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1 Executive summary

This deliverable presents the main technical developments and research achievements within WP5 -
Visual Search Tools during the second phase of the project (Phase B: M18-M32). The key objective of
WP5 is to develop advanced tools for automated Visual Search (VS) in image and video databases
(Broadcast, Internet), enabling fast creation of content-based links for the Authoring Tools (ATs) and
user-originated search capabilities for the Player. In the second phase (B), the main focus was on the
development of visual-search engine capable of working with video libraries, and the development of
BSOTA component tools for such engine.

This deliverable is structured based on active WP5 Tasks and focuses on main results of the research
conducted between M18 and M32 of the project, and on the deployment within the BRIDGET pipeline.

The main achievement was a successful development of a complete video search engine, which has
demonstrated BSOTA performance in the MPEG evaluation. The engine utilises the state-of-the art com-
ponent tools developed in phase A, and tools designed or further extended in the phase B.

Robust Visual Search methods were advanced significantly in several areas. Firstly, our novel descriptor
aggregation scheme called Robust Visual Descriptor (RVD) had been extended with local cluster whiten-
ing and a new normalisation scheme. We also redesigned the RVDW pipeline to work with deep CCN
features, achieving further performance boost. Overall, our results advance significantly beyond SOTA in
terms of recognition performance and speed, and formed the basis for a high-performance, scalable,
binary global descriptor. Work also advanced on a new and fast approach to determine geometric con-
sistency in video, called multi-frame DISTRAT. Finally, computationally efficient methods to analyse
temporal variations in video and to derive a compact video-level descriptor, which minimise temporal
redundancy have been developed. The tools were integrated into a complete search-engine pipeline,
which was integrated into the BRIDGET authoring tool (AT), and formed the core base for consortium’s
response to MPEG CVDA Call for proposals.

On the standardisation front, the project supported successful finalisation of MPEG-CDVS standard and
has been deeply engaged in the CDVA (Compact Descriptors for Visual Analysis) work. In the second
phase, the project contributed video datasets and performed extensive annotation work, developed
software evaluation framework for the CfP, managed the development of the first official experimental
model, and presented two technical contributions to the CVDA pipeline. One proposal on reference frame
selection has been accepted and is included in the current draft of the standard. 8 contributions to the
MPEG CVDS/CDVA standardization work with significant impact were submitted, including (1) a re-
sponse to the CfP with leading performance and (2) a successful proposal on temporal sampling in CE1
m38664.

D5.3-v1.2
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2 Introduction

The objective of WP5 is to develop advanced tools for automated Visual Search (VS) in image and video
databases (broadcast, Internet), enabling fast creation of content-based links for the Authoring Tools
(ATs) and user-originated search capabilities for the player.

In the second part of the project the key objectives of WP5 were:

complete development of global (aggregated) descriptors, matching algorithms and related tools
for Visual Search and object recognition in large image databases, which are characterised by high
true-positive detection rate at very low false-alarm rate and support ultra-fast matching;

finalise development of binarisation strategies for local and global descriptors to enable fast
matching;

extend fast geometric consistency checking strategies to include video matching;

develop techniques for Visual Search in Video with image-to-video and video-to-video search tools,
including descriptor encoding methods, temporal aggregation, descriptor tracking and fast geo-
metric consistency check in video;

develop dedicated data structures and indexing schemes;
participate and support completion of the ISO/MPEG standardisation work on Compact De-

scriptors for Visual Search (CDVS);

continue participation in the Compact Descriptors for Visual Analysis (CDVA) group, leading ef-
forts to design evaluation framework and annotated datasets for Visual Search in Video. Further,
prepare a technical solution to Call for Proposal.

We first outline the current algorithmic flow for the Visual Search Engine develop in the project and then
present the key innovation and achievements in the main elements of the processing pipeline.

As per project plan, in the reporting period the work concentrated around the following five areas:

1.

2.

Development of the extension to video of descriptors for images, encoding methods, temporal ag-
gregation and effective comparison strategies for video (TI, UNIS, RAI and VA).

Further improvements to local descriptor aggregation RVD, including integration with deep fea-
tures, in order to obtain a global descriptor with beyond the state-of-the art recognition perfor-
mance (UNIS);

Data structures and fast indexing methods (UNIS, VA);

Extension of the DISTRAT tool for the geometric consistency check, developed in the 1 phase of
the project, to enable processing multiple frames in video (TI), and

Contribution to the CDVS and CDVA standardisation activities (TI, VA, UNIS).

The following sections describe technical achievements in each of the above areas. Section 3 presents in
greater detail the pipeline design of the BRIDGET visual search engine and explains the technical choices
made. Section 4 discusses compact representations of video content and outlines two approaches to
spatio-temporal sampling of video studied in the second phase of the project. The advances in robust
aggregation methods, based on the extended RVD-W descriptor are presented in Section 5. This section
also shows the latest results for aggregation of the deep descriptors. Section 6 present multi-frame DIS-
TRAT for geometric verification, while Section 7 details standardisation activities and contributions.
Conclusions are presented in Section 8.

D5.3-v1.2
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3 The BRIDGET Visual Search Engine

3.1 Introduction

The objective of WP5 workpackage is to develop a low-complexity and high-performance visual search
technology for video content. Please refer to [1] for the description of the visual search engine for images,
developed in the first phase of the project (phase A). Work in the second phase, addressing search in
video, is substantially based on the results of the first phase (A), which also contributed to the MPEG
CDVS standard. There are, however, additional tools, extensions of the methods developed earlier, and a
new video-search pipeline, which were developed in Phase B. The phase A solution served as the base to
integrate further tools to enable work with video content (as opposed to image only content). The adopt-
ed approach is frame-based and exploits video redundancy along the time axis to optimise the way in
which CDVS descriptors are extracted.

Before we introduce BRIDGET solution, we review the state-of-the art in video search.

3.2 State of the Art in Video Retrieval Systems

In the last decades many researchers investigated visual techniques, especially in the image domain, with
notable results such as SIFT descriptors [2] We also witnessed the birth of new standards, such as the
MPEG standards ISO/IEC 15938:13 [3] and ISO/IEC 15938:14 [4] which introduced CDVS descriptors.
Then the focus has shifted to contents search in video and new challenges had to be addressed. In this
section the state of the art of video matching and retrieval techniques will be described and a selection of
the most recent papers will be presented, highlighting their relevant and innovative features.

Video retrieval systems aim to assist users to retrieve one or more video segments within a database
starting from a query. Retrieved segments are usually the shots that are visually similar to the query,
which can take a form of a text, an image (or a region of it), a video segment depicting object(s) of inter-
est, or a combination of them. Video retrieval systems are typically divided into two categories: near
duplicate video retrieval (NDVR) and content based video retrieval (CBVR).

3.2.1 Near duplicate video retrieval systems

In a near duplicate video retrieval system, a video segment (sometimes a frame) is submitted as a query,
then the system searches in a database for the original video to which the query belongs. The system has
to recognize the video source even if it differs from the query by format (encoding, frame rate, bit rates,
etc.), photometric variations (colour or light changing) and editing operations (inserted logo or added
borders).

This functionality is usually supported by suitably selected low-level features, which robustly represent
underlying frames. NDVR systems mainly aim to solve two critical issues: detect copyright infringement
and search for multiple copies of the content to reduce storage requirements. In [5] a NDVR system
named ASVT (Adaptive Structure Video Tensor) is presented. It uses a tensor model to represent video as
a series of 3D structure tensors. In the elaboration process, key-points are extracted from selected key-
frames using SIFT based algorithm (PCA-SIFT), then each local descriptor is transformed into a probabil-
ity density function (PDF). The set of PDF from each key-frame is represented by 3D structure tensors.
Retrieval is performed using an R-tree indexing to compare query descriptors with the counterparts in
the database.

In [6] a system based on spatio-temporal pattern programming is presented, which is capable to retrieve
not only near duplicate video but also the precise temporal position of query segments in the reference
videos. Firstly, low level features are extracted from frames and are encoded as sequences of symbols to
obtain an index pattern, further an m-pattern is built from key-frames (subsampled frames). Then a
spatio-temporal indexing structure, named Pattern-based Index Tree (PI-tree), is used to keep only
partial near-duplicate videos. An m-Pattern-based Dynamic Programming (mPDP) method estimates the
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spatio-temporal similarity between video segments. Results are re-ranked in an additional post-filtering
stage.

In [7] a NDVR system based on Earth Mover’s Distance (EMD) is presented. The EMD is a transformation-
based approach, which measures the cost of transforming one feature signature into another one, so
authors exploit this property to compare local and global descriptors. To obtain signatures, key-frame
features are extracted and then the feature space is clustered. The most representative features become
the signature of the key-frame.

In [8] a Fisher vectors based NDVR system is proposed. A set of key-frame in selected in the video and
SIFT descriptors are extracted. All descriptors in each shot are aggregated in a single Fisher vector used
to compare and retrieve video segments.

In [9] a NDVR system based on Zernike moments is proposed. Zernike moments are selected as key-
frame feature because they are scale invariant and resistant to rotation and noise. A Zernike moments
similarity score is used to compare the query with the reference videos in the database.

3.2.2 Content based video retrieval systems

Content-based video retrieval systems take video queries as input and retrieve the most relevant videos
from a database according to the query content. They can use low-level features (colour, texture, motion,
speech [10] etc.) and high-level features (metadata, text, etc.). Given the specific nature of WP5 in BRID-
GET, this section will address only systems based on low-level visual features.

CBVR systems have a wide range of applications such as quick browsing of video folders, analysis of
visual electronic commerce, remote instruction, digital museums, news event analysis, intelligent man-
agement of web videos and video surveillance. In the recent years this problem has become more and
more relevant with the increase of video contents stored on the Internet and in the archives. TRECVID,
MPEG and other groups have promoted researches in this field.

In [11] a Bag of Word object retrieval architecture is proposed. After a video subsampling, local features
are extracted from key-frames using SIFT descriptors. A vocabulary of visual words is created by per-
forming K-means clustering of the descriptors, and each frame is represented by a visual word frequency
histograms over the vocabulary. To perform retrieval, the user has to select a query region from an image
which likely highlights an object. Then visual words are extracted from the query region and using their
frequencies in the vocabulary the matching key-frames are returned. Finally, results are re-ranked using
spatial consistency check. BoW-based architectures are not well suited to handle large-scale vocabulary
because complexity grows linearly with the number of frames in the database. In response to this issue,
many improvements to BoW have been provided in time, introducing:

. vocabulary tree [12];

. spatial pyramid kernel [13] ;

. Locality-constrained Linear Coding (LLC) [14] ;

. Vector of Locally Aggregated Descriptors (VLAD) [15] ;
. Fisher kernels [16] ;

. Genetic Programming [17] .

In [18] a CBVR system based on temporal pattern is proposed. After a process of video subsampling, shot
identification and key-frame detection, colour, shape and motion are selected as features and are extract-
ed and compressed using a DCT and a ZigZag scan. Shots are clustered using a K-means algorithm and a
symbol is assigned to each cluster, where each key-frame receives the symbol of its cluster, so shots are
now encoded as a sequence of symbols (temporal patterns). Fast Pattern Index (FPI) tree and Advanced
Fast Pattern Index (AFPI) tree are built using temporal patterns. In Retrieval mode, the query video is
indexed as described before, and a FPI (or AFPI) tree is redrawn while the database is updated by query
data. The normalized pattern frequency represents the matching score.

In [19] a CBVR system based on salient regions is proposed. Salient regions are perceptually the most
distinguishable parts in an image compared to their surroundings. In the first step, exploiting spatial
local contrast, a saliency map in the frequency domain is computed for each frame. Then salient regions
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(objects) are detected and basic spatio-temporal (BST) feature is extracted. BST feature is the result of a
pixel tracking operation that results in a 7D spatio-temporal features vector composed of 3 colour fea-
tures, 2 motion angles, and 2 displacement components. The most stable features vectors are aggregated
in normalized feature matrix. Retrieval is performed comparing the query and the database videos by the
Hausdorff distance of their features vectors (similarity score).

In [20] a colour features based video retrieval system is presented. Firstly, the database has to be filled,
so video content is temporarily subsampled at 1:20 ratio and selected frames become key-frames. Red,
blue and green pixel components, extracted from each key-frame, are arranged in separate vectors.
Based on two thresholds vectors, entries are divided by intensity in three groups, they are truncated and
encoded using a Thepade’s Sorted Ternary Block Truncation Coding level 2 (TSTBTC-2), which reduces
the amount of data, keeping salient colour information. The results are merged into a single vector and
stored in a database. In retrieval mode a video query is submitted and the same process described before
is performed. Query features vector obtained is compared with database features vector using a user
selected similarity measure. Most relevant matches (video reference) are retrieved.

The following CBVR systems use images as queries instead of video. In [21] a CBVR system based on
Fisher Vectors (FV) is presented. Video is segmented into shots exploiting colour histograms and the
median frame of each shot is selected as a key-frame. For each key-frame the Hessian-Affine regions are
computed and represented by RootSIFT [22] descriptors. Then a local features tracking is performed to
reduce the temporal redundancy. The evolution in time of a feature is named thread and using the Prin-
cipal Component Analysis (PCA) the threads dimensionality is halved. Each thread is represented by a FV
using descriptors as measurements and the Gaussian Mixture Model (GMM) as probabilistic model. A
further PCA compression is performed to FV for footprint reduction. Comparison between the query
frame and reference videos is done computing the inner product of the query FV with every reference FV.
The result of the product is the matching score.

A Kirsch descriptor based CBVR system is presented in [23] Using Gabor Moments features the video is
segmented in shots. For each shot a key-frame is selected as the most similar frame to a Temporally
Maximum Occurrence Frame (TMOF), which is obtained by the analysis of the spatio-temporal distribu-
tion of the pixels in the shot. Then the FAST detector [24] detects the key-points in the key-frames. Kirsch
descriptors extraction begins by placing a square window (16x16 pixel) centred in each key-point and
rotating it in agreement with the key-point orientation. In the square windows domain, the Kirsch fea-
tures are extracted that represent the directional edge features for horizontal, vertical, right-diagonal
and left diagonal directions respectively. During retrieval each descriptor of one of the query frames is
compared with the database clusters using the K-nearest neighbour searching algorithm.

The video segment retrieval system presented in [25] is based on shot affine hull, which is defined as the
smallest affine subspace containing frames that represent the entire shot. Input video is segmented into
shots, and for each frame colour histogram is selected as feature representation. Shot feature vector are
collected in a matrix and using a Singular Value Decomposition (SVD) two vectors are obtained: the basis
vector representing the affine subspace and the mean vector which represents the average of the fea-
tures. Query frame and reference shots are compared by L2 distance (similarity score) of their affine hull
representation.

Descriptors compression

One of the main problems with video content is the amount of data that has to be processed and stored,
so visual feature compression is crucial. Some interesting compression techniques can be found in the
algorithms described previously, [18] [20] [21] [25] but two more compression techniques should be
presented.

In [26] the author focuses on visual descriptors coding in video, exploiting spatio-temporal frames re-
dundancy. A GoP (Group of Picture) coding structure is proposed. Every GoP is made of an [-frame fol-
lowed by a number of P-frames. [-frames are self-contained and managed as single images, so features
extraction and coding techniques are the same as for images. However, for P-frames local features encod-
ing is related to neighbouring frames. Within a GoP, features variation between consecutive frames is
small, so a differential coding can be used. The proposed method extracts the local descriptors from a P-
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frame and searches the best matching in the neighbourhood (group of frames in a time window near
current P-frame). When a descriptor matching is identified current local descriptor is substituted by a
smaller reference descriptor. Furthermore, binary descriptors and entropy encoding are used to improve
features compression.

In [27] an inter-frame visual descriptor coding is presented. Authors aim to use compressed representa-
tion of canonical patches as local descriptors. The video frames are divided into two categories: Detection
frames (D-frames) and Forward Propagation frames or (FP-frames). Also patches are divided in two
categories: (i) D-patches are associated to key-points found using SIFT detector, and (ii) FP-patches
which are the result of tracking. Tracking is performed by searching in the current frame the patches
found in the previous frame, so no key-point detection process is necessary. The use of D-patches and FP-
patches is controlled by an adaptive algorithm. D-patches are intra coded using a trained Patch ENCoder
(PENC), which uses Huffman table to associate canonical patches to the most similar gradient in the table.
FP-patches are coded using only residual signal difference or can be a simple reference to obtain more
compression. Also patch locations are encoded differentially.

3.3 The BRIDGET Visual Search Engine

The BRIDGET Visual Search Engine employs a classical processing flow and is based on the CDVS archi-
tecture. Figure 1 shows the current descriptor extraction pipeline. In order to achieve our objectives of
significantly improved recognition and high processing speed, WP5 has developed several components
with BSOTA performance, namely the ALP detector, RVD-W aggregation, multi-frame DISTRAT. A fast
temporal key-frame selector was adopted from WP4.

K int Key-point Local
Key-frame | .| 't&y-poin Selection+ | _| Descriptor
>| Detector > > . >
Selector ALP SIFT Compression
( ) extraction (TSQC)
>
% '
I
Rate Control
Input Image T T T T T Ty T TT -~~~ ~'2| coordinate | W >
or Video I I Coding N
: : Compact
1 | v Descriptor
|
> Global Global
Rate Control Descriptor > Descriptor )
Block Aggregation Compression
(RVD-W) (Binarisation)

Figure 1. BRIDGET Visual Search Engine descriptor extraction pipeline.

The current BRIDGET pipeline first selects a subset of reference frames, using a fast and simple change-
detector, described in Section 4. Subsequently, descriptors for each key-frame are extracted, based on the
CDVS-like approach, developed in the first phase of the project. For each key frame, feature-points are
extracted using ALP detector. A subset of more robust features is selected, in the Key-point selection
block, and a subset of the corresponding SIFT descriptors are selected. The descriptors are compressed
using the Transform and Scalar Quantisation Coding method (TSQC), which offers a scalable, high-
performance compression with ternary representation. Global descriptors are computed using the im-
proved RVD-W aggregation method, extended in the second phase of the project, as described in Section
5. The ALP detector, key-point selector and TSQC compression were integrated in the first phase of the
BRIDGET project, and now form a part of the MPEG CVDS specification. We also re-designed and extend-
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ed DISTRAT geometric verification to video sequences, as detailed in Section 6. The design of BRIDGET
video-search engine was submitted to the MPEG call for proposal, achieving leading performance. The
work within MPEG, our response to CDVA CfP, and the experimental performance evaluation of our
submission is described in Section 7.

4 Compact and efficient representation of video content

In the first phase of the project it was decided that in order to maintain interoperability with the BRID-
GET image search engine, the video search engine should utilize as many components of the image search
architecture as possible. We therefore focused our investigation on an efficient way to represent the
content of a video, using frame-level based description. In this section we present two broad approaches
we investigated. In the first one, the temporal sampling (i.e. key-frame selection) is based on temporal
variations in the frames detected using either a global descriptor, or via fast frame comparisons based on
histograms. The second approach is more sophisticated and investigates improvements to the efficiency
of the video description by using motion-filed characteristics to select frame and frame-regions as a
reference.

4.1 Change-based temporal sampling

In order to represent the video in a compact way, only a subset of the original frames are used to form
the CDVA bit stream. We investigated two techniques for selecting these key frames; both detect change
in frame content over time.

The techniques have been integrated into the CDVA experimentation model (CXM), tested with the CDVA
Evaluation Framework, and submitted to MPEG in the context of Core Experiments in CDVA.

4.1.1 Temporal sampling based on RVWD descriptor

In the first technique, frame content is represented by the RVD-W global descriptor [28] The use of this
descriptor for change detection was presented in [29] . Details of the procedure are found in Section
4.2.2, “Keyframe selection based on variation of the RVD descriptor” in the BRIDGET report [30]

This process requires every frame to be processed: local descriptors must be computed and aggregated
into a global descriptor. The complexity of these operations causes the CDVA extraction to exceed the
limits set forth in the Evaluation Framework of MPEG CDVA [31] and therefore we continued the devel-
opment of an alternative, faster temporal sampling technique, based on histograms.

4.1.2 Temporal sampling based on colour histograms

In this faster technique, video frame content is represented by colour histograms. The measure of change
is the sum of 12-norms of the differences between normalized histograms of the R,G,B components of the
video frames. The technique is described in Chapter 7 “Standardisation activities: Proposal submitted to
MPEG CDVA”. It was submitted to MPEG CDVA in [32] and accepted as a tool of the CDVA Experimenta-
tion Model.

4.2 Motion field based temporal and spatial sampling

The approach investigated here aims to exploit detailed motion information to determine optimal spatio-
temporal sampling for a video. The objective is to remove redundancy and to optimise the way in which
frame-level descriptors are extracted. This objective is achieved in two ways: by devising a key frame
sampling algorithm based on camera movement detector, and by applying a motion attention filter to
isolate spatiotemporal regions of the video. The results of these two approaches are respectively called
shot motion adapted key frames and motion attention based masked images. Detailed description and
results obtained are presented below.
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4.2.1 Overall architecture

The architectural approach is summarised by Figure 2.

Results
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Figure 2. Proposed architecture for video summarisation and indexing.
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processing steps illustrated in Figure 2. At first, a segmentation into
shots is performed using a differential feature tracking approach
based on a multiset of features, namely PSNR, luminance correla-
Shot Segmentation tion and dominant colour distribution difference. Each resulting
segment is processed by an MPEG-2 encoder using a very long GOP

‘ structure (IPPP...P)1. The resulting encoded stream is then pro-

cessed by two parallel video filters, each providing a set of visual
objects summarising the input video. The first filter extract key
‘ frames from the segment by considering the shot type (e.g., zoom,
pan, static). Zoom and pan detection is implemented through a

é Video FIItering "\ motion vector orientation analysis, downstream of a filtering, and
accumulation step to remove noise; a Canny filter is also used to
Key frame Motion retain motion vectors only for textured and detailed regions of the
extraction | [ Attention filter image. The second filter applies a motion attention model extended
\- ) from [33] . The objective of a motion attention filter is to extract
from the video flow those spatiotemporal regions where we expect
more attention from the viewer, under the heuristic assumption

that focus of attention is attracted by “unusual” motion w.r.t. the
global motion trend. Applying a motion attention filter on a video
input results in the detection of a series of binary picture masks

highlighting these spatiotemporal regions. Downstream the motion

The query object can be either a still picture or a video. In case of a
video, this goes through a video Summariser, which applies the

Very long GOP MPEG-2 Video Coding

Figure 3. Video segmentation.

1 The method can also be applied if other more advanced coding techniques are used instead of MPEG-2 for motion
compensation.
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attention filter, a series of morphological operators is applied to the binary masks in order to regularise
their shape and temporal evolution on the video timeline.

Finally, on the two series of visual objects, the classical CDVS extraction pipeline is applied and the re-
sults are compared by the Selector component to the previously saved CDVS database, built according to
the standard, and a Metadata database retaining information about the nature of the indexed visual
objects (i.e., if each indexed object is a key frame or a mask, from which portion of the reference video
was extracted). Corresponding information about the query video are saved in the Selector memory in
order to organise the results of the search.

4.2.2 Motion Vector Analysis and Filtering

In this Section some details are given about the performed MPEG-2 motion vector analysis used to ex-
tract shot motion adapted key frames from the video for subsequent CDVS indexing (left part of the
processing pipeline of Figure 3). Due to the imprecision of the MPEG-2 motion compensation algorithm
the non-zero motion vectors located in the picture border or in flat areas of the borders should be elimi-
nated. This is done through the application of a Canny filter [34] Results are exemplified by Figure 4 and
Figure 5.

Figure 4. Original motion vector map on a P frame.

D5.3-v1.2 16/49



FP7-ICT-610691 D5.3: Visual Search Tools - Report - Version B

Figure 5. Filtered motion vector map.

After this step, a motion vector accumulation step is applied through a median filter, whose results are
exemplified by Figure 6.

Figure 6. Results of the motion vector accumulation step.

The video content is now ready for the subsequent phase, consisting in camera zoom classification aimed
at detecting the dominant zoom motion in the current shot and making the appropriate decisions about
which keyframes of the shot to retain for visual indexing. This phase implemented using a two-step
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approach: 1) detection of the candidate zoom centre; 2) classification of the zoom type (in, out or unde-
cided). The candidate zoom centre is detected in three steps:

1) Motion vector random subsampling, aimed at lowering the computation effort;

2) Calculation of intersection point for each couple of motion vectors in the subsampled motion vec-
tor set;

3) Calculation of the candidate zoom centre as the average intersection point.

Once the zoom centre is found, an estimated zoom mabp is calculated by associating to each macroblock of
the picture a unitary vector whose direction points to the candidate zoom centre. Then, each actual mo-

» o«

tion vector is classified as contributing to “zoom in”, “zoom out” or “undecided” depending on its devia-
n o«

tion from the local unitary vector. A shot is then respectively classified as “zoom in”, “zoom out” or “no
zoom” depending on the majority of classified motion vectors. Figure 7 shows an example.

s

Zoom centre —> Zoom-out
—> Zoome-in
——> undecided

Figure 7. Example of shot zoom classification.

All of the described processing steps on the MPEG-2 motion vectors are aimed at the extraction of shot
motion adapted key frames, i.e. key frames maximising the stability of the represented picture and cov-
erage of the scene. The used heuristics to sample key frames from the current shot is as follows: 1) we
extract the first frame of a shot classified as zoom-in; 2) we extract the last frame of a shot classified as
zoom-out; 3) in addition we extract one extra frame every time a camera movement is detected to be
equal to the height of the picture during the shooting. This latter parameter is calculated frame by frame
by adding the average motion vector value of each frame to an accumulator which is reset at each shot.

4.2.3 Motion Attention Filtering

Motion attention filtering is aimed at extracting picture masks isolating moving regions in video shots
which have some peculiar motion characteristics that make them more attractive to an observer. This is
done in order to optimise frames and frame regions on which to extract CDVS descriptors, thus resulting
in a more efficient system. This is done in steps as follows: 1) macroblock level median motion vector
estimation; 2) motion attention global descriptor calculation; 3) target region search.

Macroblock level median motion vector estimation is performed by evaluating the average L2 distance
between the motion vector of the macroblock and those of its 8 neighbour macroblocks, and subsequent-
ly selecting the motion vector minimising this distance among the neighbours. Figure 8 reports an exam-
ple of application of this filter.
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Figure 8. Original motion vector map and filtered motion vector map.

The macroblock level motion attention global descriptor 4;;is calculated as follows:
1
Ayj = aLyy + BLs,, + 8 max (Lyy, L, ) |Lr,, + Ls, |

where LSU is the median motion vector spatial correlation, LTi].is the median motion vector temporal

correlation, and «, f and § are weighting parameters regulating the importance of each of the three
terms of the above Equation.

The macroblock level median motion vector spatial correlation L, is calculated as the absolute differ-
ence between the median motion vector of the macroblock and the average median motion vector of its
neighbour’s macroblocks.

The macroblock level median motion vector temporal correlation LTl.]. is calculated as the absolute differ-
ence between its value at frame i and its value at frame i-1.

Once that the macroblock level motion attention global descriptor 4;; is calculated, the next step is that

of identifying the target regions, i.e. macroblock connected agglomerations that retain a level of global
motion attention level exceeding a certain threshold over a consecutive number of frames. In this case,
instead of applying the originally proposed scheme of [33] with a fixed threshold, we opted for an adap-
tive threshold scheme in which the threshold is calculated as the average value over all macroblocks of
the shot.

The last step of the algorithm consists in the application of a dilation morphological filter aimed at regu-

larising the found target regions by removing holes and a subsequent spatiotemporal smoothing filter of
the regularised regions. Figure 9 illustrates an example of the application of such filters.

Motion attention output Morphological operator output

Temporal smoothing Spatial smoothing

Figure 9. Example of morphological and spatiotemporal filter applied on a motion attention target
region.
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4.2.4 Evaluation

The tests conducted to evaluate the developed methodology were meant to analyse the impact of the
extracted shot motion adapted key frames and motion attention based masked images on the scores
obtained by applying the CDVS test model retrieval and compare the scores with the ones obtained when
using a baseline frame subsampling approach to obtain key frames (baseline key frames). We used two
datasets to perform this analysis: a dataset of 80 videos containing monuments, namely a subset of the
“Monuments of Italy” dataset documented in [1] and 15 videos containing vehicles created on purpose.
For each of the videos a set of query images has been collected matching the objects present in the vide-
os. Therefore, the starting condition of the test was that each of the collected query images matched a
subset of one of the two video datasets and that this information was available in advance. Thus the test
only evaluated the change in the retrieval results depending on the employment of baseline key frames
and/or shot motion adapted key frames w.r.t. when only baseline key frames were employed.

A preliminary measurement was done in order to estimate what level of compression of visual infor-
mation was achieved by comparing the amount of data extracted (average on the data set) by the motion
attention based masked images and the shot motion adapted key frames w.r.t. the baseline key frames.
These latter were subsampled at a rate of 4 key frames per shot. Figure 10 shows the obtained numbers.

6,9% Baseline key frames

Video
100%

O

Figure 10. Size ratio between full video, baseline key frames at 4 key frames per shot, motion
attention based masked images and shot motion adapted key frames.

We performed a total of three tests. The first one was aimed at evaluating how the three different types
of extracted images behaved in terms of retrieval performance for a certain known query. We defined a
quality score as the ratio between the CDVS retrieval score of the true matches and the number of corre-
sponding retrieved images for the three categories of images. When this quality measure is higher it
means that less images are ranked very high, i.e. the corresponding image type is more discriminative
than the others in the average. This has a positive effect on the precision of the results in cases of low
false positive system configurations (e.g., for higher CDVS retrieval score thresholds). Figure 11 reports
the results for the monuments dataset, in which case the shot motion adapted key frames showed the
best performance among the three types of images.
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Figure 11. Quality of retrieved results vs. indexed image type (monuments dataset).

In the second test we compared the score obtained by a certain frame and of its corresponding motion
attention based masked images in the true match cases, using the vehicle dataset. The results are shown
in Figure 12. The picture reports the percentage of cases in which the whole frame (left column) or the
corresponding motion attention based masked images (right column) had the higher score. The result
seems to show that the motion attention based masked images are better focused in representing the
shot content than the corresponding whole frame, and thus have the effect of increasing the recall.

80

70
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40

30 +

20 +

10 -

Frame Corresponding motion attention based
masked images

Figure 12. Distribution of winning image type (vehicle dataset).

The third test consisted in evaluating the obtained average CDVS retrieval score of baseline key frames
and of motion attention based masked images in true match cases, using the vehicle data set. The results
are shown in Figure 13. The average increase of about 1.4 score value w.r.t. baseline key frames obtained
by the motion attention based masked images indicates that the usage of these masked images has a
positive effect on the recall since it increases the probability to retrieve true matches at a given CDVS
score threshold.
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Figure 13. Average CDVS retrieval score vs. image type (vehicle dataset).

4.2.5 Conclusion on the motion-based sampling

We developed a novel approach to temporal and spatial sampling of video content, introducing two
processing pipelines. They extract motion-attention based masked images and shot motion adapted key
frames downstream of a basic video segmentation algorithm based on a low level feature tracking ap-
proach. These images, once extracted, are indexed by the standard CDVS pipeline and used in the refer-
ence retrieval architecture of the standard. We made some preliminary tests showing that collectively
the usage of these two kind of images in a classical CDVS retrieval system are expected to increase the
quality of the retrieval, having positive effects both on the precision and on the recall. Although promis-
ing results were obtained, the method has high computational complexity and exceeds the extraction
time limits specified by the CDVA. It was therefore decided that for the BRIDGET engine and our CDVA
proposals the consortium should focus on a simpler design presented in Subsection 4.1.

4.3 Conclusions

We have investigated two approaches to extraction of frame-level descriptions for the video content.
While the motion-flow based approach extracts more detailed information from the sequence and has
the potential to better remove redundancy, it also has substantially higher computational complexity. It
was therefore decided that a faster approach, based on histograms, should be employed in the BRIDGET
search engine and in our submission to CDVA. As the available computational resources increase with
time, the more sophisticated solution, employing the spatio-temporal analysis based on motion may
become practicable.

5 RVDW - Extended Robust Aggregation of Local features

5.1 Extended aggregation mechanism

In the first stage of the project we have developed a novel aggregation method, Robust Visual Descriptor,
with BSOTA performance. In the second stage we have further extended our solution and designed a new
descriptor - called Robust Visual Descriptor with Whitening (RVD-W). It combines rank-based multi-
assignment with robust aggregation framework and cluster-wise whitening. Compact codes can be ob-
tained by product quantisation approach or by sign-based binarisation. Furthermore, to enable de-
scriptor size scalability new cluster-level and bit-level element selection mechanisms were developed.
RVD-W pipeline is shown in Figure 14.
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Figure 14. RVDW processing pipeline with novel processing blocks marked in blue.

The novel elements developed by the project are marked in blue. In particular, in the second phase of the
project, 3 novel processing blocks were developed and incorporated in the pipeline: (1) cluster wise
rotation, (2) cluster-wise whitening, and (3) novel post-processing involving L1 normalisation combined
with the power norm. These new developments and extensions resulted in further and significant per-
formance improvements over the already BSOTA results at the end phase A, as illustrated in Table 1
below. Using the conventional SIFT descriptors, the mAP for Oxford 5k database was improved from
59.5% to 66.8%, while for the Holidays dataset from 73.2% to 76.5%. These results represent the state-
of-the art performance, compared to competitors also using SIFT local features. Furthermore, we also
extended the RVDW approach to work with deep features, resulting in BSOTA performance (Subsection
5.5.3).

Table 1. Comparison of mAP performance achieved at the end of Phase A and Phase B of the
project (based on SIFT features).

Method Dimension Size Oxford 5k | Holidays UKB
RVD (version A) 8k 32kB 59.5 73.2 3.53
RVD-W (version B) 8k 32kB 66.8 76.5 3.59

5.2 RVD Local Whitening (RVD-W)

We introduced additional whitening on the cluster level, in order to “normalise” the probability distribu-
tion of residual vectors is each cluster. This has led to a marked increase in performance.

In the RVD-W aggregation scheme each local descriptor x; is defined by its position with respect to the K
nearest cluster centres (typically K=3) in the high dimensional space. More precisely, K-means clustering
is performed to learn a codebook of {u,, ...,u,} of n cluster centres typically. Each local descriptor x; is
quantized to K nearest cluster centres thus increasing the number of descriptors assigned to each centre,
resulting in more populous cluster-level representations, which are more robust. For each cluster, the
residual vectors x; — u; are computed and subsequently L1-normalized.

Each normalized residual vector is weighted for each neighbourhood rank (N) before aggregation, to
yield vector rp; = Wy (x; — uj/”xt — uf”1)' The neighbourhood weights W are computed as the empiri-
cal probability that two descriptors forming a matching pair (inliers) with specific neighbourhood rank
are assigned to the same cluster.

The variance in each dimension of weighted residual vector r;; is different which affects the discrimina-

bility of the RVD-W representation. We solve this problem by applying cluster level PCA and a whitening
operation on r;; vectors before aggregation. More precisely, given a set of m weighted residual vectors

{r1j,12j, ., Tm;} extracted from training images, we compute the mean vector n; = E[rtj] and the covari-
ance matrix ¥; for each cluster j. We then learn a PCA matrix P; whose columns consists of the orthonor-

D5.3-v1.2 23/49



FP7-ICT-610691 D5.3: Visual Search Tools - Report - Version B

mal eigenvectors of X; corresponding to the d largest eigenvalues 1; = A, ... = 4,4. Finally, the cluster
level whitening matrix P;* is computed as P}V = P;A; where A; = diag (44, 4; ..., 4q).

Given an image I, the vectors 1;; are computed for each cluster j. The mean subtracted r;; vectors are
then projected using P; and subsequently whitened before aggregation into representation ;.

K
Xy — U;
N=1xt€rank N ofu; Xt uj 1
The L2-normalized {; vectors are stacked to form the final RVD-W representation R".

5.3 PCA transformation and L1+Power normalization

In order to improve the separability between matching and non-matching representations, we proposed
a new normalization approach applied after transforming the RVD-W vectors via PCA. Our normalization
involves an L1-norm followed by a power-norm creating L1-P normalization. More precisely, the mean-
centred RY vector is first transformed using a D' x D PCA matrix P and then the resultant vector is L1-
normalized to form R"?.

P'(R” = Ro)

RWP =
IPT(RY = Ro)ll1

Finally, the vector R"P = (R'fp, ..,Rgf’) is processed using power-normalization with factor §. Table 2
below shows that our L1-P norm brings significant improvement in terms of mAP on all datasets.

Table 2. Comparison of Post PCA normalization methods.

Method Oxford 5k Oxford 105k Holidays UKB
[mAP] [mAP] [mAP] [Top 4]

No norm 62.7 59.7 72.2 3.54

L1-P norm 66.8 64.0 76.5 3.59

5.4 Compact RVD-W code

The descriptor size, expressed as bytes per image, has a major impact on the performance of an image
retrieval system; ideally the descriptors for the entire dataset should fit in the RAM memory of the server
for fast processing. Aggregating a 128-dimensional local descriptor (e.g. SIFT) using a small codebook of
64 cluster centres results in 8k-dimensional global descriptor. This size is too large for efficient retrieval
in very large databases.

We followed [35] to compress RVD-W vectors into small codes for large-scale retrieval. More precisely,
the dimensions of vector R"” are permuted using the Eigenvalue Allocation method. The transformed
vector is divided into g sub-vectors or groups of equal length D’/g. Each sub-vector is quantized using a
separate K-means quantizer with n centroids (256) and encoded using k = log,(n) bits. The storage
requirement of the embedded vector is B = g X k bits. The distance between the query vector and
database vectors is computed using Asymmetric Distance Computation (ADC).

5.5 RVD-W based on Convolutional Neural Networks (CNN)

Recent research has shown that image descriptors computed using deep CNNs achieve state-of-the-art
performance for image retrieval and classification tasks. Babenko et al. [36] aggregated deep convolu-
tional descriptors to form global image representations: Fisher Vectors, Triangulation embedding and
SPoC. The SPoC signature is obtained by sum-pooling of the deep features. Razavian et al. [37] compute
an image representation by the max pooling aggregation of the last convolutional layer.
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We propose to encode CNN-based descriptors into the RVD-W representation. More precisely, an RGB
image is first warped intoa ¢ X c¢ square and a mean RGB value is subtracted from each pixel. The image
is then passed through a pre-trained network comprising of L convolutional layers. The output of a [-th
layer L' is a ¢! x c! x d! feature map, where d' is the number of filters corresponding to L'. A set X! =

x{,l, x{_z,.., xi,cl of d!- dimensional feature vectors is obtained at each location (ab),1<ac< cl and

1< b < ¢!, in the feature map. As in the SIFT-based approaches, a codebook of n cluster centres is

learned using a set of training images. For each centroid, the residual vectors xfl,b — u! are computed,

J
normalized and whitened to form vector (}, regarding layer L'. The RVD-W representation is obtained by

concatenating all aggregated vectors (} for all n visual words.

Experiments and Extensive performance evaluation has been performed, including comparisons to the
state-of-the art pipeline developed by the MPEG group standardising Compact Descriptors for Visual
Search (CVDS), and with the latest published work. The evaluation used standard reference databases
including Holidays, Oxford and UKB, and also data sets extended by us with 10M distractor images. The
evaluation has clearly demonstrated that in large-scale retrieval RVD-W descriptors significantly and
consistently outperform all known techniques at comparable bitrate, including the BoW, VLAD, Fisher
Vector and the recent Triangulation with Democratic Aggregation (Temb+Demo).

5.5.1 Compact RVD-W representation based on SIFT descriptors

In this experiment, key-points are detected using the Hessian affine detector and local regions are encod-
ed in a 128-dimensional SIFT descriptor. The dimensionality of the SIFT descriptors is reduced from 128
to 64 dimensions using PCA matrix. The size of codebook is fixed at 128 resulting in 8k dimensional RVD-
W descriptor.

Table 3 summarizes the results for medium footprint signatures. In practical applications, the use of
medium footprint representations is prohibitive due to search time and memory requirements, however,
the results are helpful in understanding the capabilities of each representation, and also serve as an
upper bound on the expected performance of compact descriptors derived from them. It can be seen that
the proposed RVD-W representation outperforms most of the prior-art methods.

Table 3. Comparison with the-state-of-the-art using full dimensional vectors on Oxford5k,
Oxford105k, Holidays and UKB datasets. The representation 8k—1k denotes that the global
descriptor dimensionality is reduced from 8192 to 1024 via PCA

Method Dim Oxf5k 0xf105k Hol UKB
VLAD Intra [38] 32k 55.8 - 65.3 -
HiVLAD [44] 32k 63.8 - 72.1 3.56
VLAD+SURF [42] 12k - - 71.7 3.52
CPVLAT [45] 9k - - 70.0 -
VLAD* [38] 8k 50.0 44.5 62.2 -
VLAD (LCS+RN) [38] 8k 51.7 45.6 65.8 -
HVLAD [43] 8k 47.2 - 69.1 -
HiVLAD [44] 8k 57.6 - 66.6 3.48
Temb+Demo [39] 16k 66.5 - 76.8 -
Temb+Demo [39] 8k 67.6 61.1 77.1 -
Temb+Sum [39] 8k 63.3 55.5 74.5 -
FAemb [46] 16k 70.9 - 78.7 -
FAemb [46] 8k 66.7 - 76.2 -
RVD-W 16k 68.9 66.0 78.8 3.60
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RVD-W 8k 66.8 64.0 76.5 3.59
VLAD [15] 4k 37.8 - 55.6 3.28
FV [15] 4k 41.8 - 60.5 3.35
VLAD+SURF [42] 4k 32.8 - 64.9 3.20
Temb+Demo [39] 8k—1k 56.2 50.2 72.0 =

RVD-W 8k—1k 59.0 56.1 73.2 3.56

We now focus on a comparison of compact representations, which are practicable in large-scale retrieval,
as presented in Table 4. The dimensionality of the RVD-W descriptor is reduced from 8192 to 128 via
PCA. The results show that our method outperforms all presented methods by a large margin. On the
ultra large dataset of Holidays10M, RVD-W significantly outperforms the best published results
(VLAD+SUREF).

Table 4. Comparison with the state of the art using 96/128 dimensional vectors

Method Dim Oxf5k | Oxf105k Hol HollM | Hol10M
VLAD [15] 128 28.7 55.7 - -
FV [15] 96 - - 56.0 31.8 28.0
FV [15] 128 30.1 - 56.5 - -
VLAD* [38] 128 32.5 26.6 - 335 -
VLAD (LCS) [38] 128 32.2 26.2 - 39.2 -
CPVLAT [45] 256 - - 60.6 38.0 -
VLAD+SURF [42] 96 - - 65.5 42.5 34.0
HiVLAD [44] 128 - - 64.0 43.0 -
Temb [39] 8k—128 40.0 339 61.5 - -
Temb [39] 2k—128 43.3 35.3 61.7 38.7 -
RVD-W 128 46.1 42.5 66.9 451 40.5

Table 4 shows the performance of our method using compact codes obtained by product quantization.
Compared to VLAD (LCS), the gain remains very significant on Oxford5k (+14%), Oxford105k (+16%)
and Holidays1M (+5%). The RVD-W provides a gain of 9.4% on largest Holidays10M over VLAD+SUREF.

Table 5. Comparison with the state of the art with compact codes via PQ

Method Size Oxf5k | 0xf105k Hol Hol1M Hol10M
VLAD [15] 40B - - 49.5 - -

FV [15] 16 B - - 50.6 28.7 21.0
VLAD* [38] 16 B 28.9 22.2 - 29.9 -
VLAD (LCS) [38] 16 B 27.0 21.0 - 32.3 -
VLAD+SURF [42] 10 B - - 58.0 30.2 22.1
RVD-W 16 B 41.2 371 61.4 37.3 31.5

5.5.2 Compact RVD-W representation based on CNN features

This section compares the performance of CNN-based representations suitable for large-scale retrieval.
We extract deep convolutional descriptors using the state-of-the-art CNN, OxfordNet [40] Each image is
resized to the size 586 X 586 before passing through the network. The output of the last layer is a 37 X
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37 x 512 feature map, forming a set of 1369 512-dimensional descriptors. We compare RVD-W to the
state-of-the art methods successfully used with CNN features: Max-pooling[37] , SPoC [36] and FV.

The retrieval performance of the CNN-based representations is presented in Table 6. It can be seen that
256-dim RVD-W improves over FV, delivering a gain of +7.8% on Oxford and 3.3% on Holidays. Com-
pared to Max-pooling, RVD-W provides an improvement of +6.7% and 5.5% on Oxford and Holidays
datasets. On large scale datasets Hol1M and Oxf1M, RVDW offers a gain of +1.3% and +3.7% compared to
the best performing state-of-the-art SPoC signature. The 2048-dimensional RVD-W outperforms all CNN
based approaches. It should be noted that the performance of SPoC deteriorates when a 512 dimensional
signature is used (79.6% on Holidays and 55% on Oxford).

Table 6. Comparison with the state of the art with CNN-based compact codes

Method Size Oxf5k Hol Hol1M 0xf1M
MOP-CNN [47] 512 - 78.4 - -
Max-pooling [37] 256 53.3 74.2 - -
SPoC [36] 256 58.9 78.5 62.2 41.1
FV 256 52.2 76.4 58.1 35.5
RVD-W 256 60.0 79.7 63.5 44.8
MOP-CNN [47] 2048 - 80.2 - -
Max-pooling [37] 2048 58.0 70.7 - -
FV 2048 64.1 81.9 - -
RVD-W 2048 67.5 84.5 - -

5.5.3 Compact RVD-W representations based on binary local features

In this section we present a pipeline to aggregate local binary descriptors into RVD-W framework for
large-scale image retrieval in mobile scenarios. Binary descriptors are becoming increasingly popular,
especially in mobile applications, as they deliver high matching speed, have a small memory footprint
and are fast to extract.

For our experiments, we select three local binary descriptors: two intensity-based (BRISK and FREAK)
and one gradient-based (BRIGHT). Our choice is motivated by their high level of performance in retrieval
using descriptor-by-descriptor matching with bi-directional ratio test, but without geometric verification.
In all cases we employ BRISK key-point detection, as it is fast, delivers good performance and is the de-
facto standard in mobile applications.

Given an image, a set of binary local descriptors are extracted. The descriptors are compressed to d =
128 dimensions using Principal Component Analysis. The compressed descriptors are rank-assigned to
multiple clusters and a robust representation of residual vectors in each cluster is derived forming the
RVD-W global descriptor. The size of codebook is fixed at 64 resulting in 8k dimensional RVD-W de-
scriptor. The high-dimensional global descriptor is converted into a compact signature by application of
global PCA.

Table 7 compares the performance of RVD-W representation with Fisher Vector and VLAD. The upper
section of Table 7 lists the performance of binary descriptor aggregation schemes with the fast BRISK
detector and BRISK/FREAK descriptors. It can be seen that RVD-W significantly outperforms the state of
the art global descriptors by +3.5% on average.

Although this section is about aggregation of binary descriptors, we also compare our framework with
global descriptors that use Hessian-affine or DoG detector with SIFT descriptor, which is five times slow-
er (lower part of Table). It can be clearly observed that the FREAK+RVD-W is better or comparable to
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HA+SIFT and DoG+SIFT combined with BoW, VLAD and FV. On large-scale dataset of Holidays1Million,

FREAK+RVD-W achieves 35.1% compared to SIFT+FV 31.8%.

Table 7. Comparison with the state of the art with binary local descriptors

METHOD Detector Descriptor | Dimension | Oxford | Holidays
FV BRISK BRISK 8192 35.3 58.1
FV BRISK FREAK 8192 36.7 59.8
VLAD BRISK BRISK 8192 33.5 55.3
VLAD BRISK FREAK 8192 34.8 56.7
RVD-W BRISK BRISK 8192 38.5 60.9
RVD-W BRISK FREAK 8192 40.9 63.3
BOW [15] HESSIAN AFFINE SIFT 20000 35.4 43.7
FV [15] HESSIAN AFFINE SIFT 8192 41.8 60.5
VLAD [15] HESSIAN AFFINE SIFT 8192 37.8 55.6
VLAD [42] DoG SIFT 8192 24.3 56.1

Table 8 compares the average time required to compute RVD-W signature, for different combinations of
detectors and descriptors. The total time comprises local descriptors extraction (first column) and en-
coding of the global representation (second column). It can be observed that use of binary local de-
scriptors reduced computational complexity by factor of 5, as compared to working with SIFT.

Table 8. Average time required to compute B-RVDW signature using different detectors and

descriptors combinations (DoG: Difference of Gaussian, HA: Hessian-Affine).

Detector Descriptor Local descriptor Global descriptor Total time
extraction time extraction time
(ms) (ms)
BRISK BRISK 85 200 285
BRISK FREAK 85 200 285
DoG SIFT 900 190 1090
HESSIAN AFFINE | SIFT 1230 190 1420

5.6 Conclusions on the family of extended RVD-W representations

This section presents a novel method for extraction of a robust and highly discriminative global de-
scriptor called RVD-W. The key ideas include a novel robust aggregation approach with rank-based
multi-assignment, direction based accumulation, and mid-stage de-correlation and whitening of the
residual vectors. The proposed aggregation is also combined and shown to be effective with CNN based
and binary features, outperforming the latest global descriptors. A detailed evaluation on de-facto stand-
ard benchmarks demonstrates that in large-scale retrieval our scheme outperforms state-of-the art
methods.

5.7 Indexing RVDW features for fast search

The previous sections provided a method for extracting an efficient representation for images based on
RVDW. However, there remains the problem of efficiently searching for nearby examples to a given
query. Even for compact binary descriptors, the exhaustive search through possibly billions of binary
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strings can take seconds or even minutes. In this section, we describe a method for efficiently searching
within Hamming space using multiple hash tables, each with different length hash-keys. We assume that
the image representation is in the form of a binary vector.

A related hashtables-based retrieval approach was proposed by Norouzi et. al [48] called Multi-Index
Hashing (MIH). Here, a binary code is divided into equally sized substrings and separate hashtables are
built from them. The configuration of substring lengths and their number is selected such that a superset
of relevant examples (i.e. within some r-neighbourhood in Hamming space) are returned. Examples that
are above distance r are then removed using linear scan. The resulting search speeds were significantly
faster than linear scan. However, this speedup is possible only for small Hamming thresholds r. When r
increases, the time spent on removing inaccurate retrievals increases very quickly and eventually, be-
comes very similar to exhaustive linear scans. This is due to the constraint of equal length strings. Our
work removes this constraint and we show how this improves in the retrieval time compared to the MIH
approach, across a large range of Hamming thresholds. Simultaneously, our approach also provides the
option for a faster approximate search. Henceforth, we shall denote our improved method as: variable
length hashtable retrieval.

The retrieval mechanism consists of M separate hashtables, which we denote as a hashtable set, each
associated with a substring of length m(i). Each hashtable takes a substring as the hashkey and returns a
set of example indices with a similar key (i.e. colliding examples). The full set of retrieved examples is the
union of the retrieved examples across all the M hashtables. In this work, we aim to configure the keys
such that there is high probability of collisions in the hashtable for examples that have Hamming distanc-
es less than 6, whilst minimising the collisions for examples with distances greater than 6. Formally, we
can think of each hashtable as a function, H;: {0, 1}m( — 2¥ . Associated with the ith hashtable H; is a set of
key vector dimensions D; = { d;; }"@;-; . The “dimension index set” D; can then be used to extract the
hashtable key from the query binary vector. Then, suppose we are given an input query q € {0, 1}? .We
first extract the substring keys (of length m; ) for each of the hashtables using their respective dimension
index set D; as follows: qi = (qq5,;))"@;=1. The final set of retrieved examples, R, is then given as: R = H;(q?)
U Hz(q?) U ... U Hu(qm).

An illustration of an example of the hashtable retrieval mechanism can be seen in Figure 15. Example of
the hashtable retrieval mechanism.. Here, the feature vector is split into 3 hashkeys of lengths m1, m2, m3
respectively. Each substring is a hashkey to the corresponding hashtables H1, HZ, H3 respectively. Given
a query vector q, its substrings are used to retrieve relevant example indices before a final union to give
the final retrieved indices.

Input Query: 9 =(0,1,1,0,1,1,1,1,0,1,0)
ml=4 m2=3 m3 =4

| {(0,1,1,0) |{1.1.1)| (1,0,1,0) |

H2

(0,1,1,0)

(1,0,1,0)

(1,1,1)
H1 H3

[1] [5] [3][8] [2] |(Retrieved Indices)

Figure 15. Example of the hashtable retrieval mechanism.
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However, since the retrieval from the hashtables is a superset of the required examples, that is, there
exists some examples returned that have Hamming distance greater than the required threshold, 6. To
tackle this issue, we perform linear scan on the examples in R, and only return those that have Hamming
distance less than 0. This is still significantly faster than performing linear scan on the entire dataset,
since the size of R is usually much smaller than the size of the dataset.

A method of determining the retrieval probability given a set of hashtables with a particular hashkey
length configuration was proposed. Following this, a novel algorithm searching for an optimal hashkey
length set allow for retrieval satisfying a pre-defined minimal recall rate, whilst minimising the recall
time was proposed. The details can be found in the paper itself [49]

The variable hashkey hashtable retrieval method was evaluated on 3 different large-scale databases: 1-
Billion dataset (128-D SIFT), 1-Million ANN (SIFT), 1-Million Flickr Images (512-D RVD vector). The

speed up results over the original MIH method can be seen in Table 9: Speedup of retrieval time of pro-
posed method over MIH..

Table 9: Speedup of retrieval time of proposed method over MIH.

Min. Recall Rate  0.999 0.9 0.8 0.7
1-Billion ANN 30 875 784 785
1 Million 128 13 818 1359 1064
1 Million Flickr 18 86 98 103

As can be seen, the proposed method achieves on average a factor of 10-1000 times speedup in retrieval
times when compared with the MIH method. The speedup over linear scan is even more considerable, as
can be seen in Figure 16. Speed-up of proposed retrieval method over linear scan.
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1 Billion ANN 1 Million 128D SIFT Flickr 1 Million (512-bit)

Figure 16. Speed-up of proposed retrieval method over linear scan.

Here, we find that when only retrieval of examples that have small Hamming distance from the query are
required, the speedup over linear scanning can be up to 100K. This is because the retrieval sets from
hashtables are considerably smaller in size at lower Hamming distance thresholds. This, in turn, leads to
a much faster retrieval time, even for large datasets with 1 Billion examples.

5.8 Conclusions

In summary, in the second phase of the project, we further improved our Robust Visual Descriptor, creat-
ing RVDW. We have also integrated RVDW with deep features, demonstrating world leading perfor-
mance, beyond state-of-the-art. Further, we have also shown that RVW-D can aggregate binary de-
scriptors directly, which is useful for systems with limited computational resources. Binary local de-
scriptors require less processing resources to extract, compared to floating point or deep descriptors.
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Finally, we designed a fast indexing scheme for our RVD-W descriptors, based on sub-string matching, to
reduce search speed for very large databases.

6 Development of a new tool for the geometric consistency check in video

Most modern methods for determining whether two images display the same object involve detection
and matching of interest points followed by a test to see whether some of the matches may correspond to
a common image transformation. This latter operation is often called a geometric consistency test.

We present a geometric consistency test for video shots, understood as

[...] one or more frames generated and recorded contiguously and representing a continuous ac-
tion in time and space [50]

The method compares a query shot to a reference shot, and the goal is to establish whether the same
object can be seen in both. A reference shot that displays the same object as that in a query will be called
a matching shot, and a shot that does not will be called non-matching.

Traditionally, in a retrieval setting, a shot is represented by a single frame (key frame). The goal is usual-
ly to detect whether a certain object is present in the shot by comparing the keyframe to a query that
depicts the desired object. This may cause some difficulties, notably when the object depicted in the
query image is visible in parts of the shot but not in the keyframe. Another difficulty arises when the
object is small, blurred, or is poor in detail, such that a simple comparison between two images does not
reveal the presence of the object.

We propose to overcome these problems by letting a shot be represented by several frames, obtained by
sampling the shot over its length (uniformly in time or by some other rule). The proposed test thus ac-
cumulates evidence from interest point matching over several image pairs (a frame in the query, a frame
in the reference). The method is robust, in the sense that the presence of common objects is detected also
when the ratio of correct to incorrect matches of interest points is low across all image pairs.

In the first sub-section, we introduce the proposed method and provide arguments for why it should be
successful. Thereafter we report on an experiment comparing the method to some extensions to the state
of the art for single image pair matching.

6.1 The method: DISTRAT for multiple image pairs

The DISTRAT method considers all line segments between interest points and computes the logarithm of
the ratio of the lengths of corresponding segments in the two images, see [51] The statistics of the loga-
rithmic distance ratio (LDR) for the image pair is expressed by a histogram. This histogram is compared
to the shape it would have if all matches were wrong - this shape is expressed by a probability mass
function (pmf). The image pair is declared as a match if the histogram differs sufficiently from the pmf
(the method uses Pearson’s chi-squared test).

The proposed technique extends this procedure to video shots. The method performs interest point
matches independently for all pairs of key frames from the query and reference shots. These matches are
processed according to the DISTRAT method, producing a sequence of histograms and a sequence of
probability mass functions. This part will be called the preliminary operation. The method then proceeds
to the decision operation, which merges both the histograms and the probability mass functions and then
performs a hypothesis test to decide whether the shot matches the query.

When values from different sources are measured

Suppose that M image pairs are available for comparison, and that the first step in the preliminary opera-
tion produces the individual histograms
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[g1(1) g1(K)]

[gm(1) - gu(K)]
Each of these represents the frequencies of LDR values for one image pair. Also, the numbers of LDR
values taken for the individual image pairs are Ny, ..., Ny, and the total number of LDR values is their sum

N=N1+"'+NM.
According to the DISTRAT method, the hypothetical probability mass function (representing the case
where all matches are outliers) is specific for an image pair, since it depends on the actual configuration

of interest points in the two images. It follows that M different pmfs are needed to model the outlier
behaviour in the M image pairs

p1 = [p1 (D) . o p(K)]

pm = [pmu(1) - pu(K)]
We shall call these the individual outlier pmfs.

The histogram that represents frequencies over the whole set of image pairs is obtained by summing the
individual histograms

g=g1+-+gu-
This histogram will be called the accumulated histogram.

To arrive at an outlier pmf for the total set of image pairs, we must take into account the changing pmfs.
The appropriate model in this case is a mixture, such that the pmf is a linear combination of the individu-
al outlier pmfs,

M
p() = ) POm) - p(kim)
m=1

where P(m) is the probability (i.e. relative frequency) that an LDR value is taken from image pair m, and
p(k|m) is the probability that the LDR value is within bin ¢; provided that the LDR is taken from image
pair m. Since the relative frequency of values in image pair m is the fraction of the number of LDR values
to the total,

P(m) —T,m— 1, ,M

The conditional probability mass functions are simply the individual pmfs
p(klm) = p(k),m=1,.., M.
Therefore, the outlier pmf for the total set of image pairs is

M
1
p() == > Ny P (K.
m=1

We may now introduce the method.
How the method works

The method consists of a preliminary operation (known from previous techniques) and a hypothesis test
that uses accumulated information produced in the preliminary operation. It can be summarized as
follows.
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Procedure 1 [Multi-frame DISTRAT]

Let a query shot and a reference shot be given. Select key frames from each of the shots, creating pairs
consisting of one key frame from the query and one key frame from the reference.

PRELIMINARY OPERATION

The following iterations coincide with the initial processing in DISTRAT, see [51] The output is a set of
histograms and probability density functions.

1. For each image in (query and reference), detect local features.
2. For each image pair, match local features to produce lists of coordinate matches.
3. For each list of coordinate matches, compute a histogram of logarithmic distance ratios.
4. For each list of coordinate matches, compute a probability mass function for outliers (incorrect
matches).
DECISION OPERATION

The following steps prepare and carry out a hypothesis test for establishing whether the query and
reference shots depict the same object.

1. Sum the previously computed LDR histograms.

2. Compute a mixture of the previously computed outlier pmfs.

3. Compute Pearson's test statistic [53]

4. If Pearson's test statistic is below a threshold, then the query most probably does not match the
reference. Stop.
Otherwise, the query and reference shots may match, so proceed with the next step.

5. Estimate the correctly matched key points (inliers), through the eigenvalue problem. If the sum of
weights for the inliers exceeds a given threshold, then declare that the query and reference shots
match.

6.2 Why it works

There are two mechanisms at work ensuring that the proposed works well. The first is that it effectively
provides a large number of observations that increase the reliability of the hypothesis test. The second
mechanism is that the LDR statistics show small variation across all the considered image pairs - such
that similar histograms are accumulated.

We discuss these two mechanisms in the following paragraphs.

Robustness increases with shot length

We examine the expected value of Pearsons's test statistic for two cases: in the first case, the histogram is
exclusively due to outliers; in the second case, there are some inliers.

A histogram due to outliers is modelled by a multinomial random variable H with parameters
N,p(1), ..., p(K). The expected value of the test statistic C in this case is,

E(C)=K-1,

which depends on the number of bins and not on the number of samples used for making the histogram.

In the second case with some inliers present, the histogram is modelled by a multinomial random varia-
ble G with parameters N, q(1), ..., q(K), such that the probabilities q(k) are different from the probabili-
ties p(1), ..., p(K) that characterize the LDR for outliers. If the two mass functions p and q are held fixed,
then the expected value of the test statistic C grows as a function of N,
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E(C)=f(N)=a-N+b
where the two constants are positive. A proof is straightforward.

Thus, by just letting N become large enough, the expected value of C in the case of inliers may exceed any
threshold. Since the constants are functions of p and g, of course the rate at which this happens will vary:
if q is close to the outlier pmf p (meaning that there are few inliers), then the number N of matches will
have to be large -- but eventually, E(C|q) will become larger than any fixed threshold. Therefore, if the
pmfs p and g remain unchanged, then increasing the number N of samples will help separating the values
of the test statistic for matching images (some inliers) from the values for non-matching images (no
inliers).

The peak in the pmf often moves little

Inliers give rise to local maxima in the probability mass functions (and therefore peaks in the LDR histo-
grams). For all pairs (query frame, reference frame) that contain the same object, these local maxima will
be found over roughly the same bins. As a consequence, the accumulated probability mass function in g
will also display such a local maximum.

This is rooted in the nature of video shots, as stated by Cotsaces et al [52] :

[...] video content within a shot tends to be continuous, due to the continuity of both the physical
scene and the parameters (motion, zoom, focus) of the camera that images it.

This continuity is manifested as a small and gradual change in the individual LDR histograms across the
sequence. Since the logarithm compresses the range of the LDR, this will most often lead to narrow peaks
over the same bins for all histograms over the sequence.

6.3 Correct interest point matches

The matched interest points in the various pairs of video frames provide evidence that can be extracted
thanks to multi-frame DISTRAT. As mentioned, in a single pair of frames, the number of correctly
matched interest points (inliers) may in many cases be relatively low (say, below 25% of the total num-
ber of matches). Such low ratios of inliers to total number effectively prevent robust methods like RAN-
SAC or single-frame DISTRAT from correctly identifying the inliers.

Single-frame DISTRAT suffers this breakdown mostly because the number of segments between matched
interest points is low, causing the LDR histogram to become irregular or jagged. Video DISTRAT can
improve on this situation, since it accumulates LDR histograms (and pmfs) from several pairs of frames.
In this case, the histograms tend to become smoother, as their shape approaches that of the probability
mass function q(k) (see the section “Robustness increases with shot length” above in this chapter).

The LDR histogram and outlier pmf computed for the union of all frame pairs will, for each single pair of
frames, be used to define the matrix that yields the estimate of inliers.

Let g(k) denote the accumulated histogram and let p(k) denote the outlier pmf. Then the inliers in a
single pair of frames are then estimated as follows.

e Compute the factor f3,

g = Zk=1 9(OP()
k=1 ()

e Create the outlier normal of the histogram

d(k) = g(k) — Bp(k).
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e Let g be the quantizer that assigns a bin to any LDR value,

q
ZE(, > z—k.

Construct the matrix D

dg(z;;) i#]
oy = {te) 121

where d; = d o q, and z;; are the LDR values of the single pair of frames. That is, z;; is the logarithm of
the ratio lengths of the segments between the ith and jth interest points in either of the two frames.

e Find the dominant eigenvector r of D with eigenvalue g,
Dr = ur.

e Estimate the number of inliers,

ok
kD1 200

3
[

o Theinliers correspond to (the indices of) the 7 largest elements in the eigenvector r.

This procedure is almost identical to the one adopted for geometric verification in MPEG-7 CDVS, see
“Text of ISO/IEC CD 15938-14 Reference software, conformance and usage guidelines for compact de-
scriptors for visual search” [56] The only difference is that the histogram and outlier pmf are computed
over the whole set of frame pairs instead of a single frame pair.

The local feature matches all have weights, representing the degree of uniqueness of the match [68].
Now, the weights of all the estimated inliers across all the pairs of frames may be summed in order to get
a score of how well the query and reference shots match.

6.4 Experiment: test on video sequences

The method has been tested on a large set of video shots, extracted from 180 video sequences contained
in the CTurin180 dataset, used in the development of the CDVS standard, by dividing each sequence into
10 shots. For the test, 16200 matching pairs (query, reference) and 72000 nonmatching pairs have been
identified. The method, as well as two alternative methods for comparison, have been applied to this
material.

All frames are represented by CDVS descriptors of length 512 bytes, that is, the shortest of the alterna-
tives of the standard.
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The alternative methods: late fusion strategies

The test framework for CDVS represents the state of the art for matching pairs of single images. The
score used for declaring match in CDVS is a sum of distinctness scores for those interest point matches
that are estimated to be correct. This method therefore involves more algorithmic steps than the basic
DISTRAT method.

We consider extensions of this technique to multiple image pairs by using late fusion methods, commonly
used for combining scores in information retrieval [54] [55] The methods are combMAX and combSUM
applied to the CDVS scores for all pairs (query, reference). The first method produces a score as the
maximum over the individual scores in a set of (query, reference). The second method produces a score
as the sum of the individual scores.

The outcome

The experiment regards cases in which the shots are represented by 1, 2,..,10 frames. Results are pre-
sented in terms of True Positive Rate for thresholds such that the False Positive Rate is 0.01. (The True
Positive Rate is the fraction of positive outcomes across the matching pairs. The False Positive Rate is the
fraction of positive outcomes - wrongly declared matches - across the nonmatching pairs.). Figure 17
summarizes the results.

1 T T T T T T T T

—#—Multiframe DISTRAT
—f—combSUM CDVS
combMAX CDVS

0.95 - 1

0.9

True positive rate

0.7 I I 1 I I 1 I I
1 2 3 4 5 (3] 7 8 9 10

Number of frames from reference shot

Figure 17. True positive rates at 1% false positive rate.

It is seen that the proposed method significantly outperforms late fusion of the CDVS scores when shots
are represented by more than 3 frames. The advantage in TPR is approximately 2% when shots are
represented by more than 5 frames.
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6.5 Conclusion

We proposed a method to identify match between a query shot and a reference shot, meaning that the
two display the same object. The method consists in comparing a histogram for logarithmic ratio distanc-
es to a certain probability mass function. The proposed method outperforms late fusion of CDVS scores
over a large dataset.

7 Standardisation activities: proposal submitted to MPEG CDVA

In this section we present the results of the experiments carried out on MPEG Compact Descriptors for
Video Analysis (CDVA) using the CDVA Experimental Model (CXM) v0.1 [57] based on the BRIDGET
proposal submitted at the 114th MPEG meeting [60]

The document addresses Core Experiment 1 (CE1) “Temporal Sampling” as described in [58]

7.1 Technical Description
The proposed technology for search and retrieval of videos is composed by three parts:

1. the extraction of binary descriptors from source videos;

2. the matching of descriptors to detect if any part of a query video matches any part of a reference
video;

3. the retrieval of relevant videos from a large video archive using the binary descriptor of a video
as the query information and a set of binary descriptors of reference videos as the database of the
archive.

The proposed CDVA search and retrieval solution is based on the CDVA Experimental Model (CXM) v0.1,
with some modifications:

1. the use of the RVD-W global descriptor, proposed by the University of Surrey and Visual Atoms
[65];

2. the use of the Coordinate Coding algorithm that was originally proposed by Telecom Italia in its
response to the CDVS Call for Proposal [66] ;

3. the different binary descriptor format adopted to carry some extra information needed for tem-
poral localization of key frames (i.e. the start and end time in ms of each key frame), and to speed
up the serialization of descriptors into binary streams.

The RVD descriptor has been described in detail in [65] the RVD-W is a successor and adds cluster-level
whitening of the residual vectors. In this extension, the variances of residual vector directions are bal-
anced, in order to maximize the discriminatory power of the aggregated vectors. This is achieved by a
novel intra-stage pre-processing of the residual directions using cluster-wise PCA with a whitening oper-
ation. We call this representation RVD-W and apply it in the proposed CDVA solution.

The Coordinate Coding algorithm encodes the coordinates of the key points in an image by quantization
and arithmetic coding. The method is similar to that of Tsai et al. [67] inasmuch as we form a histogram
of the coordinates over the quantization grid. We have used a grid of 3x3 pixels in each bin, such that the
maximum error is of 1.5 pixels in both dimensions. The positions of the nonzero bins (histogram map) is
are encoded by forming binary words through scanning columns and compressing the words by arithme-
tic coding. The number of coordinates in the nonzero bins (histogram count) is encoded by specifying
which bins contain more than 1,...,B key points (B is the largest count). Depending on the number of key
points that are selected in the image, the bit rate for the coordinates of one key point is in the range from
2 to 7.5 bits.
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All other CXM technologies (e.g. the ALP detector, the SIFT descriptor binary encoding, the matching
algorithms, etc.) are used without modifications (using the “mode 0” parameter set); however, some
parameters have been modified from the default to achieve better results.

7.2 Extraction

Extraction is performed in a slightly different way compared to the CXM. In the following figure we show
the modified CXM extractor.

CDVA Extraction

video » Frame Decode C%rgrz;te current -
: ; o
frame subsampling frame - previous > th 7

Previous

CDVS/RVD Store color color

Extractor histogram

histogram

append to CDVA
video descriptor

Figure 18. The modified CXM extractor.

Figure 18 illustrates how the modified CXM produces a compact descriptor of a video segment in a series
of processing steps, when a video frame is given in input to the system. The process is repeated for all
frames in the input video segment. The output descriptor is updated by appending the output of the
process to a single CDVA descriptor.

1. Frame subsampling: Performs temporal frame subsampling.
2. Decode frame: Decode a frame present in the video.

3. Compute colour histogram: a histogram of the R,G,B planes is computed, using 32 bins for each
plane.

4. Check the difference between current and previous colour histograms: if the difference is
greater than a given threshold, the frame is selected as keyframe and further processed. If not, the
frame is dropped.

5. Frame drop module: if, according to step 4, the current frame is similar to the previously encod-
ed one, the current frame is dropped.
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6. Store colour histogram: the colour histogram is stored in memory, to be used as “previous his-
togram” in the next iteration.

7. CDVS/RVD Extractor: Extracts the CDVS/RVD descriptors from individual frames, using mode 0
of the CDVS standard [69] This step is composed by the following operations:

a.

b.
C.

the candidate keyframe image is converted to grey scale and resampled at VGA resolu-
tion;

the relevant features of the image are detected by the CDVS keypoint detector;

the feature selection algorithm of CDVS is applied to select the most important 300 fea-
tures;

the SIFT descriptor information of each selected feature is extracted and stored in both
normalized uncompressed mode (as in CDVS) and root SIFT mode (RVD specific);

root SIFT information is used to produce the RVD-W global descriptor;

normalized uncompressed mode SIFT information is used to produce a binary encoded
local descriptor;

the coordinates of all selected features are encoded using the Coordinate Coding algo-

rithm;

8. Encode keyframe: data structures extracted from the current frame by the CDVS/RVD Extractor
according to step 7 are encoded in binary format and written into a CDVA descriptor concatenat-
ing each keyframe to the following.

7.3 Pairwise matching

The matching algorithm decodes all keyframes stored in the CDVA reference descriptor and builds a DB
using them. Then, it decodes all keyframes stored in the CDVA query descriptor and for each of them
executes a retrieval operation on the reference DB. A score is computed as the product of the local and
global score, after having subtracted the base threshold for each of the two values:

score = (local_score - local_thr) * (global_score - global_thr)

If the score is above a given threshold, the keyframe is marked as matching for temporal localization.
Finally, the maximum score value of the top matching results of all retrieval operations is returned as the
matching score.
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CDVA Matching

Decode CDVS
descriptors Q
and R

Build DB Get next Retrieve Qi in DB
using R CDVS Qi (top match)

; score > th
Determine score

Set time of Qi

Update score

score and time range

Figure 19. The modified CXM pairwise matching.

Figure 2 illustrates in detail the CDVA pairwise matching operation.

1. Decode: Decode all CDVS descriptors stored in the Query CDVA Descriptor (Q) and in the Refer-
ence CDVA Descriptor (R).
2. Build DB using R: use all Reference CDVS descriptors to build a Database (DB).

3. Getnext CDVS Qi: for each Query descriptor, execute the following steps.

4. Retrieve Qi in DB: perform a CDVS retrieval operation using the Query Descriptor Qi obtaining
the top match result.

5. Determine score: determine the current score as a combination of the local and global score of
the top match result.

6. Settime of Qi: if the current score is greater than a given threshold, store the time of Qi. When all
Qi descriptors have been retrieved, find the maximum interval that satisfies the matching strate-

gy.

7. Update score: set the total score as the maximum of all current scores.

7.4 Retrieval

In retrieval, all CDVA reference and distractor descriptors are decoded and all keyframes contained
therein are used to build a single DB. Then, the CDVA query descriptor is decoded and each decoded
keyframe is used to perform a retrieval operation on the DB. The results of all queries are merged (re-
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moving duplicates) and sorted again, then clipped to a short value (50). The list of 50 results is returned
to the CDVA Evaluation Framework.

CDVA Retrieval

Query in the
Global Descriptor
Index

Get the top 500
elements from the
list

Decode CDVS Get next CDVS
descriptors Q Qi

Sort by
descending score

Local descriptor
Rerank by local score matching for each item in
the list

Merge results
and remove
duplicates

Return top 50 videos

Figure 20. The CDVA retrieval pipeline.

Figure 20 illustrates the CDVA retrieval operation. This figure assumes that a database index has been
built and is in place.

1. Decode: decode all CDVS descriptors stored in the Query CDVA descriptor.
2. Get next: for all CDVS descriptors in the Query CDVA descriptor, execute the following steps.

3. Query in the GD Index: perform a CDVS retrieval operation using query Qi on the Global de-
scriptor database index.

4. Sort: sort the results by descending score.

5. Local descriptor matching: perform CDVS local descriptor matching on the top 500 results.
6. Rerank: rerank by local score.

7. Merge results: merge results removing duplicates.

8. Return the top 50 videos.

7.5 Results

The following results have been computed running the modified CXM on the CDVA Dataset and using the
evaluation framework contained in the CDVA Experimentation Model (CXM) version 0.1. The CDVA
Dataset is described in detail in [62] however in the following tables we report the main figures for the
convenience of the reader:
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Instances
Type Items of interest
Videos Images
Unmodified
_ _ 796 5029 260
(Direct & Partial)
Modified
_ _ 123 4686 0
(Direct & Partial)
Total 796 9715 260
Table 10. Query set.
Instances
Type Items of interest
Videos Images
All 796 5128 0
Table 11. Reference set.

Source Videos Type
MediaEval Blip 4701 UGC
Openlmages.eu 3789 Broadcast, archival, education

(various collections)

Table 12. Distractor set.

The total size of the CDVA Dataset is 926 GB of compressed videos. One file had to be removed during the
experiments from both the query and reference set because it was difficult to decode (it had been encod-
ed using an obsolete proprietary video encoder).

The experiments were performed by building and running the proposed C++ source code on a 64-bit
Linux server. In the Table 13, we show the variation of the number of extracted key frames when using
different thresholds in the colour histogram comparison performed by the key frame selector.

Queries (9974) References (5127)
Thr num of KF num of KF
16K 0.7 139663 105531
[ETH 0.6| 173982 132009
[PABK 0.5 231123 176026

Table 13. Number of keyframes.

Table 14 contains the measurements required by the MPEG Evaluation Framework for Compact De-
scriptors for Video Analysis [62] It comprises the average and maximum lengths (in bytes per second of
video content) of the compressed descriptors, the retrieval and pairwise matching performances for each
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of the three operating points (16K, 64K, 256K). Please note that the operating points are just upper
bounds that apply to the average query and reference descriptor lengths (Bps).

Descriptor lengths (Bps): 16K 64K 256K
Query average lengths: 4295.35 5234.96 6792.56
Query max lengths: 271916.92 300389.86 376271.27
Reference average lengths: 5621.77 6894.29 9037.02
Reference max lengths: 271916.92 300389.86 376271.27
Retrieval performance at: 16K 64K 256K
Mean average precision: 0.736 0.744 0.747
r-Precision: 0.729 0.736 0.738
Pairwise matching performance at: 16K 64K 256K 16K 256K
True positive rate at 1% false positive rate: 0.837 0.844 0.848 0.838
Mean Jaccard index for temporal localisation: 0.547 0.572 0.586 0.548
Table 14. Descriptor lengths and results.
CDVA Pairwise matching
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Figure 21. Pairwise matching ROC graph.
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7.5.1 Complexity measurements

Complexity measurements are reported in the following tables. The measured operations are: extraction
of the “TimingExtract.txt” list, matching of the “TimingMatchingPairs.txt” list, and matching of the “Tim-
ingNonMatchingPairs.txt” list of the CDVA Dataset. Retrieval measurements were taken using the “Tim-
ingRetrieval.txt” list.

7.5.2 Processing times

All reported times are normalized using the reference platform CPU characteristics (Intel Core 17-
5930K), assuming that the CPU is operating at a base frequency of 3.5 GHz, in single thread execution, at
an average rate of one instruction per cycle, without GPU acceleration. The cells marked yellow are val-
ues that are compared against the corresponding CDVA thresholds.

Extract Retrieval
Number of items (files, pars) 3318 281
Total video duration (s) 98.916.70

Instructions

252563,479,161.137

102,780,309,958.,183

Reference CPU GHz 3.50 3.50

Normalized processing time (s) 72,161 29 366

Processing time/Aideo duration (s) 0.73

Processing timefitem (s) 2175 104.50
Matching pairs Non MatchingPairs

Mumber of items (files, pairs) 127 1270

Total video duration (s)
Instructions

490,059,017,743

4,718 ,376,905,503

Reference CPU GHz 3.50 3.50
Mormalized processing time (s) 140 1,345
Processing timeAideo duration (s)

Processing time/item (s) 1.10 1.06

Table 15. Processing times.

The Evaluation Framework document states that the following limits for average time numbers on the

reference platform must be met:

1. extraction time: must not exceed 10 seconds per second of decoded video content.
2. pairwise matching time: must not exceed 1 second per pair.
3. retrieval time: must not exceed 60 seconds per query.

The conditions are partially met. In particular, condition 2 and 3 are not fully met.

7.5.3 Peak memory usage

The peak memory usage was detected using the run-memory-test.pl script of the CXM, based on the Linux

“time” tool.
Operation Maximum resident set size (kbytes)
cdva extract 354,328
cdva match (matching pair) 36,764
cdva match (non-matching pair) 31,204
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cdva retrieve 17,709,228

Table 16. Peak memory usage.

7.6 Implementation

The code implementing extraction, pairwise matching and retrieval is written in C++ using the structure
proposed in the CDVA Evaluation Framework; in particular, all the high level implementation details are
contained in the “Cdvalmpl” C++ class. The code is compliant to both C++98 and C++11, and can be com-
piled and run on both Linux and Windows.

At a lower level of detail, the “cdvscore” subdirectory contains other C++ classes that provide a modified
version of the CDVS library which has been used as a low level library to perform keypoint detection,
extraction, binary encoding of descriptors and coordinate coding. A C++ class for RVD encoding and
matching is also provided here. Moreover, the proposed implementation uses the following external
libraries: opencv, vifeat, rescaler, eigen.

7.7 Standardization outcome

The proposal was partially accepted as part of the CXM 0.2 at the 115t MPEG meeting. The adopted part
is the key frame selection mechanism. The decision about the other elements has been postponed until
the next meeting in October 2016.

7.8 Future proposal to be submitted to MPEG CDVA

Video DISTRAT has been implemented in C++ and integrated with the CXM 0.2 (CDVA Experimentation
Model). It will be used in the extensive experiments defined by the CDVA Evaluation Framework, to
verify the performance of the proposed solution.

The goal is to make a proposal to MPEG at the 116t meeting that will be held in October 2016.

8 Conclusions

In the second part of the project, WP5 has made a significant progress in the development of the compo-
nent technologies with BSOTA performance and successfully integrated them into the second version of
the BRIDGET VS engine.

The most significant results include:

@

+ Successful development of a complete Visual Search pipeline for video content (mark 2), and its

integration into the first release of the BRIDGET AT.

Extensions to our descriptor aggregation scheme - Robust Visual Descriptor (RVDW), which advanc-

es significantly beyond SOTA in terms of recognition performance and speed.

Integration of RVDW with deep features, demonstrating world-class performance.

Extended our geometric consistency check to video: the multi-frame DISTRAT, with unique features

and outstanding performance.

% Research papers published at leading conferences (CVPR 2016, ICME 2016), including the “Best
paper award” for the work entitled "On Aggregation of Local Binary Descriptors”, presented at the
3rd IEEE International Mobile Multimedia Computing workshop (ICME). The work on RVDW and lo-
cal binary descriptors has been also submitted to IEEE Transactions PAMI and IEEE Transaction on
Multimedia.

%+ 8 contributions to the MPEG CVDS/CDVA standardization work with significant impact, including (1)

a response to the CfP with leading performance and (2) a successful proposal on temporal sampling

in CE1 m38664.

R/
0’0

X3

¢

X3

¢
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