
g

FP7-ICT-2013-11-619871

BASTION

Board and SoC Test Instrumentation for Ageing and No Failure Found

Instrument: Collaborative Project

Thematic Priority: Information and Communication Technologies

Report on methods for IJTAG network adaptation and optimization for error
detection and diagnosis (Deliverable D3.2)

Due date of deliverable: June 30, 2016
Ready for submission date: January 4, 2017

Start date of project: January 1, 2014 Duration: 40 months

Organisation name of lead contractor for this deliverable: Hochschule Hamm-Lippstadt
University of Applied Sciences

Revision 1.3

Project co-funded by the European Commission within the Seventh Framework
Programme (2014-2016)
Dissemination Level
PU Public 
PP Restricted to other programme participants

(including the Commission Services)


RE Restricted to a group specified by the
consortium (including the Commission
Services)



CO Confidential, only for members of the
consortium (including the Commission
Services)



Notices ● ii Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

Notices

For more information, please contact Prof. Dr. Krenz-Baath, e-mail: rene.krenz-
baath@hshl.de

This document is intended to fulfil the contractual obligations of the BASTION
project concerning deliverable D3.2 described in contract 619871.

© Copyright BASTION 2017. All rights reserved.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Summary ● iii

Table of Revisions
Version Date Description and

reason
Author Affected

sections
0.1 May 22, 2016 Initial document

created
R. Krenz-Baath All

0.2 September 02,
2016

Added HSHL
contribution

R. Krenz-Baath Section 5

0.3 September 12,
2016

Added all submitted
contributions

R. Krenz-Baath all

0.4 September 17,
2016,
September 27,
2016

Added IFAG
contributions Merged
and updated
contributions

P. Engelke,
C. Laudert,
R. Krenz-Baath

Section 2.5.1.2,
all

0.5 September 27,
2016

Reviewed
contributions added
introduction

R. Krenz-Baath Section 1

0.6 October 12,
2016

Section 2
considerably
extended

A. Jutman Section 2

0.7 October 16,
2016

Major Review,
extended
introduction,
added conclusions

R. Krenz-Baath all

0.9 November 14,
2016

Updated Section
2.5.1.2

P. Engelke Section 2.5.1.2

0.9a November 15,
2016

Updated Section 2 K. Shibin Section 2

1.0 December 23,
2016

Final Review R. Krenz-Baath all

1.1 December 23,
2016

Added “Summary”
to Section 3

C. Laudert Section 3

1.1a December 28,
2016

Preparing for
submission

R. Krenz-Baath,
A. Jutman

General parts

1.2 December 30,
2016

Update of KPIs A. Jutman Conclusions

1.3 January 4, 2016 Update of KPIs A. Jutman Conclusions

Notices ● iv Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

Author, Beneficiary
René Krenz-Baath, HSHL
Erik Larsson, ULUND
Farrokh Zadegan, ULUND
Artur Jutman, TL
Sergei Devadze, TL
Konstantin Shibin, TL
Piet Engelke, IFAG
Carsten Laudert, IFAG
Matteo Sonza Reorda, PDT

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Summary ● v

Executive Summary

This document presents BASTION contributions in the area IJTAG network for error
detection and diagnosis. In the following for BASTION contributions are discussed in
detail. The first contribution focuses on efficient error propagation through IJTAG
networks. Secondly aspects and contributions with respect to hierarchical testing using
IJTAG networks. The next contribution provides solutions for testing IJTAG networks.
After that a contribution to compute upper-bounds in the context of dynamic retargeting
techniques is presented. Finally, conclusions are provided, including the discussion on
KPIs.

Notices ● vi Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

List of Abbreviations

AFPN
ATPG
BIST
CPU
CSU
DfT
DoW
DRC
ECC
FP7
FM
FMI
FSM
ICL
IEEE
IJTAG

ILP
IM
IP
IST
ITRS
JTAG
LBIST
LSIB
MBIST
MUX
PN
NFF
OAT
OS
PCB
PDL
RM
RSN
RTL
SAT
SCB
SI
SIB
SO
SoC
TAP
TDI
TDO
TDR
UCC

Asynchronous Flag Propagation Network
Automatic Test Pattern Generation
Build Inside Test
Central Processing Unit
Capture-Shift-Update Cycle
Design for Testability
Description of Work
Design Rule Check
Error-Correction Code
European Union’s 7th Framework Programme
Fault Management
Fault Management Infrastructure
Finite State Machine
Instrument Connectivity Language
Institute of Electrical and Electronics Engineers
Internal JTAG, a short name for IEEE 1687 standard and
infrastructure collectively
Integer Linear Programming
Instrument Manager
Intellectual Property
Information Society Technologies
International Technology Roadmap for Semiconductors
Joint Test Action Group
Logic BIST
Locking Segment Insertion Bits
Memory BIST
Multiplexer
Perfect Network
No Fault Found, also No Failure Found
Overall Access Time
Operating System
Printed Circuit Board
Procedural Description Language
Resource Manager
Reconfigurable Scan Network
Register-Transfer-Level
Boolean Satisfiability
ScanMux Control Bit
primary Scan Input
Segment Insertion Bit
primary Scan Output
System-on-Chip
Test Access Point
Test Data Input
Test Data Output
Test Data Register
Upper-bound Computation Core

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Summary ● vii

URL

Uniform Resource Locator

Table of Contents

Table of Revisions ... iii
Author, Beneficiary... iv
Executive Summary ... v
List of Abbreviations .. vi
Table of Contents .. iv
1 Introduction .. 2

1.1 The Structure of the Report ... 2
2 Fault Detection, Localization, and Propagation through IJTAG Networks 3

2.1 Introduction ... 3
2.2 Related Work ... 3
2.3 BASTION Contributions... 3

2.3.1 Instrument Manager ... 3
2.3.2 Operation of IM ... 4
2.3.3 Execution of instrument access commands from FM .. 5
2.3.4 Autonomous fault localization ... 5
2.3.5 Hardware implementation of Instrument Manager .. 5
2.3.6 IM-FM interface... 6
2.3.7 Implementation of SIB with AFPN support .. 7
2.3.8 Requirements for modified SIB ... 7

2.4 Handling External Instrument Access Requests (from FM/SW) .. 8
2.4.1 IJTAG Network Map ROM Structure ... 10
2.4.2 IJTAG Network Status RAM Structure ... 10
2.4.3 Instrument Manager’s FSM Part that handles Access Requests 10

2.5 FMI Operation during Fault Detection .. 11
2.5.1 Fault Localization and Diagnosis... 11

 Fault Detection ... 12
 Fault Localization ... 13

2.5.2 Interruption of Ongoing Access in Event of Fault ... 13
 Dynamic Retargeting .. 14
 Instrument Network Reset .. 14

2.5.3 Multiple Fault Scenario.. 14
 Multiple Simultaneous Faults... 15
 Examples with 2 faults ... 15
 General Case .. 17

2.6 Section Summary .. 17
3 Hierarchical Design and Test ... 18

3.1 Introduction ... 18
3.2 Wrapper Test Modes ... 18

3.2.1 Inactive or Functional Mode .. 19
3.2.2 Inward-facing Mode – INTEST ... 19
3.2.3 Outward-facing Mode – EXTEST ... 19
3.2.4 Safe Mode .. 20

3.3 Wrapper Cells .. 20
3.3.1 Dedicated Wrapper Cells ... 20
3.3.2 Shared Wrapper Cells .. 22

3.4 Optimized Wrapper Implementation ... 22
3.4.1 Optimized Shared Wrapper Cells .. 23

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Summary ● v

3.4.2 Optimized Inward-facing Mode with Test Data Compression 23
3.4.3 Optimized Inward-facing Mode with Test Instrumentation .. 24
3.4.4 Optimized Outward-facing Mode .. 25
3.4.5 IJTAG Interface of the Optimized Wrapper .. 26

3.5 Implementing Hierarchical Design and Test ... 27
3.5.1 Ports Not to be Isolated .. 28
3.5.2 Shared vs. Dedicated Wrapper Cells ... 28
3.5.3 Experimental Results ... 30

3.6 Section Summary .. 32
4 Solutions to test IJTAG networks .. 33

4.1 Introduction ... 33
4.2 Related Work ... 33

4.2.1 Overview of IEEE 1687 Networks .. 34
4.3 Motivations.. 35
4.4 BASTION Contributions... 35

4.4.1 Test of the TDRs .. 37
4.4.2 Test of the SIBs .. 37
4.4.3 Testing the ScanMuxes .. 39
4.4.4 Overall Test Strategy ... 40
4.4.5 Identification of an Optimized Sequence of Sessions .. 41

4.5 Experimental Results... 42
4.6 Section Summary .. 45

5 IJTAG Network Optimization and Adaptation, and Dynamic Pattern Retargeting 46
5.1 Introduction ... 46
5.2 Related Work ... 46

5.2.1 Instrument Access Infrastructure (Network) ... 47
5.2.2 Description Languages and Retargeting .. 48

5.3 State-of-the-art in 1687 Retargeting .. 49
5.4 BASTION Contributions... 50

5.4.1 Motivational Example .. 50
5.4.2 Upper-Bound Computation Core (UCC) ... 54

 The Core: UCC... 54
 Optimal Retargeting for Small Networks ... 56
 Pessimism in the UCC Results ... 56

5.4.3 Handling large networks .. 57
 Reduction Through Decomposition ... 57

5.4.4 Experiments ... 61
5.4.5 Future Work ... 64

5.5 Section Summary .. 64
6 Conclusions .. 65
7 Bibliography .. 67

Contents ● 2 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

1 Introduction

In this deliverable, results are reported of the research performed by BASTION partners in the
area IJTAG network for error detection and diagnosis. It summarizes and concludes work
performed in T3.2 “IJTAG network for error detection and diagnosis”. The contributions are
described in separate sections.

The first contribution proposes an extension to IJTAG for system health-monitoring and Fault
Management (FM), which has been introduced in BASTON D2.3. Furthermore, issues such as
Instrument synchronization, calibration as well as Health Map composition and respective fault
classification scheme have been discussed in D2.3 and D3.1. Based on the earlier reported results
this deliverable discusses implementation details of the respective hardware.

The next deliverable focuses on the application of reconfigurable scan networks for hierarchical
design and test. In particular general requirements for core wrapper isolation are discussed and
initial experimental results are presented.

The third contribution in this deliverable discusses aspects of testing IJTAG networks. The
described contribution proposes a method to generate sequences of tests which incrementally
tests components of SIB-based IJTAG networks. The authors describe in detail the test of SIBs,
ScanMuxes and TDRs.

Optimal retargeting of PDL instructions has been discussed in D2.3. The final contribution extends
the optimal retargeting by generalizing the computation of the upper-bound of time frames which
needs to be considered during the retargeting process. Previously this upper-bound could only be
determined for specific structures in IJTAG networks. By applying the new approach, the upper-
bound can be determined for large IJTAG networks independent of structural properties.
Furthermore, this new concept of modelling IJTAG networks enables future works on verification
and validation of such structures.

1.1 The Structure of the Report
This report is structured as follows. Sections 2,3,4,5 contain the descriptions of the contributions in
the areas error propagation, hierarchical test and design, test of IJTAG networks and test pattern
retargeting, respectively. This report is concluded in Section 6.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 3

2 Fault Detection, Localization, and Propagation
through IJTAG Networks

2.1 Introduction
Rapid emergence of embedded instrumentation as an industrial paradigm and adoption of
respective IEEE 1687 standard [1] by key players of semiconductor industry opens up new
horizons in developing efficient test, debug and health monitoring frameworks. The IEEE Std
1687 also shortly called IJTAG has been initially started as an initiative to standardize access to
on-chip embedded instrumentation, like monitors, sensors and checkers as well as DFT (Design-
for-Testability) infrastructure, various BIST (Built-In Self-Test) and trace data collection
solutions for system and software debug [2]. The IJTAG concept embraces also the paradigm of
Reconfigurable Scan Networks (RSN) [3] and has become a very attractive industrial solution for
both scan-based manufacturing test and system debug [2], [3], [4], [5].

2.2 Related Work
Expected large-scale adoption of IEEE 1687 standard and respective infrastructure by chip
vendors created an important opportunity to reuse IJTAG in the field. An extension to IJTAG for
system health-monitoring and Fault Management (FM) has been proposed in [5] and [6] and
further elaborated in [7], [8], [9], [10], [11], [12].
Recent works focusing on implementation challenges of on-chip IJTAG retargeting engines [13]
and on-the-fly retargeting framework [14] also consider instrumentation reuse in the field. Reli-
ability and fault tolerance of IJTAG networks during online FM operation has been detailed in
[15].

2.3 BASTION Contributions
An architectural extension to IJTAG for system health-monitoring and Fault Management (FM)
has been presented in BASTION D2.3. Instrument synchronization, calibration and triggering
approaches have been introduced in D2.1. The Health Map composition together with respective
fault classification scheme, and initial fault handling scenario have been proposed in D3.1. In this
deliverable we present details on hardware implementation with main focus made on Instrument
Manager (IM).

2.3.1 Instrument Manager
Instrument manager (IM) is a part of the Fault Management Infrastructure (FMI) and is
implemented as a hardware block which role is to connect the hardware and software parts of the
FMI, as shown in Figure 1. On one side, it is connected to IEEE 1687 IJTAG network as a
controller and on the other side it is accessed as a peripheral to the CPU through the FM bus
which can be either specialized separate fault-tolerant bus or a normal system bus. Basic
commands from FM are write and read requests to particular instruments in the IJTAG network.
The interface between IM and FM works on the basis of register (equivalent to instrument in this
context) addresses. FM issues a command which contains the register address with data, and IM
is responsible to open the access to the target register through the hierarchy of IJTAG network
and subsequently write/read the data. The address is a custom interpretation of the instrument’s
position inside the IJTAG network. A table of addresses is constructed from a network
description (ICL) before runtime and is available to both FM and IM. FM uses it to look up the

Contents ● 4 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

address of the required instrument from its logical position (e.g. CPU1.FPU.BIST has and

address 35). IM has the network map ROM connected directly to the FSM from which it can find
out the way to access a register with particular address.
IM is a hardware module which is responsible for the communication with the instruments
through the IJTAG network. Whenever FM needs to access the instruments to get the diagnostic
information, it gives a read/write command to IM which in turn opens the path to the instrument
through the hierarchical IJTAG network and performs the requested operation. Besides
instrument access, IM is responsible for reacting to the fault flags set by the instruments and
propagated as an asynchronous interrupt signal. IM automatically opens the path to the
instrument which raised the fault flag and provides the information about its location to FM or
directly to the health map. However, IM can only provide coarse fault location information in this
manner and FM should start the diagnostic procedure to find out the fine-grained fault location
information and update the health and resource maps.

2.3.2 Operation of IM
IM has two main modes of operation:
 Execution of instrument access commands from IM;

Figure 1. Detailed view of the fault management architecture

Figure 2. Simplified FSM state diagram of IM

IDLE

Instrument access
from RM

Traverse network
and read/write

registers

Read out FC
flag values

Requested
register reached

F flag was
raised by AFPN

Instrument which has set F
flag was reached

Open SIBs
with F flag set

Send low
priority IRQ

Send low
priority IRQ

Latch address
and data

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 5

 Autonomous fault localization.

When IM is not in either of these modes, it is idle. IM operates as an FSM, the state diagram is
shown in Figure 2.

2.3.3 Execution of instrument access commands from FM
In this mode, IM is receiving commands from the software (FM) about performing an
operation with IJTAG network. FM can instruct IM to do one of the following operations:
 Read value of TDR of an instrument;

 Write value of TDR of an instrument;

 Open path to TDR of an instrument;

 Update the X bit – used to mask/unmask the flags on a SIB (see details below);

 Close all SIBs – used to restore the initial idle value of the network.

Since in most cases there are many instruments in the IJTAG network, the instrument-related
operations need an indication about which instrument is targeted. FM communicates this by
means of setting the Instrument Address (IA) in the command register of IM. This address is
connected to the position of the instrument in the IJTAG chain and is only used in
communication between FM and IM.

2.3.4 Autonomous fault localization
This mode is invoked only when IM is idle and the Asynchronous Flag Propagation Network
(AFPN) signals an uncorrected fault condition (F=1, C=0). Apart from issuing the interrupt to
notify the upper layers of the system, IM can autonomously start executing the fault
localization procedure. This is possible thanks to the fault flags being set at each SIB which
has an unmasked fault in the underlying IJTAG network segment. Ideally, by the time FM will
react to the incoming fault interrupt, IM will already be ready with the address of the
instrument which raised the fault flag, thus speeding up the whole fault handling procedure.

2.3.5 Hardware implementation of Instrument Manager
IM is implemented in hardware (see Figure 3) as a relatively simple IP consisting of:

 FSM;

 ROM for storing the IJTAG network configuration;

 RAM for storing the IJTAG network state (opened and closed SIBs)

 Interrupt generation logic: low and high priority interrupt request signals to CPU.

IM has two interfaces:
 IM-FM interface – used to communicate with CPU which is running the FM,

implemented as a memory-mapped peripheral. Allows to receive commands from FM and
send/receive data;

 IJTAG network port – used to access the IJTAG-based instrumentation network.

Contents ● 6 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

2.3.6 IM-FM interface
IM uses several signals to communicate with FM on the software side of the fault management
architecture:

 IM_CMD – a 32-bit register with command and status bits, bidirectional;

 IM_DATA – a 32-bit register for data transfer, bidirectional;

 Interrupts.

Whenever the AFPN signals that a fault was detected by an instrument or other event that
requires reaction from FM occurs, IM immediately sends an interrupt to the CPU(s) which is
running the software part of FMI including FM. Since depending on the flags the required
urgency of system’s reaction is different, there are two interrupt signals:

 High-priority interrupt: only requested in case of an uncorrected fault event (F=1,
C=0)

 Low-priority interrupt: all other cases, such as corrected fault event (F=1, C=1),
completion of instrument access operation, etc.

IM
FSM

ROM: IJTAG network configuration RAM: IJTAG network state

CPU
with Fault
Manager

IJTAG
network

Figure 3. Overview of IM hardware

F
CLow priority

interrupt

High priority
interrupt

Top level
flags

Figure 4. Instrument with FCX emergency flags and TDR

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 7

2.3.7 Implementation of SIB with AFPN support
The proposed fault management architecture relies on the asynchronous fault propagation
network (AFPN) for fast fault detection. Since AFPN is very closely coupled to the IJTAG
network and is also organized in hierarchical fashion (see Figure 5), it is natural that the flags
(F, C, X) and the propagation logic is integrated with SIBs. In this section, we describe the
modified SIB which is intended to be used with AFPN and includes additional registers to
accommodate the flag bits.

2.3.8 Requirements for modified SIB
The modified SIB design with AFPN support must include additional registers for capturing
and storing the values of the flag bits as well as the circuitry for asynchronous flag
propagation. Since F and C flags only need to be captured (read-out) and cannot be written,
there is no need to implement the update register part for them. Similarly, the S bit (the one
controlling the state of the SIB) and the X flag only need to be written and hence don’t need
the capture register. Together, the four flags can share the capture and update registers of only
two bits:
 F/S bit: when updated, S (SIB state) bit is written; when captured, F flag is read.

 C/X bit: when updated, X (mask) bit is written; when captured, C flag is read.

In this way the extra AFPN flags are added while keeping the impact to communication
efficiency minimal: only one extra bit to be shifted in the scan chain (one bit for S is already
used by a normal SIB).

Figure 5. Asynchronous fault propagation and detection in IJTAG network

Contents ● 8 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

The details of the SIB’s hardware implementation are shown in Figure 7, where the logic of
the F/S and C/X bits is highlighted.
Besides the capture and update registers and standard SIB logic (generation of gated ShiftEn,
CaptureEn and UpdateEn signals), the modified SIB includes the flag propagation logic. This
consists of a AFPN logic slice and the signal synchronizers. The latter are composed of two
back-to-back flip-flops and are required in case the F and C flag signals are not synchronized
to the TCK clock. The AFPN logic can be implemented in several ways, but for the SIB logic
it provides an interface with F and C flag outputs and X bit input. Besides that, it must be
connected to signals from SIB on lower hierarchical layers and to signals on higher
hierarchical layers.

2.4 Handling External Instrument Access Requests (from FM/SW)
When IM receives an access request, it starts shifting in bits by going through ROM and
generating the respective values for all active network nodes. When a SIB is encountered, then
depending on the state of the SIB, IM either has to shift in only a value for the SIB register (bits
S, X, C, F) or shift the data for the underlying network segment as well, a process called dynamic
retargeting. The structure of ROM (example of ROM contents in Table 1) facilitates this process
by providing the offset value for the case when the SIB is closed. When a SIB is closed, all nodes

Figure 7. Implementation of SIB with AFPN support

Figure 6. Extended SIB with F&C flag propagation signals (FCX-SIB)

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 9

of the underlying segments must be skipped and no bits should be shifted in for them. Instead, the
bits for the node next to the SIB on the same hierarchical level should be shifted in. The offset is
a value which should be added to the current node address to jump the next adjacent node. For
instance, let’s assume SIB4 is closed in the example network (Fig. 8). Then the following bits
shifted in should be those for SIB3. IM implements this by adding the offset value (2) to the
current address (1) and jumping to address 3 which corresponds to SIB3. When a SIB as open,
then the next word in ROM is used, it corresponds to the last node of the SIB’s child network
segment. The information about whether each SIB is currently opened or closed is stored in the
network state RAM.
When a register is encountered in a ROM word, then its address is compared with the requested
address and if they are equal, a value is read or written. If the target register is to be read, then the
network’s SO values are stored in IM memory and later returned to the host. Otherwise, values of
SO are ignored. If the target register is to be written, then the value provided by host is shifted in
to the network. When there is no value requested to be written into the current register, all zeroes
are shifted in. This limitation will be addressed later by storing the default load and reset values
in ROM as described in the IEEE 1687 standard.
The values of SIB F, C, X bits are stored into IM RAM. Value of SIB S bit is generated by IM
itself, so there is no need to read it out from the network. The new value for SIB S bit (open or
closed) is decided by IM also by using target register address. If the target register address falls in
the region between the current SIB address and the word SIB’s offset is “jumping” to, then this
SIB must be opened since the target register is somewhere inside its underlying network segment.
For instance, in the example network, consider register R2 (address 4). In order to decide if SIB2
must be opened, the target address (4) is checked against SIB2 address (0) and where it’s offset
points to (0+5=5). Since 4 is between 0 and 5, SIB2 must be opened. However, in case of SIB4
and R2, the target address does not fall into the respective region (1 to 3) and hence SIB4 must
stay closed.

SReg

Instrument

SI

SEL

SO

DO

DO

DI

DI

WrappedInstr

SI

SEL

SO

RST
TCK

CE
SE
UE

0
1 S

SO

SI

fromSO

toSI

SIBmuxpre

X C F SIB1 R1

0
1 S

SO

SI

fromSO

toSI

SIBmuxpre

X C F SIB2 0

1 S

SO

SI

fromSO

toSI

SIBmuxpre

X C F SIB3

0

1 S

SO

SI

fromSO

toSI

SIBmuxpre

X C F SIB4

SReg

Instrument

SI

SEL

SO

DO

DO
DI

DI

WrappedInstr

R2

SReg

Instrument

SI

SEL

SO

DO
DO
DI

DI

WrappedInstr

R3

Figure 8. Hierarchical IJTAG network with FMI

Contents ● 10 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

2.4.1 IJTAG Network Map ROM Structure
In the network map ROM, each word corresponds to a node in the network (register or SIB). The
contents of ROM are generated based on the network description (ICL) starting from the last
node (the one connected to SO of the network). When accessing the network, IM can start
generating the signal on network SI immediately, as the bits for the last node go in first. By going
through the ROM starting from the last node described in the first word, IM can scan in the bits
for all nodes of the network.
The host (Fault Manager in the software) requests accesses to registers from IM by using the
instrument address in the ROM. The address is equal to the word number in ROM. For instance,
in the example network R2 can be accessed by specifying address “4”.
Each ROM word has the following fields:

 [1:0] Node type. 00 = SIB, 01 = scan register (instrument), 11 = denotes the end of the
map

 [9:2] SIB jump offset/register length. For SIBs, specifies the number of nodes within the
underlying network segment which also shows how many ROM words to skip when the
SIB is closed. For registers, specifies the length in bits.

Table 1. ROM contents for the example IJTAG network (Fig. 8)

ROM
word

Node SIB offset / reg.
length

ROM[9:2]
(offset/len)

ROM[1:0] (node
type)

0 SIB2 Offset=5 (to 5:SIB1) 101 00
1 SIB4 Offset=2 (to 3:SIB3) 10 00
2 R3 Length=32 100000 01
3 SIB3 Offset=2 (to 5:SIB1) 10 00
4 R2 Length=16 10000 01
5 SIB1 Offset=2 (to 7:END) 10 00
6 R1 Length=32 100000 01
7 END 11

2.4.2 IJTAG Network Status RAM Structure
Each RAM word has the following fields:

 [0] SIB S bit. Shows the state of S bit, i.e. if a SIB is closed (0) or opened (1)

 [1] SIB X bit. Shows the state of X bit (masking)

 [2] SIB C bit. Shows the state of C bit (error corrected)

 [3] SIB F bit. Shows the state of F bit (error detected)

2.4.3 Instrument Manager’s FSM Part that handles Access Requests
The core logic of IM is implemented as an FSM with 15 states (see Figure 9). IM starts the
operation in IDLE state and upon a request from the host it moves to INIT state. In INIT state it
asserts the CaptureEn signal to copy the actual values of the network’s nodes to the shift
registers. It also resets the address counter since the first node for which the serial scan bits need
to be generated is at address 0. Then it moves to HUB state which is a helper state to manage the
node address handling. From there, depending on the node type located in ROM at the current
address and the requested operation, it will proceed to SIB_F, REG_W, REG_R or UPDATE
states. The first one handles SIBs by first shifting in unlock values to F and C bits, respective
value for X taken from RAM and then finally the value for the S bit. Its value depends on

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 11

whether the SIB need to be opened or closed for the current retargeting goal (as described
earlier).
For registers, IM will first shift in the first bit (IM treats the data from host in such a way that
LSB is shifted in first) and if there are more bits, it will stay in the loop state while there are bits
to shift in or out.
When the network node closest to network’s SI is handled, FSM will reach an END entry in
ROM. This means that it should assert Update signal and check whether additional Capture-Shift-
Update operations are still needed, e.g. if the target register hasn’t been reached yet or if the
network must be closed after the access is finished. This is decided in the UPDATE state.

2.5 FMI Operation during Fault Detection

2.5.1 Fault Localization and Diagnosis
Here, we detail the way the IEEE 1687 FMI detects and localizes a fault based on a
comprehensive example.
First of all, let us define the following sets:

 Set of possible faults F, where fault fi ∈ F

IDLE INIT
Host request

UPDATE

HUB

SIB_F REG_W REG_R

SIB_C

SIB_X

REG_W_LOOP REG_R_LOOP

SIB_S1 SIB_S2 SIB_S3 SIB_S4

ShiftEn=0
ShiftEn=1

addr+=1

addr+=1

addr=0
CE=1

UE=1Target reached

END

Must be open,

was closed

SO=RAM[addr].X

SO=1
addr+=offset

Must be open,

was open Must be closed,

was open
Must be closed,

was closed

SO=1
addr+=1

SO=0
addr+=1

SO=0
addr+=offset

SO=host_data[0]
host_data>>1
len=reg_len‐2

SO=1

SO=0

reg_len=1

reg_len=1

len>1 len>1

SO=host_data[0]
host_data>>1

len=len‐1 len=0

len=0

Figure 9. Instrument manager’s FSM that handles external requests

Contents ● 12 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

 Set of fault detection timestamps T, where timestamp ti ∈ T corresponds to fault fi
 Set of fault localization latencies L, where latency li ∈ L corresponds to fault fi

When a fault occurs, the fault management system will start the localization procedure described
in following sections. This will eventually result in identification of the instrument that detected
the fault.
Let us now describe in detail the series of events that should follow the detection of a fault in an
instrument using an example with small IJTAG instrumentation network. This network in normal
state is shown in Figure 10 (omitting the display of SIB internals such as asynchronous signals
and their propagation gates). In the following, we depict FCX-SIBs as blocks of four 1-bit scan
registers (S, X, C, F) together with scan ports of a SIB (SI, SO, toSI and fromSO in Figure 6).
Each scan register in a SIB has a binary value and it is shown graphically: register rectangle
white fill if value is zero, color fill if value is one. The active scan chain is shown in bold while
the inactive parts are shown in thin lines.
In our example, a fault is detected by instrument I1. The fault is not automatically corrected and
thus needs to be taken care of by network controller. The initial state of the instrumentation
network is with all SIBs closed (as in Figure 10).

 Fault Detection
At the time of detection, instrument sets its Fault flag and clears Correction flag. These changes
are propagated asynchronously to SIB3 and then to SIB1, although SIB4 is still in normal state.
This situation is shown in Figure 11.

S X C F S X C F

S X C F S X C F S X C F S X C F

SIB1 SIB2

SIB3 SIB4 SIB5 SIB6

CTRL

I1 I2

Figure 10. Example of IJTAG instrumentation network with asynchronous fault detection

S X C F S X C F

S X C F S X C F S X C F S X C F

SIB1 SIB2

SIB3 SIB4 SIB5 SIB6

CTRL

I1 I2

 Figure 11. Detection of a single fault by instrument I1

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 13

 Fault Localization
When asynchronous fault detection signals reach the network controller, the latter responds by
performing localization actions. Let us follow the sequence of events:

 t = 0: The network controller receives asynchronous signal about the fault in the network,
it starts the localization procedure. It scans the top-level loop and sees Fault flag in SIB1
(Figure 10) and recognizes that the fault location is somewhere in the child network
segment(s) of SIB1. This operation takes E + 4 • b1 = 6 + 4 • 2 = 14[TTCK], where b1 is
number of SIBs in the first level of hierarchy.

 t = 14: The controller now makes another shift to update the register of SIB1 to open it.
Since the active scan chain is not changed, it also takes 14 TTCK.

 t = 28: The active scan chain now includes the child segment of SIB1. Controller makes
another shift to find out which SIB asserted the Fault flag. This operation takes E + 4 • (b1
+ b2) = 6 + 4 • 4 = 22[TTCK]

 t = 50: The localization procedure is finished; the controller recognizes that the fault is
situated in the child segment of SIB3 which consists only of instrument I1.

Then the controller will open SIB3 and read out I1 status. At this point the fault is localized and
diagnosed. The state of the network is shown in Figure 12. Following actions may include writing
to I1 or masking out the fault by Mask bit in SIB3.

According to [8], the time of fault localization can be calculated by following formula:

௡ݐ ൌ ሺ2 • ݊ െ 1ሻ • ܧ ൅ 4෍ቀ൫2ሺ݊ െ ݅ሻ ൅ 1ሻ൯ܾ௜ቁ

௡

௜ୀଵ

where n is the level of hierarchy of the instrument, E is the constant of TAP diagram transitions
(equal to 6 test clock cycles [1]) and bi is the number of SIBs in i-th level of hierarchy. The
units of the result of this equation are test clock cycles TTCK.
In the case of currently discussed example, n = 2, b1 = 2 and b2 = 2. Hence, the required time to
localize I1 is: tI1 = 3E + 4(3 • 2 + 2) = 18 + 32 = 50[TTCK]. This conforms with manual
calculations.

2.5.2 Interruption of Ongoing Access in Event of Fault
The normal work of IJTAG instrument network consists of read and write accesses to
instruments, opening and closing the SIBs which are the results of normal requests from higher
levels of the system (like OS). Since the IJTAG network can be constructed hierarchically to

S X C F S X C F

S X C F S X C F S X C F S X C F

SIB1 SIB2

SIB3 SIB4 SIB5 SIB6

CTRL

I1 I2

Figure 12. Localization of a single fault up to instrument I1

Contents ● 14 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

optimize access times, it may take considerable time to finish ongoing access and switch to
another request.
Since asynchronous fault detection is designed to be as quick as possible to detect and find the
source of fault, its speed would be useless if corresponding accesses to faulty re- source were
delayed until current normal access is completely finished. Therefore, it is reasonable for IJTAG
network with asynchronous fault detection to interrupt ongoing access and service faulty resource
localization as soon as possible.
The localization of faulty resource would probably require modifying the configuration of IJTAG
network, i.e. closing some SIBs and opening other SIBs. Hence, the current status of IJTAG
network must be considered and an optimal modification, i.e. action that leads to quickest access
to faulty resource, should be taken.
We foresee two possible solutions that can provide fastest reconfiguration of the IJTAG network
in different situations:

 Dynamic retargeting
 Reset of IJTAG instrumentation network

 Dynamic Retargeting
Let us consider a situation where required time to change the current configuration of
instrumentation network to required one is less than the time required to start from reset state and
open all levels of hierarchy that are needed to access the faulty resource. In this case it makes
sense to halt the ongoing access and close corresponding SIBs, while opening the required SIBs.
Since this should be done simultaneously, there must be means to dynamically schedule access
requests with different priorities to IJTAG network. This can be done with dynamic retargeting
techniques which are described in [16].

 Instrument Network Reset
In case the reconfiguration from the current state of IJTAG network is too expensive in means of
time, it is reasonable to perform a reset of IJTAG network configuration. It means that all SIBs
are closed and the active scan chain corresponds to top-level loop of the network. After the reset,
normal sequence of SIB openings and register accesses could be performed.

2.5.3 Multiple Fault Scenario
During the lifetime of the system it may happen that multiple faults occur at the same time, or at
least, their localization times could overlap. In this case, it is important to make sure that fault
management architecture would allow detecting both of them and reacting accordingly.
Whenever several faults occur at the same time or one fault occurs when another is already being
localized, the overall status of asynchronous fault detection scheme remains adequate. Firstly,
Fault and Correction flags at top level of IJTAG network will always indicate current status of
fault detection. This means that if one fault is already addressed and the corresponding instrument
Fault flag is cleared or masked, the top-level Fault flag will still indicate that the system is in the
fault state. Similarly, if several faults occur at the same time and one of them is automatically
corrected and Correction flag is set, while another fault is uncorrected, the top-level flags will
indicate that the system is in a state of unhandled fault.
In the following, we will discuss how the fault management system with asynchronous fault
detection deals with multiple faults occurring at the same or nearly the same time. Firstly, we will
define the multiple fault events, then we will discuss several simple examples of two faults
occurring simultaneously.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 15

 Multiple Simultaneous Faults
In general, we can describe an abstract situation, where two faults occur at the same time, or more
precisely, the effects of these faults for fault management architecture (need to localize the fault)
overlap in time. In other words, it is a situation, when some of the procedures required to localize
these faults should be carried out simultaneously.
Let us consider two faults fa and fb , ta ≤ tb . They are considered to happen simultaneously if
their localization procedures overlap: tb < ta + la.

Figure 13. Example of two simultaneous faults

 Examples with 2 faults
Let us describe the situation where two faults f1 and f2 are detected at nearly the same time. For
this, let us take the same network as in example for single fault (t1 = 0, section V) and make the
instrument I2 detect another fault f2 in following cases:

 Case A: t2 = 0. f2 happens simultaneously with f1
 Case B: 0 < t2 ≤ 14: f2 happens during the first shift in the top loop
 Case C: 14 < t2 ≤ 28: f2 happens during the shift that opens SIBs in the top loop
 Case D: 28 < t2 ≤ 50: f2 happens during the last shift that localizes the fault in I1

1) Case A:
 t = 0: The same as before, but now controller understands that there is also fault

somewhere in the child segment(s) of SIB2. Takes 14 TTCK
 t = 14: The same as before, but now controller must also open SIB2. Takes 14 TTCK .
 t = 28: Now child segments of both SIB1 and SIB2 are included (see Fig. 13), which

makes scan chain longer. Controller should now scan the flags of all SIBs. This operation
takes E + 4 ∙ (b1 + 2b2) = 6 + 4 ∙ 6 = 30 [TTCK]

 t = 58: Both f1 and f2 are localized
 l1 = 58, l2 = 58

2) Case B:

 t = 0: The same as before. Takes 14 TTCK
 t = 14: The same as before, controller opens SIB1, but now recognizes that there is a fault

under SIB2. Takes 14 TTCK .
 t = 28: Now the SIB1 is opened and controller also writes 1 to SIB2 to open it. This

operation takes E + 4 ∙ (b1 + b2) = 6 + 4 ∙ 4 = 22[TTCK].
 t = 50: f1 is localized and now information from I1 should be read. Since the length of

registers of I1 and exact amount of read/writes is not known, let us now make a
simplification by not opening SIB3, but leaving it in the active scan chain. SIB2 is now

Contents ● 16 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

opened and its child segment should be scanned. This operation takes E + 4 ∙ (b1 + 2 ∙ b2)
= 6 + 4 ∙ 6 = 30[TTCK]

 t = 80: f2 is now also localized.
 l1 = 50, 66 ≤ l2 ≤ 79

3) Case C:

 t = 0: The same as before. Takes 14 TTCK
 t = 14: The same as before, controller opens SIB1. Takes
 14 TTCK .
 t = 28: Now the SIB1 is opened and controller recognizes
 that there is a fault somewhere under SIB2. This operation takes E + 4 ∙ (b1 + b2) = 6 + 4

∙ 4 = 22 [TTCK].
 t = 50: f1 is localized and now information from I1 should be read. Controller now writes

1 to SIB2. This operation takes 22 TTCK
 t = 72: SIB2 is now opened and its child segment should be scanned. This operation takes

E + 4 ∙ (b1 + 2 ∙ b2) = 6 + 4 ∙ 6 = 30 [TTCK]
 t = 102: f2 is now also localized.
 l1 = 50, 74 ≤ l2 ≤ 87

4) Case D:

 t = 0: The sequence is the same as for single fault scenario
 t = 50: f1 is localized, controller makes a shift to read out status of I1 and finds out that

there is a fault somewhere under SIB2. This operation takes 22 TTCK
 t = 72: Controller writes 1 to SIB2, while SIB1 is still open. This operation takes 22 TTCK

.
 t = 94: SIB2 is now opened and its child segment should be scanned. This operation takes

E + 4 ∙ (b1 + 2 ∙ b2) = 6 + 4 ∙ 6 = 30 [TTCK]
 t = 124: f2 is now also localized.
 l1 = 50, 74 ≤ l2 ≤ 95

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 17

 General Case
From the previous examples it can be seen that:

 Localization time of multiple faults will differ from single fault localization time and it
will always be higher

 The main reason for increased localization time is the length of active scan chain
 The best case for two simultaneous faults is when they are detected at the same time
 The worst case for two simultaneous faults is when the second fault is detected when the

path to first fault is already fully open
Also, although not described in previous cases, the relative position of the instruments that
detected two simultaneous faults has obvious effect on localization time: while the best case of
relative position would be instruments under adjacent SIBs, the worst case is when those
instruments are situated in the opposite ends of the instrumentation network.
Overall, the worst case of two simultaneous faults localization time would be when the
instruments that detect them are in totally different branches of instrumentation network and the
second fault is detected when the first one is already localized. This will add considerable,
however, constant overhead to each shift cycle of the second fault localization.

2.6 Section Summary
In this section we have discussed the details of asynchronous fault detection scheme for IEEE
1687 instrumentation network. This approach allows for quick detection and localization of faults
that are indicated by embedded instruments by means of dedicated signals that are propagated
asynchronously. We describe additional hardware needed for these functions and the impact it
has on instrumentation network operation.
We also analyze possible scenarios of interruption by fault event and behavior of the system in
multiple fault condition. This analysis shows that proposed asynchronous fault detection scheme
is maintaining adequate status and allowing the system to cope with several faults that may occur
simultaneously.
In case of two simultaneous faults, the fault localization time suffers from a penalty, but even in
the worst case the system still remains adequate and scalable.
While this section details low-level fault localization and handling procedures, the high-level
scenarios performed by the Operating System based on information delivered by IM and IJTAG
instruments are described in deliverable D3.3.

Contents ● 18 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

3 Hierarchical Design and Test

3.1 Introduction
Previous work on hierarchical design and test mandates adding isolation logic for the respective
core under test [17] [18]. This isolation logic makes it possible to test the functionality of the
core, independently of the state the surrounding logic is currently in.

The isolation logic is typically placed close to the physical boundary of a core. It must not disturb
the regular operation of a core. Thus in functional mode, it shall transparently pass I/O signals
through. In isolation mode, however, it shall capture and/or launch values at its inputs and
outputs, respectively. Usually the isolation logic or core wrapper isolation is implemented as a
chain of wrapper cells sometimes referred to as wrapper boundary registers [19]. A chain of
wrapper cells, called wrapper chain is similar to a regular scan chain. Yet the chain is separated
from regular (core) scan chains.

Depending on the application scenario, wrapper chains may be implemented differently. One
aspect influencing the wrapper’s implementation is the type of core to be isolated. The internals
of cores that are delivered as pre-layouted protected IP, so called hard cores [18], cannot be
modified. Consequently, in case a core is not already prepared for hierarchical test, wrapper cells
may only be added at the physical boundary of that core. That is the isolation has to be placed
between the I/O ports and the core’s logic. This design style typically adopts the IEEE 1500 [19]
paradigm. Cores that are delivered as RTL or as a gate-level netlist (so called soft or firm cores
[18]) may be modified when implementing hierarchical test. In particular this means that wrapper
cells do not necessarily have to be placed at the core’s boundary [20]. In addition to that, we may
reuse existing flip-flops as wrapper cells to implement the core’s logic isolation. Compared to
dedicated wrapper cells, these so called shared wrapper cells have several advantages. In
particular, they do not increase the overall area of the core, and have no detrimental impact on
timing.

In the following we define general requirements for core wrapper isolation. We describe both
dedicated and shared wrapper cells, and compare the two types of cells. Using the result of that
comparison we show an improved wrapper cell. Then we combine this input to define an
optimized wrapper implementation. It is specifically suitable for in-field test enabling
independent test of the core while the surround logic may remain in the functional mode of
operation. Finally we present experimental results on the insertion of this optimized wrapper
implementation into industrial cores.

3.2 Wrapper Test Modes
As already mentioned, wrapper chains have to be transparent in the core’s normal mode of
operation. In addition to that at least two test modes have to be supported: A mode enabling the
test of the logic situated in between different cores. Typically, that is the glue logic on top-level
connecting different cores. Furthermore, a mode is needed that allows us to test the core’s
internal logic independently of the surrounding logic. Conventionally this means that the state of
the surrounding logic must not have any influence on the test of core’s internals. For in-field test
applications, however, the surrounding logic may be in functional mode while the core is being
tested. Consequently, we may want to have an isolation preventing the test of the core’s internals
from influencing the surrounding logic as well. This may either be implemented as part of the

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 19

internal test mode or as an extra test mode. This optional mode is often called safe mode. In the
following we describe the modes of operation that may be supported by a wrapper chain.

3.2.1 Inactive or Functional Mode
In this mode the wrapper chain is inactive and transparently passes I/O signals through the
wrapper cells. This is the behavior used in functional mode

3.2.2 Inward-facing Mode – INTEST
The inward-facing or INTEST mode is required to test the core in isolation of the surrounding
logic. It is needed to enable hierarchical ATPG, and may also be used for testing a core by
embedded instrumentation, e.g. LBIST. Furthermore it may also be extended to support in-field
test (see Section 3.2.4).

In this mode input wrapper chains isolate the inputs going into the core from the surrounding
logic, see Figure 14. Thus, the input wrapper chains prevent the surrounding logic from
influencing the state of the core under test (illustrated by  in the figure). Additionally, the input
wrapper chain allows us to control the core’s inputs directly, independently of the surrounding
logic. Similarly, in INTEST mode output wrapper chains allow us to observe the core’s
responses. In summary this mode supports an isolated test of the core’s logic using the wrapper
chains and the core’s internal scan chains. Any interface logic on both input and output side
remains untested.

Figure 14: INTEST configuration of the core

3.2.3 Outward-facing Mode – EXTEST
The outward-facing or EXTEST mode is used to test the logic surrounding the core in isolation
from the core itself. This includes any interface logic of the core, see Figure 15. Typically, this
mode is required for hierarchical ATPG.

In outward-facing or EXTEST mode the responses of the surrounding logic that drives the inputs
of the core are observed by the input wrapper chains. The output wrapper chain enables us to
control the surrounding logic that is driven by the core’s outputs independently of the core’s
internal logic. Thus, this wrapper chain is isolated from the core’s internal logic (illustrated by 
in the figure). The core-internal logic is not tested in this mode.

Contents ● 20 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

Figure 15: EXTEST configuration of the core

3.2.4 Safe Mode
The optional test mode extends the inward-facing test mode (INTEST) by using special wrapper
cells in the output wrapper chain. These wrapper cells contain additional logic preventing data
that is being captured in the cell from affecting the surrounding logic (output interface and top-
level). This mode is crucial for in-field test applications in which individual cores are tested in
isolation while the remaining circuit operates in the functional mode. The safe mode can be
implemented as part of the regular inward-facing test mode (INTEST) or as a dedicated test
mode.

Note that traditionally the safe mode applies to the outward-facing test mode (EXTEST). In this
standard way of implementation data that is being captured by the input wrapper cells is blocked
such that it does not affect the core’s internal logic.

3.3 Wrapper Cells
Starting from the wrapper test modes introduced in the previous section, we can identify at least
three different modes that are to be supported by each wrapper cell. First of all, it shall provide a
transparent functional data path linking the core with the surrounding logic. Secondly each cell
shall be able to capture response values from its input, and (optionally) isolate the cell’s output.
Finally, it shall be possible to drive a user selectable value at the output of the wrapper cell, and
isolate the input of the wrapper cell. As already mentioned wrapper cells shall have a scan input
and a scan output such that individual cells may be stitched to together like a scan chain. Through
this scan chain drive values may be loaded into the wrapper cells, e.g. from a primary input. At
the same time the scan chain transports observed values that are captured in the wrapper cells to
e.g. a primary output. Additionally, a wrapper cell shall have minimal impact on timing and
introduce as little logic (area) overhead as possible. In the following we will introduce both
dedicated and shared wrapper cells that implement the three test modes.

3.3.1 Dedicated Wrapper Cells
A dedicated wrapper cell uses an additional flip-flop to provide controllability, observability, and
shift capabilities. It can transparently pass the functional I/O signal through or can capture values
at its input and/or launch values at its output. An example from IEEE 1500 standard [19] is
depicted in Figure 16. The interface to the wrapper consists of five input and two output signals.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 21

As can be seen, each dedicated wrapper cell adds one flip-flip and two multiplexers to the core.
One of these multiplexers is introduced into the functional data path going from “cfi” to “cfo”.
Consequently, dedicated wrapper cells have negative impact on both area and functional timing.

Figure 16: Dedicated wrapper cell

Core Test Input (cti)
This is the test input to the wrapper cell. If this is the first instance in the wrapper chain it will be
connected to the source of the test data (e.g. a primary input). Otherwise it is driven by the output
signal “cto” of the previous wrapper cell in the chain.

Core Test Output (cto)
This is the test output of the wrapper cell. If this is the last instance in the wrapper chain it is
connected to the sink of the test data (e.g. a primary output). Otherwise it drives the input signal
“cti” of the next wrapper cell in the chain.

Core Functional Input (cfi)
For input wrappers, this input is fed from the logic surrounding the core. For output wrappers,
this input is directly driven by the core’s internal logic.

Core Functional Output (cfo)
For input wrappers, this output drives the core’s internal logic. For output wrappers, this output
drives the logic surrounding the core.

Wrapper Clock (shift_clk)
This is usually driven by the test clock available in the core (e.g. “wrp_clock”). It clocks the flip-
flops within the wrapper cell.

Shift Enable (shift_en)
This is the scan enable signal for wrapper cells. When the signal is high, the wrapper clock shifts
data through the “cti” and “cto” scan data pins. When the signal is low, the wrapper clock
captures the functional input value or holds the current state, depending on the value of the
“capture_en” signal. The signal “shift_en” is controlled differently depending on the wrapper
chain the cell is used in (input or output wrapper chain).

1

0

shift_en
0

1

capture_en

cti

cfi

shift_clk

cfo

cto

FF

Contents ● 22 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

Capture Enable (capture_en)
This signal controls the captured data when the wrapper is not shifting. When the signal is low,
the signal “shift_clk” captures the functional input value. When the signal is high, the signal
“shift_clk” holds the current state of the wrapper instance. Similarly, it controls the value
provided at “cfo”. This signal is controlled by a logic created during wrapper insertion.

Safe-State Function (safe_ctrl) – optional
Wrapper instances with a safe-state function contain at least one additional input: “safe_ctrl”.
This signal is controlling a separate multiplexer at the “cfo” output of the wrapper instance to
drive a static logic value. This value can either be provided by an additional input (e.g.
“safe_value”) or it can be generated internally. This mode is required to support in-field test.

3.3.2 Shared Wrapper Cells
A shared wrapper cell replaces an existing flip-flop by a special shared wrapper cell as depicted
in Figure 17 (see [21]). This type of cell offers the same functionality as the dedicated wrapper
cell introduced in Section 3.3.1. Compared to the latter type of cell, however, shared wrapper
cells place the flip-flop into the functional path from “cfi” to “cfo”.

Figure 17: Shared wrapper cell

3.4 Optimized Wrapper Implementation
While the shared wrapper cell of Figure 17 partly addresses the area overhead by reusing existing
flip-flops for the isolation wrapper, there is still the area penalty caused by the two additional test
multiplexers. In the next sections an optimized wrapper implementation is described which
further reduces the area overhead by using “normal” scan flip-flops for isolating the core. This
approach has basically no area or timing impact compared to non-isolated scan test architectures.

In addition the next sections introduce a proposal how to combine the core isolation wrappers
with on-chip test data compression and LBIST, respectively. Test data compression is typically
required for reducing test time and tester memory requirements in production test. LBIST, on the
other hand, enables in-field testing of the core’s logic.

1

0

shift_en
0

1

capture_en

cti

cfi

shift_clk

cfo

cto

FF

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 23

3.4.1 Optimized Shared Wrapper Cells
As described in Section 3.3.2 shared wrapper cells replace existing flip-flops by a special
wrapper cell. Compared to dedicated wrappers cells as depicted in Figure 16 this avoids area
overhead by reusing existing flip-flops. To reduce overhead of shared wrapper cells even further,
we may exploit the fact that the flip-flop will typically be replaced by a regular scan flip-flop.
Additionally we can drop the support of the state-holding mode that is not required in our
application scenario. Thus, the only additional change that is necessary affects the scan-enable
signal of the scan flip-flop. Compared to the wrapper cells of Section 3.3 it has to be controlled
differently. This will be detailed in the following sections.

Figure 18 maps the signal names introduced in Section 3.3.1 to a regular scan-flip-flop (SDFF) as
suggested in [19]. Note that since there is no state-holding mode the port “capture_en” can be
omitted. In most cases this optimized implementation of a shared wrapper cell will have no
impact on either area or timing, as the original flip-flop would be replaced by a scan flip-flip
anyway. Only for the rare case in which a non-scan flip-flop is converted into a wrapper cell an
additional multiplexer is added to the functional data path going from “cfi” to “cfo”. The
additional area used by the second multiplexer of the shared wrapper cell implementation of
Figure 17 is avoided. In case the optional safe mode described in Section 3.2.4 is added to a
wrapper cell, an additional logic is introduced into the functional data path. This is illustrated by
the gray OR gate depicted in Figure 18. Furthermore, the additional pin “Safe_ctrl” is required to
enable the safe mode.

Figure 18: Optimized shared wrapper cell (optional support for safe mode depicted in gray)

3.4.2 Optimized Inward-facing Mode with Test Data Compression
Figure 19 shows an optimized architecture for the INTEST mode introduced in Section 3.2.2.
This implementation being tailored to the optimized wrapper cell introduced in Section 3.4.1
removes a substantial part of the overhead involved with the wrapper cells introduced in Section
3.3. Additionally the implementation includes test data compression consisting of two modules
“Test Decompressor” and “Test Compactor”.

In order to enable the INTEST mode, the control signal “EXTEST_EN” will be set to a constant
low value. In this mode the input wrapper chain is supposed to isolate the core form the
surrounding logic. This is implemented by keeping the input wrapper chain in shift mode.
Consequently, “Scan_EN (I)” is set to a constant high value. The output wrapper chain shall
capture responses from the core’s functional logic. Thus, its scan enable signal “Scan_EN (O)” is
operated in sync with the scan enable signal of the core-internal scan chains. Note that both scan
enable signals are included for illustration purposes only. In a typical implementation there will
only be one scan enable signal driving going into the wrapped core. Core-internal signals

Contents ● 24 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

“Scan_EN (I)” and “Scan_EN (O)” will be derived from this scan enable and the setting of
“EXTEST_EN”.

In this architecture for INTEST, test data compression is applied to both the wrapper chains and
the core-internal scan chains. Compressed test data is supplied from a test data source via the
“Channel_in” port(s) to the module “Test Decompressor”. There this data is decompressed, and is
subsequently supplied to all wrapper chains and the core-internal chains. Responses captured by
both types of chains are compacted by the “Test Compactor” module, and routed through the
“Channel_out” port(s) to the test data sink. In production test both source and sink of the test data
will typically be the ATE.

Figure 19: Detailed view of INTEST configuration including test data compression

3.4.3 Optimized Inward-facing Mode with Test Instrumentation
For in-field test the wrapped core may be supplemented by chip-internal test instrumentation.
One example for this type of instrumentation is a LBIST module, see Figure 20. This
implementation is based on the test architecture for the INTEST mode that is introduced in
Section 3.4.2. Here pseudo random test patterns are generated by the “Pseudo Random Pattern
Generator” in the upper part of the figure. Depending on the implementation the pattern generator
may be shared with the “Test Decompressor” of the test compression hardware (see Figure 19).
The test responses are compressed and analyzed by the “Response Analyzer” module shown at
the bottom of Figure 20. This could be a MISR creating a signature that is compared to a golden
reference signature at the end of the test run. Again some logic may be shared with the test data
compactor. The overall LBIST execution is controlled by “LBIST CTRL”. This block also
contains registers to configure and control the LBIST operation. These registers are accessible via
IJTAG. Note that the safe mode capability of the wrapper cells is enabled in the output wrapper
chain (illustrated by  in the figure). This prevents any test-related activity of the core-internal
logic from disturbing the surrounding logic.

Core configured to INTEST

INPUT
Interface
Logic

OUTPUT
Interface
Logic

Channel_IN

Scan_IN(I)

Functional

Functional

Functional

Scan_EN(I)
const=1

EXTEST_EN
const=0

Scan_OUT(I)

Scan_IN(O)

Functional

Functional

Functional

Channel_OUT

Scan_EN(O)

Scan_OUT(O)

CORE
Functional

Logic

Test Decompressor

scan_in

scan_outscan_out
TestCompactor

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 25

With the addition of the LBIST module the optimized wrapper architecture supports in-field test
of the core. Due to the core’s wrapper, the LBIST may be executed in isolation from the
surrounding logic that may continue operating in the functional mode. Furthermore, the IJTAG
interface enables the integration of the test instrument into an existing system health monitoring
and error localization infrastructure.

Figure 20: Detailed view of INTEST mode with on-chip instrumentation (only relevant pins are shown)

3.4.4 Optimized Outward-facing Mode
Figure 21 depicts the optimized test architecture introduced in Section 3.4.2 when configured in
EXTEST mode. This mode is enabled by setting “EXTEST_EN” to a constant high value. In
EXTEST the input wrapper chain is supposed to capture data from the surrounding (input
interface) logic. The output wrapper chain, however, shall drive the surrounding (output
interface) logic, that is it has to remain in shift mode. Compared to INTEST, the signals
“Scan_EN (I)” and “Scan_EN (O)” swap their roles. Signal “Scan_EN (O)” remains constantly at
high, while “Scan_EN (I)” is controlled in sync with the scan enable of the surrounding logic. As
described for the optimized INTEST mode in Section 3.4.2, the control of both scan enable
signals may be derived from a global scan enable and the setting of “EXTEST_EN”.

In contrast to the INTEST mode the outward-facing test mode does not make use of the core-
internal test data compression. Nevertheless, the wrapper chains may be connected to a test data
compression module implemented at a higher level of hierarchy (e.g. the top-level). The input
wrapper chain is observed through the “Scan_OUT (I)”, while the output wrapper chain is
controlled via “Scan_IN (O)”. Depending on the top-level scan architecture two ports of each
core may not be needed in this mode: “Scan_IN (I)” and “Scan_OUT (O)”. To reduce top- level
routing, the port “Scan_IN (I)” may be tied to a constant value, while the port “Scan_OUT (O)”
can be left open.

Core configured to LBIST

INPUT
Interface
Logic

OUTPUT
Interface
Logic

Functional

Functional

Functional

Functional

Functional

Functional

CORE
Functional

Logic

Scan_EN
Const=1

Const=0
Const=0

IJTAG
Interface

Pseudo Random Pattern
Generator
scan_in

From/to
LBIST CTRL

scan_out
Response Analyzer

LBIST
CTRL

Contents ● 26 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

When designing the test architecture of the INTEST mode we may optimize the number and
lengths of the wrapper chains and the scan chains locally on core-level. This is not possible for
the architecture of the EXTEST. Here the number of wrapper chains per core and consequently
the length of each chain are dependent on the test architecture of the overall design. On top-level
the wrapper chains of all cores and the scan chains running through the logic situated on top-level
have to be stitched together. Only if the scan-chains on top-level do not exceed a certain pre-
defined length and are well-balanced, test time targets can be met. To ease scan chain balancing
on top-level, wrapper chains should be split into several smaller chains. Additionally, input and
output wrapper cells may be mixed. At the same time, however, routing effort on top-level is
increased if the number of wrapper chains per core is too large. This trade-off has to be
considered carefully before deciding on the number of wrapper chains per core.

Figure 21: Detailed view of EXTEST configuration

As the core’s internal logic will not be required for EXTEST, it can be abstracted and modelled
as a so called gray box. This model only contains the logic that is sitting outside of the wrapper
chains. That is the input interface logic between the input ports and the input wrapper chain(s)
(including the ports and the wrapper cells), and the output interface logic between the output
wrapper chain(s) and the ports (including wrapper cells and the ports). All purely combinational
paths, i.e. connections from input to output through combinational logic only, are also part of the
gray box. In EXTEST the ATPG tool may use the gray box instead of the core’s full netlist to
reduce runtime and memory usage.

3.4.5 IJTAG Interface of the Optimized Wrapper
When looking at a test scenario in which the test data is supplied from outside of the chip (e.g.
ATE-based production test) IJTAG may help to substantially reduce test setup effort. In
particular for a circuit containing complex cores and/or an intricate top-level test architecture
there are numerous core configurations, clocking modes, and other test-related settings. A typical
production test suite for this type of circuit will have to change these settings frequently. Using
IJTAG this task becomes much easier and less error prone. For the actual test patterns and test

Core configured to EXTEST

INPUT
Interface
Logic

OUTPUT
Interface
Logic

Channel_IN

Scan_IN(I)

Functional

Functional

Functional

Scan_OUT(I)

Scan_IN(O)

Functional

Functional

Functional

Channel_OUT

Scan_OUT(O)

CORE
Functional

Logic

Test Decompressor

scan_in

scan_out
TestCompactor

EXTEST_EN
const=1

Scan_EN(I)
Scan_EN(O)
const=1

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 27

responses, however, IJTAG is typically not used. The high bandwidth requirements for this kind
of data mandate a simple (parallel) pin-level interface.

Also for embedded instrumentation, IJTAG is an ideal solution. This is true for both production
and in-field test scenarios. An LBIST controller, for example, may have many different settings
and read-out values: start seed, number of patterns, masking, signatures, etc. This is best
controlled via IJTAG.

In general a core wrapper isolation implemented using IEEE 1500 is compatible with IEEE 1687
(see [22]), i.e. it can be modeled using ICL and PDL. This is also true for the optimized wrapper
implementation introduced in the previous sections. In particular this means that all signals
required for wrapper configuration and test control are set via IJTAG. This includes the port
“EXTEST_EN” described in Sections 3.4.2 and 3.4.4. On top of that for INTEST mode there
may be configuration registers for the clock control and the test data compression module (not
covered here). Furthermore the LBIST test instrument described in Section 3.4.3 is controlled via
IJTAG. Thus, this architecture, that combines core wrapper isolation with on-chip test
instrumentation, becomes a building block for a system health monitoring and error localization
infrastructure.

3.5 Implementing Hierarchical Design and Test
For a hierarchical test approach, two test scenarios need to be considered: the top-level test and
the test of the individual cores. The test of the cores employs the inward-facing mode (INTEST).
Each test run may either be executed on-chip by embedded instrumentation or the test data may
be supplied from an external ATE. In the latter case for each core test patterns for INTEST mode
are generated upfront using ATPG. These core-internal test patterns can be retargeted to the top-
level without being regenerated. This, however, is only possible for cores that are isolated
properly, and that may be tested independently of the surrounding logic. Similarly, in an in-field
test scenario, the core-internal test must not disturb the surrounding logic that may be operating
in the functional mode. The test of the cores has to be scheduled for either sequential or (partly)
parallel execution. Any interconnect between the cores and the top-level logic that is not part of a
core is not covered by the core-internal test, and has to be tested separately. This top-level test
requires the outward-facing mode (EXTEST) mode to be enabled in all involved cores. Again the
top-level test can be performed by chip-embedded instrumentation or by using pre-generated
ATPG test patterns.

In the following we will look into several implementation aspects of the core wrapper isolation.
First of all we will review which ports of a core should not be isolated. Afterwards we will
discuss the use of shared and dedicated wrapper cells, respectively. Finally we will present some
experimental results on core wrapper insertion for two industrial cores.

Contents ● 28 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

3.5.1 Ports Not to be Isolated
Naturally the ports supplying the wrapper control signals to the core must not be isolated by a
wrapper cell to give us full control over the wrapper’s behavior. In addition to that further input
and output ports of a core must not be isolated by a wrapper cell:

 Port connects to a functional clock
 Port connects to a test clock
 Port connects to an asynchronous SET
 Port connects to an asynchronous RESET
 Port connects to a scan input
 Port connects to a scan output
 Port connects to a wrapper signal (scan input, scan output, and other wrapper control)
 Port connects to a constant test signal
 Port is involved in pure combinational feedback path

3.5.2 Shared vs. Dedicated Wrapper Cells
For the isolation of an input or an output port of a core there exist two solutions: The first option
is to add a dedicated flip-flop to the port used solely for isolation. Typically, this dedicated
wrapper cell is inserted automatically by a tool. The second option is to reuse an existing flip-flop
that is connected to the respective port. This shared wrapper cell reuses an existing functional
flip-flop. Again identification and modification of these flip-flops is typically done by a tool.

In theory there is no limitation as to where dedicated wrapper cells are inserted. In practice,
however, it is advisable to place the dedicated wrapper cell as closely to the core’s respective
input or output port as possible. This minimizes the amount of logic sitting outside of the
wrapped part of the core allowing the core-internal test to cover the core in its entirety.

Two major problems exist when using dedicated wrapper cells. The first problem applies to
designs using multiple clock domains. If the port to be isolated is driven by flip-flops residing in

different clock domains, there is no clear answer as to which clock signal should be driving the
inserted wrapper cell. This is illustrated in Figure 22 where the input port “Input” that is to be
isolated is affected by both clocks A and B. Typically in this scenario the clock driving the
majority of the flip-flops in the vicinity of the port is chosen.

Core

A_gen

clock_A

B_gen

clock_B

Input
Signal_A

clock_A

Signal_B

clock_B

clock_?

Dedicated
Register

Figure 22: Dedicated wrapper cells vs. clock domains

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 29

The second problem applies to at-speed testing. Consider again the input port “Input” in Figure
22 that is to be isolated by a dedicated wrapper cell. This port is part of a path going from flip-
flops “A_gen” to “Signal_A”. In the functional mode of operation the inserted dedicated wrapper
cell is transparent, i.e. the path is operating at speed. In test mode however, the path is interrupted
by the flip-flop that is located within the wrapper cell (refer to Figure 16). Consequently, the path
can only be tested in two segments. In the core’s EXTEST mode we cover the segment of the
path going from “A_gen” to the wrapper cell. In the core’s INTEST mode we cover the segment
of the path going from the wrapper cell to “Signal_A”. Thus due to the dedicated wrapper cell the
full path can no longer be tested at-speed. The same problem applies to the path going from
“B_gen” to “Signal_B”.

Figure 23: Criteria for inserting shared wrapper cells

Since shared wrapper cells reuse existing flip-flops these two problems do not apply. For shared
cells, however, the crucial task is to first identify the best candidate flip-flops (see [20]).
Typically, two criteria are used to guide the selection of functional flip-flops:

Depth The number of gate levels that have to be crossed when going from the port to
be isolated to the first flip-flop, see Figure 23.

Width The number of flip-flops reached at that level.

In combination the parameters depth and width span the logic cone that may be reached from the
port in question. This in turn gives an indication on how many flip-flops have to be converted
into shared cells in order to isolate that logic and on how much logic would be placed outside of
the isolation wrapper. As already mentioned it is desirable to keep the amount of non-isolated
logic at a minimum. Yet, also the number of shared wrapper cells should be as low as possible to
keep wrapper chains short (this translates into shorter test times).

Both shared and dedicated wrapper cells have their pros and cons, see Table 1. Therefore, there
are three types of isolation strategies: i) use shared functional wrapper cells only, ii) use
dedicated wrapper cells only, or iii) use “balanced mode” selecting the type of cell on a port-by-
port basis. In any case a tradeoff decision between all three modes has to be made.

fl
ip
‐f
lo
p
s

Contents ● 30 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

 Dedicated Cells Shared Cells
Area and timing overhead One scan flip-flop and at least

one MUX gate are added for
each port.
At least one MUX is added in
the functional path.

Negligible area/timing
overhead.

Wrapper chain length Minimal. Equal to the number
of I/O ports included in the
wrapper.

Chains length is depending on
the fan-in/-out cones of ports
and the amount of logic
between the port and the
wrapper cell.

INTEST
(stuck-at coverage)

All faults can be tested in the
core test (no logic exists
between I/O port and wrapper
cell).

Interface logic cannot be
tested. This can be
compensated in the EXTEST
mode.

EXTEST
(at-speed coverage)

Interface logic cannot be
tested because the path will be
split by the inserted wrapper
cell.

All faults of the interface logic
can be tested because
functional paths will not be
split.

EXTEST
(size of the gray box)

Smaller gray box Bigger gray box

Multi clock paths Impossible to test. Testability not affected by
wrapper.

Table 1: Comparison between dedicated and shared wrapper cells

In summary the use of shared wrapper cells has many advantages and is the method of choice but
might result in long wrapper chains. In case a port is not timing critical, it may be acceptable to
insert a dedicated wrapper cell. This may result in a shorter wrapper chain.

3.5.3 Experimental Results
Core wrapper insertion using the optimized implementation of Section 3.4 was performed for two
industrial soft cores using a commercial tool for DfT insertion. Industrial core A contains nearly
150,000 flip-flops; industrial core B contains nearly 70,000 flip-flops.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 31

 Dedicated Cells Only Shared Cells
Only

Balanced Mode

Threshold (Width ×
Depth)

n/a Max × Max Med × Med

Total FF in wrapper
chains

2,789 11,207 5,241

Number of dedicated
wrapper cells

2,786 56 92

Length of input
wrapper chain

1,231 4,395 645

Length of output
wrapper chain

1,558 6,812 4,596

Table 2: Results of wrapper insertion for industrial core A

The experimental data for cores A and B are summarized in Table 2 and Table 3, respectively.
Columns two to four show the results for the three isolation strategies as introduced in Section
3.5.2. When using the strategy “Dedicated Cells Only” no shared wrapper cells are allowed, i.e.
the thresholds for width and depth are not used. For “Shared Cells Only” all flip-flops on the first
register level should be included in the wrapper chain. Thus, the logic cone for each port (refer to
Figure 23) should be as wide as necessary corresponding to both maximal width and depth.
Finally, in “Balanced mode” we try to restrict the logic cone to a reasonable size, corresponding a
medium setting for both width and depth.

 Dedicated Cells Only Shared Cells

Only
Balanced Mode

Threshold (Width ×
Depth)

n/a Max × Max Med × Med

Total FF in wrapper
chains

2,183 17,380 3,633

Number of dedicated
wrapper cells

1,971 167 797

Length of input
wrapper chain

1,275 4,205 2,228

Length of output
wrapper chain

908 13,175 1,405

Table 3: Results of wrapper insertion for industrial core B

The data in the tables shows that even for a wrapper configuration intended to use only shared
wrapper cells, there are some dedicated cells inserted. This usually happens for core inputs in
case the logic cone does not end only at flip-flops. Clock gating cells are a typical example.
When the clock gate enable signal depends on a core input, a dedicated wrapper cell is required to
ensure the controllability of the gated clock.

It can also be seen that the “Shared Cells Only” strategy can lead to a significant amount of
design flip-flops to be part of the isolation wrapper (around 25% for the industrial core B, see
Table 3). To reduce the wrapper chain lengths it can be beneficial to use at least some dedicated
cells for the isolation as shown in the “Balanced Mode”. Especially for industrial core A, see

Contents ● 32 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

Table 2, it can be seen that by adding only 36 dedicated wrapper cells the overall number of
shared cells can be reduced by 5,966.

3.6 Section Summary
In this section the core wrapping requirements in terms of IEEE 1687 was discussed, as well as a
match to IEEE 1500 and the requirements formed by the project BASTION. The need for the
addition of so-called wrapper cells (placed around each core) was formulated, and their
implementation was considered. Finally, a comparison between the implementation solutions was
made on two industrial designs.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 33

4 Solutions to test IJTAG networks

4.1 Introduction

When a device embeds an IJTAG network, the issue of how to test whether it is affected by
any hardware defect arises. This issue is clearly of high practical importance, since a defect in
the network may impair the possibility of correctly accessing the instruments it connects. A
similar issue is commonly considered when performing a test on a generic Design for
Testability structure before using it. For example, some works (e.g., [1] [23] [24]) faced the
issue of testing the test circuitry mandated by the IEEE 1149.1 standard. The authors of [10]
also propose a method to introduce fault tolerance in such a network.
Typical IEEE 1687 networks are chains of flip-flops interleaved with special modules (e.g.,
Segment Insertion Bits, or SIBs, and ScanMuxes), allowing to dynamically split the whole
scan chain into segments that may be connected in series or in parallel, and to support a
flexible access to the instruments. While the test of possible permanent faults affecting a
standard scan chain can be easily done by resorting to well-known techniques (e.g., shifting
into the chain a sequence of alternated 0s and 1s, and checking that the same sequence
appears at the other extreme of the chain [1] [23] [24]), testing an IEEE 1687 network is
more complex, as testing must also check whether the network can be properly configured
and whether it works as expected after the configuration (i.e., whether the expected sub-
network is made accessible), whichever legal configuration we enforce. Thus, each special
module targeting the network configuration must be also tested.
Within the BASTION project some efforts have been done to devise an approach to test a
sub-set of networks compliant with the IEEE 1687 standard with respect to permanent faults.
This Section describes such an approach. For the most important components of an IEEE
1687 network (i.e., TDRs, SIBs, and ScanMuxes) we provide techniques for their test, and
then we describe how to combine them into a single comprehensive test. This test is
independent of the specific implementation of the network elements, and does not require any
change in the hardware implementing the network. Once the sequence of operations required
to test the network is known, the time required by the test can be computed using the methods
described in [25]. Despite that the proposed strategy does not take into account all the
possible constructs allowed by the standard, the main problem of testing such networks is
tackled for the first time and can be easily extended to cover the missing cases.
Experimental results are reported on a set of representative benchmark cases, which
practically demonstrate the correctness and feasibility of the above test approach, and provide
an evaluation about the duration of the test.

4.2 Related Work
Testing a regular (non-reconfigurable) scan chain for permanent faults can easily be
performed by shifting a sequence of 0s and 1s through the scan chain. A reconfigurable scan
chain, such as an IEEE 1687 network, is however far more complicated to test. When testing
an IEEE 1687 network, one must not only test whether the flip-flops composing the TDRs
can be correctly accessed, but also whether the modules introduced to support its
reconfiguration (e.g., SIBs, multiplexers and flip-flops controlling them) work correctly.
In this section we will first briefly overview the key characteristics of an IEEE 1687 network,
with special focus on the sub-set of structures considered in this work, and then explain why
their test may turn into a complex task (especially if one wants to minimize the test time).

Contents ● 34 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

4.2.1 Overview of IEEE 1687 Networks
A key feature in IEEE 1687 networks is reconfigurability, i.e., the possibility to switch TDRs on
and off the accessible scan path. Reconfiguration is done by incorporating programmable
components into the network structure. One such programmable component is the SIB module
which allows for bypassing a segment of a network. A segment can be simply one or several
TDRs or a sub-network consisting of TDRs and other programmable components. Therefore, it is
possible to create a hierarchical network with the use of SIBs.

Figure 24(a) shows a simplified schematic of a (possible implementation of a) SIB, which
comprises a one-bit shift-update register and a two-input scan multiplexer (ScanMux). SIBs are
programmed by shifting a bit into their S flip-flop and latching that bit into the parallel U latch. If
the latched bit is 0, the SIB is de-asserted and the scan-path is from the si (ScanIn) terminal, to
the so (ScanOut) terminal via the S flip-flop, bypassing the segment between the tsi (ToScanIn)
and fso (FromScanOut) terminals. If, on the other hand, the latched bit is a 1, the SIB is asserted
and the scan-path includes the segment connected between tsi and fso terminals of the SIB. In
this section, the symbol shown in Figure 24(b) is used to represent a SIB.

0
 1

U
S so

si

fsotsi

(a) Simplified schematic

SIB sosi

fsotsi

(b) Symbol

Figure 24: Segment Insertion Bit (SIB).

The reconfigurability in IEEE 1687 networks is not limited to the use of SIBs; others ad hoc
reconfigurable networks can be constructed by the use of shift-update registers and ScanMuxes.
As an example, consider the network shown in Figure 25(a) in which a two-bit shift-update
register is used to select among four inputs of a 4-to-1 ScanMux. In a similar way as with SIBs,
configuration of the ScanMux is performed by shifting the required values into the shift flip-
flops of the control register (i.e., the S flip-flops) and latching the shifted bits into the parallel U
latches. In the rest of this Section, the symbol shown in Figure 25(b) will be used to represent the
shift-update register that controls a ScanMux.
To keep Figure 25 simple, the clock, reset, the control signals (namely, shift, update, and
capture), and the select signal used to gate the control signals are not shown. To follow the
examples in this work, it should suffice to assume that only the TDR connected to the selected
port of a ScanMux receives (i.e., reacts to) the clock and control signals. It should be noted that
the configuration of the network (i.e., the status of the latched bits) does not change when
shifting a new vector through the shift cells, but only in the update phase where the shifted
vector is latched into the U cells.
To operate an IEEE 1687 network from outside the chip, the TAP as defined by the IEEE 1149.1
(JTAG) standard can be used. The finite state machine (FSM) in the JTAG circuitry provides the
control signals needed to configure IEEE 1687 networks and access the instruments through
them.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 35

00 01 10 11

U
S

TDR1

TDR2

TDR3

TDR4

U
S

(a) Using a ScanMux to select
among four TDRs

S

(b) Symbol for
control register

Figure 25: Construction of ad hoc reconfigurable networks supporting the mutually-exclusive parallel
access to multiple instruments by the use of ScanMuxes and ScanMux control registers.

4.3 Motivations
When testing an IEEE 1687 network, one must not only test whether the flip-flops composing
the TDRs can be correctly accessed, but also whether the configurable modules (e.g., SIBs,
ScanMuxes and flip-flops controlling them) work correctly in whichever configuration they
are forced. In order to better clarify the motivations for this work, let us consider a simple
example, corresponding to a circuit which includes five instruments: the user can access them
through the TAP port, reading or writing from/to the associated Test Data Registers (TDR1 to
TDR5). In order to save time when accessing to the instruments, the designer may decide to
adopt an IEEE 1687 network including three SIBs and one ScanMux, as shown in Figure 26;
each of these four configuration modules can be configured to allow the access to a given
subset of TDRs (and the associated instruments). Figure 27 reports the eight possible
configurations supported by this network, which depend on how the SIBs and the ScanMux
have been configured. In Figure 27, “A” means asserted, “D” means de-asserted, 0 and 1
correspond to the two possible positions of the ScanMux, and “-” appears when a module
belongs to an inaccessible segment.
When facing the test of an IEEE 1687 network we should check whether any fault affects not
only flip-flops of TDRs, but also SIBs and ScanMuxes. This means checking whether SIBs
and ScanMuxes can be properly configured and work accordingly. Moreover, the adopted
solution should guarantee that the required test time is minimized.
In order to achieve this goal, the BASTION partners developed an approach in which the test
is organized in sessions: in each session we first configure the network (so that each SIB and
each ScanMux is switched into a given position), and then check whether the expected path
has been inserted between TDI and TDO, i.e., whether the right instruments can be accessed.
Since the number of possible configurations of a network grows exponentially with the
number of configurable modules, the problem of identifying a sequence of sessions which
guarantees that 1) all the configurations modules and TDRs are fully tested, and 2) the total
test duration is minimized, is not trivial. Coming back to the example of Figure 26, this
means identifying the sequence of configurations (out of the 8 possible ones) that matches the
two above goals.
This section first describes the constraints that must be fulfilled by the sequence of sessions
to guarantee the full test of each TDR and configuration element, and then describes a
heuristic algorithm for selecting a sequence of sessions producing a minimal duration test.

4.4 BASTION Contributions
In this sub-section we describe the approach developed by BASTION partners to test a sub-
set of IEEE 1687 networks for permanent defects. More in details, in this sub-section we

Contents ● 36 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

describe the testing of TDRs, SIBs and parallel structures, as well as the test time calculation
and the optimization of the test sequence.
Testing if such an IEEE 1687 network is affected by permanent defects requires testing two
different sets of components:

 the flip-flops composing the TDRs the network makes accessible
 the modules allowing the network to dynamically reconfigure (e.g., the SIBs and the

ScanMuxes), which are referred to as configurable modules.

TAP port

SIB3SIB1

TDR1 TDR5

TDI TDO

SIB2

TDR2

SC
A
N
M
U
X

S

TDR3

TDR4

0

1

Figure 26: Example of 1687 network.

 SIB1 SIB2 SIB3 ScanMux Accessed
TDRs

C0 D - D - -
C1 D - A - TDR5
C2 A D D - TDR1
C3 A A D 0 TDR1,

TDR2,
TDR3

C4 A A D 1 TDR1,
TDR2,
TDR4

C5 A D A - TDR1,
TDR5

C6 A A A 0 TDR1,
TDR2,
TDR3,TDR5

C7 A A A 1 TDR1,
TDR2,

TDR4,TDR5

Figure 27: Set of possible configurations for the network in Figure 26.

Please note that we do not consider here the issue of testing the instruments connected to the
TDRs, nor the connections between each instrument and the corresponding TDR. This task is
typically performed resorting to ad hoc solutions which strongly depend on the kind of
instrument and on possible solutions adopted at the system level (e.g., resorting to a loopback
connection for test purposes). Therefore, we disregard whether the generic TDR is a Read-
Only, Write-Only, or Read-Write TDR.
We also assume that the TAP controller works properly. An effective algorithm to detect
possible permanent faults affecting the TAP controller is described in [27].

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 37

4.4.1 Test of the TDRs
The test of the flip-flops in a TDR can be performed by first picking a TDR, then configuring
the network such that it is made accessible, and finally applying to the network input a
sequence of bits able to test it.
More in details, once the target TDR has been identified, the following procedure performs
the test:

 Configure the network so that the target TDR can be accessed
 Shift in a suitable sequence
 Check that the same sequence appears on the TDO signal.

The sequence to be used in step 2 depends on the kind of defects to be tested, following the
techniques described in [1] [23] [24]: for those that can be modeled as stuck-at faults, a
sequence composed of alternated 0s and 1s is fine.

4.4.2 Test of the SIBs
Our goal is to check whether a given SIB works correctly, or it is affected by any permanent
fault (such as a stuck-at fault). The idea is to first configure the network in such a way that
the SIB is asserted, checking then whether it works correctly; secondly, the network is
configured in such a way that the SIB is de-asserted, checking whether it also works correctly
in this new configuration. The check of the SIB behavior (to be performed after the first and
the second configuration) can be performed in two steps. The first step forces the scan path
from the configuration to a known status by shifting into the network a sequence composed
of a number of 0s. Since a fault in a configurable module may change the selected path into
another, the number of 0s shifted in the network in order to be sure that the path is forced to
all 0s must be equal to the length of the longest path in the network. In the second step, a
sequence composed of alternated 0s and 1s is shifted into the network. This same sequence
should appear on the end of the path (i.e., on TDO) after a number of clock cycles equal to
the path length. If this happens, it means that a path having the expected length exists
between TDI and TDO; hence, the SIB is working correctly. The procedure is repeated but
for the second path, where the SIB is de-asserted.
The test procedure is composed of the following steps:

1. Configure the network so that a first path is selected, where the SIB is asserted
2. Shift in a sequence of 0s into the network. The length of the sequence is equal to the

length of the longest path
3. Shift in a sequence of alternated 0s and 1s, and check whether the correct sequence

comes out of the network unchanged and starting at the due time; in this way we
check that the SIB behavior is the expected one (i.e., the chain includes the
corresponding segment)

4. Configure the network so that a second path is selected, where the SIB is de-asserted
5. Shift in a sequence of 0s into the network. The length of the sequence is equal to the

length of the longest path
6. Shift in a suitable sequence of bits in the network, and check whether the correct

sequence comes out of the network starting at the due time; in this way we check that
the SIB behavior is the expected one (i.e., the segment corresponding to the SIB is
bypassed).

In principle, the above procedure must be repeated once for every SIB. In practice, the test
can be organized in a number of sessions, each corresponding to a configuration phase, in
which a given scan path is connected between TDI and TDO, and a test phase, in which we

Contents ● 38 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

check whether all SIBs in the path work as expected. The set of sessions composing the test
should be selected so that each SIB is at least once asserted and once de-asserted. In a
network with SIBs, this constraint also guarantees that all TDRs are accessed, as required by
the above procedure. Hence, by testing the SIBs we also test the TDRs.
As an example, let us consider the simple network shown in the left of Figure 28. Let us
assume that TDR1 is composed of three bits, and TDR2 of four. A possible procedure for
testing the network could be:

1. Configure the network so that SIB1 is asserted and SIB2 is de-asserted; hence, only
TDR1 is accessed; the length of the path is five (three flip-flops for TDR1, one for
each SIB)

2. Shift in a sequence of nine 0s (nine is the length of the longest path)
3. Shift in a sequence composed of alternated 1s and 0s from TDI; the same sequence

should start appearing on TDO after five clock cycles
4. Configure the network so that SIB1 is de-asserted and SIB2 is asserted; hence, only

TDR2 is accessed; the length of the path is six (four flip-flops for TDR2, one for each
SIB)

5. Shift in a sequence of nine 0s
6. Shift in a sequence composed of alternated 1s and 0s from TDI; the same sequence

should start appearing on TDO after six clock cycles.
Any fault affecting one of the two SIBs (e.g., forcing it to connect the wrong output to the
input) can be detected through the above technique by looking at when the alternated
sequence appears on TDO.
The reader should note that, due to the hierarchical structure of the generic IEEE 1687
network, selecting a set of configurations which allows each SIB to be asserted and de-
asserted at least once requires that every subnetwork is accessed at least once. As an example,
let us consider the network in the right of Figure 28. This network can be configured in six
possible ways (shown in Figure 29), corresponding to the possible paths between TDI and
TDO. “A” means asserted, “D” means de-asserted, and “-” appears when a SIB belongs to an
inaccessible segment. For each configuration the set of accessed TDRs is also shown. A
possible subset of configurations that fully tests the three SIBs is C1, C4, and C5. Hence, we
can test all SIBs in the network with only three sessions, each corresponding to one of the
three identified configurations.
The reader should also note that the time required by each session depends on the length of
the TDRs lying along the path it activates; moreover, the time to configure the network so
that a given path is activated depends on the previous configuration. Hence, the selection of
the sequence of configurations allowing to test all TDRs and SIBs in a network with
minimum test duration may turn into a rather complex task. For the purpose of this work we
adopted a heuristic algorithm to solve this task, which will be described in the next sub-
section.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 39

TAP port

SIB2SIB1

TDR1 TDR2

I1 I2

TDI TDO

TAP port

SIB3SIB1

TDR1 TDR3

I1 I3

TDI TDO

SIB2

TDR2

I2

Figure 28: Example network #1 (left) and #2 (right).

 SIB1 SIB2 SIB3 Accessed TDRs

C0 D - A TDR3
C1 D - D -
C2 A A D TDR1 TDR2
C3 A D D TDR1
C4 A A A TDR1 TDR2 TDR3
C5 A D A TDR1 TDR3

Figure 29: Set of possible configurations for network #2.

4.4.3 Testing the ScanMuxes
Testing the network also requires checking the correct behavior of structures intended to
support the mutually-exclusive parallel access to different instruments, following the scheme
of Figure 25. This means testing both the flip-flops storing the values of the ScanMux control
bits and the associated multiplexer.
For this purpose we need first to test the flip-flops. Secondly, we need to test the ScanMux.
To do so we can exploit the results of [28], where it was demonstrated that a given set of 2n
input vectors is able to fully test any n-to-1 (i.e., n inputs, and 1 output) multiplexer (no
matter its implementation) against any static fault.
The basic idea behind the test algorithm we propose is once again to first configure the
network so that the ScanMux is switched to a given configuration, thus making a given path
accessible. Secondly, a sequence of 0s is flushed into the network. Finally, a sequence of
alternated 0s and 1s in shifted in the path, checking whether it emerges unchanged from TDO
l clock cycles later, l being the length of the path. The procedure is repeated for every
possible configuration of the ScanMux.
In the simple case of a module allowing to access two instruments TDR1 and TDR2 that are
placed in parallel (as in Figure 30), the test procedure requires the following steps:

1. Configure the network so that the ScanMux makes TDR1 accessible; this means that a
given path including TDR1 is introduced between TDI and TDO

2. Shift in the network a sequence composed of as many 0s, as the length of the longest
path

3. Shift into the network a sequence of alternated 0s and 1s, checking that the ScanMux
behavior is the expected one (i.e., the expected values emerge from TDO at the
expected time)

Contents ● 40 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

4. Configure the network so that a new path is selected, in which the ScanMux makes
TDR2 accessible

5. Shift in the network a sequence composed of as many 0s, as the length of the longest
path

6. Shift in the network a sequence of alternated 0s and 1s, checking that the ScanMux
behavior is the expected one (i.e., the expected values emerge from TDO at the
expected time).

TAP port

TDR1

TDR2

I1 I2

TDI TDO

Scan
M
u
x S

Figure 30: Example network #3.

In general, if the ScanMux connects m instruments, we will need to configure the network m
times, each time switching the ScanMux to a different position, shifting in first the sequence
of all 0s, and then the one of alternated 0s and 1s, and checking that the expected sequence
emerges on TDO at the expected time. Although the detailed proof cannot be reported here
for the lack of space, the above procedure guarantees that the input values required to fully
test a multiplexer (as specified in [28]) are all applied, so that any possible static fault
affecting the multiplexer is detected by the sequence.
The reader should note that if TDR1 and TDR2 have the same length, the above solution (nor
anyone else) does not allow to test the multiplexer, because in this case there will be no way
to check whether we are accessing the right TDR at any time.

4.4.4 Overall Test Strategy
Based on the above observations, the test of an IEEE 1687 network is composed of a number
of sessions. Each session is composed of two phases:

 a configuration phase, in which control bits are shifted in to assert and de-assert each
SIB and to load suitable values into the flip-flops controlling the ScanMuxes, thus
selecting a path composed of a certain subset of TDRs

 a test phase, in which a suitable sequence composed of all 0s is first shifted in the
selected path, followed by a sequence composed of alternated 1s and 0s; the first
sequence is composed of as many bits, as the length L of the longest path; the second
sequence is composed of l bits, l being the length of the selected path. While shifting
in the second sequence, we should observe the values coming out of TDO and
observe l bits equal to 0. By shifting the path for two more clock cycles we should
observe a 1 and a 0. If this is the case we can assume that the right path has been
selected and the TDRs composing it work correctly.

We denote by tci the duration (in clock cycles) of the configuration phase and by tti the time
for the test phase for test session i.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 41

The configuration time (tci) depends on the previous configuration. For example, let us
assume that SIBi belongs to the segment controlled by the SIBj. If SIBi must be configured
as asserted in the new configuration, and was not accessible in the previous one (since SIBj
was de-asserted), we must first configure the network so that SIBi can be accessed (hence,
SIBj must be asserted), and then access SIBi and configure it as required. Hence, at least two
vectors must be shifted in for this purpose in the network. In the worst case, to configure a
network for a given session we will require a number of vectors equal to the maximum depth
of the network. Each vector requires the time for being shifted in (this time is denoted as SIB
programming overhead in [25]), plus a few clock cycles (the exact number is implementation
dependent) to capture it into the flip-flops of the corresponding path (JTAG protocol
overhead in [25]).
On the other side, the duration of the test phase (tti) depends on the length l of the path
selected by the configuration, and on the length L of the longest path in the network. The
exact duration of the test phase is equal to L+l+2. In fact, for every configuration we need to

 fill the scan path with all 0s: since in the worst case a fault may turn the path into the
longest one, this step requires L clock cycles

 fill the scan path with a sequence of alternated 0s and 1s; this step requires l clock
cycles

 shift out the content of the flip-flops in the path, checking when the first two bits
emerge from TDO: this step requires 2 clock cycles.

The total duration of the test of a network composed of N sessions is thus given by

ܶ ൌ ௖ܶ ൅ ௧ܶ ൌ ෍ ௜ݐ
௖

ேିଵ

௜ୀ଴

൅ ෍ ௜ݐ
௧

ேିଵ

௜ୀ଴

where Tc is the sum of the configuration times and Tt is the sum of the test times. Each
session activates a different path connecting TDI and TDO. The selection of the sequence of
possible paths corresponding to the sessions should be performed in such a way that

 each TDR is accessed at least once;
 each SIB is at least once asserted and once de-asserted;
 each ScanMux assumes each possible configuration.

Different solutions can be followed for identifying the best sequence out of the total set of
possible ones. Out of those matching the above constraints, the one requiring the minimal test
time should be selected. The following sub-section describes a heuristic algorithm for
selecting an optimized sequence with respect to test time.

4.4.5 Identification of an Optimized Sequence of Sessions
We now describe a heuristic method to select an optimized sequence of sessions to test an
IEEE 1687 network, i.e., one corresponding to a minimized test time.
We first propose a representation of the network as a directed graph (denoted as Network
Graph) whose vertices belong to three categories, corresponding to the elements of a generic
network, and their interconnections:

 TDR: a vertex of this type has an incoming arc coming from the element feeding the
TDR, and an outgoing arc going to the element it feeds

 SIB: a vertex of this type has two incoming arcs, one coming from the element
feeding the SIB (si) and the other from the end of the segment it controls (fso), and
two outgoing arcs, one (labeled as A) going to the first element of the segment

Contents ● 42 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

controlled by the SIB (tsi), and the other (labeled as D) going to the following
element in the same segment of the SIB (so)

 ScanMux: a vertex of this type has an incoming arc coming from the element feeding
the segments that can be accessed in parallel based on the position of the ScanMux,
and as many outgoing arcs as the number of segments entering the ScanMux, each
labeled with the corresponding value of the controlling signal of the ScanMux.

Additionally, a TDI and a TDO vertex exist, feeding the first element in the scan path and fed
by the last one, respectively.
To provide the reader with an example, the Network Graph corresponding to the network in
Figure 26 is reported in Figure 31.
The method we propose to identify the optimized sequence of sessions is based on
performing a depth-first visit of the Network Graph starting from TDI. For each SIB vertex,
first the child labeled with A is visited, and then the other. The order of visit for the children
of the ScanMux vertices is irrelevant. Each path from TDI to TDO within the Network Graph
corresponds to a possible configuration (i.e., scan path) within the network.

TDI

SIB1

TDR1

SIB2

TDR2

ScanMux

TDR3 TDR4

SIB3

TDR5 TDO

A D

A

D

A D

0 1

Figure 31: Network Graph for the network of Figure 26.

Each time the algorithm generates a new path (i.e., the TDO vertex is reached), the
configuration assumed by each configurable module is recorded, and the corresponding
session is added to the test. As soon as all the configurable modules have taken all the
required configurations, the algorithm stops. The proposed algorithm guarantees that the
identified sequence of sessions fully tests all TDRs, SIBs and ScanMuxes, according to the
rules introduced in the previous sub-sections.

4.5 Experimental Results
To experimentally verify the correctness of the above algorithms and to evaluate the key
parameters of the resulting test sessions, we wrote a prototypical tool implementing the
proposed techniques. The tool is written in C# and amounts to about 700 lines of code.
We considered as a first set of benchmarks the same IEEE 1687 networks used in [29] and a
few others generated with the same strategy, starting from the ITC02 benchmark SoCs [31];
these networks only contain SIBs. Their characteristics are summarized in Table 4.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 43

By running the tool on the selected benchmark networks we got the results reported in Table
5. For our computations we assumed that the number of clock cycles required for vector
application (which depends on the specific implementation) is equal to 5. For each network
we identified the sequence of sessions required to test it according to the algorithm in the
previous sub-section. In Table 5 we reported the sum of the configuration time (Tc), the test
time (Tt) and the total time (T) for each network (in terms of number of clock cycles). For
comparison, we also reported (Column D-first) the total time for a similar algorithm, in
which for every SIB the child labeled with D is visited first (instead of the one labeled with
A). The computation time has always been negligible (less than 1s) for all considered
networks. As the reader can notice, the proposed algorithm is always able to produce a
shorter test time than the D-first one; the difference is larger when the depth is higher and
may achieve 15% for some of the considered networks.
As a second set of benchmarks, we randomly generated a number of networks including both
SIBs and ScanMuxes.

Contents ● 44 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

Table 6 reports the characteristics of this new set. We then ran our tool on each network, and
got the results of Table 7.
By looking at the results, the reader can note first that the number of sessions identified by
the heuristic algorithm introduced in the previous sub-section is equal to d+1 (d being the
depth of the network) for the networks of the first set, while the number of sessions may be
slightly higher when ScanMuxes exist in the network (as in the second set). Moreover,
depending on the average length of the TDRs in each segment, the major component of the
test time may correspond to the Configuration time or the Test time. Also for the second set
of networks the proposed algorithm always outperforms the D-first one used as a reference,
showing that a clever choice of the sequence of sessions may reduce (sometimes
significantly) the configuration time, and thus the total test time.

Table 4: Benchmark networks – first set
 #SIBs #TDRs Depth
d695 147 147 1
p22810 30 28 2
p34392 22 19 2
p93791 49 32 3
a586710 6 5 2

Table 5: Test duration – first set of networks
 #Sessions Tc

[#cc]
Tt
[#cc]

Total
[#cc]

D-first
[#cc]

d695 2 8,533 25,299 33,832 33,979
p22810 3 31,343 93,575 124,918 125,142
p34392 3 23,630 70,720 94,350 94,432
p93791 4 97,972 489,428 587,400 587,505
a586710 3 41,998 167,935 209,933 209,949

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 45

Table 6: Benchmark networks – second set
 #SIBs #MUXs #TDRs Depth
N100D2 31 37 63 3
N132D4 39 40 92 5
N17D3 7 8 11 3
N49D0 16 18 31 1
N61D2 11 21 40 2
N88D8 32 32 56 4

Table 7: Test duration – second set of networks
 #Sessions Tc

[#cc]
Tt
[#cc]

Total
[#cc]

D-first
[#cc]

N100D2 4 4,336 11,696 16,032 18,525
N132D4 6 7,781 23,153 30,934 36,150
N17D3 5 950 2,845 3,795 4,363
N49D0 2 1,417 3,329 4,746 5,204
N61D2 4 3,207 7,771 10,978 13,041
N88D8 5 4,188 12,408 16,596 19,137

4.6 Section Summary
The increasing adoption of the recent IEEE 1687 standard raises the issue of testing

whether any permanent fault (e.g., stuck-at) affects the configurable scan chain mandated by
the standard. Since in this scenario the scan path is configurable, testing an IEEE 1687
network requires testing also the configurable modules (e.g., SIBs and ScanMuxes) it
includes. This goal can be achieved by organizing the test in a sequence of sessions, each
configuring the network so that a specific path lies between TDI and TDO, and then checking
whether the expected path can be accessed. This is accomplished by first shifting into the
path a sequence of all 0s, followed by a sequence of alternated 0s and 1s, checking whether
the same sequence appears on TDO at the end of the all 0s sequence after the expected
number of clock cycles. In this Section we described a set of rules to be matched by the set of
sessions in order to guarantee the test of all configuration modules, and then propose a
method to identify a sequence of configurations, able to detect all possible static faults
possibly affecting an IEEE 1687 network while minimizing the total test time. Some
structures allowed by the standard are not covered in this work, and we are working to the
generalization of the approach to the whole set. Extension to diagnosis is also being
considered.

Contents ● 46 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

5 IJTAG Network Optimization and Adaptation, and
Dynamic Pattern Retargeting

5.1 Introduction

In the following section, we will review the previous work in this regard, and will elaborate on
how the BASTION project will enhance the state of the art.

On-chip instruments are used in different stages of an integrated circuit’s life cycle: from
prototype debug and validation to in-field monitoring and test [31]. At any of these stages, the
relevant instruments are accessed a number of times in arbitrary combinations with other
instruments. In order to keep the access time low when there are many instruments,
reconfigurable networks described by IEEE 1687 [1] can be used. Reconfigurable networks help
to reduce access time by allowing to include only relevant instruments in the scan-path for each
access. To minimize access time, especially when there are many accesses to perform, it is
essential to reconfigure the network such that length of scan-path during each access is kept to a
minimum. Therefore, many network reconfigurations might be performed. In IEEE 1687, finding
the right reconfiguration is the task of retargeting algorithms. Briefly, retargeting is the
translation of human-readable access procedures described at instrument terminals into scan
vectors applicable at chip boundary. Retargeting process can be seen as a sequence of retargeting
steps, where each step comprises generating scan vectors for reconfiguration as well as for
performing the read and write operations on the instruments. The time it takes to generate scan
vectors in a retargeting step can be used to gauge the efficiency of a retargeting algorithm. The
effectiveness, on the other hand, can be evaluated by the application time (i.e., the volume) of the
generated scan vectors. To increase efficiency and effectiveness, it is important to optimize the
retargeting step. To perform retargeting, initial works have proposed the use of Boolean
satisfiability problem (SAT) modeling for IEEE 1687 networks [32], as well as retargeting
heuristics [33]. The work in [34] improved prior work w.r.t. effectiveness and efficiency via (1)
using a more compact SAT modeling, (2) limiting the search space while maintaining optimality
by using bounds on the number of capture-shift-update (CSU) operations, and (3) enabling
minimized number of calls to the SAT solver. The bound applied in [34] was, however,
applicable only to a subset of IEEE 1687 networks constructed from repetitions of certain
structural patterns. In this contribution, we extend [34] by proposing an upper-bound computation
method applicable to a wider range of IEEE 1687 networks. The method models the relevant
properties, such as length of shift-registers, of an arbitrary IEEE 1687 network in the form of a
Finite State Machine (FSM). From the FSM, the upper-bound is computed as the maximum
number of CSU cycles needed to take the network from any initial configuration to any target
configuration. In order to ensure the applicability of our approach to large networks, a set of
reduction techniques are described and evaluated. We have implemented the method and have
reported experimental results on a number of new and existing benchmarks. The results show that
our method yields as good upper-bound as previous work [34], but can handle a wide variety of
IEEE 1687 network designs while being still applicable to large designs.

5.2 Related Work
In this subsection, the relevant hardware features of IEEE 1687 are introduced in Subsection
5.2.1, and the retargeting concept is explained in Subsection 5.2.2.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 47

5.2.1 Instrument Access Infrastructure (Network)

A strong feature in IEEE 1687 networks is the possibility of dynamic reconfiguration, which
allows for reduction of the scan-path that are needed for current access. To enable dynamic
reconfiguration in IEEE 1687 networks, ScanMux control bits are used, which are shift-
update registers that can be placed anywhere on the scan-path to configure scan multiplexers
(ScanMux components). Figure 32(a) shows two ScanMux control bits used to configure a
network of two instruments. To program the control bits to any desired configuration, the
right values should be placed in their shift cells (denoted by S) during the Shift phase, and
copied to their parallel latch (denoted by U) during the Update phase. Clearly, for muxes with
more than two inputs, multiple control bits are used. In the following, we will use the symbol
in Figure 32(b) to represent a ScanMux controller, irrespective of how many bits it contains.
IEEE 1687 specifies the JTAG test access port (TAP) [35] as the primary interface between
the chip boundary and the on-chip network of instruments. Interfacing is performed by
connecting the IEEE 1687 network as a design-specific test data register (TDR) to the JTAG
circuitry. Since the TAP FSM is primarily used to operate IEEE 1687 networks, performing
each cycle of network configuration involves going through the capture, shift, and update
states in the FSM, which is referred to as a CSU operation [1] (hereinafter CSU).

(a) A network of two instruments, configured via two ScanMux control bits (b) Symbol

Figure 32: ScanMux Control bit (SCB)

Figure 33 illustrates a small IEEE 1687 network consisting of three instruments (namely a
DFT instrument, a sensor, and a debugging feature) and six ScanMux control bits. The
instruments are interfaced to the scan-path through shift-registers with parallel I/O. To access
the instruments, the control bits should be programmed to include the required shift-registers
in the scanpath. For example, to access only the DFT feature, C1 and C2 should be set to logic
value “1”, and C3 should be set to “0”.
Reconfiguring the network to the desired configuration might need several CSUs. For
example, assuming an initial configuration of C1 = … = C6 = 0 in Figure 33, accessing the
Debug instrument needs two CSUs. In the first CSU, only C1, C2, and C3 are accessible, and
by setting C2 = 0 and C1 = C3 = 1, C4, C5, and C6 become accessible. In the second CSU, C4,
C5, and C6 can be configured as C5 = 0 and C4 = C6 = 1, so that the Debug instrument
becomes accessible.
In Figure 33, the clock, control signals (namely, capture, shift, and update), and the select
signals used to gate the control signals are not shown. In this work, it is assumed that only the
components on the selected input of a mux get their select signal asserted. The select signal
for C1 is asserted when the TDR corresponding to this IEEE 1687 network is selected, i.e., C1
is always accessible when working with this network.

TDI

Instrument 1 Instrument 2

S

U

S

U

TDO

C
out

si so

Contents ● 48 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

5.2.2 Description Languages and Retargeting
IEEE 1687 introduces two description languages: Instrument Connectivity Language (ICL)
and Procedural Description Language (PDL). ICL is used to describe the network, i.e., how
the instruments are connected to the TAP. PDL is used to describe the operation of
instruments at their terminals. PDL commands allow to perform read/write operations on
instrument shift registers and control bits, as well as to wait for an instrument (such as a BIST
engine) to finish its operation. Using the ICL description of a network, a retargeting tool
translates PDL scripts into scan vectors that configure the network and transport the required
data between the TAP and the instruments. Retargeting tools relieve engineers from dealing
with network configuration (i.e., directly writing PDL to configure ScanMux control bits). For
example, assuming that the goal is to read the value from the sensor instrument in Figure 33,
the PDL developer might simply use a write command to activate the sensor, a wait command
to wait for the sensor to capture the value, and a read command to read the captured value out.
It is then the task of the retargeting tool to generate (1) a scan vector to configure C1, C2, and
C3, (2) a vector to configure C4, C5, and C6, (3) a vector to write to the enable bit in the
sensor’s shift-register, (4) a wait cycle of enough length, and finally (5) a vector to scan the
captured value out.
In its basic form, a PDL script is a sequence of iApply groups. In each iApply group, there are
a number of read and write operations to the registers in the network, which take effect upon
encountering an iApply command. Translating an iApply group into scan vectors can be seen
as a retargeting step. More specifically, a retargeting step is to generate a number of scan
vectors to (1) change the configuration of the network from its current state to a target
configuration in which the specified registers are accessible, and (2) to perform the read/write
operation. Each vector is then applied to the network through a CSU operation. The complete
retargeting flow for the PDL script comprises a number of such retargeting steps.

Figure 33: An IEEE 1687 network with three on-chip instruments

Debug

TDI
TDO

0
1

0
1

0
1

C2 C3C1

M3

M1

M2
DFT

Shift register
with parallel I/O

0
1

0
1

0
1

C5 C6C4

M6

M4

M5
Sensor

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 49

5.3 State-of-the-art in 1687 Retargeting

For complex IEEE 1687 networks and especially for long PDL scripts, it becomes desirable to
both speedup the retargeting process and to generate scan vectors which are optimal with
respect to the application time. To achieve these goals, a first measure would then be to
optimize the retargeting step for both run-time efficiency and effectiveness of the generated
vectors. There have been a number of works addressing retargeting for an IEEE 1687 network
[32], [33], [3], [36], [37], [3], [38]. So far, only [32], [33], [34] have addressed efficiency or
effectiveness in retargeting. What distinguishes [7] from the other works is addressing the
efficiency of retargeting when applying interactive PDL (PDL Level-1, which supports
programming language constructs such as conditions and loops) with the help of hardware
acceleration. The only works that have so far addressed efficiency and effectiveness for a
basic retargeting step are [32], [33], [34], which are discussed in this section.

Verification and pattern generation (retargeting) for reconfigurable scan networks were
presented in [32]. The work in [32] models general reconfigurable scan networks using a
structural SAT model which captures any arbitrary configuration of the network. In a typical
retargeting step, several configuration cycles should be performed to take the network from an
initial configuration to a target configuration (in which the shift registers of the required
instruments become part of the active TDI to TDO scan-path). Therefore, to capture all the
configuration cycles, the SAT model is unrolled over a number of time frames. Each of the
time frames corresponds to an atomic CSU.
That is, each individual clock cycle spent on shifting input data (or performing capture and
update operations) is not considered to be a separate configuration step, rather the whole cycle
of capturing, shifting, and updating is seen as one step. The state of each bit (inside shift-
registers and ScanMux controllers) in each time frame is then used to form a scan vector that
should be shifted in and applied (by going through the update phase) for the transition from a
frame to the next one. A sequence of such scan vectors is what a retargeting tool computes for
taking the circuit from its current configuration to a target configuration. Using the above-
mentioned scheme requires the algorithm to receive as input the number of times it should
unroll the model (i.e., the number of allowed CSUs). The choice of the number of CSUs has a
crucial impact on the resulting solution (i.e., the generated scan vectors). If the allowed
number of CSUs is too small, the target configuration might be reachable from the current
configuration (i.e., no feasible solution). Moreover, given that some solutions might be better
than the others w.r.t. access time (in terms of test clock cycles), a too small value for the
number of CSUs might exclude those better solutions from the search space. Therefore,
finding the upper-bound on the number of CSUs is essential for effective retargeting (i.e.,
generating scan vectors which are optimal w.r.t. access time). On the other hand, if the
number of allowed CSUs is too large, the generated model becomes unnecessarily large
resulting in decreased runtime efficiency, yet with no guarantee on optimality. The work in
[32] does not present an upper-bound derivation method for the number of required time
frames and assumes that the user specifies a maximum allowable number of frames.
Moreover, the generated scan vectors are not optimal regarding instrument access time. To
address these issues, [33] presents an upper-bound for the number of time frames. The
calculation of upper-bound on the number of frames, as presented in [33] can be explained as
follows. The total access time is formulated as t ൌ 2݊ ∙ ∑ ௡ܮ

௜ୀ଴ ௜, where ݊ is the number of
frames, 2 represents the number of clocks spent on applying the stimuli and capturing the

Contents ● 50 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

responses for each frame, and ܮ௜ represents the length of the scan-path for frame ݅. The upper-
bound for ݊, denoted by nbound, is presented as

nbound < [Cyclesn/2], (1)

where Cyclesn is the minimum access time achievable with n frames. According to the work in
[33], finding the global minimum is an iterative process in which after finding an initial
solution, the bound is calculated and iteratively lowered as we find solutions with smaller
access times (i.e., smaller than Cyclesn which was originally found).

Given that in real-life circuits, the access time might be in the order of thousands of clock
cycles, the bound calculated using Equation (1) will not be helpful in practice. The reason is
that, as discussed in [33], finding the optimal solution is NP-hard, hence requiring heavy
computations to search the solution space, which is limited by the upper-bound on the number
of frames. If this upper-bound is very high (that is, hundreds or even thousands of frames), the
time that it takes to find the optimal solution will be very long. Therefore, the authors of [33]
propose a heuristic for retargeting, which initially searches for the minimum number of CSUs
required to get a solution, and from that point continues the search for a better solution by
allowing a limited number of extra CSUs. There are two drawbacks with the heuristic
proposed in [33], both negatively impacting the run-time efficiency. Firstly, searching for the
minimum number of required frames involves multiple calls to the SAT solver, each with an
incremented number of allowed CSUs. Secondly, allowing extra CSUs after an initial solution
found (hoping to reach a local minimum) might be unnecessary if the solution already found
is the globally minimum solution. The work in [34] demonstrated the possibility to calculate
the upper-bound for a given network via structural analysis. The analysis in [34] is only
applicable to a particular class of IEEE 1687 networks referred to as MUX-based in [32] [33].
The analysis performed in [34] leverages the repetition of a certain structural patterns in the
same hierarchical level as well as across multiple hierarchical levels. This makes the
application of such analysis very limited as in general a network might be any arbitrary
connection of components.

5.4 BASTION Contributions
In this section, the contributions of the BASTION project regarding 1687 retargeting. In this
work, we detail an upper-bound computation method, which is applicable to arbitrarily
designed IEEE 1687 networks (as contrasted with [34]), and results in a bound low enough
for real-life retargeting applications.

5.4.1 Motivational Example
In retargeting, a solution with minimum number of CSUs is not necessarily the optimal
solution w.r.t. the number of clock cycles, as is shown in this section with the help of an
example. It is also shown that the bound calculated by using Equation (1) can be large even
for a very small example network. Moreover, it is discussed how length of instrument shift-
registers affect the number of CSUs needed for obtaining the optimal solution (i.e., the upper-
bound). It should be noted that the upper-bound analysis in [34] is not applicable to the
example in this section, as it does not contain the structural patterns required by [34].
Figure 34 shows a network of five instruments. Lengths of instrument shift-registers in this
network are as shown in

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 51

Table 8 for a number of instances we will consider. Assume that initially all control bits are
set to zero, and that we aim to access instrument I4. Accessing I4 can be done by setting C0 to
“01”. This, however, will not necessarily lead to minimum access time for I4 since
instruments I2 and I3 are then on the scan-path to I4. Therefore, it might be better to first
switch I2 and I3 off the scanpath before setting C0 to “01”. The reason for saying “might be” is
that in this example, I0 is always on the scan-path and for each access to the network, dummy
bits should be shifted through it. If length of I0 is comparable to the length of the shift-
registers for I2 and I3, its contribution to overhead cancels out the benefit from switching I2
and I3 off the scan-path. To see how the length of shift-registers affect the search process, in
the following, we will examine three instances (denoted by A, B, and C in
Table 8) of this problem more closely, where each instance differs from the others only in
length of shift-registers.

Table 8: Shift-registers’ length for the instruments in Figure 34

 Length of instrument shift-registers
I0 I1 I2 I3 I4 I5

Instance A 20 50 100 20 20 5
Instance B 20 50 70 20 20 5
Instance C 50 50 100 20 20 5
Numbers in boldface denote where the instances differ.

Instance A
The lengths of shift-registers for this instance are reported in the corresponding row in Table 8.
Assuming that initially all control bits are set to zero and the goal is to perform a read/write
operation on I4, we calculate the access time for different configuration alternatives of the
network. First, we consider the case where the only configuration performed is setting C0 to “01”.
Here, two CSUs are needed and access time is calculated as the sum of number of clock cycles
needed to (1) configure C0 in the first CSU and (2) perform one read/write on I4 in the second
CSU. The number of clock cycles for the first CSU is 1 (for C3) + 2 (for C0 which is a two-bit
register) + 20 (for I0) + 2 (to perform the update and capture operations). The number of clock
cycles for the second CSU is 160 (for instruments I2, I3, I4, and I0) + 2 (for C0) + 2 (for the update
and capture operations). In total, it takes 189 clock cycles to perform these two CSUs (marked on

Figure 34: An example reconfigurable network used in the discussion in Section 5.4.1.

I3
00

01

10

11

C0

C3

I4

0

1

I2 0

1

C2

C1

I0

I5

I1 0

1

TDOTDI

Contents ● 52 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

the plot shown in Figure 35). Alternatively, since C3 is initially on the scan-path, it can also be set
to ‘1’ in the first CSU. In this case, I3 will not be on the scan-path in the second CSU and it thus
takes 169 clock cycles in total to perform the two CSUs (also marked in Figure 35).

The two alternatives discussed above used two CSUs to access I4. That is, if we limit the
retargeting tool to unroll the model twice, the pseudo-Boolean optimization explores the
above solutions and picks the one with the lowest access time, i.e., the one with 169 clock
cycles. In the following, we explore alternative configurations with more than two CSUs.

If instead of switching C0 to “01”, we set it first to “10”, we gain access to C2 and can switch I2
off the scan-path before performing the read/write operation on I4. In this case, we use three
CSUs and the access time is calculated as 149 clock cycles in total. If we allow the retargeting
algorithm to use three CSUs, all the solutions marked with two and three CSUs on the plot are
explored and the minimum which is 149 will be chosen.

If we switch I1 off the scan-path before configuring C2, access time might be further reduced. In
this case, four CSUs are required in total and the access time is calculated as 124 clock cycles.
The plot in Figure 35 shows access time for other solutions obtainable by using four CSUs, as
well.

For this example, allowing further increase in CSUs will not yield lower access time, but will
result in growingly complex models that lower the efficiency of the retargeting algorithm. In this
regard, for this instance of the problem, the bound calculation in [33](see Equation (1)) calculates
the bound on the number of CSUs as [169/2] = 85. Since there are five control bits, unrolling the
model 85 times would result in a model with 25×85 decision variables, which should be compared
to 25×4 variables when the model is unrolled only four times.

Figure 35. Access time vs. number of allowed CSUs for Instance A.

189
169

269
249

149

294
274

174

124

0

50

100

150

200

250

300

350

0 1 2 3 4 5

A
cc
es
s
ti
m
e
 (
in
 c
lo
ck
 c
yc
le
s)

CSU cycles

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 53

Instance B
Figure 36 shows how the solution space would look like if the length of shift-register for I2 was
70 instead of 100. It is interesting to see that access time does not decrease when three CSUs are
allowed but decreases when four CSUs are allowed. This entails that a heuristic searching the
solution space by incrementing the bound on CSUs gets stuck at a local minimum. If, however,
the search algorithm is aware of a bound on the number of CSUs, it can do enough unrollings of
the model and let the pseudo-Boolean optimization find the minimal access time (as well as the
right number of CSUs).

Instance C
Figure 39 shows how the solution space would look like if the length of shift-register for I0 was
50 instead of 20. In this case, the overhead caused by shifting dummy bits through the shift-
register for I0, cancels out any potential benefit from using more CSUs used for removing I2 and
I3 from the scan-path to I4. It is important to note that in this example, if the aim was to access I2
instead of I4, the optimal solution would be obtained by using a different number of CSUs. The
same can be said for other starting configurations (i.e., other than all control bits set to zero). In
this work, however, our aim is to find an upper-bound on the number of CSUs which enables
reaching the optimal solution for any retargeting step, regardless of the starting configuration and
the set of instruments to be accessed. Therefore, in the following section, we propose a method
which computes the upper-bound on the number of CSUs as the maximum number of CSUs
needed to take the network from any initial configuration to any target configuration. Note that
the retargeting algorithm should unroll the model one extra time to account for the actual
read/write operation.

159
139

239
219

149

264
244

174

124

0

50

100

150

200

250

300

0 1 2 3 4 5

A
cc
e
ss
 t
im

e
 (
in
 c
lo
ck
 c
yc
le
s)

CSU cycles

Figure 36: Access time vs. number of allowed CSUs for Instance B.

Contents ● 54 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

5.4.2 Upper-Bound Computation Core (UCC)
As was mentioned earlier, the aim of this work is to provide a method for computation of an
upper-bound on the number of CSUs for a given network. The upper-bound helps in the
retargeting process by shrinking the solution space without removing the optimal solution from it.
In this section, we explain our generalized Upper-bound Computation Core (UCC) and discuss
how its output can be used for optimal retargeting.

 The Core: UCC
UCC consists of two steps: (1) modeling the network with an FSM, and (2) computation of the
upper-bound. In the following subsections, each of these steps is detailed. We will use the
example network in Figure 37 to describe UCC.

Figure 37: Example network used to describe UCC (5.4.2)

TDO

C1 0

10

1

C0

C2

0

1

TDI

M0

M1

M2

I2

I1

I3

I4

Figure 38: FSM showing the transitions for the network in Figure 37. Labels beside each
arrowhead represent the number of clock cycles needed to perform each transition.

000

100110

010

001

101

111

011

C2C1C0State encoding:

P1

P2

l0

l1

l0

l0

l2

l2

l2

l3
l3

l3

l6

l6

l7

l7 l4

l6l4

l4

l6

l5

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 55

1) Modeling with an FSM: The network in Figure 37 has three one-bit mux controllers C0–
C2 and thus eight possible configurations. The FSM in Figure 38 models the network in
Figure 37, where each state (encoded as the bit sequence C2C1C0) represents one of the
eight configurations, and each edge models a transition between two states. Transitions
which are from a state to itself are not considered in the model. The labels ݈௜ beside
transition arrowheads represent the number of clock cycles needed to perform the
transition. The required number of clock cycles is calculated as the sum of length (in
number of flip-flops) of components on the active scan-path (namely, shift-registers and
control bits) plus the number of clock cycles needed to perform capture and update
operations. Table 9 lists the components that are active in each of the states. For example,
݈଴ which corresponds to state 000 is calculated as sum of the length of components I2, C1,
C0, and I1, plus two clock cycles for capture and update operations. It is worth noting that
not all transitions are bidirectional, and that length of a transition is not necessarily equal
to the length of the transition in the opposite direction.

2) Computing the Upper-Bound: The FSM in Figure 38 can be used to calculate the number
of CSUs needed to transition from each of the states to any other state. The number of
CSUs is equal to the number of transitions between two states. There might be multiple
paths for transitioning between a pair of states. For example, both paths marked with P1
and P2 on the FSM in Figure 38 can be taken to change the state from 000 to 011, where

Figure 39: Access time vs. number of allowed CSUs for Instance C.

249
229

359
339

239

414
394

294

244

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

A
cc
e
ss
 t
im

e
 (
in
 c
lo
ck
 c
yc
le
s)

CSU cycles

Table 9: pPaths corresponding to each state

Sate Active components
000 I2, C1, C0, I1
001 C0, I1
010 I2, C1, C0, I1
011 I3, C2, C0, I1
100 I2, C1, C0, I1
101 C0, I1
110 I2, C1, C0, I1
111 I4, C2, C0, I1

Contents ● 56 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

P1 takes ݈଴ clock cycles and P2 takes ݈଴ ൅ ݈ଶ clock cycles. We are, however, only
interested in the number of transitions for the path that uses fewer clock cycles (which is
not necessarily the path with the fewer number of transitions). Therefore, if we derive the
shortest path between any two states s1 and s2, and compute the number of transitions
(a.k.a. number of hops) needed to achieve that shortest path, we will know how many
CSUs are needed for the transition from s1 to s2. The upper-bound, i.e., the number of
CSUs which allows to take the network from any state to any state with the smallest
number of clock cycles, can then be calculated as the maximum among the number of
hops corresponding to each pairwise shortest path. Assuming a length of 20 flip-flops for
instrument shift-registers I1–I4, Table 10 presents the number of transitions
corresponding to the shortest path between each pair of states in the FSM (Figure 38),
where the first column lists the source states and the first row lists the target states. Based
on Table 10, the upper-bound on the number of CSUs is found to be four.

 Optimal Retargeting for Small Networks
The pairwise shortest paths information obtained as described in Section 5.4.2.1 can be used to
directly generate the optimal scan vectors (w.r.t. test clock cycles) needed for retargeting. That is,
instead of using the upper-bound to unroll an ILP model and solving the resulting pseudo-
Boolean optimization, one can use the shortest paths information to find what configuration steps
should be taken for taking a network from its current configuration to a target configuration.
Since in many target configurations a superset of the desired instruments might be accessible, an
approach merely based on the shortest paths information should choose the smallest among the
shortest paths from current configuration to all those target configurations. Moreover, the length
of the scan-path for those configurations should also be taken into account. The reason, as was
discussed in Section 5.4.1, is that the actual goal in retargeting is performing read/write
operations on the instruments. Therefore, for optimal retargeting, not only the transition time
between states should be taken into account, but the time it takes to perform (at least) one
read/write should also be considered.

Table 10: Number of transitions (hops) corresponding to the pairwise shortest paths among the states in
Figure 38

This method of retargeting is, however, only applicable to small networks for which the pairwise
shortest paths can be computed efficiently. For large networks, the computation time and memory
requirements make the use of this method inefficient.

 Pessimism in the UCC Results
There are two types of transitions that might increase the upper-bound unnecessarily. The first
types are transitions that do not change the set of active components, such as transition from state
001 to state 101. The second type are transitions that do change the set of active components, but

State 000 001 010 011 100 101 110 111
000 0 1 1 1 3 3 2 2
001 1 0 2 2 4 4 3 3
010 1 1 0 1 3 3 2 2
011 2 2 1 0 2 2 1 1
100 3 3 2 2 0 1 1 1
101 4 4 3 3 1 0 2 2
110 3 3 2 2 1 1 0 1
111 2 2 1 1 2 2 1 0

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 57

the new set is achievable via other transitions with smaller number of CSUs and less than or
equal number of clock cycles. For example, states 000 and 100 activate the same set of
components, but it takes fewer clock cycles to go from 001 to 000 than from 001 to 100. These
two transition types make the computed upper-bound slightly pessimistic.

Removal of such pessimism from the UCC results should be done with care otherwise the
optimal solution to retargeting might be removed from the search space. As the aim of the current
work is to provide guarantees for optimal retargeting we leave the pessimism removal for future
work.

5.4.3 Handling large networks
The method we described in Section 5.4.2 is not directly applicable to large networks as the
number of states in the FSM model grows exponentially w.r.t. the number of control bits. In this
section, we describe three techniques (referred to as reduction here) which can help in handling
large networks. Due to the lack of space, we only detail the implementation of the decomposition
technique. We conclude this section by explaining how these reduction techniques are used in a
complete upper-bound computation flow.

 Reduction Through Decomposition

Figure 40 shows a network consisting of N segments S1–SN. Each of these segments is connected
to the rest of the network exclusively via a scan-in/scan-out pair. In this work, any such segment
is referred to as an isolated segment. In the network in Figure 40, a CSU applied to any of these
N segments is also applied to the other N-1 segments at the same time. The reason is that the
serial data goes through all the segments and the control signals are applied to (the currently
active path) in each of them at the same time. Therefore, the segment requiring maximum number
of CSUs determines the upper-bound. That is, the technique described in Section 5.4.2 can be
applied to each segment Si individually to compute the upper-bound for that segment (denoted as
݊௕,௜), and the upper-bound for the whole network can be calculated as ݉ܽݔ௜ୀଵ

ே ݊௕,௜. Through
decomposition, the worst-case complexity of upperbound computation for the original network is
reduced to that of upper-bound computation for the segment containing the highest number of
control bits.

5.4.3.1.1 Impact of Decomposition on Upper-Bound
The upper-bound computed via decomposition might be slightly higher than what would be
computed if UCC was directly applied to the original network (and therefore, higher than what is
actually needed for optimal retargeting). The reason can be explained by referring to the
motivational example network in Figure 34, which can be seen as combination of two isolated
segments: s1 containing instrument I0, and s2 containing the rest of components. We observed for
Instance C of that example that an increase in the length of I0 (from 20 to 50) caused a decrease in
the number of CSUs needed for optimal access to I4 (from 4 to 2). Seen the other way around,
going from Instance C to Instance A, which decreases the length of I0, causes an increase in the
number of CSUs needed for optimal retargeting. The same effect is present in decomposition as it

Figure 40: A network consisting of N isolated segments.

S1TDI ... SN TDOS2

Contents ● 58 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

removes other segments from each other’s scan-path. This increased number of required CSUs
calculated for each isolated segment, might make the upper-bound computed by the use of
decomposition slightly pessimistic.

5.4.3.1.2 Performing Decomposition
We will now use the example network in Figure 41(a) to explain how to distinguish isolated
segments. In this figure, the network components belonging to different isolated segments are
marked with colored areas. For more clarity, each of the three isolated segments is also marked
with a number. Compared to the conceptual illustration of isolated segments presented in Figure
40, in which it is clear where on the scan-path an isolated segment begins and ends, it is less
straightforward to identify all isolated segments in the network in Figure 41(a). Given the
exponential complexity of the presented UCC technique w.r.t. number of control bits, it is crucial
to identify more (and consequently smaller) isolated segments in a given network.

In the following, a two-step procedure for identification of isolated segments is presented. In the
first step, we identify network segments connected to each other in series on the scanpath

(hereinafter candidate segments). In the second step, based on the control dependencies between
these candidate segments, we group them to form isolated segments.

 (a) Example network

 (b) Corresponding directed graph with control signals denoted by dashed edges

 (c) Corresponding directed graph without control signals (scan-path-only graph)

 (d) Corresponding undirected graph after removing output edges of all vertices on the chain of idoms

Figure 41: Decomposition example

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 59

a) Step 1: The graph in Figure 41(b) models the network in Figure 41(a), where the control
signals are represented by dashed lines. In identification of candidate segments, we use
the concept of graph dominators. In a directed graph, a vertex v1 dominates vertex v2 if
all the paths going through v2 pass first through v1. For example, in Figure 41(b), vertex
SI dominates all vertices in the network. However, SI is only immediate dominator (called
idom) to I5 and M7. There are efficient algorithms to find idoms for vertices in a graph
[39]. Dominators help to identify where on the scan-path a candidate segment starts and
ends. For example, C7 marks where isolated segment 1 finishes and isolated segment 2
begins on the scan-path. If, however, we apply the concept of dominators directly to the
complete network graph in Figure 41(b), we fail to identify segment 3 as an isolated
segment. Therefore, we instead apply the graph dominators algorithm to a scan-path only
copy of the graph (in which control signals are removed) shown in Figure 41(c). Based on
the results, we create a chain of idoms for the scan-path-only graph by going from the
scan-out (SO) towards the scan-in (SI). The chain will be as SI → M7 → C7 → M5 → C5
→ M4 → C4 → M3 → M1 → C1 → SO, which reads as SO is immediately dominated by
C1, which is in turn immediately dominated by M1, and so on. The vertices on this chain
mark entry and exit points of candidate segments.

b) Step 2: The key to grouping candidate segments into isolated segments is detecting
control dependencies between those candidate segments. That is, if there is a control
signal connecting two candidate segments, those segments should be grouped and
analyzed as one segment. To detect such dependencies, we use a copy of the network
graph in which the output edges of all vertices on the chain of idoms are removed, as
shown in Figure 41(d). Moreover, this graph is converted into an undirected graph, as the
aim is to find connected network components irrespective of the order they appear on the
scanpath. To identify which of the candidate segments should be grouped together, we use
the concept of connected components in graph theory. A connected component in an
undirected graph is a set of vertices in which any two vertices are connected. It should be
noted that the a “graph component” is a set of vertices, and in our problem maps to an
isolated segment, and not to a “network component”. After applying the connected
components algorithm, the isolated segments are identified as marked with the colored
areas in Figure 41(d). The algorithm also identifies SI and SO as isolated segments, which
we ignore.

In this example, there were no instruments in the chain of dominators, as there was no instrument
directly on the scan-path between scan-in vertex SI and scan-out vertex SO. When there are
instruments on the chain, they can be ignored, because if we form separate isolated segments for
them, the upper-bound for that segment is zero (simply because there are no control bits in such
an isolated segment).

Figure 42: Example structures for the “lookup”
technique Type I

Figure 43: Example structures for the “lookup”
technique Type II

MTDI TDO

S1

SN

... C
TDO

C2 0

10

1

C1TDI

S

Contents ● 60 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

 Reduction Through “Lookup”
Another technique for handling upper-bound computation for large networks is to recognize
structures for which we know how to calculate the upper-bound. As an example, consider the
structure shown in Figure 42. Here, the assumption is that each of the segments S1–SN is isolated
(in the sense defined in Section 5.4.3.1). The first point to note is that in any retargeting step, only
one of the inputs to mux M can be active. That is, only one of the segments S1–SN should be
configured, and therefore, it suffices to consider only the segment which requires the largest
number of CSUs. For the structure shown in Figure 42, the upper-bound for the whole structure
can be computed as 1 ൅	݉ܽݔ௜ୀଵ

ே ݊௕,ଵ , where ݊௕,௜ is the upper-bound computed for segment Si,
and 1 represents the CSU needed to configure mux M itself. Another example is the structure
shown in Figure 43, for which the upper-bound for the whole structure is the upper-bound for
segment S plus two [34].

Figure 44: An example rewriting technique

C1 0

10

1

C0

C2

0

1

C1 0

10

1

C3

C2

0

1

0

1
C4

S2S1

(a) SIB-based (here, the internals of a SIB module
are shown)

(b) MUX-based

Figure 45: The two variants of p34392 benchmark used in [32]

Module 0Module 1

TDI TDO
Inputs

Module 2

...
...Outputs

Inputs Outputs
Scan-
chain

Module 0
Module 1

TDI
TDO

Inputs Outputs

Inputs Outputs
Scan-
chain

Module 2

...

...

...

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 61

 Reduction Through Rewriting
The idea in rewriting is to create a network which is equivalent to the original network w.r.t. the
upper-bound on the number of CSUs, but can be handled by the above-mentioned decomposition
techniques. An example of rewriting is presented in Figure 44 where the network to the left is
rewritten by duplicating control bit C0 along with its associated mux. The resulting network (to
the right) can then be reduced by using the technique in Section 5.4.3.1, as each of the segments
marked by S1 and S2 are isolated. Note that although the functionality of the rewritten network is
different from the original network, the upper-bounds of both networks are equal.

 The Complete Upper-Bound Computation Flow
In the following, we describe our complete upper-bound computation flow, which is based on the
use of UCC (described in Section 5.4.2) and the reduction techniques described earlier in this
section. Initially, the rewriting method is used to create a new network that has the same upper-
bound as the original network. The computation of the upper-bound starts by applying
decomposition, which distinguishes one or more isolated segments. The lookup technique is then
applied to each of these segments. If the lookup does not recognize any known structures, UCC is
performed on the segment. However, if the lookup recognizes a structure, it calls the
decomposition technique on the isolated segments it has identified. In other words, the upper-
bound computation consists of a number of mutual calls between the decomposition and lookup
methods. When an isolated segment is not recognized by the lookup function, UCC is applied to
it. The upper-bound computed for each segment is then used to compute the upper-bound for the
whole network by using the formulas described for each of the reduction techniques.

5.4.4 Experiments
The described analysis and reduction techniques for computing the upper-bound for IEEE 1687
networks have been applied to a set of representative benchmarks which consists of three groups
of networks. The first group contains networks which are constructed manually such that they are
not decomposable by the methods described in Section 5.4.3 (see Figure 46). Here, the proposed
upper-bound computation core (i.e., UCC) has to be applied on the complete network. The
second and third groups are introduced in [32], and their networks are based on ITC’02 [30]
benchmarks. In the second group, the networks are implemented by using Segment Insertion Bit
(SIB) modules. As an example of such SIB-based implementation, Figure 45(a) illustrates the
RTL network structure for the benchmark p34392. In the third group, the networks are
implemented by using a daisy-chained architecture, referred to as MUX-based in [33] (see Figure
45(b)). Additionally, we report the results for the network shown in Figure 41(a), which was used
to explain the decomposition technique. For all benchmarks, the length of instrument shift-
registers is assumed to be 20 flip-flops.

The results obtained by evaluating the techniques proposed in this paper are summarized in Table
11. The first two columns of the table list the names and the total number of control bits for each
benchmark network. The third column reports the maximum number of control bits required to
model indecomposable sections within the network. This information is important since the
number of control bits significantly impacts the run-time of UCC. It can be observed that for
those benchmarks tailored to be indecomposable, namely, N1–N5, the proposed reduction
techniques do not succeed to reduce the number of control bits. In contrast, the number of control
bits is reduced for the network in Figure 41(a) from seven to five, which can be explained by the

Contents ● 62 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

decomposition of that network into three isolated segments the largest of which contains five
control bits (Figure 41(a)). On the other hand, if the reductions are successfully applied, such as
for the set of SIB-based and MUX-based benchmarks, the generation of an FSM and the
application of UCC can be completely omitted. The reason is that for networks in the second and
the third groups, the reduction techniques decompose the networks into a number of isolated
segments each containing only one instrument shift register. As was mentioned in Section
5.4.3.1, the upper-bound for an isolated segment containing only instrument shift-registers is
zero—hence no need for applying UCC.

The computed upper-bounds are listed in column four. The computed upper-bound denotes the
maximum number of CSUs needed to reconfigure the network. In order to perform the actual

read/write operation an additional CSU is required (see Section 5.4.1). In comparison to the
upper-bound computation proposed in [34], which could only be applied to MUX-based
benchmarks, the new method generates identical results while being applicable to a wide variety
of IEEE 1687 network designs. The upper-bound values computed by the approach in [34] are
reported in column five.

The described reduction techniques, such as rewriting, decomposition, and lookup, are evaluated
in the columns six to eight. The reported run-times are the total sum over all the application cases
of each of these techniques for each of the benchmarks. For the first set of benchmarks the run-
time of the reduction techniques is negligible. Applying the reduction techniques to the largest
among SIB-based and MUX-based benchmarks (i.e., p93791) requires up to more than a total of
10 minutes of run-time. As was mentioned earlier in this section, there is no UCC run-time
required for the benchmarks in the second and third groups.

Figure 46: Five networks that cannot be decomposed by the methods mentioned in Section 5.4.3

0

1

2

3

C1TDI

C2

C3

C6

C4

C5

C7

C9

C10

0

10

1

0

1

0

10

1

0

1

0

1

0

1

C11 0

10

1

I1

I2

I3

I4I5

I6I7

I8

C8

0

1

2

3

C1 TDO

C2

C3 0

10

1
I2

I1

C4

C5

C6

0

1
0

1
I4

I3

0

1

TDI

0

1

2

3

4

C1 TDO

C2

0

1

C3

0

1

C4

0

1
I1

I2

0

1
I3

C6

0

1

C7

0

1

C8

0

1
I4

I5

0

1
I6

C10

0

1

C11

0

1

C12

0

1
I7

I8

0

1
I9

C5

C9

C13

TDI

N4

N2

N5

0

1

2

3

C1 TDO

N1

C2

0

1

I1

C4

C3

0

1

I2

C5

TDI

0

1
I4

0

1
I3

TDOC1

0

1

C2C3

TDI

0

1

2

30

1
I1

0

1
I2

0

1
I3

C6

C5

C4

0

1

0

1

2

30

1
I4

0

1
I5

C9

C8

I6 N3

C7

TDO

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 63

The run-time for generating the FSM after reduction is listed in column nine. As was explained in
Section 5.4.2.1, to compute the upper-bound from the generated FSM, the shortest path between
each pair of states should be computed. To do so, we evaluated two well-known shortest path
computation algorithms, namely, Dijkstra and Floyd-Warshall. The Dijkstra algorithm finds the
shortest path between a given source state and all target states, and is therefore run once for each
state in the FSM. The run-time reported for Dijkstra algorithm in column 10, is the sum of the
run-times for each source state. The Floyd-Warshall algorithm is, on the other hand, an all-pairs
shortest paths algorithm and finds the shortest path between each pair of states in the FSM in one
run. The run-time for the Floyd-Warshall algorithm is reported in column 11. The observation
from our experiments is that the Dijkstra algorithm performed especially well on large FSMs
(namely, for benchmarks N3–N5), whereas the alternative Floyd-Warshall algorithm required
slightly less runtime on small FSMs. In general, the Floyd-Warshall algorithm has higher
complexity (compared to running Dijkstra once for each source state) when the FSM is a sparse
graph. Both algorithms delivered the same results.

Table 11: Experimental Results

Benchmark Number
of
control
bits

Largest
number
of bits
seen by
UCC

Upper-bound Reduction run-time in milliseconds UCC run-time in milliseconds

This
work

[34] Rewriting Decomposition Lookup FSM
generation

Computation
(Dijkstra)

Computation
(Floyd-
Warshall)

The following networks are presented in the current work:

Figure 41(a) 7 5 5 - 1.0 1.8 3.3 0.4 0.5 0.0
N1 6 6 5 - 0.7 0.7 1.1 1.0 1.7 0.2

N2 7 7 12 - 1.0 0.6 1.1 1.6 3.7 1.0

N3 11 11 8 - 0.8 0.7 2.5 44.2 643.2 2277.3

N4 12 12 7 - 1.2 0.7 0.0 122.3 4931.0 39548.5

N5 15 15 11 - 1.2 0.7 1.2 1799.1 529376.0 16730000.0

The following are SIB-based networks from [32]:

a586710 39 0 3 - 3.1 56.7 185.5 0 0 0
d281 58 0 2 - 2.6 105.3 380.1 0 0 0

d695 167 0 2 - 8.0 998.1 3554.6 0 0 0

f2126 40 0 2 - 1.7 52.9 174.9 0 0 0

g1023 79 0 2 - 3.8 213.5 730.9 0 0 0

h953 54 0 2 - 3.9 104.3 353.7 0 0 0

p22810 282 0 3 - 20.3 3330.7 12535.4 0 0 0

p34392 122 0 3 - 5.3 478.8 1673.1 0 0 0

p93791 620 0 3 - 64.0 21743.3 89488.7 0 0 0

q12710 25 0 2 - 1.7 26.2 85.7 0 0 0

t512505 159 0 2 - 6.9 822.3 2873.8 0 0 0

u226 49 0 2 - 2.0 70.3 237.2 0 0 0

The following are MUX-based networks from [32]:

a586710 47 0 6 6 7.5 95.1 402.3 0 0 0
d281 67 0 4 4 10.3 216.0 935.2 0 0 0
d695 178 0 4 4 39.0 2094.6 10068.8 0 0 0
f2126 45 0 4 4 4.8 96.3 407.5 0 0 0
g1023 94 0 4 4 15.8 401.9 1752.3 0 0 0
h953 63 0 4 4 8.1 187.3 818.6 0 0 0
p22810 311 0 6 6 84.8 7371.7 38070.4 0 0 0
p34392 142 0 6 6 42.9 991.0 4471.3 0 0 0
p93791 653 0 6 6 226.4 55051.0 312816.0 0 0 0
q12710 30 0 4 4 6.0 44.9 183.8 0 0 0
t512505 191 0 4 4 53.3 1802.3 8534.1 0 0 0
u226 59 0 4 4 8.2 138.6 613.7 0 0 0

Contents ● 64 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

5.4.5 Future Work
As was mentioned in Sections 5.4.2.3 and 5.4.3.1.1, there might be cases where the computed
upper-bound is pessimistic. That is, the computed value is higher than what is actually needed for
optimal retargeting. These cases should be investigated and addressed in our upper-bound
computation method. Additionally, the proposed upper-bound computation method can be further
developed to recognize more structures for lookup and rewriting. Finally, in computing the
upper-bound in this work, we made no assumptions on the initial and the target configurations.
The benefit of this relaxation is that the upper-bound computation needs to be done only once at
the beginning of the retargeting process. The resulting upper-bound can then be used for all
retargeting steps in that retargeting process. On the other hand, if the initial and target
configurations are considered in the computation of the upper-bound, the computation should be
performed once for each retargeting step. In this case, the result will be a tighter bound tailored to
that step, which increases the retargeting efficiency. Therefore, the trade-off between (1) saving
time by running the upper-bound computation once at the beginning of the retargeting process,
and (2) saving time by faster retargeting steps should be investigated.

5.5 Section Summary
For the problem of optimal retargeting for IEEE 1687 networks, the shrinking of the solution
space is highly important in order to ensure efficient generation of the shortest scan vectors. This
can be done by providing bounds on how many capture-shift-update operations have to be
considered in the retargeting process. To provide such bounds, we proposed in this work a
method for the computation of upper-bound on the number of capture-shift-update operations. In
comparison with prior work, the proposed method uses a number of techniques that make it
applicable to a range of complex and large IEEE 1687 networks. By applying the approach to a
set of benchmarks, it is shown that the method is able to efficiently provide tight bounds for
complex and large benchmark networks.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 65

6 Conclusions

This report concludes the BASTION activities regarding the task T3.2, which focuses on error
detection and diagnosis in IJTAG networks. The presented contributions provide solutions to
support several related issues in error detection and diagnosis. The contribution described in
Section 3 proposes new methods to connect different blocks of complex designs in a hierarchical
manner in order to enable effective and efficient testing while applying reconfigurable scan
networks.
Additionally the contribution in Section 2 extends previously described contributions to
efficiently propagate errors through IJTAG networks. The presented contribution provides
details of the hardware implementation of the infrastructure in particular focusing on the
implementation of the instrument manager that essentially performs online dynamic retargeting
on regular hierarchical IJTAG networks. The remaining two contributions focus on generating
and minimizing test patterns to test the IJTAG network as well as retargeting other test pattern in
order to ensure efficiency and effectiveness of the resulting test pattern.

In the following, the discussed contributions are mapped onto the KPIs formulated in the DoW
document.
KPI1: Improvement of the efficiency of aging fault detection and relaxation by at least 30%.
The efficiency in the context of aging fault detection and relaxation can be seen as a combination
of the following factors:

a) ability to effectively predict accumulation of aging effects in a circuit (adequacy of
checkers and sensors in terms of early detection of aging effects);

b) ability to effectively prevent accumulation of aging effects in a circuit (adequacy of
proposed rejuvenation and mitigation techniques);

c) ability to quickly detect intermittent faults in aged modules of the circuit (speed of fault
detection and localization);

d) ability to quickly isolate faults and prevent error propagation in the aged system (speed of
recovery from a fault);

e) HW overhead introduced by the instrumentation and data collection infrastructure;
f) minimizing circuit performance impact caused by the instrumentation and data collection

infrastructure.
This deliverable specifically addresses items c) through f), while items a) and b) are considered in
D3.3. The contribution of this deliverable to item c) and d) in terms of fast alarming of the OS
about fault detection is given in Section 2.5. Section 5 is further contributing here by providing
optimization frameworks for IJTAG network design and retargeting. Fault isolation (item d)) is
also addressed in Section 3. Item e) is covered by KPI6 (see below) and addressed in Sections 2
and 3. Item f) is achieved due to the fact that BASTION approach is relying on reuse of test
infrastructure (IJTAG networks), which is not interfering with the system’s normal functions.

KPI6: Linear complexity with respect to the size of chip of the major monitoring and handling
parameters.
In BASTION, the Fault Management strategy relies on IEEE 1687 reconfigurable scan networks
(RSN) and IJTAG-compliant embedded instrumentation (checkers, monitors, sensors, etc.) as
described in Section 2. Arranging instruments in balanced tree-like RSNs allows keeping HW
overhead linear with respect to the number of instruments, while fault localization time would
follow a logarithmic (better than linear) trend. Assuming that in a multi-core system, the number
of instruments in a core would be rather constant, the HW overhead caused by the instruments

Contents ● 66 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

and RSNs is also linear with respect to the size of the chip. The additional relative overhead of
adding the Instrument Manager (FSM), one per chip is better than linear. The contributions in the
area of test generation and retargeting support this KPI by efficiently using given test
infrastructures and by providing test patterns which are minimized with respect to the test length.

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 67

7 Bibliography

[1] IEEE, "IEEE Standard for Access and Control of Instrumentation Embedded within a
Semiconductor Device," p. 1–283, December 2014.

[2] N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip, Springer US,
2011.

[3] R. Baranowski, M. Kochte and H.-J. Wunderlich, "Modeling, Verification and Pattern
Generation for Reconfigurable Scan Networks," in International Test Conference, Nov.
2012.

[4] J. Rearick and A. Volz, "A Case Study of Using IEEE P1687 (IJTAG) for High-Speed Serial
I/O Characterization and Testing," in Proc. IEEE Int’l Test Conf. (ITC), Oct. 2006.

[5] M. Keim, T. Waayers, R. Morren, F. Hapke and R. Krenz-Baath, "Industrial Application of
IEEE P1687 for an Automotive Product," in Euromicro Conference on Digital System
Design (DSD), Sep. 2013.

[6] A. Jutman, S. Devadze and J. Aleksejev, "Invited paper: System-wide fault management
based on IEEE P1687 IJTAG," in Int. Workshop on Reconfigurable Communication-centric
SoCs (ReCoSoC), 2011.

[7] E. Larsson and S. Kenneth, "Fault management in an IEEE P1687 (IJTAG) environment," in
Proc. IEEE Int’l Symp. Design and Diagnostics of Electronic Circuits Systems (DDECS),
2012.

[8] K. Shibin, S. Devadze and A. Jutman, "Asynchronous Fault Detection in IEEE P1687
Instrument Network," in Proc. IEEE North Atlantic Test Workshop (NATW), 2014.

[9] A. Jutman, S. Devadze and K. Shibin, "Effective Scalable IEEE 1687 Instrumentation
Network for Fault Management," in Design Test, IEEE, 2013.

[10] K. Petersen, D. Nikolov, G. Carlsson, F. Zadegan and E. Larsson, "Fault Injection and Fault
Handling: An MPSoC Demonstrator using IEEE P1687," in Proc. IEEE International On-
Line Testing Symposium (IOLTS), 2014.

[11] K. Shibin, S. Devadze and A. Jutman, "On-line Fault Classification and Handling in
IEEE1687 based Fault Management System for Complex SoCs," in Proc. 17th IEEE Latin-
American Test Symposium (LATS’2016), 2016.

[12] G. Ali, A. Badawy and H. Kerkhoff, "Online Management of Temperature Health Monitors
using the IEEE 1687 Standard," in Test Standards Application Workshop (TESTA), 2016.

[13] F. Zadegan, D. Nikolov and E. Larsson, "A Self-Reconfiguring IEEE 1687 Network for
Fault Monitoring," in Proc, European Test Symposium (ETS), 2016.

[14] A. Ibrahim and H. Kerkhoff, "Analysis and Design of an On-Chip Retargeting Engine for
IEEE 1687 Networks," in Proc, European Test Symp. (ETS), 2016.

[15] M. Portolan, "A Novel Test Generation and Application Flow for Functional Access to IEEE
1687 instruments," in Proc, European Test Symp. (ETS), 2016.

[16] A. Jutman, K. Shibin and S. Devadze, "Reliable Health Monitoring and Fault Management
Infrastructure based on Embedded Instrumentation and IEEE 1687," in Proc. of
AUTOTESTCON’2016, 2016.

[17] M. Portolan, B. Van Treuren and S. Goyal, "Executing IJTAG: Are Vectors Enough?," in

Contents ● 68 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

IEEE Design & Test, 2013.

[18] E. J. Marinissen and Y. Zorian, "Challenges in Testing Core-Based System ICs," IEEE
Communications Magazine, vol. 37, no. 6, 1999.

[19] Y. Zorian, E. J. Marinissen and S. Dey, "Testing Embedded-Core-Based System Chips,"
IEEE Computer, vol. 32, no. 6, pp. 52-60, 1999.

[20] IEEE Standard 1500-2005 "IEEE Standard Testability Method for Embedded Core-based
Integrated Circuits", New York: IEEE, 2005.

[21] O. Sinanoglu and T. Petrov, "Isolation Techniques for Soft Cores," IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, vol. 27, no. 8, August 2008.

[22] T. L. McLaurin, "The Challenge of Testing the ARM Cortex-A8 Microprocessor Core," in
IEEE International Test Conference (ITC'06), 2006.

[23] A. L. Crouch, "IJTAG: The Path to Organized Instrument Connectivity," in IEEE
International Test Conference, 2007.

[24] S. Makar and E. McCluskey, "ATPG for Scan Chain Latches and Flip-Flops," in IEEE VLSI
Test Symposium, 1997.

[25] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. Reddy and I. Pomeranz, "On the
Detectability of Scan Chain Internal Faults – An Industrial Case Study," in IEEE VLSI Test
Symposium, 2008.

[26] F. Ghani Zadegan, U. Ingelsson, G. Asani, G. Carlsson and E. Larsson, "Test Scheduling in
an IEEE P1687 Environment with Resource and Power Constraints," in Asian Test
Symposium (ATS), Delhi, Nov. 2011.

[27] A. Dahbura, Ü. Uyar and C. Yau, "An Optimal Test Sequence for the JTAG/IEEE P1149.1
Test Access Port Controller," in IEEE International Test Conference, 1989.

[28] S. Makar and E. McCluskey, "ATPG for Scan Chain Latches and Flip-Flops," in IEEE VLSI
Test Symposium, 1997.

[29] S. Makar and E. McCluskey, "On the Testing of Multiplexers," in IEEE International Test
Conference, 1988.

[30] F. Ghani Zadegan, U. Ingelsson, G. Carlsson and E. Larsson, "Access Time Analysis for
IEEE P1687," IEEE Transactions on Computers, vol. 61, no. 10, pp. 1459-1472, 2012.

[31] E. J. Marinissen, V. Iyengar and K. Chakrabarty, "A set of benchmarks for modular testing
of SOCs," Proc. ITC, p. 519–528, 2002.

[32] J. Rearick, B. Eklow, K. Posse, A. Crouch and B. Bennetts, "IJTAG(Internal JTAG): A Step
Toward a DFT Standard," in Proc. International Test Conference (ITC), 2005.

[33] R. Baranowski, M. A. Kochte and H.-J. Wunderlich, "Scan Pattern Retargeting and Merging
with Reduced Access Time," in IEEE European Test Symposium (ETS'13), 2013.

[34] R. Krenz-Baath, F. G. Zadegan and E. Larsson, "Access Time Minimization in IEEE 1687
Networks," in Proc. International Test Conference (ITC), 2015.

[35] A. IEEE, "IEEE Std 1149.1-2001, IEEE Standard Test Access Port and Boundary-Scan
Architecture," 2001.

[36] Y. Fkih, P. Vivet, B. Rouzeyre, M.-L. Flottes, G. D. Natale and J. Schloeffel, "2D to 3D Test
Pattern Retargeting Using IEEE P1687 Based 3D DFT Architectures," IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), p. 386–391, July 2014.

[37] M. Portolan, B. Van Treuren and S. Goyal, "Executing IJTAG: Are Vectors Enough?,"
IEEE, vol. 30, no. 5, pp. 15-25, Oct 2013.

[38] F. G. Zadegan, U. Ingelsson, E. Larsson and G. Carlsson, "Reusing and Retargeting On-Chip

Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis Contents ● 69

Instrument Access Procedures in IEEE P1687," IEEE, vol. 2, no. 29, p. 79 –88, April 2012.

[39] T. Lengauer and R. Tarjan, "A Fast Algorithm for Finding Dominators," Transactions on
Programming Languages and Systems, vol. 1, no. 1, July 1979.

[40] F. Ghani Zadegan, U. Ingelsson, G. Carlsson and E. Larsson, "Design Automation for IEEE
P1687," in Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, Mar. 2011.

[41] F. Ghani Zadegan, G. Carlsson and E. Larsson, "Robustness of TAP-Based Scan Networks,"
in International Test Conference, Seattle, Oct. 2014.

[42] K. Shibin, S. Devadze and A. Jutman, "Asynchronous Fault Detection in IEEE P1687
Instrument Network," in NATW, 2014.

[43] K. Yamasaki et al., "External Memory BIST for System-in-Package," in International Test
Conference, 2005.

[44] A. Carbine and D. Feltham, "Pentium(R) Pro Processor Design for Test and Debug," in
International Test Conference, 1997.

[45] Z. Conroy et al., "Board Assisted-BIST: Long and Short Term Solutions for Testpoint
Erosion – Reaching into the DFx Toolbox," in International Test Conference (ITC), 2012.

[46] Margulis et al., "Evolution of Graphics Northbridge Test and Debug Architectures Across
Four Generations of AMD ASICs," Design & Test, vol. 30, no. 4, pp. 16-25, Aug. 2013.

[47] S. Alstrup, D. Harel, J. Clausen and M. Thorup, "Dominators in linear time," SIAM Journal
on Computing, vol. 28, no. 6, p. 2117–2132, 1999.

[48] A. Biere, A. Cimatti, E. M. Clarke and Y. Zhu, "Symbolic model checking without BDDs,"
5th International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS’99), p. 193–207, March 1999.

[49] N. Eén and N. Sörensson, "An extensible sat-solver," Theory and Applications of
Satisfiability Testing, 6th International Conference, no. Selected Revised Papers, p. 502–
518, 5-8 May 2003.

[50] N. Eén and A. Biere, "Effective preprocessing in SAT through variable and clause
elimination," Theory and Applications of Satisfiability Testing, pp. 61-75, 19-23 June 2005.

[51] N. Eén and N. Sörensson, "Translating pseudo-boolean constraints into SAT," Boolean
Modeling and Computation, vol. 2, pp. 1-26, 2006.

[52] S. Eggersglüß, K. Schmitz, R. Krenz-Baath and R. Drechsler, "Optimization-based multiple
target test generation for highly compacted test sets," 19th IEEE European Test Symposium,
ETS 2014, p. 1–6, 26-30 May 2014.

[53] M. Gebser, B. Kaufmann, A. Neumann and T. Schaub, "Conflict-driven answer set solving,"
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, p. 386, 6-12 January 2007.

[54] R. Krenz-Baath, A. Glowatz and F. Hapke, "Fault collapsing of multi-conditional faults,"
16th IEEE International Symposium on Design and Diagnostics of Electronic Circuits &
Systems, DDECS 2013, p. 42–47, 8-10 April 2013.

[55] C. Liu, A. Kuehlmann and M. W. Moskewicz, "CAMA: A multi-valued satisfiability
solver," 2003 International Conference on Computer-Aided Design (ICCAD’03), p. 326–
333, 9-13 November 2003.

[56] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering an
efficient SAT solver, Las Vegas, Nevada: Proceedings of the 38th ACM/IEEE Design
Automation Conference, 2001, p. 530–535.

Contents ● 70 Report on methods for IJTAG network adaptation and

optimization for error detection and diagnosis

[57] J. P. Marques-Silva and K. A. Sakallah, "GRASP: a search algorithm for propositional
satisfiability," IEEE Transactions on Computers, vol. 5, no. 48, p. 506–521, 1999.

[58] N. Eén and N. Sörensson, "Temporal induction by incremental SAT solving," vol. 4, no. 89,
2003.

[59] D. Tille, R. Krenz-Baath, J. Schloeffel and R. Drechsler, "Improved circuit-to-CNF
transformation for SAT-based ATPG," IEEE European Test Symposium, 2008.

[60] K. Yang, K.-T. Cheng and L.-C. Wang, "Trangen: a SAT-based ATPG for path-oriented
transition faults," Proceedings of the 2004 Asia and South Pacific Design Automation
Conference, p. 92–97, 2004.

[61] J. Baumgartner, A. Kuehlmann and J. A. Abraham, "Property checking via structural
analysis," Proc. 14 Intl. Conference on Computer Aided Verification (CAV’02)., p. 151–165,
2002.

