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Chapter 1

Introduction

This report consists of the collaborative work pursued during the first year of the LIFT
project by the participants in the work package WP2, entitled Privacy & Anonymity.

The ultimate mission of the WP2 is to develop privacy-preserving frameworks for
guaranteeing privacy protection in LIFT-based systems, and therefore: (1) to define
the requirements for privacy and anonymity of the LIFT-based systems; (2) to design,
implement and test algorithms for guaranteeing privacy protection in these systems and
for satisfying the privacy and anonymity requirements; (3) to investigate the impact
of privacy-preserving approaches on the performance of the systems and on the data
utility.

During the first year of LIFT, the WP2 participants interacted closely in three main
activities:

• The alignment of participants’ expertise and knowledge by means of a collective
exploration of the state-of-the-art in privacy-preserving methods;

• the definition of a shared road-map of research directions in the design of privacy-
preserving framework for LIFT-based systems;

• the concrete exploration of the possible privacy breaches in the LIFT-based sys-
tems with the general definition of the typical attacks that an adversary may
conduct in the systems to infer sensitive information.

The aim of this report is to describe these three activities.
Chapter 2 presents the state-of-the-art in privacy and anonymity and describes

in detail the Privacy by Design paradigm. Chapter 3 presents the definition of this
paradigm for LIFT-based systems and so introduces the general definition of the pri-
vacy attack model to be taken into consideration and general requirements of the coun-
termeasures against these attacks. These requirements will be the base of the privacy-
preserving techniques that will be designing during the next years. In Chapter 4 we
provide some examples of application scenarios with the definition of specific privacy
requirements depending on the application. Here, we show how adequately customiz-
ing the attacks model in each specific scenario.
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Chapter 2

State of the Art

In this Chapter we introduce the problem of the individual privacy protection in the
context of data publication studied extensively in two different communities: in data
mining and in statistics. After a general introduction in Section 2.1 we provide a survey
of the main privacy and anonymity techniques proposed by the two different commu-
nities in Sections 2.2 and 2.3, analyzing them from the two perspectives. We proceed
with anonymity in complex data in Section 2.4 and introduce the concept of Privacy
by Design in Section 2.5. We conclude this chapter by specifying attack models for
publishing of sequence and movement data in Section 2.6.

2.1 Individual Privacy Protection
In the last years, the importance of the privacy protection is rising thanks to the avail-
ability of large amounts of data. These data collections can be gathered from various
channels. Typically, the data collector or data holder can releases these data to data
miners and analysts who can conduct on them statistical and data mining analysis. The
published data collections could contain personal information about users and their
individual privacy could be compromised during analytical processes.

In recent years, individual privacy has been one of the most discussed jurisdictional
issues in many countries. Citizens are increasingly concerned about what companies
and institutions do with their data, and ask for clear positions and policies from both the
governments and the data owners. Despite this increasing need, there is not a unified
view on privacy laws across countries.

The European Union regulates privacy by Directive 95/46/EC (Oct. 24, 1995)
and Regulation (EC) No 45/2001 (December 18, 2000). The European regulations, as
well as other regulations such as the U.S. rules on protected health information (from
HIPAA), are based on the notion of “non-identifiability”.

The problem of protecting the individual privacy when disclosing information is
not trivial and this makes the problem scientifically attractive. It has been studied ex-
tensively in two different communities: in data mining, under the general umbrella of
privacy-preserving data mining (PPDM), and in statistics, under the general umbrella
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of statistical disclosure control (SDC). Often, the different communities have inves-
tigated lines of work which are quite similar, sometimes with little awareness of this
strong tie. The Figure 2.1 shows a taxonomy tree that describes our classification of
the privacy-preserving techniques.

Figure 2.1: Taxonomy of privacy-preserving techniques

2.2 Privacy and Anonymity for Data Publishing and
Mining

The importance of privacy-preserving data publishing (PPDP) and mining (PPDM) is
growing thanks to the increasing capability of storing and processing large amounts of

4



data. In literature, many privacy-preserving techniques has been proposed by the data
mining community and in this section we provide an overview of them.

2.2.1 Anonymity by Randomization
Randomization methods are used to modify data at aim of preserving the privacy of
sensitive information. They were traditionally used for statistical disclosure control
[5] and later have been extended to the privacy-preserving data mining problem[10].
Randomization is a technique for privacy-preserving data mining using a noise quantity
in order to perturb the data. The algorithms belonging to this group of techniques first
of all modify the data by using randomization techniques. Then, from the perturbed
data it is still possible to extract patterns and models. In the following we present the
most famous random perturbation techniques.

Additive Random Perturbation

In this section, we will discuss the method of additive random perturbation and its
applications in data mining problem. This method can be described as follows. De-
note by X = {x1 . . . xm} the original dataset. The new distorted dataset, denoted by
Z = {z1 . . . zm}, is obtained drawing independently from the probability distribution
a noise quantity ni and adding it to each record xi ∈ X . The set of noise components
is denoted by N = {n1, . . . , nm}. The original record values cannot be easily guessed
from the distorted data as the variance of the noise is assumed enough large. Instead,
the distribution of the dataset can be easily recovered. Indeed, if X is the random vari-
able representing the data distribution for the original dataset,N is the random variable
denoting the noise distribution, and Z is the random variable describing the perturbed
dataset, we have:

Z = X +N
X = Z −N

Notice that, both m instantiations of the probability distribution Z and the distribution
N are known. In particular, the distribution N is known publicly. Therefore, by using
one of the methods discussed in [10, 8], we can compute a good approximation of the
distribution Z, by using a large enough number of values ofm. Then, by subtractingN
from the approximated distribution of Z, we can compute N approximation of X . At
the end of this process individual records are not available, while obtain a distribution
only along individual dimensions describing the behavior of the original dataset X .

The additive perturbation method has been extended to several data mining prob-
lems. But, it is evident that traditional data mining algorithms are not adequate as based
on statistics extracted from individual records or multivariate distributions. Therefore,
new data mining approaches have to be devised to work with aggregate distributions of
the data in order to obtain mining results. This can sometimes be a challenge. In the
works presented in [10, 94, 95] authors propose new techniques based on the random-
ization approach in order to perturb data and then, we build classification models over
randomized data. In particular, the work in [10] is based on the fact that the probability
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distribution is sufficient in order to construct data mining models as classifiers. Au-
thors show that the data distribution can be reconstructed with an iterative algorithm.
Later, in [8] Agrawal and Aggarwal show that the choice of the reconstruction algo-
rithm affects the accuracy of the original probability distribution. Furthermore, they
propose a method that converges to the maximum likelihood estimate of the data dis-
tribution. Authors in [94, 95] introduce methods to build a Naive Bayesian classifier
over perturbed data. Randomization approaches are also applied to solve the privacy-
preserving association rules mining problem as in [78, 37]. In particular, the paper [78]
presents a scheme attempting to maximize the privacy to the user and to maintain a
high accuracy in the results obtained with the association rule mining. While, in [37]
authors present a framework for mining association rules from randomized data. They
propose a class of randomization operators more effective than uniform distribution
and a data mining approach to recover itemset supports from distorted data.

Multiplicative Random Perturbation

For privacy-preserving data mining, multiplicative random perturbation techniques can
also be used. There exist two types of multiplicative noise. The first one applies a
logarithmic transformation on the data, and generates a random noise that follows a
multivariate normal distribution with mean equal to zero and constant variance. Then,
this noise is added to each element of the transformed data. Finally, the antilog of the
noise-added data is taken. The second approach generates random noise by truncated
normal distribution with mean equal to 1 and small variance, and then multiplies this
noise by the original data. This method preserves the inter-record distances approxi-
mately. Therefore, in this case it is possible to reconstruct both aggregate distributions
and some record-specific information as distance. This means that the multiplicative
random perturbation method is suitable for many data mining applications. For exam-
ple, in the work presented in [23] authors showed that this technique can be applied for
the problem of classification. Moreover, the technique is suitable for the problem of
privacy-preserving clustering [72, 74]. The work in [72] introduces a family of geomet-
ric data transformation methods (GDTMs) that distort confidential numerical attributes
in order to meet privacy protection in clustering analysis. Oliveira et al. in [74] ad-
dress the problem to guarantee privacy requirements while preserving valid clustering
results. To achieve this dual goal, the authors introduce a novel spatial data transforma-
tion method called Rotation-Based Transformation (RBT). Multiplicative perturbations
can also be used and for distributed privacy-preserving data mining as shown in [61].
The main techniques of multiplicative perturbation are based on the work presented in
[52].

Differential Privacy

Differential privacy is a privacy notion introduced in [36] by Dwork. It is based on the
fact that the privacy risks should not increase for a respondent as a result of occurring
in a statistical database. Dwork in this work proposes to compare the risk with and
without the record respondent’s data in the published data. This privacy model, called
ε−differential privacy, assures a record owner that he/she may submit his/her personal
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information to the database securely in the knowledge that nothing, or almost noth-
ing, can be discovered from the database with his/her information that could not have
been discovered without his/her information. Moreover, in [36] is formally proved that
ε−differential privacy can provide a guarantee against adversaries with arbitrary back-
ground knowledge. This strong guarantee is achieved by comparison with and without
the record owner’s data in the published data.

2.2.2 Anonymity by Indistinguishability
As said in the previous section randomization method has some weaknesses. The main
problem is that it is not safe in case of attacks with prior knowledge. When the process
of data transformation for privacy-preserving has not to be performed at data-collection
time, it is better to apply methods that reduce the probability of record identification by
public information. In literature three techniques have been proposed: k-anonymity,
l-diversity and t-closeness. These techniques differ from the randomization methods
as they are not data-independent.

k-Anonymity

One approach to privacy-preserving data publishing is suppression of some of the data
values, while releasing the remaining data values exactly. However, suppressing just
the identifying attributes is not enough to protect privacy because other kinds of at-
tributes, that are available in public such as age, zip-code and sex can be used in order
to accurately identify the records. This kind of attributes are known as quasi-identifiers
[84]. In [83] it has been observed that for 87% of the population in the United States,
the combination of Zip Code, Gender and Date of Birth corresponded to a unique per-
son. This is called record linkage. In this work, authors proposed k-anonymity in
order to avoid the record linkage. This approach became popular in privacy-preserving
data publishing. The goal of k-anonymity is to guarantee that every individual object
is hidden in a crowd of size k. A dataset satisfies the property of k-anonymity if each
released record has at least (k−1) other records also visible in the release whose values
are indistinct over the quasi-identifiers. In k-anonymity techniques, methods such as
generalization and suppression are usually employed to reduce the granularity of rep-
resentation of quasi-identifiers. The method of generalization generalizes the attribute
values to a range in order to reduce the granularity of representation. For instance, the
city could be generalized to the region. Instead, the method of suppression, removes
the value of an attribute. It is evident that these methods guarantee the privacy but also
reduce the accuracy of applications on the transformed data.

The work proposed in [80] is based on the construction of tables that satisfy the k-
anonymity property by using domain generalization hierarchies of the quasi-identifiers.
The main problem of the k-anonymity is to find the minimum level of generalization
that allows us to guarantees high privacy and a good data precision. Indeed, in [66],
Meyerson and Williams showed that the problem of optimal k-anonymization is NP-
hard. Fortunately, many efforts have been done in this field and many heuristic ap-
proaches have been designed as those in [59, 53]. LeFevre et al. in [59] propose a
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framework to implement a model of k-anonymization, named full-domain generaliza-
tion. They introduce a set of algorithms, called Incognito that allows us to compute a
k-minimal generalization. This method generates all possible full-domain generaliza-
tions of a given table and thus, uses a bottom-up breadth-first search of the domain gen-
eralization hierarchy. In particular, it begins by checking if the single quasi-identifiers
attributes satisfy the k-anonymity property and removing all the generalizations that
do not satisfy it. In general, for each iteration i the Incognito algorithm performs these
operations for the subset of quasi-identifiers of size i. Another algorithm, called k-
Optimize is presented in [53] by Bayardo and Agrawal. This approach determines an
optimal k-anonymization of a given dataset. This means that it perturbs the dataset as
little as is necessary in order to obtain a dataset satisfying the k-anonymity property. In
particular, authors try to solve the problem to find the power-set of a special alphabet
of domain values. They propose a top-down search strategy, i.e., a search beginning
from the most general to the more specific generalization. In order to reduce the search
space k-Optimize uses pruning strategies. Another interesting work has been proposed
in [88], where a bottom-up generalization approach for k-anonymity is presented. In-
stead, in [43] the authors introduced a method of top-down specialization for providing
an anonymous dataset. Both these algorithms provide masked data that are still useful
for building classification models.

The problem of k-anonymization can be seen as a search over a space of possible
multi-dimensional solutions. Therefore, some work used heuristic search techniques
such as genetic algorithms and simulated annealing [51, 90]. Unfortunately, by apply-
ing these approach the quality of the anonymized data is not guaranteed and often they
require high computational times.

Aggarwal et al. proposed an approach based on clustering to implement the k-
anonymity [6]. k-anonymity is also achievable by micro-aggregation, as shown in
[30, 33]. Specifically, [33] shows the connection between masking methods for sta-
tistical disclosure control and privacy-preserving data mining. Moreover, it has been
studied that some approximation algorithms guarantee the quality of the solution of
this problem [66, 7]. In particular, in [7] the authors provide an O(k)-approximation
algorithm for k-anonymity, that uses a graph representation. By using a notion of ap-
proximation authors try to minimize the cost of anonymization, due to the number of
entries generalized and the degree of anonymization.

In literature, there exist also applications of the k-anonymity framework in order to
preserve the privacy while publishing valid mining models. For example, in [13, 14, 15]
the authors focused on the notion of individual privacy protection in frequent itemset
mining and shift the concept of k-anonymity from source data to the extracted patterns.

Based on the definition of k-anonymity, new notions such as l-diversity [62] and
t-closeness [60] have been proposed to provide improved privacy.

l-Diversity

In literature, there exist many techniques based on the k-anonymity notion. It is due to
the fact that k-anonymity is a simple way to reduce the probability of record identifi-
cation by public information. Unfortunately, the k-anonymity framework in some case
can be vulnerable; in particular, it is not safe against homogeneity attack and back-
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ground knowledge attack, that allow to infer the values of sensitive attributes. Suppose
that we have a k-anonymous dataset containing a group of k entries with the same value
for the sensitive attributes. In this case, although the data are k-anonymous, the value of
the sensitive attributes can be easily inferred (Homogeneity Attack). Another problem
happens when an attacker knows information useful to associate some quasi-identifiers
with some sensitive attributes. In this case the attacker can reduce the number of pos-
sible value of the sensitive attributes (Background Knowledge Attack). In order to
eliminate this weakness of the k-anonymity the technique of l-diversity was proposed
[62]. The main aim is to maintain the diversity of sensitive attributes. In particular,
the main idea of this method is that every group of individuals that can be isolated by
an attacker should contain at least l well-represented values for a sensitive attribute. A
number of different instantiations for the l-diversity definition are discussed in [62, 92].

t-Closeness

l-diversity is insufficient to prevent attack when the overall distribution is skewed. The
attacker can know the global distribution of the attributes and use it to infer the value of
sensitive attribute. In this case, the t-closeness method introduced in [60] is safe against
this kind of attack. This technique requires that the distribution of a sensitive attribute
in any equivalence class is close to the distribution of the attribute in the overall table.
The distance between the two distributions should be no more than a threshold t [60].

2.2.3 Knowledge Hiding
This approach is also known as sanitization. The aim is to hide some kind of knowl-
edge, such as rules or patterns, considered sensitive, which could be inferred from the
published data. Clearly, in this context, the data owner wants to share the data and to
hide sensitive knowledge.

This methodology has been used in literature in order to hide association rule, clas-
sification rule and sequential patterns.

In the context of association rule hiding there are a lot of approaches based on
heuristics such as [12, 28, 81, 86, 73]; others instead are based on algebraic approaches
as that proposed in [58] that tries to hide maximal sensitive patterns using a correla-
tion matrix. An interesting approach is presented in [82], where authors introduced a
border-based approach that uses the notion of border. The hiding process focuses on
preserving the quality of the border, that reflects the quality of the sanitized database
that is generated. In classification rule hiding, some rules are considered as sensitive
and to protect such knowledge, a sanitization procedure needs to be enforced. We
can partition existing approaches into two classes: suppression-based [22, 87, 24] and
reconstruction-based schemes [70].

Finally, Abul et al. in [2] addressed the problem of hiding sensitive trajectory
patterns from a database of moving objects. A similar technique is used in [3], where
authors addressed first the problem of hiding patterns that are a simple sequence of
symbols and then they extend the proposed framework to the case of sequential patterns
according to the classical definition [9].
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2.2.4 Distributed Privacy-Preserving Data Mining
In most distributed frameworks the participants would like to cooperate in order to
compute global data mining models and aggregate results. Unfortunately, often they
do not fully trust each other and would like to avoid the distribution of their data sets.

For addressing this problem, many distributed privacy-preserving data mining meth-
ods have been developed: in some of them the data sets are horizontally partitioned
while in other they are vertically partitioned. In the first case, the individual records are
distributed across multiple parties and each of them has the same set of attributes. In
the second case, each party can have different attributes of the same records. Thus, the
question addressed in this cases is how to compute the results without sharing the data
in such a way that nothing is disclosed except the final result of the data mining result.

This problem is also addressed in cryptography in the field of secure multi-party
computation. In general, the methods developed in this context allow to compute func-
tions over inputs provided by multiple parties without sharing the inputs.

As an example, consider a function f of n arguments and n different parties. If each
party has one of the n arguments it is necessary a protocol that allows to exchange in-
formation and to compute the function f(x1, . . . , xn), without compromising privacy.
A set of methods are discussed in [34], specifically the authors describe how to trans-
form data mining problems into secure multi-party computation problems. Clifton et
al. in [25] present some methods for privacy-preserving computations that can be used
to support important data mining tasks. These methods include the secure sum, the se-
cure set union, the secure size of set intersection and the scalar product and can be used
as data mining primitives for secure multi-party computation in case of horizontally
and vertically partitioned datasets.

2.3 Statistical Disclosure Control
The aim of Statistical Disclosure Control (SDC) is to protect statistical data. In partic-
ular, it seeks to modify the data in such a way that they can be published and mined
without compromising the privacy of individuals or entities occurring in the database.
In other words, SDC seeks to provide safe techniques against linking attacks. More-
over, after the data protection, data analyses have to be possible and the results obtained
should be the same or similar to the ones that would be obtained analyzing the data be-
fore the protection.

The youngest sub-discipline of SDC is the microdata protection. It aims at protect-
ing static individual data, also called microdata. In this section we provide a survey of
SDC methods for microdata, that are the most common data used for data mining.

A microdata set X can be viewed as a table or a file with n records. Each record
related to a respondent contains m values associated to m attributes. The attributes can
be classified in the following categories: Identifiers, Quasi-identifiers, Confidential
attributes and Non-confidential attributes.

As stated above, the purpose of SDC is to prevent that confidential information
can be linked to specific respondents, thus we will assume all the identifiers have been
removed from the original microdata sets to be protected.
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In the literature, several microdata disclosure protection methods have been pro-
posed. Microdata protection methods can classified as follows: masking techniques
and synthetic data generation techniques.

Masking techniques, usually, generate a modified version of the original microdata
set, which are still suitable for statistical analysis although the respondents’ privacy is
guaranteed and can be divided in two sub-categories [89]: Non-perturbative and Per-
turbative. Synthetic data generation techniques, instead, produce new data that replace
the original data and preserve their key statistical properties. The released synthetic
data are not referred to any respondent. Hence, the release of this data cannot lead to
re-identification. The techniques can be of two kinds: fully synthetic techniques and
partially synthetic techniques.

2.3.1 Non-perturbative Masking Techniques
Non-perturbative techniques do not modify the original dataset; rather, these methods
produce protected dataset by using suppressions or reductions of details in the original
dataset. Some of these methods are suitable only for categorical data while other are
suitable for both continuous and categorical data.

Non-perturbative methods include:

Sampling: this technique allow us to publish a sample of the original microdata [89].
Thus, the protected microdata contains only the data about a part of the whole
population. This kind of methods are not suitable for continuous data.

Generalization: this method provides protected microdata by replacing the values of
a given attribute by using more general values [80] defined in a generalization
hierarchy.

Global Recoding: this method reduces the details in the microdata by substituting the
value of some attributes with other values [31, 32]. For a continuous attribute,
the method divides in disjoint intervals the domain of that attribute. Then it
associates a label to each interval and finally, replaces the real attribute value with
the label associated with the corresponding interval. For a categorical attribute,
the method combines several categories in order to form new and less specific
categories and then the new value is computed.

Local Suppression: this method [80] suppresses the value of some individual or sensi-
tive attributes, by replacing them with a missing value. In this way the possibility
of analysis is limited.

2.3.2 Perturbative Masking Techniques
Perturbative techniques alter the microdata set before the publication for preserving
statistical confidentiality. The statistics computed on the dataset protected by pertur-
bation do not differ significantly from the ones computed on the original microdata
set. In general, a perturbative approach modifies the microdata set by introducing new
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combinations of values and making unique combinations of values in the original mi-
crodata set. In the following, we describe the main approaches belonging to this group
of techniques:

Random Noise: these methods perturb microdata set by adding random noise follow-
ing a given distribution [75]. Two kinds of additive noise exist in literature:
uncorrelated and correlated. Notice that additive noise is usually not suitable to
protect categorical data. As stated in Section 2.2.1 the Randomization techniques
introduced by the data mining community come from the methods traditionally
used in statistical disclose control described now.

Data Swapping: the basic idea is to switch a subset of attributes between selected
pairs of records in the original database [39]. In this way, the data confidential-
ity is not compromised and the lower order frequency counts or marginals are
preserved.

Rank Swapping: the idea is to rank the values of an attribute according to their as-
cending order [31]. Then, each value is swapped with another value guaranteeing
that the swapped records are within a specified rank-distance of one another.

Resampling: this technique [31, 29] replaces the values of a sensitive continuous at-
tribute with the average value computed over a given number of samples of the
original population in the microdata set.

Rounding: this method replaces original values of attributes with rounded values. In
order to replace the value of an attribute the technique defines a rounding set,
that for example contains the multiples of a given base value. Then, it selects
rounded values in this set.

RAM (Post RAndomized Method): this technique [56, 32] allows to perturb categor-
ical value for one or more attributes by using a probabilistic mechanism, namely
a Markov matrix.

Micro-Aggregation: this technique, described in [31], groups individual record into
aggregates of dimension k. Next, given a group, its average value is computed
and then it is published instead of individual values.

2.3.3 Synthetic Techniques
Two kind of synthetic techniques exist in literature: fully synthetic and partially syn-
thetic. Fully synthetic techniques generate a set of data that is completely new. This
means that the released data are referred to any respondent. Hence, no respondent can
be re-identified. Different techniques exist that can be applied only on categorical or
continuous data, or on both of them. Some methods belonging to this category are:
Cholesky decomposition [65], Bootstrap [38], Multiple imputation [79], Latin Hyper-
cube Sampling [41].

Partially synthetic techniques produce a dataset, where the original data and syn-
thetic data are mixed. In literature, several techniques belonging to this category have
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been proposed such as: Hybrid masking [27], Information Preserving Statistical Ob-
fuscation [21], Multiply Imputed Partially Synthetic Data [42], and Blank and Impute
technique [75].

2.4 Anonymity in Complex Data
Many research efforts have focused on privacy-preserving data mining and data pub-
lishing. Most of them, however, address the anonymity problems in the context of
general tabular data, while relatively little work has addressed more complex forms
of data in specific domains, although this kind of data is growing rapidly: examples
include social networking data, spatio-temporal data, query log data, and more. The
analysis of these data is very interesting as they are semantically rich: such richness
makes such data also very difficult to anonymize, because the extra semantics may
offer unexpected means to the attacker to link data to background knowledge. Tradi-
tional techniques used for tabular data sets cannot be directly applied, so typically the
standard approaches must be adjusted appropriately. Privacy issues, privacy models
and anonymization methods both for relational data and for complex data are widely
discussed in [44]. A survey of techniques for anonymity of query log data is presented
in [26]. In this work the author seeks to assess some anonymity techniques against
three criteria: a) how well the technique protects privacy, b) how well the technique
preserves the utility of the query logs, and c) how well the technique might be im-
plemented as a user control. In [96] Zhou et al. propose a brief systematic review
of the existing anonymity techniques for privacy preserving publishing of social net-
work data. Another interesting work is presented in [63], where Malin introduces a
computational method for the anonymization of a collection of person-specific DNA
database sequences. The analysis of person-specific DNA sequences is important but
poses serious challenges to the protection of the identities to which such sequences
correspond.

Since one of most important and sensitive types of data used in LIFT project is
spatio-temporal data, in this section we focus our discussion on this kind of data show-
ing that in the last years some reasonable results have been obtained by solutions that
consider the particular nature of these data. The increasing availability of spatio-
temporal data is due to the diffusion of mobile devices (e.g., mobile phones, RFID
devices and GPS devices) and of new applications, where the discovery of consum-
able, concise, and applicable knowledge is the key step. Clearly, in these applications
privacy is a concern, since a pattern can reveal the behavior of group of few individu-
als compromising their privacy. Spatio-temporal data sets present a new challenge for
the privacy-preserving data mining community because of their spatial and temporal
characteristics. An interesting investigation on the various scientific and technological
issues and open problems about this research field is presented in [46].

Standard approaches developed for tabular data do not work for spatio-temporal
data sets. For example, randomization techniques, discussed above, which modify a
dataset to guarantee respondents’ privacy while preserving data utility for analyses,
are not applicable on spatio-temporal data, due to their particular nature. Therefore,
alternative solutions have been suggested: some of them belong to the category of
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confusion-based algorithm others belong to the category of approaches of k-anonymity
for location position collection. All these techniques try to guarantee location privacy
for trajectories.

The approaches in [48, 54, 55, 35] belong to the first category and provide confu-
sion/obfuscation algorithm to prevent an attacker from tracking a complete user trajec-
tory. The main idea is to modify true trajectories or generate fake trajectories in order
to confuse the attacker. In [18, 17, 47, 20] authors presented techniques belonging to
the second category. The main aim of these techniques is to preserve the anonymity
of a user obscuring his route. They use the notion of k-anonymity adapted for the
spatio-temporal context.

k-anonymity is the most popular method for the anonymization of spatio-temporal
data. It is often used both in the works on privacy issues in location-based services
(LBSs) [19, 64] and in the works of anonymity of trajectories [1, 71, 93]. In the
work presented in [1], the authors study the problem of privacy-preserving publish-
ing of moving object database. They propose the notion of (k, δ)-anonymity for mov-
ing objects databases, where δ represents the possible location imprecision. In par-
ticular, this is a novel concept of k-anonymity based on co-localization that exploits
the inherent uncertainty of the moving objects whereabouts. In this work authors
also propose an approach, called Never Walk Alone, for obtaining a (k, δ)-anonymous
moving objects database. The method is based on trajectory clustering and spatial
translation. In [71] Nergiz et al. address privacy issues regarding the identification
of individuals in static trajectory datasets. They provide privacy protection by: (1)
first enforcing k-anonymity, meaning every released information refers to at least k
users/trajectories, (2) then reconstructing randomly a representation of the original
dataset from the anonymization. Yarovoy et al. in [93] study problem of k-anonymization
of moving object databases for the purpose of their publication. They observe the
fact that different objects in this context may have different quasi-identifiers ans so,
anonymization groups associated with different objects may not be disjoint. Therefore,
a novel notion of k-anonymity based on spatial generalization is provided. In this work,
authors propose two approaches that generate anonymity groups satisfying the novel
notion of k-anonymity. These approaches are called Extreme Union and Symmetric
Anonymization.

Lastly, we mention the very recent work [85], where Terrovitis and Mamoulis. This
work is based on the assumption that different attackers know different and disjoint
portions of the trajectories and the data publisher knows the attacker knowledge. So,
the proposed solution is to suppress all the dangerous observations in the database.

The common result obtained by the above research works on the problem of the
privacy-preserving publication of complex data is that finding an acceptable trade-
off between data privacy on one side and data utility on the other side is hard and
that no general method exists, capable of both dealing with “generic personal data”
and preserving “generic analytical results”. Usually, the proposed approaches guaran-
tee the privacy requirements but hardly generate anonymous datasets with acceptable
data quality: the data transformation obstructs the knowledge discovery opportunities
of data mining technologies. This problem is due to the fact that the anonymization
frameworks are designed without any assumption about the target analytical questions
that are to be answered with the data. This point is fundamental because taking into ac-
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count the possible target analysis to be applied to the transformed data means designing
a transformation process capable to preserve some data properties that are necessary to
preserve the results obtained by specific analytical and/or mining tasks. To this scope,
[67] propose the privacy by design paradigm that promises a quality leap in the conflict
between data protection and data utility.

2.5 Privacy by Design
This section aims to describe the Privacy by Design paradigm introduced in [67]. This
paradigm reflects our general idea to develop technological frameworks to counter the
threats of undesirable, unlawful effects of privacy violation, without obstructing the
knowledge discovery opportunities of data mining technologies. The main idea is to
inscribe privacy protection into the knowledge discovery technology by design, so that
the analysis incorporates the relevant privacy requirements from the very start. Here,
we evoke the concept of Privacy by Design coined in the ’90s by Ann Cavoukian,
the Information and Privacy Commissioner of Ontario, Canada. In brief, Privacy by
Design refers to the philosophy and approach of embedding privacy into the design,
operation and management of information processing technologies and systems. This
paradigm promises a quality leap in the conflict between data protection and data utility.
Here, the articulation of the general “by design” principle in the domain of knowledge
discovery is that higher protection and quality can be better achieved in a goal-oriented
approach. In such an approach, the knowledge discovery process (including the data
collection itself) is designed with assumptions about:

(a) the (sensitive) personal data that are the subject of the analysis;

(b) the attack model, i.e., the knowledge and purpose of a malicious party that has
an interest in discovering the sensitive data of certain individuals;

(c) the target analytical questions that are to be answered with the data.

These assumptions are fundamental for the design of a privacy-preserving frame-
work for various reasons. First of all, the techniques for privacy preservation strongly
depend on the nature of the data that we want to protect. For example, many proposed
methods are suitable for continuous variables but not for categorical variables (or the
other way round), while other techniques employed to anonymize sequential data such
as clinical data or tabular data are not appropriate for moving object datasets. Clearly,
different forms of data have different properties that must be considered during the
transformation process.

Second, a valid framework for privacy protection has to define the background
knowledge of the adversary, that strongly depends on the context and on the kind of
data. So, an attack model, based on the background knowledge of the attacker, has
to be formalized and a specific countermeasure associated to that attack model has to
be defined in terms of the properties of the data to be protected. The definition of a
suitable attack model is very important in this context. Different assumptions on the
background knowledge of an attacker entail different defense strategies. Indeed, it is
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clear that when the assumption on the background knowledge changes the transfor-
mation approach to be adopted also changes significantly. Consider, for example, that
an attacker gains the access to a spatio-temporal dataset and that he/she knows some
spatio-temporal points belonging to some trajectory of an individual. Two cases are
possible: (i) the attacker knows the exact points or (ii) the attacker knows these points
with a given uncertainty threshold. The attacker can try to re-identify the respondent by
using his/her knowledge and by observing the protected database. Specifically, he/she
should generate all the possible candidate trajectories by using the background knowl-
edge as constraints. Clearly, the defense strategy that it is necessary to use in the case
(ii) might be unsuitable for the case (i), because the assumption (ii) is weaker than the
assumption (i). This does not mean that assumption (ii) is not valid, as it can be ade-
quate for particular situations where (i) is unrealistically strong. In general, it is natural
for different situations to require different privacy requirements and that one person
can have different privacy expectations than another. For example the perception of the
privacy for a famous actor is surely different from that of a common citizen, since most
of the information about the actor’s life is already made public because of he nature
of the job. Clearly, the assumption that the background knowledge of an adversary
depends on the context allows to realize frameworks that guarantee reasonable levels
of privacy according to the privacy expectation.

Finally, a privacy-preserving strategy should find an acceptable trade-off between
data privacy on one side and data utility on the other side. In order to reach this goal it
is fundamental to take into account during the design of the framework the analytical
questions that are to be answered with the transformed data. This means designing a
transformation process capable to preserve some data properties that are necessary to
preserve the results obtained by specific analytical and/or mining tasks.

Under the above assumptions, it is conceivable to design a privacy-preserving ana-
lytical process able to:

1. transform the source data into an anonymous or obfuscated version with a quan-
tifiable privacy guarantee - i.e., the probability that the malicious attack fails
(measured, e.g., as the probability of re-identification);

2. guarantee that the target analytical questions can be answered correctly, within
a quantifiable approximation that specifies the data utility, using the transformed
data instead of the original ones.

2.6 Privacy by Design for Data Publishing
The privacy by design paradigm has been used for the design of privacy-preserving
frameworks for data publishing obtaining good results in terms of privacy protection
and data utility. In that context, the aim is to publish databases providing privacy guar-
antees and assuring that the data can be used for some specific analysis. Clearly, as
described in the previous section, for the design of a valid privacy-preserving frame-
work it is important to take into account the kind of data to be transformed and the type
of attack to be countered.
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2.6.1 Privacy Models for Trajectory and Sequential Data
In this section we present some privacy models proposed in literature for the publishing
of trajectory data and sequence data. So, we describe some attacks that an intruder who
gains access to a published database of sequences or trajectories can conduct in order to
make inferences, also on the basis of the background knowledge that (s)he possesses.
We generically refer to this agent as an attacker.

Sequence Linking Attack

The attack model we describe in this section is presented in [76, 77, 67].
Before describing this attack model we introduce some useful notation. Let I =

{i1, i2, . . . , in} denote a set of items (e.g., events, actions, spatial locations or regions).
Here, we consider the case of sequence databases of the form D = {S1, S2, . . . , SN},
where each sequence S = i1i2 . . . ih (ij ∈ I) is an ordered list of single items; an item
can occur multiple times in a sequence.

So, given a published sequence database D an intruder who gains access to it can
conduct attacks in order to make inferences, also on the basis of the background knowl-
edge that (s)he possesses. In particular, we refer to the linking attack model, i.e., the
ability to link the released data to other external information, which enables the re-
identification of (some of) the respondents associated with the data. In relational data,
linking is made possible by quasi-identifiers, i.e., attributes that, in combination, can
uniquely identify individuals, such as birth date and gender. The remaining attributes
represent the private respondent’s information, that may be violated by the linking
attack. In privacy-preserving data publishing techniques, such as k-anonymity, the pre-
cise goal is to find countermeasures to this attack, and to release person-specific data
in such a way that the ability to link to other information using the quasi-identifier(s) is
limited.

In the case of sequential (person-specific) data, where each record is a temporal se-
quence of events which occurred to a specific person, the above dichotomy of attributes
into quasi-identifiers (QI) and private information (PI) does not hold any longer: here,
a (sub)sequence of events can play both the role of QI and the role of PI. To see this
point, consider the case where sequences represent trajectories, i.e., lists of locations
visited by an individual in the given order: the attacker may know a sequence of loca-
tions visited by a specific person P : e.g., by shadowing P for some time, the attacker
may learn that P was in the shopping mall, then in the park, and then at the train sta-
tion, represented by the sequence 〈mall, park, station〉. The attacker could employ
this sequence to retrieve the complete trajectory of the P in the released dataset: this
attempt would succeed, provided that the attacker knows that P ’s sequence is actually
present in the dataset, if the known sequence 〈mall, park, station〉 is compatible with
(i.e., is a subsequence of) just one sequence in the dataset. In this example of a linking
attack in the sequence domain, the subsequence known by the attacker serves as QI,
while the entire sequence is the PI that is disclosed after the re-identification of the
respondent. Clearly, as the example suggests, it is rather difficult to distinguish QI and
PI: in principle, any specific location can be the theater of a shadowing actions by a spy,
and therefore any possible sequence (of locations, in this example) can be used as a QI,
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i.e., as a means for re-identification. Put another way, distinguishing between QI and
PI among the elements of a sequence, being them locations or events, means putting
artificial limits on the attacker’s background knowledge; on the contrary, in privacy and
security research it is necessary to have assumptions on the attacker’s knowledge that
are as liberal as possible, in order to achieve maximal protection.

As a consequence of this discussion, we make the conservative assumption that any
sequence that can be linked to a small number of individuals is a potentially danger-
ous QI and a potentially sensitive PI; then, we study an anonymity model that tries to
achieve the maximal protection possible under this challenging assumption. The cru-
cial point in defining the sequence linking attack lies exactly in the definition of QI and
PI, which is formalized by the concept of harmful sequence, parametric with respect to
an anonymity threshold k.

Definition 2.6.1 (k-Harmful Sequence). Given a sequence datasetD and an anonymity
threshold k, a sequence T is k-harmful (in D) iff 0 < suppD(T ) < k.

In other words, a sequence is k-harmful if it is a subsequence of a number of se-
quences in D smaller than k and greater than 0. Essentially, harmful sequences are
potentially dangerous QIs because they occur only a few times in the dataset (but at
least once): thus, a harmful sequence can be used to select a few specific complete
sequences in the dataset. Moreover, each harmful sequence reveals information per-
taining to a small (but not empty) set of persons, hence information that is private in
the sense that it reveals a specific, unusual behavior, which potentially violates the right
to privacy of a few individuals that follow a path off the crowd (perhaps revealing per-
sonal preferences, habits, etc.) Conversely, non-harmful sequences are not considered
dangerous, neither as QI nor as PI: a non-harmful sequence either does not occur in the
dataset (and therefore does not help the attacker) or occurs so many times that (i) it is
not useful as a QI, as it is compatible with too many subjects, and (ii) it is not useful
as PI, as it reveals a sequential behavior common to many people. We now formalize
the privacy model. So, first of all we introduce our assumptions about the additional
knowledge used by the adversary for the attack.

Definition 2.6.2 (Adversary Knowledge). The attacker has access to the anonymized
datasetD∗ and knows: (i) the details of the scheme used to anonymize the data, (ii) the
fact that respondent U is present in D, and (iii) a (QI) sequence T relative to U .

Then, we formalize the sequence linking attack, based on the above definition.

Definition 2.6.3 (Sequence Linking Attack). Given a published sequence dataset D
where each sequence is uniquely associated with a de-identified respondent, the at-
tacker tries to identify the sequence in D associated with a given respondent U , based
on the additional knowledge introduced in Definition 2.6.2. We denote by probD(T )
the probability that the sequence linking attack with a QI sequence T succeeds (over
D).

From a data protection perspective, we aim at controlling the probability probD(T ),
for any possible QI sequence T . The linking attack can be performed by using either a
harmful or a non-harmful sequence. Clearly, harmful sequences are dangerous because
the attacker has a high probability of uniquely identifying the entire sequence of a
respondent.
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Trajectory Linking Attack

The attack model we describe in this section is presented in [68, 67].
A moving object dataset is a collection of spatio-temporal sequencesD = {T1, T2, . . . , TN};

each element Ti ∈ D is a sequence of spatial points with a timestamp element which
we call trajectory in the remaining part of the chapter. In the following we introduce
the formal definition of trajectory and sub-trajectory.

Definition 2.6.4 (Trajectory). A Trajectory or spatio-temporal sequence is a sequence
of triples T =< x1, y1, t1 >, . . . , < xn, yn, tn >, where ti (i = 1 . . . n) denotes a
timestamp such that ∀1<i<n ti < ti+1 and (xi, yi) are points in R2.

Intuitively, each triple < xi, yi, ti > indicates that the object is in the position
(xi, yi) at time ti.

Definition 2.6.5 (Sub-Trajectory). Let T =< x1, y1, t1 >, . . . , < xn, yn, tn > be a
trajectory. A trajectory S =< x′1, y

′
1, t
′
1 >, . . . , < x′m, y

′
m, t
′
m > is a sub-trajectory of

T or is contained in T (S � T ) if there exist integers 1 ≤ i1 < . . . < im ≤ n such
that ∀1 ≤ j ≤ m < x′j , y

′
j , t
′
j >=< xij , yij , tij >.

We refer to the number of trajectories inD containing a sub-trajectory S as support
of S and denote it by suppD(S), more formally suppD(S) = |{T ∈ D|S � T}| .

The dataset owner applies an anonymization function to transform D into D∗, the
anonymized dataset.

Our anonymization scheme is based on:

(a) generating a partition in areas of the territory covered by the trajectories;

(b) applying a function for the spatial generalization to all the trajectories in order
to transform them into sequences of spatial points that are centroids of specific
areas;

(c) transforming the generalized trajectories to guarantee privacy.

We use g to denote the function that applies the spatial generalization to a trajectory.
Given a trajectory T ∈ D, this function generates the generalized trajectory g(T ), i.e.
the centroid sequence of areas crossed by T .

Definition 2.6.6 (Generalized Trajectory). Let T =< x1, y1, t1 >, . . . , < xn, yn, tn >
a trajectory. A generalized version of T is a sequence of pairs Tg =< xc1 , yc1 >
, . . . , < xcm , ycm > with m <= n where each xci , yci is the centroid of an area
crossed by T .

Note that, the function g(.) drops the time component from the trajectory that
becomes a sequence of generalized spatial points (centroids), where the order of the
points in the sequence corresponds to the temporal order in which the points are vis-
ited: the point in position i is visited before the point in position i+ 1.
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Definition 2.6.7 (Generalized Sub-Trajectory). Let Tg =< x1, y1 >, . . . , < xn, yn >
be a generalized trajectory. A generalized trajectory Sg =< x′1, y

′
1 >, . . . , < x′m, y

′
m >

is a generalized sub-trajectory of Tg or is contained in Tg if there exist integers 1 <
i1 < . . . < im < n such that ∀1 ≤ j ≤ m < x′j , y

′
j >=< xij , yij >.

We refer to the number of generalized trajectories in a datasetDG containing a sub-
trajectory Sg as support of Sg and denote it by suppDG (Sg), where suppDG (Sg) =∣∣{Tg ∈ DG |Sg � Tg}

∣∣ .
An attacker may know a sub-trajectory of the trajectory of some specific person,

and could use this information to retrieve the complete trajectory of the same person in
the released dataset. Thus, we assume the following adversary knowledge.

Definition 2.6.8 (Adversary Knowledge). The attacker has access to the anonymized
dataset D∗ and knows: (a) the details of the scheme used to anonymize the data, (b)
the fact that a given user U is in the dataset D and (c) a sub-trajectory S relative to U .

The ability to link the published data to external information, which enables various
respondents associated with the data to be re-identified is known as a trajectory linking
attack model.

The movement data have a sequential nature and are a particular case of sequence
data discussed in Section 2.6.1. As already discussed in the previous section, in the case
of data with sequential nature without any kind of additional semantic information on
the data it is hard to make a clear distinction between quasi-identifiers (QI) and private
information (PI). Thus, as in the case of general sequence data, in the case of spatio-
temporal data a sub-trajectory can play both the role of QI and PI. In a linking attack
conducted by a sub-trajectory known by the attacker the entire trajectory is the PI that
is disclosed after the re-identification of the respondent, while the sub-trajectory serves
as QI.

Here, we consider the following attack:

Definition 2.6.9 (Attack Model). Given the anonymized datasetD∗ and a sub-trajectory
S relative to a user U , the attacker: (i) generates the partition of the territory starting
from the trajectories in D∗; (ii) computes g(S) generating the sequence of centroids
of the areas containing the points of S; (iii) constructs a set of candidate trajectories
in D∗ containing the generalized sub-trajectory g(S) and tries to identify the whole
trajectory relative to U .
The probability of identifying the whole trajectory by a sub-trajectory S is denoted by
prob(S).

From the point of view of data protection, minimizing the probabilities of re-
identification is desirable. Intuitively, the set of candidate trajectories corresponding
to a given sub-trajectory S should be as large as possible. A good solution would be to
minimize the probabilities of re-identification and maximize data utility by minimizing
the transformation of the original data. We propose a k-anonymity setting as a com-
promise. The general idea is to control the probability of the re-identification of any
trajectory to below the threshold 1

k chosen by the data owner. Thus, our goal is to find
an anonymous version of the original dataset D, such that, on the one hand, it is still
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useful for analysis, when published, and on the other, a suitable version of k-anonymity
is satisfied.

The crucial point of our attack model is that it can be performed by using any
sub-trajectory in D: a sub-trajectory occurring only a few times in the dataset (but at
least once) enables a few specific complete trajectories to be selected, and thus the
probability that the sequence linking attack succeeds is very high. On the other hand,
a sub-trajectory occurring so many times that it is compatible with too many subjects
reduces the probability of a successful attack.

Attack by Background Network on Trajectory Data

The attack model we describe in this section is presented in [4].
We focus on trajectories of objects moving over a background (road) network,

which is modeled as a directed graph.

Definition 2.6.10 (Background Network). The background road network is a directed
labeled graph BN = (V,E, l), where V is a set of vertices, each vertex vi = (xi, yi)
is a point in R2; E ⊆ V × V is a set of edges, where each edge (vi, vj) is the straight
line going from vertex vi to vertex vj; and l : E → R is a labeling function that assigns
to an edge a label representing the minimum time necessary to cover the edge (i.e., its
length over the maximum speed allowed on it).

The dataset owner applies an anonymization function to transform D into D∗, the
anonymized dataset. This anonymization function aims at solving the Trajectory Pat-
tern Hiding Problem that is formalized as follows. Given a set of sensitive trajectory
patterns Ph = {P1, . . . , Pn} that must be hidden from a database D consistent with
BN . Given a disclosure threshold ψ, the Trajectory Pattern Hiding Problem requires
to transform D in a database D∗ such that:

1) D∗ is still consistent with BN ;

2) ∀ Pi ∈ Ph, sup[D∗,τ ](Pi) ≤ ψ;

3) the difference between D and D∗ is minimized.

The problem requires to sanitize the input database D in such a way that a set of
sensitive patterns P is hidden while the most of the information inD is maintained. The
resulting database D∗, that is the released one, must be consistent with the background
road network.

The first requirement of this problem asks to avoid creating unreal trajectories in
the sanitization process, since the road network BN is a publicly available knowledge
and thus unreal trajectories could be easily identified. The second requirement asks
all sensitive patterns to be hidden in D∗, i.e., they must have a support not more than
the given disclosure threshold ψ. Finally, the third requirement asks to keep D∗ as
similar as possible to D. This is a very general definition which does not say how the
sanitization is actually performed.

Consider a temporal sequence of vertexes representing the trajectory T , and sup-
pose that it is sanitized by suppressing the point (vi, ti) from the subsequence

(vi−1, ti−1), (vi, ti), (vi+1, ti+1).
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If there exists only one path from vi−1 to vi+1 time-consistent with BN , then the at-
tacker can easily infer the suppressed point. This kind of inference channels can help
the attacker reconstructing (even only partially) the original data, and this in turn can
cause some of the sensitive patterns P ∈ Ph to be disclosed. We name this kind of
inference Attack by Background Knowledge or Attack by Lack of Alternative Paths. In-
stead, when there are many alternative paths from vi1 to vi+1 time consistent withBN ,
then the task of reconstructing the missing part and discovering the hidden pattern is
not trivial. Obviously, the larger is the number of possible alternative paths, the more
secure is the provided sanitization. This leads to the definition of a interesting property
that our sanitized data should exhibit. The attack by background network is obvious in
Figure 2.2(d). Suppose only Pattern 1 (in Figure 2.2(c)) is sensitive and Trajectory 1
needs to be sanitized. The one point coarsening seem to remove the sensitive knowl-
edge from the trajectory, and thus its disclosure is safe. However, an attacker knowing
the background road network in Figure 2.2(a) can easily deduce that it is impossible
to get from point B to point D in 8 minutes taking E as a midpoint. So, the attacker
is hundred percent sure that the trajectory followed C as the midpoint, thus revealing
the sensitive knowledge by reconstruction. Note that even the two point coarsening
is a pseudo-hiding in this case. But publishing only the first two (out of four) spatio-
temporal points, another coarsening, does not disclose the sensitive knowledge.

Figure 2.2: Spatio-temporal trajectories and patterns

2.6.2 Privacy Model for Semantich-rich Sequence Data
The progress on device technology, data analysis and mining are creating entirely new
forms of data, that are always more complex and richer of semantic information, i.e.,

22



additional information describing specific data properties. Naturally, this information
can be used during the mining process to extract a more interesting and richer knowl-
edge. Semantic-rich sequence data are data with a sequential nature for which specific
descriptions of the items and of the events are available. A concrete example of this
kind of data is represented by the so-called semantic trajectories, a new form of mo-
bility data with far richer semantic information attached to the traces of personal mo-
bility. In other words, we are rapidly moving from raw trajectories, i.e., sequences of
time-stamped generic points sampled during the movement of a sensed device, to what
sequences of stops and moves of a person during her/his movements, where each loca-
tion of stop can be attached to some semantics, or purpose - either by explicit sensing
or by inference.

We argue that these new data with semantic information attached poses even greater
privacy threats w.r.t. simple sequence data. We used the privacy by design paradigm to
design a privacy model to face this challenging problem [69].

The first problem introduced by this semantic information is that an attacker can use
it to infer further private personal information about a user. As an example consider the
semantic trajectory data, from the fact that a person has stopped in a certain sensitive
location, e.g., an oncology clinic, an attacker can derive private personal information
of the health of such person. So, in this context, an item of a sequence is sensitive if it
allows to infer personal sensitive information of an individual.

In [69] we essentially devises a privacy model for semantic trajectories, with ref-
erence to a background knowledge defining which are the sensitive and non-sensitive
places in a specific application. The background knowledge is represented through a
specific taxonomy, describing sensitive and non-sensitive places at different levels of
abstraction (e.g., a tourist landmark, a museum, the Louvre museum; a health-related
service, a hospital, the Children’s Hospital).

An intruder who gains access to dataset of semantic trajectories ST ∗ may possess
some background knowledge allowing to conduct attacks making inferences on the
dataset.

Definition 2.6.11 (Adversary Knowledge). The attacker has access to the generalized
dataset ST ∗ and knows: (a) the algorithm used to anonymize the data, (b) the privacy
place taxonomy P-Tax , (c) that a given user is in the dataset and (d) a quasi-identifier
place sequence SQ visited by the given user.

What is the information that has to remain private? In our model, we keep private
all the sensitive places visited by a given user. Therefore, the attack model considers the
ability to link the released data to other external information enabling to infer visited
sensitive places.

Definition 2.6.12 (Attack Model). The attacker, given a published semantic trajectory
dataset ST ∗ where each trajectory is uniquely associated to a de-identified respondent,
tries to identify the semantic trajectory in ST ∗ associated to a given respondent U ,
based on the additional knowledge introduced in Definition 2.6.11. The attacker, given
the quasi-identifier sequence SQ constructs a set of candidate semantic trajectories
in ST ∗ containing SQ and tries to infer the sensitive leaf places related to U . We
denote by Prob(SQ, S) the probability that, given a quasi-identifier place sequence
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SQ related to a user U , the attacker infers his/her set of sensitive places S which are
the leaves of the taxonomy PTax.

From a data protection perspective, we aim at controlling the probabilityProb(SQ, S).
To prevent the attack defined above we propose to release a c-safe dataset.

Definition 2.6.13 (C-Safety). The dataset ST is defined c-safe with respect to the
place set Q if for every quasi-identifier place sequence SQ, we have that for each set
of sensitive places S the Prob(SQ, S) ≤ c with c ∈ [0, 1].

24



Chapter 3

Privacy by Design for
LIFT-based Systems

In this chapter we define the general attack model that we consider in the LIFT-based
systems and we describe how we can apply the privacy by design paradigm for obtain-
ing privacy guarantees in this context.

3.1 Privacy Requirements for LIFT-based Systems
We consider a distributed-computing environment, composed of a collection of n re-
mote sites (nodes) and a designated coordinator site. Streams of data arrive continu-
ously at remote sites, while the coordinator site is responsible for processing a global
function through local computations in the nodes. Each node can then be assigned a
safe zone for its local data-stream values that can offer guarantees for the value of the
global function over the entire collection of nodes.

As discussed in Section 2.5 in order to apply the privacy by design paradigm and
thus, designing a valid privacy-preserving frameworks it is important to take into ac-
count the kind of data to be transformed and the type of attack to be countered. To this
scope we have to answer the following important questions:

(1) Who may be an attacker in this context?

(2) Which data does the attacker access?

(3) Which background knowledge does the attacker possess to infer new and sensi-
tive information?

(4) May the communicated data streams violate the user privacy?

3.1.1 Attacker
We refer to any possible agent who gains access to the data that a node communicates
to the coordinator and who can conduct an attack in order to make inferences also on
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the basis of the background knowledge that he possesses as attacker. In addition to
a third party we consider the coordinator and in some cases the local nodes as an un-
trusted party and thus an attacker. The coordinator corresponds to the data recipient in
privacy-preserving data publishing context. Indeed, in that context it is typical to con-
sider the data recipient untrusted because even if it is a trustworthy entity, however, it is
difficult to guarantee that all staff in this entity is trustworthy as well. This assumption
makes the solutions based on encryption and cryptographic approaches, in which only
authorized and trustworthy recipients are given the private key for accessing the clear-
text, useless. While the coordinator is untrusted in all settings, we will consider nodes
as trusted in some settings. If the data collection takes place at the user himself (e.g.
movements are monitored via his mobile phone) we consider the node as trusted. If the
data is collected outside of the user (e.g. by a Bluetooth antenna) we consider the node
as untrusted. In order to ensure privacy in both settings we require an open privacy
policy at the nodes. Open privacy means that algorithms and software components are
available to the public so that their behavior can be verified. In the first case this is
necessary because the user is not the author of the application that is provided for his
mobile device. In the second case this is necessary because the nodes record possibly
privacy sensitive information of which a secure processing has to be ensured.

We do not consider attacks from intruders that access the data during the commu-
nications by sniffing because these can be avoided by cryptography techniques.

The data streams communicated to the coordinator could provide sensitive infor-
mation to an attacker who by using external information could learn more information
about the individual and private sphere of a specific user. A privacy-preserving frame-
work should avoid that an attacker gaining access to the data can enrich his knowledge
violating the individual privacy of a person. Clearly, the sensitivity of the communi-
cated information depends on the application. In particular, it is clear that in different
applications the type of data that each node has to communicate to the coordinator
could have very different characteristics and it is strongly related to the kind of lo-
cal/global function that has to be computed in the system.

3.1.2 Attack Model
We consider attackers with the ability to link data to external information, which en-
ables various respondents associated with the data to be re-identified. This attack model
is known as a linking attack model. In relational data, linking is made possible by quasi-
identifiers, i.e., attributes that, in combination, can uniquely identify individuals, such
as birth date and gender. The remaining attributes represent the private respondent’s
information, that may be violated by the linking attack. In some complex context such
as trajectory data, the above dichotomy of attributes into quasi-identifiers (QI) and pri-
vate information (PI) can be impossible and in that cases the information known by the
attacker is considered as QI while the new information that he may infer represents the
PI to be protected. This is properly our case: we assume that the attacker knows some
information about a specific user and can use this information as quasi-identifier. We
further assume that the attacker knows that the user is one of the nodes in the system,
and seeks to identify the user’s communications and so the sensitive information about
him.
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Definition 3.1.1 (Attack Model). Given the background knowledge BN relative to a
given user X , the attacker who gains access to one or several data streams commu-
nicated by different users can construct a set of candidates who are compatible with
BN and tries to identify the user X in this set of candidates and to infer new sensitive
information about him.
The probability of identifying the user and inferring new information is denoted by
prob(BN ).

The success of this attack depends on the background knowledge that the intruder
possesses as he uses this information for the re-identification. As explained in Section
2.5 the background knowledge strongly depends on the context and on the kind of data
to be protected. Therefore, to provide a formal definition of the adversary knowledge
and to define how the attacker can use it to conduct a linking attack we need to know
the specific application where we want to provide privacy guarantees. This means that
we need to know:

(i) the form of data that each node has to communicate to the coordinator

(ii) the kind of function that has to be computed in the system.

Without this information we cannot assume anything about the knowledge adver-
sary and as a consequence we cannot define the form of attack that an intruder can con-
duct in the LIFT-based system. For example, if our framework has to process global
functions for data mobility analysis and the nodes has to communicate information
about user positions the background knowledge could be composed of a set of posi-
tions visited by a specific person. In contrast, if our framework has process functions
about the analysis of query logs and the nodes communicate information about user
queries then the background knowledge could be composed of a set of queries related
to a specific user. It is evident that changing the type of data can change the type of
computed function and as a consequence the adversary to conduct the attacker and to
generate the set of candidates has to execute a different computation.

If we have a formal definition of both background knowledge BN and attack model
it is possible to design a suitable privacy-preserving framework to counter that kind of
attack. In Chapter 4 we will show some application scenarios where we modeled the
BN and customized the attack defined above.

3.2 Properties of a Countermeasure
In this section we provide some general properties of a suitable countermeasure. A
privacy-preserving approach has to keep under control the natural trade-off between
privacy protection, data quality and quality of system performance.

Therefore, a valid privacy-preserving method has to provide:

1. a quantifiable privacy guarantee - i.e., the probability that the malicious attack
fails (measured, e.g., as the probability of re-identification);
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2. a quantifiable data utility - i.e., the target analytical questions have to be an-
swered correctly, within a quantifiable approximation that specifies the data util-
ity, using the transformed data instead of the original ones;

3. a performance guarantee: the privacy-preserving technique could affect the per-
formance of the overall systems for example in terms of number of communica-
tions and as a consequence it has to keep this degradation of the performance as
low as possible.

For guaranteeing the privacy protection it is necessary to transform the data to be
communicated to the coordinator and this transformation will introduce some noise
which could affect the result of the global computation. From the point of view of
data protection, a data transformation that minimizes the probability of re-identification
prob(BN ) is desirable. Intuitively, the set of candidates corresponding to a given back-
ground knowledge BN should be as large as possible. Clearly, a solution of this type
will lead to a high data quality loss and as a consequence an error in the computation
result. Therefore the desirable solution is a transformation able to minimize the proba-
bilities of re-identification and maximize data utility by minimizing the transformation
of the original data. So, the aim is to guarantee the data protection while avoiding to
completely destroy the analytical result; in other word the data transformation has to
preserve the analytical result within a certain quantifiable approximation.

The application of the privacy by design paradigm in this context and so, making
assumptions on the data to be communicated to the coordinator, on the kind of lo-
cal/global function that has to be computed in the system and on the attack model to be
countered, allows to obtain reasonable results in terms of privacy guarantees and data
quality preservation.
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Chapter 4

Privacy in Application Scenarios

4.1 Privacy in Distributed Density Map Computation
In this section we provide the study of privacy issues in a distributed framework where
the coordinator has to evaluate the density of vehicles in correspondence of specific
areas of a territory. We will show that if we know the specific application and so
the function that the coordinator has to process then it is possible to formally define
the background knowledge and the attack that an adversary can conduct to infer user
sensitive information.

4.1.1 Density Monitoring Problem
Our application consists in evaluating the density of vehicles in correspondence of a
given set RP of nRP points in space, called reference points. In particular, density is
estimated through a kernel-based approach, i.e., the density in a point is computed by
counting all vehicles in space, yet weighted according to their distance from the point.
The architecture of the framework is as follows. In the system we have a coordinator
C and multiple remote nodes. Each node is a sensor that represents a user moving
(vehicle) in the considered space and computes for each observation its local kernel
function w.r.t. the set RP of reference points. The coordinator computes the density
map as an aggregation of the all local functions computed by the nodes. The global
density map is computed when the coordinator receives a query requiring this analysis.

Definition 4.1.1 (DMP: Density Monitoring Problem). Given a setRP = {RP1, . . . , RPnRP
}

of nRP reference points, a set V = {V1, . . . , V nV } of vehicles and a kernel function
K(.), the density monitoring problem consists in computing, at each time instant, the
function fDMP : V → RnRP , defined as fDMP (V ) = [K1, . . . ,KnRP

]T , where:

∀1 ≤ i ≤ nRP . Ki =
1

nV

nv∑

j=1

K(V xyj −RP xyi )

Here, V xyj ∈ R2 and RP xyi ∈ R2 represent, respectively, the actual position of
vehicle Vj and the position of reference point RPi. While the kernel function K(.)
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could be for example a triangular function or Gaussian function. Most standard kernel
functions are radial functions, i.e., their value only depend on the distance from the ori-
gin (in our case that translates to “distance between node and RP”). Moreover, usually
their value drops monotonically as such distance grows. The standard example is the
Gaussian kernel. Figure 4.1 shows a simple example of the DMP for a single reference
point and six vehicles. Therefore, in order to enable the coordinator C to compute each
Ki, a node j could send one of three possible types of information:

1) its position V xyj

2) its distance from the RPi, i.e, dij = V xyj −RP xyi
3) the contribution K(V xyj −RP xyi )

In the first case C before computing the global function K has to compute for
each node the distance and the kernel function K(V xyj − RP xyi ) for each RPi. In the
second case, C has to compute only K(V xyj −RP xyi ). Finally in the last case C has to
compute only the global function. For the final result the three solutions are equivalent.
But in the first case C knows exactly the user position, instead in the last two cases C
knows that the user j is in the area defined by circle with radius equal to the distance
dij = V xyj − RP xyi and with center the point RP xyi . Our choice is to use the third
option. So, each node sends to the coordinator C the value of the kernel function.

In the naive setting each node j at a given instant t computes for each reference
point RPi the kernel function K(V xyj −RP xyi ) and communicates the list of contribu-
tions Kt

j to the coordinator. The coordinator maintains a data structure containing the
last information communicated by each node. This data structure is a matrix where the
j-th row contains the last information Kj communicated by the node j.

When the coordinator receives a query he uses the information in the global data
structure for the computation of the global density map. Clearly, in this setting each
node must communicate an update for each observation. Whenever the number nV of
vehicles or their location update frequency (or both) reach high values, it is necessary
to trade the exactness of the estimation defined above with a reduction of informa-
tion exchange and processing. The loss of precision, in our context, is bounded by a
parameter ε, that represents the deviation from the exact output for the DMP.

Definition 4.1.2 (ADMP: Approximate DMP). Given a DMP with reference points
RP = {RP1, . . . , RPnRP

} , vehicle set V = {V1, . . . , V nV } and kernel function
K(.), and given an error tolerance parameter ε, the approximate density monitoring
problem consists in computing, at each time instant, a function fADMP : V → RnRP ,
such that it always holds that error(fADMP (V ), fDMP (V )) ≤ ε. Possible definitions
for the error function include the following:

• Average: errorAVG(KA,K) =
∑nRP

i=1 |KA
i −Ki|

nRP

• Worst-case: errorworst(KA,K) = maxnRP
i=1 |KA

i −Ki|

where K = fDMP (V ) and KA = fADMP (V ). Equivalently, we can define them as
errorAVG(KA,K) = 1

nRP
||KA

i −Ki||1, and errorworst(KA,K) = ||KA
i −Ki||∞.
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Figure 4.1: Example of vehicle density estimation for a reference point RP1, on a
single dimension, with a Gaussian kernel.

In order to reduce the amount of communications we introduce in the framework
the use of a predictive model: the user’s mobility profiles representing the user typical
trips.

4.1.2 Mobility Profiles
In this section, we present the details of the definition of a user’s mobility profile. The
daily mobility of each user can be essentially summarized by a set of single trips that
the user performs during the day. When trying to extract a mobility profile of users,
our interest is in the trips that are part of their habits, therefore neglecting occasional
variations that divert from their typical behavior. Therefore in order to identify the
individual mobility profiles of users from their GPS traces, the following steps will be
performed - see Figure 4.2:

1. divide the whole history of the user into trips (Figure 4.2(a))

2. group trips that are similar, discarding the outliers (Figure 4.2(b))

3. from each group, extract a set of representative trips, to be used as mobility
profiles (Figure 4.2(c)).

Mobility Profile Definitions

Trips The history of a user is represented by the set of points in space and time
recorded by their mobility device:
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(a) (b) (c)

Figure 4.2: Mobility profile extraction process: (a) trip identification; (b) group detec-
tion/outlier removal; (c) selection of representative mobility profiles.

Figure 4.3: Trajectories of a user and the corresponding groups and routines extracted
(A and B). Of the 30 trips, 11 are part of group A, and 12 of group B, while the
remaining 7 are noise. The two routines are spatially similar, yet move in opposite
directions (points represent the end of trips), i.e., south (A) vs. north (B).
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Definition 4.1.3 (User history). The user history is defined as an ordered sequence
of spatio-temporal points H = 〈p1 . . . pn〉 where pi = (x, y, t) and x, y are spatial
coordinates and t is an absolute timepoint.

This continuous stream of information contains different trips made by the user,
therefore in order to distinguish between them we need to detect when a user stops for
a while in a place. This point in the stream will correspond to the end of a trip and the
beginning of the next one. We adopt a heuristic-based approach [91] for the detection
of the stops. Thus we look for points that change only in time; i.e. they keep the
same spatial position for a certain amount of time quantified by the temporal threshold
thstoptemporal. Specularly, a spatial threshold thstopspatial is used to remove both the noise
introduced by the imprecision of the device and the small movements that are of no
interest for a particular analysis.

We indicate with S = 〈S1 . . . St〉 the set of all stops over H . Once we have found
the stops in the users history we can identify the trips:

Definition 4.1.4 (Trip). A trip is defined as a subsequence T of the user’s history H
between two consecutive stops in the ordered set S or between a stop and the first/last
point of H (i.e., p1 or pn).

The set of extracted trips T̄ = 〈T1 . . . Tc〉 in Fig. 4.2(a), are the basic steps to
create the user mobility profile. Notice that the thresholds thstopspatial and thstoptemporal are
the knobs for expressing specific analytical requirements.

Trip Groups Our objective is to use the set of trips of an individual user to find his
routine behaviors. We do this by grouping together similar trips based on concepts
of spatial distance and temporal alignment, with corresponding thresholds for both
the spatial and temporal components of the trips. In order to be defined as routine,
a behavior needs to be supported by a significant number of similar trips. The above
ideas are formalized as follows:

Definition 4.1.5 (Trip Group). Given a set of trips T̄ , spatial and temporal thresholds
thgroupspatial and thgrouptemporal, a spatial distance function δ : T̄ 2 → R and a temporal
alignment constraint α : T̄ 2 ×R → B between pairs of trips, and a minimum support
threshold thgroupsupport, a trip group for T̄ is defined as a subset of trips g ⊆ T̄ such that:

1. ∀t1, t2 ∈ g.δ(t1, t2) ≤ thgroupspatial ∧ α(t1, t2, th
group
temporal);

2. |g| ≥ thgroupsupport.

Condition 1 requires that the trips in a group are approximately co-located, both in
space and time, while condition 2 requires that the group is sufficiently large. Again,
the thresholds are the knobs that the analyst will progressively tune the extraction pro-
cess with.

Mobility Profile Each group obtained in the previous step represents the typical mo-
bility habit of a user, i.e., one of his routine movements. Here we summarize the whole
group by choosing the central element of such a group:
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Definition 4.1.6 (Routine). Given a trip group g and the distance function δ used to
compute it, its routine is defined as the medoid of the set, i.e.:

routine(g, δ) = arg min
t∈g

∑

t′∈g\{t}
δ(t, t′)

Notice that the temporal alignment is always satisfied over each pair of trips in a
group, therefore the alignment relation α does not appear in the definition. Now we are
ready to define the users mobility profile.

Definition 4.1.7 (Mobility Profile). Given a set of trip groups G of a user and the
distance function δ used to compute them, the user’s mobility profile is defined as his
corresponding set of routines:

profile(G, δ) = {routine(g, δ) | g ∈ G}

Mobility Profile Construction The definitions provided in the previous section were
kept generic w.r.t. the distance function δ. Different choices can satisfy different needs,
possibly both conceptually (which criteria define a good group/routine assignment) and
pragmatically (for instance, simpler criteria might be preferred for the sake of scalabil-
ity). Obviously, the results obtained by different instantiations can vary greatly. Hence
the crucial point is the selection of groups of trajectories. Our proposal is to use a clus-
tering method to carry out this task. We choose the clustering algorithm for trajectories
proposed in [11], consisting of two steps. First, a density-based clustering is performed,
thus removing noisy elements and producing dense – yet, possibly extensive – clusters.
Secondly, each cluster is split through a bisection k-medoid procedure. Such method
splits the dataset into two parts through k-medoid (a variant of k-means) with k = 2,
then the same splitting process is recursively applied to each sub-group. Recursion
stops when each resulting sub-cluster is compact enough to fit within a distance thresh-
old of its medoid, by removing sub-clusters that are too small. The bisection k-medoid
procedure guarantees that requirements 1 and 2 of Definition 4.1.5 are satisfied. The
clustering method adopted is parametric w.r.t. a repertoire of similarity functions, that
includes: Ends and Starts functions, comparing trajectories by considering only their
last (respectively, first) points; Route similarity, comparing the paths followed by tra-
jectories from a purely spatial viewpoint (time is not considered); Synchronized route
similarity, similar to Route similarity but considering also time.

4.1.3 Approximate Density Map Computation
As explained in Section 4.1.1, in the naive setting we can have a lot of communications
which can be reduced by the use of the user’s mobility profiles. In this setting we can
identify three main phases of the whole process: Setup, Monitoring and Querying.

Setup. In this phase the coordinator sends to the nodes the parameters for the com-
putation of their profiles (i.e. the set of thresholds, spatial distance measure and
temporal alignment relation) and the position of all the reference points. The
nodes after the computation send back their mobility profiles to the coordinator.
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Monitoring. In this phase each node periodically sends the information related to his
position and this information will be used from the coordinator for the computa-
tion. During this phase each node uses his mobility profiles to reduce the number
of communications. Specifically, the user’s mobility profiles are adopted as pre-
dictive model. The predictive model is used as a dynamic constraint adopting
the safe zone approach.

Why do nodes use the mobility profiles to reduce the communications? The idea
is that each node should communicate his kernel function only when it is too far
from its mobility profile. Since typically the movements of a user are compatible
with his profile then this should reduce the number of communications. The use
of profiles introduces in the system an error that in the definition of the problem
(Definition 4.1.2) we call ε. In general, we have a global error ε that is admissible
and this error is the composition of the error that each node can introduce. In
Definition 4.1.2 we consider two possible error definitions: the worst case and
the average case. In the worst case, each reference point must be estimated with
the maximum error ε. Such error, then, can be “distributed” among the nodes
in several ways. The basic solution is to allow each node an error of ε

nV
, where

nV is the total number of nodes in the system. However, any other partitioning
of ε in nV parts is could be a good solution, provided that their sum is less than
ε. In the average case, essentially we have an overall tolerable error equal to
ε × nRP (where nRP is the total number of reference points), and it can be
distributed among the reference point in any way. The straightforward way is to
do it uniformly, i.e., ε for each reference point, making it equivalent to the worst
case. However, if a reference point is rather far from the traffic, it might generate
lower values, and therefore be affected by lower errors, so part of its ε might be
saved for less lucky reference points.

When and how does user node introduce an error? When a user j reaches a
new position V xyj , for each reference point he computes k(V xyj − RP xyi ) and
k(P xyj −RP xyi ), i.e, the kernel function considering his real position and the ker-
nel function considering the position in the profile. If the difference is less than
the admissible local error ε′ then the user does not have to communicate anything
because the coordinator already knows the value k(P xyj − RP xyi ) otherwise he
communicates the new value, i.e, k(V xyj −RP xyi ).

Querying. In this phase the coordinator receives a query requiring the density map
computation. So, it uses the last communication received from each node and/or
the mobility profiles for the computation.

4.1.4 Attack Model
In this section we discuss about the privacy breaches and possible attack models in
this specific application. We will show as, knowing the application where introducing
privacy constraints., it is possible to formally define the attack models by customiz-
ing the general attack model we defined for the LIFT-based systems (Section 3.1.2).
Specifically, we can define a precise adversary knowledge that an attacker may use in a
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specific attack in order to infer sensitive information and we describe how the attacker
could conduct the attack. Finally, For each attack model, we will provide some ideas
about the general properties of a reasonable countermeasure against the considered
attack and we will indicate some possible direction that could be investigated.

Privacy Issues and User’s Mobility Profiles

The communication of a user’s mobility profile can violate the user privacy because it
reveals common and typical trips of the user. The coordinator for the computation does
not have the necessity to know the user related to a specific profile. So, the first step
of a privacy-preserving technique could be to de-identify the profiles, i.e., by removing
the direct identifiers of the users. But it has been shown that the privacy protection
cannot be accomplished by simple de-identification. Indeed, if an attacker knows some
places commonly visited by a specific user he can use this information to re-identify
the user in the collection of de-identified user profiles and to discover his whole typical
trip.

Example 4.1.1. Consider a framework with N users who compute their profiles and
send them to the coordinator that is untrusted. The set of profiles received are de-
identified so that the coordinator does not know the user who corresponds to a specific
profile. Now, assume the coordinator knows that the user X commonly visits the points
p1 and p5. May he use this information to infer the whole user profile? The answer is
yes! Any attacker with this information can select all the profiles containing both p1
and p5. If the number of profiles compatible with this information is small the attacker
has a high probability to link the user X to his real mobility profile.

In the following we formalize the adversary knowledge.

Definition 4.1.8 (Adversary Knowledge). The attacker has access to the set of user
profiles P and knows: (a) the details of the scheme used to anonymize the profiles,
(b) the fact that a given user X is one of the nV nodes of the framework and (c) a
sub-sequence of approximate position S of the user X .

The ability to link data to external information, which enables various respondents
associated with the data to be re-identified is known as a linking attack model.

As explained in the previous chapter, in relational data the linking is made possible
by quasi-identifiers, i.e., attributes that, in combination, can uniquely identify indi-
viduals, such as birth date and gender. The remaining attributes represent the private
respondent’s information, that may be violated by the linking attack.

Without any kind of additional semantic information on the data it is hard to make
a clear distinction between quasi-identifiers (QI) and private information (PI) in the
context of spatio-temporal data. Thus, in this case a sub-sequence of positions can
play both the role of QI and PI. In a linking attack conducted by a sub-sequence of
approximate positions known by the attacker are considered as QI while the entire
mobility profile is the PI that is disclosed after the re-identification of the respondent,
while the sub-sequence serves as QI.

Here, we consider the following attack:
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Definition 4.1.9 (Profile-based Attack). Given the set of user mobility profiles P and
the adversary knowledge introduced in Definition 4.1.8, the attacker: (1) constructs
a set of candidate profiles in P compatible with the sub-sequence S and (2) tries to
identify the whole mobility profile relative to X .
The probability of identifying the whole profile by a sub-sequence S is denoted by
prob(S).

Countermeasure From the point of view of data protection, minimizing the proba-
bilities of re-identification is desirable. Intuitively, the set of candidate profiles corre-
sponding to a given sub-sequence S should be as large as possible. A good solution
would be to minimize the probabilities of re-identification and maximize data utility by
minimizing the transformation of the original data.

A possible compromise could be the k-anonymity setting.
The general idea is to control the probability of the re-identification of any profile

to below the threshold 1
k chosen as parameter of the system. In order to do this, we

should guarantee that the set of profiles that the coordinator receives are an anonymous
version of the originals, such that, on the one hand, it is still useful for predicting the
movement of users.

We can consider two possible solutions:

• each node sends its mobility profile to a trusted party that is an anonymizer. It
transforms the set of profiles in such a way to obtain a k-anonymous version and
sends the transformed set to the coordinator and back to the nodes.

• all the nodes cooperate to compute the k-anonymous version of the profiles with-
out using any trusted party. In this case it is possible to apply a technique based
on secure multiparty computation following the basic idea of the frameworks that
compute a distributed spatio-temporal clustering [50, 49]. The main problems of
this last solution are: (1) each node should have a lot of computation power and
(2) this setting introduces communications among the nodes that normally are
not considered in LIFT-based systems.

In general, the anonymization step here does not affect the final computation of
the density map. This means that the anonymization approach does not introduce any
error to the global density map computation. The only effect could be to increase the
number of communications of a node. Indeed, the anonymization step, given a set of
mobility profiles P will transform it to P ′. Clearly, the predictive models P ′ are less
precise than P and will describe the typical mobility behavior of a user with some
approximation, therefore it could be happen more often that the user will be far from
his profile and, as explained in Section 4.1.3, this situation will bring to an increase of
the number of communication. In other words, the countermeasure in this case has to
keep under control:

• the privacy protection against the profile-based attack by maximizing the proba-
bility of re-identification of a user;

• the quality of the service in terms of the overall performance of the LIFT-based
system, i.e., it should minimize the increase of the communications.
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Privacy Issues and Updates Communications

At a given instant a user computes for each reference point RPi the kernel function
K(V xyj −RP xyi ) and sends these values to the coordinator if he is too far from his pro-
file. We call the information communicated in this case update. The communication
of an update could violate the user privacy because it reveals with some little approx-
imation his position. Indeed, most standard kernel functions are radial therefore the
coordinator given a contribution As described above, at a given instant a user computes
for each reference point RPi the kernel function K(V xyj − RP xyi ) can compute the
area defined by the circle with center RP xyi and radius V xyj −RP xyi . But if more RPi
are involved the coordinator can intersect the various circles and estimate accurately
the position of the node.

As in the case of the profiles, the coordinator for computing the density map does
not have the necessity to know the user related to the update received. So, the de-
identification of the updates can be applied without generating any problem for the
global computation. Clearly, this does not solve the privacy risks. The attacker who
knows that the user visited one or more areas can conduct an attack that allows to infer
other places visited by the user. Clearly, the areas known by the attacker can: (a) belong
to the user profile; (b) not belong to the user profile. In the first case the coordinator
will not receive any communication about this areas because thanks to the use of the
profiles as a predictive model no update is necessary, therefore the knowledge of the
attacker cannot help him to infer other information about the user. In the case (b),
when the user visits one or more areas known by the attacker (coordinator) then he will
communicate the corresponding updates. As a consequence the attacker knowing that
a specific user X visited that areas can infer a series of location visited by X .

In the following we formalize the adversary knowledge.

Definition 4.1.10 (Adversary Knowledge). The attacker has access to the set of up-
dates from the users U and knows: (a) the details of the scheme used to anonymize the
updates, (b) the fact that a given user X is one of the nV nodes of the framework, (c) a
set of approximate positions S of the user X and (d) the list of reference pointsRP .

Here, we consider the following attack:

Definition 4.1.11 (Distance-based Attack). Given the set of user updates and the ad-
versary knowledge in Definition 4.1.10 the attacker: (1) constructs a set of candidate
updates {Ui} ⊆ U each one compatible with the approximate positions S and (2) tries
to identify the whole set of areas visited by the user X .
The probability of identifying the whole set of places visited byX is denoted by prob(S).

The point (1) of the above definition means that the adversary given an update, i.e.,
a list of K(Vxy −RPi) computes the real position of the user (with an approximation)
and selects all the updates related to position similar to S. When the number of updates
selected is low the probability of re-identification becomes high.

Countermeasure In order to counter the distance-based attack we will investigate
solutions using location perturbation, k-anonymity, differential privacy or particular
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combinations of them. The literature on privacy in location base services provides
many possibilities to be investigated.

Clearly, the countermeasure has to have specific properties that are important for
allowing a correct running of the system. The most important property is that the
privacy-preserving method has to keep under control:

• the privacy protection and thus this method has to maximize the re-identification
probability of a user that provide a way to measure the quantity of privacy that is
guaranteed;

• the data utility, that in this specific context means to guarantee the minimum
transformation to be applied to the update because it could generate other errors
in the computation of the global density map.

4.2 Privacy for Measuring Customer-Location Interac-
tions

4.2.1 Application Description
The goal of the application is to provide companies with up-to-date measures of customer-
location interactions. Such measures are, for example, the total number of customers
per week or the average frequency by which customers visit a shop. An interaction
denotes hereby simply the visit of a person to a specified location, e.g. a supermarket
or cinema.

In our application we assume that each person carries a mobile device which is
able to determine the position of a user and is thus able to record the history of a user’s
movements. Given the set of trajectories of all users and a location database (e.g. points
of interest) the number of visits of each person and location can be inferred. Formally
a visit is defined as follows [57]:

Definition 4.2.1 (Visit). Given a geographic coordinate space SC , a temporal coor-
dinate space TC , a location l ⊆ SC , l 6= ∅, a mobile entity e along with the entity’s
trajectory function tr : TC → { {s | s ∈ SC} , ∅ } and a time interval ε > 0, a visit is
the tuple (l, e, t1, t2) with t1, t2 ∈ TC , t1 < t2 for which the following holds

1. the intersection of l and tr(t) is non-empty for all t ∈ [t1, t2], i.e.
l ∩ tr(t) 6= ∅ ∀t ∈ [t1, t2],

2. the time span [t1, t2] is maximal, i.e. there exists no time interval [t∗1, t
∗
2] ⊇

[t1, t2] so that l ∩ tr(t) 6= ∅ ∀t ∈ [t∗1, t
∗
2],

3. the time interval of intersection is greater or equal to ε, i.e. t2 − t1 ≥ ε.

The definition requires a minimum visit duration which may be specified according
to application requirements. In addition, a visit always spans the maximum time period
that a person spends at the same location.
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Example The owner of a supermarket chain would like to know on a monthly basis
how many potential customers each of his supermarkets attracts, how often people go
shopping at any of his supermarkets and which percentage of the people living nearby
his supermarkets uses his shopping facilities.

These three questions can be answered by the visit potential measures gross visits,
average visits and entity coverage as defined by [57]. Gross visits specify the total
number of visits between a given set of mobile entities and geographic locations. Aver-
age visits specify the average number of visits per entity and entity coverage measures
the percentage of entities which visit at least on location of the location set. Depending
on the specification of the location set, visit potential measures for a single supermarket
or all supermarkets of the chain can be calculated.

More formally visit potential measures are defined as follows [57].

Definition 4.2.2 (Gross visits). Given a location set L, a set of mobile entities E and
the number of visits NV (t, l, e) between each entity e ∈ E and location l ∈ L until
time t. Gross visits are defined as the number of total visits until time t:

grVs(t, L,E) =
∑

l∈L

∑

e∈E
NV (t, l, e).

Definition 4.2.3 (Average visits). Given a location set L, a set of mobile entitiesE and
the number of visits NV (t, l, e) between each entity e ∈ E and location l ∈ L until
time t. Average visits are the average number of visited locations per mobile entity
until time t:

avgVs(t, L,E) =

∑
l∈L
∑
e∈E NV (t, l, e)

|E| .

Definition 4.2.4 (Entity coverage). Given a location set L, a set of mobile entities E
and the number of visits NV (t, l, e) between each entity e ∈ E and location l ∈ L
until time t. Entity coverage is defined as the proportion of mobile entities which visit
at least one location of the location set until time t:

eCov(t, L,E) =
| {e ∈ E | NV (t, L, e) ≥ 1} |

|E| .

4.2.2 Privacy Model
Naive Sceanrio

A naive solution to the above described scenario is to transmit the trajectory data of
each entity along with an entity identifier to the coordinator (either concurrently or
at given points in time). The coordinator stores the data and is thus in possession of
a trajectory database with recent as well as historic movement data. In addition, the
coordinator possesses sociodemographic information about each individual. Given a
specific location and entity set the coordinator is able to calculate any required visit
potential measure for any specified period of time. More formally, the data stored at
the coordinator or local node has the following format:
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Definition 4.2.5 (Trajectory database at coordinator). The trajectory database at the
coordinator consists of a set of tuples of the form (id, x, y, t) which denote the identifier
of an entity (id) along with its position (x, y) at time instant t.

Definition 4.2.6 (Sociodemographic database at coordinator). The sociodemographic
database at the coordinator consists of a set of tuples of the form (id, a1, a2, ..., an)
which denote the identifier of an entity (id) along with n sociodemographic character-
istics a1, ..., an.

The specific type of sociodemographic information stored at the coordinator is applica-
tion dependent. It may consist, for example, of gender, age, place of living etc. How-
ever, we assume that obvious personal identifiers as, for example the name or address
of a person, are not contained in the data set.

Definition 4.2.7 (Trajectory database at local node). The trajectory database at a local
node is a set of tuples of the form (x, y, t) which denote the entity’s position (x, y) at
time instant t.

The described scenario offers only very weak privacy protection as is shown in
the following attack models. Note that we assume that an attacker attacks either data
stored at the coordinator or at a mobile node. We do not consider attacks during data
transmission as they can be avoided by using cryptographic techniques.

In the first attack scenario we consider an attack on data stored at the coordinator,
which is equivalent to an untrusted coordinator.

Definition 4.2.8 (Adversary Knowledge). The attacker has access to the trajectory
and sociodemographic database. He knows that the identifiers in both databases cor-
respond to each other. Further, the attacker knows parts of the movement history of a
user and / or parts of a user’s sociodemographic data and the details of the privacy-
preserving approach.

Definition 4.2.9 (Attack Model - Linking Attack). Given the knowledge in Definition
4.2.8, the attacker extracts all trajectories that contain the known movement sequences
of a specific user X . The attacker also extracts all persons that match the known so-
ciodemography. He then combines the resultant data records based on the identifier
and tries to identify the movement history and/or further sociodemographic character-
istics of the user X .

In the second attack scenario, an attacker intrudes a mobile device and retrieves
data stored on the device.

Definition 4.2.10 (Adversary Knowledge - Device Attack). The attacker is a third
party and has access to the mobile device of a user and knows at which location the
trajectory data is stored.

Definition 4.2.11 (Attack Model- Device Attack). The attacker extracts the stored tra-
jectory data that contain the movement sequences of a user.

Definition 4.2.12 (Countermeasure - Device Attack). The trajectory data will be en-
crypted before it is stored on the device.
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While an attack on the mobile device may be counteracted by encrypting the tra-
jectory data, this is not possible at the coordinator as the coordinator has to evaluate
the mobility data.

Aim of Privacy Model

Knowledge about visiting behavior is a rich source of information for private and public
companies or institutions. However, all attempts to generate that information must
protect the privacy of the individuals. This is especially true in times when companies
can potentially misuse their market position to collect sensitive mobility data from their
customers.

The general aim of privacy protection in our model is that an attacker cannot infer

• historic movement information (including trajectory as well as pattern informa-
tion),

• the current position or

• sociodemographic variables (e.g. age, gender, place of living)

of any participating individual. Note that our assumed model is stricter than k-anonymity.
While k-anonymity allows the publishing of trajectories of movement patterns if there
are at least k other individuals with a similar movement, our model forbids the disclo-
sure of any such information. Our reason for this requirement is that even though a
common movement behavior may be revealed, it gives the adversary knowledge about
the movement of the individual.

Idea for the LIFT-Approach

As the above scenario shows it is not a good idea to centralize all mobility data at the
coordinator from a privacy perspective. First, the true ambitions of the coordinator
with respect to the data may be unknown. Second, an attack by a third party would
disclose a large amount of sensitive data. In addition, centralization poses a problem
with respect to scalability. If the application is deployed nationwide, tens of millions
of potential devices will sent frequent updates to the coordinator. This massive amount
of traffic data would cause serious network problems as well as processing problems at
the coordinator.

Thus, privacy as well as scalability require the performance of local inference. Pro-
cessing data locally has the advantage that sensitive mobility data can be encapsulated
at the nodes. Only aggregate statistics will be transmitted to the coordinator. In con-
sequence, the aggregation has a positive effect both on privacy and communication.
The cost of communication can be further improved by transmitting data only if a local
change is likely to cause a global change, i.e. by applying the safe zone approach.

Figure 4.4 depicts the general approach. Instead of storing trajectory data at the
local nodes, the nodes will directly evaluate the number of visits for given sets of loca-
tions. Only an identifier for the location set and the number of visits have to be stored
(using encryption technology). This data is sent via a proxy to the communicator. The
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proxy ensures that the coordinator cannot identify data from a node via its IP address.
As the data is encrypted, the proxy itself cannot evaluate the data from the nodes. For
each location set the coordinator maintains a distribution of k-visiting entities. This
distribution states how many entities visits a given location set once, twice, ... or not
at all. It can be shown that this distribution is sufficient to derive all required visit
potential measures.

Figure 4.4: Privacy framework for customer-location interaction measurement

Clearly, without storing trajectory information, an attacker cannot access this in-
formation either at the coordinator or at a local node. If an attacker intrudes the co-
ordinator, he will only obtain a statistic about the visit frequency of all entities for
some (encoded) location set. The statistic may refer to a specific sociodemographic
group, however, contains no personal information. Therefore, an intruder cannot infer
information about a person’s movements or current location.

Note that in this scenario we assume that the coordinator and the proxy do not
cooperate.

4.3 Privacy for Counting Distinct Entities in a Region

4.3.1 Application Description
The aim of this application is to count the number of distinct persons in a given region.
In our scenario these regions are typically large areas as, for example, a park or part
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of city. The regions have in common that visitors can enter them through several en-
trances, so it is hard to maintain an overview of the total number of visitors. In addition,
within the area people can move around freely to visit different attractions (e.g. stages,
shows, shops) that are distributed over the area. As the movement inside the region is
not controlled, crowds may form at attractions or at narrow passage ways which may
potentially become dangerous. Typical events that match this description are open air
concerts, sport events or youth meetings as the World Youth Day. Although events of
this size, expecting several ten to hundred thousands of visitors, are carefully planned,
the true number and behavior of visitors only appears at the event itself. For example, a
simple change in weather conditions may lead to an increase of visitors (e.g. sunshine)
or to a sudden leaving of persons (e.g. unexpected rain).

Figure 4.5: Areas to be monitored and their coverage by Bluetooth antennas

In our application we therefore want to monitor the number of people that are in one
or more defined areas inside the event region. As monitoring device we decided to use
Bluetooth sensors because they do not require to equip people with additional hardware
devices. In addition, Bluetooth can be employed indoors as well as outdoors. Each of
the areas to monitor will be covered by one or more Bluetooth antennas (see Figure
4.5). The monitoring areas of the antennas will typically overlap because weather
conditions and obstacles may influence the signal strength. In addition, people will
move between the monitoring areas of the antennas which will also lead to overlapping
sensor readings. Thus, combining sensor readings of several antennas (local nodes) has
to answer a count distinct query (global function).

More formally, for a single area that shall be monitored we use i = 1..n Bluetooth
antennas. The antennas scan the environment in previously defined intervals of time for
Bluetooth-enabled devices and retrieve their media access control (MAC) addresses. At
each local node we thus obtain a data stream of the following form.

Definition 4.3.1 (Bluetooth data stream). The Bluetooth data stream Bi at an antenna
i ∈ {1, ..., n} consists of a set of tuples of the form (id, t) where id is the MAC address
of a scanned device at time moment t.

For a a single scan we will denote the obtained data as follows.
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Definition 4.3.2 (Bluetooth scan). The set of MAC address collected at antenna i ∈
{1, ..., n} at a single scan at time t is defined as Bi,t = {id1, id2, ..., idm}.

Our aim is to determine for each area covered by Bluetooth antennas i = 1..n the
number of distinct Bluetooth-enabled devices at time moment t, i.e.

|Bt | = |
n⋃

i=1

Bi,t |.

Due to the overlapping of sensor areas we know that the number of distinct people
|Bt | in the area is bounded by the sum of people registered at each Bluetooth antenna,
i.e.

|Bt | = |
n⋃

i=1

Bi,t | ≤
n∑

i=1

|Bi,t |.

However, our global value is not a linear combination of the local sensor readings.

4.3.2 Privacy Model
Naive Scenario

The naive solution for the scenario is that each antenna (local node) sends a copy of
each scan to a central server (coordinator) which then performs a count distinct query.

Definition 4.3.3 (Bluetooth database). The Bluetooth database B is a collection of
tuples of the form (aid, id, t) where aid is the identifier of a Bluetooth antenna and id
is the MAC address of a scanned device at antenna aid at time moment t.

In a setting with an untrusted coordinator this may lead to serious problems as the
coordinator will be able to use the MAC address as quasi identifier.

Definition 4.3.4 (Adversary Knowledge - MAC address as quasi identifier). The at-
tacker has access to the Bluetooth database and knows the location of the Bluetooth
antennas. In addition, he knows the user who he wants to monitor and that he carries
a device with enabled Bluetooth function.

Definition 4.3.5 (Attack Model - MAC address as quasi identifier). Before or after the
event the attacker obtains the MAC address of the person that he wants to monitor (e.g.
by performing a Bluetooth scan when he is close to the person). He then retrieves all
data tuples for the given device id from the Bluetooth database.

Definition 4.3.6 (Counter Measure - MAC address as quasi identifier). Before the lo-
cal nodes send their data to the coordinator they apply a hash function to the MAC
addresses of the scanned devices. All antennas that monitor a part of a larger area
use the same hash function. The coordinator does not know the parameters of the hash
function.
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However, even though the MAC addresses may be hashed at the local nodes before
transmission, the coordinator is still able to recognize movement histories from the
total of all data streams. By ordering tuples with the same hashed id by their time
stamp, the coordinator obtains a trajectory on the spatial and temporal resolution of
the Bluetooth antennas. As the scanning area of Bluetooth antennas typically ranges
between 20-100 m the coordinator can obtain a high resolution of a person’s position.
If the coordinator knows the antenna locations he can easily extract movement patterns
of a person.

Definition 4.3.7 (Adversary Knowledge). The attacker is the coordinator itself and has
access to the Bluetooth database. In addition, he knows the location of the Bluetooth
antennas as well as parts of the movement history of a specific user X .

Definition 4.3.8 (Attack Model - Linking Attack). Given the knowledge in Definition
4.3.7, the attacker orders all data tuples by the (hashed) device ids and timestamps.
He then extracts all data tuples for a given device id that contain the known movement
sequences and tries to identify the user X .

Note that in this scenario we concentrate on attacks on the data that the coordinator
posses. Of course, also local nodes can be attacked, however, in such cases it might be
easier for an attacker to place a Bluetooth antenna in the area by himself. Nevertheless,
the hashing of MAC addresses prevents an identification of a user in case the logging
data of a local node should be attacked. In addition, we make the strict assumption that
the local nodes are trusted and will not cooperate in our setting.

Aim of Privacy Model

In order to find public acceptance to apply Bluetooth techniques at large events, the
privacy standards have to be high. Therefore the general aim of privacy protection in
our model is that an attacker cannot infer

• historic movement information,

• the current position or

• the MAC address of a device

of a person.

Idea for the LIFT-Approach

Similar to the previous scenario, our approach is to evaluate the Bluetooth data locally
and to transmit only aggregated data to the coordinator. However, as stated above this
requires the assumption that the local nodes are trusted.

An advantage of the scenario is that our global function, counting the number of
distinct items within a given time interval over distributed data streams, has already
been treated in literature. Especially, we will exploit sketches to anonymize and com-
press the data. The Flajolet-Martin sketch (FM sketch) has been designed to count the
number of distinct items in a data stream [45, 16, 40].
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In its basic form the FM sketch hashes items (MAC addresses) into a d × w array
using d different hash functions. For each row the probability of an item to be hashed
in bucket k ∈ {1, ..., w} is 2−k. If at least one item has been hashed in a bucket the
value of the bucket is 1 else it is 0. The number of distinct items can be obtained from
the FM sketch by evaluating the position within each row where the transition between
used (1) and unused (0) buckets occurs. Due to their structure several FM sketches can
be combined by performing a bucket-wise OR operation on their values (assuming that
the same hash functions are applied at each node).

This means that in our scenario only the sketches have to be maintained at the
local nodes. Also the communication to the coordinator is reduced to transmitting the
sketches. The communicator combines the sketches and applies the sketch estimation
function to obtain the number of distinct items. Each local node processes the MAC
addresses of each scan, however, discards the device identifiers after processing. Thus,
no identifying data has to be stored. In addition, the hash functions have to be known
only by the local nodes. This means that the coordinator cannot infer information
about the absence or presence of a given MAC address by analyzing the sketches.
Furthermore, the hash functions show a high degree of collisions so that even in the
case that the coordinator obtains a hash function he is unlikely to trace a single device
id.
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Chapter 5

Conclusion and Roadmap

Privacy is an ever-growing concern in our society: the lack of reliable privacy safe-
guards in many current services and devices is the basis of a diffusion that is often more
limited than expected. Unfortunately, it is increasingly hard to transform the data in a
way that it protects sensitive information because of the complexity of the systems and
of the data where privacy is a serious concern. In the last few years, several techniques
for creating anonymous or obfuscated versions of data sets have been proposed, which
essentially aim to find an acceptable trade-off between data privacy on the one hand
and data utility on the other. These techniques are designed for guaranteeing the pri-
vacy protection during the data publishing phase. In LIFT-based systems the scenario
is completely different we have a distributed architecture where local nodes send data
to central system. In the application scenarios described above we saw that transmit-
ting data from local nodes to a central system, besides a computational bottleneck, may
also be a privacy bottleneck when the data contains personal, possibly sensitive, infor-
mation about people. For example, when the local nodes consist of mobile phones or
other personal portable devices the centralization can be a violation to data protection
laws or individual rights (or expectations) of privacy. As a consequence, a framework
aimed at minimizing the communication of data from local nodes to a central system
opens promising scenarios for data protection and privacy safeguards.

In the following we draw a roadmap for the research towards privacy-preserving
LIFT-based systems. We plan to define for different application scenarios the privacy
model. This means, that for each scenario we will provide:

• a formal definition of the adversary knowledge and attack models as we showed
for the scenarios in Chapter 4;

• the design, implementation and test of suitable privacy-preserving frameworks;

• the definition of measures able to evaluate the data utility preserved after the data
transformation.

In literature, many interesting anonymity and privacy techniques have been pro-
posed for data publishing context (see Chapter 2). They cannot be applied directly to
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LIFT-like system because of the distributed nature of the architecture. But, we think
that it is possible to consider the existing approaches as a good start point to be in-
vestigated. In other words, we believe that with adequate specific considerations and
assumptions we will devise new privacy-preserving techniques inspired by the well-
known models such as k-anonymity, l-diversity, randomization, and so on.

Clearly, each proposed privacy-preserving approach has to provide quantifiable pri-
vacy guarantees and has to assure a quantifiable data utility and a system performance
guarantee. In order to evaluate the data utility preserved we need the definition of spe-
cific measures able to quantify the effects of the data transformation on the data and
the results of the local/global computations in the system. These measures will en-
able a deeply analysis of the imprecision and the information loss introduced by the
data transformation. Given different systems with different global functions to be com-
puted/monitored we need different measurements with completely different properties.
So, even in this case we can say that the methodology for the evaluation of the informa-
tion loss introduced by the privacy-preserving technique depends on the application.
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