologies, including bicuspid valve, coarctation, artificial valves and 
stents. We will give here an outline of several observed patterns that correlate with the 
various pathologies. 
 
The cardiac cycle simulated using our CFD method features generic flow patterns like 
waveform delay between inlet and outlet, or increased velocities in the aortic arch. 
Furthermore, with our method, we also recover patterns specific to various pathologies, as 
outlined below. A first experiment used aortic data featuring medium coarctation in the 
descending region. The vortex formation pattern specific to coarctation was observed, and is 
shown in Figure 10. A bicuspid heart experiment (Figure 10 (b)) produced the enhanced 
helical pattern observed in such hearts, due to the blood jet that hits the aortic wall in the 
lower ascending aorta. Figure 11 gives one example of estimated patient-specific flow 
together with its aortic model.  
 

 
Figure 11: Example of an estimated patient-specific flow (left) and its aortic model (right) 
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