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Executive Summary 
This document reports on the work in BASTION on hierarchical design 
and test, fault management, fault handling procedures, and a novel 
rejuvenation technique to mitigate in-field ageing faults.  
The work is part of Task 3.3, where Testonica, Infineon, University of 
Lund, Tallinn University of Technology and Politecnico di Torino have 
contributed.  

The work makes use of results from T3.1, T3.2, and T2.1 (fault 
classification, instrument design and network topologies), and the overall 
objective is to address the top-level management schemes to collect 
information from instruments, classify errors, perform appropriate action 
(e.g. ageing fault isolation/relaxation) and eventually create reports for 
NFF study. In particular, work has been performed to handle the 
increasing complexity with techniques for hierarchical design and test by 
partitioning the designs into smaller partitions. For fault management, a 
mathematical framework analyzing the effect on non-equidistant check-
pointing. The results show a possibility to improve reliability. We also 
describe a general fault handling methodology and present a realistic fault 
management scenario. For rejuvenation, preliminary results gathered on a 
small but representative processor show that the method can achieve an 
improvement in the maximum delay increase over a 10 years period of 
43%: this result seems promising, as it goes in the direction of allowing an 
extended circuit life time, with very limited impact on performance and no 
changes in the circuit structure. 

The document is organized as follows. First we discuss background 
and the state-of-the art. Next, new contributions are described and the 
deliverable is concluded with a summary of the obtained results, and a list 
of references. 
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1 Introduction 
This deliverable reports result performed by BASTION partners on hierarchical test 
and fault management methodology and field learning.  

1.1 Structure of the Document 
This report is structured as follows. In Section 2, we give the background on 
hierarchical design and test, fault management, and rejuvenation. In Section 3, we 
detail state of the art on hierarchical design and test, fault management, and 
rejuvenation. In Section 4 we describe our contributions on hierarchical design and 
test, in Section 5 we detail our contributions in respect to fault management, and in 
Section 6 we detail the contributions on rejuvenation. Section 7 summarizes the 
deliverable.  

2 Background 
In this section we give background information on hierarchical design and test 
(Section 2.1), fault management (Section 2.2) and rejuvenation (Section 2.3).  

2.1 Hierarchical Design and Test 
In this section, we discuss design partitioning, pattern retargeting, and test coverage.  

2.1.1 Design Partitioning 
For a hierarchical test the overall design has to be partitioned into multiple smaller 
pieces. Each partition needs to be isolated with dedicated design measures to allow a 
stand-alone test of the isolated hierarchy independent of the surrounding design 
modules. There are different aspects to be considered for the partitioning. The way 
how the design partitions are chosen has not only an impact on the testability and 
error handling capabilities, but affects also typical design parameters like area, timing 
and routability. In addition, the selection of the partitions has a direct impact on the 
design process regarding tool runtimes, memory requirements and setup effort. For 
the design partitioning strategy all the different aspects need to be considered and a 
trade-off fulfilling as many requirements as possible has to be found. 

2.1.2 Pattern Retargeting 
A hierarchical test approach consists of two major steps. At first the test content for 
the used test instruments needs to be defined and the module level test patterns need 
to be generated for the chosen design partitions. The functionality and test coverage of 
these module-level tests is verified considering the later-on design integration scheme. 
The second step is to transfer and map the module-level tests to the next level of 
hierarchy until the chip-level is reached. For IJTAG based test instruments this pattern 
retargeting is based on the ICL and PDL descriptions. For other test patterns like scan 
the pattern retargeting task mainly consists of mapping the used module level pins to 
the upper hierarchy. In case the number of available top-level pins is not sufficient to 
access all test partitions in parallel, a top-level test strategy is required to schedule the 
test execution. This test plan needs to be supported by related design measures 
multiplexing the different modules-level pins to the available test pads. 
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2.1.3 Test Coverage 
When using a hierarchical test approach the tests are developed on module-level or for 
the stand-alone test instruments. On this level not only the tests are prepared, but also 
the test coverage is checked and debugged. When analyzing the test coverage on 
module level the impact of the later-on chip-level integration needs to be considered. 
Even if the modules are isolated and should be independent from the later-on 
surrounding system, the isolation itself needs to be taken into account for the test 
coverage evaluation. 

For judging the overall test quality, the test coverage number for the complete 
design has to be looked at. Therefore, the calculated coverages of the modules need to 
be combined to get the overall chip-level value. 

2.2 Fault Management 
In this section we detail background in respect to fault management. A fault 
management solution needs to enable correct operation in presence of faults. Recent 
computer systems are increasingly susceptible to soft errors, which can cause 
incorrect operation. To maintain correct operation in the presence of soft errors, it is 
important to employ fault tolerance techniques to detect and recover from soft errors. 
However, these techniques often introduce a time overhead. For a vast group of 
computer systems, correct operation is defined as producing the correct response 
within given time constraints (deadlines). These computer systems are known as real-
time systems (RTS). Employing fault tolerance techniques in RTS may result in 
deadline violations due to the introduced time overhead. Therefore, it is necessary to 
optimize the fault tolerance technique, such that the probability of meeting the 
deadlines is maximized. To measure the probability that a job competes before a 
given deadline, the statistical concept Level of Confidence (LoC) can be used. Thus, 
for RTS, it is important to optimize the fault tolerance technique with the goal to 
maximize the LoC with respect to a given deadline. Roll-back Recovery with 
Checkpointing (RRC) is well-known technique that copes with soft errors.  

In RRC, a job is duplicated and simultaneously executed on two processing 
nodes. During the execution, a number of checkpoints (intermediate states of job’s 
execution) are taken from both processing nodes and the checkpoints are compared 
against each other. If the checkpoints match, that is an indication that no errors have 
occurred since the previous checkpoint and therefore, the current checkpoints are 
saved as a safe state from which the job can resume its execution. If the checkpoints 
mismatch, that is an indication that errors have occurred in at least one of the 
processing nodes and therefore, the job is restarted from the latest saved checkpoint. 
While RRC enables correct operation in the presence of soft errors, it introduces time 
overhead due to taking, comparing and saving/loading checkpoints. The number of 
checkpoints used in RRC affects the completion time, i.e. the time required for the job 
to complete. If no errors occur, using less checkpoints reduces the completion time 
(completion time increases linearly with the number of checkpoints). However, if 
errors occur, using more checkpoints reduces the completion time due to the lower re-
execution penalty (portion of a job between two successive checkpoints). This shows 
that the number of checkpoints should be carefully selected such that RRC is 
optimized. For RRC, different optimization goals exist.  

Fault Management is also based on the ability of the system to collect low-
level health status information about its building blocks that can be provided by 
various checkers, sensors and monitors. Rapid emergence of embedded 
instrumentation as an industrial paradigm and adoption of respective IEEE 1687 
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standard [1] by key players of semiconductor industry opens up new horizons in 
developing efficient test, debug and health monitoring frameworks. The IEEE Std 
1687 also shortly called IJTAG has been initially started as an initiative to standardize 
access to on-chip embedded instrumentation, like monitors, sensors and checkers as 
well as DFT (Design-for-Testability) infrastructure, various BIST (Built-In Self-Test) 
and trace data collection solutions for system and software debug [2]. The IJTAG 
concept embraces also the paradigm of Reconfigurable Scan Networks (RSN) [3] and 
has become a very attractive industrial solution for both scan-based manufacturing 
test and system debug [2], [4], [5]. An architectural extension to IJTAG for system 
health-monitoring and Fault Management (FM) has been presented in BASTION 
D2.3. Instrument synchronization, calibration and triggering approached have been 
introduced in D2.1. The Health Map composition together with respective fault 
classification scheme, and initial fault handling scenario have been proposed in D3.1. 
In this deliverable we describe general fault handling methodology and present a 
realistic Fault Management scenario. 

2.3 Rejuvenation 
In this section, the background on rejuvenation is detailed. Lifetime reliability is a key 
challenge in current nanoscale semiconductor design and manufacturing processes. 
One of the most critical downsides of technology scaling beyond the 65nm node is the 
non-determinism of the devices’ electrical parameters caused by time-dependent 
variations  [6] in the operating characteristics of the device (aging). Bias Temperature 
Instability (BTI), and Hot Carrier Injection (HCI), which are identified as two 
essential sources of time-dependent variations [7], result in degradation of the oxide, 
thus causing a shift of the Threshold Voltage (VTH) over time. In terms of magnitude, 
BTI has become the most prominent effect. It manifests in two distinct forms, 
depending on the type of transistor involved: Negative BTI (NBTI), which affects 
pMOS transistors, and its counterpart Positive BTI (PBTI), which affects nMOS 
devices. In current technologies, the impact of PBTI is much lower than NBTI. 
Therefore, we specifically focused first on the Negative Bias Temperature Instability 
(NBTI) phenomenon [8]. It is worth mentioning that the importance of PBTI is 
expected to increase, particularly with the adoption of high-k, Hafnium-based 
dielectrics in the gate-oxide for leakage reduction. [9].  

 
Figure 2.1 (a) Illustration of NBTI stress and recovery phases; (b) CMOS invertor gate under 
NBTI stress. 
 
 NBTI is defined as the effect that occurs when a pMOS transistor is negatively 
biased. The effect manifests itself as an increase of the pMOS transistor threshold 
voltage |VTHp| over time (see Figure 2.1). This leads to drive current reduction and 
noise increase, which in turn causes an increase in the device delay. NBTI’s impact on 
the long-term stability of functional logic is expressed through the incapability of 
storing a correct value in memory elements such as flip-flops. This effect is due to the 

a)   b)
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de-synchronization between clock distribution and signal propagation through the 
logic paths of a circuit. Therefore, after several years of circuit operation, the NBTI-
induced delays may cause, first, intermittent faults and, ultimately, permanent 
functional failures in the circuit. [10].  
 Different from state-of-the-art, in our work a novel approach (based on hierarchical 
modeling) is used to calculate the gate and path delay degradations caused by NBTI 
aging. Moreover, we propose a method to generate suitable stimuli, able to slow down 
the typical NBTI effects, thus increasing the circuit life time. To the best of our 
knowledge, this is the first time that evolutionary algorithms are applied to the task of 
rejuvenation programs generation. The proposed methodology does not require 
redesign and can be applied to an existing circuit even already deployed in the field, 
exploiting, if necessary, the existing design-for-testability instruments.  

3 State of the Art 
In this section we describe state of the art in respect to hierarchical design and test 
(Section 3.1), fault management (Section 3.2) and rejuvenation (Section 3.3).  

3.1 Hierarchical Design and Test 
Hierarchical test is a well-established technique for core-based SoCs. In essence, a 
SoC is a composition of a set of cores implementing various functionalities that are 
integrated by adding some glue logic. Typically, designers of SoCs will try to 
maximize the reuse of existing cores to speed up the development process and to meet 
time-to-market targets. Consequently, cores are mostly adapted from previous design 
projects or are sourced from external vendors. Depending on their origin, cores are 
available on different levels of hardware description. In [11] three types of cores are 
differentiated: soft cores implemented on RTL, firm cores described as a gate-level 
netlist, and hard cores provided as a technology-dependent layout. 

The mixture of soft, firm, and hard cores integrated in a SoC heavily 
influences the test architecture of that device. Hard cores, for example, require an 
isolation wrapper (e.g. IEEE1500) to be placed at the physical boundary of the core. 
This facilitates test access, and enables reuse of test patterns that were provided by the 
creator of the core. Thus, as already mentioned, for core-based SoCs, i.e. devices 
containing hard cores, hierarchical test is a natural choice. Numerous publications on 
test access, test generation, and test optimization for core-based SoCs are available. 
As a starting point refer to [11] [12] [13]. 

For a SoC that integrates soft and firm cores, however, the implementation of 
isolation wrappers is optional. From the perspective of test, these devices may simply 
be treated as a monolithic flat netlist. According to conventional wisdom, ATPG will 
actually produce the best test pattern sets when operating on such a flat top-level 
netlist. Recently it has been demonstrated in [14], that hierarchical test is beneficial 
for these monolithic SoCs as well. 

Compared to core-based SoCs there is an additional degree of freedom when 
implementing hierarchical test in SoCs containing soft and firm cores. For soft cores 
the location of the isolation wrapper is no longer fixed at the physical boundary of a 
core. Rather the location of the wrapper may be optimized to reduce area, test time, 
test data volume, and to improve the at-speed test coverage at the core’s interface (see 
[15]). 

The problem of optimizing core wrappers, however, cannot be solved locally 
at core-level only. Rather it is tightly linked to the overall partitioning of the SoC, see 
[14]. As hierarchical test is now being extended beyond the scope of a single IC, the 
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partitioning of a SoC has to respect the additional requirements of embedded 
instrumentation and in-field test as well. In Chapter 4, we present a survey of all 
requirements affecting the partitioning of SoCs including those for embedded 
instrumentation and in-field test. 

3.2 Fault Management 
In this section, we focus on the usage of RRC as a major component in a fault 
management solution. Most of the research work on RRC focuses on average 
execution time (AET). Ziv et al. have presented a technique to analyze the AET of 
four different checkpointing schemes based on task duplication [16]. In a previous 
work, we have derived an expression to calculate the optimal number of checkpoints 
that results in the minimal AET [17]. Nakagawa et al. have analyzed the AET for 
three different checkpointing schemes based on double modular redundancy and 
derived analytical expressions for optimal checkpoint intervals [18]. Common 
assumption in these studies is that the checkpoints are evenly distributed throughout 
the execution of the job (equidistant checkpointing). Analyses on AET when 
checkpoints are not evenly distributed (nonequidistant checkpointing) are presented in 
[19] [20] [21]. Ziv et al. have proposed an on-line algorithm for checkpoint placement 
with the goal to minimize the AET, and they have shown that the proposed algorithm 
results in a lower AET when compared against an equidistant checkpointing scheme 
where fixed checkpointing intervals are used [21]. Shin et al. have analyzed the AET 
for a basic model (perfect error coverage) and an extended model (imperfect error 
coverage) [20]. They have shown that for the basic model equidistant checkpointing 
intervals minimize the AET. However, that is not necessarily the case for the extended 
model, where they minimize the AET under a reliability constraint. While achieving 
minimal AET is important, minimal AET does not provide any guarantees that 
deadlines in RTS are met.  

Since for RTS it is crucial to meet the deadlines, some studies have analyzed 
RRC with respect to worst case execution time (WCET). Zhang et al. have proposed 
schedulability tests for RTS where RRC is used, assuming that the number of faults is 
bounded to a fixed number [22]. However, it is difficult to predict the number of 
errors that can occur within an interval of time. When RRC is employed in RTS, the 
number of checkpoints used affects the probability to meet the deadlines. To measure 
the probability that a job completes before a given deadline, in a previous work, we 
have used the statistical metric LoC [23]. In our previous work, we have derived an 
expression to calculate the LoC with respect to a given deadline, and proposed a 
method to obtain the optimal number of checkpoints that results in the maximal LoC 
[23]. Furthermore, we showed that the number of checkpoints that minimizes the AET 
results in a much lower LoC, with respect to a given deadline, compared to the 
maximal LoC that can be achieved, [23]. Kwak et al. derived a reliability equation 
over a mission time, i.e. the probability that the deadline is met, for a single real-time 
control task while using Markov models [24]. In another study, Kwak et al. discuss 
multiple real-time tasks and derive an explicit formula of the probability that all tasks 
are successfully completed with a given set of checkpoint intervals [25]. Using 
Markov model, Kwak et al. calculate the probability of task completion against faults 
that occur in a Poisson process for a checkpoint scheme [26]. The common 
assumption in all these studies is that the checkpoints are evenly distributed 
throughout the execution of the job, i.e. equidistant checkpointing scheme. Zhang et 
al. have presented an adaptive checkpointing scheme to achieve fault tolerance and 
power reduction in embedded RTS [27]. In [27], the authors showed that by using the 
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proposed adaptive checkpointing scheme, which in a general case can be considered 
as non-equidistant checkpointing scheme, the likelihood of timely task completion in 
the presence of faults is increased. Still, the results are obtained by simulation, and no 
mathematical framework is presented to calculate the probability to meet a given 
deadline when the checkpoints are not evenly distributed.  

Another aspect of BASTION’s fault management strategy relies on IEEE 1687 
compliant instrumentation and scan networks as a health and diagnostic data 
collection infrastructure. IEEE 1687 has recently become a hot research topic, with 
rapidly growing amount of studies being published these days, hence facilitating the 
standard’s wide industrial adoption. The research hype has been recently facilitated by 
a dedicated set of IEEE 1687 network benchmarks [28], [29] enabling experimental 
research and comparison of results across different teams. This benchmark set was 
developed by the BASTION consortium. 

The research wave around IJTAG is led by studies addressing security aspects of 
test access infrastructure. A formal framework to verify whether an unauthorized 
access to target network segments is possible has been presented in [30]. Available 
access management methods either protect the access port [31], [32], [33], or 
particular instruments by protecting SIB access  [34], [35], [36], [37]. The most 
advanced methods rely on cryptographic codes [32], [36] or LFSR [37]. Test and 
diagnostics of IJTAG and RSN infrastructure has also received a due attention (see 
[38] , [39], [40]). 

Expected large-scale adoption of IEEE 1687 standard and respective 
infrastructure by chip vendors created an important opportunity to reuse IJTAG in the 
field. An extension to IJTAG for system health-monitoring and Fault Management 
(FM) has been proposed in [41] and [42] and further elaborated in [43], [44], [45], 
[46], [47], [48]. Recent works focusing on implementation challenges of on-chip 
IJTAG retargeting engines [49] and on-the-fly retargeting framework  [50] also 
consider instrumentation reuse in the field. Reliability and fault tolerance of IJTAG 
networks during online FM operation has been detailed in [51]. 

3.3 Rejuvenation 
Previous works appearing in the literature address the NBTI problem both for 
memories  [52], [53] and for functional logic. Usually, to mitigate the impact of NBTI 
on the circuit’s lifetime these approaches adopt redesign strategies, voltage and 
frequency scaling and internal node control guided by monitoring attributes or design 
structure analysis. The work in  [54] proposes a redesign approach for functional 
logic based on a transistor sizing technique to mitigate NBTI-induced delay; the 
method requires the knowledge about the critical gates and paths to which it should be 
applied. Otherwise, this technique will result in an unacceptable area overhead and 
excessive power consumption. In  [55] the authors present a method for NBTI-aware 
synthesis by characterizing the delay of every gate in a standard cell library as a 
function of the input signal probability (Pz). It demonstrates an average of 10% area 
recovery for 65nm technology under the pessimistic assumption that all pMOS 
transistors in the design are under constant static NBTI stress. Since the calculation 
process in  [56] and [55] is based on electrical SPICE simulations, allowing the 
derivation of aging curves for each logic component, it is also prohibitively time 
consuming. This is due to an extremely large number of stress recovery cycles that 
have to be computed. There are works, e.g., [57], that propose an approach for 
temporarily hiding NBTI-induced aging by changing voltage and frequency of the 
circuit.  
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Approaches to analyze the efficiency of controlling input signal probability for 
mitigating NBTI at circuit level were proposed in [58], [59]. Works in [60], [61] 
propose to exploit the idle time of processors and unused bits in source operands [62]. 
A relevant approach for processor circuit aging reduction is presented in [63], where 
authors propose to replace the default NOP with a special “maximum aging reduction 
NOP instruction” that, while having no effect on the program state, minimizes the 
NBTI effect. The results show that this method can extend circuit lifetime by an 
average of 37%, with performance, power, and area overhead within 1%. 
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4 Hierarchical Design and Test 
In this section, we will detail our contribution on hierarchical design and test in 
respect to design partitioning (Section 4.1), pattern retargeting (Section 4.2), and test 
coverage (Section 4.3).  

4.1 Design Partitioning 
For the hierarchical test the overall design is broken down into smaller parts that can 
be tested independently. The partitioning strategy of the design cannot focus only on 
the test and debug requirements, but needs to consider also all other design and 
implementation aspects. Usually the partitions that are chosen for the hierarchical test 
match the implementation hierarchies. In theory test and implementation hierarchies 
could differ, but this would significantly complicate the design process. 

There are many aspects to be considered for the design partitioning. The main 
considerations are discussed in the next sections. 

4.1.1 Number of Partitions 
Before concentrating on the strategy how to partition the design, the first question is 
how many partitions should be used. There are different reasons to partition the 
overall chip-level design. One reason is the intended hierarchical test allowing the test 
of some components stand-alone independent from the surrounding system. Here the 
overall test strategy and requirements are important, e.g. are there some critical 
modules that need to be periodically checked in the system. Another motivation for 
the design partitioning is dealing with circuit complexity. With increasing design sizes 
today’s implementation tools come to their limits from the run time point of view and 
from the required IT infrastructure e.g. the needed amount of memory. For huge 
designs it is no longer feasible to perform a flat top-down implementation approach 
considering the complete design in one step. Instead a modular approach is required. 
First the partitioned modules are implemented before they are integrated into the chip-
level design. 

Even if with an increased number of design partitions the implementation 
complexity issues can be solved and a fine granular test and debugging is possible, 
there are some drawbacks with the hierarchical implementation and test. The more 
partitions are used the higher is the setup effort for the configuration of the 
implementation and test tools. For each partition design and timing constraints need to 
be applied. For each partition also the intended functionality needs to be verified and 
for the test appropriate test patterns or test sequences need to be generated. The 
number of design partitions does not only affect the setup effort, but also influences 
the implementation results. For the physical implementation optimizations can no 
longer be performed over the partition boundaries. This might lead to some area or 
timing penalties at the module boundaries. For the structural test the scan chain 
lengths might differ for the different modules and there might be some test coverage 
issues introduced by the module level test isolation. In general, the hierarchical design 
and test approach might lead to some non-optimal solutions at the module boundaries.  

As a result, the number of design partitions has to be a trade-off between the 
desired or required partition needs and the related setup and implementation 
drawbacks. A reasonable number of partitions might be in the range of e.g. ten 
separate design modules. All the partitions should have comparable sizes to benefit 
most from the complexity reduction.  
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4.1.2 Interfaces 
One main aspect for the design partitioning are the interfaces of the chosen design 
partitions. Depending on where and how the functionality is split into separate design 
partitions, the resulting interfaces between the hierarchical modules contain more or 
less interface signals. From the testability point of view, it is desirable to minimize the 
number of interface signals. Each interface pin requires some kind of test isolation 
[64]. The isolation effort and the number of scan wrapper cells used for the module 
isolation increase with the number of interface pins. The number of required scan 
wrapper cells determines the length or amount of the isolation wrapper scan chains. 
Especially for the interface test on top-level it is beneficial to have only a small 
amount of wrapper cells per module, as this simplifies the top-level scan configuration 
(see Section 4.2.3.5). In case dedicated isolation cells are used the related area 
overhead is another reason to minimize the number of interface pins. 

From the design implementation point of view, a limited number of module 
interface pins is also helpful as this reduces the top-level routing between the design 
partitions. On the other hand, the module interfaces cannot only be defined based on 
test and implementation demands. For the module-level verification it is required to 
have interfaces that are reasonable from the functional point of view. Splitting tightly 
linked functionality over the hierarchy boundaries would complicate the module 
verification and debugging. 

Another interface aspect is the amount of combinational logic related to the 
interface pins. For the test and its related module isolation it is preferable to have 
registered input and output pins. This eases sharing of functional registers for the 
isolation cells and reduces the module-level test coverage impact caused by the 
isolation wrappers (see also Section 4.3.2). Even if registered module pins also 
significantly ease meeting the top-level timing constraints, they are not always desired 
from the architectural point of view. The output register of one partition followed by 
the input register of the next partition build a kind of pipeline stage requiring an extra 
clock cycle to propagate data through the interface. This extra latency is not always 
acceptable for timing critical interfaces as it might reduce the overall system 
performance. 

4.1.3 Clock domains 
Another important aspect for the design partitioning strategy is the number of 
functional clock domains per partition. Ideally each hierarchical module should use 
only one functional clock frequency. While different asynchronous clock frequencies 
should be prevented wherever possible, using one master clock and synchronous 
divided clocks per hierarchy might be still acceptable without major drawbacks. 

One reason for minimizing the number of clocks is the local clock control 
logic required in each design partition. The hierarchical test approach requires for 
both LBIST and for the productive scan test patterns that the generated test clock 
sequences are self-contained within the tested module. At the boundary of the test 
partition usually a (slow) always running test clock is provided. This clock is used as 
the source for the scan shift operation and the slow-speed capture for static fault 
models. For the delay test additional (fast) at-speed clock sources are required, which 
are usually provided by on-chip PLLs. Derived from the provided clock source the 
clock control logic provides the desired sequence of clock pulses in the capture phase. 
For the delay test the clock control logic also needs to handle the clock switching 
from the test clock used during scan shift to the at-speed clock source used during 
scan capture. Such a clock control block is required for each (asynchronous) clock 
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domain. Therefore, the area overhead and implementation effort increases with the 
number of clocks used in a partition. 

Another reason for minimizing the number of clocks per test partition is the 
handling of timing exceptions. In synchronous designs usually all data needs to 
propagate through the combinational logic within one clock cycle before it is latched 
into the next register stage. For some exceptionally slow paths it might be sufficient 
that the data is valid after two or more clock periods. Such paths are considered as a 
so-called “multi-cycle paths”. For so-called “false paths” there might be no timing 
constraints at all. For a LBIST targeting delay defects these timing exceptions cause 
problems. For the detection of any timing related defects the clock used in the LBIST 
capture phase has to be an at-speed clock with the functional clock frequency. 
Transitions exercised on these exceptional timing paths would result in an 
unpredictable value being captured at the receiving registers as they are operated 
faster than expected. For a MISR that is typically used to compress the test responses 
of a LBIST operation, it is essential that only predictable values are captured. A single 
unknown value compressed into the MISR would corrupt the final signature and 
prevent the LBIST operation. Therefore, all timing exception paths require special 
handling to prevent unpredictable data from reaching the MISR. For a LBIST based 
on pseudo-random test stimuli these timing paths cannot be blocked by constraints in 
the patterns. Instead the blocking needs to be done in hardware. The paths with 
unreliable timing could be blocked e.g. by multiplexers selecting a different data 
source in LBIST mode. The handling of these timing exceptions is one of the major 
efforts for implementing a LBIST targeting delay defects.  

Also for the (deterministic) production test patterns these timing exceptions 
have some impact. They do not prevent testing, but if on-chip test data compression 
techniques are used, unknown values reduce the effective compression rate. As most 
of these timing exceptions are usually defined between different (synchronous) clock 
domains, a partitioning minimizing the clock domains per test hierarchy helps to 
reduce the number of timing exception within a test hierarchy.  

4.1.4 Power Domains and Test Power Consumption 
Power domains are another aspect to be considered for the design partitioning. It is 
recommended to minimize the number of power domains per test hierarchy. When 
using very few or just one power domain per test partition, this can help dealing with 
excessive test power consumption. 

Especially for scan-based structural tests the power consumption can be 
significantly higher than in functional operation mode. Clock gating cells, which are 
used to save power in functional mode, have to be transparent during the scan shift 
phase. This means while shifting data through the scan chains each scan register is 
clocked. For the LBIST operation there is also a very high switching activity for the 
data on the scan chains as usually pseudo-random stimuli are used. A comparable 
scan switching activity is also seen for normal pattern-based tests using compressed 
scan test data. This extraordinary high switching activity can lead to power related 
instabilities or even prevent the intended test execution. 

The hierarchical test approach provides new possibilities to address the high 
test activity. Instead of operating all test partitions in parallel, a sequential test 
approach can reduce the overall chip-level test power consumption. While certain test 
hierarchies are tested the other partitions can be kept idle. Especially when the 
partitions are separated based on power domains, it is possible to completely switch 
off power domains that are not required for a certain test scenario. Such a power 
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domain based test can reduce the overall test power consumption, but it does not solve 
local power issues e.g. voltage drops caused by too high switching activity within a 
test partition. 

Another advantage of using a partitioning based on power domains is that the 
required power isolation might be reused for the test. At the boundary of a power 
domain dedicated power isolations cells are required to ensure a known output values 
when the power domain is switched off. These isolation cells could be also beneficial 
for the hierarchical test providing some module isolation capabilities. 

4.1.5 Error Localization and Error Handling 
For the in-system test which is performed especially in safety critical applications it is 
often not sufficient to detect a failure, but it is also necessary to know which 
component has failed. This basic error localization is required for judging the severity 
of the detected error and for initiating the appropriate error handling actions. The 
hierarchical test by itself directly provides the simple diagnostic information which 
test partition has failed. The error localization capabilities increase with the number of 
test partitions, but for the reasons described in Section 4.1.1 it is not recommended to 
split the design into a large number of very small partitions. Measures to further 
improve the error localization within a test partition have been discussed in [65]. 

Even if the number of test partitions is limited, the error handling capabilities 
can be improved when they are already considered during the design partitioning. One 
approach is to partition the design by clearly separating safety critical components 
from less critical modules. This helps to considerer the safety risk for the error 
handling in case a test is failing in the system. In addition, this partitioning allows 
having more and stricter tests for the safety critical modules. Another approach is to 
partition the design based on functional importance. Based on the failing component it 
might be acceptable to switch off the defective part accepting some performance loss 
or limited functionality. When the error handling strategy contains fallback 
mechanisms like rescheduling of tasks or the replacement of faulty components by 
spare parts, it is essential that the test partitioning allows the identification of the 
defective modules. 

4.1.6 Optimization Possibilities 
The design partitioning should consider potential optimizations possibilities. Often 
designs contain some functional modules that are used multiple times. In this case it is 
advisable to partition the design in a way that such a functional module is mapped to 
its own design hierarchy which is then instantiated multiple times. Using the same 
design partition multiple times in the overall chip has several benefits.  

First of all, the design effort is reduced as the module has to be implemented 
and verified only once. The same is true for the test related tasks like LBIST fault 
simulation, scan test pattern generation and verification. For the scan test patterns 
there is another significant advantage if the same test hierarchy is instantiated multiple 
times. In this case each instance requires exactly the same test stimuli. Therefore, the 
input data can be shared between the instances reducing the scan data volume. 

4.1.7 Other Partitioning Aspects 
There are some other aspects to be taken into account for the circuit partitioning. One 
consideration is IP reuse. In some cases, one IP block might be used for multiple 
products. In this case it is beneficial to use a dedicated design partition for this 
module. The advantage is that this block needs to be implemented only once and can 
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be directly reused as is in the next product. The same is true for the test data. Module-
level test patterns or test sequences can be reused without changes in a later design. 
This significantly reduces the generation and verification effort. 

Another point to be considered for the partitioning is the organizational design 
project setup. The development of complex designs is often spread over different 
development sites. Different design teams provide different components for the 
overall product. This distributed development implies some natural partitioning based 
on how the work is split. 

4.1.8 Summary 
There are many different aspects to be considered for the design partitioning (see 
Figure 4.4.1). In some cases, the different partitioning goals are conflicting. For some 
of the parameters also the design implementation and test partitioning goals might be 
contradicting. Therefore, there is not one optimal solution to partition the design. 
Instead a trade-off is required taking into account all the different aspects and trying 
to achieve the goals for most of them while not violating any constraints in an 
unacceptable way. 
 

 
Figure 4.4.1: Design partitioning aspects 

 
For some partitioning decisions the impact on the implementation is not 

always immediately visible. If there are some unforeseen implementation problems 
(e.g. the timing cannot be met, routing is not possible due to massive congestions), it 
might be required to modify some partitions in the design phase to solve the issue.  
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To allow a flexible partitioning a script environment has been developed that 
automates the design partitioning on RTL level. After assigning the functional 
modules to a certain partition the tool generates the RTL descriptions for the partition 
entities and creates the required connections. 

Today it is still a manual decision how to partition the design. In future it would 
be desirable to automate this step or to have at least a tool supported decision. 
Attributes for the functional modules could contain information about the partition 
aspects (e.g. used clock domains, power domains). Based on some weighting 
functions and some constraints (e.g. maximum number of partitions) a reasonable 
partition scheme could be generated. 

4.2 Pattern Retargeting 
Pattern retargeting describes the task of propagating the test content from the 
embedded test instruments up the hierarchies to the level where the test should be 
executed. This is usually the chip-level, but pattern retargeting could also be used to 
propagate tests further to the board-level or even system-level. 

For pattern retargeting different kinds of tests need to be considered. In 
Section 4.2.1 the retargeting of test sequences of IJTAG controlled test instruments is 
described. Here a special focus is on a dynamic retargeting approach. Another typical 
area of application for pattern retargeting is the structural scan based test for digital 
logic. The general mapping of module-level scan test patterns to higher hierarchy 
levels is discussed in Section 4.2.2. A related special topic is the top-level scan test 
strategy addressed in Section 4.2.3. 

4.2.1 Test control sequences (IJTAG) and Dynamic Retargeting  
Pattern retargeting for IJTAG-based test instruments is based on the two standardized 
descriptions languages “Instrument Connectivity Language” (ICL) and “Procedural 
Description Language” (PDL). The ICL contains the structural information about the 
implemented test features, the used pins and their connection. The PDL describes the 
test procedures supported by a test instrument. 

The pattern retargeting consists of two steps. First the ICL network for the top-
level needs to be generated or extracted. If the IJTAG infrastructure has been inserted 
by an IJTAG tool, usually this tool also generates the top-level ICL description. In 
case the IJTAG connections have been implemented manually as part of the design 
process the top-level ICL needs to be extracted. The extraction is based on structural 
tracing of the test signals in the design. Based on the ICL containing the information 
how the test instruments are connected into the design the pattern retargeting can be 
performed. The test sequences defined in the PDL need to be mapped from the 
instrument-level through the IJTAG network to the top-level. 

Usually during the retargeting process just the available procedures of the PDL 
are called using some parameter values if required. The result is the generated test 
sequence that can be applied from the tester. In some cases, the generation of these 
onetime generated “static” test sequences is not sufficient. Instead some “dynamic” 
retargeting is required to actively react on some test results. This means the test 
sequence cannot be generated upfront prior to the test, but needs to be adjusted 
dynamically during the test execution. 

An example for a test requiring such a dynamic retargeting is the debugging of 
LBIST failures. The test sequence for the initial pass/fail LBIST operation can be 
retargeted from the PDL as described above. For this static go/no-go test the LBIST 
can be set up using only few parameters (e.g. the pattern count). Once this standard 
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LBIST has been executed and a failure has been detected by a non-matching final 
MISR signature the debug process for identifying the root cause can be started.  
The first debug phase needs to identify the failing LBIST patterns. For this purpose 
still a static test could be used. Instead of running the complete LBIST and checking 
the MISR signature at the very end, for debugging each LBIST pattern could be 
executed stand-alone. This requires that for each pattern the pseudo-random pattern 
generator (PRPG) can be initialized with the pattern-specific seed. The same is 
necessary for the MISR which needs to be initialized with the golden signature that 
would have resulted from the fault-free LBIST run up to the current pattern. By 
executing each LBIST pattern separately and by checking each resulting MISR 
signature, all failing LBIST patterns can be identified. 

Alternatively, the first failing LBIST pattern could be identified by a dynamic 
procedure using a binary search algorithm. Instead of executing the complete LBIST 
the MISR signature would be checked after half of the patterns. Depending on this 
MISR signature it can be concluded if the first fail occurs in the first or second half of 
the complete LBIST operation. Based on this test result the LBIST would be run for 
the failing half again checking the MISR value after half of the remaining patterns. 
This search can be continued until the first failing LBIST pattern is identified. As the 
next step of this search algorithm is based on the previous test result, the pattern 
retargeting process providing the required test sequences needs to be configured 
dynamically. This means the overall debug sequence cannot be generated upfront, but 
needs to be created when executing the test. As different devices usually would show 
different fails, the required debug sequence would be device-specific. 

While the identification of the failing patterns could be done using a static or 
dynamic pattern retargeting approach, the next step of the debug process always 
requires dynamic retargeting. After the failing LBIST patterns have been identified, 
additional debug information is required for finding the root cause of the failing 
behavior. One approach is to stream out the uncompressed data of the failing patterns. 
This means the failing LBIST pattern is executed by loading the scan chains from the 
PRPG as usual, but after the capture phase the scan architecture is reconfigured 
forming long traditional scan chains and the data is shifted out through available top-
level pins bypassing the MISR. With this approach the internal registers capturing the 
wrong data can be found without any uncertainty allowing an analysis of the root 
cause by traditional scan diagnosis methods. As it is unknown in advance for which 
LBIST patterns these kind of special diagnosis sequences are required, these patterns 
need to be dynamically created. This means the retargeting process calling the debug 
procedure described in the PDL can only be started after the failing LBIST patterns 
have been identified. It is usually not feasible to store the debug sequences for all 
LBIST patterns upfront in the tester memory as the data volume of the uncompressed 
shift-out values would be very large. 

4.2.2 ATPG Test Patterns 
Scan pattern retargeting translates the module-level test patterns to the chip-level 
design for the later-on execution at the tester. The scan pattern retargeting does not 
involve any ATPG. In its simplest form it just maps the patterns from module-level to 
chip-level pins. 

Pattern retargeting needs to be considered already during the initial test pattern 
generation on module-level. The module-level test patterns have to be independent 
from the design integration. Therefore, an isolation wrapper is required at the module 
boundary breaking the data paths from and to the surrounding system [64]. While this 
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pin isolation has to be available for all functional data pins, there are some test control 
signals that have to be directly controllable without any isolation. Such non-isolated 
test control signals are the test clocks and the scan enable signal (used for switching 
between scan shift and functional capture). In addition, there are usually some test 
mode pins for configuring the different test modes. These pins either control the test 
modes directly or provide access to some serial test data registers. After the test mode 
is configured in an initialization phase these pins are usually kept constant while the 
test is executed. 

Due to the limited availability of package pins the test control signals are 
usually shared for the chip-level test pattern retargeting. This means all test partitions 
that should be tested in parallel are using the same scan control signals resulting in a 
synchronized test execution. A shared scan enable signal leads to a common scan shift 
phase even for the case of different scan chain lengths used in different test partitions. 
For the modules with shorter scan chains some over-shift cycles are added during the 
pattern retargeting process to balance the shift phase between different test partitions. 
To minimize these over-shift cycles and to improve the overall efficiency of the 
retargeted scan patterns the scan chains of parallel test modules should be balanced 
using comparable lengths. Even if individual scan control pins would be available, 
today’s retargeting tools could not make use of them and they would still align the 
module level patterns during the retargeting step. 

Similar tool limitations exist for the used scan clocks. Today’s ATPG tools 
allow only a fixed clocking sequence for the module-level capture phases. This means 
even if the module-level scan clock would be directly controllable by a chip-level pin, 
the ATPG tool would not support different clocking schemes for different capture 
phases. Therefore, already for the stuck-at pattern generation usually a module-
internal clock control circuit is required to enable different clocking schemes for 
different patterns. 

For the delay test the situation is even more complex. The capture clocking 
scheme is usually configured by scan flip-flops. For the module-level ATPG run these 
configuration registers need to be part of the module-level scan chains. It is not 
possible to do some dynamic clock switching based on configuration registers outside 
of the test partition. All configuration bits need to be part of the module-level pattern 
set. 

The pattern retargeting process for a hierarchical scan test flow consists 
mainly of mapping the scan test data used at the module-level boundary to the chip-
levels pins. At first a chip-level test setup sequence needs to be provided setting all 
the used test partitions into the desired test mode. In addition, this initialization 
sequence needs to multiplex the module-level scan chains to chip-level pads. Before 
converting the module-level test patterns to the chip-level, the correct circuit 
initialization has to be verified. This is done by checking the structural connection of 
module-level-scan pins to the chip-level pads and by verifying if module level pin 
constraints assumed during the module-level pattern generation are met. Afterwards 
the module-level test data is translated to the chip-level. The patterns of the different 
active test partitions are aligned during this process as described before. For the 
pattern retargeting process only the module-level test patterns and the chip-level 
netlist describing how the test partitions are integrated into the chip are required. A 
complete netlist description of the tested partitions is not needed. Therefore, 
simplified abstraction models can be used for the modules to reduce the memory 
consumption of the retargeting process. After the scan patterns have been retargeted 
they need to be verified. 
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The pattern verification and debugging is usually based on pattern simulation 
taking into account the SDF timing information. The goal for the hierarchical scan test 
approach is to perform most of the pattern verification already on module-level. This 
does not only reduce the tool runtimes and memory requirements, but this approach 
also allows performing the pattern verification task earlier with shorter iteration times. 
In addition, module-level debugging is in general easier due to the reduced design 
complexity. The module-level pattern simulations can be performed and debugged as 
usual. There are no restrictions and limitations. On chip-level a full verification is 
only required for the patterns testing the logic between the test partitions. In addition, 
a quick check of the module-level patterns that were retargeted to the chip-level is 
needed. The main purpose of this check is to verify the retargeting step and the 
correctness of assumptions used during module-level ATPG. Therefore, the 
verification concentrates on aspects not visible already on module-level, e.g. chip-
level test setup sequence, configuration of chip-level clock sources and the 
connections including timing from the module pins to the chip-level pads. The 
module-internal capture does not need to be verified completely again. 

4.2.3 Top-Level Scan Test Strategy 
For a traditional non-hierarchical scan test the definition of the scan test architecture is 
usually not very complicated. The key parameter is the number of pins available for 
the test. This number is usually defined by the given design package. In some cases, 
the number of used test pins is artificially limited to increase the number of devices 
tested in parallel at the tester. Based on the number of available test pins the number 
of scan channels can be defined. As usually some on-chip test data compression is 
used, the number of internal scan chains is by a factor higher than the number of 
external scan channels determined by the used compression ratio. This means after 
defining a reasonable compression rate, the number of internal scan chains can be 
directly derived from the given test pins. When using a flat top-level scan insertion 
approach the implementation tool ensures balanced scan chains all having roughly the 
same length. The length of the resulting scan chains can be estimated early in the 
design phase by dividing the number of expected registers by the number of planned 
scan chains. For the test pattern generation nothing special needs to be considered. 
Only one single ATPG run is required (per fault model) to generate the scan test 
patterns for the complete design. When using test data compression the stimuli 
provided through the external scan channels can be mapped to any internal scan chain. 
The ATPG tool takes care about this data distribution and ensures a good utilization 
of the test interface bandwidth.  

For a hierarchical test approach the planning of the scan test architecture and 
the test scheduling is more complex. Here two different test types need to be 
considered. At first the module-level test patterns need to be retargeted to the top-
level. In addition, a test pattern needs to be generated on top-level for testing the logic 
and interconnects between the different test partitions. When planning the scan test 
architecture for the test partitions not only the number of available top-level pins 
needs to be considered, but also the number of test partitions. Each partition requires 
at least one scan channel. This means for a design with ten test partitions at least 20 
scan test data pins (10 scan channel inputs and 10 scan channel outputs) are required 
for testing all hierarchies in parallel. For certain products this might already exceed 
the number of available package pins. Therefore, a parallel test would not be possible 
and the partitions could only be tested (in groups) sequentially. As a consequence, the 
top-level test schedule already needs to be considered when planning the module-level 
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scan test architecture. This is completely different from the traditional flat scan test 
approach. In that approach always the complete design can be tested in parallel. Even 
if only very few pins are available, it would be possible to increase the test data 
compression rate and/or scan chain length to enable the parallel test.  

Different test strategies for the retargeting of the module-level test patterns are 
described in the next sections. 

4.2.3.1 Parallel Pattern Retargeting Approach 

The parallel test approach combines the module-level test patterns of all test partitions 
and retargets them into a single common top-level test. All the modules are tested in 
parallel. This retargeting approach requires that the scan pins of all partitions are 
accessible from the top-level in one common test mode. For the planning of the 
module-level scan test architectures the available top-level pins need to be assigned 
and distributed to the different test partitions. As stated before each partition requires 
at least one scan channel. As described in Section 4.2.2 the lengths of the scan chains 
in the partitions should be comparable to prevent inefficiencies when the pattern 
retargeting process aligns the shift operation for the partitions. Therefore, the pin 
assignment for the modules has to consider the number of scan registers in the 
partitions to get comparable scan chains lengths. As long as the number of available 
top-level pins is sufficiently large to allow multiple scan channels being used for each 
test partition, a reasonable scan chain balancing between the modules should be 
possible. If the expected scan chain lengths differ too much, some fine tuning is 
possible by varying the compression rate between test partitions. 

The parallel test scenario for an example design with five test partitions of 
comparable size and ten usable scan channels on the top-level is shown in Figure 
4.4.2. All five partitions are tested at the same time each using two scan channels.  
 

 
Figure 4.4.2: Parallel test approach 

 
The main advantage of this test strategy is the simple setup und design 

implementation. Only a single pattern retargeting task needs to be performed (per 
fault model). As there is only a single scan test retargeting test mode, there is no need 
for implementing some multiplexing logic for switching between different test modes. 
Another positive aspect is the comparatively small number of scan channels used per 
partition. This eases the reuse of the IP in other designs as there is only a small pin 
requirement for the top-level integration. 

The main drawback of this approach is the large number of required top-level 
pins. Not only due to the scan chain balancing aspect this approach is only 
recommended if for each partition several scan channels can be used. Using scan test 
data compression with a single data input channel often leads to some test coverage 
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loss even for reasonable compression rates. To circumvent these data compression 
limitations and to ensure the maximum possible test coverage, it is advisable to have 
the possibility to use more than one scan input channel per test partition (see also 
Section 4.2.3.4). 

The assignment of top-level pins to dedicated test partitions can lead to some 
other inefficiency in case the partitions vary significantly in the test pattern count. If 
the number of test patterns for partition A is lower than that for partition B, top-level 
pins dedicated to A cannot be reassigned to B without changing the test configuration 
(see also Section 4.2.3.4). 

Another potential drawback of the parallel test is the test power consumption. 
As all partitions are simultaneously active during the scan test this could lead to 
power related instabilities as described in Section 4.1.4. 
Positive Negative 
Single test configuration Many top-level pins required 
Simple design integration (no muxes) Scan chain balancing difficult 
Few module pins allowing easy IP reuse Could be critical regarding test power 
 Potential single channel coverage loss  
 Potential bandwidth inefficiencies 
Table 4.1: Summary parallel retargeting approach 
 

4.2.3.2 Sequential Pattern Retargeting Approach 

In the sequential test approach the test partitions are tested one after the other through 
the same top-level pin interface. The big advantage is that the different test partitions 
do not interact. As the test of each partition is completely independent of the other 
modules, there are no inefficiencies caused by different scan chain lengths or pattern 
counts. Therefore, it is possible to reuse existing blocks without aligning the top-level 
scan test concept between different modules. The module-level scan architecture can 
be defined in the same way as described for the flat non-hierarchical scan test 
approach. 

The sequential test approach usually does not involve any test time penalty 
compared to the parallel test. As more top-level pins can be used for the test of one 
partition, more and therefore shorter scan chains can be used. This leads to 
comparable overall test times. The test time might be even reduced by preventing the 
inefficiencies described above. Figure 4.4.3 shows the sequential test approach for the 
example introduced in Section 4.2.3.1. The partitions would be tested one after the 
other, but as all five partitions could be operated using all ten scan channels the 
number of scan chains could be five times higher and therefore five times shorter 
using the same compression ratio. The overall test time is less compared to Figure 
4.4.2 as the tester bandwidth can be fully utilized. 

The overall scan test times are comparable or even less as long as the test time 
is dominated by the scan shift times. The sequential test requires test partitions of a 
certain size. If the scan chains would become extremely short, the efficiency of the 
test would be reduced due to a fixed number of configurations cycles required for 
every pattern (e.g. for configuring some compactor masking). In addition, a very high 
number of scan chains for a small test partition might lead to routing issues. 
Another advantage of the sequential test approach is the possibility to reduce the scan 
test power consumption, by keeping the non-tested partition idle. If the partitioning is 
taking into account different power domains as proposed in Section 4.1.4 the non-
tested domains might be switched off completely. 
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Figure 4.4.3: Sequential test approach 

 
The main drawback of this test strategy is the need of a separate test mode for 

each sequentially tested partition due to the required pin multiplexing of the scan 
output channels. As a consequence, each sequential test also requires a separate 
pattern retargeting run considering the individual test mode entry sequence.  
 
Positive Negative 
No dependencies between partitions 
causing inefficiencies 

Requires short chains to compensate test 
time 

Combination of non-aligned modules Multiple patterns and test modes 
Allows test power reduction  
Table 4.2: Summary sequential retargeting approach 

4.2.3.3 Mixed Parallel/Sequential Pattern Retargeting Approach 

In some cases, it might be beneficial to use a mixed parallel/sequential test approach. 
In this approach several groups of parallel tested partitions are tested sequentially as 
shown in Figure 4.4.4. 
 

 
Figure 4.4.4: Mixed parallel/sequential approach – scenario A 

 
For the mixed test approach the scan architecture of the test partitions is 

basically determined by the available top-level pins. When using the mixed approach 
there is much more flexibility for the module level scan planning. There are many 
scan configurations with different scan channel numbers and different scan chain 
lengths for each module that could still be combined to perform a reasonable top-level 
test. In the examples of Figure 4.4.4 and Figure 4.4.5 the top right (light blue) test 
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partition can be implemented with three or four scan channels without having any 
impact on the overall test time. 
 

 
Figure 4.4.5: Mixed parallel/sequential approach – scenario B 

 
The mixed parallel/sequential approach is an option, if there are not enough top-level 
pins available for the parallel test and still the partitions are too small for a pure 
sequential test. In addition, this approach helps to deal with IP blocks that come 
already with a fixed scan architecture not fitting into the parallel or sequential top-
level concept. 

The main drawback of this approach is the complex top-level multiplexing for 
the scan channel outputs. The required test pattern counts for the modules can only be 
estimated before running the final test pattern generation. Thus the top-level test 
scheduling and the test mode planning has to be based on assumptions or it needs to 
be done late in the design phase. 

In summary the mixed parallel/sequential test scheduling approach combines 
the advantages and drawbacks of the pure parallel and sequential test. 

4.2.3.4 Flexible Test Configuration 

In the previous sections fixed scan architectures have been assumed for the modules. 
In some cases, it might be beneficial to implement multiple scan architectures in the 
modules, as this allows a more flexible test scheduling on the top-level. There are 
different reasons for such a flexible approach. If a module is intended as an IP block 
to be used in multiple products, the implementation of different scan configurations 
would ease the product-specific test integration. In some cases, different pin 
configurations are used for different test insertions e.g. for wafer test and package test. 
Also here the module-level flexibility would help to deal with the different top-level 
test constraints. Even if the top-level pin-interface is known upfront and does not 
change, there are still scenarios for which flexible scan architectures are beneficial. 

As stated in the parallel test Section 4.2.3.1 the test with a single scan input 
channel might lead to some test coverage loss when using on-chip data compression. 
The implementation of a multi-mode scan configuration can solve the issue by 
applying a mixed parallel/sequential test scheme as described in the previous section. 
First a parallel test could be performed by testing all the test partitions at the same 
time using a small number of pins per module. For modules facing insufficient 
coverage due to limited compression an additional test phase could be added. This 
time a second scan test mode is used that dedicates more pins to the partition leading 
to a relaxed compression rate. Due to the larger number of pins used for the module it 
is no longer possible to access all modules at the same time. 
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A similar approach could be used for optimizing the utilization of the external 
test interface. As shown in Figure 4.4.2 the number of test patterns differs for the test 
partitions. Once a module is tested completely the related top-level scan pins could be 
used to enhance or speed-up the test of the remaining partitions. This means at first 
only a subset of n patterns is retargeted, wherein n is the number of patterns of the 
module with the lowest pattern count. Afterwards the remaining test partitions are 
reconfigured making use of the freed pins. Then the next patterns are retargeted. The 
example shown in Figure 4.4.6 reconfigures the scan access only once (the freed pins 
of the yellow partition at the bottom are used for green partition in the middle). For 
further optimizations the test access could have been reconfigured again after the next 
partition is tested completely. This retargeting process can be quite complex for 
designs with many test partitions. Thus some kind of automation would be required to 
simplify the scheduling of the pins. 
 

 
Figure 4.4.6: Reconfigured parallel test  

 
The prerequisite for flexible top-level test scheduling is the implementation of 

multiple scan configurations on module-level. In general, it is possible to implement 
different test modes with different numbers of scan pins independent of the used test 
data compression method. For the EDT [66] compression used in the experiments and 
analyses of this work there is one special mode allowing to operate the compression 
hardware with a flexible number of scan channels. This significantly reduces the area 
and effort for implementing a module supporting multiple scan configurations. The 
main drawback of this special solution is that at least two scan input channels have to 
be available. This could be an issue for a pin-limited parallel test approach. 

Another scan flexibility that can be used on module-level is the number of 
internal scan chains varying the compression rate. In this case the module-level test 
interface remains constant, but the number and resulting lengths of the scan chains 
can be varied for different configurations. Such an approach can be used as an 
alternative solution to handle the potential test coverage loss due to compression 
limits. Faults not detected due to an overly aggressive compression rate might be 
detectable after reconfiguring the scan architecture to a second mode with a lower 
compression rate. These add-on patterns would be of course more costly regarding 
test time and tester memory requirements due to the increased scan chain lengths. 

Another application of using a different scan chain length in different modes is 
LBIST. As the LBIST is typically using pseudo-random test stimuli, the number of 
scan chains is not limited by test data compression rates. To reduce the LBIST 
execution time it is desirable to use more and therefore shorter scan chains compared 
to the ATPG based test approach. 
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4.2.3.5 Top-Level Test 

In addition to the retargeting of the module-level test patterns also the test of the logic 
and interconnects between the different test partitions needs to be considered for the 
top-level. One problem for the initial planning of the top-level scan test architecture is 
the unpredictable number of wrapper cells. While there are early estimations for the 
number of functional registers per module it is usually unclear how many of these 
registers have to be part of wrapper scan chains used for module isolation. For the test 
of the top-level logic and module interfaces it is required to operate all wrapper chains 
in parallel assuming that there is interaction between most of the test partitions. In 
addition, potential scan chains for remaining top-level logic outside the test partitions 
need to be considered. Because of the necessary parallel test approach all wrapper 
chains and the additional top-level scan chains should be balanced to enable an 
efficient test. This complicates the early planning due to the unknown wrapper chain 
lengths. Therefore, the initial top-level test concept has to be based on vague 
estimations and might need to be adjusted after the initial implementation of the test 
partitions. 

Another aspect of the top-level test concept is the required routing. Usually 
also the top-level test requires some on-chip test data compression to deal with test 
data volume and test time. The required compression logic could be placed as glue 
logic on the top-level between the design partitions (see Figure 4.4.7). To avoid or to 
reduce glue logic on top-level the compression module could be also placed in one of 
the design partitions. 
 

 
Figure 4.4.7: Example of top-level test concept 
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No matter where this top-level compression hardware is placed the routing 
could be difficult as all module-level wrapper chains and all potential top-level scan 
chains from all over the chip need to be connected to it. 

To relax top-level routing the number of top-level chains should be limited to a 
reasonable number. For this purpose, it might be required to have different wrapper 
scan chain configurations for the module-level test and the top-level test. For the 
module-level test the wrapper chains should be balanced with the core scan chains. 
Based on the compression ratio used for the test partitions this can lead to a significant 
number of (short) wrapper chains for the module test. As in this mode the wrapper 
chains are connected locally to the compression logic within the test partitions routing 
is usually no issue. For the top-level test the number of wrapper chains could be 
reduced to ease the top-level routing. The implementation of such a dedicated second 
wrapper scan chain configuration allows the planning of the top-level test strategy 
completely independent of any constraints the module-level test. 

4.3 Test Coverage 
When using a hierarchical test approach there are some test coverage related topics 
that need to be considered especially for the generation of scan test patterns. The 
Section 4.3.1 deals with test coverage analysis on module-level. In Section 4.3.2 the 
test coverage impact of the test isolation wrapper is discussed in more detail. The 
calculation of the overall test coverage number based on the module-level tests is 
described in Section 4.3.3. 

4.3.1 Module-level Coverage Analysis 
To ensure the overall product test quality it is essential to check the test coverage 
already on module-level. In case the test coverage for a module does not reach the 
expected goals the root cause of the untested faults needs to be analyzed and measures 
need to be taken to improve testability. 

Such a module-level coverage analysis is required no matter if the top-level 
test approach is flat or hierarchical. For the flat approach some trial synthesis and trial 
ATPG is done before providing a functional module to the top-level integrator. The 
patterns generated during this experimental ATPG run cannot be used later-on for the 
top-level, but the coverage of the block can be evaluated and easily debugged 
assuming an “ideal” design integration of the module.  

For a hierarchical test approach the module-level coverage analysis is more 
complicated. For the module-level test the implemented scan isolation wrapper is in 
isolation mode. Therefore, the access to all gates “outside” of the wrapper is blocked 
and the faults in this logic are not testable in this test mode. These faults will be 
targeted in the later-on top-level ATPG run which tests the interfaces between the test 
partitions. Targeting all faults in the module the obtained test coverage of an ATPG 
run may appear to be too low. This complicates the coverage analysis as it is unclear 
if the observed coverage loss is caused by testability issues of the core logic or if this 
is just an artificial side effect of the isolation wrapper. Unfortunately, there is no easy 
way to consider only the faults “inside” of the isolation wrapper for the coverage 
analysis. Especially if functional registers are shared for the isolation and if there is no 
dedicated naming convention or hierarchy used for the wrapper, there is no strict 
boundary between the core logic to be tested and the gates accessible only in the top-
level test mode. 

One way to deal with is problem is to setup a dummy ATPG run configuring 
the module in the test mode for testing the interfaces. Even if this ATPG setup and the 
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generated patterns can never be used for the productive test, it helps for debugging the 
module-level coverage by determining which faults will be detected by the later-on 
top-level test. After having generated the module-level test patterns the list of faults 
detected in this artificial top-level test can be imported to calculate the overall test 
coverage for the module considering both test modes. Based on this overall test 
coverage the testability of the module can be analyzed and improved if required. 

An example for the module-level test coverage is shown in Figure 4.4.8. For a 
module of an industrial design two different netlist versions are compared. At first the 
module is implemented without any module isolation. Here ATPG can be performed 
without any restrictions reaching a test coverage of 99.54%. Afterwards the same 
design is used, but during the scan insertion step wrapper chains for the module 
isolation are inserted. For this netlist version two different test modes need to be 
considered. In the internal test mode targeting the core-internal fault the stuck-at test 
coverage achieved by ATPG is only 98.20%. After running a second ATPG run in 
external test mode targeting the interface faults the combined test coverage is 99.55%. 
This means at the end the stuck-at test coverage is comparable for both netlist 
versions. So, the insertion of module isolation wrappers for the hierarchical test does 
not impact the overall stuck-at test coverage. For the delay test the situation might be 
different as discussed in the next section. 
 

 
Figure 4.4.8: Test coverage comparison of wrapped and non-wrapped module 

 

4.3.2 Test Coverage Impact of Isolation Wrappers 
Besides the difficulties to determine the test coverage on module-level, there might be 
a test coverage impact caused by the isolation wrapper. When using dedicated 
wrapper cells for the module isolation, the delay test checking the interface timing 
between different test partitions becomes difficult. 

When using shared wrapper cells it is still possible to test the functional 
interface path with the appropriate frequency (see Figure 4.4.9). The functional output 
register of module A is launching a transition, which is then captured into the 
functional input register of module B. This test is executed as part of the top-level test 
in which the wrapper chains of the modules are configured in external test mode. 
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Figure 4.4.9: Interface test using shared wrapper cells (external test mode) 

 
When adding dedicated isolation wrapper cells at the module boundary the 

functional interface paths can no longer be tested as a whole. In this case the interface 
will be tested in two steps. First the logic between the functional input or output 
register and the dedicated wrapper cell is tested as part of the module-level test (see 
Figure 4.4.10). 
 

 
Figure 4.4.10: Interface test using dedicated wrapper cells (internal test mode) 

 
Afterwards the interconnection between the modules is tested as part of the 

top-level test using the dedicated wrapper cells as launch and capture point (see 
Figure 4.4.11). 
 

 
Figure 4.4.11: Interface test using dedicated wrapper cells (external test mode) 

 
With this test approach it is still possible to check the connectivity between the 

modules, but the functional timing cannot be verified. As the functional path is split 
into three individual segments, the test would be too relaxed when using the 
functional clock and target frequency for the wrapper cells. In theory increasing the 
test frequency for the interface paths segments could be a solution to ensure the test 
quality, but in most cases this would not be feasible. First of all, this approach would 
require to increase the test frequency for the module IO path segments without over-
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testing the core logic. Using a dedicated clock with a special timing for the wrapper 
cells might be an option, but adjusting the frequency would be difficult when 
providing the at-speed clock pulses from an on-chip clock source like a PLL. 
However, the main problem of such a test would be that the timing to be checked 
could be different for each interface path. Based on where the isolation cells are 
inserted the split of the functional path into an input and output segment could vary 
for each module connection. This would require adapting the test frequency 
individually to each segment making it practically impossible to check the functional 
performance of each path. 

This limitation of the at-speed interface test would already occur if only one of 
the two modules would use a dedicated wrapper cell breaking the functional 
connection path. Therefore, the usage of dedicated wrapper cells should be prevented 
where possible or the design partitioning should ensure module interfaces with non-
critical timing which does not need to be checked. In case dedicated wrapper cells are 
used for timing relevant connections they might be tested by some functional interface 
tests. 

4.3.3 Overall Fault Coverage Calculation 
To judge the chip-level test quality of a hierarchical test it is not sufficient to have the 
module-level test coverage numbers for each partition, but it is required to calculate 
the overall test coverage for the complete design. 

The test pattern generation for the individual test partitions is done in separate 
ATPG runs. In addition, different test modes are used for the module-level tests and 
the top-level interface test. Therefore, the overall test coverage cannot be determined 
directly in a single ATPG run. For the calculation of the overall test coverage the 
results from the individual ATPG runs need to be combined. To transfer the test 
coverage information from one ATPG run to another without losing any information 
the complete fault list containing the fault detection status of each individual fault can 
be written. By merging the fault lists of all performed pattern generations, the overall 
fault detection status can be derived and the complete test coverage can be calculated. 
Some faults might be contained in multiple faults lists, e.g. faults located in the 
module-level interface logic “outside” the isolation wrapper. These faults are 
classified as “untestable” in the fault lists of the module-level ATPG runs. The same 
faults are usually “detected” in the fault list of the top-level interface test. When 
merging the fault lists, a fault has to be considered as “detected” when it was detected 
at least in one of the ATPG runs. Some faults might be contained only in a single fault 
list, e.g. module internal faults when using simplified greybox models for the top-
level ATPG run. For these faults the detection status can be taken directly from the 
fault list where they occur. When merging the fault lists of the test partitions and the 
top-level the instance names used in the module-level fault lists need to be prepended 
by the top-level instance name of the instantiated modules. 

4.4 Case Study Open Source Quad-Core Processor 
The hierarchical design and test approach has been evaluated as a case study for an 
open source quad-core processor. The test case design contains four identical CPU 
cores and some additional logic on the top-level. 

Based on this architecture an obvious partitioning is to divide the design into 
five parts. The CPU core is handled as one design and test partition which is then 
instantiated four times together with the remaining logic on the top-level. Using the 
CPU core as one partition provides several benefits. For the test it is sufficient to 
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generate the test patterns only once and then to reuse these patterns for all four 
instances. In addition, the test stimuli can be shared between the instances reducing 
the overall test data volume. Using identical CPU core implementations also reduces 
the design effort as the design optimization and verification needs to be done only for 
one CPU core. Nevertheless, there is a drawback of this partitioning approach. The 
RTL code of the CPU core used for this study is very generic. Many features of the 
CPU core can be enabled and configured using a large number of configuration 
inputs. When the CPU core is implemented stand-alone not taking into account the 
top-level configuration the complete functionality of the core needs to be 
implemented even if it is never used after integration into the design. When using a 
flat implementation or a different partitioning unused logic could be optimized away 
considering tied pins at the CPU boundary. This optimization is not possible with the 
chosen partitioning. In addition, these configuration inputs of the CPU core need be 
isolated for the hierarchical test. Even if an input signal would be tied on top-level, 
wrapper cells are required for the module isolation. This does not only result in longer 
wrapper scan chains, but also leads to test patterns generated for logic that is 
functionally not used. On the other hand, the isolated CPU core and its generated 
patterns could be used without any changes in other designs which use a different top-
level configuration. 
As the test case design uses only one power domain and one clock frequency both 
parameters do not need to be considered for the partitioning strategy. Nevertheless, 
the chosen partitioning would allow addressing test power issues by testing modules 
sequentially. 

For each CPU core several DFT features have been implemented as part of the 
case study. Besides the module isolation and on-chip test data compression hardware 
an integrated LBIST solution enables the self-test operated at-speed to check the 
performance within the system. As the LBIST can be executed individually for each 
CPU core it is directly visible which core has failed in case of a defect. This provides 
some basic error localization capabilities. The diagnosis resolution could be enhanced 
using the features described in [65]. 

A simplified overview of the implemented DFT core is shown in Figure 
4.4.12. 
 

 
Figure 4.4.12: CPU core with implemented DFT features 
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The overall top level test implementation looks as shown in Figure 4.4.7. Test 
patterns are first generated for the stand-alone CPU core. These core-level test 
patterns are then retargeted to the top-level, testing all four cores in parallel. 
Additional top-level patterns are generated to test the top-level logic and the interfaces 
between the CPU cores. The resulting test coverage numbers and pattern counts are 
shown in Table 4.3. 
 
 CPU (stand-alone) Overall design 
 Coverage # Patterns Coverage # Patterns 
Stuck-at 92.38% 1705 97.99% 345 + 1705 = 2050 
Transition 84.51% 2695 87.93% 980 + 2695 = 3675 
Table 4.3: Test coverage and pattern count for stand-alone CPU and overall design 
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5 Fault management 
In this section, we first describe methods of reliability analysis and optimization. 
Then, we detail a general fault handling methodology and present a realistic Fault 
Management scenario both relying on the BASTION extensions to IEEE 1687 and the 
proposed fault classification scheme. 

5.1 Reliability Analysis and Optimization 
This sub-section is organized as follows. First, we provide a mathematical framework 
to evaluate the Level of Confidence (LoC) for a given distribution of checkpoints. 
Next, we outline an Exhaustive Search approach to obtain the optimal distribution of a 
given number of checkpoints that results in the maximal LoC. To overcome the 
complexity of the Exhaustive Search approach, we developed a heuristic, i.e. 
Clustered Checkpointing, which distributes a given number of checkpoints such that 
the LoC is maximized. Finally, we summarize with some results that evaluate the 
ability of the heuristic to find the optimal solution. 

5.1.1 Evaluation of Level of Confidence 
In this section, we show how to calculate the LoC with respect to a given deadline for 
a given distribution of cn checkpoints. The distribution of the cn checkpoints is 

represented by a vector cn  of size cn , where the i-th element ( iES ) in the vector 

represents the size of the i-th execution segment, i.e. ]...,[ 21 cnc ESESESn  . The LoC 

is calculated as a sum of probabilities that a job completes at time instances lower 
than or equal to the given deadline.  

For a given cn , the re-execution of different execution segments has different 

impact on the completion time due to the different re-execution cost, i.e. the sum of 
the size of the execution segment iES , and the checkpointing overhead  . Thus, the 

completion time can be expressed as a discrete variable 
k

n tc (see Eq. (1)), where k  

denotes a re-execution vector. The re-execution vector k  represents a vector of size 

cn  where each element ik  indicates the number of re-executions of the i-th execution 

segment. 
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For each discrete value of 
k

n tc there exists a probability that a job completes at that 

given instance in time. We denote the probability that a job completes at 
k

n tc  with
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kn tp

c
. Next, we elaborate how to calculate )(

kn tp
c

. When a job completes at time

k

n tc , it means that each execution segment iES  has been executed exactly 1ik  

times, i.e. ik erroneous executions and a single successful execution. 

Since we assume that occurrence of errors is an independent event and that the 
probability TP is given, we can calculate the probability of a successful execution 

segment. Given TP , the probability that no errors occur in one processing node during 

the execution of iES  is evaluated as T

ES

T

i

P . We denote with 
i

P  the probability of 
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successful execution of iES , i.e. the probability that no errors occur in both processing 

nodes during the execution of the i-th execution segment. We calculate 
i

P as: 

T
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Given Eq. (2), the probability of an erroneous execution of iES is calculated as
i

P1 . 

Finally, the probability that a job completes at 
k

n tc is calculated with the following 

expression: 
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Eq. (3) represents the probability distribution function )(kp

cn , and it 

calculates the probability that each of the execution segments iES has been executed 

once successfully and ik times erroneously. To compute the LoC with respect to a 

given deadline it is required to sum the terms )(kp
cn  for all 

k

n tc  which are lower or 

equal to the deadline. We denote with  D
cn  the LoC with respect to a given 

deadline D for a given distribution cn and it is calculated with the following 

expression: 
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For a given cn , only some re-execution vectors k  produce Dt
k

nc  . We refer 

to these re-execution vectors as valid re-execution vectors. To obtain the set of valid 

re-execution vectors we use the function  ikf ,  (see Eq. (5) and Eq. (6)). 

For a given valid re-execution vector,  ikf ,  produces a new valid re-execution 
vector, if such vector exists, or it returns an empty set otherwise. The function 

requires two input parameters: a valid re-execution vector ( k ) and an update index 

(i). For the given parameters,  ikf ,  first computes a tentative re-execution vector 
Nk  by incrementing ik  by one and setting to zero all jk  where j > i (see Eq. 5). If 
Nk  is a valid re-execution vector and i > 0, then  ikf ,  returns Nk . Otherwise, 

 ikf ,  proceeds with a recursive call  1, ikf . If the function is invoked with i = 0, 

 ikf ,  returns an empty set, meaning that all valid re-execution vectors have been 

identified. To identify the entire set of valid re-execution vectors,  ikf ,  is iteratively 
called with these arguments: (1) the most recently obtained valid re-execution vector 

(the initial valid re-execution vector is ]0...0,0[k ) and (2) the number of 

checkpoints cn is passed as the update index. 

]0,...0,1,...,[ 121   ii
N kkkkk  (5) 

 



Report on error classification and  

corresponding error handling  Contents  ●  31 

 

   














0 iff ,

 1 and not  is  iff,1,

 1 and  is  iff ,

,

i

ivalidkikf

ivalidkk

ikf N

NN

 (6) 

 
Important to note is that for all cn which are a permutation of a given 

cn , 

 D
cn   is always the same as  D

cn  . This follows from the commutative property 

of addition and multiplication. The commutative property of addition and 

multiplication ensure that for a given 
k

n tc  there exists a corresponding 



k

n tc  and

)()( 
 kpkp
cc nn , where 

cn and k  are the same permutation (re-ordering) of cn and

k . For a given cn there exist !cn  different permutations and thus, !cn  different 
cn

(assuming that all execution segments in cn are of different size).  

 Additional consideration should be taken for distributions cn where a number 

of execution segments have the same size. In such case, many different re-execution 

vectors k  would provide the same completion time and )(kp
cn  will be the same for 

all those vectors, making the evaluation of  D
cn  very inefficient. To avoid this, we 

make use of a reduced format of cn , denoted with ]...,[~ 21
21

qm
q

mm
c ESESESn  , where 

im
iES is used to indicate that there are im execution segments of size iES . One 

observes that the size of cn~  is q, which is lower than cn  (the size of cn ) as long as two 

or more execution segments in cn have the same size. Similarly, we can use the 

reduced format of k , i.e. k
~

 to represent the re-execution vectors. Each element ik  in 

k
~

 denotes the total number of re-executions of an execution segment of size iES  (any 

of the im different execution segments). The advantage with this is that every k
~

 

corresponds to a unique instance of the completion time. The completion time is 
calculated as: 

 



q

i
iick

n kESnTtc

1

~
~

  (7) 

The probability that a job completes at 
k

n tc ~
~

is calculated as: 

    i

iic

k
q

i i

ii
n PP

k

km
kp  







 




1
1~

1

~  (8) 

 
Eq. (8) calculates the probability that each execution segment of size iES has been 

executed once successfully and ik times erroneously. However, since there are im

different execution segments of size iES , and since the ik re-executions may occur as 

a result of an error in any of the im execution segments, there are a total 






 

i

ii

k

km 1

different combinations. Therefore, this term is included in Eq. (8). 
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Finally, to compute the LoC, it is required to obtain all valid k
~

. To achieve 

this, the function  ikf ,  can be used, where instead of the re-execution vector k , we 

use k
~

 as the input argument and q (the size of k
~

) is passed as the update index. 

5.1.2 Exhaustive Search 
In previous section, we showed how to evaluate the LoC with respect to a given 
deadline for a given distribution of cn checkpoints. However, the problem we aim to 

solve is to obtain the optimal distribution, for a given number of checkpoints cn , 

which results in the maximal LoC. As one way to obtain the optimal distribution of 

cn checkpoints is to evaluate the LoC for all possible distributions of the given cn
checkpoints, in this section, we review an exhaustive search method that finds the 
optimal distribution which results in the maximal LoC. Further, we show that it is 
possible to speed up this method by avoiding exploration of distributions which are 
permutation of each other. 
 While a trivial exhaustive search approach can always find the optimal 
solution, the major drawback with any trivial exhaustive search algorithm is the 
complexity. For this particular problem, the complexity is directly proportional to the 
number of possible distributions of cn checkpoints, and this number increases rapidly 

with cn . However, in the previous section, we showed that the LoC for any 

distribution which is a permutation of a given distribution cn  will be the same as the 

LoC obtained for cn . This implies that there is no need to explore all possible 

distributions to find the optimal distribution that results in the maximal LoC. For that 
reason, in this section, we discuss a method, namely Exhaustive Search (EXS), that 
finds the optimal distribution by only evaluating the LoC for distributions cn  which 

are not permutations of each other. In particular, we show how to obtain these 
distributions, and we determine the number of different distributions that need to be 
explored with this method. Furthermore, we compare the complexity of the EXS 
method with a trivial exhaustive search method that explores all possible distributions 
of a given number of checkpoints cn . 

 The complexity of the trivial exhaustive search method is directly proportional 
to the number of all possible distributions of cn checkpoints in a job with a processing 

time T, and this number is evaluated with the following equation: 

 
   !1!

!1

1

1















ccc nnT

T

n

T
 (9) 

Assuming that a checkpoint can be taken at any integer time unit, for a job with 
processing time T, expressed in time units, there are T different points where a 
checkpoint can be taken. Since one checkpoint must be taken at the end of the job, i.e. 
at time unit T, the rest of the 1cn  checkpoints can be taken at any of the remaining 

1T  time units. Therefore, the number of combinations of 1cn checkpoints over 

1T  time points represents the amount of all possible distributions of cn checkpoints 

as it is expressed with Eq. (9). 
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 In , we report the number of all possible distributions of cn checkpoints in a 

job with a processing time T = 1000 t.u. at various instances of cn . As can be seen 

from Table I, the number of possible distributions grows rapidly with cn . While the 

trivial exhaustive search approach explores all possible distributions of cn
checkpoints, the EXS method does not need to evaluate the LoC for all distributions, 
and instead, it should only explore distributions which are not permutations of each 
other. To achieve this goal, it is sufficient to explore distributions cn  which satisfy the 

following condition: 
jiESES ji   (10)

  
 
An important consequence that follows from the condition expressed in Eq. (10) is 
that the size of the shortest execution segment in a distribution cn , i.e. 1ES , can never 

be larger than 








cn

T
, where T represents the processing time of the job and cn

represents the number of checkpoints that are to be distributed. Next, we elaborate 
how to obtain all those distributions that satisfy the condition in Eq. (10). 
 To obtain the different distributions cn , we use the function  innext c , , given 

in Eq. (13), which for a given distribution cn  and an update index i, generates the next 

distribution to be explored. The function  innext c ,  first computes a tentative 

distribution N
cn (Eq. (12)) by incrementing the size of the i-th execution segments by  

 

cn  










1

1

cn

T
 

2 999 
3 498501 
4 165668499 
5 41251456251 
6 8209039793949 
7 1359964259197551 
8 192920644197595449 
9 23922159880501835676 
10 2634095604619702128324

Table 5.1 Number of possible distributions of checkpoints in a job with a processing time  
T = 1000 time units 
 
one ( 1 ii ESES ), and assigning the same incremented value to all execution 

segments with index in the range ]1,1[  cni . The size of the last execution segment, 

i.e. 
cnES , is computed such that the sum of all the execution segments is the same as 

the given processing time of the job T (see Eq. (11)). If the tentative distribution N
cn

satisfies the condition in Eq. (10), then the function returns N
cn as output. Otherwise, 

the function steps in a recursive call by decrementing the update index i, i.e. 



Contents  ●  34 Report on error classification and  
                                                                                                           corresponding error handling 

 

 1, innext c . If the function is called with an update index i = 0, the function returns 

an empty set, meaning that cn  is the last distribution to be explored. 

   1
1

0

 



ic

i

j
jn ESinESTES

c
 (11)

 
],1,...1,1,...,[ 121 cniiii

N
c ESESESESESESESn    (12)

   











0 iff ,

holdnot  does (10) Eq. iff ,1,

holds (10) Eq. iff,

,

i

innext

n

innext c

N
c

c  (13)

When the function is used, the function is always invoked with the current 
distribution cn that is being explored and 1cn as an update index. The initial 

distribution is constructed by assigning the value of 1 (the shortest size of an 
execution segment) to all execution segments except for the last one. The size of the 
last execution segment is computed such that the sum of all execution segments is 
equal to the processing time of the job T. In other words, the initial distribution is 
presented with the following vector ]1,1,...1,1[  cc nTn .  

 By using this function, the number of distributions which are explored with the 
EXS method is reduced when compared to the number of all possible distributions 
given with Eq. (9). Next, we elaborate how to compute  Tr

cn , the number of 

distributions of cn checkpoints in a job with a processing time T, which are explored 

with the EXS method. 
We denote with  Tr i

nc
the number of distributions of cn checkpoints in a job 

with a processing time T, where the size of the first execution segment, i.e. 1ES , is 
fixed to a value i. Due to the consequence which followed from Eq. (10), the size of 

the first execution segment cannot be larger than 








cn

T
. Hence, we compute  Tr

cn  

with the following expression: 

   












c

cc

n

T

i

i
nn TrTr

1

 (14)

  
When the size of the first execution segment in a distribution cn  is fixed to a value i, 

 Tr i
nc

 can be obtained by counting how many distributions of 1cn checkpoints in a 

job with a processing time iT   exist, such that the shortest execution segment among 
the 1cn execution segments has to be larger or equal to i. Observe that when 

distributing 1cn checkpoints in a job with a processing time iT  , the shortest 

execution segment cannot be larger than 










1cn

iT
 (the consequence of Eq. (10)). 

Given this, the following recurrence equation can be used to calculate  Tr i
nc

: 



Report on error classification and  

corresponding error handling  Contents  ●  35 

 

   












 

1

1

c

cc

n

iT

ij

j
n

i
n iTrTr  (15)

  
The initial condition of the recurrence equation given with Eq. (15) is expressed as: 

  1
23 



 

 i
iT

Tr i  (16)

  
Namely, the expression in Eq. (16) is derived from the fact that there exists only a 
single distribution of two checkpoints in a job with a processing time T such that the 
size of the first execution segment is fixed to a given value. When the size of the first 
execution segment in a distribution of two checkpoints is fixed to a value i, the size of 
the second execution segment is directly calculated by subtracting the value i from the 
processing time of the job. Following the recurrence equation, Eq. (15), we get: 

     




 







 



22

23 1

iT

ij

iT

ij

ji iTrTr 1
2





 

i
iT

 (17)

  
In Table II, we show  Tr

cn , obtained by using Eq. (14) and Eq. (15), for different 

values of cn and a job with a processing time T = 1000 t.u. To show the reduced 

complexity of the EXS method over the trivial exhaustive search approach, we 
compare the results presented in  and . As shown in  and , the complexity of the EXS 
method is significantly lower than the complexity of the trivial exhaustive search 
approach. For example, we see that for cn = 10, the number of all possible 

distributions is 21102   (observe  for cn = 10). However, by excluding the 

distributions, which are permutation of each other, the number of different 
distributions that are explored by the EXS method is 15101  (observe  for cn = 10). 

From this example, it should be evident that by excluding the redundant distributions 
the complexity of the EXS method is reduced tremendously in comparison to the 
trivial exhaustive search. Still, the complexity of the EXS method is very high. For 
that reason, we developed the Clustered Checkpointing (CC) method that aims to find 
the distribution that maximizes the LoC for a given cn . 

cn   Tr
cn  

3 83333 
4 6965278 
5 350697875 
6 11835956777 
7 287302124354 
8 5274078114658 
9 76037051194142 
10 886745696653253 

Table 5.2 Number of distribution of nc checkpoints, explored with the EXS method, for a job 
with a processing time T=1000 t.u. 
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5.1.3 Clustered Checkpointing  
In this section, we present the Clustered Checkpointing (CC) method which 
distributes a given number of checkpoints such that the LoC is maximized. The CC 
heuristic explores only distributions cn  which are made out of clusters of execution 

segments, where all the execution segments that belong to the same cluster have the 
same size. The number of clusters is an input argument to the CC method, along with 
the number of checkpoints. Provided as an input argument, the number of clusters 
limits the search space of the CC method to only search for distributions cn  where the 

maximum number of clusters is kept lower than or equal to the provided input. Setting 
the number of clusters to lower values can drastically reduce the search space in 
comparison to the EXS method.  
 Given the following inputs: a processing time of a job T, a deadline D, a 
checkpointing overhead , a probability TP that no errors occur in a processing node 

within an interval of length T, a number of checkpoints cn , and a number of clusters c, 

the CC method outputs the distribution *
cn which provides the highest LoC among all 

distributions cn  which are explored with this method. The distribution *
cn which 

provides the highest LoC may contain at most c clusters. The reason for this is 
because the CC method is allowed to explore distributions where the maximum 
number of clusters is equal to c. However, it is possible that *

cn contains less than c 

clusters. This is achieved by allowing clusters that do not contain any execution 
segments. Next, we detail the method. 
 For ease of reference, let us introduce some notations that will be used to 
explain the CC method. Given the number of clusters c, we use the notation ik , where

ci  , to indicate the number of execution segments that belong to the i-th cluster. 
Since all execution segments that belong to one cluster have the same size, we 
introduce the notation iC , where ci  , to represent the size of the execution segments 

that belong to the i-th cluster. The set of values that can be assigned to ik and iC is 

constrained by the following expressions: 

c

c

i
i nk 

1

 (18)

TCk
c

i
ii 

1

 (19)

The constraint given with the expression in Eq. (18) enforces a limit on the 
values that can be assigned to ik , i.e. the total number of executions segments in all c 

clusters must be equal to the number of checkpoints cn  (when cn checkpoints are 

taken a total of cn execution segments exist). The constraint given with Eq. (19) limits 

the size of the execution segments that belong to the c clusters, as the sum of all the 
execution segments in all clusters must be equal to the processing time of the job T. 
Observe that for a given set of values ik , that satisfy Eq. (18), there are multiple 

alternatives to assign values to iC that satisfy Eq. (19). In other words, provided that 

distributing the cn execution segments among the c clusters is decided, i.e. 

],1[\ ciki   is known, multiple assignments to ],1[\ ciCi  that satisfy Eq. (19) are 
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possible. This may cause exploration of distributions cn  that are permutation of each 

other. However, we discussed in the previous section, that to avoid exploration of 
distributions cn  which are permutation of each other it is sufficient to force the 

constraint that the executions segments should be ordered in ascending order based on 
their size (see Eq. (10)). Therefore, for the CC method, we add the following set of 
constraints: 

]2,1[,\0 s.t. ,  cjikkjiCC jiji (20)

12   cc CC  (21)

The constraint in Eq. (20), ensures that any two clusters i and j among the first 2c  
clusters, which have at least one execution segment ( 0 ji kk ), contain execution 

segments of different size where ji CC   if ji  . Observe that for two clusters i and 

j, ji CC   indicates that the two clusters should be merged into one cluster. The 

constraint in Eq. (21) allows merging the clusters 2c and 1c . The reason for this is 
that while the CC method assigns predetermined values ]2,1[\  ciCi that satisfy 

Eq. (20), the values for 1cC and cC are calculated (see Eq. (25) and Eq. (27)). Next, 

we elaborate how the CC method explores the search space. 
 The CC method explores the search space in a systematic manner. It starts the 
exploration with a distribution 0

cn that is constructed as follows. For the first 2c  

clusters, ]2,1[\1  ciki and ]2,1[\  ciiCi . The values for ccc kCk ,, 11   and 

cC are calculated with the following expressions: 
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The expression in Eq. (22), T̂ , represents the remaining processing time that has to be 
distributed among the last two clusters, while the expression in Eq. (23), cn̂ , 

represents the remaining number of checkpoints (executions segments) that need to be 
distributed among the last two clusters. Equidistant distribution is applied to obtain 
the size of the execution segments that belong to the last two clusters. Observe that in 
case T̂  is a multiple of cn̂ , the cluster 1c contains cc nk ˆ1   execution segments, 

while the last cluster does not contain any execution segments, i.e. 0ck . In such 

case, the initial distribution cn consists of 1c  clusters (the last cluster is empty). 

 To do the exploration in a systematic manner, we construct a function
 qnnextCC c ,  which for a given distribution cn generates the next distribution to be 
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explored (if such distribution exists). A distribution cn  is defined with the information 

about the clusters, i.e. ik and iC , where ],1[ ci  . To obtain the next distribution, 

 qnnextCC c ,  requires an input argument q which is referred to as the update index. 

The update index is used to indicate which cluster should be updated and assigned 
with predetermined values. Note that only the first 2c  can be updated, while the last 
two clusters are calculated ( ik and iC for the last two clusters are calculated according 

to Eqs. (24–26)). Therefore, q can only accept values in the range  2,1 c . The last 
two clusters are treated differently than the other clusters. These two clusters co-exist 
together, i.e. 01  cc kk , only if T̂  (see Eq. (22)) is not a multiple of cn̂  (see 

Eq._(23)), and in such case the difference 1 cc CC is exactly one. This follows from 

the fact that the size of the execution segments, which belong to the last two clusters, 
is obtained by equidistantly distributing the remaining cn̂  checkpoints over the 

remaining processing time T̂ . As a consequence of the equidistant distribution, even if 
the number of clusters c is equal to cn , the CC method explores fewer distributions 

than the EXS method. Namely, each distribution cn , examined with the CC method, 

consisting of exactly cnc   clusters (for such case a cluster maps to an execution 

segment, i.e. ii ESC  ) will be constrained to 11  cc CC , which is not the case for 

the EXS method, where the only constrain on the last two execution segments is that 
01  cc nn ESES  (follows from Eq. (10)). Next, we detail how the function 

 qnnextCC c , generates the next distribution cn  to be explored. 

 The function  qnnextCC c ,  is recursive. If  qnnextCC c , is called with an 

update index q = 0, the function returns an empty set, indicating that the current 
distribution cn  is the last distribution found in the search space. For the given update 

index q,  qnnextCC c ,  tries to update the q-th cluster as long as 0qk . If the 

updates to the q-th cluster are not possible or if 0qk , the function recursively calls 

itself with an update index 1q . If 0qk , the function tries to update the q-th cluster. 

Two types of updates are possible: (1) update the size of the execution segments in the 
q-th cluster, i.e. qC , and (2) update the number of execution segments that belong to 

q-th cluster, i.e. qk . Each of the two updates involves updating all clusters j where

qj  . This domino-effect follows from the constraints provided in Eqs. (20–21). 

First,  qnnextCC c ,  tries to update qC . Only if the update of qC is not successful, the 

function tries to update qk . To update qC ,  qnnextCC c , performs the following 

steps. First, it assigns a new value to qC , i.e. 1 qq CC . Second, for all clusters

 2,1  cqj , jk is set to 1, and the size of the execution segments of each of the 

clusters  2,1  cqj  is evaluated as 11  jj CC . Next, ccc kCk ,, 11   and cC are 

calculated according to Eqs. (24–26), and then the constraint in Eq. (21) is evaluated. 
If the constraint is not violated, then the update of qC is successful, and the next 

distribution is provided with the new values of iC and ik , where  ci ,1 . However, if 

the constraint is violated, it means that it is not possible to assign the new value for 
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qC since it breaks the ascending order of the clusters (Eqs. (20–21)). The new value of

qC may still be possible if some clusters are allowed to have zero execution segments. 

Therefore, the update of qC  proceeds iteratively. Starting with 1 qj , in each step, 

(1) jk is set to zero, (2) 1 jj CC , (3) ccc kCk ,, 11   and cC  are calculated according 

to Eqs. (24–26), and (4) the constraint in Eq. (21) is evaluated. If the constraint is not 
violated, the iteration stops and the update of qC is rendered successful. However, if 

the constraint is violated, the iteration proceeds with the next step, by incrementing j. 
Finally, if 2 cj , it means that in none of the iteration steps the constraint was 
satisfied and thereby, the update of qC is not successful. In such case, the function 

 qnnextCC c ,  proceeds by trying to update qk . 

 To update qk , the function first checks the following condition: 

1
1




q

i
ic kn  (28)

The condition in Eq. (28) checks if the remaining number of checkpoints (execution 
segments) that need to be distributed among the rest of the clusters, i.e. all clusters j 
where  cqj ,1 , is greater than one. Only if this condition is satisfied, it is possible 
to increase the number of execution segments that belong to the cluster q. Observe 
that comparing the remaining number of checkpoints with one, means that after 
increasing qk it is possible that only one checkpoint (execution segment) remains. 

In such case, 0jk  for all  2,1  cqj , 11 ck , and 0ck . If the condition in 

Eq. (28) is not satisfied, it means that the update of qk is not successful, and therefore, 

the function  qnnextCC c ,  recursively calls itself with an update index 1q . 

However, if the condition in Eq. (28) is satisfied, then 1 qq kk and 1 qq CC . 

Note that the latest modifications, i.e. qk and qC , still do not represent the next 

distribution to be explored. To obtain the next distribution, after modifying qk and qC , 

the function  qnnextCC c ,  recursively calls itself with the same update index q, to 

ensure that qC  is greater than 1qC . Observe that the function always first tries to 

update qC . Important to note is that if q = 1, i.e. the updates refer to the first cluster, 

and the condition in Eq. (28) is satisfied, then 1C  is set to zero, 111  kk , and the 

function  qnnextCC c , recursively calls itself with the same update index. This 

means that if the next distribution is obtained by increasing the number of execution 
segments in the first cluster, then the size of all the execution segments in the first 
cluster must be set to one.  

So far, we discussed the function  qnnextCC c , and how it generates the next 

distribution provided an arbitrary update index q and a current distribution cn . 

However, when the CC method uses the function  qnnextCC c , , to explore the search 

space, it always invokes the function with an update index 2 cq  and the current 

distribution cn . Starting with the initial distribution 0
cn , the CC method computes the 

LoC for 0
cn  and keeps it as a reference point. Next, it repeatedly invokes the function 

 qnnextCC c ,  with 2 cq , until  qnnextCC c ,  returns an empty set. For each 
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distribution generated by the function  qnnextCC c , , the CC method evaluates the 

LoC and compares it with the reference point. If the LoC is higher than the reference 
point, then the reference point is updated and the distribution that has resulted with the 
higher LoC is recorded. Finally, the CC method outputs the distribution *

cn that 

provides the highest LoC among all the distributions cn  that have been explored with 

this method. Important to note is that, the set of distributions cn  explored by the CC 

method for c = x, is superset of the distributions cn explored for c < x. The CC method 

becomes equivalent to the EXS method, when 1 cnc .  

 Next, we discuss the complexity of the CC method. Note that by complexity, 
here, we refer to the size of the search space, i.e. the number of distributions cn  that 

are explored. The complexity of the CC method increases with the number of clusters 
c. The lowest complexity is achieved when the number of clusters is set to three. In 
such case, the number of distributions that are explored is limited with the following 

expression  1







c

c

n
n

T
. For the case c = 3, ik and iC are assigned with 

predetermined values only for the first cluster, while ik  and iC  are calculated for the 

other two clusters using Eqs. (24–26). When generating the distributions for c = 3, the 
function  qnnextCC c ,  is invoked with q = 1 and therefore, only updates of 1k and 

1C  are considered. Observe that if neither of the updates are possible, the function 

 qnnextCC c ,  would recursively call itself with an update index q = 0, which in turn 

would return an empty set and stop the search. Assuming that the first cluster already 
contains a number of execution segments 1k , the maximum value of 1C  is determined 

from the constraint given with Eq. (21). Note that for c = 3, 2C is calculated with 

Eq._(25). Hence, the maximum size of 1C  is determined as follows: 

cc n

T
C

kn

CkT
C 




 1
1

11
1  (29)

The expression in Eq. (29) shows that for any value of 1k , 1C can take values in the 

range 








cn

T
,1 . On the other hand, if updates of 1C are not possible, i.e.

cn

T
C 1 , 

updates of 1k are only possible if the condition in Eq. (28) is satisfied. This condition 

provides the upper bound for 1k , and this bound is evaluated as 1cn . Therefore, the 

total number of distributions for c = 3 is evaluated as  1







c

c

n
n

T
. 

 The complexity of the CC method rapidly increases by increasing the number 
of clusters c. The reason for this is as follows. First, increasing the number of clusters 
c, increases the number of different cases to assign how many execution segments 
should belong to a given cluster, i.e. number of cases to assign ik , where  2,1  ci . 

Furthermore, the number of execution segments that are to be distributed among the 
first 2c  clusters may vary from one to 1cn . Second, once ik is decided for each 

cluster  2,1  ci , the number of cases to assign iC , that satisfy the condition given 
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with Eq. (20), grows rapidly and therefore, the number of explored distributions 
grows (reaching the same complexity as EXS for 1 cnc ) . However, the highlight 

is that the CC method finds the same distribution *
cn  as the EXS method, for 

sufficiently low values of c. 

5.1.4 Summary 
The objective of the experiments is multi-fold. First, evaluate to what extent the 
proposed heuristic (the CC method) is able to obtain the optimal solution (exhaustive 
search (EXS)). Second, evaluate which of the two schemes, i.e. equidistant (EQC) and 
non-equidistant checkpointing, provides the highest LoC. Third, evaluate how many 
clusters are needed for the CC method, to find a solution that approaches the optimal 
solution obtained by the EXS method. Finally, evaluate how the complexity of the CC 
method increases by increasing the number of clusters. We present results for the 
scenarios given in . Each scenario is defined with: a processing time T, a deadline D, a 
checkpointing overhead , and a probability TP that no errors occur in a processing 
node within an interval of length T. 
 

Scenario T D 
TP  

A 100 t.u. 150 t.u. 2 t.u. 0.99999 
B 1000 t.u. 1300 t.u. 20 t.u. 0.99999 
C 1000 t.u. 1300 t.u. 10 t.u. 0.99999 

Table 5.3 Input scenarios 
 

In --, for scenario A, B, and C respectively, we show the LoC (along with cn ) 

obtained from the three methods, i.e. EQC, CC and EXS, for different values of cn . 

Note that, for this experiment, the results presented for the CC method are obtained 
while assuming that the number of clusters c, which is an input argument to the CC 
method, is set to three. Observe that the range of cn values is different for each 

scenario, i.e. cn  [2, 25] in , cn  [2, 15] in  and ]30,2[cn in . The upper bound of

cn , in all scenarios, is obtained from the condition that the best case execution time, 

i.e. time required for the job to complete when no errors occur  cnT , should not 

violate the deadline. Hence, for cn  values above the upper bound   0 D
cn . Thus, 

we only compute  D
cn  for cn values lower than the upper bound.  

 Since the values  D
cn  are very close to 1, the difference 

   DD
cc nn  1  results in numbers that are more convenient to present by using 

scientific notation. Therefore, in Tables IV–VI, we present the values  D
cn . One 

observes that lower values for  D
cn are better (the LoC is higher). Furthermore, in 

Tables --, for each cn , we present the distribution (in reduced format) cn~  which 

provides the reported LoC for each method. For each cn  value in --, we highlight the 

highest LoC achieved (marked with bold). Next, we discuss the results. 
 As can be seen from –, comparing the results from the EXS method with the 
results from the CC method (with three clusters) shows that the CC method in most of 
the presented cases is able to find the optimal *

cn . Note that the EXS method 
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guarantees the optimal solution, since it explores all possible distributions cn . The 

advantage of the CC method, where only three clusters are used, is that it finds the 
solution in significantly shorter time than the EXS method. The reason that no results 
are reported for the EXS method for cn values larger than five, in –, is that EXS is 

very time-consuming which is due to the large number of distributions cn that need to 

be explored. Given that the average time to compute  D
cn  for a given cn  is 10µs, 

and that the number of different cn  (excluding cn  which are permutation of each 

other) for cn = 6 is larger than 1011 (see  for cn = 6), it would roughly take 280 hours 

to obtain the result. In contrast, for the same example, the CC method, that only uses 
three clusters, explores less than 103 different cn  and thus, produces the result in less 

than 10ms. The CC method is a good heuristic since it finds, in most cases, the 
optimal *

cn in substantially shorter time than the EXS method.  

 Comparing the results from the CC method with the results from the EQC 
method shows that the CC method is always able to find a distribution cn  which 

results in an LoC that is higher or at least equal to the LoC obtained from the EQC 
method (observe –). The EQC method distributes the checkpoints “evenly”. However, 
due to the limitation of integer sized execution segments, when T is not a multiple of

cn , the EQC method reports the LoC for a distribution cn  which consists of two 

clusters. Observe that in , the EQC provides the same LoC for all ]15,2[cn . The 

reason for this is because distributing the checkpoints evenly, for any ]15,2[cn , 

results in execution segments of size such that even a single re-execution violates the 
deadline. However, for the same scenario, i.e. Scenario B, for any ]13,2[cn , the CC 

method, with three clusters, finds a distribution cn  which results in a higher LoC than 

the LoC obtained from the EQC method. Important to note, is that for cn values which 

are close to the upper bound, both EQC and CC achieve the same LoC, although cn  is 

not same (observe ]25,24[cn for , ]15,14[cn for  and ]30,29[cn  for ). For such 

cn values, no re-execution of execution segments of any size is possible without 

violating the deadline, and therefore all cn  produce the same LoC. The major 

observation is that for all scenarios in , the maximal LoC is achieved when the 
checkpoints are not evenly distributed. For example, in  the maximal LoC is achieved 
for cn = 13 while using cn~  = [67, 92, 104], i.e. 7 execution segments of size 6 t.u., 2 

execution segments of size 9 t.u., and 4 execution segments of size 10 t.u. The results 
indicate that non-equidistant checkpointing can improve the LoC when compared 
against EQC. An important implication is that by using non-equidistant checkpointing 
the LoC can be improved in addition to achieving a shorter best case execution time, 
i.e. completion time when no errors occur  cnT . For example, in , the maximal 

LoC for EQC is achieved for cn = 25, but higher LoC can be achieved for  24,7cn

when non-equidistant checkpointing is used (the highest LoC is achieved for cn = 15 

with the CC method). The same observation follows from –. Important to note is that 
besides the scenarios presented in , we made experiments on different scenarios by 
varying T,  , TP , and D. For all experiments, we observed the same trend as shown 
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in –, i.e. non-equidistant checkpointing provides higher LoC than EQC. However, we 
present only the results for the scenarios given in . 
 

cn
 

EQC 
Non-Equidistant Checkpointing 

cn EQC 
Non-Equidistant Checkpointing 

EXS CC EXS CC 

2 
1.99999e-5 1.12000e-5 1.12000e-5 

14 
1.63343e-15 1.57695e-15 1.57695e-15 

]50[~ 2cn  ]56,44[~ 11cn  ]56,44[~ 11cn ]8,7[~ 212cn ]8,4[~ 113cn  ]8,4[~ 113cn

3 
2.66678e-10 2.55998e-10 2.55998e-10 

15 
1.61335e-15 1.57695e-15 1.57695e-15 

]34,33[~ 12cn  ]40,20[~ 21cn  ]40,20[~ 21cn ]7,6[~ 105cn ]8,3[~ 114cn  ]8,3[~ 114cn

4 
2.49998e-10 2.09559e-10 2.09559e-10 

16 
1.59510e-15 1.59510e-15 1.59510e-15 

]25[~ 4cn  ]31,19[~ 22cn  ]31,19[~ 22cn ]7,6[~ 412cn ]7,6[~ 412cn  ]7,6[~ 412cn

5 
2.39998e-10 1.12000e-10 1.12000e-10 

17 
1.57863e-15 1.57863e-15 1.57863e-15 

]20[~ 5cn  ]28,18[~ 14cn  ]28,18[~ 14cn ]6,5[~ 152cn ]6,5[~ 152cn  ]6,5[~ 152cn

6 
2.07477e-15 2.07477e-15 2.07477e-15 

18 
1.75199e-10 7.60007e-11 7.60007e-11 

]17,16[~ 42cn  ]17,16[~ 42cn  ]17,16[~ 42cn ]6,5[~ 108cn ]10,5[~ 216cn  ]10,5[~ 216cn

7 
1.95991e-15 1.95161e-15 1.95161e-15 

19 
2.10599e-10 1.36000e-10 1.36000e-10 

]15,14[~ 25cn  ]16,15,7[~ 331cn  ]16,15,7[~ 331cn ]6,5[~ 514cn ]10,4[~ 415cn  ]10,4[~ 415cn

8 
1.87599e-15 1.83839e-15 1.83839e-15 

20 
2.09999e-10 1.84319e-10 1.84319e-10 

]13,12[~ 44cn  ]15,14,7[~ 242cn  ]15,14,7[~ 242cn ]5[~ 20cn ]8,3[~ 812cn  ]8,3[~ 812cn

9 
1.81113e-15 1.70906e-15 1.70906e-15 

21 
2.09599e-10 2.07479e-10 2.07479e-10 

]12,11[~ 18cn  ]14,13,6[~ 423cn  ]14,13,6[~ 423cn ]5,4[~ 165cn ]6,5,2[~ 1326cn  ]6,5,2[~ 1326cn

10 
1.75999e-15 1.55958e-15 1.55958e-15 

22 
1.20000e-5 3.20015e-6 3.20015e-6 

]10[~ 10cn  ]13,8[~ 46cn  ]13,8[~ 46cn ]5,4[~ 1210cn ]16,4[~ 121cn  ]16,4[~ 121cn

11 
1.71943e-15 1.58463e-15 1.58908e-15 

23 
1.99999e-5 1.12000e-5 1.12000e-5 

]10,9[~ 110cn  ]12,8,5[~ 614cn  ]12,11,5[~ 344cn ]5,4[~ 815cn ]56,2[~ 122cn  ]56,2[~ 122cn

12 
1.68642e-15 1.53599e-15 1.53599e-15 

24 
1.99999e-5 1.99999e-5 1.99999e-5 

]9,8[~ 48cn  ]10,5[~ 84cn  ]10,5[~ 84cn ]5,4[~ 420cn ]8,4[~ 123cn  ]8,4[~ 123cn

13 
1.65807e-15 1.53236e-15 1.53236e-15 

25 
1.99999e-5 1.99999e-5 1.99999e-5 

]8,7[~ 94cn  ]10,9,6[~ 427cn  ]10,9,6[~ 427cn ]4[~ 25cn ]4[~ 25cn  ]4[~ 25cn

Table 5.4 Comparison of  D
cn  for different checkpointing schemes at different cn values for 

Scenario A* 

*Note: Since    DD
cc nn  1 , lower values for  D

cn ) indicate higher LoC. For each cn , for each 

method,  D
cn  along with the respective distribution cn~  (in reduced format) is reported. The highest 

LoC achieved among the tree methods is marked with bold. 
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cn
 

EQC 
Non-Equidistant Checkpointing 

cn
 

EQC 
Non-Equidistant Checkpointing 

EXS CC EXS CC 

2 
1.99999e-5 1.51999e-5 1.51999e-5 

9 
1.99999e-5 

  

4.00015e-6 

]500[~ 2cn  ]760,240[~ 11cn  ]760,240[~ 11cn ]112,111[~ 18cn ]200,100[~ 18cn  

3 
1.99999e-5 1.12000e-5 1.12000e-5 

10 
1.99999e-5 

  

5.60012e-6 

]334,333[~ 12cn  ]560,220[~ 12cn  ]560,220[~ 12cn ]100[~ 10cn ]280,80[~ 19cn  

4 
1.99999e-5 8.00010e-6 8.00010e-6 

11 
1.99999e-5 

  

8.00008e-6 

]250[~ 4cn  ]400,200[~ 13cn  ]400,200[~ 13cn ]91,90[~ 101cn ]400,60[~ 110cn  

5 
1.99999e-5 5.60014e-6 5.60014e-6 

12 
1.99999e-5 

  

1.12000e-5 

]200[~ 5cn  ]280,180[~ 14cn  ]280,180[~ 14cn ]84,83[~ 48cn ]560,40[~ 111cn  

6 
1.99999e-5 

  

4.00016e-6 
13 

1.99999e-5 
  

1.51999e-5 

]167,166[~ 42cn  ]200,160[~ 15cn ]77,76[~ 121cn ]760,20[~ 112cn  

7 
1.99999e-5 

  

3.20017e-6 
14 

1.99999e-5 
  

1.99999e-5 

]143,142[~ 61cn  ]160,140[~ 16cn ]72,71[~ 68cn ]77,71[~ 113cn  

8 
1.99999e-5 

  

3.20017e-6 
15 

1.99999e-5 
  

1.99999e-5 

]125[~ 8cn  ]160,120[~ 17cn ]67,66[~ 105cn ]76,66[~ 114cn  

Table 5.5 Comparison of   D
cn   for different checkpointing schemes at different cn  values 

for Scenario B* 

*Note: Since    DD
cc nn  1 , lower values for  D

cn ) indicate higher LoC. For each cn , for each 

method,  D
cn  along with the respective distribution cn~  (in reduced format) is reported. The highest 

LoC achieved among the tree methods is marked with bold. 
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cn
 

EQC 
Non-Equidistant Checkpointing 

cn EQC 
Non-Equidistant Checkpointing

EXS CC EXS CC 

2 
1.99999e-5 1.45999e-5 1.45999e-5 

17 
2.11764e-10 

  

4.80010e-11 

]500[~ 2cn  ]730,270[~ 11cn  ]730,270[~ 11cn ]59,58[~ 143cn ]120,55[~ 116cn  

3 
1.99999e-5 9.60008e-6 9.60008e-6 

18 
2.11111e-10 

  

7.60007e-11 

]334,333[~ 12cn  ]480,260[~ 12cn  ]480,260[~ 12cn ]56,55[~ 108cn ]100,50[~ 216cn  

4 
2.49998e-10 2.49998e-10 2.49998e-10 

19 
2.10526e-10 

  

1.01547e-10 

]250[~ 4cn  ]250[~ 4cn  ]250[~ 4cn ]53,52[~ 127cn ]94,93,45[~ 1216cn  

5 
2.39998e-10 2.36515e-10 2.36515e-10 

20 
2.09999e-10 

  

1.24560e-10 

]200[~ 5cn  ]222,221,115[~ 131cn  ]222,221,115[~ 131cn ]50[~ 20cn  ]90,40[~ 416cn  

6 
2.33332e-10 

  

2.08146e-10 
21 

2.09524e-10 
  

1.52395e-10 

]167,166[~ 42cn  ]224,223,110[~ 123cn ]48,47[~ 138cn  ]80,79,35[~ 1515cn  

7 
2.28570e-10 

  

1.87146e-10 
22 

2.09091e-10 
  

1.77848e-10 

]143,142[~ 61cn  ]194,193,105[~ 124cn  ]46,45[~ 1012cn ]68,67,30[~ 7213cn  

8 
2.24999e-10 

  

1.44000e-10 
23 

2.08696e-10 
  

1.96153e-10 

]125[~ 8cn  ]200,100[~ 26cn  ]44,43[~ 1112cn ]58,57,25[~ 9410cn  

9 
2.22221e-10 

  

1.22777e-10 
24 

2.08333e-10 
  

2.05724e-10 

]112,111[~ 18cn  ]168,167,95[~ 117cn  ]42,41[~ 168cn  ]49,48,20[~ 1626cn  

10 
2.19999e-10 

  

7.60008e-11 
25 

2.07999e-10 
  

2.07999e-10 

]100[~ 10cn  ]190,90[~ 19cn  ]40[~ 25cn  ]40[~ 25cn  

11 
2.18181e-10 

  

6.00009e-11 
26 

1.99999e-5 
  

5.00012e-6 

]91,90[~ 101cn  ]150,85[~ 110cn  ]39,38[~ 1214cn ]250,30[~ 125cn  

12 
2.16666e-10 

  

4.80011e-11 
27 

1.99999e-5 
  

9.60005e-6 

]84,83[~ 48cn  ]120,80[~ 111cn  ]38,37[~ 126cn  ]480,20[~ 126cn  

13 
2.15383e-10 

  

4.00011e-11 
28 

1.99999e-5 
  

1.45999e-5 

]77,76[~ 121cn  ]100,75[~ 112cn  ]36,35[~ 208cn  ]730,10[~ 127cn  

14 
2.14285e-10 

  

3.60012e-11 
29 

1.99999e-5 
  

1.99999e-5 

]72,71[~ 68cn  ]90,70[~ 113cn  ]35,34[~ 1415cn ]48,34[~ 128cn  

15 
2.13333e-10 

  

3.60011e-11 
30 

1.99999e-5 
  

1.99999e-5 

]67,66[~ 105cn  ]90,65[~ 114cn  ]34,33[~ 1020cn ]43,33[~ 129cn  

16 
2.12500e-10 

  

4.00011e-11 
/ 

 
 
 ]63,62[~ 88cn  ]100,60[~ 115cn  

Table 5.6 Comparison of   D
cn  for different checkpointing schemes at different cn values 

for Scenario C* 

*Note: Since    DD
cc nn  1 , lower values for  D

cn ) indicate higher LoC. For each cn , for each 

method,  D
cn  along with the respective distribution cn~  (in reduced format) is reported. The highest 

LoC achieved among the tree methods is marked with bold. 
 
Next, we examine how many clusters are sufficient for the CC method, such that it 
finds a solution that approaches the optimal one. –, respective to each of the scenarios 
in , show the result of the CC method when the number of clusters c varies from three 

to five. Note that since the CC method requires 1 cnc , for those cases that violate 
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this constraint no results are presented (marked with “ ” in –). For example, it is not 

possible to run the CC method with arguments c = 5 and cn  = 2. Since it is possible 

that the CC method with 1c clusters finds the same solution as with 2c clusters, where

21 cc  , in –, we use the symbol “ ” to indicate that the solutions are identical. As 
can be seen from –, in most cases, the CC method does not need more than three 
clusters to find a solution that approaches the optimal one, i.e. the CC method with c 
= 4 and c_= 5 provide the same solution as with c = 3 (therefore, marked with “ ”). 

The only exception is visible in , where for cn = 11, the CC method requires four 

clusters to find the optimal solution (compare this result with the result for the EXS 
method in ). From the results presented in –, we conclude that the CC method finds a 
solution very close to the optimal, if not optimal, by only using three or four clusters. 
Since for low number of clusters, the complexity of the CC method is significantly 
lower than the complexity of the EXS method, once again, we show that the CC 
method is an efficient and effective heuristic.  
 

 

cn
 

Clustered Checkpointing 
cn

Clustered Checkpointing 

c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 

2 
1.12000e-5 

    14 
1.57695e-15     

]56,44[~ 11cn  ]8,4[~ 113cn  

3 
2.55998e-10 

    15 
1.57695e-15     

]40,20[~ 21cn ]8,3[~ 114cn

4 
2.09559e-10 

    16 
1.59510e-15     

]31,19[~ 22cn ]7,6[~ 412cn

5 
1.12000e-10 

    17 
1.57863e-15     

]28,18[~ 14cn ]6,5[~ 152cn

6 
2.07477e-15 

    18 
7.60007e-11     

]17,16[~ 42cn ]10,5[~ 216cn

7 
1.95161e-15 

    19 
1.36000e-10     

]16,15,7[~ 331cn ]10,4[~ 415cn

8 
1.83839e-15 

    20 
1.84319e-10     

]15,14,7[~ 242cn ]8,3[~ 812cn

9 
1.70906e-15 

    21 
2.07479e-10     

]14,13,6[~ 423cn ]6,5,2[~ 1326cn

10 
1.55958e-15 

    22 
3.20015e-6     

]13,8[~ 46cn ]16,4[~ 121cn

11 
1.58908e-15 1.58463e-15 

  23 
1.12000e-5     

]12,11,5[~ 344cn  ]12,8,5[~ 614cn ]56,2[~ 122cn

12 
1.53599e-15 

    24 
1.99999e-5     

]10,5[~ 84cn ]8,4[~ 123cn

13 
1.53236e-15 

    25 
1.99999e-5     

]10,9,6[~ 427cn ]4[~ 25cn

Table 5.7 Comparison of  D
cn  for the CC method with varying number of clusters  5,3c

, at different cn  values, for Scenario A 
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cn
 

Clustered Checkpointing 
cn Clustered Checkpointing 

c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 

2 
1.51999e-5 

    9 
4.00015e-6 

    ]760,240[~ 11cn  ]200,100[~ 18cn

3 
1.12000e-5 

    10 
5.60012e-6 

    ]560,220[~ 12cn  ]280,80[~ 19cn

4 
8.00010e-6 

    11 
8.00008e-6 

    ]400,200[~ 13cn  ]400,60[~ 110cn

5 
5.60014e-6 

    12 
1.12000e-5 

    ]280,180[~ 14cn  ]560,40[~ 111cn

6 
4.00016e-6 

    13 
1.51999e-5 

    ]200,160[~ 15cn  ]760,20[~ 112cn

7 
3.20017e-6 

    14 
1.99999e-5 

    ]160,140[~ 16cn  ]77,71[~ 113cn

8 
3.20017e-6 

    15 
1.99999e-5 

    ]160,120[~ 17cn
 

]76,66[~ 114cn

Table 5.8 Comparison of  D
cn  for the CC method with varying number of clusters  5,3c

, at different cn values, for Scenario B  
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cn
 

Clustered Checkpointing 
cn Clustered Checkpointing 

c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 

2 
1.45999e-5 

    17 
4.80010e-11 

    ]730,270[~ 11cn  ]120,55[~ 116cn

3 
9.60008e-6 

    18 
7.60007e-11 

    ]480,260[~ 12cn  ]100,50[~ 216cn

4 
2.49998e-10 

    19 
1.01547e-10 

    ]250[~ 4cn ]94,93,45[~ 1216cn

5 
2.36515e-10 

    20 
1.24560e-10 

    ]222,221,115[~ 131cn  ]90,40[~ 416cn

6 
2.08146e-10 

    21 
1.52395e-10 

    ]224,223,110[~ 123cn  ]80,79,35[~ 1515cn

7 
1.87146e-10 

    22 
1.77848e-10 

    ]194,193,105[~ 124cn  ]68,67,30[~ 7213cn

8 
1.44000e-10 

    23 
1.96153e-10 

    ]200,100[~ 26cn  ]58,57,25[~ 9410cn

9 
1.22777e-10 

    24 
2.05724e-10 

    ]168,167,95[~ 117cn  ]49,48,20[~ 1626cn

10 
7.60008e-11 

    25 
2.07999e-10 

    ]190,90[~ 19cn ]40[~ 25cn

11 
6.00009e-11 

    26 
5.00012e-6 

    ]150,85[~ 110cn  ]250,30[~ 125cn

12 
4.80011e-11 

    27 
9.60005e-6 

    ]120,80[~ 111cn ]480,20[~ 126cn

13 
4.00011e-11 

    28 
1.45999e-5 

    ]100,75[~ 112cn  ]730,10[~ 127cn

14 
3.60012e-11 

    29 
1.99999e-5 

    ]90,70[~ 113cn ]48,34[~ 128cn

15 
3.60011e-11 

    30 
1.99999e-5 

    ]90,65[~ 114cn ]43,33[~ 129cn

16 
4.00011e-11 

    /   
]100,60[~ 115cn   

Table 5.9 Comparison of  D
cn  for the CC method with varying number of clusters  5,3c

, at different cn values, for Scenario C 

 
Finally, with the results of the following experiment, we show how the complexity of 
the CC method increases by increasing the number of clusters c. The complexity of 

the CC method depends on the following parameters: the number of checkpoints cn , 

the number of clusters c, and the processing time of the job T. In  and , for T_= 100 

and T = 1000 respectively, for  25,2cn , we show the number of distributions cn  

explored by the CC method for various number of clusters  5,3c . As can be seen 
from  and , the complexity of the CC method increases rapidly by increasing the 
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number of clusters. For the case of T = 100 t.u. (), increasing the number of clusters 
from c = 3 to c = 4, on average, increases the number of explored distributions by a 
factor of 29, while increasing the number of clusters from c = 3 to c = 5, on average, 
increases the number of explored distributions by a factor of 414. For example, for 

cn  = 10, the CC method explores: 84 distributions for c = 3, 2790 distributions for c 

= 4 (33 times more than for c = 3), and 42095 distributions for c = 5 (501 times more 
than for c = 3). The increase is even more evident for the case of T = 1000 t.u., where 
increasing the number of clusters from c = 3 to c = 4, on average, increases the 
number of explored distributions by a factor of 344, while increasing the number of 
clusters from c = 3 to c = 5, on average, increases the number of explored 
distributions by a factor of 63475. 
 

cn  
Clustered Checkpointing 

cn  
Clustered Checkpointing 

c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 
2 50     14 91 2837 43151 
3 66 834   15 84 2841 43779 
4 75 1411 7171 16 90 2845 44227 
5 80 1803 14149 17 80 2863 44241 
6 80 2097 20507 18 85 2800 44343 
7 84 2297 25800 19 90 2791 43908 
8 84 2473 30299 20 95 2879 43829 
9 88 2573 33796 21 80 2749 43201 

10 90 2686 36811 22 84 2718 42578 
11 90 2709 38952 23 88 2674 41643 
12 88 2760 40933 24 92 2698 41117 
13 84 2790 42095 25 96 2731 40307 

Table 5.10 Number of distributions explored by the CC method with varying number of clusters 

 5,3c  , at different cn values, for T = 100 t.u. 

 
 

cn  Clustered Checkpointing 
cn  Clustered Checkpointing 

c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 
2 500     14 923 343439 63492695 
3 666 83334   15 924 350572 66536434 
4 750 145336 6965446 16 930 356856 69351150 
5 800 190503 15157744 17 928 361845 71870844 
6 830 224697 23074067 18 935 366744 74231622 
7 852 251131 30284096 19 936 370953 76359523 
8 875 272565 36756775 20 950 375573 78383716 
9 888 289671 42508054 21 940 378045 80164600 

10 900 304399 47662911 22 945 381458 81890868 
11 900 316264 52247333 23 946 384400 83428392 
12 913 326804 56399776 24 943 387451 84921115 
13 912 335670 60101201 25 960 389768 86249061 

Table 5.11Number of distributions explored by the CC method with varying number 

of clusters  5,3c   , at different cn  values, for T = 1000 t.u. 
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5.2 Fault Handling Methodology 
When a fault occurs in a complex SoC working under the control of an OS, it is 

necessary that the latter becomes aware of the fault as quickly as possible. The OS 
must then take actions to isolate and mitigate the effects of the fault. 

There are several ways available to detect a fault in a resource of the system: such 
as OS-controlled temporal and modular redundancy of task execution, application-
side data and program flow integrity checks, various Power-On Self-Test (POST) 
checks and others. In the following, we concentrate on the faults, which are detected 
on-line (during normal operation of the system) by the built-in instruments. 

For situation when a fault is detected, there must be a method for passing the 
relevant information up to the OS level where the reaction to the fault will be taken. In 
BASTION D2.3 we described an architectural extension to the IJTAG, which is 
suitable for system health data collection and emergency signaling, hence facilitating 
the Fault Management (FM) functions. FM is further facilitated by the results of the 
fault classification based on the categories described in D3.1, the information from 
instruments as well as the accumulated fault statistics stored in the Health Map. 

For a generic case of a fault being detected by an instrument, the flowchart with 
four actors (Instrument, Instrument Manager, Fault Manager and Operating System) is 
shown in Figure 5.1. In the following subsections we describe the process in more 
detail. 

5.2.1 Error Classification 
Ability to classify errors, malfunctions and faults is an important basis for health 

map management, effective system recovery and fault management. We propose HW 
architectures and SW support for the on-line in the field fault classification and health 
map maintenance. In the process of physical degradation of the system, the observed 
fault progresses from intermittent towards a permanent one.  

In D3.1 we classify the faults by several properties (persistence, severity, 
criticality, diagnostic granularity and location) according to their severity levels and 
their contribution to the permanent malfunction of system's components and modules. 
The classification has a strong relation to fault management processes and the 
architecture of the Health Map. Taking into account the information from the health 
map, the FM would modify the current resource map used by the OS to identify 
currently available system resources. Hence, the OS scheduler becomes able to use 
this information in order to execute tasks only on healthy resources. 

5.2.2 Fault detection 
Whenever a fault is detected by an instrument, the information about this event is 

quickly passed to the IM by asynchronous propagation of the Fault and Corrected 
flags (see D2.3). In response, IM sends an interrupt request to a CPU which is 
executing the OS kernel, which, in turn invokes the FM to service this interrupt. 

5.2.3 Instrument Manager watchdog 
It is possible that due to the fault, the CPU or the OS is not reacting to the 

interrupt request. For this case, IM may employ a watchdog which monitors the 
ability of the system to respond to the fault occurrence event. It is set when an 
interrupt is sent and should be reset by the fault management Interrupt Service 
Routine (ISR), indicating the reaction from the system. It is assumed that if the system 
does not respond to the interrupt request of IM, the fault must have occurred in a 
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critical location and the only way to resume the operation is to reset system. After the 
reset, the system may check if the source of the reset was the fault management 
watchdog. 

 

 

5.2.4 Fault localization 
Concurrently with sending the interrupt request, IM starts the instrument 

localization procedure. During this procedure, IM will subsequently open the 
hierarchical IJTAG network segments with the Fault flag set (see D2.3). When an 
instrument will be reached, IM can report the location of the fault as the position in 
the IJTAG network. 

5.2.5 Coarse-grained fault classification 
Based on the information about which instrument has raised the Fault flag, the FM 

can perform coarse classification of the fault. Since the detailed diagnostic 
information about the fault is not available at this time, the diagnostic granularity is 
limited by the granularity of the instrument location (e.g. it is attached to a CPU or 
FPU, or some particular checker) and the fault location is of the first type. However, 
in some cases (as in the example in the next section) the criticality of the resource can 
be determined. In any case, the Health and the Resource Maps should be updated with 
the obtained information. 

Figure 5.1. Fault handling flowchart 
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5.2.6 System response 
Based on the information derived in the previous step, the OS may need to take 

actions to mitigate the effects of the fault on the functional operation of the system. 
The fault can be ignored if it does not affect the operation or the task was not critical. 
Alternatively, the task can be rescheduled to another resource or re-executed on the 
same one. 

5.2.7 Diagnosis 
Depending on the outcome of the coarse classification step, the FM system may 

decide to get more detailed diagnosis information and for this the diagnostic 
procedure is launched. In case some information must be sent or received to/from the 
diagnostic instruments (such as Built-In Self Test (BIST) or other Design for Test 
(DfT) hardware), the IJTAG network may be used. IM is then instructed to exchange 
data with the instrument. 

5.2.8 Fine-grained fault classification 
If some additional information is acquired as a result of the diagnostic procedure, 

FM can perform fine fault classification and update both Health and Resource Maps. 
The Health Map composition together with respective fault classification scheme, and 
initial fault handling scenario have been detailed in D3.1. 

5.3 Example scenario: processor cache 
To demonstrate our proposed fault handling flow in action, we devised an 

example scenario of fault occurrence and its handling in a cache memory of a CPU 
core. In this example, the CPU is one of several similar cores inside a larger SoC, it 
has L1 and L2 caches which contain error detection and correction logic in their 
controllers. This logic acts as an instrument for the FMI purposes and the instruments 
of all caches are connected to the IJTAG network. The L2 cache can be dynamically 
resized in case some of the locations become faulty [16]. At the moment when the 
fault occurs, the CPU is executing a task without strict deadlines. 

According to the system policy, when a soft error occurs, the cache is invalidated, 
but not disabled. However, when the fault is classified as permanent, the faulty part of 
the cache is disabled.  

 

 
 

Figure 5.2. Processor with caches connected to IJTAG instrumentation network 
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The fault is detected, but not recovered by the ECC checker inside the cache 
controller. The checker is also an instrument in the IJTAG network of the SoC and 
supports the asynchronous Fault and Correct flags (see Figure 5.2). As soon as the 
fault is detected, the flags are set and the fault handling mechanism is engaged. As a 
result, the following series of events unfolds: 

1. ECC checker in the CPU L2 cache controller detects an unrecoverable 
error and sets the flags to F=1 and C=0 

2. The state of flags reaches the IM via the asynchronous propagation 
network. IM immediately sends a dedicated interrupt request to the CPU 
and simultaneously starts the instrument localization procedure. During 
this procedure, IM subsequently opens the hierarchical levels of IJTAG 
network until it reaches the instrument which raised the Fault flag. 

3. CPU is interrupted by request from IM and the FM ISR is called to process 
the information. Since the error is not corrected, execution of the 
application code must be halted. CPU then waits within the FM ISR until 
the instrument localization data arrives. 

4. Instrument has been localized by IM and the information is passed to FM. 
The instrument in question is the ECC checker in L2 cache. 

5. Having the information, FM can now coarsely classify the occurred fault. 
It identifies the resource criticality as high (cache integrity is essential for 
correct program execution). According to the fault statistics, this module 
has already suffered from faults in the past and as a result, decision is 
made to disable it and perform the diagnostic procedure. The L2 cache is 
marked faulty in the Resource Map. Routinely, the fault statistics is 
updated too. 

6. Since the task does not have strict deadlines, it is re-executed on the same 
CPU core, but with the disabled cache. 

7. FM launches the diagnostic procedure. Cache controller has its own BIST, 
which can be used for acquiring detailed information. FM communicates 
with IM to access the BIST through the IJTAG network. 

8. BIST has produced the results which show that one half of the L2 cache is 
still operational. This data is transported to FM. 

9. FM updates the fault statistics for the faulty half of the L2 cache and stores 
a permanent fault with maximum severity bbbas the current state of that 
module. Resource Map is updated with the information about the reduced 
capacity of L2 cache in that CPU core. Thus, fine-grained classification is 
performed. 

 
 
 
 
 
 
  



Contents  ●  54 Report on error classification and  
                                                                                                           corresponding error handling 

 

6 Rejuvenation 
In this Section we describe a method developed by the BASTION partners, facing 
faults produced by aging effects via a technique, which is called rejuvenation. This 
technique aims at slowing down the aging effect by applying suitable input stimuli. A 
method is described, to generate such a stimuli. Some preliminary experimental 
results are reported. 

6.1 Introduction 
A common understanding of the NBTI process in the scientific community is still a 

hot research subject. Nowadays, two widely accepted theories coexist, namely the 
reaction-diffusion model (R-D) [8] and the trapping/detrapping model (T-D) [67]. In 
this work we will rely on the first one. Generally, NBTI includes stress and recovery 
phases (see Fig. 2.1a). The stress phase occurs when a pMOS transistor is in a 
negatively biased condition, i.e., VGS = −VDD (see Fig. 1b for an example of NBTI 
in a CMOS invertor gate). However, when the biased voltage is removed, i.e., VGS = 
0, the pMOS transistor is in the recovery phase and the NBTI effect is partially 
reversed. The VTHp will still increase over time, however in case of sufficient lengths 
of recovery phases, the aging process may be slowed down considerably. It has been 
shown that NBTI depends on many factors [68], but its strongest correlation is with 
the signal probability Pz (input duty cycle). The signal probability Pz(xi) for a logic 
gate’s input xi is defined as the ratio of time during which the input signal xi is set to 
logic 0. 

We propose a novel approach to mitigate NBTI in processor circuits using 
rejuvenation of pMOS transistors along NBTI-critical paths with dedicated programs. 
The method incorporates hierarchical fast, yet accurate identification of NBTI-critical 
paths at gate level and the rejuvenation Assembler programs generation using an 
Evolutionary Algorithm. In this work we exploit a general-purpose evolutionary 
toolkit called µGP [69], [70] and find a suitable fitness function using an open source 
hardware analysis framework called zamiaCAD [71]. The advantage of such flow lies 
in its flexibility for solving the dependencies of impacts by individual gates to the 
most critical NBTI-induced path delay by using evolutionary optimization processes. 
The advantage of such flow is its ability and flexibility in solving the dependencies of 
impacts by individual gates to the most critical NBTI-induced path delay using the 
evolutionary optimization process.  The generated rejuvenation programs are applied 
at predefined periods in order to drive pMOS transistors to the recovery phase and 
thus to extend the reliable lifetime of any processor implemented in nanoelectronic 
technology. 

Sub-Section 1.1describes the method for fast, yet accurate hierarchical modeling of 
NBTI-induced delays. Sub-Section 6.3introduces a flow for evolutionary generation 
of rejuvenation programs. Section 6.4 presents experimental results on an open-source 
MIPS processor Plasma and Section 1.1 draws some conclusions. 

6.2 Hierarchical Modelling of NBTI-Induced Delays 
In  [72] we have proposed an approach for fast, yet accurate modeling of NBTI-

induced delays. For the formulated task of rejuvenation programs generation for 
processor designs, the approach can be summarized by the following steps: 

 Step A (at the transistor level): Obtain a technology and environment dependent 
curve for voltage threshold shift as a function of gate input signal probability 
∆VTHp(Pz).   
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 Step B (at the gate level): Obtain technology and environment dependent curves for 
degradation of gate delays as a function of voltage threshold shift Δt(ΔVTHp) for each 
gate type in the netlist (INV, 2NAND, 2NOR). This implies that SPICE electrical 
simulations of the individual gates have to be performed only once.  

 Step C (at logic paths): Identify NBTI-critical paths at the gate level. This step 
involves: a) simulation for signal probabilities; b) static timing analysis for nominal 
path delays and NBTI-induced path delays; c) dedicated algorithm for selecting the 
paths.  

Note, that a preprocessing step flattens complex gates into NAND, NOR and INV 
stages (e.g. an AND gate is represented by a NAND gate followed by an inverter 
gate).   

6.2.1 Modelling NBTI-induced VTHp shift 
In the NBTI effect analysis, we rely on a reaction-diffusion (R-D) mechanism 

based predictive model for dynamic NBTI presented in [73], [74] and verified with an 
industrial 65-nm technology as stated in 0. The proposed model predicts the long term 
threshold voltage VTHp degradation due to NBTI at a time t  > 1000s and is proven to 
be independent of the frequency at high frequencies   [73]. It captures the dependence 
of NBTI on a gate input signal probability Pz (probability that pMOS transistor is 
under stress) in addition to its dependence on other key process and design parameters 
as presented in 0:  

|∆்ܸ ு௣| ൎ ሺ௡
మ	௄ೡమ	௉೥	஼		௧

కభ
మ௧೚ೣ

మ ሺଵି௉೥ሻ
ሻ௡   (1) 

where C = To
-1exp(-Ea / kT), Ea is the activation energy of hydrogen species,  k is 

the Boltzmann’s constant, T – temperature, ξ1 and To are technology dependent 
constants, and Kv is expressed by following Equation (2) [73]: 

௩ܭ ൌ ሺ௤	௧೚ೣ
ఌ೚ೣ

ሻଷ	ܭଵ
ଶ	ܥ௢௫൫ ௚ܸ௦ െ ௧ܸ௛൯√ܥ	exp	ሺ

ଶா೚ೣ
ா೚భ

ሻ      (2) 

where q is the electron charge, Cox = εox / tox is the oxide capacitance per unit area, 
and in the strong inversion region the vertical electrical field is given by Eox = (Vgs – 
Vth) / tox ; εox  K1 and E01 are technology dependent constants.  

Equation (1) is valid only for dynamic NBTI, since if Pz reaches the value 1, the 
value of ∆VTHp becomes infinite and the formula is incorrect. Therefore, the upper 
limit of ∆VTHp is defined by Equation (3), which models only static NBTI [73]:   

|∆்ܸ ு௣| ൌ ሺܭ௩ଶݐሻ௡     (3) 

The values of the involved technology and environmental parameters in Equation 
(1) can be summarized by a parameter γ, in the following form: 

|	∆்ܸ ு௣	| ൌ ሺߛ ௉೥
ଵି௉೥

ሻ௡   (4) 

Equation (4) represents a mathematically convenient function of threshold voltage 
VTHp degradation dependence on the signal probability for input signal Pz(xi) of 
pMOS transistor, where n = 1/6 is a variety of the dominant diffusion species (H or 
H2) expressed by the time exponent parameter and γ = 0.0904 is a parameter that 
embraces the selected technology and environmental variables. In Figure 6.1, the 
corresponding dependence is illustrated for PTM 65 nm technology [75] after 10 
years of NBTI-induced degradation at constant temperature T=400K and the supply 
voltage Vdd = 1.1V. 
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Figure 6.1 Threshold voltage shift ∆VTHp as a mathematically convenient function of signal 
probability Pz 

 

Alternative technologies, adjusted silicon measurements data or environmental 
variables may result in variations of the function shape and, thus, changes of the 
parameters’ values. Equation (4) allows fast computation of NBTI-induced VTHp shift, 
as it depends only on a signal probability at the inputs of the considered logic gate. 
The threshold voltage shift values serve as an input for modeling the NBTI-induced 
gate delays. 

6.2.2 Modeling NBTI-induced gate delay degradation 
Further, we calculated the gate delay tPzi taking into account NBTI degradation 

provided by Equation (4): 

Δtgateൌ	λ൉∆VTHpሺxiሻ൅μ൉∆VTHpሺxiሻ2   (5) 

where Δtgate is the gate output delay increase (in percentage) compared to the nominal 
gate delay, ΔVTHp(xi) is the change of VTHp for pMOS transistor at the gate input xi, 
while λ and μ are technology dependent constants. For example, in our experiments λ 
and μ are set to 1.63 and 5.3 for the Inverter gate (see Figure 6.2). The maximum and 
average deviation values of the fitting function from the SPICE results were 4.22% 
and 1.19%, correspondingly [72].  

 
Figure 6.2 Dependence of the gate output delay Δt on the ΔVTHp in an Inverter gate. Results of 
SPICE simulations (blue curve) and of the proposed mathematically convenient function (black 
dashed curve). 

 
In case of many-input gates embracing pMOS transistors networks, both the 

physical location of each pMOS transistor relative to the output node and the 

combination of gate inputs 1→0 transitions have an impact on the level of gate delay 
degradation. In our approach, each combination of gate input values for each gate is 
modelled by different values of constants λ and μ in Equation (5). Note, that our 
NBTI-induced path delay modelling approach models the gate-output load 
capacitance influenced by the circuit structure, e.g. the fan-out size and the length of 
wires (available at the layout floor planning phase) only for the nominal delay 
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calculation. As a simplification id does not explicitly model it to calculate the NBTI-
induced delays. Our previous experiments  [76] demonstrate that this simplification 
yields acceptable NBTI-induced path delay estimation with inaccuracy lower than 2% 
when compared to SPICE simulations. 

6.2.3  NBTI-critical path identification 
In the following, a method for fast calculation of the NBTI-induced delay 

degradation at paths of a gate-level circuit is proposed. We use the following 
notations:  

 d(Gk) is the nominal delay of the fresh gate Gk without considering aging, i.e. its 
delay at time zero;   

 (Gk,i) is the increase in the delay of the gate Gk from the i-th input to the output of 
the gate caused by NBTI-induced aging;  

 t(Gk,i) is the total delay of the gate Gk from the i-th input to the output of the gate 
caused by NBTI-induced aging, 

t(Gk,i) =d(Gk) + (Gk,i); 

 t(Gk) is the total maximum delay of the gate Gk over all its inputs mk, when taking 
into account NBTI-induced aging. 

t(Gk) = max {t(Gk,1), t(Gk,2), …, t(Gk,mk)}; 

 D(Gk) is the delay calculated for the slowest signal path in the cone CIN(Gk) based on 
the values of t(Gk,i) for all gates on this path, D(Gk) = max {(D(Gi)+ t(Gk,i))Gi  
IN(Gk)}, 

where IN(Gk) is the set of input gates of Gk , and t(Gk,i) is the total delay of the gate 
Gk from the output of the gate Gi caused by aging. 

Consider a combinational circuit as a network of gates where all the gates have 
numbers which show the ranking of gates in a partial order such that:  

(1) all the input gates are numbered in an arbitrary order  

(2) all other gates may get their numbers only if all their predecessor gates have 
already got their numbers. 

We present Algorithm 1 for calculating D(Gk), which is based on processing the 
gate-level netlist, gate by gate, from inputs to outputs. The method calculates the 
maximal degraded path delay values D(Gk) for all the gates of the circuit based on the 
estimates of t(Gk). Here, NG is the number of gates in the circuit and PI is the set of 
gates connected to primary inputs. 

Algorithm 1. NBTI-aware static timing analysis 

FOR all gates Gk, k = 1,2, …, NG: 

t’(Gk,i)=൜
,௞,௜ሻܩሺݐ ௜ݔ ൌ 0
݀ሺܩ௞ሻ, ௜ݔ ് 0

 

IF Gk  PI, THEN  
D(Gk) = t’(Gk,0) 

ELSE  
 D(Gk) = max {D(Gi)+ t’(Gk,i)Gi  IN(Gk)} 
END IF 

END FOR 

 As a result, fast identification of NBTI-critical paths can be performed at the gate 
level. 
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6.3 Evolutionary Generation of Rejuvenation Programs 
Natural evolution is based on random variations: some are rejected while others 

preserved according to quite objective evaluations. Only changes that are beneficial to 
the individuals are likely to spread into subsequent generations. Darwin called this 
principle natural selection, a quite simple process where random variations “afford 
materials” [77]. The field of Evolutionary Computation (EC) originates in the 1960s 
when several researchers — independently — tried to replicate such a characteristic to 
tackle difficult problems [78].  

Most of the EC jargon mimics the precise terminology of biology: evolution 
proceeds through discrete steps called generations; a single candidate solution is an 
individual; the set of all candidate solutions that exists at a particular time represents 
the population. EC algorithms rely on the idea of promoting variations that produce 
small, yet quantifiable, differences in the goodness of the solution. 

In CAD, evolutionary heuristics started to be seen as alternatives to classic 
approaches in the 1990s for several well-known NP-hard problems [79]. Optimizing 
test programs for rejuvenating a given circuit is the paradigmatic application for EC. 
Such an optimizer needs to be able to solve dependencies caused by impacts of 
individual gates and capable to obtain a cost-effective global solution with respect to 
all NBTI-critical paths. 

The approach proposed in this work was implemented coupling two open-source 
tools: an evolutionary toolkit, and a hardware design and analysis framework. 

µGP (also spelled MicroGP) is a general-purpose evolutionary toolkit developed at 
Politecnico di Torino [80] [70]. It allows a high degree of customization of 
evolutionary operators, stop criteria, and algorithm parameters. Internally it represents 
candidate solutions as multi-graphs, where each node roughly corresponds to a locus 
of the genome. Differently from most EAs, loci can be occupied by alleles with 
different characteristics, e.g. integer, float or fixed values, and the probability of 
appearance of each allele can be tuned. The internal representation allows efficiently 
handling problems whose solutions are as simple as bit signals and as complex as full-
pledged assembly programs. µGP implements a quite large variety of genetic 
operators that can handle the specific characteristics of the individuals’ genome. 

zamiaCAD is a scalable hardware design and analysis framework [71]  [81] [82]. 
Its front-end includes a parser and an elaboration engine that both support full VHDL-
2002 standard specification and a set of VHDL-2008 extensions. On the back-end 
side, the framework allows design simulation, static analysis and other applications 
for debug. zamiaCAD has an Eclipse IDE plug-in based graphical user interface for 
advanced design entry and navigation. 

 
Figure 6.3 A general flow of the evolutionary system developed in this work 

 
The general flow is presented in Figure 6.3. It is composed of two main parts: an 

OPTIMIZER, that is, µGP, and an EVALUATOR based on the zamiaCAD framework. 
The optimizer generates candidate solutions (i.e., individuals) cultivating a population 
of programs. The assembly language of the microprocessor is described in XML file 
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that enable µGP to map its internal multigraphs into syntactically correct and sensible 
programs. In the experiments reported here, µGP was allowed to generate programs 
using 47 different instructions, including conditional branches. The optimizer 
determined the length of the program, the sequence of instructions, the optimal values 
for their operand, either registers or immediate, and the targets of the conditional 
branches. The adopted XML file forbade backward jumps as they could create endless 
loops. 

The usefulness of each program vector is evaluated by simulating the NBTI-
degraded path delays for the timing-delay critical paths identified in the NBTI-
analysis process. The longest NBTI-degraded path delay value is reported back to the 
µGP core in form of fitness value. Optionally, the designer can increase the efficiency 
of the rejuvenation program generation procedure by providing the OPTIMIZER with 
details on the design application or structure. The first case is relevant when the 
processor is to be used in an embedded system with a very specific program. I.e. the 
expected workload is (partially) known. The second case is relevant if a particular part 
(a module) of the processor is more important for rejuvenation. Such details can be 
modeled as a secondary fitness value. In the proposed flow, if e.g. the ALU core is the 
primary goal for rejuvenation, the secondary fitness value can count the number of 
ALU operations inside the programs. This value is a mere hint for the evolutionary 
algorithm, as the region of the search space more promising for rejuvenating the ALU 
are the programs that do use the ALU. µGP uses it to discriminate two solutions only 
when the first elements, that is the rejuvenation efficacies, are the same. µGP uses the 
fitness along with structural information to select the more promising individuals as 
parents in the next generation. Eventually, the best individual found during the 
evolution process, i.e. the one with the highest fitness, is selected. µGP evolves the 
population until a steady state condition is detected, that is, no improvement is 
recorded for a given number of generations.  

6.4 Experimental Results 
The proposed approach is demonstrated on a MIPS processor design Plasma  [83] described in 

RTL VHDL. The detailed analysis of the NBTI-induced delays and rejuvenation was 
performed for the Arithmetic Logic Unit core ALU (32 bit). The gate level 
implementation was synthesized with Synopsys Design Compiler. It utilized 1,002 
basic gates (INV, 2-input NAND and 2-input NOR), where 138 gates are along the 
longest path at time-zero (pre-NBTI stress).  

The experiments to assess evolutionary generation of Assembler programs for 
rejuvenation of NBTI-impacted processors are summarized in Table 6.1. First, 8 
representative workloads were selected (listed in row 1): 

 NOR, XOR are two representative workload Assembler programs exercising these 
two logical operations correspondingly with a large set of random operands; ADD, 
MULT are such representative workloads for these two mathematical operations 
correspondingly. Note, a set of similar workloads for other logic and mathematical 
operations were also exercised in our experiments and produced results similar to 
these four representatives. 

 mix is an Assembler program with a deterministic combination of the CPU 
mathematical instructions for a set of random operands; NOP is a workload 
consisting of NOP instructions only. Intuitively, it keeps a significant part of the 
ALU core unexercised and therefore under NBTI stress.  

 rand1 and rand2 are two representatives of a set of random Assembler programs 
(256 in total). Interestingly, the distribution of random workloads, with regard to 
their NBTI-induced path delay impact, was very wide. Here rand1 is the workload 
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with the minimal NBTI-induced path delay and rand2 is a representative of a 
random workload with an average NBTI-induced path delay. 

The Plasma processor was simulated with the workloads and the gate input signal 
probabilities in the ALU core were obtained. Further, the NBTI-induced path delays 
were calculated as described in Sub-Section 6.2. The estimated impact of a 10-year 
stress NBTI with the corresponding workloads on the longest path is presented in row 
2 of Table 6.1.  

 
Table 6.1 Rejuvenation analysis for the ALU core as a part of Plasma. 
Workloads NOR XOR ADD MULT mix NOP rand1 rand2
Δt by NBTI 10.08 10.13 21.06 18.04 18.52 27.74 8.69 18.37 
a) Universal Rejuvenation  

ΔtR after 
rejuvenation 
for the given 
overhead (%) 

0.001 10.09 10.09 16.64 13.53 13.86 17.79 8.34 13.72 
0.01 10.09 10.1 15.7 12.59 12.86 15.67 8.29 12.72 
0.1 10.1 10.1 14.68 11.59 11.8 13.41 8.26 11.64 
1.0 10.1 10.11 13.74 10.54 10.63 11.03 8.31 10.42 

Rej. gain 0.1 -0.02 0.03 6.38 6.46 6.72 14.33 0.43 6.73 
b) Universal Rejuvenation (ALU functions preferred)   
ΔtR after 0.1% rej. 9.80 10.08 14.38 11.31 12.63 11.88 14.53 8.40 
Rejuvenation gain 0.28 0.05 6.69 6.74 6.66 6.64 13.21 0.29 
c) Specific Rejuvenation (targeting workloads) 
ΔtR after 0.1% rej. 9.8 10.1 14.48 11.4 11.76 13.57 8.22 11.66 
Rejuvenation gain 0.28 0.03 6.58 6.65 6.75 14.17 0.47 6.71 
d) Rejuvenation with the selected low-aging Random program out of 256  
ΔtR after 0.1% rej. 9.79 10.08 15.51 12.43 12.84 15.07 8.69 12.84 
Rejuvenation gain 0.28 0.05 5.55 5.62 5.52 12.67 0.00 5.53 
e) Rejuvenation with an average Random program out of 256  
ΔtR after 0.1% rej. 10.08 10.13 21.04 18.04 18.36 20.39 8.73 18.36 
Rejuvenation gain 0.00 0.00 0.03 0.00 0.00 7.35 -0.03 0.01 

 
Experiment a). A universal rejuvenation program was generated using the single 

fitness value (see Sub-Section 6.3). Its impact on rejuvenation of the stressed ALU 
core was analyzed for a set of allowed execution overheads (0.001%, 0.01%, 0.1% 
and 1%).  For example, the 0.1% execution overhead of the proposed rejuvenation 
stimuli results in 14.68% path delay increase for the ADD workload versus 21.06% 
path delay increase without rejuvenation. The absolute Rejuvenation gain is therefore 
6.38% or relatively the delay is deduced by 1.43 times, that can be translated into 
extra several years of reliable operation of the processor in the field.   

Experiment b). Different from Experiment a), the OPTIMIZER was configured to 
use in addition a secondary fitness value to prefer in the rejuvenation program the 
instructions implemented in the ALU core. The rejuvenation gain is slightly better 
than in Experiment a).  

Experiment c). Here, instead of the universal one, there were generated 
rejuvenation programs that target specific workloads of Plasma, i.e. the workloads 
NOR, XOR, etc. Note, the negative rejuvenation gain in Experiment a) is caused 
inability of the universal rejuvenation program to influence a set of extreme signal 
probabilities by the NOR workload. Both assisted rejuvenation program generation 
Experiments b) and c) were able to find a better solution in this case.  

Experiments d) and e) represent attempts to rejuvenate the ALU core with random 
Assembler programs. Here even the random program with the lowest NBTI impact 
selected out of 256 random programs demonstrates a weaker rejuvenation capability 
compared to the programs generated with the proposed flow.     

As a reference a standalone gate-level ALU core extracted from the Plasma 
processor is analyzed.  demonstrates results of rejuvenation stimuli generation (binary 
vectors) with the proposed flow for a set of workloads as described in 0. Given the 
direct access to the primary inputs, such standalone circuit has a better controllability 



Report on error classification and  

corresponding error handling  Contents  ●  61 

 

of gate inputs. First, higher NBTI-induced path delays can be demonstrated with 
particular workloads and, second, a higher rejuvenation gain can be achieved 
compared to the ALU core as an integrated part of the processor circuit. 
 
Table 6.2 Rejuvenation of a standalone ALU core (32-bit) of Plasma. 
Workloads NOR OR AND rand highNBTI lowNBTI 

Δt by NBTI (%) 23.88 33.33 24.56 12.35 54.80 9.17 

ΔtR after rej.
for given 
overhead 
(%) 

0.001 18.39 25.42 18.86 12.35 38.56 9.17 
0.01 15.76 21.51 16 12.35 30.53 9.17 
0.1 14.56 19.35 14.42 12.34 26.09 9.17 
1.0 13.45 17.05 13.56 12.31 21.8 9.17 

Rej. gain 0.1 9.32 13.98 10.14 0.01 28.71 0 

 
The evolutionary generation of one rejuvenation program, either universal in 

Experiments a) and b) or each of the specific ones in Experiment c), took 21 hours on 
a moderate Win 64bit workstation. This time includes iterative execution 
(approximately 20K times) of the evolutionary algorithm with the design simulation 
and NBTI-induced path delay calculation calls. The analysis in Experiments d) and e) 
takes 3.5 seconds. Here, we used the internal simulator of zamiaCAD (about 10 times 
slower than the state-of the-art commercial simulators).  

The proposed rejuvenation approach supports the major BASTION key 
performance indicator “KPI4: Extend the product’s lifetime 3-5 times”. The actual 

impact on the circuit life time strongly depends on the application scenario. 
  

As an example, we reported in Figure 6.4 a scenario, where rejuvenation 
sequences are applied periodically: in this way we experience some performance 
degradation, while improving the life time. The chart on the right-hand side illustrates 
a scenario with the slack time set to 15% of the most critical path’s delay at time zero 
(i.e. the fresh circuit). The NBTI-induced delay at the longest path is estimated to 
reach 15% after 2.5 years and 19% after 10 years of operation for a given workload 
without rejuvenation. At the same time, the delay is still 15% after 10 years if the 
rejuvenation procedure is applied. A similar rejuvenation impact is demonstrated by 
the simulation-based preliminary experimental results in Table 6.1, e.g. for the mix 
workload with 0.11% execution overhead. The reader should note that a reduction of 
the NBTI-induced delay by just several percent can significantly extend reliable 
lifetime of nanoscale logic, e.g., the discussed illustrative example in Figure 6.4 
provides an extension in 4 times, i.e. from 2.5 to 10 years.  

At the same time, the proposed approach contributes to another major 
BASTION key performance indicator "KPI1: Improvement of the efficiency of 
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aging fault detection and relaxation by at least 30%". The efficiency of aging 
relaxation is addressed by the novel approach targeted to generation and application 
of specific rejuvenation stimuli. It can be observed from our experiments that design 
exploitation workloads based on random stimuli, while unrealistic in practice, result in 
the lowest NBTI-induced degradation. This observation can motivate an approach to 
rejuvenate the designs with random stimuli. We have compared the efficiency of such 
rejuvenation with rejuvenation by the specifically generated rejuvenation stimuli.  
Consider the most realistic workloads ADD, MULT, mix highlighted by blue in Table 
6.1. The NBTI-induced degradation (row 2) has significantly better relaxation with 
the dedicated rejuvenation stimuli (row 6, Universal rejuvenation with 0.1% 
overhead) compared to the average random stimuli (the second last row). Therefore, 
the preliminary experimental results demonstrate potential for the rejuvenation (as a 
part of relaxation) efficiency improvement by up to 33%.  

6.5 Conclusions  
In the frame of the BASTION project we developed an approach for NBTI 

mitigation in processor designs by rejuvenation of degraded pMOS transistors along 
NBTI-critical paths. The method incorporates hierarchical fast, yet accurate modelling 
of NBTI-induced delays at transistor, gate and path levels for generation of 
rejuvenation Assembler programs using an evolutionary flow. These programs are to 
be applied further as an execution overhead to drive those pMOS transistors to the 
recovery phase, which are the most critical for the NBTI-induced path delay in 
processors.  

The experimental results demonstrate the feasibility of rejuvenation with dedicated 
Assembler programs and efficiency of their evolutionary generation providing for 
significant reduction of NBTI-induced path delays, i.e. in 1.4 times on average in case 
of small execution overheads (e.g. 0.1% or less). This can be translated into several 
extra years of reliable operation of the processor in the field. Notably, the universal 
rejuvenation programs are efficient independently from the exercised workloads. The 
proposed flow allows configurations to specifically address particular expected 
workloads (e.g. in embedded systems) or assisting the generation process with 
implementation based “hints” that in our experiments resulted only in minor 
improvements. 

7 Conclusions 
In this deliverable we have reported on the activities performed in T3.3 within the 
BASTION project. The following summarizes the deliverable.  
In the hierarchical test and design section first different design partitioning strategies 
have been discussed concluding that there is not one optimal solution. Instead a trade-
off is required taking into account all the different test and design aspects. After 
describing the general pattern retargeting process different top-level test strategies for 
hierarchical scan tests have been presented and compared in detail. Afterwards the 
impact of the hierarchical test on the test coverage has been analyzed. While the 
hierarchical test approach does not reduce the test coverage in general, there might be 
some impact for the delay test when using dedicated wrapper cells for the module 
isolation. Finally, the overall hierarchical test flow has been evaluated in small case 
study. 
 When it comes to fault management, RRC is an efficient method to cope with 
soft errors. In this research, we showed that by distributing the checkpoints in a non-
equidistant manner it is possible to improve the LoC in comparison to equidistant 
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checkpointing. The non-equidistant distribution that provides the highest LoC is made 
out of clusters, where all execution segments that belong in the same cluster have the 
same size. The number of clusters is relatively low, which allows the proposed 
heuristic, i.e. Clustered Checkpointing, to find the same distribution as the exhaustive 
search approach, which always finds the optimal distribution, in much shorter time. 
We presented a method to slow down the aging effects which have been observed in 
many recent semiconductor technologies. The key idea is that these effects can be 
partly compensated by applying suitable stimuli to the circuit during idle periods: in 
the case of a processor, this results in executing some additional instructions when 
possible, forcing some well defined values on the inputs of the most critical units of 
the processor from the point of view of delay. Some preliminary results we gathered 
show that this approach can slow down the aging effects by about 40%, thus 
correspondingly increasing the typical circuit life time.  
 Two BASTION KPIs have been addressed by this deliverable, which is:  
KPI1: Improvement of the efficiency of aging fault detection and relaxation by at 
least 30%. The efficiency of aging relaxation is addressed by a novel approach 
targeted to generation and application of specific rejuvenation stimuli. The 
preliminary experimental results demonstrate potential for the rejuvenation efficiency 
improvement by up to 33%. See Section 6.4 for details. The contribution of this 
deliverable in terms of fault detection efficiency by fast alarming of the OS as well as 
minimization of circuit performance impact caused by the instrumentation and data 
collection infrastructure is given in Section 5. Other aspects of KPI1 are covered in 
D3.2, where different aspects of KPI1 (efficiency) are also explained.  
KPI4: Extend the product’s lifetime 3-5 times. We have proposed a novel NBTI-
mitigation approach for rejuvenation of processors with dedicated Assembler 
programs targeted at lifetime extension and published preliminary experimental 
results. See Section 6.4 for details.  
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