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Executive Summary 
 
This document presents BASTION contributions in the area IJTAG network for error 
detection and diagnosis. In the following for BASTION contributions are discussed in 
detail. The first contribution focuses on efficient error propagation through IJTAG 
networks. Secondly aspects and contributions with respect to hierarchical testing using 
IJTAG networks. The next contribution provides solutions for testing IJTAG networks. 
After that a contribution to compute upper-bounds in the context of dynamic retargeting 
techniques is presented. Finally, conclusions are provided, including the discussion on 
KPIs. 

  



Notices  ●  vi                                                            Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis  

 

List of Abbreviations 
 

AFPN 
ATPG 
BIST 
CPU 
CSU 
DfT 
DoW 
DRC 
ECC 
FP7 
FM 
FMI 
FSM 
ICL 
IEEE 
IJTAG 
 
ILP 
IM 
IP 
IST 
ITRS 
JTAG 
LBIST 
LSIB 
MBIST 
MUX 
PN 
NFF 
OAT 
OS 
PCB 
PDL 
RM 
RSN 
RTL 
SAT 
SCB 
SI 
SIB 
SO 
SoC 
TAP 
TDI 
TDO 
TDR 
UCC 

Asynchronous Flag Propagation Network 
Automatic Test Pattern Generation 
Build Inside Test 
Central Processing Unit 
Capture-Shift-Update Cycle 
Design for Testability 
Description of Work 
Design Rule Check 
Error-Correction Code 
European Union’s 7th Framework Programme 
Fault Management 
Fault Management Infrastructure 
Finite State Machine 
Instrument Connectivity Language 
Institute of Electrical and Electronics Engineers 
Internal JTAG, a short name for IEEE 1687 standard and 
infrastructure collectively  
Integer Linear Programming 
Instrument Manager 
Intellectual Property 
Information Society Technologies 
International Technology Roadmap for Semiconductors 
Joint Test Action Group 
Logic BIST 
Locking Segment Insertion Bits 
Memory BIST 
Multiplexer 
Perfect Network 
No Fault Found, also No Failure Found 
Overall Access Time 
Operating System 
Printed Circuit Board 
Procedural Description Language 
Resource Manager 
Reconfigurable Scan Network 
Register-Transfer-Level 
Boolean Satisfiability 
ScanMux Control Bit 
primary Scan Input 
Segment Insertion Bit 
primary Scan Output 
System-on-Chip 
Test Access Point 
Test Data Input 
Test Data Output 
Test Data Register 
Upper-bound Computation Core 



Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis               Summary  ●  vii 

URL 
 
 
 

Uniform Resource Locator 
 

 



Table of Contents 
 
Table of Revisions ............................................................................................................................... iii 
Author, Beneficiary............................................................................................................................... iv 
Executive Summary ............................................................................................................................... v 
List of Abbreviations ............................................................................................................................ vi 
Table of Contents .................................................................................................................................. iv 
1  Introduction .................................................................................................................................... 2 

1.1  The Structure of the Report ..................................................................................................... 2 
2  Fault Detection, Localization, and Propagation through IJTAG Networks ................................... 3 

2.1  Introduction ............................................................................................................................. 3 
2.2  Related Work ........................................................................................................................... 3 
2.3  BASTION Contributions......................................................................................................... 3 

2.3.1  Instrument Manager ......................................................................................................... 3 
2.3.2  Operation of IM ............................................................................................................... 4 
2.3.3  Execution of instrument access commands from FM ...................................................... 5 
2.3.4  Autonomous fault localization ......................................................................................... 5 
2.3.5  Hardware implementation of Instrument Manager .......................................................... 5 
2.3.6  IM-FM interface............................................................................................................... 6 
2.3.7  Implementation of SIB with AFPN support .................................................................... 7 
2.3.8  Requirements for modified SIB ....................................................................................... 7 

2.4  Handling External Instrument Access Requests (from FM/SW) ............................................ 8 
2.4.1  IJTAG Network Map ROM Structure ........................................................................... 10 
2.4.2  IJTAG Network Status RAM Structure ......................................................................... 10 
2.4.3  Instrument Manager’s FSM Part that handles Access Requests .................................... 10 

2.5  FMI Operation during Fault Detection .................................................................................. 11 
2.5.1  Fault Localization and Diagnosis................................................................................... 11 

  Fault Detection ........................................................................................................... 12 
  Fault Localization ....................................................................................................... 13 

2.5.2  Interruption of Ongoing Access in Event of Fault ......................................................... 13 
  Dynamic Retargeting .................................................................................................. 14 
  Instrument Network Reset .......................................................................................... 14 

2.5.3  Multiple Fault Scenario.................................................................................................. 14 
  Multiple Simultaneous Faults..................................................................................... 15 
  Examples with 2 faults ............................................................................................... 15 
  General Case .............................................................................................................. 17 

2.6  Section Summary .................................................................................................................. 17 
3  Hierarchical Design and Test ....................................................................................................... 18 

3.1  Introduction ........................................................................................................................... 18 
3.2  Wrapper Test Modes ............................................................................................................. 18 

3.2.1  Inactive or Functional Mode .......................................................................................... 19 
3.2.2  Inward-facing Mode – INTEST ..................................................................................... 19 
3.2.3  Outward-facing Mode – EXTEST ................................................................................. 19 
3.2.4  Safe Mode ...................................................................................................................... 20 

3.3  Wrapper Cells ........................................................................................................................ 20 
3.3.1  Dedicated Wrapper Cells ............................................................................................... 20 
3.3.2  Shared Wrapper Cells .................................................................................................... 22 

3.4  Optimized Wrapper Implementation ..................................................................................... 22 
3.4.1  Optimized Shared Wrapper Cells .................................................................................. 23 



Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis               Summary  ●  v 

3.4.2  Optimized Inward-facing Mode with Test Data Compression ...................................... 23 
3.4.3  Optimized Inward-facing Mode with Test Instrumentation .......................................... 24 
3.4.4  Optimized Outward-facing Mode .................................................................................. 25 
3.4.5  IJTAG Interface of the Optimized Wrapper .................................................................. 26 

3.5  Implementing Hierarchical Design and Test ......................................................................... 27 
3.5.1  Ports Not to be Isolated .................................................................................................. 28 
3.5.2  Shared vs. Dedicated Wrapper Cells ............................................................................. 28 
3.5.3  Experimental Results ..................................................................................................... 30 

3.6  Section Summary .................................................................................................................. 32 
4  Solutions to test IJTAG networks ................................................................................................ 33 

4.1  Introduction ........................................................................................................................... 33 
4.2  Related Work ......................................................................................................................... 33 

4.2.1  Overview of IEEE 1687 Networks ................................................................................ 34 
4.3  Motivations............................................................................................................................ 35 
4.4  BASTION Contributions....................................................................................................... 35 

4.4.1  Test of the TDRs ............................................................................................................ 37 
4.4.2  Test of the SIBs .............................................................................................................. 37 
4.4.3  Testing the ScanMuxes .................................................................................................. 39 
4.4.4  Overall Test Strategy ..................................................................................................... 40 
4.4.5  Identification of an Optimized Sequence of Sessions .................................................... 41 

4.5  Experimental Results............................................................................................................. 42 
4.6  Section Summary .................................................................................................................. 45 

5  IJTAG Network Optimization and Adaptation, and Dynamic Pattern Retargeting .................... 46 
5.1  Introduction ........................................................................................................................... 46 
5.2  Related Work ......................................................................................................................... 46 

5.2.1  Instrument Access Infrastructure (Network) ................................................................. 47 
5.2.2  Description Languages and Retargeting ........................................................................ 48 

5.3  State-of-the-art in 1687 Retargeting ...................................................................................... 49 
5.4  BASTION Contributions....................................................................................................... 50 

5.4.1  Motivational Example .................................................................................................... 50 
5.4.2  Upper-Bound Computation Core (UCC) ....................................................................... 54 

  The Core: UCC........................................................................................................... 54 
  Optimal Retargeting for Small Networks ................................................................... 56 
  Pessimism in the UCC Results ................................................................................... 56 

5.4.3  Handling large networks ................................................................................................ 57 
  Reduction Through Decomposition ........................................................................... 57 

5.4.4  Experiments ................................................................................................................... 61 
5.4.5  Future Work ................................................................................................................... 64 

5.5  Section Summary .................................................................................................................. 64 
6  Conclusions .................................................................................................................................. 65 
7  Bibliography ................................................................................................................................ 67 



Contents  ●  2                                                       Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis  

1 Introduction 
  
In this deliverable, results are reported of the research performed by BASTION partners in the 
area IJTAG network for error detection and diagnosis. It summarizes and concludes work 
performed in T3.2 “IJTAG network for error detection and diagnosis”. The contributions are 
described in separate sections.  
 
The first contribution proposes an extension to IJTAG for system health-monitoring and Fault 
Management (FM), which has been introduced in BASTON D2.3. Furthermore, issues such as 
Instrument synchronization, calibration as well as Health Map composition and respective fault 
classification scheme have been discussed in D2.3 and D3.1. Based on the earlier reported results 
this deliverable discusses implementation details of the respective hardware. 
 
The next deliverable focuses on the application of reconfigurable scan networks for hierarchical 
design and test. In particular general requirements for core wrapper isolation are discussed and 
initial experimental results are presented. 
 
The third contribution in this deliverable discusses aspects of testing IJTAG networks. The 
described contribution proposes a method to generate sequences of tests which incrementally 
tests components of SIB-based IJTAG networks. The authors describe in detail the test of SIBs, 
ScanMuxes and TDRs. 
 
Optimal retargeting of PDL instructions has been discussed in D2.3. The final contribution extends 
the optimal retargeting by generalizing the computation of the upper-bound of time frames which 
needs to be considered during the retargeting process. Previously this upper-bound could only be 
determined for specific structures in IJTAG networks. By applying the new approach, the upper-
bound can be determined for large IJTAG networks independent of structural properties. 
Furthermore, this new concept of modelling IJTAG networks enables future works on verification 
and validation of such structures. 

1.1 The Structure of the Report  
This report is structured as follows. Sections 2,3,4,5 contain the descriptions of the contributions in 
the areas error propagation, hierarchical test and design, test of IJTAG networks and test pattern 
retargeting, respectively. This report is concluded in Section 6.   
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2 Fault Detection, Localization, and Propagation 
through IJTAG Networks 

2.1 Introduction 
Rapid emergence of embedded instrumentation as an industrial paradigm and adoption of 
respective IEEE 1687 standard [1] by key players of semiconductor industry opens up new 
horizons in developing efficient test, debug and health monitoring frameworks. The IEEE Std 
1687 also shortly called IJTAG has been initially started as an initiative to standardize access to 
on-chip embedded instrumentation, like monitors, sensors and checkers as well as DFT (Design-
for-Testability) infrastructure, various BIST (Built-In Self-Test) and trace data collection 
solutions for system and software debug [2]. The IJTAG concept embraces also the paradigm of 
Reconfigurable Scan Networks (RSN) [3] and has become a very attractive industrial solution for 
both scan-based manufacturing test and system debug [2], [3], [4], [5].  

2.2 Related Work 
Expected large-scale adoption of IEEE 1687 standard and respective infrastructure by chip 
vendors created an important opportunity to reuse IJTAG in the field. An extension to IJTAG for 
system health-monitoring and Fault Management (FM) has been proposed in [5] and [6] and 
further elaborated in [7], [8], [9], [10], [11], [12]. 
Recent works focusing on implementation challenges of on-chip IJTAG retargeting engines [13] 
and on-the-fly retargeting framework [14] also consider instrumentation reuse in the field. Reli-
ability and fault tolerance of IJTAG networks during online FM operation has been detailed in 
[15]. 

2.3 BASTION Contributions 
An architectural extension to IJTAG for system health-monitoring and Fault Management (FM) 
has been presented in BASTION D2.3. Instrument synchronization, calibration and triggering 
approaches have been introduced in D2.1. The Health Map composition together with respective 
fault classification scheme, and initial fault handling scenario have been proposed in D3.1. In this 
deliverable we present details on hardware implementation with main focus made on Instrument 
Manager (IM). 

2.3.1 Instrument Manager 
Instrument manager (IM) is a part of the Fault Management Infrastructure (FMI) and is 
implemented as a hardware block which role is to connect the hardware and software parts of the 
FMI, as shown in Figure 1. On one side, it is connected to IEEE 1687 IJTAG network as a 
controller and on the other side it is accessed as a peripheral to the CPU through the FM bus 
which can be either specialized separate fault-tolerant bus or a normal system bus. Basic 
commands from FM are write and read requests to particular instruments in the IJTAG network. 
The interface between IM and FM works on the basis of register (equivalent to instrument in this 
context) addresses. FM issues a command which contains the register address with data, and IM 
is responsible to open the access to the target register through the hierarchy of IJTAG network 
and subsequently write/read the data. The address is a custom interpretation of the instrument’s 
position inside the IJTAG network. A table of addresses is constructed from a network 
description (ICL) before runtime and is available to both FM and IM. FM uses it to look up the 
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address of the required instrument from its logical position (e.g. CPU1.FPU.BIST has and 

address 35). IM has the network map ROM connected directly to the FSM from which it can find 
out the way to access a register with particular address. 
IM is a hardware module which is responsible for the communication with the instruments 
through the IJTAG network. Whenever FM needs to access the instruments to get the diagnostic 
information, it gives a read/write command to IM which in turn opens the path to the instrument 
through the hierarchical IJTAG network and performs the requested operation. Besides 
instrument access, IM is responsible for reacting to the fault flags set by the instruments and 
propagated as an asynchronous interrupt signal. IM automatically opens the path to the 
instrument which raised the fault flag and provides the information about its location to FM or 
directly to the health map. However, IM can only provide coarse fault location information in this 
manner and FM should start the diagnostic procedure to find out the fine-grained fault location 
information and update the health and resource maps.  

2.3.2 Operation of IM 
IM has two main modes of operation: 
 Execution of instrument access commands from IM; 

Figure 1. Detailed view of the fault management architecture 

Figure 2. Simplified FSM state diagram of IM 
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 Autonomous fault localization. 

When IM is not in either of these modes, it is idle. IM operates as an FSM, the state diagram is 
shown in Figure 2. 

2.3.3 Execution of instrument access commands from FM 
In this mode, IM is receiving commands from the software (FM) about performing an 
operation with IJTAG network. FM can instruct IM to do one of the following operations: 
 Read value of TDR of an instrument; 

 Write value of TDR of an instrument; 

 Open path to TDR of an instrument; 

 Update the X bit – used to mask/unmask the flags on a SIB (see details below); 

 Close all SIBs – used to restore the initial idle value of the network. 

Since in most cases there are many instruments in the IJTAG network, the instrument-related 
operations need an indication about which instrument is targeted. FM communicates this by 
means of setting the Instrument Address (IA) in the command register of IM. This address is 
connected to the position of the instrument in the IJTAG chain and is only used in 
communication between FM and IM. 

2.3.4 Autonomous fault localization 
This mode is invoked only when IM is idle and the Asynchronous Flag Propagation Network 
(AFPN) signals an uncorrected fault condition (F=1, C=0). Apart from issuing the interrupt to 
notify the upper layers of the system, IM can autonomously start executing the fault 
localization procedure. This is possible thanks to the fault flags being set at each SIB which 
has an unmasked fault in the underlying IJTAG network segment. Ideally, by the time FM will 
react to the incoming fault interrupt, IM will already be ready with the address of the 
instrument which raised the fault flag, thus speeding up the whole fault handling procedure.  

2.3.5 Hardware implementation of Instrument Manager 
IM is implemented in hardware (see Figure 3) as a relatively simple IP consisting of: 

 FSM; 

 ROM for storing the IJTAG network configuration; 

 RAM for storing the IJTAG network state (opened and closed SIBs) 

 Interrupt generation logic: low and high priority interrupt request signals to CPU. 

IM has two interfaces: 
 IM-FM interface – used to communicate with CPU which is running the FM, 

implemented as a memory-mapped peripheral. Allows to receive commands from FM and 
send/receive data; 

 IJTAG network port – used to access the IJTAG-based instrumentation network. 
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2.3.6 IM-FM interface 
IM uses several signals to communicate with FM on the software side of the fault management 
architecture: 

 IM_CMD – a 32-bit register with command and status bits, bidirectional; 

 IM_DATA – a 32-bit register for data transfer, bidirectional; 

 Interrupts. 

Whenever the AFPN signals that a fault was detected by an instrument or other event that 
requires reaction from FM occurs, IM immediately sends an interrupt to the CPU(s) which is 
running the software part of FMI including FM. Since depending on the flags the required 
urgency of system’s reaction is different, there are two interrupt signals: 

 High-priority interrupt: only requested in case of an uncorrected fault event (F=1, 
C=0) 

 Low-priority interrupt: all other cases, such as corrected fault event (F=1, C=1), 
completion of instrument access operation, etc. 

IM 
FSM 

ROM: IJTAG network configuration RAM: IJTAG network state 

CPU  
with Fault 
Manager 

IJTAG 
network 

Figure 3. Overview of IM hardware 

F
CLow priority 

interrupt 

High priority 
interrupt 

Top level 
flags 

Figure 4. Instrument with FCX emergency flags and TDR 
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2.3.7 Implementation of SIB with AFPN support 
The proposed fault management architecture relies on the asynchronous fault propagation 
network (AFPN) for fast fault detection. Since AFPN is very closely coupled to the IJTAG 
network and is also organized in hierarchical fashion (see Figure 5), it is natural that the flags 
(F, C, X) and the propagation logic is integrated with SIBs. In this section, we describe the 
modified SIB which is intended to be used with AFPN and includes additional registers to 
accommodate the flag bits. 
 

 

2.3.8 Requirements for modified SIB 
The modified SIB design with AFPN support must include additional registers for capturing 
and storing the values of the flag bits as well as the circuitry for asynchronous flag 
propagation. Since F and C flags only need to be captured (read-out) and cannot be written, 
there is no need to implement the update register part for them. Similarly, the S bit (the one 
controlling the state of the SIB) and the X flag only need to be written and hence don’t need 
the capture register. Together, the four flags can share the capture and update registers of only 
two bits: 
 F/S bit: when updated, S (SIB state) bit is written; when captured, F flag is read. 

 C/X bit: when updated, X (mask) bit is written; when captured, C flag is read. 

In this way the extra AFPN flags are added while keeping the impact to communication 
efficiency minimal: only one extra bit to be shifted in the scan chain (one bit for S is already 
used by a normal SIB). 

Figure 5. Asynchronous fault propagation and detection in IJTAG network 
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The details of the SIB’s hardware implementation are shown in Figure 7, where the logic of 
the F/S and C/X bits is highlighted.  
Besides the capture and update registers and standard SIB logic (generation of gated ShiftEn, 
CaptureEn and UpdateEn signals), the modified SIB includes the flag propagation logic. This 
consists of a AFPN logic slice and the signal synchronizers. The latter are composed of two 
back-to-back flip-flops and are required in case the F and C flag signals are not synchronized 
to the TCK clock. The AFPN logic can be implemented in several ways, but for the SIB logic 
it provides an interface with F and C flag outputs and X bit input. Besides that, it must be 
connected to signals from SIB on lower hierarchical layers and to signals on higher 
hierarchical layers. 

 

2.4 Handling External Instrument Access Requests (from FM/SW) 
When IM receives an access request, it starts shifting in bits by going through ROM and 
generating the respective values for all active network nodes. When a SIB is encountered, then 
depending on the state of the SIB, IM either has to shift in only a value for the SIB register (bits 
S, X, C, F) or shift the data for the underlying network segment as well, a process called dynamic 
retargeting. The structure of ROM (example of ROM contents in Table 1) facilitates this process 
by providing the offset value for the case when the SIB is closed. When a SIB is closed, all nodes 

Figure 7. Implementation of SIB with AFPN support

Figure 6. Extended SIB with F&C flag propagation signals (FCX-SIB) 
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of the underlying segments must be skipped and no bits should be shifted in for them. Instead, the 
bits for the node next to the SIB on the same hierarchical level should be shifted in. The offset is 
a value which should be added to the current node address to jump the next adjacent node. For 
instance, let’s assume SIB4 is closed in the example network (Fig. 8). Then the following bits 
shifted in should be those for SIB3. IM implements this by adding the offset value (2) to the 
current address (1) and jumping to address 3 which corresponds to SIB3. When a SIB as open, 
then the next word in ROM is used, it corresponds to the last node of the SIB’s child network 
segment. The information about whether each SIB is currently opened or closed is stored in the 
network state RAM. 
When a register is encountered in a ROM word, then its address is compared with the requested 
address and if they are equal, a value is read or written. If the target register is to be read, then the 
network’s SO values are stored in IM memory and later returned to the host. Otherwise, values of 
SO are ignored. If the target register is to be written, then the value provided by host is shifted in 
to the network. When there is no value requested to be written into the current register, all zeroes 
are shifted in. This limitation will be addressed later by storing the default load and reset values 
in ROM as described in the IEEE 1687 standard. 
The values of SIB F, C, X bits are stored into IM RAM. Value of SIB S bit is generated by IM 
itself, so there is no need to read it out from the network. The new value for SIB S bit (open or 
closed) is decided by IM also by using target register address. If the target register address falls in 
the region between the current SIB address and the word SIB’s offset is “jumping” to, then this 
SIB must be opened since the target register is somewhere inside its underlying network segment. 
For instance, in the example network, consider register R2 (address 4). In order to decide if SIB2 
must be opened, the target address (4) is checked against SIB2 address (0) and where it’s offset 
points to (0+5=5). Since 4 is between 0 and 5, SIB2 must be opened. However, in case of SIB4 
and R2, the target address does not fall into the respective region (1 to 3) and hence SIB4 must 
stay closed. 
 

 

SReg

Instrument

SI

SEL

SO

DO

DO

DI

DI

WrappedInstr

SI 

SEL 

SO 

RST 
TCK 

CE 
SE 
UE 

0 
1 S

SO 

SI 

fromSO 

toSI 

SIBmuxpre

X C F SIB1 R1 

0 
1 S

SO 

SI 

fromSO 

toSI 

SIBmuxpre

X C F SIB2 0

1 S

SO

SI

fromSO

toSI

SIBmuxpre

X C F SIB3 

0

1 S

SO

SI

fromSO

toSI

SIBmuxpre

X C F SIB4 

SReg 

Instrument

SI

SEL

SO

DO

DO 
DI 

DI 

WrappedInstr 

R2 

SReg 

Instrument

SI

SEL

SO

DO 
DO 
DI 

DI 

WrappedInstr 

R3 

Figure 8. Hierarchical IJTAG network with FMI 
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2.4.1 IJTAG Network Map ROM Structure 
In the network map ROM, each word corresponds to a node in the network (register or SIB). The 
contents of ROM are generated based on the network description (ICL) starting from the last 
node (the one connected to SO of the network). When accessing the network, IM can start 
generating the signal on network SI immediately, as the bits for the last node go in first. By going 
through the ROM starting from the last node described in the first word, IM can scan in the bits 
for all nodes of the network. 
The host (Fault Manager in the software) requests accesses to registers from IM by using the 
instrument address in the ROM. The address is equal to the word number in ROM. For instance, 
in the example network R2 can be accessed by specifying address “4”.  
Each ROM word has the following fields: 

 [1:0] Node type. 00 = SIB, 01 = scan register (instrument), 11 = denotes the end of the 
map 

 [9:2] SIB jump offset/register length. For SIBs, specifies the number of nodes within the 
underlying network segment which also shows how many ROM words to skip when the 
SIB is closed. For registers, specifies the length in bits. 

Table 1. ROM contents for the example IJTAG network (Fig. 8) 

ROM 
word 

Node SIB offset / reg. 
length 

ROM[9:2] 
(offset/len) 

ROM[1:0] (node 
type) 

0 SIB2 Offset=5 (to 5:SIB1) 101 00 
1 SIB4 Offset=2 (to 3:SIB3) 10 00 
2 R3 Length=32 100000 01 
3 SIB3 Offset=2 (to 5:SIB1) 10 00 
4 R2 Length=16 10000 01 
5 SIB1 Offset=2 (to 7:END) 10 00 
6 R1 Length=32 100000 01 
7 END   11 
 

2.4.2 IJTAG Network Status RAM Structure 
Each RAM word has the following fields: 

 [0] SIB S bit. Shows the state of S bit, i.e. if a SIB is closed (0) or opened (1) 

 [1] SIB X bit. Shows the state of X bit (masking) 

 [2] SIB C bit. Shows the state of C bit (error corrected) 

 [3] SIB F bit. Shows the state of F bit (error detected) 

2.4.3 Instrument Manager’s FSM Part that handles Access Requests 
The core logic of IM is implemented as an FSM with 15 states (see Figure 9). IM starts the 
operation in IDLE state and upon a request from the host it moves to INIT state. In INIT state it 
asserts the CaptureEn signal to copy the actual values of the network’s nodes to the shift 
registers. It also resets the address counter since the first node for which the serial scan bits need 
to be generated is at address 0. Then it moves to HUB state which is a helper state to manage the 
node address handling. From there, depending on the node type located in ROM at the current 
address and the requested operation, it will proceed to SIB_F, REG_W, REG_R or UPDATE 
states. The first one handles SIBs by first shifting in unlock values to F and C bits, respective 
value for X taken from RAM and then finally the value for the S bit. Its value depends on 
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whether the SIB need to be opened or closed for the current retargeting goal (as described 
earlier). 
For registers, IM will first shift in the first bit (IM treats the data from host in such a way that 
LSB is shifted in first) and if there are more bits, it will stay in the loop state while there are bits 
to shift in or out. 
When the network node closest to network’s SI is handled, FSM will reach an END entry in 
ROM. This means that it should assert Update signal and check whether additional Capture-Shift-
Update operations are still needed, e.g. if the target register hasn’t been reached yet or if the 
network must be closed after the access is finished. This is decided in the UPDATE state. 
 

 

2.5 FMI Operation during Fault Detection 

2.5.1 Fault Localization and Diagnosis 
Here, we detail the way the IEEE 1687 FMI detects and localizes a fault based on a 
comprehensive example. 
First of all, let us define the following sets: 

 Set of possible faults F, where fault fi ∈ F 

IDLE INIT
Host request 

UPDATE

HUB

SIB_F  REG_W REG_R 

SIB_C 

SIB_X 

REG_W_LOOP REG_R_LOOP 

SIB_S1  SIB_S2  SIB_S3 SIB_S4

ShiftEn=0 
ShiftEn=1 

addr+=1

addr+=1

addr=0 
CE=1 

UE=1Target reached

END

Must be open, 

was closed 

SO=RAM[addr].X 

SO=1 
addr+=offset 

Must be open, 

was open Must be closed,

was open 
Must be closed,

was closed 

SO=1 
addr+=1 

SO=0
addr+=1 

SO=0
addr+=offset 

SO=host_data[0] 
host_data>>1 
len=reg_len‐2 

SO=1 

SO=0 

reg_len=1

reg_len=1

len>1 len>1 

SO=host_data[0]
host_data>>1 

len=len‐1 len=0

len=0 

Figure 9. Instrument manager’s FSM that handles external requests 
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 Set of fault detection timestamps T, where timestamp ti ∈ T corresponds to fault fi 
 Set of fault localization latencies L, where latency li ∈ L corresponds to fault fi 

 

When a fault occurs, the fault management system will start the localization procedure described 
in following sections. This will eventually result in identification of the instrument that detected 
the fault. 
Let us now describe in detail the series of events that should follow the detection of a fault in an 
instrument using an example with small IJTAG instrumentation network. This network in normal 
state is shown in Figure 10 (omitting the display of SIB internals such as asynchronous signals 
and their propagation gates). In the following, we depict FCX-SIBs as blocks of four 1-bit scan 
registers (S, X, C, F) together with scan ports of a SIB (SI, SO, toSI and fromSO in Figure 6). 
Each scan register in a SIB has a binary value and it is shown graphically: register rectangle 
white fill if value is zero, color fill if value is one. The active scan chain is shown in bold while 
the inactive parts are shown in thin lines. 
In our example, a fault is detected by instrument I1. The fault is not automatically corrected and 
thus needs to be taken care of by network controller. The initial state of the instrumentation 
network is with all SIBs closed (as in Figure 10). 

 Fault Detection 
At the time of detection, instrument sets its Fault flag and clears Correction flag. These changes 
are propagated asynchronously to SIB3 and then to SIB1, although SIB4 is still in normal state. 
This situation is shown in Figure 11. 
 

S X C F S X C F 

S X C F S X C F S X C F S X C F 

SIB1 SIB2 

SIB3 SIB4 SIB5 SIB6 

CTRL 

I1 I2 

Figure 10. Example of IJTAG instrumentation network with asynchronous fault detection 

S X C F S X C F 

S X C F S X C F S X C F S X C F 

SIB1 SIB2 

SIB3 SIB4 SIB5 SIB6 

CTRL 

I1 I2 

 Figure 11. Detection of a single fault by instrument I1 
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 Fault Localization 
When asynchronous fault detection signals reach the network controller, the latter responds by 
performing localization actions. Let us follow the sequence of events: 

 t = 0: The network controller receives asynchronous signal about the fault in the network, 
it starts the localization procedure. It scans the top-level loop and sees Fault flag in SIB1 
(Figure 10) and recognizes that the fault location is somewhere in the child network 
segment(s) of SIB1. This operation takes E + 4 • b1 = 6 + 4 • 2 = 14[TTCK], where b1 is 
number of SIBs in the first level of hierarchy. 

 t = 14: The controller now makes another shift to update the register of SIB1 to open it. 
Since the active scan chain is not changed, it also takes 14 TTCK. 

 t = 28: The active scan chain now includes the child segment of SIB1. Controller makes 
another shift to find out which SIB asserted the Fault flag. This operation takes E + 4 • (b1 
+ b2 ) = 6 + 4 • 4 = 22[TTCK] 

 t = 50: The localization procedure is finished; the controller recognizes that the fault is 
situated in the child segment of SIB3 which consists only of instrument I1. 

 
Then the controller will open SIB3 and read out I1 status. At this point the fault is localized and 
diagnosed. The state of the network is shown in Figure 12. Following actions may include writing 
to I1 or masking out the fault by Mask bit in SIB3. 
 
According to [8], the time of fault localization can be calculated by following formula: 

௡ݐ ൌ ሺ2 • ݊ െ 1ሻ • ܧ ൅ 4෍ቀ൫2ሺ݊ െ ݅ሻ ൅ 1ሻ൯ܾ௜ቁ

௡

௜ୀଵ

 

where n is the level of hierarchy of the instrument, E is the constant of TAP diagram transitions 
(equal to 6 test clock cycles [1]) and bi   is the number of SIBs in i-th  level of hierarchy. The 
units of the result of this equation are test clock cycles TTCK. 
In the case of currently discussed example, n = 2, b1  = 2 and b2  = 2. Hence, the required time to 
localize I1 is: tI1 = 3E + 4(3 • 2 + 2) = 18 + 32 = 50[TTCK]. This conforms with manual 
calculations. 
 

2.5.2 Interruption of Ongoing Access in Event of Fault 
The normal work of IJTAG instrument network consists of read and write accesses to 
instruments, opening and closing the SIBs which are the results of normal requests from higher 
levels of the system (like OS). Since the IJTAG network can be constructed hierarchically to 

S X C F S X C F 

S X C F S X C F S X C F S X C F 

SIB1 SIB2

SIB3 SIB4 SIB5 SIB6

CTRL 

I1 I2

Figure 12. Localization of a single fault up to instrument I1 
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optimize access times, it may take considerable time to finish ongoing access and switch to 
another request. 
Since asynchronous fault detection is designed to be as quick as possible to detect and find the 
source of fault, its speed would be useless if corresponding accesses to faulty re- source were 
delayed until current normal access is completely finished. Therefore, it is reasonable for IJTAG 
network with asynchronous fault detection to interrupt ongoing access and service faulty resource 
localization as soon as possible. 
The localization of faulty resource would probably require modifying the configuration of IJTAG 
network, i.e. closing some SIBs and opening other SIBs. Hence, the current status of IJTAG 
network must be considered and an optimal modification, i.e. action that leads to quickest access 
to faulty resource, should be taken. 
We foresee two possible solutions that can provide fastest reconfiguration of the IJTAG network 
in different situations: 

 Dynamic retargeting 
 Reset of IJTAG instrumentation network 

 Dynamic Retargeting 
Let us consider a situation where required time to change the current configuration of 
instrumentation network to required one is less than the time required to start from reset state and 
open all levels of hierarchy that are needed to access the faulty resource. In this case it makes 
sense to halt the ongoing access and close corresponding SIBs, while opening the required SIBs. 
Since this should be done simultaneously, there must be means to dynamically schedule access 
requests with different priorities to IJTAG network. This can be done with dynamic retargeting 
techniques which are described in [16]. 

 Instrument Network Reset 
In case the reconfiguration from the current state of IJTAG network is too expensive in means of 
time, it is reasonable to perform a reset of IJTAG network configuration. It means that all SIBs 
are closed and the active scan chain corresponds to top-level loop of the network. After the reset, 
normal sequence of SIB openings and register accesses could be performed. 

2.5.3 Multiple Fault Scenario 
During the lifetime of the system it may happen that multiple faults occur at the same time, or at 
least, their localization times could overlap. In this case, it is important to make sure that fault 
management architecture would allow detecting both of them and reacting accordingly. 
Whenever several faults occur at the same time or one fault occurs when another is already being 
localized, the overall status of asynchronous fault detection scheme remains adequate. Firstly, 
Fault and Correction flags at top level of IJTAG network will always indicate current status of 
fault detection. This means that if one fault is already addressed and the corresponding instrument 
Fault flag is cleared or masked, the top-level Fault flag will still indicate that the system is in the 
fault state. Similarly, if several faults occur at the same time and one of them is automatically 
corrected and Correction flag is set, while another fault is uncorrected, the top-level flags will 
indicate that the system is in a state of unhandled fault. 
In the following, we will discuss how the fault management system with asynchronous fault 
detection deals with multiple faults occurring at the same or nearly the same time. Firstly, we will 
define the multiple fault events, then we will discuss several simple examples of two faults 
occurring simultaneously. 
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 Multiple Simultaneous Faults 
In general, we can describe an abstract situation, where two faults occur at the same time, or more 
precisely, the effects of these faults for fault management architecture (need to localize the fault) 
overlap in time. In other words, it is a situation, when some of the procedures required to localize 
these faults should be carried out simultaneously. 
Let us consider two faults fa   and fb , ta   ≤ tb . They are considered to happen simultaneously if 
their localization procedures overlap: tb < ta + la. 
 

 
Figure 13. Example of two simultaneous faults 

 

 Examples with 2 faults 
Let us describe the situation where two faults f1 and f2 are detected at nearly the same time. For 
this, let us take the same network as in example for single fault (t1 = 0, section V) and make the 
instrument I2 detect another fault f2 in following cases: 

 Case A: t2 = 0. f2 happens simultaneously with f1 
 Case B: 0 < t2 ≤ 14: f2 happens during the first shift in the top loop 
 Case C: 14 < t2 ≤ 28: f2 happens during the shift that opens SIBs in the top loop 
 Case D: 28 < t2 ≤ 50: f2 happens during the last shift that localizes the fault in I1 

1) Case A: 
 t = 0: The same as before, but now controller understands that there is also fault 

somewhere in the child segment(s) of SIB2. Takes 14 TTCK 
 t = 14: The same as before, but now controller must also open SIB2. Takes 14 TTCK . 
 t = 28: Now child segments of both SIB1 and SIB2 are included (see Fig. 13), which 

makes scan chain longer. Controller should now scan the flags of all SIBs. This operation 
takes E + 4 ∙ (b1 + 2b2) = 6 + 4 ∙ 6 = 30 [TTCK ] 

 t = 58: Both f1 and f2 are localized  
 l1 = 58, l2 = 58 

 
2) Case B: 

 t = 0: The same as before. Takes 14 TTCK 
 t = 14: The same as before, controller opens SIB1, but now recognizes that there is a fault 

under SIB2. Takes 14 TTCK . 
 t = 28: Now the SIB1 is opened and controller also writes 1 to SIB2 to open it. This 

operation takes E + 4 ∙ (b1 + b2) = 6 + 4 ∙ 4 = 22[TTCK ]. 
 t = 50: f1   is localized and now information from I1 should be read. Since the length of 

registers of I1 and exact amount of read/writes is not known, let us now make a 
simplification  by not opening SIB3, but leaving it in the active  scan chain. SIB2 is now 
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opened and its child segment should be scanned. This operation takes E + 4 ∙ (b1 + 2 ∙ b2) 
= 6 + 4 ∙ 6 = 30[TTCK ] 

 t = 80: f2 is now also localized. 
 l1 = 50, 66 ≤ l2 ≤ 79 

 
3) Case C: 

 t = 0: The same as before. Takes 14 TTCK 
 t = 14: The same as before, controller opens SIB1. Takes 
 14 TTCK . 
 t = 28: Now the SIB1 is opened and controller recognizes 
 that there is a fault somewhere under SIB2. This operation takes E + 4 ∙ (b1 + b2) = 6 + 4 

∙ 4 = 22 [TTCK ]. 
 t = 50: f1   is localized and now information from I1 should be read. Controller now writes 

1 to SIB2. This operation takes 22 TTCK 
 t = 72: SIB2 is now opened and its child segment should be scanned. This operation takes 

E + 4 ∙ (b1 + 2 ∙ b2) = 6 + 4 ∙ 6 = 30 [TTCK ] 
 t = 102: f2 is now also localized. 
 l1 = 50, 74 ≤ l2 ≤ 87 

 
4) Case D: 

 t = 0: The sequence is the same as  for single fault scenario 
 t = 50: f1 is localized, controller makes a shift to read out status of I1 and finds out that 

there is a fault somewhere under SIB2. This operation takes 22 TTCK 
 t = 72: Controller writes 1 to SIB2, while SIB1 is still open. This operation takes 22 TTCK 

. 
 t = 94: SIB2 is now opened and its child segment should be scanned. This operation takes 

E + 4 ∙ (b1 + 2 ∙ b2 ) = 6 + 4 ∙ 6 = 30 [TTCK ] 
 t = 124: f2 is now also localized. 
 l1 = 50, 74 ≤ l2 ≤ 95 
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 General Case 
From the previous examples it can be seen that: 

 Localization time of multiple faults will differ from single fault localization time and it 
will always be higher 

 The main reason for increased localization time is the length of active scan chain 
 The best case for two simultaneous faults is when they are detected at the same time 
 The worst case for two simultaneous faults is when the second fault is detected when the 

path to first fault is already fully open 
Also, although not described in previous cases, the relative position of the instruments that 
detected two simultaneous faults has obvious effect on localization time: while the best case of 
relative position would be instruments under adjacent SIBs, the worst case is when those 
instruments are situated in the opposite ends of the instrumentation network. 
Overall, the worst case of two simultaneous faults localization time would be when the 
instruments that detect them are in totally different branches of instrumentation network and the 
second fault is detected when the first one is already localized. This will add considerable, 
however, constant overhead to each shift cycle of the second fault localization. 

2.6 Section Summary 
In this section we have discussed the details of asynchronous fault detection scheme for IEEE 
1687 instrumentation network. This approach allows for quick detection and localization of faults 
that are indicated by embedded instruments by means of dedicated signals that are propagated 
asynchronously. We describe additional hardware needed for these functions and the impact it 
has on instrumentation network operation. 
We also analyze possible scenarios of interruption by fault event and behavior of the system in 
multiple fault condition. This analysis shows that proposed asynchronous fault detection scheme 
is maintaining adequate status and allowing the system to cope with several faults that may occur 
simultaneously. 
In case of two simultaneous faults, the fault localization time suffers from a penalty, but even in 
the worst case the system still remains adequate and scalable. 
While this section details low-level fault localization and handling procedures, the high-level 
scenarios performed by the Operating System based on information delivered by IM and IJTAG 
instruments are described in deliverable D3.3. 
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3 Hierarchical Design and Test 

3.1 Introduction 
Previous work on hierarchical design and test mandates adding isolation logic for the respective 
core under test [17] [18]. This isolation logic makes it possible to test the functionality of the 
core, independently of the state the surrounding logic is currently in. 
 
The isolation logic is typically placed close to the physical boundary of a core. It must not disturb 
the regular operation of a core. Thus in functional mode, it shall transparently pass I/O signals 
through. In isolation mode, however, it shall capture and/or launch values at its inputs and 
outputs, respectively. Usually the isolation logic or core wrapper isolation is implemented as a 
chain of wrapper cells sometimes referred to as wrapper boundary registers [19]. A chain of 
wrapper cells, called wrapper chain is similar to a regular scan chain. Yet the chain is separated 
from regular (core) scan chains. 
 
Depending on the application scenario, wrapper chains may be implemented differently. One 
aspect influencing the wrapper’s implementation is the type of core to be isolated. The internals 
of cores that are delivered as pre-layouted protected IP, so called hard cores [18], cannot be 
modified. Consequently, in case a core is not already prepared for hierarchical test, wrapper cells 
may only be added at the physical boundary of that core. That is the isolation has to be placed 
between the I/O ports and the core’s logic. This design style typically adopts the IEEE 1500 [19] 
paradigm. Cores that are delivered as RTL or as a gate-level netlist (so called soft or firm cores 
[18]) may be modified when implementing hierarchical test. In particular this means that wrapper 
cells do not necessarily have to be placed at the core’s boundary [20]. In addition to that, we may 
reuse existing flip-flops as wrapper cells to implement the core’s logic isolation. Compared to 
dedicated wrapper cells, these so called shared wrapper cells have several advantages. In 
particular, they do not increase the overall area of the core, and have no detrimental impact on 
timing. 
 
In the following we define general requirements for core wrapper isolation. We describe both 
dedicated and shared wrapper cells, and compare the two types of cells. Using the result of that 
comparison we show an improved wrapper cell. Then we combine this input to define an 
optimized wrapper implementation. It is specifically suitable for in-field test enabling 
independent test of the core while the surround logic may remain in the functional mode of 
operation. Finally we present experimental results on the insertion of this optimized wrapper 
implementation into industrial cores. 
 

3.2 Wrapper Test Modes 
As already mentioned, wrapper chains have to be transparent in the core’s normal mode of 
operation. In addition to that at least two test modes have to be supported: A mode enabling the 
test of the logic situated in between different cores. Typically, that is the glue logic on top-level 
connecting different cores. Furthermore, a mode is needed that allows us to test the core’s 
internal logic independently of the surrounding logic. Conventionally this means that the state of 
the surrounding logic must not have any influence on the test of core’s internals. For in-field test 
applications, however, the surrounding logic may be in functional mode while the core is being 
tested. Consequently, we may want to have an isolation preventing the test of the core’s internals 
from influencing the surrounding logic as well. This may either be implemented as part of the 
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internal test mode or as an extra test mode. This optional mode is often called safe mode. In the 
following we describe the modes of operation that may be supported by a wrapper chain. 
 

3.2.1 Inactive or Functional Mode 
In this mode the wrapper chain is inactive and transparently passes I/O signals through the 
wrapper cells. This is the behavior used in functional mode 
 

3.2.2 Inward-facing Mode – INTEST 
The inward-facing or INTEST mode is required to test the core in isolation of the surrounding 
logic. It is needed to enable hierarchical ATPG, and may also be used for testing a core by 
embedded instrumentation, e.g. LBIST. Furthermore it may also be extended to support in-field 
test (see Section 3.2.4).  
 
In this mode input wrapper chains isolate the inputs going into the core from the surrounding 
logic, see Figure 14. Thus, the input wrapper chains prevent the surrounding logic from 
influencing the state of the core under test (illustrated by  in the figure). Additionally, the input 
wrapper chain allows us to control the core’s inputs directly, independently of the surrounding 
logic. Similarly, in INTEST mode output wrapper chains allow us to observe the core’s 
responses. In summary this mode supports an isolated test of the core’s logic using the wrapper 
chains and the core’s internal scan chains. Any interface logic on both input and output side 
remains untested. 
 

 
Figure 14: INTEST configuration of the core 

 

3.2.3 Outward-facing Mode – EXTEST 
The outward-facing or EXTEST mode is used to test the logic surrounding the core in isolation 
from the core itself. This includes any interface logic of the core, see Figure 15. Typically, this 
mode is required for hierarchical ATPG. 
 
In outward-facing or EXTEST mode the responses of the surrounding logic that drives the inputs 
of the core are observed by the input wrapper chains. The output wrapper chain enables us to 
control the surrounding logic that is driven by the core’s outputs independently of the core’s 
internal logic. Thus, this wrapper chain is isolated from the core’s internal logic (illustrated by  
in the figure). The core-internal logic is not tested in this mode. 
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Figure 15: EXTEST configuration of the core 

 

3.2.4 Safe Mode 
The optional test mode extends the inward-facing test mode (INTEST) by using special wrapper 
cells in the output wrapper chain. These wrapper cells contain additional logic preventing data 
that is being captured in the cell from affecting the surrounding logic (output interface and top-
level). This mode is crucial for in-field test applications in which individual cores are tested in 
isolation while the remaining circuit operates in the functional mode. The safe mode can be 
implemented as part of the regular inward-facing test mode (INTEST) or as a dedicated test 
mode. 
 
Note that traditionally the safe mode applies to the outward-facing test mode (EXTEST). In this 
standard way of implementation data that is being captured by the input wrapper cells is blocked 
such that it does not affect the core’s internal logic. 
 

3.3 Wrapper Cells 
Starting from the wrapper test modes introduced in the previous section, we can identify at least 
three different modes that are to be supported by each wrapper cell. First of all, it shall provide a 
transparent functional data path linking the core with the surrounding logic. Secondly each cell 
shall be able to capture response values from its input, and (optionally) isolate the cell’s output. 
Finally, it shall be possible to drive a user selectable value at the output of the wrapper cell, and 
isolate the input of the wrapper cell. As already mentioned wrapper cells shall have a scan input 
and a scan output such that individual cells may be stitched to together like a scan chain. Through 
this scan chain drive values may be loaded into the wrapper cells, e.g. from a primary input. At 
the same time the scan chain transports observed values that are captured in the wrapper cells to 
e.g. a primary output. Additionally, a wrapper cell shall have minimal impact on timing and 
introduce as little logic (area) overhead as possible. In the following we will introduce both 
dedicated and shared wrapper cells that implement the three test modes. 
 

3.3.1 Dedicated Wrapper Cells 
A dedicated wrapper cell uses an additional flip-flop to provide controllability, observability, and 
shift capabilities. It can transparently pass the functional I/O signal through or can capture values 
at its input and/or launch values at its output. An example from IEEE 1500 standard [19] is 
depicted in Figure 16. The interface to the wrapper consists of five input and two output signals. 
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As can be seen, each dedicated wrapper cell adds one flip-flip and two multiplexers to the core. 
One of these multiplexers is introduced into the functional data path going from “cfi” to “cfo”. 
Consequently, dedicated wrapper cells have negative impact on both area and functional timing.  
 

 
Figure 16: Dedicated wrapper cell 

 

Core Test Input (cti) 
This is the test input to the wrapper cell. If this is the first instance in the wrapper chain it will be 
connected to the source of the test data (e.g. a primary input). Otherwise it is driven by the output 
signal “cto” of the previous wrapper cell in the chain.  

Core Test Output (cto) 
This is the test output of the wrapper cell. If this is the last instance in the wrapper chain it is 
connected to the sink of the test data (e.g. a primary output). Otherwise it drives the input signal 
“cti” of the next wrapper cell in the chain. 

Core Functional Input (cfi) 
For input wrappers, this input is fed from the logic surrounding the core. For output wrappers, 
this input is directly driven by the core’s internal logic. 

Core Functional Output (cfo) 
For input wrappers, this output drives the core’s internal logic. For output wrappers, this output 
drives the logic surrounding the core. 

Wrapper Clock (shift_clk) 
This is usually driven by the test clock available in the core (e.g. “wrp_clock”). It clocks the flip-
flops within the wrapper cell. 

Shift Enable (shift_en) 
This is the scan enable signal for wrapper cells. When the signal is high, the wrapper clock shifts 
data through the “cti” and “cto” scan data pins. When the signal is low, the wrapper clock 
captures the functional input value or holds the current state, depending on the value of the 
“capture_en” signal. The signal “shift_en” is controlled differently depending on the wrapper 
chain the cell is used in (input or output wrapper chain). 
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Capture Enable (capture_en) 
This signal controls the captured data when the wrapper is not shifting. When the signal is low, 
the signal “shift_clk” captures the functional input value. When the signal is high, the signal 
“shift_clk” holds the current state of the wrapper instance. Similarly, it controls the value 
provided at “cfo”. This signal is controlled by a logic created during wrapper insertion. 

Safe-State Function (safe_ctrl) – optional 
Wrapper instances with a safe-state function contain at least one additional input: “safe_ctrl”. 
This signal is controlling a separate multiplexer at the “cfo” output of the wrapper instance to 
drive a static logic value. This value can either be provided by an additional input (e.g. 
“safe_value”) or it can be generated internally. This mode is required to support in-field test. 
 

3.3.2 Shared Wrapper Cells 
A shared wrapper cell replaces an existing flip-flop by a special shared wrapper cell as depicted 
in Figure 17 (see [21]). This type of cell offers the same functionality as the dedicated wrapper 
cell introduced in Section 3.3.1. Compared to the latter type of cell, however, shared wrapper 
cells place the flip-flop into the functional path from “cfi” to “cfo”. 

Figure 17: Shared wrapper cell 

 

3.4 Optimized Wrapper Implementation 
While the shared wrapper cell of Figure 17 partly addresses the area overhead by reusing existing 
flip-flops for the isolation wrapper, there is still the area penalty caused by the two additional test 
multiplexers. In the next sections an optimized wrapper implementation is described which 
further reduces the area overhead by using “normal” scan flip-flops for isolating the core. This 
approach has basically no area or timing impact compared to non-isolated scan test architectures. 
 
In addition the next sections introduce a proposal how to combine the core isolation wrappers 
with on-chip test data compression and LBIST, respectively. Test data compression is typically 
required for reducing test time and tester memory requirements in production test. LBIST, on the 
other hand, enables in-field testing of the core’s logic. 
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3.4.1 Optimized Shared Wrapper Cells 
As described in Section 3.3.2 shared wrapper cells replace existing flip-flops by a special 
wrapper cell. Compared to dedicated wrappers cells as depicted in Figure 16 this avoids area 
overhead by reusing existing flip-flops. To reduce overhead of shared wrapper cells even further, 
we may exploit the fact that the flip-flop will typically be replaced by a regular scan flip-flop. 
Additionally we can drop the support of the state-holding mode that is not required in our 
application scenario. Thus, the only additional change that is necessary affects the scan-enable 
signal of the scan flip-flop. Compared to the wrapper cells of Section 3.3 it has to be controlled 
differently. This will be detailed in the following sections. 
 
Figure 18 maps the signal names introduced in Section 3.3.1 to a regular scan-flip-flop (SDFF) as 
suggested in [19]. Note that since there is no state-holding mode the port “capture_en” can be 
omitted. In most cases this optimized implementation of a shared wrapper cell will have no 
impact on either area or timing, as the original flip-flop would be replaced by a scan flip-flip 
anyway. Only for the rare case in which a non-scan flip-flop is converted into a wrapper cell an 
additional multiplexer is added to the functional data path going from “cfi” to “cfo”. The 
additional area used by the second multiplexer of the shared wrapper cell implementation of 
Figure 17 is avoided. In case the optional safe mode described in Section 3.2.4 is added to a 
wrapper cell, an additional logic is introduced into the functional data path. This is illustrated by 
the gray OR gate depicted in Figure 18. Furthermore, the additional pin “Safe_ctrl” is required to 
enable the safe mode.  
 

 

Figure 18: Optimized shared wrapper cell (optional support for safe mode depicted in gray) 

 

3.4.2 Optimized Inward-facing Mode with Test Data Compression 
Figure 19 shows an optimized architecture for the INTEST mode introduced in Section 3.2.2. 
This implementation being tailored to the optimized wrapper cell introduced in Section 3.4.1 
removes a substantial part of the overhead involved with the wrapper cells introduced in Section 
3.3. Additionally the implementation includes test data compression consisting of two modules 
“Test Decompressor” and “Test Compactor”. 
 
In order to enable the INTEST mode, the control signal “EXTEST_EN” will be set to a constant 
low value. In this mode the input wrapper chain is supposed to isolate the core form the 
surrounding logic. This is implemented by keeping the input wrapper chain in shift mode. 
Consequently, “Scan_EN (I)” is set to a constant high value. The output wrapper chain shall 
capture responses from the core’s functional logic. Thus, its scan enable signal “Scan_EN (O)” is 
operated in sync with the scan enable signal of the core-internal scan chains. Note that both scan 
enable signals are included for illustration purposes only. In a typical implementation there will 
only be one scan enable signal driving going into the wrapped core. Core-internal signals 
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“Scan_EN (I)” and “Scan_EN (O)” will be derived from this scan enable and the setting of 
“EXTEST_EN”.  
 
In this architecture for INTEST, test data compression is applied to both the wrapper chains and 
the core-internal scan chains. Compressed test data is supplied from a test data source via the 
“Channel_in” port(s) to the module “Test Decompressor”. There this data is decompressed, and is 
subsequently supplied to all wrapper chains and the core-internal chains. Responses captured by 
both types of chains are compacted by the “Test Compactor” module, and routed through the 
“Channel_out” port(s) to the test data sink. In production test both source and sink of the test data 
will typically be the ATE. 
 

 
Figure 19: Detailed view of INTEST configuration including test data compression 

 

3.4.3 Optimized Inward-facing Mode with Test Instrumentation 
For in-field test the wrapped core may be supplemented by chip-internal test instrumentation. 
One example for this type of instrumentation is a LBIST module, see Figure 20. This 
implementation is based on the test architecture for the INTEST mode that is introduced in 
Section 3.4.2. Here pseudo random test patterns are generated by the “Pseudo Random Pattern 
Generator” in the upper part of the figure. Depending on the implementation the pattern generator 
may be shared with the “Test Decompressor” of the test compression hardware (see Figure 19). 
The test responses are compressed and analyzed by the “Response Analyzer” module shown at 
the bottom of Figure 20. This could be a MISR creating a signature that is compared to a golden 
reference signature at the end of the test run. Again some logic may be shared with the test data 
compactor. The overall LBIST execution is controlled by “LBIST CTRL”. This block also 
contains registers to configure and control the LBIST operation. These registers are accessible via 
IJTAG. Note that the safe mode capability of the wrapper cells is enabled in the output wrapper 
chain (illustrated by  in the figure). This prevents any test-related activity of the core-internal 
logic from disturbing the surrounding logic. 
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With the addition of the LBIST module the optimized wrapper architecture supports in-field test 
of the core. Due to the core’s wrapper, the LBIST may be executed in isolation from the 
surrounding logic that may continue operating in the functional mode. Furthermore, the IJTAG 
interface enables the integration of the test instrument into an existing system health monitoring 
and error localization infrastructure. 
 

 
Figure 20: Detailed view of INTEST mode with on-chip instrumentation (only relevant pins are shown) 

 

3.4.4 Optimized Outward-facing Mode 
Figure 21 depicts the optimized test architecture introduced in Section 3.4.2 when configured in 
EXTEST mode. This mode is enabled by setting “EXTEST_EN” to a constant high value. In 
EXTEST the input wrapper chain is supposed to capture data from the surrounding (input 
interface) logic. The output wrapper chain, however, shall drive the surrounding (output 
interface) logic, that is it has to remain in shift mode. Compared to INTEST, the signals 
“Scan_EN (I)” and “Scan_EN (O)” swap their roles. Signal “Scan_EN (O)” remains constantly at 
high, while “Scan_EN (I)” is controlled in sync with the scan enable of the surrounding logic. As 
described for the optimized INTEST mode in Section 3.4.2, the control of both scan enable 
signals may be derived from a global scan enable and the setting of “EXTEST_EN”.  
 
In contrast to the INTEST mode the outward-facing test mode does not make use of the core-
internal test data compression. Nevertheless, the wrapper chains may be connected to a test data 
compression module implemented at a higher level of hierarchy (e.g. the top-level). The input 
wrapper chain is observed through the “Scan_OUT (I)”, while the output wrapper chain is 
controlled via “Scan_IN (O)”. Depending on the top-level scan architecture two ports of each 
core may not be needed in this mode: “Scan_IN (I)” and “Scan_OUT (O)”. To reduce top- level 
routing, the port “Scan_IN (I)” may be tied to a constant value, while the port “Scan_OUT (O)” 
can be left open. 
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When designing the test architecture of the INTEST mode we may optimize the number and 
lengths of the wrapper chains and the scan chains locally on core-level. This is not possible for 
the architecture of the EXTEST. Here the number of wrapper chains per core and consequently 
the length of each chain are dependent on the test architecture of the overall design. On top-level 
the wrapper chains of all cores and the scan chains running through the logic situated on top-level 
have to be stitched together. Only if the scan-chains on top-level do not exceed a certain pre-
defined length and are well-balanced, test time targets can be met. To ease scan chain balancing 
on top-level, wrapper chains should be split into several smaller chains. Additionally, input and 
output wrapper cells may be mixed. At the same time, however, routing effort on top-level is 
increased if the number of wrapper chains per core is too large. This trade-off has to be 
considered carefully before deciding on the number of wrapper chains per core. 

 

 
Figure 21: Detailed view of EXTEST configuration 

 
As the core’s internal logic will not be required for EXTEST, it can be abstracted and modelled 
as a so called gray box. This model only contains the logic that is sitting outside of the wrapper 
chains. That is the input interface logic between the input ports and the input wrapper chain(s) 
(including the ports and the wrapper cells), and the output interface logic between the output 
wrapper chain(s) and the ports (including wrapper cells and the ports). All purely combinational 
paths, i.e. connections from input to output through combinational logic only, are also part of the 
gray box. In EXTEST the ATPG tool may use the gray box instead of the core’s full netlist to 
reduce runtime and memory usage. 
 

3.4.5 IJTAG Interface of the Optimized Wrapper 
When looking at a test scenario in which the test data is supplied from outside of the chip (e.g. 
ATE-based production test) IJTAG may help to substantially reduce test setup effort. In 
particular for a circuit containing complex cores and/or an intricate top-level test architecture 
there are numerous core configurations, clocking modes, and other test-related settings. A typical 
production test suite for this type of circuit will have to change these settings frequently. Using 
IJTAG this task becomes much easier and less error prone. For the actual test patterns and test 

Core configured to EXTEST

INPUT
Interface
Logic

OUTPUT
Interface
Logic

Channel_IN

Scan_IN(I)

Functional

Functional

Functional

Scan_OUT(I)

Scan_IN(O)

Functional

Functional

Functional

Channel_OUT

Scan_OUT(O)

CORE
Functional

Logic

Test Decompressor

scan_in

scan_out
TestCompactor

EXTEST_EN
const=1

Scan_EN(I)
Scan_EN(O)
const=1



Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis                              Contents  ●  27 

 
 

responses, however, IJTAG is typically not used. The high bandwidth requirements for this kind 
of data mandate a simple (parallel) pin-level interface. 
 
Also for embedded instrumentation, IJTAG is an ideal solution. This is true for both production 
and in-field test scenarios. An LBIST controller, for example, may have many different settings 
and read-out values: start seed, number of patterns, masking, signatures, etc. This is best 
controlled via IJTAG. 
 
In general a core wrapper isolation implemented using IEEE 1500 is compatible with IEEE 1687 
(see [22]), i.e. it can be modeled using ICL and PDL. This is also true for the optimized wrapper 
implementation introduced in the previous sections. In particular this means that all signals 
required for wrapper configuration and test control are set via IJTAG. This includes the port 
“EXTEST_EN” described in Sections 3.4.2 and 3.4.4. On top of that for INTEST mode there 
may be configuration registers for the clock control and the test data compression module (not 
covered here). Furthermore the LBIST test instrument described in Section 3.4.3 is controlled via 
IJTAG. Thus, this architecture, that combines core wrapper isolation with on-chip test 
instrumentation, becomes a building block for a system health monitoring and error localization 
infrastructure. 
 

3.5 Implementing Hierarchical Design and Test 
For a hierarchical test approach, two test scenarios need to be considered: the top-level test and 
the test of the individual cores. The test of the cores employs the inward-facing mode (INTEST). 
Each test run may either be executed on-chip by embedded instrumentation or the test data may 
be supplied from an external ATE. In the latter case for each core test patterns for INTEST mode 
are generated upfront using ATPG. These core-internal test patterns can be retargeted to the top-
level without being regenerated. This, however, is only possible for cores that are isolated 
properly, and that may be tested independently of the surrounding logic. Similarly, in an in-field 
test scenario, the core-internal test must not disturb the surrounding logic that may be operating 
in the functional mode. The test of the cores has to be scheduled for either sequential or (partly) 
parallel execution. Any interconnect between the cores and the top-level logic that is not part of a 
core is not covered by the core-internal test, and has to be tested separately. This top-level test 
requires the outward-facing mode (EXTEST) mode to be enabled in all involved cores. Again the 
top-level test can be performed by chip-embedded instrumentation or by using pre-generated 
ATPG test patterns. 
 
In the following we will look into several implementation aspects of the core wrapper isolation. 
First of all we will review which ports of a core should not be isolated. Afterwards we will 
discuss the use of shared and dedicated wrapper cells, respectively. Finally we will present some 
experimental results on core wrapper insertion for two industrial cores. 
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3.5.1 Ports Not to be Isolated 
Naturally the ports supplying the wrapper control signals to the core must not be isolated by a 
wrapper cell to give us full control over the wrapper’s behavior. In addition to that further input 
and output ports of a core must not be isolated by a wrapper cell: 

 Port connects to a functional clock 
 Port connects to a test clock 
 Port connects to an asynchronous SET 
 Port connects to an asynchronous RESET 
 Port connects to a scan input 
 Port connects to a scan output 
 Port connects to a wrapper signal (scan input, scan output, and other wrapper control) 
 Port connects to a constant test signal 
 Port is involved in pure combinational feedback path 

 

3.5.2 Shared vs. Dedicated Wrapper Cells 
For the isolation of an input or an output port of a core there exist two solutions: The first option 
is to add a dedicated flip-flop to the port used solely for isolation. Typically, this dedicated 
wrapper cell is inserted automatically by a tool. The second option is to reuse an existing flip-flop 
that is connected to the respective port. This shared wrapper cell reuses an existing functional 
flip-flop. Again identification and modification of these flip-flops is typically done by a tool. 
 
In theory there is no limitation as to where dedicated wrapper cells are inserted. In practice, 
however, it is advisable to place the dedicated wrapper cell as closely to the core’s respective 
input or output port as possible. This minimizes the amount of logic sitting outside of the 
wrapped part of the core allowing the core-internal test to cover the core in its entirety. 
 
Two major problems exist when using dedicated wrapper cells. The first problem applies to 
designs using multiple clock domains. If the port to be isolated is driven by flip-flops residing in 

different clock domains, there is no clear answer as to which clock signal should be driving the 
inserted wrapper cell. This is illustrated in Figure 22 where the input port “Input” that is to be 
isolated is affected by both clocks A and B. Typically in this scenario the clock driving the 
majority of the flip-flops in the vicinity of the port is chosen. 
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Figure 22: Dedicated wrapper cells vs. clock domains 
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The second problem applies to at-speed testing. Consider again the input port “Input” in Figure 
22 that is to be isolated by a dedicated wrapper cell. This port is part of a path going from flip-
flops “A_gen” to “Signal_A”. In the functional mode of operation the inserted dedicated wrapper 
cell is transparent, i.e. the path is operating at speed. In test mode however, the path is interrupted 
by the flip-flop that is located within the wrapper cell (refer to Figure 16). Consequently, the path 
can only be tested in two segments. In the core’s EXTEST mode we cover the segment of the 
path going from “A_gen” to the wrapper cell. In the core’s INTEST mode we cover the segment 
of the path going from the wrapper cell to “Signal_A”. Thus due to the dedicated wrapper cell the 
full path can no longer be tested at-speed. The same problem applies to the path going from 
“B_gen” to “Signal_B”. 
 

 
Figure 23: Criteria for inserting shared wrapper cells 

 
Since shared wrapper cells reuse existing flip-flops these two problems do not apply. For shared 
cells, however, the crucial task is to first identify the best candidate flip-flops (see [20]). 
Typically, two criteria are used to guide the selection of functional flip-flops: 

Depth The number of gate levels that have to be crossed when going from the port to 
be isolated to the first flip-flop, see Figure 23. 

Width The number of flip-flops reached at that level. 
 
In combination the parameters depth and width span the logic cone that may be reached from the 
port in question. This in turn gives an indication on how many flip-flops have to be converted 
into shared cells in order to isolate that logic and on how much logic would be placed outside of 
the isolation wrapper. As already mentioned it is desirable to keep the amount of non-isolated 
logic at a minimum. Yet, also the number of shared wrapper cells should be as low as possible to 
keep wrapper chains short (this translates into shorter test times). 
 
Both shared and dedicated wrapper cells have their pros and cons, see Table 1. Therefore, there 
are three types of isolation strategies: i) use shared functional wrapper cells only, ii) use 
dedicated wrapper cells only, or iii) use “balanced mode” selecting the type of cell on a port-by-
port basis. In any case a tradeoff decision between all three modes has to be made. 
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 Dedicated Cells Shared Cells 
Area and timing overhead One scan flip-flop and at least 

one MUX gate are added for 
each port.
At least one MUX is added in 
the functional path. 

Negligible area/timing 
overhead. 

Wrapper chain length Minimal. Equal to the number 
of I/O ports included in the 
wrapper. 

Chains length is depending on 
the fan-in/-out cones of ports 
and the amount of logic 
between the port and the 
wrapper cell. 

INTEST  
(stuck-at coverage) 

All faults can be tested in the 
core test (no logic exists 
between I/O port and wrapper 
cell). 

Interface logic cannot be 
tested. This can be 
compensated in the EXTEST 
mode. 

EXTEST  
(at-speed coverage) 

Interface logic cannot be 
tested because the path will be 
split by the inserted wrapper 
cell. 

All faults of the interface logic 
can be tested because 
functional paths will not be 
split.  

EXTEST 
(size of the gray box) 

Smaller gray box Bigger gray box 

Multi clock paths Impossible to test. Testability not affected by 
wrapper. 

Table 1: Comparison between dedicated and shared wrapper cells 

 
In summary the use of shared wrapper cells has many advantages and is the method of choice but 
might result in long wrapper chains. In case a port is not timing critical, it may be acceptable to 
insert a dedicated wrapper cell. This may result in a shorter wrapper chain. 
 

3.5.3 Experimental Results 
Core wrapper insertion using the optimized implementation of Section 3.4 was performed for two 
industrial soft cores using a commercial tool for DfT insertion. Industrial core A contains nearly 
150,000 flip-flops; industrial core B contains nearly 70,000 flip-flops. 
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 Dedicated Cells Only Shared Cells 
Only 

Balanced Mode 

Threshold (Width × 
Depth) 

n/a Max × Max Med × Med 

Total FF in wrapper 
chains 

2,789 11,207 5,241 

Number of dedicated 
wrapper cells 

2,786 56 92 

Length of input 
wrapper chain  

1,231 4,395 645 

Length of output 
wrapper chain  

1,558 6,812 4,596 

Table 2: Results of wrapper insertion for industrial core A 

 
The experimental data for cores A and B are summarized in Table 2 and Table 3, respectively. 
Columns two to four show the results for the three isolation strategies as introduced in Section 
3.5.2. When using the strategy “Dedicated Cells Only” no shared wrapper cells are allowed, i.e. 
the thresholds for width and depth are not used. For “Shared Cells Only” all flip-flops on the first 
register level should be included in the wrapper chain. Thus, the logic cone for each port (refer to 
Figure 23) should be as wide as necessary corresponding to both maximal width and depth. 
Finally, in “Balanced mode” we try to restrict the logic cone to a reasonable size, corresponding a 
medium setting for both width and depth. 
 
 Dedicated Cells Only Shared Cells 

Only 
Balanced Mode 

Threshold (Width × 
Depth) 

n/a Max × Max Med × Med 

Total FF in wrapper 
chains 

2,183 17,380 3,633 

Number of dedicated 
wrapper cells 

1,971 167 797 

Length of input 
wrapper chain  

1,275 4,205 2,228 

Length of output 
wrapper chain  

908 13,175 1,405 

Table 3: Results of wrapper insertion for industrial core B 

 
The data in the tables shows that even for a wrapper configuration intended to use only shared 
wrapper cells, there are some dedicated cells inserted. This usually happens for core inputs in 
case the logic cone does not end only at flip-flops. Clock gating cells are a typical example. 
When the clock gate enable signal depends on a core input, a dedicated wrapper cell is required to 
ensure the controllability of the gated clock. 
 
It can also be seen that the “Shared Cells Only” strategy can lead to a significant amount of 
design flip-flops to be part of the isolation wrapper (around 25% for the industrial core B, see 
Table 3). To reduce the wrapper chain lengths it can be beneficial to use at least some dedicated 
cells for the isolation as shown in the “Balanced Mode”. Especially for industrial core A, see 
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Table 2, it can be seen that by adding only 36 dedicated wrapper cells the overall number of 
shared cells can be reduced by 5,966. 

3.6 Section Summary 
In this section the core wrapping requirements in terms of IEEE 1687 was discussed, as well as a 
match to IEEE 1500 and the requirements formed by the project BASTION. The need for the 
addition of so-called wrapper cells (placed around each core) was formulated, and their 
implementation was considered. Finally, a comparison between the implementation solutions was 
made on two industrial designs. 
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4 Solutions to test IJTAG networks 

4.1 Introduction 
 
When a device embeds an IJTAG network, the issue of how to test whether it is affected by 
any hardware defect arises. This issue is clearly of high practical importance, since a defect in 
the network may impair the possibility of correctly accessing the instruments it connects. A 
similar issue is commonly considered when performing a test on a generic Design for 
Testability structure before using it. For example, some works (e.g., [1] [23] [24]) faced the 
issue of testing the test circuitry mandated by the IEEE 1149.1 standard. The authors of [10] 
also propose a method to introduce fault tolerance in such a network.  
Typical IEEE 1687 networks are chains of flip-flops interleaved with special modules (e.g., 
Segment Insertion Bits, or SIBs, and ScanMuxes), allowing to dynamically split the whole 
scan chain into segments that may be connected in series or in parallel, and to support a 
flexible access to the instruments. While the test of possible permanent faults affecting a 
standard scan chain can be easily done by resorting to well-known techniques (e.g., shifting 
into the chain a sequence of alternated 0s and 1s, and checking that the same sequence 
appears at the other extreme of the chain [1] [23] [24]), testing an IEEE 1687 network is 
more complex, as testing must also check whether the network can be properly configured 
and whether it works as expected after the configuration (i.e., whether the expected sub-
network is made accessible), whichever legal configuration we enforce. Thus, each special 
module targeting the network configuration must be also tested.  
Within the BASTION project some efforts have been done to devise an approach to test a 
sub-set of networks compliant with the IEEE 1687 standard with respect to permanent faults. 
This Section describes such an approach. For the most important components of an IEEE 
1687 network (i.e., TDRs, SIBs, and ScanMuxes) we provide techniques for their test, and 
then we describe how to combine them into a single comprehensive test. This test is 
independent of the specific implementation of the network elements, and does not require any 
change in the hardware implementing the network. Once the sequence of operations required 
to test the network is known, the time required by the test can be computed using the methods 
described in [25]. Despite that the proposed strategy does not take into account all the 
possible constructs allowed by the standard, the main problem of testing such networks is 
tackled for the first time and can be easily extended to cover the missing cases.  
Experimental results are reported on a set of representative benchmark cases, which 
practically demonstrate the correctness and feasibility of the above test approach, and provide 
an evaluation about the duration of the test.  

4.2 Related Work 
Testing a regular (non-reconfigurable) scan chain for permanent faults can easily be 
performed by shifting a sequence of 0s and 1s through the scan chain.  A reconfigurable scan 
chain, such as an IEEE 1687 network, is however far more complicated to test. When testing 
an IEEE 1687 network, one must not only test whether the flip-flops composing the TDRs 
can be correctly accessed, but also whether the modules introduced to support its 
reconfiguration (e.g., SIBs, multiplexers and flip-flops controlling them) work correctly. 
In this section we will first briefly overview the key characteristics of an IEEE 1687 network, 
with special focus on the sub-set of structures considered in this work, and then explain why 
their test may turn into a complex task (especially if one wants to minimize the test time). 



Contents  ●  34                                                       Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis  

4.2.1 Overview of IEEE 1687 Networks 
A key feature in IEEE 1687 networks is reconfigurability, i.e., the possibility to switch TDRs on 
and off the accessible scan path. Reconfiguration is done by incorporating programmable 
components into the network structure. One such programmable component is the SIB module 
which allows for bypassing a segment of a network. A segment can be simply one or several 
TDRs or a sub-network consisting of TDRs and other programmable components. Therefore, it is 
possible to create a hierarchical network with the use of SIBs. 

Figure 24(a) shows a simplified schematic of a (possible implementation of a) SIB, which 
comprises a one-bit shift-update register and a two-input scan multiplexer (ScanMux). SIBs are 
programmed by shifting a bit into their S flip-flop and latching that bit into the parallel U latch. If 
the latched bit is 0, the SIB is de-asserted and the scan-path is from the si (ScanIn) terminal, to 
the so (ScanOut) terminal via the S flip-flop, bypassing the segment between the tsi (ToScanIn) 
and fso (FromScanOut) terminals. If, on the other hand, the latched bit is a 1, the SIB is asserted 
and the scan-path includes the segment connected between tsi and fso terminals of the SIB. In 
this section, the symbol shown in Figure 24(b) is used to represent a SIB. 

 
 

0
   1

U
S so

si

fsotsi

(a) Simplified schematic

SIB sosi

fsotsi

(b) Symbol  

Figure 24: Segment Insertion Bit (SIB). 

 
The reconfigurability in IEEE 1687 networks is not limited to the use of SIBs; others ad hoc 
reconfigurable networks can be constructed by the use of shift-update registers and ScanMuxes. 
As an example, consider the network shown in Figure 25(a) in which a two-bit shift-update 
register is used to select among four inputs of a 4-to-1 ScanMux. In a similar way as with SIBs, 
configuration of the ScanMux is performed by shifting the required values into the shift flip-
flops of the control register (i.e., the S flip-flops) and latching the shifted bits into the parallel U 
latches. In the rest of this Section, the symbol shown in Figure 25(b) will be used to represent the 
shift-update register that controls a ScanMux. 
To keep Figure 25 simple, the clock, reset, the control signals (namely, shift, update, and 
capture), and the select signal used to gate the control signals are not shown. To follow the 
examples in this work, it should suffice to assume that only the TDR connected to the selected 
port of a ScanMux receives (i.e., reacts to) the clock and control signals. It should be noted that 
the configuration of the network (i.e., the status of the latched bits) does not change when 
shifting a new vector through the shift cells, but only in the update phase where the shifted 
vector is latched into the U cells. 
To operate an IEEE 1687 network from outside the chip, the TAP as defined by the IEEE 1149.1 
(JTAG) standard can be used. The finite state machine (FSM) in the JTAG circuitry provides the 
control signals needed to configure IEEE 1687 networks and access the instruments through 
them. 
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Figure 25: Construction of ad hoc reconfigurable networks supporting the mutually-exclusive parallel 
access to multiple instruments by the use of ScanMuxes and ScanMux control registers. 

 

4.3 Motivations 
When testing an IEEE 1687 network, one must not only test whether the flip-flops composing 
the TDRs can be correctly accessed, but also whether the configurable modules (e.g., SIBs, 
ScanMuxes and flip-flops controlling them) work correctly in whichever configuration they 
are forced. In order to better clarify the motivations for this work, let us consider a simple 
example, corresponding to a circuit which includes five instruments: the user can access them 
through the TAP port, reading or writing from/to the associated Test Data Registers (TDR1 to 
TDR5). In order to save time when accessing to the instruments, the designer may decide to 
adopt an IEEE 1687 network including three SIBs and one ScanMux, as shown in Figure 26; 
each of these four configuration modules can be configured to allow the access to a given 
subset of TDRs (and the associated instruments). Figure 27 reports the eight possible 
configurations supported by this network, which depend on how the SIBs and the ScanMux 
have been configured. In Figure 27, “A” means asserted, “D” means de-asserted, 0 and 1 
correspond to the two possible positions of the ScanMux, and “-” appears when a module 
belongs to an inaccessible segment. 
When facing the test of an IEEE 1687 network we should check whether any fault affects not 
only flip-flops of TDRs, but also SIBs and ScanMuxes. This means checking whether SIBs 
and ScanMuxes can be properly configured and work accordingly. Moreover, the adopted 
solution should guarantee that the required test time is minimized.  
In order to achieve this goal, the BASTION partners developed an approach in which the test 
is organized in sessions: in each session we first configure the network (so that each SIB and 
each ScanMux is switched into a given position), and then check whether the expected path 
has been inserted between TDI and TDO, i.e., whether the right instruments can be accessed. 
Since the number of possible configurations of a network grows exponentially with the 
number of configurable modules, the problem of identifying a sequence of sessions which 
guarantees that 1) all the configurations modules and TDRs are fully tested, and 2) the total 
test duration is minimized, is not trivial. Coming back to the example of Figure 26, this 
means identifying the sequence of configurations (out of the 8 possible ones) that matches the 
two above goals. 
This section first describes the constraints that must be fulfilled by the sequence of sessions 
to guarantee the full test of each TDR and configuration element, and then describes a 
heuristic algorithm for selecting a sequence of sessions producing a minimal duration test. 
 

4.4 BASTION Contributions 
In this sub-section we describe the approach developed by BASTION partners to test a sub-
set of IEEE 1687 networks for permanent defects. More in details, in this sub-section we 
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describe the testing of TDRs, SIBs and parallel structures, as well as the test time calculation 
and the optimization of the test sequence.  
Testing if such an IEEE 1687 network is affected by permanent defects requires testing two 
different sets of components:  

 the flip-flops composing the TDRs the network makes accessible 
 the modules allowing the network to dynamically reconfigure (e.g., the SIBs and the 

ScanMuxes), which are referred to as configurable modules. 
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Figure 26: Example of 1687 network. 

 
 

 SIB1 SIB2 SIB3 ScanMux Accessed 
TDRs 

C0 D - D - - 
C1 D - A - TDR5 
C2 A D D - TDR1 
C3 A A D 0 TDR1, 

TDR2, 
TDR3 

C4 A A D 1 TDR1, 
TDR2, 
TDR4 

C5 A D A - TDR1, 
TDR5 

C6 A A A 0 TDR1, 
TDR2, 
TDR3,TDR5 

C7 A A A 1 TDR1, 
TDR2, 

TDR4,TDR5 

Figure 27: Set of possible configurations for the network in Figure 26. 
 

Please note that we do not consider here the issue of testing the instruments connected to the 
TDRs, nor the connections between each instrument and the corresponding TDR. This task is 
typically performed resorting to ad hoc solutions which strongly depend on the kind of 
instrument and on possible solutions adopted at the system level (e.g., resorting to a loopback 
connection for test purposes). Therefore, we disregard whether the generic TDR is a Read-
Only, Write-Only, or Read-Write TDR. 
We also assume that the TAP controller works properly. An effective algorithm to detect 
possible permanent faults affecting the TAP controller is described in [27]. 
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4.4.1 Test of the TDRs 
The test of the flip-flops in a TDR can be performed by first picking a TDR, then configuring 
the network such that it is made accessible, and finally applying to the network input a 
sequence of bits able to test it. 
More in details, once the target TDR has been identified, the following procedure performs 
the test:  

 Configure the network so that the target TDR can be accessed 
 Shift in a suitable sequence 
 Check that the same sequence appears on the TDO signal. 
 

The sequence to be used in step 2 depends on the kind of defects to be tested, following the 
techniques described in [1] [23] [24]: for those that can be modeled as stuck-at faults, a 
sequence composed of alternated 0s and 1s is fine. 

4.4.2 Test of the SIBs 
Our goal is to check whether a given SIB works correctly, or it is affected by any permanent 
fault (such as a stuck-at fault). The idea is to first configure the network in such a way that 
the SIB is asserted, checking then whether it works correctly; secondly, the network is 
configured in such a way that the SIB is de-asserted, checking whether it also works correctly 
in this new configuration.  The check of the SIB behavior (to be performed after the first and 
the second configuration) can be performed in two steps. The first step forces the scan path 
from the configuration to a known status by shifting into the network a sequence composed 
of a number of 0s. Since a fault in a configurable module may change the selected path into 
another, the number of 0s shifted in the network in order to be sure that the path is forced to 
all 0s must be equal to the length of the longest path in the network. In the second step, a 
sequence composed of alternated 0s and 1s is shifted into the network. This same sequence 
should appear on the end of the path (i.e., on TDO) after a number of clock cycles equal to 
the path length. If this happens, it means that a path having the expected length exists 
between TDI and TDO; hence, the SIB is working correctly. The procedure is repeated but 
for the second path, where the SIB is de-asserted. 
The test procedure is composed of the following steps: 

1. Configure the network so that a first path is selected, where the SIB is asserted 
2. Shift in a sequence of 0s into the network. The length of the sequence is equal to the 

length of the longest path 
3. Shift in a sequence of alternated 0s and 1s, and check whether the correct sequence 

comes out of the network unchanged and starting at the due time; in this way we 
check that the SIB behavior is the expected one (i.e., the chain includes the 
corresponding segment) 

4. Configure the network so that a second path is selected, where the SIB is de-asserted 
5. Shift in a sequence of 0s into the network. The length of the sequence is equal to the 

length of the longest path  
6. Shift in a suitable sequence of bits in the network, and check whether the correct 

sequence comes out of the network starting at the due time; in this way we check that 
the SIB behavior is the expected one (i.e., the segment corresponding to the SIB is 
bypassed). 

In principle, the above procedure must be repeated once for every SIB. In practice, the test 
can be organized in a number of sessions, each corresponding to a configuration phase, in 
which a given scan path is connected between TDI and TDO, and a test phase, in which we 
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check whether all SIBs in the path work as expected. The set of sessions composing the test 
should be selected so that each SIB is at least once asserted and once de-asserted. In a 
network with SIBs, this constraint also guarantees that all TDRs are accessed, as required by 
the above procedure. Hence, by testing the SIBs we also test the TDRs. 
As an example, let us consider the simple network shown in the left of Figure 28. Let us 
assume that TDR1 is composed of three bits, and TDR2 of four. A possible procedure for 
testing the network could be: 

1. Configure the network so that SIB1 is asserted and SIB2 is de-asserted; hence, only 
TDR1 is accessed; the length of the path is five (three flip-flops for TDR1, one for 
each SIB)  

2. Shift in a sequence of nine 0s (nine is the length of the longest path)  
3. Shift in a sequence composed of alternated 1s and 0s from TDI; the same sequence 

should start appearing on TDO after five clock cycles  
4. Configure the network so that SIB1 is de-asserted and SIB2 is asserted; hence, only 

TDR2 is accessed; the length of the path is six (four flip-flops for TDR2, one for each 
SIB) 

5. Shift in a sequence of nine 0s  
6. Shift in a sequence composed of alternated 1s and 0s from TDI; the same sequence 

should start appearing on TDO after six clock cycles. 
Any fault affecting one of the two SIBs (e.g., forcing it to connect the wrong output to the 
input) can be detected through the above technique by looking at when the alternated 
sequence appears on TDO. 
The reader should note that, due to the hierarchical structure of the generic IEEE 1687 
network, selecting a set of configurations which allows each SIB to be asserted and de-
asserted at least once requires that every subnetwork is accessed at least once. As an example, 
let us consider the network in the right of Figure 28. This network can be configured in six 
possible ways (shown in Figure 29), corresponding to the possible paths between TDI and 
TDO. “A” means asserted, “D” means de-asserted, and “-” appears when a SIB belongs to an 
inaccessible segment. For each configuration the set of accessed TDRs is also shown. A 
possible subset of configurations that fully tests the three SIBs is C1, C4, and C5. Hence, we 
can test all SIBs in the network with only three sessions, each corresponding to one of the 
three identified configurations.  
The reader should also note that the time required by each session depends on the length of 
the TDRs lying along the path it activates; moreover, the time to configure the network so 
that a given path is activated depends on the previous configuration. Hence, the selection of 
the sequence of configurations allowing to test all TDRs and SIBs in a network with 
minimum test duration may turn into a rather complex task. For the purpose of this work we 
adopted a heuristic algorithm to solve this task, which will be described in the next sub-
section.  
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Figure 28: Example network #1 (left) and #2 (right). 

 
 SIB1 SIB2 SIB3 Accessed TDRs 

C0 D - A TDR3 
C1 D - D - 
C2 A A D TDR1 TDR2 
C3 A D D TDR1 
C4 A A A TDR1 TDR2 TDR3 
C5 A D A TDR1 TDR3 

Figure 29: Set of possible configurations for network #2. 
 

4.4.3 Testing the ScanMuxes 
Testing the network also requires checking the correct behavior of structures intended to 
support the mutually-exclusive parallel access to different instruments, following the scheme 
of Figure 25. This means testing both the flip-flops storing the values of the ScanMux control 
bits and the associated multiplexer.  
For this purpose we need first to test the flip-flops. Secondly, we need to test the ScanMux. 
To do so we can exploit the results of [28], where it was demonstrated that a given set of 2n 
input vectors is able to fully test any n-to-1 (i.e., n inputs, and 1 output) multiplexer (no 
matter its implementation) against any static fault.  
The basic idea behind the test algorithm we propose is once again to first configure the 
network so that the ScanMux is switched to a given configuration, thus making a given path 
accessible. Secondly, a sequence of 0s is flushed into the network. Finally, a sequence of 
alternated 0s and 1s in shifted in the path, checking whether it emerges unchanged from TDO 
l clock cycles later, l being the length of the path. The procedure is repeated for every 
possible configuration of the ScanMux. 
In the simple case of a module allowing to access two instruments TDR1 and TDR2 that are 
placed in parallel (as in Figure 30), the test procedure requires the following steps: 

1. Configure the network so that the ScanMux makes TDR1 accessible; this means that a 
given path including TDR1 is introduced between TDI and TDO 

2. Shift in the network a sequence composed of as many 0s, as the length of the longest 
path 

3. Shift into the network a sequence of alternated 0s and 1s, checking that the ScanMux 
behavior is the expected one (i.e., the expected values emerge from TDO at the 
expected time) 
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4. Configure the network so that a new path is selected, in which the ScanMux makes 
TDR2 accessible 

5. Shift in the network a sequence composed of as many 0s, as the length of the longest 
path 

6. Shift in the network a sequence of alternated 0s and 1s, checking that the ScanMux 
behavior is the expected one (i.e., the expected values emerge from TDO at the 
expected time). 
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Figure 30: Example network #3. 

 
In general, if the ScanMux connects m instruments, we will need to configure the network m 
times, each time switching the ScanMux to a different position, shifting in first the sequence 
of all 0s, and then the one of alternated 0s and 1s, and checking that the expected sequence 
emerges on TDO at the expected time. Although the detailed proof cannot be reported here 
for the lack of space, the above procedure guarantees that the input values required to fully 
test a multiplexer (as specified in [28]) are all applied, so that any possible static fault 
affecting the multiplexer is detected by the sequence. 
The reader should note that if TDR1 and TDR2 have the same length, the above solution (nor 
anyone else) does not allow to test the multiplexer, because in this case there will be no way 
to check whether we are accessing the right TDR at any time. 

4.4.4 Overall Test Strategy 
Based on the above observations, the test of an IEEE 1687 network is composed of a number 
of sessions. Each session is composed of two phases: 

 a configuration phase, in which control bits are shifted in to assert and de-assert each 
SIB and to load suitable values into the flip-flops controlling the ScanMuxes, thus 
selecting a path composed of a certain subset of TDRs 

 a test phase, in which a suitable sequence composed of all 0s is first shifted in the 
selected path, followed by a sequence composed of alternated 1s and 0s; the first 
sequence is composed of as many bits, as the length L of the longest path; the second 
sequence is composed of l bits, l being the length of the selected path. While shifting 
in the second sequence, we should observe the values coming out of TDO and 
observe l bits equal to 0. By shifting the path for two more clock cycles we should 
observe a 1 and a 0. If this is the case we can assume that the right path has been 
selected and the TDRs composing it work correctly. 

We denote by tci the duration (in clock cycles) of the configuration phase and by tti the time 
for the test phase for test session i.  
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The configuration time (tci) depends on the previous configuration.  For example, let us 
assume that SIBi belongs to the segment controlled by the SIBj.  If SIBi must be configured 
as asserted in the new configuration, and was not accessible in the previous one (since SIBj 
was de-asserted), we must first configure the network so that SIBi can be accessed (hence, 
SIBj must be asserted), and then access SIBi and configure it as required. Hence, at least two 
vectors must be shifted in for this purpose in the network. In the worst case, to configure a 
network for a given session we will require a number of vectors equal to the maximum depth 
of the network. Each vector requires the time for being shifted in (this time is denoted as SIB 
programming overhead in [25]), plus a few clock cycles (the exact number is implementation 
dependent) to capture it into the flip-flops of the corresponding path (JTAG protocol 
overhead in [25]). 
On the other side, the duration of the test phase (tti) depends on the length l of the path 
selected by the configuration, and on the length L of the longest path in the network. The 
exact duration of the test phase is equal to L+l+2. In fact, for every configuration we need to 

 fill the scan path with all 0s: since in the worst case a fault may turn the path into the 
longest one, this step requires L clock cycles 

 fill the scan path with a sequence of alternated 0s and 1s; this step requires l clock 
cycles 

 shift out the content of the flip-flops in the path, checking when the first two bits 
emerge from TDO: this step requires 2 clock cycles. 

The total duration of the test of a network composed of N sessions is thus given by  
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where Tc is the sum of the configuration times and Tt is the sum of the test times. Each 
session activates a different path connecting TDI and TDO. The selection of the sequence of 
possible paths corresponding to the sessions should be performed in such a way that 

 each TDR is accessed at least once;  
 each SIB is at least once asserted and once de-asserted; 
 each ScanMux assumes each possible configuration. 

Different solutions can be followed for identifying the best sequence out of the total set of 
possible ones. Out of those matching the above constraints, the one requiring the minimal test 
time should be selected. The following sub-section describes a heuristic algorithm for 
selecting an optimized sequence with respect to test time.  

4.4.5 Identification of an Optimized Sequence of Sessions 
We now describe a heuristic method to select an optimized sequence of sessions to test an 
IEEE 1687 network, i.e., one corresponding to a minimized test time.  
We first propose a representation of the network as a directed graph (denoted as Network 
Graph) whose vertices belong to three categories, corresponding to the elements of a generic 
network, and their interconnections: 

 TDR: a vertex of this type has an incoming arc coming from the element feeding the 
TDR, and an outgoing arc going to the element it feeds 

 SIB: a vertex of this type has two incoming arcs, one coming from the element 
feeding the SIB (si) and the other from the end of the segment it controls (fso), and 
two outgoing arcs, one (labeled as A) going to the first element of the segment 
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controlled by the SIB (tsi), and the other (labeled as D) going to the following 
element in the same segment of the SIB (so) 

 ScanMux: a vertex of this type has an incoming arc coming from the element feeding 
the segments that can be accessed in parallel based on the position of the ScanMux, 
and as many outgoing arcs as the number of segments entering the ScanMux, each 
labeled with the corresponding value of the controlling signal of the ScanMux. 

Additionally, a TDI and a TDO vertex exist, feeding the first element in the scan path and fed 
by the last one, respectively. 
To provide the reader with an example, the Network Graph corresponding to the network in 
Figure 26 is reported in Figure 31. 
The method we propose to identify the optimized sequence of sessions is based on 
performing a depth-first visit of the Network Graph starting from TDI. For each SIB vertex, 
first the child labeled with A is visited, and then the other. The order of visit for the children 
of the ScanMux vertices is irrelevant. Each path from TDI to TDO within the Network Graph 
corresponds to a possible configuration (i.e., scan path) within the network.  
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TDR3 TDR4

SIB3
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A D

A

D

A D
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Figure 31: Network Graph for the network of Figure 26. 

 
Each time the algorithm generates a new path (i.e., the TDO vertex is reached), the 
configuration assumed by each configurable module is recorded, and the corresponding 
session is added to the test. As soon as all the configurable modules have taken all the 
required configurations, the algorithm stops. The proposed algorithm guarantees that the 
identified sequence of sessions fully tests all TDRs, SIBs and ScanMuxes, according to the 
rules introduced in the previous sub-sections. 
 

4.5 Experimental Results  
To experimentally verify the correctness of the above algorithms and to evaluate the key 
parameters of the resulting test sessions, we wrote a prototypical tool implementing the 
proposed techniques. The tool is written in C# and amounts to about 700 lines of code. 
We considered as a first set of benchmarks the same IEEE 1687 networks used in [29] and a 
few others generated with the same strategy, starting from the ITC02 benchmark SoCs [31]; 
these networks only contain SIBs. Their characteristics are summarized in Table 4.  
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By running the tool on the selected benchmark networks we got the results reported in Table 
5. For our computations we assumed that the number of clock cycles required for vector 
application (which depends on the specific implementation) is equal to 5. For each network 
we identified the sequence of sessions required to test it according to the algorithm in the 
previous sub-section. In Table 5 we reported the sum of the configuration time (Tc), the test 
time (Tt) and the total time (T) for each network (in terms of number of clock cycles). For 
comparison, we also reported (Column D-first) the total time for a similar algorithm, in 
which for every SIB the child labeled with D is visited first (instead of the one labeled with 
A). The computation time has always been negligible (less than 1s) for all considered 
networks. As the reader can notice, the proposed algorithm is always able to produce a 
shorter test time than the D-first one; the difference is larger when the depth is higher and 
may achieve 15% for some of the considered networks.  
As a second set of benchmarks, we randomly generated a number of networks including both 
SIBs and ScanMuxes.   
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Table 6 reports the characteristics of this new set. We then ran our tool on each network, and 
got the results of Table 7. 
By looking at the results, the reader can note first that the number of sessions identified by 
the heuristic algorithm introduced in the previous sub-section is equal to d+1 (d being the 
depth of the network) for the networks of the first set, while the number of sessions may be 
slightly higher when ScanMuxes exist in the network (as in the second set). Moreover, 
depending on the average length of the TDRs in each segment, the major component of the 
test time may correspond to the Configuration time or the Test time. Also for the second set 
of networks the proposed algorithm always outperforms the D-first one used as a reference, 
showing that a clever choice of the sequence of sessions may reduce (sometimes 
significantly) the configuration time, and thus the total test time. 
 

Table 4: Benchmark networks – first set 
 #SIBs #TDRs Depth 
d695 147 147 1 
p22810 30 28 2 
p34392 22 19 2 
p93791 49 32 3 
a586710 6 5 2 

 

Table 5: Test duration – first set of networks 
 #Sessions Tc 

[#cc] 
Tt  
[#cc] 

Total 
[#cc] 

D-first 
[#cc] 

d695 2 8,533 25,299 33,832 33,979 
p22810 3 31,343 93,575 124,918 125,142 
p34392 3 23,630 70,720 94,350 94,432 
p93791 4 97,972 489,428 587,400 587,505 
a586710 3 41,998 167,935 209,933 209,949 
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Table 6: Benchmark networks – second set 
 #SIBs #MUXs #TDRs Depth 
N100D2 31 37 63 3 
N132D4 39 40 92 5 
N17D3 7 8 11 3 
N49D0 16 18 31 1 
N61D2 11 21 40 2 
N88D8 32 32 56 4 

Table 7: Test duration – second set of networks 
 #Sessions Tc 

[#cc] 
Tt  
[#cc] 

Total 
[#cc] 

D-first 
[#cc] 

N100D2 4 4,336 11,696 16,032 18,525 
N132D4 6 7,781 23,153 30,934 36,150 
N17D3 5 950 2,845 3,795 4,363 
N49D0 2 1,417 3,329 4,746 5,204 
N61D2 4 3,207 7,771 10,978 13,041 
N88D8 5 4,188 12,408 16,596 19,137 

 

4.6 Section Summary 
The increasing adoption of the recent IEEE 1687 standard raises the issue of testing 

whether any permanent fault (e.g., stuck-at) affects the configurable scan chain mandated by 
the standard. Since in this scenario the scan path is configurable, testing an IEEE 1687 
network requires testing also the configurable modules (e.g., SIBs and ScanMuxes) it 
includes. This goal can be achieved by organizing the test in a sequence of sessions, each 
configuring the network so that a specific path lies between TDI and TDO, and then checking 
whether the expected path can be accessed. This is accomplished by first shifting into the 
path a sequence of all 0s, followed by a sequence of alternated 0s and 1s, checking whether 
the same sequence appears on TDO at the end of the all 0s sequence after the expected 
number of clock cycles. In this Section we described a set of rules to be matched by the set of 
sessions in order to guarantee the test of all configuration modules, and then propose a 
method to identify a sequence of configurations, able to detect all possible static faults 
possibly affecting an IEEE 1687 network while minimizing the total test time. Some 
structures allowed by the standard are not covered in this work, and we are working to the 
generalization of the approach to the whole set. Extension to diagnosis is also being 
considered. 
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5 IJTAG Network Optimization and Adaptation, and 
Dynamic Pattern Retargeting 

5.1 Introduction 
 
In the following section, we will review the previous work in this regard, and will elaborate on 
how the BASTION project will enhance the state of the art.  
 
On-chip instruments are used in different stages of an integrated circuit’s life cycle: from 
prototype debug and validation to in-field monitoring and test [31]. At any of these stages, the 
relevant instruments are accessed a number of times in arbitrary combinations with other 
instruments. In order to keep the access time low when there are many instruments, 
reconfigurable networks described by IEEE 1687 [1] can be used. Reconfigurable networks help 
to reduce access time by allowing to include only relevant instruments in the scan-path for each 
access. To minimize access time, especially when there are many accesses to perform, it is 
essential to reconfigure the network such that length of scan-path during each access is kept to a 
minimum. Therefore, many network reconfigurations might be performed. In IEEE 1687, finding 
the right reconfiguration is the task of retargeting algorithms. Briefly, retargeting is the 
translation of human-readable access procedures described at instrument terminals into scan 
vectors applicable at chip boundary. Retargeting process can be seen as a sequence of retargeting 
steps, where each step comprises generating scan vectors for reconfiguration as well as for 
performing the read and write operations on the instruments. The time it takes to generate scan 
vectors in a retargeting step can be used to gauge the efficiency of a retargeting algorithm. The 
effectiveness, on the other hand, can be evaluated by the application time (i.e., the volume) of the 
generated scan vectors. To increase efficiency and effectiveness, it is important to optimize the 
retargeting step. To perform retargeting, initial works have proposed the use of Boolean 
satisfiability problem (SAT) modeling for IEEE 1687 networks [32], as well as retargeting 
heuristics [33]. The work in  [34] improved prior work w.r.t. effectiveness and efficiency via (1) 
using a more compact SAT modeling, (2) limiting the search space while maintaining optimality 
by using bounds on the number of capture-shift-update (CSU) operations, and (3) enabling 
minimized number of calls to the SAT solver. The bound applied in [34] was, however, 
applicable only to a subset of IEEE 1687 networks constructed from repetitions of certain 
structural patterns. In this contribution, we extend [34] by proposing an upper-bound computation 
method applicable to a wider range of IEEE 1687 networks. The method models the relevant 
properties, such as length of shift-registers, of an arbitrary IEEE 1687 network in the form of a 
Finite State Machine (FSM). From the FSM, the upper-bound is computed as the maximum 
number of CSU cycles needed to take the network from any initial configuration to any target 
configuration. In order to ensure the applicability of our approach to large networks, a set of 
reduction techniques are described and evaluated. We have implemented the method and have 
reported experimental results on a number of new and existing benchmarks. The results show that 
our method yields as good upper-bound as previous work [34], but can handle a wide variety of 
IEEE 1687 network designs while being still applicable to large designs. 

5.2 Related Work 
In this subsection, the relevant hardware features of IEEE 1687 are introduced in Subsection 
5.2.1, and the retargeting concept is explained in Subsection 5.2.2.  
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5.2.1 Instrument Access Infrastructure (Network) 
 

A strong feature in IEEE 1687 networks is the possibility of dynamic reconfiguration, which 
allows for reduction of the scan-path that are needed for current access. To enable dynamic 
reconfiguration in IEEE 1687 networks, ScanMux control bits are used, which are shift-
update registers that can be placed anywhere on the scan-path to configure scan multiplexers 
(ScanMux components). Figure 32(a) shows two ScanMux control bits used to configure a 
network of two instruments. To program the control bits to any desired configuration, the 
right values should be placed in their shift cells (denoted by S) during the Shift phase, and 
copied to their parallel latch (denoted by U) during the Update phase. Clearly, for muxes with 
more than two inputs, multiple control bits are used. In the following, we will use the symbol 
in Figure 32(b) to represent a ScanMux controller, irrespective of how many bits it contains.  
IEEE 1687 specifies the JTAG test access port (TAP) [35] as the primary interface between 
the chip boundary and the on-chip network of instruments. Interfacing is performed by 
connecting the IEEE 1687 network as a design-specific test data register (TDR) to the JTAG 
circuitry. Since the TAP FSM is primarily used to operate IEEE 1687 networks, performing 
each cycle of network configuration involves going through the capture, shift, and update 
states in the FSM, which is referred to as a CSU operation [1] (hereinafter CSU). 
 

 
 

(a) A network of two instruments, configured via two ScanMux control bits (b) Symbol 

Figure 32: ScanMux Control bit (SCB) 

 
Figure 33 illustrates a small IEEE 1687 network consisting of three instruments (namely a 
DFT instrument, a sensor, and a debugging feature) and six ScanMux control bits. The 
instruments are interfaced to the scan-path through shift-registers with parallel I/O. To access 
the instruments, the control bits should be programmed to include the required shift-registers 
in the scanpath. For example, to access only the DFT feature, C1 and C2 should be set to logic 
value “1”, and C3 should be set to “0”.  
Reconfiguring the network to the desired configuration might need several CSUs. For 
example, assuming an initial configuration of C1 = … = C6 = 0 in Figure 33, accessing the 
Debug instrument needs two CSUs. In the first CSU, only C1, C2, and C3 are accessible, and 
by setting C2 = 0 and C1 = C3 = 1, C4, C5, and C6 become accessible. In the second CSU, C4, 
C5, and C6 can be configured as C5 = 0 and C4 = C6 = 1, so that the Debug instrument 
becomes accessible. 
In Figure 33, the clock, control signals (namely, capture, shift, and update), and the select 
signals used to gate the control signals are not shown. In this work, it is assumed that only the 
components on the selected input of a mux get their select signal asserted. The select signal 
for C1 is asserted when the TDR corresponding to this IEEE 1687 network is selected, i.e., C1 
is always accessible when working with this network. 

TDI

Instrument 1 Instrument 2

S

U

S

U

TDO

C
out

si so

 



Contents  ●  48                                                       Report on methods for IJTAG network adaptation and  

optimization for error detection and diagnosis  

 

5.2.2 Description Languages and Retargeting 
IEEE 1687 introduces two description languages: Instrument Connectivity Language (ICL) 
and Procedural Description Language (PDL). ICL is used to describe the network, i.e., how 
the instruments are connected to the TAP. PDL is used to describe the operation of 
instruments at their terminals. PDL commands allow to perform read/write operations on 
instrument shift registers and control bits, as well as to wait for an instrument (such as a BIST 
engine) to finish its operation. Using the ICL description of a network, a retargeting tool 
translates PDL scripts into scan vectors that configure the network and transport the required 
data between the TAP and the instruments. Retargeting tools relieve engineers from dealing 
with network configuration (i.e., directly writing PDL to configure ScanMux control bits). For 
example, assuming that the goal is to read the value from the sensor instrument in Figure 33, 
the PDL developer might simply use a write command to activate the sensor, a wait command 
to wait for the sensor to capture the value, and a read command to read the captured value out. 
It is then the task of the retargeting tool to generate (1) a scan vector to configure C1, C2, and 
C3, (2) a vector to configure C4, C5, and C6, (3) a vector to write to the enable bit in the 
sensor’s shift-register, (4) a wait cycle of enough length, and finally (5) a vector to scan the 
captured value out. 
In its basic form, a PDL script is a sequence of iApply groups. In each iApply group, there are 
a number of read and write operations to the registers in the network, which take effect upon 
encountering an iApply command. Translating an iApply group into scan vectors can be seen 
as a retargeting step. More specifically, a retargeting step is to generate a number of scan 
vectors to (1) change the configuration of the network from its current state to a target 
configuration in which the specified registers are accessible, and (2) to perform the read/write 
operation. Each vector is then applied to the network through a CSU operation. The complete 
retargeting flow for the PDL script comprises a number of such retargeting steps. 
 
 
  

 
 

Figure 33: An IEEE 1687 network with three on-chip instruments 
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5.3 State-of-the-art in 1687 Retargeting 
 
For complex IEEE 1687 networks and especially for long PDL scripts, it becomes desirable to 
both speedup the retargeting process and to generate scan vectors which are optimal with 
respect to the application time. To achieve these goals, a first measure would then be to 
optimize the retargeting step for both run-time efficiency and effectiveness of the generated 
vectors. There have been a number of works addressing retargeting for an IEEE 1687 network 
[32], [33], [3], [36], [37], [3], [38]. So far, only [32], [33], [34]  have addressed efficiency or 
effectiveness in retargeting. What distinguishes [7] from the other works is addressing the 
efficiency of retargeting when applying interactive PDL (PDL Level-1, which supports 
programming language constructs such as conditions and loops) with the help of hardware 
acceleration. The only works that have so far addressed efficiency and effectiveness for a 
basic retargeting step are [32], [33], [34], which are discussed in this section. 
 
Verification and pattern generation (retargeting) for reconfigurable scan networks were 
presented in [32]. The work in [32] models general reconfigurable scan networks using a 
structural SAT model which captures any arbitrary configuration of the network. In a typical 
retargeting step, several configuration cycles should be performed to take the network from an 
initial configuration to a target configuration (in which the shift registers of the required 
instruments become part of the active TDI to TDO scan-path). Therefore, to capture all the 
configuration cycles, the SAT model is unrolled over a number of time frames. Each of the 
time frames corresponds to an atomic CSU. 
That is, each individual clock cycle spent on shifting input data (or performing capture and 
update operations) is not considered to be a separate configuration step, rather the whole cycle 
of capturing, shifting, and updating is seen as one step. The state of each bit (inside shift-
registers and ScanMux controllers) in each time frame is then used to form a scan vector that 
should be shifted in and applied (by going through the update phase) for the transition from a 
frame to the next one. A sequence of such scan vectors is what a retargeting tool computes for 
taking the circuit from its current configuration to a target configuration. Using the above-
mentioned scheme requires the algorithm to receive as input the number of times it should 
unroll the model (i.e., the number of allowed CSUs). The choice of the number of CSUs has a 
crucial impact on the resulting solution (i.e., the generated scan vectors). If the allowed 
number of CSUs is too small, the target configuration might be reachable from the current 
configuration (i.e., no feasible solution). Moreover, given that some solutions might be better 
than the others w.r.t. access time (in terms of test clock cycles), a too small value for the 
number of CSUs might exclude those better solutions from the search space. Therefore, 
finding the upper-bound on the number of CSUs is essential for effective retargeting (i.e., 
generating scan vectors which are optimal w.r.t. access time). On the other hand, if the 
number of allowed CSUs is too large, the generated model becomes unnecessarily large 
resulting in decreased runtime efficiency, yet with no guarantee on optimality. The work in 
[32] does not present an upper-bound derivation method for the number of required time 
frames and assumes that the user specifies a maximum allowable number of frames. 
Moreover, the generated scan vectors are not optimal regarding instrument access time. To 
address these issues, [33] presents an upper-bound for the number of time frames. The 
calculation of upper-bound on the number of frames, as presented in [33] can be explained as 
follows. The total access time is formulated as t ൌ 2݊ ∙ ∑ ௡ܮ

௜ୀ଴ ௜, where ݊ is the number of 
frames, 2 represents the number of clocks spent on applying the stimuli and capturing the 
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responses for each frame, and ܮ௜ represents the length of the scan-path for frame ݅. The upper-
bound for ݊, denoted by nbound, is presented as 
 

nbound < [Cyclesn/2], (1) 
 
where Cyclesn is the minimum access time achievable with n frames. According to the work in 
[33], finding the global minimum is an iterative process in which after finding an initial 
solution, the bound is calculated and iteratively lowered as we find solutions with smaller 
access times (i.e., smaller than Cyclesn which was originally found). 
 
Given that in real-life circuits, the access time might be in the order of thousands of clock 
cycles, the bound calculated using Equation (1) will not be helpful in practice. The reason is 
that, as discussed in [33], finding the optimal solution is NP-hard, hence requiring heavy 
computations to search the solution space, which is limited by the upper-bound on the number 
of frames. If this upper-bound is very high (that is, hundreds or even thousands of frames), the 
time that it takes to find the optimal solution will be very long. Therefore, the authors of [33] 
propose a heuristic for retargeting, which initially searches for the minimum number of CSUs 
required to get a solution, and from that point continues the search for a better solution by 
allowing a limited number of extra CSUs. There are two drawbacks with the heuristic 
proposed in [33], both negatively impacting the run-time efficiency. Firstly, searching for the 
minimum number of required frames involves multiple calls to the SAT solver, each with an 
incremented number of allowed CSUs. Secondly, allowing extra CSUs after an initial solution 
found (hoping to reach a local minimum) might be unnecessary if the solution already found 
is the globally minimum solution. The work in [34] demonstrated the possibility to calculate 
the upper-bound for a given network via structural analysis. The analysis in [34] is only 
applicable to a particular class of IEEE 1687 networks referred to as MUX-based in [32] [33]. 
The analysis performed in [34] leverages the repetition of a certain structural patterns in the 
same hierarchical level as well as across multiple hierarchical levels. This makes the 
application of such analysis very limited as in general a network might be any arbitrary 
connection of components. 
 

5.4 BASTION Contributions 
In this section, the contributions of the BASTION project regarding 1687 retargeting. In this 
work, we detail an upper-bound computation method, which is applicable to arbitrarily 
designed IEEE 1687 networks (as contrasted with [34]), and results in a bound low enough 
for real-life retargeting applications. 
 

5.4.1 Motivational Example 
In retargeting, a solution with minimum number of CSUs is not necessarily the optimal 
solution w.r.t. the number of clock cycles, as is shown in this section with the help of an 
example. It is also shown that the bound calculated by using Equation (1) can be large even 
for a very small example network. Moreover, it is discussed how length of instrument shift-
registers affect the number of CSUs needed for obtaining the optimal solution (i.e., the upper-
bound). It should be noted that the upper-bound analysis in [34] is not applicable to the 
example in this section, as it does not contain the structural patterns required by [34]. 
Figure 34 shows a network of five instruments. Lengths of instrument shift-registers in this 
network are as shown in  
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Table 8 for a number of instances we will consider. Assume that initially all control bits are 
set to zero, and that we aim to access instrument I4. Accessing I4 can be done by setting C0 to 
“01”. This, however, will not necessarily lead to minimum access time for I4 since 
instruments I2 and I3 are then on the scan-path to I4. Therefore, it might be better to first 
switch I2 and I3 off the scanpath before setting C0 to “01”. The reason for saying “might be” is 
that in this example, I0 is always on the scan-path and for each access to the network, dummy 
bits should be shifted through it. If length of I0 is comparable to the length of the shift-
registers for I2 and I3, its contribution to overhead cancels out the benefit from switching I2 
and I3 off the scan-path. To see how the length of shift-registers affect the search process, in 
the following, we will examine three instances (denoted by A, B, and C in  
Table 8) of this problem more closely, where each instance differs from the others only in 
length of shift-registers. 
 

 
 

Table 8: Shift-registers’ length for the instruments in Figure 34 

 Length of instrument shift-registers 
I0 I1 I2 I3 I4 I5 

Instance A 20 50 100 20 20 5 
Instance B 20 50 70 20 20 5 
Instance C 50 50 100 20 20 5 
Numbers in boldface denote where the instances differ. 

 

Instance A 
The lengths of shift-registers for this instance are reported in the corresponding row in Table 8. 
Assuming that initially all control bits are set to zero and the goal is to perform a read/write 
operation on I4, we calculate the access time for different configuration alternatives of the 
network. First, we consider the case where the only configuration performed is setting C0 to “01”. 
Here, two CSUs are needed and access time is calculated as the sum of number of clock cycles 
needed to (1) configure C0 in the first CSU and (2) perform one read/write on I4 in the second 
CSU. The number of clock cycles for the first CSU is 1 (for C3) + 2 (for C0 which is a two-bit 
register) + 20 (for I0) + 2 (to perform the update and capture operations). The number of clock 
cycles for the second CSU is 160 (for instruments I2, I3, I4, and I0) + 2 (for C0) + 2 (for the update 
and capture operations). In total, it takes 189 clock cycles to perform these two CSUs (marked on 

 
 

Figure 34: An example reconfigurable network used in the discussion in Section 5.4.1. 
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the plot shown in Figure 35). Alternatively, since C3 is initially on the scan-path, it can also be set 
to ‘1’ in the first CSU. In this case, I3 will not be on the scan-path in the second CSU and it thus 
takes 169 clock cycles in total to perform the two CSUs (also marked in Figure 35). 

 
The two alternatives discussed above used two CSUs to access I4. That is, if we limit the 
retargeting tool to unroll the model twice, the pseudo-Boolean optimization explores the 
above solutions and picks the one with the lowest access time, i.e., the one with 169 clock 
cycles. In the following, we explore alternative configurations with more than two CSUs. 
 
If instead of switching C0 to “01”, we set it first to “10”, we gain access to C2 and can switch I2 
off the scan-path before performing the read/write operation on I4. In this case, we use three 
CSUs and the access time is calculated as 149 clock cycles in total. If we allow the retargeting 
algorithm to use three CSUs, all the solutions marked with two and three CSUs on the plot are 
explored and the minimum which is 149 will be chosen. 
 
If we switch I1 off the scan-path before configuring C2, access time might be further reduced. In 
this case, four CSUs are required in total and the access time is calculated as 124 clock cycles. 
The plot in Figure 35 shows access time for other solutions obtainable by using four CSUs, as 
well.  
 
For this example, allowing further increase in CSUs will not yield lower access time, but will 
result in growingly complex models that lower the efficiency of the retargeting algorithm. In this 
regard, for this instance of the problem, the bound calculation in [33](see Equation (1)) calculates 
the bound on the number of CSUs as [169/2] = 85. Since there are five control bits, unrolling the 
model 85 times would result in a model with 25×85 decision variables, which should be compared 
to 25×4 variables when the model is unrolled only four times. 
 
 
  

 
Figure 35. Access time vs. number of allowed CSUs for Instance A. 
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Instance B 
Figure 36 shows how the solution space would look like if the length of shift-register for I2 was 
70 instead of 100. It is interesting to see that access time does not decrease when three CSUs are 
allowed but decreases when four CSUs are allowed. This entails that a heuristic searching the 
solution space by incrementing the bound on CSUs gets stuck at a local minimum. If, however, 
the search algorithm is aware of a bound on the number of CSUs, it can do enough unrollings of 
the model and let the pseudo-Boolean optimization find the minimal access time (as well as the 
right number of CSUs). 

Instance C 
Figure 39 shows how the solution space would look like if the length of shift-register for I0 was 
50 instead of 20. In this case, the overhead caused by shifting dummy bits through the shift-
register for I0, cancels out any potential benefit from using more CSUs used for removing I2 and 
I3 from the scan-path to I4. It is important to note that in this example, if the aim was to access I2 
instead of I4, the optimal solution would be obtained by using a different number of CSUs. The 
same can be said for other starting configurations (i.e., other than all control bits set to zero). In 
this work, however, our aim is to find an upper-bound on the number of CSUs which enables 
reaching the optimal solution for any retargeting step, regardless of the starting configuration and 
the set of instruments to be accessed. Therefore, in the following section, we propose a method 
which computes the upper-bound on the number of CSUs as the maximum number of CSUs 
needed to take the network from any initial configuration to any target configuration. Note that 
the retargeting algorithm should unroll the model one extra time to account for the actual 
read/write operation. 
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Figure 36: Access time vs. number of allowed CSUs for Instance B. 
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5.4.2 Upper-Bound Computation Core (UCC) 
As was mentioned earlier, the aim of this work is to provide a method for computation of an 
upper-bound on the number of CSUs for a given network. The upper-bound helps in the 
retargeting process by shrinking the solution space without removing the optimal solution from it. 
In this section, we explain our generalized Upper-bound Computation Core (UCC) and discuss 
how its output can be used for optimal retargeting. 
 

 The Core: UCC 
UCC consists of two steps: (1) modeling the network with an FSM, and (2) computation of the 
upper-bound. In the following subsections, each of these steps is detailed. We will use the 
example network in Figure 37 to describe UCC. 

 

 
 

Figure 37: Example network used to describe UCC (5.4.2) 
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Figure 38: FSM showing the transitions for the network in Figure 37. Labels beside each 
arrowhead represent the number of clock cycles needed to perform each transition. 
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1) Modeling with an FSM: The network in Figure 37 has three one-bit mux controllers C0–
C2 and thus eight possible configurations. The FSM in Figure 38 models the network in 
Figure 37, where each state (encoded as the bit sequence C2C1C0) represents one of the 
eight configurations, and each edge models a transition between two states. Transitions 
which are from a state to itself are not considered in the model. The labels ݈௜ beside 
transition arrowheads represent the number of clock cycles needed to perform the 
transition. The required number of clock cycles is calculated as the sum of length (in 
number of flip-flops) of components on the active scan-path (namely, shift-registers and 
control bits) plus the number of clock cycles needed to perform capture and update 
operations. Table 9 lists the components that are active in each of the states. For example, 
݈଴ which corresponds to state 000 is calculated as sum of the length of components I2, C1, 
C0, and I1, plus two clock cycles for capture and update operations. It is worth noting that 
not all transitions are bidirectional, and that length of a transition is not necessarily equal 
to the length of the transition in the opposite direction. 
 

2) Computing the Upper-Bound: The FSM in Figure 38 can be used to calculate the number 
of CSUs needed to transition from each of the states to any other state. The number of 
CSUs is equal to the number of transitions between two states. There might be multiple 
paths for transitioning between a pair of states. For example, both paths marked with P1 
and P2 on the FSM in Figure 38 can be taken to change the state from 000 to 011, where 

 

Figure 39: Access time vs. number of allowed CSUs for Instance C. 
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Table 9: pPaths corresponding to each state 

Sate  Active components 
000 I2, C1, C0, I1 
001 C0, I1 
010 I2, C1, C0, I1 
011 I3, C2, C0, I1 
100 I2, C1, C0, I1 
101 C0, I1 
110 I2, C1, C0, I1 
111 I4, C2, C0, I1 
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P1 takes ݈଴ clock cycles and P2 takes ݈଴ ൅ ݈ଶ clock cycles. We are, however, only 
interested in the number of transitions for the path that uses fewer clock cycles (which is 
not necessarily the path with the fewer number of transitions). Therefore, if we derive the 
shortest path between any two states s1 and s2, and compute the number of transitions 
(a.k.a. number of hops) needed to achieve that shortest path, we will know how many 
CSUs are needed for the transition from s1 to s2. The upper-bound, i.e., the number of 
CSUs which allows to take the network from any state to any state with the smallest 
number of clock cycles, can then be calculated as the maximum among the number of 
hops corresponding to each pairwise shortest path. Assuming a length of 20 flip-flops for 
instrument shift-registers I1–I4, Table 10 presents the number of transitions 
corresponding to the shortest path between each pair of states in the FSM (Figure 38), 
where the first column lists the source states and the first row lists the target states. Based 
on Table 10, the upper-bound on the number of CSUs is found to be four. 

 Optimal Retargeting for Small Networks 
The pairwise shortest paths information obtained as described in Section 5.4.2.1 can be used to 
directly generate the optimal scan vectors (w.r.t. test clock cycles) needed for retargeting. That is, 
instead of using the upper-bound to unroll an ILP model and solving the resulting pseudo-
Boolean optimization, one can use the shortest paths information to find what configuration steps 
should be taken for taking a network from its current configuration to a target configuration. 
Since in many target configurations a superset of the desired instruments might be accessible, an 
approach merely based on the shortest paths information should choose the smallest among the 
shortest paths from current configuration to all those target configurations. Moreover, the length 
of the scan-path for those configurations should also be taken into account. The reason, as was 
discussed in Section 5.4.1, is that the actual goal in retargeting is performing read/write 
operations on the instruments. Therefore, for optimal retargeting, not only the transition time 
between states should be taken into account, but the time it takes to perform (at least) one 
read/write should also be considered.  
 

Table 10: Number of transitions (hops) corresponding to the pairwise shortest paths among the states in 
Figure 38 

 
This method of retargeting is, however, only applicable to small networks for which the pairwise 
shortest paths can be computed efficiently. For large networks, the computation time and memory 
requirements make the use of this method inefficient. 
 

 Pessimism in the UCC Results 
There are two types of transitions that might increase the upper-bound unnecessarily. The first 
types are transitions that do not change the set of active components, such as transition from state 
001 to state 101. The second type are transitions that do change the set of active components, but 

State 000 001 010 011 100 101 110 111 
000 0 1 1 1 3 3 2 2 
001 1 0 2 2 4 4 3 3 
010 1 1 0 1 3 3 2 2 
011 2 2 1 0 2 2 1 1 
100 3 3 2 2 0 1 1 1 
101 4 4 3 3 1 0 2 2 
110 3 3 2 2 1 1 0 1 
111 2 2 1 1 2 2 1 0 
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the new set is achievable via other transitions with smaller number of CSUs and less than or 
equal number of clock cycles. For example, states 000 and 100 activate the same set of 
components, but it takes fewer clock cycles to go from 001 to 000 than from 001 to 100. These 
two transition types make the computed upper-bound slightly pessimistic.  
 
Removal of such pessimism from the UCC results should be done with care otherwise the 
optimal solution to retargeting might be removed from the search space. As the aim of the current 
work is to provide guarantees for optimal retargeting we leave the pessimism removal for future 
work. 

5.4.3 Handling large networks 
The method we described in Section 5.4.2 is not directly applicable to large networks as the 
number of states in the FSM model grows exponentially w.r.t. the number of control bits. In this 
section, we describe three techniques (referred to as reduction here) which can help in handling 
large networks. Due to the lack of space, we only detail the implementation of the decomposition 
technique. We conclude this section by explaining how these reduction techniques are used in a 
complete upper-bound computation flow. 

 Reduction Through Decomposition 

 
Figure 40 shows a network consisting of N segments S1–SN. Each of these segments is connected 
to the rest of the network exclusively via a scan-in/scan-out pair. In this work, any such segment 
is referred to as an isolated segment. In the network in Figure 40, a CSU applied to any of these 
N segments is also applied to the other N-1 segments at the same time. The reason is that the 
serial data goes through all the segments and the control signals are applied to (the currently 
active path) in each of them at the same time. Therefore, the segment requiring maximum number 
of CSUs determines the upper-bound. That is, the technique described in Section 5.4.2 can be 
applied to each segment Si individually to compute the upper-bound for that segment (denoted as 
݊௕,௜), and the upper-bound for the whole network can be calculated as ݉ܽݔ௜ୀଵ

ே ݊௕,௜. Through 
decomposition, the worst-case complexity of upperbound computation for the original network is 
reduced to that of upper-bound computation for the segment containing the highest number of 
control bits. 
 

5.4.3.1.1 Impact of Decomposition on Upper-Bound 
The upper-bound computed via decomposition might be slightly higher than what would be 
computed if UCC was directly applied to the original network (and therefore, higher than what is 
actually needed for optimal retargeting). The reason can be explained by referring to the 
motivational example network in Figure 34, which can be seen as combination of two isolated 
segments: s1 containing instrument I0, and s2 containing the rest of components. We observed for 
Instance C of that example that an increase in the length of I0 (from 20 to 50) caused a decrease in 
the number of CSUs needed for optimal access to I4 (from 4 to 2). Seen the other way around, 
going from Instance C to Instance A, which decreases the length of I0, causes an increase in the 
number of CSUs needed for optimal retargeting. The same effect is present in decomposition as it 

 
Figure 40: A network consisting of N isolated segments. 
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removes other segments from each other’s scan-path. This increased number of required CSUs 
calculated for each isolated segment, might make the upper-bound computed by the use of 
decomposition slightly pessimistic. 
 

5.4.3.1.2 Performing Decomposition 
We will now use the example network in Figure 41(a) to explain how to distinguish isolated 
segments. In this figure, the network components belonging to different isolated segments are 
marked with colored areas. For more clarity, each of the three isolated segments is also marked 
with a number. Compared to the conceptual illustration of isolated segments presented in Figure 
40, in which it is clear where on the scan-path an isolated segment begins and ends, it is less 
straightforward to identify all isolated segments in the network in Figure 41(a). Given the 
exponential complexity of the presented UCC technique w.r.t. number of control bits, it is crucial 
to identify more (and consequently smaller) isolated segments in a given network.  
 
In the following, a two-step procedure for identification of isolated segments is presented. In the 
first step, we identify network segments connected to each other in series on the scanpath 

(hereinafter candidate segments). In the second step, based on the control dependencies between 
these candidate segments, we group them to form isolated segments. 

 
 (a) Example network 

 
 (b) Corresponding directed graph with control signals denoted by dashed edges 

 

 
 (c) Corresponding directed graph without control signals (scan-path-only graph) 

 
 (d) Corresponding undirected graph after removing output edges of all vertices on the chain of idoms 

Figure 41: Decomposition example 
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a) Step 1: The graph in Figure 41(b) models the network in Figure 41(a), where the control 
signals are represented by dashed lines. In identification of candidate segments, we use 
the concept of graph dominators. In a directed graph, a vertex v1 dominates vertex v2 if 
all the paths going through v2 pass first through v1. For example, in Figure 41(b), vertex 
SI dominates all vertices in the network. However, SI is only immediate dominator (called 
idom) to I5 and M7. There are efficient algorithms to find idoms for vertices in a graph 
[39]. Dominators help to identify where on the scan-path a candidate segment starts and 
ends. For example, C7 marks where isolated segment 1 finishes and isolated segment 2 
begins on the scan-path. If, however, we apply the concept of dominators directly to the 
complete network graph in Figure 41(b), we fail to identify segment 3 as an isolated 
segment. Therefore, we instead apply the graph dominators algorithm to a scan-path only 
copy of the graph (in which control signals are removed) shown in Figure 41(c). Based on 
the results, we create a chain of idoms for the scan-path-only graph by going from the 
scan-out (SO) towards the scan-in (SI). The chain will be as SI → M7 → C7 → M5 → C5 
→ M4 → C4 → M3 → M1 → C1 → SO, which reads as SO is immediately dominated by 
C1, which is in turn immediately dominated by M1, and so on. The vertices on this chain 
mark entry and exit points of candidate segments. 
 

b) Step 2: The key to grouping candidate segments into isolated segments is detecting 
control dependencies between those candidate segments. That is, if there is a control 
signal connecting two candidate segments, those segments should be grouped and 
analyzed as one segment. To detect such dependencies, we use a copy of the network 
graph in which the output edges of all vertices on the chain of idoms are removed, as 
shown in Figure 41(d). Moreover, this graph is converted into an undirected graph, as the 
aim is to find connected network components irrespective of the order they appear on the 
scanpath. To identify which of the candidate segments should be grouped together, we use 
the concept of connected components in graph theory. A connected component in an 
undirected graph is a set of vertices in which any two vertices are connected. It should be 
noted that the a “graph component” is a set of vertices, and in our problem maps to an 
isolated segment, and not to a “network component”. After applying the connected 
components algorithm, the isolated segments are identified as marked with the colored 
areas in Figure 41(d). The algorithm also identifies SI and SO as isolated segments, which 
we ignore. 

 
In this example, there were no instruments in the chain of dominators, as there was no instrument 
directly on the scan-path between scan-in vertex SI and scan-out vertex SO. When there are 
instruments on the chain, they can be ignored, because if we form separate isolated segments for 
them, the upper-bound for that segment is zero (simply because there are no control bits in such 
an isolated segment). 

 

 
 

 
 

Figure 42: Example structures for the “lookup” 
technique Type I 

Figure 43: Example structures for the “lookup” 
technique Type II 
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 Reduction Through “Lookup” 
Another technique for handling upper-bound computation for large networks is to recognize 
structures for which we know how to calculate the upper-bound. As an example, consider the 
structure shown in Figure 42. Here, the assumption is that each of the segments S1–SN is isolated 
(in the sense defined in Section 5.4.3.1). The first point to note is that in any retargeting step, only 
one of the inputs to mux M can be active. That is, only one of the segments S1–SN should be 
configured, and therefore, it suffices to consider only the segment which requires the largest 
number of CSUs. For the structure shown in Figure 42, the upper-bound for the whole structure 
can be computed as 1 ൅	݉ܽݔ௜ୀଵ

ே ݊௕,ଵ , where ݊௕,௜ is the upper-bound computed for segment Si, 
and 1 represents the CSU needed to configure mux M itself. Another example is the structure 
shown in Figure 43, for which the upper-bound for the whole structure is the upper-bound for 
segment S plus two [34]. 

 
  

 
Figure 44: An example rewriting technique 
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Figure 45: The two variants of p34392 benchmark used in [32] 
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 Reduction Through Rewriting  
The idea in rewriting is to create a network which is equivalent to the original network w.r.t. the 
upper-bound on the number of CSUs, but can be handled by the above-mentioned decomposition 
techniques. An example of rewriting is presented in Figure 44 where the network to the left is 
rewritten by duplicating control bit C0 along with its associated mux. The resulting network (to 
the right) can then be reduced by using the technique in Section 5.4.3.1, as each of the segments 
marked by S1 and S2 are isolated. Note that although the functionality of the rewritten network is 
different from the original network, the upper-bounds of both networks are equal. 
 

 The Complete Upper-Bound Computation Flow 
In the following, we describe our complete upper-bound computation flow, which is based on the 
use of UCC (described in Section 5.4.2) and the reduction techniques described earlier in this 
section. Initially, the rewriting method is used to create a new network that has the same upper-
bound as the original network. The computation of the upper-bound starts by applying 
decomposition, which distinguishes one or more isolated segments. The lookup technique is then 
applied to each of these segments. If the lookup does not recognize any known structures, UCC is 
performed on the segment. However, if the lookup recognizes a structure, it calls the 
decomposition technique on the isolated segments it has identified. In other words, the upper-
bound computation consists of a number of mutual calls between the decomposition and lookup 
methods. When an isolated segment is not recognized by the lookup function, UCC is applied to 
it. The upper-bound computed for each segment is then used to compute the upper-bound for the 
whole network by using the formulas described for each of the reduction techniques. 
 

5.4.4 Experiments 
The described analysis and reduction techniques for computing the upper-bound for IEEE 1687 
networks have been applied to a set of representative benchmarks which consists of three groups 
of networks. The first group contains networks which are constructed manually such that they are 
not decomposable by the methods described in Section 5.4.3 (see Figure 46). Here, the proposed 
upper-bound computation core (i.e., UCC) has to be applied on the complete network. The 
second and third groups are introduced in [32], and their networks are based on ITC’02 [30] 
benchmarks. In the second group, the networks are implemented by using Segment Insertion Bit 
(SIB) modules. As an example of such SIB-based implementation, Figure 45(a) illustrates the 
RTL network structure for the benchmark p34392. In the third group, the networks are 
implemented by using a daisy-chained architecture, referred to as MUX-based in [33] (see Figure 
45(b)). Additionally, we report the results for the network shown in Figure 41(a), which was used 
to explain the decomposition technique. For all benchmarks, the length of instrument shift-
registers is assumed to be 20 flip-flops.  
 
The results obtained by evaluating the techniques proposed in this paper are summarized in Table 
11. The first two columns of the table list the names and the total number of control bits for each 
benchmark network. The third column reports the maximum number of control bits required to 
model indecomposable sections within the network. This information is important since the 
number of control bits significantly impacts the run-time of UCC. It can be observed that for 
those benchmarks tailored to be indecomposable, namely, N1–N5, the proposed reduction 
techniques do not succeed to reduce the number of control bits. In contrast, the number of control 
bits is reduced for the network in Figure 41(a) from seven to five, which can be explained by the 
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decomposition of that network into three isolated segments the largest of which contains five 
control bits (Figure 41(a)). On the other hand, if the reductions are successfully applied, such as 
for the set of SIB-based and MUX-based benchmarks, the generation of an FSM and the 
application of UCC can be completely omitted. The reason is that for networks in the second and 
the third groups, the reduction techniques decompose the networks into a number of isolated 
segments each containing only one instrument shift register. As was mentioned in Section 
5.4.3.1, the upper-bound for an isolated segment containing only instrument shift-registers is 
zero—hence no need for applying UCC.  
 
The computed upper-bounds are listed in column four. The computed upper-bound denotes the 
maximum number of CSUs needed to reconfigure the network. In order to perform the actual 

read/write operation an additional CSU is required (see Section 5.4.1). In comparison to the 
upper-bound computation proposed in [34], which could only be applied to MUX-based 
benchmarks, the new method generates identical results while being applicable to a wide variety 
of IEEE 1687 network designs. The upper-bound values computed by the approach in [34] are 
reported in column five.  
 
The described reduction techniques, such as rewriting, decomposition, and lookup, are evaluated 
in the columns six to eight. The reported run-times are the total sum over all the application cases 
of each of these techniques for each of the benchmarks. For the first set of benchmarks the run-
time of the reduction techniques is negligible. Applying the reduction techniques to the largest 
among SIB-based and MUX-based benchmarks (i.e., p93791) requires up to more than a total of 
10 minutes of run-time. As was mentioned earlier in this section, there is no UCC run-time 
required for the benchmarks in the second and third groups.  
 

 

 
Figure 46: Five networks that cannot be decomposed by the methods mentioned in Section 5.4.3 
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The run-time for generating the FSM after reduction is listed in column nine. As was explained in 
Section 5.4.2.1, to compute the upper-bound from the generated FSM, the shortest path between 
each pair of states should be computed. To do so, we evaluated two well-known shortest path 
computation algorithms, namely, Dijkstra and Floyd-Warshall. The Dijkstra algorithm finds the 
shortest path between a given source state and all target states, and is therefore run once for each 
state in the FSM. The run-time reported for Dijkstra algorithm in column 10, is the sum of the 
run-times for each source state. The Floyd-Warshall algorithm is, on the other hand, an all-pairs 
shortest paths algorithm and finds the shortest path between each pair of states in the FSM in one 
run. The run-time for the Floyd-Warshall algorithm is reported in column 11. The observation 
from our experiments is that the Dijkstra algorithm performed especially well on large FSMs 
(namely, for benchmarks N3–N5), whereas the alternative Floyd-Warshall algorithm required 
slightly less runtime on small FSMs. In general, the Floyd-Warshall algorithm has higher 
complexity (compared to running Dijkstra once for each source state) when the FSM is a sparse 
graph. Both algorithms delivered the same results. 
 

Table 11: Experimental Results 

Benchmark Number 
of 
control 
bits 

Largest 
number 
of bits 
seen by 
UCC 

Upper-bound Reduction run-time in milliseconds UCC run-time in milliseconds 

This 
work 

[34] Rewriting Decomposition Lookup FSM 
generation 

Computation 
(Dijkstra) 

Computation 
(Floyd-
Warshall) 

The following networks are presented in the current work: 

Figure 41(a) 7  5  5  -  1.0  1.8  3.3  0.4  0.5  0.0  
N1  6  6  5  -  0.7  0.7  1.1  1.0  1.7  0.2  

N2  7  7  12  -  1.0  0.6  1.1  1.6  3.7  1.0 

N3  11  11  8  -  0.8  0.7  2.5  44.2  643.2  2277.3  

N4  12  12  7  -  1.2  0.7  0.0  122.3  4931.0  39548.5 

N5  15  15  11  -  1.2  0.7  1.2  1799.1  529376.0  16730000.0 

The following are SIB-based networks from [32]: 

a586710 39 0 3 - 3.1 56.7 185.5 0 0 0 
d281  58  0  2  -  2.6  105.3  380.1  0  0  0 

d695  167  0  2  -  8.0  998.1  3554.6  0  0  0  

f2126  40  0  2  -  1.7  52.9  174.9  0  0  0 

g1023  79  0  2  -  3.8  213.5  730.9  0  0  0  

h953  54  0  2  -  3.9  104.3  353.7  0  0  0  

p22810  282  0  3  -  20.3  3330.7  12535.4  0  0  0 

p34392  122  0  3  -  5.3  478.8  1673.1  0  0  0  

p93791  620  0  3  -  64.0  21743.3  89488.7  0  0  0  

q12710  25  0  2  -  1.7  26.2  85.7  0  0  0  

t512505  159  0  2  -  6.9  822.3  2873.8  0  0  0  

u226  49  0  2  -  2.0  70.3  237.2  0  0  0 

The following are MUX-based networks from [32]: 

a586710  47  0  6  6  7.5  95.1  402.3  0  0  0  
d281  67  0  4  4  10.3  216.0  935.2  0  0  0 
d695  178  0  4  4  39.0  2094.6  10068.8  0  0  0  
f2126  45  0  4  4  4.8  96.3  407.5  0  0  0 
g1023  94  0  4  4  15.8  401.9  1752.3  0  0  0  
h953  63  0  4  4  8.1  187.3  818.6  0  0  0  
p22810  311  0  6  6  84.8  7371.7  38070.4  0  0  0 
p34392  142  0  6  6  42.9  991.0  4471.3  0  0  0  
p93791  653  0  6  6  226.4  55051.0  312816.0 0  0  0  
q12710  30  0  4  4  6.0  44.9  183.8  0  0  0  
t512505  191  0  4  4  53.3  1802.3  8534.1  0  0  0  
u226  59  0  4  4  8.2  138.6  613.7  0  0  0 
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5.4.5 Future Work 
As was mentioned in Sections 5.4.2.3 and 5.4.3.1.1, there might be cases where the computed 
upper-bound is pessimistic. That is, the computed value is higher than what is actually needed for 
optimal retargeting. These cases should be investigated and addressed in our upper-bound 
computation method. Additionally, the proposed upper-bound computation method can be further 
developed to recognize more structures for lookup and rewriting. Finally, in computing the 
upper-bound in this work, we made no assumptions on the initial and the target configurations. 
The benefit of this relaxation is that the upper-bound computation needs to be done only once at 
the beginning of the retargeting process. The resulting upper-bound can then be used for all 
retargeting steps in that retargeting process. On the other hand, if the initial and target 
configurations are considered in the computation of the upper-bound, the computation should be 
performed once for each retargeting step. In this case, the result will be a tighter bound tailored to 
that step, which increases the retargeting efficiency. Therefore, the trade-off between (1) saving 
time by running the upper-bound computation once at the beginning of the retargeting process, 
and (2) saving time by faster retargeting steps should be investigated. 
 

5.5 Section Summary 
For the problem of optimal retargeting for IEEE 1687 networks, the shrinking of the solution 
space is highly important in order to ensure efficient generation of the shortest scan vectors. This 
can be done by providing bounds on how many capture-shift-update operations have to be 
considered in the retargeting process. To provide such bounds, we proposed in this work a 
method for the computation of upper-bound on the number of capture-shift-update operations. In 
comparison with prior work, the proposed method uses a number of techniques that make it 
applicable to a range of complex and large IEEE 1687 networks. By applying the approach to a 
set of benchmarks, it is shown that the method is able to efficiently provide tight bounds for 
complex and large benchmark networks. 
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6 Conclusions  
 
This report concludes the BASTION activities regarding the task T3.2, which focuses on error 
detection and diagnosis in IJTAG networks. The presented contributions provide solutions to 
support several related issues in error detection and diagnosis. The contribution described in 
Section 3 proposes new methods to connect different blocks of complex designs in a hierarchical 
manner in order to enable effective and efficient testing while applying reconfigurable scan 
networks. 
Additionally the contribution in Section 2 extends previously described contributions to 
efficiently propagate errors through IJTAG networks. The presented contribution provides 
details of the hardware implementation of the infrastructure in particular focusing on the 
implementation of the instrument manager that essentially performs online dynamic retargeting 
on regular hierarchical IJTAG networks. The remaining two contributions focus on generating 
and minimizing test patterns to test the IJTAG network as well as retargeting other test pattern in 
order to ensure efficiency and effectiveness of the resulting test pattern.  
 
In the following, the discussed contributions are mapped onto the KPIs formulated in the DoW 
document. 
KPI1: Improvement of the efficiency of aging fault detection and relaxation by at least 30%.  
The efficiency in the context of aging fault detection and relaxation can be seen as a combination 
of the following factors:  

a) ability to effectively predict accumulation of aging effects in a circuit (adequacy of 
checkers and sensors in terms of early detection of aging effects); 

b) ability to effectively prevent accumulation of aging effects in a circuit (adequacy of 
proposed rejuvenation and mitigation techniques); 

c) ability to quickly detect intermittent faults in aged modules of the circuit (speed of fault 
detection and localization); 

d) ability to quickly isolate faults and prevent error propagation in the aged system (speed of 
recovery from a fault); 

e) HW overhead introduced by the instrumentation and data collection infrastructure; 
f) minimizing circuit performance impact caused by the instrumentation and data collection 

infrastructure. 
This deliverable specifically addresses items c) through f), while items a) and b) are considered in 
D3.3. The contribution of this deliverable to item c) and d) in terms of fast alarming of the OS 
about fault detection is given in Section 2.5. Section 5 is further contributing here by providing 
optimization frameworks for IJTAG network design and retargeting. Fault isolation (item d)) is 
also addressed in Section 3. Item e) is covered by KPI6 (see below) and addressed in Sections 2 
and 3. Item f) is achieved due to the fact that BASTION approach is relying on reuse of test 
infrastructure (IJTAG networks), which is not interfering with the system’s normal functions.  
 
KPI6: Linear complexity with respect to the size of chip of the major monitoring and handling 
parameters.  
In BASTION, the Fault Management strategy relies on IEEE 1687 reconfigurable scan networks 
(RSN) and IJTAG-compliant embedded instrumentation (checkers, monitors, sensors, etc.) as 
described in Section 2. Arranging instruments in balanced tree-like RSNs allows keeping HW 
overhead linear with respect to the number of instruments, while fault localization time would 
follow a logarithmic (better than linear) trend. Assuming that in a multi-core system, the number 
of instruments in a core would be rather constant, the HW overhead caused by the instruments 
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and RSNs is also linear with respect to the size of the chip. The additional relative overhead of 
adding the Instrument Manager (FSM), one per chip is better than linear. The contributions in the 
area of test generation and retargeting support this KPI by efficiently using given test 
infrastructures and by providing test patterns which are minimized with respect to the test length.   
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