
UaESMC

Project No: FP7-284731

Project Acronym: UaESMC

Project Title: Usable and Efficient Secure Multiparty Computation

Instrument: Specific Targeted Research Project

Scheme: Information & Communication Technologies

Future and Emerging Technologies (FET-Open)

Deliverable D2.2.2

Advances in Secure Multiparty Protocols

Due date of deliverable: 31st January 2014

Actual submission date: 31st January 2014

Start date of the project: 1st February 2012 Duration: 36 months

Organisation name of lead contractor for this deliverable: CYB

Specific Targeted Research Project supported by the 7th Framework Programme of the EC

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Advances in Secure Multiparty Protocols

This document summarizes deliverable D2.2.2 of project FP7-284731 (UaESMC), a Specific Targeted Re-
search Project supported by the 7th Framework Programme of the EC within the FET-Open (Future and
Emerging Technologies) scheme. Full information on this project, including the contents of this deliverable,
is available online at http://www.usable-security.eu.

The report contains an overview of the results of the second year of UaESMC, pertaining to secure
multiparty computation techniques. The studies of these techniques have been directed by the example
problems selected during the first year, as well as by the desire to have a comprehensive framework of
privacy-preserving computation techniques by the end of the project.

In this deliverable, we report of the following findings and advances:

• We provide improved privacy preserving algorithms for giving an overview of the data. We also give
privacy preserving versions of algorithms for several most common statistical tests. As result, we
were able to conduct a full-scale experimental statistical study so that confidential data were always
processed using SMC. The strengths of our solution are generality, precision and practicality. We show
that secure multi-party computation is flexible enough for implementing complex applications.

• We have found that the class of techniques currently used for problem transformation based solving
of linear programming tasks cannot be privacy-preserving. This leaves the implementations of stan-
dard LP-solving algorithms on top of generic protocol sets for privacy-preserving arithmetic as the
only general method for privacy-preserving LP, unless some radically new ideas for transforming LP
problems are proposed.

• We provide efficient algorithms for privacy-preserving finite automata execution, that achieve online
efficiency through offline precomputations.

• We provide a protocol set for actively-secure two-party computation that also acheives efficiency
through offline precomputations.

• We provide a protocol transformation that turns any passively secure multiparty computation protocol
with honest majority to a protocol where any misbehaviour is detected after the execution.

We expect many of these advances to play a significant role in the UaESMC framework.

List of Authors

Dan Bogdanov (CYB) Liina Kamm (CYB) Peeter Laud (CYB) Alisa Pankova (CYB)
Pille Pullonen (CYB) Riivo Talviste (CYB) Jan Willemson (CYB)

2

http://www.usable-security.eu

Contents

1 Introduction 5

2 Privacy-Preserving Statistical Analysis 6

2.1 Simple Statistics . 6

2.1.1 Quantiles and Outlier Detection . 6

2.1.2 Five-Number Summary and Frequency Tables . 7

2.2 Statistical Tests . 8

2.2.1 Wilcoxon Rank Sum Test and Signed Rank Test . 8

2.2.2 The χ2-Tests for Consistency. 9

2.3 Conclusion . 10

3 Transformation-based Linear Programming 11

3.1 Privacy-preserving linear programming . 11

3.2 Attacks against Transformation-based Linear Programming 11

3.2.1 Transformations Used in the Previous Works . 11

3.2.2 The Problems of Slack Variables . 12

3.3 Impossiblity of Secure Transformation-based Linear Programming 13

3.4 Conclusions . 14

4 Privacy-Preserving Execution of Finite Automata 15

4.1 Problem description . 15

4.2 Private selection . 15

4.3 DFA execution . 17

4.4 NFA execution . 17

4.5 Applications of our results . 18

5 Public Verifiability for Parties in SMC 19

5.1 Introduction . 19

5.2 Our Contribution . 19

5.3 Protocol Description . 20

5.3.1 Notation . 20

5.3.2 Assumptions . 20

5.3.3 The Protocol Outline . 21

5.3.4 Properties . 22

5.4 Using the Proposed Protocol in Secure Multiparty Computation Platforms 23

5.4.1 Treating Inputs/Outputs as Communication . 23

5.4.2 Possible Issues . 24

5.4.3 Deviations from the Initial Settings . 24

5.5 Conclusions and Future Work . 24

3

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

6 Actively Secure Two-Party Computation with Precomputing 25
6.1 Related work . 25
6.2 Secure two-party computation . 26

6.2.1 Possible setups . 26
6.2.2 Protocols . 27

6.3 Beaver triple generation . 28
6.3.1 Packing . 28
6.3.2 Error correction . 29

6.4 Conclusion . 29

7 Comparison of oblivious sorting algorithms 30
7.1 Introduction . 30
7.2 Oblivious sorting techniques . 30

7.2.1 Constructions based on comparisons . 30
7.2.2 Constructions specific for bitwise secret-sharing schemes 30

7.3 Optimization methods and matrix sorting . 31
7.3.1 Vectorization . 31
7.3.2 Changing the share representation . 32
7.3.3 Optimizations specific to sorting networks . 32
7.3.4 Sorting matrices . 33

7.4 Conclusion . 33

Bibliography 34

A Secure multi-party data analysis: end user validation and practical experiments 38

B New Attacks against Transformation-Based Privacy-Preserving Linear Programming 58

C On the (Im)possibility of Privately Outsourcing Linear Programming 75

D Universally composable privacy preserving finite automata execution with low online
and offline complexity 86

E Verifiable Computation in Multi-Party Protocols with Honest Majority 103

F Actively Secure Two-Party Computation: Efficient Beaver Triple Generation 122

G A Practical Analysis of Oblivious Sorting Algorithms for Secure Multi-party Computa-
tion 212

4

Chapter 1

Introduction

This report gives a review of the advances in secure multiparty computation techniques made during the sec-
ond year of the UaESMC project. We have investigated several different tasks and problems, making progress
in solving particular classes of computational problems, as well as in improving the security guarantees of
broad classes of protocols. Our investigations have been motivated by the example problems selected during
the first year [7]. Even more, they have been motivated by the desire to have a comprehensive set of SMC
techniques available for the UaESMC framework, due to be formulated during the final year of the project.

We have continued our work on statistical analysis of structured data, the results of which are reported in
Chapter 2. The processing of structured data requires efficient database operations, which in turn depend on
fast sorting methods. We have thus performed a thorough effeciency comparison of privacy-preserving sorting
methods, described in Chapter 7. In Chapter 3, we describe our surprising results on linear programming,
obtained during this year of UaESMC. Both statistical analysis and linear programming are among the
selected example problems of UaESMC.

There is a different kind of problem that we have also investigated during the second year of UaESMC
project. It pertains to the privacy-preserving execution of finite automata. This problem has applications
in network management (also a selected example problem of UaESMC). It is also interesting because the
access patterns for the algorithms solving it significantly depend on the data that we would like to remain
private. Efficient privacy-preserving solutions for this problem would thus need new kinds of techniques.
Our results are reported in Chapter 4.

We have investigated efficient methods to make the parties of a privacy-preserving computation or, more
generally, any cryptographic protocol faithfully perform the instructions of the protocol. In Chapter 6 we
describe a protocol set for actively secure multiparty computation among two parties. The efficiency of
the protocols is achieved through offline precomputation. In Chapter 5, we show how to turn any protocol
secure against semi-honest adversaries into a protocol secure against covert adversaries (such adversaries may
deviate from the protocol, but only if they are not caught afterwards), under the condition that a majority of
protocol participants are honest. Both techniques allow secure computation application to achieve stronger
security properties.

To the end of this deliverable, we have annexed a number of papers and technical reports we have
published during the second year of the project. These papers are referenced from the main body of the
deliverable.

5

Chapter 2

Privacy-Preserving Statistical Analysis

2.1 Simple Statistics

This year, we continued our research into privacy-preserving statistical analysis. We finished and improved
work begun last year and we added more statistical tests to the statistics suite in order to provide a wider
choice for data analysts. In the following, let [[x]] denote a private value x, let [[~a]] denote a private value
vector ~a, and let binary operations between vectors be point-wise operations.

2.1.1 Quantiles and Outlier Detection

The first improvement to deliverable D2.2.1 [9] is the new quantile calculation method. As no one method
for computing quantiles has been widely agreed upon in the statistics community, we use algorithm Q7

from [32], because it is the default choice in our reference statistical analysis package GNU R. Let p be the
percentile we want to find and let [[~a]] be a vector of values sorted in ascending order. Then the quantile is
computed using the following function:

Q7(p, [[~a]]) = (1− γ) · [[~a]][j] + γ · [[~a]][j + 1] ,

where j = b(n− 1)pc+ 1, n is the size of vector [[~a]], and γ = np− b(n− 1)pc − p. Once we have the index
of the quantile value, we can use oblivious versions of vector lookup or sorting to learn the quantile value
from the input vector.

While data-independent oblivious sorting can easily be implemented using sorting networks, oblivious
Hoare’s selection is more complex, because the partitioning sub-procedure publishes random comparison
results the same way as cutting does. We solve the problem in the same way, by running a shuffling procedure
before the selection. As the elements of the resulting vector are in random order, even the declassification
of all comparison results leaks no information about the input vector. Hence, it is straightforward to
simulate the outcome of the entire selection algorithm. As Hoare’s selection algorithm has linear asymptotic
complexity whereas common sorting networks consist of Θ(n log2 n) comparison gates, selection is potentially
faster1 if we are dealing with large datasets. Although we implemented both approaches, we did not observe
this in practice. In fact, using sorting networks turned out to be faster, so we chose this as our default
solution.

We also implemented a very simple outlier elimination method using quantiles. We do not need to
publish the quantile to use it for outlier filtering. Let q0 and q1 be the 5% and 95% quantiles of an attribute
[[~a]]. It is common to mark all values smaller than q0 and larger than q1 as outliers. The corresponding mask
vector is computed by comparing all elements of [[~a]] to Q7(0.05, [[~a]]) and Q7(0.95, [[~a]]), and then multiplying
the resulting index vectors.

1As the asymptotic complexity of shuffle is Θ(n logn), which is the complexity of the optimal AKS sorting network, both
approaches are theoretically equivalent.

6

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Algorithm 1: Function cut for cutting the dataset according to a given filter.

Data: Data vector [[~a]] of size N and corresponding mask vector [[~m]].
Result: Data vector [[~x]] of size n that contains only elements of [[~a]] corresponding to the mask [[~m]]

1 Obliviously shuffle the value pairs in vectors ([[~a]], [[~m]]) into ([[~a′]], [[~m′]])

2 ~s← publish([[~m′]])

3 [[~x]]← ([[~a′]][i] | ~s[i] = 1, i ∈ {1, . . . , N})
4 return [[~x]]

Algorithm 2: Algorithm for finding the five-number summary of a vector.

Data: Input data vector [[~a]] and corresponding mask vector [[~m]].
Result: Minimum [[min]], lower quartile [[lq]], median [[me]], upper quartile [[uq]], and maximum

[[max]] of [[~a]] based on the mask vector [[~m]]
1 [[~x]]← cut([[~a]], [[~m]])

2 [[~b]]← sort([[~x]])

3 [[min]]← [[~b]][1]

4 [[max]]← [[~b]][n]

5 [[lq]]← Q7(0.25, [[~b]])

6 [[me]]← Q7(0.5, [[~b]])

7 [[uq]]← Q7(0.75, [[~b]])
8 return ([[min]], [[lq]], [[me]], [[uq]], [[max]])

2.1.2 Five-Number Summary and Frequency Tables

It is important for a data analyst to get an overview of the data. As it is not possible to see the data in
SMC format, we give an overview using the five number summary and the histogram.

First, for reference, we give Algorithm 1 for obliviously cutting the dataset based on a given filter. First
the value and mask vector pairs are obliviously shuffled, retaining the correspondence of the elements. Next,
the mask vector is declassified and values for which the mask vector contains 0 are removed from the value
vector. The obtained cut vector is then returned to the user. This process leaks the number of values that
correspond to the filters that the mask vector represents. This makes cutting trivially safe to use, when
the number of records in the filter would be published anyway. Oblivious shuffling ensures that no other
information about the private input vector and mask vector is leaked [37]. Therefore, all algorithms that
use oblivious cut provide source privacy.

Algorithm 2 describes the computation of the five-number summary of a value vector [[~a]] with the
corresponding mask vector [[~m]]. Function cut leaks the count of elements n that correspond to the filter
signified by the mask vector [[~m]]. However, the filter size is often one of the descriptive statistics that
analysts want to learn. If we want to keep n secret, we can use Algorithm 3. This hides n, but runs slower
than Algorithm 2.

More information about the data can be obtained by looking at the distribution of a data attribute.
For categorical attributes, this can be done by computing the frequency of the occurrences of different
values. For numerical attributes, we must split the range into bins specified by breaks and compute the
corresponding frequencies. The resulting frequency table can be visualised as a histogram. The algorithm
publishes the number of bins and the number of values in each bin. We also implemented the histogram
calculation algorithm.

Algorithm 4 computes a frequency table for a vector of values similarly to a public frequency calculation
algorithm.

7

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Algorithm 3: Oblivious algorithm for finding the five-number summary of a vector.

Data: Input data vector [[~a]] and corresponding mask vector [[~m]].
Result: Minimum [[min]], lower quartile [[lq]], median [[me]], upper quartile [[uq]], and maximum

[[max]] of [[~a]] based on the mask vector [[~m]]
1 ([[~b]], [[~m′]])← sort([[~a]], [[~m]])
2 [[n]]← sum([[~m]])
3 [[os]]← [[N − n]]

4 [[min]]← [[~b]][1 + [[os]]]

5 [[max]]← [[~b]][N]
6 [[lq]]← Q7(0.25, [[~a]], [[os]])
7 [[me]]← Q7(0.5, [[~a]], [[os]])
8 [[uq]]← Q7(0.75, [[~a]], [[os]])
9 return ([[min]], [[lq]], [[me]], [[uq]], [[max]])

Algorithm 4: Algorithm for finding the frequency table of a data vector.

Data: Input data vector [[~a]] and corresponding mask vector [[~m]].
Result: Vector [[~b]] containing breaks against which frequency is computed, and vector [[~c]] containing

counts of elements
1 [[~x]]← cut([[~a]], [[~m]])
2 n← count([[~x]])
3 k ← dlog2(n) + 1e
4 [[min]]←min([[~x]]), [[max]]←max([[~x]])

5 Compute breaks according to [[min]], [[max]] and k, assign result to [[~b]]

6 [[~c]][1] = (count([[~x]][i]) | [[~b]][1] ≤ [[~x]][i] ≤ [[~b]][2], i = 1, . . . , n)

7 [[~c]][j] = (count([[~x]][i]) | [[~b]][j] < [[~x]][i] ≤ [[~b]][j + 1], i = 1, . . . , n), j = 2, . . . , k

8 return ([[~b]], [[~c]])

2.2 Statistical Tests

2.2.1 Wilcoxon Rank Sum Test and Signed Rank Test

In addition to the t-test and the paired t-test, we created privacy preserving algorithms for the Wilcoxon
rank sum test and signed rank test. As t-tests are formally applicable only if the distribution of attribute
values in case and control groups follows the normal distribution. If this assumption does not hold, it is
appropriate to use non-parametric Wilcoxon tests. The Wilcoxon rank sum test [30] works on the assumption
that the distribution of data in one group significantly differs from that in the other.

A privacy-preserving version of the rank sum test follows the standard algorithm, but we need to use
several tricks to achieve output privacy. Algorithm 5 gives an overview of how we compute the test statistic
[[w]] using the Wilcoxon rank sum test.

For this algorithm to work, we need to cut the database similarly to what was done for the five-number
summary. But we need the dataset to retain elements from both groups—cases and controls. On line 1, we
combine the two input mask vectors into one making sure that the values that appear in both masks as 1
are removed from the analysis. The function cut on line 2 differs from its previous usage in that several
vectors are cut at once based on the combined filter [[~m]].

Similarly to Student’s paired t-test, the Wilcoxon signed-rank test [49] is a paired difference test. Our
version, given in Algorithm 6, takes into account Pratt’s correction [30] for when the values are equal and
their difference is 0. As with the rank sum test, we do not take into account the ranking of equal values,
but this only gives us a more pessimistic test statistic.

8

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Algorithm 5: Wilcoxon rank sum test

Data: Value vector [[~a]] and corresponding mask vectors [[~m1]] and [[~m2]]
Result: Test statistic [[w]]

1 [[~m]]← [[~m1]] + [[~m2]]− ([[~m1]] · [[~m2]])

2 ([[~x]], [[~m′1]], [[
~m′2]])← cut(([[~a]], [[~m1]], [[~m2]]), [[~m]])

3 ([[~̂x]], [[~̂1m]][[~̂2m]])← sort(([[~x]], [[~m′1]], [[
~m′2]]))

4 [[~r]]← rank([[~̂x]])

5 [[~r1]]← [[~r · ˆ 1m]] and [[~r2]]← [[~r · ˆ 2m]]
6 [[R1]]← sum([[~r1]]) and [[R2]]← sum([[~r2]])
7 [[n1]]← sum([[~m1]]) and [[n2]]← sum([[~m2]])

8 [[u1]]← [[R1]]− [[n1·(n1+1)
2]] and [[u2]]← [[n1 · n2]]− [[u1]]

9 return [[w]]←min([[u1]], [[u2]])

Algorithm 6: Wilcoxon signed-rank test

Data: Paired value vectors [[~a1]] and [[~a2]] for n subjects, mask vector [[~m]]
Result: Test statistic [[w]]

1 ([[~x1]], [[~x2]])← cut(([[~a1]], [[~a2]]), [[~m]])

2 [[~d]]← [[~x1]]− [[~x2]]

3 Let [[~d′]] be the absolute values and [[~s]] be the signs of elements of [[~d]]

4 [[~̂s]]← sort(([[~d′]], [[~s]]))

5 [[~r]]← rank0([[~̂s]])

6 return [[w]]← sum([[~̂s · ~r]])

First, on line 3, both data vectors are cut based on the mask vector similarly to what was done in
Algorithm 5. The signs are then sorted based on the absolute values [[~d′]] (line 4) and the ranking function
rank0 is called. This ranking function differs from the function rank because we need to exclude the
differences that have the value 0. Let the number of 0 values in vector [[~d]] be [[k]]. As [[~d]] has been sorted
based on absolute values, the 0 values are at the beginning of the vector so it is possible to use [[k]] as the
offset for our ranks. Function rank0 assigns [[~r]][i]← 0 while [[~̂s[i] = 0]], and works similarly to rank on the
rest of the vector [[~̂s]], with the difference that i ∈ {1, . . . , [[n− k]]}.

2.2.2 The χ2-Tests for Consistency.

If the attribute values are discrete such as income categories then it is impossible to apply t-tests or their
non-parametric counterparts and we have to analyse frequencies of certain values in the dataset. The
corresponding statistical test is known as χ2-test.

The standard χ2-test statistic is computed as

χ2 =

k∑

i=1

2∑

j=1

(fji − eji)2
eji

,

where fji is the observed frequency and eji is the expected frequency of the i-th option and j-th group. For
simplification, we denote ci = f1i and di = f2i, then the frequencies can be presented as the contingency
table 2.1. Let pi be the sum of column i, rj be the sum of row j and n be the number of all observations.
The estimated frequency eji is computed as

eji =
pi · rj
n

.

9

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Option 1 Option 2 . . . Total

Cases c1 c2 . . . r1
Controls d1 d2 . . . r2
Total p1 p2 . . . n

Table 2.1: Contingency table for the standard χ2 test

Algorithm 7: χ2 test

Data: Value vector [[~a]], corresponding mask vectors [[~m1]] and [[~m2]] for cases and controls
respectively and a contingency table [[C]] of size 2× k

Result: The test statistic χ2

1 Let [[n]] be the total count of elements
2 Let [[r1]] and [[r2]] be the row subtotals and [[p1]], . . . , [[pk]] be the column subtotals

3 Let [[E]] be a table of expected frequencies such that [[E]][i][j] =
[[~ri]]·[[~pj]]

n

4 [[χ2]] =
∑k

j=1
([[C]][1][j]−[[E]][1][j])2

[[E]][1][j] + ([[C]][2][j]−[[E]][2][j])2

[[E]][2][j]

5 return [[χ2]]

Algorithm 7 shows how to calculate the χ2 test statistic based on a contingency table. If the null
hypothesis is supported if the computed χ2 value does not exceed the critical value from the χ2 table with
k − 1 degrees of freedom.

Often, the number of options in the contingency table is two—subjects who have a certain property
and those who do not. Therefore, we look at an optimised version of this algorithm that works where the
number of options in our test be 2. Then the test statistic can be simplified and written as

[[t]] = [[
(c1 + d1 + c2 + d2)(d1c2 − c1d2)2

(c1 + d1)(c1 + c2)(d1 + d2)(c2 + d2)
]] .

The privacy-preserving version of the χ2-test is implemented simply by evaluating the algorithm using
SMC operations.

2.3 Conclusion

As a result, we were able to conduct a full-scale experimental statistical study so that confidential data were
always processed using SMC. The strengths of our solution are generality, precision and practicality. We
show that secure multi-party computation is flexible enough for implementing complex applications.

The work described in this chapter is discussed in more detail in the paper [10] that is available in
Appendix A of this deliverable.

10

Chapter 3

Transformation-based Linear
Programming

This chapter introduces some problems of the transformation-based linear programming that have been
present in the previous works and demonstrates its insecurity. It presents concrete attacks against published
methods following this approach. It has been proven that there are issues that cannot be resolved at all
using the particular known class of efficient transformations that has been used before.

3.1 Privacy-preserving linear programming

We consider linear programming tasks in the canonical form

minimize cT · x, subject to Ax = b,x ≥ 0 . (3.1)

Here A is an m×n matrix (m ≤ n), b is a vector of length m and c is a vector of length n. There are n
variables in the vector x. Without lessening of generality we may assume that the quantity to be minimized
is just the variable xn, i.e. the vector c is of the form (0, . . . , 0, 1)T. Any linear programming task can
be brought to such a form by introducing a new variable w and adding the equation cT · x − w = w0 to
the constraints, where w0 ∈ R is determined (from out-of-band information about A, b and c) so, that the
minimal possible value of cT · x− w0 will certainly be positive.

The canonical form (3.1) of LP is equivalent to its standard form

maximize cT · x, subject to Ax = b,x ≥ 0 . (3.2)

Indeed, the inequalities of the canonical form may be replaced with equalities by introducing slack
variables. Each equality may be substituted with two inequalities of opposite directions.

3.2 Attacks against Transformation-based Linear Programming

In [33] we demonstrate a number of attacks against proposed protocols for privacy-preserving linear pro-
gramming based on publishing and solving a transformed version of the problem instance. Our attacks
exploit the geometric structure of the problem, which has mostly been overlooked in the previous analyses
and is largely preserved by the proposed transformations.

3.2.1 Transformations Used in the Previous Works

Let a linear programming task be given in its standard form (3.2). The main basic transformations from
the related works are the following.

11

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Multiplying from the left.Multiplying A and b by a random invertible matrix P from the left does
not change the feasible region of the linear program at all, and it remains revealed. All the solutions to the
system, including the optimal solution, remain the same.

Multiplying from the right. Multiplying A and c by a positive monomial matrix Q from the right
results in scaling and permuting the variables.

Shifting In some works, the initial variable vector x is not only scaled, but also shifted. This is done
by introducing special slack variables for each shifted variable.

3.2.2 The Problems of Slack Variables

We introduce an attack that allows to remove the scaling and the permutation of variables. This is possible
in the setting where all the constraints are represented by inequalities, one of the parties knows at least
two inequality constraints, and the locations of the slack variables can be traced down. Our attack is
polynomial-time. Let us state this problem in general.

Suppose that the initial linear program is given in its canonical form (3.1). In the standard approach
proposed by the previous works, the inequalities are transformed to equalities by bringing the linear program
to its standard form (3.2) introducing slack variables xs.

maximize

(
c
0

)T

·
(

x
xs

)
, subject to

(
A I

)(x
xs

)
= b,

(
x
xs

)
≥ 0 .

The columns of the matrix are first being scaled and permuted multiplying it by a monomial matrix Q
from the right. Then it is multiplied by a random invertible matrix P from the left.

If the vector c is treated separately from the constraints, as it was done in the previous works, then the
locations of the slack variables are clearly visible even after the permutation since their values in the cost
vector are 0, and scaling does not affect 0 in any way. This issue allows to use row operations to reduce the

constraints back to the standard form
(
A′ I

)(x
xs

)
= b′. Here A′ and b′ may be different from A and b.

However, since we know that the feasible region is just scaled, the inequalities A′x ≤ b′ define the scaled
polyhedron of the initial program. Then we may use the knowledge about the initial inequalities to cancel
out the scaling and permutation. This attack is described more precisely in [33].

The locations of slack variables can be potentially hidden by adding the equation cT · x − w = w0 to
the constraints and minimizing over the variable w only. However, we present attacks that detect the slack
variables due to their special behaviour.

1. If the entries of P and Q are sampled from a uniform or a (folded) normal distribution, the columns
that correspond to the slack variables have in general greater variance. This problem can be resolved
by bringing the matrix A to its reduced row echelon form instead of multiplying it by P . However,
since this form has to be computed in a privacy-preserving way, this transformation is more expensive.

2. The other attack is based on the geometric properties of the feasible region. It turns out that,
optimizing the LP task in random directions, slack variables tend to take the value 0 much more
often than the initial variables. The attack is efficient in practice, and for numerous LP tasks the slack
variables have been located perfectly all at once. The particular results can be seen in [33].

The slack variables also allow to undo shifting. Namely, although the values of the initial variables x
are hidden by a randomness vector r, the scaled values of x are leaked into the special slack variables s
that have been introduced by shifting. Distinguishing slack and non-slack variables in this case is especially
easy due to the special relations between these variables. After removing non-slack variables by gaussian
elimination, we obtain an LP with variables s whose feasible region is just a scaled version of the original
one, without shifting. The attack is described in more details in [33].

12

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

3.3 Impossiblity of Secure Transformation-based Linear Programming

As a conclusion of the previous section, the attacks are efficient in practice and cast serious doubt to the via-
bility of transformation-based approaches in general. In our next paper [34], we study the security definitions
and methods for transformation-based outsourcing of linear programming in general. The recent attacks have
shown the deficiencies of existing security definitions; thus we propose a stronger, indistinguishability-based
definition of security of problem transformations that is very similar to IND-CPA security of encryption sys-
tems. We study the realizability of this definition for linear programming and find that barring radically new
ideas, there cannot exist transformations that are secure information-theoretically or even computationally.

The privacy requirements for our task are the following. The sizes m and n, and the bounding box of the
feasible region are public. Matrix A and the vector b have to remain secret. The solution xopt may become

public. We wish to transform the linear programming task at hand to a task “minimize c′T · y, subject to
A′y = b′, y ≥ 0”, such that from the solution yopt and secret data generated during the transformation,
we could efficiently recover the solution xopt to the original task.

Quite clearly, the transformations described in the previous subsection do not satisfy this privacy require-
ment. Since these transformations are all some instances of affine transformations (linear transformation +
shifting), we have studied if a more general class of affine transformations can satisfy our security require-
ment.

• Information-theoretic Security First of all, we studied if information-theoretic security is possible.
Since computational security would most probably require to introduce some new assumptions (since
cryptography over real numbers has not received too much attention so far), achieving information-
theoretic or at least statistical security would be really preferable. Theoretically, it could be achieved
by introducing more dimensions to the feasible region and encoding a scaled/shifted initial feasible
region as some projection. However, even if we are able to encode all possible shapes as some non-
trivial projection, we will still have problems with scaling. The idea behind the proof is that an
affine transformation preserves distances between the hyperplanes, and although the distances in the
transformed feasible region may also depend on the randomness, they still depend also on the initial
distances, what makes the difference traceable in average. The particular construction used as a
counterexample can be seen in [34].

Since in our counterexample we had to use the assumption of perfect secrecy, we did not give up and
started studying computational security.

• Computational Security We could still hope to hide the initial feasible region by using an affine
transformation in such a way that it would be computationally difficult to recover it. We studied
the methods used in the previous works and proposed our own affine transformations, but they still
were obviously vulnerable. We tried to understand what is the reason why all the proposed methods
fail. The problem is that all the hiding except scaling and permutation requires introducing additional
variables (even multiplication by an invertible matrix from the left in general cannot be done without
introducing slack variables first). And both in the previous works and in our solutions, these new
variables have been distinguishable by their behaviour, so that permutation has not helped to hide
them. After being revealed, these variables can be removed by gaussian elimination, thus undoing all
the hiding that they provide.

For that reason, we empirically state the necessary requirement: for a security parameter t, any set
of t variables should look the same to the adversary. However, if we want this claim to hold for a
reasonable t, it should hold at least for t = 2. We have tried to define the properties of a feasible
region that would satisfy this requirement. It has turned out that the only suitable geometric shape
is a simplex: a polyhedron defined by an equation {(x1, . . . , xn) | x1 + . . .+ xn ≤ c} and inequalities
x1 > 0, . . . , xn ≥ 0 for some c ≥ 0. Such a linear program has only one dimension and hence cannot
be used to encode anything reasonable. The full proof can be found in [34].

13

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

3.4 Conclusions

We have shown that the current approaches towards transformation-based privacy-preserving outsourcing or
multiparty linear programming are unlikely to be successful. Success in this direction requires some radically
new ideas in transforming polyhedra and/or in cryptographic foundations violating the rather generous
assumptions we have made. We conclude that for solving linear programming problems in privacy-preserving
manner, cryptographic methods for securely implementing Simplex or some other linear programming solving
algorithm are the only viable approach.

14

Chapter 4

Privacy-Preserving Execution of Finite
Automata

A deterministic finite automaton (DFA) over an alphabet Σ is a tuple A = (Q, q0, δ, F), where Q is the set of
states, q0 ∈ Q is the initial state of the automaton, F ⊆ Q is the set of accepting states and δ : Q×Σ→ Q is
the transition function. The transition function can be extended to have the type Q×Σ∗ → Q, by defining
δ(q, ε) = q and δ(q, sa) = δ(δ(q, s), a) for all q ∈ Q, s ∈ Σ∗ and a ∈ Σ. The automaton accepts a string s if
δ(q0, s) ∈ F .

A non-deterministic finite automaton (NFA) is also a tuple A = (Q, q0, δ, F), but now δ is a function with
the type Q× Σ→ 2Q. It can again be extended to the arguments of type Q× Σ∗ by defining δ(q, ε) = {q}
and δ(q, sa) =

⋃
q′∈δ(q,s) δ(q

′, a). The automaton accepts a string s if δ(q0, s) ∩ F 6= ∅.

4.1 Problem description

We have a private string over the alphabet Σ (which is public). As it is difficult to hide the size of inputs
without applying a lot of padding, we assume that the length of the string is public. The individual
characters, however, are sensitive data.

We also have a private finite automaton. Again, we are not trying to hide the size of our inputs, hence
we assume that the number of states |Q| is public. The transfer function δ and the set of accepting states
F are, however, private.

We want to compute whether the automaton accepts the string. The result must remain private, too.
“Privacy” may mean many different things, depending on the number of parties in the system, the

coalitions which know or may know different data items, and the potential collusions between parties. We
are considering the most general setup described also in D5.2.1 [7, Chap. 1]. We are working in the Arithmetic
Black Box (ABB) model. In this model, the protocol set for SMC, run by the parties, is such that some
kind of private storage is implemented. Values held in this private storage can become public only if several
of the computing parties cooperate. The input string and the description of the automaton are kept in
this private storage. We want to execute the automaton in this string so, that the result of this execution
is added to the private storage while nothing about the inputs is made public. Private computation tasks
implemented in such manner are universally composable, meaning that the security of some composition of
these tasks follows from the security of each task separately.

4.2 Private selection

If privacy were not an issue, then one checks whether a DFA A accepts a string s = a1 · · · a` by computing
q1 = δ(q0, a1), q2 = δ(q1, a2), . . . , q` = δ(q`−1, a`) and checks whether q` ∈ F . The function δ is typically
given in tabular form. I.e. to find δ(q, a), one has to locate the cell (q, a) of δ and read its contents. Such
operation is typically much more expensive if the index of the cell is private. Indeed, in this case, the

15

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

selection algorithm must “touch” all1 cells of δ, otherwise one would reveal which cells definitely do not
correspond to (q, a). At each cell, the selection algorithm typically has to perform some non-free operations
with private values2. A typical example of private selection performs the scalar product of the table with
the characteristic vector of the index. The computation of the characteristic vector requires Ω(|δ|) work.

We have shown how almost all expensive operations of a private selection can be moved offline, i.e.
performed before the automaton and/or the input string are available [36]. In the online phase, we have to
perform only a couple of multiplications of private values, irrespective of the sizes of Q and Σ. We will now
describe our protocols for that.

We use the usual notation [[v]] for the value v stored in the ABB. The notation [[v1]] op [[v2]] denotes
the computation of v1 op v2 by the ABB (translated to a protocol in the implementation of the ABB).
Let a private table v with m elements be given, let the indices of the cells be i1, . . . , im (these indices are
public and we require them to be non-zero). We require that both i1, . . . , im and the elements of the table
vi1 , . . . , vim are elements of a finite field F with at least m+ 1 elements. There exist protocols for generating

a uniformly random element of F inside the ABB (denote: [[r]]
$← F), and for generating a uniformly random

non-zero element of F together with its inverse (denote: ([[r]], [[r−1]]) $← F∗). These protocols require a small
constant number of multiplications on average for any ABB [17]. For any I = {i1, . . . , im} there also exist
Lagrange interpolation coefficients λIj,k depending only on the set I, such that for any polynomial V over F

with degree at most m − 1 we have V (x) =
∑m−1

j=0 cjx
j , where cj =

∑m
k=1 λ

I
j,kV (ik). These coefficients are

public and can be computed in the offline phase, too.

Our private selection algorithm Alg. 8 receives as inputs the private values [[vi1]], . . . , [[vim]] and the private
index [[j]], where j ∈ {i1, . . . , im}. It responds with the private value [[vj]]. The work of this algorithm is
divided into three phases. During the vector-only phase the table ([[vi1]], . . . , [[vim]]) is available, while [[j]]
can be used only in the online phase. This corresponds to common use cases (e.g. spam filtering), where
the DFA is known before the actual input string.

Algorithm 8: Private selection protocol

Data: Vector of indices i1, . . . , im ∈ F\{0}
Data: Vector of values ([[vi1]], . . . , [[vim]]) with vi1 , . . . , vim ∈ F.
Data: Index [[j]] to be looked up, with j ∈ {i1, . . . , im}.
Result: The looked up value [[w]] = [[vj]].

1 Offline phase

2 ([[r]], [[r−1]]) $← F∗

3 for k = 2 to m− 1 do [[rj]]← [[r]] · [[rj−1]] Compute the coefficients λIj,k from i1, . . . , im.

4 Vector-only phase

5 foreach k ∈ {0, . . . ,m− 1} do [[ck]]←
∑m

l=1 λ
I
k,l[[vl]] foreach k ∈ {0, . . . ,m− 1} do [[yk]]← [[ck]] · [[rk]]

Online phase

6 z ← retrieve([[j]] · [[r−1]])
7 [[w]] =

∑m−1
k=0 z

k[[yk]]

Algorithm Alg. 8 represents the vector (vi1 , . . . , vim) as a polynomial V (x) =
∑m−1

k=0 ckxk, such that
V (ik) = vik . The value V (j) is computed as

∑m−1
k=0 (jr−1)k(ckrk), where r is a random non-zero element

of F. In this way, jr−1 is also a random non-zero element of F and may be made public. The private
random element r together with its inverse r−1 and its powers can be computed in the offline phase while
the coefficients ci of V and the products ckr

k can be computed in the vector-only phase. In the online
phase, we perform a single multiplication (to find jr−1) with private values, and a single declassification.

1Unless the table has been somehow scrambled before, as in implementations of Oblivious RAM [21]
2All operations except the computation of linear combinations of private values with public coefficients; which does not

require any expensive computations or communication in any existing implementations of ABBs

16

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Algorithm Alg. 8 can be used with any ABB implementation that operates on elements of a finite field of
sufficient size, and it inherits the security guarantees of the ABB.

The complexity of private selection is thus shifted to the offline and vector-only phases. In the vector-
only phase we still perform m multiplications with private values (while computing [[yk]]). For certain ABB
implementations, it is possible to avoid that cost. Namely, for ABBs based on Shamir’s secret sharing [46]
and using the Gennaro-Rabin-Rabin multiplication protocol [27], the computation of the scalar product of
two private vectors is no more expensive than a single multiplication of private values. We hence rewrite
the vector-only and online phases of the private selection protocol as depicted in Alg. 9.

Algorithm 9: Improved vector-only and online phases of the private lookup protocol

Data: Lagrange interpolation coefficients λIj,k
Data: Random non-zero [[r]] and its powers [[r−1]], [[r2]], . . . , [[rm−1]].
Data: Vector of values ([[vi1]], . . . , [[vim]]) with vi1 , . . . , vim ∈ F.
Data: Index [[j]] to be looked up, with j ∈ {i1, . . . , im}.
Result: The looked up value [[w]] = [[vj]].

1 Vector-only phase

2 foreach k ∈ {0, . . . ,m− 1} do [[ck]]←
∑m

l=1 λ
I
k,l[[vl]] Online phase

3 z ← retrieve([[j]] · [[r−1]])
4 foreach j ∈ {0, . . . ,m− 1} do [[ζj]]← zj [[rj]] [[w]] = ([[c0]], . . . , [[cm−1]]) · ([[ζ0]], . . . , [[ζm−1]])

Compared to Alg. 8, we have moved the entire computation of the products zj [[cj]][[r
j]] to the online phase,

thereby reducing the vector-only phase to the computation of certain linear combinations. The complexity
of the online phase has increased by the computation of the scalar product in the last line. The total cost
of the online phase is thus two multiplications and one declassification.

4.3 DFA execution

Private selection is all that we need to execute a private DFA on a private string. For a string of length `,
we sequentially perform ` private selections to find [[q1]], . . . , [[q`]]. Finally, we will perform one more private
selection on the characteristic vector of the set of accepting states F , using q` as the index. In this way, we
have emulated the sequential DFA execution algorithm.

One can also execute a DFA A = (Q, q0, δ, F) on a string s = a1, . . . , a` in a parallel manner. For any
t ∈ Σ∗, let δ(·, t) : Q→ Q be the mapping we get from δ (extended to Q×Σ∗) by fixing its second argument
as t. The function δ(·, ε) is the identity function on Q and the equality δ(·, t1t2) = δ(·, t2) ◦ δ(·, t1) holds for
all t1, t2 ∈ Σ∗. If all functions are represented in tabular form, then the computation of the composition
requires |Q| lookups. We can now compute δ(·, s) in a divide-and-conquer fashion, and then check whether
δ(q0, s) ∈ F . The computation requires log ` “steps”. The total amount of work is |Q| times the work
performed by the sequential execution.

We have not implemented the parallel version of the DFA execution algorithm in privacy-preserving
manner, using our private selection algorithm as a subroutine. For certain parameters (small —Q— and
large `), this algorithm may in practice perform much better than the sequential algorithm, due to its smaller
round complexity.

4.4 NFA execution

Due to their non-deterministic nature, NFAs are more complicated to handle in a secure manner. We see
that even though the NFA execution starts from a single state, after the intermediate steps it can generally
be in a subset of states. In order to account for this, we will use characteristic vectors of the intermediate

17

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

sets Qi = δA(a1 · · · ai) to represent them. Let qi = (qi0, q
i
1, . . . , q

i
m−1) be a binary vector, where qij = 1 iff

the state qj ∈ Qi.
As Q0 = {q0}, we have q0 = (1, 0, . . . , 0). Subsequent qi-s will depend both on the given automaton A

and the string s. Namely, in order to determine qi from qi−1, δ and ai, we can compute

qij =
∨

q∈Qi−1

[qj ∈ δ(q, ai)] =
m−1∨

k=0

qi−1k &[qj ∈ δ(qk, ai)] (4.1)

for all the components qij of the characteristic vector qi.
In order to determine efficiently whether qj ∈ δ(qk, ai), we need an efficient representation of δ as well.

We will represent it as a look-up table δ : Q×Q → P(Σ), where ai ∈ δ(qk, qj) iff qj ∈ δ(qk, ai). To encode
subsets of Σ, we will once again use characteristic vectors; let S ⊆ Σ be encoded by vector s = (s1, . . . , sn)
where si = 1 iff the corresponding σi ∈ S. Similarly, we also represent the characters of the string using
binary characteristic vectors a1, . . . ,a`, where ai = (a1i , . . . , a

n
i) and aji = 1 iff ai = σj . As a result, the value

of the predicate qj ∈ δ(qk, ai) can be computed as a dot product δ(qk, qj) · ai.
The complexity of NFA execution is significantly higher than DFA execution. Some of its steps can also

be performed offline. Namely, the disjunction in (4.1) can be computed by adding up the elements and
comparing the result to 0 (and flipping the outcome) [37]. Working in a suitable field, comparison to 0 may
be implemented using just one round of online multiplications using the protocol by Lipmaa and Toft [40]
(though some precomputation is necessary).

4.5 Applications of our results

We have shown that arithmetic black boxes support fast lookups from private tables according to a private
index. We have used this operation to obtain very efficient DFA execution algorithms. Our results show
that for private lookups in an ABB, complex techniques based on Oblivious RAMs [21] are not necessary.
We expect our techniques to have wide applicability in privately processing graph-like data structures.

18

Chapter 5

Public Verifiability for Parties in SMC

In this chapter we propose a method that allows to detect the parties that have violated the protocol rules
after the computation has ended, thus making the protocol secure against covert attacks. This approach
can be useful in the settings where for any party it is fatal to be accused in violating protocol rules. In this
way, up to the verification, all the computation can be performed in semi-honest model, which makes it very
efficient in practice. The verification is statistical zero-knowledge, and it it based on linear probabilistically
checkable proofs (PCP) for verifiable computation. Hence each malicious party is detected with probability
1 − ε for a negligible ε that is defined by the failure of the corresponding linear PCP. The initial protocol
has to be executed only once, and the verification requires in total 3 additional rounds. The verification also
ensures that all the parties have sampled all the randomness from an appropriate distribution. Its efficiency
does not depend on whether the inputs of the parties have been shared, or each party uses its own private
input.

5.1 Introduction

The semi-honest and the malicious model are the two main models in which cryptographic protocols are
studied. In the semi-honest model, the adversary is curious about the values it gets, and it tries to extract
information out of them, but it follows the protocol rules honestly. In the malicious model, the adversary
is allowed to do whatever it wants. In addition to these traditional models, a notion of covert security was
proposed in [2]. In this model, the adversary is malicious, but it will not cheat if it will be caught with a
non-negligible probability, which can be defined more precisely as a security parameter. This notion is very
realistic in many computational models, where the participants care about their reputation and will not
cheat even if this probability is not close to 1.

Some works have been dedicated to covert security [38, 19], where [38] treats the security for two-party
computation based on garbled circuits, both the covert and the malicious cases, and [19] deals with honest
majority protocols for an arbitrary number of parties. A more precise definition of covert security with
public verifiability has been proposed in [1]. This allows the cheater to be blamed publicly.

5.2 Our Contribution

In this work we propose a scheme that is based on succinct computation verification. Our work is closely
related to [19] that is dealing with honest majority protocols for an arbitrary number of parties. The
solution proposed in [19] is based on running the initial protocol on two inputs, the real shares and the
dummy shares. In this case, the real shares should be indistinguishable from random, and hence in the
beginning the protocol is being rewritten to a shared form. Differently from [19], our solution does not
require rewriting the original protocol. The original protocol has to be run only once, and each malicious
party is detected with probability 1− ε for a negligible ε. Our approach is statistical zero-knowledge, and it
it based on linear probabilistically checkable proofs for verifiable computation. The particular PCP that we

19

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

are using is the one proposed in [4]. The quantity ε is defined by the failure of the corresponding linear PCP
behind the protocol. The verification requires in total 3 additional rounds. Additionally, it ensures that all
the parties have sampled all the randomness from an appropriate distribution.

The major drawback of our scheme is that the number of values sent per one round is exponential in
the number of parties. In [19], efficiency is achieved by reducing the probability of being detected from
1/2 to 1/4. We cannot use the same approach in our case since the probability of being detected would
immediately become negligible. Nevertheless, the settings make the verification very efficient for a small
number of parties.

Similarly to [19], we prove the security of our scheme in UC model [14].

5.3 Protocol Description

This section gives a general overview of the protocol. We state the assumptions on which our protocol is
based, describe which precomputation has to be performed before running the original protocol, and which
messages should be sent in addition to the initial ones during the execution. We briefly explain what happens
in the final verification, without going into details. Similarly to [19], all the inputs and the communication
values are committed, but in a special shared way, using signatures. Due to the sharing, the signatures do
not have to hide the messages at all, and should be rather perfectly binding. The entire verification is still
zero-knowledge.

5.3.1 Notation

Throughout this chapter, we use the following notation:

• the upper case letters A denote matrices;

• the bold lower case letters b denote vectors;

• 〈a,b〉 denotes the scalar product of a and b;

• (a||b) is a concatenation of vectors a and b.

5.3.2 Assumptions

Our verification protocol is based on security of some other schemes. Here is the list of used assumptions.

• Secure point-to-point channels between each pair of parties.

• Broadcast channels between subsets of parties.

• Honest Verifier Statistical Zero-Knowledge Linear Probabilistically Checkable Proofs for verifiable
computation [39, 26, 4, 6]. In particular, all the complexity estimations in this chapter are based on
the solution proposed in [4].

• Functionality that allows to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. This allows to protect the initial protocol from halting
problem (when the computation cannot proceed due to some malicious party that is either just doing
nothing, or causes some other party to wait by sending wrong messages). We use the solution proposed
in [19].

20

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

5.3.3 The Protocol Outline

We describe briefly the initial settings, and how the new verifiable protocol differs from the original one.

• In the initial settings, we have a set of arithmetic circuits Cji over some finite field F, where Cji is the

circuit computed by the party Mi on the j-th round of computation. Some outputs of Cji may be used

as inputs for some Cj+1
k , so there is some communication between the parties. Each circuit may use

some randomness that comes from random uniform distribution in F (this is sufficient to model any
other distribution). The circuits could be boolean as well, since there also exist linear probabilistically
checkable proofs based on boolean circuits [39], so our verification is not restricted to computation
over some certain field.

• The computation is performed by n parties. Let them be denoted Mi for i ∈ {1, . . . , n}. A necessary
condition is that at least t = bn/2c+ 1 are honest.

• Before the execution of original protocol starts, the inputs of the parties are committed in a special
way. Let the input of the party Mi be represented by a vector xi over F. Mi represents xi as

(
n−1
t

)

distinct sums of the form xi =
∑

k∈Tj xikTj for j ∈
{

1, . . . ,
(
n−1
t

)}
, where each Tj represents a distinct

subset of t other parties, and k corresponds to one particular party in that subset. The idea is that
each party has to prove its honestness to any subset of t other parties. All the shares are signed and
distributed amongst the corresponding parties. Although the number

(
n−1
t

)
is exponential, computing

all t ·
(
n−1
t

)
signatures is not less efficient than computing just one, for example using hash Merkle tree.

• The randomness used in the protocols should also be committed in the same way. Moreover, we want
to ensure that it indeed comes from random uniform distribution, without revealing to anyone its
value.

– Let an arbitrary set of t parties be responsible for generating the randomness. Let these parties
be called “generators”. By honest majority assumption, at least one of them is honest. For each
Mi, they generate the randomness ri as follows. Each generator Mj generates rji of the same
length that ri should be. The idea is to take ri = ri1 + . . .+rit. Since at least one party is honest,
the vector ri comes from a random uniform distribution.

– Each generator Mj represents its rij as
(
n−1
t

)
distinct sums of the form rij =

∑
k∈T` rijkT` for

` ∈
{

1, . . . ,
(
n−1
t

)}
. All the shares are signed and sent to Mi. After Mi receives rij from all

generators Mj , it may compute the sum of all rij and use it as ri (Mi has to verify if the shares
for different sets T` indeed all represent the same value). Then Mi signs all the received shares also
by itself, and distributes the shares and the signatures (both signed by Mi and the corresponding
generator Mj) amongst appropriate subsets of t parties, similarly to xi.

• The original protocol is computed in the same way as before. Additionally, each communicated vector
c`ij sent by Mi to Mj on the round ` is presented as

(
n
t

)
distinct sums c`ij =

∑
k∈Tj′ c

`
ijkTj′

(here we

have
(
n
t

)
instead of

(
n−1
t

)
since both communicating parties should later verify the consistency of this

value from each other). Along with each c`ij , Mj receives the signature of c`ij and the signatures of

all the shares c`ij`kTj′
. Mj checks if the signatures are all indeed valid, and in turn signs them. Mj

distributes the corresponding signatures (both signed by Mi and Mj) amongst each Tj . Here Mj is
unable to check whether the shares under the signatures are valid and indeed sum up to c`ij . All the

shares will be distributed after the protocol execution, and then Mi may present the signature of c`ij
to complain.

• After the protocol computation ends, all the communication shares are finally distributed. Each party
Mj is verified for honestness. A party is honest iff it can prove that it acted according to the protocol,
given the signed input, randomness, and communication that it had with the other parties. It has to

21

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

perform a 3-round interactive proof with each subset of t parties in parallel. Since each subset of t
parties holds all the shares of all the committed values, they are able to reconstruct the committed
values and check if the proof indeed corresponds to them.

In general, in a linear PCP the prover has to prove the knowledge of a vector π = (p||d) such that
certain combinations of 〈π,qi〉 for special challenges q1, . . . ,q5 should be equal to 0, and d corresponds
to the committed values. The problem is that the prover cannot see any of the qi before committing
the proof, but at the same time π should remain private.

In particular, for any subset of t verifiers, the following has to be done (ordered by rounds).

1. The verifiers agree on a random τ ∈ F that is sufficient to generate all q1, . . . ,q5 (in one round).
The prover generates shares π = π1 + . . . + πt (where the d part is shared in the same way as
it was committed to the given set of t verifiers) and distributes them amongst the parties. Each
verifier checks if the part that corresponds to d is consistent with the signatures of shares sent
during the computation.

2. Each verifier Vi computes and publishes 〈πi,qj〉 for j ∈ {1, . . . , 5}. The τ is published. Everyone
may compute 〈π1,qj〉+ . . .+ 〈πt,qj〉 = 〈π,qj〉 for j ∈ {1, . . . , 5} and locally verify the necessary
combinations. The prover checks if all the scalar products are computed correctly, and complains
if necessary.

A party is claimed honest iff it succeeds in all the
(
n−1
t

)
proofs against t other parties. This means that

even if it was in collaboration with t − 2 other malicious parties, there exists a subset of t all-honest
parties that will definitely accept only the correct proof. We also need to ensure that the presence of
malicious parties will not make the proof fail for an honest prover, and this can be done by revealing
the signatures that correspond to the shares of incorrect scalar products. An honest party is safe to
open them since they are known by the adversary anyway. The details of accusations and the security
proofs can be seen in [35].

5.3.4 Properties

In our settings, we have n parties Mi. Compared to the original protocol, for each Mi the proposed solution
has the following computational overheads.

• Let p =
(
n−2
t−1
)
. This is the number of t-sets in which one party participates as a verifier. If everyone

is honest, then in order to verify Mj ’s honestness, Mi has to send the following messages:

– In the initial protocol, send two signatures and tp+p vectors of length O(|C|) to each of the n−1
parties (tp for the randomness, and p for the inputs).

– During the protocol execution, in addition to the original protocol communication, send r(1 +n)
signatures to each of the n − 1 receiver parties, where r is the number of rounds (one signature
for the entire message and n for its shares). Each receiver Mj produces rn more signatures of the
same values (that correspond to the shares). All these signatures are distributed by each receiver
Mj amongst corresponding n− 1 remaining parties (including Mi).

– After the protocol execution, compute locally the auxiliary values for the proof in O(|C| log |C|)
steps, as shown in [4]. Send to each of the other n − 1 parties in parallel 1 + (n − 1) signatures
and p+ p(n− 1) vectors of length O(|C|): p for intermediate variables (for each proof separately,
signed with one signature), and p(n− 1) for communication.

As a verifier, in the verification process each Mi has to do the following:

– Locally generate, sign and broadcast a random element of F.

– Locally generate p state informations u and 5p challenge vectors qk of length O(|C|) (according
to the arithmetic circuit). This can be done in O(|C|) steps, as shown in [4].

22

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

– Locally sum up p times t2 vectors of length O(|C|).
– Locally concatenate 4 vectors of total result length O(|C|): the shares of the input, randomness,

communication, and the intermediate values. This is done p times, for each verification set.

– Locally compute 5p scalar products of vectors of length O(|C|) and broadcast them (5 for each
proof).

– In the end, compute a constant number of local operations based on these scalar products: 2
multiplications, 3 additions, 1 scalar product of length O(|v|) for the part of the input v whose
value is public (which is in general just the constant 1), all operations in F. Everything is done
p times, for each proof.

• If something goes wrong with the proof of Mj ’s honestness, then in the worst case each sent message
has to be sent in such a way that it is possible to prove afterwards what has been sent to whom. The
Ftransmit functionality from [19] requires each message to be broadcast to all n− 1 parties, and then
this message should be delivered by each of the n− 2 remaining parties to the receiver. No additional
signatures are needed since we have already considered all of them in the case where everyone acts
honestly.

According to the Linear PCP description from [4], a dishonest prover may cheat with probability 2m
|F|

where m is the number of multiplication gates in the circuit. This means that either the field should be large

enough, or the verification should be repeated k times, so that
(
2m
|F|

)k
is negligible. All the k verifications

can be done in parallel, by generating k sets of challenges instead of one, thus do not increasing the number
of rounds at all, and increasing the communication in total by p(n− 1)k field elements and p(n− 1)k proof
vector shares.

5.4 Using the Proposed Protocol in Secure Multiparty Computation
Platforms

In this section we discuss how the proposed verification could be used in Secure Multiparty Computation
Platforms. More precisely, here we should consider the case where in addition to computing parties (that
participate in the protocol) we may have input parties (that provide the inputs, sharing them in some way
amongst the computing parties) and the result parties (that receive the final output). In our protocol, the
computing parties do commit the inputs before the computation starts, but we must ensure that these are
indeed the same inputs that have been provided by the input parties.

5.4.1 Treating Inputs/Outputs as Communication

As a simpler solution, we may just handle the input and the output similarly to communication. Hence the
following enhancements are made.

1. Let the number of input parties be N . In the beginning, each input party Pi generates the shares
xi1, . . . ,xin (according to an arbitrary sharing scheme) from all the computing parties M1, . . . ,Mn, as
it would do without the verification. Each Mj should now use the input vector xj = (x1j || . . . ||xNj),
where each xij is provided by an input party Pi. Now, for each xij , Pi generates by itself all the

(
n−1
t

)

shares xijkT` such that
∑

k∈Tj xijkT` = xij , signs all these shares, and sends them to Mj . As before,
Mj should also sign all of these shares before redistributing them amongst all the verifier t-sets. The
verifiers should now check both signatures, similarly to how it was done to communication.

2. In the end, each receiver partyRi gets the shares yi1, . . . ,yin from all the computing partiesM1, . . . ,Mn.
Now each Mj has to generate

(
n−1
t

)
sums

∑
k∈Tj yijkT` = yij , exactly in the same way as it would

do with an ordinary communication value. Mj sends the shares and their signatures to Pi, and Pi
redistributes them amongst the t-sets. In the verification process, they check both signatures, similarly
to how it was done to communication.

23

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Since the parties Pi and Ri do not participate in the computation, they do not have to participate in
the verification. However, they will still be punished if they provide multiple signatures for the same value.

5.4.2 Possible Issues

The main drawback of the previous proposition is the numerous amount of signatures that the computing
parties may have to check. While in the initial scheme each party Mj has to provide just one share xjkT`

for each party Mk in each T`, now it has to provide N shares, where N is the number of input parties, and
all their signatures have to be checked (for Mj it is still sufficient to use just one signature, but it does not
help much). Depending on the settings, N can be very large. In the worst case, each input party provides
only one bit, and hence N ∈ O(|C|). However, each computing party would have to verify the source of all
the inputs anyway. For Pi, sending t ·

(
n−1
t

)
shares instead of one is not worse since all the values used by

the same Pi may have the same signature. The problem comes when Mj wants to redistribute the shares
and the signatures to all T -sets, since each receiver will again have to check all N of them. Fortunately, this
happens only in the beginning and in the end of the protocol.

Additionally, depending on the performed computation, the covert security may just not work with the
input parties, especially in some anonymous statistical projects. Any participant may cheat without reason
and complain afterwards. In our scheme, the verification of input share signatures is done already in the
beginning, an hence the computing parties will not spend their time on clearly malicious parties whose
shares do not correspond to their signatures. The problem still remains with the output, since the malicious
output party Ri may sign wrong values just for fun, without fear of being detected. However, since such
cheating would require just one additional broadcast (revealing the signatures to everyone), this is not too
much different from the case if Ri has not complained. In any case, even if no one complains, it may still
be some kind of attack where the input party is completely honest, but it just performs the computation
without needing.

5.4.3 Deviations from the Initial Settings

In real Secure Multiparty Computation Platforms, it may happen that the number of input parties is initially
unknown. For example, in the case of some statistical computation, the input parties may come and submit
their inputs during the execution, and hence the shape of the computational circuit may be even unknown
in the beginning, since the input length is undefined. Nevertheless, the proposed techniques still work. The
coming input parties may commit the inputs as they come. In the end of the computation, the structure of
the circuit will be known anyway.

5.5 Conclusions and Future Work

In this work we have proposed a scheme that allows to verify the computation of each party in a passively
secure protocol, thus converting passive security to covert security. Each malicious party will be detected
with probability close to 1, depending on the parameters of selected field.

While our verification is being done only after the entire computation has ended, it might be interesting
to do something more similar to the active security model. Namely, we could require each party to prove
the correctness after each round. If implemented straightforwardly, repeating our verification algorithm on
each round, it multiplies the verification complexity by the number of rounds (actually, a bit less since in
the beginning the vectors will be of smaller length). Doing it more cleverly, we could make use of the proofs
of the previous rounds, making the next proof steps reliable on the proofs of the previous steps. The ideas
can be taken for example from [15].

24

Chapter 6

Actively Secure Two-Party Computation
with Precomputing

This chapter introduces two initialisations of actively secure two-party computation and new ideas for
precoputation using additively homomorphic encryption. The main focus of secure computation in the
precomputation model is usually on improving the efficiency of the online phase. However, the efficiency of
the precomputation phase is also of importance. This work proposes ideas based on packing several values
to one ciphertext to improve precomputation based on additive secret sharing. In addition, a symmetric and
asymmetric setting for secret sharing are introduced where the symmetric gains most from the improved
precomputation.

The aim of this work is to adapt the SPDZ general actively secure computation framework [24] for the two-
party case and focus on optimising the precomputation phase. An important distinction between our work
and SPDZ is that we use an additively homomorphic cryptosystem instead of the somewhat-homomorphic
cryptosystem for the precomputation phase. We prefer an additively homomorphic cryptosystem because
it is more conventional, easier to implement and currently more thoroughly studied. The resulting protocol
set is implemented in Sharemind version 3 [47].

6.1 Related work

Secure computation is currently an active research field and has reached the state where is is efficient enough
for practical applications. The work is mainly divided to three branches, one focusing on the development
of garbled circuits, the second on secure multi-party computing on secret shared elements and the third
on fully homomorphic encryption. This work is about the latter and considers secure computations on
secret shared data. Sharemind is one of the more mature secure multi-party computation frameworks that
currently offers passive security guarantees [12, 13]. This work uses the principles also combined in the
SPDZ framework [24] to add an actively secure protocol set to the Sharemind framework.

Our protocols are divided between the online and offline world also known as the precomputation model.
The precomputation model originates from Beaver [3] and has found wider usage in SMC after [22] as it has
been used by [18, 23, 5, 41, 24]. Firstly, the precomputation phase is independent of the secret information
and produces some random shares or sets of shares in a specific relation. Secondly, the online phase uses
the secrets and the precomputation results to efficiently evaluate necessary functions.

The SPDZ framework utilises three important tools: oblivious message authentication codes (MAC) [45],
Beaver triples [3], and vectorized homomorphic encryption [28, 48]. The first is used to ensure security
against an active adversary and the second as a precomputation mechanism for multiplication. These two
have been previously used together for SMC in BDOZ [5]. However, SPDZ adds an important idea that
MAC is used to authenticate the shared secret as a whole and not for authenticating independent shares.

Vectorised somewhat-homomorphic encryption is used to generate Beaver triples in a communication-
efficient way and is a SPDZ-specific property. Currently, SPDZ precomputes Beaver triples and single

25

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

random shares. The covertly secure extension of SPDZ [20] also precomputes squaring pairs analogously to
Beaver triples and shared bits for comparison, bit-decomposition, fixed point and floating point operations.
It is an open question if other operations can be efficiently precomputed.

Our work also uses oblivious MAC and Beaver triples, but differently from SPDZ we use additively
homomorpic Paillier cryptosystem [42] instead of fully homomorphic encryption.

6.2 Secure two-party computation

We require three things for secure computation that is secure against an active adversary: definition of
the share, protection mechanisms to ensure the correctness of the computation results, and computation
protocols. We use additive secret sharing and homomorphic message authentication as our main protection
mechanism. In addition, the secret sharing method and homomorphic MAC should have the same operations
that can be computed locally.

6.2.1 Possible setups

Frameworks analogous to SPDZ can be used with two computing parties and could have three considerably
different initialisations. The main difference between them is the setup and means of using the MAC
algorithm. Two parties are denoted by CP1 and CP2.

Asymmetric setup

Asymmetric setup differentiates the computing parties so that one gets the role of a master node (CP1)
who defines the MAC key and the client (CP2) is using the keys from the master. Using the MAC to either
authenticate the secret value or the share of the other party enables CP1 to easily verify the correctness
of the declassification result. However, CP2 is unable to verify the MAC as it must not know the MAC
secret key. It is up to the master to also define something that CP2 can check. For example, we can use
commitments.

The MAC tag for the whole value or the share of CP2 can not be kept by the master node. MAC
algorithms are not designed to protect the privacy of the message. Thus, seeing the whole tag might leak
the secret to the master node, who also knows the MAC secret key. In addition, storing the tag on the
side of CP2 might also leak some information about the secret or the key. Hence, we need to store the
tag t in a secret-shared manner and both parties must be able to update their parts of the tags during the
computation.

For our initialisation of the asymmetric protocol set, we use a MAC algorithm defined as t = k ·x mod N
for tag t, key k, Paillier modulus N and secret value x. In addition, we use additively homomorphic perfectly
binding commitments based on the Paillier’ cryptosystem that the party CP2 can verify. This results in the
fact that all our computations will be with respect to the Paillier modulus.

Each secret value x is represented by a tuple

[[x]]N = 〈∆, x1, x2, r, ([x1])pk, z1, z2〉
such that x = x1+x2+∆ mod N and z1+z2 = k ·(x1+x2) mod N . The values ∆ and ([x1])pk = Encpk(x1, r)
are public whereas CP i has private values zi and xi. The public modifier ∆ is always 0 for random values
and is used to enable fast addition of a share and public constant. Value r is kept by CP1 to open the
commitment to ([x1])pk of share [[x]]N . This randomness also enables us to write protocols so that actually
only CP2 computes ([x1])pk and CP1 recomputes the encryption if needed. This is a reasonable step because,
in reality, CP1 rarely needs this value.

Symmetric setup

A symmetric setup means that both computing parties define similar parameters. A direct continuation of
the previous asymmetric setting would be that both parties CP1 and CP2 in the symmetric setting define

26

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

their own MAC keys ki. This would mean that on top of the secret sharing method we have two MAC tags
z(1), z(2) where both parties can verify one of them during the declassification phase. As in the asymmetric,
case we need a to keep the tags in shares.

The main benefit of this setup over the asymmetric one is that the protocol descriptions would also
become symmetric. This simplifies the notation and also means that the parties can do exactly the same
workload in parallel. In some sense, this enables us to gain more efficient time usage. More precisely, it
is unlikely that in such protocols one party has to wait between sending and receiving network message
without having any computations to perform. Furthermore, we can only use the cheap MAC algorithm and
do not need more expensive homomorphic commitments that we used in the asymmetric case.

For our initialisation, we use the same MAC as for the asymmetric case for both of the participants, but
we use a different prime modulus p. We propose a share representation as

[[x]]p = 〈∆, x1, x2, z(1)1 , z
(1)
2 , z

(2)
1 , z

(2)
2 〉 ,

where x = x1 + x2 + ∆ mod p and ∆ is the public modifier. The remaining values belong to the MAC tags

as z
(i)
1 + z

(i)
2 = ki · (x1 + x2) mod p. Both parties know ∆ and, in addition, CP i has values xi, z

(1)
i and z

(2)
i .

Shared setup

The shared key model is a further extension changing the symmetric setup so that instead of both parties
defining a key they share one key k between them. This defines a threshold MAC algorithm where all parties
must participate in the verification of the tag. It can give additional efficiency gains as the parties only
have to update a single tag t during the computations. However, the sharing of the key k is special as it
has to define some additional information, allowing parties to verify the correctness of the restored key and
checked tags. The shared key setup is the approach currently used by the SPDZ framework, however, we
do not define our version of the shared setup.

There are well-known difficulties with shared approach as the knowledge of the secret key is usually
needed to verify the MAC tags. One possible solution is to not verify any opened results before all com-
putations are done. Afterwards, it is possible to restore the MAC key and verify all the results at once.
However, in such case parties can only notice cheating very late and they must agree on a new key before
next computations. In addition, changing the key means that after verifying the correctness of opened
values, the shares of the outputs or intermediate results from the checked computations can not be reused.

6.2.2 Protocols

The description of some SPDZ protocols is independent from the secret sharing method as long as the
scheme defines protocols for publishing shares privately to each computing or result party, generating a
random share, and generating random Beaver triples. There are three main protocols: classifying the secret
input, publishing the secret shared value, and multiplying two shared values. Classifying and multiplication
protocols depend on the precomputation protocols. Publishing is actually dependant on the share represen-
tation, but the overall idea remains the same - open the value and verify that the protection mechanisms hold.
We use these general protocols, but in addition have to define specific protocols for our share representation.
In addition, we use a common protocol for verifying the correctness of Beaver triples from [23].

Our protocols include the addition protocol for the online phase and random share and triple generation
protocols for the precomputation phase. The addition protocol is in a sense trivial, because we define our
share representation so that the addition can be done locally. For precomputation we need protocols that
generate either single random shares or random multiplicative triples. The main idea of the latter is that
we at first generate two random shares and then use some multiplication functionality to obtain the third
triple element. The main drawback is that we can not use the previously mentioned multiplication protocol
because it requires triples as input. Therefore we need special protocols for slow multiplication that are
discussed afterwards. All our protocols are fully specified in [43].

27

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

For practical computations, we would also need additional protocols. For example to compute division
or exponentiation. However, addition and multiplication, together with the supporting protocols to work
with secret sharing and precomputation, are sufficient for testing the feasibility of the proposed framework.

6.3 Beaver triple generation

In Beaver triple generation, we focus on the following question. Given two random elements a and b, we
want to find their product. The main algorithm that we can use is a basic additive share multiplication
using the Paillier cryptosystem. However, there is one problem with this algorithm, namely that it gives
correct results for the Paillier modulus, but we might want to use different moduli for our triples. The other
limitation is that if we are interested in very short a and b values compared to the Paillier modulus, then
the encryption plaintext will have a lot of unused bits and hence, the computations are not very efficient.
We try to overcome the first problem by introducing error correction and the second by packing several
elements into one ciphertext.

6.3.1 Packing

B-ary packing

Packing as B-ary numbers means that each element modulo M < B represents a digit and we pack them
as numbers of base B. A three-digit base-B number could be written out as

x = B2 · x3 +B · x2 + x1 ,

where xi < B are digits. If we assume, that y is written out in a similar manner, then the corresponding
multiplication becomes a degree 4 polynomial of B where we can learn x3y3 and x1y1, assuming that these
do not overflow a B-ary digit.

Packing as straightforward B-ary numbers is, therefore, not very beneficial, as we did not receive a
triple x2, y2, x2y2. However, we could consider another example, with x as before, but y is modified, giving
y = B6y3 + B3 · y2 + y1. After multiplying it out, xy contains all the triples xi, yi and xiyi, but also some
elements xiyj , i 6= j that we do not need. Thus, in this packing we only get the same number of triples as
the square-root of the number digits in the base-B representation of xy where the maximal size is limited
by the plaintext size and, therefore, it is not very space-efficient.

Another problem with using this approach in a straightforward manner is that we have to assume that
yixi < B, which essentially means that the result xy contains integer results of all triples as digits. However,
the common version of the Paillier multiplication would destroy this structure in the outcome. This packing
can be used with a redefinition of the randomiser in the Paillier multiplication, but it will also result in
decreased security. A version of partial B-ary packing was also introduced in [44], that also suffers from the
reduced security level.

Packing using the Chinese Remainder Theorem

The Chinese remainder theorem (CRT) can also be used for packing several elements into one ciphertext.
However, it can only be used, if we are using elements with pairwise coprime moduli pi. By definition, CRT
can be used to combine all those single random values xi modulo pi, for a modulus M = p1 · . . . · pk and
execute the triple generation protocol to obtain the corresponding third triple element xy modulo M . We
are interested in learning the shares for xiyi. The CRT allows us to reduce the final result xy respectively
for all moduli pi to learn the third triple element for all initial random value pairs. Therefore, we can learn
xiyi from xy mod M as xiyi = xy mod pi. Packing with CRT enables us to get exactly |M |-bit triples from
one execution of the triple generation protocol where the maximal size of M is bounded by the used Paillier
modulus.

28

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

However, in most use-cases, we would like to always use the same modulus p, not different pi. Actually,
we could use a modulus p < pi and convert the final results for different moduli pi to one modulus p using
the ideas from the following error correction section.

6.3.2 Error correction

Error correction is the most important part of the share conversion step. Here, share conversion means that
we have a secret value x shared using a modulus M1 and we need to obtain a sharing of x for a modulus
M2. In addition, we are only interested in cases where M2 ≤M1 and M1 is odd, because these are what we
need for using Paillier multiplication or packing with the Chinese remainder theorem. Especially, we have
some x = a · b mod M1 and we need to obtain x = a · b mod M2. By picking a and b, we can actually ensure
that a · b ≤M1, which means that the value x can be reduced as usual.

The second problem is that we are working with secret sharing either modulo M1 or M1. Initially, we
have shared value x = x1 + x2 mod M1 with shares x1 and x2 and we actually need to learn shares x∗1 and
x∗2 such that x = x∗1 + x∗2 mod M1.

There are two possibilities, x1 + x2 < M1 or 2M1 > x1 + x2 ≥ M1. If we are in the first case, then
x∗i = xi mod M2. However, for the second case x∗1 = x1 mod M2, but x∗2 = x2−M1 mod M2. These cases can
be distinguished easily using only the least significant bits of x, x1 and x2, because if x mod 2 = x1+x2 mod 2
then we are in the first case and otherwise in the second. Moreover, this condition can be securely checked
using oblivious transfer, if we know what the last bit of x should be. We can use this, for example, to instead
check the value 2x, where we know that the least significant bit is 0.

The main drawback of using 2x as a check value is that in such a case, we can not use modulus 2 as
any of our target moduli. However, it is usable for most use-cases, especially for transforming the Paillier
modulus to a prime modulus needed for the symmetric and shared versions of secure computation.

Finally, it would also be possible that instead of doing error correction we use values where the probability
of an error is small enough and use the triple verification procedure to check that the triple was indeed valid.

6.4 Conclusion

Current results show that actively secure multi-party computation is significantly slower than passively secure
versions. However, our results indicate that fully implemented symmetric protocol set could be close to the
performance of the SPDZ framework that is the current leader in actively secure multi-party computation
frameworks. In addition, achieving security against malicious adversaries can be very important for data
mining tasks that have important economical or societal outcomes. Therefore, in many cases the extra time
consumption is a reasonable trade-off for the additional layer of security.

In conclusion, the symmetric and possibly shared setups are the most reasonable setups for secure two-
party computation. Follow up work should focus more on specifying the missing details of the symmetric
setup and on achieving the setup phase of the shared setup.

29

Chapter 7

Comparison of oblivious sorting
algorithms

7.1 Introduction

Sorting is an important operation in privacy-preserving data analysis and data mining. In addition to its
obvious use in ordering data, sorting is used for finding ranked elements (top-k, quantiles), performing
group-level aggregations and implementing statistical tests.

In UaESMC deliverable D2.2.1 [8] we showed how sorting networks can be evaluated in SMC. In this
chapter, we concentrate on constructions based on oblivious shuffling and introduce further optimizations
for sorting networks.

7.2 Oblivious sorting techniques

7.2.1 Constructions based on comparisons

Comparison-based sorting algorithms use the comparison operation to determine the correct sequence of
elements of a given array. Such algorithms are inherently data-dependent, as the execution flow depends
on the outcomes of the comparison operations. Hence, changes in the input data will affect the running
time of the algorithm. A simple solution would be to evaluate all the branches of the sorting algorithm and
obliviously select the correct output in the end, but this dramatically reduces efficiency.

Hamada et al. [29] propose a generic solution to obliviously shuffle [37] the inputs before performing a
comparison-based sort. Then, as we are comparing values in a randomly shuffled vector, any declassified
(published) comparison results are also random. However, the pattern of comparisons in the algorithm can
still leak information, such as the number of equal elements in the input vector.

Because many SMC implementations have highly efficient vector operations, vectorized naive protocols
may sometimes be more efficient than protocols with a lower computational complexity and a lower degree of
vectorization. In this paper, we propose a naive sorting protocol based on shuffle and vectorized comparisons
called NaiveCompSort (Algorithm 10). In this algorithm, we first shuffle the input array and then compare
every element with every other element in the array in one big vector operation. Finally, we rearrange the
elements according to the declassified comparison results. This algorithm always works in the worst case
time of O(n2) and its runtime is, therefore, data-independent.

7.2.2 Constructions specific for bitwise secret-sharing schemes

If data is secret-shared using a bitwise secret-sharing scheme, access to individual bits is cheap. This allows
us to design a very efficient count/radix sorting algorithm. Counting sort [16, 25] is a sorting algorithm that
can sort an array of integers in a small range by first constructing a frequency table and then rearranging
items in the array according to this table. Algorithm 11 describes a counting sort algorithm for binary data.

30

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Algorithm 10: NaiveCompSort

Data: Input array [[D]] ∈ Zn
2k

Result: Sorted array [[D′]]
1 Let [[T]] = Shuffle([[T]])
// All comparisons here are done in parallel.

2 for i < j ∈ {1, 2, . . . , n} do
3 Let [[gi,j]] = [[Di]] ≤ [[Dj]]
4 end
5 Declassify the values [[gi,j]] and sort [[D]] according to them, obtaining [[D′]]
6 return [[D′]]

Algorithm 11: Counting sort algorithm for binary arrays.

Data: Binary input array D ∈ Zn2 .
Result: Array D′ ∈ Zn2 with elements of D in increasing order.

1 n0 ← n− sum(D); // Count number of zeros.

2 c0 ← 0; c1 ← 0; // Keep counters for processed zeros and ones.

// Put each element in right position:

3 foreach i ∈ 1 . . . n do
4 if Di == 0 then
5 c0 = c0 + 1
6 D′c0 = Di
7 else
8 c1 = c1 + 1
9 D′n0+c1 = Di

10 end

11 end
12 return D′

Radix sort [31] sorts an array of integers by rearranging them based on counting sort results on digits
in the same positions. Radix sort sorts data one digit position at a time, starting with the least significant
digit. This works as the underlying counting sort is a stable sorting algorithm. Algorithm 12 shows the full
protocol of oblivious radix sort that uses binary counting sort as a subroutine. The underlying counting
sort is made data-independent by obliviously updating counters [[c0]], [[c1]] and the order vector [[ord]]. Such
a data-independent counting sort is sufficient to make our radix sort data-independent as well.

As our radix sort algorithm does not use comparison operations, it is not bound by the computational
complexity lower bound of Ω(n log n) for comparison-based sorting algorithms. Counting sort has a complex-
ity of O(n) and radix sort on k-digit elements that uses counting sort as a subroutine, has a computational
complexity of O(kn). However, the data-independent counting sort protocol also uses addition and multi-
plication operations which are expensive protocols on bitwise shared data. Therefore, after creating a vector
with bits on a given position, we convert it to additively shared data and work in this domain. The output
of the algorithm is still in a bitwise form.

7.3 Optimization methods and matrix sorting

7.3.1 Vectorization

In their work, Hamada et al. parallelize the invocations of comparisons on secret-shared data as network
communication is the main bottleneck for SMC protocols. Such SIMD (single instruction, multiple data)
operations are very efficient as they allow to put messages of many parallel operations into a single network

31

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

Algorithm 12: Data-independent radix sort.

Data: Input array [[D]] ∈ Zn
2k

.
Result: Sorted array [[D]] ∈ Zn

2k
.

// Iterate over all digits starting with the least significant digit:

1 foreach m ∈ 1 . . . k do
// Construct a binary vector consisting of m-th digits.

// Convert it to additively shared data.

2 [[d]]← ShareConv(([[D1]]m, [[D2]]m, . . . , [[Dn]]m))
3 [[n0]]← n− sum([[d]]); // Count number of zeros.

4 [[c0]]← 0; [[c1]]← 0; // Keep counters for processed zeros and ones.

5 [[ord]]; // Keep n-element shared order vector.

// Put each element in the right position:

6 foreach i ∈ 1 . . . n do
7 [[c0]] = [[c0]] + 1− [[di]]
8 [[c1]] = [[c1]] + [[di]]

// Obliviously update order vector:

9 [[ordi]] = (1− [[di]]) ∗ [[c0]] + [[di]] ∗ ([[n0]] + [[c1]])

10 end
11 ([[D]], [[ord]])← Shuffle([[D]], [[ord]]); // Shuffle two column database.

12 ord← Declassify([[ord]])
13 Rearrange elements in [[D]] according to ord.

14 end
15 return [[D]]

message, saving on networking overhead. They did not only parallelize comparison invocations in a single
partitioning subroutine, but rather all the comparisons at each depth of the quicksort algorithm. For this
work we implemented the oblivious quicksort algorithm proposed in [29] as a reference, using the same idea
for parallelization.

Similarly, we vectorize all secure operations in our counting sort algorithm design. As sorting by a given
digit position is dependent on the previous position outcome, radix sort cannot be vectorized further. We
could apply counting sort on chunks of 2 or more bits and reduce the number of rounds for radix sort.
However, this requires substituting the cheap oblivious choice subprotocol for a more expensive comparison
protocol.

7.3.2 Changing the share representation

Both comparison-based sorting algorithms and sorting networks rely on the comparison operation. Compar-
ison is a bit-level operation and works faster on bitwise shared data. Therefore, we can convert additively
shared inputs into bitwise shared form and run the intended algorithm on the converted shares. The results
can be converted back to additively shared form at the end of the algorithm.

Converting additive shares to bitwise shares requires a bit extraction protocol. However, for algorithms
that perform many comparisons after one another, the benefits of many fast comparisons outweigh one
costly conversion.

7.3.3 Optimizations specific to sorting networks

In software implementations, the generation of sorting networks can take a significant amount of time. As
the sorting network structure is data-independent, we can store the sorting network after generation to
re-use it later.

32

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

If we shuffle the inputs before sorting, we can optimize the CompEx function implementations by declas-
sifying comparison results and performing the exchanges non-obliviously. The running time of the resulting
algorithm is data-independent because of the constant structure of the sorting network.

7.3.4 Sorting matrices

Sorting secret shared matrices using sorting networks is covered in UaESMC deliverable D2.2.1 [8].
Similarly, shuffle-based algorithms can be easily modified to support matrix sorting. Assume that our

input data is in the form of a matrix Di,j where i = 1 . . . n and j = 1 . . .m. Let us also fix a column k by
which we want to sort the rows.

First, we obliviously shuffle the rows in the whole matrix. Note that shuffling is already a part of
comparison-based sorting protocols like quicksort and NaiveCompSort. However, this extra step has to be
added for radix sort. Next, we extract the k-th column from the matrix and pass it to the sorting algorithm
of our choice together with an n-element index vector (1, 2, . . . , n).

The sorting protocol now swaps elements in the data vector and the index vector together. After sorting
these two vectors, we declassify the output index vector and use it as a permutation to rearrange rows in the
matrix. Declassifying the index vector leaks information on how the elements were rearranged. However, as
the input matrix was obliviously shuffled, this leaks no information on the original placement of rows in the
initial matrix.

7.4 Conclusion

We describe three designs for oblivious versions of known sorting algorithms—naive comparison-based sort,
quicksort and radix sort. As opposed to sorting networks, all of these perform some declassifications to
improve efficiency. Our novel oblivious radix sorting algorithm leaks less information than constructions
based on shuffling and declassified comparison results.

In addition, we recommend to use precomputing or caching of network structure for oblivious sorting
networks. In that case, the algorithm provides perfect privacy with a reasonable performance.

33

Bibliography

[1] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer
Science, pages 681–698. Springer, 2012.

[2] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols for
realistic adversaries. J. Cryptology, 23(2):281–343, 2010.

[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor,
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for c:
Verifying program executions succinctly and in zero knowledge. In CRYPTO (2), pages 90–108, 2013.

[5] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption
and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture
Notes in Computer Science, pages 169–188. Springer, 2011.

[6] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[7] Dan Bogdanov, Yiannis Giannakopoulos, Roberto Guanciale, Liina Kamm, Peeter Laud, Pille
Pruulmann-Vengerfeldt, Riivo Talviste, Kadri Tõldsepp, and Jan Willemson. Scientific Progress Anal-
ysis and Recommendations, January 2013. UaESMC Deliverable 5.2.1.

[8] Dan Bogdanov, Roberto Guanciale, Liina Kamm, Peeter Laud, Riivo Talviste, and Jan Willemson.
Advances in SMC techniques, January 2013. UaESMC Deliverable 2.2.1.

[9] Dan Bogdanov, Liina Kamm, Peeter Laud, Alisa Pankova, Pille Pullonen, Riivo Talviste, and Jan
Willemson. Advances in SMC techniques, January 2014. UaESMC Deliverable 2.2.2.

[10] Dan Bogdanov, Liina Kamm, Sven Laur, and Pille Pruulmann-Vengerfeldt. Secure multi-party data
analysis: end user validation and practical experiments. Cryptology ePrint Archive, Report 2013/826,
2013. http://eprint.iacr.org/.

[11] Dan Bogdanov, Sven Laur, and Riivo Talviste. A practical analysis of oblivious sorting algorithms for
secure multi-party computation. Submitted to ASIACCS 2014, 2014.

[12] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In Sushil Jajodia and Javier López, editors, ESORICS, volume 5283 of Lecture Notes in
Computer Science, pages 192–206. Springer, 2008.

[13] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance secure multi-party
computation for data mining applications. Int. J. Inf. Sec., 11(6):403–418, 2012.

[14] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145. IEEE Computer Society, 2001.

34

http://eprint.iacr.org/

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

[15] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature cards.
In Andrew Chi-Chih Yao, editor, ICS, pages 310–331. Tsinghua University Press, 2010.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, chapter 8.2 Counting Sort, pages 168–170. MIT Press and McGraw-Hill, 2nd edition, 2001.

[17] Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In
Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages
285–304. Springer, 2006.

[18] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous Multiparty
Computation: Theory and Implementation. In Stanislaw Jarecki and Gene Tsudik, editors, Public Key
Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 160–179. Springer, 2009.

[19] Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to covert security at low cost. In
Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages 128–145.
Springer, 2010.

[20] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, ESORICS, volume 8134 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2013.

[21] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious ram without
random oracles. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages
144–163. Springer, 2011.

[22] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 572–
590. Springer, 2007.

[23] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority: From passive to
active security at low cost. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 558–576. Springer, 2010.

[24] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

[25] Jeff Edmonds. How to Think about Algorithms, chapter 5.2 Counting Sort (a Stable Sort), pages 72–75.
Cambridge University Press, 2008.

[26] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct nizks without pcps. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages 626–645. Springer, 2013.

[27] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track multiparty compu-
tations with applications to threshold cryptography. In PODC, pages 101–111, 1998.

[28] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[29] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Practically Efficient
Multi-party Sorting Protocols from Comparison Sort Algorithms. In Proc. of ICISC’12, volume 7839
of LNCS, pages 202–216. Springer, 2013.

35

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

[30] Myles Hollander and Douglas A Wolfe. Nonparametric statistical methods. John Wiley New York, 2nd
ed. edition, 1999.

[31] Herman Hollerith. US395781 (A) - ART OF COMPILING STATISTICS. European Patent Office,
1889. http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=395781.

[32] Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. The American Statistician,
50(4):361–365, 1996.

[33] Peeter Laud and Alisa Pankova. New Attacks against Transformation-Based Privacy-Preserving Linear
Programming. In Rafael Accorsi and Silvio Ranise, editors, Security and Trust Management (STM)
2013, 9th International Workshop, volume 8203 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2013.

[34] Peeter Laud and Alisa Pankova. On the (Im)possibility of Privately Outsourcing Linear Programming.
In Ari Juels and Bryan Parno, editors, Proceedings of the 2013 ACM Workshop on Cloud computing
security, CCSW 2013, pages 55–64. ACM, 2013.

[35] Peeter Laud and Alisa Pankova. Verifiable computation in multiparty protocols with honest majority.
Cryptology ePrint Archive, Report 2014/060, 2014. http://eprint.iacr.org/.

[36] Peeter Laud and Jan Willemson. Universally composable privacy preserving finite automata execution
with low online and offline complexity. Cryptology ePrint Archive, Report 2013/678, 2013. http:

//eprint.iacr.org/.

[37] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious Database Manipulation.
In Proceedings of the 14th International Conference on Information Security. ISC’11, pages 262–277,
2011.

[38] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In Ran
Canetti and Juan A. Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2013.

[39] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear
error-correcting codes. IACR Cryptology ePrint Archive, 2013:121, 2013.

[40] Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sublinear online complexity.
In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, ICALP (2),
volume 7966 of Lecture Notes in Computer Science, pages 645–656. Springer, 2013.

[41] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new
approach to practical active-secure two-party computation. CoRR, abs/1202.3052, 2012.

[42] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[43] Pille Pullonen. Actively secure two-party computation: Efficient Beaver triple generation. Master’s
thesis, University of Tartu, Aalto University, 2013.

[44] Pille Pullonen, Dan Bogdanov, and Thomas Schneider. The design and implementation of a two-
party protocol suite for Sharemind 3. Technical report, Cybernetica AS Infoturbeinstituut, 2012.
http://research.cyber.ee.

[45] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In David S. Johnson, editor, STOC, pages 73–85. ACM, 1989.

[46] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

36

http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=395781
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://research.cyber.ee

UaESMC Deliverable D2.2.2 Advances in SMC Protocols

[47] Sharemind. http://sharemind.cyber.ee. Last accessed 2013-10-10.

[48] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. IACR Cryptology
ePrint Archive, 2011:133, 2011.

[49] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6):80–83, 1945.

37

http://sharemind.cyber.ee

Appendix A

Secure multi-party data analysis: end
user validation and practical experiments

The paper “Secure multi-party data analysis: end user validation and practical experiments” [10] fol-
lows.

38

Secure multi-party data analysis: end user
validation and practical experiments

Dan Bogdanov1, Liina Kamm1,2, Sven Laur2, Pille Pruulmann-Vengerfeldt3

1 Cybernetica, Mäealuse 2/1, 12618 Tallinn, Estonia
{dan,liina}@cyber.ee

2 University of Tartu, Institute of Computer Science, Liivi 2, 50409 Tartu, Estonia
swen@ut.ee

3 University of Tartu, Institute of Journalism, Communication and Information
Studies, Lossi 36, 51003 Tartu, Estonia

pille.vengerfeldt@ut.ee

Abstract. Research papers on new secure multi-party computation pro-
tocols rarely confirm the need for the developed protocol with its end
users. One challenge in the way of such validation is that it is hard to
explain the benefits of secure multi-party computation to non-experts.
We present a method that we used to explain the application models of
secure multi-party computation to a diverse group of end users in several
professional areas. In these interviews, we learned that the potential users
were curious about the possibility of using secure multi-party computa-
tion to share and statistically analyse private data. However, they also
had concerns on how the new technology will change the data analysis
processes. Inspired by this, we implemented a secure multi-party com-
putation prototype that calculates statistical functions in the same way
as popular data analysis packages like R, SAS, SPSS and Stata. Finally,
we validated the practical feasibility of this application by conducting an
experimental study that combined tax records with education records.

1 Introduction

Secure multi-party computation (SMC) has been researched and developed for
several decades. For years, SMC was rightfully considered too inefficient for
practical use. However, in recent years, several fast implementations have been
developed [2, 8]. Still, this powerful secure data manipulation tool has not become
as popular in practice as one would hope. People have managed without such a
technology for a long time and have replaced it with social solutions like non-
disclosure agreements and hoped that their shared data is kept safe by their
partners. Alternatively, they have legally been forbidden to do shared analysis.

Furthermore, SMC is not effective in every setting and knowledge about its
capabilities is still relatively uncommon. The goal of our research is to develop
usable and efficient SMC applications that meet the needs of the potential end
users and, through communicating those solutions, raise general awareness of
SMC in order to support sharing data without the fear of abuse.

At first, we directed our attention to the potential end users of SMC. We
interviewed several stakeholders from a variety of fields to find out whether data
holders see a need for this technology. As previous research has indicated, a
serious obstacle in user-driven innovation and involving users in the early stages
of development work is the problem of explaining such a complex technology to
the end-user who is rarely an expert [15, 23].

In order to overcome the communication challenge, we decided to describe
SMC visually. Our aim was to make it understandable and accurate, without
focusing on the mathematics behind SMC. Hence, in the models we designed
to assist the interview process, SMC is essentially a black box and different
stakeholders are shown to communicate with this box. Each of these stakeholders
has a set of roles that determines what that party is doing in the model.

We prepared 12 visual deployment models of SMC applications and used
them to interview 25 people from across different fields. We asked them whether
they can see a need for this technology in their field and what kind of social or
cultural obstacles they see in implementing such technology. We also asked them
to propose other fields that, in their opinion, could benefit from SMC.

The two most mentioned usage areas were statistical analysis and optimisa-
tion of supply and demand. We reviewed existing literature and saw that research
on cryptographically secure statistical analysis has largely been focused on pro-
tocols for a particular function. We decided to find our whether general SMC
can be efficient enough to support large-scale statistical data analysis.

Related work. To our knowledge, this is the first time that a study of this size
has been conducted to determine the real-world need for SMC. However, there
have been several efforts for implementing statistical functions.

Cryptographic primitives for evaluating statistical functions like mean, vari-
ance, frequency analysis and regression were proposed in [7, 9]. Early implemen-
tations of filtered sums and scalar products are described in [26]. Solutions based
on secret sharing include a protocol for mean value proposed in [20, 19].

In 2004, Feigenbaum et al. proposed to use SMC for analysing faculty incomes
in the annual Taulbee Survey [11]. The protocols designed for this study can be
found in [1]. In 2011, Bogdanov et al. deployed SMC for financial data analysis for
the Estonian Association of Information Technology and Telecommunications [3].
Kamm et al. have shown how to conduct secure genome-wide association studies
using secure multi-party computation [17].

Our contribution. We present a novel way for introducing SMC to non-
cryptographers and report the results of interviews we conducted with potential
end users of the technology. We analyse the responses of our interviewees and
identify their main expectations toward SMC.

As several interviewees reported a need for secure data analysis, we focus
our efforts on implementing statistical functions using SMC. We show how to
perform standard statistical procedures with SMC while preserving privacy and
without simplifying the algorithms.

We describe the secure computation of statistical measures (mean, variance,
standard deviation), frequency tables and quantiles. We show how to clean the
data and apply custom filters. We give algorithms for privacy-preserving hypoth-
esis testing using standard and paired t-tests, χ2-tests and Wilcoxon tests.

We implement all algorithms on the Sharemind SMC platform. We use
these implementations to conduct a complete privacy-preserving study featuring
statistical measure computation, filtering, database transformation, linking and
statistical tests. Performance results are provided for all implemented operations.

2 End user validation methodology

2.1 Modelling SMC deployments

We define three fundamental roles in an SMC system—the input party I, the
computation party C and the result party R. Input parties collect and send data
to the SMC system. The SMC system itself is hosted by computation parties
who carry out the SMC protocols on the inputs and send results to result parties
in response of queries.

We use the following notation for modelling SMC applications. Let Ik =
(I1, . . . , Ik) be the list of input parties, Cm = (C1, . . . , Cm) be the list of com-
puting parties and Rn = (R1, . . . ,Rn) be the list of result parties. Let Π be an
SMC protocol for performing a specific task.

In the following, ICR refers to a party that fills all three roles, similarly, IC
refers to a party with roles I and C. We use superscripts (k,m, n ≥ 1) to denote
that there are several parties with the same role combination in the system.

Real world parties can have more than one of these roles assigned to them.
The set {I, C,R} has 7 non-empty subsets and there are 27 possibilities to com-
bine them. However, we want to look only at cases where all three roles are
present. This leaves us with 128 − 16 = 112 possible combinations. Not all of
these make sense in a real-world setting, but we claim that all deployments of
SMC can be expressed using these 112 combinations.

2.2 Visualisation of SMC deployment models

As our aim was to find out what stakeholders expect from SMC, we discussed
SMC with people from different areas and asked them if they had had problems
with sharing data in their field. We assumed that the interviewees did not have
a background in computer science so approaching them with the usual SMC
descriptions was out of the question.

We planned to visualise typical SMC applications to make the idea under-
standable. Fortunately, our role-based model translates easily into illustrative
diagrams. See Table 1 for examples of deployment models inspired by published
research on SMC applications.

We prepared for the interviews by designing 12 deployment models, some of
which were based on existing SMC applications and some were imaginary. We

Basic deployment model Example applications

I C Rk SMC

The classic millionaires’ problem [28]
Parties: Two—Alice and Bob (both ICR)
Overview: Millionaires Alice and Bob use SMC to
determine who is richer.

Joint genome studies [17]
Parties: Any number of biobanks (all ICR)
Overview: The biobanks use SMC to create a joint
genome database and study a larger population.

I C k SMC R m

Studies on linked databases (this paper)
Parties: Ministry of Education, Tax Board, Population
Register (all IC) and Statistics Bureau (R).
Overview: Databases from several government agencies
are linked to perform statistical analyses and tests.

I R k SMC C m

Outsourcing computation to the cloud [12]
Parties: Cloud customer (IR) and cloud service
providers (all C).
Overview: The customer deploys SMC on one or more
cloud servers to process her/his data.

I C Rk SMC IR m
Collaborative network anomaly detection [6]
Parties: Network administrators (all IR) a subset of
whom is running computing servers (all ICR).
Overview: A group of network administrators uses SMC
to find anomalies in their traffic.

I k SMC CRn

 C m

The sugar beet auction [4]
Parties: Sugar beet growers (all I), Danisco and DKS
(both CR) and the SIMAP project (C).
Overview: The association of sugar beet growers and
their main customer use SMC to agree on a price for
buying contracts.

I k SMC Rn

 C m

The Taulbee survey [11]
Parties: Universities in CRA (all I), universities with
computing servers (all IC) and the CRA (R).
Overview: The CRA uses SMC to compute a report of
faculty salaries among CRA members.

Financial reporting in a consortium [3]
Parties: Members of the ITL (all I), Cybernetica, Mi-
crolink and Zone Media (all IC) and the ITL board (R).
Overview: The ITL consortium uses SMC to compute
a financial health report of its members.

Table 1: SMC deployment models and example applications

designed large colourful and easily readable figures to help us describe SMC to
stakeholders during the interviews. On these figures we did not use the ICR
syntax, but rather real-world roles that the interviewee could relate to. The de-
scription of each model included the security and trust guarantees that SMC
provides for the parties. We could not include the figures here due to size con-
straints, but they can be found in [25].

2.3 Interview process and results

Our sample of 25 people was designed with the aim to get as much diversity as
possible. The interviewees were always given a possibility to propose additional
fields outside of their own where this kind of technology could be beneficial. Not
all of our interviewees could be considered potential users, some could rather
be described as stakeholders with knowledge of a potential social barrier. For
instance, among others, we interviewed a lawyer and an ethics specialist in or-
der to understand the larger societal implications. The interviewees originated
from six different countries, they came from academia, from both public and
private sector organizations, from small and medium sized enterprises to large
multinational corporations, from local government to state level. The people we
interviewed included representatives from the financial sector, agriculture, retail,
security, mobile technologies, statistics companies and IT in general.

We sent the materials to the interviewees beforehand to let them prepare for
the interview. We also used the figures during the interview process to trigger
conversation and to assist in understanding the principles of the technology.
During the interviews, we asked whether our interviewees recognised situations
in their field of expertise where they need to share protected data with others.

Of all the possible cases brought out in the deployment models, the cases
concerning the use of databases from different data sources for performing statis-
tical analysis were most discussed. It seems that the benefits of merging different
databases for statistical analysis were easily comprehensible for the interviewees
with different professional backgrounds. On the one hand, the interviewees had
many concerns, such as SMC conflicting with the traditional ways of doing things
and problems related to the existing legal and regulatory framework. At times,
the interviewees could not distinguish between anonymisation and SMC, or un-
derstand the operational challenges of using this kind of solution in practice.
On the other hand, the interviewees also saw many potential benefits of the
possible applications of SMC. They brought out examples how SMC could be
advantageous in their professional field: for example, an expert working in the
dairy industry said that there is a need to find a way to efficiently collect and
analyse sensitive data concerning the activities of dairy companies as the studies
form government research units do not fulfil the needs of the industry. Another
example comes from biomedicine:

“For example, if I as a researcher get the data about the number of abortions
but I also want to know how much all kind of associated complications cost, I
need to get data from the national Health Insurance Fund. But I only get data
from the Health Insurance Fund if I have the data from the abortion registry

with names and national identification numbers and then I ask the medical cost
records of those people. What I think is actually a really big security risk. If it
would be possible to link them differently, so I would receive impersonalised data,
that would be really good.” (I11, Academic sector, Biomedicine)

Several interviewees also pointed out how SMC could be used on a more gen-
eral level. The idea of using different state databases for statistical analysis was
seen as highly beneficial. For instance, an official working in a state institution
that coordinates the work of the national information system stated that making
more data and information available for public use is a relevant problem.

“After the presentation I thought that the state data should be made available
for people this way: for researches, statisticians, universities. Publishing this data
has always been a topic in the state, all the data has to be public, we should put
it on the cloud or somewhere else. But do it in a secure way, I haven’t thought
about it before, but it seemed to me that there were no good solutions.” (I8, Public
sector, IT security)

Interestingly, interviewees whose work involves data processing remained
somewhat critical, mostly because of the practical issues. Although an inter-
viewee working in biomedicine saw the benefits of using different databases in
scientific research, he also foresaw possible issues that could hinder their work.
The main concern could be expressed as the necessity to “see” the data.

“But in the context of genetics, the researcher who does the calculations, he
has to see the data. He has to understand tho data, because there the future work
will be combined. You never take just means, but when you are already calculating
genotypes and their frequencies, then you have to take into account some other
factors all the time. Adjust them according to age, height, weight. And you need
to see these data. Without understanding the data, you cannot analyse them.”
(I11, Academic sector, Biomedicine)

This obviously raises the question as to what is actually meant by “seeing”
and “understanding” the data. The visibility of the data seems to be crucial,
but it does not necessarily mean that no alternative solutions or procedures are
possible. The interviewees remarked that it would be possible to do scientific
analysis without “seeing” the data but that it would make their work more com-
plicated and therefore would be met with hesitation. Hence, it may be possible
that the barrier here is the practiced and accepted way of doing things. Even now
statistics offices often respond to data requests by disclosing sample databases
that resemble the data so that researchers can script their queries.

However, the interviews also revealed that the visibility of data is necessary
to guarantee their quality. This aspect was for instance stressed by an expert
working in the Statistics Office. Similarly, the interviewee doing scientific re-
search thought it possible that the quality of their work and data suffers if they
do not have the full overview.

”We cannot combine different statistical works if we don’t have the identi-
fiers. To do statistics, to have good quality information, we need to have it /full
overview of data/.” (I13, Public sector, Statistics)

This quote illustrates nicely the way new technologies are understood first
and foremost in the context of existing practices and boundaries. Similarly, peo-
ple considering the importance of statistical analysis with SMC can imagine the
activities they do in their current framework. Hence, statistical analysis comes
down to finding means, comparing samples in valid ways, finding correlations
and relationships within the data. And all this preferably with a user environ-
ment that is recognisable. While, for instance, the Statistics Office employees
can write their own scripts for queries, for wider usability, future SMC systems
will need to be similar to existing tools.

2.4 Goal for practical validation

Based on the insights from the interviews, we decided to evaluate the feasibility
of a statistical analysis tool based on SMC. We designed (and later implemented)
SMC protocols that compute various statistical analysis functions. We set effi-
ciency and reusability as our two main goals as both are critical for providing a
user experience similar to that of popular statistics tools.

We decided to use an example scenario to help us select the statistical data
analysis functions to implement in our experiments. This scenario is inspired
by a problem faced by governments that have enacted data protection laws—
how to evaluate the effect of state investments without breaching the privacy of
individual citizens? More specifically, we consider a government that wants to
learn the efficiency of its investments in the education system.

One way for assessing the quality of educational institutions is to analyse
the incomes of their graduates. For a fair analysis, the Statistics Bureau has
to combine data from the Tax Office, the Ministry of Education and the Pop-
ulation Register. However, in some countries, laws prohibit the aggregation of
citizen databases into a single database. Hence, the Statistics Bureau needs to
maintain privacy throughout the analysis. First, data owners need a secure way
for providing data. Second, the data analyst has to assess the distributions and
quality of the data without seeing individual records. Third, the analyst must
combine the data from three sources to an analysis database. Finally, he or she
performs statistical tests to find the educational factors that have a significant
impact on future income.

3 A security model for the analysis of private data

3.1 Privacy expectations and definitions

When describing SMC to potential end users, we focused on its outstanding
privacy-preserving properties. Therefore, the main security goal in the proposed
applications was that the private inputs of the input parties remain hidden from
the computing parties and the result parties.

While it is tempting to define privacy so that the computing parties and result
parties learn nothing about the values of the input parties, such a definition

would be rather impractical. First, we would need to hide the sizes of all inputs
from the computing parties. There are several techniques for hiding the input
size (e.g., [13, 24]), but no generic solution exists and practical protocols often
leak the upper bound of the size.

Second, we would need to hide all branching decisions based on the private
inputs. While this can be done by always executing both branches and obliviously
choosing the right result, we can significantly save resources when we perform
some branching decisions based on published values. However, such behaviour
can partially or fully leak the inputs to the computing parties (and also to the
result parties, should they measure the running time of Π).

This directs us to a relaxed privacy definition, that allows the computing
parties to learn the sizes of inputs and make limited branching decisions based
on published values that do not directly leak private inputs. Finally, to support
practical statistical analysis tasks, we also allow the result parties to learn certain
aggregate values based on the inputs (e.g., percentiles). In a real-world setting,
we prevent the abuse of such queries using query auditing techniques, that reject
queries or query combinations that are extracting many private inputs.

Definition 1 (Relaxed privacy of a multi-party computation proce-
dure). A multi-party computation procedure Π evaluated by parties Ik, Cm,
Rn preserves the privacy of the input parties if the following conditions hold:

Source privacy During the evaluation of Π, computing parties cannot asso-
ciate a particular computation result with the input of a certain input party.

Cryptographic privacy During the evaluation of Π, computing parties learn
nothing about the intermediate values used to compute results, including the
individual values in the inputs of input parties, unless any of these values
are among the allowed output values of Π. As an additional exception, if a
computing party is also an input party, it may learn the individual values in
the input of only that one input party.

Restricted outputs During the evaluation of Π, the result parties learn noth-
ing about the intermediate values used to compute results, including the in-
dividual values in the inputs of input parties, unless any of these values are
among the allowed outputs of Π. Additionally, if a result party is also an
input party, it may learn the input of only that one input party.

Output privacy The outputs of Π do not leak significant parts of the private
inputs.

3.2 Implementing private data analysis procedures with SMC

We now describe general guidelines for designing privacy-preserving algorithms
that satisfy Definition 1.

For source privacy, we require that computing parties cannot associate an
intermediate value with an individual input party that contributed to this value.
For instance, we may learn the smallest value among the private inputs, but we
will not know which input party provided it. This can be achieved by starting
the protocol by obliviously shuffling the data [22].

Cryptographic privacy is achieved by using SMC protocols that collect and
store inputs in a protected (e.g., encrypted, secret-shared) form. This prevents
the computing parties from recovering private inputs on their own. Furthermore,
the protection mechanism must be maintained for private values throughout the
algorithm execution. The computing parties must not remove the protection
mechanism to perform computations. Examples of suitable techniques include
homomorphic secret sharing, homomorphic encryption and garbled circuits.

Restricting outputs is quite straightforward. First, the computing parties
must publish to other parties only the result values that Π allows to publish.
Everything else must remain protected. Trivially, it follows that the computing
parties must run only the procedures to which the computational parties have
agreed. Furthermore, the computing parties must reject all queries from the
result parties that the computing parties have not agreed to among themselves.

Output privacy is the most complex privacy goal, requiring a more creative
approach. The most complex part in algorithm design is to control the leakage
of input value bits through published outputs. There are many measures for
this leakage, including input entropy estimation and differential privacy [10].
Regardless of the approach, the algorithm designer must analyse the potential
impact of publishing the results of certain computations. In some cases, such an
analysis is straightforward. For example, publishing the results of aggregations
like sum and mean is a negligible leak unless there are only a few values.

Typically, directly publishing a value from the private inputs should not be
allowed. However, there are exceptions to this rule. For example, descriptive
values, such as the minimal value in a private input, are used by statisticians
to evaluate data quality. The main concern of data analysts in our interviews
was that if we take away their access to individual data values, we need to give
them a way to get an overview of the data in return. That is the reason why our
privacy model allows the publishing of descriptive statistics.

4 Privacy-preserving algorithms for statistical analysis

4.1 Data import and filtering

We present a suite of privacy-preserving algorithms for statistical data analysis
that are private according to Definition 1. The algorithms described are not
dependent on any particular protection method. However, we assume that the
protection method provides privacy-preserving primitive operations required by
the algorithm. We describe one example implementation in Section 5.

When collecting data from several input parties, a common data model has
to be agreed upon and key values for linking data from different parties have to
be identified. For efficiency, it is often useful to preprocess and clean data at the
input parties before sending it to computing parties. This will not compromise
data privacy as the data will be processed by the input party itself. We now look
at how to filter and clean data once it has been sent to the computing parties.

In the following, let [[x]] denote a private value x, let [[a]] denote a private value
vector a, and let binary operations between vectors be point-wise operations.

Encoding missing values. Sometimes, single values are missing from the im-
ported dataset. There are two options for dealing with this situation: we can use
a special value in the data domain for missing values; or add an extra attribute
for each attribute to store this information. Only one shared bit of extra data
needs to be held per entry. Let the availability mask [[available(a)]] of vector [[a]]
contain 0 if the corresponding value in the attribute [[a]] is missing and 1 other-
wise. The overall count of records in storage is public. If missing elements exist,
that value does not reflect the number of available elements and it is not possi-
ble to make sure which elements are available by looking at the data. However,
the count of available elements can be computed by summing the values in the
availability mask.

Evaluating filters and isolating filtered data. To filter data based on a
condition, we compare each element in the the corresponding private attribute
vector [[a]] to the filter value in a privacy-preserving manner and obtain a private
vector of comparison results. This mask vector [[m]] contains 1 if the condition
holds and 0 otherwise. If there are several conditions in a filter, the resulting
mask vectors are multiplied to combine the filters. Such filters do not leak which
records correspond to the conditions. To learn the number of filtered records we
find the sum of elements in the mask vector.

Most of our algorithms are designed so that filter information is taken into
account during computations. However, in some cases, it is necessary to build a
subset vector containing only the filtered data.

For obliviously cutting the dataset based on a given filter, first the value
and mask vector pairs are obliviously shuffled, retaining the correspondence of
the elements. Next, the mask vector is declassified and values for which the
mask vector contains 0 are removed from the value vector. The obtained cut
vector is then returned to the user. This process leaks the number of values that
correspond to the filters that the mask vector represents. This makes cutting
trivially safe to use, when the number of records in the filter would be published
anyway. Oblivious shuffling ensures that no other information about the private
input vector and mask vector is leaked [22]. Therefore, all algorithms that use
oblivious cut provide source privacy.

4.2 Data quality assurance and visibility

Quantiles and outlier detection. Datasets often contain errors or extreme
values that should be excluded from the analysis. Although there are many
elaborate outlier detection algorithms like [5], outliers are often detected using
quantiles. As no one method for computing quantiles has been widely agreed
upon in the statistics community, we use algorithm Q7 from [16], because it is
the default choice in our reference statistical analysis package GNU R. Let p
be the percentile we want to find and let [[a]] be a vector of values sorted in
ascending order. Then the quantile is computed using the following function:

Q7(p, [[a]]) = (1− γ) · [[a]][j] + γ · [[a]][j + 1] ,

where j = b(n−1)pc+ 1, n is the size of vector [[a]], and γ = np−b(n−1)pc−p.
Once we have the index of the quantile value, we can use oblivious versions of
vector lookup or sorting to learn the quantile value from the input vector.

We do not need to publish the quantile to use it for outlier filtering. Let q0
and q1 be the 5% and 95% quantiles of an attribute [[a]]. It is common to mark
all values smaller than q0 and larger than q1 as outliers. The corresponding
mask vector is computed by comparing all elements of [[a]] to Q7(0.05, [[a]]) and
Q7(0.95, [[a]]), and then multiplying the resulting index vectors. This way, data
can be filtered to exclude the outlier data from further analysis. It is possible to
combine the mask vector with the availability mask [[available(a)]] and cache it as
an updated availability mask to reduce the filtering load. Later, this mask can
be used with the data attributes as they are passed to the statistical functions.

Descriptive statistics. As discussed in Section 2.3, one of the data analysts’
main concerns was that they will lose the ability to see individual values before
analysing them. However, such access is not always needed and it is sufficient to
have a range of descriptive statistics about the data attributes that help discover
anomalies.

We claim, that given access to these aggregate values and the possibility to
filter out outliers, we can ensure data quality without compromising the privacy
of individual data owners. Indeed, the aggregated values of individual attributes
leak information about inputs. However, the leakage is small and strictly limited
to previously agreed aggregate values.

The most common aggregate for individual attributes is the five-number
summary—a descriptive statistic that includes the minimum, lower quartile, me-
dian, upper quartile and maximum of an attribute. We compute the five-number
summary of a data vector using the previously discussed quantile formula. Based
on the five-number summary and quantiles, box-plots can be drawn that give a
visual overview of the data and effectively draw attention to outliers.

It is also important to see the distribution of a data attribute. For categorical
attributes, this can be done by computing the frequency of the occurrences of
different values. For numerical attributes, we must split the range into bins
specified by breaks and compute the corresponding frequencies. The resulting
frequency table can be visualised as a histogram. The algorithm publishes the
number of bins and the number of values in each bin.

4.3 Linking multiple tables

After collecting input values and compiling filters for the outliers, we can link
the input databases to form the final analysis database. There are various ways
for linking databases in a privacy-preserving manner. As a minimum, we desire
linking algorithms that do not publish private input values and only disclose the
sizes of the input and output databases. Such algorithms are known to exist [21].

4.4 Statistical testing

The principles of statistical testing. Many statistical analysis tasks con-
clude with the comparison of different populations. For instance, we might want
to know whether the average income of graduates of a particular university is
significantly higher than that of other universities. In such cases, we first extract
two groups—the case and control populations. In our example, the case popu-
lation corresponds to graduates of the particular university in question and the
control group is formed of persons from other universities. Note that a simple
comparison of corresponding means is sufficient as the variability of income in
the subpopulations might be much higher than the difference between means.

Statistical tests are specific algorithms, which formally quantify the signif-
icance of the difference between means. These test algorithms return the test
statistic value that has to be combined with the sizes of the compared popula-
tions to determine the significance of the difference. While we could also imple-
ment a privacy-preserving lookup to determine this significand and prevent the
publication of the statistic value, statisticians are used to including the statistic
values and group sizes in their reports.

The construction of case and control populations. We first need to pri-
vately form case and control groups before starting the tests. One option is to
select the subjects into one group and assume all the rest are in group two, e.g.,
students who go to city schools and everyone else. Alternatively, we can choose
subjects into both groups, e.g., men who are older than 35 and went to a city
school and men who are older than 35 who did not go to a city school. These
selection categories yield either one or two mask vectors. In the former case, we
compute the second mask vector by flipping all the bits in the existing mask
vector. Hence, we can always consider the version where case and control groups
are determined by two mask vectors.

In the following, let [[a]] be the value vector we are testing and let [[m1]] and
[[m2]] be mask vectors for case and control groups, respectively. Then [[ni]] =
sum([[mi]]) is the count of subjects in the corresponding population.

The tests need to compute the mean, standard deviation or variance of a
a population. We do this by evaluating the standard formulae using SMC. For
improved precision, these metrics should be computed using real numbers.

Student’s t-tests. The two-sample Student’s t-test is the simplest statistical
tests that allows us to determine whether the difference of group means is signif-
icant or not compared to variability in groups. There are two common flavours
of this test [18] depending on whether the variability of the populations is equal.

In some cases, there is a direct one-to-one dependence between case and
control group elements. For example, the data consists of measurements from
the same subject (e.g., income before and after graduation), or from two differ-
ent subjects that have been heuristically paired together (e.g., a parent and a
child). In that case, a paired t-test [18] is more appropriate to detect whether a
significant change has taken place.

The algorithm for computing both t-tests is a straightforward evaluation
of the respective formulae using SMC, preferably with privacy-preserving real
number operations. Both algorithms only publish the statistic value and the
population sizes.

Wilcoxon rank sum test and signed rank test. T-tests are formally ap-
plicable only if the distribution of attribute values in case and control groups
follows the normal distribution. If this assumption does not hold, it is appro-
priate to use non-parametric Wilcoxon tests. The Wilcoxon rank sum test [14]
works on the assumption that the distribution of data in one group significantly
differs from that in the other.

A privacy-preserving version of the rank sum test follows the standard al-
gorithm, but we need to use several tricks to achieve output privacy. First, we
need a more complex version of the cutting procedure to filter the database, the
cases and controls using the same filter. Second, to rank the values, we sort the
filtered values together with their associated masks by the value column.

Similarly to Student’s paired t-test, the Wilcoxon signed-rank test [27] is a
paired difference test. Often, Pratt’s correction [14] is used for when the values
are equal and their difference is 0. In a privacy-preserving version of this algo-
rithm, we again need to cut several columns at once. We also need to obliviously
separate absolute values and signs from the signed inputs values and later sort
these two vectors by the sign vector.

The computation of both tests is simplified by the fact that most operations
are done on signed integers and secure real number operations are not required
before computing the final z-score statistic. Both algorithms only publish the
statistic value and the population sizes.

The χ2-tests for consistency. If the attribute values are discrete such as
income categories then it is impossible to apply t-tests or their non-parametric
counterparts and we have to analyse frequencies of certain values in the dataset.
The corresponding statistical test is known as χ2-test.

The privacy-preserving version of the χ2-test is implemented simply by eval-
uating the algorithm using SMC operations. The algorithm can be optimised,
if the number of classes is small, e.g., two. The algorithm publishes only the
statistic value and the population sizes.

5 Practical results

5.1 An experimental statistical study using SMC

We demonstrate our privacy-preserving statistics capability by designing, imple-
menting and conducting an experimental study. In the scenario, we use a table
of subjects and their demographic information from the Population Register, a
table specifying whether a subject attended a city school from the Ministry of

Education, and a table of taxed income payments for the same subjects from
the Tax Office. We used artificially generated data in our experiments.

For our implementation, we chose the Sharemind SMC platform, because
it supports operations needed in our implementation, including integer, boolean
and floating point arithmetic, table join and sorting. We implemented the sta-
tistical algorithms using the SecreC programming language. We uploaded data
using a data importer application developed using the Sharemind controller
library. Details of our implementation are given in Appendix A.

Sharemind provides cryptographic security against an honest-but-curious
adversary. This is enough for performing statistical analysis on private databases
held by organizations united by a common cause (e.g., government agencies,
hospitals, companies). While our implementation is built on and optimised for
Sharemind, our algorithms can be adapted to other secure computation systems
with similar capabilities.

5.2 Performance measurements

We conducted the experiments on a Sharemind installation running on three
computers with 3 GHz 6-core Intel CPUs with 8 GB RAM per core (a total of
48 GB RAM). While monitoring the experimental scenario, we did not notice
memory usage above 500 MB per machine. The computers were connected using
gigabit ethernet network interfaces.

Table 2 contains the operations, input sizes and running times for our exper-
imental scenario. We see that most operations in our experimental study take
under a minute to complete. The most notable exceptions is the group median
computation, as median computation has to be applied to the payments of 2000
subjects. This time can be reduced by vectorising the median invocations or
conduct this aggregation before the data is converted into secret-shared form.

To check scalability, we performed some tests on ten times larger data vectors.
We found that increasing input data size 10 times increases running time about
5 times. Only histogram computation is actually slower, because it uses a more
detailed frequency table for larger databases.

The improved efficiency per input data element is explained by the use
of vectorised operations of the Sharemind framework. The operations in the
Sharemind framework are more efficient when many are performed in parallel
using the SIMD (single instruction, multiple data) model.

6 Conclusion

In this paper we presented an easy-to-visualise model for explaining the capa-
bilities and deployment of SMC to end users. These models helped us conduct a
series of interviews with potential stakeholders of SMC to learn how SMC could
be valuable to them.

Based on the end user needs gathered from the interviews we identified the
need for an SMC-based statistical analysis toolkit. We designed and implemented

Step 1: Data import

Operation Record count Time

Data import from offsite computer
2 000 3 s

53 977 24 s

Step 2: Descriptive statistics

Operation Record count Time

5-number summary (publish filter size)
2000 21 s

20000 97 s

5-number summary (hide filter size)
2000 27 s

20000 107 s

Frequency table
2000 16 s

20000 222 s

Step 3: Grouping and linking

Operation Record count Time

Median of incomes by subject 53 977 3 h 46 min

Linking two tables by a key column 2000×5 and 2000×3 28 s

Linking two tables by a key column 2000×7 and 2000×2 29 s

Step 4: Statistical tests

Operation Record count Time

Student’s t-test, equal variance
2000 167 s

20000 765 s

Student’s t-test, different variance 2000 157 s

paired t-test, known mean 2000 and 2000 98 s

paired t-test, unknown mean 2000 and 2000 102 s

χ2-test, 2 classes
2000 9 s

20000 10 s

χ2-test, n-class version, 2 classes 2000 20 s

χ2-test, n-class version, 5 classes 2000 23 s

Wilcoxon rank sum 2000 34 s

Wilcoxon signed-rank 2000 and 2000 38 s

Table 2: Running times of privacy-preserving statistics (in seconds)

privacy-preserving versions of several statistical functions. As a result, were able
to conduct a full-scale experimental statistical study so that confidential data
were always processed using SMC.

The strengths of our solution are generality, precision and practicality. First,
we show that secure multi-party computation is flexible enough for implementing
complex applications. Second, our use of secure floating point operations makes
our implementation more precise. Third, we use the same algorithms as popular
statistical toolkits like GNU R without simplifying the underlying mathematics.

Acknowledgements

This work was supported by the European Regional Development Fund through
the Estonian Center of Excellence in Computer Science, EXCS. It has also

received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 284731.

The authors wish to thank the interviewees for their time and cooperation
and the Estonian Center for Applied Research for their help in generating the
artificial data used in the experiments of this paper.

References

1. Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of the
median (and other elements of specified ranks). Journal of Cryptology, 23(3):373–
401, 2010.

2. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. In-
ternational Journal of Information Security, 11(6):403–418, 2012.

3. Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis (short paper). In Proceedings of FC 2012,
pages 57–64, 2012.

4. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure Mul-
tiparty Computation Goes Live. In Proceedings of FC 2009, pages 325–343, 2009.

5. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:
Identifying density-based local outliers. In Proceedings of CM SIGMOD 2000,
pages 93–104, 2000.

6. Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropou-
los. SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events
and Statistics. In Proceedings of USENIX 2010, pages 223–240, 2010.

7. Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubinfeld, and
Rebecca N. Wright. Selective private function evaluation with applications to
private statistics. In Proceedings of PODC 2001, pages 293–304. ACM, 2001.

8. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Proceedings of CRYPTO
2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

9. Wenliang Du, Shigang Chen, and Yunghsiang S. Han. Privacy-preserving multi-
variate statistical analysis: Linear regression and classification. In Proceedings of
SDM 2004, pages 222–233, 2004.

10. Cynthia Dwork. Differential privacy. In Proceedings of ICALP’06, volume 4052 of
LNCS, pages 1–12. Springer, 2006.

11. Joan Feigenbaum, Benny Pinkas, Raphael Ryger, and Felipe Saint-Jean. Secure
computation of surveys. In EU Workshop on Secure Multiparty Protocols, 2004.

12. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of STOC 2009, pages 169–178. ACM, 2009.

13. Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on
Oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996.

14. Myles Hollander and Douglas A Wolfe. Nonparametric statistical methods. John
Wiley New York, 2nd ed. edition, 1999.

15. H.C.M. Hoonhout. Setting the stage for developing innovative product concepts:
people and climate. CoDesign, 3(S1):19–34, 2007.

16. Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. The
American Statistician, 50(4):361–365, 1996.

17. Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect
privacy in large-scale genome-wide association studies. Bioinformatics, 29(7):886–
893, 2013.

18. Gopal K Kanji. 100 statistical tests. Sage, 2006.
19. Florian Kerschbaum. Practical privacy-preserving benchmarking. In Proceedings

of IFIP TC-11 SEC 2008, volume 278, pages 17–31. Springer US, 2008.
20. Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of the

mean and related statistics. In Procedings of TCC 2005, volume 3378 of LNCS,
pages 283–302. Springer, 2005.

21. Sven Laur, Riivo Talviste, and Jan Willemson. From Oblivious AES to Efficient
and Secure Database Join in the Multiparty Setting. In Proceedings of ACNS’13,
volume 7954 of LNCS, pages 84–101. Springer, 2013.

22. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In Proceedings of ISC 2011, pages 262–277, 2011.

23. Christopher Lettl. User involvement competence for radical innovation. Journal
of engineering and technology management, 24(1):53–75, 2007.

24. Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi. Hiding the input-size in
secure two-party computation. Cryptology ePrint Archive, Report 2012/679, 2012.
http://eprint.iacr.org/.

25. Pille Pruulmann-Vengerfeldt, Liina Kamm, Riivo Talviste, Peeter Laud, and Dan
Bogdanov. Deliverable D1.1—Capability model. http://usable-security.eu/

files/D1.1.pdf.pdf, 2012.
26. Hiranmayee Subramaniam, Rebecca N. Wright, and Zhiqiang Yang. Experimental

analysis of privacy-preserving statistics computation. In Proceedings of SDM 2004,
volume 3178 of LNCS, pages 55–66. Springer, 2004.

27. Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bul-
letin, 1(6):80–83, 1945.

28. Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract).
In Proceedings of FOCS’82, pages 160–164. IEEE, 1982.

A Implementation details

A.1 Data model and data flow

The data model and transformations are shown in Figure 1. All attributes that
are marked as having a mask, actually represent two attributes—one with the
value and another with the availability flag. After linking is complete, we use
the CompleteSubject table to test statistical hypotheses.

A.2 Overview of implemented operations

Figure 2 shows an overview of the SMC functionality that was used to run
our experiments. It also shows how the algorithms implemented using SMC
depend on each other. Our statistical functionality is built on the arithmetical,
comparison and oblivious vector operations provided by Sharemind (two top
functionality groups in Figure 2). However, our protocols can be ported to any
SMC framework that provides the same set of features.

personId
gender (+mask)
age (+mask)

Subject
(2000 records)

personId
attendsCitySchool (+mask)

Education
(2000 records)

personId
year (+mask)
month (+mask)
amount (+mask)

Payments
(53977 records)

personId
medianIncome

SubjectIncome
(2000 records)

find median amount
for each personId

personId
gender (+mask)
age (+mask)
attendsCitySchool (+mask)

SubjectEducation
(2000 records)

link by
personId

personId
gender (+mask)
age (+mask)
attendsCitySchool (+mask)
medianIncome

CompleteSubject
(2000 records)

Final analysis table)
link link

Fig. 1: The data model and table transformations in our experiment

Public arithmetic

Secure floating point arithmetic

Secure (un)signed integer arithmetic

Arithmetics and comparisons

Database linking

Sorting Selection

Shuffling Lookup

Oblivious vector operations

Encoding missing values and filtering

Cut matrix with filterCut vector with filter
Handling filters

Standard deviation

Minimum Mean

Maximum Variance

Count

Simple aggregations

Student's t-test (equal/unequal variability)

χ2-test (2 classes or n classes)

Paired t-test

Wilcoxon test (ranked sum/signed rank)

Statistical testing

Fu
nc

ti
on

al
it
y

of
 S

ha
re

m
in

d
Fu

nc
ti
on

al
it
y

de
ve

lo
pe

d
fo

r
th

is
 p

ap
er

dependency between componentslogical groupingLegend:

Frequency table / histogram

Five-number summary (leaks filter size)
Descriptive statistics

Five-number summary (hides filter size)

Fig. 2: Overview of operations implemented for our experiments

Appendix B

New Attacks against
Transformation-Based Privacy-Preserving
Linear Programming

The paper “New Attacks against Transformation-Based Privacy-Preserving Linear Programming” [33] fol-
lows.

58

New Attacks against Transformation-Based
Privacy-Preserving Linear Programming

Peeter Laud1 and Alisa Pankova1,2,3

1 Cybernetica AS
2 Software Technology and Applications Competence Centre (STACC)

3 University of Tartu, Institute of Computer Science

Abstract. In this paper we demonstrate a number of attacks against
proposed protocols for privacy-preserving linear programming, based on
publishing and solving a transformed version of the problem instance.
Our attacks exploit the geometric structure of the problem, which has
mostly been overlooked in the previous analyses and is largely preserved
by the proposed transformations. The attacks are efficient in practice and
cast serious doubt to the viability of transformation-based approaches in
general.
Keywords: Cryptanalysis, Secure multiparty computation, Linear pro-
gramming

1 Introduction

Linear programming (LP) is one of the most versatile polynomial-time solvable
optimization problems. It is usually straightforward to express various produc-
tion planning and transportation problems as linear programs. There exist LP
solving algorithms that are efficient both in theory and in practice. If the in-
stances of these problems are built from data belonging to several mutually
distrustful parties, the solving procedure must preserve the privacy of the par-
ties. Thus it would be very useful to have an efficient privacy-preserving protocol
that the data owners (and possibly also some other parties that help with com-
putation) could execute for computing the optimal solution to a linear program
that is obtained by combining the data of different owners. It is likely that such
protocol would directly give us efficient privacy-preserving protocols for many
other optimization tasks.

Several such protocols have indeed been proposed, following one of two main
approaches. In the secure multiparty computation (SMC) approach, composable
protocols for privacy-preserving arithmetic and relational operations are used to
build a privacy-preserving implementation of some LP solving algorithm, typi-
cally the simplex algorithm. In the transformation-based approach, the algebraic
structure of systems of linear inequalities and equations is used to apply a linear
transformation to the description of the original problem, thus disguising it and
allowing it to be solved publicly.

The security properties of the protocols of SMC approach can be derived from
the properties of the protocols for primitive arithmetic and relational operations

1

through composability. The privacy guarantees these protocols offer are thus
pretty well understood. The transformation-based methods have so far lacked
the understanding of their privacy properties at a comparable level. The current
paper demonstrates that such unavailability of security definitions is dangerous.

2 Privacy-Preserving Linear Programming

Throughout this paper, the upright upper case letters A denote matrices, and the
bold lower case letters b denote column vectors. Writing two matrices/vectors
together without an operator Ab denotes multiplication, while separating them
with a whitespace and putting into parentheses (A b) denotes augmentation.
By augmentation we mean attaching a column b to the matrix A from the right.
This can be generalized to matrices: (A B) denotes a matrix that contains all
the columns of A followed by all the columns of B. Row augmentation is defined
analogously.

The canonical form for a linear programming task is the following:

minimize cT · x, subject to Ax ≤ b,x ≥ 0 . (1)

Here A is an m× n matrix, b is a vector of length m and c is a vector of length
n. There are n variables in the vector x. The inequality of vectors is defined
pointwise.

The LP solving algorithms, as well as protocols for privacy-preserving solu-
tion commonly expect the task to be in the standard form:

minimize cT · x, subject to Ax = b,x ≥ 0 . (2)

The inequality constraints of the canonical form can be transformed to equality
constraints by introducing slack variables. The system of constraints Ax ≤ b,
x ≥ 0 is equivalent to the system Ax + Ixs = b, x,xs ≥ 0, where I is m ×m
identity matrix and xs is a vector of m new variables.

A feasible solution of a linear program is any vector x0 ∈ Rn that satisfies its
constraints. An optimal solution of a linear program is any feasible solution that
maximizes the value of its cost function. The feasible region of a linear program
is the set of all its feasible solutions. It is a polyhedron — the intersection of a
finite number of hyperplanes and half-spaces. A feasible solution is basic if it is
located in one of the vertices of that polyhedron.

In the privacy-preserving setting, the elements of the matrix A and the vec-
tors b, c are somehow contributed by several different parties. The cost vector
c may be either held entirely by some party, or its entries may belong to differ-
ent parties. Two standard ways of partitioning the constraints Ax ≤ b are the
horizontal partitioning (each party contributes some of the constraints) and the
vertical partitioning (each party knows certain columns of the matrix A). More
general ways of data partitioning are possible, but these are not considered by
the transformation methods that we are attacking.

In general, there are two main approaches to privacy-preserving linear pro-
gramming. One approach is the straightforward cryptographic implementation

2

of a privacy-preserving version of some LP solving algorithm [14, 9]. Its main
problem is efficiency since the entire optimization process must be performed in
a manner that protects all intermediate values and comparison results. Another
approach is transforming the program such a way that it could be given to a
solver for offline computation. The optimal solution to the initial program has
to be recoverable from the optimal solution to the transformed program.

In this work we present new attacks against some of the existing transforma-
tion methods. Without lessening the generality, we assume the number of parties
to be 2, called Alice and Bob.

2.1 Transformation methods

Transformation-based methods have been proposed in [4, 3, 15, 11, 12, 16, 8, 2, 10,
7]. A set of “standard” transformations, applicable to the initial program, have
been proposed over the years. Depending on the partitioning of constraints and
the objective function, the application of a transformation may require crypto-
graphic protocols of varying complexity. Each of the methods proposed in the
literature typically uses several of these standard transformations.

Multiplying from the left. The idea of multiplying A and b in (2) by a random
m × m invertible matrix P from the left was first introduced by Du [4]. This
transformation conceals the outer appearance of A and b, but the feasible region
remains unchanged.

Multiplying from the right. The idea of multiplying A and b in (2) by a random
invertible matrix Q from the right was also proposed by Du [4]. This hides also
the cost vector c. Unfortunately, it changes the optimal solution if some external
constraints (e.g. the non-negativity constraints) of the form Bx ≥ b′ are present,
as it has been shown in [2]. In this case, the vector b′ should also be modified
according to the transformation, but that in fact reveals all the information
about Q.

Scaling and Permutation. Bednarz et al. [2] have shown that, in order to pre-
serve the inequality x ≥ 0, the most general type of Q is a positive generalized
permutation matrix (a square matrix where each row and each column contains
exactly one non-zero element). This results in scaling and permuting the columns
of A. This transformation may also be applied to a problem in the canonical form
(1).

Shifting. The shifting of variables has first been proposed in [3], and it has been
also used in [16]. This transformation is achieved by replacing the constraints
Ax ≤ b with Ay ≤ b + Ar, where r is a random non-negative vector of length n
and y are new variables, related to the variables x through the equality y = x+r.
To preserve the set of feasible solutions, the inequalities y ≥ r have to be added
to the system. A different transformation must then be used to hide r.

3

2.2 Security Definition

There are no formal security definitions used in the transformation-based ap-
proach. The definition that has been used in the previous works is the acceptable
security. This notion was first used in [5].

Definition 1. A protocol achieves acceptable security if the only thing that the
adversary can do is to reduce all the possible values of the secret data to some
domain with the following properties:

1. The number of values in this domain is infinite, or the number of values in
this domain is so large that a brute-force attack is computationally infeasible.

2. The range of the domain (the difference between the upper and lower bounds)
is acceptable for the application.

More detailed analysis [1, 3] estimates the probability that the adversary
guesses some secret value. The leakage quantification analysis [3] is a composi-
tional method for estimating the adversary’s ability to make the correct guess
when assisted by certain public information.

Although acceptable security could make the analysis simpler, it is not very
well applicable in practice. Attacks on schemes that are secure by this definition
have been found [2, 1]. The security of different transformation methods is very
dependent on the initial settings of the problem — the partitioning of initial
data, as well as on the type of used constraints (inequalities or equations).

2.3 Classification of Initial Settings

For each of the proposed transformation methods, the applicability and security
strongly depend on the initial settings of the problem. For that reason, Bednarz
[1] has introduced a classification of initial settings, provided with corresponding
notation. She proposes to consider the following parameters:

Objective Function Partitioning How is the vector c initially shared? Is it
known to Alice, to Bob, or to both of them? Are some entries known to
Alice and others to Bob? Or does c = cAlice + cBob hold, where cAlice is
“completely” unknown to Bob and vice versa?

Constraint Partitioning How is the matrix A initially shared? Is it pub-
lic, known to one party, partitioned horizontally or vertically, or additively
shared?

RHS Vector Partitioning How is the vector b initially shared?
Allowable Constraint Types Does the method admit only equality constraints,

only inequalities, or both of them? Note that admitting only equality con-
straints means that the “natural” representation of the optimization prob-
lem is in terms of equalities. The use of slack variables to turn inequalities
to equalities is not allowed.

Allowable Variable Types May the variables be assumed non-negative? Or
may they be assumed free? Or can both types be handled?

4

Additionally, the classification considers which party or parties learn the optimal
solution. This aspect does not play a role for our attacks.

The attacks described in this paper mostly target the transformation meth-
ods for LP tasks where the constraints are in the form of inequalities (1), and
the set of constraints has been horizontally partitioned between Alice and Bob.
The optimization direction c and its sharing does not play a big role in the main
attacks, although some proposed transformation methods leave into it informa-
tion that makes the attacks simpler. In our treatment, we assume all variables
to be non-negative.

2.4 Overview of proposed methods

For exactly the setting described in the previous paragraph, Bednarz [1, Chap. 6]
has proposed the following transformation. The set of constraints in (1) is trans-
formed to

Ây = b̂,y ≥ 0, (3)

where Â = P
(
A I
)

Q, b̂ = Pb, I is the m ×m identity matrix, P is a random
invertible m×m matrix and Q is a random positive (m+n)×(m+n) generalized
permutation matrix. New variables y are related to the original variables x and
the slack variables xs by the equation

(
x
xs

)
= Qy. The objective function is

disguised as ĉT = (cT 0T)Q, where 0 is a vector of m zeroes.

Other proposed transformations for horizontally partitioned constraints can
be easily compared with Bednarz’s. Du [4] applied the multiplication with both
P and Q (where Q was more general) directly to the system of inequalities (1).
Unfortunately, this transformation did not preserve the feasible region (and pos-
sibly the optimal solution) as shown by Bednarz et al. [2]. Vaidya [15] uses only
the matrix Q, with similar correctness problems. Mangasarian [12] uses only the
multiplication with P for a system with only equality constraints (2). Hong et
al. [8] propose a complex set of protocols for a certain kind of distributed linear
programming problems. Regarding the security, they prove that these proto-
cols leak no more than what is made public by Bednarz’s transformation. Li et
al. [10] propose a transformation very similar to Bednarz’s, only the matrix Q
is selected from a more restricted set. This transformation is analyzed by Hong
and Vaidya [7] and shown to provide no security (their attack has slight similar-
ities with the one we present in Sec. 3.2). They propose a number of methods to
make the transformation more secure and to also hide the number of inequali-
ties in (1), including the addition of superfluous constraints and the use of more
than one slack variable per inequality to turn them to equalities. We will further
discuss the use of more slack variables in Sec. 3.1. The transformation by Dreier
and Kerschbaum [3], when applied to (1), basically shifts the variables (Sec. 2.1),
followed by Bednarz’s transformation. We discuss the details and attacks specific
to this transformation in Sec. 3.3.

5

3 Attacks

The system of constraints (1) consists of m inequalities of the form
∑n

i=1 ajixi ≤
bj for j ∈ {1, . . . ,m}, in addition to the non-negativity constraints. We assume
that Alice knows the first r of these inequalities.

When Alice attempts to recover (1) from the result of Bednarz’s transforma-
tion (3), she will first try to locate the slack variables, as described in Sec. 3.1.
When she has located the slack variables, she can remove these, turning the
equalities back to inequalities of the form A′x′ ≤ b′. These constraints are re-
lated to (1) by A′ = P′AQ′, b′ = P′b, where both P′ and Q′ are generalized
permutation matrices (of size m×m and n×n, respectively; Q′ is also positive).
Multiplication with P′ from the left does not actually change the constraints,
so the goal of Alice is to find Q′. The correspondence of the variables in x and
x′ can be found by looking at scale-invariant quantities related to constraints.
Once the correspondence is found, the scaling factors can be easily recovered.
All this is described in Sec. 3.2.

3.1 Identifying the Slack variables

Looking at the objective function When we add the slack variables to the
system of inequalities in order to turn them to equations, then the coefficients of
these slack variables in the cost vector c will be 0. In the existing transformation
methods, the cost vector c is hidden by also multiplying it with a monomial
matrix Q (product of a positive diagonal matrix and a permutation matrix)
from the right. In this way, the zero entries in c are not changed. If all original
variables had non-zero coefficients in the objective function, then the location of
zeroes in the transformed vector c tells us the location of slack variables.

This issue can be solved by applying the transformation to the augmented
form of linear program that includes the cost vector into the constraint matrix,
and the cost value is expressed by a single variable:

minimize w, subject to

(
1 −cT 0
0 A I

)

w
x
xs

 =

(
0
b

)
,

w
x
xs

 ≥ 0 . (4)

The slack variables may be now hidden amongst the real variables by permu-
tation. The location of the variable w should be known to the solver, although he
may also solve all the n instances of linear programming tasks: for each variable
in the task, try to minimize it.

There may be possibly other means of hiding c. Hence we introduce more
attacks that are not related to c.

Looking at sizes of entries If the positions of slack variables have been
hidden in the cost vector, they may be located by exploiting the structure of A.
Namely, after the slack variables are introduced, they form an identity matrix

6

that is attached to A from the right. Thus each slack column contains exactly
one non-zero entry. The columns of A are very unlikely to contain just one non-
zero entry. We have found that the columns of P

(
A I
)

can be distinguished by
performing statistical analysis on the sizes of their entries. Even if using both
positive and negative entries in A makes the mean more or less the same, the
variance is smaller for the slack variables. The following scaling of the columns
with the entries of Q does not provide any more protection.

We have discovered this problem occasionally, just because the columns ap-
peared too different after applying the existing transformation methods. The
previous works do not state precisely the distribution from which the entries
of P (and Q) should be sampled. We have made experiments where we have
sampled these entries independently of each other, according to the uniform
distribution, or the normal distribution (the parameters of the distribution are
currently unimportant, they only affect the scale of the resulting matrix, as well
as the variance of its entries relative to each other). It turns out that selecting
the entries of P randomly according to either one of these distributions keeps
the variables distinguishable.

We performed a series of experiments, described below in detail. The in-
stances of linear programming tasks were generated from a certain distribution
that may differ from the distributions typical to some particular real-life prob-
lems, but nevertheless covers a large class of linear programs.

First, let us define the following probability distribution:

Definition 2. If a random variable X is distributed according to the normal
distribution N (µ, σ2), then the distribution of the absolute value |X| is called the
folded normal distribution and is denoted Nf(µ, σ

2).

Our experiments were parametrized by the following quantities:

– the number of variables n and the number of inequality constraints m in (1);
– the fraction p ∈ [0, 1] of zero entries in A;
– the fraction a ∈ [0, 1] of constraints with non-negative coefficients;
– the fraction q ∈ [0, 1] of zero entries outside the main diagonal of P.

We performed two sets of experiments. In one of them we sampled the en-
tries of P,Q from a uniform distribution, and in the other one from a normal
distribution.

An experiment proceeded as follows.

1. Generate a random point v = (v1, . . . , vn) ∈ Rn where vi is chosen uniformly
from (0, 100]. This point will be contained in the polyhedron defined by the
constraints in (1), thereby ensuring its non-emptiness.

2. Generate a random m×n matrix A = (aij)
m,n
i,j=1,1 whose entries are assigned

in the following way:

– The value 0 is taken with the probability p.
– A random value is sampled uniformly from [−100, 100] ⊆ R (or from a

normal distribution N (0, 100)) with probability 1− p.

7

– After a row of A is generated, with probability a all entries in this row
are replaced with their absolute values.

3. Generate the entries of the vector b of length m in such a way that the
polyhedron defined by Ax ≤ b definitely contains the point v. That is, for
each i ∈ {1, . . . ,m}, compute bi = ai1v1 + . . . + ainvn + s, where s is a
random positive number. In our experiments, s was chosen uniformly from
[1000, 2000].

4. Let P be a m ×m random matrix, the entries of which are assigned in the
following way:
– The value 0 is taken with the probability q (except the main diagonal,

which stays non-zero in any case).
– A random value is sampled uniformly from [−100, 100] (or from a normal

distribution N (0, 100)) with probability 1− q.
Note that P is invertible with probability 1.

5. Let Q be a (m + n) × (m + n) random positive generalized permutation
matrix. The permutation defined by Q was picked uniformly from Sm+n and
the non-zero entries of Q were uniformly sampled from [1, 100] (or sampled
from a folded normal distribution Nf (0, 100)).

6. Construct Â and b̂ according to Bednarz’s transformation.
7. For each column of Â compute the mean and the variance of its entries. Find

the sets of m columns where (a) the means are the largest, (b) the means
are the smallest, (c) the variances are the largest, or (d) the variances are
the smallest.

8. The experiment was considered successful if one of the four sets of m columns
found in the previous step exactly corresponded to the slack variables in y
introduced by Bednarz’s transformation.

When sampling the entries of P,Q from the uniform distribution, we ran 5 ex-
periments for all possible values of the parameters, wherem+n ∈ {100, 250, 500},
m/(m + n) ∈ {25%, 50%, 75%}, p, q ∈ {0%, 25%, 50%, 75%, 90%}, and a ∈
{0%, 25%, 50%, 100%}. For almost all settings, there was at least one experiment
that was successful. The experiments were less successful only if m was small
and p was large. When sampling the entries of P,Q from the normal distribu-
tion, we ran the same number of experiments with the same parameters.Again,
for most settings, at least one of the experiments was successful. Again, we had
less success if many entries in A were 0 (i.e. p was large) and there were less
constraints than variables (i.e. m/(m+ n) was small). As we assumed, the best
metrics was the variance, larger for the initial variables and smaller for the slack
variables. For the largest parameters (m+n = 500), an attack took just a couple
of seconds on a server with two Intel X5670 processors with 12 MB cache running
at 2.93 GHz, and with 48 GB of main memory. The linear algebra operations
were imported from sage [13]. Since sage does not round floating point numbers
in the process of matrix multiplication, the transformation itself turned out to
be too inefficient for choosing the initial parameters with high precision. For ex-
ample, while the attack still takes several seconds for 64-bit initial numbers, the
transformation takes half an hour. However, this issue affects significantly the

8

transformation, but not the attack timing. The attack timing grows less than
linearly with the number of bits. We also did not notice that choosing more
precise numbers would affect the outcome of the attack.

This problem can be potentially resolved by scaling the columns by a value
that comes from a sufficiently large distribution to hide these differences. Al-
though this makes the columns approximately the same size, it makes the values
of the slack variables in the optimal solution to the transformed LP task much
smaller than the values of the original variables, still keeping them distinguish-
able. Also, this modification does not affect the variances of the variables.

Another way is to add extra constraints whose entries that are large enough
to provide noise for all the variables. The problem is that introducing more con-
straints requires introducing more slack variables for correctness. These slack
variables cannot be protected by the same method. Once they have been re-
vealed, they may be removed from the system by Gaussian elimination.

We would also like to note that the adversary may always bring the trans-
formed matrix to its reduced row echelon form. This means that this transfor-
mation provides the best possible hiding, and the security analysis should be
performed on this form. Unfortunately, it cannot be used for hiding instead of
P since it is expensive to compute it while preserving the privacy.

Sampling the vertices of the polyhedron If the previous attack does not
work well because the random values used during the transformation have been
sampled in such a way that the entries of the resulting matrix have similar
distributions, then there are still more ways of locating the slack variables. Con-
sider (3), where each of the new variables yi ∈ x is either a scaled copy of some
original variable xi′ ∈ x or a (scaled) slack variable. The constraints (3) define
an n-dimensional polyhedron in the space Rm+n (due to its construction, the
matrix Â has full rank). In each vertex of this polyhedron, at least n of the
variables in y are equal to zero. We have hypothesized that for at least a sig-
nificant fraction of linear programs, it is possible to sample the vertices of this
polyhedron in such manner, that slack variables will be 0 more often than the
original variables.

To verify our hypothesis, we performed a series of experiments, described
below in detail. Our experiments were parametrized by the quantities m,n, p, a
described at the previous experiment. Additionally, the number k ∈ N deter-
mines the number of vertex samples done in an experiment, and the fraction
e ∈ [0, 1] affects the polyhedron that we use to look for variables that most often
take the value 0 in vertices.

An experiment proceeded as follows.

1–6. Generate A, b, Â, b̂ as in the previous experiment, using the current values
of m,n, p, a, and taking q = 0. The entries of all matrices are sampled from
the uniform distribution.

7. Modify Â [resp. b̂] by removing their first e ·m rows [resp. elements]. This
corresponds to discarding a fraction of e equations from the system Ây = b̂.

9

We have found that such removal increases the success rate of the experi-
ments for certain parameters.

8. Initialize the counters z1, . . . , zm+n to 0.
9. Repeat the following k times.

(a) Generate the optimization direction c ∈ Rm+n sampling each entry from
the distribution Nf(0, 1).

(b) Find an optimal basic solution (a solution located in a vertex of the
polyhedron) to the linear program

minimize cT · y, subject to Ây = b̂,y ≥ 0 .

(c) If the optimal solution yopt exists, then increase by one each zi where
the i-th element of yopt equals 0.

10. The experiment was considered successful if the counters with n largest val-
ues exactly corresponded to the slack variables in y introduced by Bednarz’s
transformation.

We have performed our experiments with different settings. In all experi-
ments, k was fixed to 100 (larger values did not seem to give any significant dif-
ference). For each set of values for the parameters (m,n, p, a, e), we performed 20
experiments. The results for all sets of experiments are reported in Table 1. For
given (m,n, p, a), the symbol ∗ in the corresponding cell of the table indicates
that none of 20 experiments performed for all values of e we considered were
successful. If at least one experiment was successful for some value of e, given
the parameters (m,n, p, a), then this value of e is given in the corresponding cell
of the table.

Each attack took a couple of minutes. The largest matrices were obtained for
m

m+n = 0.75; for m+n = 250 it took less than one minute, and for m+n = 500
about five minutes.

We also performed some initial experiments where the entries of the opti-
mization direction c were sampled from N (0, 1). This choice did not perform
better (and sometimes performed much worse) than the sampling from Nf(0, 1).

We see that the worst case for our algorithm is when m is much smaller than
n and the fraction of zero entries in A is large. The problem is that there are too
few inequalities already in the beginning, and the zeroes make the initial matrix
A even sparser and less constraining. The initial variables thus do not differ too
much from the slack variables. However, if A is sparse, there may possibly exist
other attacks based looking for certain affine relationships between the variables,
similarly to the attacks from Sec. 3.3.

For m > n it may happen that even the slack variables will not be allowed to
take the value 0 at all because of too tight bounds. In this case, some equations
have been just eliminated from the transformed program. This is not equivalent
to removing bounds from the initial polyhedron, and it is not quite clear what
exactly happens to it. However, there are definitely less constraints than before,
and the slack variables again have higher probabilities of becoming 0.

The results also show something interesting about the effect of the structure
of A on the outcome of the attack. It can be seen than the attack performs better

10

m n p
a

0.0 0.25 0.5 1.0

25 75

0 * 0 0 0
0.25 * * 0 0
0.5 0 0 0 0
0.75 0 0 0 0
0.9 * * * *

50 50

0 0 0 0 0
0.25 0 0 0 0
0.5 0 0 0 0
0.75 * 0 0 0
0.9 * * * *

62 188

0 * * * *
0.25 * * * *
0.5 * * * 0
0.75 * * * 0
0.9 * * * *

75 25

0 0.75 0.5 0.75 0.5
0.25 0.75 0.5 0.75 0.5
0.5 0.75 0.5 0.75 0.5
0.75 0.75 0.5 0.75 0.5
0.9 * * 0.75 0.5

125 125

0 0 0 0 0
0.25 0 * 0 0
0.5 0 0 0 0
0.75 * 0 0 0
0.9 * * * *

m n p
a

0.0 0.25 0.5 1.0

125 375

0 * * * *
0.25 * * * *
0.5 * * * *
0.75 * * * *
0.9 * * * *

187 63

0 0.75 0.75 0.75 0.5
0.25 0.75 0.5 0.75 0.5
0.5 0.75 0.75 0.75 *
0.75 * 0.75 0.75 0.5
0.9 * * * 0.9

250 250

0 * 0 * 0
0.25 * 0 * 0
0.5 * * * 0
0.75 * * * 0
0.9 * * * *

375 125

0 * 0.75 0.75 0.5
0.25 0.75 0.75 0.75 0.75
0.5 0.75 * * 0.5
0.75 * 0.75 * 0.5
0.9 * 0.75 * 0.75

475 25

0 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9
0.5 0.9 0.9 0.9 0.9
0.75 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9

Table 1. Results of the vertex-sampling experiments

when all the entries of A are non-negative. The success rate is in general higher
for smaller fraction of zero elements in A, especially for the smaller number of
constraints.

Our experimental results show that for many linear programs in canonical
form (1), it is possible to identify the slack variables after Bednarz’s transfor-
mation. The validity of our hypothesis has been verified.

Several slack variables per inequality The authors of [7] proposed introduc-
ing multiple slack variables for the same inequality. We have tried experimentally
that in this case there is even higher probability that the slack variables are those
that most often take the value 0 in a vertex sampled as described previously;
this can also be explained in theory. Also, in this case, the columns in Â, corre-
sponding to slack variables added to the same inequality, are multiples of each
other. This makes them easily locatable.

11

Removing the slack variables Once we have located the slack variables, we
will reorder the variables in the constraints Ây = b̂ so, that the non-slack vari-
ables are the first n variables and the slack variables are the last m variables
in y. This corresponds to the first n columns of Â containing the coefficients of
non-slack variables in the system of equations, and the last m columns contain-
ing the coefficients of slack variables. We will now use row operations to bring
the system to the form

(
A′ I

)
y = b′, where I is m × m identity matrix. This

system, together with the non-negativity constraints, is equivalent to the system
of inequalities A′x′ ≤ b′, where x′ are the first n elements of y.

3.2 Finding the permutation of variables

We will now describe the attack that allows to remove the scaling and the per-
mutation of variables. An attack based on exploiting the slack variables has been
proposed in [3]. If the system contains only inequalities, then they completely re-
veal a scaled permutation of P that may be afterwards used to recover a scaled
permutation of M whose scaling may be afterwards removed by searching for
common factors. The factoring attack can be avoided by using real entries in Q.
Our attack does not use factoring, but exploits the geometrical structure of the
transformed program.

Recall that the initial linear program is partitioned horizontally, so each
party holds some number of constraints. Suppose Alice knows r inequalities∑n

i=1 ajixi ≤ bj (where j ∈ {1, . . . , r}) of the original system of constraints,
from a total of m. We assume that r is at least 2. Alice also knows all scaled
and permuted constraints

∑n
i=1 a

′
jix

′
i ≤ b′j (where j ∈ {1, . . . ,m}). If we could

undo the scaling and permuting, then this set of m inequalities would contain
all original r inequalities known by Alice. Next we show how Alice can recover
the permutation of the variables. Once this has been recovered, the scaling is
trivial to undo.

Alice picks two of the original inequalities she knows (e.g. k-th and l-th,
where 1 ≤ k, l ≤ r) and two inequalities from the scaled and permuted system
(e.g. k′-th and l′-th, where 1 ≤ k′, l′ ≤ m). She makes the guess that k-th [resp.
l-th] original inequality is the k′-th [resp. l′-th] scaled and permuted inequality.
This guess can be verified as follows. If the guess turns out to be correct, then
the verification procedure also reveals the permutation (or at least parts of it).

For the inequality
∑n

i=1 ajixi ≤ bj in the original system let Hj be the cor-
responding hyperplane where “≤” has been replaced by “=”. Similarly, let H ′

j

be the hyperplane corresponding to the j-th inequality in the scaled and per-
muted system. The hyperplane Hj intersects with the i-th coordinate axis in the
point (0, . . . , 0, zji, 0, . . . , 0), where zji = bj/aji (here zji is the i-th component
in the tuple). Also, let (0, . . . , 0, z′ji, 0, . . . , 0) be the point where H ′

j and the i-th
coordinate axis intersect.

Note that scaling the (initial) polyhedron s times along the i-th axis would
increase zji by s times, too, for all j. Scaling it along other axes would not change
zji. Hence the quantities zki/zli (for i ∈ {1, . . . , n}) are scale-invariant.

12

To verify her guess, Alice computes the (multi)sets {zki/zli | 1 ≤ i ≤ n} and
{z′k′i/z

′
l′i | 1 ≤ i ≤ n}. If her guess was correct, then these multisets are equal.

Also, if they are equal, then the i-th coordinate in the original system can only
correspond to the i′-th coordinate in the scaled and permuted system if zki/zli =
z′k′i′/z

′
l′i′ . This allows her to recover the permutation. If there are repeating

values in the multisets, or if division by 0 occurs somewhere, then she cannot
recover the complete permutation. In this case she repeats with other k, l, k′, l′.
But note that the presence of zeroes in the coefficients also gives information
about the permutation.

This attack does not allow to discover precise permutations if the known
inequalities are symmetric with respect to some variables, and the scaling cannot
be derived for the variables whose coefficients in all the known inequalities are 0.
It is also impossible if the right sides of all the known inequalities are 0. However,
it would reduce the number of secure linear programming tasks significantly.
Also, if two variables in the system look the same for Alice (they participate in
the same way in all inequalities she knows) then it should not matter to her how
they end up in the recovered permutation.

We have followed up our experiments reported in the previous section, and
verified that the attack works in practice.

3.3 Attacks specific to [3]

Dreier and Kerschbaum [3] propose a transformation that is applicable to LP
tasks containing both equality and inequality constraints. In this paper, we only
consider its application to tasks with inequality constraints only (although the
operations presented in this section are also applicable to equations). In their
transformation, the variables are first shifted by a positive vector (as described in
Sec. 2.1), and then Bednarz’s transformation is applied to the resulting system.
In [3], the construction is described somewhat differently and the resulting pos-
itive generalized permutation matrix Q used to scale and permute the columns
of the constraint system is not the most general matrix possible. The attacks
described below work for any possible Q.

Shifting back The shifting of variables that has been used in [3] (and also
in the transformation presented by Wang et al. [16], which only applies to LP
tasks with equality constraints, and is thus outside the scope of this paper)
reduces to scaling. The inequalities y ≥ r for the variables y are transformed to
equalities by the introduction of new slack variables s. For the variable yi ∈ y,
related to the original variable xi through the equality yi = xi + ri, we have the
equality yi − si = ri, where si is a new slack variable. After applying Bednarz’s
transformation, the variables are scaled and this equality becomes qiŷi−q′iŝi = ri.
The new variables ŷi and ŝi are related to the previous ones by yi = qiŷi and
si = q′iŝi, where qi and q′i are certain non-zero entries in the matrix Q. Thus
ŝi = (qiŷi − ri)/q′i = (yi − ri)/q′i = xi/q

′
i. I.e. the slack variable ŝi is a scaled

copy of the original variable xi.

13

We could now eliminate the variables y (the shifted versions of the original
variables x) from the system of constraints and the objective function. We will
then be left with the system that involves only the slack variables s from the
inequalities y ≥ r and the slack variables xs from the inequalities in the origi-
nal system. The resulting LP task could have been obtained from the original
task through Bednarz’s transformation and the attacks described above can be
applied to it.

To eliminate the variables y, we need to know their location. Dreier’s and
Kerschbaum’s transformation [3] does not actually hide these variables, due to
their choice of Q. But even if the permutation encoded in Q were more general,
we could still recover the locations of the variables y as described below. The
procedure described below also recovers the pairs (ŷi, ŝi) of variables and corre-
sponding slack variables, the difficulty of which is postulated in the cryptanalysis
performed in [3].

Affine relationships in small sets of variables Each variable from y = x+r
is associated with exactly one slack variable from s. To find the pairs (ŷi, ŝi), the
adversary can just pick pairs of variables and then verify that they correspond
to each other. The correspondence that the adversary can verify is the affine
relationship qiŷi − q′iŝi = ri between these variables.

This problem can be stated more generally. Suppose that we have a linear
equation system Ax = b. Consider the solution space of this system. If the
space contains small sets of t variables that are in affine relationship α1xi1 +
. . . + αtxit = β for some αi, β ∈ R (that may be not obvious from the outer
appearance A), then these equations may be recovered by looking through all the
sets of variables of size t. To expose the affine relationship between xi1 , . . . , xit , we
will just use Gaussian elimination to get rid of all other variables. The procedure
can be described as follows:

1. Repeat the following, until only variables xi1 , . . . , xit remain in the system.

(a) Pick any other variable xj that has not been removed yet.

(b) Take an equation where xj has non-zero coefficient. Through this equa-
tion, express the variable xj in terms of the other variables. Substitute
it into all the other equations. Remove the equation and the variable xj .
If there are no equations where xj has non-zero coefficient, then remove
only xj , without touching any remaining equations.

2. The previous operations do not change the solution set of the system (for the
remaining variables). Therefore, if there are any equations left, then there
exist αi, β ∈ R (not all αi = 0) such that α1xi1 + . . .+ αtxit = β.

In this manner, the adversary is able to find all unordered pairs {ŷi, ŝi} related
to each other through qiŷi + q′iŝi = ri. The signs of qi, q

′
i, ri in this relationship

determine, which one is the original variable (qiri > 0), and which one the slack
variable (q′iri < 0).

14

4 Conclusions

We have presented attacks against transformation-based methods for solving
LP tasks in privacy-preserving manner. The attacks are not merely theoretical
constructions, but work with reasonable likelihood on problems of practical size.
The aim of this paper was to show that the attacks work in practice. It was not
intended to estimate their theoretical complexity.

We have presented our attacks against methods that handle LP tasks where
the constraints are specified as inequalities. May the methods for differently-
represented LP tasks, e.g. as systems of equations [12, 16], still be considered
secure? Our attacks are not directly applicable against this setting because the
set of equations representing the subspace of feasible solutions is not unique and
the hyperplanes in the original and transformed systems of constraints cannot
be directly matched against each other like in Sec. 3.2. In our opinion, one still
has to be careful because there is no sharp line delimiting systems of constraints
represented as equations, and systems of constraints represented as inequalities.
The canonical form (1) and the standard form (2) can be transformed to each
other and the actual nature of the constraints may be hidden in the specified
LP task.

The lack of precise definitions of confidentiality for transformation-based
methods makes it harder to argue about the (in)security of a particular method.
Further advances in this field would benefit from an indistinguishability-based
definition of security, similar to [6]. In such a definition, the adversary would be
allowed to pick two LP tasks, one of which would then be transformed by the
environment. The adversary’s goal is to find out, which of the two tasks was
transformed. In this definition, it would also be possible to precisely state which
parts of the task the transformation will not attempt to protect: the environ-
ment would check that these parts are equal for the two tasks selected by the
adversary.
Acknowledgements. This work has been supported by the European Regional
Development Fund through the Estonian Center of Excellence in Computer
Science, EXCS, and the Software Technologies and Applications Competence
Centre, STACC. This research was also supported by the European Union Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement no. 284731
“Usable and Efficient Secure Multiparty Computation (UaESMC)”.

References

1. Alice Bednarz. Methods for two-party privacy-preserving linear programming. PhD
thesis, University of Adelaide, 2012.

2. Alice Bednarz, Nigel Bean, and Matthew Roughan. Hiccups on the road to privacy-
preserving linear programming. In Proceedings of the 8th ACM workshop on Pri-
vacy in the electronic society, WPES ’09, pages 117–120, New York, NY, USA,
2009. ACM.

3. Jannik Dreier and Florian Kerschbaum. Practical privacy-preserving multiparty
linear programming based on problem transformation. In SocialCom/PASSAT,
pages 916–924. IEEE, 2011.

15

4. Wenliang Du. A Study Of Several Specific Secure Two-Party Computation Prob-
lems. PhD thesis, Purdue University, 2001.

5. Wenliang Du and Zhijun Zhan. A practical approach to solve secure multi-party
computation problems. In New Security Paradigms Workshop, pages 127–135.
ACM Press, 2002.

6. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

7. Yuan Hong and Jaideep Vaidya. An inference-proof approach to privacy-preserving
horizontally partitioned linear programs. Optimization Letters, 2013. To appear.
Published online 05 October 2012.

8. Yuan Hong, Jaideep Vaidya, and Haibing Lu. Secure and efficient distributed linear
programming. Journal of Computer Security, 20(5):583–634, 2012.

9. Jiangtao Li and Mikhail J. Atallah. Secure and private collaborative linear pro-
gramming. In International Conference on Collaborative Computing, pages 1–8,
2006.

10. Wei Li, Haohao Li, and Chongyang Deng. Privacy-preserving horizontally parti-
tioned linear programs with inequality constraints. Optimization Letters, 7(1):137–
144, 2013.

11. Olvi L. Mangasarian. Privacy-preserving linear programming. Optimization Let-
ters, 5(1):165–172, 2011.

12. Olvi L. Mangasarian. Privacy-preserving horizontally partitioned linear programs.
Optimization Letters, 6(3):431–436, 2012.

13. W. A. Stein et al. Sage Mathematics Software (Version 5.10). The Sage Develop-
ment Team, 2013. http://www.sagemath.org.

14. Tomas Toft. Solving linear programs using multiparty computation. In Roger
Dingledine and Philippe Golle, editors, Financial Cryptography and Data Security,
pages 90–107, Berlin, Heidelberg, 2009. Springer-Verlag.

15. Jaideep Vaidya. Privacy-preserving linear programming. In Sung Y. Shin and
Sascha Ossowski, editors, SAC, pages 2002–2007. ACM, 2009.

16. Cong Wang, Kui Ren, and Jia Wang. Secure and practical outsourcing of linear
programming in cloud computing. In INFOCOM, 2011 Proceedings IEEE, pages
820–828, 2011.

16

Appendix C

On the (Im)possibility of Privately
Outsourcing Linear Programming

The paper “On the (Im)possibility of Privately Outsourcing Linear Programming” [34] follows.

75

On the (Im)possibility of Privately Outsourcing Linear
Programming

Peeter Laud
Cybernetica AS

peeter.laud@cyber.ee

Alisa Pankova
Cybernetica AS

Software Technologies and Applications
Competence Centre

University of Tartu, Institute of Computer Science
alisa.pankova@cyber.ee

ABSTRACT
In this paper we study the security definitions and meth-
ods for transformation-based outsourcing of linear program-
ming. The recent attacks have shown the deficiencies of
existing security definitions; thus we propose a stronger,
indistinguishability-based definition of security of problem
transformations that is very similar to IND-CPA security
of encryption systems. We will study the realizability of
this definition for linear programming and find that barring
radically new ideas, there cannot exist transformations that
are secure information-theoretically or even computation-
ally. We conclude that for solving linear programming prob-
lems in privacy-preserving manner, cryptographic methods
for securely implementing Simplex or some other linear pro-
gramming solving algorithm are the only viable approach.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; C.2.4 [Computer-Commu-
nication Networks]: Distributed Systems—Client/server

Keywords
Cryptanalysis; Linear programming; Secure outsourcing

1. INTRODUCTION
In linear programming (LP), one seeks the optimal value

of a linear function of several arguments, subject to linear
constraints on these arguments. In the canonical form, a LP
task is

maximize ~cT~x, subject to A~x ≤ ~b, ~x ≥ ~0, (1)

where A ∈ Rm×n, ~b ∈ Rm, ~c ∈ Rn (all vectors are column
vectors), and the inequalities hold componentwise. The so-
lution ~xopt is a vector of length n over real numbers. There
exist algorithms for solving LP tasks that are efficient in
theory and/or in practice. A large number of practical opti-
mization problems can be cast as LP tasks either exactly or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW’13, November 8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2490-8/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517488.2517490.

approximately. As the specifications of these problems may
also have privacy constraints, there has been ample interest
towards privacy-preserving methods for solving LP tasks.

Secure outsourcing is conceptually the simplest case of
privacy-aware computation. In this case, there are two par-
ties, the client and the server. The client has a task T which
it would like to solve, but has insufficient computational re-
sources for doing so. The server is powerful enough to solve
the task T . The client wants to keep T private from the
server. Thus the client and server engage in a protocol that
results in the client learning the solution to T , but is com-
putationally less demanding for the client than solving T
himself. Such outsourcing protocols have been proposed for
different tasks, e.g. sequence matching [2], database opera-
tions [11], cryptographic operations [12, 6], and some linear
algebra tasks [1] including linear programming [8, 22]. Quite
often, the outsourcing protocol consists of the client trans-
forming the task T in some manner that hides its original
description, the server solving the transformed task, and
the client transforming the solution of the transformed task
back to the solution of the original task. To reap the bene-
fits of outsourcing, a good, problem-specific transformation
is probably necessary [7].

In this paper, we consider the feasibility of outsourcing lin-
ear programming in privacy-preserving manner. This prob-
lem is tightly related to multiparty privacy-preserving LP,

where the specification (A,~b,~c) of a LP task is distributed
among several mutually distrusting parties. There is a de-
cent number of proposed protocols for this task that are
actually based on outsourcing as well — the clients execute
a protocol that results in a transformed task, this is solved
publicly, and another protocol transforms this solution back
to the solution of the original LP task [9, 21, 18, 19, 4, 17,
13, 14].

This paper is motivated by some recent attacks against
privacy-preserving multiparty and/or outsourcing LP solv-
ing methods [3, 15]. They show that, for linear programs
given in canonical form and split horizontally between par-
ties (each party provides some of the constraints of the sys-
tem), the existing transformations can in general be undone
by some of the parties, using the partial knowledge they
have about the initial task. There exist other forms of LP
tasks (see Sec. 2.1) and proposed transformations for them,
and the existing attacks are not directly applicable to these
transformations, but as all forms are equivalent, it may be
possible to adapt the attacks.

The outline of this paper is the following. In Sec. 2 we
review LP-related notions and existing transformation tech-
niques from related works. In Sec. 3 we study how to build
LP transformations on top of solid cryptographic founda-
tions. To this end, we propose a natural indistinguishability-
based definition stating that any two LP tasks chosen by the
adversary cannot be distinguishied by it after the transfor-
mation. In Sec. 4 we show that it is impossible to information-
theoretically achieve this level of security at least with trans-
formations from a large class that includes all transforma-
tions built on currently proposed techniques. We note that
this does not yet rule out computational security, and in
Sec. 5 we study a number of candidate secure transforma-
tions. It turns out that none of our proposals are secure.
We generalize the reason why all these transformations fail,
and then we empirically state another necessary property
for secure transformations that excludes this way of failing.
In Sec. 6 we see that this property is very strong and con-
strains the transformed tasks too much.We thus conclude
that, barring any radically new ideas related to transform-
ing the LP task to some different task, transformation-based
techniques for privacy-preserving LP outsourcing and multi-
party LP solving are unusable, and the only currently known
feasible method is to use privacy-preserving building blocks
in implementing existing LP solving algorithms [20, 16].

2. PRELIMINARIES
Throughout this paper, the upright upper case letters A

denote matrices, and the lower case letters with vector signs
~b denote column vectors. Writing two matrices/vectors to-

gether without an operator A~b denotes multiplication, while
separating them with a whitespace and putting into paren-

theses (A ~b) denotes column augmentation. By augmenta-

tion we mean attaching a column ~b to the matrix A from
the right. This can be generalized to matrices: (A B) de-
notes a matrix that contains all the columns of A followed
by all the columns of B. Row augmentation is defined analo-
gously. Since multiplication and augmentation may be used
in the same expression at once, for clarity the augmentation

is sometimes also denoted (A|~b), whereas the multiplication
operation has higher priority.

2.1 Linear Programming
The canonical form (1) of LP is equivalent to its standard

form

maximize ~cT~x, subject to A~x = ~b, ~x ≥ ~0 (2)

and to its augmented form (i ∈ {1, . . . , |~x|}):

maximize xi, subject to A~x = ~b, ~x ≥ ~0 . (3)

Indeed, the inequalities of the canonical form may be re-
placed with equalities by introducing slack variables. Each
equality may be substituted with two inequalities of oppo-
site directions. Given a linear program in its standard form,
the objective function vector ~c may be included into the ma-
trix, and an additional variable represent the corresponding
linear combination. The augmented form is an instance of
standard form where the i-th entry of ~cT is 1, and the rest
are 0.

A feasible solution of a linear program is any vector x0 ∈
Rn that satisfies its constraints. An optimal solution of a
linear program is any feasible solution that maximizes the

value of its objective function. The feasible region of a linear
program is the set of all its feasible solutions. It is a poly-
hedron — the intersection of a finite number of hyperplanes
and half-spaces. A feasible solution is basic if it is located
in one of the vertices of that polyhedron.

2.2 Existing Types of Transformations
Let a linear programming task be given in its standard

form (2). The main basic transformations from the related
works are the following.

Multiplying from the left. The idea of multiplying A

and~b by a random invertible matrix P from the left was first
introduced in [9]. Since P is invertible, all the solutions to
the system, including the optimal solution, remain the same.
This means that the transformation is not harmful for the
correctness. However, the feasible region remains revealed.

Multiplying from the right. The idea of multiplying

A and ~b by a random invertible matrix Q from the right was
also proposed in [9]. This operation hides also the objective
function vector ~c. Unfortunately it changes the optimal so-

lution if some external constraints of the form B~x ≥ ~b′ are
present. In this case, the vector ~b′ should also be modified
according to the transformation, but that in fact reveals all
the information about Q. Since in practice linear programs
do require such constraints (in general of the form ~x ≥ ~0),
this solution is not sufficient.

Scaling and Permutation. There have been attempts
to implement multiplication from the right without affecting
the correctness [21], and finally it was noticed in [4] that in

order to preserve the inequality ~x ≥ ~0, the most general
type of matrix by which we may multiply from the right is
a positive monomial matrix (product of a positive diagonal
matrix and a permutation matrix). This results in scaling
and permuting the variables.

Shifting. In [8], the initial variable vector ~x is not only
scaled, but also shifted. This is done by introducing special
slack variables for each shifted variable.

Several of the transformations presented above are spe-
cial cases of the following transformation for a LP task in
the augmented form (3). Generate a random n× n positive
diagonal matrix D and n× n permutation matrix Q (corre-
sponding to the permutation σ ∈ Sn), where n = |~x|. Out-

put i′ = π(i) and (A′|~b′) = RREF(ADQ|~b), where RREF(M)
is the reduced row-echelon form (RREF) of the matrix M .
We call this transformation the basic transformation of a LP
task.

Recall that the RREF is an invariant of matrices: we have
RREF(M1) = RREF(M2) for m × n matrices M1 and M2

iff there exists an invertible m × m matrix P , such that
M1 = PM2. Also, for each m × n matrix M there exists
an invertible m×m matrix P , such that RREF(M) = PM .
Thus the computation of RREF generalizes the multiplica-
tion of the system of equations with an invertible matrix,
occurring in almost every transformation proposed so far.

On input i′, A′, ~b′, the server finds an optimal solution

~yopt for the LP task “maximize yi′ , subject to A′~y = ~b′,
~y ≥ ~0”. Upon learning ~yopt, the client can recover an optimal
solution to (3) by ~xopt = ~yoptQ

−1D−1.
Note that the basic transformation does not employ shift-

ing. We have made this choice because the shifting trans-
formation, as used in [8], is easy to undo [15].

3. DESIRED SECURITY DEFINITION
The security definition that has been used in the previous

works related to the transformation-based approach is the
acceptable security. This notion was first used in [10]. A
protocol achieves acceptable security if the only thing that
the adversary can do is to reduce all the possible values of the
secret data to some domain with the following properties:

1. The number of values in this domain is infinite, or
the number of values in this domain is so large that a
brute-force attack is computationally infeasible.

2. The range of the domain (the difference between the
upper and lower bounds) is acceptable for the applica-
tion.

Some works provide more detailed analysis [3, 8] that esti-
mates the probability that the adversary guesses some secret
value. The leakage quantification analysis [8] is a composi-
tional method for estimating the adversary’s ability to make
the correct guess when assisted by certain public informa-
tion. However, even this analysis is still not formal enough
and is related to the same acceptable security definition.
The informal definitions allow the existence of some attacks
that may be yet unknown, but may turn out to be efficient.
For example, some vulnerabilities against settings that were
assumed to be secure have been found [15]. Additionally,
to argue about the security of complex protocols that use
privacy-preserving LP transformations as a subprotocol, a
more standard security definition for the LP transformation
is necessary.

We now give the necessary notions to formally define a
problem transformation and its security. Let T ⊆ {0, 1}∗
be the set of all possible tasks and S ⊆ {0, 1}∗ the set of
all possible solutions. For T ∈ T and S ∈ S let T � S
denote that S is a solution for T . A problem transformation
is a pair of functions F : T × {0, 1}∗ → T × {0, 1}∗ and
G : S × {0, 1}∗ → S. Both F and G must work in time
polynomial to the length of their first argument. The pair
(F ,G) is a correct problem transformation if

∀T, r, T ′, S′, s :
(
(T ′, s) = F(T ; r) ∧ T ′ � S′

)
⇒ T � G(S′, s) .

This implication shows the intended use of F and G. To
transform a task T , the mapping F uses randomness r, pro-
ducing a transformed task T ′ and some state s for the map-
ping G that transforms a solution S′ to T ′ back into a solu-
tion of the original task T . We write F(T) for a randomized
function that first samples r and then runs F(T ; r).

Note that we have not defined the transformation in the
most general manner possible. Namely, we require that the
result of transforming a task from the set T is again a task
from T. This corresponds to our goal that a transformed
linear program is a linear program again.

The transformation F is intended to hide the important
details of a task T . The meaning of hiding has been recently
investigated by Bellare et al. [5] in the context of garbling
circuits [23]. It is possible that it is unimportant and/or
too expensive to hide certain details of T . It is also possible
that certain tasks are inherently unsuitable for hiding. In
the context of linear programming, we most probably do not
want to hide the size of the task, because we would like to
avoid padding all tasks to some maximum size. Also, some

tasks may be ill-specified and thus unsuitable for transfor-
mation. For example, we may require the constraint matrix
to have full rank.

Both the public details and suitability for hiding are cap-
tured by the notion of side information function Φ : T →
{0, 1}∗ that, again, must be polynomial-time computable.
When transforming a task T , we do not try to hide the in-
formation in Φ(T). If T should not be transformed at all,
then we set Φ(T) = T . We can now state a rather standard,
indistinguishability-based definition of privacy. Recall that
a function α : N → R is negligible if ∀c∃m∀n ≥ m : α(n) <
1/nc.

Definition 1. A transformation (F ,G) for T is Φ-private
if the advantage of any probabilistic polynomial-time adver-
sary A = (A1,A2) is a negligible function of η in the follow-

ing experiment ExpT,Φ
A :

(T0, T1, s)← A1(η)
if |T0| 6= η ∨ |T1| 6= η ∨ Φ(T0) 6= Φ(T1)

return ⊥
b

$← {0, 1}
(T ′,)← F(Tb)
b′ ← A2(T ′, s)

return (b
?
= b′)

where the advantage of the adversary is 1/2 less the proba-
bility of the experiment returning true.

If T is the set of all linear programming tasks “maxi-

mize ~cT~x, subject to A~x = ~b, ~x ≥ ~0”, determined by A ∈
Rm×n, ~b ∈ Rm and ~c ∈ Rn, then we will in the follow-

ing take Φ(A,~b,~c) = (m,n, ~xopt, bb(A,~b)), where ~xopt is the
unique optimal solution for the linear programming task and

bb(A,~b) is the bounding box for the polyhedron A~x = ~b,

~x ≥ ~0. If the task is infeasible, unbounded, or has several
different optimal solutions, then we consider the task unsuit-

able for transformation and take Φ(A,~b,~c) = (A,~b,~c). This
choice of Φ is at least as permissive as the privacy goals for
previously proposed transformations (note that these goals
have often been implicit in the papers where these transfor-
mations were presented).

Quite clearly, the transformations described in Sec. 2.2, in
particular the basic transformation, do not satisfy this defi-
nition. If F is the basic transformation then the adversary
picks two LP tasks T0 and T1 with n variables, m equality
constraints and the same optimal solution, such that their
feasible regions P0 and P1 both have the unit hypercube with
opposite corners at (0, . . . , 0) and (1, . . . , 1) as the bound-
ing box, but a different number of vertices with coordinates
(0, . . . , 0, 1, 0, . . . , 0). Given the transformed task T ′, the ad-
versary will find its bounding box (by solving a number of
LP tasks with the constraints of T ′ and either maximizing or
minimizing a single variable), scale it to the unit hypercube,
and count the vertices with coordinates (0, . . . , 0, 1, 0, . . . , 0).
This count is not changed by the basic transformation.

4. NO PERFECT SECRECY
A transformation (F ,G) provides perfect secrecy (or infor-

mation-theoretic secrecy) if the advantage of any adversary
in the experiment described in Def. 1 is zero. It is definitely
possible to define a transformation that provides perfect se-
crecy with respect to this definition. Such a transformation

F would solve the LP task and then output a randomly
selected (or even a constant) LP task that has the same op-
timal solution. But obviously, we are not looking for such
transformations because the goal of the entire outsourcing
approach is to make the client not pay the price of solving
the original problem.

In this section we prove that any perfectly secure transfor-
mation with the properties listed below cannot be compu-
tationally much simpler than solving the LP task. W.l.o.g.
we assume that both the inputs and the outputs of F are
linear programs in the canonical form (1). The properties
are the following:

1. The optimal solution ~yopt to the transformed linear

program F(A,~b,~c; r) only depends on r and Φ(A,~b,~c).

2. The mapping F(·; r) is continuous with respect to the
optimal solutions of the initial and transformed prob-
lems. This means that for each ε > 0 there exists δ >
0, such that if (A◦, ~b◦, ~c◦) and (A•, ~b•, ~c•) are two LP
tasks with n variables, m constraints and the optimal
solutions satisfying ‖ ~x◦opt− ~x•opt‖ ≤ δ, then the opti-

mal solutions of the transformed tasks F(A◦, ~b◦, ~c◦; r)

and F(A•, ~b•, ~c•; r) satisfy ‖ ~y◦opt − ~y•opt‖ ≤ ε.
We find the properties natural; they are satisfied by all trans-
formations proposed so far in the literature and seem to be
natural consequences of the proposed transformation tech-
niques. For example, the result of scaling and shifting the
polyhedron or permuting its variables depends only on the
random matrices by which it is multiplied (the range for the
random values may depend on the bounding box). For a
transformation satisfying these properties, we show how to
turn it into a LP solving algorithm with only little extra
computational effort.

According to property 2, there exists a function ∆ : R>0 →
R>0 (where R>0 denotes the set of positive real numbers),
mapping ε to δ. W.l.o.g. we may assume that the function
∆ is monotone and continuous.

For the simplicity of the exposition, we need a further
technical property of F . Let Qn be the n-dimensional unit
hypercube. For a polyhedron P bounded by a number of hy-
perplanes, let its roundness rd(P) be the minimum distance
between a vertex of P and a hyperplane of P that does not
contain this vertex. For ~v ∈ Qn, let rdmn (~v; r) be the round-
ness of the polyhedron determined by the constraints of the

LP task F(A,~b,~c; r), where Φ(A,~b,~c) = (m,n,~v,Qn). Note
that due to property 1, the quantity rdmn (~v; r) is well-defined.
The required property of F is the following:

3. The function rdmn (~x; r) is continuous (as a function of
~x).

We show that the existence of a perfectly secure trans-
formation with listed properties allows us to perform of-
fline precomputations for a fixed dimension n and number
of bounding hyperplanes m that afterwards allow us to solve
an arbitrarily large proportion of interesting LP tasks of di-
mension n− 1 with m− 2 facets with an effort that is only
marginally larger than applying F and G. Let our interest
in these tasks be described by a probability distribution D;
the tasks we want to solve are sampled from this distribu-
tion. We assume that the probability density function p
of the optimal solutions of tasks sampled according to D is
continuous. We also assume that as side information, we

know the bounding boxes of the polyhedra defined by the
constraints of these tasks; this assumption holds for large
classes of problems occurring in practice. We will actually
use an assumption equivalent to the last one due to the ease
of scaling and shifting: the bounding boxes of all tasks sam-
pled from D are Qn−1.

For the precomputation, we first fix the randomness r. We
construct a LP task T pre with n variables and m bounding
hyperplanes and the objective function selected in such a
way that the optimal solution of T pre is ~xpre

opt = (1, . . . , 1)T.
We perform the transformation – Upre = F(T pre; r) – and
solve the resulting task Upre. Let the solution to Upre be
~ypre

opt.
Let q ∈ (0, 1) be the desired success probability of the

LP solving algorithm. The online phase of LP depends on
a constant ε > 0 that is selected according to q (but is
independent of T pre). Let us first explain the algorithm,
and then show that there is a choice of ε that guarantees
the success probability at least q. Denote δ = ∆(ε).

Let T ← D be a LP task with n − 1 variables and m −
2 constraints. Let P be the polyhedron defined by these
constraints; let the bounding box of P be Qn−1. To solve
T , we subject it to the following transformations.

1. Scale the polyhedron P down, with the scalar mul-
tiplier being δ. This corresponds to substituting each
variable xi in each constraint and in the objective func-
tion vector by (1/δ)xi. Let T0 be the resulting task and
P0 the polyhedron defined by the scaled constraints.
The bounding box of P0 is the hypercube in n − 1
dimensions with the side length δ.

2. Add the n-th dimension and build an oblique hyper-
prism from P0, with the bases at hyperplanes xn = 0
and xn = 1, and the bounding box of the hyperprism
being equal to Qn. This modifies the system of con-
straints as follows:

• Two new constraints, xn ≥ 0 and xn ≤ 1, are
added corresponding to the bases of the hyper-
prism.

• Each existing constraint
∑n−1
i=1 aixi ≤ b is re-

placed with
∑n−1
i=1 ai(xi + (1 − δ)xn) ≤ b, cor-

responding to the sides of the hyperprism.

The result of these two transformations is shown in Fig. 1.
Let T ′ be the LP task where the resulting hyperprism P ′ is

the set of feasible solutions, and where the objective function
of T ′ is

∑n−1
i=1 cixi + Cxn, where ~c = (c1, . . . , cn−1) is the

objective function vector of T and C is a large constant.
Hence the optimal solution ~x′opt of T ′ is located on the base
P1 of the hyperprism, otherwise being “at the same vertex”
as the optimal solution ~xopt to T . In particular, ~x′opt can

easily be transformed back to ~xopt. Also note that ‖~x′opt −
~xpre

opt‖ ≤ δ.
Let (U ′, s) = F(T ′; r). If we could find the optimal solu-

tion ~y′opt to U ′, then we could compute ~x′opt = G(~y′opt, s)

and find ~xopt from it. Note that ‖~y′opt − ~ypre
opt‖ ≤ ε. Let

P̄ be the polyhedron defined by the constraints of U ′. The
point ~y′opt is determined as the unique intersection point of

a number of hyperplanes bounding P̄ . All these hyperplanes
are at distance of at most ε from the point ~ypre

opt.
We now have to explain the choice of ε. We have selected

it so small, that Pr[rd(P̄) > 2ε] ≥ q, where the probability

1

1

1

xk

xj

xi

P

P1

δ

δ

P0

Figure 1: Results of preparatory transformations to
task T

is taken over the choice of T (sampled from D). Thanks
to this choice, the following claim holds with probability at
least q:

• If a hyperplane bounding P̄ is at distance of at most
ε from the point ~ypre

opt, then this hyperplane contains
~y′opt.

Hence, to find ~y′opt, we measure how far each hyperplane

bounding P̄ is from the point ~ypre
opt, and find the intersection

point of these hyperplanes where the distance is at most ε.
This amounts to solving a system of linear equations, which
is much simpler than solving LP.

Existence of suitable ε.
Let baseε ⊆ Rn be the set of points ~x, where xn = 1 and

1 −∆(ε) ≤ xi ≤ 1 for all i ∈ {1, . . . , n − 1}. Let p′ε be the

probability density function of ~x′opt ∈ baseε, where ~x′opt is
the optimal solution to the LP task T ′, defined as before.
The function p′ε is continuous because it has been obtained
via a continuous transformation from the continuous func-
tion p. For a Boolean value b, let [b] be 1 if b is true, and 0
if b is false. The probability of rd(P̄) being larger than 2ε is

PR(ε) =

∫

baseε

p′ε(~x) · [rdmn (~x; r) > 2ε] d~x .

We see that PR is a continuous function, because it has been
constructed from continuous components in a manner that
preserves continuity. As PR(0) = 1, there must exist some
ε > 0, such that PR(ε) ≥ q.

5. SOME INSECURE TRANSFORMATIONS
We have seen that perfect security is impractical. This

does not yet rule out the existence of transformations with
weaker security (computational), because we had to access
the private randomness in order to obtain the optimal solu-
tion for the LP task.

In this section, we propose certain transformations, ob-
serve why these do not satisfy our privacy , and empirically
derive a further necessary condition for the security of the
transformation. In our opinion, this condition is a very nat-
ural one. The transformations satisfying this condition are
then further explored in Sec. 6.

When aiming for computational security, the privacy has
to follow from a plausible computational hardness assump-
tion. In LP, we work with real numbers, hence the assump-
tions about discrete structures (e.g. the RSA assumption,
various Diffie-Hellman assumptions) etc. are not directly ap-
plicable. Any assumption we base the security of the trans-
formation on, will be a novel one. To reduce the novelty, we
may take some known assumption on processes similar to
transforming LP tasks producing indistinguishable distribu-
tions, and change it by stating that instead of elements of
finite fields or groups, there are real numbers. We must be
careful, though, because real numbers have extra structure
(order) that finite fields lack.

The Strong Secret Hiding Assumption (SSHA) [1] may be
suitable for such change. We refer to the original paper for
its precise statement on the indistinguishability of certain
distributions over matrices over finite fields. We only remark
that if SSHA could be extended to matrices over R, then it
would allow us to hide a LP task by adding many extra
columns (and rows) to the matrix A before applying the
basic transformation. We must be careful, though, to not
change the optimal solution of the task.

Let us now study different ways of performing this aug-
mentation of A. Starting from the task (3), we will change

it to “maximize wj , subject to A′ ~w = ~b′, ~w ≥ 0”, to which
we apply the basic transformation.

New variables with constraints.
We add a new variable z to the system, and fix its value

with respect to existing variables: we also add a constraint

z = ~dT~x+ r to the system, where ~d ∈ Rn and r ∈ R. In this
manner, we can add any number of variables z1, . . . , zk with

constraints zj = ~dT
j ~x+rj . This corresponds to changing the

task to “maximize xi, subject to
(
A 0
D −I

)
=
(~b
−~r
)
, ~x, ~z ≥ ~0”,

where D = (~d1 · · · ~dk)
T

and ~r = (r1 · · · rk)T.

The inequalities ~z ≥ ~0 set new constraints also for the orig-
inal variables ~x. These must not change the optimal solution
of the LP task. Also, we want to define the transformation
in a manner that does not require it to start solving the
original LP task. Hence we want that the newly introduced

inequalities zj = ~dT
j ~x + rj ≥ 0 are implied by the original

inequalities ~x ≥ ~0. This is possible only if all entries of ~dj
are non-negative and rj ≥ 0.

Why do we add the inequalities ~z ≥ ~0 to the transformed
LP task, instead of allowing these variables to be free? If
we did so, we also would have to leave free the variables in
~y (after performing the basic transformation) corresponding
to variables in ~z. This means that in the transformed task,
we can tell which of the variables ~y correspond to variables
in ~x and which correspond to variables in ~z. If we know
which variables stem from ~z, we can use Gaussian elimina-
tion to get rid of them. This leaves us with just the basic
transformation being applied to the original task, which, as
we saw before, is not sufficiently secure.

If we insist that all entries of D and ~r are non-negative,
the variables from ~x and the variables from ~z can still be
distinguished after the basic transformation. A variable zj
with the constraint zj = ~dT

j ~x+rj can only be 0 if rj is 0 and

xk = 0 for all k ∈ {1, . . . , n} where ~djk 6= 0. If the actual
transformation is such, that the values rj are likely to be
non-zero, then the adversary of Def. 1 has to pick the to-be-
distinguished LP tasks so, that for each variable, there is a
feasible solution where this variable equals 0. To distinguish
variables from ~x and the variables from ~z, the adversary
minimizes each variable one by one (this amounts to solving
a LP) and sees which ones have the minimal value 0. If the
addends rj are 0, but the matrix D is sufficiently dense then
the variables from ~z have “smaller probability” of being 0
than the variables from ~x. In this case, the adversary sam-

ples random vertices of the polyhedron A′~y = ~b′ (by solv-
ing LP tasks with randomly chosen optimization directions,
i.e randomly chosen objective functions) and records which
variables are 0 with larger or smaller frequency. If the matrix
D is sparse then the adversary picks the to-be-distinguished
LP tasks so, that there are no affine relationships among
small sets of initial variables ~x. The transformation, how-
ever, introduces affine relationships among a variable from
~z and small sets of variables from ~x. Such relationships are
straightforwardly detected [15] and based on them, variables
from ~x and variables from ~z can be distinguished.

Hence this way of augmenting the LP task is not sufficient
to achieve privacy, at least when applied alone.

New variables without constraints.
We add k new variables ~z to the system (3) with m con-

straints and n variables, without adding new constraints. In

this case, the original system of equations A~x = ~b must be
modified to include ~z, otherwise the variables corresponding
to the ones in ~z can be recognized after the basic transfor-
mation and easily removed from the system.

We replace the original system of equations with A~x +

C~z = ~b, where C = AV , where V ∈ Rn×k is a random ma-
trix with non-negative entries. We also add the constraints
~z ≥ ~0. Given an optimal solution (~x0, ~z0) of the modified
task, we recover the optimal solution ~xopt of the original
task as ~xopt = ~x0 + V ~z0.

It is easy to see that ~x′ = ~x0 + V ~z0 is indeed the optimal
solution to the original task. First, it satisfies the system

of equations A~x = ~b. Second, the value of the objective
function xi for ~x′ is at least as good as its value in ~xopt,

because (~xopt,~0) is one of the solutions of the modified task
and the i-th component of the vector V ~z0 is non-negative.
Finally, all components of ~x′ are non-negative because both
~x0 and V ~z0 are non-negative.

If we could distinguish the variables in ~x from the vari-
ables in ~z after the basic transformation, then we could re-
move the variables in ~z by setting them equal to 0, and
obtain the original LP task with basic transformation. Un-
fortunately, we can indeed distinguish them. There are no
upper bounds for variables in ~z. If the adversary picks the
to-be-distinguished LP tasks so, that their feasible solution
sets are bounded, then it has to maximize each variable one
by one to distinguish variables in ~x from those in ~z.

The two augmentations could both be applied to the origi-
nal LP task before the basic transformation. It is easy to see
that the order of application does not matter here. Unfortu-

nately, the application of both of them does not increase the
security of the transformation — the variables introduced
by both augmentations can still be located and removed.

Splitting the variables.
In previous transformations, each variable of the origi-

nal LP task gave us one variable in the transformed task,
while the transformation introduced new variables. We can
also consider transformations where each variable xj in the
original task gives several variables zj1, . . . , zjk of the trans-
formed task. In this case, the transformation picks non-
negative rj1, . . . , rjk and replaces xj with rj1zj1+· · ·+rjkzjk
in all equations of the original task (3). This replacement
can be made for some, or all variables in the original system.
After this replacement, we again apply the basic transfor-
mation to the system.

Unfortunately, the splitting of the variables can be un-
done, at least partially, even after the basic transformation,
even if other transformations described above have also been
applied. The adversary will pick the original tasks T0, T1 so
that the set of feasible solutions is bounded. Let xj be one
of the original variables, with the upper bound xmax

j . Af-
ter the replacement, the variable zjt is upper-bounded by
zmax
jt = xmax

j /rjt (recall that the upper bounds can easily be
found). A pair of variables zjt, zju satisfies the inequality
rjtzjt + rjuzju ≤ xmax

j or zmax
ju · zjt + zmax

jt · zju ≤ zmax
jt zmax

ju .
The basic transformation permutes the variables. To undo

the splitting of variables, we have to detect whether two
variables yj1 and yj2 could have resulted from the splitting of
the same variable xj . We just saw that a necessary condition
for this is, that all feasible solutions of the transformed task
satisfy the condition ymax

j2 · yj1 + ymax
j1 · yj2 ≤ ymax

j1 ymax
j2 . In

other words, this inequality must be redundant with respect
to the constraints of the transformed task. The redundancy
of an inequality constraint is easy to check (it corresponds
to a LP task).

While this analysis may not be sufficient to completely
identify which variables in ~y correspond to the same vari-
able in ~x (we may get false positives due to certain pairs
of original variables xj1 and xj2 also satisfying the inequal-
ity xmax

j2 · xj1 + xmax
j1 · xj2 ≤ xmax

j1 xmax
j2), it is sufficient to

distinguish two LP tasks selected by the adversary.

A further condition.
We see that all our attempts so far have failed because in

the transformed task, different variables had different roles.
These roles could be determined and the variables elimi-
nated. Thus we set an extra requirement that in the trans-
formed task (in the polyhedron corresponding to this task),
all variables “look the same”. Besides the variables, we want
the same condition to hold for (small) sets of variables, as
the failure of our last attempt in augmenting A showed.

We need the following notions to formally define our re-
quirement. Let ~eki = (0, . . . , 0, 1, 0, . . . , 0) be the i-th unit
vector in the k-dimensional space Rk (the length of ~eki is k
and the only 1 is on i-th position). For I ⊆ N and i ∈ I let
idxI i be the index of i in the ordered set I, meaning that
I has exactly idxI i elements less than or equal to i. For
I ⊆ {1, . . . , k}, |I| = n let πkI : Rk → Rn be the projec-
tion to dimensions in I. It is a linear mapping defined by
πkI (~eki) = ~enidxI i if i ∈ I, and πkI (~eki) = 0 otherwise. For a
permutation σ ∈ Sn let σ̂ : Rn → Rn be the permutation of

dimensions given by σ, i.e. σ̂ is the linear mapping defined
by σ̂(~eni) = ~enσ(i).

Definition 2. Let t ∈ N. A set of points X ⊆ Rk is t-
symmetric, if for any I, I ′ ⊆ {1, . . . , k}, |I| = |I ′| = t, and
σ ∈ St we have πkI (X) = σ̂(πkI′(X)).

There is also a computational analogue to this definition.

Definition 3. Let t, k : N → N. A family of probabil-
ity distributions over sets of points {Xn}n∈N, where each

element Xn ∈ supp(Xn) ⊆ Rk(n) has a polynomial-size de-
scription, is computationally t-symmetric, if for any prob-
abilistic polynomial-time (in n) algorithm A, the following
probability is negligible:

Pr[x ∈ πk(n)
I (X)\σ̂(π

k(n)

I′ (X)) |X ← Xn, (x, I, I ′, σ)← A(X)],

where x ∈ Rt(n), I, I ′ ⊆ {1, . . . , k(n)}, |I| = |I ′| = t(n),
σ ∈ St(n).

The previous definition says that computationally, t-symmetry
is broken if an efficient algorithm can find two projections
that are different, as well as a certificate of the non-emptiness
of their difference. We want the transformation of a LP task
be such, that the possible set of results of the transforma-
tion is computationally t-symmetric for small values of t,
where the asymmetry could be exploited for classifying the
variables in the transformed LP task. In particular, we want
the transformed LP task to be computationally 1-symmetric
(hence the bounding box of the transformed task must be a
hypercube) and 2-symmetric.

6. 2-SYMMETRIC TRANSFORMATIONS
Let us now consider transformations that are 2-symmetric

and see what properties of the feasible regions of transformed
tasks this implies. From now on, let the constraints of the

transformed LP task be A~x = ~b, ~x ≥ ~0.

6.1 A computable property of polyhedra
Consider the polyhedron P determined by A~x = ~b, ~x ≥

~0, with m equality constraints and n variables. Let i, j ∈
{1, . . . , n} be two coordinates, such that xi = xj = 0 does
not contradict the constraints, and consider the projection
of P to the (xi, xj)-plane. Assume the projection does not
equal the whole first quadrant of the plane. Also assume
that it is not a point or a line (segment). In this case, the
projection is a convex, possibly unbounded polygon. Let O1

be the vertex of the polygon at the coordinates (0, 0). Let
O2 be the next vertex of the polygon, at the coordinates
(c, 0). It is possible that O2 coincides with O1; this happens
if xj = 0 implies xi = 0. Let O3 be the next vertex of the
polygon after O2. Let αPij ∈ R be such, that the side O2O3

lies on the line xi + αPijxj = c.

Lemma 1. There exists a polynomial-time algorithm that

on input A, ~b, i and j, satisfying the conditions above, com-
putes αPij (to an arbitrary level of precision).

Proof. The algorithm works as follows. It will first find
the coordinate c by solving the LP task “maximize xi, sub-
ject to ~x ∈ P , xj = 0”.

LetD(~x, γ) denote the direction (cos γ)·xi+(sin γ)·xj . Us-
ing binary search, the algorithm will then find γ ∈ [−π

2
, π

2
],

�
�
�
�

xj

xi

c

c

xi + αP
ijxj = c

O3

O1 O2

γ

Figure 2: Finding the value of αPij

such that the optimal solution for the LP task “maximize
D(~x, γ − ε) subject to ~x ∈ P” is in a point ~x′ with x′i = c
and x′j = 0, while the optimal solution for the LP task“max-

imize D(~x, γ + ε), subject to ~x ∈ P” is in a point ~x′′ with
(x′′i , x

′′
j) 6= (c, 0). Here ε > 0 is an arbitrarily small (depend-

ing on the required precision) angle. Fig. 2 depicts all these
quantities.

On (xi, xj)-plane, the direction D(~x, γ) is (almost) per-
pendicular to the line xi+α

P
ijxj = c. Hence αPij ≈ tan γ.

The existence of this algorithm shows that if a transforma-
tion producing the polyhedron P ⊆ Rn is computationally
2-symmetric, then the value αPij must be the same for all
coordinate pairs i, j. Let us denote it by α.

6.2 Scarcity
We show that any polyhedron whose αPij is the same for

all coordinate pairs i, j is a set of the form

{(x1, . . . , xn) | x1 + . . .+ xn ≤ c} (4)

for some c ≥ 0 (c ∈ R) or c =∞.
This result implies that any computationally 2-symmetric

transformation (F ,G) can be easily turned to a LP solving
algorithm. Given a LP task, the solver will first apply F to
it, resulting in the polyhedron (4) and an objective function.
This polyhedron has at most n+1 vertices and the algorithm
finds the optimal one by applying the objective function to
each of them. The value c can also be straightforwardly
found by adding the constraints x1 = . . . = xn−1 = 0 and
then finding the maximum value of xn (either by substitut-
ing 0 to x1, . . . , xn−1, or by binary search).

Let the transformed polyhedron P be defined by A~x = ~b,
~x ≥ ~0, where A is a non-singular m×n matrix for m ≤ n−1.
If m = n−1, then P is one-dimensional, hence it has at most
2 vertices which can be easily found and (F ,G) can again be
turned into a LP solving algorithm. Thus we let m ≤ n− 2.

If m ≤ n − 2 and P contains at least one basic feasible
solution, then at least two variables in this solution are 0.
The reason is that basic solutions occur only on the inter-

sections of constraining hyperplanes, and the system A~x = ~b
provides at most m of them, so at least n −m come from
xj ≥ 0.

If there are two variables that can simultaneously have the
value 0 in P , then any pair of two variables must have the

�
�
�
�

xj

0

xi

c

c

xi + αxj ≤ c

αxi + xj ≤ c

Figure 3: Symmetry property of a projection to
(xi, xj)

same property, otherwise the (computational) 2-symmetry
would be broken. For arbitrary i, j, consider the projection
of P to the dimensions xi and xj . Since P is a convex poly-
hedron, this projection is a convex polygon. As discussed
before, it contains the point (0, 0).

Let O2, O3, c, αPij = α and γ = arctanα be defined as in
Sec. 6.1. One of the sides of the polygon is located on the
line xi + αxj = c. By symmetry, there also exists a side of
the polygon that lies on the line xj + αxi = c. Due to the
convexity of the polygon, α ≤ 1, otherwise these lines pass
through the interior of the convex hull of the points (0, 0),
(c, 0) and (0, c) that are contained in the polygon.

Since all projections onto any pair of variables (xi, xj)
should have exactly the same angle γ and therefore the same
tan γ = α, and exactly the same distance from the origin
point c, a system of 2·

(
n
2

)
inequalities of the form xi+αxj ≤

c is implied by the constraints defining the polyhedron P .
Here

(
n
2

)
is the number of possible pair choices. This number

is multiplied by 2 since the inequality xi + αxj ≤ c implies
existence of the inequality αxi+xj ≤ c due to the symmetry
requirement, as shown in Fig. 3. Due to convexity of the
projection, any valuation (vi, vj) of xi and xj such that vi+
vj ≤ c must be possible.

Given n variables, any inequality xi+αxj ≤ c comes from
some equation of the form a1x1 +a2x2 + . . .+xi+ . . .+αxj+
. . .+ anxn = c implied by the constraints defining P , where
ak ≥ 0 for any k, and a` > 0 for some ` (the variable x` acts
as a slack variable for the inequality). In total, we get 2 ·

(
n
2

)

equations that all follow from these constraints:

αx1 + x2 + a123x3 + . . .+ a12(n−1)xn−1 + a12nxn = c
x1 + αx2 + a213x3 + . . .+ a21(n−1)xn−1 + a21nxn = c
a231x1 + αx2 + x3 + . . .+ a23(n−1)xn−1 + a23nxn = c
a321x1 + x2 + αx3 + . . .+ a32(n−1)xn−1 + a32nxn = c
. .

an(n−1)1x1 + an(n−1)2x2 + . . .+ αxn−1 + xn = c
a(n−1)n1x1 + a(n−1)n2x2 + . . .+ xn−1 + αxn = c

(5)
where aijk ≥ 0 for all i, j, k ∈ {1, . . . , n}, and each equation
contains at least one strictly positive aijk. We will show
that these equations imply x1 + . . .+ xn = c. Consider the
possible values of α.

�
�
�
�

xj

0

xi + αxj = c

xi

c

c

Figure 4: The case α ≤ 0

�
�
�
�

xj

0

xi + αxj = c

ε (c− αε, ε)
xi

c

c− αεc

Figure 5: A point that exists on the line xi +αxj = c
for α ≤ 0

1. The case α ≤ 0. The side of the polygon represented
by the line xi + αxj = c is either parallel to the xj
axis, or is tilted in the direction opposite from the xj
axis. This is illustrated by Fig. 4.

Consider a point v = (v1, . . . , vn) ∈ P where (vi, vj) =
(c − αε, ε) for some ε > 0. Depending on ε, this can
be any point that is located on the side on the line
xi + αxj = c. There definitely exist points on this
side, otherwise that side would not be present on the
projection at all. A possible location of such a point is
shown in Fig. 5. Consider the equation E ≡ aij1x1 +
. . .+xi + . . .+αxj + . . .+ aijnxn = c from the system
(5). Since each equation represents an inequality, there
exists some ak = aijk > 0 that corresponds to some
variable xk, k 6= i, k 6= j (xk acts as a slack variable).

(a) The case α = 0. Due to the symmetry of the pro-
jections, there must exist a point v′ = (v′1, . . . , v

′
n) ∈

P such that (v′i, v
′
k) = (c − αε, ε) = (c, ε). But

the point v′ cannot possibly satisfy the equation
E because already v′i + akv

′
k = c + akε > c and

all other coefficients in E are non-negative.

(b) The case α < 0. We have vi+αvj = c−αε+αε =
c. The point v must satisfy the equation E. Hence
vk = 0, because ak > 0. Now we have (vi, vk) =

(c − αε, 0). The point v must also satisfy other
equations of the system (5), including aik1x1 +
. . .+ xi + . . .+ αxk + . . .+ aiknxn = c. We have
vi + αvk = c− αε+ 0 > c, hence this equation is
violated.

Thus the only possible case is α > 0.

2. The case α > 0. If c = 0, then the only possible
solution for the system (5) would be x1 = . . . = xn =
0, since there are no negative entries at all. Consider
the case c > 0.

Let v = (v1, . . . , vn) ∈ P be a point where vi = c. For
any j 6= i, consider the equation aij1x1 + . . . + xi +
. . .+ αxj + . . .+ aijnxn = c. As vi = c, the left hand
side of this equation, when applied to v, will be at
least c. As it cannot be larger, we must have αvj = 0.
This implies vj = 0, because α > 0. As j was arbi-
trary, we obtain v = (v1, . . . , vi−1, vi, vi+1, . . . , vn) =
(0, . . . , 0, c, 0, . . . , 0).

If the system (5) contains any equation where the co-
efficient of xi is a 6= 1, then the point v cannot satisfy
this equation, because avi 6= vi = c, and the other
components of v cannot affect the left hand side of the
equation since they are all 0. We get that the coeffi-
cient of xi should be 1 in each equation.

In the same way, we get that the coefficients of all the
variables in all equations should be 1. This means that
the only equation that remains is x1 + . . .+ xn = c.

Another thing that we would like to show is that if the
equation system defined by P contains a constraint x1 +
. . . + xn = c for some c > 0, then it is not allowed to have
any other constraints. Suppose that the system contains the
following two equations:

x1 + . . .+ xn = c (6)

a1x1 + . . .+ anxn = b (7)

where ai, b ∈ R. We will show that the equation (7) can
be at most a multiple of the equation (6), representing the
same constraint.

Without loss of generality, let a1 = mini ai, a2 = maxi ai.
We may assume that a2 > a1 since if it was the case a2 = a1,
then all the ai would be equal, and the only possible way
to avoid contradiction with (6) would be to assign b = aic,
making the (7) a multiple of (6).

Multiplying (6) by a1 and subtracting the result from (7),
we get

(a2 − a1)x2 + . . .+ (an − a1)xn = b− a1c

Since a2 6= a1, we may express the variable x2 in terms of
other variables:

x2 =
b− a1c−

∑n
i=3(ai − a1)xi

a2 − a1

We know that the only allowed valuations of xi are posi-
tive.

• Since x2 ≥ 0 and a2 > a1, the constraints defining the
polyhedron P imply

b− a1c ≥
n∑

i=3

(ai − a1)xi

• From (6), x1 = c−∑n
i=2 xi. We get

x1 = c− b− a1c−
∑n
i=3(ai − a1)xi

a2 − a1
−

n∑

i=3

xi

=
a2c− b−

∑n
i=3(a2 − ai)xi

a2 − a1

• Since x1 ≥ 0 and a2 > a1, the constraints defining the
polyhedron P imply

a2c− b ≥
n∑

i=3

(a2 − ai)xi

Recall that any variable must be allowed to take any value
in the span [0, c]. Consider the valuation where xi = c for
some i. From (6) and the requirement ~x ≥ 0, we get that
∀j 6= i : xj = 0.
{
b− a1c ≥

∑n
i=3(ai − a1)xi

a2c− b ≥
∑n
i=3(a2 − ai)xi

=⇒
{
b− a1c ≥ aic− a1c

a2c− b ≥ a2c− aic

=⇒
{
b ≥ aic
−b ≥ −aic

=⇒ ai =
b

c
.

Similarly, we can show that for any i 6= 1, 2 we have ai =
b
c
. What about a1 and a2?
From (6), we get that x3 + . . .+ xn = c− x1 − x2.

a1x1 + . . .+ anxn = b

a1x1 + a2x2 +
b

c
x3 + . . .+

b

c
xn = b

(
a1 − b

c

)
x1 +

(
a2 − b

c

)
x2 = 0

If either
(
a1 − b

c

)
6= 0 or

(
a2 − b

c

)
6= 0, then one variable

may be expressed in terms of the other one, meaning that
the projection to (x1, x2) can be only a line segment. This
would mean that the entire polygon P is actually a line
segment. We have explored this case before. But if this is
not the case, then a1 = a2 = b

c
.

We have obtained an equation b
c
x1 + . . . + b

c
xn = b, and

multiplying both sides by c
b

we get the same equation (6).

7. CONCLUSIONS
We have shown that the current approaches towards privacy-

preserving outsourcing or multiparty linear programming
are unlikely to be successful. Success in this direction re-
quires some radically new ideas in transforming polyhedra
and/or in cryptographic foundations violating the rather
generous assumptions we have made in this paper. Alter-
natively, it may be fruitful to optimize privacy-preserving
implementations of LP solving algorithms in order to have
universal privacy-preserving optimization methods for large
classes of tasks.

8. ACKNOWLEDGEMENTS
This work was supported by the European Regional De-

velopment Fund through the Estonian Center of Excellence
in Computer Science, EXCS, and through the Software Tech-
nologies and Applications Competence Centre, STACC. It
has also received funding from the European Union Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement no. 284731.

9. REFERENCES
[1] Mikhail J. Atallah and Keith B. Frikken. Securely

outsourcing linear algebra computations. In Dengguo
Feng, David A. Basin, and Peng Liu, editors,
ASIACCS, pages 48–59. ACM, 2010.

[2] Mikhail J. Atallah and Jiangtao Li. Secure
outsourcing of sequence comparisons. Int. J. Inf. Sec.,
4(4):277–287, 2005.

[3] Alice Bednarz. Methods for two-party
privacy-preserving linear programming. PhD thesis,
University of Adelaide, 2012.

[4] Alice Bednarz, Nigel Bean, and Matthew Roughan.
Hiccups on the road to privacy-preserving linear
programming. In Proceedings of the 8th ACM
workshop on Privacy in the electronic society, WPES
’09, pages 117–120, New York, NY, USA, 2009. ACM.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway.
Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM
Conference on Computer and Communications
Security, pages 784–796. ACM, 2012.

[6] Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and
Wenjing Lou. New algorithms for secure outsourcing
of modular exponentiations. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, ESORICS,
volume 7459 of Lecture Notes in Computer Science,
pages 541–556. Springer, 2012.

[7] Yao Chen and Radu Sion. On securing untrusted
clouds with cryptography. IEEE Data Eng. Bull.,
35(4):9–20, 2012.

[8] Jannik Dreier and Florian Kerschbaum. Practical
privacy-preserving multiparty linear programming
based on problem transformation. In
SocialCom/PASSAT, pages 916–924. IEEE, 2011.

[9] Wenliang Du. A Study Of Several Specific Secure
Two-Party Computation Problems. PhD thesis,
Purdue University, 2001.

[10] Wenliang Du and Zhijun Zhan. A practical approach
to solve secure multi-party computation problems. In
New Security Paradigms Workshop, pages 127–135.
ACM Press, 2002.

[11] Sergei Evdokimov and Oliver Günther. Encryption
techniques for secure database outsourcing. In
Joachim Biskup and Javier Lopez, editors, ESORICS,
volume 4734 of Lecture Notes in Computer Science,
pages 327–342. Springer, 2007.

[12] Susan Hohenberger and Anna Lysyanskaya. How to
securely outsource cryptographic computations. In Joe
Kilian, editor, TCC, volume 3378 of Lecture Notes in
Computer Science, pages 264–282. Springer, 2005.

[13] Yuan Hong and Jaideep Vaidya. An inference-proof
approach to privacy-preserving horizontally
partitioned linear programs. Optimization Letters,
2013. To appear. Published online 05 October 2012.

[14] Yuan Hong, Jaideep Vaidya, and Haibing Lu. Secure
and efficient distributed linear programming. Journal
of Computer Security, 20(5):583–634, 2012.

[15] Peeter Laud and Alisa Pankova. New Attacks against
Transformation-Based Privacy-Preserving Linear
Programming. In Rafael Accorsi and Silvio Ranise,
editors, Security and Trust Management (STM) 2013,
9th International Workshop, volume 8203 of Lecture
Notes in Computer Science. Springer, 2013.

[16] Jiangtao Li and Mikhail J. Atallah. Secure and private
collaborative linear programming. In International
Conference on Collaborative Computing, pages 1–8,
2006.

[17] Wei Li, Haohao Li, and Chongyang Deng.
Privacy-preserving horizontally partitioned linear
programs with inequality constraints. Optimization
Letters, 7(1):137–144, 2013.

[18] Olvi L. Mangasarian. Privacy-preserving linear
programming. Optimization Letters, 5(1):165–172,
2011.

[19] Olvi L. Mangasarian. Privacy-preserving horizontally
partitioned linear programs. Optimization Letters,
6(3):431–436, 2012.

[20] Tomas Toft. Solving linear programs using multiparty
computation. In Roger Dingledine and Philippe Golle,
editors, Financial Cryptography and Data Security,
pages 90–107, Berlin, Heidelberg, 2009.
Springer-Verlag.

[21] Jaideep Vaidya. Privacy-preserving linear
programming. In Sung Y. Shin and Sascha Ossowski,
editors, SAC, pages 2002–2007. ACM, 2009.

[22] Cong Wang, Kui Ren, and Jia Wang. Secure and
practical outsourcing of linear programming in cloud
computing. In INFOCOM, 2011 Proceedings IEEE,
pages 820–828, 2011.

[23] Andrew Chi-Chih Yao. Protocols for secure
computations (extended abstract). In FOCS, pages
160–164. IEEE, 1982.

Appendix D

Universally composable privacy
preserving finite automata execution with
low online and offline complexity

The paper “Universally composable privacy preserving finite automata execution with low online and offline
complexity” [36] follows.

86

Universally composable privacy preserving finite
automata execution with low online and offline

complexity?

Peeter Laud and Jan Willemson

Cybernetica AS

Abstract. In this paper, we propose efficient protocols to obliviously
execute non-deterministic and deterministic finite automata (NFA and
DFA) in the arithmetic black box (ABB) model. In contrast to previous
approaches, our protocols do not use expensive public-key operations,
relying instead only on computation with secret-shared values. Addi-
tionally, the complexity of our protocols is largely offline. In particular,
if the DFA is available during the precomputation phase, then the online
complexity of evaluating it on an input string requires a small constant
number of operations per character. This makes our protocols highly
suitable for certain outsourcing applications.
Keywords. Finite automata, secure multiparty computation, arithmetic
black box

1 Introduction

Finite automata (FA) are among the most often used algorithmic tools for an-
alyzing textual data. They are used in filtering spam, recognizing malware, ge-
netic analysis, log mining, etc. Often, these applications make use of data with
various owners, having certain expectations of privacy (e.g. genetic microdata
may reveal the subject’s medical condition, network log items may show secu-
rity vulnerabilities, etc.). Hence, the problem of executing finite automata in a
privacy-preserving manner is highly relevant.

Usually, the execution of the FA does not comprise the whole algorithm
for a particular task. E.g. in spam filtering, the automata are used to recog-
nize whether the e-mail message matches certain signatures. Afterwards, these
matchings are suitably weighted and combined to decide whether the message
was spam or not. Hence the result of privacy-preserving FA execution should be
obtained in a manner that is easily usable by further secure computation algo-
rithms — we need composable protocols for FA execution (as well as for other
algorithmic tasks that are used in the application).

? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 284731
(Usable and Efficient Secure Multiparty Computation, UaESMC), and from the
European Regional Development Fund through the Estonian Center of Excellence
in Computer Science, EXCS.

In the setting of secure multiparty computation, the composability is well-
captured by the notion of the arithmetic black box (ABB) [9, 22]. It is an ideal
functionality that stores the data items that we wish to keep private and performs
computations with them. It is realized with the help of suitable cryptographic
protocols. Higher-level protocols use the protocols of ABB as their subprotocols.
To prove the security of the higher-level protocol, it is sufficient to consider its
execution together with the ideal ABB-functionality.

In this paper, we are considering algorithms for FA execution where the
description of the FA, as well as the input string have been stored in the ABB.
As the result of the algorithm, the information about the reached state(s) of the
automaton is also stored in the ABB. During the computation, no information
about the input string (except its length) nor the FA (except the number of its
states) is leaked outside the ABB.

Without security considerations, the execution of a DFA is trivial — at each
step, read the next state of the automaton from the transition table, using the
current state and the next character of the input string. Inside the ABB, this is
complicated due to the lack of an efficient privacy-preserving look-up operation.
In this paper, we consider DFA execution algorithms making use of only such
operations that are typically provided in an efficient manner by ABB implemen-
tations.

NFAs have the same expressive power as DFAs, but they can offer consider-
ably smaller size of the automata. However, this efficiency comes with a price
of a more complicated execution paradigm. Generally, the subsequent states are
not uniquely determined and this non-uniqueness is classically implemented by
using backtracking. However, backtracking and other constructions with com-
plex control flow are inefficient to implement on ABB; our proposal is based on
different ideas [21].

For certain tasks, it is possible to partition the necessary computations into
the offline part — these that can be done without knowing the actual inputs —,
and the online part — these that require the inputs. To increase the responsive-
ness of algorithm implementations, one tries to minimize the online computations
by structuring the algorithm in such a way that more computations can be per-
formed off-line. In case of FA execution, it makes sense to consider even three
stages of input availability — offline, FA-only, and online. In the FA-only stage,
the description of the automaton is already available for the computation, but
the input string is still missing. This naturally corresponds to certain practi-
cal settings, e.g. spam filtering, where the filters are known before the e-mail
messages to which they are applied.

There are applications where the input string is private, but the description
of the FA is “public” — known to all parties implementing the ABB. The out-
sourcing of spam filtering into the cloud can be one of such applications. Here
the service provider sets up the multiparty computation for realizing the ABB,
deploying the servers implementing the ABB at different cloud providers and
providing them all with the descriptions of filters. The customers upload their
e-mail messages to the ABB and receive back their classification, with no sin-

2

gle server learning the contents of the messages. The DFA execution algorithms
presented in this paper are extremely well suited for the use in these settings,
rapidly returning answers while preserving the privacy of the customers against
subsets of servers.

Our contribution For a DFA with m states over an alphabet with n characters,
we propose an execution algorithm in the ABB model, processing the input
string character-wise and performing (1 + o(1))mn ABB multiplications in the
offline stage, (1 + o(1))mn ABB multiplications in the FA-only stage and only a
single ABB multiplication in the online stage (all these costs are per character
of the input string). If the DFA description is public, then the FA-only stage
has zero computational cost. Also, for a particular ABB, the cost of offline stage
can be reduced to O(

√
mn). For a different ABB, all computations of the FA-

only stage may be moved to the on-line stage without increasing the cost of
the latter. As usual, the additions and public linear combinations of private
values are considered to have zero execution cost due to being local operations
in all implementations. The online performance of this protocol exceeds all other
protocols in the state of the art, all of which perform at least O(m + n) online
work (computation and/or communication; whichever is the bottleneck for the
particular method) per character. Also, we stress that our protocol works in the
ABB model, making DFA execution usable as a subprotocol in protocols for
more complex tasks.

As a separate contribution, we also propose private execution algorithm for
the NFAs. In case the automaton description is also captured in the ABB, its
online complexity is m(mn+m+ 1) multiplications in 3 rounds per input char-
acter. If the description of the automaton is public, these complexities drop to
m(m+ 1) and 2, respectively. In both cases, the amount of required precompu-
tation is O(m logm) per input character.

Interestingly, the protocols in this paper are the first information-theoretically
secure protocols for FA execution, if an information-theoretically secure ABB is
used. All previous protocols have used cryptographic constructions (encryption)
that rely on computational hardness assumptions for security.

To the best of our knowledge, this paper presents the first protocol for secure
NFA execution.

Structure of the paper We review work related to privacy-preserving DFA exe-
cution in Sec. 2, describe the necessary preliminaries and notation in Sec. 3, and
present our basic DFA protocol in Sec. 4. In Sec. 5 we show how to reduce the
complexity of the offline phase. Sec. 7 compares the performance of our protocol
with the protocols constructed from generic building blocks with good asymp-
totic complexity. As the last part of the contribution, Sec. 8 presents our private
NFA execution protocol. Finally, we draw the conclusions in Sec. 9.

3

2 Related work

The possibility of secure multiparty computation SMC in general has been known
for a long time [25, 14]. Unfortunately, the generic protocols resulting from these
possibility results are too inefficient in practice for anything but the simplest
functionalities.

The question of privacy-preserving DFA execution seems to have been first
considered by Troncoso-Pastoriza et al. [23]. In their setting, there are two par-
ties, one of them (Alice) knowing the DFA description, while the other one (Bob)
knows the input string. I.e. they were not considering the ABB model. During the
computation, the current state of the DFA is additively shared between these
two parties (modulo m). Rotations of this table combined with homomorphic
encryptions of the shares of the current state and an oblivious transfer allow
parties to learn the shares of the next state. The protocol has been improved
in several ways by Blanton and Aliasgari [1]. Beside reducing the complexity,
they also adapt the protocol for the ABB model. Through a clever reshaping of
the transition table, they are actually able to get the communication complexity
down to O(

√
mn) per character of the input string. Their techniques resem-

ble those of private information retrieval (PIR) protocols using homomorphic
encryption [17]; we believe that through a more thorough application of these
techniques, the complexity per character might even be lowered to O(log2mn).
Nevertheless, we are not pursuing these avenues of research here, as the constant
hidden inside the O-notation makes these protocols less efficient than our pro-
tocols (which do not use expensive public-key operations) for realistic problem
sizes.

Troncoso-Pastoriza et al.’s protocol has been adapted to malicious setting
by Gennaro et al. [11], using zero-knowledge protocols to force honest behaviour
of parties. Malicious setting is also considered by Wei and Reiter [24]. They
propose two-party (called “client” and “server”) protocols in the ABB model
that are secure against the malicious behaviour of the server party. Similarly to
the protcols in this paper, they treat the DFA transition table as a polynomial
over some field. All protocols described so far make heavy use of homomorphic
encryption, some of them also requiring some extra properties [4].

Garbled circuits originally proposed by Yao [25] can be adapted for DFA
execution [10, 19]. In these protocols, the party knowing the transition table δ
constructs and garbles “δ-gates”, connected sequentially. The party with the
input string executes the circuit and learns the last state of the DFA or some
property of it.

3 Preliminaries

In this work, a deterministic finite automaton (DFA) over the alphabet Σ is a
tuple A = (Q, δ, q0), where Q is the set of states, q0 ∈ Q the starting state of the
automaton, and δ : Q×Σ → Q the transition table. Given a string s = a1 · · · a` ∈
Σ∗, the DFA A maps s to the state δA(s) = δ(· · · (δ(δ(q0, a1), a2) · · ·), a`). Com-
pared to usual definition of DFA, we have left out the set of accepting states

4

from the structure of a DFA, and consider the function δA : Σ∗ → Q as the
behaviour of A; this is also computed by our protocol. This omission is justified
by our work in the ABB model, as the computation can continue from the last
state reached by the DFA in any manner deemed necessary by the designer of
the whole system.

Similarly, a nondeterministic finite automaton (NFA) over the alphabet Σ
is a tuple A = (Q, δ, q0), with Q and q0 meaning the same as before, and δ :
Q × Σ → P(Q) being the transition table (here P(Q) is the set of subsets of
Q). We can extend δ to sets of states — δ(Q, a) =

⋃
q∈Q δ(q, a) for Q ⊆ Q and

a ∈ Σ. Given a string s = a1 · · · a` ∈ Σ∗, the NFA A maps s to the set of states
δA(s) = δ(· · · (δ(δ({q0}, a1), a2) · · ·), a`).

The arithmetic black box is an ideal functionality FABB. It allows its users
(a fixed number p of parties) to securely store and retrieve values, and to per-
form computations with them. When a party sends the command store(v) to
FABB, where v is some value, the functionality assigns a new handle h (sequen-
tially taken integers) to it by storing the pair (h, v) and sending h to all parties.
If a sufficient number (depending on implementation details) of parties send
the command retrieve(h) to FABB, it looks up (h, v) among the stored pairs
and responds with v to all parties. When a sufficient number of parties send
the command compute(op;h1, . . . , hk; params) to FABB, it looks up the values
v1, . . . , vk corresponding to the handles h1, . . . , hk, performs the operation op
(parametrized with params) on them, stores the result v together with a new
handle h, and sends h to all parties. In this way, the parties can perform com-
putations without revealing anything about the intermediate values or results,
unless a sufficiently large coalition wants a value to be revealed. In this paper,
we use the functionality FABB to implement privacy-preserving FA execution.

The existing implementations of ABB are based on either secret sharing [7,
2, 5] or threshold homomorphic encryption [9, 15]. Fully homomorphic encryp-
tion [13] may also be used to implement ABB in a conceptually very simple way,
but with prohibitively slow performance. Depending on the implementation, the
ABB offers protection against a honest-but-curious, or a malicious party, or a
number of parties (up to a certain limit). E.g. the implementation of the ABB
by Sharemind [2] consists of three parties, providing protection against one
honest-but-curious party.

Typically, the ABB performs computations with values v from some ring R.
The set of operations definitely includes addition/subtraction, multiplication of
a stored value with a public value (this operation motivates the params in the
compute-command), and multiplication. Even though all algorithms can be ex-
pressed using just these operations, most ABB implementations provide more
operations (as primitive protocols) for greater efficiency of the implementations
of algorithms on top of the ABB. In all ABB implementations, addition, and mul-
tiplication with a public value occur negligible costs; hence they’re not counted
when analyzing the complexity of protocols using the ABB. Other operations
may require a variable amount of communication (in one or several rounds)
between parties, and/or expensive computation. The ABB can execute several

5

operations in parallel; the round complexity of a protocol is the number of com-
munication rounds all operations of the protocol require, when parallelized as
much as possible.

It is common to use JvK to denote the value v stored in the ABB. The notation
Jv1K op Jv2K denotes the computation of v1 op v2 by the ABB (translated to a
protocol in the implementation of FABB).

4 Basic protocol for DFA execution

Our basic protocol combines the idea to consider the transition table δ of the
DFA as a polynomial over a field F [24] with a method to move offline most of
the computations for polynomial evaluation in the ABB [18]. Both ideas have
been slightly improved and expanded here.

We have a DFA A = (Q, δ, q0) with |Q| = m, working over the alphabet Σ
with |Σ| = n. Let F be a finite field with at least mn + 1 elements; moreover,
let Q ⊆ F, Σ ⊆ F and let γ ∈ F be such, that (q, a) 7→ γq + a is an injective
mapping from Q×Σ to F\{0}.

There exists a polynomial f : F → F, such that f(γq + a) = δ(q, a) for all
q ∈ Q and a ∈ Σ; this polynomial has the degree of at most mn − 1. There
exist Lagrange interpolation coefficients λiqa with 0 ≤ i ≤ mn − 1, q ∈ Q,
a ∈ Σ, depending only on m and n (i.e. these coefficients are public), such that

f(x) =
∑mn−1
i=0 cix

i, where ci =
∑
q∈Q

∑
a∈Σ λiqaδ(q, a).

Let our ABB work with values from the field F. In this case, there exists a
protocol for generating a uniformly random element of F inside the ABB (denote:

JrK $← F), and for generating a uniformly random non-zero element of F together

with its inverse (denote: (JrK, Jr−1K) $← F∗). These protocols require a small
constant number of multiplications on average [6]. Using these subprotocols,
Algorithm 1 gives the protocol for executing the DFA A on an `-character string.
Note that all inputs to the algorithm (except for the sizes m, n and `, which
are public) are stored inside the ABB. Its result, the state of the DFA JqlK after
processing ` characters is similarly stored inside the ABB.

Correctness First we note that the polynomial f(x) =
∑mn−1
j=0 cjx

j satisfies
the equality f(γq + a) = δ(q, a) due to the construction of cj in the DFA-only

stage and the definition of the coefficients λjqa. We also note that the values rji
constructed in the offline stage are indeed the j-th powers of the values ri.

We can now easily show that the value qi computed by the on-line loop is
equal to the state of the DFA A after processing the characters a1, . . . , ai. For
i = 0, this claim trivially holds. If it holds for i− 1, then it also holds for i:

qi =

mn−1∑

j=0

zji yij =

mn−1∑

j=0

(γqi−1 + ai)
jr−ji cjr

j
i = f(γqi−1 + ai) = δ(qi−1, a) .

6

Algorithm 1: DFA execution protocol

Data: DFA components Jδ(q, a)K and Jq0K, where q ∈ Q, a ∈ Σ.
Data: Characters of the input string Ja1K, . . . , Ja`K.
Result: Last state Jq`K in ABB.

1 offline processing

2 foreach i ∈ {1, . . . , `} do
3 (JriK, Jr−1

i K) $← F∗

4 for j = 2 to mn− 1 do Jrji K← JriK · Jrj−1
i K

5 DFA-only processing

6 foreach j ∈ {0, . . . ,mn− 1} do JcjK←
∑
q∈Q

∑
a∈Σ λjqaJδ(q, a)K

7 foreach i ∈ {1, . . . , `}, j ∈ {0, . . . ,mn− 1} do JyijK← JcjK · Jrji K
8 online processing

9 for i = 1 to ` do
10 JziK← (γJqi−1K + JaiK) · Jr−1

i K
11 zi ← retrieve(JziK)
12 JqiK←

∑mn−1
j=0 zji JyijK

Privacy Except for computing zi, al operations in Alg. 1 are performed either
inside the ABB, or with public values. Hence all guarantees provided by the
ABB against certain kinds of attacks involving certain coalitions of parties carry
directly over to Alg. 1, if there weren’t the computations involving the values
zi. Regarding the values zi — they do not leak anything about the inputs to
the algorithm, because each of them is a product of a non-zero secret value
with a uniformly randomly distributed non-zero value. Hence zi is also a uni-
formly randomly distributed element of F∗. As independent values r−1i are used
for computing different zi, the different zi-s are mutually independent as well.
Regarding the correctness of the use of zi-s in further computation — as these
values become known to all parties, we can be sure that in the computation of
qi, correct zi is used.

Complexity It is straightforward to count the number of operations Alg. 1 per-
forms. In the offline stage, we perform mn − 2 multiplications per character of
the input string. We also generate one random invertible element together with
its inverse, this generation costs the same as a couple of multiplications [6] (in
the ABB of Sharemind [3], the random number generation is free, while verify-
ing that it is invertible and computing the inverse takes one multiplication, with
the probability of the element being rejected being equal to 2/|F|). The round
complexity of this computation is also O(mn), which would be bad for online
computations, but, in our opinion, does not matter for computations where la-
tency is unimportant. We note that the offline phase could be performed in
O(1) rounds [6] at the cost of increasing the number of multiplications a couple
of times. In the DFA-only stage, we perform a number of multiplications with
constants λjqa; we count these operations as free. We also perform mn− 1 mul-

7

tiplications per character in order to compute JyijK (no multiplication is needed
to obtain Jyi0K). But if the DFA description had been public, then the values cj
would have been public, too, and the values JyijK would have been linear combi-

nations of Jrji K with public coefficients. In this case, the DFA-only stage would
have contained no costly operations at all. In the online stage, the only costly op-
eration is the computation of JziK, which takes a single multiplication of private
values. Also, the retrieveoperation has the complexity similar to a multiplication
in most implementations of the ABB.

5 Improving offline performance

We will now consider the ABB implementation of Sharemind [3] and show how
it can be leveraged to speed up the offline stage of Alg. 1, the goal of which was
to compute Jv2K, . . . , JvkK from JvK and k ∈ N. Let us give a short overview of
the relevant protocols in Sharemind.

The Sharemind ABB is realized by three parties, offering protection against
passive attacks by one of the parties. The ABB stores elements of some ring R;
a value v ∈ R is stored in the ABB as JvK = (JvK1, JvK2, JvK3) ∈ R3 satisfying
JvK1+JvK2+JvK3 = v, where the share JvKi is kept by the i-th party Pi. Messages
depending on these shares are sent among the parties, hence it is important
to rerandomize JvK before each use. The resharing protocol [3, Algorithm 1]
(repeated here as Alg. 5 in Appendix A) is used for this rerandomization. We
note that in this algorithm, the generation and distribution of random elements
can take place offline. Even better, only random seeds can be distributed ahead
of the computation and new elements of R generated from them as needed. Hence
we consider the resharing protocol to involve only local operations and have the
cost 0 in our complexity analysis.

Sharemind’s multiplication protocol [3, Algorithm 2] (repeated as Alg. 6 in
Appendix A) is based on the equality (JuK1 + JuK2 + JuK3)(JvK1 + JvK2 + JvK3) =∑3
i,j=1JuKiJvKj . After the party Pi has sent JuKi and JvKi to party Pi+1 (here and

subsequently, all party indices are modulo 3), each of these nine components of
the sum can be computed by one of the parties. We see that in order to perform
one multiplication in Sharemind, six elements of R have to be sent from one
party to another. All these can be done in parallel. The multiplication protocol
is secure against one honest-but-curious party [3, Theorem 2].

We see that sometimes the multiplication or a series of multiplications can be
performed more efficiently. To compute Ju2K from JuK, only JuKi has to be sent
from Pi to Pi+1. To compute (Juv1K, . . . , JuvnK) from JuK and (Jv1K, . . . , JvnK), we
start n copies of the multiplication protocol, but the shares JuKi have to be sent
only once. The security of the protocol is not affected by such optimizations.

Alg. 1 requires the ring R to be a field F. In computing (Jv2K, . . . , JvkK)
from JvK, more substantive optimizations are possible if we take F to be of
characteristic 2. In this case, the cardinality of F is a power of 2 and the equality
1 + 1 = 0 holds. We note that squaring a value in the ABB now requires only
local operations: (x1 + x2 + x3)2 = x21 + x22 + x23 if the characteristic of F is 2.

8

Similarly, if parties Pi have sent the share JvKi to parties Pi+1 (as they do in
lines 2&4 of Alg.6), then they have also sent the shares Jv2nKi for all n ∈ N. The
algorithm for computing the powers of JvK up to JvkK is given as Alg. 2.

Algorithm 2: Computing (Jv2K, . . . , JvkK) from JvK
Data: k ∈ N and the value JvK, where v ∈ F, char F = 2
Result: Values Ju0K, . . . , JukK, where uj = vj

q ← dlog
√
k + 1e

Ju0K← (1, 0, 0)
Ju1K← Reshare(JvK)
Party Pi sends Ju1Ki to party Pi+1

for j = 2 to 2q − 1 do
if j is even then

Party Pi computes JujKi ← Juj/2K2i and JujKi−1 ← Juj/2K2i−1

else
Party Pi computes

JtKi ← Ju1Ki · Juj−1Ki + Ju1Ki · Juj−1Ki−1 + Ju1Ki−1 · Juj−1Ki
JujK← Reshare(JtK)
Party Pi sends JujKi to party Pi+1

// At this point, Pi knows Ju0Ki, . . . , JujKi, Ju0Ki−1, . . . , JujKi−1

foreach j ∈ {2q, . . . , k} do
Let (r, s) ∈ {0, . . . , 2q − 1}, such that 2qr + s = j
Party Pi computes JtKi ← JurK2qi · JusKi + JurK2qi · JusKi−1 + JurK2qi−1 · JusKi
JujK← Reshare(JtK)

Correctness For j < 2q, the values vj in the ABB are computed as vj = (vj/2)2

(if j is even) or vj = v · vj−1 (if j is odd). We note that all necessary shares for
computing these values are available to the parties. If j ≥ 2q then vj is computed
as vj = (vr)2

q ·vs, where 2qr+s = j. Because char F = 2, the shares of (vr)2
q

are
just the shares of vr, squared q times. This squaring can be performed locally.
Again, all shares are available to the parties that need them.

Privacy Similarly to the multiplication protocol, each party knows at most two
out of the three shares of JvjK, for each j. The last share is a uniformly randomly
distributed element of F.

In the second loop of Alg. 2, all JujK are rerandomized. In the first loop, the
values JujK are not rerandomized for even j. This rerandomization is unnecessary,
because of the locality of the computation. We note that all values sent to other
parties result from the Reshare protocol.

Complexity The second loop of Alg. 2 has only local computation (recall that
Reshare is counted as requiring local computation only). In the first loop, the
iterations with odd index j incur the communication of three elements of F, while

9

the iterations with even j incur no communication. The first loop has at most
d2
√
k + 1e iterations, hence the communication is at most 3d

√
k + 1e elements

of F.
If we use Sharemind’s representation of values in ABB, Alg. 2 in place of

the offline stage of Alg. 1, and if the DFA description is public, i.e. known to
all parties implementing the ABB, then the total offline communication (per
character) of executing a m-state DFA on a string over an alphabet of size n is
at most 3d√mne(dlog(m+1)e+dlog(n+1)e) = 3

√
mn log(mn)+o(1) bits. Here

we have assumed that the states of the DFA are encoded as bit-strings 1, . . . ,m
of length dlog(m+ 1)e, while the characters of the alphabet are encoded as bit-
strings 1, . . . , n of length dlog(n + 1)e. In this way, a suitable γ exists and the
elements of F are encoded as bit-strings of length dlog(m+ 1)e+ dlog(n+ 1)e.

With Sharemind’s protocols, the online communication (per character of the
input string) is 12 elements of F, distributed equally between the multiplication
and the retrieve-operation.

6 Improving FA-only / online performance

A different kind of optimization is possible if the ABB implementation is based
on Shamir’s secret sharing [20] and using the multiplication protocol of Gen-
naro et al. [12], which is the case for e.g. VIFF [7] or SEPIA [5]. Using this

implementation, the computation of a scalar product J∑k
i=1 aibiK from the val-

ues Ja1K, . . . , JakK and Jb1K, . . . JbkK stored inside the ABB has the same cost as
performing a single multiplication of stored values.

Hence the following modification of the DFA execution algorithm, presented
as Algorithm 3 will have the same offline and online complexity as the original
algorithm, but perform no costly operations during the FA-only stage.

7 Performance comparison

Private Information Retrieval (PIR) protocols can be adapted to compute δ(q, a)
with asymptotically better communication complexity, if the description of δ is
public. A PIR protocol allows the client to query for a specific element in server ’s
database, without the server learning the index of that element. In our setting,
the ABB would be the client, while the server’s computations can be executed
in the public. Each character of the input string would need one instance of the
PIR protocol to be executed on the transition table δ.

Lipmaa’s communication-efficient PIR protocol [17] internally uses the homo-
morphic cryptosystem by Damg̊ard and Jurik [8]. Its encryption and decryption
are usually not considered to be part of the set of operations offered by ABB,
but they are often readily available (also in Sharemind) using the threshold
version of this cryptosystem. The PIR protocol requires the communication
of O(k log2(mn)) bits per query, where mn is the number of elements in the
database and k is the size of the RSA-modulus N of the cryptosystem.

10

Algorithm 3: DFA execution protocol

Data: DFA components Jδ(q, a)K and Jq0K, where q ∈ Q, a ∈ Σ.
Data: Characters of the input string Ja1K, . . . , Ja`K.
Result: Last state Jq`K in ABB.

1 offline processing

2 foreach i ∈ {1, . . . , `} do
3 (JriK, Jr−1

i K) $← F∗

4 for j = 2 to mn− 1 do Jrji K← JriK · Jrj−1
i K

5 DFA-only processing

6 foreach j ∈ {0, . . . ,mn− 1} do JcjK←
∑
q∈Q

∑
a∈Σ λjqaJδ(q, a)K

7 online processing

8 for i = 1 to ` do
9 JziK← (γJqi−1K + JaiK) · Jr−1

i K
10 zi ← retrieve(JziK)
11 foreach j ∈ {0, . . . ,mn− 1} do J(rizi)jK = zji Jrji K
12 JqiK←

∑mn−1
j=0 JcjK · J(rizi)jK

To have a valid comparison of the PIR-protocol based DFA execution and
our protocols, we have to estimate the constant hidden in the O-notation for
the PIR protocol’s query complexity, particularly when implemented on top of
Sharemind. Per character, the query belongs to the domain of δ, its size is
α = dlog(mn)e bits. The single bits of the query must be available, hence we
assume that the current pair (q, a) is stored as α separate bits in the ABB.
In the PIR protocol, the client encrypts all bits, resulting in α ciphertexts of
size 2k, 3k, . . . , (α + 1)k bits, respectively. In Sharemind’s ABB, each of the
three parties implementing it may encrypt its share of each bit; these ciphertexts
can be combined using the homomorphic properties of the encryption scheme.
To minimize the communication, we let two parties send their ciphertexts to
the third party that will then perform the operations of the server in the PIR
protocol. In this case, the total number of communicated bits for the client’s
message in the PIR protocol is 2(2k + 3k + · · ·+ (α+ 1)k) = α(α+ 3)k.

The third party, performing the operations of the server in the PIR proto-
col, combines these ciphertexts to a multiply encrypted ciphertext of the query
result. This ciphertext must be decrypted using the decryption protocol of the
threshold cryptosystem; this causes significant extra communication. To simplify
our analysis, let us not estimate the communication costs of these operations,
but only compare the total cost of our proposed protocol (per character of the
input string) — ≈ 3

√
mn log(mn) — with the communication costs for produc-

ing just the client’s message in the PIR protocol — (log2(mn)+3 log(mn))k. For
acceptable level of security, we have to take k ≥ 1024. In this case, our protocol
has less communication if mn ≤ 108. We are unlikely to have DFA larger than
that in real applications.

11

8 NFA execution

Due to their non-deterministic nature, NFAs are more complicated to handle in a
secure manner. We see that even though the NFA execution starts from a single
state, after the intermediate steps it can generally be in a subset of states. In
order to account for this, we will use characteristic vectors of the intermediate
sets Qi = δA(a1 · · · ai) to represent them (using the notation of Sec. 3). Let
qi = (qi0, q

i
1, . . . , q

i
m−1) be a binary vector, where qij = 1 iff the state qj ∈ Qi.

As Q0 = {q0}, we have q0 = (1, 0, . . . , 0). Subsequent qi-s will depend both
on the given automaton A and the string s. Namely, in order to determine qi

from qi−1, δ and ai, we can compute

qij =
∨

q∈Qi−1

[qj ∈ δ(q, ai)] =

m−1∨

k=0

qi−1k &[qj ∈ δ(qk, ai)] (1)

for all the components qij of the characteristic vector qi.
The exact complexity of computing (1) in the ABB depends on which com-

ponents of the NFA execution problem need to be private. Even if the au-
tomaton itself is public and only the string s is private, the characteristic vec-
tors qi (for i > 0) still need to be protected. However, in order for the term
qi−1k &[qj ∈ δ(qk, ai)] to evaluate to 1, there has to exist a transition from qk to
qj (even if we do not know whether its label matches ai or not). Hence, from
equation (1) we can leave out all the terms for which there is no such transition.
If the NFA has to be private, no such omission is possible.

In order to determine efficiently whether qj ∈ δ(qk, ai), we need an efficient
representation of δ as well. We will represent it as a look-up table δ : Q×Q→
P(Σ), where ai ∈ δ(qk, qj) iff qj ∈ δ(qk, ai). To encode subsets of Σ, we will once
again use characteristic vectors; let S ⊆ Σ be encoded by vector s = (s1, . . . , sn)
where si = 1 iff the corresponding σi ∈ S. The characteristic vectors in the
look-up table δ may be private or public depending on whether A needs to be
protected or not. Note that if we have for some qk and qj that δ(qk, qj) = ∅,
then in the case of public automaton the respective term may be omitted from
equation (1).

In order to execute NFA on the (private) string a1 · · · a`, we also represent
the characters of the string using binary characteristic vectors a1, . . . ,a`, where
ai = (a1i , . . . , a

n
i) and aji = 1 iff ai = σj . As a result, the value of the predicate

qj ∈ δ(qk, ai) can be computed as a dot product δ(qk, qj) · ai. Assuming that
addition is free in the underlying secure computation platform (as it is in the case
of Sharemind), dot product requires n multiplications that can be performed
in parallel.

Next, computing the whole term qi−1k &[qj ∈ δ(qk, ai)] on equation (1) re-
quires an additional round of multiplication to add the conjunction with qi−1k .
Finally, we need to compute the disjunction over all the states where the tran-
sitions to qi might have come from. This can be accomplished by adding the
respective terms, comparing the result to 0 and inverting the comparison re-
sult [16]. Working in a suitable field, comparison to 0 may be implemented

12

using just one round of online multiplications using the protocol by Lipmaa and
Toft [18] (though some precomputation is necessary). These operations require
that the underlying ring R of the ABB is a field F with char F ≥ m+ 1.

The overall procedure of NFA execution is presented as Algorithm 4. The
algorithm is obviously private because only ABB operations are used and nothing
is declassified. The correctness of the algorithm follows from the discussions
above.

Algorithm 4: NFA execution protocol

Data: NFA components Jδ(qk, qj)K for all qk, qj ∈ Q, and Jq0K.
Data: Characteristic vectors of the characters of the input string Ja1K, . . . , Ja`K.
Result: Characteristic vector of the last set of achievable states Jq`K in ABB.

1 for i = 1 to ` do
2 foreach j ∈ {0, . . . ,m− 1} do
3 foreach k ∈ {0, . . . ,m− 1} do JtijkK = Jqi−1

k K · (Jδ(qk, qj)K · JaiK)
4 JpijK =

∑m−1
k=0 JtijkK

5 JqijK = 1− Jpij ?
= 0K

Complexity Computing the dot product Jδ(qk, qj)K · JaiK in line 3 requires n
parallel multiplications and the product with Jqi−1k K adds an additional multipli-
cation and another round. Altogether, this cycle requires m(n+1) private online
multiplications in two rounds.

Summation on line 4 can be performed by the parties without any commu-
nication, and the comparisons on 5 require one private online multiplication per
comparison, which can all be performed in parallel in one more round. Hence,
in order to process each of the input symbols, m(m(n+ 1) + 1) multiplications
in three rounds are needed. The overall online complexity of Algorithm 4 is
`m(m(n+ 1) + 1) multiplications in 3` rounds.

In case of the public automaton, the characteristic vectors δ(qk, qj) will be
public. Hence the dot product on line 3 will become a local operation performed
by the computing parties. As a result, the whole Algorithm 4 requires `m(m+1)
private multiplications in 2` rounds.

In both cases, the offline complexity consists of the precomputation to facil-
itate the fast online comparisons. According to [18], the amount of precompu-
tation required for one comparison is O(logm). Since we need to perform `m
comparisons, the total work needed in the offline phase is O(`m logm).

9 Conclusions

We have given the first ever algorithm for privacy-preserving NFA execution, as
well as fast algorithms for privacy-preserving DFA execution. All our algorithms

13

are composable and can be easily used as components in the design of larger
systems. In case of public FA, our DFA execution algorithms are the fastest for
reasonably-sized DFAs. In any case, our DFA execution algorithm has by far the
best online performance.

References

1. Marina Blanton and Mehrdad Aliasgari. Secure Outsourcing of DNA Searching
via Finite Automata. In Sara Foresti and Sushil Jajodia, editors, DBSec, volume
6166 of Lecture Notes in Computer Science, pages 49–64. Springer, 2010.

2. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In Sushil Jajodia and Javier López, editors,
ESORICS, volume 5283 of Lecture Notes in Computer Science, pages 192–206.
Springer, 2008.

3. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. Int.
J. Inf. Sec., 11(6):403–418, 2012.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ci-
phertexts. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. Springer, 2005.

5. Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain network events and statis-
tics. In USENIX Security Symposium, pages 223–239, Washington, DC, USA, 2010.

6. Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality, com-
parison, bits and exponentiation. In Shai Halevi and Tal Rabin, editors, TCC, vol-
ume 3876 of Lecture Notes in Computer Science, pages 285–304. Springer, 2006.

7. Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous Multiparty Computation: Theory and Implementation. In Stanislaw
Jarecki and Gene Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture
Notes in Computer Science, pages 160–179. Springer, 2009.

8. Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Ap-
plications of Paillier’s Probabilistic Public-Key System. In Kwangjo Kim, editor,
Public Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages
119–136. Springer, 2001.

9. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In Dan Boneh, edi-
tor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 247–264.
Springer, 2003.

10. Keith B. Frikken. Practical Private DNA String Searching and Matching through
Efficient Oblivious Automata Evaluation. In Ehud Gudes and Jaideep Vaidya,
editors, DBSec, volume 5645 of Lecture Notes in Computer Science, pages 81–94.
Springer, 2009.

11. Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen. Text search protocols
with simulation based security. In Phong Q. Nguyen and David Pointcheval, edi-
tors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 332–350. Springer, 2010.

12. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track
multiparty computations with applications to threshold cryptography. In PODC,
pages 101–111, 1998.

14

13. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, STOC, pages 169–178. ACM, 2009.

14. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In STOC, pages
218–229. ACM, 1987.

15. Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In CCS
’10: Proceedings of the 17th ACM conference on Computer and communications
security, pages 451–462, New York, NY, USA, 2010. ACM.

16. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In Proceedings of the 14th International Conference on
Information Security. ISC’11, pages 262–277, 2011.

17. Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume
3650 of Lecture Notes in Computer Science, pages 314–328. Springer, 2005.

18. Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sublin-
ear online complexity. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, ICALP (2), volume 7966 of Lecture Notes in Computer
Science, pages 645–656. Springer, 2013.

19. Payman Mohassel, Salman Niksefat, Seyed Saeed Sadeghian, and Babak
Sadeghiyan. An Efficient Protocol for Oblivious DFA Evaluation and Applications.
In Orr Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in Computer
Science, pages 398–415. Springer, 2012.

20. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
21. Ken Thompson. Regular Expression Search Algorithm. Commun. ACM,

11(6):419–422, 1968.
22. Tomas Toft. Primitives and Applications for Multi-party Computation. PhD thesis,

University of Aarhus, Denmark, BRICS, Department of Computer Science, 2007.
23. Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Utku Celik.

Privacy preserving error resilient DNA searching through oblivious automata. In
Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 519–528. ACM,
2007.

24. Lei Wei and Michael K. Reiter. Third-Party Private DFA Evaluation on Encrypted
Files in the Cloud. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,
ESORICS, volume 7459 of Lecture Notes in Computer Science, pages 523–540.
Springer, 2012.

25. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164. IEEE, 1982.

A Basic protocols of Sharemind

The rerandomization protocol of Sharemind is depicted as Alg. 5 and the mul-
tiplication protocol as Alg. 6. We have reordered some steps of the protocols in
order to have a grouping more relevant to the other algorithms in this paper.
All indices of the parties are modulo 3.

15

Algorithm 5: Resharing protocol JwK← Reshare(JuK) in Sharemind [3]

Data: Value JuK.
Result: Value JwK such that w = u and the components of JwK are independent

of everything else.

Party Pi generates ri
$← R, sends it to party Pi+1

Party Pi computes JwKi ← JuKi + ri − ri−1

Algorithm 6: Multiplication protocol in the ABB of Sharemind [3]

Data: Values JuK and JvK
Result: Value JwK, such that w = uv

1 Ju′K← Reshare(JuK)
2 Party Pi sends Ju′Ki to party Pi+1

3 Jv′K← Reshare(JvK)
4 Party Pi sends Jv′Ki to party Pi+1

5 Party Pi computes Jw′Ki ← Ju′Ki · Jv′Ki + Ju′Ki · Jv′Ki−1 + Ju′Ki−1 · Jv′Ki
6 JwK← Reshare(Jw′K)

16

Appendix E

Verifiable Computation in Multi-Party
Protocols with Honest Majority

The paper “Verifiable Computation in Multi-Party Protocols with Honest Majority” [35] follows.

103

Verifiable Computation in Multiparty Protocols with Honest

Majority

Peeter Laud Alisa Pankova

Tuesday 28th January, 2014

Abstract

A lot of cryptographic protocols have been proposed for semi-honest model. In general, they are much
more efficient than those proposed for the malicious model. In this paper, we propose a method that
allows to detect the parties that have violated the protocol rules after the computation has ended, thus
making the protocol secure against covert attacks. This approach can be useful in the settings where
for any party it is fatal to be accused in violating protocol rules. In this way, up to the verification, all
the computation can be performed in semi-honest model, which makes it very efficient in practice. The
verification is statistical zero-knowledge, and it is based on linear probabilistically checkable proofs (PCP)
for verifiable computation. Each malicious party is detected with probability 1− ε for a negligible ε that
is defined by the failure of the corresponding linear PCP. The initial protocol has to be executed only
once, and the verification requires in total 3 additional rounds (if some parties act dishonestly, in the
worst case they may force the protocol to substitute each round with 4 rounds, due to the transmission
functionality that prevents the protocol from stopping). The verification also ensures that all the parties
have sampled all the randomness from an appropriate distribution. Its efficiency does not depend on
whether the inputs of the parties have been shared, or each party uses its own private input.

The major drawback of the proposed scheme is that the number of values sent before and after the
protocol is exponential in the number of parties. Nevertheless, the settings make the verification very
efficient for a small number of parties.

1 Introduction

The semi-honest and the malicious model are the two main models in which cryptographic protocols
are studied. In the semi-honest model, the adversary is curious about the values it gets, and it tries
to extract information out of them, but it follows the protocol rules honestly. In the malicious model,
the adversary is allowed to do whatever it wants. In addition to these traditional models, a notion of
covert security was proposed in [AL10]. In this model, the adversary is malicious, but it will not cheat
if it will be caught with a non-negligible probability, which can be defined more precisely as a security
parameter. This notion is very realistic in many computational models, where the participants care about
their reputation and will not cheat even if this probability is not close to 1.

Some works have been dedicated to covert security [Lin13, DGN10], where [Lin13] treats the se-
curity for two-party computation based on garbled circuits, both the covert and the malicious cases,
and [DGN10] deals with honest majority protocols for an arbitrary number of parties. A more precise
definition of covert security with public verifiability has been proposed in [AO12]. This allows the cheater
to be blamed publicly.

2 Our Contribution

In this paper, we propose a scheme that is based on succinct computation verification. Our work is closely
related to [DGN10] that is dealing with honest majority protocols for an arbitrary number of parties.
The solution proposed in [DGN10] is based on running the initial protocol on two inputs, the real shares
and the dummy shares. In this case, the real shares should be indistinguishable from random, and hence

1

in the beginning the protocol is being rewritten to a shared form. Differently from [DGN10], our solution
does not require rewriting the original protocol. The original protocol has to be run only once, and each
malicious party is detected with probability 1 − ε for a negligible ε. Our approach is statistical zero-
knowledge, and it it based on linear probabilistically checkable proofs (PCP) for verifiable computation.
The particular PCP that we are using is the one proposed in [BSCG+13]. The quantity ε is defined by the
failure of the corresponding linear PCP behind the protocol. Additionally, the verification ensures that
all the parties have sampled all the randomness from an appropriate distribution. If everyone is indeed
honest, the verification requires in total 3 additional rounds. If some parties are dishonest, then in the
worst case they may force the protocol to substitute each round with 4 rounds, due to the transmission
functionality.

One question is whether there are indeed no additional rounds if everyone is honest, since there should
be some time offset when the parties wait for possible complaints, and if nothing happens, only then they
proceed to the next round. Since there are no complaints if everyone is honest, there is no communication
during that time offset, and hence such additional rounds are much cheaper.

Another solution is to assume that the complaints can be presented not immediately, but on the
next round, when instead of ordinary messages some party may sent complaints it had on the previous
round. In this way, if everyone acts honestly, we will have just 3 additional rounds compared to the
initial protocol (2 rounds are needed for the verification, and one more is the final time offset in the end
of the protocol, where the parties should wait for the possible lastmost complaints).

The major drawback of our scheme is that the number of values sent per one round is exponential in
the number of parties. In [DGN10], efficiency is achieved by reducing the probability of being detected
from 1/2 to 1/4. We cannot use the same approach in our case since the probability of being detected
would immediately become negligible. Nevertheless, the settings make the verification very efficient for
a small number of parties.

Similarly to [DGN10], we prove the security of our scheme in UC model [Can01].

2.1 Notation

Throughout this work, we use the following notation:

• the upper case letters A denote matrices;

• the bold lower case letters b denote vectors;

• 〈a,b〉 denotes the scalar product of a and b;

• (a||b) is a concatenation of vectors a and b.

2.2 Assumptions

Our verification protocol is based on security of some other schemes. Here is the list of used assumptions.

• Secure point-to-point channels between each pair of parties.

• Broadcast channels between subsets of parties.

• Honest Verifier Statistical Zero-Knowledge Linear Probabilistically Checkable Proofs for verifiable
computation [Lip13,GGPR13,BSCG+13,BCI+13]. In particular, all the complexity estimations in
this chapter are based on the solution proposed in [BSCG+13].

• Functionality that allows to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. This allows to protect the initial protocol from
stopping, when the computation cannot proceed due to some malicious party that is either just
doing nothing, or causes some other party to wait by sending wrong messages. We use the solution
proposed in [DGN10].

2.3 The Protocol Outline

We describe briefly the initial settings, and how the new verifiable protocol differs from the original one.

2

• In the initial settings, we have a set of arithmetic circuits Cji over some finite field F, where Cji is
the circuit computed by the party Mi on the j-th round of computation. Some outputs of Cji may
be used as inputs for some Cj+1

k , so there is some communication between the parties. Each circuit
may use some randomness that comes from random uniform distribution in F (this is sufficient
to model any other distribution). The circuits could be boolean as well, since there also exist
linear probabilistically checkable proofs based on boolean circuits [Lip13], so our verification is not
restricted to computation over some certain field.

• The computation is performed by n parties. Let them be denoted Mi for i ∈ {1, . . . , n}. A necessary
condition is that at least t = bn/2c+ 1 are honest.

• Before the execution of original protocol starts, the inputs of the parties are committed in a special
way. Let the input of the party Mi be represented by a vector xi over F. Mi represents xi as(
n−1
t

)
distinct sums of the form xi =

∑
k∈Tj

xikTj for j ∈ {1, . . . ,
(
n−1
t

)
}, where each Tj represents

a distinct subset of t other parties, and k corresponds to one particular party in that subset.
The idea is that each party has to prove its honestness to any subset of t other parties. All the
shares are signed and distributed amongst the corresponding parties. Although the number

(
n−1
t

)

is exponential, computing all t ·
(
n−1
t

)
signatures is not less efficient than computing just one, for

example using hash Merkle tree.

• The randomness used in the protocols should also be committed in the same way. Moreover, we
want to ensure that it indeed comes from random uniform distribution, without revealing to anyone
its value.

– Let an arbitrary set of t parties be responsible for generating the randomness. Let these parties
be called “generators”. By honest majority assumption, at least one of them is honest. For
each Mi, they generate the randomness ri as follows. Each generator Mj generates rji of the
same length that ri should be. The idea is to take ri = ri1 + . . .+ rit. Since at least one party
is honest, the vector ri comes from a random uniform distribution.

– Each generator Mj represents its rij as
(
n−1
t

)
distinct sums of the form rij =

∑
k∈T`

rijkT`

for ` ∈ {1, . . . ,
(
n−1
t

)
}. All the shares are signed and sent to Mi. After Mi receives rij from

all generators Mj , it may compute the sum of all rij and use it as ri (Mi has to verify if the
shares for different sets T` indeed all represent the same value). Then Mi signs all the received
shares also by itself, and distributes the shares and the signatures (both signed by Mi and the
corresponding generator Mj) amongst appropriate subsets of t parties, similarly to xi.

• The original protocol is computed in the same way as before. Additionally, each communicated
vector c`ij sent by Mi to Mj on the round ` is presented as

(
n
t

)
distinct sums c`ij =

∑
k∈Tj′

c`ijkTj′

(here we have
(
n
t

)
instead of

(
n−1
t

)
since both communicating parties should later verify the consis-

tency of this value from each other). Along with each c`ij , Mj receives the signature of c`ij and the
signatures of all the shares c`ij`kTj′

. Mj checks if the signatures are all indeed valid, and in turn

signs them. Mj distributes the corresponding signatures (both signed by Mi and Mj) amongst each
Tj . Here Mj is unable to check whether the shares under the signatures are valid and indeed sum
up to c`ij . All the shares will be distributed after the protocol execution, and then Mi may present
the signature of c`ij to complain.

• After the protocol computation ends, all the communication shares are finally distributed. Each
party Mj is verified for honestness. A party is honest iff it can prove that it acted according to
the protocol, given the signed input, randomness, and communication that it had with the other
parties. It has to perform a 3-round interactive proof with each subset of t parties in parallel. Since
each subset of t parties holds all the shares of all the committed values, they are able to reconstruct
the committed values and check if the proof indeed corresponds to them.

In general, in a linear PCP the prover has to prove the knowledge of a vector π = (p||d) such
that certain combinations of 〈π,qi〉 for special challenges q1, . . . ,q5 should be equal to 0, and d
corresponds to the committed values. The problem is that the prover cannot see any of the qi
before committing the proof, but at the same time π should remain private.

In particular, for any subset of t verifiers, the following has to be done (ordered by rounds).

1. The verifiers agree on a random τ ∈ F that is sufficient to generate all q1, . . . ,q5 (in one round).
The prover generates shares π = π1 + . . .+πt (where the d part is shared in the same way as it

3

was committed to the given set of t verifiers) and distributes them amongst the parties. Each
verifier checks if the part that corresponds to d is consistent with the signatures of shares sent
during the computation.

2. Each verifier Vi computes and publishes 〈πi,qj〉 for j ∈ {1, . . . , 5}. The τ is published. Ev-
eryone may compute 〈π1,qj〉+ . . .+ 〈πt,qj〉 = 〈π,qj〉 for j ∈ {1, . . . , 5} and locally verify the
necessary combinations. The prover checks if all the scalar products are computed correctly,
and complains if necessary.

A party is claimed honest iff it succeeds in all the
(
n−1
t

)
proofs against t other parties. This means

that even if it was in collaboration with t − 2 other malicious parties, there exists a subset of t
all-honest parties that will definitely accept only the correct proof. We also need to ensure that the
presence of malicious parties will not make the proof fail for an honest prover, and this can be done
by revealing the signatures that correspond to the shares of incorrect scalar products. An honest
party is safe to open them since they are known by the adversary anyway.

3 A Linear Probabilistically Checkable Proof for Verifiable
Computation

In this section we describe in more details the PCP that we use in our verification. This will be necessary
since we do not use it just as a black box, but commit some parts of the proof in a special way, so we need
to ensure that everything still works. Additionally, writing it down allows to estimate the complexity
more precisely.

We start from a statistical honest verifier zero knowledge (HVZK) linear PCP based on translating
each arithmetic circuit to a quadratic arithmetic program [BSCG+13].

Definition 1 (Linear PCP). [BCI+13] Let R be a binary relation, F a finite field, PLPCP a deter-
ministic prover algorithm, and VLPCP a probabilistic oracle verifier algorithm. We say that the pair
(PLPCP , VLPCP) is an input-oblivious k-query linear PCP for R over F with knowledge error ε and query
length m if it satisfies the following requirements.

1. Syntax. On any input v and oracle π, the verifier VLPCP (v) makes k input-oblivious queries to π
and then decides whether to accept or reject. More precisely, VLPCP consists of a probabilistic query
algorithm QLPCP and a deterministic decision algorithm DLPCP working as follows. Based on its
internal randomness τ , and independently of v, QLPCP generates k query vectors q1, . . . ,qk ∈ Fm
to π and state information u. Then, given v, u, and the k oracle answers a1 = 〈π,q1〉, . . . , ak =
〈π,qk〉, DLPCP accepts or rejects.

2. Completeness. For every (v,w) ∈ R, the output of PLPCP (v,w) is a description of a linear
function π : Fm → F such that V πLPCP (v) accepts with probability 1.

3. Knowledge. There exists a knowledge extractor ELPCP such that for every linear function π∗ :
Fm → F if the probability that V π

∗
LPCP

(v) accepts is greater than ε then Eπ
∗

LPCP
(v) outputs w such

that (v,w) ∈ R.

In relation to verifiable computation, this definition is used in the following context:

1. v is the vector of committed input/randomness/communication/public variables.

2. w is an extension of w that contains non-deterministic auxiliary input and the values of intermediate
gates.

3. (v,w) ∈ R iff w is a valid vector of values that the prover party indeed would have got if it fol-
lowed the protocol honestly, according to the committed input/randomness/communication/public
variables v.

A particular solution proposed in [BSCG+13] is a statistical HVZK. Namely, it means that the answers
to the queries 〈π,qi〉 do not reveal any information about the input, unless the randomness τ ∈ F that
has been used in query generation is chosen in a bad way, which happens with negligible probability. In
this particular solution, it is sufficient to generate 5 challenges q1, . . . ,q5.

Let us describe the solution of [BSCG+13] in a bit more details. First of all, it has been shown that
any arithmetic circuit can be represented by a quadratic arithmetic program.

4

Definition 2 (Quadratic Arithmetic Program). Consider some integers m,n, k such that n− 1 ≥ k. A
strong quadratic arithmetic program (QAP) over a field F, denoted P(A,B,C), consists of three m × n
matrices A,B,C over a field F. P accepts a vector v ∈ Fk iff there exists a vector w = (1, w1, . . . , wn−1)
such that (w1, . . . , wk) = v and Aw ◦Bw = Cw.

The relation RP(A,B,C) is defined as

(v,w) ∈ RP(A,B,C) ⇐⇒ P(A,B,C) accepts on input v .

The problem of program verification is now reduced to the problem of proving the existence of w such
that (v,w) ∈ RP(A,B,C), where A,B,C are defined by the arithmetic circuits that the parties compute.
The values m and n are both O(|C|). More precisely, n is the number of wires in the circuit (all the
input/randomness/communication/intermediate variables), and m is the number of multiplication gates.

Preprocessing: Denote A = (aij), B = (bij), C = (cij) for i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , n− 1}.
Let S = {ω0, . . . , ωm−1} ⊆ F for a principal root of unity ω in F.

Let Aj , Bj , Cj for j ∈ {0, . . . , n− 1} be polynomials of degree m − 1 defined in such a way that
Aj(ω

i) = aij , Bj(ω
i) = bij , Cj(ω

i) = cij . The coefficients of these polynomials can be computed
by interpolation, for example using Fast Fourier Transform, and they are of degree m − 1 since they
are defined on m points. Let A(x) := (A0(x), . . . , An−1(x)), B(x) := (B0(x), . . . , Bn−1(x)), C(x) :=
(C0(x), . . . , Cn−1(x)) denote the vectors of corresponding polynomials.

Let ZS(x) =
∏
s∈S(x− s) be an m-degree polynomial over F. In this way, ZS(x) has exactly m roots

which are the elements of S.
The set S and the coefficients of A(x), B(x), C(x), ZS(x) are published.

Linear PCP Prover P (v,w): Let v ∈ Fk, w ∈ Fn. The prover works as follows:

• Let δA, δB , δC ∈ F be random field elements.

• Let A(x), B(x), C(x) be polynomials of degree m such that:

A(x) := 〈w,A(x)〉+ δAZS(x) ;

B(x) := 〈w,B(x)〉+ δBZS(x) ;

C(x) := 〈w,C(x)〉+ δCZS(x) ;

where the degree m comes from the fact that the degree of each polynomial in A(x), B(x), C(x) is
m− 1, and the degree of ZS(x) is m.

• Let h = (h0, . . . , hm) be the coefficients of the polynomial

H(x) :=
A(x)B(x)− C(x)

ZS(x)
.

The algorithm returns the proof π = ((δA, δB , δC)||w||h). It can be done locally by the prover in time
O(|C| log |C|), and the details can be seen in [BSCG+13].

Linear PCP Verifier V = (QLPCP , DLPCP (v,u,a)): The work of the verifier is split into two
parts: the query algorithm QLPCP and the decision algorithm DLPCP .

• QLPCP : First of all, a random element τ ∈ F is generated. Then the following queries qi ∈
F3+m+(n+1)=4+m+n are computed:

1. q1 = ((ZS(τ), 0, 0)||A(τ)||(0, 0, . . . , 0));

2. q2 = ((0, ZS(τ), 0)||B(τ)||(0, 0, . . . , 0));

3. q3 = ((0, 0, ZS(τ))||C(τ)||(0, 0, . . . , 0));

4. q4 = ((0, 0, 0)||(0, 0, . . . , 0, 0, . . . , 0)||(1, τ, . . . , τm));

5. q5 = ((0, 0, 0)||(1, τ, . . . , τk, 0, . . . , 0)||(0, 0, . . . , 0)).

The state information is u := (1, τ, τ2, . . . , τk, ZS(τ)). The query results are ai = 〈π,qi〉 for
i ∈ {1, . . . , 5}. Everything can be computed in O(|C|), the details can be seen in [BSCG+13].

• DLPCP (v,u,a): Let u = (u1, . . . , uk+2), a = (a1, . . . , a5). The algorithm accepts iff:

5

1. a1a2 − a3 − a4uk+2 = 0,

2. a5 − u1 − 〈v, (u2, . . . , uk+1)〉 = 0.

Now our goal is to perform this verification in the end of the computation. It is necessary to compute
5 scalar products 〈π,q1〉, . . . , 〈π,q5〉, where π cannot depend on any of the qk, and at the same time
π cannot be revealed to any other party. The values 〈π,qk〉 themselves may be revealed since it has
been proven in [BSCG+13] that they are already statistical zero-knowledge on the assumption that all
the vectors qk have been chosen according to the rules. In general, the proposed linear interactive proof
can be converted to a zero-knowledge succinct non-interactive argument of knowledge, as is shown for
example in [BCI+13]. The problem is that it requires homomorphic encryption, and the number of
encryptions has to be linear in the size of the circuit. Additionally, according to the previous description,
the only way to check if w indeed contains (x||r||c) that correspond to the committed shares is to put
(x||r||c) into v, but we would not like to make these values public. We propose a solution that uses
the honest majority assumption instead of homomorphic encryption, and that is more suitable to our
settings.

4 The Proposed Protocol

In this section we describe our protocol in details. First, we list the complexity overheads, based on the
particular PCP that has been presented in the previous section. Then we define the ideal functionality
that we would like to get (which is very similar to the one proposed in [DGN10]), and describe the
behaviour of each party in the real protocol. We prove by simulation that our real functionality is as
secure as the ideal functionality.

4.1 Properties

In our settings, we have n parties Mi. Compared to the original protocol, for each Mi the proposed
solution has the following computational overheads.

• Let p =
(
n−2
t−1

)
. This is the number of t-sets in which one party participates as a verifier. If everyone

is honest, then in order to verify Mj ’s honestness, Mi has to send the following messages:

– In the initial protocol, send two signatures and tp + p vectors of length O(|C|) to each of the
n− 1 parties (tp for the randomness, and p for the inputs).

– During the protocol execution, in addition to the original protocol communication, send r ·(1+
·(n−1)) = rn signatures to each of the n−1 receiver parties, where r is the number of rounds.
Each receiver Mj produces rn more signatures of the same values. All these signatures are
sent by each receiver Mj to the n− 1 remaining parties (including Mi).

– After the protocol execution, compute locally the auxiliary values for the proof in O(|C| log |C|)
steps, as shown in [BSCG+13]. Send to each of the other n − 1 parties in parallel 2(n − 1)
signatures and 2p(n − 1) vectors of length O(|C|): p(n − 1) for intermediate variables (for
each proof separately), and p(n− 1) for communication, each set of p vectors signed with one
signature.

As a verifier, in the verification process each Mi has to do the following:

– Locally generate, sign and broadcast a random element of F.

– Locally generate p state informations u and 5p challenge vectors qk of length O(|C|) (according
to the arithmetic circuit). This can be done in O(|C|) steps, as shown in [BSCG+13].

– Locally sum up and concatenate pt vectors of length O(|C|) that correspond to the randomness:
for each of the p verifier sets, sum up all the t vectors.

– Locally concatenate 4 vectors of total result length O(|C|): the shares of the input, randomness,
communication, and the intermediate values. This is done p times, for each verification set.

– Locally compute 5p scalar products of vectors of length O(|C|) and broadcast them (5 for each
proof).

– In the end, compute a constant number of local operations based on these scalar products: 2
multiplications, 3 additions, 1 scalar product of length O(|v|) for the part of the input v whose

6

value is public (which is in general just the constant 1), all operations in F. Everything is done
p times, for each proof.

• If something goes wrong with the proof of Mj ’s honestness, then in the worst case each sent message
has to be sent in such a way that it is possible to prove afterwards what has been sent to whom. The
Ftransmit functionality from [DGN10] requires each message to be broadcast to all n − 1 parties,
and then this message should be delivered by each of the n − 2 remaining parties to the receiver.
No additional signatures are needed since we have already considered all of them in the case where
everyone acts honestly.

According to the Linear PCP description from [BSCG+13], a dishonest prover may cheat with prob-
ability 2m

|F| where m is the number of multiplication gates in the circuit. This means that either the field

should be large enough, or the verification should be repeated k times, so that
(

2m
|F|

)k
is negligible. All

the k verifications can be done in parallel, by generating k sets of challenges instead of one, thus do not
increasing the number of rounds at all, and increasing the communication in total by p(n − 1)k field
elements and p(n− 1)k proof vector shares.

4.2 Notation

The circuit in general has the following variables:

• Input vectors: xi for the input of each Mi.

• Randomness vectors: ri for the randomness of each Mi.

• Public vectors: vi for the input of each Mi. This is the part of Mi’s input that may have to be
public for some reason.

• Output vectors: yi which is an output issued by Mi (not needed in verification unless involved in
some published value).

• Intermediate gates: zi computed by Mi.

• Communication values: cij for a total vector of all the values that have been sent from Mi to Mj .

Each party Mj is verified by each subset of t other parties. The idea is that each Mj has to prove
that it knows appropriate zj such that the computation is consistent with the signatures of the shares of
inputs xj , randomness rj , and the communicated values cjk and ckj for k ∈ {1, . . . , n} \ {j}.

4.3 Universal Composability

For each of the 5 queries (according to the PCP construction), we need to compute one scalar product
of the form 〈π,qk〉 where π should be provided by the prover Mj . Here the prover is not permitted to
see qk, and the verifier is not permitted to see π, although the result 〈π,qk〉 can by assumption be seen
by anyone. Additionally, the vector π cannot be arbitrary, some of its parts should correspond to the
committed randomness, input, and the communication variables. In general, this proof can be done by
using homomorphic encryption of each coordinate of qk, but that would be very slow, and additionally
we could lose some zero-knowledge assumptions from commitment verification.

We define an ideal functionality that we would like to have, and the functionality of each Mi in our
protocol (all of them are symmetric). We prove that our real functionality is as secure as this ideal
functionality by simulation.

Existing Ideal Functionalities

We will use some existing ideal functionalities as components.

• Fppp implements a point-to-point secure channel between any two parties (and the adversary).

• Fbc implements broadcast channel between subsets of parties.

• Fsign allows signature generation and verification.

7

• Ftransmit allows to prove to third parties which messages one received during the protocol, and to
further transfer such revealed messages. We use the definition similar [DGN10], which works with
message identifiers mid, encoding a sender s(mid) ∈ {1, . . . , n} and a receiver r(mid) ∈ {1, . . . , n},
and assuming that no mid is used twice. Since in our case the signatures and the broadcasts are
treated separately, our definition is formally a bit different but its essence remains the same. The
functionality works as follows.

– When receiving (transmit,mid,m) from an honest Ms(mid), Ftransmit sends (mid,m) to
Mr(mid).

– On input (reveal,mid, T) from a party Mj which at any point has either sent or received
(transmit,mid,m), if at least one of Ms(mid) and Mr(mid) is honest, output (mid,m) to the
set of parties T .

– On input (reveal,mid, T) from a party Mj , which at any point has either sent or received
(transmit,mid,m), if all the parties Ms(mid) and Mr(mid) are dishonest, ask m′ from the
adversary and output (mid,m′) to T .

The accusations are based on the result of (reveal,mid, T), and they are defined inside the protocol.
Differently from [DGN10], we do not send the accusations immediately in the Ftransmit definition.

The real implementation of this simplified Ftransmit is very simple. The sender signs the mid and
the contents. If the receiver has not received a message from the sender, or has received a message
of wrong form (for example, without the signature), it sends a complaint to everyone. Now the
sender has another attempt, but now its message has to be broadcast to all the other parties, so
everyone may verify its correctness and send the message further to the receiver, or immediately
accuse the sender. In this way, 3 additional rounds are introduced in case of a problem. Since all
the messages are signed by the sender, the contents of the transmitted message can be revealed
also later. Straightforwardly, this can be done only by the receiver (since only the sender signs
the messages), but it is sufficient in our settings, since the sender may still reveal the message
by publicly forcing the receiver to present the signatures, and if the receiver refuses to do it, it
is claimed guilty. This implementation of Ftransmit can be easily extended to broadcasting the
message to several parties, just using broadcast channel and defining multiple receivers in r(mid).

• Fver implements all the algorithms of Linear PCP for verifiable computation (for a certain preagreed
field F in which all the arithmetic circuits are implemented). This functionality is accessed by
each party individually, and it does not involve any communication. Fver reacts to the following
commands.

– (proof ,v, z,x, r, c, Cj): Given the arithmetic circuit and the set of all the public/intermediate/
input/randomness/communication variables, in constructs a proof (π||d) where d = (x||r||c)
corresponds to committed values and π to everything else.

– (challenge, τ, Cj): Given a randomness τ and a circuit Cj , it returns challenge vectors q1, . . . ,q5

such that for any valid proof (π||d) generated by (proof ,v, z,x, r, c, Cj) for d = (x||r||c), the
answer to the query (verify, Cj , τ,v, 〈(π||d),q1〉, . . . , 〈(π||d),q5〉) is true with probability 1.

– (verify, Cj , τ,v, a1, . . . , a5): Given a randomness τ and some values v that should be public,
check if a1, . . . , a5 indeed correspond to a valid proof with respect to τ . A false proof may be
accepted with probability 2m

|F| , where m is the number of multiplication gates in the circuit.

Transition Function for Fideal

The ideal functionality is secure against an ideal adversary AS . Let M = {1, . . . , n} be the set of all
parties.

• In the beginning, Fideal gets from the environment all the arithmetic circuits (init, C1
1 , . . . , C

r
n),

where Cki corresponds to the computation of Mi on the k-th round. All Cki are sent to AS .

• If Fideal receives (corrupt, i) from AS , it sets evili := true.

• AS may send (stop, i1, . . . , i`) to Fideal for any corrupted parties i1, . . . , i`. Fideal setsmalicious[i`] :=
1 for all i`. This models straightforward cheating in the initialization phase with the input and the
randomness signatures.

8

• First, Fideal computes all the messages of the honest parties of the next round by itself, based on
the messages received in the previous rounds. If evilj == true, then for any message mij

k , Fideal
does the following:

– Sends mk
ij to AS .

– Waits for m∗k+1
ji1

, . . . ,m∗k+1
ji|R| from AS for all the honest receivers R. The communication

between dishonest parties is not important at the moment. It should just be consistent in the
proofs of the sender and the receiver, and that check will be performed in the end.

– At any round, instead of m∗kij , AS may send (stop, i1, . . . , i`) to Fideal for any corrupted
parties i1, . . . , is. Fideal sets malicious[i`] := 1 for all i`. This models straightforward cheating
in the initial protocol that will be immediately detected.

• Upon receiving (run,x1, . . . ,xn) from the environment, Fideal computes C1
i (xi) for all honest

i ∈M, getting the vectors of values m1
ij that will be used in the next round. On each round, it asks

the adversary for the next values, as shown above (initially, it gets from the adversary the inputs
x∗i of malicious parties). All the mk+1

ij that are computed by the functionality itself are computed

based on the messages m∗kij that have been sent by the adversary and hence may be malicious.
This ensures that no honest party will be accused just because someone else has sent to it wrong
values.

• After the protocol has finished, Fideal queries from the adversary all the remaining communication
m∗kji1 , . . . ,m

∗k
ji|R| that corresponds to communication between dishonest parties. Then it may

compute all the missing mji
k+1 values. If some m∗k+1

ji 6= mk+1
ji , set malicious[j] := 1. Here we

assume that even if the computation requires some non-deterministic input, the communicated
values are finally deterministic, and the non-determinism is just auxiliary. If is possible to make
the security stronger by forcing AS to decide on all the m∗k+1

ji1
, . . . ,m∗k+1

ji|R| already during the

computation, but this will require more communication, since all the shares of c`ij will have to be
distributed already during the protocol execution.

• Fideal also queries from the adversary a set of messages of the form (corrupt, i, j) for some i such
that evili == true and some j such that evilj == false (it may choose whether to send them or not).
For all i such that malicious[i] == 1, the messages should be definitely sent to all j such that
evilj == false.

• After all the (corrupt, i, j) messages have been distributed, AS sends to Fideal the outputs y∗j
of malicious parties Mj . For the honest parties Mi, Fideal outputs the real output yi iff no
malicious[j] := 1 has ever happened for any j ∈ M, and otherwise it outputs (output, j1, . . . , jk)
such that for each j` the messages (corrupt, j`, i) have been sent for at least t parties i.

Transition Function for Mi

We assume that each Mi maintains the current round in its state, so that in each round it will react just
to those calls that are related to the current round. We assume that the number of rounds in the initial
protocol is r.

• In the beginning, each Mi gets from the environment all the parts of the entire arithmetic circuit:
(init, C1

1 , . . . , C
r
n), where Ckj corresponds to the computation of party Mj on the k-th round. All

the Ckj are also sent to A.

• If any party Mi receives (rand, i) from environment, it sets rand := true. This means that given
party will participate in randomness generation. The environment defines exactly t such parties.

• If any party Mi receives (corrupt, i) from A, it sets evil := true.

• If evil == true, then upon receiving any message X, Mi does the following:

– Sends X to A.

– Waits from A which messages should be sent to the receivers further, and in which way they
should be shared and signed.

• Upon receiving (preprocess,xi) from the environment, the following happens.

9

– Mi represents its input xi as
(
n−1
t

)
distinct sums of the form xi =

∑
k∈T xikT for each subset

T ofM\{i} of size t. Let T k1 , . . . , T
k
p be all the sets to which Mk belongs. For each k 6= i, Mi

generates a signature

sxik = Signski(input shares, i, k,xikTk
1
, . . . ,xikTk

p
) ,

and sends (transmit, (input shares, i, k), (xikTk
1
, . . . ,xikTk

p
, sxik)) to Ftransmit.

– If rand == true, Mi generates the randomness rij for each Mj . Mi represents its rij as
(
n−1
t

)

distinct sums of the form rij =
∑
k∈T rijkT . For each k 6= i, Mi generates a signature

srijk = Signski(rand shares, i, j, k, rijkTk
1
, . . . , rijkTk

p
) .

Then Mi sends (transmit, (rand, i, j), (rij1T1
1
, . . . , rijnTn

p
, srij1, . . . , srijn)) to Ftransmit.

– Upon receiving all the (transmit, (rand, i, j), (rij1T1
1
, . . . , rijnTn

p
, srij1, . . . , srijn)), Mj checks

if all the shares indeed correspond to the signatures, and if the shares that correspond to
different sets T indeed all sum up to the same value. If everything is correct, Mj in turn
creates the signatures Signskj (srijk). For each k, it sends

(transmit, (rand shares, i, j, k), (rijkTk
1
, . . . , rijkTk

p
, Signskj (srijk)))

to Ftransmit.
If something is wrong, (reveal, (rand, i, j),M) is sent to Ftransmit, everyone checks the signa-
tures, and the protocol immediately stops since one malicious party is detected (either Mi or
Mj). Each honest party writes malicious[i] := 1 or malicious[j] := 1 for each cheated party,
and goes to the last step of the protocol (the outputs).

– Upon receiving all (transmit, (input shares, i, k), (xikTk
1
, . . . ,xikTk

p
, sxik)) and (transmit,

(rand shares, i, j, k), (rijkTk
1
, . . . , rijkTk

p
, Signskj (srijk))) from Ftransmit, Mk checks if the sig-

natures are valid and correspond to the shares. If something is wrong, (reveal,mid,M) is sent
to Ftransmit for each wrong message mid, everyone checks the signatures, and the protocol im-
mediately stops since one malicious party is detected (either the sender Mi was indeed wrong or
Mk accused it without reason). Each honest party writes malicious[i] := 1 or malicious[k] := 1
for each cheated party, and goes to the last step of the protocol.

• Upon receiving (run, i) from the environment, Mi computes C1
i (xi, ri), getting the vectors of values

c1
ij that should be sent to Mj (for each receiver Mj). We will now generalize the behaviour of Mi to

an arbitrary round `. Let R be the set of all the receivers of Mi for the round `. Let c`ij be vector
of values sent by Mi to Mj on the round `. These values are handled similarly to the randomness
values, with the difference that the shares are not distributed yet, just their signatures.

– Generate the shares c`ij =
∑
k∈T c`ijkT .

– Generate the signature sc`ij = Signski(c
`
ij).

– For each k 6= i, Mi generates a signature

sc`ijk = Signski(message shares, `, i, j, k, c`ijkTk
1
, . . . , c`ijkTk

p
) .

– Mi sends (transmit, (message, `, i, j), (c`ij , sc
`
ij , sc

`
ij1, . . . , sc

`
ijn)) to Ftransmit

– Upon receiving all the (transmit, (message, `, i, j), (c`ij , sc
`
ij , sc

`
ij1, . . . , sc

`
ijn)) for the current

round `, Mj checks if c`ij indeed corresponds to the signature sc`ij . If everything is correct, Mj

in turn creates the signatures Signskj (sc`ijk). For each k, it sends

(transmit, (message shares, `, i, j, k), Signskj (sc`ijk))

to Ftransmit.
– If something is wrong inside some message, the corresponding mid is revealed. At the moment

no one can check to which shares the signatures Signskj (sc`ijk)) actually correspond. This
check will be done later.

10

• During the verification phase, Mi acts at once as a prover, and as a verifier in each of the p subsets for
each of the other n−1 parties. First, each subset T agrees on its own q1Tj , . . . ,q5Tj for each prover
Mj . For each subset T that is verifying honestness of some party Mj , Mi ∈ T generates random τTij
and sends all (bc, T, (i, j, T, τTij , Signski(τTij))) to Fbc. If some party sends an incorrect signature,
or refuses to participate, any verifier of T is allowed to broadcast (bc,M, (end, j, T)). Since either
the signer or the sender is guilty, every honest party may now believe that continuing this T -set
proof is senseless since it contains at least one malicious verifier, and the prover Mj is considered
to have passed it.

• Upon receiving all (bc, T, (k, j, T, τTkj , Signskk (τTkj))) from Fbc, Mi sums up all the received τTkj
with its own τTij . For each T, j, this will give a unique randomness τT,j (since at least one party is
honest, it is indeed distributed uniformly and randomly). Mi sends (challenge, τT,j , Cj) to Fver
and gets back q1Tj , . . . ,q5Tj .

• As a prover, each Mi sends (proof ,vi, zi,xi, ri, ci, Ci) to Fver and receives back a vector (πi||di)
with di = (xi||ri||ci) that contains all the necessary proof of Cj computation. For the prover’s
security, it is preferable to use new randomness in πi in different proofs, so Mi generates a distinct
πiT for each subset T of the verifiers. Mi generates the shares such that πiT =

∑
k∈T pikT . It

generates the signatures spik = Signski(proof share 1, i, k,pikTk
1
, . . . ,pikTk

p
). For each k ∈ T ,

Mi sends (transmit, (proof share 1, i, k), (pikTk
1
, . . . ,pikTk

p
, spik)) to Ftransmit.

• As a sender, Mi has to finally distribute amongst the corresponding verifiers all the shares cijkT =
(c1
ijkT || . . . ||crijkT) for all the messages it has sent in the initial protocol. Here Mi has to broadcast

them in such a way that one copy is sent to the receiverMj , so thatMj may verify if the shares indeed
correspond to Signski(c

1
ij), . . . , Signski(c

r
ij) that it has already received during the computation. It

generates a signature scijk = Signski(sc
1
ijk, . . . , sc

r
ijk) from the same signatures sc`ijk that he has al-

ready sent on the round `. Mi sends (transmit, (proof share 2, i, j, k), (cijkTk
1
, . . . , cijkTk

p
, scijk))

to Ftransmit, which knows that the message with such a mid should be broadcast to both j and k
at once. Such a message is transmitted for each k 6= i.

• Upon receiving all (transmit, (proof share 2, i, j, k), (cijkTk
1
, . . . , cijkTk

p
, scijk)) from Ftransmit,

the corresponding receiver Mj checks if the shares correspond to the signatures that it has collected
during the initial protocol computation. If at least one of the shares is wrong, then Mj sends
(reveal,mid,M) for all the shares provided by Mi (not only the incorrect ones), and additionally
broadcasts (reveal, (message, `, i, j),M) for the corresponding round `, so that everyone may
compute the incorrect segment of cij from the shares and verify the signatures. All the parties may
now decide whether the sender or the receiver is wrong.

– If the receiver Mj is guilty:

∗ The proof of Mj ends with failure, and each honest party sets malicious[j] := 1.

∗ The proof of Mi continues as before, on the assumption that the committed communication
is the shared one.

– If the sender Mi is guilty:

∗ The proof of Mi ends with failure, and each honest party sets malicious[i] := 1.

∗ The verification for Mj continues on the assumption that Signski(cij) are the committed
values, since it is the sender who has provided wrong signatures.

• Upon receiving all the

(transmit, (proof share 1, i, k), (pikTk
1
, . . . ,pikTk

p
, spik))

and all the
(transmit, (proof share 2, i, j, k), (cijkTk

1
, . . . , cijkTk

p
, scijk))

from Ftransmit from all the provers and all the senders, Mi verifies if all the shares are consistent
with the signatures it has collected during the initial protocol computation. If something is wrong,
(reveal,mid,M) is sent for all the inconsistent shares and signatures, so all the parties can check
them. Each sender of the wrong messages Mi is malicious, and its proof ends with malicious[i] := 1.
If some receiver Mj does not complain about wrong shares, then it is also malicious, and its proof

11

also ends with malicious[j] := 1 (this check can be actually performed already on the next round,
then the other parties will not have to wait until Mj complains).

Let dikT denote the concatenation of all the shares of xi, ri, and ci that are intended for the
verifier Mk and the prover Mi, when it participates in the proof set T . More precisely, since each
ri = r1i + . . .+ rti, we may more formally define dikT = (xikT ||(r1ikT + . . .+ rtikT)||cijkT). They
are distributed in such a way that

∑
k∈T dikT = di.

If all the signatures have been correct, and no receiver has complained that the shares are wrong,
Mk sends (bc,M, (product share, i, j, T, 〈(pikT ||dikT),q1Ti〉, . . . , 〈(pikT ||dikT),q5Ti〉)) to Fbc.

• Upon receiving all the scalar products for all parties in T from Fbc for the prover Mj , each party Mi

in T broadcasts (bc,M, (publish challenge, k, T, τT1j , . . . , τTpj , Signsk1(τT1j), . . . , Signskp(τTpj))).

• Upon receiving all publish challenge messages, Mi selects the one in which all the signatures are
correct (at least one should be since at least one party is honest). If there are several valid signatures,
then the signer of multiple values Mk is definitely malicious and should be punished, so the protocol
ends with (bc,M, (end, i, T)), and the honest parties assume that Mi has passed the test since one
of the verifiers was dishonest, so each honest party sets malicious[k] := 1 for each multiple signer
Mk. After the correct τ is found, Mi verifies all the previously published scalar products. For any
incorrect scalar product computed by some Mk, it sends (reveal, (proof share 1, j, i),M) and
(reveal, (proof share 2, j, i, k),M) to Ftransmit, so now everyone in M may verify the signatures
and compute the corresponding scalar products by itself.

• Each party Mi inM sums up the appropriate accepted scalar products (it may compute the scalar
products for the published shares by itself), gets a1, . . . , a5, and sends (verify, Cj , τ,v, a1, . . . , a5) to
Fver. If the answer is 1, then Mi accepts the proof of Mj for the given T . Otherwise it immediately
sets malicious[j] := 1.

• After the protocol has finished for all T, j proofs, eachMi sees for which parties it has setmalicious[j] =
1. If there is at least one party that is malicious, an honest Mi outputs (output, j1, . . . , jk) for all
parties j` that are malicious.

Transition Function for the Simulator S

In this subsection we prove that the real functionality is as secure as the ideal functionality. The S is
located between Fideal and A, and it tries to convince A that it is a real functionality. At the same time
for Fideal it must be like if it communicated with an ideal adversary AS who is not completely evil.

Since S simulates the communication between A and all the Mi, it should know their communication
keys for Fppp for all the Mi.

• In the beginning, Fideal gets from the environment all the arithmetic circuits (init, C1
1 , . . . , C

r
p),

where Cki corresponds to the computation of party Mi the k-th round. All Cki are sent to S. The
S just delivers them to A.

• If S receives (corrupt, i) from A (that was intended for Mi), it sends (corrupt, i) to Fideal. Fideal
sets evili := true. The inputs of malicious parties are delivered by S to A.

• In the real protocol, the parties should commit the input shares and generate the randomness. The
A may propose its own inputs and signatures for dishonest parties. S checks by itself the signatures,
as if it was an honest party. If anything is wrong, S sends (stop, i1, . . . , i`) to Fideal, for all the
detected parties. If the receiver is malicious, then the adversary decides whether anything should
be revealed or not.

• From the name of honest parties, S should generate the shares of the randomness and the inputs by
itself. Since the adversary gets up to t− 1 shares of each value, and t− 1 look completely random
unless the last one is obtained, S may generate completely random shares, and they will not be
inconsistent with the randomness and the inputs that should have been provided for the honest
parties by Fideal. S signs all the shares by itself.

• For the dishonest parties Mi, Fideal generates ri by itself and shows it to the adversary. Here ri
should indeed be random. S needs to enforce the same ri to be used in the real model. A may
generate up to t − 1 shares for the parties that it controls, but at least one share is generated by
an honest party. From the name of the remaining honest parties Mj , S generates randomness rij

12

in such a way that the sum of all the t shares equals ri provided by the ideal functionality. If A
has provided inconsistent shares for some rki, the shares of rji should nevertheless be consistent.
Hence S has to achieve ri only for at least one all-honest t-set, and the others do not matter. Let
that honest t-set be denoted H. S will now assume that H holds all the commitments, just to avoid
confusion using several all-honest t-sets at once.

If we do not want to use the random oracle assumption, recovering rki from the shares is possible
only if S receives the shares, not just the signatures (and in H all the shares indeed correspond to
the signatures, so there are no contradictions). Since committing the inputs is just a preprocessing
phase, the shares of ri are distributed immediately.

• Fideal starts running the protocol, and it immediately waits for the input x∗i that should be queried
from AS . S should take H and define x∗i to be the vector committed to H as shares. This will
be considered the proper committed input. If the shares of x∗i are not distributed already in the
beginning, there is no way for S to recover x∗i from the signatures, it would only be possible in the
random oracle model. Hence if we want to avoid this assumption, the shares should be distributed
immediately in the preprocessing phase.

• At some moment Fideal reaches the place where some m∗kji should be queried.

– First, Fideal computes all the messages of the next round by itself, based on the messages
received in the previous rounds. If evilj == true, then for any message mk

ij , Fideal does the
following:

∗ Sends mk
ij to S. For the honest parties, S composes all the necessary shares of this message

by itself, and signs them from the name of Mi. It delivers the message shares to A through
Fppp, pretending to be Mi.

∗ Fideal waits for m∗k+1
ji1

, . . . ,m∗k+1
ji|R| from S for all the receivers R. At the same time,

A knows that in the real functionality Mi should wait for the shares and the signatures.
It sends all the shares and the signatures to S, and it gives the orders to the malicious
parties, which values they should sign by themselves. For each receiver i`, the signatures
are not supposed to be valid and correspond to the message itself. From the name of
honest receivers, S sends (reveal,mid,M) for all the messages that the honest parties
would indeed reject, and since rejection is related just to checking the signatures of the
malicious parties, S is able to do it itself. S sends (stop, i1, . . . , i`) to Fideal, for all the
detected parties of that round. If both the sender and the receiver are malicious, then the
adversary decides whether the message should be accepted.
Now S has to decide what the m∗k+1

ij should be, since Fideal is waiting for it from AS .

· Since each honest party uses ckij it has received, and this value corresponds to the

signature that each honest party presents to defend itself, S sets m∗k+1
ij = ckij for all

honest receivers Mj .

· For the dishonest receivers, S still takes m∗k+1
ij = ckij for all the honest senders since

then ckij indeed corresponds to both the shared and the non-shared commitment.

· If both the sender and the receiver are dishonest, then then Fideal does not wait for
m∗k+1

ij since it does not need it in the next computation (the outputs of Mj in the next
round are anyway defined by the adversary). Fideal asks for these values later.

Hence for the communications where at least one party is honest, m∗k+1
ij = ckij is sent to

Fideal.
• After the simulation of the initial protocol has finished, Fideal queries from the adversary a set

of messages of the form (corrupt, i, j) for some i such that evili == true and some j such that
evilj == false. It also waits for the final decision on m∗1ij , . . . ,m

∗r
ij for malicious parties

– As a verifier, A chooses the share τTij for each corrupted i, for each other j who acts as
a prover, for each verifier subset T . It sends these values to S. Now S may broadcast all
(bc, T, (k, j, T, τTkj , Signski(τTij))), simulating the random shares of the remaining honest
parties by itself. If A says that some Mk refuses to participate or presents incorrect signatures
for Mj , S broadcasts (bc,M, (end, j, T)) from the names of all honest parties in T , assuming
that the prover Mj is honest. If there are no problems, S may send all (challenge, τTj , Cj) to
Fver and get back all q1Tj , . . . ,q5Tj .

13

– As a prover, for each T , k ∈ T , A selects

(transmit, (proof share 1, i, k), (pikTk
1
, . . . ,pikTk

p
, spik))

for Mk from the name of malicious Mi. As a sender, it selects

(transmit, (proof share 2, i, j, k), (cijkTk
1
, . . . , cijkTk

p
, scijk)) .

S waits until all of them come, or until timeout (since A may force some Mi to refuse to
participate in verification). Then, from the name of each honest party, S checks if the shares
correspond to the signatures. If all the signatures are correct, S sends

(bc,M, (product share, i, k, T, 〈(pikT ||dikT),q1Ti〉, . . . , 〈(pikT ||dik1),q5Ti〉))

to Fbc, where dik1 is constructed from the received values, as in description of Mi. If some
signature is wrong, S sends (reveal,mid,M) to Ftransmit for a corresponding mid. From
each honest Mi, S broadcasts (bc,M, (end, j, T)), and stores (corrupt, j, i). For a malicious
receiver, the adversary decides whether it reveals the message or not.

– From the side of the honest provers, the verifier should generate all the shares of the proof by it-
self. All the inner communication shares between honest parties, and all the input/randomness
shares that have never been seen by S, are generated randomly and signed by S from the names
of corresponding honest parties. Since in any T there are at most t− 1 dishonest parties, the
adversary sees only up to t− 1 shares which look completely random unless the last t-th share
is obtained, and hence there are no inconsistencies with any real proof that S has never seen.

– The A decides on the scalar products for dishonest parties. The S just broadcasts these values
from the names of the corresponding parties. If A decides that some party Mj refuses to
broadcast, S simulates the end of the set T proof, writing (corrupt, j, k) for all honest parties
Mk.

– From the name of each honest party Mi, S has to generate scalar products by itself. The prob-
lem is that the sum of final shared scalar products should be equal to the real 〈(πiT ||diT),qkTi〉.
If (πiT ||diT) belongs to an honest verifier, then it cannot be generated by S itself. However, it is
known that, for an honest verifier, 〈(πiT ||diT),qk〉 is statistical HVZK (the details can be seen
in [BSCG+13]). Since S knows τ , it has access to a trapdoor, and it has enough information
about how to generate a1, . . . , a5 in such a way that the final proof on certain combinations of
ak would succeed, and their distribution is the same as for real proof. Hence S just generates
some random ak that satisfy this proof, and claims that ak = 〈(πiT ||diT),qkTi〉. Let the shares
of the evil parties in the corresponding T -set be s1, . . . , s` for ` ≤ t− 1. Their sum must now
be equal to some vector s such that r1 + 〈s,q1Ti〉 = a1,. . . ,r5 + 〈s,q5Ti〉 = a5 where ri are the
sums of scalar products of the honest parties. S just has to distribute all si shares uniformly
amongst the evil parties, and compute rk according to ak. Since in the real functionality the
prover is not supposed to use the same randomness in π several times, πiT is being generated
as a completely new random value in each proof separately.

– If the protocol has not ended yet for some T, j, there is at least one party that has broadcast all
the necessary scalar product shares, since by assumption at least one party is honest. However,
some of the published scalar product shares may nevertheless be malicious. Now the shares of
τTj and their signatures have to be broadcast. S does that from the side of all the honest parties,
and it waits until A decides on something for dishonest parties. Then S checks the signatures
for inconsistencies from the name of each honest party, and broadcasts (bc,M, (end, j, T)) in
the case if something is wrong, setting (corrupt, `, k) for all the honest parties Mk for all M`

that provided multiple signatures.

∗ If the prover has not been corrupted, then S verifies all the scalar products published
by corrupted parties by itself. If some signature is wrong, it sends (reveal,mid,M) to
Ftransmit for the corresponding messages. Since a wrong scalar product (or a wrong
published cijkT share) comes from a corrupted party, the communication shares and the
signatures are known by S. As in the real functionality, S simulates the end of T -set proof,
storing (corrupt, j, k) for all honest parties Mk.

14

∗ If the prover Mi has been corrupted, S waits until A announces which products should
be claimed wrong. Again, the values from (reveal,mid,M) should be published, but S
knows them since now they are already known by the malicious prover. S simulates the
end of T -set proof, storing (corrupt, i, k) for all honest parties Mk.

– From the name of each honest receiver Mi, S has to send a complaint if the revealed communi-
cation shares do not correspond to the committed cij. For the dishonest receivers, the adversary
decides which complaints have to be sent. Now the communication m∗kij between the honest
parties has finally been discovered. If A decided to reveal cij , then (m∗1ij || . . . ||m∗rij) = cij .
Otherwise (m∗1ij || . . . ||m∗rij) is equal to the sum of the shares of H.

– After all the scalar products have been verified, S makes each honest verifier Mi act exactly like
in the real protocol. It computes a1, . . . , a5 from the shares, and then the certain combinations
of these values, and checks if they match, storing (corrupt, j, i) for each honest party Mi if
the proof fails. The decisions of malicious parties are made by the adversary.

– For each honest verifier Mi, S stores the corresponding counters of how many tests there have
been in which each prover Mj succeeds. If there is some party Mj that has not succeeded in
all the proofs, it stores (corrupt, j, i). The adversary sends the decisions of dishonest parties.

• Fideal is still waiting from the adversary a set of messages of the form (corrupt, i, j) for some i such
that evili == true and some j such that evilj == false Now S should decide on that. Since all the
(corrupt, j, i) have already been generated, S just delivers them to Fideal. During the simulation,
S chose to claim corrupt only in the following cases:

1. A party may be claimed corrupt in the initial protocol, if its sent shares do not correspond to
its signatures. This can be done only by malicious parties.

2. During the verification process, S corrupts only malicious parties, according to the protocol
description.

3. Additionally, we need to ensure that S has not accused any honest parties in the final check.
Since a real prover Mj would never accept the scalar product shares computed by evils unless
they are computed correctly, the scalar products that have reached the end of the proof are
indeed a1, . . . , a5, and they have been chosen by S in such a way that the test passes.

4. The remaining place where honest users could be claimed malicious by Fideal itself is the
inconsistency of mk

ij and m∗kij , but S delivers malicious messages only from corrupted parties.

• For all i such that malicious[i] == 1, the messages should be definitely sent to all j such that
evilj == false. It is sufficient to show that if an inconsistency of mk

ij and m∗kij happens in Fideal,
then Mi does not pass the test of H.

Since passing the test without actually finishing the verification happens only either if some of the
verifiers acts dishonestly, or the protocol succeeds up to the final proof, the only way for Mj to pass
the test for H is to make a1, . . . , a5 accepted in the end. Hence it must have succeeded in generating
a1, . . . , a5 that correspond to a1 = 〈s11,q1〉 + . . . + 〈s1t,q1〉, . . . , a5 = 〈s51,q5〉 + . . . + 〈s5t,q5〉.
Since all the verifiers in that subset are honest, none of them could provide any information about
any qk to Mj . Since all the verifiers are honest, they use the shares distributed in the initial
protocol consistently, and hence s1k = . . . = s5k =: (pikH ||dikH) for each verifier k, so we have a1 =
〈(pi1H ||di1H),q1〉+ . . .+〈(pitH ||ditH),q1〉, . . . , a5 = 〈(pi1H ||di1H),q5〉+ . . .+〈(pitH ||ditH),q5〉 for
valid challenges qk that have not been seen by Mj before generating (p1||d1), . . . , (pt||dt). Denoting
p := pi1H + . . .+ pitH and d := di1H + . . .+ ditH , we get a1 = 〈(p||d),q1〉, . . . , a5 = 〈(p||d),q5〉.
Since the honest parties would not accept communicated value shares that do not correspond to
the signatures, the scalar products are actually of the form 〈(π||x||r||c),q1〉, . . . , 〈(π||x||r||c),q5〉,
where x, r, c indeed correspond to the values committed to the all-honest parties.

Even if the other t-sets have received different commitments, it is important that these values have
been committed to an all-honest-party set before the computation, according to the protocol. The
vector r is indeed random since all-honest-parties have checked carefully all the signatures of the
t generators of r, and at least one of them was definitely honest, and hence the vector is indeed
random. If the proof succeeds, then p is a valid proof (according to the PCP description). This
implies proving that Mi performed its communication correctly with respect to the committed
values. Here the situation with c is not so clear since it has been committed in two ways. We need
to show that satisfying any of these two committed values by Mi implies all m∗kij = mk

ij , where
mk
ij is computed by Fideal from the previous round.

15

– Since S has chosen m∗k−1
ij = ck−1

ij where ck−1
ij is accepted by H (it does not matter now which

of the two commitments it was), the value mij
k equals to the value computed from ck−1

ij , the
inputs xj , and the randomness rj which have been committed to H.

– Since the proof has succeeded, the computation is correct with respect to ck−1
ij , the inputs xj ,

and the randomness rj committed to H. Hence the output of this computation m∗kij is the
same value mk

ij that Fideal would compute.

• After all the (corrupt, i, j) messages have been distributed, S waits from A the final outputs of
the dishonest parties. It delivers them to Fideal. For the honest parties, Fideal outputs real output
iff no malicious[j] := 1 has ever happened in Fideal, and otherwise it outputs (output, j1, . . . , jk)
such that for each j` the messages (corrupt, j`, i) has been sent. This is what A awaits from the
output.

5 Using the Proposed Protocol in Secure Multiparty Com-
putation Platforms

In this section we discuss how the proposed verification could be used in Secure Multiparty Computation
Platforms. More precisely, here we should consider the case where in addition to computing parties
(that participate in the protocol) we may have input parties (that provide the inputs, sharing them in
some way amongst the computing parties) and the result parties (that receive the final output). In our
protocol, the computing parties do commit the inputs before the computation starts, but we must ensure
that these are indeed the same inputs that have been provided by the input parties.

5.1 Treating Inputs/Outputs as Communication

As a simpler solution, we may just handle the input and the output similarly to communication. Hence
the following enhancements are made.

1. Let the number of input parties be N . In the beginning, each input party Pi generates the
shares xi1, . . . ,xin (according to an arbitrary sharing scheme) from all the computing parties
M1, . . . ,Mn, as it would do without the verification. Each Mj should now use the input vector
xj = (x1j || . . . ||xNj), where each xij is provided by an input party Pi. Now, for each xij , Pi
generates by itself all the

(
n−1
t

)
shares xijkT` such that

∑
k∈Tj

xijkT` = xij , signs all these shares,

and sends them to Mj . As before, Mj should also sign all of these shares before redistributing them
amongst all the verifier t-sets. The verifiers should now check both signatures, similarly to how it
was done to communication.

2. In the end, each receiver party Ri gets the shares yi1, . . . ,yin from all the computing parties
M1, . . . ,Mn. Now each Mj has to generate

(
n−1
t

)
sums

∑
k∈Tj

yijkT` = yij , exactly in the same

way as it would do with an ordinary communication value. Mj sends the shares and their signatures
to Pi, and Pi redistributes them amongst the t-sets. In the verification process, they check both
signatures, similarly to how it was done to communication.

Since the parties Pi and Ri do not participate in the computation, they do not have to participate
in the verification. However, they will still be punished if they provide multiple signatures for the same
value.

5.2 Possible Issues

The main drawback of the previous proposition is the numerous amount of signatures that the computing
parties may have to check. While in the initial scheme each party Mj has to provide just one share xjkT`

for each party Mk in each T`, now it has to provide N shares, where N is the number of input parties,
and all their signatures have to be checked (for Mj it is still sufficient to use just one signature, but it
does not help much). Depending on the settings, N can be very large. In the worst case, each input
party provides only one bit, and hence N ∈ O(|C|). However, each computing party would have to verify
the source of all the inputs anyway. For Pi, sending t ·

(
n−1
t

)
shares instead of one is not worse since all

the values used by the same Pi may have the same signature. The problem comes when Mj wants to

16

redistribute the shares and the signatures to all T -sets, since each receiver will again have to check all N
of them. Fortunately, this happens only in the beginning and in the end of the protocol.

Additionally, depending on the performed computation, the covert security may just not work with
the input parties, especially in some anonymous statistical projects. Any participant may cheat without
reason and complain afterwards. In our scheme, the verification of input share signatures is done already
in the beginning, an hence the computing parties will not spend their time on clearly malicious parties
whose shares do not correspond to their signatures. The problem still remains with the output, since the
malicious output party Ri may sign wrong values just for fun, without fear of being detected. However,
since such cheating would require just one additional broadcast (revealing the signatures to everyone),
this is not too much different from the case if Ri has not complained. In any case, even if no one
complains, it may still be some kind of attack where the input party is completely honest, but it just
performs the computation without needing. In relation to statistic projects, some input parties may also
produce unrealistic artificial inputs that harm the result in general, so some outlier detection would be
needed in the beginning.

5.3 Deviations from the Initial Settings

In real Secure Multiparty Computation Platforms, it may happen that the number of input parties is
initially unknown. For example, in the case of some statistical computation, the input parties may
come and submit their inputs during the execution, and hence the shape of the computational circuit
may be even unknown in the beginning, since the input length is undefined. Nevertheless, the proposed
techniques still work. The coming input parties may commit the inputs as they come. In the end of the
computation, the structure of the circuit will be known anyway. The formal proofs would have to be
adjusted, but now we need to define a new ideal functionality that allows the adversary to introduce new
input parties during the computation.

6 Conclusions and Future Work

In this paper we have proposed a scheme that allows to verify the computation of each party in a passively
secure protocol, thus converting passive security to covert security. Each malicious party will be detected
with probability close to 1, depending on the parameters of selected field.

While our verification is being done only after the entire computation has ended, it might be interesting
to do something more similar to the active security model. Namely, we could require each party to prove
the correctness after each round. If implemented straightforwardly, repeating our verification algorithm
on each round, it multiplies the verification complexity by the number of rounds (actually, a bit less since
in the beginning the vectors will be of smaller length). Doing it more cleverly, we could make use of the
proofs of the previous rounds, making the next proof steps reliable on the proofs of the previous steps.
The ideas can be taken for example from [CT10].

References

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient proto-
cols for realistic adversaries. J. Cryptology, 23(2):281–343, 2010.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public
verifiability. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of
Lecture Notes in Computer Science, pages 681–698. Springer, 2012.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks
for c: Verifying program executions succinctly and in zero knowledge. In CRYPTO (2),
pages 90–108, 2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145. IEEE Computer Society, 2001.

17

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from
signature cards. In Andrew Chi-Chih Yao, editor, ICS, pages 310–331. Tsinghua University
Press, 2010.

[DGN10] Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to covert security at
low cost. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer
Science, pages 128–145. Springer, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-
grams and succinct nizks without pcps. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 626–645. Springer,
2013.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.
In Ran Canetti and Juan A. Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2013.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and
linear error-correcting codes. IACR Cryptology ePrint Archive, 2013:121, 2013.

18

Appendix F

Actively Secure Two-Party Computation:
Efficient Beaver Triple Generation

The paper “Actively Secure Two-Party Computation: Efficient Beaver Triple Generation” [43] follows.

122

University of Tartu
Faculty of Mathematics and Computer Science

Institute of Computer Science

Pille Pullonen

Actively Secure Two-Party Computation:
Efficient Beaver Triple Generation

Master’s thesis (30 ETCS)

Supervisors: Sven Laur, Ph.D.
Tuomas Aura, Ph.D.

Instructor: Dan Bogdanov, Ph.D.

Author: . " " august 2013

Supervisor: . " " august 2013

Supervisor: . " " august 2013

Instructor: . " " august 2013

Allowed for defence

Professor: . " " august 2013

Tartu 2013

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Contribution of the author . 4
1.3 Structure of the thesis . 5

2 Preliminaries 6
2.1 Cryptographic primitives . 6

2.1.1 Additive secret sharing . 6
2.1.2 Chinese remainder theorem . 7
2.1.3 Universal composability . 7
2.1.4 Paillier cryptosystem . 7
2.1.5 Elliptic curves . 9
2.1.6 Lifted Elgamal cryptosystem . 10
2.1.7 Zero-knowledge proofs . 12
2.1.8 Dual-mode commitment schemes 13
2.1.9 Message authentication codes 17

2.2 Secure multi-party computation . 19
2.2.1 Overview of SMC techniques . 19
2.2.2 General SMC threat model . 20
2.2.3 Achieving actively secure two-party computation 21

2.3 The Sharemind SMC framework . 21
2.3.1 Application model . 21
2.3.2 Computation primitives . 22
2.3.3 Programming applications . 22

3 Principles of the SPDZ framework 24
3.1 Precomputation model . 24
3.2 Oblivious MAC . 26
3.3 Beaver triples . 27
3.4 Basic protocols . 27
3.5 Initialising actively secure two-party computation 29

3.5.1 Asymmetric setup . 29
3.5.2 Symmetric setup . 30
3.5.3 Shared key setup . 30

4 Asymmetric two-party computation 31
4.1 Protection domain setup . 31
4.2 Publishing shared values . 32

2

4.3 Random share generation . 38
4.4 Beaver triples generation . 41
4.5 Receiving inputs from the input party 45
4.6 Efficiency of the protocols . 48

4.6.1 Computational cost . 49
4.6.2 Communication cost . 50

5 Protocols for Beaver triple generation 52
5.1 Setup for triple generation protocols . 52
5.2 Packing several shares into one generation 54

5.2.1 Packing as base-B numbers . 54
5.2.2 Triple generation with partial base-B packing 56
5.2.3 Packing using the Chinese remainder theorem 59

5.3 Share conversion . 59
5.3.1 Converting binary shares to any modulus 60
5.3.2 Problems with converting the third triple element 60
5.3.3 Triple generation with share conversion 61

5.4 Comparison of proposed triple generation ideas 63

6 Symmetric two-party computation 65
6.1 Protection domain setup . 65
6.2 Publishing shared values . 66
6.3 Receiving inputs from the input party 67
6.4 Publishing a secret to the result party 69
6.5 Precomputation . 69

6.5.1 Random share generation . 70
6.5.2 Beaver triples generation . 71

6.6 Efficiency of the protocols . 72
6.6.1 Computational cost . 72
6.6.2 Communication cost . 73

7 Implementation 75
7.1 Implementation platform . 75
7.2 Secure computation capabilities . 75
7.3 Performance measurements . 76

7.3.1 Online protocols . 76
7.3.2 Precomputation protocols . 78

8 Conclusions 80

Eestikeelne resümee 82

Bibliography 84

3

Chapter 1

Introduction

1.1 Motivation

Information is among the most important resources of the modern world, allowing to
make wiser business choices, estimate future trends or foresee natural catastrophes.
The world wide web makes collecting and also sharing information fast and easy, so
in an honest world everyone could just combine their data and analyse it as they like.
However, as a resource information might mean business secrets or confidential data
that should not be freely published, thus, we need methods to process this information
without losing privacy.

Secure multi-party computation is a cryptographic tool that enables sharing data
for analysis without actually revealing it. For example, consider a chain of food-stores
that is interested in learning how well they do compared to other retailers. It could
use secure computation techniques to collaborate with other stores in the area to get
such aggregated results without leaking their client databases or their behaviours to
their competitors.

Each store can expect the others to help the computation as long as they believe
that other companies are also interested in getting accurate results. However, there
might be a shop that deliberately fiddles with the computations, for example, to trick its
competitors into thinking that others have some very popular products that actually no-
one buys. The competitors are then likely to increase their supply of these goods and,
hence, suffer an economical loss. Passively secure computation can be used in the first
case, whereas active security is needed to ensure that all parties follow the computations
correctly. Actively secure secure computation means that the misbehaving shop could
not affect the computation outcomes with anything other than its inputs.

Secure computation is currently an active research field and has reached the state
where is is efficient enough for practical applications. Sharemind is one of the more
mature secure multi-party computation frameworks that currently offers passive secu-
rity [11, 12]. This thesis uses the principles also combined in the SPDZ framework [26]
to add an actively secure protocol set to Sharemind framework.

1.2 Contribution of the author

The aim of this work is to adapt the SPDZ general actively secure computation frame-
work [26] for the two-party case and focus on optimising the precomputation phase.

4

An important distinction between our work and SPDZ is the usage of additively ho-
momorphic cryptosystem instead of the somewhat-homomorphic cryptosystem for the
precomputation phase. The resulting protocol set is implemented in Sharemind ver-
sion 3 [53].

The author was responsible for working out the details of the proposed protocol
sets, including the share representation, local operations on this representation, and
the precomputation phase. In addition, the share representations required protocols
to communicate with data donors and data analysts. The author also implemented
and benchmarked the proposed asymmetric and symmetric protocol set, as well as the
triple generation protocols as part of the Sharemind framework.

The main outcomes of this thesis are the implementation of the asymmetric and
symmetric protection domains, as well as ideas for generating Beaver triples using
additively homomorphic cryptosystem.

1.3 Structure of the thesis

In the following, Chapter 2 gives an overview of tools used to build following secure
computation protocols. At first, it summarises the necessary cryptographic concepts
and gives specific initialisations of schemes used further in this thesis. Secondly, it
provides a short overview of secure multi-party computation and security related issues.
Finally, it briefly describes the key aspects of Sharemind.

The SPDZ framework is introduced separately in Chapter 3 together with some
insights to how the following work uses ideas from it. This chapter focuses on the key
principles used in SPDZ and gives additional background for the rest of the thesis.

Our protocol set for two-party computation with asymmetric setup is introduced
in Chapter 4. This includes both the necessary protocols and theoretical efficiency
analysis.

Chapter 5 introduces some ideas to generate Beaver triples using Paillier cryptosys-
tem. The main focus is on achieving triple generation for arbitrarily chosen modulus.

The online phase of the symmetric protocol set is described in Chapter 6. This chap-
ter also gives hints about achieving suitable precomputation phase using the Beaver
triple generation ideas from Chapter 5.

Chapter 7 focuses on the implementation details and benchmark results, giving an
overview of the efficiency of our protocols. This helps to summarise and compare the
ideas from the rest of the thesis.

Finally, Chapter 8 concludes this thesis and gives additional directions for further
work.

5

Chapter 2

Preliminaries

This chapter introduces the necessary building blocks and background notions for
the proposed protocols. At first, Section 2.1 introduces the cryptographic tools used
throughout this thesis. Secondly, Section 2.2 gives an introduction to secure multi-party
computation and related problems. Thirdly, Section 2.3 introduces the Sharemind
framework where we set up our proposed protocols.

2.1 Cryptographic primitives

This section introduces different cryptographic notions used for building secure two-
party protocols. We introduce the basic concepts and initialise them with the exact
instantiations used in the following sections.

2.1.1 Additive secret sharing

Secret sharing schemes are methods of distributing data between participants so that
some subsets of the participants are able to restore the initial information using their
shares of the data [52]. A secret sharing scheme is a (t, n)-threshold scheme if the data
is shared among n participants and any subset of t ≤ n or more participants is able to
restore it. A secret sharing scheme is correct if t shares uniquely determine the secret.
In addition, the scheme is private if any set of t − 1 or less shares does not give any
information about the secret.

Additive secret sharing is usually defined in a ring ZN for some integer N > 0. To
share a secret x ∈ ZN , one defines shares x1, . . . , xn where x1 + . . . + xn = x and all
arithmetic is performed in ZN . This defines an (n, n)-threshold scheme, where a secret
is divided to n parts and all of those are needed to restore the secret. Restoring the
secret given all the shares is straightforward and only requires summing the shares.
Each computing participant CP i only receives the value xi for secret x. Moreover,
additive secret sharing is information-theoretically secure, meaning that having access
to less than n shares does not reveal any information about the secret value. Such
share representation also allows us to perform computations on the shares.

In the following, we use a two-party protocol where a secret x ∈ ZN is distributed
to two additive shares where x1 + x2 ≡ x mod N . Shared values will be denoted as
[[x]]N . We omit the modulus if it is clearly inferred from the context.

6

2.1.2 Chinese remainder theorem

The Chinese remainder theorem (CRT) is a number theoretic result that has found
many usages also in cryptography. The CRT states that a set of equations in the form

x ≡ ai mod mi , i ∈ {1, . . . , k}

where all mi are pairwise coprime has a solution to x and it is uniquely fixed modulo
M = m1 · . . . ·mk. In addition, the solution can be found as

x ≡
k∑

i=1

ai · bi ·
M

mi

mod M

where
bi ≡

(M
mi

)−1
mod mi .

CRT is commonly used to reduce computations modulo M to many smaller com-
putations modulo mi and restore the result, or to unify computations for different mi

by computing them modulo M and then dividing back to separate moduli.

2.1.3 Universal composability

The framework of universal composability (UC) was proposed to provide a unified
method for proving that protocols are secure even if executed sequentially or in parallel
with other protocols [16, 47]. Security of a protocol is described in terms of securely
implementing an ideal black-box behaviour of the protocol. An ideal functionality is
described by a trusted third party (TTP), who securely collects all the inputs and then
computes and returns the outputs of the protocol.

A protocol is said to be UC if for every adversary and computational context where
the protocol is executed there exists an ideal world adversary that has the same compu-
tational advantage against the ideal world protocol. A universally composable protocol
keeps its security guarantees in every context, provided that is is used in a black box
manner. Thus, the protocol can receive inputs and give outputs, but all the intermedi-
ate messages are not used after the execution. UC security definitions give very strong
security guarantees, but are, in general, also very restrictive.

Many two-party protocols can not be realized in the universally composable manner
in the plain model, where the only setup assumption is the existence of authenticated
communication [17]. The feasibility of universally composable two-party computation
in the common reference string model (CRS) was shown in [18]. In addition, it is possi-
ble to avoid the assumption for trusted setup and base the protocols on the assumption
of existence of public-key infrastructure like setup where each party has registered a
public key, but no registration authority needs to be fully trusted [2].

2.1.4 Paillier cryptosystem

The Paillier public-key cryptosystem [45] uses an RSA modulus N = pq where the
secret components p and q are large primes of equal bit length. The requirement for
equal bit length ensures that N is co-prime with the Euler totient function φ(N),
namely

gcd(pq, (p− 1)(q − 1)) = 1

7

where gcd is the greatest common divisor. The public key pk is (N, g), where g ∈ Z∗N2

and the private key sk is the Carmichael function of N which can be computed as

λ = lcm(p− 1, q − 1)

where lcm denotes the least common multiple.
For a shorthand, we define the Paillier cryptosystem as a set of algorithms for key

generation, encryption and decryption as (Gen,Enc,Dec). The setup algorithm Gen
is used to generate the keys pk and sk. The encryption function Encpk(m, r), where
m ∈ ZN , requires a randomness r ∈ Z∗N and defines the ciphertext as

c = Encpk(m, r) = gmrN mod N2 ,

where c ∈ Z∗N2 . In addition, the ciphertext space of the Paillier cryptosystem is equal to
Z∗N2 as Paillier showed that encryption is a bijection ZN×Z∗N 7→ Z∗N2 . This means that
for each element c parties can publicly verify if it is a valid ciphertext. The decryption
function

Decsk(c) =
L(cλ mod N2)

L(gλ mod N2)
mod N

uses a helper function

L(x) =
⌊x− 1

N

⌋
.

The Paillier cryptosystem is additively homomorphic, allowing to compute the sum
of the messages under encryption

Encpk(m1 +m2, r1 · r2) = Encpk(m1, r1) · Encpk(m2, r2) .

This property also allows to evaluate the multiplication of an encrypted message and a
plain value k under encryption Encpk(km) = Encpk(m)k. We omit the randomness if its
exact value is not important and in such case it is chosen uniformly during encryption.

Additive homomorphism also allows to re-randomize ciphertexts. Given a valid
encryption c = Encpk(x) and Encpk(0) then ĉ = c · Encpk(0) has the same distribution
as Encpk(x, r), r ← Z∗N and nothing else than x can be learned from ĉ. In addition,
for valid ciphertexts c = Encpk(x) and d = Encpk(y), the combination c · d · Encpk(0)
reveals nothing else than x+ y.

We say that a cryptosystem is (t, ε)-indistinguishable under a chosen plaintext
attack (IND-CPA) if, for two known messages m0 and m1 and any t-time adversary A,
the probability of distinguishing between the encryptions of these messages is

AdvIND−CPA(A) =
∣∣∣Pr[GA0,IND−CPA = 1]− Pr[GA1,IND−CPA = 1]

∣∣∣ ≤ ε .

where

GA0,IND−CPA

pk, sk ← Gen
m0,m1 ← A(pk)
return A(Encpk(m0))

GA1,IND−CPA

pk, sk ← Gen
m0,m1 ← A(pk)
return A(Encpk(m1)) .

The decisional composite residuosity assumption (DCRA) assumes that it is difficult
to distinguish a random element of Z∗N2 from a random N -th power in Z∗N2 . Let N be a

8

randomised algorithm for generating Paillier moduli. Then N is considered to be (t, ε)-
secure against DCRA if for any t-time adversary A the probability of distinguishing
random elements from random N -th residues is at most

AdvDCRA(A) =
∣∣∣Pr[GA0,DCRA = 1]− Pr[GA1,DCRA = 1]

∣∣∣ ≤ ε .

where

GA0,DCRA

N ← N
x← Z∗N2

return A(x,N)

GA1,DCRA

N ← N
x← Z∗N2

return A(xN mod N2, N) .

Paillier cryptosystem is indistinguishable under chosen plaintext attacks (IND-
CPA) under DCRA, which implies that the modulus N is hard to factor.

There are several known efficiency improvements to the basic definition of the Pail-
lier cryptosystem, for example [45] and [22]. The decryption can be simplified by
precomputing constant values in function L(x) and using CRT. More precisely, we at
first compute the decryption separately modulo p and q and use CRT to restore the
decryption result modulo N [45].

In addition, we can define g = N + 1 which results in faster encryption function

Encpk(m, r) = (Nm+ 1)rN mod N2 .

This simplification results from the Binomial theorem which gives a general expression

(a+ b)c =
c∑

i=0

(
c

i

)
aibc−i ,

and from the fact that the generator does not need to be randomly chosen [22]. For
our case, we need to compute

(N + 1)m =
c∑

i=0

(
c

i

)
N i = 1 + cN +

(
c

2

)
N2 + · · · .

Encryption is a modular operation, thus, we can discard all the elements that have
high powers of N since they are divisible by N2 and we obtain

Encpk(m, r) = (N + 1)mrN = (Nm+ 1)rN mod N2 .

Furthermore, the encryption function can be computed more efficiently using the
private key and CRT to compute separately modulo p2 and q2. Someone in possession
of the private key might, for example, compute the encryption as a commitment to the
encrypted value or to enable the other party to evaluate a function on the encrypted
inputs.

2.1.5 Elliptic curves

Elliptic curves are plane curves with the general equation

y2 = x3 + ax+ b

9

Figure 2.1: Elliptic curve addition R = P + Q for curves y2 = x3 − 3x + 1 and
y2 = x3 − 3x+ 1 over real numbers.

where a and b are constants that define a specific curve. Cryptography usually only
consider curves where x, y, a, b ∈ F, for some finite field F. In addition, there is a
specific infinity point ∞ and a definition of a group operation so that elliptic curves
form an Abelian group, where ∞ is the identity element. We usually use additive
notation for operations between elliptic curve points which extends to multiplication
of a point and an integer.

Figure 2.1 illustrates two different shapes of elliptic curves over real numbers. The
geometric idea is that to find the sum of two points we must draw a line through
them and find the third place where this line cuts the curve. The sum is this point
mirrored by the x-axis or ∞ if there is no such point. Elliptic curves are much used
in cryptography because their structure makes computing the discrete logarithm hard.
Cryptography uses elliptic curves over finite fields where we can not draw illustrations
as Figure 2.1, but the formulas derived from this planar interpretation still hold.

Elliptic curves are used as a basis for public key cryptosystems to be able to use
shorter keys. For example, in our implementation, we can use 256-bit elliptic curve to
achieve the same security level as 2048-bit Paillier key [3, 33]. To fix a curve, we must
fix the field F, constants a and b, base point (generator) of the elliptic curve and the
order of the base point. There are several standard curves, where the parameters have
been optimized for security and computational efficiency, for example see [43].

We use the elliptic curve P-256 recommended by NIST [43] that is given in the
Weierstrass form. Weierstrass form elliptic curves have a potential side-channel vul-
nerability because the addition of two different points and doubling one point have
different algorithms. This is a serious threat as the point and scalar multiplication in el-
liptic curves is often implemented with an additive analogue of the square-and-multiply
exponentiation algorithm and, therefore, analysing the power trace may leak the scalar
used in the multiplication [15]. However, this risk can be mitigated with a common
method of unifying the computation in these algorithms. We use Crypto++ [20] im-
plementation of elliptic curves that avoids this vulnerability.

2.1.6 Lifted Elgamal cryptosystem

The Elgamal cryptosystem [29] is defined for a cyclic group G with generator g of prime
order q. The setup phase defines the public key as h = gx and private key as x, where
the latter can be chosen randomly. To encrypt a message m ∈ G we compute

E.Ench(m, r) = (gr, hr ·m) ,

10

where r ← Zq. The decryption is defined as

E.Decx(c1, c2) = c2 · c−x1 ,

which is correct as

E.Decx(E.Ench(m, r)) = hr ·m · g−x·r = hr−r ·m = m .

The Elgamal cryptosystem is multiplicatively homomorphic meaning that

E.Ench(m) · E.Ench(n) = E.Ench(m · n) .

The Lifted Elgamal cryptosystem shares the setup phase with the aforementioned
Elgamal cryptosystem, but differs from it as the encrypted message is used as an
exponent rather than a multiplicand. In the following, we will use the Lifted Elgamal
cryptosystem defined over elliptic curves. It is used as part of the commitment scheme
and we do not use the expensive decryption operation. For a shorthand, we denote
Lifted Elgamal cryptosystem as (LE.Gen, LE.Enc, LE.Dec). The encryption function is
defined as

LE.Ench(m, r) = (gr, hr · gm)

and decryption requires computing a discrete logarithm on base g, denoted as logg, as
follows

LE.Decx(c1, c2) = logg(c2 · (c−x1)) ,

which is correct as
LE.Decx(LE.Ench(m)) = logg(g

m) = m .

The Lifted Elgamal cryptosystem is additively homomorphic, as

LE.Ench(m) · LE.Ench(n) = LE.Ench(m+ n) .

More precisely, homomorphism is correct because

LE.Ench(m, rm) · LE.Ench(n, rn) = (grm · grn , hrm · gm · hrn · gn)

= (grm+rn , hrm+rn · gm+n) = LE.Ench(m+ n) .

We can also blind the ciphertext with LE.Ench(0) and having LE.Ench(m), LE.Ench(n)
and LE.Ench(0) only allows us to learn LE.Ench(m+ n).

Elgamal and Lifted Elgamal cryptosystems are IND-CPA secure under the Deci-
sional Diffie-Hellman assumption (DDH). We say that a group G with generator g of
order q is a (t, ε)-secure DDH-group if for any t-time adversary A the advantage

AdvDDH(A) =
∣∣∣Pr[GA0,DDH = 1]− Pr[GA1,DDH = 1]

∣∣∣ ≤ ε .

where

GA0,DDH[
x, y ← Zq
return A(g, gx, gy, gxy)

GA1,DDH[
x, y, z ← Zq
return A(g, gx, gy, gz) .

11

2.1.7 Zero-knowledge proofs

Zero-knowledge proofs are interactive proofs for the correctness of a statement, whereas
the proofs should not reveal any additional information. Zero-knowledge proofs have
three important properties: completeness, soundness and zero-knowledge. Complete-
ness means that in case of an honest verifier and prover the verifier accepts the proof.
Soundness, on the other hand, gives the guarantee that a malicious prover can not
make the verifier accept a faulty statement. Zero-knowledge property ensures that in
case of an honest prover and a correct statement, the verifier learns nothing aside from
the proof outcome.

We need a zero-knowledge protocol to prove that we have three ciphertexts of
elements x1, x2, x3 in multiplicative relation x3 = x1 · x2 without revealing these
elements, but assuming that we have a valid public key pk. This proof is defined in
Algorithm 1 and is built from a conditional disclosure of secrets protocol based on
[40]. The encryption scheme defines the randomness space R and the space of suitable
messages M. The space of secrets S of the conditional disclosure of secrets protocol
serves as a randomness to check, if the prover received the correct message.

We use a randomised encoding function

Encode(s, r) = s+ 2` · r

for `-bit secrets s and a randomness r ← ZbN/2`c. Therefore, the randomness space
R1 is defined by the encoding function as R1 = ZbN/2`c. The corresponding decoding
function is defined as

Decode(s+ 2` · r) = s+ 2` · r mod 2` = s

meaning that
Decode(Encode(s)) = s .

The latter ensures that the secret can be correctly restored if the queries q1, q2, q3 were
valid.

The encoding is said to be ε-secure if for any secret s and an additive non-zero
subgroup G ⊆M the distribution of Encode(s)+G is statistically ε-close to the uniform
distribution over M. This encoding is 2`−1

p
-secure where p is the smallest factor of

N [39]. The encoding function is used to add noise to hide the secret if the queries are
not in the multiplicative relation.

The general idea of the protocol is that the prover should only be able to correctly
get the secret s′ = s if the initial queries were in the multiplicative relation. This
results from the conditional disclosure of secrets protocol that enables the prover to
only learn the secret if the multiplicative condition is satisfied. Round 3 clearly gives
correct result for multiplicative elements as

s′ = Decode(x3 · e1 + x2 · e2 + Encode(s)− (x1 · e1 + e2) · x2) = Decode(Encode(s)) .

Nothing is leaked to the verifier in the honest case, as the prover only sends encryptions
and the element s′ = s and an honest verifier already knows s. The verifier releases
all used randomness to the prover in round 4 to show that it behaved honestly and
really knows s. This ensures that the verifier can not learn new information from the
provers secret s′. For security, we need a hiding and binding commitment scheme,
secure randomised encoding function, and an IND-CPA secure cryptosystem.

12

Algorithm 1 CdsZkMul - zero-knowledge protocol for multiplicative relation of ci-
phertexts for an additively homomorphic cryptosystem
Setup: Commitment parameters ck,

Prover has a keypair (pk, sk),
V erifier has pk

Data: Prover has x1, x2, x3
Result: True for successful proof of Encpk(x1) · Encpk(x2) = Encpk(x3),

False in case of any failure or abort
1: Round: 1
2: Prover sets q1 = Encpk(x1), q2 = Encpk(x2), q3 = Encpk(x3)
3: Prover sends q = (q1, q2, q3) to V erifier
4: Round: 2
5: V erifier checks that q1, q2, q3 are valid ciphertexts
6: V erifier generates e1, e2 ←M, r1, r2 ← R, r ← R1, s← S
7: V erifier computes a1 = qe11 · Encpk(e2, r1)
8: V erifier computes a2 = qe13 · qe22 · Encpk(Encode(s, r), r2)
9: V erifier sends a = (a1, a2) to Prover

10: Round: 3
11: Prover computes s′ = Decode(Decsk(a2)− Decsk(a1) · x2)
12: Prover computes (c, d) = Comck(s

′)
13: Prover sends commitment c to V erifier
14: Round: 4
15: V erifier sends (s, e1, e2, r1, r2, r) to Prover
16: Round: 5
17: Prover: if a1 6= qe11 · Encpk(e2, r1) return False
18: Prover: if a2 6= qe13 · qe22 · Encpk(Encode(s, r), r2) return False
19: Prover sends decommitment d to V erifier
20: Round: 6
21: V erifier: if Openck(c, d) 6= s return False

22: return True

In the following, we will use this protocol with the Paillier cryptosystem and a
commitment scheme defined in Section 2.1.8. We will obtain two special cases of this
protocol defined in Algorithm 12 and Algorithm 10.

2.1.8 Dual-mode commitment schemes

Commitment schemes allow one participant to commit to a value, but keep it private
from other participants. Afterwards, the participant can open the commitment to
prove that he initially committed to the value that he claims to have committed to.

We define a commitment scheme as the set of protocols, namely setup, commitment
and opening, (Gen,Com,Open). In general, they rely on an additively homomorphic
IND-CPA cryptosystem. More precisely, we will use Lifted Elgamal on elliptic curves
in our initialisation.

The commitment parameters of a binding commitment are

ck = (pk, e)

13

where e = LE.Encpk(1). We use the homomorphic properties of the cryptosystem to
compute the commitment and decommitment to m as

Comck(m) = (c, d)

where commitment is c = em · LE.Ench(0, r) = LE.Encpk(m) and decommitment d =
(m, r). A commitment is opened by releasing all values used to compute c and the
opening function just recalculates the commitment and verifies the correctness as

Openck(c, d) =

{
m, if c = em · LE.Ench(0, r) ∧ c ∈ C
⊥, otherwise

where C is the set of valid ciphertexts.
Commitment schemes have two important properties: hiding and binding. A com-

mitment scheme is (t, ε)-hiding if, for any t-time adversary A, the probability of dis-
tinguishing commitments to two different messages is

Advhiding(A) =
∣∣∣Pr[GA0,hiding = 1]− Pr[GA1,hiding = 1]

∣∣∣ ≤ ε ,

where

GA0,hiding

ck ← Gen
(m0,m1)← A(ck)
(c, d)← Comck(m0)
return A(c)

GA1,hiding

ck ← Gen
(m0,m1)← A(ck)
(c, d)← Comck(m1)
return A(c) .

A commitment scheme is (t, ε)-binding if for any t-time adversary A the probability
of creating a double opening is

Advbinding(A) = Pr[GA0,binding = 1] ≤ ε ,

where

GA0,binding

ck ← Gen
(c, d0, d1)← A(ck)
if Openck(c, d0) 6= ⊥ ∧ Openck(c, d1) 6= ⊥

return Openck(c, d0) 6= Openck(c, d1)
else

return 0 .

We call a commitment perfectly equivocal, if a valid commitment can be efficiently
opened to any message given some trapdoor information. We say that a commitment
scheme is (t, ε)-equivocal, if for any t-time adversary A the advantage of distinguishing
real and equivocal commitments is bounded as

Advequivocal(A) =
∣∣∣Pr[GA0,equivocal = 1]− Pr[GA1,equivocal = 1]

∣∣∣ ≤ ε ,

where

14

GA0,equivocal

ck ← Gen
A(ck)
for as long as A wants
m← A
(c, d)← Comck(m)
A(c, d)

end for
return A(ck)

GA1,equivocal

ck, ek ← FakeGen
A(ck)
for as long as A wants
m← A
c, r ← FakeComck,ek()
d← Equivocationck,ek(d,m, r)
A(c, d)

end for
return A(ck) .

According to the requirements of the aforementioned zero-knowledge proof proto-
cols, we need our commitment to be an equivocal and binding dual-mode commit-
ment [40]. We need computationally indistinguishable setup phases that yield either
statistically binding or perfectly equivocal commitment scheme to fulfil the require-
ments of the dual-mode commitment.

The previously described commitment scheme allows us to define a suitable equiv-
ocal setup. In addition, the ideal setup and defined algorithms (Gen,Com,Open) yield
a computationally hiding and unconditionally binding commitment as proved in The-
orem 2.1.1. The security proofs in this section give guarantees up to a constant factor
in terms of the running time.

Theorem 2.1.1. The commitment scheme in algorithms (Gen,Com,Open) yields a
(t, ε)-hiding and unconditionally binding commitment given a (t, ε)-IND-CPA secure
cryptosystem.

Proof Sketch. According to the commitment algorithm, the commitment to message
m is c = Encpk(m). Hence, the hiding property of the commitment scheme directly
follows from the definition of IND-CPA security of the cryptosystem.

Similarly, the binding property follows from the fact that the public key pk defines
a valid secret key and, thus, it is theoretically possible to decrypt the commitment,
whereas the decryption always succeeds and yields m.

We can use an altered setup so that the commitment key ck = (h, e) and equivoca-
tion key ek are fixed according to FakeGen to obtain a perfectly equivocal commitment.
FakeGen defines ck = (h, LE.Ench(0, r∗)) and ek = r∗. Equivocal commitment is com-
puted as

FakeComck = (c, r′)

where r′ is the trapdoor for equivocation and c = LE.Ench(0, r
′). Such a commitment

and opened to any chosen message m by

Equivocationck,r∗(m, c, r
′) = (m, r′ − r∗ ·m) .

The result can be verified using Open as defined previously. The correctness of this
equivocal setup is shown in Theorem 2.1.2.

Theorem 2.1.2. Algorithms (FakeGen,FakeCom,Equivocation,Open) yield a perfectly
equivocal commitment of a random message given a (t, ε)-IND-CPA-secure Lifted El-
gamal cryptosystem.

15

Proof. According to the definition of Com, any commitment would be c = LE.Ench(0)
and knowing r∗ it can be opened to any message m. If we initially computed the
commitment as FakeComck and obtained

c = LE.Ench(0, r
′) = (gr

′
, hr

′
) ,

then we can easily compute the decommitment to any m as r = r′ − r∗ ·m as defined
by Equivocation. This is accepted by Open because

em · LE.Ench(0, r) = LE.Ench(0, r∗)
m · LE.Ench(0, r) = LE.Ench(0, r∗ ·m+ r)

= LE.Ench(0, r∗ ·m+ r′ − r∗ ·m) = LE.Ench(0, r
′) = c .

Secondly, we need that the distributions of (c, d) ← Comck(m) and (c∗, d∗) where
c∗ ← FakeComck and d∗ ← Equivocationck,r∗(m) coincide. The distributions of c and
c∗ coincide because they are both random encryptions of zero. If we compute the
commitment according to Comck with setup from Gen, we obtain

c = em · LE.Ench(0, r) = ((gr∗)m, (hr∗g0)m) · (gr, hrg0)
= (gr∗·m+r, hr∗·m+rg0) = (gr∗·m+r, hr∗·m+r) = (gr

′
, hr

′
)

= LE.Ench(0, r
′) .

In addition, fixing a message m and having a commitment c uniquely fixes the
only possible decommitment d = (m, r) as the value r is uniquely fixed. Thus, if the
distributions of commitments c and c∗ coincide then so do the joint distributions of
(c, d) and (c∗, d∗).

Thus, we have a perfectly equivocal commitment.

Theorem 2.1.3. The setups for binding (Gen) and equivocal (FakeGen) commitment
schemes are (t, ε)-indistinguishable for parties who only see the commitment parameters
ck = (pk, e), given a (t, ε)-IND-CPA secure cryptosystem.

Proof Sketch. Assume that there is an adversary A who can distinguish between these
two setup phases. This means that A can differentiate between (pk, LE.Ench(0)) and
(h, LE.Ench(1)). Hence, we can build an adversary B for the IND-CPA security of
the cryptosystem. At first B sends the messages m0 = 0 and m1 = 1 and receives
the ciphertext LE.Ench(mb). B then forwards the message (h, LE.Ench(mb)) to A and
outputs the result as A. Hence, B breaks the IND-CPA security exactly when A
successfully distinguishes the setups and the success of t-time adversary A is bounded
by ε. The running time of B needs only to be constant time longer than A to forward
the messages.

Corollary 2.1.4. According to Theorems 2.1.2 and 2.1.3 commitment setups are (t, ε)-
indistinguishable even if the adversary A sees pairs of correct commitments (c, d) or
fake commitments (c∗, d∗).

For practical purposes we need a protocol to implement the setup phase. It can be
combined from the Diffie-Hellman key exchange [28], homomorphic properties of Lifted
Elgamal cryptosystem and Schnorr Σ-protocols [51]. It is important that the setup
should yield perfectly binding commitment in case computing parties execute it, but
there also has to exist a simulator who can achieve equivocal setup. Full specification
of this protocol is out of the scope of this thesis.

16

2.1.9 Message authentication codes

A message authentication code (MAC) is an extra piece of information about a message
that enables to detect modifications to the initial message. MACs are often described
as keyed hash functions that output a tag from a message and a secret key. A MAC
is secure, if an adversary can not substitute messages or generate valid message and
tag pairs. A substitution attack means changing message and tag pair (x, z) with
a different pair (x, z) where z is a valid tag for x. An impersonation attack means
generating a valid pair (x, z) without seeing any authentication pairs before.

We define a MAC for secret-shared elements as follows. We have a key k and a
secret [[x]], where x = x1 + x2 and x1, x2 are the additive shares. We define z = k · x
as the authentication code for x and keep it as shares z1,x, z2,x, hence

z1,x + z2,x = k · (x1 + x2) .

Verifying the code is trivial for anyone in possession of the secret key k. The key should
be chosen from the same algebraic structure as used for the secret sharing.

Keeping MAC in shares allows us think of it as z2,x = k · (x1 + x2) − z1,x where
z2,x is the tag for secret x and z1,x is part of the secret key which becomes (k, z1,x).
Hence, the view of CP2 is like having tags for unknown messages x where all these
pairs share the sub-key k, but differ by the second part of the key. Such construction
was introduced by Rabin and Ben-Or as Information Checking or Check Vectors for
verifiable secret sharing [49].

Our attack scenario results from the opening of the shares where CP2 might receive
x1 and therefore learn x before sending x2 and z2 to CP1. Hence, we need that CP2

must not be able to come up with x̂2 and ẑ2 such that CP1 would accept the MAC.
This is a special substitution attack, because the attacker only gets to see one message
and tag pair before the attack, however it is sufficient as the second part of the key is
always different and the the attacker can not see tags for more messages of the same
key. We can more precisely define it as a security game for [[x]]N in ring R as GAMAC .
We say that a MAC is statistically ε-secure, if for any adversary A the probability of
winning in GAMAC is bounded by ε:

Pr[GAMAC = 1] ≤ ε

where

GAMAC

k ← R
for as long as A wants
x← A
z1, x2 ← R
z2 = k · x− z1
A(z2, x− x2, x2)

end for
x← A
z1, x2 ← R
z2 = k · x− z1
x1 = x− x2
ẑ2, x̂2 ← A(z2, x1, x2)
return ẑ2 == (x̂2 + x1) · k − z1 ∧ x2 6= x̂2 .

17

Theorem 2.1.5. The adversaries success in GAMAC for a finite field Fpn is bounded by
1
pn
.

Proof Sketch. First, the views of the adversary A in GAMAC and G
′A
MAC are indistin-

guishable and the advantage is the same, where

G
′A
MAC

for as long as A wants
x← A
z2, x2 ← Fpn
A(z2, x− x2, x2)

end for
x← A
z2, x2 ← Fpn
x1 = x− x2
ẑ2, x̂2 ← A(z2, x1, x2)
k ← Fpn
z1 = k · x− z2
return ẑ2 == (x̂2 + x1) · k − z1 ∧ x2 6= x̂2

The values of z2 in GAMAC are randomly uniform, because z1 is chosen uniformly
and, therefore, kx − z1 mod p is also uniformly random element of Fpn . In addition,
the values that adversary sees do not depend on the key k, so, it can be chosen later.

Clearly, the advantage in G′AMAC is the same as the possibility of coming up with a
pair ẑ2, x̂2 such that ẑ2 == (x̂2 + x1) · k − z1. After A picks ẑ2, x̂2 there is exactly one

k∗ = (z1 + ẑ2) · (x̂2 + x1)
−1 ,

such that ẑ2 == (x̂2 + x1) · k∗ − z1. To conclude, the possibility of picking k such
that the verification succeeds is 1

pn
because Fpn has pn different elements and only one

uniquely fixed k∗.

Our message space M may have a composite order and, therefore, this is not as
secure MAC as it would be in case of finite fields. However, we will have R = ZN ,
where N = pq is the Paillier modulus and both of its factors are large and the security
is the same as it would be for either of the prime factors.

Theorem 2.1.6. The success of adversary A in GAMAC with a Paillier modulus N that
defines R = ZN , where N = pq, p and q are primes, and p < q is bounded by 1

p
.

Proof Sketch. Assume that there is an adversary A against GAMAC for some modulus
N = pq who is very successful. Then, there exists an adversary B in GMAC for modulus
p, who can use this A to win in its game. Adversary B has a fixed modulus p, picks a
prime q = N/p and uses the adversary A for modulus N . For every x that A picks B
forwards it to the challenger and gives the result pack to A. It behaves similarly with
the final challenge. According to the Chinese remainder theorem, if A gives a correct
result modulo N then it also holds modulo p and B wins it its game exactly when A
is successful. The runtime of B is only a constant factor longer than A. However,
the maximal success of B is limited by Theorem 2.1.5 as Zp is a finite field and, thus,
the maximal success of A is also 1

p
. From this we know that for any Paillier modulus

N = pq, the maximal success is 1
p
where p < q.

18

This MAC also has homomorphic properties making it possible to compute the new
MAC and new key for the sum of two messages given the tags of the initial messages.

2.2 Secure multi-party computation

Secure multi-party computation (SMC) is a mechanism that allows several participants
to evaluate a function without revealing their inputs. A classical SMC problem known
as the Millionaires’ problem was proposed by Yao [56]. There are two millionaires
who wish to know who has more money without revealing their wealth to the other
millionaire.

2.2.1 Overview of SMC techniques

Garbled circuits

Together with the Millionaires’ problem Yao proposed a solution for securely evaluating
boolean circuits [56]. This approach is known as garbled circuit evaluation and has
developed a lot since it was first proposed. Garbled circuits are commonly used for
two-party computations in the passive model, but this approach can be extended to
more parties [5, 55].

The general idea of garbled circuits is that the original circuit of a function is trans-
formed so that the wires only contain random bitstrings. Each gate is encoded so that
its output bitstring can be computed from the inputs and only the random bitstrings of
output gates can be mapped back to actual results. This way the evaluation computes
the function, but does not leak information about the values on separate wires. The
main drawback of the garbled circuit technique are inefficient evaluation and inability
to reuse the circuit. However, they have been used in SMC frameworks [42, 35].

Secret sharing

Secret sharing was introduced by Shamir [52] and Blakley [8]. Since then Shamir’s
scheme has provided a basis for different verifiable secret sharing [30, 46, 49], SMC
and threshold encryption ideas [31]. SMC frameworks can be obtained from the secret
sharing schemes based on the homomorphic properties of the schemes and by defining
protocols for operations not directly supported by the homomorphism.

This thesis and the Sharemind framework are based on additive secret sharing as
introduced in Section 2.1.1. Share computation is mainly aimed at securely evaluating
arithmetic circuits. For many use-cases arithmetic circuits are more efficient than
boolean circuits and, therefore, share computation is likely to be more efficient than
garbled circuits.

Homomorphic encryption

Homomorphic encryption is especially useful for building secure client-server model
applications, but it can be extended to more general settings. For example, the a sends
encrypted inputs to a server who then computes the desired function on the ciphertexts.

Currently we know of several additively homomorphic cryptosystems, such as Pail-
lier or Lifted Elgamal, or multiplicatively homomorphic cryptosystems, for example
Elgamal. We can use them to obtain frameworks where one side can compute some

19

operations locally, but others require collaboration. These difficulties can be overcome
with fully homomorphic cryptosystems where both multiplication and addition can be
performed locally [32]. However, at current state, fully homomorphic encryption is too
inefficient for practical SMC frameworks.

The main limitation of SMC frameworks based on homomorphic cryptosystems is
the inability to use common data types. The cryptosystem defines a modulus and all
the arithmetic is with respect to these moduli. However, to achieve reasonable security,
we commonly need moduli that are thousands of bits long. We use some of the ideas
from this setup in the precomputation phase of our protocol sets and, therefore, we
also suffer from this restriction on our modulus.

2.2.2 General SMC threat model

An important privacy goal of SMC is that all inputs and outputs should remain pri-
vate, unless specifically declassified. However, we can not avoid that the output of a
function may leak information about the inputs. Furthermore, we often require that
the correctness of the outputs is guaranteed or at least verifiable.

The passive or honest-but-curious security model defines an adversary who always
follows the protocol specification, but may try to extract additional information from its
view of the protocol. An active or malicious security model proposes no restrictions to
the behaviour of the adversary whereas the security aim is to catch the adversary with
overwhelming probability. Consequently, the adversary can control all aspects of the
corrupted parties and communication channels. Covert security model is somewhere
in between the previous two, as the adversary can behave maliciously and must be
caught with certain arbitrarily fixed probability. However, there is a bigger risk of
leaking secrets than when achieving security against an active adversary.

In addition, adversarial behaviour can either be static, adaptive, or mobile. A static
adversary picks the set of corrupted parties in the beginning of the protocol and is
unable to change it later. An adaptive adversary can increase the set of corrupted
parties over time. Finally, a mobile adversary can adaptively corrupt and release
parties, thus varying the set of corrupted parties during the protocol execution.

Although we mostly concentrate on the computing parties, it is possible that the
adversary is not any of the computing nodes, but, for example, someone in the network.
Such adversary can eavesdrop or modify the network and disrupt the communication.
We can use classical techniques to secure the channels against eavesdropping or modi-
fication, but we can not solve different denial of service attacks on the network.

A commonly used threshold limitation of SMC is that achieving unconditional secu-
rity against a passive adversary is only possible if less than n

2
parties of n are corrupted

or correspondingly n
3
for active adversary [19, 6]. These results are special cases of

more general result with adversary structures that allow for stronger results [36, 37].
An adversary structure consists of sets of parties where the adversary is allowed to
corrupt any of these sets. Let Q(2) (Q(3)) be the conditions that no two (three) of these
sets cover the whole set of parties. Every function can then be unconditionally securely
computed by an active adaptive adversary if it is in Q(3). Analogous result holds for
adaptive passive adversary for Q(2).

20

2.2.3 Achieving actively secure two-party computation

The active security model allows the adversary to behave maliciously and do anything
it likes, for example, send incorrect messages. Hence, we need to ensure the correctness
of computations and the privacy of the inputs. In addition, we also require universal
composability to use the basic protocols as building blocks for more general functions.
However, we restrict our adversary so that only one of the computing parties can be
statically compromised and the two computing parties can not collude. The properties
of the additive secret sharing scheme clearly define that the two computing parties can
not collude and, hence, the adversary can not corrupt both of the computing parties.

We take the same approach as SPDZ [26] to ensure the correctness of computation
results, where we only verify the correctness when we publish a result and not dur-
ing the computation. Here we rely of the security properties of the used verification
mechanisms. In addition, we assume that the setup of the protection domain has been
securely fixed and other protocols must be secure in the shared setup model.

In general, we require universal composability, but for brevity we do not give full
proofs for this. In the following, security means both privacy of the inputs and the
correctness of the outputs. The security is achieved using protection mechanisms on
the shares. All protocols with only local computation trivially protect privacy, but we
need to ensure privacy in collaborative protocols.

In the following, we prove security of the protocols in the stand-alone model with
shared setup so that it also implies security in sequential compositions. For some
protocols, we only show the simulatability of the communication so that the adversary
can not distinguish between simulated and real protocol run.

We actually assume that there are three conditions that a protocol needs to fulfil
to achieve security. Firstly, the communication of the protocol should be simulatable.
Secondly, the parties can notice if others cheat. Thirdly, after the protocol, the parties
are convinced about the consistency of the share. However, proving that these are
sufficient, is out of the scope of this thesis.

2.3 The Sharemind SMC framework

Sharemind is an SMC framework [11, 12, 9] with three main goals: (1) it must be
usable for securely processing confidential data, (2) it must be efficient enough for
practical applications, and (3) it must be usable by non-cryptographers. This thesis
is based on version 3 of the Sharemind framework where we can easily define new
secure computation schemes in addition to the traditional one with three miners and
a passive security guarantee.

2.3.1 Application model

Sharemind is designed as a general tool for SMC and privacy preserving data mining.
The model has three different kinds of parties: (1) computing parties, (2) input parties,
and (3) result parties. One participant can belong to all of these classes.

Input parties use secret sharing to distribute their inputs between the computing
parties and are denoted as IP i. Input parties correspond to the data donors or owners
of the data and can often be the same as the result parties. Computing parties, a.k.a
miners, perform computations on the shared data following the protocols specific to

21

the sharing method. Computing party will be denoted as CP i and can be thought of
as a dedicated server, we denote the set of computing parties by CP . Finally, result
parties map to data analysts who initiate the queries and computations and learn the
final public outcomes. They will be denoted as RP i. Result parties get to aggregate
the data from the input parties without actual access to confidential inputs.

The number of input and result parties is not limited, but the number of computing
parties is often defined by the computation protocols. For example, classical Share-
mind protocols use three computing parties, but this thesis focuses on the case with
two miners.

The important trust requirements are that the input parties must believe that the
computing miners do not collude and the result parties must believe that the computing
parties give correct results. The latter can be ensured at a protection domain level as
long as the miners do not collude. In addition, the miners should either believe or
check the consistency of inputs. However, in any case we can not avoid the attack
where input party decides to classify false information.

2.3.2 Computation primitives

In general, a query from the result party means that the computing parties must
execute some algorithm to compute the result. These algorithms are collections of op-
erations such as addition or multiplication. Each of these operations in turn correspond
to a secure computation protocol. The computing parties execute the corresponding
protocols in order to securely evaluate the query.

A protection domain kind (PDK) is a set of algorithms that define the data rep-
resentation and computation protocols. Different protection domain kinds can define
different elementary operations. For example, some may support division, but others
do not have to. A protection domain (PD) is a concrete initialisation of a protection
domain kind. A protection domain is defined by the algorithms from the corresponding
protection domain kind and its configuration, for example, the keys of the participants.
In addition, a protection domain also consists of the protected data. Common Share-
mind PDK is based on additive secret sharing among three miners and is secure in the
passive adversary model, where a PD is fixed by the computing nodes.

All elementary protocols of the PDK must be reusable and composable with each
other to achieve provably secure query evaluation. It has been shown that following
simple rules when designing protocols for elementary operations yields a provably secure
composition of protocols for the traditional three miner PDK [9]. In general we require
universal composability of the computation protocols.

2.3.3 Programming applications

Sharemind 3 uses the SecreC 2 programming language to specify the query algo-
rithms. SecreC is a Sharemind specific C-like language designed to be privacy-
preserving and easy to use. SecreC is strongly typed whereas the type of the private
variables includes the PD. In fact, all public values can be seen as belonging to some
public PD and also including this in their type. The programmer does not need to be
aware of the underlying PDK protocols for operations on the private data and can call
them as any predefined functionality.

SecreC can be used for different protection domain kinds and for writing code that

22

is not specific to any fixed PDK [10]. The domain-polymorphic code clearly only works
if the PDK defines all the necessary protocols. Polymorphism means that integrating
new PDKs to applications is simple and one can easily test their application against
several PDs or develop libraries independently of the PDK. In addition, it is possible
to implement a general function and then specify a special version of it for some PDK
where, for example, the required functionality can be achieved more efficiently than in
the generic code.

Algorithm 2 Example of SecreC

1 kind add i t ive2pa ;
2 kind additive2paSym ;
3 domain pd_a2a add i t ive2pa ;
4 domain pd_a2a_sym additive2paSym ;
5

6 template <domain D>
7 D uint32 sum (D uint32 [[1]] a r r) {
8 D uint32 out = 0 ;
9 for (uint64 i = 0 ; i < s ize (a r r) ; i++){

10 out = out + ar r [i] ;
11 }
12 return out ;
13 }
14

15 void main () {
16 uint64 n = 10 ;
17 pd_a2a uint32 [[1]] a r r1 (n) = 2 ;
18 pd_a2a uint32 s1 = sum(arr1) ;
19 assert (declassi fy (s1) == (20 : : uint32)) ;
20

21 pd_a2a_sym uint32 [[1]] a r r2 (n) = 3 ;
22 pd_a2a_sym uint32 s2 = sum(arr2) ;
23 assert (declassi fy (s2) == (30 : : uint32)) ;
24

25 return ;
26 }

Algorithm 2 gives an example of SecreC code that uses two different PDK where
the domain fixes the setup of given PD. The main function defines one dimensional
matrix (vector) of length n with secret shared elements equal to either 2 or 3 and
computes the sum of the vector elements for both of these PD. The function sum is
defined independently of the used PDK and can be used as long as the PDK defines
type uint32 and an addition operation. Finally the main function publishes the result
and verifies that it has the value that was expected.

23

Chapter 3

Principles of the SPDZ framework

This chapter introduces the main aspects of SPDZ (pronounced Speedz) that is an
actively secure SMC framework [26] that also has a covertly secure version [23]. An
important characteristic of SPDZ is the usage of precomputations, which separate the
protocols to two parts as also used in [24, 21, 25, 7, 44]. Firstly, the precomputation
phase is independent of the secret information and produces some random shares.
Secondly, the online phase uses the secrets and precomputation results to evaluate
necessary functions.

The SPDZ framework utilises three important tools: (1) Oblivious Message Au-
thentication Codes, (2) Beaver triples, and (3) vectorized homomorphic encryption.
The first two are used to ensure security against an active adversary and the second
as precomputation for multiplication. These two have been previously used together
for SMC in BDOZ [7]. However, SPDZ adds an important idea that MAC is used
to authenticate the shared secret as a whole and not for authenticating independent
shares. Thirdly, vectorised somewhat-homomorphic encryption is used to generate
Beaver triples in a communication-efficient way and is a SPDZ-specific property.

It can be seen that SPDZ is a mixture of different previously existing ideas. We
actually omit the usage of the somewhat homomorphic encryption, which is the most
specific idea of SPDZ, but we use the idea of authenticating the secret, not the separate
shares. In the following, we, in general, use the name SPDZ to refer to the collection
of these ideas and reference the origins separately as we introduce the concepts. Our
vision on the development of SPDZ is given on Figure 3.1.

3.1 Precomputation model

The precomputation and online phases are essentially independent and can be op-
timized separately, as long as they have consistent share representations. However,
having a separate precomputation phase is meaningful only as long as preprocessing
gives some benefit to the online phase.

Currently, SPDZ precomputes Beaver triples and single random shares. The covertly
secure extension [23] also precomputes squaring pairs analogous to Beaver triples and
shared bits for comparison, bit-decomposition, fixed point and floating point opera-
tions. It is an open question if other operations can be efficiently precomputed. The
precomputation model originates from Beaver [4] and has found wider usage in SMC
after [24].

24

Oblivious MAC, [49]
Rabin and Ben-Or 1989
Verifiable secret sharing
MAC = Information Checking
Information theoretic security

BDOZ, [7]
Bendlin, Damgård, Orlandi

and Zakarias 2011
Semi-homomorphic encryption
MAC authenticates share
Additive secret sharing
Precomputation
Simpler triple verification

Fully homomorphic encryption
Scheme by Brakerski and

Vaikuntanathan 2011 [14]
SIMD by Smart and

Vercauteren 2012 [54]

Damgård and Orlandi 2010, [25]
Additive sharing
Precomputation
Commitments
Triple verification by discarding
Explicit classify

Additive secret sharing

Damgård and Nielsen 2007, [24]
Precomputing triples
Error correction
Verification for (a, b, c) and (a, b̂, ĉ)

Beaver triples, [4]
Beaver 1991
Multiplicative triples
Multiplication algorithm
Classify idea

SPDZ, [26] and [23]
Damgård, Pastro, Smart and Zakarias 2011
Precomputation
Vectorised SHE SIMD in precomputation
Threshold decryption
Public modifier in share
MAC authenticates secret
Additive secret sharing
Statistical security
Active adversaries

Adaptive adversary for online
Static adversary for precomputation

Precomputation,
Additive sharing,
Triple verification,
MAC

MAC

Triples

Classify Precomputation

Precomputation,
Additive sharing,
Triple verification

Somewhat Homomorphic Encryption

Figure 3.1: The development of SPDZ

Although precomputation is used to achieve efficient online computations, it may
mean that the overall cost of the protocols increases. For example, it could be possible
to use an expensive multiplication protocol M to precompute Beaver triples and then
use the triples to do online multiplication in protocol O. In such case, we use computa-
tion time for both M and O, whereas, in theory, only the time of the precomputation
M suffices for multiplication. However, dividing it to two parts allows for more efficient
online phase. Thus, precomputation model allows us to gain online performance but
may not reduce total workload. This model is usable if O is reasonably more efficient

25

than M or if we can do precomputations without actually defining a multiplication
protocol M .

Precomputation is meaningful in situations where the overall system has uneven
workload so it can do precomputations in the background. Precomputations could be
performed when the users are not active or in parallel with online computations. The
latter is reasonable if it does not significantly reduce online performance. For example,
we can consider a data analyst who likes to get fast results during the workday, but
does not use the system outside common working hours. The latter indicating that the
night-time can be easily used for precomputations.

The precomputation model assumes that the online phase always has sufficient
precomputed values to proceed. However, it is not trivial to ensure this in practice.
Therefore, it is important to consider the desired behaviour of online protocols when
they can not retrieve all necessary precomputation products. One possibility is to
signal the precomputing process and then compute the protocol incrementally as the
precomputation results become available. The other case would be to define a separate
slower protocol for the same functionality that does not require precomputations and
use it instead. In addition, depletion of precomputation results can be avoided if the
algorithms to be executed as well as the input sizes are well known beforehand.

The difficulty from dependence on the precomputation protocol speed indicates
that this model is not well designed for all SMC use-cases. For example, the classical
Millionaires’ problem would have the best solution if the millionaires can set up the
framework, insert their input and get the output at once. The alternative with the
precomputation is unsatisfactory, as they may not wish to wait a while to allow the
machine to perform all kinds of precomputations. In conclusion, the precomputation
model is best suited for applications where the data is used for an extended time period.

3.2 Oblivious MAC

Oblivious MAC algorithms resemble threshold cryptosystems in a way that no party
can check the MAC tag independently of others as no party can decrypt alone. Fur-
thermore, the MAC tag value of a secret shared input will be stored as a secret shared
value. For example, a secret value [[x]] might be protected using a MAC, where the tag
is in turn kept in shares as [[z]]. Together, these requirements indicate that the MAC
key k must be a secret value. In addition, the MAC algorithm must have homomorphic
properties to be able to compute the tag for the computation result from the tags of
the inputs. The idea of producing MAC tags to unknown values originates from Rabin
and Ben-Or as Information Checking for verifiable secret sharing [49].

The SPDZ framework uses unconditionally secure MAC to verify the correctness of
shared value instead of the correctness of each share. The idea of checking the shared
value and not each share results in less storage for MAC tags, but also means that we
can not check the validity of the computations before declassifying the value. MAC
key is shared using additive secret sharing together with meta-information so that all
parties can verify the correctness of the key. Each party has a share of the value and a
share of the tag on that value for each secretly shared element. An analogous algorithm
to MAC from Section 2.1.9 is also used by SPDZ. All their arithmetic is in a finite field
Fpk for a prime p and integer k and thus, according to Theorem 2.1.5 the MAC is
secure.

26

The security requirements from Section 2.1.9 apply also to SPDZ when extended
to more than two parties. In addition, SPDZ proposes an efficiency improvement that
either verifies that all the elements in a vector or none of them. The idea is to combine
the MAC tags to reduce network communication when checking the tags. In this case,
we do not exactly learn, which share was faulty, but in practice we only need to learn the
fact that some party might be malicious. Besides, shares could be verified separately
to sort out the false ones.

3.3 Beaver triples

Beaver triples are multiplicative triples 〈a, b, c〉 such that c = a · b proposed to simplify
multiplication on secret shared inputs [4]. The initial idea was to randomize every
input of an arithmetic circuit and evaluate the circuit on these random shared values
to obtain ŷ = f(r1, . . . , rk). Afterwards, the difference δx of the random input ri and
real input xi is computed as δi = xi− ri and made public. The second time the circuit
is evaluated using public differences and initial random inputs to find the difference δy
for the output y = f(x1, . . . , xk). The real output of the circuit is y = ŷ + δy. The
main question is correctly fixing the difference δy.

This idea is used in the following by the Multiplication protocol in Algorithm 3. For
multiplication, the difference is computed as δy = δ1 · r2 + δ2 · r1 + δ1 · δ2, which follows
trivially from the definition y = (r1 + δ1) · (r2 + δ2) as xi = ri + δi and ŷ = r1 · r2.

The idea was proposed for secret sharing schemes that allow local addition and,
actually, the randomization can be avoided during the addition step. However, com-
puting multiplication results requires collaboration and computing the multiplication
of the random inputs. Thus, Beaver triples are actually two random inputs a and b
used to hide the protocol inputs and their multiplication c = a · b used together with
public differences to restore the correct multiplication result.

Beaver triples are currently a common precomputation mechanism for SMC, as they
can be computed before the inputs are known. The triples are used as helper values
in multiplication according to the original proposal as shown in Multiplication protocol.
Beaver triples were originally described for linearly shared secrets, but can easily be
extended to shares with linear protection mechanisms such as the aforementioned MAC
tags.

3.4 Basic protocols

The description of some SPDZ protocols is independent from the secret sharing method
as long as the scheme defines protocols for publishing shares privately to each comput-
ing or result party, generating a random share, and generating random Beaver triples.
There are three main protocols: (1) classifying the secret input, (2) opening the secret,
and (3) multiplication of shared values.

Classifying and multiplication both require protocols to publish shares, which are
dependant on the share representation. In general, we require three versions of the
Publish protocol: (1) to declassify shares to all computing parties at the same time,
(2) to publish to all computing parties separately, and (3) to declassify to non-computing
parties. The declassification protocols are not specified here as they depend on the share

27

description. However, the general idea is that a party receives information about the
secret from others and verifies its correctness.

We assume that the share representation enables a local addition operation, mean-
ing that to obtain [[x]] + [[y]] all computing parties CP only need to compute on their
own shares. In addition, this implies local operations for subtraction and multipli-
cation with a public value. The multiplication Algorithm 3 assumes the existence of
precomputed and verified Beaver triples and is directly based on Beaver’s ideas [4].
It is derived from triples and local computations together with publishing a value,
combining those to obtain [[xy]] from [[x]] and [[y]].

Algorithm 3 Multiplying two secret values (Multiplication)
Data: Shared secrets [[x]] and [[y]]
Result: Shared result [[w]], where w = x · y
1: CP collaboratively choose a triple [[a]], [[b]], [[c]], where c = a · b
2: CP compute [[e]] = [[x]] − [[a]] and [[d]] = [[y]] − [[b]]
3: CP collaboratively open [[e]] and [[d]] to all CP
4: CP compute [[w]] = [[c]] + e · [[b]] + d · [[a]] + e · d
5: return [[w]]

The classifying protocol in Algorithm 4 enables input and computing parties to
share their secret value among all computing parties. This is a straightforward ex-
tension of the circuit randomization idea from Beaver [4]. It assumes the existence of
precomputation that produces random shared values to all parties.

Algorithm 4 Classifying a private input Classify-IP i
Data: Input party IP i has a secret x
Result: Computing parties CP have [[x]]

1: CP collaboratively choose a precomputed randomness [[r]]
2: CP open [[r]] to IP i
3: IP i computes e = x− r and sends e to CP
4: CP compute [[x]] = [[r]] + e
5: return [[x]]

These online protocols are claimed to be statically secure against an adaptive active
adversary, if we have an ideal precomputation phase. However, only the case of static
adversaries is proved as only this can be achieved by the precomputation protocols [26].
The adversary is allowed to corrupt at most n− 1 parties out of n.

Although the precomputation phase is not defined here due to dependencies on the
share representation, we can still define one important step to verify the correctness
of multiplicative triples. This ensures that the triple really has multiplicative rela-
tion. The triple verification process in Algorithm 5 takes two multiplicative triples
and performs computations analogously to multiplication. For a finite field Zp where
p is prime, the probability of cheating in the verification is 1

p
assuming ideal opening

phase [25].
The behaviour of these protocols somewhat depends on either working with an

honest minority or majority. Everything is the same in case all the protocols succeed—
everyone communicates and all checks in the opening phase succeed. However, the
difference comes when something fails. For example, if a two-party protocol fails then
none of the parties can continue and they also can not restore the secrets. However,

28

Algorithm 5 Verifying the correctness of multiplicative triples
Data: Secret shared random triple [[x]], [[y]], [[w]]
Result: True if w = x · y, False in case any check fails
1: CP collaboratively choose a random value [[r]] and open it to all parties
2: CP collaboratively choose a triple [[a]], [[b]], [[c]], where presumably c = a · b
3: CP compute [[e]] = r · [[x]] − [[a]] and [[d]] = [[y]] − [[b]]
4: CP open [[e]] and [[d]] to all CP
5: CP compute [[h]] = r · [[w]] − [[c]] − e · [[b]] − d · [[a]] − e · d
6: CP open [[h]] to all CP
7: return h == 0

for (t, n)-threshold scheme a set of t honest parties could point out the malicious
participants and continue the computations without them.

3.5 Initialising actively secure two-party computation

Frameworks analogous to SPDZ can be used with two computing parties and could have
three considerably different initial setups. The main difference between them is how the
MAC keys are defined and who knows them. In all cases, we require a homomorphic
MAC. In addition, we would like the secret sharing method and homomorphic MAC
to have the same operations that can be computed locally. Two parties are denoted by
CP1 and CP2.

3.5.1 Asymmetric setup

Asymmetric setup differentiates the computing parties so that one gets the role of a
master node (CP1) who defines the MAC key and the client (CP2) is using the keys
from the master. Using the MAC to either authenticate the secret value or the share
of the other party enables CP1 to easily verify the correctness of the declassification
result. However, CP2 is unable to verify the MAC as it must not know the MAC secret
key. It is up to the master to also define something that CP2 can check.

For example, the master can publish a homomorphic commitment to its input
shares. That way the homomorphic properties of the commitment enable CP2 to
compute valid commitments to all computation results and validate the declassification
result. In addition, the master node must have a way to compute the openings for all
commitments derived during the computation.

The MAC tag for the whole value or the share of CP2 can not be kept by the master
node. MAC algorithms are not designed to protect the privacy of the message, thus,
seeing the whole tag might leak the secret to the master node who also knows the MAC
secret key. In addition, storing it on the side of CP2 might also leak some information
about the secret or the key. Hence, for best security we need to store the tag z in a
secret shared manner as [[z]] and both parties must be able to update their parts of the
tags during computation. We can use the MAC from Section 2.1.9 where the key k is
defined by CP1.

The used commitment has to be binding so that the client node can believe that
it received a correct share in the opening phase. In addition, the hiding property
of the commitment ensures the privacy of secret information in all phases but the

29

declassifying. A complete initialization of a protocol set with asymmetric setup is
described in Chapter 4.

3.5.2 Symmetric setup

A symmetric setup means that both computing parties define similar parameters. A
direct continuation of the previous asymmetric setting would be that both parties CP i
in the symmetric setting define their own MAC keys ki. This would mean that on top
of the secret sharing method we have two MAC tags z(1), z(2) where both parties can
verify one of them during the declassification phase. As in the asymmetric, case we
need a to keep the tags in shares [[z(1)]] and [[z(2)]] to avoid revealing the secrets. For
example, we can use the MAC from Section 2.1.9 where both parties define their own
key.

The main benefit of this setup over the asymmetric one is that the protocol descrip-
tions would also become symmetric. This simplifies the notation and also means that
the parties can do exactly the same workload in parallel. In some sense, this enables
us to gain more efficient time usage. More precisely, it is unlikely to have protocols
where one party has to wait between sending and receiving network message without
having any computations to perform. Furthermore, we can only use the cheap MAC
algorithm and do not have a need for more expensive homomorphic commitments that
we used in the asymmetric case.

Our specification of a protocol set with symmetric setup can be found in Chapter 6.
Symmetric setup with MACs was also used by BDOZ [7]. A setup with using only
commitments to the secrets was introduced in [25].

3.5.3 Shared key setup

The shared key model is a further extension changing the symmetric setup so that
instead of both parties defining a key they share one key [[k]]∗ between them. This
defines a threshold MAC algorithm where all parties must participate in the verification
of the tag. It can give additional efficiency gains as now the parties only have to update
a single tag [[z]] during the computations. However, the sharing [[k]]∗ is special as it has
to define some additional information, allowing parties to verify the correctness of the
restored key and checked tags. The shared key setup is the approach currently used
by the SPDZ framework.

However, there are well-known difficulties with this approach as the knowledge of
the secret key is usually needed to verify the MAC tags. One possible solution is to not
verify any opened results before all computation is done. Afterwards, it is possible to
restore the MAC key and verify all the results at once. However, there are drawbacks
because parties can only notice cheating very late and they must agree on a new key
before next computations. In addition, changing the key means that after verifying the
correctness of opened values, the shares of the outputs or intermediate results from the
checked computations can not be reused.

The first version of SPDZ used the previous approach but they substituted it to a
way to collaboratively check the MAC without revealing the keys [23]. The idea is that
if the secret value is made public and the tag is a linear combination of this public value
and the MAC key then it can be checked by computing on the shares and publishing
only the verification result.

30

Chapter 4

Asymmetric two-party computation

This section introduces our initialisation of an asymmetric two-party secure computa-
tion scheme. It includes the share representation as well as protocols specific to this
representation, including precomputation.

4.1 Protection domain setup

We consider an additive secret sharing scheme in ZN where N is a Paillier modulus
and we have a Paillier keypair (pk, sk) corresponding to this modulus. The party
CP1 knows this keypair, while CP2 only knows the public key pk. In addition, CP2

must be convinced that it is a valid key. CP1 uses Encpk(x) to commit to a value x
and stores the encryption randomness as the decommitment. CP1 can also define a
key k ← ZN for message authentication together with a commitment Encpk(k), which
is also known by CP2. To distinguish a commitment from encrypting, we denote
([k])pk = Encpk(k, rk) which is a fixed value depending on the randomness rk that CP1

chose when initially encrypting it. We use the same notation to represent encryptions
that CP1 has published as commitments during the computation. These encryption
and MAC keys must be usable throughout the life of the shares computed with them.

Each secret value x is is represented by a tuple

[[x]]N = 〈∆, x1, x2, r, ([x1])pk, z1, z2〉

such that x = x1 + x2 + ∆ and z1 + z2 = k · (x1 + x2). The values ∆ and ([x1])pk =
Encpk(x1, r) are public whereas CP i has private values zi and xi. The public modifier
∆ is always 0 for random values and is used to enable fast addition of a share and
public constant. Value r is kept by CP1 to open the commitment to ([x1])pk of share
[[x]]N . This randomness also enables us to write protocols so that actually only CP2

computes ([x1])pk and CP1 recomputes the encryption if needed. This is a reasonable
step because, in reality, CP1 only needs the encryption result during the zero-knowledge
proofs in the precomputation and avoiding computation on ciphertexts enables faster
online computation. We sometimes use labels as z(x)1 and ∆(x) to denote that these part
of the share representation [[x]]. For security, we need to rely on the security of MAC
as showed in Theorem 2.1.6 and security of the commitment shown by Theorem 4.1.1.

Theorem 4.1.1. The commitment scheme based on (t, ε)-IND-CPA secure cryptosys-
tem where the commitment c = Encpk(m, r) is the encryption and opening d = (m, r)

31

is the message together with the encryption randomness is (t, ε)-hiding and uncondi-
tionally binding if the public key of the cryptosystem is publicly verifiable or proved to
be valid using a zero-knowledge proof.

Proof Sketch. The perfect binding property follows from the fact that public key uniquely
fixes the secret key and, hence, it is possible to decrypt the commitment.

The hiding property follows from the definition of the IND-CPA security of a cryp-
tosystem.

Furthermore, addition is a local operation as we can just sum the additive share
elements pairwise and use the homomorphic properties of Paillier cryptosystem. In
addition, the existence of an addition protocol (Addition) also defines a subtraction
protocol (Subtraction) and a protocol for multiplying the shared value with a public
constant (Constant Multiplication). Moreover, adding a public value to the shared secret
(Constant Addition) only requires modifying the value ∆. In a way, public value v can
also be thought of as having a fixed share representation

[[v]]N = 〈∆ = v, v1 = 0, v2 = 0, r = 1, ([v1])pk = 1, z1 = 0, z2 = 0〉 .

Every time when CP2 receives a ciphertext and uses it to compute a response to
CP1, it has to verify that it is valid. For the Paillier cryptosystem, the validity means
that the ciphertext c belongs to Z∗N2 . Checking that c ∈ Z∗N2 is equivalent to checking
that gcd(c,N) = 1. However, it is actually unlikely for either party to send invalid
ciphertexts. If CP2 sends an invalid ciphertext, it means that CP2 can actually factor
N and break the security of this setup, thus, it is as likely as factoring. On the other
hand, if CP1 sends an invalid ciphertext then it deliberately leaks its secret key to CP2.

Computing parties must also be able to communicate with result parties RP i and
input parties IP i. We need to enable the computing parties to receive inputs from
input parties and to make sure that results parties can learn the correct outputs of the
protocol. Input and result parties know the Paillier public key N and have received
the commitment ([k])pk of the MAC key, thus they are in a similar role to CP2.

In the security proofs of this section, the computational security of the protocols
results from the computational security of the Paillier cryptosystem. Therefore, by
choosing suitable keys, we can make the protocols as secure as we require. How-
ever, we specially stress the probability 1

p
that a party can cheat against the MAC

(Theorem 2.1.6), as for some cases, picking securer keys may not mean that also this
probability 1

p
lessens. Therefore, it could be seen as a fixed value rather than a value

that we can make arbitrarily negligible. However, when using the Paillier cryptosystem,
increasing the modulus would also increase the value of p.

We assume the existence of secure authenticated communication channels and ex-
clude eavesdropping and modification of network messages from the security analysis.
In practice, secure network channels are achieved using standard secure channel imple-
mentations like TLS [27].

4.2 Publishing shared values

The secret value may either be made public to CP1, CP2 or RP i and we need to have
different protocols for these cases. We can use a combination of the first two to publish
the value to both computing participants at the same time (Publish-both-CP i).

32

Clearly, sending the corresponding share to other party is a similar step in all of
these protocols. However, the mechanisms for verifying the correctness of the given
share value are different.

Algorithm 6 Publishing a shared value to CP1 (Publish-CP1)
Data: Shared secret [[x]]N
Result: CP1 learns the value x
1: CP2 sends x2 and z2 to CP1

2: CP1 verifies z1 + z2 = k · (x1 + x2)
3: return CP1 outputs x1 + x2 + ∆

It is easy to see that CP1 can perform the verification in Publish-CP1 (Algorithm 6)
because CP1 knows all the plain values in the verification equation. The security of the
MAC algorithm ensures that CP2 is unlikely to pass the verification when submitting
a share or a tag not obtained from correct computations.

As the value ([x1])pk is a commitment to value x1 from CP1 then CP2 can verify
the correctness of received x1 in Publish-CP2 (Algorithm 7) by successfully opening the
commitment. The perfectly binding property of the commitment ensures that CP1 can
only pass the verification with the unique correct share and randomness pair.

Algorithm 7 Publishing a shared value to CP2 (Publish-CP2)
Data: Shared secret [[x]]N
Result: CP2 learns the value x
1: CP1 sends x1 and r to CP2

2: CP2 verifies ([x1])pk = Encpk(x1, r)
3: return CP2 outputs x1 + x2 + ∆

In the following, we give a full proof for the security of Publish-CP i protocol, later
in the thesis we give a more brief overview about the ideal world and simulator for the
security proofs.

Theorem 4.2.1. Algorithms Publish-CP1 and Publish-CP2 for publishing the value to
one computing party are correct. Publish-CP1 is computationally secure against cheating
CP2 with an additional statistical 1

p
-error probability, where p is the smaller prime

factor of N and computationally secure against cheating CP1. Protocol Publish-CP2 is
perfectly secure against a cheating CP1 and computationally secure against a cheating
CP2.

Proof sketch. For correctness, we need that x = x1 + x2 + ∆ or the protocol aborts.
The former is trivially true by the definition of the share representation and, in case
of honest participants, the verification always succeeds. In the following, we show the
security in the stand-alone setting.

We describe the ideal secure execution of this protocol using the model with a
trusted third party (TTP) who always behaves honestly. The ideal functionality of
publishing to CP i is such that the TTP notifies CPj that it is about to declassify x. On
input Continue it sends x and ∆ to CP i and on input Abort it cancels the publishing.
The real setup where the publish protocol is executed is such that the parties have
executed some protocols and received the output x and correction value ∆ and then
CPj sends the declassification values to CP i. However, the previous protocol runs are

33

secure and can be replaced by a TTP, who gives the shares of x to the computing
parties. These two execution models are illustrated on Figure 4.1 for Publish-CP1, the
case for Publish-CP2 is analogous.

REAL :

CP1

x/⊥

T T P
x,∆

CP2

Trusted Setup

x2, z2, ([x1])pk,∆x1, z1, r,∆

x̂2, ẑ2

pk, sk, ck, k pk, ck, ([k])pk
pk, ck, k

IDEAL :

CP1 T T P
x,∆

CP2

Trusted Setup

∆, Declassifying

Continue / Abortx,∆ / ⊥

pk, sk, ck, k pk, ck, ([k])pk
pk, ck, k

Figure 4.1: Ideal and real protocol execution of Publish-CP1

Therefore, for both protocols, we need to show a simulator, such that the output
distributions of the simulated adversary and the CP i of the ideal world coincide with
the outputs of the adversary and CP i in the real world.

Firstly, consider a corrupted CP2 in Publish-CP2. The corresponding simulator at
first receives x and ∆ from TTP if the ideal publishing succeeds and can easily create
suitable values x1, x2, z2, ([x1])pk = Encpk(x1, r), r, where x1 + x2 = x. The simulator
can forward these to the corrupted CP2 as two messages in the real protocol execution.
The outputs clearly coincide as the corrupted CP2 always gets the same x and honest
CP1 has seen the same ∆.

Analogously, the simulator for corrupted CP1 in Publish-CP1 is straightforward. It
receives x and ∆ from TTP and can prepare x1, x2, z2, ([x1])pk = Encpk(x1, r), r, where
x1 + x2 = x. However, it can not fix a correct z1, but it can compute Encpk(z1) =
Encpk(k)x · Encpk(−z2). Therefore, it can simulate the protocol for the equivalent of
CP1, who expects z1 in an encrypted form.

In the following, for publishing to CP i we only consider the case where the other
party CPj is corrupted. We assume that there has been a setup phase beforehand,
where all parties and the simulator learned ([k])pk and N . In addition, CP1 learned the
private key for the Paillier cryptosystem and the TTP also has k. The setup is shared
between protocol runs and is not a part of this protocol execution.

Publishing to CP1. The simulator S at first picks a MAC key kS for itself. It then
generates the share x2, z2, ([x∗1])pk to the adversary A who responds with x̂2, ẑ2. The
simulator either finishes with Abort or Continue where the output Ψ1 of CP1 will be
⊥ in the former and x in the latter case as given by the ideal world TTP. The general
game for this is specified as GA1 (x) and GA2 (x) rewrites this with the specific details of
the simulator.

The corresponding real protocol execution can be seen from GA3 (x) with the exact
details of the honest CP1 and TTP in GA4 (x). It can be seen that the games GA2 (x)

34

GA1 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆, x2, z2, c

∗ ← S(pk, ([k])pk)
x̂2, ẑ2 ← A(∆, x2, z2, c

∗)
Ψ2 ← A
b← S(x̂2, ẑ2)
if b = Continue

then Ψ1 = x
else Ψ1 = ⊥

return (Ψ1,Ψ2)

GA2 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆← T T P(pk, ck, k)
x2, z2, x

∗
1, kS ← ZN

z1 = kS · (x∗1 + x2)− z2
c∗ ← Encpk(x

∗
1)

x̂2, ẑ2 ← A(∆, x2, z2, c
∗)

Ψ2 ← A
if kS · (x∗1 + x̂2) = z1 + ẑ2

then Ψ1 = x
else Ψ1 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.1: Publishing to CP1 with simulator

and GA4 (x) are almost equivalent, except for the usage of a different key, different
commitments ([x1])pk, ([x∗1])pk and some additional computations in GA4 (x). By IND-
CPA security we know that ([x1])pk and ([x∗1])pk are computationally indistinguishable.
We know that starting A with the same randomness φ2 will always result in the same
output Ψ2.

As the simulator does not know the real key k, it may falsely accept when the real
protocol run rejects the inputs. However, according to the MAC security, the simulator
falsely accepts with probability less than 1

p
which is the same as in the real protocol

run. From the IND-CPA security of the cryptosystem we know that ([k])pk hides k,
therefore using kS instead of k is computationally indistinguishable. However, in the
ideal protocol run we know that CP1 always gets the correct output x, but due to the
possible cheating in the MAC algorithm there is a 1

p
possibility that the real protocol

run finishes with x̂. Therefore, the outputs of the ideal and real world coincide except
with probability 1

p
.

GA3 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆, x1, z1, r, x2, z2, c← T T P(x,∆, pk, ck, k)
CP1(∆, x1, z1, r)
x̂2, ẑ2 ← A(∆, x2, z2, c)
Ψ2 ← A
Ψ1 ← CP1(x̂2, ẑ2)
return (Ψ1,Ψ2)

GA4 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
x1, z1 ← ZN , r ← Z∗N
c← Encpk(x1, r)
x2 = x− x1 −∆
z2 = k · x− z1
x̂2, ẑ2 ← A(∆, x2, z2, c)
Ψ2 ← A
if k · (x1 + x̂2) = z1 + ẑ2

then Ψ1 = x
else Ψ1 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.2: Publishing to CP1 in real protocol run

Publishing to CP2. The simulator S picks the shares that CP1 should receive
and sends them to A to simulate the TTP in the real protocol execution. Then
A sends the declassification message x̂1, r̂. The simulator outputs Continue in case
Encpk(x1, r) = Encpk(x̂1, r̂) which is the same check that an honest CP2 would do to
check the commitment. The simulated protocol run can be seen in the game GA5 (x)
and the simulator specifics have been written out in GA6 (x).

35

GA5 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆, x1, z1, r ← S(pk, ([k])pk)
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
b← S(x̂1, r̂)
if b = Continue

then Ψ2 = x
else Ψ2 = ⊥

return (Ψ1,Ψ2)

GA6 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
∆← T T P(x,∆)
x1, z1 ← ZN
r ← Z∗N
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
if Encpk(x̂1, r̂) = Encpk(x1, r)

then Ψ2 = x
else Ψ2 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.3: Publishing to CP2 with simulator

An analogous game of the real protocol run with the TTP representing the previous
computations and a real honest CP2 is shown in GA7 (x). Finally, the game GA8 (x) shows
the real execution with the exact workings of TTP and CP2.

GA7 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
x1, z1, r, x2, z2, c← T T P(x,∆)
CP2(∆, x2, z2, c)
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
Ψ2 ← CP2(x̂1, r̂)
return (Ψ1,Ψ2)

GA8 (x,∆)

sk, pk, k, ck, ([k])pk ← Setup
x1, z1 ← ZN
r ← Z∗N
c← Encpk(x1, r)
x2 = x− x1 −∆
z2 = k · x− z1
x̂1, r̂ ← A(∆, x1, z1, r)
Ψ1 ← A
if Encpk(x̂1, r̂) = c

then Ψ2 = x
else Ψ2 = ⊥

return (Ψ1,Ψ2)

Security game 4.2.4: Publishing to CP2 in real protocol run

We can see that besides some additional computations, the games and outputs of
GA6 (x) and GA8 (x) coincide and the simulation is perfect. The simulator always accepts
the same cases as the real protocol run because the commitment is perfectly binding.
Therefore, the outputs of the real and ideal world coincide.

There are two special cases when result parties RP i may need to learn the com-
putation outcomes. In one scenario, the computing parties CP i are allowed to also
learn the outcome, whereas in the other case, only the output party RP i can learn the
declassification result.

It is straightforward to satisfy the first case. The computing parties just run the
declassification protocol Publish-both-CP i and they both forward the declassified result
to RP i. The result party only has to verify that both computing parties sent the same
declassified result. Differently from either Publish-CP i, in Publish-CP&RP i, the result
party RP i can not easily check which of the computing parties has tried to cheat, if
the verification does not succeed.

36

Theorem 4.2.2. Publishing values to both computing parties and to result parties
(Publish-CP&RP i) is correct and as secure against corrupted CPj as Publish-CP i and
perfectly secure against a corrupted RP i.

Proof sketch. These properties result from the correctness and security of publishing to
either of the computing parties in Publish-CP i. The fact that the result party verifies
that both computing parties sent the same same result also detects cheating after
finishing the predefined publishing protocols.

It is trivial to simulate the protocol run for a corrupted RP i as the simulator can
just forward the value x from the TTP to RP i.

The second case requires more work on the side of the result party as given in
Publish-RP i (Algorithm 8). The idea is that the result party RP i can verify the com-
mitment similarly to CP2, but it can not verify the MAC tag as it does not know
the secret key k. However, RP i can verify that it has the right share using the proof
of correct share representation similarly to the Singles protocol. The main drawback
of this protocol is that the corresponding zero-knowledge proof protocol, that we in-
stantiate with a version of CdsZkMul protocol (CdsZKTags), can be quite expensive.
However, in real life we would like to avoid heavy computational needs on the side
of the input and result parties in order to make this usable in a variety of different
settings, including, for example, those where the input and result parties are using
mobile devices.

Algorithm 8 Publishing a shared value to RP i (Publish-RP i)
Data: Shared secret [[x]]N
Result: Result party RP i learns the value x
1: CP1 sends ∆, x1 and r to RP i
2: CP2 sends ∆, x2, z2, and ([x1])pk to RP i
3: RP i verifies that CP1 and CP2 sent the same ∆
4: RP i verifies that ([x1])pk = Encpk(x1, r)
5: CP1 proves z1 + z2 = k · (x1 + x2) to RP i using CdsZKTags
6: return RP i computes x = x1 + x2 + ∆

Intuitively, the protocol is secure if neither party can make RP i accept a faulty x.

Theorem 4.2.3. Algorithm Publish-RP i for declassifying shared secrets to result par-
ties is correct. Protocol Publish-RP i is computationally secure against corrupted CP2

with possible 1
p
error probability, where p is the smaller prime factor of N . Protocol

Publish-RP i is perfectly secure against a corrupted CP1. It is also computationally
secure against malicious RP i, assuming a simulatable CdsZKTags protocol.

Proof sketch. The correctness means that in case of honest participants, RP i receives
the result x. It follows trivially from the share description and correctness of the used
ZK proof.

For security in the stand-alone setting, we are interested in the cases where either
of the parties is corrupted alone. We show the simulator construction for these cases.
The ideal model and real world execution scenarios are analogous to those of the
Publish-CP i, except that RP i is supposed to learn the final outcome.

The simulation in both CPj cases begins by using the corresponding simulator from
Publish-CP i where CPj is corrupted. It at first acts on behalf of the previous protocols

37

and gives the shares of a secret x∗ to the corrupted CPj. The CPj has to release
the same values as in Publish-CP i with the additional values ∆ on both sides and
([x1])pk from CP2. The simulator checks the correctness of these by either opening the
commitment ([x1])pk or verifying the tags with respect to its own key as in Publish-CP i.

In addition, the simulator of corrupted CP2 verifies the correctness of ([x1])pk as
an honest RP i would by checking the opening ([x1])pk = Encpk(x1, r). Finally, the
simulator also has to check the validity of ∆, which it can do by storing the same ∆
that the simulator learned from the TTP and forwarded to the corrupted CPj.

For the CdsZKTags part of the corrupted CP1, the simulator can define x2 = −x1
and z2 = −z1. This way the proof has the statement 0 = k · 0, which is correct
independently of the modulus and the key, and the simulator can behave as an honest
RP i who is the verifier in this proof. Hence, we know that CdsZKTags has the correct
inputs and that the proof does not leak z2 and x2, which mean that this special case of
the proof is indistinguishable from the real case for the corrupted CP1. The simulations
of corrupted computing parties give the same output distribution as the real protocol
run, as the corrupted party has the same view and the result party learns either x or
⊥, depending on the computing parties correctly participating in the protocol.

For corrupted RP i, the simulator receives x and ∆ from the TTP and can fix x1,
x2, z2, r, ([x1])pk that it forwards to the result party. In addition, the simulator can
compute Encpk(z1) = Encpk(k)x · Encpk(−z2) for the CdsZKTags. Hence, it can act as a
simulator of the proof because it has all the correct queries ([x1])pk, ([k])pk and ([z1])pk.
The output distributions coincide as the corrupted RP i has the same view and the
output of the computing parties depends on the final decision of RP i.

An interesting aspect is that cheating in CdsZKTags can not help CP1 to make RP i
accept a wrong x. According to our assumptions, the CP i are not allowed to collude
and this proof can only make RPi to accept a faulty value from CP2. However, it can
easily make the publishing protocol fail.

On the downside, as in Publish-CP&RP i the Publish-RP i also doest not allow RP i
to easily verify which of the parties CP i tried to cheat if any of the checks fails. Theo-
retically, it would be possible to achieve by having both parties prove the correctness
of all their previous computations.

4.3 Random share generation

The random share protocol (Singles) must generate a valid share representation of
[[x]]N = 〈∆, x1, x2, r, ([x1])pk, z1, z2〉 for a random x where the participants do not know
the value of x. This is a necessary protocol for sharing the inputs and producing random
multiplicative triples. Both parties choose a random additive share and collaborate to
fix the MAC tag as described in Algorithm 9. In addition, this gives a uniformly
distributed random value [[x]]N as a result as the sum of two uniformly distributed
values is uniform. Furthermore, the value is uniformly distributed even if only one of
the participants generated its share correctly.

Our initialisation of the proof of z1 + z2 = k · (x1 + x2) follows CdsZkMul (Algo-
rithm 1), except for the initial messages, because a part of the query can be computed
from the share by the verifier CP2. However, this actually means that the security of
this protocol does not follow easily from the CdsZkMul. The best possibility would
be to make CP2 to prove that q3 is computed correctly. This way we could ensure the

38

Algorithm 9 Generating a random share (Singles)
Data: No inputs
Result: Shares [[x]]N of random value x
1: Round: 1
2: CP i sets ∆ = 0
3: CP1 generates x1 ← ZN
4: CP1 generates r ← Z∗N
5: CP1 sends ([x1])pk = Encpk(x1, r) to CP2

6: CP2 generates x2, z2 ← ZN
7: CP2 computes c = ([k])x2pk · Encpk(−z2)
8: CP2 sends c to CP1

9: Round: 2
10: CP1 computes z1 = k · x1 + Decsk(c)
11: CP2 verifies that ([x1])pk is a valid ciphertext
12: Verification:
13: CP1 proves the correctness of MAC tags z1 + z2 = k · (x1 + x2) to CP2

14: return [[x]]N

simulatability and, hence, zero-knowledge property of this protocol, but would lose a
lot of efficiency for the additional zero-knowledge proof. For now, we just assume that
CP1 verifies that q3 contains the right plaintext, which leaves a small hole that CP2

might use CP1 as kind of a decryption oracle, to check if it formed the q3 correctly
to contain the multiplication of the plaintexts from q1 and q2. We keep this protocol
in hopes that we can define a simulatable protocol with the same form queries. In
the future we should specify a simulatable version of CdsZKTags. A simple way to add
some additional verification would be that occasionally the parties decide to discard the
random value and open all values used for computing this or proving the correctness.

The idea of CdsZKTags is to ensure to CP2 that CP1 has all the values to accept
this share during the opening phase in Publish-CP1. More precisely, after this proof,
the CP2 knows that the share is correctly formed and that, if CP2 uses it correctly in
the following computations, then CP1 should be able to open all the following results.
Thus, CP2 can avoid malicious CP1 framing CP2 it as a malicious party. An honest
CP1 already has this property because the commitment ([x1])pk is public. This property
is important as the Singles protocol is the basis for input sharing protocol Classify-CP i
which is the first step of all computations. Thus, verifying the correctness of [[x]] in
Singles can be a basis for showing the correctness of all outputs.

Theorem 4.3.1. Algorithm Singles for generating random shares is correct.

Proof. The correctness of ([x1])pk = Encpk(x1, r) is trivial in case of honest CP1. It is
also trivial that x1 + x2 + ∆ = x as the value of x is not predefined. For correctness
we need to show that z1 + z2 = k · (x1 + x2) so that the verification succeeds:

z = z1 + z2 = k · x1 + Decsk(c) + z2 = k · x1 + Decsk(([k])x2pk · ([−z2])pk) + z2

= k · x1 + k · x2 − z2 + z2 = k · x1 + k · x2 = k · (x1 + x2) .

The basic ideal functionality of the Singles protocol would be such that both parties
notify the TTP that they are interested in sharing a random value. Then, the TTP

39

Algorithm 10 CdsZkMul for correctness of MAC tags (CdsZKTags)
Setup: Commitment parameters ck,

Paillier keypair (pk, sk) from the protection domain setup
Data: Shared secret [[w]]N
Result: True for successful proof of z1,w + z2,w = k(w1 + w2), False in case of any
failure
1: Round: 1
2: CP1 computes and sends ([z

(w)
1])pk = Encpk(z

(w)
1) to CP2

3: Round: 2
4: CP2 checks that ([z

(w)
1])pk is a valid ciphertext

5: CP i sets q1 = ([w1])pk, q2 = ([k])pk, q3 = ([z
(w)
1])pk · (([k])w2

pk · Encpk(−z(w)2))−1

6: CP2 generates e1, e2 ←M, r1, r2 ← R, r ← R1, s← S
7: CP2 computes and sends a1 = qe11 · Encpk(e2, r1) to CP1

8: CP2 computes and sends a2 = qe13 · qe22 · Encpk(Encode(s, r), r2) to CP1

9: Round: 3
10: CP1 computes s′ = Decode(Decsk(a2)− Decsk(a1) · k)
11: CP1 computes (c, d) = Comck(s

′) and sends c to CP2

12: Round: 4
13: CP2 sends (s, e1, e2, r1, r2, r, q3) to CP1

14: Round: 5
15: CP1 verifies that Decsk(q3) = k · w1

16: CP1: if a1 6= qe11 · Encpk(e2, r1) return False
17: CP1: if a2 6= qe13 · qe22 · Encpk(Encode(s, r), r2) return False
18: CP1 sends d to CP2

19: Round: 6
20: CP2: if Openck(c, d) 6= s return False

21: return True

would generate the value x and give the share representation back to the computing
parties. However, it is straightforward to see that we can not achieve this, as in our
protocol both parties can choose their own xi. We would like to consider a slightly
different case where the TTP takes xi as inputs from CP i. However, in this case we
can also only fully simulate the case of corrupted CP1 that sends Encpk(x1) in the
real protocol where the simulator could learn x1. However, for corrupted CP2 the only
message c that it sends is independent of the input x2 and, therefore, the corresponding
simulator could not learn x2. For now we show the simulatability of the communication
assuming that xi are private inputs of the protocol. For achieving fully simulatable
protocol we should include the proof that CP2 knows x2 and z2 that it uses to compute
the massage c.

Theorem 4.3.2. The communication in algorithm Singles for generating random shares
is computationally simulatable and the final shared value x is computationally uniformly
distributed in ZN given a computationally IND-CPA secure cryptosystem.

Proof sketch. We show that there exists a non-rewinding simulator for the steps before
the verification phase that manages to compute all the values needed for the verification.
Cheating can be discovered during the verification, if the checks pass then the sharing
is valid. We assume that xi are actually the inputs of this protocol that the honest

40

party would choose uniformly.
If CP1 is corrupted, then the simulator has to simulate the reply c from CP2. By

definition c = Encpk(k)x2 · Encpk(−z2) is independent of x2, therefore the simulator can
simulate this efficiently by picking random values x∗2 and z∗2 and computing c according
to the definition. If the adversary A sends ([x1])pk that is not a valid ciphertext, then
the simulator aborts, otherwise it finished successfully. In the end, the simulation has
all the values x∗2, z∗2 , Encpk(x1) and Encpk(k) that it needs to continue with the zero-
knowledge proof as an honest verifier. In can do continue with the proof as it has all
the values for the queries and because the proof does not leak information about x∗2
and z∗2 , meaning that the proof with these value in indistinguishable from the one with
real x2 and z2 for corrupted CP1.

If CP2 is corrupted, then the simulator must simulate the message Encpk(x1). It
can do this efficiently by publishing an encryption of a random value x∗1 because by the
IND-CPA security of the cryptosystem, this in computationally indistinguishable from
the encryption of the real input. The simulator sends Abort to the ideal functionality,
if the message c from the adversary is not a valid ciphertext. Finally, the simulator
can compute Encpk(z1) = Encpk(k)x

∗
1 · c for the zero-knowledge proof as its initial input

to CdsZKTags. It could continue as a simulator of the proof if the simulator is defined.
Clearly, the result x is uniformly random, if at least one of the computing parties

is honest. An honest party chooses its share uniformly as xi ← ZN and we know that
in a ring the sum x + r is uniformly distributed if x is uniform, independently of the
distribution of r. However, we only achieve computationally uniform because CP2 also
knows ([x1])pk and might choose x2 based on that. However, for a computationally
IND-CPA secure cryptosystem, the probability of x2 depending on x1 is bounded by
the computational indistinguishability.

4.4 Beaver triples generation

Beaver triples [4] are multiplicative triples, so we need [[w]]N = [[xy]]N from [[x]]N and
[[y]]N , where x and y are random values. We can easily find random shares [[x]]N and
[[y]]N with Singles, so the main task of Triples protocol in Algorithm 11 is to correctly
obtain [[w]]N . Random multiplicative triples are necessary to perform multiplication of
the shares (Multiplication).

Verifying the correctness of CP2 requires using another unverified triple and thus,
it can not be used after all runs of this protocol. However, in practice the protocols are
commonly run on vectorised inputs and we could use half of the triples from generation
to verify the other half.

Theorem 4.4.1. Algorithm Triples for generating random triples is correct.

Proof. The correctness of the commitment ([w1])pk is trivial for an honest CP1. For
correctness, we need to show that if both parties are following the protocol, then

41

Algorithm 11 Generating a random multiplicative triple (Triples)
Data: No inputs
Result: [[x]]N , [[y]]N , [[w]]N , where w = x · y
1: CP i generate [[x]]N and [[y]]N with Singles
2: Round: 1
3: CP i sets ∆(w) = 0
4: CP2 generates r, z(w)2 ← ZN
5: CP2 computes w2 = x2 · y2 − r
6: CP2 sends v = ([x1])

y2
pk · ([y1])x2pk · Encpk(r) to CP1

7: CP2 sends t = ([k])w2
pk · Encpk(−z(w)2) to CP1

8: Round: 2
9: CP1 computes w1 = x1 · y1 + Decsk(v)

10: CP1 computes z(w)1 = k · w1 + Decsk(t)
11: CP1 generates r(w) ← Z∗N
12: CP1 sends ([w1])pk = Encpk(w1, r

(w)) to CP2

13: Verification: Verify that CP1 is correct
14: CP2 verifies that ([w1])pk is a valid ciphertext
15: CP1 proves w = x · y to CP2 using CdsZKMult
16: CP1 proves z(w)1 + z

(w)
2 = k · (w1 + w2) to CP2 using CdsZKTags

17: Verification: Verify that CP2 is correct
18: CP collaboratively run Triple Verification to learn h
19: CP1: if h 6= 0 return ⊥
20: return [[x]]N , [[y]]N , [[w]]N

w = x · y and z(w) = k · (w1 + w2). Is is straightforward, as

w = w1 + w2 + ∆(w) = x1 · y1 + Decsk(v) + x2 · y2 − r + 0

= x1 · y1 + x1 · y2 + y1 · x2 + r + x2 · y2 − r
= x1 · (y1 + y2) + x2 · (y1 + y2) = (x1 + x2 + 0) · (y1 + y2 + 0) = x · y

z(w) = z
(w)
1 + z

(w)
2 = k · w1 + Decsk(t) + z

(w)
2 = k · w1 + k · w2 − z(w)2 + z

(w)
2

= k · (w1 + w2) .

Analogously to the Singles protocol, the basic ideal functionality should be such that
the parties notify TTP that they want a set of triples and the TTP then gives them
the share. However, in the Singles protocol we are actually more likely to achieve the
case where parties can pick their own inputs xi and the TTP gives the other elements
in the share representation. In the triples protocol the party CP2 can also actually
pick w2 for itself, therefore we also consider this as an input to the triple generation in
the ideal world. Hence, the ideal functionality of the triple generation protocol is such
that the TTP receives x1, x2, y1, y2, w2 and computes w1 such that the multiplicative
relation holds, as well as fixes the tags and commitments. However, for now we can
only show the simulatability of the communication of this protocol.

Theorem 4.4.2. The communication of the Triples protocol for generating random
multiplicative triples is computationally simulatable.

42

Proof sketch. We show that the communication to either side is simulatable. We except
the verification as it is straightforward to see that Triple Verification is simulatable and
we have specially addressed the problems with CdsZKTags and CdsZKMult. However,
we know that if the verification succeeds then the triple has multiplicative relation and
that the shares of the triple elements are correctly formed. We assume that the shares
of the singles and w2 are the inputs to this protocol.

The simulator can use the simulation for protocol Singles from Theorem 4.3.2 for
generating random x and y. In case these protocols should abort, the simulator also
aborts. Otherwise, it continues simulation.

The simulation for a malicious CP1 behaves exactly as an honest CP2 would, except
that it has to pick w∗2 at random. The simulator can simulate v and t efficiently by
picking a random w∗2 and using the values x∗2, y∗2 that it picked for the simulation of the
Singles. It succeeds unless ([w1])pk is an invalid ciphertext. This simulation is perfect as
the sent messages are independent of the input. By definition it has honestly computed
the values needed in the zero-knowledge proofs and can behave as an honest verifier in
the proof, because the proof does not leak its private input w∗2.

We actually assume that the simulator for corrupted CP2 behaves slightly differently
from the previous simulators. Namely, it also modifies the trusted setup, by defining
a simulator of the setup, that picks kS as a MAC key of the simulator and gives
([kS])pk instead of ([k])pk to CP2. Due to the IND-CPA security, this is computationally
indistinguishable from the real setup. However, the limitation is that this simulated
setup has to occur before any protocol runs, because the setup is shared between
protocols. Therefore, all simulated runs for a corrupted CP2 must use the same kS if
they also contain the Triples protocol.

The simulator for a malicious CP2 can compute the only message ([w1])pk that it
has to simulate as c = Encpk(x

∗
1 · y∗1) · v. It aborts, if v or t are invalid ciphertexts.

This simulation is computationally indistinguishable from the real protocol run, given
a computationally IND-CPA secure cryptosystem. This holds because the maximal
advantage that adversary A might have for distinguishing S from honest CP1 occurs
if it actually knows w1 and can distinguish c from ([w1])pk. Finally, the simulator
has ([w2])pk and ([kS])pk as the queries to the zero-knowledge proof. It can define also
the message ([z1])pk = ([w1])

kS
pk · t. Therefore it has all the correct values for inputs of

CdsZKTags. In addition, the simulator has all the values ([x∗1])pk, ([y∗1])pk and ([w1])pk ·v−1
that it needs as queries in CdsZKMult. Hence, it can run as a simulator for the proofs
if the simulator is defined.

The verification in Triples proves the correctness of CP2 to CP1 and vice versa. In
general, we need that if CP i has behaved correctly in the triple generation protocol,
then this verification convinces CP i that the other party CPj also behaved correctly.

Our initialisation of the correctness proof of CP1 uses the special cases of CdsZk-
Mul (Algorithm 1) and fails, if the multiplicative relation does not hold (CdsZKMult)
or the MAC tag is not correctly formed (CdsZKTags). Their main difference from Cd-
sZkMul is that the prover CP1 does not send the full initial query, but the query
messages are fixed by the verifier CP2. Previously, we stressed that CdsZKTags can
not be simulated because we need a zero-knowledge proof for the correctness of q3 for
that. The same holds for CdsZKMult, because, also in there, CP1 has to be convinced
that q3 is computed correctly. However, for now we do not specify this proof and it
is up to the follow-up work to define a simulatable initialisation for CdsZKMult and
CdsZKTags. As for the CdsZKTags, we expect the simulatable version of CdsZKMult to

43

also have the same input queries as the current version and use this assumption as a
basis for our security proofs.

In addition, the verification step should ensure to CP2 that at this stage the sharing
[[w]] is correct and CP1 can not frame it later. Analogously to the Singles protocol, anti-
framing property holds for CP1 because of the commitment it made to w1.

Proving the correctness of CP2 uses Triple Verification and needs to pick another
unverified triple [[a]]N , [[b]]N , [[c]]N . If any of the two triples in the protocol are faulty
then the correctness proof of CP2 fails, because h 6= 0. Actually, by the original
definition, Triple Verification is used to prove the multiplicative relation to both CP i.
However, here we only use this to prove the correctness of CP2 and similar proof about
CP1 is done using CdsZKMult. This is due to the fact that using Triple Verification
to also prove the multiplicative relation to CP2 could avoid CdsZKMult, but would
introduce additional CdsZKTags. Currently CP2 does not have any knowledge about
the correctness of the verification triple [[a]]N , [[b]]N , [[c]]N and, therefore, we should use
CdsZKTags to also prove that the tag of the third element of the verification triple
is correct, meaning z(c)1 + z

(c)
2 = k · (c1 + c2). The latter is needed to prove to CP2

that the commitments used to open h in Triple Verification were computed correctly.
However, CdsZKMult can be implemented slightly more efficiently than CdsZKTags
and, therefore, our current specification is reasonable if using these proofs. A different
approach should be considered if a more efficient analogue of CdsZKTags is used.

Algorithm 12 CdsZkMul for proving the multiplicative relation of the shares
(CdsZKMult)
Setup: Commitment parameters ck,

Paillier keypair (pk, sk) from the protection domain setup
Data: Shares [[x]]N , [[y]]N , [[w]]N
Result: True for successful proof of x · y = w, False in case of any failure
1: Round: 1
2: CP i sets q1 = ([x1])pk, q2 = ([y1])pk
3: CP2 sets q3 = ([w1])pk · Encpk(w2) · (([x1])y2pk · ([y1])x2pk · Encpk(x2 · y2))−1
4: CP2 generates e1, e2 ←M, r1, r2 ← R, r ← R1, s← S
5: CP2 computes and sends a1 = qe11 · Encpk(e2, r1) to CP1

6: CP2 computes and sends a2 = qe13 · qe22 · Encpk(Encode(s, r), r2) to CP1

7: Round: 2
8: CP1 computes s′ = Decode(Decsk(a2)− Decsk(a1) · y1)
9: CP1 computes (c, d) = Comck(s

′) and sends c to CP2

10: Round: 3
11: CP2 sends (s, e1, e2, r1, r2, r, q3) to CP1

12: Round: 4
13: CP1 verifies that Decsk(q3) = x1 · y1
14: CP1: if a1 6= qe11 · Encpk(e2, r1) return False
15: CP1: if a2 6= qe13 · qe22 · Encpk(Encode(s, r), r2) return False
16: CP1 sends d to CP2

17: Round: 5
18: CP2: if Openck(c, d) 6= s return False

19: return True

44

Theorem 4.4.3. The verification steps in triple generation algorithm Triples are cor-
rect.

Proof. The verification is correct, if it accepts correctly formed triples. We only need
to show the correctness of the computations by CP2 as the correctness of CP1 is verified
by two versions of the correct and universally composable CdsZkMul and the validity
of the ciphertext.

Hence, we need to show that for a correct triple [[x]]N , [[y]]N , [[z]]N and a verification
triple [[a]]N , [[b]]N , [[c]]N we get h = 0 from Triple Verification (Algorithm 5). We assume
the correctness of necessary subprotocols of Triple Verification: Constant Multiplication,
Subtraction, Constant Addition and Publish. By definition, we have

h = s · [[w]]N − [[c]]N − d · [[a]]N − g · [[b]]N − gd
= s · x · y − a · b− (y − b) · a− (sx− a) · b− (sx− a) · (y − b)
= sxy − ab− ya+ ab− sxb+ ab− sxy + sxb+ ay − ab = 0 .

Therefore, in the case of a correctly formed triple the verification succeeds.

Theorem 4.4.4. The verification steps in triple generation algorithm Triples are sta-
tistically 1

p
-secure against a cheating CP2 and as secure against a cheating CP1 as the

proofs CdsZKTags and CdsZKMult, where N = pq, p, q are primes and p < q.

Proof sketch. The security of CP2 depends on the security of CdsZKTags and CdsZKMult,
that we should improve in the future to make them simulatable. However, the sound-
ness property from CdsZkMul still holds, therefore, a successful proof indicates that
CP1 has computed correctly.

Hence, we need to show the security of verification of the correctness of CP2. The
verification algorithm for multiplicative relation is information-theoretically secure for
finite fields [25]. According to CRT, breaking the security of the verification in case of
modulus N = pq also means breaking it separately modulo primes p and q, therefore
the verification phase is 1

p
secure for CP1 where p < q.

4.5 Receiving inputs from the input party

The previously described Publish-RP i (Algorithm 8) can be combined with the SPDZ
classification protocol Classify-IP i (Algorithm 4) in a straightforward manner to obtain
a protocol for sharing the input of any third party. However, this version of the
algorithm requires heavy computation and communication from the input party, who
has to take part in a zero-knowledge proof. This is not efficient in many practical
settings where we could have a variety of input devices, for example, smartphones and
tablets.

There is a different protocol Classify-IP?i in Algoritm 13 that uses ideas from the
Singles protocol. In a way, the input party runs the single generation by itself and
sends the corresponding share parts to the computing parties. Of course, instead of
making a random share, it creates a share for its secret. The only addition is that the
computing parties have to notify the input party if they accept this share. This means
that the input party should wait and check that its input was accepted before it can
know that it has correctly inserted the data.

45

Algorithm 13 Receiving an input from (non-computing) IP i (Classify-IP?i)
Data: Input party IP i has a secret x
Result: Computing parties CP i have a valid share representation [[x]]N

1: Round: 1
2: CP i fixes ∆ = 0
3: IP i generates x1, z2 ← ZN , r, t← Z∗N
4: IP i computes x2 = x− x1
5: IP i computes c = ([k])x2pk · Encpk(−z2, t)
6: IP i sends x1, c, r to CP1

7: IP i sends x2, z2, ([x1])pk = Encpk(x1, r), t to CP2

8: Round: 2
9: CP1 computes z1 = k · x1 + Decsk(c)

10: CP2 computes c∗ = ([k])x2pk · Encpk(−z2, t)
11: CP2 sends ([x1])pk, c

∗ to CP1

12: Verification:
13: CP i verifies that ([x1])pk is a valid ciphertext
14: CP1 verifies that c∗ = c
15: CP1 verifies that it received ([x1])pk = Encpk(x1, r)
16: CP1 proves z1 + z2 = k · (x1 + x2) to CP2 using CdsZKTags
17: CP1 and CP2 notify IP i about the verification outcome

Theorem 4.5.1. Protocol Classify-IP?i in Algorithm 13 for collecting inputs from input
parties is correct.

Proof sketch. The correctness of additive shares is clear by the definition as x = x1 +
x2 + ∆ = x1 +x−x1 + 0 = x. If CP1 accepts the commitment then it is valid. Finally,
we need that the MAC tag is correct:

z = z1 + z2 = k · x1 + k · x2 − z2 + z2 = k · (x1 + x2) ,

thus, in case of honest participants the zero-knowledge proof succeeds and the share is
correctly formed.

There are three potential security risks in this protocol: (1) CP i might modify the
share, (2) CP2 might modify the share, and (3) IP i might try to give inconsistent share
representation. However, IP i can always affect the outcome by inputting a maliciously
chosen value x instead of the valid input value. Still, by security definition regardless
of the choice of x it can only input a valid representation [[x]]. This version of the
protocol is only usable if IP i is not one of the computing parties and does not collude
with them. The former is not a restriction as we have a simpler protocol for CP i to
classify inputs, but the latter may be too restrictive for practical applications.

Theorem 4.5.2. Protocol Classify-IP?i for collecting inputs from input parties is per-
fectly secure against corrupted CP1 and IP i and computationally secure against cor-
rupted CP2 with additional 1

p
error probability, assuming a computationally IND-CPA

secure cryptosystem and modulus N = pq, where p is the smaller of its prime factors.

Proof sketch. The principal ideal functionality of this protocol would be such that
the IP i gives x to the TTP and TTP gives shares of x to the computing parties.
However, we can not achieve this as the distribution of the shares of x is controlled

46

by IP i. Hence, we define an ideal model where IP i gives x, x1, z2 and r to TTP, who
creates the remaining z1 and forwards these to the computing parties. After that, the
computing parties notify the TTP about accepting or rejecting these shares and the
TTP forwards the outcome as Success or Failure to all parties.

Corrupted CP1. The simulator at first receives x1, z1, r from the TTP. It then
computes c = Encpk(z1) · ([k])−x1pk = Encpk(z1 − k · x1) and sends x1, c and r to the
corrupted CP1. By definition CP1 gets the output z1 as the one given by the TTP.
In the following, the simulator simulates the messages from CP2 as Encpk(x1, r) and
c∗ = c. For the zero-knowledge proof, the simulator can define x∗2 = −x1 and z∗2 = −z1
to behave as an honest verifier for the case 0 = k · 0. This can be done as the proof
does not leak x∗2 and z∗2 and, therefore, the corrupted CP1 sees the same view that it
would in the real world. Finally, the simulator receives Continue or Abort from the
corrupted CP1 and forwards this to the TTP. The outputs of the real and simulated
ideal world coincide as in case the sharing succeeds both computing parties have the
same output shares in both worlds and in case the sharing does not succeed they have
both seen the same shares in these two versions of the protocol.

Corrupted CP2. In case of the simulation for corrupted CP2, we assume that the
shared setup step was also simulated, so that the simulator has kS , whereas the CP2

has ([kS])pk. The simulator receives x2, z2 and ([x1])pk from the TTP. It has to specify
the value t, that it can do by generating it as honest IP i would. It then forwards x2, z2,
([x1])pk and t to CP2. On messages c∗ and ([x1])pk from the corrupted CP2, the simulator
verifies that the ([x1])pk is the same as sent to CP2 and that c∗ = ([kS])x2pk · Encpk−z2, t.
If these are incorrect, then the simulator outputs Failure, otherwise it continues the
simulation. For the zero-knowledge proof, the simulator has ([x1])pk and ([kS])pk meaning
that it can also compute ([z1])pk = (([x1])pk ·Encpk(x1))

kS ·Encpk(−z2) = Encpk(x·kS−z2).
Therefore the simulator has all the correct inputs for CdsZKTags and it could behave
as a simulator for the proof. The outputs coincide as for a corrupted CP1.

Corrupted IP i. The simulator for a corrupted IP i at first receives x1, c, r, x2,
z2, ([x1])pk and t from the corrupted IP i. In then verifies that ([x1])pk = Encpk(x1, r)
and c = ([k])x2pk · Encpk(−z2, t). If these hold, then it sends x, x1, z2 and r to the TTP
and forwards the Success or Failure to the corrupted IP i as messages from CP i. If
the initial check does not verify, then it sends Failure to the IP i and notifies the TTP
that it does not participate in the protocol, which means that the protocol is a failure
for all parties. The output distributions coincide because the simulator performs the
same checks as the real functionality would to ensure the correctness of the IP i.

Actually, Classify-IP?i is also secure if CP1 and IP i are corrupted by the same
adversary, but insecure if CP2 and IP i are corrupted together. In the latter case, the
adversary could use one run of the protocol to check if some ciphertext that it sends
as c is an encryption of some fixed message m. In practice, this protocol can be fairly
securely used if CP1 only publishes encryptions of uniformly distributed elements in
ZN and the number of expected inputs is small, or if the input party is authenticated
and one party should input a limited number of elements. In this case, the probability
of an input party guessing the correct m within the expected number of input attempts
can be made arbitrarily small. For full security, we could define a zero-knowledge proof
where IP i or CP2 proves to CP1 that c or c∗ is computed correctly. It would be more
reasonable to define this for c∗ because we are more likely to have miners with bigger
computing capability. Besides, we can always use Classify-IP i with Publish-RP i, if
we expect IP i to have enough computational power to efficiently participate in an

47

analogous proof.
We have the anti-framing property, as after this protocol, all parties know that

the share was correctly formed. Intuitively, as in the Singles protocol, framing CP2

is infeasible because of the zero-knowledge proof, which shows that in this step CP1

could correctly open this share. Analogously, framing CP1 is impossible because it can
convince itself that the commitment ([x1])pk is correct. However, if any of the checks
fail during the protocol, then the computing parties can not easily verify whether the
input party or the other computing party is acting maliciously.

4.6 Efficiency of the protocols

This section analyses the theoretical cost of the proposed protocols. We have two
important criteria: (1) computational cost and (2) communication cost. These allow
to compare these protocols as well as to estimate the cost of future protocols that are
built from these existing blocks. As an overview, Figure 4.2 illustrates the current
state of existing primitive protocols and protocols combined from them. The protocol
Classify-IP i has actually two versions, one that is derivated from publishing algorithm
Publish-RP i (which is equal to Publish IP i), and the second, that is a standalone
protocol Classify-IP?i .

Addition

Subtraction

Constant Multiplication

Constant Addition

Singles Triples Multiplication

Publish-RP i

Publish-CP1

Publish-CP2

Publish-both-CP i

Classify-IP?i

Classify-CP1

Classify-CP2

Classify-IP i

Publish-CP&RP i

Figure 4.2: The hierarchy of protocols for the asymmetric setup

For a shorthand we define Add for Addition, Subtract for Subtraction, ConstMult for
Constant Multiplication and Multiply for Multiplication.

48

4.6.1 Computational cost

This section analyses the computational requirements if the protocols are applied to
one element, the extension to vectors in most cases just requires that amount of compu-
tation for each element. We focus on the multiplication and exponentiation operations
as addition and subtraction are always considerably more efficient.

For a |N |-bit exponent we assume that we need to perform approximately |N |
multiplications, as using square-and-multiply it can definitely be done with 2|N |. Fur-
thermore, Paillier encryption and decryption have approximately the cost of one expo-
nentiation, where exponent has length |N |, but multiplied elements have length 2 · |N |.
Finally, modular inversion has the cost of a few multiplications, denoted by i in the
following. For simplicity, we also assume that computing gcd for Paillier ciphertext
validity check also has cost i as both of these can be done by Euclidean algorithm.
Hence, we can estimate the computational complexity as the number of multiplication
on either values of ZN or Paillier ciphertexts in ZN2 of length 2|N |. Because of this
we divide the analysis to two parts and give separate results results for both of these
lengths. In total, the following should be taken as a rough estimate for comparing
these protocols and the total cost is the sum of both length with more relative cost for
length 2|N |.

Party Length Publish Add Subtract ConstMult Multiply

CP1
|N | 1 1 i+ 1 |N |+ 3 2|N |+ 2i+ 13
2|N | 0 0 0 0 0

CP2
|N | 0 0 0 3 7
2|N | |N | 1 i+ 1 |N | 4|N |+ 2i+ 4

Table 4.1: The computational cost of computation protocols as a number of multipli-
cations

Table 4.1 summarises the multiplicative cost of our basic computation protocols.
The length denotes the bitlength of the multiplication operands and other fields stand
for separate protocols. For Publish-CP i protocol, we consider the work that either
party CP i has to do in order to verify the result if the value is opened to it. We omit
Classify-CP i as it has exactly the same multiplicative cost as Publish-CP i. The results
are obtained by counting the corresponding operations in the protocols.

Party Length Singles Triples TripleVerif

CP1
|N | 1 2 4|N |+ 5i+ 22
2|N | 2|N | 3|N | 0

CP2
|N | 0 1 13
2|N | 2|N |+ i+ 1 5|N |+ i+ 3 8|N |+ 5i+ 5

Table 4.2: The computational cost of precomputation as a number of multiplications

The cost of precomputation can be seen from Table 4.2. The costs of zero-knowledge
proofs have been omitted from the precomputation protocols and can be found in
Table 4.3. We omit the cost of our commitment scheme from the analysis of the zero-
knowledge protocols as we use a lot smaller field for elliptic curves than in our general
computations. Likewise, the cost of Singles values has been omitted from the Triples
protocol, which here only illustrates the cost of obtaining one unverified triple as given
in Algorithm 11. Triple Verification is an exceptional protocol as its amortized cost per
vector element is slightly less than given in the table because we can pick one random
element to verify a set of triples.

49

Party Length CdsZKTags CdsZKMult

Prover |N | 2 2
2|N | 9|N |+ 3 8|N |+ 3

Verifier |N | 0 1
2|N | 7|N |+ i+ 5 9|N |+ i+ 7

Table 4.3: The computational cost of zero-knowledge proofs as a number of multipli-
cations

Table tbl:zk-comp-requirements illustrates the computational requirements of the
zero-knowledge proofs. It can be seen that CdsZKMult is more efficient on the side
of CP1 and actually it can easily be implemented more efficiently also for CP2. The
main complexity on the side of CP2 results from the computation of the third query
q3, which actually does several computation already performed in Triples and we could
reduce 9|N |+ i+7 to approximately 5|N |+ i+4. Therefore, in our context, CdsZKMult
is more efficient than CdsZKTags when used to verify the triple generation procedure.

Table 4.4 summarises the cost of protocols used to communicate with input and
result parties. Similarly to precomputation, the zero-knowledge proofs have been omit-
ted from this analysis. It can be seen that with additional proofs, the workload of RP i
in Publish-RP i is approximately the same as that of CP1 whereas CP2 does not need
to do any computations. However, Classify-IP?i adds the complexity of the proof to
the computing parties. Thus, in total IP i has lower workload than RP i.

Party Length Classify-IP?i Publish-RP i
CP1

|N | 1 0
2|N | 2|N |+ i 0

CP2
|N | 0 0
2|N | 2|N |+ i+ 1 0

IP i \ RP i |N | 0 0
2|N | 3|N |+ 1 |N |

Table 4.4: The computational cost of protocols for communicating with a third party
as a number of multiplications

In total, the precomputation and zero-knowledge proofs form the most expensive
part of this protection domain. Therefore, they remain the most important point for
further optimisations.

4.6.2 Communication cost

This section analyses the cost of communication per protocol output in terms of the
number and length of the sent messages. As in the previous section, we have two clear
classes of messages with different length: plain elements of ZN and Paillier ciphertext.
In addition, we now include commitments for zero-knowledge protocols. These com-
mitments are pairs of elliptic curve elements and for a prime P each element can be
encoded as |P | + 1 bits. Decommitments consist of two values that are both at most
|P | bits. In addition, we can assume that the secret value in zero-knowledge proofs is
at most length |P |, and the randomness of the encoding function is bounded by N .

All the local computation protocols Addition, Subtraction, Constant Addition and
Constant Multiplication do not require any communication. In addition, protocols
Triple Verification and Multiplication only use communication during Publish protocols.

50

Party Length CdsZKTags CdsZKMult Singles Triples Publish

CP1

|N | 0 0 0 0 2
2|N | 1 0 1 1 0
|P | 4 4 0 0 0

CP2

|N | 5 5 0 0 2
2|N | 3 3 1 2 0
|P | 1 1 0 0 0

Table 4.5: The communication cost of computation protocols as number of messages

Therefore, it is sufficient to only analyse the communication cost of the zero-knowledge
protocols, precomputation and publishing.

Table 4.5 summarises the communication cost for each class of messages. As previ-
ously, the precomputation protocols only include the cost of their specific functions and
not proofs or other precomputation protocols. The amount or messages for a player
means how much messages of which length he has to send for each protocol. Publish
protocols only have a communication cost for one of the participants and the table
should be read so that CPj has to send that many messages in Publish-CP i. It can
be seen that the precomputations and Publish-CP i are quite efficient compared to the
zero-knowledge protocols.

Party Length Classify-IP?i Publish-RP i
CP1

|N | 0 3
2|N | 0 0

CP2
|N | 0 3
2|N | 2 1

IP i \ RP i |N | 5 0
2|N | 2 0

Table 4.6: The communication cost of protocols for communicating with a third party
as number of messages

Table 4.6 gives an analogous overview for protocols including IP i or RP i. Sepa-
rately, they also prove more communication efficient than zero knowledge proofs. Thus,
also communication-wise, the zero-knowledge proofs are currently the main bottleneck
of this protection domain.

51

Chapter 5

Protocols for Beaver triple generation

This section describes our efforts to efficiently generate Beaver triples for various moduli
using the additively homomorphic Paillier cryptosystem. This section only considers
the semi-honest security setting as the main goal of this section is to propose new ideas
for precomputation and it is easier to reason about them in the passive model. Besides,
it is reasonable as we often can do precomputation by firstly fixing unprotected shares,
then protection mechanisms and finally, we can verify that the sharing is correct. More
specifically, we only consider the case of semi-honest static adversary in our security
proofs.

5.1 Setup for triple generation protocols

This chapter considers the case where we have additively shared secrets [[x]]M and [[y]]M
for some modulus M and the goal is to obtain [[w]]M where w = x · y mod N . Hence,
[[x]]M = 〈x1, x2〉.

Algorithm 14 Multiplication of additively shared secrets based on the Paillier cryp-
tosystem (Paillier Multiplication)
Setup: Paillier keypair with modulus N , where CP1 knows the secret key
Data: Shared secrets [[x]]M , [[y]]M
Result: Shared result [[w]]N , where w = (x1 + x2) · (y1 + y2) mod N

1: CP1 encrypts and sends Encpk(x1), Encpk(y1) to CP2

2: CP2 generates r ← ZN
3: CP2 computes and sends t = Encpk(x1 · y2 + y1 · x2 + r) to CP1

4: CP2 computes w2 = x2 · y2 − r mod N
5: CP1 computes w1 = x1 · y1 + Decsk(t) mod N

Protocol Paillier Multiplication in Algorithm 14 shows how to do simple share mul-
tiplication using the Paillier cryptosystem and additive secret sharing. This will be an
important tool throughout this chapter. This protocol is actually all that is needed to
generate triples [[x]]N , [[y]]N , [[w]]N for a Paillier modulus N .

Theorem 5.1.1. The Paillier Multiplication protocol for share multiplication using the
Paillier cryptosystem is correct.

52

Proof. It remains to show that indeed w = x · y mod N , which can be seen trivially, as

w = w1 + w2 = x1 · y1 + Decsk(t) + x2 · y2 − r
= x1 · y1 + x1 · y2 + x2 · y1 + r + x2 · y2 − r = (x1 + x2) · (y1 + y2) = x · y .

Theorem 5.1.2. The Paillier Multiplication protocol for share multiplication using the
Paillier cryptosystem is computationally secure against corrupted CP2 and statistically
secure against a corrupted CP1 in the passive model.

Proof. The ideal functionality of this protocol is such that it receives x1, y1 from CP1

and x2, y2 from CP2. It gives back w1 to CP1 and w2 to CP2.
In semi-honest case the simulator knows the inputs xi and yi of the corrupted party

and can easily forward them to the TTP. In both cases it gets wi back from the TTP
and must now make sure that the output of corrupted CP i is finally wi.

In case of a corrupted CP1, the output is fixed as w1 = x1 · y1 + Decsk(t) where
the simulator must fix t. Knowing w1, x1 and y1, the simulator can easily compute
c = w1 − x1 · y1 and fix t = Encpk(c). In is straightforward to see that the corrupted
CP1 will output w1. The outputs of the real and simulated world coincide.

In case of a corrupted CP2, we know that the output w2 = x2 ·y2−r, depends on the
randomness r chosen by the corrupted CP2. However, as it is semi-honest, we know that
it chooses r ← ZN , therefore, r is affected by the initial randomness of CP2. Knowing
the desired output w2 and inputs x2, y2 the simulator can compute r = x2y2 − w2

and pick a suitable randomness to run CP2 with. Therefore, the simulated run in the
ideal world and the corresponding run in the real world always have coinciding output
distributions.

As stated in the algorithm description, we can actually obtain something more
general, namely [[w]]N for w = (x1 + x2) · (y1 + y2) mod N from [[x]]M and [[y]]M , which
is actually closer to what we will use in the following. If we use a modulus M such
that M2 < N , then we actually have x · y < N . Therefore taking the final w mod M
should give us a valid triple. Actually, it is slightly more difficult as we have

w1 + w2 ≥ N or w1 + w2 < N .

In the latter case, this conversion works by reducing both shares separately. However,
in the former case a simple modulo reduction gives invalid results. This remaining issue
is discussed in Section 5.3.

For now, we can assume that we can get correct results for at least half of the
executions of Paillier Multiplication with modulus M . For example, if we always toss
a fair coin after the generation and then either try to correct the error by computing
w = w1 +w2−N mod M or do not try to correct it, then we get the right triple half of
the times. A similar algorithm has been used for precomputations also by predecessors
of SPDZ [7, 25], but with restrictions to the size of the randomness r to avoid the
overflow.

We say that the yield of the protocol is the ratio of the length of the produced triple
elements to the length of the Paillier modulus and denote it by γlen. Analogously, by
γnet we denote the ratio of triple length to the cumulative length of exchanged messages
on the network. Finally, by γcomp we denote the ratio of outputs bits to multiplications

53

of ciphertexts that are elements of length 2|N |. As in the asymmetric case, we assume
that encryption and decryption require |N | multiplications and that the ciphertexts
have length 2|N |. In general, we would like to maximise all these parameters for the
best efficiency. For packing the best achievable bound is 1, for others there is no fixed
limit. For now, we focus on maximising γlen and give other for additional comparison
in hope that they are easier to improve on using clever implementation tricks.

Clearly, for modulus N we have

γlen = 1, γnet =
|N |

3 · 2|N | =
1

6
and γcomp =

|N |
6|N |+ 2

≈ 1

6
.

For an arbitrarily chosen modulus M , where M2 < N , we achieve on average

γlen =
1

2
· |M ||N | ≤

1

4
, γnet =

1

2
· |M |

3 · 2|N | ≤
1

24
, γcomp =

1

2
· |M |

4|N |+ 2|M |+ 2
≤ 1

20
,

if we assume that we get half of the triples correctly.

5.2 Packing several shares into one generation

The introduced Paillier Multiplication was used for a general modulusM with a relation
to the used Paillier modulus N , approximately M2 < N , or for M = N . It could then
be used for any such modulusM , but is clearly most efficient in terms of γlen if the size
of M is close to the bound M2 < N . However, for practical sizes of N , this results in a
very long |M | ≥ 1024. This section explores how shorter types could be packed inside
elements of ZM so that we can most efficiently use the triple generation protocols and
learn meaningful triples for shorter moduli.

The efficiency of packing is mainly shown by γlen. The values for γnet and γcomp
reflect more the communication and computation cost that we need to compute with
given packing.

5.2.1 Packing as base-B numbers

Packing as B-ary numbers means that each element modulo M < B represents a digit
and we pack them as a numbers of base B. A three-digit base-B number could be
written out as

x = B2 · x3 +B · x2 + x1 ,

where xi < B are digits. If we assume, that y is written out in a similar manner as

y = B2 · y3 +B · y2 + y1 ,

then the corresponding multiplication becomes

xy = B4x3y3 +B3(x3y2 + x2y3) +B2(x2y2 + x1y3 + x3y1) +B(x2y1 + x1y2) + x1y1 .

This shows that we could get a triple x1, y1, x1y1 assuming that x1y1 does not overflow
the B-ary digit. With restrictions to the initial xi and yi values we can ensure that
this nor other combinations do not overflow and xy is a five-digit number. Thus, we
could also get a triple x3, y3 and x3y3.

54

Packing as straightforward B-ary numbers is, therefore, not very beneficial as we
did not receive a triple x2, y2, x2y2. However, we could consider another example, with
x as before, but y is modified, giving

x = B2 · x3 +B · x2 + x1

y = B6y3 +B3 · y2 + y1 .

The resulting multiplication is

xy =B8x3y3 +B7x2y3 +B6y3x1 +B5x3y2 +B4x2y2 +B3x1y2+

+B2x3y1 +Bx2y1 + x1y1 .

Here we can see that xy contains all the triples xi, yi and xiyi, but also some elements
xiyj, i 6= j that we do not need. Picking the powers in y as multiples of the number of
digits in x always gives analogous results. More specifically, if both pack n elements,
then the product would have n2 digits where we are only interested in n of them in form
xiyi. Thus, in this packing we only get the same number of triples as the square-root
of the number digits in the base-B representation of xy.

What we need to achieve is actually that every result xiyi is multiplied by a unique
power of B. On the other hand, we do not care about the other xiyj, which could share
the same powers of B between them. This observation allows us to always make small
adjustments to special cases. For example, using

y = B4y3 +B2y2 + y1

would also enable us to get all the xiyi pairs with the gain of of two B-ary digits. The
result xy is only a seven digit number as

xy =B6x3y3 +B5x2y3 +B4(x1y3 + x3y2) +B3x2y2 +B2(x1y2 + x3y1)+

+Bx2y1 + x1y1 .

However, we can not get rid of all the unnecessary products xiyj in this packed multi-
plication result.

The problem with using this approach in a straightforward manner is that we have to
assume that yixi < B, which essentially means that the result xy contains integer form
results of all triples as digits. We can not use this directly with Paillier Multiplication,
as the randomisation there would ruin this structure. However, we can not define it
without any randomisation either because otherwise seeing yixi and knowing xi also
leaks the secret yi. A possible solution is that we actually redefine the randomising
element as

r =
∑

Biri

and make sure that at least for all ri + xiyi, there is no overflow from B from either
side. On the downside, this is not completely secure because the values ri+xiyi will not
be uniformly distributed and therefore may leak information about xiyi. Commonly,
we would define a security parameter σ so that r is σ bits longer than xiyi to hide it
with probability 1 − 2−σ. The hiding properties of this randomisation are addressed
by Theorem 5.2.2.

Therefore, in Paillier Multiplication with base-B numbers we achieve

γlen =
|M | ·m
|N | ≤ 1

2
, γnet =

|M | ·m
3 · 2|N | ≤

1

12
, γcomp =

|M | ·m
4|N |+ 2|M |+ 2

≤ 1

10
,

55

because we always get the correct outcome w1 + w2 < N . However, the bounds are
only achievable in very insecure settings where we do not use the randomisers.

The main benefit of this approach is that there are no restrictions to the length of
the packed type because we can always pick a suitable B. The following Algorithm 15
uses a version of this linear packing.

5.2.2 Triple generation with partial base-B packing

Protocol B-Triples in Algorithm 15 is the protocol by Thomas Schneider as used in [48].
In uses the ideas of B-ary packing, however, these are used slightly differently from
the previous initialisation. One party sends xi separately and the other responds with∑
Bixiyi + ri. This is not very communication-efficient, but avoids the occurrence of

elements xiyj in the packed response.
The main drawback of this protocol is that although we use randomness to blind

the encrypted response, we actually have secret sharing over integers in the response v
and it may leak some information about the shares. The main idea of this protocol is
to reduce the network communication compared to the basic Paillier Multiplication. The
gain comes from the fact that the responder does not need to send back a ciphertext
for each of the triple, but packs elements into one ciphertext.

Let σ denote a statistical security parameter. The efficiency of this protocol depends
on σ and the length k = |M | of the initial single values. Variable ` stands for the length
of the packed values. We have ` = 2k + 2 + σ and thus, it is possible to pack b|N |/`c
responses into one ciphertext. This length also defines the randomness that is used to
hide the actual value of the inputs.

Algorithm 15 Generating m < |N |/` triples with B-ary packing (B-Triples)
Setup: Security parameter σ, modulus length k = |M |, ` = 2k + 2 + σ
Data: Arrays of shared secrets [[x1]]M , . . . , [[xm]]M and [[y1]]M , . . . , [[ym]]M
Result: Array [[w1]]M , . . . , [[wm]]M , where [[wi]]M = [[xi · yi]]M
1: CP1 sends Encpk(x1,1), . . . ,Encpk(x1,m) to CP2

2: CP1 sends Encpk(y1,1), . . . ,Encpk(y1,m) to CP2

3: CP2 fixes r = 0, e = 0, Encpk(e)
4: for i ∈ {1, . . . ,m} do
5: CP2 generates a random ri ← {0, 1}2·k+1+σ

6: CP2 computes Encpk(ti) = Encpk(x1,i · y2,i + y1,i · x2,i)
7: CP2 computes r = r · 2` + ri
8: CP2 computes Encpk(e) = Encpk(e · 2` + ti)
9: CP2 computes w2,i = x2,i · y2,i − ri mod M

10: end for
11: CP2 encrypts Encpk(r)
12: CP2 sends Encpk(v) = Encpk(e+ r) to CP1

13: CP1 decrypts and unpacks single values v1||v2|| . . . ||vm = Decsk(Encpk(v))
14: for i ∈ {1, . . . ,m} do
15: CP1 computes w1,i = x1,i · y1,i + vi mod M
16: end for
17: return [[c]]

For example, choosing |N | = 2048, σ = 112 and k = 32 as in [48] allows us to
pack 11 elements of 32-bits to 2048-bit modulus. The main strength of this approach

56

is that there is no need for share conversion as the fixed length of elements also ensures
that the response does not overflow N and the algorithm always yields correct triples
modulo M .

Theorem 5.2.1. Protocol B-Triples in Algorithm 15 for generating Beaver triples with
partial B-ary packing is correct.

Proof. We need to show that wi = xi · yi for all i ∈ 1, . . . ,m. For this, it is crucial to
analyse what happens in the packing. We define B = 2` and the cycle computes the
response

e =Bm−1 · (x1,1 · y2,1 + x2,1 · y1,1) + . . .+B · (x1,m−1 · y2,m−1 + x2,m−1 · y1,m−1)+
+ (x1,m · y2,m + x2,m · y1,m)

and a randomness
r = Bm−1 · r1 + . . .+B · rm−1 + rm .

Finally, the sum of these is computed and sent back to CP1 who can decrypt and
disassemble it to blocks

vi = x1,i · y2,i + x2,i · y1,i + ri .

We assume that the elements xi and yi have a length of k bits, thus, each x1,i ·y2,i+
x2,i · y1,i is at most 2k + 1 bits long. The randomness r is defined as 2k + 1 + σ bits,
which means that the value vi is at most 2k+ 2 +σ bits and if we define ` > 2k+ 2 +σ
then each of these values fits into an `-bit slot. Thus, the packed value can always be
restored correctly if this value is smaller than the encryption modulus, which is ensured
as m · ` < |N |.

It remains to show that wi = xi · yi, which can be easily seen, as

wi = w1,i + w2,i = x1,i · y1,i + vi + x2,i · y2,i − ri
= x1,i · y1,i + x1,i · y2,i + x2,i · y1,i + ri + x2,i · y2,i − ri
= (x1,i + x2,i) · (y1,i + y2,i) = xi · yi .

Theorem 5.2.2. Protocol B-Triples in Algorithm 15 for generating Beaver triples with
B-ary packing is statistically secure against a corrupted CP1 and computationally secure
against a corrupted CP2, given a (t, ε)-IND-CPA secure cryptosystem and statistical
security constant σ for packing.

Proof sketch. The simulator can adjust the outputs of either party to correspond to
the results from the TTP as in the Paillier Multiplication. In the following we consider,
how the simulator can simulate the communication of this protocol.

Corrupted CP1. The simulator can replace each vi with an encryption of a random
element r∗ ← R where R = {tmax/2, . . . , 22k+σ+1+ tmax/2} where tmax = 22k+1−2k+2+
2 < 22k+1 is the maximal value that ti might have. It is easy to see that the minimal
value that ti might have is 0, therefore, tmax/2 is the median value of ti. The advantage
of the adversary in this case is bounded by the statistical distance of v = ti + ri and

57

r∗. The value v = ti + ri is uniformly distributed in T = {ti, . . . , ti + 22k+σ+1} where
0 ≤ t ≤ tmax. Hence, the statistical distance is

sd(r∗, v) =
1

2
·
∑

x∈R∪T

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣

=
1

2
·
(∑

x∈R∩T

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣+

∑

x∈T\R

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣+

+
∑

x∈R\T

∣∣∣Pr[r∗ = x]− Pr[v = x]
∣∣∣
)

=
1

2
·
(∑

x∈T∩R

∣∣∣ 1

|R| −
1

|T |
∣∣∣+

∑

x∈T\R

∣∣∣0− 1

|T |
∣∣∣+

∑

x∈R\T

∣∣∣ 1

|R| − 0
∣∣∣
)
.

It is possible to continue this evaluation as we know that |R| = |T | = 22k+σ+1 + 1 and
that 0 ≤ |R\T | = |T \R| ≤ tmax/2. Therefore we can give an upper bound to sd(r∗, v)
as

sd(r∗, v) =
1

2
·
(∑

x∈T∩R
0 +

∑

x∈T\R

1

22k+σ+1 + 1
+
∑

x∈R\T

1

22k+σ+1 + 1

)

≤ 1

2
· tmax ·

1

22k+σ+1 + 1
=

tmax
22k+σ+2 + 2

≤ 22k+1

22k+σ+2 + 2
≤ 2−σ .

Therefore, sending an encryption of a random element from R is statistically 2−σ

indistinguishable from a correctly computed reply. It follows that the simulator can
pick r∗ such that the output of the corrupted CP1 is as desired.

Corrupted CP2. The simulator should send the encryptions of x1,i and y1,i to CP2,
which it can do efficiently by sending the encryptions of random values. Due to the
IND-CPA security, the simulation is at distance 2m · ε from the real protocol run for
any t-time adversary.

The efficiency of this protocol depends on the chosen parameters, but for now, we
write it out in terms of m < |N |/` and |M |, where ` = 2|M |+σ+ 2. In total, we learn
|M | ·m bits of valid triples which gives

γlen =
|M | ·m
|N | ≤ 1

2
− σ ·m

2|N | −
m

|N | <
1

2
,

where we get the estimate as we know that ` ·m < |N | which gives

|M | ·m <
|N |
2
− σ ·m

2
−m .

Communication-wise this protocol gives

γnet =
|M | ·m

(2m+ 1) · 2|N | ≤
1

4 · (2m+ 1)
.

Finally, in terms of computation this protocol is also quite expensive due to the separate
encryption operations resulting in

γcomp =
|M | ·m

(2m+ 2) · |N |+ 2m · |M |+m · `+ 2m+ 1
≤ 1

4m+ 4
.

58

5.2.3 Packing using the Chinese remainder theorem

We can also use the Chinese remainder theorem for packing several elements into
one ciphertext. However, the used mechanism is quite different from the previously
described B-ary packing and can only be used, if we are using elements with pairwise
coprime moduli pi. By definition, CRT can be used to combine all those single random
values modulo pi for a modulus

M = p1 · . . . · pk
and execute the triple generation protocol to obtain the corresponding third triple
elements modulo M .

For example, we start with values xi and yi and we interpret them as
{
x = xi mod pi

y = yi mod pi .

Then, we combine them using CRT to learn x mod M and y mod M which are inputs
to the triple generation protocol for learning xy mod M . We know that, by definition,
we have {

xy = xiyi mod pi ,

where we are interested in learning the shares for xiyi. The CRT allows us to reduce
the final result respectively for all moduli pi to learn the third triple element for all
initial random value pairs. Therefore, we can learn xiyi from xy mod M as

xiyi = xy mod pi .

Packing with CRT enables us to get exactly |M |-bit triples from one execution
of the triple generation protocol. However, we could also use this with the idea to
later convert all these shares of different moduli to one shared modulus as discussed in
Section 5.3.2. This would result in approximately |M |

2
-bit triple elements.

This packing can be trivially well used with the Paillier Multiplication protocol be-
cause all we need is to learn a valid triple moduloM to be able to get all separate triples
modulo pi. However, we have to ensure that, in this case, M2 < N . Therefore, we can
get approximately |N |

2
-bit triples when using a modulusM . Using Paillier Multiplication

with CRT packing gives exactly the same yields as it does for any arbitrarily chosen
modulusM as given in Section 5.1. We need to do additional computations for packing
and unpacking, but these do not significantly affect our computational cost as they are
not operations on ciphertexts.

5.3 Share conversion

Share conversion is the process of transforming a shared value [[x]]M for one fixed mod-
ulusM to a valid share [[v]]M∗ of the same secret value x = v under a different modulus
M∗. It will be necessary as we use the Paillier cryptosystem that has homomorphic
properties modulo N for generating triples of a generic modulus M . This section fo-
cuses on transforming [[x]]2 to [[v]]M and [[x]]N to [[v]]M , where N > M that are needed
for triple generation. In addition, we stress additional restrictions that must be met
in order to successfully convert the triple from Paillier Multiplication so that the multi-
plicative relation still holds after the conversion.

59

5.3.1 Converting binary shares to any modulus

A protocol for obtaining [[v]]M from [[x]]2 is a simpler subcase of all conversion protocols
as x in [[x]]2 has only two potential values. Thus, if x = 0 we should have [[v]]M as
v1 ← ZM and v2 = M − v1 or, correspondingly, v2 = M − v1 + 1 for x = 1.

CP1 input
x1 = 0 x1 = 1

CP2

input
x2 = 0 v2 = M − v1 v2 = M − v1 + 1
x2 = 1 v2 = M − v1 + 1 v2 = M − v1

Table 5.1: Oblivious transfer for share conversion [[x]]2 to [[v]]M

Such a replacement of the shares can be achieved using oblivious transfer (OT).
The 1-out-of-2 OT is a communication protocol for transporting information so that
the sender does not know which of its two inputs it forwarded to the receiver. In
addition, the receiver is only able to learn one of the sender’s inputs per protocol. The
idea for share conversion is that the sender defines v1 ← ZM and sends v2 = M − v1 or
v2 = M−v1 +1 to the receiver based on the value of x. More precisely, we do not open
the value x, but do OT based on the shares of [[x]]2 being equal (x = 0) or not (x = 1).
CP2 learns the outcomes as specified in Table 5.1 for each potential input combination
and CP1 always outputs v1.

For the efficiency analysis, we use the well known AIR OT protocol [1] for the 1-
out-of-2 case. We use it with the Paillier cryptosystem as defined in Algorithm 16.
Any OT protocol could be used in future implementations, but we will use this due
to its simplicity to analyse the efficiency of using this share conversion in the triple
generation protocols.

Algorithm 16 Aiello-Ishai-Reingold oblivious transfer
Setup: Receiver has defined a Paillier keypair (pk, sk), which defines a modulus N
Data: Receiver has input x ∈ {0, 1}, Sender has two secrets s0 and s1
Result: Receiver learns sx
1: Receiver computes and sends c = Encpk(x) to the Sender
2: Sender generates r0, r1 ← ZM
3: Sender computes and sends c0 = cr0 · Encpk(s0) to the Receiver
4: Sender computes and sends c1 = (c · Encpk(−1))r1 · Encpk(s1) to the Receiver
5: Receiver decrypts sx = Decsk(cx)

The idea of AIR OT is straightforward, as c0 = Encpk(0 · r0 + s0), if x = 0 and
analogously, if x = 1 then c1 = Encpk(0 · r1 + s1). The role of the randomiser ri is to
ensure that the other secret is not leaked. For example, in case the query was x = 0,
then c1 is an encryption of a random value Encpk(−1 · r1 + s1) and does not reveal s1.

5.3.2 Problems with converting the third triple element

We can expect the first two elements x and y of the triple to be generated according
to some fixed modulus M . However, the triple generation protocol may change the
modulus for the outcome w = x · y. The possibility to convert this outcome back to
the original modulus means that we can actually generate triples for any modulus.
However, there are losses in how many bits we use in the multiplication and afterwards
receive as triples.

60

One place where such share conversion is needed is from the Paillier modulus to our
chosen modulus M . At some point in triple generation, we use Paillier Multiplication,
where the result will be given modulo N . Namely, if we have some uniformly generated
values [[x]]M and [[y]]M modulo M , then we know that x · y < N if M2 < N . Hence, we
can avoid modular reductions in the product. However, working with additive share
representation requires more care, as we actually have

(x1 + x2) · (y1 + y2) < N ,

where x1 + x2 < 2M and

(x1 + x2) · (y1 + y2) < 4M2 .

Hence, we require that 4M2 < N . With this restriction to initial values, we can apply
general share conversion to the third triple element and achieve a multiplicative triple
with respect to modulus M .

The main challenge in the share conversion is to differentiate between having either

w1 + w2 ≥ N or w1 + w2 < N .

The latter case means that if x·y = w1+w2 mod N then also x·y = w1+w2 mod M and
share conversion can be obtained by converting both wi mod M separately. However,
the former gives us x·y = w1+w2−N mod M and means that we have to check for this
error when converting triples. Achieving this error correction is one of the important
goals of the triple generation algorithms based on Paillier Multiplication. The main idea
is that the parties can collaboratively decide if they have w1 +w2 ≥ N or w1 +w2 < N
and in the former case they can fix the shares as w = w−N before modular reduction.

There are many different ways for performing this check. For example, one pos-
sibility is to do computations as in Triple Verification and check for the value of h.
It is straightforward to fix values of h that mean that a triple was correct or had
w1 +w2 ≥ N . For security, h should not be published and the correction could be done
based on the value of h using oblivious transfer. A more efficient method is introduced
as part of Algorithm 17 and a more general idea analogous to that is also specified
later in Chapter 6 as Algorithm 20. The ideas in Algorithm 17 and Algorithm 20 can
be used to perform general conversion from [[x]]N to [[v]]M , independently of the fact
that we are working with a multiplication result.

In addition, share conversion of the third triple element can be used with CRT
packing to get results that all use the same modulus. For example, the initial shares of
xi and yi are fixed with relation to some modulus P and then we choose primes pi > P 2

and interpret these shares each for a different modulus pi. After the triple generation
we learn xy mod pi, but as previously, we know that xy < pi and now converting them
from modulus pi to P is the same as converting from N toM after Paillier Multiplication.
This approach decreases the efficiency of the CRT packing by half, but helps to get rid
of the need to use different moduli.

5.3.3 Triple generation with share conversion

The problem with using Paillier Multiplication for triple generation in a straightforward
manner was mentioned in Section 5.3.2. It means that occasionally this protocol gives
a valid triple for moduli other than the Paillier modulus, but sometimes the result is

61

invalid. This section introduces a way that uses the Paillier Multiplication algorithm,
but adds additional checks to always get the correct result for a chosen modulus.

The idea of ShareConv-Triples in Algorithm 17 is to use a modulus 2 to test if the
shares of the third element w1 + w2 < N or overflow N and base the share conversion
on the result of this check. This clearly leaks some information about the result as we
need to declassify the least significant bit of the inputs, but this may not be an issue
for all use-cases. The idea is that by declassifying the least significant bits of x and y
we learn what the parity of w should be without any modular reductions. It could be
used with CRT packing trivially as long as we do not use modulus 2 in the packing.
Using this idea exactly like this is actually not secure as it leaks the least significant
bits of x and y.

However, we can easily avoid the leakage, by actually using an odd modulus P that
is one bit shorter that maximum length of M in Paillier Multiplication. In such case we
just define

xi = 0 mod 2 and yi = 0 mod 2

and use the CRT to compute the representation of x and y for modulus 2P . We can
learn the correct triple modulo P by reducing the final shares of [[w]]2P modulo P .

According to the CRT, the multiplicative relation modulo 2P holds exactly, if it
holds for all its prime divisors, including 2. The latter means that by checking the
relation modulo 2, we actually verify that it holds for modulus 2P .

Algorithm 17 Triple generation with share conversion (ShareConv-Triples)
Setup: Paillier keypair (pk, sk) with modulus N

2|P |+ 5 < |N | and P is odd
Data: Shared secrets [[x]]P , [[y]]P
Result: Third triple element [[w]]P where w = xy mod P

1: CP i uses CRT with inputs xi = 0 mod 2 and xi = xi mod P to learn xi mod 2P
2: CP i uses CRT with inputs yi = 0 mod 2 and yi = yi mod P to learn yi mod 2P
3: CP compute [[w]]2P from [[x]]2P , [[y]]2P with Paillier Multiplication
4: CP i computes ci = wi mod 2
5: CP convert c = c1 + c2 from [[c]]2 to [[c]]2P
6: CP i computes wi = wi −N · ci mod 2P to correct the potential mistakes
7: CP i fixes wi = wi mod P to get the correct final modulus

Theorem 5.3.1. The ShareConv-Triples protocol in Algorithm 17 for generating Beaver
triples with simple share conversion is correct assuming the correctness of share con-
version from [[c]]2 to [[c]]2P and Paillier Multiplication.

Proof. For correctness, we need to analyse the meaning of c in this algorithm. We
assume that the share conversion from [[c]]2 to [[c]]2P is correct and Paillier Multiplication
always gives either w = w1 + w2 or w = w1 + w2 − N . By definition, c ∈ {0, 1} and
c = c1 + c2, where

c1 = w1 mod 2 and c2 = w2 mod 2 .

We know that as both x and y are defined as being even then w also has to be even
and we have

c = w1 + w2 mod 2 .

62

We also know that N is odd and therefore w can be even if either w1 + w2 is even
which means w1 + w2 < N or if w1 + w2 is odd which gives w1 + w2 ≥ N . Hence, if
c = 0, then both wi have the same parity and w1 +w2 is even. Knowing that w has to
be even gives us w = w1 +w2 < N . On the other hand, if c = 1, then wi have different
parity and w1 + w2 ≥ N as integer is odd. Thus, we have w = w1 + w2 −N .

This clearly corresponds to how we compute w as wi = wi−N · ci mod 2P gives us

w = w1 + w2 = w1 −N · c1 + w2 −N · c2 = w1 + w2 − c ·N mod 2P .

The final modular conversion wi = wi mod P is correct according to the CRT.

Theorem 5.3.2. The ShareConv-Triples protocol in Algorithm 17 for generating Beaver
triples with simple share conversion is secure, assuming the security of binary share
conversion and Paillier Multiplication.

Proof sketch. Te security follows trivially, as this protocol is just a combination of share
conversion, Paillier Multiplication and local operations.

Protocol ShareConv-Triples works trivially well with CRT packing, if the packing
does not include modulus 2, because we require P to be odd. There is no need to
use this with B-ary packing as in that case, the randomisation in Paillier Multiplication
is defined so that we always get w1 + w2 < N and there is no need for additional
correction.

This protocol is more efficient than the previous, enabling us to get one |N |
2
− 2-

bit triple at the cost of one Paillier multiplication and error correction. However, it
proposes additional restrictions to the choice of P , which has to be odd. In terms of
achieved bits we clearly have

γlen =
|P |
|N | ≤

1

2
.

In terms of communication we have to take into account that we do Paillier Multiplication
and share conversion, we currently use share conversion with AIR OT for comparison.
This gives us

γnet =
|P |

6 · 2|N | ≤
1

24

because AIR OT has the same communication cost as Paillier Multiplication. Finally, in
terms of computation, we also require ciphertext operations in both Paillier Multiplication
and OT, which gives

γcomp =
|P |

10|N |+ 2(|P |+ 1) + 5
≤ 1

22
.

5.4 Comparison of proposed triple generation ideas

In a real life setting, we would like to generate a set of triples for some fixed size. This
section gives a comparison of the ideas from this chapter for the case where we are
interested in learning triples for M = 232, we analyse the case for |N | = 2048. For
packing, we assume that M = 232 for B-Triples and that we use 33-bit primes for CRT
packing. In addition, for B-Triples we define σ = 112, which gives ` = 178 and m = 11.

63

In B-ary packing we assume the same setup and basic packing with

x = Bm−1xm + . . .+ x1

y = B(m−1)·mym +Bmy2 + . . .+ y1 .

We need |B| = 2 · |M | + σ = 176 and Bm2
< N , which enables us to pack m = 3

elements, because we need m2 < 11. With CRT packing, we can pack at most 31
elements if we choose small primes, or 30 for general 33-bit primes, because we need
that 4M2 < N . In addition, for ShareConv-Triples we can not use exactly P = 232, but
we expect that |P | = 32 and therefore |2P | = 33.

Protocol γlen γnet γcomp
Paillier Multiplication 1

128
≈ 0.008 1

768
≈ 0.001 8

4129
≈ 0.002

B-ary packing 3
64
≈ 0.047 1

128
≈ 0.008 48

4129
≈ 0.012

CRT packing 31
128
≈ 0.242 31

768
≈ 0.04 248

4129
≈ 0.06

B-Triples 11
64
≈ 0.171 11

2944
≈ 0.004 352

51837
≈ 0.007

ShareConv-Triples 1
64
≈ 0.016 1

768
≈ 0.001 32

20551
≈ 0.002

CRT packing 1023
2048
≈ 0.5 341

8192
≈ 0.042 992

22471
≈ 0.044

Table 5.2: Comparison of Beaver triple generation protocols

The approximate values in Table 5.2 are given simply for making the comparison of
these results more straightforward. Trivially, Paillier Multiplication with B-ary packing
is three times more efficient than without as we can pack exactly 3 elements. However,
there is an additional 2 times gain as the output triples are always correct. Packing with
CRT is exactly 31 times more efficient that plain Paillier Multiplication. Though, the
main trouble with these two cases is that although these are the average ratios assuming
that the triple is rightfully corrected, we should also verify that they are correct. For
example, if we use Triple Verification then learning one correct triple actually has the
cost of two unverified triples.

Partial packing in B-Triples has significantly better packing count than using basic
B-ary packing which results in better ratio of γlen. The loss in other parameters is
small enough to give this algorithm precedence over Paillier Multiplication with packing.

Basic ShareConv-Triples is close to Paillier Multiplication as expected, as we always
get the correct triple, but the correction has approximately the same cost as the mul-
tiplication. The ratio for γlen of ShareConv-Triples with CRT packing is actually ideal
because 1

2
is the best limit we can achieve with our current ideas about arbitrary mod-

ulus in Paillier Multiplication. This packing ratio also affects the efficiency of network
usage as well as computations and clearly makes this the most efficient of our ideas
resulting in bounds close to the theoretical ones.

In Chapter 7, we also give results for the implementation of ShareConv-Triples with
CRT packing and B-Triples, as they are the more efficient and easier to use protocols
according to given comparison. However, Table 5.2 also indicates that we possibly
should consider only using Paillier Multiplication and CRT packing in cases where we
can increase the probability of receiving a correct triple so that we are more likely to
pass the Triple Verification check. It is especially meaningful if we need to perform
Triple Verification to check for some other possible errors as well. In the follow-up
work, we should compare the efficiency of this approach to ShareConv-Triples with
CRT packing and different OT protocols.

64

Chapter 6

Symmetric two-party computation

This section introduces our ideas for setting up symmetric two-party computation.
Currently, this section consists of the online phase, which is derived quite directly from
the share representation and ideas from the asymmetric protocol set in Chapter 4. The
question of achieving reasonably efficient precomputation of Beaver triples is currently
unsolved, but this section give hints on how we might use the protocols from Chapter 5.

6.1 Protection domain setup

We consider additive secret sharing in a ring Zp for some modulus p. Party CP i defines
a MAC key ki so that z(i) = ki · x mod p. It is clear from Section 2.1.9 that we
can obtain a secure protection scheme for a prime p and moduli with only suitably
large prime divisors. In case we use a modulus with a short bitlength, we can allow
each party to define several keys to enhance the security. This way, we could achieve
the necessary security level for any desired threshold, independently of the modulus.
However, each additional key will make the computations less efficient. It is currently
an open question, if a suitable efficient MAC algorithm could be obtained for other
moduli. All arithmetic in this scheme is with respect to the modulus p. In the following,
the security proofs give security guarantees with respect to using a prime modulus p.

We propose a share representation as

[[x]]p = 〈∆, x1, x2, z(1)1 , z
(1)
2 , z

(2)
1 , z

(2)
2 〉 ,

where x = x1 + x2 + ∆ and ∆ is the public modifier. The remaining values belong to
the MAC tags as z(1)1 + z

(1)
2 = k1 · (x1 +x2) and z

(2)
1 + z

(2)
2 = k2 · (x1 +x2). Both parties

know ∆ and, in addition, CP i has values xi, z(1)i and z(2)i .
It is straightforward to obtain an addition protocol (Addition) as both parties

can just locally add their shares to get their share of the sum. Analogously, we
get protocols for subtraction (Subtraction) and multiplication with a public value
(Constant Multiplication). Addition with a public value (Constant Addition) still only
requires modifying the common value ∆. Thus, a public value v can be seen as

[[v]]p = 〈∆ = v, v1 = 0, v2 = 0, z
(1)
1 = 0, z

(1)
2 = 0, z

(2)
1 = 0, z

(2)
2 = 0〉 .

For the sake of achieving protocols for communication with non-computing parties
IP i and RP i and precomputation, we also assume that both computing parties CP i
have defined their own Paillier keypair (pki, ski) where pki is also known by the other

65

parties and defines a modulus Ni. In addition, they have published a commitment
Encpki(ki) = ([ki])pki . The inconvenience in this is that our otherwise statistically secure
setup becomes computationally secure, depending on the IND-CPA security of the
cryptosystem that hides ki.

We occasionally use the notation CP i and CPj where the idea is that i 6= j. For
example, to specify that CP i sends something to the other party CPj where the meaning
is that both computing parties send something to the other. We occasionally use an
abbreviation CP , that should be read as computing parties, to denote that both CP i
execute some sub-protocol together.

6.2 Publishing shared values

Due to the symmetric setup of the protection domain, we can give a general publishing
protocol Publish-CP i (Algorithm 18) to open share to party CP i. Party CP i learns
the correct result if the verification succeeds and should otherwise abort the protocol.
CP i is the party who should receive the output and by CPj we mean the other party
who sends its shares. We can combine two instances of this protocol to simultaneously
declassify to both computing parties (Publish-both-CP i).

Algorithm 18 Publishing a shared value to CP i (Publish-CP i)
Data: Shared secret [[x]]p
Result: CP i learns the value x
1: CPj sends xj and z(i)j to CP i
2: CP i verifies z(i)1 + z

(i)
2 = ki · (x1 + x2)

3: return CP i outputs x1 + x2 + ∆

Theorem 6.2.1. Protocol Publish-CP i for publishing a shared value to one party is
correct.

Proof. For correctness, we need that x = x1 + x2 + ∆, which is trivially true in case
the verification process is correct. In the case of honest participants, we know that the
verified equations must hold by the definition of the shares.

Theorem 6.2.1. Protocol Publish-CP i for publishing a shared value to one party is
computationally secure with additional statistical 1

p
error probability.

Proof sketch. This proof is analogous to the part Publish-CP1 in Theorem 6.2.1. In the
asymmetric setting, CP1 also verified the correctness using MAC tags. The computa-
tional requirement follows from the fact that CPj knows ([ki])pki .

As in the asymmetric case, we have a simple possibility that we declassify an element
to the computing parties, who check the MAC and then forward the declassified results
to the result parties RP i. The result parties only have to verify that both computing
parties forwarded them the same declassification result and accept the output. Thus,
we can easily obtain the protocol Publish-CP&RP i. The security and correctness of
this protocol result from those of Publish-CP i protocol. This is an easy way to make
the results publicly known, a way to open shares only to RP i is discussed later in
Section 6.4.

66

6.3 Receiving inputs from the input party

This section defines a standalone protocol to receive inputs from IP i. We do not yet
have a Publish-RP i protocol, therefore we can not use the common Classify-IP i protocol
from Chapter 3 and need to define something independent from other protocols. Our
Classify-IP?i protocol is given in Algorithm 19.

Algorithm 19 Receiving inputs from IP i (Classify-IP?i)
Data: IP i has a secret x
Result: CP i have a shared secret [[x]]p

1: Round: 1
2: CP i fixes ∆ = 0
3: IP i generates x1 ← Zp, z(2)1 ← ZN2 , z

(1)
2 ← ZN1 , r1, r2 ← Z∗N

4: IP i computes x2 = x− x1 mod p
5: IP i computes c1 = Encpk1(k1)

x2 · Encpk1(−z(1)2 , r1)

6: IP i computes c2 = Encpk2(k2)
x1 · Encpk2(−z(2)1 , r2)

7: IP i sends xi, z(j)i , ci, rj to CP i
8: Round: 2
9: CP i computes z(i)i = ki · xi + Decpki(ci) mod Ni to learn [[z(i)]]Ni

10: CP i computes c∗j = Encpkj(kj)
xi · Encpkj(−z(j)i , rj) and send to CPj

11: Round: 3 (share conversion)
12: CP collaboratively convert [[z(1)]]N1 to [[z(1)]]p and [[z(2)]]N2 to [[z(2)]]p using

ShareConv
13: Verification:
14: CP i checks that ci = c∗i
15: CP i notifies IP i about the verification outcome

The idea of this algorithm is similar to some tricks from the triple generation algo-
rithms. Namely, the input party uses the encryptions of the MAC keys to share the
tags modulo N and the computing parties convert them to correct modulus M .

Theorem 6.3.1. The protocol Classify-IP?i for receiving inputs from IP i is correct,
assuming the correctness of ShareConv.

Proof sketch. The correctness of x = x1 + x2 mod p is trivial from the definition. Sim-
ilarly, the correctness of z(i) = ki · x mod Ni is straightforward from the algorithm
description. Furthermore, the correctness of the verification is trivial, as by definition
c = c∗ if all parties are honest.

For security, we need that neither the computing parties nor the input party can
cheat during the protocol. Cheating on the side of input party means that it tries
to give inconsistent share representations. On the side of computing parties cheating
means that they try to modify the shares they received. However, as in the asymmetric
case, we still have the limitation that IP i can not collude with either CP i.

Theorem 6.3.2. The protocol Classify-IP?i for receiving inputs from IP i is computa-
tionally secure against corrupted CP i and perfectly secure against corrupted IP i, if the
adversary is allowed to corrupt at most one party, assuming a computationally secure
share conversion protocol.

67

Proof sketch. Similarly to the asymmetric case, the ideal functionality of this protocol
receives x, x1, z

(2)
1 and z(1)2 from the IP i. It then fixes the remaining z(1)1 and z(2)2 and

forwards the shares to the computing parties. The computing parties can either accept
or reject the shares. If either party rejects then the output of all parties is ⊥, otherwise
the computing parties learn their shares and IP i learns that the input was received
correctly.

The simulator for a corrupted CP i at first receives xi, z(1)i , and z(2)i from the TTP.
It then computes ci = Encpk(z

(i)
i) · ([ki])−xipki

= Encpk(z
(i)
i − ki · xi) and picks a rj as an

honest IP i would. The simulator forwards xi, z
(j)
i , ci and rj to the corrupted CP i as

a message from the IP i. By definition, CP i can compute z(i)i as originally defined by
the TTP. In addition, it forwards ci also as a message from the other computing party
CPj. For the share conversion, it can act as an honest party by picking a random input
for the case where it has to send the initial query. In addition, it can simulate the
conversion for the case where it is the sender. Finally, the simulator gets the output
Continue or Failure from the corrupted CP i and forwards this to the TTP. Clearly, the
simulator can make the output shares of CP i the same as they would be in the ideal
world and the output of CPj is also the same, therefore, the outputs of the real and
simulated ideal world coincide.

The simulator for the corrupted IP i receives all the values xi, z
(j)
i , ci, ri from the

IP i. It checks that ci = ([ki])
xj
pki

Encpk(−z(i)j , rj) for both ci and forwards x, x1, z
(2)
1 and

z
(1)
2 to the TTP, if the check succeeds. In this case, it gives the output Continue or
Failure, that it receives from the TTP, back to the corrupted IP i. Otherwise, if the
check did not pass, it gives Failure to both the corrupted IP i and the TTP. Clearly,
the check that the simulator does for ci is sufficient to check that the IP i gives correct
inputs. In addition, the final states of the ideal and real world coincide as in case the
sharing succeeds the shares are chosen by the IP i and parties have also seen these
shares in case the sharing does not succeed.

This protocol does not give the anti-framing property, because in the end the com-
puting parties have not verified that the other party has the value z(i)i that it needs to
very the tag. To achieve this property we must include corresponding zero-knowledge
proofs as a part of this protocol. We should also include the proofs that ci is correctly
computed in order to achieve security against collaborating pairs CPj and IP i.

We can use the ShareConv protocol in Algorithm 20 for share conversion. This is
intended for the case introduced in Section 5.3.2 where we either have z = z1+z2 mod p
or z = z1 + z2 −N mod p, which is exactly what we have in the Classify-IP?i protocol.

Algorithm 20 Share conversion from [[z]]N to [[v]]p (ShareConv)
Data: Shared secret [[z]]N
Result: Shared secret [[v]]p, where z = v

1: CP i computes ti = 2 · zi mod N
2: This ensures that t = t1 + t2 as an integer is even
3: CP i computes t∗i = ti mod 2
4: CP collaboratively perform simple share conversion from [[t∗]]2 to [[c]]p,
5: This can be done with OT, as discussed in Section 5.3
6: CP i computes ti = ti − ci ·N mod p
7: CP i computes vi = 2−1 · ti mod p

68

Theorem 6.3.3. The protocol ShareConv in Algorithm 20 for converting [[z]]N to [[v]]p
is correct and secure, assuming secure share conversion from binary to any modulus.

Proof sketch. The idea of computing ti = 2 · zi mod N is to ensure that t1 + t2 share
an even number [[2z]]N . This enables us to do the share conversion using OT from
Section 5.3 where, in the end, computing parties have a shared secret c = 0, if the
parity of t1 and t2 was the same and c = 1 in other case. Here, different parity
indicates that t1 + t2 ≥ N and same parity ensures t1 + t2 < N . By computing
ti = ti − ci · N mod p the parties learn [[2z]]p, where 2z = t1 + t2 mod p. Trivially,
computing vi = 2−1 · ti mod p gives [[v]]p, where v = z mod p. The correctness of this
protocol follows from the correctness of the general share conversion idea.

The security clearly results from the security of the conversion from [[t∗]]2 to [[c]]p.
According to Section 5.3.1, it depends on the security of the oblivious transfer.

6.4 Publishing a secret to the result party

Previously, we defined a protocol for declassifying a secret to both computing and result
parties (Publish-CP&RP i). However, we also have to satisfy the case where we need
to open the secret privately only to RP i. Algorithm 21 defines protocol Publish-RP i
that achieves this by combining Classify-IP?i and Publish-CP&RP i in a very general
manner.

Algorithm 21 Publishing a shared value to RP i (Publish-RP i)
Data: secret [[x]]p
Result: RP i learns x
1: RP i shares a uniformly random value y using Classify-IP?i
2: CP compute [[w]]p = [[x]]p + [[y]]p
3: CP and RP i execute Publish-CP&RP i to learn w = x+ y
4: return RP i corrects x = w − y

We could probably use a simpler version of Classify-IP?i for this purpose, because
the verification of correct sharing is actually a part of Publish-CP&RP i. Hence, we
could omit all the verification steps from Classify-IP?i . The idea of this protocol is very
simple, as the value y randomises the published result w and, thus, w reveals nothing
about x to CP i.
Theorem 6.4.1. The Publish-RP i protocol for declassifying shared secrets to result
parties is correct and as secure against a cheating CP i as Publish-CP&RP i.
Proof sketch. Both, correctness and security, result from the properties of the used sub-
protocols Addition, Classify-IP?i and Publish-CP&RP i. The correctness of the output
x = w − y follows trivially from the definition w = x+ y.

6.5 Precomputation

We do not have a full precomputation phase for this protection domain at the moment.
We introduce a protocol for generating random shares and discuss how the Beaver triple
protocols from Chapter 5 could be used to achieve the necessary share representation
and security guarantees.

69

6.5.1 Random share generation

Generating MAC tags is actually the same task as generating Beaver triples, only the
inputs are slightly different. An additively shared secret that needs the tag can be used
as one of the random inputs. The second is clearly the key so that the third element
of the triple is actually the tag value.

Although the key is not kept in the form of additive shares, we can assume that
CP i has the share as the value of the key ki and CPj has the share value as 0. This, as
well as the fact that we always use the same ki for all shares, allows us to somewhat
simplify the triple generation protocols, but the core ideas remain the same. All in
all, Beaver triple generation protocols can also be the key for generating protection
mechanisms to shares and thus, to generating single random values as well as triples.

More specifically, Classify-IP?i already introduced a way, how a third party can
generate a valid share representation. The value x is not known when the computing
parties generate a random value, but they could collaborate to share the tags modulo
N as shown in Algorithm 22. Afterwards, they could do the same conversion as in
Classify-IP?i .
Algorithm 22 Generating a random share (Singles)
Data: No input
Result: CP i have a shared secret [[x]]p for uniformly random x← Zp
1: Round: 1
2: CP i fixes ∆ = 0
3: CP i generates xi ← Zp, z(j)i ← ZNj

4: CP i computes and sends cj = Encpkj(kj · xi − z(j)i) to CPj
5: Round: 2
6: CP i computes z(i)i = ki · xi + Decpki(ci) mod Ni to learn [[z(i)]]Ni

7: CP collaboratively perform ShareConv to get [[z(1)]]p from [[z(1)]]N1 and [[z(2)]]p
from [[z(2)]]N2

Theorem 6.5.1. The Singles protocol for generating random shares with correct tags
is correct.

Proof sketch. We need that z(i)1 +z
(i)
2 = ki · (x1 +x2) mod p. We assume the correctness

of the share conversion and only show

z
(i)
1 + z

(i)
2 = ki · (x1 + x2) mod N .

In addition, we assume that ki · (x1 + x2) < N . We know that, by definition

z
(i)
i = ki · xi + ki · xj − z(i)j mod N ,

where it trivially follows that z(i) = ki · x mod N .

Similarly to the asymmetric version of the Singles protocol, we would actually need
a zero-knowledge proof that the messages ci are correctly formed. Currently, we could
not define a simulator for the ideal version of the Singles protocol where the parties
input xi because the messages that the parties send are independent of their inputs.
The ideal functionality that we would like to achieve is that the computing parties
input xi to the TTP who computes all the tag values and gives them back to the
computing parties.

70

Theorem 6.5.2. The communication of the Singles protocol for generating random
shares with correct tags is simulatable and the final value of x is uniformly distributed
in Zp, assuming computationally secure share conversion.

Proof sketch. The communication in the generation part of this protocol is clearly
simulatable as by definition ci is an encryption of a random value that does not depend
on the protocol inputs and can be simulated by sending an encryption of a random
value. The share conversion part can be simulated using the corresponding simulator.

Finally, if at least one participant is honest, then x is a uniformly random element
in Zp. This holds, because if one participant CP i is honest, then xi ← Zp is uniformly
distributed in Zp and so is x1 +x2, because party CPj does not receive any information
about the value of xi.

Differently from the asymmetric case this Singles protocol does not specify verifi-
cation and therefore we can not be sure that the share [[x]]p is correctly formed. This
means that we can not get the anti-framing property, but does not make the protocol
less secure as we would discover the wrongly formed share during the publishing. We
could add some verification as, for example, we could generate the values in pairs. For
each pair, the parties would randomly choose one value that they open and where both
CP i show that they know xi and z

(j)
i together with the randomness that they used

to compute cj. That means that with probability 1
2
we could notice cheating in this

protocol. A more general solution would be to add a zero-knowledge protocol about
the correctness of ci.

6.5.2 Beaver triples generation

As previously, we mainly check the correctness of the computations during the opening
phase, where the information-theoretic security of the MAC ensures the correctness
of the verification. We can use the protocol Triple Verification to ensure that both
the multiplicative relation of the triple holds and the MAC tags have been computed
correctly. The security of this check results from the security of the triple verification
and the security of the MAC algorithm.

One way to generate valid Beaver triples with all protection mechanisms would be
to at first generate two random values x and y together with MAC tags as in Singles
protocol. Then we could choose a Beaver triple protocol from Chapter 5 and run this
with input shares as additive shares of x and y to learn the additive shares of w = x ·y.
It would require some extra care to ensure that the Beaver triple protocol defined in
the semi-honest model protects the privacy of the inputs even in the presence of active
adversaries. Finally, the tags could be generated for w similarly to the tag generation
the the Singles protocol. This process should be finished with a full Triple Verification
protocol to ensure that the triples really have the multiplicative relation.

It currently seems most beneficial to use the basic Paillier Multiplication protocol with
CRT packing for modulus M that is k-bits shorter than the maximal length allowed
by M2 < N . This way, we can actually always optimistically correct the result w from
the Paillier Multiplication as w = w1 + w2 −N mod M and with probability more than
1 − 2−2k we have a correct w modulo M . This probability results from the fact that
with probability 1− 2−2k we pick w2 ← ZN such that w2 > xy and compute w1 > xy,
giving w1 + w2 > N . After generating the protection mechanisms, we anyway have to
perform Triple Verification the check the tags which also checks if the parties received

71

a correct w mod pi. The other possibility would be to use ShareConv-Triples with an
efficient OT protocol. It would require testing the corresponding implementation in
order to verify which can be more efficient.

6.6 Efficiency of the protocols

This section analyses the theoretical cost of the proposed protocols. We have two
important criteria: (1) computational cost and (2) communication cost. Figure 6.1
illustrates all our protocols for the symmetric protocol set and also marks the place for
the Triples protocol that was not specified.

Addition

Subtraction

Constant Multiplication

Constant Addition

Singles TriplesF Multiplication

Publish-CP i

Publish-both-CP i

Classify-CP i

Publish-CP&RP i

Classify-IP?i Publish-RP i

Figure 6.1: The hierarchy of the protocols for the symmetric setup

For simplicity of the analysis, we assume that both parties have chosen Paillier
keys of the same length |N1| ≈ |N2|. We need to consider three different classes
of operations: (1) operations on additive shares of length |p| bits, (2) operations on
Paillier ciphertexts of length 2|N | bits, and (3) operations of Paillier plaintext space of
length |N | bits.

6.6.1 Computational cost

Differently from the asymmetric setting, most of the online protocols do not need
any multiplications. Actually, the only computation protocols requiring multiplica-
tion operations are Multiplication, Constant Multiplication and Publish-CP i, whereas
Multiplication only uses multiplication operations from the Constant Multiplication and
Publish-CP i protocols. In all these cases, we only use |P | bit operands and get the
result of the same length. However, the protocols to communicate with third parties
add some complexity because there we also have to operate with ciphertexts of length
2|N | bits and plaintext space of |N | bits. Out of these, we only analyse Classify-IP?i
because Publish-RP i combines this with Publish-both-CP i and uses no additional mul-
tiplications. Finally, we also include the Singles precomputation protocol.

72

Party Length ConstMult Publish-CP i Classify-IP?i Singles

CP i
|p| 4 1 0 0
|N | 0 0 1 1
2|N | 0 0 3|N |+ |p|+ 1 2|N |+ |p|+ 1

IP i
RP i

|p| - - 0 -
|N | - - 0 -
2|N | - - 2|N |+ 2|p|+ 2 -

Table 6.1: The computational cost of protocols as a number of multiplications

As in the asymmetric setting, we assume that the Paillier encryption and decryption
have the computational complexity of |N | multiplications on elements of length 2|N |.
Addition under encryption has the cost of one multiplication and Encpk(m)k has the
cost of |k| multiplications.

Table 6.1 summarises the computational complexity of our independent protocols.
The complexity for Constant Multiplication results from the fact that all share elements
have to be multiplied with the public value. These protocols are symmetric for the
computing parties and the third party only participates in Classify-IP?i . However, for
Publish-CP i, we mean that only CP i, to who the value is opened to, has to do this
amount of work. From this we can see that actually the protocol Multiplication would
only require 11 multiplications of length p.

The computational complexity of Classify-IP?i for IP i results from the computation
of tag values under encryption where Encpk(k1)

x requires approximately |x| multipli-
cations, which we estimate by |p|. It is similar for the Singles protocol, only that the
work is done by CP i. We exclude the cost of share conversion from these protocols as
it mainly depends on the complexity of the chosen oblivious transfer protocol.

It is easy to see that the need to use encryption makes Classify-IP?i and Singles
very expensive compared to the online computation protocols. In addition, compared
to the asymmetric protocol set we have a very cheap Publish-CP i protocol.

6.6.2 Communication cost

The protocols that require communication are Publish-CP i, Classify-CP i, Multiplication,
Singles, Classify-IP?i and Publish-RP i. However, Multiplication and Classify-CP i only
require communication as part of the Publish-CP i protocol and Publish-RP i is just a
combination of Publish-CP i and Classify-IP?i . Thus, it is reasonable to only analyse
the communicational complexity of Publish-CP i, Classify-IP?i and Singles.

Party Length Publish-CP i Classify-IP?i Singles

CPj
|p| 2 2 2
|N | 0 0 0
2|N | 0 1 1

IP i
RP i

|p| - 2 -
|N | - 4 -
2|N | - 2 -

Table 6.2: The communication cost of the protocols as the number of messages of
different length

Table 6.2 gives an overview of the communication complexity of the Publish-CP i,
Classify-IP?i and Singles protocols. The lines for Publish-CP i should be read so, that in

73

this protocol, CPj has to send that many messages. The workload of the computing
parties is equal for the other protocols and they both have to send the given amount of
messages. Third parties have to send a given amount of messages in total and exactly
half of those are sent to each CP i.

Protocols Classify-IP?i and Singles exclude the cost of the OT as the protocol could
be used with different initialisations of OT or possibly with other binary share conver-
sion ideas than our idea with OT.

Analogously to the computational cost the usage of a cryptosystem also makes the
communication requirements of Classify-IP?i and Singles to stand out. Especially, since
the additional cost of the share conversion further increases the amount of messages.
However, from the straightforward relatively low cost of Publish-CP i we can also de-
rive that multiplication and Classify-CP i are communication efficient protocols in this
protection domain.

74

Chapter 7

Implementation

This chapter introduces the details of our implementation as well as the benchmark
results of the proposed protocol sets and some precomputation ideas.

7.1 Implementation platform

Our protocols are part of Sharemind 3 which is implemented in C++ as are our
protection domains. Sharemind currently uses RakNet [50] as a network layer and
Boost [13] for multi-threading and configuration. We used a popular free C++ cryp-
tography library Crypto++ [20] for the functionality of the elliptic curves. In addition,
the GNU Multiple Precision library (GMP) [34] was used to get unbounded integers
needed to represent shares and ciphertexts in our implementation. The implementation
of the Paillier cryptosystem is similar to [48], but ported to GMP.

7.2 Secure computation capabilities

The asymmetric protocol set is implemented as a Sharemind protection domain kind
defining share operations for addition, subtraction and multiplication. In addition,
there are special protocols to multiply a share with a public value and to add a pub-
lic value to the share. All these protocols have been implemented as operations on
vectors applying the suitable function component-wise. Besides these online protocols,
the asymmetric protection domain also contains protocols for precomputing random
values and multiplicative triples. These protocols are executed as needed to keep some
threshold of precomputations available. In the future we might also consider the re-
stricted configuration where all triples needed to execute a previously define algorithm
are generated beforehand and not replaced during the computations.

Currently, the controller side of this PD, consisting of communication with non-
computing parties, has not been implemented because the infrastructure of Share-
mind 3 does not yet fully support this functionality. It is future work to implement
these as well as a full setup phase. Current implementation is sufficient to give insights
to the usability of this PD.

The symmetric protocol set only includes the online protocols for working with the
data. This includes classifying, publishing, addition, subtraction, and multiplication on
the shares, as well as adding or multiplying a shared value and a public constant. This
online phase is accompanied by an insecure precomputation phase to produce singles

75

and triples necessary for testing online computations. It is future work to specify
and implement a real precomputation phase. It is reasonable to test the online phase
independently of the precomputations to see if it proves efficient enough to continue
with these ideas. Similarly to the asymmetric case, the protocols to communicate with
non-computing parties have not been implemented.

Two of the most promising protocols for Beaver triple generation were also imple-
mented for testing purposes. At the moment they do not form a full precomputation
phase for any PD. The B-Triples protocol is implemented with packing as built to the
algorithm description. Protocol ShareConv-Triples is implemented in a general man-
ner that is independent of the packing and tested using packing with CRT. We use a
computationally private information retrieval (CPIR) [38] protocol to perform share
conversion in ShareConv-Triples. CPIR is suitable for replacing OT in the semi-honest
setting where our triple generation currently works. We used a 1-out-of-2 initialisation
from [41] with the Paillier cryptosystem that is more communication efficient than AIR
OT from Algorithm 16.

7.3 Performance measurements

The tests were executed on the Sharemind cluster where each miner ran in a different
machine and they were communicating over LAN. Each of the cluster machines had
48 GB of RAM, two Intel Xeon X5670 CPUs and were connected with 1 GB/s LAN
connection.

All the given results are average running times of the operations over at least ten
repeated tests, more tests were used for faster operations. Column length denotes the
length of the input and output vectors, other columns in the following tables denote
various implemented protocols.

All the experiments were executed using a SecreC script. We recorded the running
times of each independent execution of separate operations. These results are fixed
at a miner level, thus allowing us to get separate measurements from both miners.
The latter is mostly important for the online protocols of the asymmetric protocol
set. It is important to note that the precomputations are running in parallel with
online operations during the measurements of the online phase. This mostly affects
the multiplication operation because it uses up a lot of precomputed triples that need
to be replaced.

7.3.1 Online protocols

This section analyses the time requirements of the online phase of the asymmetric and
symmetric protocol sets. We use the asymmetric setting with 2048-bit key and give
the symmetric setting for 2048-bit prime as a comparison to that, as they represent
similar data types. In addition, we compare the efficiency of the two computing parties
in the asymmetric setting and give a 65-bit version of the symmetric PD.

Tables 7.1 and 7.2 illustrate the time requirements of the two computing parties in
the asymmetric setting. Theoretical analysis in Section 4.6 indicated that this setup
results in unbalanced workload for the two computing parties, and our measurements
also reflect this. Local protocols of CP1 are two to three times faster than the same
protocols for CP2 who also has to compute with ciphertexts. There is less difference
for publishing or multiplication protocols as those are collaborative and it is likely that

76

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 21.28 0.03 0.06 0.002 0.15 218.57
10 197.67 0.10 0.41 0.008 1.37 572.57
100 1974.02 0.62 3.93 0.037 13.49 4135.15
1000 19 732.16 6.27 38.87 0.170 134.19 39 866.97
10000 197 276.02 72.75 400.92 3.652 1343.81 392 461.09

Table 7.1: Time requirements of asymmetric computation protocols for party CP1 in
Sharemind (milliseconds)

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 24.76 0.02 0.11 0.003 0.47 222.54
10 210.76 0.15 0.98 0.004 4.65 599.92
100 2103.54 1.38 9.64 0.025 46.19 4399.50
1000 20 919.80 13.92 96.69 0.227 461.83 42 510.33
10000 209 190.81 172.94 989.36 5.749 4613.70 418 776.28

Table 7.2: Time requirements of asymmetric computation protocols for party CP2 in
Sharemind (milliseconds)

CP1 has to wait until CP2 finishes some computations and answers on the network,
before the parties can continue. Time requirements of both miners demonstrate a
linear growth as the test inputs increase, illustrating that we actually do not gain
much from vectorisation and that the computations are more likely to be CPU than
network bounded.

The asymmetric setting can be compared to the symmetric setting with a 2048-bit
modulus. Comparing the asymmetric results in Tables 7.1 and 7.2 to those of the
symmetric protocols in Table 7.3 reveals that the gain from the symmetric protocol is
significant. The declassifying and, thus, also multiplication protocols have gained most
as there are no more encryption operations involved in the symmetric setting.

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 10.28 0.01 0.01 0.003 0.01 110.48
10 10.56 0.03 0.05 0.004 0.03 112.36
100 9.94 0.26 0.39 0.024 0.24 127.89
1000 11.27 2.71 3.89 0.175 1.41 223.09
10000 22.65 34.83 48.63 2.534 12.27 1147.97

Table 7.3: Time requirements of symmetric computation protocols for 2048-bit modulus
in Sharemind (milliseconds)

A new trend in the symmetric setting is that the times to declassify a value or
multiply shares do not increase linearly as the input size grows, at least for small
input sizes. This probably indicates that these protocols depend more on the network
speed than computation power. The sudden growth in multiplication cost for length
10000 can be explained by the fact it has to perform several Publish operations and the
network capacity may become a bottleneck. In addition, it requires as many triples as
the input length and, thus, there is continuous precomputation in the background to
replace those triples. These trends can be especially well seen from Table 7.4 which
also includes longer input lengths.

The comparison of Table 7.3 to Table 7.4 shows, that the considerable differences
in the data type size affect the running time less than we might expect. According

77

Length Publish Add Subtract ConstAdd ConstMult Multiply
1 10.51 0.02 0.01 0.005 0.01 55.79
10 10.27 0.04 0.02 0.007 0.01 56.76
100 10.16 0.23 0.19 0.023 0.05 54.33
1000 11.01 1.37 1.75 0.188 0.62 65.84
10000 24.77 13.56 17.84 0.886 4.49 203.48
100000 102.27 146.48 185.64 10.462 46.20 1880.76
1000000 846.05 1467.25 1682.50 97.189 460.60 14 084.73

Table 7.4: Time requirements of symmetric computation protocols for 65-bit modulus
in Sharemind (milliseconds)

to Tables 7.3 and 7.4, computation with 65-bit modulus in only two to three times
faster than computing with 2048-bit modulus. The difference between using 65-bit
and 33-bit modulus illustrated the same trend where 33-bit modulus is only slightly
faster than 65-bit. The surprising result that ConstMult is faster than Add results from
the specifics of our setup where the public value is a uniformly random 32-bit element,
which is small compared to general tested values. Measuring the symmetric setup with
33-bit prime gives a better estimate where ConstMult is actually approximately three
times slower than Add.

These results clearly show that the symmetric setting can be more efficient than the
asymmetric one, as expected. However, the symmetric PD can only be made usable
if there also exists a reasonably efficient precomputation phase. In conclusion, the
protocol set for the symmetric setup is a reasonable focus for future developments.

For simple comparison, in traditional Sharemind three miners PD multiplication
of vectors of length 10000 took less than 100 milliseconds and was close to that also for
shorter input lengths of 32-bit secrets [12]. Our asymmetric protocol set is significantly
slower than that, but actually our symmetric protocol set can show similar speeds
for 65 or 33-bit moduli. The main difference here is of course that [12] does not
do precomputations. Covertly secure SPDZ [23] for two-parties reports doing 64-bit
multiplications of input length 10000 in about 76 milliseconds for one thread and
vectorised inputs. Our symmetric protocol set is currently slightly slower than that,
but seems to be a good step from the asymmetric version.

7.3.2 Precomputation protocols

This section analyses the behaviour of our precomputation protocols. Table 7.5 gives
the results of the time requirements of the precomputation of the asymmetric protection
domain. The precomputation phase of the asymmetric protocol set is clearly less
efficient than the online phase. In addition, measured results also indicate that the
zero-knowledge proofs are the most expensive part of these protocols as also noted in
Section 4.6. The proofs take approximately 4

5
of time in the singles protocol and 3

4
of

total time in the triples protocol. We need approximately 1.6 seconds for one 2048-bit
triple, whereas SPDZ [23] can prepare one 128-bit triple in 0.4 seconds.

Protocol B-Triples is used exactly as given in its protocol description in Algorithm 15
as packing smaller data types was native to this algorithm. The ShareConv-Triples from
Algorithm 17 is benchmarked using the packing idea based on the Chinese remainder
theorem. We only consider packings where all packed moduli are of equal bit length
for simpler exposition and comparison. We chose 65-bit and 33-bit moduli as they are

78

Length Singles with ZK Triples with ZK Singles Triples
1 315 1852 42 529
10 2335 15 786 402 4699
100 22 492 154 853 4014 46 487
1000 226 923 1 544 571 40 257 464 853
10000 2 233 351 15 464 414 402 658 4 678 799

Table 7.5: Time requirements of asymmetric precomputation protocols in Sharemind
(milliseconds)

sufficient to keep traditional 32-bit or 64-bit integers in them.
The CRT packing enables us to pack 15 elements of length 65-bits and 31 elements

of length 33-bits into one ciphertext for 2048-bit modulus. This also explains the
phenomena in Table 7.6 that lengths 1 and 10 take the same time for Algorithm 17—
in both cases they are packed into one ciphertext and the main algorithm has the
same workload. Difference between packing efficiency results in the approximately
double difference between efficiency of 33-bit and 65-bit versions of these algorithms.
Theoretical analysis in Section 5.4 showed that ShareConv-Triples is the most efficient
of our proposals and the measurements clearly illustrate this. ShareConv-Triples can
prepare about 186 packed 65-bit triples in a second, which is approximately 12 triple
generation operations. In comparison, this means that ShareConv-Triples can prepare a
semi-honestly secure 65-bit triple in 0.005 seconds, and SPDZ can prepare an actively
secure 64-bit triple in 0.027 seconds [23].

B-Triples ShareConv-Triples
Length 33-bit 65-bit 33-bit 65-bit

1 63 64 152 155
10 287 311 153 153
100 2617 2767 398 661
1000 25 686 27 199 2789 5458
10000 256 775 270 903 26 948 53 674

Table 7.6: Time requirements of Beaver triple protocols with packing in Sharemind
(milliseconds)

For linear packing in B-Triples, we use a security constant σ = 112, which enabled
us to pack 11 elements of 33-bits and 8 elements of length 65-bit into 2048-bit of
plaintext space. Both this packing inefficiency and considerably higher requirements
on the network made this less efficient than ShareConv-Triples. These packing counts
also explain the relatively small difference in runningtimes for 33 and 65-bit cases.
For both of these moduli, CP1 has to encrypt all length elements and the gain of
packing only comes from a shorter result it gets back from CP2 which also lessens the
amount of decryptions. Hence, the effect the packing has on the overall performance
is substantially smaller than for packing with CRT, but the latter gain most from
reducing the amount of necessary encryption and decryption functions.

In conclusion, it seems realistic to combine one of our Beaver triple protocols with
CRT packing and share conversion to use it as full precomputation in the symmetric
setting. The main open issue is defining efficient general share conversion that applies
to additive shares and protection mechanisms.

79

Chapter 8

Conclusions

Secure multi-party computation is a general solution for privacy preserving data pro-
cessing tasks. This thesis explores the subcase of SMC for two computing parties with
the additional benefit that the parties can detect faults in the computation results. The
main tools used to achieve this are an additively homomorphic cryptosystem, additive
secret sharing and message authentication codes. We introduced a popular computa-
tion model that divides work to preprocessing and online phase. The latter is used
to prepare some randomness that helps to speed up computations in the online phase,
that performs all desired computations.

The goal of this thesis is to propose and implement new protocols for secure two-
party computation for both online and precomputation phase. We concentrate mostly
on common operations as sharing and publishing secret data as well as addition and
multiplication. The latter is commonly implemented using Beaver triples, that are
prepared in the offline phase. One of the important goals of our protocol sets is to define
efficient generation of Beaver triples using an additively homomorphic cryptosystem.

The main result of this thesis is the introduction of three different flavours of setup
for secure two-party computation, including asymmetric, symmetric and shared key
setup. Their theoretical differences are stressed by the exact initialisation and imple-
mentation of the first two. For our initialisation, the symmetric setup is both more
efficient and more flexible than the asymmetric setting. The shared key setup is pre-
sumably more efficient than the symmetric one, but adds additional complexity to
verify the correctness of both computing parties.

The main goal of the Beaver triple generation protocols is to maximise the total bit
length of the triples we can obtain from one multiplication using the Paillier cryptosys-
tem. The main difficulties are coming up with a good way to pack smaller elements
into the plaintext space of the Paillier cryptosystem and modifying the multiplication
with the Paillier cryptosystem to give correct results for other moduli than the Pail-
lier modulus. Two possibilities to pack smaller values into the plaintext space include
linear packing and packing using the Chinese remainder theorem. The former is useful
because it proposes no limits to the packed types, but the latter can be more efficient.
We can also correct the results of the Paillier multiplication by analysing the potential
outcomes of the protocol and collaboratively deciding which of those happened.

Current results show that actively secure multi-party computation is significantly
slower than passively secure versions. However, our results indicate that fully imple-
mented symmetric protocol set could be close to the performance of the SPDZ frame-
work that is the current leader in actively secure multi-party computation frameworks.
In addition, achieving security against malicious adversaries can be very important for

80

data mining tasks that have important economical or societal outcomes. Therefore,
in many cases the extra time consumption is a reasonable trade-off for the additional
layer of security.

Future work should extend the symmetric setup to include a full precomputation
phase and add new operations to both introduced protocol sets. In addition, an im-
plementation of the shared key setup using precomputation with Paillier cryposystem
would provide an interesting comparison to the existing asymmetric and symmetric
setups. Furthermore, the protocols for collecting inputs or returning outputs should
be implemented to allow us to use these protection domains in real world applications.
Likewise, it would be important to fully specify the universally composability of each
protocol as well as define protocols for setting up the necessary keys of the protection
domains.

81

Kahe osapoolega turvaline ühisarvutus: efektiivne Be-
averi kolmikute genereerimine

Magistritöö

Pille Pullonen

Resümee

Turvaline ühisarvutus võimaldab salajaste sisenditega funktsioone väärtustada ning
seeläbi lahendada turvaliselt mitmeid andmetöötlusülesandeid. Passiivselt turvaline
ühisarvutus kindlustab, et kui kõik osapooled järgivad protokolli, siis jäävad sisen-
did salajaseks ning väljundid on õiged. Aktiivne turvamudel tagab privaatsuse ka siis,
kui osapooled ei käitu ausalt ning võimaldab kontrollida saadud tulemuste korrektsust.

Käesolev töö uurib turvaliste ühisarvutuste erijuhtu, kus on kaks arvutavat osa-
poolt. Neile lisaks võib olla ka kolmandaid osapooli, kes annavad arvutusele sisendeid
või soovivad saada tulemusi. Töö peamiseks eesmärgiks on kirjeldada aktiivses mudelis
turvalisi kahe osapoolega protokollistike ning implementeerida need turvalise ühisar-
vutuse raamistikus Sharemind. Meie protokollid on jagatud kahte osasse: ettearvu-
tamine ning tööfaas. Efektiivse ettearvutamise saavutamiseks vaatleme eraldi, kuidas
genereerida Beaveri kolmikuid, mis võimaldavad tööfaasis teha kiiret korrutamist.

Kahe osapoolega ühisarvutuse ülesseadmiseks on vähemalt kolm erinevat võimalust:
asümmeetriline, sümmeetriline ja jagatud konfiguratsioon. Käesolev töö keskendub ka-
hele esimesele ning defineerib kummagi jaoks konkreetse protokollistiku näite. Kolmas
on olemas meie tööd oluliselt mõjutanud SPDZ protokollistikus. Meie põhiline töö-
riist aktiivses mudelis turvalisuse saavutamiseks on sõnumiautentimiskood, mille abil
kontrollitakse salastatud väärtuste korrektsust. Ebasümmeetrilises protokollistikus ka-
sutame lisaks ka kinnistusskeeme ja nullteadmustõestusi. Mõlemad protokollistikud põ-
hinevad aditiivsel ühissalastusel. Nii meie teoreetiliste arutluste kui implementatsiooni
järgi on sümmeetriline protokollistik efektiivsem ning paindlikum kui ebasümmeetrili-
ne. Eelkõige on sümmeetriline praktilisem, sest võimaldab vähese vaevaga defineerida
erineva suurusega andmetüüpe.

Ettearvutamise osas keskendusime eelkõige Beaveri kolmikute ehk juhusliku väärtu-
sega multiplikatiivsete kolmikute (a, b, c) genereerimisele, kusjuures a, b on juhuslikud,
ning c = a · b. Kasutame selleks aditiivselt homomorfset Paillier’ krüptosüsteemi ning
klassikalist algoritmi aditiivselt jagatud andmete korrutamiseks Paillier’ krüptosüstee-
mi kasutades. Peamiseks väljakutseks on selle algoritmi kohandamine erinevatele and-
metüüpidele sõltumata krüptosüsteemi jaoks defineeritud moodulist. Eelkõige vaatame,
kuidas garanteerida, et korrutamisprotokoll annaks sõltumata moodulist korrektseid
tulemusi. Selgub, et võimalikud tekkivad vead on hästi defineeritud ning arvutavad
osapooled saavad turvaliselt kontrollida, kas viga esines või mitte.

Efektiivsuse tõstmiseks analüüsime ka erinevaid viise, kuidas väiksemaid andme-
tüüpe Paillier’ avateksti sisse pakkida nii, et lõpptulemusena saame iga pakitud ele-
mendi jaoks korrektse kolmiku. Elemente saab pakkida nii lineaarselt kui ka Hiina jää-
giteoreemi kasutades. Meie tulemuste kohaselt on viimane neist pakkimise mõttes efek-
tiivsem, kuid seab lisapiiranguid pakitud elementide moodulitele. Praktikas tähendab
see, et Hiina jäägiteoreemi järgi pakkimisele lisaks võime me vajada ka algoritme jaga-
tud andmete mooduli vahetamiseks.

82

Realiseerisime nii asümmeetrilise kui sümmeetrilise protokollistiku tööfaasi ja asüm-
meetrilise protokollistiku ettearvutamise faasi. Lisaks realiseerisime ühe lineaarse pak-
kimisega ning ühe ühe Hiina jäägiteoreemil põhineva pakkimisega Beaveri kolmikute
genereerimise protokolli. Katsed näitavad, et aktiivselt turvalise sümmeetrilise proto-
kollistiku tööfaas on rohkem kui kaks korda ajamahukam kui traditsiooniline kolme
osapoolega passiivselt turvaline Sharemindi protokollistik. Samas on jõudluse vahe
piisavalt väike selleks, et sümmeetriline protokollistik oleks praktikas kasutatav. Lisaks
võivad tugevamated turvagarantiid paljude kriitilise tähtsusega andmetöötlusülesanne-
te lahendamisel kaaluda üles jõudluse puudujäägid.

Ettearvutamise osas on selgelt näha, et asümmeetriline protokollistik jääb oluliselt
alla SPDZ protokollistiku täishomomorfsel krüposüsteemil põhinevale ettearvutamise-
le. Samas on meie Hiina jäägiteoreemil põhinev pakkimismeetod koos sobiva kolmikute
genereerimise meetodiga piisavalt efektiivne, et oleks võimalik selle alusel defineerida
ettearvutusfaas sümmeetrilisele protokollistikule.

83

Bibliography

[1] Aiello, W., Ishai, Y., and Reingold, O. Priced oblivious transfer: How to
sell digital goods. In Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques: Advances in Cryptology (London,
UK, UK, 2001), EUROCRYPT ’01, Springer-Verlag, pp. 119–135.

[2] Barak, B., Canetti, R., Nielsen, J. B., and Pass, R. Universally compos-
able protocols with relaxed set-up assumptions. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (Washington, DC, USA,
2004), FOCS ’04, IEEE Computer Society, pp. 186–195.

[3] Barker, E., Barker, W., Burr, W., Polk, W., and Smid, M. Recommen-
dation for key management – part 1: General (revision 3). Tech. rep., National
Institute of Standards and Technology, 2012. NIST Special Publication 800-57.

[4] Beaver, D. Efficient multiparty protocols using circuit randomization. In
Proceedings of the 11th Annual International Cryptology Conference. CRYPTO
’91 (1991), J. Feigenbaum, Ed., vol. 576 of Lecture Notes in Computer Science,
Springer, pp. 420–432.

[5] Beaver, D., Micali, S., and Rogaway, P. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing (New York, NY, USA, 1990), STOC ’90, ACM, pp. 503–513.

[6] Ben-Or, M., Goldwasser, S., and Wigderson, A. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the twentieth annual ACM symposium on Theory of computing (New York, NY,
USA, 1988), STOC ’88, ACM, pp. 1–10.

[7] Bendlin, R., Damgård, I., Orlandi, C., and Zakarias, S. Semi-
homomorphic encryption and multiparty computation. In Proceedings of the
30th Annual international conference on Theory and applications of cryptographic
techniques: advances in cryptology (Berlin, Heidelberg, 2011), EUROCRYPT’11,
Springer-Verlag, pp. 169–188.

[8] Blakley, G. R. Safeguarding cryptographic keys. In Proceedings of the 1979
AFIPS National Computer Conference (1979), vol. 48, pp. 313–317.

[9] Bogdanov, D. Sharemind: programmable secure computations with practical
applications. PhD thesis, University of Tartu, 2013. http://hdl.handle.net/
10062/29041.

84

[10] Bogdanov, D., Laud, P., and Randmets, J. Domain-polymorphic program-
ming of privacy-preserving applications.

[11] Bogdanov, D., Laur, S., and Willemson, J. Sharemind: A framework
for fast privacy-preserving computations. In Proceedings of the 13th European
Symposium on Research in Computer Security - ESORICS’08 (2008), S. Jajodia
and J. Lopez, Eds., vol. 5283 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, pp. 192–206.

[12] Bogdanov, D., Niitsoo, M., Toft, T., and Willemson, J. High-
performance secure multi-party computation for data mining applications. Int.
J. Inf. Sec. 11, 6 (2012), 403–418.

[13] Boost - C++ libraries. http://www.boost.org/. Last accessed 2013-04-02.

[14] Brakerski, Z., and Vaikuntanathan, V. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Proceedings of the
31st annual conference on Advances in cryptology (Berlin, Heidelberg, 2011),
CRYPTO’11, Springer-Verlag, pp. 505–524.

[15] Brier, E., and Joye, M. Weierstraß elliptic curves and side-channel attacks.
In Public Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography (2002), vol. 2274 of Lecture Notes in
Computer Science, Springer, pp. 335–345.

[16] Canetti, R. Universally composable security: a new paradigm for cryptographic
protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on (oct. 2001), pp. 136 – 145.

[17] Canetti, R., Kushilevitz, E., and Lindell, Y. On the limitations of univer-
sally composable two-party computation without set-up assumptions. In Proceed-
ings of the 22nd international conference on Theory and applications of crypto-
graphic techniques (Berlin, Heidelberg, 2003), EUROCRYPT’03, Springer-Verlag,
pp. 68–86.

[18] Canetti, R., Lindell, Y., Ostrovsky, R., and Sahai, A. Universally com-
posable two-party and multi-party secure computation. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing (New York, NY,
USA, 2002), STOC ’02, ACM, pp. 494–503.

[19] Chaum, D., Crépeau, C., and Damgård, I. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on Theory of
computing (New York, NY, USA, 1988), STOC ’88, ACM, pp. 11–19.

[20] Dai, W. Crypto++ library. http://www.cryptopp.com/. Last accessed 2013-04-02.

[21] Damgård, I., Geisler, M., Krøigaard, M., and Nielsen, J. B. Asyn-
chronous multiparty computation: Theory and implementation. In Proceedings of
the 12th International Conference on Practice and Theory in Public Key Cryptog-
raphy: PKC ’09 (Berlin, Heidelberg, 2009), Irvine, Springer-Verlag, pp. 160–179.

85

[22] Damgård, I., and Jurik, M. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In Proceedings of the 4th In-
ternational Workshop on Practice and Theory in Public Key Cryptography: Public
Key Cryptography (London, UK, UK, 2001), PKC ’01, Springer-Verlag, pp. 119–
136.

[23] Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., and
Smart, N. P. Practical covertly secure MPC for dishonest majority – or:
Breaking the SPDZ limits. Cryptology ePrint Archive, Report 2012/642, 2012.
http://eprint.iacr.org/.

[24] Damgård, I., and Nielsen, J. B. Scalable and unconditionally secure mul-
tiparty computation. In Proceedings of the 27th annual international cryptology
conference on Advances in cryptology (Berlin, Heidelberg, 2007), CRYPTO’07,
Springer-Verlag, pp. 572–590.

[25] Damgård, I., and Orlandi, C. Multiparty computation for dishonest majority:
from passive to active security at low cost. In Proceedings of the 30th annual
conference on Advances in cryptology (Berlin, Heidelberg, 2010), CRYPTO’10,
Springer-Verlag, pp. 558–576.

[26] Damgård, I., Pastro, V., Smart, N., and Zakarias, S. Multiparty com-
putation from somewhat homomorphic encryption. Cryptology ePrint Archive,
Report 2011/535, 2011. http://eprint.iacr.org/.

[27] Dierks, T., and Rescorla, E. RFC 5246 - The transport layer security (TLS)
protocol version 1.2. http://tools.ietf.org/html/rfc5246, August 2008. Last
accessed 2013-05-14.

[28] Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE
Transactions on Information Theory 22, 6 (1976), 644–654.

[29] El Gamal, T. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO’84 on Advances in cryptology
(New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 10–18.

[30] Feldman, P. A practical scheme for non-interactive verifiable secret sharing. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science
(Washington, DC, USA, 1987), SFCS ’87, IEEE Computer Society, pp. 427–438.

[31] Fouque, P.-A., Poupard, G., and Stern, J. Sharing decryption in the con-
text of voting or lotteries. In Proceedings of the 4th International Conference
on Financial Cryptography (London, UK, UK, 2001), FC ’00, Springer-Verlag,
pp. 90–104.

[32] Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st annual ACM symposium on Theory of computing (New York, NY, USA,
2009), STOC ’09, ACM, pp. 169–178.

[33] Giry, D. BlueKrypt - cryptographic key length recommendation. http://www.
keylength.com. Last accessed 2013-04-02.

86

[34] Granlund, T. GMP: The GNU multiple precision arithmetic library. http:
//gmplib.org/. Last accessed 2013-04-02.

[35] Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., and Wehren-
berg, I. TASTY: tool for automating secure two-party computations. In Pro-
ceedings of the 17th ACM conference on Computer and communications security
(New York, NY, USA, 2010), CCS ’10, ACM, pp. 451–462.

[36] Hirt, M., and Maurer, U. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In Proceedings of the
sixteenth annual ACM symposium on Principles of distributed computing (New
York, NY, USA, 1997), PODC ’97, ACM, pp. 25–34.

[37] Hirt, M., and Maurer, U. Player simulation and general adversary structures
in perfect multiparty computation. JOURNAL OF CRYPTOLOGY 13 (2000),
31–60.

[38] Kushilevitz, E., and Ostrovsky, R. Replication is not needed: single
database, computationally-private information retrieval. In Proceedings of the
38th Annual Symposium on Foundations of Computer Science (Washington, DC,
USA, 1997), FOCS ’97, IEEE Computer Society, pp. 364–.

[39] Laur, S., and Lipmaa, H. A new protocol for conditional disclosure of secrets
and its applications. Applied Cryptography and Network Security (2007), 1–19.

[40] Laur, S., and Zhang, B. Lightweight zero-knowledge proofs for crypto-
computing protocols. Cryptology ePrint Archive, Report 2013/064, 2013. http:
//eprint.iacr.org/.

[41] Lipmaa, H. First cpir protocol with data-dependent computation. In Proceed-
ings of the 12th international conference on Information security and cryptology
(Berlin, Heidelberg, 2010), ICISC’09, Springer-Verlag, pp. 193–210.

[42] Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. Fairplay - a secure two-
party computation system. In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13 (Berkeley, CA, USA, 2004), SSYM’04, USENIX
Association, pp. 20–20.

[43] Recommended elliptic curves for federal government use. Tech. rep., National
Institute of Standards and Technology, 1999. http://csrc.nist.gov/groups/ST/
toolkit/documents/dss/NISTReCur.pdf.

[44] Nielsen, J. B., Nordholt, P. S., Orlandi, C., and Burra, S. S. A new
approach to practical active-secure two-party computation. In Advances in Cryp-
tology – CRYPTO 2012, R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 681–700.

[45] Paillier, P. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of the 17th international conference on Theory and appli-
cation of cryptographic techniques (Berlin, Heidelberg, 1999), EUROCRYPT’99,
Springer-Verlag, pp. 223–238.

87

[46] Pedersen, T. P. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Proceedings of the 11th Annual International Cryptology Confer-
ence on Advances in Cryptology (London, UK, UK, 1992), CRYPTO ’91, Springer-
Verlag, pp. 129–140.

[47] Pfitzmann, B., and Waidner, M. A model for asynchronous reactive systems
and its application to secure message transmission. In Proceedings of the 2001
IEEE Symposium on Security and Privacy (Washington, DC, USA, 2001), SP
’01, IEEE Computer Society, pp. 184–.

[48] Pullonen, P., Bogdanov, D., and Schneider, T. The design and imple-
mentation of a two-party protocol suite for Sharemind 3. Tech. rep., Cybernetica
AS Institute of Information Security, 2012. http://research.cyber.ee.

[49] Rabin, T., and Ben-Or, M. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing (New York, NY, USA, 1989), STOC ’89, ACM, pp. 73–85.

[50] RakNet - multiplayer game network engine. http://www.jenkinssoftware.com/.
Last accessed 2013-04-02.

[51] Schnorr, C.-P. Efficient identification and signatures for smart cards. In Ad-
vances in Cryptology - EUROCRYPT ’89, J.-J. Quisquater and J. Vandewalle,
Eds., vol. 434 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 1990, pp. 688–689.

[52] Shamir, A. How to share a secret. Communications of the ACM 22, 11 (Nov.
1979), 612–613.

[53] Sharemind. http://sharemind.cyber.ee. Last accessed 2013-04-19.

[54] Smart, N., and Vercauteren, F. Fully homomorphic SIMD operations. De-
signs, Codes and Cryptography (2012), 1–25.

[55] Tate, S. R., and Xu, K. On garbled circuits and constant round secure function
evaluation. Tech. rep., University of North Texas, 2003.

[56] Yao, A. C. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (Washington, DC, USA, 1982),
SFCS ’82, IEEE Computer Society, pp. 160–164.

88

Non-exclusive licence to reproduce thesis and make thesis public

I, Pille Pullonen, (date of birth: 06.01.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of
the copyright,

Actively secure two-party computation: Efficient Beaver triple generation

supervised by Sven Laur, Tuomas Aura, and Dan Bogdanov.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2013

89

Appendix G

A Practical Analysis of Oblivious Sorting
Algorithms for Secure Multi-party
Computation

The paper “A Practical Analysis of Oblivious Sorting Algorithms for Secure Multi-party Computation” [11]
follows.

212

A Practical Analysis of Oblivious Sorting Algorithms for
Secure Multi-party Computation

Anonymous submission to ASIACCS 2014

ABSTRACT
Cryptographic secure computing methods like secure multi-
party computation, circuit garbling and homomorphic en-
cryption are becoming practical enough to be usable in ap-
plications. Such applications need special data-independent
sorting algorithms to preserve privacy. In this paper, we
describe the design and implementation of four different
oblivious sorting algorithms. We improve two earlier designs
based on sorting networks and quicksort with the capability
of sorting matrices. We also propose two new designs—a
naive comparison-based sort with a low round count and an
oblivious radix sort algorithm that does not require any pri-
vate comparisons. We implement all algorithms and present
a thorough complexity and performance analysis, including
runtime, network use and memory use analysis.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems—Sorting and searching

General Terms
Algorithms, Experimentation, Performance

Keywords
Privacy, algorithms, sorting, implementation, performance
analysis, secure multi-party computation

1. INTRODUCTION
One of the main challenges in data analysis is getting the

best data for solving the problem. However, the data are
not always available, because their owners do not want to
share information because of privacy concerns. We need a
solution that allows controlled data mining that preserves
the privacy of the data owners.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Several solutions have been proposed for privacy-preserving
data mining. Anonymization techniques like k-anonymity [22],
l-diversity [18] and others [10] transform data by adding
noise so that certain statistical properties remain, but indi-
vidual records do not disclose private information. However,
statistical de-anonymization is an efficient counter-measure
against anonymization, especially if auxiliary information is
present [19].

Differential privacy [8] is another algorithm transforma-
tion approach that adds noise to preserve privacy. It is an
efficient method for building private data analysis tools when
initialised with correct threshold parameters.

Cryptographic techniques like secure multi-party compu-
tation (SMC) have gained popularity as they have become
more efficient. Initial cryptographic protocols were tailored
for particular tasks like the scalar product [12], but pro-
grammable SMC has gained efficiency and has become as
fast or even faster.

Some of the fastest SMC systems [4, 3, 7] are based on se-
cret sharing [21]. Secret sharing is a cryptographic primitive
for securely sharing confidential information among several
parties. There exist SMC protocols that allow secret-shared
data to be processed without reconstructing the original se-
crets. There are also encryption schemes that allow such
processing [20, 11], but they are less efficient at this time.

Sorting is an important operation in privacy-preserving
data analysis and data mining. In addition to its obvious use
in ordering data, sorting is used for finding ranked elements
(top-k, quantiles), performing group-level aggregations and
implementing statistical tests.

1.1 Related work
Several oblivious sorting methods use oblivious shuffling [17].

In [13], Hamada et al. propose a generic blueprint for con-
verting any comparison-based sorting algorithm into an obliv-
ious sorting algorithm.

Sorting networks [16] are another suitable tool for design-
ing oblivious sorting algorithms, as they have a fixed struc-
ture and are easy to implement on secure computation sys-
tems. Previously, oblivious sorting networks in SMC context
are used in [15, 23].

In [24], Zhang proposes multiple constant-round sorting
schemes for secret sharing schemes. These include count-
ing sort, arrayless bead sort and sorting key-indexed data.
These schemes assume a known range of inputs and the au-
thor proposes to use radix sort on top of these protocols to
deal with larger ranges.

1.2 Our contribution
In this paper we propose two new sorting algorithms — a

naive comparison-based sorting algorithm with a low round
count that is suitable for sorting short vectors and an oblivi-
ous radix sorting algorithm that does not declassify compar-
ison results and works in data-independent time. Addition-
ally, our radix sorting algorithm does not require oblivious
comparisons, making it compatible with more SMC systems.
We give a construction for using these algorithms and pre-
vious work on sorting networks and comparison-based algo-
rithms to sort matrices by values in one or more columns. Fi-
nally, we implement all of the mentioned sorting algorithms
and give a thorough analysis of their running time, network
communication complexity and memory consumption. Our
benchmark results are measured on implementation devel-
oped for the Sharemind secure computation platform [1].
The algorithms are implemented using the SecreC pro-
gramming language [2]. We implemented all the algorithms
on the same platform to perform a fair comparison of the
implementations.

2. REQUIREMENTS FOR OBLIVIOUS
SORTING ALGORITHMS

Most oblivious sorting algorithms in this paper are not de-
signed for a particular secure computation technology. How-
ever, we analyze the efficiency of the algorithms in an SMC
environment based on secret sharing. We focus on solutions
based on secret sharing, as they currently provide the fastest
practical implementations. In this setting, n parties evalu-
ate a function f(x1, . . . , xn) = (y1, . . . , yn) so that party i
will learn its input xi, output yi and nothing else.

Secret sharing [21] allows us to hide secret values by split-
ting them into random shares that are distributed among the
parties. In additive secret sharing, a secret value x is split
into n random addends x1, . . . , xn held by parties P1, . . . ,Pn

so they add up to the original value (modulo some p):

x = x1 + x2 + . . . + xn mod p.

A bitwise secret-sharing scheme works similarly, except in-
stead of sum we use the bitwise exclusive or operation to
calculate and reconstruct the shares:

x = x1 ⊕ x2 ⊕ . . .⊕ xn.

In this paper, we denote a secret-shared value x by [[x]].
Arguing about the security of secure multi-party compu-

tation protocols often includes demonstrating that an ad-
versary cannot distinguish between the secure processing of
actual inputs from the similar evaluation of random inputs.
We suggest that the reader studies the work of Canetti on
proving the security of SMC protocol suites [5]. It is impor-
tant that the SMC protocols are composable, so they could
be used to build algorithm implementations.

Algorithms must fulfill the following requirements to be
data-independent. First, the intermediate and output values
of the algorithm must not leak anything about the secret in-
puts. This prevents information leakage through observing
the memory during execution. Second, for a fixed number of
private inputs, the algorithm’s execution time should not de-
pend on the input values. This prevents information leakage
through observations of the algorithm’s running time.

Hiding the number of inputs is rarely required in practice.
While this is possible, such techniques still require an upper

Algorithm 1: NaiveCompSort

Data: Input array [[D]] ∈ Zn
2k

Result: Sorted array [[D′]]
1 Let [[T]] = Shuffle([[T]])
// All comparisons here are done in parallel.

2 for i < j ∈ {1, 2, . . . , n} do
3 Let [[gi,j]] = [[Di]] ≤ [[Dj]]
4 end
5 Declassify the values [[gi,j]] and sort [[D]] according to

them, obtaining [[D′]]
6 return [[D′]]

bound for the number of inputs, resulting in a leak of infor-
mation on the maximum number of records and a waste of
computing resources on unused elements.

In this paper, we consider algorithms that are data-independent
and algorithms with a small data dependence that allows for
a greater efficiency in secure evaluation. We still consider
these algorithms oblivious, if the leakage is well-defined so
that the user is informed of the risks.

3. OBLIVIOUS SORTING TECHNIQUES

3.1 Constructions based on oblivious shuffling
Comparison-based sorting algorithms use the comparison

operation to determine the correct sequence of elements of a
given array. Such algorithms are inherently data-dependent,
as the execution flow depends on the outcomes of the com-
parison operations. Hence, changes in the input data will
affect the running time of the algorithm. A simple solution
would be to evaluate all the branches of the sorting algo-
rithm and obliviously select the correct output in the end,
but this dramatically reduces efficiency.

Hamada et al. [13] propose a generic solution to obliv-
iously shuffle the inputs before performing a comparison-
based sort. Then, as we are comparing values in a randomly
shuffled vector, any declassified (published) comparison re-
sults are also random. However, the pattern of comparisons
in the algorithm can still leak information, such as the num-
ber of equal elements in the input vector.

Because many SMC implementations have highly efficient
vector operations, vectorized naive protocols may sometimes
be more efficient than protocols with a lower computational
complexity and a lower degree of vectorization. In this pa-
per, we propose a naive sorting protocol based on shuffle and
vectorized comparisons called NaiveCompSort (Algorithm 1).
In this algorithm, we first shuffle the input array and then
compare every element with every other element in the array
in one big vector operation. Finally, we rearrange the ele-
ments according to the declassified comparison results. This
algorithm always works in the worst case time of O(n2) and
its runtime is, therefore, data-independent.

3.2 Constructions based on sorting networks
A sorting network is a structure that consists of several

stages of compare-and-exchange (CompEx) functions. A Com-
pEx function takes two inputs, compares them according to
a given condition and exchanges them, if the comparison re-
sult is true. An example CompEx function for sorting two

Algorithm 2: Basic algorithm for sorting with a sorting
network.
Data: Input array D ∈ Zn

2k and a sorting network
N ∈ Lm.

Result: Sorted output array D ∈ Zn
2k .

1 foreach Li ∈ N do
2 foreach (x, y) ∈ Li do
3 (Dx,Dy)← CompEx(Dx,Dy)
4 end

5 end

values in ascending order is defined as

CompEx(x, y) = (Min(x, y),Max(x, y)). (1)

When all CompEx functions in the stages of the sorting
network are applied on the input data array, the output
data array will be sorted according to the desired condition.
For a more detailed explanation of sorting networks, see [16].

The inputs of each CompEx function can be encoded with
their indices in the input data array. Therefore, we will rep-
resent an m-stage sorting network as a tuple Lm, consisting
of stages in the form Li = (N × N)`i . Each stage Li con-
tains `i CompEx functions. For efficiency, we prefer sorting
networks where no index appears more than once in each in-
dividual stage as this lets us vectorize the implementation.

Algorithm 2 presents a basic algorithm for evaluating a
sorting network in this representation. We can use the same
array D for storing the results of the compare-exchange op-
eration because, according to our assumption, a single stage
does not use the same array index twice.

As the structure of the sorting network is the same for all
inputs, Algorithm 2 is trivially data-independent, given a
data-independent implementation of the CompEx function.
Such implementations are also easy to construct, following
the minimum-maximum blueprint shown in Equation (1).

3.3 Constructions specific for bitwise secret
sharing schemes

If data is secret-shared using a bitwise secret-sharing scheme,
access to individual bits is cheap. This allows us to de-
sign a very efficient count/radix sorting algorithm. Count-
ing sort [6, 9] is a sorting algorithm that can sort an array
of integers in a small range by first constructing a frequency
table and then rearranging items in the array according to
this table. Algorithm 3 describes a counting sort algorithm
for binary data.

Radix sort [14] sorts an array of integers by rearranging
them based on counting sort results on digits in the same
positions. Radix sort sorts data one digit position at a time,
starting with the least significant digit. This works as the
underlying counting sort is a stable sorting algorithm. Algo-
rithm 4 shows the full protocol of oblivious radix sort that
uses binary counting sort as a subroutine. The underlying
counting sort is made data-independent by obliviously up-
dating counters [[c0]], [[c1]] and the order vector [[ord]]. Such
a data-independent counting sort is sufficient to make our
radix sort data-independent as well.

As our radix sort algorithm does not use comparison op-
erations, it is not bound by the computational complexity
lower bound of Ω(n logn) for comparison-based sorting al-
gorithms. Counting sort has a complexity of O(n) and radix

Algorithm 3: Counting sort algorithm for binary ar-
rays.

Data: Binary input array D ∈ Zn
2 .

Result: Array D′ ∈ Zn
2 with elements of D in

increasing order.
1 n0 ← n− sum(D); // Count number of zeros.

2 c0 ← 0; c1 ← 0; // Keep counters for processed

zeros and ones.

// Put each element in right position:

3 foreach i ∈ 1 . . . n do
4 if Di == 0 then
5 c0 = c0 + 1
6 D′

c0 = Di

7 else
8 c1 = c1 + 1
9 D′

n0+c1 = Di

10 end

11 end
12 return D′

sort on k-digit elements that uses counting sort as a subrou-
tine, has a computational complexity of O(kn). However,
the data-independent counting sort protocol also uses addi-
tion and multiplication operations which are expensive pro-
tocols on bitwise shared data. Therefore, after creating a
vector with bits on a given position, we convert it to addi-
tively shared data and work in this domain. The output of
the algorithm is still in a bitwise form.

4. OPTIMIZATION METHODS

4.1 Vectorization
Data parallelization (SIMD operations) allows us to re-

duce the number of communication rounds and optimize the
running time of algorithms for SMC. We designed the Naive-
CompSort especially with vectorization in mind. Also, the
quicksort design of [13] is vectorized by performing all com-
parisons at each depth of the quicksort algorithm at once.

Sorting network evaluation in Algorithm 2 can be vector-
ized by evaluating all CompEx functions of a given stage to-
gether. As mentioned previously, this is possible because of
the assumption on the uniqueness of indices we made while
describing the structure of the sorting network.

Similarly, we vectorize all secure operations in our count-
ing sort algorithm design. We could apply counting sort on
chunks of 2 or more bits and reduce the number of rounds
for radix sort. However, this requires substituting the cheap
oblivious choice subprotocol for a more expensive compari-
son protocol.

4.2 Changing the share representation
Both comparison-based sorting algorithms and sorting net-

works rely on the comparison operation. Comparison is a
bit-level operation and works faster on bitwise shared data.
Therefore, we can convert additively shared inputs into bit-
wise shared form and run the intended algorithm on the
converted shares. The results can be converted back to ad-
ditively shared form at the end of the algorithm.

Converting additive shares to bitwise shares requires a bit
extraction protocol. However, for algorithms that perform

Algorithm 4: Data-independent radix sort.

Data: Input array [[D]] ∈ Zn
2k .

Result: Sorted array [[D]] ∈ Zn
2k .

// Iterate over all digits starting with the

least significant digit:

1 foreach m ∈ 1 . . . k do
// Construct a binary vector consisting of

m-th digits.

// Convert it to additively shared data.

2 [[d]]← ShareConv(([[D1]]m, [[D2]]m, . . . , [[Dn]]m))
3 [[n0]]← n− sum([[d]]); // Count number of zeros.

4 [[c0]]← 0; [[c1]]← 0; // Keep counters for

processed zeros and ones.

5 [[ord]]; // Keep n-element shared order vector.

// Put each element in the right position:

6 foreach i ∈ 1 . . . n do
7 [[c0]] = [[c0]] + 1− [[di]]
8 [[c1]] = [[c1]] + [[di]]

// Obliviously update order vector:

9 [[ordi]] = (1− [[di]]) ∗ [[c0]] + [[di]] ∗ ([[n0]] + [[c1]])

10 end
11 ([[D]], [[ord]])← Shuffle([[D]], [[ord]]); // Shuffle two

column database.

12 ord← Declassify([[ord]])
13 Rearrange elements in [[D]] according to ord.

14 end
15 return [[D]]

many comparisons after one another, the benefits of many
fast comparisons outweigh one costly conversion.

4.3 Optimizations specific to sorting networks
In software implementations, the generation of sorting

networks can take a significant amount of time. As the sort-
ing network structure is data-independent, we can store the
sorting network after generation to re-use it later.

If we shuffle the inputs before sorting, we can optimize the
CompEx function implementations by declassifying compar-
ison results and performing the exchanges non-obliviously.
The running time of the resulting algorithm is data-independent
because of the constant structure of the sorting network.

5. SORTING SECRET-SHARED MATRICES

5.1 Comparison-based sorting and radix sort
Comparison-based algorithms can be easily modified to

support matrix sorting. Assume that our input data is in
the form of a matrix Di,j where i = 1 . . . n and j = 1 . . .m.
Let us also fix a column k by which we want to sort the
rows.

First, we obliviously shuffle the rows in the whole matrix1.
Next, we extract the k-th column from the matrix and pass
it to the sorting algorithm of our choice together with an
n-element index vector (1, 2, . . . , n).

The sorting protocol now swaps elements in the data vec-
tor and the index vector together. After sorting these two
vectors, we declassify the output index vector and use it as a

1Note that shuffling is already a part of comparison-based
sorting protocols like quicksort and NaiveCompSort. How-
ever, this extra step has to be added for radix sort.

permutation to rearrange rows in the matrix. Declassifying
the index vector leaks information on how the elements were
rearranged. However, as the input matrix was obliviously
shuffled, this leaks no information on the original placement
of rows in the initial matrix.

5.2 Sorting networks
Oblivious sorting based on sorting networks does not de-

classify any values that could help us reorder other columns.
Instead, we redefine the CompEx operation to work on the
rows of the matrix. We need a CompEx function that com-
pares and exchanges two input arrays A and B according to
the comparison result from column k. A suitable algorithm
for this purpose is presented in Appendix A. The algorithm
is trivial to optimize using vector operations.

6. EXPERIMENTAL EVALUATION OF
OBLIVIOUS SORTING ALGORITHMS

6.1 Overview of algorithm implementations
Table 1 gives an overview of sorting algorithms imple-

mented for this paper. We implemented all algorithms in the
SecreC programming language [2] to run on the Sharemind
secure multi-party computation system [1].

Our quicksort implementation is based on the work in [13]
and personal communication with its authors. We imple-
mented the algorithm as similarly as possible to achieve
a fair comparison. The naive comparison sort and radix
sort algorithms are implemented straightforwardly from Al-
gorithms 1, 3 and 4.

The sorting network implementation consists of two parts.
We implemented sorting network generation using Florian
Forster’s libsortnetwork library2. Sharemind generates
and caches sorting networks and encodes them for delivery
to SecreC programs. The evaluation of the sorting net-
work is implemented in SecreC. Our implementation gen-
erates Batcher’s bitonic mergesort networks, as they were
the fastest to generate. See Appendix B for details.

All algorithms are vectorized to optimize the running time
using techniques described in Section 4. While this may lead
to extensive memory usage, it allows us to demonstrate the
performance of the algorithms. The memory usage of nearly
all the algorithms can be reduced by breaking large vector
operations to smaller pieces.

We implemented vector sorting and matrix sorting for all
algorithms, following the techniques described in Section 5.
The performance results for matrix sorting are given in Ap-
pendix C.

6.2 Experimental setup
The experiments were conducted using a Sharemind in-

stallation consisting of three servers connected by a 1 Gbps
local area network. Each server was equipped with 48 GB
of memory and a 12-core 3 GHz Intel processor.

We measured the running time and network usage using
the profiling mechanism built into Sharemind. We marked
code sections and Sharemind measured and logged the run-
ning time and network usage of each section invocation. We
sampled the memory use reported for the Sharemind server

2Available from http://verplant.org/libsortnetwork/ in
December, 2013.

Algorithm Data-independence and leakage References
Comparison results are declassified.

Quicksort Running time is data-dependent. [13]
May leak the number of equal elements.

Naive comparison sort
Comparison results are declassified.

(Algorithm 1)
Running time is data-independent. this paper

Leaks the number of equal elements.
Sorting network sort

Fully data-independent [23, 15]
(Algorithm 2)

Radix sort
Reordering decisions are declassified.

this paper
(Algorithms 3 and 4)

Running time is data-independent.
Does not leak the number of equal elements

Table 1: An overview of oblivious sorting algorithms implemented for this paper.

process every one second and aligned this data with the run-
ning time data to find the peak memory usage for each ex-
periment.

We ran each algorithm with bitwise-shared 64-bit unsigned
integer data. We used worst-case data (all equal values) for
each algorithm and additionally, used random data for the
quicksort algorithm similarly to the experiments of [13].

6.3 Results and analysis

6.3.1 Theoretical complexities.
Before presenting the benchmark results, we give the se-

cure computation complexities of all the implemented func-
tions. We express the complexities in the number of subpro-
tocol invocations. For example, mProtocol(n) means that
the SMC protocol Protocol is invoked m times with n paral-
lel elements for each invocation. Where necessary, oblivious
addition operations are done on additively shared values.
Hence, they do not require any network communication and
are omitted from Table 2.

6.3.2 Timing profiles of individual sorting algorithms.
Figure 1 shows the breakdown of the running times of

oblivious sorting algorithms. We see that most of the time
in naive sorting and quicksort is spent on comparisons. The
time taken for sorting network evaluation begins with mostly
comparisons and oblivious choice, but their importance is
reduced as the time needed for generating the network in-
creases. This is a strong motivator for the precomputing
and caching of sorting networks. Radix sort has the most
interesting profile, as it does not use comparisons. Instead,
its most expensive part is oblivious choice.

6.3.3 Comparison of different sorting algorithms.
We now present comparisons of all the algorithms. Note

that the axes of the comparison figures are on a logarith-
mic scale. Figure 2 shows the comparison of the running
time. Naive comparison sort is very fast on small inputs,
but its high complexity makes it infeasible for larger inputs.
Quicksort is the fastest of all algorithms, but only in the
random data vector experiment. When we run quicksort on
data vectors with all equal values, it performs significantly
slower. This can be explained by the need to actually go
through all the subsets of the data. On randomized data,
our implementation of quicksort achieves the same perfor-
mance as reported in [13].

Radix sorting is not the most efficient on small inputs, but
its use of cheap secure operations ensures that its running
time does not grow as quickly as that of the other algorithms.
Sorting networks are efficient early, but the time needed to
generate the network starts to grow significantly as the data
size grows. If the sorting network structure is cached, sorting
network evaluation is almost as fast as radix sorting.

We see the network usage measurements in Figure 3. Naive
sorting and quicksort on worst-case data require a lot of net-
work communication. The other algorithms form a more ef-
ficient group, with quicksort on random data requiring the
least communication and radix sort taking the second place.

Finally, Figure 4 shows the memory usage. The mem-
ory usage of the naive implementation grows squared in the
size of data, making it infeasible for large inputs. The sort-
ing network algorithm uses significant amounts of memory
during the generation of the sorting network and reduced
amounts after that. The memory requirements of oblivious
radix and quicksort are low in comparison.

7. CONCLUSION
We describe four designs for oblivious versions of known

sorting algorithms—naive comparison-based sort, quicksort,
radix sort and sorting network based sort. The first three
perform some declassifications to improve efficiency while
the use of sorting networks results in a fully data-independent
algorithm.

Our performance analysis shows that even though naive
comparison-based sorting is fast on small inputs, its O(n2)
complexity makes it slow for practical input sizes. While
the oblivious version of quicksort is very efficient on random
data, it performs poorly when the input contains many equal
elements. Its increased running time on such inputs also
leaks the number of equal elements.

Oblivious sorting networks are a great choice when we can
precompute or cache the network structure. In that case, the
algorithm provides perfect privacy with a reasonable perfor-
mance.

Our novel oblivious radix sorting algorithm leaks less in-
formation than constructions based on shuffling and declassi-
fied comparison results. As input sizes grow, its performance
comes closer to that of quicksort on random data, because
it does not need to use the relatively expensive comparison
operations.

Algorithm Secure operation complexity
Quicksort (average) Shuffle(n) +O(logn)Comp(O(n)) +O(logn)Declassify(O(n))
Naive comparison sort Shuffle(n) + Comp(n(n− 1)/2) + Declassify(n(n− 1)/2)
Sorting network

∑m
i=1 Comp(`i) + Mult(4`i)

Radix sort k · (ShareConv(n) + Mult(n) + Shuffle(n, 2) + Declassify(n))

Table 2: Secure operation complexity of oblivious sorting algorithms. n is the number of elements to sort and k is number
of digits, where applicable. For sorting networks, m is the number of stages in the network and `i is the number of CompEx
operations on the i-th stage.

8. REFERENCES
[1] D. Bogdanov. Sharemind: programmable secure

computations with practical applications. PhD thesis,
University of Tartu, 2013.

[2] D. Bogdanov, P. Laud, and J. Randmets.
Domain-Polymorphic Programming of
Privacy-Preserving Applications. Cryptology ePrint
Archive, Report 2013/371, 2013.
http://eprint.iacr.org/.

[3] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson.
High-performance secure multi-party computation for
data mining applications. International Journal of
Information Security, 11(6):403–418, 2012.

[4] M. Burkhart, M. Strasser, D. Many, and
X. Dimitropoulos. SEPIA: privacy-preserving
aggregation of multi-domain network events and
statistics. In Proc. of USENIX conference on Security,
pages 15–15. USENIX Association, 2010.

[5] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc. of
FOCS’01, pages 136–145. IEEE Computer Society,
2001.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, chapter 8.2
Counting Sort, pages 168–170. MIT Press and
McGraw-Hill, 2nd edition, 2001.

[7] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. In Proc. of CRYPTO’12, volume 7417 of
LNCS, pages 643–662. Springer, 2012.

[8] C. Dwork. Differential privacy. In Proceedings of the
33rd International Colloquium on Automata,
Languages and Programming. ICALP’06, volume 4052
of LNCS, pages 1–12. Springer, 2006.

[9] J. Edmonds. How to Think about Algorithms, chapter

5.2 Counting Sort (a Stable Sort), page 72âĂŞ75.
Cambridge University Press, 2008.

[10] A. V. Evfimievski, R. Srikant, R. Agrawal, and
J. Gehrke. Privacy preserving mining of association
rules. In Proc. of KDD ’02, pages 217–228, 2002.

[11] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proc. of STOC’09, pages 169–178. ACM,
2009.

[12] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen.
On private scalar product computation for
privacy-preserving data mining. In Proc. of ICISC ’04,
volume 3506 of LNCS, pages 104–120. Springer, 2005.

[13] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and
K. Takahashi. Practically Efficient Multi-party Sorting
Protocols from Comparison Sort Algorithms. In Proc.

of ICISC’12, volume 7839 of LNCS, pages 202–216.
Springer, 2013.

[14] H. Hollerith. US395781 (A) - ART OF COMPILING
STATISTICS. European Patent Office, 1889.
http://worldwide.espacenet.com/

publicationDetails/biblio?CC=US&NR=395781.

[15] K. V. Jónsson, G. Kreitz, and M. Uddin. Secure
Multi-Party Sorting and Applications. Cryptology
ePrint Archive, Report 2011/122, 2011.
http://eprint.iacr.org/.

[16] D. E. Knuth. The art of computer programming,
volume 3: (2nd ed.) sorting and searching. Addison
Wesley Longman Publishing Co., Inc., USA, 1998.

[17] S. Laur, J. Willemson, and B. Zhang. Round-Efficient
Oblivious Database Manipulation. In Proc. of ISC’11,
pages 262–277, 2011.

[18] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Trans. Knowl. Discov. Data,
1(1):3, 2007.

[19] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In Proc. of
IEEE S&P ’08, pages 111–125, 2008.

[20] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proc. of
EUROCRYPT’99, volume 1592 of LNCS, pages
223–238. Springer, 1999.

[21] A. Shamir. How to share a secret. Communications of
the ACM, 22:612–613, November 1979.

[22] L. Sweeney. k-anonymity: a model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 10(5):557–570, 2002.

[23] G. Wang, T. Luo, M. T. Goodrich, W. Du, and
Z. Zhu. Bureaucratic protocols for secure two-party
sorting, selection, and permuting. In Proc. of
ASIACCS’10, pages 226–237. ACM, 2010.

[24] B. Zhang. Generic Constant-Round Oblivious Sorting
Algorithm for MPC. In Provable Security, volume
6980 of LNCS, pages 240–256. Springer, 2011.

APPENDIX
A. COMPARE-AND-EXCHANGE ON

VECTORS
To sort matrix data using sorting networks, we need a

CompEx function that works on vectors like the one de-
scribed in Equation (2). A suitable algorithm is provided
in Algorithm 5.

CompEx(A,B, k) =

{
(B,A), if Ak > Bk

(A,B), otherwise.
(2)

Algorithm 5: Algorithm for obliviously comparing and
exchanging two rows in a matrix.

Data: Two input arrays A,B of length m, column
index k ∈ {1 . . .m}.

Result: Pair of arrays (A′,B′) = CompEx(A,B, k).
// Compute result of the condition:

1 b←
{

1, if Ak > Bk

0, otherwise.

// Exchange the vectors based on the condition:

2 foreach i ∈ 1 . . .m do
3 A′

i = (1− b)Ai + bBi

4 B′
i = bAi + (1− b)Bi

5 end

B. SORTING NETWORK GENERATION
BENCHMARKS

We benchmarked sorting network generation in the lib-

sortnetwork library to choose the most suitable network
generation algorithm for our implementation. Our goal was
to create a network with the minimal number of rounds in a
minimal time and, preferably, have a low number of CompEx
functions.

We evaluated Batcher’s bitonic mergesort network, Batcher’s
odd-even mergesort network and Parberry’s pairwise sorting
network. For each kind of network, we used the library to
generate networks of various sizes, measured the time and
counted the number of CompEx functions needed to evaluate
it.

We found that the number of comparators is very sim-
ilar for all algorithms and the same in many cases. Fig-
ure 5 shows a comparison of the running times and CompEx
function call counts. We found that the library provides a
bitonic mergesort network in the shortest time and while it
has slightly more CompEx gates, the round count is the same
and, therefore, the number of vector operations will be the
same.

C. PERFORMANCE ANALYSIS OF MATRIX
SORTING

We benchmarked matrix sorting on n × 10-element ma-
trices by sorting them based on the first column. Figure 6
shows that even though there are ten times more data, the
running time is not increased tenfold. This is explained
by the vectorization of the matrix sorting implementations.
There is one significant change, as sorting networks no longer
benefit as heavily from caching the network structure, the
oblivious exchanges for the full columns take up quite some
time.

While sorting ten times as much data does not necessarily
take that much time, it still takes more resources, as can be
seen from Figures 7 and 8. Otherwise, the relations between
different implementations remain the same.

For sorting networks, we also implemented sorting by two
and three different columns. This involves more comparisons
and logic operations to combine the comparison results. Ac-
cording to the results in Figure 9, the number of columns by
which to sort does not make a significant difference in the
running time.

0

4000

8000

12000

100 1000 7000
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Shuffle
Comparison
Declassify
Other

(a) Naive sorting

0

50

100

150

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Shuffle
Comparison
Declassify
Other

(b) Quicksort (average)

0

1000

2000

100 1000 10000
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Comparison
Choice
NetGen
Other

(c) Sorting networks

0

100

200

300

400

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Operation
Shuffle
Cast
Choice
Declassify
Extract
Other

(d) Radix sort

Figure 1: Running time breakdown for implemented sorting algorithms.

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

10

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l r
un

ni
ng

 ti
m

e
(s

)
Algorithm

● Naive
Quicksort (average)
Quicksort (worst)
Radix sort
Sorting network
Sorting network (cached)

Figure 2: Comparison of the running time of oblivious sorting algorithms.

●

●

●
●

●
●

●
● ● ●

●

●
●

●
●

●

1e+01

1e+03

1e+05

1e+02 1e+03 1e+04 1e+05
Vector size

To
ta

l n
et

w
or

k
co

m
m

un
ic

at
io

n
(M

B
)

Algorithm
● Naive

Quicksort (average)
Quicksort (worst)
Radix sort
Sorting network

Figure 3: Comparison of the network usage of oblivious sorting algorithms.

●

●

●

●
●

●
●

●
● ●

●

●

●
●

●

●

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Vector size

P
ea

k
m

em
or

y
us

ag
e

(M
B

)

Algorithm
● Naive

Quicksort (average)
Quicksort (worst)
Radix sort
Sorting network

Figure 4: Comparison of the memory usage of oblivious sorting algorithms.

●
●●●

●

●
●
●●
●

●

●

●
●

●
●

●
●

●

1e+01

1e+03

1e+05

0 25000 50000 75000 100000
Size

To
ta

l g
en

er
at

io
n

tim
e

(s
)

Algorithm
● Bitonic

Odd−Even
Pairwise

●

●

●

●
●
●
●
●●
●

●

●
●

●
●

● ● ● ●

1e+05

1e+06

1e+07

0 25000 50000 75000 100000
Size

N
um

be
r

of
 c

om
pa

ra
to

rs

Algorithm
● Bitonic

Odd−Even
Pairwise

Figure 5: Benchmarking results for sorting network generation.

●

●

●

●

●
● ●

●
● ●

●

●

●
●

●
●

10

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Number of rows

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Algorithm
● Naive

Quicksort (average)
Quicksort (worst)
Radix sort
Sorting network
Sorting network (cached)

Figure 6: Running time of oblivious sorting algorithms on matrices.

●

●

●
●

●
●

●
● ● ●

●

●
●

●
●

●

1e+01

1e+03

1e+05

1e+02 1e+03 1e+04 1e+05
Number of rows

To
ta

l n
et

w
or

k
co

m
m

un
ic

at
io

n
(M

B
)

Algorithm
● Naive

Quicksort (average)
Quicksort (worst)
Radix sort
Sorting network

Figure 7: Network usage of oblivious sorting algorithms on matrices.

●

●

●

●
●

●
●

●
● ●

●

●

●
●

●

●

100

1000

10000

1e+02 1e+03 1e+04 1e+05
Vector size

P
ea

k
m

em
or

y
us

ag
e

(M
B

)

Algorithm
● Naive

Quicksort (average)
Quicksort (worst)
Radix sort
Sorting network

Figure 8: Memory usage of oblivious sorting algorithms on matrices.

● ●
●

●
●

●

●

●

0

2500

5000

7500

10000

1e+02 1e+03 1e+04 1e+05
Vector size / Number of rows

To
ta

l r
un

ni
ng

 ti
m

e
(s

)

Datatype
● Vector

Vector (cached)
Matrix, by 1 column
Matrix, by 2 columns
Matrix, by 3 columns

Figure 9: Sorting networks running time on vector and matrix inputs. For matrix inputs, sorting is performed by one, two
and three columns.

	1 Introduction
	2 Privacy-Preserving Statistical Analysis
	2.1 Simple Statistics
	2.1.1 Quantiles and Outlier Detection
	2.1.2 Five-Number Summary and Frequency Tables

	2.2 Statistical Tests
	2.2.1 Wilcoxon Rank Sum Test and Signed Rank Test
	2.2.2 The 2-Tests for Consistency.

	2.3 Conclusion

	3 Transformation-based Linear Programming
	3.1 Privacy-preserving linear programming
	3.2 Attacks against Transformation-based Linear Programming
	3.2.1 Transformations Used in the Previous Works
	3.2.2 The Problems of Slack Variables

	3.3 Impossiblity of Secure Transformation-based Linear Programming
	3.4 Conclusions

	4 Privacy-Preserving Execution of Finite Automata
	4.1 Problem description
	4.2 Private selection
	4.3 DFA execution
	4.4 NFA execution
	4.5 Applications of our results

	5 Public Verifiability for Parties in SMC
	5.1 Introduction
	5.2 Our Contribution
	5.3 Protocol Description
	5.3.1 Notation
	5.3.2 Assumptions
	5.3.3 The Protocol Outline
	5.3.4 Properties

	5.4 Using the Proposed Protocol in Secure Multiparty Computation Platforms
	5.4.1 Treating Inputs/Outputs as Communication
	5.4.2 Possible Issues
	5.4.3 Deviations from the Initial Settings

	5.5 Conclusions and Future Work

	6 Actively Secure Two-Party Computation with Precomputing
	6.1 Related work
	6.2 Secure two-party computation
	6.2.1 Possible setups
	6.2.2 Protocols

	6.3 Beaver triple generation
	6.3.1 Packing
	6.3.2 Error correction

	6.4 Conclusion

	7 Comparison of oblivious sorting algorithms
	7.1 Introduction
	7.2 Oblivious sorting techniques
	7.2.1 Constructions based on comparisons
	7.2.2 Constructions specific for bitwise secret-sharing schemes

	7.3 Optimization methods and matrix sorting
	7.3.1 Vectorization
	7.3.2 Changing the share representation
	7.3.3 Optimizations specific to sorting networks
	7.3.4 Sorting matrices

	7.4 Conclusion

	Bibliography
	A Secure multi-party data analysis: end user validation and practical experiments
	B New Attacks against Transformation-Based Privacy-Preserving Linear Programming
	C On the (Im)possibility of Privately Outsourcing Linear Programming
	D Universally composable privacy preserving finite automata execution with low online and offline complexity
	E Verifiable Computation in Multi-Party Protocols with Honest Majority
	F Actively Secure Two-Party Computation: Efficient Beaver Triple Generation
	G A Practical Analysis of Oblivious Sorting Algorithms for Secure Multi-party Computation

