

Project Deliverable

Project Number: Project Acronym: Project Title:

287901 BUTLER
uBiquitous, secUre inTernet-of-things with

Location and contExt-awaReness

Instrument: Thematic Priority

Integrated Project Internet of things

Title

D4.3 - Smart Object GW Platform
Functional Specification

Contractual Delivery Date: Actual Delivery Date:

September 2013 October 2013

Start date of project: Duration:

October, 1st 2011 36 months

Organization name of lead contractor for this deliverable: Document version:

ST-I V1.13

Dissemination level (Project co-funded by the European Commission within the Seventh Framework Programme)

PU Public X
PP Restricted to other programme participants (including the Commission
RE Restricted to a group defined by the consortium (including the Commission)
CO Confidential, only for members of the consortium (including the Commission)

 BUTLER – Page 2/85

287901 BUTLER Project deliverable

Authors (organizations) :

Yazid Benazzouz, Levent Gurgen, Christine Hennebert, Diana Moreno Garcia, Christophe Munilla
(CEA)
Julien Delsuc, Philippe Smadja (Gemalto)
Shadi Atalla, Federico Rizzo, Antonio Simone, Francesco Sottile (ISMB)
François Nacabal (Maya)
Fabien Castanier, Stefano Pascali, Antonio Vilei (ST-I)
Cristina Frà, Massimo Valla (TIL)
Juan Sancho (TST)
Anup Shrestha (Zigpos)

Thanks to Alberto Martinez Cantera, Javier Arcas Ruiz-Ruano (Tecnalia) and Juan Rico (TST) for their
review and very useful remarks and suggestions.

Abstract :

The Work Package 4 of the BUTLER project deals with the specification and the implementation
of the smart platforms, namely Smart Server (T4.1), Smart Mobile (T4.2) and Smart Objects
(T4.3). In the BUTLER architecture, the various platforms are interconnected to provide users with
context aware services. Standing between the objects and the other BUTLER platforms, an
important functional component called a gateway is needed. The latter, referred to as the
BUTLER SmartObject Gateway in the context of this project, enables connectivity between
objects located in short range area networks (e.g. Personal, Body or Home Area Networks) and
other entities such as mobile devices and servers. Another important feature of the BUTLER
SmartObject Gateway is exposing the services implemented by the Smart Objects and allowing
access to their resources in a way that is independent of device specific technology. To do so, the
gateway implements a coherent and exhaustive set of APIs enabling BUTLER application
developers to focus on the service implementation and not on the issues related to the underlying
connectivity/protocol or on how the objects are physically implemented and deployed.

This report describes in details the functional implementation of the BUTLER SmartObject
Gateway.

Keywords :

Gateway, Objects, Resources, Protocols, Discovery, Management, Network Monitoring, Security
Services, Architecture, Adapters, Bridges, API

Disclaimer
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING

ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY

PROPOSAL, SPECIFICATION OR SAMPLE. Any liability, including liability for infringement of any
proprietary rights, relating to use of information in this document is disclaimed. No license, express

or implied, by estoppels or otherwise, to any intellectual property rights are granted herein. The
members of the project BUTLER do not accept any liability for actions or omissions of BUTLER
members or third parties and disclaims any obligation to enforce the use of this document. This

document is subject to change without notice.

 BUTLER – Page 3/85

287901 BUTLER Project deliverable

Revision History
The following table describes the main changes done in the document since it was created.

Revision Date Description Editors (Organisation)

V1.0 July 2013 Creation S. Pascali
(STMicroelectronics)

V1.1 September 30,
2013

Major Update A. Vilei
(STMicroelectronics)

V1.2 October 14.
2013

Integration of contributions from TST,
ISMB.

F. Castanier, A. Vilei
(STMicroelectronics)

V1.3 October 16,
2013

Integration of contributions from CEA F. Castanier, A. Vilei
(STMicroelectronics)

V1.4 October 17,
2013

Reviewed section about Gateway
Management

F. Castanier, A. Vilei
(STMicroelectronics)

V1.5 October 17,
2013

Integration of contributions from Gemalto,
Maya, Zigpos

F. Castanier, A. Vilei
(STMicroelectronics)

V1.6 October 18,
2013

Preparation of Abstract F. Castanier, A. Vilei
(STMicroelectronics)

V1.7 October 21,
2013

Integration of contributions from CEA,
ISMB

F. Castanier, A. Vilei
(STMicroelectronics)

V1.8 October 21,
2013

Updated References and integration of
new contributions from CEA, TIL, Zigpos,

Gemalto

F. Castanier, A. Vilei
(STMicroelectronics)

V1.9 October 21,
2013

Updated contributions from CEA D. S. Moreno Garcia
(CEA)

V1.10 October 23,
2013

Updated document based on feedback
from internal reviews

F. Castanier, A. Vilei
(STMicroelectronics)

V1.11 October 28,
2013

Editorial improvements F. Castanier, A. Vilei
(STMicroelectronics)

V1.12 October 29,
2013

Pre-release F. Castanier, A. Vilei
(STMicroelectronics)

V1.13 October 30,
2013

Final review B. Copigneaux (inno)

 BUTLER – Page 4/85

287901 BUTLER Project deliverable

Table of Content

1. EXECUTIVE SUMMARY 8

2. ACRONYMS 10

3. SMARTOBJECT GATEWAY ARCHITECTURE 12

4. DEVICE PROTOCOL ADAPTER 14

4.1. Overview .. 14

4.2. Protocol Stacks ... 15

4.2.1. CoAP/6LoWPAN ... 15
4.2.2. ZigBee ... 18
4.2.3. NFC ... 19
4.2.4. Other Protocols.. 20

4.3. Protocol Bridges.. 21

4.3.1. CoAP/6LoWPAN Protocol Bridge .. 21
4.3.2. ZigBee Protocol Bridge .. 22
4.3.3. NFC Protocol Bridge .. 23
4.3.4. Other Bridges .. 27

4.4. Device Access API .. 28

5. SMART OBJECT ACCESS AND CONTROL 36

5.1. Overview .. 36

5.2. Resource Manager .. 38

5.2.2. Discovery process ... 38

5.3. Resource Directory ... 40

5.4. Connectivity Handler ... 41

5.5. Data Manager ... 42

5.5.1. Freshness Model ... 42

5.6. Data Storage .. 43

5.7. Message Cache .. 44

5.8. Security Services .. 45

5.8.1. SmartObject Gateway Security services requirements .. 45
5.8.2. Resource Registration ... 46
5.8.3. Resource Key Management .. 46
5.8.4. Security Application Protocol – example of the HTTP Binding ... 49
5.8.5. SmartObject Gateway Security Service API .. 50

5.9. Network Monitoring ... 53

5.9.1. Classification of Network Monitoring Techniques ... 53
5.9.2. BUTLER Network Monitoring Strategy ... 55
5.9.3. Network Monitoring Design Guidelines .. 55
5.9.4. BUTLER Network Monitoring Architecture ... 57
5.9.5. Network Monitoring Statistics ... 57

5.10. Consumer API... 59

 BUTLER – Page 5/85

287901 BUTLER Project deliverable

5.10.1. Consumer API Request and Response protocol .. 59
5.10.2. Security Management at Consumer API .. 61

6. GATEWAY MANAGEMENT 63

6.1. Overview .. 63

6.2. Device Manager .. 64

6.2.1. Device Management Overview .. 64
6.2.2. Device Management API ... 65

6.3. Gateway Manager ... 66

6.3.1. Gateway Manager Overview.. 66
6.3.2. Service Management API .. 69
6.3.3. Manager API ... 70

7. CONSUMER PROTOCOL ADAPTER 71

7.1. Overview .. 71

7.2. JSON-RPC Bridge ... 72

7.3. REST API ... 75

7.3.1. NFC Use Case Example using REST API ... 80

8. REFERENCES 85

 BUTLER – Page 6/85

287901 BUTLER Project deliverable

List of Figures
Figure 1–1: Interactions among BUTLER Platforms .. 8
Figure 1–2: Smart Object Gateway: High level architecture .. 8
Figure 3–1: SmartObject Gateway: APIs and Functional Components .. 12
Figure 4–1: Device Protocol Adapter functional group .. 14
Figure 4–2: Web services vs IoT ... 15
Figure 4–3: 6LoWPAN network topology .. 16
Figure 4–4: ZigBee 2007 Network Stack .. 18
Figure 4–5: ZigBee IP Network Stack ... 18
Figure 4–6: NFC ... 19
Figure 4–7: ZigBee Protocol Bridge Architecture... 22
Figure 4–8: NFC Protocol Bridge Architecture .. 23
Figure 4–9: Device implementations .. 33
Figure 4–10: Service Implementations .. 33
Figure 4–11: Ranging measurements with respect to neighbouring nodes 34
Figure 4–12: Ranging Data API description .. 35
Figure 5–1: Smart Object Access and Control functional group .. 36
Figure 5–2: Service and Resource Model ... 38
Figure 5–3: Device Discovery ... 39
Figure 5–4: Service and resource registration ... 40
Figure 5–5: Theoretical data model for Message Cache ... 44
Figure 5–6: Registration of key material (set by the owner) ... 47
Figure 5–7: Retrieval of Access Token sequence diagram .. 47
Figure 5–8: End to end security sequence diagram .. 48
Figure 6–1: Gateway Management functional group ... 63
Figure 6–2: System/Device Management interface ... 64
Figure 6–3: OSGi Web Console (view 1) .. 66
Figure 6–4: OSGi Web Console (view 2) .. 66
Figure 6–5: Bundle lifecycle .. 68
Figure 6–6: iPOJO instance lifecycle ... 68
Figure 7–1: Consumer Protocol Adapter functional group ... 71

 BUTLER – Page 7/85

287901 BUTLER Project deliverable

List of Tables
Table 4–1: Basic NFC functionalities... 24
Table 4–2: Extended NFC functionalities .. 25
Table 4–3: Addition parameters for NFC API calls [] ... 25
Table 4–4: Device Methods .. 28
Table 4–5: Service Methods ... 29
Table 4–6: Resource Methods .. 30
Table 4–7: ActionResource Types .. 30
Table 4–8: DataResource Type .. 31
Table 4–9: ModifiablePropertyResource Type .. 31
Table 4–10: StateVariableResource Type ... 31
Table 4–11: SensorDataResource Type ... 31
Table 4–12: ActionResource Type .. 32
Table 4–13: Observable Interface ... 32
Table 4–14: SendRangingData API description .. 35
Table 5–1: BUTLER Security Roles .. 45
Table 5–2: Resource Description at the Authorization Server ... 46
Table 5–3: HTTP M2MS Protocol ... 49
Table 5–4: Example Request and Response Data .. 49
Table 5–5: Example for /WEB-INF/web.xml .. 51
Table 5–6: Security Material Configuration file for “temperature” ... 52
Table 5–7: Exploration Methods .. 59
Table 5–8: Access Methods .. 60
Table 5–9: Request and Response ... 61
Table 5–10: Internal Security API .. 62
Table 6–1: Device Management API ... 65
Table 6–2: Service Management API .. 69
Table 6–3: Manager API ... 70
Table 7–1: Example – Retrieve the list of installed TV sets ... 73
Table 7–2: Example – Play a video on a given TV .. 74
Table 7–3: Example – Get the list of objects ... 76
Table 7–4: Example – Representation of a light device with two LEDs ... 76
Table 7–5: Example – Retrieve the model information from an object ... 77
Table 7–6: Example – Dim LED light... 77
Table 7–7: Example – Turn on LED light ... 77
Table 7–8: Example – Get the list of actions supported by an object .. 77
Table 7–9: Example – HTTP PUT method .. 77
Table 7–10: Example – Subscription to state change for LED light ... 78
Table 7–11: Example – Subscription to value change for temperature sensor 78
Table 7–12: Example – Error response ... 79

 BUTLER – Page 8/85

287901 BUTLER Project deliverable

1. Executive Summary

The aim of this document is to define the functional specification of the BUTLER Smart
Object Gateway. The latter is a component that allows interconnection of different networks
to achieve access and communication among embedded devices, servers (the Smart Server
Platform in the BUTLER case) and mobile terminals (the Smart Mobile Platform in the
BUTLER case).

Figure 1–1 shows the interactions of the Smart Object Gateway with the other BUTLER
platforms.

Figure 1–1: Interactions among BUTLER Platforms

Figure 1–2 presents an overview of high level architecture of the Smart Object Gateway.

Figure 1–2: Smart Object Gateway: High level architecture

Smart Server
Smart Mobile

Platforms

Consumer
request

Consumer
response

Smart Object
Gateway

Smart Object
Device

Device’s protocol
request

Device’s protocol
response

Device 1 Device 2 Device n

Device Protocol Adapter

Smart Object Access & Control

Consumer Protocol Adapter

Consumer API

Device Access API

Consumer Consumer Consumer

Smart Object Gateway

Gateway

Management

Manager API

Device
Management API

Service
Management API

 BUTLER – Page 9/85

287901 BUTLER Project deliverable

The Smart Object Gateway is composed of four functional groups and their relative interfaces:

 Device Protocol Adapter

 Smart Object Access and Control

 Gateway Management

 Consumer Protocol Adapter

The Device Protocol Adapter functional group allows abstracting the specific connectivity
technology of different wireless sensor networks. It is made of several bridges associated to
each protocol stack. All the bridges comply with a generic Device Access API used to interact
with northbound services of the SmartObject Gateway.

The Smart Object Access and Control functional group implements the core functionalities
of the SmartObject Gateway like discovering devices and resources and securing
communication among devices and consumers of their services. It also performs caching of
data for battery operated sensors and actuators to save power. The services of the Smart
Object Access and Control functional group are exposed to Consumers by means of a
protocol agnostic Consumer API.

The Gateway Management functional group includes all the components needed to ease
management of devices connected to the SmartObject Gateway, regardless of their underlying
technologies. A Device Management API is used for this purpose. This functional group also
contains the components managing cache, resource directory and security services. These
management features are exposed by means of the Manager API.

The Consumer Protocol Adapter functional group consists of a set of protocol bridges.
Each of them translates the protocol agnostic Consumer API and Manager API interfaces
into specific application protocols (e.g. JSON RPC, RESTful HTTP, etc.).

In the BUTLER Security Framework, the Authorization Server is the single point for security
management. All actors shall delegate authorization management and user management to
the Authorization Server.
Using these implementation principles, the Resource Provider which in this case is the
SmartObject Gateway, does not encompass any sensitive information about calling
applications. BUTLER Security Protocol allows secure authentication of the application
requesting a resource and implements end-to-end security between the Consumer and the
SmartObject Gateway.

 BUTLER – Page 10/85

287901 BUTLER Project deliverable

2. Acronyms

Acronym Defined as

6H 6LoWPAN Host

6LoWPAN IPv6 over Low Power Wireless Area Network

6LBR 6LoWPAN Border Router

6LR 6LoWPAN Router

AoA Angle of Arrival

API Application Program Interface

APS Application Support Sublayer

BS Base Station

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

CE Card Emulation

CEPT European Conference of Postal and Telecommunications Administrations

CH Connectivity Handler

CNM Centralised Network Monitoring

CRUD Create Read Update Delete

DNM Distributed Network Monitoring

ECMA European Computer Manufacturers Association

FC Functional Component

FG Functional Group

I2C Inter Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

JSON JavaScript Object Notation

HTML Hyper Text Mark-up Language

HTTP Hyper Text Transfer Protocol

LDAP Lightweight Directory Access Protocol

LE Localisation Engine

M2M Machine to Machine

MAC Medium Access Control

MAN M2M local Area Network

NFC Near Field Communication

NWK Network layer

OSGi Open Services Gateway Initiative

OSI Open Systems Interconnection

PAN Personal Area Network

P2P Peer To Peer

RA Router Advertisement

 BUTLER – Page 11/85

287901 BUTLER Project deliverable

RDF Resource Description Framework

REST,
RESTful

REpresentational State Transfer

RPC Remote Procedure Call

RPL Routing Protocol for Low Power and Lossy Networks

RS Router Solicitations

RSSI Received Signal Strength Indicator

RTT Round Trip Time

R/W Read/Write

SLIP Serial Line Internet Protocol

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

ToA Time of Arrival

UDP User Datagram Protocol

URI Unified Resource Identifier

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WSN Wireless Sensors Network

ZCL ZigBee Cluster Library

ZDO ZigBee Device Object

 BUTLER – Page 12/85

287901 BUTLER Project deliverable

3. SmartObject Gateway Architecture

This chapter expands the simplified architecture of the SmartObject Gateway presented
earlier in the executive summary section. Compared to Figure 1–2, indeed, Figure 3–1
provides a more detailed view of the internal components making up each of the four
SmartObject Gateway functional groups.

Figure 3–1: SmartObject Gateway: APIs and Functional Components

 BUTLER – Page 13/85

287901 BUTLER Project deliverable

The Device Protocol Adapter functional group is composed of a set of bridges related to
specific connectivity protocols as described in subsequent Chapter 4.

The Smart Object Access and Control functional group is made up of the following components:

 Resource Manager

 Resource Directory

 Connectivity Handler

 Data Manager

 Data Storage

 Message Cache

 Security Services

 Network Monitoring

Details about the above functional components are presented in Chapter 5.

The Gateway Management functional group, instead, is described in Chapter 6.

Finally, the Consumer Protocol Adapter functional group consists of a set of bridges related to
specific consumer protocols as defined in Chapter 7.

 BUTLER – Page 14/85

287901 BUTLER Project deliverable

4. Device Protocol Adapter

4.1. Overview

The main role of the Device Protocol Adapter functional group (Figure 4–1) is to allow connectivity
to sensors and actuators networks, regardless of their connectivity protocols.
In order to provide this functionality, for each of the supported protocols (e.g. CoAP/6LoWPAN,
ZigBee, NFC, etc.) the SmartObject Gateway must have a dedicated physical interface, compatible
with the physical layer of the specific sensor network. Obviously the physical layer is only the
starting point. A dedicated protocol stack implementation is required too, coupled with a dedicated
bridge towards the Device Access API that will connect this Device Protocol Adapter to the Smart
Object Access and Control functional group.

Figure 4–1: Device Protocol Adapter functional group

 BUTLER – Page 15/85

287901 BUTLER Project deliverable

4.2. Protocol Stacks

A Protocol Stack component represents the implementation of a specific communication
protocol. It handles device discovery and access to sensor and actuator resources in a
protocol specific way.

This Functional Component communicates with the same protocol technology devices
(southbound) and with the relative protocol bridge (northbound).

4.2.1. CoAP/6LoWPAN

6LoWPAN (IPv6 over Low Power Wireless Area Network) [4-1] represents an adaptive layer
that defines encapsulation and header compression mechanisms in order to allow IPv6
packets to be exchanged over IEEE 802.15.4 networks. Moreover, 6LoWPAN aims to adapt
the IP protocol also for low-power and constrained devices.

As an example, Figure 4–2 shows a network architecture in which the 6LoWPAN provides an
IPv6 adaptation layer with respect to the IEEE 802.15.4 [4-2] while on top of it the following
protocols and standards are typically used: RPL [4-3], UDP and CoAP [4-4]. In particular,
IEEE 802.15.4 is a standard that specifies the physical and the MAC layer for smallest and
constrained devices in Wireless Personal Sensor Networks. RPL is a network layer protocol
specifically designed for constrained network. At transport layer, UDP protocol is usually
used since it is a protocol that does not provide retransmission and with a reduced header
(lighter than TCP). At application level, CoAP protocol brings the REST architecture within
the constrained networks.

Figure 4–2: Web services vs IoT

 BUTLER – Page 16/85

287901 BUTLER Project deliverable

Network topology updates and device discovery

The 6LoWPAN network topology provides the presence of three main elements (see Figure
4–3):

 6LoWPAN host (6H)

 6LoWPAN router (6LR)

 6LoWPAN border router (6LBR)

Figure 4–3: 6LoWPAN network topology

The border router is able to handle all the 6LoWPAN sensor nodes within the network area.
In particular, it maintains a list of all sensors IPv6 addresses, i.e. a neighbour cache
containing the hosts and 6LRs which is updated periodically.

A 6LBR is responsible for connecting Smart Object devices to the SmartObject Gateway and
it is also responsible for handling traffic to and from the 802.15.4 and IPv6 interface. The
6LoWPAN protocol stack provides more than one approach to implement the device
discovery mechanisms. One of these foresees that the sink node (either the 6LR or the
6LBR) sends out periodic announcement messages (Router Advertisements, RA); once a
node joining the network has received a router advertisement, it can start the registration
procedure. In this way, the router is able to know how many nodes are in the network area.
Another approach is the following; every node starts the registration process by sending
requests to the router (Router Solicitations, RS). The response from the routers is a Router
Advertisement with the expected information (e.g. the IPv6 prefix and network parameters).
When a new device is added or an old one is removed from the neighbour cache (the area
network topology is changed), the bridge relies on the border router for this updates. As
mentioned above, the border router maintains a list of all the devices IPv6 addresses.
Moreover, it exposes this list via embedded web server. The bridge gets the list of all network
devices at new running cycle (based on time out mechanism) by querying the border router
HTTP server over a SLIP tunnel. By obtaining the list of IPv6 addresses, the bridge
compares the new list with the old one, deciding if a new device is added or an old one was
removed from the 6LoWPAN network.

 BUTLER – Page 17/85

287901 BUTLER Project deliverable

Resource directory access and discovery in 6LoWPAN application

Apart from device discovery procedures, it is necessary to have some mechanisms to access
the device resources. In this sense, CoAP provides a lightweight alternative to HTTP for
constrained environments and nodes, useful within networks characterized by lim ited
resources. CoAP is a transfer protocol used by M2M applications (which runs on constrained
devices such as sensors and actuators) to create web services and to allow the interaction
between the various devices within a Wireless Sensor Network. It uses a subset of the HTTP
methods (GET, PUT, POST and DELETE) to allow the interaction among the end-points,
providing features such as resource-discover and including key concepts such as web URIs
(Uniform Resource Identifier) and content-types.

The Internet Engineering Task Force (IETF) Constrained RESTful Environments (CoRE)
Working Group has done the standardization work for the CoAP protocol. As for the web, the
RESTful architecture is well-suited to most types of M2M applications; this approach allows
to address resources by URI and to exchange data associated with the resources via
different representations (e.g. via HTML or RDF – Resource Description Framework) through
an HTTP/CoAP content negotiation. The RESTful architecture is based on the client -server
paradigm. The server contains information that can be saved or retrieved by clients. In this
instance, a sensor or an actuator can be viewed as a server and the application or the
gateway is treated as the client.

http://en.wikipedia.org/wiki/IETF
http://en.wikipedia.org/wiki/RESTful
http://en.wikipedia.org/w/index.php?title=CoRE&action=edit&redlink=1

 BUTLER – Page 18/85

287901 BUTLER Project deliverable

4.2.2. ZigBee

According to the Zigbee Standards Organization 2007, the Zigbee stack architecture is made
up of blocks called layers. The IEEE 802.15.4-2003 standard defines the two lower layers:
the physical (PHY) layer and the medium access control (MAC) sub-layer. The ZigBee
Alliance builds on this foundation by providing the network (NWK) layer and the framework
for the application layer. The application layer framework consists of the application support
sub-layer (APS) and the ZigBee device objects (ZDO). Manufacturer-defined application
objects use the framework and share APS and security services with the ZDO.

Application Framework ZigBee Device Object (ZDO)

Application Support Sublayer (APS)

Network Layer (NWK)

Medium Access Control (MAC) Layer

Physical (PHY) Layer

Figure 4–4: ZigBee 2007 Network Stack

The ZigBee network using this protocol stack should have a ZigBee gateway to get the IP
connectivity.

The ZigBee IP specification February 2013 defines the following protocol stack for the IP
enabled Zigbee device:

Applications

Transport layer (TCP / UDP)

Network Layer (NWK)

(IPV6, ICMPv6,6LP-ND)

6LoWPAN adaptation layer

Medium Access Control (MAC) Layer

Physical (PHY) Layer

Figure 4–5: ZigBee IP Network Stack

Using the ZigBee IP devices following this protocol stack, the ZigBee IP router itself can
provide the internet connectivity.

 BUTLER – Page 19/85

287901 BUTLER Project deliverable

4.2.3. NFC

NFC stands for Near Field Communication, a very short range communication technology intended
for low power, low data rate communications. The NFCIP-1 (Near Field Communication Interface
and Protocol 1) and later on the NFCIP-2 specifies NFC basic capabilities:

 Frequency operation band: 13.56 Mhz

 Transfer rates: 106, 212 and 424 kbps

 Operation range: up to 20 cm, being 8 cm a regular utilization range

 Bit encoding and modulation: Modified Miller 100% ASK and Manchester 10% ASK

 Communication modes: Active and Passive

 Role assignment: Initiator and Destination

 Transport protocol: Activation, Data Exchange and Deactivation

The following picture depicts how NFC messages are handled by different Tag types; these ones,
mapped into existing standardized protocols, are finally managed by the different existing NFC
versions.

Figure 4–6: NFC

The NFC technology specification has been fully described in Section 4.3.1.2.2 of [D3.1].

 BUTLER – Page 20/85

287901 BUTLER Project deliverable

4.2.4. Other Protocols

The BUTLER SmartObject Gateway architecture is flexible enough to allow support for
devices using additional protocols. Such new devices and protocols are generically
represented as “Z” Device and “Z” Protocol Stack respectively in Figure 4–1.

 BUTLER – Page 21/85

287901 BUTLER Project deliverable

4.3. Protocol Bridges

For each specific connectivity technology supported by BUTLER there must be a Protocol
Bridge that allows low level access to the physical object and provides integration with the
Device Access API. The latter is a generic Java API that allows exporting object data to the
rest of BUTLER in a technology independent fashion.

Bridges provide the following functionalities:

 Abstract details about underlying technology

 Discover Devices

 Track events occurred on them

 Execute message to actuate them

Moreover, bridges are responsible for device's accessibility, by discovering and exposing
device resources. Once a device is discovered and notified to the relative bridge, an identifier
is assigned to it. The discovery message is then sent by the bridge to the Device Access API.

The following subsections add more details for the specific bridges supported by the
SmartObject Gateway.

4.3.1. CoAP/6LoWPAN Protocol Bridge

Mainly this functional component shall act as a bridge that allows interaction between CoAP
devices and the Device Access API.

After the discovery phase, this Protocol Bridge registers the device as a service (BUTLER
Smart Object Service), in order to represent the device in the BUTLER world. In this phase
the GW still knows very little about the device. Thus, in order to learn more about it and its
capabilities, or to interact with the device itself, the bridge must retrieve the device’s
description from the URL provided by the device in the discovery message. Hence, it uses
the IPv6 to send a CoAP discover message with a GET to the “/.well-known/core” URI. Then
the bridge parses the response payload to build the resource tree. It looks for the first level
resource and recognizes only “sensor” and “actuator” string. The string “sensor” will be
mapped as sensor application(s) and “actuator” will be mapped as actuator application(s).

 BUTLER – Page 22/85

287901 BUTLER Project deliverable

4.3.2. ZigBee Protocol Bridge

The purpose of the ZigBee Protocol Bridge is to connect the ZigBee devices into the

BUTLER network via Device Access API. The bridge should act as a data server, providing

ZigBee-related data from PAN network measurements, an interface to control the PAN nodes

and discovery and registry mechanism in the SmartObject Gateway. The bridge works as a

PAN coordinator, so it has to process and maintain essential information for the SmartObject

Gateway such as network addresses of the nodes, their state and capabilities, and should be

visible via Device access API.

The Bridge should translate the Device access API into a ZCL (ZigBee Cluster Library) API

and should provide connectivity between the ZigBee PAN coordinator and the SmartObject

Gateway.

Figure 4–7: ZigBee Protocol Bridge Architecture

The bridge, as shown in Figure 4–7, is made of two modules: the first one, connected to or

running in the ZigBee PAN coordinator, provides an interface via a physical medium like USB

or USART or SPI; the other one, coupled or embedded in the SmartObject Gateway, has to

parse the Device Access API commands into an intermediate request/response code to the

ZigBee PAN as specified by the metadata, which in turn might depend on the particular

application scenario like Home Automation or Smart Energy profile or any proprietary

extension of IEEE 802.15.4 PAN. The metadata also contains information about the PAN, the

resources and services provided and thus, the SmartObject Gateway uses it for the discovery

and registration of the ZigBee PAN. The module coupled in the ZigBee coordinator provides

this metadata. For proprietary ZigBee extensions, the vendor should provide the libraries

equivalent to the ZCL.

 BUTLER – Page 23/85

287901 BUTLER Project deliverable

Consumer API

Sensor & Actuator
Interfaces

IoT Interface

RF Antenna

Management

Protocol Adapter

Access &

Control

IoT
Apps

Device
Capa-
bilities

NFC
Stack

Smart Server

(Cloud Apps)

Serial Interface

Smart Object

Gateway

Smart Object

Device

NFC

Module

RESTful

BUTLER Device

Access API

Proprietary

NFC Standard

Users

4.3.3. NFC Protocol Bridge

As proposed in Section 4 of [D3.2], an NFC Service is made available for very short range
communications. This subchapter deepens into the interfaces between the actors involved in
the NFC scenario, from the Users to the Cloud Applications running in Smart Servers,
passing through the NFC Modules, Smart Object Devices and SmartObject Gateway. Going
from top-down on the following picture:

Figure 4–8: NFC Protocol Bridge Architecture

 Communication between Smart Object Devices and Sensors & Actuators attached to
them, in this case NFC Modules, is done by means of a proprietary protocol via a
Serial Interface such as I2C, Modbus, SPI, and the like.

 Finally, the Users of this particular NFC Service communicate with the NFC Modules
using their NFC-enabled smartphone or SmartCard, both operations under the
umbrella of the NFC Standard.

 BUTLER – Page 24/85

287901 BUTLER Project deliverable

NFC Service API

Due to the fact that each NFC Module behaves according to its own set of commands, the
BUTLER NFC Service does not define how Smart Object Devices operate over NFC Modules.
However, it has been studied that the great majority of NFC Devices concur in a minimum list of
NFC operations, which are shown in
Table 4–1.

Scope Functionality Parameters Comments

Configuration
(Conf)

SetId Id NFC Module identifier

SetAuthKey Key Definition of a secure key

SetMode
RW, P2P,
CE

NFC operational mode

Read/Write
(R/W)

ReadTag Data Obtains value of predefined parameter

WriteTag Data Alters the value of a given parameter

Peer-to-Peer
(P2P)

SendData Data Transmits information to an NFC Device

ReceiveData Data
Receives information from an NFC
Device

Card Emulation
(CE)

SetData Data Impersonates an NFC Card

Table 4–1: Basic NFC functionalities

Taking advantage of the previous functionalities, the NFC Service builds additional features
empowering end-user applications, such as historic reports of scanned tags, creation of
alarms, group management and many more.

 BUTLER – Page 25/85

287901 BUTLER Project deliverable

In the following table there is a categorization of the available features.

Scope Resource Function Comments

NFC API

NFC Tag

GetAll Returns all scanned NFC Tags

GetNew
Returns new NFC Tags scanned since last
request

GetRange
Returns NFC Tags scanned between a range of
dates

GetFrom
Returns NFC Tags scanned by a given NFC
Module

SmartTag
Sets attributes of the NFC Tag (Card Emulation
mode)

NFC Module

Get Lists NFC Modules

Create Registers a new NFC Module in the system

Delete Deregisters a given NFC Module in the system

Info Returns attributes of a given NFC Module

Configure Sets attributes of a given NFC Module

NFC Group

Get Lists NFC Groups

Create Creates a new NFC Group

Delete Deletes a given NFC Group

Info Returns attributes of a given NFC Group

Configure Sets attributes of a given NFC Group

NFC Alarm

Get Lists NFC Alarms

Create Creates a new NFC Alarm

Delete Deletes a given NFC Alarm

Info Returns attributes of a given NFC Alarm

Configure Sets attributes of a given NFC Alarm

Table 4–2: Extended NFC functionalities

Some of the API calls described above can use additional parameters to filter the query:

Parameter Usage Accepted values

limit Number of results to return Positive integer

offset Used to page through results Positive integer

order_by Order results according to this parameter Id, -Id, Timetag, -Timetag

gt
Retrieve events which occurred after the specified
date. Use with order_by=timetag

Datetime, ISO 8601
formatted (e.g. 2012-10-
01T08:00+01) [1]

lt
Retrieve events which occurred before the specified
date. Use with order_by=timetag

Datetime, ISO 8601
formatted (e.g. 2012-10-
01T08:00+01)

exact Exact value matching, use with order_by
datetime if order_by timetag,
id_number if order_by id

Table 4–3: Addition parameters for NFC API calls [

2
]

1
 https://en.wikipedia.org/wiki/ISO_8601

2
 http://open.sen.se/dev/

https://en.wikipedia.org/wiki/ISO_8601
http://open.sen.se/dev/

 BUTLER – Page 26/85

287901 BUTLER Project deliverable

Resource Attributes

This section outlines the Attributes and Descriptions for each of the NFC API Resources.

1. NFC Tags scanned by NFC Modules have the following attributes:

ID The ID of the NFC Tag

Key The secret key in use by the NFC Tag

Data The information payload contained in the NFC Tag

Timetag Datetime in which the NFC Tag was read

2. NFC Modules must be registered at least in one group in order to be accessible from

a Cloud Application. They have the following attributes:

ID The ID of the NFC Module

Name The Name of the NFC Module

Description The Description of the NFC Module

Key The secret key in use by the NFC Module

Mode The operational mode of the NFC Module

Timetag Datetime of the last reading

Group A list of groups the NFC Module belongs to

3. NFC Groups are abstract resources encompassing a number of NFC Modules. They

are assigned to certain Cloud Applications and granted with certain access rights.

ID The ID of the NFC Group

Name The Name of the NFC Group

Description The Description of the NFC Group

Members List of NFC Modules registered in this NFC Group

Permissions List of permissions for executing commands on this group

4. NFC Notifications trigger notifications from Smart Object Devices or SmartObject

Gateways to Cloud Applications.

ID The ID of the NFC Alarm

Name The Name of the NFC Alarm

Description The Description of the NFC Alarm

Command The command to execute

Trigger The event trigger

 BUTLER – Page 27/85

287901 BUTLER Project deliverable

4.3.4. Other Bridges

As mentioned in Section 4.2.4, the BUTLER SmartObject Gateway architecture is flexible
enough to allow integrating new kind of devices and protocols. Support for such additional
protocols can be added by implementing a new bridge, generically represented as “Z” Bridge
in Figure 4–1.

 BUTLER – Page 28/85

287901 BUTLER Project deliverable

4.4. Device Access API

The SmartObject Gateway provides an abstract and homogeneous way of representing and
accessing different devices and their resources and services through the Device Access
API.

The Device Access API allows building easily horizontal applications from various domains
using the available devices and their provided services and resources. Actually, using the
Device Access API, device clients do not need to worry about devices’ technologies and
communication protocols. The Device Access API is defined by the Service and Resource
model introduced in Section 5.2.1.

In the Service and Resource model, services are classified as:

 SmartObjectServices which represent services exposed by devices, such as a player
service exposed by a TV device; and

 SmartServices which represent logical services (not exposed by devices), such as a
weather service. Services provide resources that can be then accessed and
manipulated by applications and other SmartServices too.

The Device Access API defines methods for accessing and manipulating the resources
exposed by services. The main methods of the three core Device Access API interfaces
(Device, Service and Resource) are presented next.

4.4.1. Device Interface

The Device interface defines methods for accessing the information provided by a device,
including its provided services. Such methods are as follows:

Modifier and Type Method and Description

java.lang.String getLocation()
Gets the location of the device.

java.lang.String getSerialNumber()
Gets the serial number of the device.

Service getService(java.lang.String service)
Gets the service by its name.

java.util.Set<java.lang.String> getServiceNames()
Gets the names of the device exposed services.

java.util.Set<Service> getServices()
Gets the set of services (smart object services) exposed by
the device.

java.lang.String getStatus()
Gets the status of the device.

Table 4–4: Device Methods

file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Device.html%23getLocation()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Device.html%23getSerialNumber()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Device.html%23getService(java.lang.String)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Device.html%23getServiceNames()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Device.html%23getServices()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Device.html%23getStatus()

 BUTLER – Page 29/85

287901 BUTLER Project deliverable

4.4.2. Service Interface

The Service interface represents Smart Object Services (provided by devices) and Smart
Services. It mainly defines the methods for accessing service exposed resources (i.e.
properties, sensor data, state variables and actions): GET, SET, ACT, SUBSCRIBE and
UNSUBSCRIBE. Table 4–5 details the main Service interface methods.

Modifier and Type Method and Description

Resource getResource(java.lang.String name)
Gets the resource identified by its name.

java.util.Set<Resource> getResources()
Gets all the exposed resources.

Data get(java.lang.String resource)
Gets the data of the given resource.

Data set(java.lang.String resource, java.lang.Object value,
java.util.Set<Metadata> metadata)
Sets the given data value and set of metadata to the given resource.

Response act(java.lang.String resource, java.lang.Object... parameters)
Executes the given resource with the given input parameters.

Response subscribe(java.lang.String resource,ResourceListener subscriber,
java.util.Set<Condition> conditions, Period period)
Subscribes the service client to the given resource.

Response subscribe(java.lang.String resource,
java.lang.String attribute,ResourceListener subscriberListener)
Subscribes the service client to the given attribute of the given
resource.

Response unsubscribe(java.lang.String resource,
java.lang.String subscriptionID)
Cancels the subscription, identified by subscriptionID, to the given
resource.

Table 4–5: Service Methods

file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23getResource(java.lang.String)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23getResources()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23get(java.lang.String)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23set(java.lang.String,%20java.lang.Object,%20java.util.Set)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Metadata.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Response.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23act(java.lang.String,%20java.lang.Object...)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Response.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23subscribe(java.lang.String,%20fr.cea.sensinact.gateway.device.api.listener.ResourceListener,%20java.util.Set,%20fr.cea.sensinact.gateway.device.api.Period)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/listener/ResourceListener.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Condition.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Period.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Response.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23subscribe(java.lang.String,%20java.lang.String,%20fr.cea.sensinact.gateway.device.api.listener.ResourceListener)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/listener/ResourceListener.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Response.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Service.html%23unsubscribe(java.lang.String,%20java.lang.String)

 BUTLER – Page 30/85

287901 BUTLER Project deliverable

4.4.3. Resource Interface

This interface represents resources exposed by services (smart object services and smart
services). It defines methods related to resources, including methods for accessing directly
the resource attributes.

Table 4–6 details the main Resource interface methods.

Modifier and Type Method and Description

Data get(java.lang.String attribute)
Gets the data of the given attribute.

java.util.Set<Data> get(java.lang.String[] attributes)
Gets the set of data of the given set of attributes.

java.util.Set<Attribute> getAttributes()
Gets the resource attributes.

Method getAccessMethod(java.lang.String type)
Gets the resource access method of the given type.

java.util.Set<Method> getAccessMethods()
Gets the resource access methods.

Table 4–6: Resource Methods

Resources are classified into Data resources (i.e., Property –static or modifiable-, SensorData and
StateVariable) and Action resources.

Resource Type Description

Data

Property
Represents a property exposed by a service. This is information is
likely to be static (e.g., model, vendor, serial number, etc.).

ModifiableProperty
Represents a modifiable property exposed by a service (e.g.,
owner, price, etc.).

StateVariable

Represents a variable state property exposed by a service. State
variables are mainly modified by actions (for example, turning on
the light modifies the light state, opening the door changes the
door state).

SensorData
Represents sensed data exposed by a service. This information is
provided mainly by physical devices sensing environment data.

Action

Represents a functionality exposed by a service. Actions can be
performed on the physical environment via actuator devices (e.g.,
turn on the light, open the door), and also on the virtual
environment (e.g., make a parking reservation).

Table 4–7: ActionResource Types

Each resource type defines methods specific to the type of resource. For example, the
DataResource type defines the get method that allows getting the resource data. The
specialized StateVariableResource type defines set methods that allow modifying the data
value of a state variable.

file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html%23get(java.lang.String)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html%23get(java.lang.String%5b%5d)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Attribute.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html%23getAttributes()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Method.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html%23getAccessMethod(java.lang.String)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Method.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Resource.html%23getAccessMethods()

 BUTLER – Page 31/85

287901 BUTLER Project deliverable

The following tables resume the main methods defined by the different resource types.

Type Method and Description

Data get()
Gets the resource data.

Table 4–8: DataResource Type

PropertyResource type has the same methods as DataResource (Table 4–8).

Type Method and Description

Data set(java.lang.Object value, java.util.Set<Metadata> metadata)
Sets the given value to the data resource and adds or updates
 the given set of metadata.

Table 4–9: ModifiablePropertyResource Type

Type Method and Description

Data set(java.lang.Object value,
java.util.Set<Metadata> metadata)
Sets the given value to the data resource and adds
or updates the given set of metadata.

Data set(java.lang.Object value,
java.util.Set<Metadata> metadata,
java.lang.String modifier)
Sets the given value to the state variable resource
for the given action resource modifier and adds or
updates the given set of metadata.

java.util.Set<java.lang.String> getModifiers()

Table 4–10: StateVariableResource Type

Type Method and Description

Data getLast()
Gets the last sensor data.

Table 4–11: SensorDataResource Type

file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/DataResource.html%23get()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/ModifiablePropertyResource.html%23set(java.lang.Object,%20java.util.Set)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Metadata.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/StateVariableResource.html%23set(java.lang.Object,%20java.util.Set)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Metadata.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/StateVariableResource.html%23set(java.lang.Object,%20java.util.Set,%20java.lang.String)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Metadata.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/StateVariableResource.html%23getModifiers()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Data.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/SensorDataResource.html%23getLast()

 BUTLER – Page 32/85

287901 BUTLER Project deliverable

Type Method and Description

ActionResponse act()
Executes the action resource.

ActionResponse act(java.lang.Object... parameters)
Execute the resource with the given objects corresponding to the
defined input parameters.

void addParameters(Parameter... parameters)
Add the parameters to the act method.

void removeAccessWithoutParameters()
Removes the access without parameters to the act method.

Table 4–12: ActionResource Type

All resource types are observable, meaning that clients can subscribe and unsubscribe to
them. The following methods are part of the Observable interface.

Modifier and Type Method and Description

Response subscribe(java.lang.String attribute,
ResourceListener subscriberListener,
java.util.Set<Condition> conditions, Period period)
Subscribes the service client to the given resource attribute
with the given set of conditions and time period.

Response unsubscribe(java.lang.String subscriptionID)
Cancels the subscription identified by subscriptionID.

Table 4–13: Observable Interface

The provided classes must mainly be extended when developing new types of devices to be
integrated into the SmartObject Gateway. Devices must provide the BUTLER Device
interface by extending the AbstractDevice abstract class. Services must implement the
BUTLER Service interface by extending either the SmartObjectService or SmartService
abstract class (see figure below). Resources must implement the BUTLER Resource
interface by extending one of the specialized resource types: PropertyResource,
StateVariableResource, SensorDataResource, ActionResource.

file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/ActionResponse.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/ActionResource.html%23act()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/ActionResponse.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/ActionResource.html%23act(java.lang.Object...)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/ActionResource.html%23addParameters(fr.cea.sensinact.gateway.device.api.Parameter...)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Parameter.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/impl/ActionResource.html%23removeAccessWithoutParameters()
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Response.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Observable.html%23subscribe(java.lang.String,%20fr.cea.sensinact.gateway.device.api.listener.ResourceListener,%20java.util.Set,%20fr.cea.sensinact.gateway.device.api.Period)
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/listener/ResourceListener.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Condition.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Period.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Response.html
file:///F:/SmartGateway/documentation/JavaDoc/fr/cea/sensinact/gateway/device/api/Observable.html%23unsubscribe(java.lang.String)

 BUTLER – Page 33/85

287901 BUTLER Project deliverable

Figure 4–9 and Figure 4–10 show this extensibility principle when developing devices and
services respectively.

Figure 4–9: Device implementations

Figure 4–10: Service Implementations

 BUTLER – Page 34/85

287901 BUTLER Project deliverable

4.4.4. Ranging Data API

Each Smart Object that needs to be localized has to implement a ranging functional module
that allows the smart object to perform ranging measurements with respect to its 1-hop
neighbours and send the resulting ranging message to the SmartObject Gateway. The task of
the GW is just to receive the ranging messages from unknown Smart Objects and forward
them to the localization server.

According to the localization architecture, presented in [D3.2], unknown smart objects
continuously perform range measurements (e.g., ToA, AoA, RSSI) among them and send
these data to the SmartObject Gateway. In turn, the latter sends these raw ranging data to
the Smart Server where the Localization Engine (LE) module is executed. Thus, the LE
periodically estimates the positions of unknown Smart Objects on the basis of the received
ranging data and anchor nodes’ positions (anchors are nodes whose coordinates are a priori
known).

More in details, as depicted in Figure 4–11, each Smart Object device builds a range data
message (represented by the blue arrow) containing range measurements with respect to its
1-hop anchor nodes as well as neighbouring smart objects to allow cooperative localization.
Since Smart Objects are mobile nodes and their positions change in time, it is important that
ranging measurements are immediately sent to the SmartObject Gateway and in turn
forwarded to the Smart Server as soon as they are available, otherwise a potential large
delay will be translated into positioning errors.

Figure 4–11: Ranging measurements with respect to neighbouring nodes

 BUTLER – Page 35/85

287901 BUTLER Project deliverable

The ranging data defined in the devices access API is showed in Figure 4–12

.

Figure 4–12: Ranging Data API description

In particular, the range data message that goes through the device access API contains the
following fields: the Smart Object ID, type of ranging (e.g. RSSI, ToA or AoA) and an array of
pairs where each pair consists of the neighbour object ID and the corresponding range
measurement.

More details about the ranging API are listed in Table 4–14.

Argument Name Measurement Unit Data Type Explanation

Id Integer Identifier of the Smart
Object that performs range
measurements with
respect to its neighbours.

typeRanging String It identifies the type of
ranging measurement (e.g.
RSSI, ToA or AoA)

timestamp seconds Double Time at which the ‘range
data packet’ arrives at the
smart GW expressed
according the UTC time.

rangeMeas RSSI [dBm]

ToA [m]

AoA [degree]

<Integer>

<Double>

Data structure containing
pairs where each pair
consists of the neighbor
object Id and the
corresponding range
measurement.

Table 4–14: SendRangingData API description

 BUTLER – Page 36/85

287901 BUTLER Project deliverable

5. Smart Object Access and Control

5.1. Overview

The Smart Object Access and Control functional group includes a large number of the
SmartObject Gateway functionalities:

 It handles the communication with the Consumer Protocol Adapter (REST API, JSON
RPC, etc.) and IoT (and non-IoT) devices, providing URI mapping, incoming
data/messages translation in an internal format and outgoing data/messages
translation in Consumer format.

 Proxy service (caching) for battery operated device

 It manages the subscription/notification phases towards the Consumer

 It supports Devices and Resource Discovery and Resource Management capabilities,
to keep track of IoT Resource descriptions that reflect those resources that are
reachable via the SmartObject Gateway. These can be both IoT Resources, or
resources hosted by legacy devices that are exposed as abstracted IoT Resources.
Moreover, resources can be hosted on the SmartObject Gateway itself. The Resource
Management functionality makes it possible to publish resources in the SmartObject
Gateway, and also for the Consumer to discover what resources are actually available
from the SmartObject Gateway.

 It also provides the security services needed to enforce the BUTLER security policy.

Figure 5–1: Smart Object Access and Control functional group

 BUTLER – Page 37/85

287901 BUTLER Project deliverable

The Smart Object Access and Control functional group, depicted in Figure 5–1, is made up of
the following functional components:

 Resource Manager

 Resource Directory

 Connectivity Handler

 Data Manager

 Data Storage

 Message Cache

 Security Services

 Network Monitoring

In the following sections, each of these functional components is described in more details.

 BUTLER – Page 38/85

287901 BUTLER Project deliverable

5.2. Resource Manager

The main functions of this component are:

 Handle information about services and resources hosted by connected devices

 Handle information about services and resources hosted on the GW.

 Publish resource descriptors for external usage.

5.2.1. BUTLER Service and Resource Model

BUTLER Service and Resource model allows exposing the resources provided by an individual
service. The latter, characterized by a service identifier, represents a concrete physical device
(e.g., a temperature sensor, a TV, a motion detector, a parking space detector) or a logical entity
not directly bound to any device (e.g. a weather service, parking space service, etc.). Each
BUTLER service exposes resources and could use resources provided by other services.
Figure 5–2 depicts the BUTLER Service and Resource model (further details can be found in
section 3.4.2.3 – BUTLER Service and Resource Model of [D3.2]):

Figure 5–2: Service and Resource Model

5.2.2. Discovery process

Being able to identify, discover and manage IoT resources is not an add-on but a basic need.
However, the devices linked to these resources that have to be connected are per se very
heterogeneous in terms of used technology, protocols, capabilities and interaction patterns.
Currently, each technology (i.e. ZigBee, 6LoWPAN, etc.) provides some of these functions in
different ways. BUTLER integrates heterogeneous identification, naming and addressing
technologies using unequivocal identifiers. Scalable discovery and look-up makes IoT
resources available to all type of applications considering important real-world aspects like

 BUTLER – Page 39/85

287901 BUTLER Project deliverable

location, time, availability, capabilities, quality, etc. It also provides the necessary
functionality to monitor dynamic links between IoT resources and things. Finally, BUTLER
enables IoT resources to become citizens of the Internet by providing scalable global
schemes for deployment, operation, maintenance and fully remote management of these
resources, including abstract models for the resources, common resource management
interfaces, status monitoring, and fault handling.

Figure 5–3 describes the device discovery process (please refer to section 3.5.1.3 – Device
Discovery of [D3.2] for more information) and the creation of the corresponding smart object
services and their registration into the Service/Resource repository.

Figure 5–3: Device Discovery

 BUTLER – Page 40/85

287901 BUTLER Project deliverable

5.3. Resource Directory

The Resource Directory allows storing information, i.e. resource descriptions, about the
resources provided by individual devices connected to the SmartObject Gateway. Resource
descriptions typically contain data such as:

 Info about endpoints that host the resources (address, port, etc.)

 Type of resource (i.e. temperature)

 Contextual data (i.e. position)

The Resource Directory supports looking up resource descriptions, as well as publishing,
updating and removing resource descriptions to it (SQL interface).

Discovering and using resources exposed by BUTLER Services is a favoured approach for
avoiding using static service interfaces and then increase interoperability. Therefore,
BUTLER Services and their exposed resources are registered into Service/Resource
repositories. The BUTLER SmartObject Gateway uses the OSGi service registry as
Service/Resource repository, where resources are registered as service properties (see
Figure 5–4). Clients ask the Service/Resource repository for resources fulfilling a set of
specified properties (defined by LDAP filters). In response, the Service/Resource repository
sends clients the list of service references that expose the requested resources and for which
clients have authorizations (processed by the authorization server). Clients can then
access/manipulate the resources exposed by their selected service objects.

Figure 5–4: Service and resource registration

Registered resources and services are available to local clients and accessed using Java
method invocations. Moreover, resources and services can be exposed for remote discovery
and access using different communication protocols, such as HTTP REST, JSON-RPC, etc.,
and advanced features may also be supported (as semantic-based lookup).

 BUTLER – Page 41/85

287901 BUTLER Project deliverable

5.4. Connectivity Handler

The main function of Connectivity Handler (CH) is to manage the connectivity between the
resource hosting device and the resource requestor. Please refer to Figure 5–1 to see the
interactions among CH and the other functional components.

Whenever a Consumer tries to access a resource via Consumer API, it forwards the
requested URI, received from Consumer API, to the Resource Manager in order to check if a
specific resource descriptor exists or not inside the Resource Directory and eventually to
verify the related connectivity status (online | offline). If resource descriptor doesn’t exist, the
CH will arrange a message response with error code for the Consumer API. Otherwise (the
resource is managed by the SmartObject Gateway), the CH will forward resource request to
the Data Manager, regardless of the just retrieved resource connectivity status. Then, the
Data Manager will check if a fresh resource representation is available inside Data Cache. If
yes, it will be used to satisfy the request without contacting the origin server on the device,
thereby improving efficiency. On the contrary, if a fresh representation of the requested
resource cannot be found inside Data Cache and resource connectivity status is off-line, the
Data Manager will take care of storing message into a Message Cache. The message is
forwarded as soon as endpoint (the resource hosting device) is reachable. On the other
hand, if communication endpoint is available, the Connectivity Handler directly forwards the
information to the right interface..

The message request will reach the Device Access API if and only if Data Cache has not a
fresh representation of the requested resource and the hosting Device is available.

At the same time whenever response is originated form IoT device (or abstract IoT device), it
will be also forwarded to the Data Cache (by the mean of Data Manager) in order to create a
resource representation inside the cache, or to update it, if it already exists.

 BUTLER – Page 42/85

287901 BUTLER Project deliverable

5.5. Data Manager

The Data Manager functional component provides support for hosting devices that for various
reasons cannot be continuously online. The main reason is that some devices work under
resource constraints such as being battery operated. This typically requires asynchronous
communication with the IoT resources and for this purpose, local storage is required. To this
aim, the Message Cache and Data Storage components provide two support functions. The
first one stores cached IoT resource requests from the consumer for devices that are
temporarily offline. The second one locally stores (caches) data from IoT resources for
subsequent retrieval by consumer applications. The goal of caching is to reuse a prior
response message to satisfy a current request. In some cases, a stored response can be
reused without the need for a new network request, reducing latency and network round-
trips; a "freshness" mechanism is needed for this purpose (see 5.5.1).
In particular, for a given request, a stored response shall not be used unless:

 the request method and that used to obtain the stored response match,

 all options match between those in the request and those of the request used to
obtain the stored response

 the stored response is either fresh or successfully validated as defined below.

The set of request options that is used for matching the cache entry is also collectively
referred to as the "Cache-Key".

5.5.1. Freshness Model

When a response is "fresh" in the cache, it can be used to satisfy subsequent requests
without contacting the origin server, thereby improving efficiency.
The mechanism for determining freshness is for an origin server to provide an explicit validity
time in the response message. The latter is not fresh after the validity time interval has
elapsed.
If an origin server wants to prevent caching, it MUST assign a null explicit validity time.
Generally, origin servers will assign non-null validity times when the representation is not
likely to change in a significant way within the specified time period.
Default validity time is 60 seconds.

 BUTLER – Page 43/85

287901 BUTLER Project deliverable

5.6. Data Storage

The Data Storage functional component implements a local cache for cacheable resource
representations provided by servers (real and/or abstracted) in response to consumer
requests. Each entry inside Data Storage is associated to a single resource representation
and includes all the necessary information to understand if it can be used as fresh data. The
following information, along with the data to be cached, are maintained in the Data Storage
component:

 the requesting method;

 the expiration time, defined as: expiration_time = last_served_time + max_age

where last_served_time is the timestamp of the last time the response has been
served or validated, and max_age is the value of the maximum validity time included
into response message. If not specified, default value is 60 seconds.

 BUTLER – Page 44/85

287901 BUTLER Project deliverable

5.7. Message Cache

It provides a local storage for request messages addressed to off -line resources. To avoid
vulnerability request messages are removed whenever storage capability is over some
threshold, starting from the oldest one.

This cache is organised as a relational database, where resource and consumer are the
entities and request messages are the relationship between them. See diagram below for
detail.

Figure 5–5: Theoretical data model for Message Cache

However, in order to not duplicate data inside Message Cache, the requested resource will
be just referenced by mean of its unique identifier adopted by Resource Directory (RD).
Moreover, a timestamp is also included in order to manage the cancellation of obsoleted
request.

Whenever a resource becomes available it sends an update message toward Resource
Directory in order to update its Connectivity Status to be on-line. This update fires a trigger
that checks Message Cache for request messages involving the resource. If so, the Data
Manager component interacts with the Connectivity Handler in order to build the response
messages and delete request in the cache.

<<entity>>

Consumer

<<Relationship>>

< requests
has been requested by >

1..N 1..N <<entity>>

Resource

Request Message

 + Header
 + Token (if any)
 + Options
 + Timestamp

 BUTLER – Page 45/85

287901 BUTLER Project deliverable

5.8. Security Services

BUTLER Security Services in the SmartObject Gateway enforce the security policy on the
usage of resources managed by the gateway, providing the following functionalities:

 Consumers Authorization and Authentication

 Resources access control

 Data confidentiality and integrity

BUTLER Security Services implementation is directly linked to the Connectivity Handler. The
overall Security Framework is described in D3.2 in chapter “BUTLER Security Services”.
This section describes the security services available on the SmartObject Gateway.

Table 5–1 lists the security roles defined for BUTLER.

Security Role Description

User User entity granting access to a resource. Generally, the user refers to
a person, but can also be an application. The user shall be authorized
to access the resource by the owner of the resource.

Resource Provider Entity providing (and optionally updating) a resource. The Resource
Provider shall check an access-token to provide/update the resource.
Resource Metadata shall be registered in Authorization Server (AS)

Resource
Consumer

Client application getting and consuming resource on behalf of a user.
Such user must be authorized to access the resource.

Authorization
Server

The Authorization Server plays the role of Resource Directory. It
implements access controls management.
The Authorization Server authenticates the user and authorizes
resource-consumer getting resource by issuing a resource related
access-token. Optionally, it may delegate the user authentication to an
External Authentication Server

(optional)
Authentication
Server

This optional role can be used by Authorization Server to rely on
authentication protocol not natively implemented in the Authorization
Server. It means that the Authorization Server and Authentication
Server shall federate some user identities.

Table 5–1: BUTLER Security Roles

5.8.1. SmartObject Gateway Security services requirements

In the BUTLER security framework, the Authorization Server is the BUTLER security enabler which
is the single point for security management. All actors shall delegate authorization management
and user management to Authorization Server.
Using these implementation principles, the Resource Provider (in this case the SmartObject
Gateway) does not encompass any sensitive information about calling applications and does not
encompass any user information. These principles are very useful to allow new application
requesting a resource without managing such application at the gateway and to allow unknown
user (from the gateway perspective) accessing the resource – for instance a friend of the resource
owner.

 BUTLER – Page 46/85

287901 BUTLER Project deliverable

At the SmartObject Gateway side, the BUTLER security protocol allows secure authentication of
the application requesting a resource and implements end-to-end security between the calling
application (the resource consumer) and the SmartObject Gateway (the resource provider). The
security protocol does not transport any user information.

5.8.2. Resource Registration

A Resource is an Entity that can be addressed by the external world. With regard to the
authorization process and, specifically for the Authorization Server, the Resource address is
described using a URL schema. Each URL will be used by the Application (Resource Consumer)
to reference the resource and perform allowed actions on it.

At the Authorization Server, the resource is described using the following elements.

Name Resource name.

Owner Owner of the resource.

Semantic Semantic description: for instance: temperature,

Resource URL The URL of the resource for instance http://mychalet.com/room1 (shall
be unique). The resource URL uniquely identifies the resource.

Available actions:
GET/SET/…

The actions a resource “consumer” can perform on the resource.

Key Material The key material required to build the access-token for end-to-end
security

Authentication
Credentials

Credential used by the resource to access security material associated
to an access-token.

Table 5–2: Resource Description at the Authorization Server

5.8.3. Resource Key Management

The main issue in security management is the setting of the initial security material. It is not a real
problem when the objects are operated by well know entities like Mobile Operator and Banks.
Such operators own the object (for instance the SIM card) which supports security features. In the
BUTLER context we assume the object is owned by the user. The user will have to setup the
security material.

http://mychalet.com/room1

 BUTLER – Page 47/85

287901 BUTLER Project deliverable

User defined shared key schema

The security framework allows the user setting the shared key of its objects. In this case, the
SmartObject Gateway shall propose a local interface to setup the security material. Another
solution is to provide the user with the security material which can be generated dynamically by the
SmartObject Gateway and provided using user interface. In the following example, the user sets
the security material.

Figure 5–6: Registration of key material (set by the owner)

End-to-end Security

The end-to-end security involves both the Resource Consumer and Resource Provider. The end-
to-end security is implemented at application level. The overall security protocol is defined in
[D3.2] in chapter concerning Security Services.
The application shall retrieve token and security material to the Authorization Server.
The following schema presents the overall message exchange to retrieve an access-token (and
security material) on behalf of a user:

Figure 5–7: Retrieval of Access Token sequence diagram

 BUTLER – Page 48/85

287901 BUTLER Project deliverable

The application shall first provide its identification; next, user shall authenticate and select required
resources. Once authenticated, the application is provided with an authorization code to get the
access-token; next, the application authenticates to the Authorization Server to retrieve the access
token and security material.

The Security Material has been randomly generated by the Authorization Server. It consists of:

 Authentication-key

 Request-encryption-key

 Response-encryption-key

Accessing the resource

Figure 5–8: End to end security sequence diagram

To access the resource, the client side l builds the authentication-data and encrypts the request-
payload. The SmartObject Gateway checks the authentication-data, decrypts the request-payload
and encrypts the response-payload.

 BUTLER – Page 49/85

287901 BUTLER Project deliverable

5.8.4. Security Application Protocol – example of the HTTP Binding

The client shall send an HTTP request using POST method. The SmartObject Gateway
responds with the JSON data. The protocol is simple and it is described here through an
example (presented in Table 5–3 and Table 5–4).

// Resource Consumer request ………………………

POST /ResourceProvider/temperature HTTP/1.1

User-Agent: curl/7.32.0-DEV

Host: localhost:8080

Accept: */*

Content-Encoding: base64

Authorization: M2MS
KaEsZJ80fkHuF7mGpbQm6yIq/Gz/ZhxDnmI/u7IOTZ7d0QtuwkZd8tyDWI945p4BY2GYysr7dn2ykpZBZbb9568SWjC
ljuK8XT2kHUV2UvWXborhWJ3B9pDbV/7uWZMHCXAcgWzFKrE4cf+Xsm8frtQzQ6Mq6Y9T8IGET/G0T1o=:hGXenLjCY
lBtQCjQ9P5rdBnvxKugZdz6Tf6CZCSQdhxeiDlCJ+Wt8pYsTxQKbrS8

Content-Length: 44

Content-Type: application/x-www-form-urlencoded

H9ioezdEmBVuofP76FoA+p1O3Eqx2vpcHyOC/yuRj5k=

// Resource Provider response ………………………………….

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/m2ms application/json

Content-Length: 126

Date: Thu, 03 Oct 2013 09:18:31 GMT

{"request-identifier": "123456", "m2ms-application-
data":"ufZ+6YysbY39ltE0GsFjGKeWLddAJQa2DWGDWuJUZaFe+gI6A23zsA8Vedw/qFKO" }

Table 5–3: HTTP M2MS Protocol

Request

Data

HEADER.Authorization.ProtocolName: M2MS

HEADER.Authorization.Access-token:

KaEsZJ80fkHuF7mGpbQm6yIq/Gz/ZhxDnmI/u7IOTZ7d0QtuwkZd8tyDWI945p4BY2GYysr7dn2
ykpZBZbb9568SWjCljuK8XT2kHUV2UvWXborhWJ3B9pDbV/7uWZMHCXAcgWzFKrE4cf+Xsm8frt
QzQ6Mq6Y9T8IGET/G0T1o=

HEADER.Authorization.Request-authentication-data

hGXenLjCYlBtQCjQ9P5rdBnvxKugZdz6Tf6CZCSQdhxeiDlCJ+Wt8pYsTxQKbrS8

Body: Encrypted-payload

H9ioezdEmBVuofP76FoA+p1O3Eqx2vpcHyOC/yuRj5k=

Response

Data

Request-identifier:

123456 retrieved from Request-Authentication-Data

M2ms-application-data:
ufZ+6YysbY39ltE0GsFjGKeWLddAJQa2DWGDWuJUZaFe+gI6A23zsA8Vedw/qFKO

Table 5–4: Example Request and Response Data

 BUTLER – Page 50/85

287901 BUTLER Project deliverable

5.8.5. SmartObject Gateway Security Service API

In order to facilitate the integration work, the WP2 work package on Task 2.2 has developed a
library that shall be integrated in the SmartObject Gateway’s Consumer API Layer for security
purpose. The API library provides the functionalities which shall be called by the Consumer API
component using its received encrypted data argument to retrieve user data and potential
methods’ parameters (subscription consistency management – cf. 5.10. Section).

Securing an API – HTTP Binding example

To use the M2M Gemalto security technology, the SmartObject Gateway application developer has
to define an extended javax.servlet.Filter implementation class which calls the Consumer API
component by supplying it the encoded request body, the resource security material according to
the last field of the requested URI, and the authentication server’s URL as defined in the web
container configuration file (web.xml). The M2M Gemalto security library, called by the Consumer
API component with all those parameters, checks the access-token and the authentication-data
and decrypts the request body. The decrypted data are then used to retrieve wanted information,
and/or to actuate a targeted actuator. On completion, the library is used to encrypt the resource
response.

The SmartObject Gateway administrator simply configures the file WEB-INF/web.xml and setups
resource security material in configuration file. The administrator shall configure the application
container to enable Security Filtering. He/she has to update the configuration file /WEB-
INF/web.xml (an example is provided in Table 5–5).

 BUTLER – Page 51/85

287901 BUTLER Project deliverable

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schema Location="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- FILTER -->
<filter>
 <filter-name>SecurityFilter</filter-name>
 <filter-class>gemalto.security.example.MyFilter</filter-class>
 <init-param>
 <param-name>authServerURL</param-name>
 <param-value>http://trustmanager.gemalto.iot-butler.eu/api/session_keys/
 </param-value>
 </init-param>
 <init-param>
 <param-name>proxyHost</param-name>
 <param-value> the proxy of your organization (or empty) </param-value>
 </init-param>
 <init-param>
 <param-name>proxyPort</param-name>
 <param-value> the port to be used (or empty)</param-value>
 </init-param>
 <init-param>
 <param-name>logger</param-name>
 <!-- possible value: "container", "console", "none"
 default = container -->
 <param-value>container</param-value>
 </init-param>
</filter>

<!-- filtering temperature servlet -->
<filter-mapping>
 <filter-name>SecurityFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

</web-app>

Table 5–5: Example for /WEB-INF/web.xml

http://trustmanager.gemalto.iot-butler.eu/api/session_keys/

 BUTLER – Page 52/85

287901 BUTLER Project deliverable

Configuring the Resource Security Material

The Security Filter retrieves the resource security material from a resource provider
configuration file. The security materials are registered in the file /WEB-
INF/resourcedb/<resourcename>

Where <resourcename> := last field of the request URI.

Example:

http://mychalet.com/ResourceProvider/temperature

The Resource Provider shall define the /WEB-INF/resourcedb/temperature file as shown in
Table 5–6.

secret:<secret>

authcode:<authentication code>

Table 5–6: Security Material Configuration file for “temperature”

<secret> and <authcode> shall be equal to the values registered in the Authorization Server
when registering the resource. On the Authorization Server, the resource owner shall
configure the resource including the above secret and the authcode. This way, the
Authorization Server and the SmartObject Gateway share the same security credentials, see
Resource Registration in 5.8.2.

http://mychalet.com/ResourceProvider/temperature

 BUTLER – Page 53/85

287901 BUTLER Project deliverable

5.9. Network Monitoring

The Network Monitoring (NM) module provides availability, utilization and overall
performance of underlying M2M local area networks (MANs). In particular, NM aims to
provide aggregated network status statistics per smart object basis. Thus, in real time
fashion, NM intercepts and analyses network traffic in order to estimate real time statistics. In
turn, these statistics could be used to ensure that user service level objectives are met while
the network resources are utilized in a cost-efficient way. NM exposes these statistics to the
Smart Server through BUTLER consumer APIs. NM is crucial for real time statistics about the
network where indeed will help network administrator meet the network service level
agreement and have better planning for your network future improvement. Moreover, NM
acts as a proxy between the SmartObject Gateway manager and its bridges.

5.9.1. Classification of Network Monitoring Techniques

In this section, NM approaches are classified into two different types. We first look into the
distinction between Smart Object Device and SmartObject Gateway oriented monitoring.
Then, we classify NM approaches based on whether they use active monitoring or passive
monitoring strategies.

Smart Object Device and Smart Object Gateway Oriented Monitoring

The underlying Smart Object Devices network consists mainly of the SmartObject Gateway
plus one or more Smart Object Devices. The Smart Object Devices are spread into groups.
Objects in the same group share MAN resources i.e. a group of objects 6LowPAN, ZigBee to
cite a few. Each group is connected to the gateway by its own bridge. This bridge is part and
running in the gateway. The gateway facilitates connecting the Smart Objects to the larger
BUTLER network or the internet. This hierarchical grouping and interconnection of Smart
Object Devices easily classify the objects network traffic into two types. The first type is the
traffic between two Smart Object Devices in the same or different groups and it is named
local traffic. The second type is the traffic between the SmartObject Gateway and a Smart
Object Device and it is named global traffic.

An important issue that emerges when considering Network Monitoring is related to the traffic
monitoring coverage. We consider two main alternatives:

1) Smart Object Device NWK Monitoring is appropriate for maintainers that require a fine-
grained statistics status of the network links among Smart Object Devices themselves and
the Smart Object Devices and Gateway.

2) SmartObject Gateway NWK Monitoring provides a view of network links between the
gateway and the Smart Object Devices only, this approach lowers the computation overhead
on the Smart Object Devices since most of Network Monitoring functionalities are hosted and
run within the gateway.

The two approaches are further detailed as follows:

 Smart Object Device NWK Monitoring: the network traffic sourced or sunk by a Smart
Object can be monitored. So, more detailed statistics are generated. Hence, a better
availability, utilization and overall performance are presented by NM. However, there
are some issues to be considered with the Smart Object approach. First, each Smart
Object is often a black box containing proprietary software; there may be no way to

 BUTLER – Page 54/85

287901 BUTLER Project deliverable

add more functional logic for monitoring purposes, or even the addition of new logic
could break one or more capacity constraints of the Smart Object. Second, deriving a
time correlated performance metric within the Smart Object requires critical step: to
reconstruct time synchronization throughout the network. In order to sort out these
issues, either dedicated Smart Object devices can be used that implement NM
features or introduce specific NM functionalities in the devices.

 SmartObject Gateway NWK Monitoring: Only global traffic that is sourced or sunk by
the SmartObject Gateway can be monitored. So, the coverage of status statistic is
less than the previous case. NM functionality is required only in the gateway. A few
modification or configuration is needed for the Smart Objects. No time synchronization
throughout the network is required.

Passive versus Active Monitoring

Another classification scheme, which is often used when dealing with Network Monitoring,
distinguishes between active and passive monitoring techniques. For this work, we adopt the
following classification criterion: a monitoring tool is classified as active if it induces traffic
into the network; otherwise it is classified as passive. Passive monitoring is more appropriate
for monitoring gross connectivity metrics like link throughput; it is also needed for accounting
purposes. Passive Network Monitoring techniques analyse network traffic by capturing and
examining individual packets passing through the monitored link, allowing for fine -grained
operations, such as deep packet inspection. The main benefit of passive monitoring
approaches, compared to active monitoring, is its non-intrusive nature. Active Network
Monitoring techniques incur an unavoidable network overhead due to the injected probe
packets, which compete with user traffic. In contrast, passive Network Monitoring techniques
passively observe the current traffic of the monitored link, without introducing any network
overhead.

 Active monitoring is more effective for observing the network sanity and is suitable for
application oriented observations, such as jitter, when related to multimedia
applications. On the other side, this approach implies an unavoidable network
overhead due to the injected probe packets which compete with user traffic . To
incorporate active Network Monitoring in BUTLER there are issues to be considered.

o NM functionality is spread on both the SmartObject Gateway and Smart Object
side.

o Specific dedicated messages are used to update link information.

 BUTLER Ping message. In order to update NWK statistics, the smart
GW can send to a specific smart object an echo request message and
waits to the corresponding echo reply message. More details are
provided as follows.

 Echo request message: it is sent by the SmartObject Gateway
to a specific Smart Object. It contains the following fields:
Request sequence number and timestamp. The first field is
incremented by one each time the gateway sends an Echo
Request. The timestamp field holds an instance of current
system time at which the gateway generates this request. This
field remains unmodified in the Smart Object side.

 Echo reply message: it is sent from Smart Objects back to the
SmartObject Gateway. It contains the following fields: Reply
sequence number and timestamp. The first field. is copied as it is
from the sequence number of the corresponding Echo request

 BUTLER – Page 55/85

287901 BUTLER Project deliverable

message. The timestamp field is alos copied as it is from the
corresponding Echo request message. Node Id is the Smart
Object IPv6 address.

 BUTLER Traceroute message:

 This message, which is sent by the smart object GW to a specific
smart object device, is used to obtain the list of nodes used as
multi-hop along the path between the GW and the specific
device.

o The application data packet structure is modified by adding a Seq. no field.
This field is used to uniquely identify the current message among other
messages corresponding to the same Smart Object. The SmartObject
Gateway inserts this field in the message and the Smart Object copies it as it is
in the corresponding reply.

To sum up, passive monitoring provides network’s performance with a non-intrusive
approach while the active approach provides a more reactive response. Thus, as a general
rule, an effective Network Monitoring should exploit both techniques as presented in the
following.

5.9.2. BUTLER Network Monitoring Strategy

BUTLER Smart Object Devices can be based on different heterogeneous technologies and
applications. This requires that the SmartObject Gateway should be able to handle all
attached heterogeneous MAN, such as 6LoWPAN, ZigBee, RFID, etc. Due to aforementioned
heterogeneity, any supposed Active or Smart Object Device oriented NM approach requires
to adapt new logic to handle the NM functionalities.

For BUTLER, a hybrid passive-active and SmartObject Gateway oriented procedures are
combined to form BUTLER Network Monitoring. This way imposes a specific requirement and
configurations within the Smart Object devices and the SmartObject Gateway. And handling
most of the NM functionality is delegated to the SmartObject Gateway.

5.9.3. Network Monitoring Design Guidelines

Network statistics strongly depend on the protocol stack layer (in the OSI Module stack)
where NM observes the data packet. For instance, if NM computes the latency as the
propagation delay at the physical layer, then this delay is lower and more accurate in terms
of precision than any observed delay at the higher protocol layers like MAC or network.
Another good example, which emphasizes the effect of where the observation occurs, is
when a data packet is lost at any lower layer and a second retransmission succeeded to
deliver this data packet to its destination. In this case, all upper layers will never know that
this packet has been lost. Eventually, this will be revealed as an increase in the delay
values.

For BUTLER purposes, NM is attached at the application layer of OSI module. At this layer,
data packets can be expressed as BUTLER messages. Large majority of these messages
consist of a request from the SmartObject Gateway and a response from the Smart Object.

Another important issue to be considered is that BUTLER messages are further classified by
the Connectivity Handler (CH) based on the availability of the addressed Smart Object
Device. So, whenever Consumer tries to access a resource, the CH checks if it is connected.

 BUTLER – Page 56/85

287901 BUTLER Project deliverable

If endpoint is unavailable (device that hosts Resource is sleeping or Consumer is
disconnected), it forwards the message to the Data Handler component that takes care to
store message into a Connectivity Cache. The message is forwarded as soon as endpoint is
reachable. On the other hand, if communication endpoint is available the request CH d irectly
forwards the information to the right interface. Due to this behaviour of CH, the delay related
statistics firmly vary on the basis of the attachment point of NM with the reference CH.

To sum up, when NM is attached to the Northbound of Connectivi ty Handler, the measured
delay value includes the sleep time of the intended smart object. While, if NM is connected
Southbound of Connectivity Handler. Then the delay value does not include the sleep delay
time.

According to the above mentioned considerations, our suggestion is to provide two design
architectures and guidelines for NM.

1. Centralized module which provides the entire Network Monitoring functionalities,
hereafter it is called CNM (Centralized Network Monitoring). CNM has the following
properties and capabilities:

 It is part of the main SmartObject Gateway components where no in-depth
knowledge of any attached adaptor or Smart Objects is required.

 It must receive, analyse and forward all BUTLER messages (request and response
pair).

 For every observed Smart Object ID it holds instances of the network statistics.

 For each received message it updates the network statistics (more details are
provided later).

 Identifies, replies, and terminates any BUTLER message concerns gaining
knowledge of the network status and monitoring (basically these messages are not
any sensing or actuating messages).

2. Distributed architecture is called DNM (Distributed Network Monitoring). DNM consists
of many modules. All modules are similar in capabilities and also in functionalities. A
single DNM has the following properties and capabilities:

 It is part of a bridge, now the bridge is also acting as a manager for this module.

 For each attached Smart Object to the bridge, it analyses all BUTLER messages
heading to the Smart Object and it observes all the network statistics (more details
are provided later).

 For each Smart Object ID it holds instances of the network statistics.

 Identify and reply any BUTLER message concerns on gaining knowledge of the
network status and monitoring (basically these messages are not any sensing or
actuating messages).

 All the statistics are treated similarly as if they were sensing variable. For instance,
the network latency becomes similar to the Smart Object temperature value.

 BUTLER – Page 57/85

287901 BUTLER Project deliverable

5.9.4. BUTLER Network Monitoring Architecture

Overall NM accomplishes its aims through three main functionalities reported as follows:

1. Passive Part: traffic sniffing is performed by capturing BUTLER messages while
traversing the internal data bus (or just configuring the Connectivity Handler to send
both parts, request and response, of all BUTLER messages to NM) within the
SmartObject Gateway. Then, it processes these messages to figure out the useful
information such as command direction (is it request or response?), the intended
Smart Object Device ID by BUTLER message, target URI, system timestamp (this is
the current SmartObject Gateway time), the total message request size in bytes,
matching response to the corresponding request and then do calculation after
updating the internal data structure.

2. Active Part: acts as proxy with the Bridges. NM forwards BUTLER Ping and
Traceroute messages to its intended Bridge within the SmartObject Gateway. Then, it
forwards back the response.

3. Production stage which compromises interacting with other components in
SmartObject Gateway to facilitate exposing network statistics through BUTLER
external API.

5.9.5. Network Monitoring Statistics

MN provides the following output statistics and messages.

1. The link utilization is expressed by the following variables:
 Number of transmitted messages (nTx) is the total number of BUTLER messages per

Smart Object. Note that, nTx with a given time interval allows to compute nTx per time
unit like (nTx/minute) or (nTx/Hour) etc. For instance, throughput can be computed as
the number of messages successfully delivered per unit time.

 Number of application bytes (nBytes) is the total number of BUTLER message bytes
per Smart Object. A single value is:

nBytes = number of bytes of message header + number of bytes of message
payload.

2. The link quality is expressed by the following variables:
 Latency is a measure of Round Trip Time (RTT) expressed in milliseconds that is

experienced by successfully performing a BUTLER message and it is a good measure
to check the response time from the Smart Object against a request. Actually, Network
Monitoring always exposes the average of all measured latency values. In
communications, the lower limit of latency is determined by the medium being used for
communications. In reliable two-way communication systems, latency limits the
maximum rate that information can be transmitted, as there is often a limit on the
amount of information that is "in-flight" at any one moment. This delay includes all kind
of other associated delays, i.e. for ZigBee protocol the delay between the SmartObject
Gateway and the Coordinator and the delay between the Coordinator and the Smart
Object.

 Packet Loss ratio is an indicator of message loss that occurs when a BUTLER
message fails. The following formula is used to calculate this ratio:

cmdLossRatio = Number of lost messages / (Number of lost messages + nTx).

3. SmartObject Gateway Manager messages:
a. BUTLER Ping: is a BUTLER message similar to well-known Ping computer network

administration utility used. BUTLER Ping is used to test the reachability of a Smart

 BUTLER – Page 58/85

287901 BUTLER Project deliverable

Object device and to measure the round-trip time for messages sent from the
originating SmartObject Gateway to a destination Smart Object device.

b. BUTLER Traceroute: is a BUTLER message similar to well-known traceroute. It is
used for displaying the route (path) from the SmartObject Gateway to a specific
Smart Object.

All variables are attached with a timestamp corresponding to the time at which the variable value
was modified.

 BUTLER – Page 59/85

287901 BUTLER Project deliverable

5.10. Consumer API

The Consumer API is a generic java based API that allows exporting information from the
SmartObject Gateway and its associated home area network objects. Its services are used
by the Protocol Adapters. The consumer API allows interaction between the upper layer
protocols (as depicted in Figure 5–1) and the security checking management, which controls
access to resources by consumer applications.

5.10.1. Consumer API Request and Response protocol

The <SECURITY-DATA> notation used below for method’s signatures gathers authorization
data, authentication data (cf. Figure 5-5: End to end security sequence diagram), the
resource security material, and the authentication server’s URL . If argument data potentially
contains encrypted parameters the <PARAMETERIZED-SECURITY-DATA> notation is used
and the specific parameters definition is specified.

 In the case of a direct access to the SmartObject Gateway, the consumer API
provides two exploration methods:

o T
h
e

o

Table 5–7: Exploration Methods

o The LIST method returns the set of accessible resources for the requiring client
according to the defined security policy. The resource description is developed
below:

 the identifier of the resource: its common name as it has been recorded in the
authorization server;

 its type, as defined in the resource model: StateVariable, SensorData, or
Property (cf. Section 0);

 a list of associated attributes and their meta-data;

 a list of available methods as defined in the resource model: GET, SET,
SUSCRIBE, UNSUSCRIBE, ACT. An important point is that the list of available
methods depends on the security policy defined for both the client and the
resource, and so can be different for two clients accessing the same resource.

o The RESOURCE method, which takes the common name of a targeted resource
as parameter and returns its description as defined above.

 In the case of a targeted known resource, the consumer API offers methods to directly
access it using its endpoint. These methods are quite similar to the ones proposed by

Method Signature

LIST LIST(<SECURITY-DATA>) : <DATA>

RESOURCE

RESOURCE (<PARAMETERIZED-SECURITY-DATA>) :
<DATA>

Parameter(s) := <RESOURCE-ID>

 BUTLER – Page 60/85

287901 BUTLER Project deliverable

the Device Access API (cf. 4.4. Section), excepted by the fact that they include an
access token parameter in their signature.

Method Signature

GET
GET (<PARAMETERIZED-SECURITY-DATA>) : <DATA>

Parameter(s) := [<ATTRIBUTE-NAME>,]*

SET
SET (<PARAMETERIZED-SECURITY-DATA>) : BOOLEAN

Parameter(s) := [<ATTRIBUTE-NAME>,]? <VALUE>

SUBSCRIBE

SUBSCRIBE(<PARAMETERIZED-SECURITY-DATA>) :
SUSCRIPTION-ID

Parameter(s) := <CONSUMER-SERVICE-ENDPOINT>

UNSUBSCRIBE

UNSUBSCRIBE (<PARAMETERIZED-SECURITY-DATA>) :
BOOLEAN

Parameter(s) := <SUSCRIPTION-ID>

ACT
ACT (<PARAMETERIZED-SECURITY-DATA>) : <DATA>

Parameter(s) := [<PARAMETER>,]*

Table 5–8: Access Methods

o The GET method, by default (i.e. without parameter) returns the set of meta-data
(i.e. <name, type, value> triplet) associated to the “VALUE” attribute of the
resource. Otherwise, the result grows rich of an additional set of data for every
name of attribute passed as parameter;

o The SET method allows by default defining the value meta-data of the “VALUE”
attribute. If a name of attribute is passed as parameter the value meta-data of this
last one is updated. If the new value has been set properly the method returns a
TRUE boolean value, otherwise it returns a FALSE boolean value;

o The SUBSCRIBE method allows registering a change-event callback endpoint. It is
important to notice that for security purpose the subscription stays active as long
as the access-token of the requiring client is. If the callback endpoint registrat ion
has been done properly the method return a subscription identifier, a unique
numeric value on the SmartObject Gateway, otherwise it returns a NULL value;

o The UNSUBSCRIBE method allows unregistering a previously made subscription
using its identifier as parameter;

o The ACT method allows triggering of actuators and potentially returns a data
related to actuation (dependent of the resource).

In addition to its intermediary role between communication bridges and security manager, the
consumer API has to handle the subscription callbacks consistency through
resources/subscriptions and access-tokens/endpoints mappings and validation using the
security manager.

 BUTLER – Page 61/85

287901 BUTLER Project deliverable

5.10.2. Security Management at Consumer API

The request and response shall follow the security protocol which is transported by the north-
bridge protocol.

Table 5–9: Request and Response

The Consumer API uses the Internal Security API to handle the request and build the response.
The Consumer API returns the response that shall be transported over the north-bridge protocol.

Internal Security API

The internal security consists of Java methods to check and decrypt input data and encrypt the
output response as shown in Table 5–10.

Message Data

REQUEST

<CMD> | <PARAMETRIZED-SECURITY-DATA>
or <CMD> | <SECURITY-DATA>

with <SECURITY-DATA> :=
 <access-token> | <request-authentication-data>

RESPONSE

<DATA> := <request-identifier> | <encrypted-response>

 BUTLER – Page 62/85

287901 BUTLER Project deliverable

public class com.gemalto.m2ms.security.SecurityProviderAPI {

// REQUEST

public static SecurityRequestResponseMaterial

 checkTokenAndRetrieveSecurityRequestResponseMaterial(
 String request_url,

 String access_token_base64,

 String request_authentication_data_base64,

 String resource_key_material)

 throws InvalidKeyException, NoSuchAlgorithmException,

 NoSuchPaddingException,

 IllegalBlockSizeException,

 InvalidAlgorithmParameterException,

 InvalidKeySpecException;

public static byte[] decryptRequestPayload(
 // from protocol

 byte[] encrypted_payload,

 // from SecurityRequestResponseMaterial.

 String request_encryption_key)

 throws InvalidKeyException, NoSuchAlgorithmException,

 NoSuchPaddingException,

 IllegalBlockSizeException,

 InvalidAlgorithmParameterException

// RESPONSE.

public static byte[] encryptResponsePayload(
// the response

 byte[] response,

 // from SecurityRequestResponseMaterial.

 String response_encryption_key)

 throws InvalidKeyException, NoSuchAlgorithmException,

 NoSuchPaddingException,

 IllegalBlockSizeException ;

}

public class com.gemalto.m2ms.security.SecurityRequestResponseMaterial {

 // an instance of this class is returned by the

 // SecurityProviderAPI.

 // checkTokenAndRetrieveSecurityRequestResponseMaterial()

 // caller shall set the connectivity parameter

 // to be able to retrieve the request-encryption-key and

 // the response-encryption-key from the authorization server.

 public void setAuthenticationCode (String code);

 public void setAuthServerURL (URL url);

 public String getRequestIdentifier();

 public String getRequestEncryptionKey() throws
 MalformedURLException,

 IOException,

 ProtocolException

 public String getResponseEncryptionKey() throws
 MalformedURLException,

 IOException,

 ProtocolException;

}

Table 5–10: Internal Security API

 BUTLER – Page 63/85

287901 BUTLER Project deliverable

6. Gateway Management

6.1. Overview

The Gateway Management FG includes the necessary functionalities for management and
maintenance of Smart Objects and services, such as configuration, software management,
performance management, diagnostics, accounting and security.

The main functional components are the Gateway Manager and the Device Manager.

Figure 6–1 shows the Gateway Management FG architecture.

Figure 6–1: Gateway Management functional group

 BUTLER – Page 64/85

287901 BUTLER Project deliverable

6.2. Device Manager

The Device Manager FG defines the Device Management API to interact with the Device
Protocol Adapter FG.

6.2.1. Device Management Overview

BUTLER system includes Device Management functionality for large scale deployments as

described in section 3.5.4 of [D3.2]. Management consists of configuration, monitoring and

administration of entities such as network elements, system resources, applications or services in

order to increase their efficiency.

Figure 6–2 illustrates the overall device management concept.

Figure 6–2: System/Device Management interface

Device/Resource/Service

management

BUTLER services

Device Directory

Data/context management

Communication

Device Discovery

Device

Management

Resource Directory

Resource

Discovery

Resource

Management

Service Directory

Service Discovery

Service

Management

1) Lifecycle management of Devices, sensors, entities, sub-entities

2) Resources (devices, sensors, etc) database

3) Discovery of devices, sensors, etc already in the platform

 BUTLER – Page 65/85

287901 BUTLER Project deliverable

6.2.2. Device Management API

The Device Management API allows the interaction with sensors and actuators for
management purpose. Several administration parameters can be modified remotely on the
device platforms. However, take care that after a reboot, the device node will come back to
its initial configuration. The generic management operations, applicable to different Smart
Objects are described below.

Method Signature Description

SET_PERIOD

Set_Period (String deviceID, long

period)

All the sensors connected to

a node are scanned with a

period of time that can be

changed remotely.

This period define also the

frequency the sensor events

will be notified to the user if

he subscribed to periodic

notifications.

SET_LOCATION SET_LOCATION (String deviceID,

string location)

The registered location of the

node can be changed

remotely.

SLEEP

SLEEP (String deviceID, long

Duration, UNIT unit)

Sleep operation asks the

devices to enter its Sleep

Mode to save some battery.

It takes as input the sleep

duration of the device. While

sleeping, devices stop polling

its sensors and can’t receive

or send data.

Table 6–1: Device Management API

 BUTLER – Page 66/85

287901 BUTLER Project deliverable

6.3. Gateway Manager

The Gateway Manager FG defines the Service Management API to interact with the Smart
Object Access and Control FG and the high level Manager API to interface with the
Consumer Protocol Adapter FG.

6.3.1. Gateway Manager Overview

BUTLER SmartObject Gateway is based on the Open Services Gateway initiative (OSGi) [6-1] that
simplifies management of the overall gateway system. OSGi allows representing sensor and
actuator device capabilities in abstract terms. iPOJO [6-2] has been used to describe services
components and to simplify OSGi services development. Service components represent
SmartObjects’ functional and management capabilities, while separating access to their interfaces.

Figure 6–3 and Figure 6–4 provide an example of an OSGi web-based console for managing the
gateway services. It allows administration tasks and secured access to the BUTLER SmartObject
Gateway environment. It also allows overseeing and configuring services and events at runtime. In
addition, the OSGi remote management functionality can be used to detect and fix problems with
the platform and to install or update new SmartObjects services.

Figure 6–3: OSGi Web Console (view 1)

Figure 6–4: OSGi Web Console (view 2)

 BUTLER – Page 67/85

287901 BUTLER Project deliverable

Lifecycle Management

From design to runtime, SmartObject has a lifecycle of five phases: modelling, development,
integration, deployment and execution. All these phases are defined with the goal of increasing the
reusability of software components and reducing development efforts that can be important due to
the heterogeneity and the dynamic nature of IoT environments.

 Modelling phase refers to representing any IoT device as BUTLER SmartObjects. Each
device provides then one or several services each one exposing a set of resources.
BUTLER services and resources conform to the BUTLER service and resource model
introduced in section 5.2.1.

 Development phase consists of implementing the services and resources, defined in the

modelling phase, provided by devices. Some BUTLER-related developments could be done
on the device (even if it is not required); however the main development tasks will be
performed at the service layer. Each BUTLER SmartObjectService should implement the
BUTLER API in order to allow accessing its resources in a homogeneous way.

 Integration makes all development components working together by identifying appropriate

communication interfaces. Bridges provide the interface between the BUTLER platform and
device specific communication protocols, operating systems, data models, etc. BUTLER
already supports devices from various providers.

 Deployment phase consists of deploying implemented services, necessary libraries and

technical services on the platform. Some deployment features allowing automatic charging
of dependent services and libraries are implemented.

 Execution defines the phase where SmartObject services are running and can be reused
by other BUTLER services or applications. Their execution can be monitored and controlled
by management applications. With a service oriented approach, services are loosely
coupled to their implementation allowing thus reconfiguration of applications at runtime.

The BUTLER SmartObject Gateway relies on the OSGi specification which provides a service
model and platform for dynamic service deployment and execution. OSGi services are described
by Java interfaces and properties. OSGi defines service packaging and deployment units named
bundles. A bundle contains Java classes implementing the service functionalities and other
resources such as configuration files, native libraries, images, etc. Moreover, a bundle specifies its
provided and required Java packages in order to share and use code from other bundles:
applications are composed by interconnecting bundles. Figure 6–5 shows the different states of a
bundle lifecycle (installed, resolved, starting, active, stopping and uninstalled) and the existing
transitions between them.

 BUTLER – Page 68/85

287901 BUTLER Project deliverable

Figure 6–5: Bundle lifecycle

BUTLER Services are thus OSGi services packaged and deployed via bundles. At runtime, a
SmartObjectService instance is configured and created based on the device discovery, and
disposed once the device is no more available. Then, the runtime lifecycle of SmartObjectServices
depends on the appearance and removal of devices. Based on the iPOJO model3, the runtime
lifecycle of a SmartService instance depends on the state of its service dependencies: a
SmartService is valid if all its mandatory dependencies are satisfied, otherwise it is invalid and its
resources are not exposed. SmartServices can then be reconfigured and managed dynamically.
Figure 6–6 shows the lifecycle of iPOJO instances.

Figure 6–6: iPOJO instance lifecycle

3
 iPOJO is a service component runtime aiming to simplify the development of OSGi applications. It allows

building applications exhibiting modularity and requiring runtime adaptation and autonomic behaviour.

Configured*

Invalid* Disposed*

Valid*

Di sposed

Di sposed

St ar t
St op

Al l ser vi ce
dependenci es

ar e sat i sf i ed

At l east , one
mandat or y ser vi ce

dependency i s

unsat i sf i ed

 BUTLER – Page 69/85

287901 BUTLER Project deliverable

6.3.2. Service Management API

The Service Management API provides basic management functionality for service
monitoring and update. It also defines access policy to different related SmartObjects
services and resources such as, permission granting and group management. This API also
provides diagnostics and monitoring statistics.

Method Signature Description

Registration ErrorCode Register (URL url) Register a new service

pointed by the given URL.

It Returns a code error.

Lifecycle

monitoring

ErrorCode Stop(String serviceID)
ErrorCode Start (String ServiceID)
ErrorCode Update(String serviceID, URL url)
ErrorCode Uninstall (String serviceID)

Stop/start/update/uninstall

a service, it also provides

a code error.

Authentication ErrorCode adduser(List<String> servicesList,
SECURE_USER_Data secureUserData)
ErrorCode removeUser()

Give authorization to the
given user to use a list of
services.
Remove a user, he

cannot use any service

Overseeing services

and events

Log getLog()
List<String> getServices(OPTION option)

Provides log events
Provides the list of

running services, option

take different value: ALL,

device (only service

which are device service)

Table 6–2: Service Management API

 BUTLER – Page 70/85

287901 BUTLER Project deliverable

6.3.3. Manager API

The Manager API is a generic Java based API which extends the Consumer API (defined in 5.10.)
to export the management functionalities provided by the Device Management API and by the
Service management API. Therefore, this API follows the security requirements adopted by the
consumer API which are <SECURITY-DATA>, <PARAMETERIZED-SECURITY-DATA>. This
design makes the support of multiple protocols more efficient and easier when providing dedicated
protocol management access via Consumer Protocol Adapters. Basic methods of the Manager API
are described in the following table.

Method Signature

REGISTRATION REGISTER (<PARAMETERIZED-SECURITY-DATA>) : <

ERRORCODE>

Parameter(s) := <URL>

LIFECYCLE

MONITORING

STOP(<PARAMETERIZED-SECURITY-DATA>) : < ERRORCODE>

Parameter(s) := <SERVICE_ID>
START (<PARAMETERIZED-SECURITY-DATA>) : <

ERRORCODE>

Parameter(s) := <SERVICE_ID>
UPDATE(<PARAMETERIZED-SECURITY-DATA>) : <

ERRORCODE>

Parameter(s) := <SERVICE_ID, URL>
UNINSTALL(<PARAMETERIZED-SECURITY-DATA>) : <

ERRORCODE>

Parameter(s) := <SERVICE_ID>

OVERSEEING

SERVICES AND

EVENTS

GETLOG(<SECURITY-DATA>) : < LOG>

GETSERVICES(<PARAMETERIZED-SECURITY-DATA>) :
<SERVICES_LIST>
Parameter(s) := <OPTION>

SET_PERIOD

SET_PERIOD (<PARAMETERIZED-SECURITY-DATA>)
Parameter(s) := <DEVICE_ID, PERIOD>

SET_LOCATION SET_LOCATION (<PARAMETERIZED-SECURITY-DATA>)
Parameter(s) := <DEVICE_ID, LOCATION>

SLEEP

SLEEP (<PARAMETERIZED-SECURITY-DATA>)
Parameter(s) := <DEVICE_ID, DURATION, UNIT>

Table 6–3: Manager API

 BUTLER – Page 71/85

287901 BUTLER Project deliverable

7. Consumer Protocol Adapter

7.1. Overview

The Consumer Protocol Adapter functional group, shown in Figure 7–1, provides the Smart
Server and the Smart Mobile platforms with multiple ways of interacting with the SmartObject
Gateway. Each of its internal bridges (i.e., protocol adapters) relies on the Java based
Consumer API and Manager API defined respectively by the Smart Object Access and
Control and by the Gateway Management functional groups.

For the first implementation there will be bridges for JSON-RPC and REST API. Other
adapters can be developed in the future according to the specific needs.

Figure 7–1: Consumer Protocol Adapter functional group

 BUTLER – Page 72/85

287901 BUTLER Project deliverable

7.2. JSON-RPC Bridge

The JSON-RPC consumer protocol adapter provides an implementation of the JSON-RPC
specification [7-1]. JSON-RPC is a light-weight protocol for remote procedure calls. It is built
upon the ECMA-standardized JSON [7-2], a popular data interchange format, to which it
adds a semantic of procedure calls (input parameters and output results).

JSON is a text format for interchanging structured data, with no particular programming
language in mind. Syntax is inspired from ECMA Javascript, but can be easily parsed and
generated in C, Java, Python, PHP, etc. Data interchanged in JSON are expected to be
represented as textual strings, like texts and numbers. Binary data are not directly supported
but can be managed through a binary encoding format such as base64.

JSON-RPC is a mechanism that can be implemented over http protocol or raw TCP/IP
sockets. It only relies on a bi-directional data connection, during which each peer may invoke
methods (procedures) provided by the other one. The method invocation consists in building
a single serialized request, composed of three fields, respectively method, params and id:

 the 'method' field is a string giving the name of the method to be invoked,

 the 'params' field contains an JSON array of objects, representing the arguments of
the method,

 the 'id' field is an arbitrary string or a number, used to match the response with the
request.

When one side receives a request, it is required to answer with a response composed of the
following fields:

 the 'result' is a JSON object, that can only be null in case of an error during the
method invocation,

 the 'error' field is a JSON object containing any description of an error, if any,

 'id' field must match the id given in the request.

A notification is a special request with a null id, and for which no response is expected.

The BUTLER consumer protocol adapter complies with JSON RPC 1.0. Bi-directional
communication over a bi-directional stream socket connection.

 BUTLER – Page 73/85

287901 BUTLER Project deliverable

For example, Table 7–1 shows how a BUTLER application can retrieve the list of installed TV
sets.

REQUEST

{

"method": "getTvDeviceList",

"params": [],

"id": 1

}

RESPONSE

{

"result": [

 {

"id": "TV-SAMSUNG-UE32ES5500-SHCGYQLKF5JTM",

 "label": "Samsung 32' Living Room",

},

{

"id": "TV-SAMSUNG-UE32ES5500-AABBCCDDEEFFG",

 "label": "Samsung 32' Kitchen",

}

],

"id": 1

}

Table 7–1: Example – Retrieve the list of installed TV sets

 BUTLER – Page 74/85

287901 BUTLER Project deliverable

The next example (Table 7–2) makes use of JSON-RPC to play a video on a given TV set.
The video is described by a media descriptor containing information such as the source URL
of the video and the movie title. The TV set is identified with its built-in serial number.

Please notice that the request shown in Table 7–2 is a JSON-RPC notification so there is no
response to it.

REQUEST

{ "method": "playToDevice",

 "params": [

 "TV-SAMSUNG-UE32ES5500-SHCGYQLKF5JTM",

 {

 "mediaId":
"http://172.20.255.107:8081/multimedia/bunny_movie.mp4",

 "metadataMap": {

 "fra": {

 "coverUrl":
"http://172.20.255.107:8081/multimedia/bunny_movie.jpg",

 "title": "Big Buck Bunny",

 "languageCode3l": "fra",

 "durationSec": 596,

 "year": 0

 }

 },

 "sourceList": [

 "http://172.20.255.107:8081/multimedia/bunny_movie.mp4"

],

 "audioTracks": [],

 "subtitleTracks": [],

 "videoTracks": []

 },

 0

] }

Table 7–2: Example – Play a video on a given TV

 BUTLER – Page 75/85

287901 BUTLER Project deliverable

7.3. REST API

The BUTLER REST Consumer Protocol Adapter provides a RESTful access to SmartObjects
data and functionalities connected to a BUTLER SmartObject Gateway.

REST (REpresentational State Transfer) is an architectural style defined in 2000 by Dr. Roy
Fielding [7-3] [7-4]. The basic principles behind this architectural style are that the system
must follow the client-server paradigm and that the architectural components interact via
requests and responses and must be accessible through uniform interfaces. Another key
notion is the resource concept: it is everything which is accessible; its state can be
transferred, and can be univocally identified and addressed by a Uniform Resource Identifier
(URI).

For example an object resource can be identified by the following URI:

http://gateway.iot-butler.eu/objects/1234

In the example above, ‘1234’ is the resource identifier.

A REST system performs its functions trough the CRUD (Create, Read, Update and Delete)
operations on resources, using regular HTTP methods. In particular CRUD operations act on
a resource in the following way:

 Create: mapped into the HTTP POST in order to create (or add) a new resource

 Read: it is mapped into the HTTP GET in order to access the resource

 Update: it is mapped into the HTTP PUT in order to modify the resource

 Delete: it is mapped into the HTTP DELETE in order to destroy the resource

These operations act on the same way on a single resource (e.g. http://gateway.iot-butler.eu
/objects/1234) as well as in a collection of resources (e.g. http://gateway.iot-
butler.eu/objects).

The BUTLER REST Consumer Protocol Adapter implements REST APIs, which are designed
based on the IPSO Application Framework. [7-5]. The IPSO Framework is designed for a
simple client-server interaction model on atomic resources, in order to minimize complexity.
An IP SmartObject runs a simple web server (HTTP or CoAP) and exposes resources that
conform to this framework. This approach is very useful for the scope of the BUTLER project,
because it is very suitable for constrained devices.

It is important to remind that the IPSO Application Framework is a draft and it should be
considered as work in progress. So it needs to be extended by using specific solutions for
being able to manage BUTLER SmartObjects.

According to basic concepts defined by IPSO Alliance, each attribute of SmartObject Devices
connected to the SmartObject Gateway is seen as a resource accessible via regular HTTP
methods. In the following, a non-exhaustive set of examples of APIs signatures and their
responses is provided.

In BUTLER SmartObject Gateway, each SmartObject is modeled as a resource and is
identified by an id.

http://gateway.iot-butler.eu/objects
http://gateway.iot-butler.eu/objects

 BUTLER – Page 76/85

287901 BUTLER Project deliverable

In the following examples only the relative path is considered, supposing that the
SmartObject Gateway is exposing the REST interface on http/s at an endpoint like:
http://gateway.iot-butler.eu

Invoking the resource /objects it’s possible to obtain the list of objects ids connected to it:

Address GET /objects

Response

200 OK

[

 "/12345",

 "/agstd",

 "/6dt3d",

 "/jdj72"

]

Table 7–3: Example – Get the list of objects

All the object attributes are also modeled as resources and, given the object id, the list of its
available resources is retrievable accessing the endpoint

/objects/<object_id>

For example the following table represents a light device with two LEDs (identified by ids
led0 and led1).

Address GET /objects/12345

Response

200 OK

[

 "/dev/mng",

 "/dev/n",

 "/dev/mdl",

 "/dev/mdl/hw",

 "/dev/mdl/sw",

 "/lt/led0",

 "/lt/led0/dim",

 "/lt/led0/on",

 "/lt/led1",

 "/lt/led1/on"

]

Table 7–4: Example – Representation of a light device with two LEDs

Each resource is readable by a GET invocation to its URL. For example, the following
example allows retrieving the model of the object identified by “12345”:

Address GET /objects/12345/dev/mdl

Response

200 OK

{

 "mdl": "STM32W MB851 REV C"

}

 BUTLER – Page 77/85

287901 BUTLER Project deliverable

Table 7–5: Example – Retrieve the model information from an object

Client applications can act on objects and their resources in two ways. The operations that
act on specific object’s resources can be performed using HTTP PUT method. The request
body must contain only the resources which values have to be changed. For example, the
following tables represent respectively the operation of changing led0 dim value to 67% and
the action of switching on led1:

Address PUT /objects/12345/lt/led0

Body

{

 "dim": 67

}

Response 200 OK

Table 7–6: Example – Dim LED light

Address PUT /objects/12345/lt/led1

Body

{

 "on": true

}

Response 200 OK

Table 7–7: Example – Turn on LED light

More complex actions (e.g. actions that need additional information to be performed) are also
possible. Invoking the endpoint

/objects/<object_id>/actions
the list of actions supported by an object is returned. For example:

Address GET /objects/12345/actions

Response

200 OK

[

 "/action1",

 "/action2"

]

Table 7–8: Example – Get the list of actions supported by an object

According to the response of the previous API and to the SmartObject Gateway
documentation that describes additional parameters (if any) to be used on each supported
action, the operation can be performed using HTTP PUT method. The response will contain
the resource itself, with attributes values resulting from the action. For example:

Address PUT /objects/12345/actions/action1?par1=xyz

Response

200 OK

{

 "res1": "abc",

 "res2": 5234

}

Table 7–9: Example – HTTP PUT method

 BUTLER – Page 78/85

287901 BUTLER Project deliverable

The REST Consumer Protocol Adapter supports also subscriptions to the SmartObject
Gateway. Client applications can send subscription requests, eventually specifying some
filtering criteria, to the API described in the following example. The client has to keep the
HTTP/S connection to the SmartObject Gateway open; when the requested condition is
verified, the resource itself will be sent as notification.

To send a subscription to the SmartObject Gateway, a client application must send an HTTP
GET request to the endpoint

/objects/<object_id>/subscriptions/<resource_id>?<filter_criteria>

The filter criteria parameter is optional and can be omitted if the client is interested in all
changes of the resource value. Next examples show respectively a subscription to state
change (on/off) of led1 and a subscription to changes in at least one degree read by a
temperature sensor:

Address GET /objects/12345/subscriptions/led1/on

Response
(each time the
notification
condition
occurs)

200 OK

{

 "on": true/false

}

Table 7–10: Example – Subscription to state change for LED light

Address GET /objects/12345/subscriptions/sen/temp?st=1

Response
(each time
the
notification
condition
occurs)

200 OK

{

 "temp": <degrees>

}

Table 7–11: Example – Subscription to value change for temperature sensor

Currently defined filter criteria are:

 st – unit step

 eq – equals

 gt – greater than

 lt – lower than

 BUTLER – Page 79/85

287901 BUTLER Project deliverable

Error messages returned by the APIs described in this section are modeled as detailed in the
following table:

Example
error
response

xxx HTTP Status Code

{

 "code": <application_error_code>,

 "msg": "<error message>",

 "descr": "<higher level error description>"

}

Table 7–12: Example – Error response

 BUTLER – Page 80/85

287901 BUTLER Project deliverable

7.3.1. NFC Parking Use Case Example using REST API

In the following section we are going to use the Smart Parking Use Case ([D1-2], Section
5.5) as a How-To example for building a simple NFC Payment Service using the REST API.
The use case conceives in each street one Smart Object Device controlling several Vehicle
Detection Sensors and Actuators (namely the Lighting System). Now, NFC Modules are
going to be attached to each Smart Object Device enabling NFC transactions.

First Step

The first step is discovering the NFC Modules by querying the NFC General Group, in which
developers only have “read” privilege (as in UNIX systems, r is reading, w is writing and x is
executing).

Address http://api.iot-butler.eu/v1/NFC/Groups/<NFC_General_Group_ID>

Body

Method GET

Response

200 OK

{

 “ID”: “ABCDEF123456”,

 “Name”: “NFC General Group”,

 “Description”: “This group exposes all NFC Module resources”,

 “Members”: [

 {“ID”: “AAA”}, {“ID”: “BBB”}, {“ID”: “CCC”},

 {“ID”: “DDD”}, {“ID”: “EEE”}, {“ID”: “FFF”}

],

 “Permissions”: “r--”

}

Example
of
possible
error
response

404 Not Found

{

 “Status”: 404,

 “Message”: “The resource based on the specified URI does not exist”,

 “Info”: “http://api.iot-butler.eu/docs/errors/404”

}

 BUTLER – Page 81/85

287901 BUTLER Project deliverable

As a developer, you can now create your own NFC Group by calling the POST method.
Inside the response you get the ID of the group you just created or an error code in case of
failure. Being the owner of the group grants you with all privileges.

Address http://api.iot-butler.eu/v1/NFC/Groups

Body

{

 “Name”: “My Parking Group”,

 “Description”: “A Collection of my NFC Modules”

}

Method POST

Response

201 CREATED

{

 “ID”: “A1B2C3D4E5F6”,

 “Name”: “My Parking Group”,

 “Description”: “A Collection of my NFC Modules”,

 “Members”: null,

 “Permissions”: “rwx”

}

Example
of
possible
error
response

401 Unauthorized

{

 “Status”: 401,

 “Message”: “Authentication credentials are required to access the

 resource”,

 “Info”: “http://api.iot-butler.eu/docs/errors/401”

}

Finally add the desired NFC Modules you want to operate inside the group created, based on
the members list obtained in the previous call.

Address http://api.iot-butler.eu/v1/NFC/Groups/A1B2C3D4E5F6

Body

{

 “Members”: [

 {“ID”: “AAA”, “Name”: “SmartParking NFC Module A”},

 {“ID”: “BBB”, “Name”: “SmartParking NFC Module B”},

 {“ID”: “CCC”, “Name”: “SmartParking NFC Module C”},

]

}

Method PUT

Response

200 OK

{

 “ID”: “A1B2C3D4E5F6”,

 “Name”: “My Parking Group”,

 “Description”: “A Collection of my NFC Modules”,

 “Members”: [

 {“ID”: “AAA”, “Name”: “SmartParking NFC Module A”},

 {“ID”: “BBB”, “Name”: “SmartParking NFC Module B”},

 {“ID”: “CCC”, “Name”: “SmartParking NFC Module C”},

],

 “Permissions”: “rwx”

}

Example
of
possible
error
response

403 Forbidden

{

 “Status”: 403,

 “Message”: “The supplied authentication credentials are not

 sufficient to access the resource”,

 “Info”: “http://api.iot-butler.eu/docs/errors/403”

}

 BUTLER – Page 82/85

287901 BUTLER Project deliverable

Second Step

In this step an NFC Module is going to be configured for measuring readings (thus,
Read/Write mode). First update its settings using a PUT call:

Address http://api.iot-butler.eu/v1/NFC/Modules/AAA

Body

{

 “Description”: “This NFC Module will be reading NFC Tags”,

 “Key”: “111222333444555666AAABBBCCCDDDEEEFFF”,

 “Mode”: “RW”

}

Method PUT

Response

200 OK

{

 “ID”: “AAA”,

 “Name”: “SmartParking NFC Module A”,

 “Description”: “This NFC Module will be reading NFC Tags”,

 “Key”: “111222333444555666AAABBBCCCDDDEEEFFF”,

 “Mode”: “RW”,

 “Timestamp”: null,

 “Groups”: [“ID”: “ABCDEF123456”, “ID”: “A1B2C3D4E5F56”]

}

Example
of
possible
error
response

400 Bad request

{

 “Status”: 400,

 “Message”: “A required query parameter was not specified for this

 request”,

 “Info”: “http://api.iot-butler.eu/docs/errors/400”

}

The chosen NFC Module is well configured using the BUTLER Consumer API, so now it is
time to the underlying BUTLER Device Access API to act upon the SmartObject, what is
explain with further details in Section 4.4.

 BUTLER – Page 83/85

287901 BUTLER Project deliverable

Third Step

Following with the example, retrieve all the NFC Tags that have been read so far.

Address http://api.iot-butler.eu/v1/NFC/Tags/

Body

{

 “Get”: “All”,

 “GetFrom”: “AAA”

}

Method GET

Response

200 OK

[

 {

 “ID”: “1”,

 “Key”: “12345”,

 “Data”: “Hello world!”,

 “Timetag”: “2013-07-08T13:40+01”

 },

 {

 “ID”: “2”,

 “Key”: “12345”,

 “Data”: “Hola mundo!”,

 “Timetag”: “2013-07-08T13:43+01”

 },

 {

 “ID”: “3”,

 “Key”: “56789”,

 “Data”: “Bonjour monde!”,

 “Timetag”: “2013-07-08T13:45+01”

 }

]

Example
of
possible
error
response

400 Bad Request

{

 “Status”: 400,

 “Message”: “The value provided for one of the parameters was not in

 the correct format”,

 “Info”: “http://api.iot-butler.eu/docs/errors/400”

}

 BUTLER – Page 84/85

287901 BUTLER Project deliverable

After a while, request only new NFC Tags read, i.e. excluding the ones returned in previous
calls.

Address http://api.iot-butler.eu/v1/NFC/Tags/

Body

{

 “Get”: “New”,

 “GetFrom”: “AAA”

}

Method GET

Response

200 OK

[

 {

 “ID”: “4”,

 “Key”: “56789”,

 “Data”: “Ciao mondo!”,

 “Timetag”: “2013-07-08T14:20+01”

 },

 {

 “ID”: “5”,

 “Key”: “12345”,

 “Data”: “Hallo welt!”,

 “Timetag”: “2013-07-08T14:31+01”

 }

]

Example
of
possible
error
response

413 Request Entity Too Large

{

 “Status”: 413,

 “Message”: “The size of the request body exceeds the maximum size

 permitted”,

 “Info”: “http://api.iot-butler.eu/docs/errors/413”

}

 BUTLER – Page 85/85

287901 BUTLER Project deliverable

8. References

[4-1] G. Montenegro et al, Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC
4944, IETF, September 2007

[4-2] IEEE 802.15.4-2011 http://standards.ieee.org/findstds/standard/802.15.4-2011.html

[4-3] T. Winter et al, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC 6550,
IETF, March 2012

[4-4] Z. Shelby et al, Constrained Application Protocol (CoAP), IETF Draft, June 2013
http://datatracker.ietf.org/doc/draft-ietf-core-coap/

[6-1] OSGi Framework Specification
http://www.osgi.org

[6-2] The iPOJO Service Component Runtime
http://felix.apache.org/site/apache-felix-ipojo.html

[7-1] JSON-RPC 1.0 Specification
http://www.simple-is-better.org/json-rpc/jsonrpc10.html

[7-2] The JSON Data Interchange, ECMA, Standard 404, First Edition, October 2013
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

[7-3] Roy Fielding, Chapter 5 of Ph.D. dissertation: "Representational State Transfer (REST)"
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[7-4] M. Lanthaler, C. Gutl. Towards a RESTful service ecosystem. 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST). April 2010, pp. 209-214

[7-5] The IPSO Application Framework, IPSO Alliance Working Document
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf

References to other BUTLER Deliverables:

[D1-2] Deliverable D1.2 - Refined Proof of Concept and Field Trial Specification. May 2013

[D3-1] Deliverable D3.1 - Architectures of BUTLER Platforms and Initial Proofs of Concept.
October 2012

[D3-2] Deliverable D3.2 - Integrated System Architecture and Initial Pervasive BUTLER proof of
concept. October 2013

http://standards.ieee.org/findstds/standard/802.15.4-2011.html
http://datatracker.ietf.org/doc/draft-ietf-core-coap/
http://www.osgi.org/
http://www.simple-is-better.org/json-rpc/jsonrpc10.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf

