

IST Amigo Project

Deliverable D2.1

Specification of the Amigo Abstract
Middleware Architecture

Public

April 2005 Public

Project Number : IST-004182

Project Title : Amigo

Deliverable Type : Report

Deliverable Number : D2.1

Title of Deliverable : Specification of the Amigo Abstract Middleware Architecture

Nature of Deliverable : RE

Internal Document Number : Amigo_WP2_D2.1_v10 final.doc

Contractual Delivery Date : 28 February 2005

Actual Delivery Date : 11 April 2005

Contributing WPs : WP2

Editor : INRIA: Nikolaos Georgantas

Author(s) : INRIA: Sonia Ben Mokhtar, Yérom-David Bromberg,
Nikolaos Georgantas, Valérie Issarny, Laurent Réveillère,
Daniele Sacchetti, Ferda Tartanoglu

 FT: Anne Gerodolle, Gilles Privat, Fano Ramparany,
Mathieu Vallée

 Ikerlan: Jorge Parra

 IMS: Marco Ahler, Viktor Grinewitschus, Christian Ressel

 Microsoft: Ron Mevissen

 Philips: Harmke de Groot, Michael van Hartskamp, Peter
van der Stok, Bram van der Wal

 TELIN: Tom Broens, Henk Eertink, Aart van Halteren,
Remco Poortinga, Maarten Wegdam

 TID: Sara Carro Martinez, José María Miranda, Johan
Zuidweg

 VTT: Jarmo Kalaoja, Julia Kantorovitch, Jiehan Zhou

Amigo IST-2004-004182 3/227

April 2005 Public

Abstract
This report elaborates the design of the Amigo abstract architecture focusing on the
middleware architecture. The key Amigo property addressed is interoperability and integration
of the four application domains of the networked Amigo home, namely, the mobile, personal
computing, consumer electronics and home automation domains. Interoperability is pursued:
first, by adopting service-orientation as the essential architectural paradigm to enable ad hoc
coupling between services; second, by specifying an abstract service-oriented architecture
subject to limited technology-specific restrictions to enable representation of the
heterogeneous domains and of the diverse related technologies; and, third, by elaborating
appropriate interoperability methods within the abstract architecture. Interoperability methods
are based on the abstraction of common architectural, including behavioral, features of
existing service infrastructures, and on the semantic modeling of these features for making
them machine-interpretable. Concrete interoperability methods are elaborated for service
composition at application level, and for service discovery and interaction at middleware level.

Our elaboration initially draws from the personal computing and mobile domains, where there
exist already mature service-oriented architecture paradigms. Nevertheless, the consumer
electronics and home automation domains are, then, effectively integrated building on the
introduced Amigo abstract architecture. The particularity of these two domains leads as: for
the former, to adopt the DLNA guidelines, which establish a number of standard technologies
for interoperability targeting the – very demanding in performance – multimedia streaming; and
for the latter, to introduce dedicated, low-level, interoperability mechanisms. Finally, within the
Amigo abstract architecture, security and privacy is addressed as a principal requirement for
the Amigo home.

Keyword list

ambient intelligence, networked home system, mobile/personal computing/consumer
electronics/home automation domain, interoperability, service-oriented architecture, semantic
modeling, middleware, service discovery protocols, service composition, context-awareness,
quality of service, multimedia streaming, security, privacy.

Amigo IST-2004-004182 4/227

April 2005 Public

Table of Contents

Table of Contents ...5

Figures ..11

Tables ..14

1 Introduction...15
1.1 Middleware-related properties for the networked home system......................... 15

1.1.1 Interoperability .. 16
1.1.2 Security, privacy and safety.. 17
1.1.3 Mobility.. 17
1.1.4 Context-awareness... 18
1.1.5 Quality of service .. 20

1.2 Document structure... 20

2 Service-orientation for Amigo ...23
2.1 Service-Oriented Architecture (SOA)... 24

2.1.1 Service-oriented architectural style... 24
2.1.1.1 Key properties of service-orientation.. 26
2.1.1.2 Reference service-oriented architecture .. 27
2.1.1.3 SOA and Web Services ... 28

2.1.2 Semantic Web and Semantic Web Services .. 30
2.2 Modeling services for Amigo.. 32

2.2.1 Modeling components... 33
2.2.1.1 Example ... 35

2.2.2 Modeling connectors... 37
2.2.2.1 Example ... 39

2.3 Semantics-based service interoperability ... 40
2.3.1 Interoperability at connector/middleware level.. 41

2.3.1.1 Conformance relation... 41
2.3.1.2 Interoperability method .. 41
2.3.1.3 Example ... 42

2.3.2 Interoperability at component/application level... 45
2.3.2.1 Conformance relation... 45
2.3.2.2 Interoperability method .. 46
2.3.2.3 Example ... 47

2.4 Related work... 48
2.5 Discussion.. 50

3 Amigo abstract reference service architecture..............................53
3.1 Amigo application layer .. 55

3.1.1 QoS-aware services ... 56

Amigo IST-2004-004182 5/227

April 2005 Public

3.1.2 Context-aware services .. 56
3.2 Amigo middleware layer.. 58

3.2.1 Amigo service discovery ... 59
3.2.1.1 Amigo enhanced service discovery.. 63
3.2.1.2 Amigo interoperable service discovery .. 65
3.2.1.3 Mapping between enriched service description and legacy SDPs ... 67
3.2.1.4 Security and privacy for service discovery ... 69

3.3 Amigo platform layer ... 69
3.4 Discussion.. 70

4 Application-layer interoperability methods....................................71
4.1 Ad hoc composition of services... 72

4.1.1 Abstract composition description .. 72
4.1.2 Modeling OWL-S processes as finite state automata... 72
4.1.3 Matching algorithm ... 75

4.1.3.1 Semantic operation matching... 75
4.1.3.2 Conversation matching .. 76
4.1.3.3 Example ... 78

4.2 Related work... 80
4.3 Discussion.. 81

5 Middleware-layer interoperability methods....................................83
5.1 Background .. 84

5.1.1 Reflective middleware to cope with middleware heterogeneity 84
5.1.2 Software architecture to decouple components from protocols.......................... 85

5.2 Service discovery protocol interoperability .. 87
5.2.1 SDP detection... 89
5.2.2 SDP interoperability .. 90
5.2.3 Event-based interoperability ... 92
5.2.4 Context-aware, self-adaptive interoperability.. 96
5.2.5 Interoperability scenarios.. 98

5.3 Interaction protocol interoperability .. 100
5.4 OSGi-based interoperability ... 103

5.4.1 Export and binding factories ... 104
5.4.2 OSGi communication services for legacy servers and clients 105

5.5 Related work... 107
5.6 Discussion.. 107

6 Integration of the CE domain...109
6.1 Background .. 109

6.1.1 DLNA overview ... 110
6.1.2 UPnP overview ... 114
6.1.3 Streaming protocols.. 116

Amigo IST-2004-004182 6/227

April 2005 Public

6.1.3.1 Real-Time Transport Protocol / Real-Time Control Protocol (RTP / RTCP)............................. 116
6.1.3.2 Hypertext Transfer Protocol (HTTP) .. 118

6.1.4 Streaming session control protocols... 119
6.1.4.1 Real-Time Streaming Protocol (RTSP) .. 119
6.1.4.2 UPnP AV.. 120
6.1.4.3 Session Initiation Protocol (SIP)... 121

6.2 Quality of Service in the CE domain .. 122
6.2.1 Problem analysis .. 122
6.2.2 The stream in isolation.. 124

6.2.2.1 Stream shaping.. 124
6.2.2.2 Transcoding ... 126

6.2.3 Medium sharing between streams.. 126
6.2.3.1 Group membership .. 127
6.2.3.2 Reservation / prioritization requests... 127
6.2.3.3 Realization of reservation / prioritization on the network .. 128
6.2.3.4 Bandwidth negotiations.. 129

6.2.4 QoS-interoperability aspects at the middleware ... 131
6.2.5 DLNA and QoS ... 132

6.2.5.1 UPnP-QoS introduction.. 132
6.2.5.2 UPnP-QoS framework ... 133
6.2.5.3 Description of the UPnP-QoS components .. 134
6.2.5.4 Summary of the UPnP-QoS framework ... 136
6.2.5.5 DLNA QoS traffic types proposal ... 136

6.3 Amigo multimedia streaming architecture .. 139
6.3.1 Digital Media Server (source) ... 141
6.3.2 Digital Media Renderer (sink) ... 142
6.3.3 Control Point ... 142
6.3.4 QoS Manager ... 144
6.3.5 Policy Holder... 145
6.3.6 Intermediate Node .. 145
6.3.7 An example scenario .. 146

6.4 Discussion.. 147

7 Integration of the Domotic domain ...149
7.1 Background on domotic bus protocols... 150

7.1.1 BatiBUS .. 150
7.1.2 EHS .. 151
7.1.3 EIB .. 154
7.1.4 KONNEX... 156
7.1.5 LON .. 157
7.1.6 BDF... 159

7.2 Amigo domotic service architecture.. 160
7.2.1 Amigo domotic device classes.. 160

7.2.1.1 Legacy Amigo domotic device ... 160
7.2.1.2 Base Amigo domotic device... 161
7.2.1.3 Intermediate Amigo domotic device ... 161

Amigo IST-2004-004182 7/227

April 2005 Public

7.2.1.4 Full Amigo domotic device ... 162
7.2.2 Amigo domotic service architecture.. 162

7.2.2.1 Bus controller ... 162
7.2.2.2 Proprietary device factory .. 163
7.2.2.3 Discoverable device factory ... 164
7.2.2.4 Mapping the Amigo domotic device classes onto the architecture... 166
7.2.2.5 Instantiation example ... 166
7.2.2.6 Summary.. 167

7.2.3 Enabling complex domotic scenarios ... 167
7.2.3.1 Script-based scenarios .. 168
7.2.3.2 Scenario Developer ... 169
7.2.3.3 Home plug-ins.. 170

7.3 Discussion.. 170

8 Security and Privacy ..171
8.1 Introduction .. 171

8.1.1 Security and privacy in Amigo .. 171
8.1.2 Relationship to existing security mechanisms .. 173

8.2 Supported scenarios ... 173
8.2.1 Installation of (new) equipment... 174
8.2.2 Foreign equipment.. 174
8.2.3 Equipment malfunction ... 174
8.2.4 Equipment is moved outside and back into the home 174
8.2.5 Out of home communication... 174
8.2.6 Home service usage ... 174

8.3 Requirements ... 175
8.3.1 Interoperability .. 175
8.3.2 Pre-configured .. 175
8.3.3 User-friendly ... 175
8.3.4 Self-managed ... 175
8.3.5 Distributed... 175
8.3.6 Dynamic.. 175

8.4 Amigo security and privacy architecture .. 175
8.4.1 Authentication ... 177

8.4.1.1 Authentication service.. 177
8.4.1.2 Users ... 177
8.4.1.3 Devices .. 178
8.4.1.4 Services ... 179

8.4.2 Authorization... 179
8.4.2.1 Authorization service.. 180
8.4.2.2 Authorization Scheme (AS).. 180

8.4.3 Privacy .. 180
8.4.3.1 Protection of user information .. 181
8.4.3.2 Protection of content (DRM)... 181

8.4.4 Communication security ... 183
8.4.4.1 WS-Security ... 183

Amigo IST-2004-004182 8/227

April 2005 Public

8.4.4.2 SSL .. 183
8.4.4.3 RMI and security .. 186

8.5 Discussion.. 187

9 Support of user/technical requirements within the Amigo
middleware architecture ..189

9.1 Deducting technical requirements from the user requirements 189
9.1.1 Technical requirements applying to the middleware... 198

9.2 Support of the technical requirements within the Amigo middleware
architecture ... 199

9.2.1 Ad-hoc interoperable networking .. 199
9.2.2 Ad-hoc multimedia communication... 200

9.2.2.1 Video server... 200
9.2.2.2 Local database... 200
9.2.2.3 External content server .. 201

9.2.3 Component-based middleware... 201
9.2.4 Context-awareness... 201
9.2.5 Device discovery... 201
9.2.6 Distributed system .. 201
9.2.7 Multi-user system.. 201
9.2.8 Personalization and customization ... 202
9.2.9 Privacy profiles ... 202
9.2.10 Re-configuration ... 202
9.2.11 Security profiles and authentication.. 203
9.2.12 Service discovery.. 203
9.2.13 Standardized services .. 203

9.3 Conclusions ... 203

10 Assessment of Amigo interoperability205
10.1 Stakeholders of Amigo.. 205
10.2 Assessment of Amigo interoperability aspects.. 207

10.2.1 Interoperability between service descriptions ... 207
10.2.2 Interoperability between service discovery mechanisms.................................. 207
10.2.3 Interoperability between service binding mechanisms 208
10.2.4 Interoperability between service invocation mechanisms................................. 208
10.2.5 Interoperability between security mechanisms ... 208
10.2.6 Interoperability between QoS mechanisms .. 209
10.2.7 Interoperability between context-exchange mechanisms 209
10.2.8 Interoperability between service management mechanisms 209

10.3 Assessment results ... 209
10.3.1 Assessment of service description interoperability ... 209
10.3.2 Assessment of service discovery interoperability ... 210
10.3.3 Assessment of service binding interoperability... 211
10.3.4 Assessment of service invocation interoperability .. 211

Amigo IST-2004-004182 9/227

April 2005 Public

10.3.5 Assessment of security interoperability .. 211
10.3.6 Assessment of QoS interoperability.. 212

10.4 Conclusions and recommendations .. 213

11 Conclusion...215

Acronyms..217

References ..221

Amigo IST-2004-004182 10/227

April 2005 Public

Figures
Figure ‎2-1: Service-oriented architecture ..25
Figure ‎2-2: Reference service-oriented architecture..27
Figure ‎2-3: Web Services Architecture ..29
Figure ‎2-4: Semantic Web structure ..30
Figure ‎2-5: OWL-S model..32
Figure ‎2-6: Basic elements of the mobile service ontology..34
Figure ‎2-7: Message modeling in the mobile service ontology34
Figure ‎2-8: Connector modeling in the mobile service ontology38
Figure ‎2-9: Component conformance relation and interoperability method47
Figure ‎3-1: Mapping of the Amigo service modeling on the Amigo abstract reference

service architecture ..53
Figure ‎3-2: Amigo abstract reference service architecture ..55
Figure ‎3-3: Life cycle of a networked service...60
Figure ‎3-4: Amigo abstract service discovery architecture ..61
Figure ‎3-5: Example service discovery topology in the Amigo environment................62
Figure ‎3-6: (a) Building enriched service descriptions from UPnP device descriptions;

(b) Building UPnP SSDP requests from enriched service requests......................68
Figure ‎4-1: Modeling OWL-S control constructs as finite state automata74
Figure ‎4-2: An example of modeling an OWL-S process as a finite state automaton.74
Figure ‎4-3: Main control loop of the semantic matching algorithm..............................76
Figure ‎4-4: Global automaton composing the selected services77
Figure ‎4-5: Main logic of the conversation matching algorithm...................................78
Figure ‎5-1: Components decoupled from protocols...86
Figure ‎5-2: Event based parsing system for achieving protocol interoperability86
Figure ‎5-3: Interaction between two components ..87
Figure ‎5-4: Detection of active and passive SDPs through the monitor component89
Figure ‎5-5: SDP detection & interoperability mechanisms...91
Figure ‎5-6: Coupling of parser and composer ...92
Figure ‎5-7: Unit configuration ..93
Figure ‎5-8: Addition of protocol-specific events ...95
Figure ‎5-9: Evolution of SDP interoperability system configuration97
Figure ‎5-10: SDP interoperability and passive service discovery99
Figure ‎5-11: Interaction protocol interoperability relying on event-based parsing......102
Figure ‎5-12: Interaction protocol interoperability with dynamic stub generation102

Amigo IST-2004-004182 11/227

April 2005 Public

Figure ‎5-13: OSGi and interoperability methods. Vertical dark boxes represent
bundles. Horizontal boxes are services published by those bundles..................105

Figure ‎5-14: Standard (top) and OSGi-enhanced (bottom) interoperability between a
legacy UPnP client bundle and a SLP/RMI server. ..106

Figure ‎6-1: Interoperability between multimedia roles ...110
Figure ‎6-2: DLNA Protocols Stack...113
Figure ‎6-3: UPnP Protocols Stack ...115
Figure ‎6-4: RTP packet structure...117
Figure ‎6-5: UPnP AV Architecture ...121
Figure ‎6-6: Regulated traffic ..125
Figure ‎6-7: Leaky bucket ...125
Figure ‎6-8: Token bucket...126
Figure ‎6-9: QoS abstract framework based on UPnP technology133
Figure ‎6-10: An example instantiation and use of the UPnP-QoS architecture135
Figure ‎6-11: IEEE 802.1D traffic class operation...137
Figure ‎6-12: Example of the effect of WMM on a video stream.................................138
Figure ‎6-13: Amigo in the DLNA stack ..140
Figure ‎6-14: DMS mapped on the Amigo abstract reference architecture.................141
Figure ‎6-15: DMR mapped on the Amigo abstract reference architecture.................143
Figure ‎6-16: CP mapped on the Amigo abstract reference architecture....................144
Figure ‎6-17: QM mapped on the Amigo abstract reference architecture145
Figure ‎6-18: PH mapped on the Amigo abstract reference architecture....................146
Figure ‎6-19: IN mapped on the Amigo abstract reference architecture146
Figure ‎6-20: An example functional scenario for the Amigo multimedia streaming

architecture (Intermediate Node not shown)...147
Figure ‎7-1: The architecture of the EHS network is based on the notions of controller

and devices and on the notion of application domains. Application resources are
described by a Device Descriptor (DD). Commands exchange between controller
and devices of the same application domain are based on EHS codified objects
and services. ..153

Figure ‎7-2: EIB Topology...155
Figure ‎7-3: Levels of the different modes ..156
Figure ‎7-4: Legacy Amigo domotic device...161
Figure ‎7-5: Base Amigo domotic device ..161
Figure ‎7-6: Intermediate Amigo domotic device ..162
Figure ‎7-7: Full Amigo domotic device ...162
Figure ‎7-8: Bus controllers...163

Amigo IST-2004-004182 12/227

April 2005 Public

Figure ‎7-9: Proprietary device factory/proxy..164
Figure ‎7-10: Discoverable device factory/proxy and Amigo domotic services165
Figure ‎7-11: Instantiation example ..167
Figure ‎7-12: Scenarios and plug-ins..168
Figure ‎7-13: XML-based scenario ...169
Figure ‎7-14: Additional XML tags ..169
Figure ‎7-15: Scenario Developer...170
Figure ‎8-1: Security and privacy architectural components176
Figure ‎8-2: Perspectives in Digital Rights Management ..182
Figure ‎8-3: SSL protocol stack ..184
Figure ‎8-4: SSL data encapsulation ..185
Figure ‎8-5: SSL package bits ..186

Amigo IST-2004-004182 13/227

April 2005 Public

Tables
Table ‎3-1: Service Discovery Protocols description by comparison67
Table ‎5-1: Mandatory SDP events...95
Table ‎5-2: Mandatory actions ..96
Table ‎6-1: DLNA required and optional media formats..114
Table ‎6-2: RTP packet fields ...117
Table ‎6-3: RTCP..118
Table ‎6-4: RR Packet Structure...118
Table ‎6-5: SR Packet Structure ...118
Table ‎6-6: WMM Access Categories ...138
Table ‎6-7: Normative priorities for DLNA Traffic Types ...139
Table ‎7-1: Table with given lengths of transmission ..151
Table ‎7-2: Table with the different cable lengths (dependent on the used medium)..152
Table ‎7-3: Table with the different data rates for several mediums and techniques ..152
Table ‎7-4: Different data rate depending on the used medium and type of tranceiver

...157
Table ‎7-5: BDF Appliances address table ...159
Table ‎7-6: BDF Sensor and Actuator address table ..159
Table ‎8-1: Security aspects of a corporate network versus a networked home.........172
Table ‎8-2: Authorization scheme...180
Table ‎9-1: User requirements as taken from D1.2 and technical requirements

deducted thereof ..191
Table ‎9-2 Technical requirements (fully or partly applying) to the middleware198

Amigo IST-2004-004182 14/227

April 2005 Public

1 Introduction
The Amigo project aims at enabling ambient intelligence for the networked home environment
by addressing: (i) the easy and effective integration of devices and related application services
available in today’s home (i.e., devices from the Consumer Electronics (CE), Home
automation, mobile and PC domains) within the networked home system, and (ii) provisioning
new application services so that end-users do gain benefits from the networked home system.
The Amigo system architecture is specifically designed to meet the two above objectives: (i)
the Amigo middleware shall allow an open networked home system that dynamically
integrates heterogeneous devices as they join the network and further composes the
application services they offer as needed, (ii) the Amigo intelligent user services shall provide
a number of value-added services to improve usability and attractiveness of the system.

This deliverable focuses on the design of the Amigo middleware architecture, which will be
refined towards prototype implementation in Work Package WP3, while Deliverable D2.3
complements the Amigo system architecture with architectural elements enabling intelligent
user services. Companion Deliverable D2.2 [Amigo-D2.2] provides an overview of baseline
technologies and system architectures on which the design of the Amigo system architecture
builds. In addition, to guarantee that the present deliverable is self-contained, it surveys
background technologies whose knowledge is needed to understand specific design choices
for the Amigo middleware architecture.

1.1 Middleware-related properties for the networked home system
The Amigo middleware shall allow the seamless integration of the various devices that are
now equipped with a network interface and are available within the home. This shall further
enable the application services they offer to be dynamically integrated and possibly composed
within the Amigo networked home system, to offer a rich variety of application services to end-
users. In general, the Amigo middleware shall enforce usability of the networked home
system.

Usability of the networked home system first assumes automatic discovery of devices and
related applications, as well as application composability and upgradeability and self-
administration for easy installation and use. Service-orientation appears as the right
architecture paradigm to cope with such a requirement. Networked devices and hosted
applications are abstracted as services, which may dynamically be retrieved and composed,
thanks to service discovery protocols, and choreography and orchestration protocols. The
Amigo system architecture is thus structured around service-orientation, i.e., architecture
components are defined as services and architecture connectors abstract interaction protocols
among services. The Amigo middleware then offers base functionalities for the deployment
and automatic configuration and discovery of services, as well as for interaction among them.
The middleware shall further offer a number of properties to guarantee a high-level of usability,
as already identified in the Amigo Description of Work, i.e.:

- Interoperability: Interoperability is necessary at all levels of the Amigo system, since the
networked home integrates devices from different manufacturers that use different
communication standards and different hardware and software platforms. It is in particular
unlikely that all the devices will adhere to a unique distributed software platform. The
Amigo middleware shall then provide interoperability at the software level, further leading
to elicit minimal interface standards for middleware components, basic services and
protocols.

- Security, privacy and safety: It is mandatory for the Amigo system to respect the privacy
of, and enforce security for, its users, for the system to be considered usable.

Amigo IST-2004-004182 15/227

April 2005 Public

- Mobility: Availability of communication resources is an important aspect of ambient
systems. If a device is used in different environments (for example at home or at work) the
availability of communication resources will most likely change as well (e.g., Wireless LAN
at home and UMTS at work). Ambient systems therefore must have the ability to adapt to
these changing circumstances.

- Context-awareness: The networked home system shall provide innovative application
services to end-users. Such services shall in particular account for the user’s situation,
according to both the technological environment and the user’s will. This issue is known as
context-awareness, which should be dealt with at the middleware layer, regarding both
context management and realization of middleware functions.

- Quality of Service (QoS): Usability of the Amigo system will in particular be dependent
upon the quality of service experienced by end-users. It is then mandatory for the Amigo
middleware to integrate adequate support for QoS management.

The following sections further define the above middleware-related properties, which introduce
base, high-level requirements for the Amigo middleware.

1.1.1 Interoperability
Interoperability is a quality requirement of increasing importance for information technology
products as the concept "The network is the computer" becomes a reality. Miller1 defines
interoperability as the ability of a system or a product to work with other systems or products
without special effort on the part of the customer. Interoperability applies to all of the following
points:

- Technical interoperability: In many ways, this is the most straightforward aspect of
maintaining interoperability. Work is required both to ensure that individual standards move
forward to the benefit of the community, and to facilitate where possible their convergence,
such that systems may effectively make use of more than one standards-based approach.

- Semantic interoperability: This is a major issue for open systems, as they integrate
resources that use different terms to describe similar concepts ('Author', 'Creator', and
'Composer', for example), or even use identical terms to mean very different things,
introducing confusion and error into their use.

- Political/Human interoperability: Apart from issues related to the manner in which
information is described and disseminated, the decision to make resources more widely
available has implications for the organisations that are concerned (where this may be
seen as a loss of control or ownership), their staff (who may not possess the skills required
to support more complex systems and a newly dispersed user community), and the end-
users.

- Inter-community interoperability: As traditional boundaries between institutions and
disciplines begin to blur, researchers increasingly require access to information from a
wide range of sources, both within and without their own subject area.

- Legal interoperability: The decision to make resources more widely available is not
always freely taken, with legal requirements needed.

- International interoperability: each of the key issues identified, above, is magnified when
considered on an international scale, where differences in technical approach, working
practice, and organisation have been enshrined over many years.

We focus on enabling the two first dimensions of interoperability (i.e., technical and semantic
interoperability) in the design of the Amigo middleware, while other interoperability dimensions
will be accounted for –if and when relevant- in our design choices.

1 http://www.ariadne.ac.uk/issue24/interoperability/

Amigo IST-2004-004182 16/227

April 2005 Public

1.1.2 Security, privacy and safety
Security, privacy and safety are critical requirements on any ambient system available in the
home. The home has a number of characteristics that are quite unique, compared to the
business and other computing networks/paradigms that exist today. Some of these
characteristics are:

- People using unconnected devices in the home today have an understanding of what
information each device has access to and what it is capable of. In a connected/networked
home, information can flow between devices and be used in ways that the user will not
(and should not have to) understand.

- People have a lot of information in the home that is considered very private; this can be
anything from financial information on a PC to their television viewing habits.

- Devices continually get added and removed from the network in the home as people bring
portable devices and computers with them in and out the home.

- People in the home do not want to manage or maintain a home network. Unlike
organizational environments where it is common to have a person with the responsibility of
being the network or security administrator; there is no central administrator in the home.

All of these characteristics in the home lead us to the following high-level security-related
requirements for the Amigo system, which will in particular be accounted for in the design of
the Amigo middleware:

- The network must be secured from devices inside and outside of the home. New devices
that can see or access the network cannot be automatically trusted and a user must
approve or disapprove them.

- Once a device is trusted in the network, it should only have access to the infrastructure
resources, and applications/services need to also protect their own data (i.e., once a
device has access to the network, it should not automatically have access to all
information).

- Since it is often easy to monitor a network, no device should be able to impersonate
another device. This means that a secret must be shared out of band for devices that are
trusted on the network.

- The network must be self-managing, requiring as little input from the user as possible on
security issues, and no on-going maintenance (like keeping a security or user list up to
date).

- The network must be dynamic and automatically handle devices coming in and leaving the
network and no single computer can be responsible for security.

1.1.3 Mobility
Mobility applies to all of the following aspects of ambient systems:

- User mobility/ Personal mobility: This corresponds to a user moving from one
(computing) environment to another, e.g., between home and work. User mobility means
that the user can access services any time from any (type of) terminal.

- Terminal mobility: Similar to user mobility, terminal mobility is the ability of a terminal to
move between different (heterogeneous) networks and access the same set of services.

- Service mobility: Service mobility is the ability to provide the same services to the user
wherever he or she is. This means that whatever terminal or network provider is used, the
user is able to access the same services with the same look-and-feel.

- Session mobility: Session mobility or portability is defined as the ability of an active
session to be maintained in a transparent manner regardless of whether the end-user
moves (from one cell to another), switches terminals and/or access networks.

- Network mobility: A Personal Area Network (PAN) is an example where a whole network
can itself be mobile. In case of a PAN there usually is one device acting as a gateway for

Amigo IST-2004-004182 17/227

April 2005 Public

the other devices attached to the PAN. In case of network mobility the gateway can
connect to different networks, either of the same type or of different types (e.g., UMTS or
WLAN). Devices in the PAN connecting to the gateway are usually shielded from these
changes.

With respect to applications, however, the need for getting information about the mobility
process differs, depending on the type of application. For the simple messaging example,
Mobile IP2 might be best suited since it hides mobility issues completely for the application.
For the streaming application example, Mobile IP is ill-suited since the application does not get
any information about changes in points of attachment or link characteristics. In this case, SIP3
with re-invites might be used, making it possible to adjust streams to the characteristics of the
current network.

There are numerous other solutions available for solving mobility issues, operating at different
layers in the protocol stack, but there is no single suitable solution for mobility in general. The
mobility solutions should be determined by looking at the requirements of mobility
(transparency, seamlessness, which type of mobility…) and rating the different solutions with
respect to those requirements. In the context of the Amigo project, we are more specifically
interested in dealing with mobility within the networked home environment, addressing the
mobility of users within the home and from one home to another. We will then investigate the
above dimensions of mobility within the boundary of home networks. At the middleware layer,
we design the middleware architecture on top of the home network, which is defined as an
open all-IP network within which devices may join and leave. Mobility will further be supported
through the development of dedicated services, which will be investigated as part of our work
in Work Package WP3 on the Amigo open middleware, within the mobility-dedicated Task 3.9.

1.1.4 Context-awareness
Intuitively, many people perceive ‘context’ as aspects from the users’ environment like location
and temperature. Despite this common notion, it is hard to define context precisely. Several
research communities (e.g., Information management, Artificial Intelligence, Human Computer
Interaction and Ubiquitous Computing), have proposed definitions of ‘context’. We adopt a
general definition, proposed in [DeSA01]:

“…Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and application
themselves.”

In Amigo, we extend this definition to include device-to-device communication. Context-
awareness denotes the use of contextual information in computer system functionality. Again,
we adopt a general definition of context-awareness, as proposed in [DeSA01]:

“…Context-awareness is a property of a system that uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task.”

Different types of context can then be distinguished. For instance, three categories of context
are defined in [ScAW94]:

- Device context defines contextual information related to devices; examples are available
memory, computation power, networks (and their quality), codecs, etc.

- User context defines context information that describes an individual, decomposing into:
personal context (e.g., health, mood, schedule, activity, etc.), application context (e.g.,
email received, Web sites visited, preferences, etc.), and social contexts (e.g., group
activity, social relationship, people nearby, etc.).

2 http://www.ietf.org/html.charters/mobileip-charter.html
3 http://www.ietf.org/html.charters/sip-charter.html

Amigo IST-2004-004182 18/227

April 2005 Public

- Physical context defines contextual information related to the physical environment of an
entity (device, room, building, and user); examples are location, time, weather, altitude,
light.

The above list is not a systematic approach, but merely gives a classification of context by
means of examples. It is also clear from this list that not all types of contextual information can
be easily sensed; some types of contextual information (e.g., the mood or activity of
individuals) can only be derived by intelligent combination of other information, or by human
inputs.

Contextual data can be considered as a set of metadata describing the user with his/her
abilities and needs. Sometimes, certain parts of the context data will be there, sometimes not.
Different stakeholders (including the user) will have (access to) different parts of the context
data. For instance, inferred context from browsing behaviour or ordering at amazon.com is not
accessible to end-users. Typically, context data will never be complete. Furthermore, it will not
be stored in one location. These issues influence the role that context can play in context-
aware systems. An overview of the issues that arose with respect to the management of
context information includes:

- Context information exhibits a range of temporal characteristics, i.e., context can be
classified as static or dynamic. Static context is fixed information such as the gender of a
person while dynamic context changes often like for instance location. This provides
requirement for context acquisition (e.g., dynamic context has to be acquired more
regularly).

- Context information is replicated. Sensor networks are often deployed, which signal
contextual information to other entities in the networks, or to centralized servers that may
send this information forward to interested parties (applications, end-users, devices). This
may lead to consistency problems.

- The same type of context information can be obtained from different sources. For instance,
location can be derived from GPS sensors, mobile networks, or active environments.

- Context information is often derived information. The above two items already indicate that
the quality of context information cannot always be guaranteed. Derivation algorithms of
context producers can therefore produce faulty information when inferring new information
(garbage in, garbage out).

- Context information is highly interrelated. Several relations are evident between contextual
information. For instance, speed can be derived by a time interval and distance and the
openness of a store can be inferred using the current time.

- Context has many alternative representations. Often context is obtained from sensors.
Before this context can be used it has to be processed to generate concepts which can be
used by high level applications. Different applications may have different requirements
leading to multiple representations of the same contextual information.

- Context information is scattered around different ‘domains’. For instance, part of the
information may be collected in sensor networks that are part of a building; some may be
collected by personal devices, some may be collected by public networks and the
application may run on a CE-device owned by yet another party. This means that different
stakeholders control elements of the context of an individual. This implies that mechanisms
must be defined that control the access to context information, in order to provide for
seamless context information exchange across these domains.

In Amigo, we aim to define generic services that provide standardized means to obtain
contextual information, within the environment sketched above. Such a generic infrastructure
must in particular provide middleware-related mechanisms for:

- Representing/ Modelling all kinds of context information,
- Sensing and retrieving context information,
- Replication of context information,
- Propagation of context information (push-pull mechanisms) to applications,

Amigo IST-2004-004182 19/227

April 2005 Public

- Searching for context information,
- Supporting semantic-based context-information derivation (resulting in new types of

context when this function is part of the generic context-awareness support functionality),
- Protection and ownership-control over context information,
- Interfacing with existing systems that already support context-information features (e.g.

location-based systems, presence environments,...).

In addition, context information should be exploited for enabling context-aware applications,
i.e., adaptation of Amigo applications according to context.

1.1.5 Quality of service

In the networked home environment, many of the applications provided to the user lean
heavily on media processing and streaming data. Related QoS management raises a large
number of questions and problems, notably with regard to resources, their management and
their availability. To better understand the problematic behind distributed environments,
ambient intelligence and resources, the notion of QoS has to be considered, in order to decide
how to manage resources [OSS+03]. As such, QoS management is a key function of the
Amigo middleware, regarding in particular the management of multimedia content accessed in
the networked home environment.

1.2 Document structure
This deliverable introduces the middleware architecture of the Amigo system, which has been
designed to guarantee usability of the system, with respect to the aforementioned middleware-
related properties.

As stated above, the Amigo system architecture is structured around service-orientation.
Hence, as detailed in Chapter 2, architectural components are services, and architectural
connectors are interaction protocols among them. In this way, the Amigo system supports the
dynamic integration, discovery and composition of services, thanks to service discovery,
orchestration and choreography protocols associated with service oriented architectures.
However, the integration of services from, today’s distinct, four application domains (i.e., CE,
home automation, mobile and PC) cannot assume homogeneous services. Instead, the Amigo
system shall integrate heterogeneous services, based on different service-oriented
infrastructures. Integration of heterogeneous services requires dealing with technical and
semantic interoperability, which may conveniently be addressed through the modelling of
services and related connectors using concepts from the Semantic Web. Such an approach
allows defining conformance relations over both services and connectors, according to their
semantics, and to define related interoperability methods so that peer networked services may
be adapted for integration and composition.

The service-oriented architectural style together with the semantic-based interoperability
methods proposed for the heterogeneous services networked within the Amigo home lead us
to introduce the Amigo abstract reference service architecture in Chapter 3. The Amigo
architecture integrates interoperability methods at application and middleware layers. The
Amigo architecture further enriches traditional service-oriented architectures so as to allow
secure provisioning of context-, QoS-aware services. In particular, the Amigo middleware
offers enhanced service discovery for context- and QoS-aware service requesting, matching
and selection. Also, security and privacy are enforced for service discovery and execution.

Amigo IST-2004-004182 20/227

Application-layer and middleware-layer interoperability methods for the Amigo system are
further introduced in Chapters 4 and 5, respectively. The proposed application-layer
interoperability method enables the dynamic, ad hoc composition of networked services
according to a given semantic-based abstract description of a composite service. The
middleware-layer interoperability method that is presented then solves technical
interoperability among services from the standpoint of the underlying middleware

April 2005 Public

infrastructure, assuming semantic interoperability is solved at the application layer.
Specifically, we introduce a solution to middleware interoperability, which allows the service
instances that are based on heterogeneous middleware to interact within the networked home
environment. Our solution consists in dynamically translating protocol messages from one
middleware to another using event-based parsing techniques.

The service-oriented architectural style of Amigo naturally integrates services from the PC and
mobile domains for which service orientation has already been successfully adopted.
However, integration of the CE and home automation domains requires additional care. As
detailed in Chapter 6, the CE domain requires dealing with the distribution of multimedia
content, including related streaming and QoS management. Furthermore, multimedia
streaming needs be interoperable with the PC and mobile domains, since multimedia content
is now accessed within the three domains. Towards that objective, we build upon the DLNA
architecture for multimedia streaming. Chapter 7 further addresses integration of devices from
the home automation domain, which requires additional interoperability method due to the
specifics of the platforms used in that domain.

As discussed in the previous section, security and privacy are two mandatory properties to be
enforced by the Amigo system. This in particular requires integration of dedicated support at
the middleware layer, as detailed in Chapter 8.

In general, the Amigo middleware architecture has been designed so as to enforce the
usability-related properties discussed in the previous section, which were identified in the
Amigo Description of Work, based on the consortium’s experience and lessons learnt in
developing base ambient intelligence systems. The middleware architecture is further
assessed against requirements for ambient intelligence for the networked home system in
Chapters 9 and 10. Specifically, Chapter 9 assesses the Amigo middleware architecture
against middleware-related technical requirements derived from user requirements elicited in
Work Package WP1. Chapter 10 then focuses on the assessment of the interoperability
achieved by the Amigo middleware, as it is the core requirement for the Amigo middleware.

Finally, Chapter 11 concludes with an overview of our contribution and of our future work, as
part of the extension and later refinement of the Amigo system, to be undertaken within Work
Packages WP2-3-4.

Amigo IST-2004-004182 21/227

April 2005 Public

2 Service-orientation for Amigo
The key Amigo objective is to dynamically integrate and compose heterogeneous services
offered by the four application domains (i.e., mobile, personal computing (PC), consumer
electronics (CE) and home automation domains) that may now be networked in the home
environment. The composed services are implemented and deployed on different software
and hardware platforms and assume different network infrastructures. Many of the network
interoperability aspects can be addressed by reliance on the ubiquitous Internet’s network and
transport protocols. However, at middleware and application level, the interoperability problem
remains, concerning further both functional and non-functional properties. Considering the
large number of players and technologies involved in realizing current networked home
systems, solutions to interoperability based on reaching agreements and enforcing compliance
with interoperability standards cannot scale. Instead, networked services shall adapt at
runtime their functional and non-functional behavior in order to be composed and interoperate
with other services. Moreover, supporting composition and interoperation requires the
definition of behavioral conformance relations to reason on the correctness of dynamically
composed systems with respect to both functional and non-functional properties.

Various software technologies and development models have been proposed over the last 30
years for easing the development and deployment of distributed systems (e.g., middleware for
distributed objects). However, the generalization of the Internet and the diversification of
connected devices have led to the definition of a new computing paradigm: the Service-
Oriented Architecture (SOA) [PaGe03], which allows developing software as services
delivered and consumed on demand. The benefit of this approach lies in the looser coupling of
the software components making up an application, hence the increased ability to making
systems evolve as, e.g., application-level requirements change or the networked environment
changes. The SOA approach, as, e.g., enabled by the Web Services Architecture4, appears to
be a convenient architectural style enabling dynamic integration of application components
deployed on the diverse devices of today’s networks. However, the SOA paradigm alone
cannot meet the interoperability requirements for the networked home environment.
Drawbacks include: (i) support of a specific core middleware platform to ensure integration at
the communication level; (ii) interaction between services based on syntactic description, for
which common understanding is hardly achievable in an open environment. A promising
approach towards addressing the interoperability issue relies on semantic modeling of
information and functionality, that is, enriching them with machine-interpretable semantics.
This concept originally emerged as the vehicle towards the Semantic Web5 [BLHL01].
Semantic modeling is based on the use of ontologies and ontology languages that support
formal description and reasoning on ontologies; the Ontology Web Language (OWL)6 is a
recent recommendation by W3C. A natural evolution to this has been the combination of the
Semantic Web and Web Services into Semantic Web Services [McMa03]. This effort aims at
the semantic specification of Web Services towards automating Web services discovery,
invocation, composition and execution monitoring. The Semantic Web and Semantic Web
Services paradigms address application-level interoperability in terms of information and
functionality [TsAH04, OSLe03]. However, interoperability requirements of networked home
systems are wider, concerning functional and non-functional interoperability that spans both
middleware and application level; conformance relations enabling reasoning on interoperability
are further required. Work in the field of software architecture has provided the basis for
reasoning on the correctness of dynamically composed systems with respect to both functional
and non-functional properties, at middleware and application level. One such effort, described

4 http://www.w3.org/TR/ws-arch/
5 http://www.w3.org/2001/sw/
6 http://www.w3.org/TR/owl-semantics/

Amigo IST-2004-004182 23/227

April 2005 Public

in [ITLS04], elaborates base modeling of mobile software components that integrates key
features of the mobile environment, to support correctness of dynamic composition.

Building on the work presented in [ITLS04] from the software architecture field, as well as on
SOA and Semantic Web principles, we introduce in this chapter semantic modeling of services
for Amigo to enable interoperability and dynamic composition of services within the Amigo
environment. Specifically, we introduce OWL-based ontologies to model the behavior of
services, which allows both machine reasoning about service composability and enhanced
interoperability. Note that we focus on the functional behavior of services. Specification of the
non-functional behavior of services and definition of related ontologies is part of our future
work in Amigo: it will be addressed within Task 3.1 on service modeling for composability of
Work Package WP3. In the following, Section 2.1 provides an overview of the Service-
Oriented Architecture paradigm and related Web-oriented technologies. Section 2.2 introduces
our semantic modeling of services for Amigo. Based on this modeling, Section 2.3 presents
our approach towards semantics-based interoperability. We discuss related work in Section
2.4 and conclude in Section 2.5.

2.1 Service-Oriented Architecture (SOA)
Service-oriented computing aims at the development of highly autonomous, loosely coupled
systems that are able to communicate, compose and evolve in an open, dynamic and
heterogeneous environment. Enforcing autonomy with a high capability of adaptability to the
changing environment where devices and resources move, components appear, disappear
and evolve, and dealing with increasing requirements on quality of service guarantees raise a
number of challenges, motivating the definition of new architectural principles, as surveyed
below for the service-oriented architectural style (Section 2.1.1). Web Services, embodying
SOA principles, are also discussed in the next section; a number of SOA-based technologies
are further surveyed in Deliverable D2.2 [Amigo-D2.2]. Finally, an overview of Semantic Web
standards, including Semantic Web Services, is presented in Section 2.1.2.

2.1.1 Service-oriented architectural style
A service-oriented system comprises autonomous software systems that interact with each
other through well-defined interfaces. We distinguish service requesters that initiate
interactions by sending service request messages and service providers that are the software
systems delivering the service. An interaction is thus defined by the sum of all the
communications (service requests and responses) between a service requester and a service
provider, actually realizing some, possibly complex, interaction protocol.

Communications between service requesters and providers are realized by exchanging
messages, formulated in a common structure that can be processed by both interacting
partners. The unique assumption on these interactions is that the service requester follows the
terms of a service contract specified by the service provider for delivering the service with a
certain guarantee on the quality of service. The service requester does not make any
assumption on the way the service is actually implemented. In particular, neither the service
name nor the message structure implies any specific implementation of the service instance.
Indeed, the service implementation may actually be realized either by a simple software
function or by a complex distributed system involving third party systems. Similarly, the service
provider should not make any assumption about the implementation of the service requester
side. The only visible behavior for interacting parties is the protocol implemented by the
exchange of messages between them.

A service-oriented architecture is then defined as a collection of service requesters and
providers, interacting with each other according to agreed contracts. Main characteristics of
the service-oriented architecture are its support for the deployment and the interaction of
loosely coupled software systems, which evolve in a dynamic and open environment and can

Amigo IST-2004-004182 24/227

April 2005 Public

be composed with other services. Service requesters usually locate service providers
dynamically during their execution using some service discovery protocol.

Figure 2-1: Service-oriented architecture

A typical service-oriented architecture involving a service requester and a service provider is
abstractly depicted in Figure 2-1. Localization of the service provider by the service requester
is realized by querying a discovery service. Interactions are then as follows:

• The service provider deploys a service and publishes its description (the service contract)
towards the discovery service.

• The service requester sends a query to the discovery service for locating a service
satisfying its needs, which are defined with an abstract service contract, i.e., a service
description that is not bound to any specific service instance.

• The discovery service returns to the service requester descriptions of available services,
including their functional and non-functional interfaces. The requester then processes the
description to get the messaging behavior supported by the service, that is, whether
interactions should follow request-response, solicit-request, one-way messaging or even
more complex interaction protocol, the structure of messages, as well as the concrete
binding information such as the service's end-point address.

• The service requester initiates interactions by sending a request message to the service.

• Interactions between the service requester and the service provider continue by
exchanging messages following the agreed interaction protocol.

Note that the discovery service may be centralized or distributed (e.g., supported by all the
service hosts), and may further adhere to either a passive (led by service provider) or active
(led by service requester) discovery model. It is also important to note that the behavior of the
interaction protocol between the service requester and provider may correspond to traditional
communication protocols offered by middleware core brokers, but may as well realize a
complex interaction protocol involving enhanced middleware-related services (e.g., replication,
security, and transaction management) for the sake of quality of service. The various
refinements of the service-oriented software architectural style then lead to interoperability
issue at the SOA level, possibly requiring interacting parties to compute and agree on the fly
about a common discovery and communication protocol.

In the following sections, we discuss in more detail the service-oriented architectural style. We
first present key properties of service-orientation (Section 2.1.1.1). Based on these properties,
we identify a reference service architecture complying with the SOA paradigm (Section
2.1.1.2). Finally, the Web Services Architecture is presented, as the currently most popular
software technology enabling service-orientation (Section 2.1.1.3).

Amigo IST-2004-004182 25/227

April 2005 Public

2.1.1.1 Key properties of service-orientation
The benefit of service orientation for software system architectures lies in the looser coupling
of the software components making up an application, hence the increased ability to making
systems evolve as, e.g., application-level requirements change and the networked
environment changes. Specifically, key properties of SOA for the networked home
environment include loose coupling, dynamicity and composability, as discussed below.

In a service-oriented architecture, services are provided by autonomously developed and
deployed applications. In a dynamic and open system, like the networked home, designing
tightly coupled services would compromise the services’ respective autonomy, as they cannot
evolve independently. Furthermore, failures would be more frequent in case of unavailability or
failure of any of the composed services. Instead, the service-oriented architecture focuses on
loosely coupled services. Loosely coupled services depend neither on the implementation of
another service (a requester or a third party constituent), nor on the communication
infrastructure. To achieve interoperability among diversely designed and deployed systems,
services expose a contract describing basically what the service provides, how a service
requester should interact with the provider to get the service and the provided quality of
service guarantees. Interactions between systems are done by message exchanges. This
allows in particular defining asynchronous interactions as well as more complex message
exchange patterns by grouping and ordering several one-way messages (e.g., RPC-like
messaging by associating a request message with a response message). Moreover, the
message structure should be independent of any programming language and communication
protocol. A service requester willing to engage in an interaction with a service provider must be
able – based solely on this contract – to decide if it can implement the requested interactions.
The service contract comprises the functional interface and non-functional attributes
describing the service, which is abstractly specified using a common declarative language that
can be processed by both parties. The service definition language should be standardized for
increased interoperability among software systems that are autonomously developed and
deployed. Indeed, the service definition language should not rely on any programming
language used for implementing services, and the service being abstractly specified should be
as independent as possible from the underlying implementation of the service. The service
definition then describes functionalities offered by means of message exchanges, by providing
the structure of each message and, optionally, ordering constraints that may be imposed on
interactions involving multiple messages exchanges. Non-functional attributes may
complement the functional interface by describing the provided support for QoS. Several non-
functional properties may be here defined, such as security, availability, dependability,
performance etc.

In a distributed open system, the system components and the environment evolve
continuously and independently of each other. New services appear, existing services
disappear permanently or become temporarily unavailable, services change their interfaces,
etc. Moreover, service requesters' functional or non-functional requirements may change over
time depending on the context (i.e., both user-centric and computer-centric context).
Adaptation to these changes is thus a key feature of the service-oriented architecture, which is
supported thanks to service discovery and dynamic binding. To cope with the highly dynamic
and unpredictable nature of service availability, services to be integrated in an application are
defined using abstract service descriptions. Service requesters locate available services
conforming to abstract service descriptions using a service discovery protocol, in general by
querying a service registry. On the other hand, service providers make available their offered
services by publishing them using the service discovery protocol. The published service
descriptions contain the functional and non-functional interfaces of services, and provide as
well concrete binding information for accessing the service such as the service's URI and the
underlying communication protocol that should be used. Service discovery and integration of
available concrete services are done either at runtime, or before the execution of interactions.
Each interaction initiated by a service requester in a service-oriented architecture may thus

Amigo IST-2004-004182 26/227

April 2005 Public

involve different services or service providers, as long as the contract between the service
provider and the service requester can be implemented by both parties, i.e., the service
description complies with the requirements of the service requester, which can in turn
implement supported interactions of the service provider.

An advantage of describing services through well-defined interfaces is the possibility to
compose them in order to build new services based on their interfaces, irrespective of
technical details regarding their underlying platform and their implementation. A service built
using service composition is called a composite service, and can in turn, be part of a larger
composition. The composition process is a complex task requiring integrating and coordinating
diversely implemented services in a heterogeneous environment. It further requires dealing
with the composition of QoS properties of individual services in order to provide a certain
degree of QoS at the level of the composite service.

2.1.1.2 Reference service-oriented architecture
A typical service architecture realizing the SOA paradigm follows the general three-layer
architecture: application-middleware-platform. Based on the key properties of service-
orientation presented in the previous section, we identify a number of essential building blocks
within each layer, which abstract features commonly found in all existing service-oriented
architectures. The resulting reference architecture is depicted in Figure 2-2.

middleware
layer

platform
layer

communication
comm model (e.g. RPC, event-based)
comm protocol (e.g. SOAP, RMI)
data representation (e.g. XML schema data types)
addressing (e.g. URI, object addressing)

service discovery (e.g. SLP, UPnP, Jini)

application
layer service description

syntactic functional specification
provided/required operations (e.g. WSDL)

system + network
devices
transport protocols (Internet protocols)
data link (wireless, wired)

Figure 2-2: Reference service-oriented architecture

In the application layer, services are described based on a standard, commonly declarative,
service description language to enable service discovery and invocation independently of
service implementation details. This description is commonly syntactic and functional, i.e.,
specifies the functional interface provided by the service, e.g., in terms of operations that may
be remotely invoked. Operations required by the service from other services may additionally
be defined. An example of such service description language is the XML-based WSDL7

7 W3C, Web Services Description Language, http://www.w3.org/TR/wsdl20/

Amigo IST-2004-004182 27/227

April 2005 Public

language, used to describe Web services. Additional service features indicated in the previous
section, such as service interaction protocols and non-functional properties, may complement
the above service description, but are not supported by all existing service-oriented
architectures.

In the middleware layer, two principal functionalities are identified: service discovery and
service communication. Service discovery commonly employs a Service Discovery Protocol
(SDP) and aims at locating services satisfying a specific service description. Examples of
widely used SDPs are SLP [GPVD99], UPnP [UPnP00] and Jini [SunJ99], surveyed in
Deliverable D2.2 [Amigo-D2.2]. Service communication is based on a communication
mechanism characterized by the following fundamental features:

• Communication model defines the semantics of the communication mechanism, such as
for example: RPC, based on remote operation invocations between a client and a server;
or event-based, based on registering of event sinks with event sources, and sources
sending notifications to registered sinks when an event occurs.

• Communication protocol defines the message exchange and message formats of the
communication mechanism, such as for example: SOAP8, which defines one-way XML-
based messages for carrying Web services invocations; or RMI9, which defines a protocol
and message format for conveying Java remote method invocations.

• Data representation defines a common data type system independent of programming
languages and Operating Systems (OS), in order to enable data exchange among services
implemented over heterogeneous software and hardware platforms. For example, Web
Services rely on the global XML Schema10 data types, while RMI relies on the standard
Java type system.

• Addressing defines a referencing scheme for identifying networked services, which
commonly incorporates the underlying transport and network layer addressing. For
example, Web Services employ Web addressing based on URIs11, and RMI specifies an
object addressing scheme; both schemes embody the underlying TCP/IP addressing.

Finally, the platform layer integrates lower-level system and network functionalities. Devices
are commonly abstracted by a specific OS as well as device drivers and software libraries
enabling application development on them. Transport protocols provide the communication
functionality underlying the middleware-layer service communication mechanism. The
ubiquitous Internet protocols tend to become the global transport standard. Underneath the
transport protocols lies the data link, which may vary between wireless and wired with
numerous diverse existing technologies, such as switched Ethernet and IEEE 1394 in the
wired category, and IEEE 802.11 (Wi-Fi) and IEEE 802.15.x, in the wireless category. For a
survey on relevant platform-layer technologies, see Deliverable D2.2 [Amigo-D2.2].

2.1.1.3 SOA and Web Services
The Web Services Architecture appears as the most compliant architecture to SOA principles,
essentially due to its support for machine-readable, platform-neutral description languages
using XML (eXtensible Markup Language), message-based communication that supports both
synchronous and asynchronous invocations, and its adaptation to standard Internet transport
protocols (see also [Amigo-D2.2]). According to the working definition of the W3C, a Web
service is a software system identified by a URI, whose public interfaces and concrete details

8 http://www.w3.org/TR/soap12-part0/
9 http://java.sun.com/products/jdk/rmi/
10 http://www.w3.org/XML/Schema
11 http://www.w3.org/Addressing/

Amigo IST-2004-004182 28/227

April 2005 Public

on how to interact with are described using XML-based languages. Using standardized
specifications for defining Web services enforces interoperability among diversely
implemented and deployed systems. In particular, Web service descriptions may be published
and discovered by other software systems by querying common Web service registries.
Systems may then interact in a manner prescribed by the service description, using XML-
based messages conveyed by standard Internet transport protocols like HTTP. Web services
can be implemented using any programming language and executed on heterogeneous
platforms, as long as they provide the above features. This allows Web services owned by
distinct entities to interoperate through message exchange. By providing standardized
platform-neutral interface description languages, message-oriented communications using
standard Internet protocols, and service discovery support, Web Services enable building
service-oriented systems on the Internet. Although the definition of the overall Web Services
Architecture is still incomplete, the base standards have already emerged from standardization
consortiums such as W3C and Oasis12, which define a core middleware for Web Services,
partly building upon results from object-based and component-based middleware
technologies. These standards relate to the specification of Web services and of supporting
interaction protocols, referred to as conversation, choreography13 or orchestration (see Figure
2-3).

Figure 2-3: Web Services Architecture

There is no single implementation of the Web Services Architecture. As Web Services refer to
a group of related, emerging technologies aiming at turning the pervasive Web into a collection
of computational resources, each with well-defined interfaces for their invocation, a number of
implementation of these technologies are being introduced. Furthermore, Web Services are
designed to be language and platform-independent, which leads to the implementation of a
number of software tools and libraries easing the integration of popular software platforms into
the Web Services Architecture and/or easing the development and enabling deployment of
Web services in various environments. The interested reader is referred to Web sites keeping
track of relevant implementations for an exhaustive list, and in particular the Xmethods site at
http://www.xmethods.com/.

12 http://www.oasis-open.org/
13 http://www.w3.org/2002/ws/chor

Amigo IST-2004-004182 29/227

April 2005 Public

2.1.2 Semantic Web and Semantic Web Services
The World Wide Web contains a huge amount of information, created by multiple
organizations, communities and individuals, with different purposes in mind. Web users specify
URI addresses and follow links to browse this information. Such a simple access method
explains the popularity of the Web. However, this comes at a price, as it is very easy to get lost
when looking for information. The root of the problem is that today’s Web is mainly syntactic.
Documents structures are well defined but their content is not machine-processable. The
Semantic Web specifically aims at overcoming this constraint. The “Semantic Web”
expression, attributed to Tim Berners-Lee, envisages the future Web as a large data exchange
space between humans and machines, allowing an efficient exploitation of huge amounts of
data and various services. The semantic representation of Web pages' content will allow
machines to understand and process this content, and to help users by supporting richer
discovery, data integration, navigation, and automation of tasks.

To achieve the Semantic Web objectives, many Web standards are being used, and new ones
are being defined. These standards may be organized in layers representing the Semantic
Web structure, as shown in Figure 2-4. The Unicode and URI layers are the basic layers of the
Semantic Web; they enforce the use of international characters, and provide means for object
identification. The layer constituted of XML, XML namespace and XML schema allows a
uniform structure representation for documents. By using RDF14 and RDF Schema15, it is
further possible to link Web resources with pre-defined vocabularies. The ontology layer is
then based on RDF (Resource Description Framework) and RDF Schema, and allows the
definition of more complex vocabularies, and relations between different concepts of these
vocabularies, as further detailed below. Finally, the logic and proof layers allow the definition of
formal rules and the reasoning based on these rules.

Figure 2-4: Semantic Web structure

Specifically, RDF is a simple language allowing the semantic description of Web resources.
This semantic description is specified as a triple in RDF. Such a triple is constituted of a
subject, a predicate and an object. The subject is a link to the described resource. The
predicate describes an aspect, a characteristic, an attribute, or a specific relation used to
describe the resource. The object is an instance of a specific predicate used to describe a
specific resource. Each piece of information in a triple is represented by a URI. The use of
URIs ensures that the concepts that are used are not just structures stored in documents, but
references to unique definitions accessible everywhere via the Web. For example, if one wants

14 http://www.w3.org/RDF/
15 http://www.w3.org/TR/rdf-schema/

Amigo IST-2004-004182 30/227

April 2005 Public

to access several databases storing persons' names and their addresses, and gets a list of the
persons living in a specific district by using the postal code of the district, it is necessary to
know for each database what are the fields representing the names and the postal codes.
RDF allows specifying: “(the field 5 of the database A)(is of type)(postal code)”, by using URIs
for each term. RDF Schema is then a standard describing how to use RDF to define
vocabularies, by adding to RDF the ability to define hierarchies, in terms of classes and
properties. In RDF Schema, a class is a set of resources having similar characteristics, and
the properties are relations that link the subject resources to the object ones.

In its origin, the term ontology is a philosophic term that means “the science of being”. This
term has been reused in computer science to express knowledge representation and the
definition of categories. Ontologies describe structured vocabularies, containing useful
concepts for a community that wants to organize and exchange information in a non-
ambiguous manner. Thus, an ontology is a structured and coherent representation of
concepts, classes, and relations between these concepts and classes pertaining to a vision of
the world of a specific community. One of the most common goals in developing ontologies is
for “sharing common understanding of the structure of information among people or software
agents”. According to the description given in [NoMc01], an ontology is a formal explicit
description of concepts in a domain of discourse (classes, sometimes called concepts),
properties of each concept describing various features and attributes of the concept (slots,
sometimes called roles or properties), and restrictions on slots (facets, sometimes called role
restrictions). An ontology together with a set of individual instances of classes constitutes a
knowledge base.

One of the most widely used languages for specifying ontologies is the DAML+OIL language16.
DAML+OIL is the result of the fusion of two languages: DAML (Darpa Agent Markup
Language)17 and OIL (Ontology Inference Layer)18. Based on the DAML+OIL specification, the
W3C has recently proposed the Ontology Web Language (OWL) 19, which has been used in
introducing Semantic Web Services, as surveyed below. OWL is a one of the W3C
recommendations related to the Semantic Web. More expressive than RDF Schema, it adds
more vocabulary for describing properties and classes (such as disjointness, cardinality,
equivalence). There are three sublanguages of OWL: OWL Lite, OWL DL and OWL Full. OWL
Lite is the simplest one; it supports the basic classification hierarchy and simple constraints.
OWL DL is named so, due to its correspondence with Description Logics20; it provides the
maximum of OWL expressiveness, while guaranteeing completeness and decidability. OWL
Full also provides the maximum of OWL expressiveness, but without computational
guarantees. Thus, due to its syntactic freedom, reasoning support on OWL Full ontologies is
less predictable compared to OWL DL.

OWL-S21 (previously named DAML-S) is an OWL-based ontology for Web services aimed at
describing Web services properties and capabilities, resulting from the work of many industrial
and research organisms such as BBN Technologies, CMU, Nokia, Stanford University, SRI
International and Yale University, and recently submitted to the W3C. OWL-S specifies a
model for Web services semantic description, by separating the description of a Web services'
capabilities from its external behavior and from its access details. Figure 2-5 abstractly depicts
the model used in OWL-S. In this figure, we can see that a service description is composed of

16 http://www.w3.org/TR/daml+oil-reference
17 http://www.daml.org/
18 http://www.ontoknowledge.org/oil/
19 http://www.w3.org/TR/owl-semantics/
20 A field of research concerning logics that form the formal foundation of OWL
21 http://www.daml.org/services/

Amigo IST-2004-004182 31/227

April 2005 Public

three parts: the service profile describing the capabilities of the service, the process model
describing the external behavior of the service, and the service grounding describing how to
use the service.

Figure 2-5: OWL-S model

The service profile gives a high level description of a service and its provider. It is generally
used for service publication and discovery. The service profile is composed of three parts:

• An informal description of the service oriented towards a human user; it contains
information about the origin of the service, the name of the service, as well as a textual
description of the service.

• A description of the services' capabilities, in terms of Inputs, Outputs, Pre-conditions and
Effects (IOPE). The inputs and outputs are those exchanged by the service; they represent
the information transformation produced by the execution of a service. The pre-conditions
are those necessary to the execution of the service and the effects are those caused by
the execution of the service; in combination, they represent the state change produced to
the world by the execution of a service. Preconditions and effects are represented as
logical formulas in an appropriate language.

• A set of attributes describing complementary information about the service, such as the
service type, category, etc.

The process model is a representation of the external behavior – termed conversation – of the
service as a process; it introduces a self-contained notation for describing process workflows.
This description contains a specification of a set of sub-processes that are coordinated by a
set of control constructs, such as a sequence or a parallel construct; these sub-processes are
atomic or composite. The atomic processes correspond to WSDL operations. The composite
processes are decomposable into other atomic or composite processes by using a control
construct. The service grounding specifies the information that is necessary for service
invocation, such as the protocol, message formats, serialization, transport and addressing
information. It is a mapping between the abstract description of the service and the concrete
information necessary to communicate with the service. The OWL-S service grounding is
based on WSDL. Thus, it introduces a mapping between high-level OWL classes and low-level
WSDL abstract types that are defined by XML Schema.

2.2 Modeling services for Amigo
Service interoperability requirements within the Amigo environment concern functional and
non-functional interoperability that spans both application and middleware level. The Service-
Oriented Architecture with Web Services as its main representative, semantically enhanced by
Semantic Web principles into Semantic Web Services, can only partially address the
interoperability requirements within Amigo: it deals only with functional properties at
application level. From another standpoint, services may be comprehensively modeled using

Amigo IST-2004-004182 32/227

April 2005 Public

concepts from the software architecture field: architectural components abstract services
(application level), and connectors abstract interaction protocols above the network
(middleware level). Based on software architecture concepts, reference [ITLS04] addresses
the composition of distributed systems at both application and middleware level by modeling
functional and non-functional properties of services and introducing conformance relations for
reasoning on composability.

Building on the work presented in [ITLS04] from the software architecture field, as well as on
SOA and Semantic Web principles, we introduce semantic modeling of Amigo services at both
application and middleware level to support interoperability within the Amigo environment. We
focus on the functional behavior of services; semantic modeling of the non-functional behavior
of services is part of our future work in Amigo. Specifically, we introduce OWL-based
ontologies to model components (Section 2.2.1) and connectors (Section 2.2.2) constituting
Amigo services. The reasoning capacity of OWL enables conformance relations for checking
composability, and interoperability methods for composing partially conforming services, as
further detailed in Section 2.3. In our modeling, we have adopted some existing results from
the OWL-S community [MPM+04] on Semantic Web Services. Nevertheless, our approach is
wider and treats in a comprehensive way the interoperability requirements within Amigo
[GBTI05]. Our approach is generic, independent of any specific service-oriented architecture,
such as Web Services; nonetheless, (Semantic) Web Services is a convenient paradigm that
will be employed within Amigo, at least when addressing application-level interoperability (see
Chapter 4). In Section 2.4, we point out the enhanced features of our approach, comparing
with OWL-S approaches.

In order to illustrate the exploitation of our model, we consider the generic example of an e-
commerce service selling a specific type of content or services; in the Amigo context, this
could be a multimedia content service. This service is provided by a vendor component hosted
by some server on the Internet. Customer components hosted by possibly wireless devices in
the Amigo home may access the vendor component over the wireless Internet to purchase
multimedia content on behalf of an Amigo user.

2.2.1 Modeling components
In traditional software architecture modeling, a service specifies the operations that it provides
to and requires from the environment. The dynamic composition of services with peer
networked services further requires enriching the services’ functional specification so as to
ensure adherence to the coordination protocols to be satisfied for ensuring correct service
delivery despite the dynamics of the networks, i.e., the interaction protocols that must be
atomic. The specification of coordination protocols among services relates to the one of
conversation or choreography in the context of Web Services. Such a specification also relates
to the one of interaction protocols associated with component ports to ensure conformance
with connector roles, as, e.g., supported by the Wright architecture description language
[AlGa97].

Amigo IST-2004-004182 33/227

Building on the above fundamentals, we introduce Amigo service ontology to model the
functional behavior of Amigo services. The basic elements of this ontology are depicted in
Figure 2-6. Component is the central class of the ontology representing the component
realizing an Amigo service. We introduce the notion of Capability for a component, which is
a high-level functionality provided or required by the component, thus, refined as
ProvidedCpb and RequiredCpb. A capability specifies a number of inputs and outputs,
modeled as classes InputPrm and OutputPrm, which are derived from the parent class
Parameter. As presented in Section 2.1.2, OWL-S identifies Web services’ capabilities by
their inputs and outputs, enhanced by preconditions and effects. This enables a more precise
representation of a service’s capabilities. We consider integrating preconditions and effects
into our model as part of our future work within Amigo. Further, we associate capabilities to
distinct conversations supported by a component. Thus, Capability is related to

April 2005 Public

Conversation, which contains the specification of the related conversation. Capability is
further related to a set of messages employed in the related conversation; class Message is
used to represent such messages. Conversations are specified as processes in the π-calculus
[Miln99], in a way similar to [ITLS04].

Capability

ProvidedCpb RequiredCpb

Parameter

InputPrm OutputPrm

Component

ProvidedCpb

RequiredCpb

provides

requires Capability

InputPrm

OutputPrminputs outputs

Conversation
converses

Message

employs
inheritance
property

Capability

ProvidedCpb RequiredCpb

Parameter

InputPrm OutputPrm

Component

ProvidedCpb

RequiredCpb

provides

requires Capability

InputPrm

OutputPrminputs outputs

Conversation
converses

Message

employs
inheritance
property

Figure 2-6: Basic elements of the mobile service ontology

We model interaction between service components as exchanges of one-way messages. This
is most generic and assumes no specific interaction model, such as RPC or event-based,
which is realized by the underlying connector. For example, in the case of RPC, interaction
between two peer components is based on the execution of operations that are provided by
one peer and invoked by the other peer. Such an operation may be represented as the
exchange of two messages, the first being the invocation of the operation and the second
being the return of the result. Hence, we enrich our ontology to represent messages in a
detailed manner, as depicted in Figure 2-7. Class Message is related to class Parameter,
which represents all parameters carried by the message; members of the same class are the
inputs and outputs of a capability, as defined above. As capability is a high-level functionality
of the component, the inputs and outputs of a capability are a subset of all parameters of the
messages employed within this capability. Parameter is associated to classes PrmType,
PrmValue and PrmPosition; the latter denotes the position of the parameter within the
message. This representation of messages is most generic. A special parameter commonly
carried by a message is an identifier of its function, i.e., what the message does. In the case of
RPC, for example, this identifier is the name of the operation. We represent this identifier with
the derived class MsgFunction.

Message

hasParameter

Parameter

PrmType

PrmValue

hasPrmType

hasPrmPosition
PrmPosition

hasPrmValue

Parameter

MsgFunction

Message

hasParameter

Parameter

PrmType

PrmValue

hasPrmType

hasPrmPosition
PrmPosition

hasPrmValue

Parameter

MsgFunction

Figure 2-7: Message modeling in the mobile service ontology

Amigo IST-2004-004182 34/227

April 2005 Public

Based on the introduced service ontology, a service specification is as follows. For simplicity
and space economy, we use – instead of the OWL notation – a simplified notation, only listing
related OWL classes and their properties. Classes and instances of classes – termed
individuals in OWL – are denoted by their first letter in uppercase, while properties are written
in lowercase.

Component
 provides ProvidedCpb
 requires RequiredCpb
ProvidedCpb or RequiredCpb
 inputs InputPrm
 outputs OutputPrm
 converses Conversation
 employs Message
Message
 hasParameter MsgFunction
 hasParameter Parameter
MsgFunction or Parameter
 hasPrmType PrmType
 hasPrmPosition PrmPosition
 hasPrmValue PrmValue

2.2.1.1 Example
We now employ the elaborated service ontology to model the vendor component involved in
the multimedia content service of the example introduced above. We refine the service
ontology to produce the vendor ontology. Each class of the service ontology is instantiated; the
produced individuals constitute the vendor ontology. We assume that the vendor component
supports the operations browse(), book() and buy(), which shall be realized as synchronous
two-way interactions. From these operations we derive the messages supported by the vendor
component, which we define as individuals of the class Message. For example, operation
browse() produces the following listed messages, where parameters (MsgFunction and
Parameter individuals) of the messages are also specified. In our simplified notation, we use
braces to denote that a class or individual is associated through a property to more than one
other classes or individuals.

Message BrowseReq
 hasParameter BrowseReqFunc
 hasParameter ArticleInfo
Message BrowseRes
 hasParameter BrowseResFunc
 hasParameter {ArticleInfo, ArticleId, Ack}

BrowseReq is the input request message and BrowseRes is the output response message of
the synchronous two-way interaction. The other two operations produce the following
messages, where MsgFunction parameters have been omitted:

Message BookReq
 hasParameter ArticleId
Message BookRes
 hasParameter {ReservationId, Ack}

Message BuyReq
 hasParameter {ReservationId, CreditCardInfo}
Message BuyRes

Amigo IST-2004-004182 35/227

April 2005 Public

 hasParameter {ReceiptId, Ack}

Operation browse() allows browsing for an article by providing – possibly incomplete –
information on the article; if this article is available, complete information is returned, along
with the article identifier and a positive acknowledgement. Operation book() allows booking an
article; a reservation identifier is returned. Operation buy() allows buying an article by providing
credit card information; a receipt identifier is returned. The vendor component supports further
the operations register_for_availability() and notify_of_availability(), which shall be grouped in
an asynchronous two-way interaction. These operations are encoded as follows:

Message RegisterForAvailabilityIn
 hasParameter {ArticleInfo, ReplyAddress}

Message NotifyOfAvailabilityOut
 hasParameter {ArticleInfo, SourceAddress}

The suffixes in and out have been added to these message names just to make clear the
direction of the messages. The first operation or message allows registering for a specific
article. When this article becomes available, a notification is sent back to the registered entity
by means of the second operation or message. The vendor component and a peer customer
component take care of correlating the two operations by including appropriate identifiers in
the operations. Furthermore, we specify syntactic characteristics of the produced messages.
For example, for message BrowseReq:

MsgFunction BrowseReqFunc
 hasPrmType string
 hasPrmPosition 1
 hasPrmValue “browse_req”
Parameter ArticleInfo
 hasPrmType some complex type
 hasPrmPosition 2

The supported messages are incorporated into the following specified two capabilities
(ProvidedCpb individuals) provided by the vendor component. We specify the inputs
(InputPrm individuals) and outputs (OutputPrm individuals) of these capabilities, as well as
the associated conversations (Conversation individuals) described in the π-calculus. In the
conversation specifications the following notation is used. For simplicity, we omit message
parameters in the conversation specifications.

P, Q ::= Processes

 P.Q Sequence

 P|Q Parallel composition

 P+Q Choice

 !P Replication

 v(x) Input communication

 v[X] Output communication

Component Vendor
 provides {Buy, Available}

Amigo IST-2004-004182 36/227

April 2005 Public

ProvidedCpb Buy
 inputs {ArticleInfo, CreditCardInfo}
 outputs {ArticleInfo, ReceiptId, Ack}
 converses “
 BrowseReq().BrowseRes[].
 (
 !(BrowseReq().BrowseRes[]) +
 !(BrowseReq().BrowseRes[]).BookReq().BookRes[].BuyReq().BuyRes[]
) ”
ProvidedCpb Available
 inputs ArticleInfo
 outputs ArticleInfo
 converses “RegisterForAvailabilityIn().NotifyOfAvailabilityOut[]”

An entity using capability Buy may either browse for articles several times, or browse several
times and then book and buy an article. The inputs and outputs of Buy are a subset of all the
parameters involved in the three included operations. A number of intermediate parameters,
such as ArticleId and ReservationId, are further involved in the conversation; these are
not visible at the level of capability Buy. An entity using capability Available registers and
gets notified asynchronously of a newly available article.

It is clear from the example that most of the introduced classes of our ontology represent a
semantic value that expresses the meaning of the specific class. For example, giving the value
Buy to ProvidedCpb, we define the semantics of the specific capability provided by the
vendor component, as long as we can understand the meaning of Buy. The only classes that
do not represent a semantic – according to the above definition – value are Conversation,
which is a string listing the π-calculus description of the related conversation; PrmPosition,
which is an integer denoting the position of the related parameter within the message; and
PrmValue, which is the actual value of the parameter. Incorporating these non-semantic
elements into our ontology allows an integrated modeling of mobile services with minimum
resorting to external formal syntactic notations, as the π-calculus. We stress again that our
distinction between semantic and syntactic follows the above specific definition.

2.2.2 Modeling connectors
In the networked home environment, connectors specify the interaction protocols that are
implemented over the home network. This characterizes message exchanges over the
transport layer to realize the higher-level protocol offered by the middleware, on top of which
the service component executes. In addition, the dynamic composition of networked services
leads to the dynamic instantiation of connectors. Hence, the specification of connectors is
embedded within the one of services (actually specifying the behavior of connector roles),
given that the connectors associated with two interacting services must compose.

To integrate connectors in the so far elaborated service model, we extend the Amigo service
ontology with a number of new classes, as depicted in Figure 2-8. Capability is related to
class Connector, which represents the specific connector used for a capability; we assume
that a capability relies on a single connector, which is a reasonable assumption. A connector
realizes a specific interaction protocol; this is captured in the relation of Connector to class
Protocol, which contains the specification of the related interaction protocol. Interaction
protocols are specified as processes in the π-calculus.

Amigo IST-2004-004182 37/227

April 2005 Public

Capability Connector

supportedBy

Connector

Protocol
interacts

Messageexchanges

Address
references

Parameter

Address

LocalAddr RemoteAddr

Capability Connector

supportedBy

Connector

Protocol
interacts

Messageexchanges

Address
references

Parameter

Address

LocalAddr RemoteAddr

Figure 2-8: Connector modeling in the mobile service ontology

An interaction protocol realizes a specific interaction model for the overlying component, such
as RPC or event-based. This interaction model is implicitly specified in the π-calculus
description of the interaction protocol. Nevertheless, the interaction model may additionally be
semantically represented by class Connector. As there is a large variety of connectors and
associated interaction models [MeMP99], there is no meaning in enriching the generic service
ontology with a taxonomy of connectors. Class Connector may be associated to external
ontologies on a case by case basis to represent the interaction model supported by a specific
connector.

Furthermore, a connector supports an addressing scheme for identifying itself as well as its
associated component over a network realized by the underlying transport layer. A number of
different approaches are allowed here, depending on the addressing functionality already
supported by the transport layer and on the multiplexing capability of the connector, i.e., its
capability to support multiple components. The latter further relates to a connector acting as a
container for components, e.g., a Web server being a container for Web applications. Thus,
considering the Web Services example, we may distinguish the following addressing levels:

• The TCP/IP transport layer supports IP or name addressing of host machines.

• A Web Services SOAP/HTTP connector binds to a specific TCP port; in this case, the
transport layer specifies an addressing scheme for the overlying connectors.

• The SOAP/HTTP connector supports addressing of multiple Web service components,
treating Web services as Web resources; thus, incorporating the underlying IP address &
port number addressing scheme, the SOAP/HTTP connector supports URI addressing.

To be most generic, we enable a connector addressing scheme without assuming any
connector addressing pre-specified by the transport layer. This scheme shall incorporate the
established transport layer addressing. Moreover, this scheme shall integrate component
identifiers for distinguishing among multiple components supported by a single connector,
when this is the case. The introduced generic scheme is represented by the relation of
Connector to class Address. Thus, Address represents a reference of a mobile service
component accessible through a specific connector and underlying transport layer. Address
is a subclass of Parameter.

Class Connector is further related to a set of messages exchanged in the related interaction
protocol, which are members of the class Message. This is the same generic class used for
component-level messages, as it also applies very well to connector-level messages.
Communication between connectors can naturally be modeled as exchange of one-way
messages; this takes place on top of the underlying transport layer. To enable component
addressing, connector-level messages integrate addressing information. We enable
connector-level messages to carry complete addressing information, assuming no addressing
information added by the transport layer; certainly, this scheme may easily be adapted
according to the addressing capabilities of the transport layer. We introduce two subclasses of
Amigo IST-2004-004182 38/227

April 2005 Public

Address, named LocalAddr and RemoteAddr, which represent the local address and
remote address information included in a connector-level message exchanged between two
peer connectors. Remote address information is used to route the message to its destination,
while local address information identifies the sender and may be used to route back a possible
response message.

According to the distinction introduced in Section 2.2.1.1, only Protocol does not represent a
semantic value among the new classes of our ontology. Based on the extended service
ontology, an Amigo service specification is extended as follows to integrate connectors:

ProvidedCpb or RequiredCpb
 supportedBy Connector
Connector
 interacts Protocol
 references Address
 exchanges Message
Message
 hasParameter LocalAddr
 hasParameter RemoteAddr

2.2.2.1 Example
We now complete the modeling of the vendor component based on the extended mobile
service ontology. As specified in Section 2.2.1.1, the vendor component relies on two
connectors, one supporting synchronous two-way interactions and one supporting
asynchronous two-way interactions. By properly instantiating class Connector and its
associated classes, we can model the two required connectors, thus completing the vendor
ontology. We define two individuals of Connector:

Connector VConn1
 interacts “vreq(vreq_prm).vres[VRES_PRM]”
 references VAddr
 exchanges {VReq, VRes}
Connector VConn2
 interacts “vreq(vreq_prm)”, “vres[VRES_PRM]”
 references VAddr
 exchanges {VReq, VRes}
Address VAddr
 hasPrmType URL
 hasPrmValue “http://www.mm-content.com:8080/vendor”

Both connectors exchange a request and a response message. For connector VConn1, the
emission of the response message is synchronous, following the reception of the request
message; while for connector VConn2, the emission of the response message is
asynchronous, not coupled with the reception of the request message. Both connectors enable
addressing the vendor component with a URL address following the scheme
http://<host>:<port>/<path>. Each connector supports a specific capability of the vendor
component:

ProvidedCpb Buy
 supportedBy VConn1
ProvidedCpb Available
 supportedBy VConn2

Amigo IST-2004-004182 39/227

April 2005 Public

Furthermore, we specify the characteristics of messages VReq and VRes. For example, for
message VReq, which is input by the vendor component:

Message VReq
 hasParameter VReqFunc
 hasParameter {VLocalAddr, VRemoteAddr}
 hasParameter VReqPrm
MsgFunction VReqFunc
 hasPrmType byte
 hasPrmPosition 1
 hasPrmValue 7Ah
RemoteAddr VRemoteAddr
 hasPrmType URL
 hasPrmPosition 3
 hasPrmValue “http://www.mm-content.com:8080/vendor”
LocalAddr VLocalAddr
 hasPrmType URL
 hasPrmPosition 2
Parameter VReqPrm
 hasPrmType hex
 hasPrmPosition 4

PrmValue for VLocalAddr will be determined by the peer connector – supporting a customer
component – sending the request message. PrmType hex of VReqPrm determines the
encoding of the component-level message (e.g., an invocation of a remote operation) carried
by the connector-level request message. This further corresponds to the serialization of
remote method invocations performed by a middleware platform.

2.3 Semantics-based service interoperability
Given the above functional specification of services and related connectors, functional
integration and composition of Amigo services in a way that ensures correctness of the
composed system within the Amigo environment may be addressed in terms of conformance
of respective functional specifications. Conformance shall be checked both at component and
at connector level; for two services to compose, conformance shall be verified at both levels.
To this end, we introduce the notion of conformance relation for each level, i.e.,
component/application level and connector/middleware level. To allow for the composition of
heterogeneous networked services within the Amigo home, our conformance relations enable
identifying partial conformance between components and between connectors. Then, we
introduce the notion of interoperability method. Appropriate interoperability methods shall be
employed at each level to ensure composition of heterogeneous components and connectors;
for two Amigo services to compose, interoperability must be established at both levels.

Our conformance relations and related interoperability methods exploit our ontology-based
modeling of services. The service ontology introduced in Section 2.2 enables representing
semantics of components and connectors. Nevertheless, to enable a common understanding
of these semantics, their specification shall build upon possibly existing globally shared
ontologies. Incorporating external commonly shared ontologies serve two purposes: (i) these
ontologies are used as common vocabulary for interpreting Amigo services’ semantics; and (ii)
these ontologies may be used to extend the Amigo service ontology to enable a more precise
representation of services’ semantics. OWL targeting the semantic Web provides inherent
support to the distribution of ontologies enabling the incremental refinement of ontologies
based on other imported ontologies. Further, employing OWL to formally describe semantics

Amigo IST-2004-004182 40/227

April 2005 Public

allows for automated interpretation and reasoning on them, thus enabling conformance
checking and interoperability.

In the following, we introduce our solution to interoperability at connector/middleware and at
component/application level, introducing the notions of conformance relation and
interoperability method for each level. We first address connector level, as this constitutes the
base for service interoperability. We employ the multimedia content service example to
illustrate these notions. Building on this generic approach, we elaborate in Chapters 4 and 5
concrete conformance relations and interoperability methods at application and middleware
level, respectively, for Amigo services.

2.3.1 Interoperability at connector/middleware level
Based on our functional modeling of connectors, a connector (Connector): realizes an
interaction protocol (Protocol) specified as a process in the π-calculus, establishes an
addressing scheme (Address) described by a complex data structure (Parameter), and
employs a number of messages (Message) described as complex data structures
(Parameter). These classes are complementary or may even overlap in specifying a
connector. For example, we may associate class Connector to external ontologies
representing some features not, partially or even fully specified by the other classes; in this
way, we may, for example, represent with Connector the interaction model realized by the
connector, such as RPC or event-based. This redundancy may be desirable in order to
facilitate the conformance relation or the interoperability method described in the following.

2.3.1.1 Conformance relation
We introduce the notion of conformance relation for connectors based on the above classes.
As already discussed, we specify a connector by instantiating these classes into individuals
specific to this connector. Two connectors may be composed if they (at least partially) conform
to each other in terms of their corresponding individuals for all the above classes. The
definition of partial conformance depends on the capacity to deploy an adequate
interoperability method to compensate for the non-conforming part.

Conformance in terms of interaction protocols is checked over the associated π-calculus
processes, as detailed in [ITLS04]; this implicitly includes the realized interaction models. For
interaction models, conformance may alternatively be asserted by semantic reasoning on the
related individuals of class Connector. In the same way, for addressing schemes, exchanged
messages, parameters of messages and types of parameters, conformance may be asserted
by semantic reasoning on the related individuals of classes Address, Message, Parameter
and PrmType. Finally, to ensure syntactic conformance in exchanged messages, the specific
values of PrmPosition and PrmValue shall be the same for the two connectors.

2.3.1.2 Interoperability method
To compose partially conforming connectors, an appropriate interoperability method shall be
employed. We employ a connector customizer that serves as an intermediate for the message
exchange between the two connectors. The customizer has access to the ontologies of the
two connectors, and from there to the parent service ontology and the possibly incorporated
external ontologies. The customizer shall perform all appropriate action to remedy the
incompatibilities between the two connectors. For example, upon reception of a message, the
customizer shall interpret it and perform all necessary conversions to make it comprehensible
to the other peer. The connector customizer may be collocated with one of the two peers or be
located on an intermediate network node, depending on architectural requirements; for
example, for wireless ad hoc computing environments the former solution is more appropriate,
while in gateway-based network environments, the latter is better adapted. In Chapter 5, we

Amigo IST-2004-004182 41/227

April 2005 Public

elaborate middleware-layer interoperability methods that apply the above concept of connector
customizer.

2.3.1.3 Example
We now illustrate the above introduced notions of conformance relation and interoperability
method for the multimedia content service example. In Section 2.2, we specified the vendor
ontology defining the vendor component and its associated connectors. The vendor
component provides its services to customer components.

To enable a more precise representation of connector semantics for the vendor and customer
components, we assume the existence of an external remote operation connector ontology,
which defines a simple taxonomy of connectors supporting remote operation invocation. This
ontology provides a common vocabulary for connectors of this type. This ontology is outlined
in the following:

RemoteOperationConn
 hasLegs {OneWay, TwoWay}
 hasSynchronicity {Sync, Async}
 keepsState {State, NoState}

Class RemoteOperationConn is related to three other classes, which are defined above by
enumeration of their individuals. Property hasLegs determines whether a connector supports
one-way or two-way operations; hasSynchronicity determines whether a connector
supports synchronous or asynchronous operations; finally, keepsState determines whether
a connector maintains state during the realization of an operation, e.g., for correlating the
request and response messages of an asynchronous operation. We additionally pose the
restriction that each one of the three above properties has cardinality exactly one, which
means that any RemoteOperationConn individual has exactly one value for each of the
three properties.

We further refine the remote operation connector ontology to identify a number of allowed
combinations of the above properties, which produces a number of feasible connector types
specified by the ontology. Hence, the following subclasses of RemoteOperationConn are
defined:

SyncConn
 hasLegs TwoWay
 hasSynchronicity Sync
 keepsState State

AsyncStateConn
 hasLegs TwoWay
 hasSynchronicity Async
 keepsState State

AsyncNoStateConn
 hasSynchronicity Async
 keepsState NoState

In the above definitions, properties in boldface are set to be a necessary and sufficient
condition for identifying the associated connector class. For example, a synchronous
connector has synchronicity Sync, and synchronicity Sync is sufficient to identify a
synchronous connector. NoState for an asynchronous connector means that the
communicating components take care of correlating the request and response messages of an
asynchronous operation. In this case, it makes no difference whether an asynchronous
Amigo IST-2004-004182 42/227

April 2005 Public

connector is one-way or two-way. Thus, hasLegs is left undefined in AsyncNoStateConn; it
may take any of the two values OneWay or TwoWay.

We now exploit the above ontology to specify interaction model semantics for the two
connectors supporting communication between the vendor component and a specific
customer component. To this end, the two connectors inherit from both the Amigo service and
remote operation connector ontologies. More specifically, the two connectors are represented
by two classes that are subclasses of both Connector and RemoteOperationConn, which
means that they inherit properties of both classes:

VendorConn
 hasLegs TwoWay
 hasSynchronicity Async
 keepsState NoState

CustomerConn
 hasLegs OneWay

These two connector classes are defined independently, each one by the designer of the
related connector, and make part of the vendor and customer ontologies, correspondingly,
which are normally local to the related components and connectors. Here, the two designers
have opted not to reuse any of the specialized connector classes, pre-defined in the remote
operation connector ontology; they have instead defined two new connector classes. We can
see that class VendorConn represents the features required by the Connector individual
VConn2 defined in Section 2.2.2.1. Employing an OWL reasoning tool, an inference about
conformance between VendorConn and CustomerConn may be drawn as follows.

VendorConn has both property values Async and NoState, which makes it necessarily an
AsyncNoStateConn. CustomerConn must have exactly one value for each of the two
undefined properties. Its synchronicity cannot be Sync, because this would make
CustomerConn necessarily a SyncConn, which, however, is two-way, while CustomerConn
is one-way. Thus, CustomerConn has property value Async. In the same way, its state
property cannot be State, because this together with Async would make it necessarily an
AsyncStateConn, which also is two-way. Thus, CustomerConn has property value
NoState. Property values Async and NoState make CustomerConn necessarily an
AsyncNoStateConn. Thus, VendorConn and CustomerConn belong to the same connector
class within the remote operation connector ontology, which makes them conforming in terms
of their supported interaction models.

In the above, interaction model conformance was asserted by comparing semantics co-
represented by class Connector of the Amigo service ontology (together with class
RemoteOperationConn of the remote operation connector ontology). Conformance between
VendorConn and CustomerConn shall be further checked in terms of all the other classes of
the Amigo service ontology. We instantiate VendorConn and CustomerConn to define the
rest of their characteristics according to this ontology:

VendorConn VConn2
(as specified in Section 2.2.2.1)
CustomerConn CConn2
 interacts “cout[COUT_PRM]”, “cin(cin_prm)”
 references CAddr
 exchanges {COut, CIn}
Address CAddr
 hasPrmType URL

Amigo IST-2004-004182 43/227

April 2005 Public

 hasPrmValue some URL
Message COut
 hasParameter COutFunc
 hasParameter {CLocalAddr, CRemoteAddr}
 hasParameter COutPrm
MsgFunction COutFunc
 hasPrmType word
 hasPrmPosition 1
 hasPrmValue 3FEDh
RemoteAddr CRemoteAddr
 hasPrmType URL
 hasPrmPosition 2
 hasPrmValue “http://www.mm-content.com:8080/vendor”
LocalAddr CLocalAddr
 hasPrmType URL
 hasPrmPosition 3
Parameter COutPrm
 hasPrmType bin
 hasPrmPosition 4

Interaction protocol conformance for VConn2 and CConn2 is checked over the associated π-
calculus processes, which are obviously complementary (see [ITLS04]); however, different
names are used for messages VReq-COut, VRes-CIn and for message parameters VReqPrm-
COutPrm, VResPrm-CInPrm. Semantic conformance between corresponding messages and
parameters is asserted by using external ontologies, as already done for semantic
conformance between interaction models. In the same way, semantic conformance is asserted
between addressing schemes (VAddr-CAddr).

Thus, the conformance relation applied to the current example requires: (i) semantic
conformance between interaction models, addressing schemes, messages and message
parameters; and (ii) workflow conformance between interaction protocols.

Nevertheless, there are still incompatibilities between VConn2 and CConn2 in terms of types
of parameters (e.g., between VReqPrm and COutPrm), position of parameters within
messages (e.g., between VRemoteAddr and CRemoteAddr within VReq and COut), and
values of parameters (e.g., between VReqFunc and COutFunc). Further, referenced types
such as URL, byte, word, hex and bin may not belong to the same type system. Thus, we
need a connector customizer which resolves these incompatibilities by (i) converting between
types by accessing some external type ontology; if different type systems are used, external
ontologies can help in converting between type systems; (ii) modifying position of parameters;
and (iii) modifying values of parameters. This customizer exploits the semantic conformance
established above to identify the semantically corresponding messages and message
parameters of VConn2 and CConn2.

A weaker conformance relation than the one applied to this example would require a more
competent interoperability method, e.g., a connector customizer capable of resolving
incompatibilities in addressing schemes or even in interaction models and workflows of
interaction protocols. The feasibility of such cases depends on the nature of addressing
schemes or interaction protocols and the degree of heterogeneity, and shall be treated on a
case-by-case basis. Enabling automated, dynamic configuration or even generation of the
appropriate interoperability method from some persistent registry of generic interoperability
methods is then a challenging objective. Ontologies could then be used to represent generic
interoperability methods and to guide the automated generation or configuration of these
methods based on the concrete ontologies of the two incompatible connectors. In Chapter 5,

Amigo IST-2004-004182 44/227

April 2005 Public

we elaborate a concrete approach to the automated adaptation of interoperability methods
according to the dynamic situation.

2.3.2 Interoperability at component/application level
Based on our functional modeling of Amigo service components, a component provides or
requires a number of capabilities (ProvidedCpb, RequiredCpb). Each capability: has a
number of inputs (InputPrm) and outputs (OutputPrm) described as complex data
structures (Parameter), realizes a conversation (Conversation) specified as a process in
the π-calculus, and employs a number of messages (Message) described as complex data
structures (Parameter). Based on the similarity of capability Conversation to connector
Protocol and on the common use of Message by both capabilities and connectors, we can
introduce a conformance relation and associated interoperability method for component
capabilities similar to the ones elaborated for connectors. Workflow conformance between
component conversations is required in certain cases where both components need to
manage their own internal state transitions during the conversation. Nevertheless, if this is not
the case and considering the diversity of component capabilities and conversations, requiring
workflow conformance between component conversations and semantic conformance for each
single message and message parameter – as for the two connectors in the example above –
is too restrictive. Moreover, the introduced connector-level interoperability method, based on
communication interworking, cannot deal with the high heterogeneity of components, e.g., it
cannot resolve highly incompatible component conversations. Therefore, we introduce,
alternatively, a more flexible, coarse-grained approach for component conformance and
interoperability based on component capabilities. In the following sections, we present the
latter approach, while in Chapter 4, where we address composition of multiple services, we
elaborate a conformance relation and associated interoperability method focusing on matching
component conversations.

2.3.2.1 Conformance relation
Our high-level conformance relation for components states that two components may be
composed if they require and provide in a complementary way semantically conforming
capabilities. We model a capability by instantiating classes ProvidedCpb or RequiredCpb,
InputPrm and OutputPrm into individuals specific to this capability. Semantic conformance
between two capabilities is asserted by reasoning on their corresponding individuals. As
already detailed for connectors, these individuals shall as well inherit from external ontologies;
this allows a rich representation of capabilities based on common vocabularies, which enable
their interpretation and conformance checking.

Depending on the existence of external ontologies, capabilities may be directly provided with
their semantics (class ProvidedCpb or RequiredCpb). Alternatively, capabilities may be
semantically characterized by the semantics of their inputs and outputs (classes InputPrm
and OutputPrm). As discussed in [SPAS03] for Semantic Web Services capabilities, the latter
approach requires a reduced set of ontologies, as inputs and outputs may be combined in
many diverse ways to produce an indefinite number of capabilities. However, semantically
characterizing a capability based only on its inputs and outputs may produce ambiguity and
erroneous assertions, e.g., when checking conformance between capabilities. We opt for a
hybrid approach, where, depending on the availability of related ontologies, both capability
semantics and input/output semantics are used. Further, as we have already stated, we
consider integrating preconditions and effects into our model to represent service capabilities
in a more precise way.

Our conformance relation adopts the approach presented in [PKPS02] for matching Semantic
Web services’ capabilities, which identifies several degrees of matching: (i) exact; (ii) plug in,
where the provided capability is more general than the requested one, thus it can be used; (iii)

Amigo IST-2004-004182 45/227

April 2005 Public

subsume, where the provided capability is more specific than the requested one, thus it may
be used in combination with another Web service complementing the missing part; and (iv)
fail. As we are assessing conformance between two peer components, we exclude case (iii).
For composition of multiple services, we would consider this case, too; this relates to Chapter
4, although a different conformance relation is employed there. Our conformance relation
requires that inputs of a required capability be a superset of inputs of the associated provided
capability, while outputs of a required capability be a subset of outputs of the associated
provided capability. This refers to both the number of equivalent inputs and outputs and to
subsumption relations between mapped inputs and outputs. Equivalence and subsumption are
asserted by semantic reasoning, where the degree of similarity may be measured as the
distance between concepts in an ontology hierarchy. This approach ensures that a service is
fed at least with all the needed input and produces at least all the required output.

2.3.2.2 Interoperability method
To compose the high-level-conforming components resulting from the introduced conformance
relation, an appropriate interoperability method shall be employed. To this end, we intervene in
the execution properties of the component requiring the specific capability. First, the
component providing the specific capability is a normal component, the executable of which
integrates the hard-coded implementation of the conversation and messages associated to the
capability. Thus, this component exposes a normal specific functional interface. Regarding the
component requiring the specific capability, its executable is built around this capability, which
may be represented as a high-level local function call. This component integrates further an
execution engine able to execute on the fly the specific conversation associated to this
capability and supported by its peer component. Thus, this component comprises a specific
part implementing the component logic that uses this capability, and a generic part constituting
a generic interface capable of being composed with diverse peer interfaces. The introduced
interoperability method along with the associated conformance relation introduced in the
previous section are depicted in Figure 2-9. The execution engine shall be capable of:

• Executing the declarative descriptions of conversations; to this end, execution semantics
of the π-calculus descriptions are employed;

• Parsing the incoming messages and synthesizing the outgoing messages of the
conversation based on the syntactic information provided by classes PrmType,
PrmPosition and PrmValue; access to an external type ontology may be necessary if
the type system of the peer is different to the native type system;

• Associating the inputs and outputs of the required capability to their corresponding
message parameters; this is based on semantic mapping with the inputs and outputs of
the remote capability, which are directly associated to message parameters; conversion
between different types or between different type systems may be required.

It is clear from the above that for components it is not necessary to provide messages and
message parameters – at least parameters that are not capability inputs or outputs – with
semantics.

The introduced component-level interoperability method shall be employed in combination with
the connector-level interoperability method discussed in previous sections to ensure service
interoperability. It is apparent from the above that the component-level method is more
adaptive and can resolve higher heterogeneity than the connector-level one, which is
appropriate for components, considering their diversity. On the other hand, the connector-level
method permits lower heterogeneity, which is normal for connectors, which shall not be
allowed to deviate significantly from the behavior expected by the overlying component. By
locating the connector customizer on the side of the component requiring a specific capability,
this component becomes capable of adapting itself at both component and connector level to
the component providing the specific capability. Employing dynamic schemes for the

Amigo IST-2004-004182 46/227

April 2005 Public

instantiation of connectors as the one outlined in Section 2.3.1.3 would make this adaptation
totally dynamic and ad hoc.

required
capability

execution
engine

generic partspecific part

provided capability

component A component B

provided
conversation/messages

semantic conformance

execution

Figure 2-9: Component conformance relation and interoperability method

2.3.2.3 Example
We now complete the multimedia content service example by applying the introduced
component-level conformance relation and interoperability method. In Section 2.3.1.3, we
specified connector CConn2 within the customer ontology. We complete the customer
ontology by defining capabilities for the customer component and a second connector. The
customer component will be specified only at capability level. We assume that the customer
component requires the capabilities Get and NewRelease, which also concern buying an
article and registering for notification of new releases of articles.

Component Customer
 requires {Get, NewRelease}
RequiredCpb Get
 inputs {ArticleData, PaymentData, CustomerProfile}
 outputs {ArticleData, Ack}
RequiredCpb NewRelease
 inputs ArticleData
 outputs ArticleData

To assert conformance between the customer and the vendor component with respect to
capabilities Get and Buy or NewRelease and Available, semantic matching shall be
sought for the compared capabilities and their inputs and outputs.

Amigo IST-2004-004182 47/227

We discuss the case of Get and Buy. We assume that there exists a commerce ontology
specifying among other the class Purchase, as one of the activities included in commerce.
Furthermore, we assume the existence of a specialized ontology describing the specific
articles being sold by the vendor component and possibly sought by the customer component.
Finally, a payment information ontology – describing payment methods, such as by credit card,
by bank transfer, etc. – is available. Having – independently – defined capabilities Get and
Buy as direct or less direct descendants of class Purchase enables the assertion of their
conformance. In the same way, ArticleData may be mapped to ArticleInfo if the
vendor component sells what the customer component seeks to buy. PaymentData can be
found to be more general than CreditCardInfo in the payment information ontology. This
means that the customer component is capable of managing as well other payment methods
than by credit card, which is required by the vendor component. This is in accordance with our
conformance relation. We may further see that Get additionally inputs CustomerProfile,

April 2005 Public

which is not required by Buy, and Buy additionally outputs ReceiptId, which is not required
by Get. This, too, is in accordance with our conformance relation.

To be able to use the remote capability Buy, the customer component shall have a connector
(e.g., CConn1) conforming to VConn1. Then, the customer component will execute the
declarative conversation associated to Buy in the way detailed above.

2.4 Related work
In the last couple of years there has been extensive research towards semantic modeling of
Web Services, which, as presented in Section 2.1.1.3, is the dominant paradigm for service-
oriented architectures. Hence, there are a number of efforts towards Semantic Web Services.
The most complete effort concerns OWL-S, which was outlined in Section 2.1.2. In this
section, we compare our approach with OWL-S and discuss OWL-S-based and non-OWL-S-
based efforts.

OWL-S defines an ontology for semantically describing Web Services in order to enable their
automated discovery, invocation, composition and execution monitoring. From our standpoint,
this may be regarded as enabling application-level interoperability. Our work has aimed at
introducing semantic modeling of Amigo services in order to deal with the interoperability
requirements within the Amigo environment. This has led us to elaborate a comprehensive
modeling approach that spans both the application and middleware level. Furthermore, our
modeling considers services from a software architecture point of view, where services are
architecturally described in terms of components and connectors. This abstracts any reliance
on a specific technology, as on Web Services in the OWL-S case. We compare further our
approach with OWL-S in the following.

Our modeling of provided capabilities along with their inputs and outputs may be mapped to
the OWL-S service profile. Both describe the high-level functionalities of services and may be
used for discovering services, thus, for matching or conformance verification. We additionally
explicitly model required capabilities for a component, which is done implicitly in OWL-S, e.g.,
for an agent contacting Web services. As further discussed in Section 2.3.2.1, OWL-S
enhances the description of capabilities with preconditions and effects, which we consider
integrating into our approach.

Our modeling of conversation and component-level messages may be mapped to the OWL-S
process model. We have opted for a well-established process algebra, such as the π-calculus,
which allows dealing with dynamic architectures [MaKr96] and provides well-established
execution semantics. The OWL-S process model provides a declarative, not directly
executable specification of the conversation supported by a service. One has to provide
external execution semantics for executing a process model, which has been done, for
example, in [AnHS02]. The OWL-S process model decomposes to atomic processes, which
correspond to WSDL operations. Our modeling employs component-level messages, which
make no assumption of the underlying connector. The types of the inputs and outputs of an
OWL-S atomic process are made to correspond to WSDL types, which are XML Schema
types. This restricts the employed type system to the XML Schema type system. Our approach
enables using different type systems, and, further, heterogeneous type systems for the two
peer components.

Our modeling of connectors may be mapped to the OWL-S grounding. The OWL-S grounding
is restricted to the connector types specified by Web Services, which comprise an interaction
model prescribed by WSDL on top of the SOAP messaging protocol, commonly over HTTP.
As WSDL 2.0 has not yet been finalized, the current version of OWL-S relies on WSDL 1.1,
which supports only two-way synchronous operations and one-way operations. The WSDL 1.1
interaction model does not support, for example, two-way asynchronous interactions or event-
based interactions, as has been indicated in [CuMW01]. WSDL 2.0 will allow greater flexibility

Amigo IST-2004-004182 48/227

April 2005 Public

in its interaction model. Nevertheless, our approach enables the use of any connector type,
which is modeled by the connector-level part of our mobile service ontology; this allows any
interaction model, interaction protocol and addressing scheme. Finally, our approach enables
using different type systems for connectors and, further, heterogeneous type systems for the
two peer connectors, while WSDL and SOAP rely on the XML Schema type system.

Work by Carnegie Mellon University described in [SPAS03] is the most complete effort up to
now in the OWL-S community; the authors have realized an OWL-S based architecture for
automated discovery and interaction between autonomous Web services [PaSy03]. Discovery
is based on the matching algorithm detailed in [PKPS02], which has been adopted by several
other efforts in the literature. The main features of this algorithm were discussed in Section
2.3.2.1; as stated there, our component-level conformance relation incorporates some of the
principles of this work. However, this matching algorithm does not exploit the full OWL-S
representation of services in terms of inputs, outputs, preconditions and effects; preconditions
and effects are not employed here, either. Interaction between autonomous Web services is
based on an OWL-S (formerly DAML-S) virtual machine [PASS03], which is capable of
executing OWL-S process model descriptions. As mentioned above, execution is based on the
execution semantics defined by the authors in [AnHS02]. The virtual machine integrates OWL
reasoning functionality to be able to interpret and synthesize messages. Its implementation is
based on the DAML-Jess-KB [KoRe03], an implementation of the DAML (a predecessor of
OWL) axiomatic semantics that relies on the Jess theorem prover [FrHi98] and the Jena
parser [McBr01] to parse ontologies and assert them as new facts in the Jess Knowledge
Base. Our component-level interoperability method employing an execution engine capable of
executing the π-calculus descriptions of service conversations can certainly build upon tools
and experience coming from this work. Nevertheless, as our approach realizes a more general
conceptual model, it addresses also connector-level interoperability.

In the work presented in [MeBE03], the authors elaborate an ontology-based framework for
the automatic composition of Web Services. They define an ontology for describing Web
services and specify it using the DAML+OIL language (a predecessor of OWL). They further
propose a composability model based on their service ontology, for comparing the syntactic
and semantic features of Web services to determine whether two services are composable.
They identify two sets of composability rules. Syntactic rules include: (i) mode composability,
which compares operation modes as imposed by WSDL, that is, two-way synchronous
operations and one-way operations; and (ii) binding composability, which compares the
interaction protocols of communicating services, e.g., SOAP. Semantic rules include: (i)
message composability, which compares the number of message parameters, their data
types, business roles, and units, where business roles and units represent semantics of
parameters; (ii) operation semantics composability, which compares the semantics of service
operations; (iii) qualitative composability, which compares quality of service properties of Web
services; and (iv) composition soundness, which semantically assesses whether combining
Web services in a specific way is worthwhile. The introduced service ontology resembles our
Amigo service ontology, while it additionally represents quality of service features of services.
However, what is lacking is representation of service conversations; actually, in this approach,
services are implicitly considered to support elementary conversations comprising a single
operation. These operations are employed into an external workflow to provide a composite
service produced with a development time procedure. Additionally, there is no attempt to
provide interoperability in case that the composability rules identify incompatibilities.
Composability rules are actually used for matching existing services to requirements of the
composite service. Same as the other approaches adding semantics to Web services, this
approach treats only application-level composability.

Amigo IST-2004-004182 49/227

April 2005 Public

2.5 Discussion
The Amigo networked home environment is in particular characterized by the highly dynamic
character of the computing and networking environment due to the intense use of the wireless
medium and the mobility of devices; the resource constraints of networked devices; and the
high heterogeneity of integrated technologies in terms of networks, devices and software
infrastructures. To deal with high dynamics, systems tend to be dynamically composed
according to the networking of mobile services. Nevertheless, such a composition must be
addressed in a way that enforces correctness of the composite systems with respect to both
functional and non-functional properties and deals with the interoperability issue resulting from
the high heterogeneity of integrated services and resources. The Semantic Web paradigm has
emerged as a decisive factor towards interoperability, which up to then was being pursued
based on agreements on common syntactic standards; such agreements cannot scale in the
open, highly diverse Amigo environment. Related efforts elaborating semantic approaches are
addressing application-level interoperability in terms of information and functionality. However,
interoperability requirements within the Amigo environment are wider, concerning functional
and non-functional interoperability that spans both middleware and application levels.

Towards this goal, we have introduced semantic modeling of Amigo services based on
ontologies, addressing functional properties of service components and associated
connectors. We have further introduced the notion of conformance relation over component
and connector models so as to be able to reason on the correctness of the composition of
peer Amigo services with respect to offered functional properties. Our conformance relations
enable identifying partial conformance between components and between connectors, thus
reasoning on interoperability. Based on these conformance relations, we have further outlined
appropriate interoperability methods to realize composition and interoperation of
heterogeneous Amigo services. Nevertheless, our modeling needs to be complemented with
specification of the non-functional behavior of services and definition of related ontologies. We
plan to do this within Amigo building on the work described in [ITLS04], which has identified
key non-functional features of the mobile environment.

As discussed and demonstrated in this chapter, ontologies enable a rich representation of
services and a common understanding about their features. As discussed in the OWL
specification22 and in [OSLe03], there are two advantages of ontologies over simple XML
schemas. First, an ontology is a knowledge representation backed up by enhanced reasoning
supported by the OWL axiomatic semantics. Second, OWL ontologies may benefit from the
availability of generic tools that can reason about them. By contrast, if one built a system
capable of reasoning about a specific industry-standard XML schema, this would inevitably be
specific to the particular subject domain. Building a sound and useful reasoning system is not
a simple effort, while constructing an ontology is much more manageable. The complex
reasoning employed in the example of Section 2.3.1.3 to assert conformance between
connector interaction models would not be easy to implement based simply on XML schemas.

OWL reasoning tools shall be employed by the introduced conformance relations and
interoperability methods. A number of such tools already exist, such as the ones discussed in
the previous section. Conformance verification needs to be integrated with the runtime system,
i.e., the middleware, and be carried out online. Interoperability methods further involve
processing and communication cost upon their functioning, but also upon their dynamic
instantiation, as discussed in Section 2.3.1.3; they shall as well function with an acceptable
runtime overhead. These requirements are even more challenging if we take into account the
resource constraints of devices networked in the home. A number of techniques need to be
combined in this context, including effective tools for checking conformance relations and
lightweight interoperability mechanisms in the wireless environment, possibly exploiting the
capabilities of resource-rich devices in the area so as to effectively distribute the load

22 http://www.w3.org/TR/owl-guide/

Amigo IST-2004-004182 50/227

April 2005 Public

associated with the dynamic composition of mobile services. We will thus investigate within
Amigo base online tools and techniques to support open, dynamic system composition, while
keeping the runtime overhead acceptable for wireless, resource-constrained devices.

This chapter has set the basis of service-orientation within Amigo. The introduced concepts
and methodologies of semantic modeling of services, reasoning on conformance, and
interoperability are fundamental within Amigo. In the next chapter, we elaborate the Amigo
abstract reference service architecture, which incorporates these elements into a layered
system architecture. Further, in Chapters 4 and 5, we apply these concepts in elaborating
concrete conformance relations and interoperability methods at application and middleware
level, respectively, for Amigo services.

Amigo IST-2004-004182 51/227

April 2005 Public

3 Amigo abstract reference service architecture
In Chapter 2, we introduced service-orientation as an essential architectural style in Amigo,
elaborating semantic modeling for Amigo services that builds upon the software architecture
notions of components and connectors. This modeling allowed us to outline generic
conformance relations and associated interoperability methods at both component/application
and connector/middleware level, providing the base for semantics-based service
interoperability. In this chapter, we introduce a reference service architecture for Amigo, which
we call the Amigo abstract reference service architecture. This architecture follows the general
three-layer structure: application-middleware-platform. Figure 3-1 depicts the mapping of the
Amigo service modeling of Chapter 2 on the Amigo abstract reference service architecture
outline. Typically, components are mapped on the application layer, and connectors are
mapped on the middleware layer, to which we may attach the platform layer in order to
address the complete interaction mechanism offered to applications. What distinguishes our
mapping from the typical case is the semantic modeling and the resulting interoperability
feature.

Amigo service modeling

application
layer

component

connector

functional
and non-
functional
semantics

functional
and non-
functional
semantics

middleware
layer

platform
layer

middleware
layer

platform
layer

conformance
relation

conformance
relation

interoperability
method

interoperability
method

Amigo abstract
reference service
architecture

Figure 3-1: Mapping of the Amigo service modeling on the Amigo abstract reference service
architecture

To address the key Amigo property of interoperability, we identify a number of principles that
shall be followed in the specification of the Amigo abstract reference service architecture:

• We attempt to pose only a limited number of technology-specific restrictions. The Amigo
architecture shall have the capacity to integrate diverse technologies in terms of networks,
devices and software platforms (see [Amigo-D2.2] for a survey on Amigo-related
technologies).

• In the same spirit, existing individual service infrastructures, relevant to the four integrated
application domains, e.g., Web Services, UPnP, etc., (see [Amigo-D2.2]) shall be retained.
We do not intend to develop another service infrastructure imposing, for example, a
homogeneous middleware layer on all devices within Amigo. We aim at elaborating an

Amigo IST-2004-004182 53/227

April 2005 Public

abstract reference service architecture for Amigo, which can represent various service
infrastructures by abstracting their fundamental features. The Amigo abstract reference
service architecture shall integrate existing heterogeneous service infrastructures and
each heterogeneous service infrastructure shall be mapped on the Amigo abstract
architecture.

• Certainly, the Amigo reference architecture shall comply with all four Amigo application
domains, promoting and enabling their integration.

• Interoperability among heterogeneous service infrastructures will be based on semantic
service modeling following the directives set in Chapter 2.

In our elaboration of the Amigo reference architecture, we initially draw from the personal
computing and mobile domains, where there exist already mature service architecture
paradigms and technologies coming from both the industry and the academia. This chapter
presents this work, and is further complemented by Chapters 4 and 5, where concrete
interoperability methods for the Amigo reference architecture are elaborated. Then, the
consumer electronics and home automation domains are integrated and aligned to the
specified Amigo reference architecture; this is detailed in Chapters 6 and 7, respectively.

To specify the Amigo reference architecture, we use as basis the reference service-oriented
architecture identified in Chapter 2 (Section 2.1.1.2). The advanced functional and non-
functional Amigo properties as identified in the Amigo Description of Work, and as further
discussed in Chapter 1, lead us to introduce additional building blocks into the reference
service-oriented architecture of Chapter 2. Further, we assume that all three layers of the
architecture may be heterogeneous and based on diverse technologies; therefore, we
incorporate appropriate conformance relation and interoperability mechanisms, according to
the mapping of Figure 3-1. The resulting Amigo abstract reference service architecture is
depicted in Figure 3-2, where the new added elements are printed in red and in italics.

Based on the Amigo abstract reference service architecture and the key interoperability
property within Amigo, we further define a device capable of being integrated into the Amigo
environment as any device that:

• Implements (a subset of) the reference architecture employing specific technologies;

• May implement some interoperability methods.

This definition is very generic and allows very diverse technologies to be integrated into the
Amigo environment. The incorporation of interoperability methods by a device within Amigo
will depend on a number of factors, such as the feasibility to enhance legacy platforms, the
computational resources of the device, and certainly the necessity of such methods. Two
instantiations of the Amigo reference architecture or two devices capable of being integrated
into the Amigo environment will be interoperable if:

1. They conform semantically in terms of provided/required functional and non-functional
capabilities/properties;

2. They implement complementary interoperability methods.

As discussed in Chapter 2, the degree to which the first condition is true, determines the
degree to which the second condition is needed. Moreover, the complementarity of
interoperability methods allows deploying such methods on one or both peer devices, for
example, depending on their resource capacity.

In the following, we analyze essential building blocks or aspects of the introduced Amigo
reference architecture that make part of the application layer (Section 3.1), the middleware
layer (Section 3.2) and the platform layer (Section 3.3). We conclude in Section 3.4.

Amigo IST-2004-004182 54/227

April 2005 Public

Amigo IST-2004-004182 55/227

heterogeneous
middleware
layer

heterogeneous
platform
layer

communication
comm model
comm protocol
data representation
addressing

heterogeneous
application
layer

service description
syntactic functional specification

provided/required operations
provided/required

 + semantic

 capabilities/conversations
syntactic + semantic QoS specification

provided/required properties
local/remote resource requirements

context specification

system + network

devices
transport protocols
data link

QoS support
resources

/device capabilities

QoS support
resource constraints
device capabilities

other middleware
services

security
&

privacy

c
o
n
t
e
x
t

m
a
n
a
g
e
m
e
n
t

semantic + QoS-aware + context-aware
+ compositionservice discovery

conformance
relations &

interoperability
methods

conformance
relations &

interoperability
methods

Figure 3-2: Amigo abstract reference service architecture

3.1 Amigo application layer
In the application layer of the Amigo abstract reference service architecture, Amigo services
enjoy an enriched service description. Both functional and non-functional properties of
services are specified, both syntactically and semantically.

The functional service specification follows the service modeling of Chapter 2, defining,
besides operations, provided and required capabilities and associated conversations of a
service. This specification is generic, independent of any specific service-oriented architecture.
Nevertheless, Semantic Web Services, described in OWL-S, is a convenient paradigm,
compliant with our generic service modeling and specification, which will be employed within
Amigo (see Chapter 4). In Chapter 2, we employed semantic modeling to enable reasoning on
conformance and interoperability; service discovery, invocation and composition are involved
in these tasks. Semantic modeling of services makes service descriptions machine-
interpretable, enabling efficient automated execution of all the above tasks.

The non-functional service specification concerns the quality of service (QoS) characteristics
of services; QoS assurance is an essential requirement within Amigo, as in particular
highlighted by ancestor architectures like Ambience and Ozone [Amigo-D2.2]. Part of the non-
functional properties is further the context in which a service executes; context attributes that
affect a service are specified in the service description. QoS-awareness for Amigo services is
discussed in the next section, while in Section 3.1.2 we discuss context-awareness.

April 2005 Public

3.1.1 QoS-aware services
The QoS specification of Amigo services defines the QoS properties provided and required by
the services. QoS properties are key information for dynamically selecting the services that
best meet the user needs. If there are several services in a service registry with similar
functionalities, then QoS requirements enable a finer search. The QoS aspect becomes even
more important in the process of composition of various services with different QoS attributes
and requirements. The QoS specification shall further incorporate the local and remote
resource requirements of services. QoS versus resource consumption is a critical trade-off in
the Amigo environment. Besides, the QoS specification will be both syntactic and semantic.

On the one hand, the syntactic part will define QoS dimensions and associated metrics. This
definition shall: (i) allow description of both quantitative (e.g., service latency) and qualitative
(e.g., CPU scheduling mechanism) QoS attributes [SCD+97]; (ii) be declarative in nature, that
is, specify only what is required, but not how the requirements are implemented [AuCH98]. In
addition, although more QoS parameters yield a more detailed description, the gain has to be
put against the increased overhead. Usually, dominant QoS properties of systems may be
captured with a small number of attributes [DiLS00]. In the work presented in [LiIs04], key QoS
attributes for mobile systems have been identified. The work described in [ITLS04] has,
further, pinpointed essential non-functional features of the mobile environment. These efforts
addressing mobile environments can be useful to Amigo, as the Amigo home environment
incorporates several of their features. From the above research efforts, the following
categories of QoS information may be identified:

• Runtime-related QoS may include scalability (limit of concurrent requests), performance (in
terms of response time, latency, throughput), reliability, accuracy, availability.

• Transaction-support QoS might be characterized by the integrity of the data operated on
by service transactions.

• Configuration- and cost-related QoS may include regulatory, supported standards,
stability/changing cycle, cost (per request, per volume of data), completeness (difference
in specified and implemented set of features), timeliness (freshness of information).

• Security-related QoS measures the trustworthiness and security mechanisms implemented
(authentication, authorization, confidentiality, trust, data encryption, etc.).

On the other hand, adding semantics to the QoS specification will enable non-functional
interoperability, in a way similar to functional interoperability. Semantic description of QoS can
be achieved through a QoS ontology, which will allow providers and consumers to express
policies and preferences, respectively. The service profile in OWL-S can be used for this
purpose. DAML-QoS [ZhCL04] is an attempt to provide a QoS ontology to complement OWL-
S service description with enhanced QoS representation capabilities. In Chapter 2, we pointed
out our future working on semantic modeling of the non-functional behavior of services within
Amigo.

Finally, with regard to services offered to the Amigo home from outside, service providers may
commit to providing a certain level of quality of service. This commitment is formalized using
Service Level Agreements (SLAs) [WSS+01]. SLAs can be considered as binding contracts
that are agreed upon between service providers and service requesters.

3.1.2 Context-aware services
The term ‘context’ is overloaded with a wide variety of meanings, depending on the purpose of
the particular application and/or the specific research community standpoint. In Amigo, we
adopt the following general definition of context proposed in [DeSA01], extending it to include
device-to-device communication.

Amigo IST-2004-004182 56/227

April 2005 Public

“…Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves.”

In [ScAW94], the following categories of context are defined:

• Device context: contextual information related to devices. Examples are available memory,
computation power, networks (and their quality), codecs, etc.

• User context: context information that describes a person, further decomposing into:
o Personal context: health, mood, schedule, activity, etc.,
o Application context: email received, Web sites visited, preferences, etc.
o Social contexts: group activity, social relationship, people nearby etc.

• Physical context: contextual information related to the physical environment of an entity
(device, room, building, user). Examples are location, time, weather, altitude, light.

The classification of context, as relevant to the Amigo system, will be extensively investigated
within the project. This is in particular key issue of Task 2.2 (Deliverable D2.3) and Work
Package WP4, which will investigate context management in intelligent user services.

Context information is usually dynamic and may be retrieved from appropriate sources when
needed, or may be collected and organized by a specialized context management middleware
service. Nevertheless, context management mechanisms span all three layers of the enriched
architecture. The role of the Amigo context management is, more specifically, to acquire
information coming from various sources, ranging from physical sensors to Internet
applications, combine these pieces of information into "context information", and make this
context information available to Amigo services, so as to enable these services to become
context-aware, i.e., to support context-aware service discovery, context-aware service
composition etc. To this purpose, a common language must be agreed upon so as to describe
context information. We will base our modeling of context information on an ontology of
context. OWL will be used to model context information and queries such as:

• Context information (e.g., the temperature in room x is 21°);
• Context queries (e.g., what is the temperature in room x? where is device y?);
• Context conditions (e.g., if the temperature is above 30°, post an event or trigger an

action).

In order to enable context-aware service discovery, service descriptions shall include
contextual information, such as a “context of use” that describes contextual conditions in which
the service can be used. The “context of use” participates in the description of the service
functionality, as “what the service does” may depend on the context in which it is used.
Additional context constraints can also be provided to improve the quality of retrieved results in
the matching process of service discovery. Providing information about the contextual
conditions in the service description enables service discovery to handle more abstract
queries. For instance, a service requester might look for a service to display data for a
particular user. When answering this request, the discovery service should consider the user's
location to select appropriate services. Through contextual conditions of use, the service
description gives the hint that the intended user of the service should be in the same room as
the device that provides this service. The discovery service has to take this information into
account during the matching/selection process, even if the original request didn't explicitly
suggested selecting a service located in a given room (the requester specified only that this
service should be available for a given user). Location is an example of contextual information
that often impacts the selection of services in an ambient intelligence environment. Depending
on services, several other contextual pieces of information (noise level, light, user activity...)
will be relevant. Context conditions can be easily included in an OWL-S service description as
a particular kind of preconditions. The service discovery employs the context management
service to check these specific conditions and decide whether the service can be used in the
current context.

Amigo IST-2004-004182 57/227

April 2005 Public

3.2 Amigo middleware layer
In the middleware layer of the Amigo abstract reference service architecture, middleware
services of the reference service-oriented architecture of Chapter 2 are now enhanced or new
middleware services are added:

• Service communication provides the core mechanism already discussed in Chapter 2.

• Service discovery is enhanced to reflect the enriched service description. Thus, service
discovery shall be semantics-based, QoS-aware and context-aware. Semantics enable
service discovery based on reasoning about the functional capabilities, as well as the QoS
properties and resource requirements of services. Service discovery shall both optimize
resource consumption on resource-constrained devices and satisfy users’ requirements
with respect to perceived QoS. As already mentioned, the QoS versus resource
consumption trade-off shall be taken into account. Context, further, shall be considered in
service discovery and selection, as discussed in the previous section. Service discovery is
a key functionality in the dynamic, diverse Amigo environment; therefore, in Section 3.2.1,
we extensively discuss essential aspects of service discovery in Amigo.

• Service discovery is closely related to service composition. In the Amigo environment,
services are composed to provide new more complex services. In such an environment,
the composition of services becomes extremely hard as it shall: (i) be dynamic, according
to available services at the specific time and place; (ii) satisfy the functional and QoS
requirements in an effective way within the bounds posed by the resource constraints of
mobile devices; (iii) take into account context; and (iv) accommodate the heterogeneity of
technologies. Thus, employing service discovery, service composition shall be semantics-
based, QoS-aware and context-aware.

• As already pointed out, QoS support is a major requirement in Amigo and is involved in
various aspects of the Amigo reference architecture. We have discussed so far
application-level QoS as a set of service properties. QoS may further be enforced or
enhanced at middleware level by dynamically integrating specialized middleware
components into the communication path between services [FSAK01, IST+04]. These
middleware components may be dynamically discovered and retrieved according to
middleware-level QoS requirements. Using the software architecture terminology of
Chapter 2, this is another case of connector customization. In this way, properties such as
reliability or performance may be enforced or enhanced at middleware level. This dynamic
integration of middleware components shall make part of the service composition
mechanism discussed above; in this way, the required middleware-level QoS for a service
is enforced upon dynamic service composition. In the IST Ozone project, connector
customization between mobile Web services was elaborated23. Same as in application-
level QoS, middleware-level QoS support shall take into account device capabilities and
resource constraints.

• Security and privacy is another fundamental requirement in the Amigo environment.
Special conditions characterize this networked home environment, such as devices with
very diverse capabilities; services with various levels of required security and privacy; and
the concern not to upset the feeling of home comfort, with obtrusive, complex security
mechanisms, without, however, compromising security and privacy itself. These conditions
shall be given special attention in supporting security and privacy in Amigo. Security and
privacy mechanisms span both the middleware and application layer of the enriched
architecture. Our vision of security and privacy within Amigo is detailed in Chapter 8.

• A number of other middleware services aiming at satisfying additional Amigo requirements
are incorporated in the middleware layer. Such services shall support content distribution,

23 http://www-rocq.inria.fr/arles/download/ozone/

Amigo IST-2004-004182 58/227

April 2005 Public

accounting and billing, and mobility management, as listed in the Amigo Description of
Work. These services will be addressed later in the project, within Work Package WP3.

3.2.1 Amigo service discovery
The service discovery infrastructure (SDI) is a key component of the Amigo middleware layer,
enabling dynamic, QoS-aware and context-aware discovery of services available in the
network, both in the local area (Amigo home environment) and in the wide area (Internet,
external service providers). It extends existing service discovery models in order to
communicate the information needed towards ensuring service composability. Following, we
identify a number of key requirements for the Amigo service discovery infrastructure:

• SDI should enable dynamic, context- and QoS-aware service discovery and service
composability.

• SDI should exploit work addressing service discovery on top of heterogeneous networks,
either managed or infrastructure-less ad hoc networks.

• SDI should be interoperable with heterogeneous service discovery models, adding the
functionality not provided by them.

• SDI needs to be decentralized, so as not to systematically require the availability of an
infrastructure.

• SDI should also work on simple devices with limited capacity and resources.

• SDI should minimize its communication load.

• The privacy and security requirements are important; home services should not be
advertised outside the scope of this privacy.

To clarify the concepts related to service discovery, Figure 3-3 provides a state chart of the life
cycle of networked services. The liveness information for services is outside the scope of
service discovery, but the life cycle is important for understanding the functionality provided by
service discovery protocols and the enhancements needed. The grayed states are of
relevance to SDI. A state transition of a provided service might be initiated by the service
requester, service provider or SDI. The initiator is distinguished in the figure by the style of the
transition line. SDI may handle some of the transitions, depending on the discovery
architecture, following either a centralized style or deployed on the requester or provider
nodes. When a service becomes available, each particular interaction session between
service requesters and service providers involves a separate life cycle.

We identify the following key actions and associated states in the life cycle of a networked
service:

• Joining/Registering of services may involve, as a first step, finding an available service
discovery infrastructure. The service provider provides a service description declaring the
functional and non-functional characteristics of the service.

• A service joins a registry. Registries are stores where services can advertise their
capabilities (descriptions), and which a service requester may query for a service with
particular capabilities. A Registered service is available to requesters and is a candidate
for discovery and selection.

• Matching/Selection is based on service description. At its simplest, it is finding a service by
name or by querying a set of attributes. The Amigo SDI will take into consideration several
factors comprising user requirements and overall system performance.

• The Development/Maintenance of a service is beyond the scope of SDI. However,
maintenance also covers the case when the service provider wants to update the service

Amigo IST-2004-004182 59/227

April 2005 Public

description; this change may be significant to the service requester for re-considering the
selection of the service.

• Subscription is the decision of the service requester to initiate the use of a specific service
based on the candidates given by SDI. The subscription method, service provisioning, and
binding and use are dependent on the communication infrastructure. Usually, after
matching and selection of available services, the requester processes the communication
part description to get the messaging behavior supported by the service, the structure of
messages, as well as the concrete binding information, such as the service's end-point
address. Interactions between the service requester and the service provider continue by
exchanging messages following the agreed interaction protocol. The service requester
initiates interactions by sending a request message to the service. A temporary loss of a
required service is handled by communication protocols and QoS management/monitoring.
Note that the Web services life cycle24 only covers the phases when the service is in use.

• Unsubscription is service requester-initiated, while Unregistering is service provider-
initiated, both ending service use.

Available

In use

Subscription

Matching/
Selection

Development /
Maintenance

Session
Idle

Delivery /
Binding

Joining /
Registering

Unavailable

Registered

Temporarily
Unavailable

Service provider initiated

Service requester initiated

SD inititated

Unregistering

Unsubscription

States separate for each service
provider requester interaction

Figure 3-3: Life cycle of a networked service

Based on the above discussion, we elaborate an abstract architecture for the Amigo SDI. The
Amigo abstract service discovery architecture represents and extends heterogeneous
discovery infrastructures comprising legacy service discovery protocols (SDPs) and related
service registries. In a concrete instantiation of the abstract discovery architecture on a node,

24 W3C Working Group Note. Web Services Architecture, 11 February 2004, http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/

Amigo IST-2004-004182 60/227

April 2005 Public

a specific discovery infrastructure (SDP/registry) is employed. Two distinct instantiations can
interoperate through interoperability methods, which handle the differences between the
heterogeneous discovery infrastructures. Figure 3-4 depicts the Amigo abstract service
discovery architecture. The figure shows the service discovery functional blocks and the usage
relations between them, including the interaction of service discovery with other Amigo
middleware services. Service discovery comprises two building blocks: enhanced service
discovery and interoperable service discovery.

application layer

Amigo enhanced
serviceslegacy services

middleware layer

service discovery

enhanced service discovery

interoperable service discovery

elementary
service

descriptions

service discovery
protocols (UPnP,
WS-D, SLP, …)

service registries
(UDDI, LDAP,

…)

abstract service
discovery model

interoperability
methods

enriched service
description

request, matching
and selection

service composition

QoS support

context management

security & privacy

communication

service
advertisements/requests

service
advertisements/requests

QoS/context
information

service
delivery and
binding

authorization,
secure
communication

mapping on a legacy SDP

application layer

Amigo enhanced
serviceslegacy services

middleware layer

service discovery

enhanced service discovery

interoperable service discovery

elementary
service

descriptions

service discovery
protocols (UPnP,
WS-D, SLP, …)

service registries
(UDDI, LDAP,

…)

abstract service
discovery model

interoperability
methods

enriched service
description

request, matching
and selection

service composition

QoS support

context management

security & privacy

communication

service
advertisements/requests

service
advertisements/requests

QoS/context
information

service
delivery and
binding

authorization,
secure
communication

mapping on a legacy SDP

Figure 3-4: Amigo abstract service discovery architecture

In the enhanced service discovery block, the enriched service description is semantics-based
and encapsulates functional, QoS and context information, as discussed in Section 3.1. QoS
information included in the service description is further related to middleware-level QoS

Amigo IST-2004-004182 61/227

April 2005 Public

support. Based on the service description, a context-aware [Broe04] and QoS-aware request,
matching and selection mechanism provides the principal functionality of service discovery;
this is further discussed in Section 3.2.1.1. To incorporate dynamic context information, the
matching mechanism interacts with the context management service.

The interoperable service discovery block represents legacy service discovery infrastructures,
each prescribing an elementary service description, a SDP and a service registry. Abstraction
of heterogeneous discovery infrastructures is enabled by the abstract service discovery model.
This model integrates diverse models of publishing and querying information about Amigo
services; this is further discussed in Section 3.2.1.2. Based on the abstract service discovery
model, appropriate interoperability methods can be built to interconnect heterogeneous
discovery infrastructures. More specifically, interoperability between two discovery
infrastructures can be realized by mapping both on the abstract discovery model and
translating from one to the other by passing through this common representation. This
translation concerns all the elements of the discovery infrastructures, i.e., the elementary
service description, the SDP and the service registry. This approach is thoroughly discussed
and elaborated in Chapter 5.

Figure 3-5: Example service discovery topology in the Amigo environment

The interoperable service discovery provides an interoperable discovery infrastructure to the
enhanced service discovery, allowing the latter to employ any legacy discovery infrastructure.
This is accomplished through the abstract, common discovery representation embodied by the
abstract service discovery model, and through the related interoperability methods. Thus, the
enhanced service discovery always accesses this uniform discovery representation,
independently of the underlying legacy discovery infrastructure, which may vary.

Amigo IST-2004-004182 62/227

A device within the Amigo environment may support enhanced service discovery. In this case,
the device instantiates the full abstract discovery architecture. Services on this device interact
with the enhanced service discovery block for service advertisements/requests. Nevertheless,

April 2005 Public

a legacy device within Amigo may merely support legacy service discovery. In this case, the
device instantiates only part of the abstract discovery architecture, i.e., the interoperable
service discovery block. Services on this device interact with this block for service
advertisements/requests. An example of a service discovery topology in the Amigo
environment including both enhanced and legacy devices is illustrated in Figure 3-5. Amigo
discovery in the figure may be either the full enhanced service discovery or only the
interoperable service discovery.

3.2.1.1 Amigo enhanced service discovery
In service discovery, the service requester has a need for a service, and there is a set of
advertised services from which this need has to be satisfied. The service discovery process
compares service advertisements provided by service providers with requests provided by
service requesters and tries to match them and, if required, automatically select the most
suitable candidate. This is the role of the request, matching and selection mechanism. The
Amigo enhanced service discovery employs such a mechanism that is based on the enriched
service description. Thus, request, matching and selection of services is done based on
functional and non-functional properties, as declared in the service description, and situational
context, or monitored QoS information.

The requesting, matching and selection is strongly associated with the information retrieval
(IR) area. In the computer-centered view, the IR problem consists mainly of building up
efficient indexes, processing user queries with high performance, and developing ranking
algorithms that improve the quality of the answer set [BYRR99]. Effective service retrieval in
service discovery is directly affected both by the service request representation and by the
logical view of the advertised service. In information retrieval, there are two key quality
measurements, which can also be applied in service discovery. A retrieval service should
provide both high recall – that is, it should retrieve all the items a user is interested in – and
high precision – that is, it should retrieve only the items a requester is interested in. Four types
of service retrieval approaches are distinguished in [KlB04a]. These are keyword-based, table-
based, concept-based, and deductive approaches. Similarly, those approaches may be used
in Amigo SDI for interoperable and enhanced service discovery functionality.

• In the keyword-based approach, most search engines look for items that contain the
keywords of the request (e.g., UDDI25). Such approaches are notoriously prone to both low
precision and imperfect recall.

• A table-based approach describes both items and queries as tables. A table-based service
model consists of attribute-value pairs that capture service properties, typically including its
name, description, inputs and outputs, as well as some performance-related attributes,
such as cost and execution time. Many existing service discovery technologies (e.g., Jini)
use the table-based approach.

• The concept-based approach provides the requester with ontologies for capturing service
request semantics, thereby enabling service discovery based on rich context information,
rather than on keywords. This approach can give increased precision and recall.

• Deductive approaches express service request semantics formally, using logic. The
service discovery process with this method may be highly complex and therefore operate
slowly.

The matching process matches existing service descriptions with requester’s needs. It is
obvious that in Amigo service discovery, matching should not rely only on keyword- or table-
based search; instead, the concept-based approach should be supported. Semantic and
syntactic information about each attribute in the service request and advertisement must be

25 Universal Description, Discovery, and Integration of Business for the Web, October 2001. http://www.uddi.org.

Amigo IST-2004-004182 63/227

April 2005 Public

taken into consideration. Equality of concepts’ names (i.e., syntax) does not necessarily mean
equality of their semantics. Since advertiser and requester may have different knowledge
about the same service, the matching process should first examine semantic equivalence and
then syntactic equivalence between service capabilities and requester’s needs [PiTB03,
PKPS02]. Semantic matching has to precede syntactic matching, as it is necessary to assure
that both request and advertisement address the same subject area. Then an optimization
must take place in order to return the most highly-rated matches and present them in an
appropriate way depending on the context.

In practice, it is hard to expect advertisements and requests to be equivalent, or that an
existing service would exactly fulfill the requester’s needs. Thus, several matching algorithms
have been proposed in the literature that take into account semantic aspects of the service
description to accomplish the problem with capability matching. The approach described by
[PKPS02] is one of the most used. Specifically in this approach, an advertisement matches a
request when all outputs and inputs of the advertisement and all outputs and inputs of the
request are matched, respectively. There are four degrees of matching: exact, plug in,
subsumes, and fail. The selection is based on the highest score in output matching. An input
matching is used only as a secondary score to sort between equally scoring outputs. In
Chapter 4, we employ a modified version of this algorithm in semantic matching, selection and
dynamic composition of multiple services within Amigo.

The non-functional characteristics of the service, such as QoS, can assist when reasoning
about several services with similar capabilities. QoS requirements can be used as a filter in the
matchmaker to ensure that the selected service satisfies the requester’s need for the quality
level of service.

Also, the contextual criteria enable to refine a request by providing information on the context
in which the service is needed. This feature is key in a situated, ambient environment, as the
first matching stage can find lots of services providing the same functionality, based on
semantic matching (e.g., displaying an image), whereas only one of these services may really
be relevant, when considering contextual information (e.g., the user's location). Thus, a
request should not only contain a description of the raw functionality of the service to be found,
but should also provide information about how this service must answer to environmental and
contextual requirements. A requester can thus express contextual criteria to influence the
service matching process. Two types of criteria are considered: constraints and preferences.
Constraints define a binary filter: candidate services that do not meet the constraints must be
excluded by the matching process. Preferences enable the discovery service to sort candidate
services among those that satisfy the constraints. Preferences may have a simple expression
(e.g., sort results according to the distance to the user) or express trade-offs between several
criteria. For instance, a requester might want a printing service that is as close as possible to
the user, and that will be available as soon as possible. The best choice might not be the
closest nor the least loaded printer, but a trade-off between these criteria.

Context awareness is closely related to QoS-based service selection. The offered QoS may
depend on context, i.e., on current situation/environment properties, and capabilities of device
used. In some cases, the context can be viewed as one of the constraints in successful
service selection for a particular QoS level (e.g., the user’s location might be a constraint in the
selection of appropriate screen size of a displaying device). In some scenarios, a trade-off
between context and QoS parameters (e.g., through a QoS ontology, context ontology and
their relation) must be considered for the appropriate service selection. An example of such a
scenario can be a person viewing some private photos. Depending on the context (e.g., if
somebody else is present in the room, privacy level) a small PDA or a big screen device (QoS)
can be selected for viewing the photos.

The elaboration of the Amigo enhanced service discovery is part of our future work in Amigo; it
will specifically be addressed in Task 3.3 on discovery infrastructure of Work package WP3.

Amigo IST-2004-004182 64/227

April 2005 Public

3.2.1.2 Amigo interoperable service discovery
The Amigo interoperable service discovery represents and abstracts existing service discovery
infrastructures by means of the abstract service discovery model, so as to both enable
interoperability between them and provide an infrastructure-independent representation of
them to the enhanced service discovery. In this section, we discuss several features of service
discovery infrastructures, which shall be abstracted by the abstract discovery model. In the
inverse direction, we make a number of suggestions for a discovery model appropriate for the
Amigo environment, which could lead to favoring specific discovery infrastructures for Amigo.
A more concrete discussion on abstracting features of discovery infrastructures is conducted
in Chapter 5, as part of the design of dedicated interoperability methods.

By means of the discovery infrastructure, service providers need to be able to publish the
availability and proper properties of their services to the potential service users. There are
three approaches for achieving this objective26:

• A centralized registry or repository is an authoritative, centrally controlled store of service,
in which there is a service broker who plays the role of registering and categorizing
published services, and providing search services.

• In contrast with a centralized registry, an index is a compilation or guide to information that
exists elsewhere. It is not authoritative and does not centrally control the information that it
references.

• A peer-to-peer (P2P) scheme provides an alternative to centralized registries, allowing
services to discover each other dynamically. Decentralized registries may be maintained
by peer nodes.

Because of their respective advantages and disadvantages, P2P systems, indexes and
centralized registries strike different trade-offs that make them appropriate in different
situations. P2P systems are more appropriate in dynamic environments, in which proximity
naturally limits the need to propagate requests, such as in ubiquitous computing. Centralized
registries may be more appropriate in more static or controlled environments, where
information does not change frequently. Indexes may be more appropriate in situations that
must scale well and accommodate competition and diversity in indexing strategies. Ideally,
service discovery should have the ability to consolidate the results of queries that span more
than a single registry or index, and make them appear more like coming from a single
discovery facility.

The Amigo service discovery architecture needs to be decentralized, so as not to
systematically require the availability of an infrastructure. Nevertheless, the limited capacity
(memory and processing power) of devices within the Amigo environment may pose
constraints on their capability to support enhanced service discovery, thus, implementing it in a
purely decentralized style may be difficult. Certain discovery infrastructures support dynamic
adaptation to the current distribution of the discovery architecture. For example, WS-
Discovery27 provides a model where initially a decentralized mode is used, but if a registry is
available, it sends a reply message to the multicast of the requester, and the requester starts
using the registry, possibly employing a different discovery protocol. A similar model is used
for SLP directory agents [GPVD99].

A further classification of service discovery is – with respect to the role of service requesters
and service providers – into active service discovery and passive service discovery.

26 W3C Working Group Note. Web Services Architecture, 11 February 2004, http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/
27 msdn.microsoft.com/ws/2004/10/ws-discovery/

Amigo IST-2004-004182 65/227

April 2005 Public

• In active service discovery (requester pull), the service requester contacts a centralized
registry giving criteria for the requested service. The registry returns suitable service
candidates based on service descriptions and requester’s criteria. Alternatively, in a
decentralized setting, the requester multicasts a service request directly to all nodes. The
node that provides the matching service sends a reply to the requester.

• In passive service discovery (provider push), the centralized registry informs all nodes
about new services available. Service requesters check for services corresponding to their
criteria. Alternatively, in a decentralized setting, service providers multicast service
announcements directly to all nodes.

Another issue – related to the selection of active or passive service discovery – is managing
the dynamic nature of services, i.e., new services may become available or unavailable at any
time. When using active discovery, a requester does not know about new and better services
that become available during the use of a selected service. When using passive discovery and
decentralized style, the requester does not get information about the existing services that had
been announced before the requester was started. Thus, a purely active or purely passive
discovery model is not sufficient for the Amigo environment. Preferable service discovery
protocols shall provide both means. An example of a combined model is one in which a
requester subscribes for receiving notifications for a specific set of interesting services.

The features of service discovery infrastructures discussed herein are embodied by the
employed service discovery protocols. We summarize in Table 3-1 the characteristics of some
existing SDPs applicable for Amigo service discovery.

SDP

Features

Jini UPnP Salutation SLP Bluetooth SDP
(Bluetooth
specific)

WS-D

Centralized repository
(repository-
less only in
JiniME)

repository
(Control
Points) /
repository-less

repository (local
SLMs),
distributed

repository
(Directory Agent)
/ repository-less

repository-less
(client –server)

repository-less

Advertisement
(announcing
presence)

multicast to
locate,
lookup,
register /
unicast to
register

multicast on
reserved
multicast
address using
SSDP

unicast
register/unregiste
r with local SLM

multicast to locate
DA / unicast to
register

not supported* multicast on
referred
multicast
address

Discovery
Protocol

active

multicast to
locate,
lookup,
register /
unicast to
invoke the
service

lease-based
service
access

repository-less,
passive: listen
SSDP
multicast /
unicast
response

repository,
active: by
multicast/
unicast
CP control

active

through local
SLM
communication

active / passive

repository:
unicast/unicast
request/response

repository-less:
multicast/unicast
request/response

active

unicast
request/respon
se

active

multicast
probe/resolve
message

unicast
response

Service
Description

attribute-
value pairs

XML-based
description
type, ID, URL
to device
description

type/attributes
unit specified by
ASN.1

service URL (IP
address, port,
path), attributes

service
attributes
(ID/value)

non-
requirement in
specification

WSDL

Self-
configuration

not directly
supported,
done by
standard
means (e.g.,
DHCP,
AutoIP DNS)

DHCP, AutoIP not directly
addressed,
standard means

not directly
addressed,
standard means

not directly
addressed

not directly
addressed

Amigo IST-2004-004182 66/227

April 2005 Public

AutoIP, DNS)

Transport TCP/IP TCP/IP independent TCP/IP, IPv6
support

Bluetooth
L2CAP
transport

TCP/IP v4/v6

Security based on
Java RMI

IPsec user ID/ passwd
scheme

no security
restriction

Bluetooth
general pairing
mechanism / no
addition for
SDP

Web Services
standard-based

* Mapping between Bluetooth SDP and Salutation or WS-D can add advertisement, brokering, and eventing capabilities

Table 3-1: Service Discovery Protocols description by comparison

3.2.1.3 Mapping between enriched service description and legacy SDPs
The Amigo enhanced service discovery enables enriched description and matching of Amigo
services over legacy SDPs supported by the interoperable service discovery. However, not all
devices within Amigo support enhanced service discovery; those that do not, merely support
legacy service discovery. Thus, without loss of generality, we consider the following cases of
peer-to-peer service discovery between two devices:

1. Both devices support enhanced service discovery. In the active (passive) discovery model,
the requester (provider) issues a request (announcement), which is conveyed over a
legacy SDP to the peer side. The request (announcement) contains an enriched service
description, which is used for matching to a provided (requested) service at the peer side.

2. The device initiating service discovery supports enhanced service discovery, however, this
is not the case for the peer device. On the initiator device, the enriched service description
is mapped to an elementary service description, suitable for the peer side. The elementary
description is conveyed over the associated legacy SDP to the peer side, where it is used
for matching.

3. The initiator device supports only legacy service discovery, however, the peer device
supports enhanced service discovery. The initiator device conveys an elementary service
description over the associated legacy SDP to the peer side. At that side, the elementary
description is mapped to an enriched description, which is used for matching.

The above service discovery cases raise a number of issues. In case 1, an enriched service
description shall be conveyed over a legacy SDP, and shall be used for matching, overriding
the matching (filtering) mechanism of the SDP, which is based on elementary descriptions.
Existing SDPs commonly provide a field in their request/announcement network message that
can carry transparently SDP-user-defined data. This field can be used to carry the enriched
description. Besides, matching can be delegated to the SDP-user, which is the enhanced
service discovery. In cases 2 and 3, a mapping shall be performed between an enriched
description and an elementary description associated to the specific SDP employed, in both
directions. This is discussed in the following. Furthermore, cases 1 and 2 coupled point out
that an enhanced initiator device may have both enhanced and legacy devices in its vicinity,
thus, it shall submit both an enriched and an elementary description. Accordingly, cases 1 and
3 coupled point out that an enhanced non-initiator device may receive either an enriched or an
elementary description from its vicinity, thus, it shall support processing of both.

As raised above, it shall be possible within the Amigo environment to discover services or
devices exposed via a legacy SDP (e.g., UPnP devices that announce themselves using
SSDP) by means of the enhanced service discovery. Amigo enhanced service discovery

Amigo IST-2004-004182 67/227

April 2005 Public

should provide mechanisms to understand elementary service descriptions and make legacy
services available in Amigo for discovery.

Taking UPnP as an example, specialized groups of the UPnP forum have worked to define in
a standard way the UPnP description of devices like a scanner, a printer, a media renderer, a
media server, etc. Thus, the syntactic description of such a device is enough to know the
semantics of the device, by referring to the specification document issued by the
corresponding working group. From these documents, it should be possible to provide a set of
transformation rules, described for example in XSLT28, which allows UPnP descriptions to be
mapped into enriched service descriptions. These transformations will involve generic
treatments (common to all UPnP devices) one the one hand and specific device descriptions
on the other hand. Figure 3-6a shows how such an approach can help to transform a UPnP
device description into an enriched description. The dictionary of UPnP ontologies contains a
machine-interpretable form of the documents issued by the UPnP working groups, whereas
the UPnP to enriched description mapper describes a generic process that uses the dictionary
to build enriched service descriptions from UPnP device descriptions. The process
schematized in Figure 3-6a will be used in the passive discovery model (passive form of case
3 above), whereas a similar process illustrated in Figure 3-6b is needed in the active discovery
model (active form of case 2 above) to translate enriched service requests into UPnP
requests. Provided this set of transformations, information available through SSDP can be
interpreted and used in the request, matching and selection process of the enhanced service
discovery.

dictionary of
UPnP ontologies

UPnP device
description

UPnP to enriched
description

mapper

enriched service
description

dictionary of
UPnP ontologies

UPnP device
description

UPnP to enriched
description

mapper

enriched service
description

dictionary of
UPnP ontologies

enriched service
request

enriched to UPnP
description

mapper

UPnP (SSDP)
service request

dictionary of
UPnP ontologies

enriched service
request

enriched to UPnP
description

mapper

UPnP (SSDP)
service request

Figure 3-6: (a) Building enriched service descriptions from UPnP device descriptions; (b)
Building UPnP SSDP requests from enriched service requests

Certainly, in these transformations, enriched information about the requested service/device is
lost or remains unexploited, which makes the effectiveness of the discovery questionable.
Amigo could provide a dynamic mechanism to enrich the description of new devices
discovered through a legacy SDP with new information. This could involve user’s intervention:
when the system discovers devices that are not sufficiently described, it invites the user to
provide additional information.

Finally, in the case where the discovery architecture is not purely peer-to-peer, an alternative
approach for making legacy services/devices available for discovery is possible. An enriched

28 http://www.w3.org/TR/xslt

Amigo IST-2004-004182 68/227

April 2005 Public

service description of the service/device could be made accessible externally to the legacy
device, e.g., on an external registry that would enable enhanced service discovery.

3.2.1.4 Security and privacy for service discovery
Due to the network heterogeneity and cross-domain interoperability, the security & privacy
architecture works at a middleware and application level. Hence, it can not be used to prevent
lower level network access of a (malicious) device. This implies that any component in an
Amigo system that exposes information needs to be assessed regarding security and privacy
requirements.

Service discovery reveals a vast amount of information about the home and its users. Envision
the scenario that a device that has access to the networked home can query all available
media renderers, media servers, administration devices with context information like position
of a PDA, number of people in a room etc.

To prevent malicious devices from intercepting this data but at the same time still enabling a
peer-to-peer, indexed or centralized discovery model, this data (or the sensitive information
part) should be encrypted.

This can be achieved by using a key that is embedded in the authentication token from the
authentication service (see Chapter 8) and a symmetric encryption algorithm. The symmetric
encryption algorithm is fast and allows the usage of a single key for encryption and decryption.
Every (see exceptions below) authenticated amigo service, device and user will receive an
identification token that contains this key and hence will be able to encrypt and decrypt this
discovery data.

Exceptions to this mechanism are:

- Guest devices and users:
It would compromise the security of an Amigo system to include that key in
authentication tokens for guest devices and guest users since they could obtain it once
(legally) and distribute or abuse it otherwise. From a security standpoint, it is
discouraged to enable (unrestricted) service discovery for guest devices and users
since there is no control on the information that is received by the guest device/user.
Service discovery for guest devices should therefore be deferred through another
Amigo component (for example the authorization service) and only in a restricted way.

- Legacy devices, legacy services and standard (unsecured) services:
Legacy or standard components do not encompass security mechanisms and will
therefore still announce themselves (passive discovery) and query (active discovery)
other services using unencrypted data. To prevent that this category of components
(actively) discovers (a malicious device could masquerade itself as a legacy device)
security enforcing components and information, security enforcing components should
only reply to encrypted active discovery requests.

3.3 Amigo platform layer
With respect to the platform layer of the reference service-oriented architecture of Chapter 2,
the middleware layer of the Amigo abstract reference service architecture incorporates a
number of enhancements:

• First, as information on device capabilities and resources – in terms of CPU, memory,
storage, display capabilities, battery power and bandwidth – is crucial for the above layers,
the platform layer shall provide this static or dynamic information upon demand.

• Second, platform-level and especially network-level QoS will complement QoS provision in
Amigo. Specialized transport protocols can ensure the real-time or near real-time

Amigo IST-2004-004182 69/227

April 2005 Public

timeliness properties required by certain applications like multimedia streams. Further,
reservation of system and network resources managed by resource reservation protocols
can guarantee QoS for such demanding applications. In Chapter 6, we discuss more in
detail network-level QoS support within Amigo.

The Amigo platform layer may integrate diverse technologies in terms of devices, system
platforms and networks, as surveyed in Deliverable D2.2 [Amigo-D2.2].

3.4 Discussion
In this chapter, we have introduced the Amigo abstract reference service architecture. In our
elaboration, we enhance the basic reference service-oriented architecture identified in Chapter
2 with a number of advanced features to address the functional and non-functional Amigo
properties. Interoperability is the key required property, which leads as to incorporate
appropriate conformance relation and interoperability mechanisms into the Amigo reference
architecture that follow the principles established in Chapter 2. Furthermore, in our elaboration,
we pose limited technology-specific restrictions to enable representation of all four application
domains and of the diverse related technologies by the Amigo reference architecture.

This chapter, further, analyzes essential functionalities of the introduced Amigo reference
architecture. An enriched service description is defined for Amigo services, which, following
the service modeling of Chapter 2, embodies both syntactic and semantic specification of
functional and, further, non-functional properties, the latter integrating QoS and context
characteristics of services.

Service discovery is a key functionality in the dynamic, diverse Amigo environment; therefore,
it is extensively discussed in this chapter. We introduce the Amigo abstract service discovery
architecture to represent both advanced devices that are capable of enhanced service
discovery and legacy devices that can only support legacy service discovery. Enhanced
service discovery is elaborated for Amigo without devising a new discovery infrastructure, but
by providing enriched service description and request/matching over the interconnection of
existing discovery infrastructures. Thus, through the abstraction of existing discovery
infrastructures and the employment of appropriate interoperability methods, service discovery
is enabled across heterogeneous devices with varying level of support for enhanced service
discovery. Concrete interoperability methods between heterogeneous discovery infrastructures
are elaborated in Chapter 5.

In the two chapters that follow, we introduce specific interoperability mechanisms at both
application and middleware level of the Amigo abstract reference service architecture. At
application level, composition of multiple services is addressed (Chapter 4), while at
middleware level, besides service discovery interoperability, we deal with service interaction
interoperability (Chapter 5). Then, in Chapters 6 and 7, the CE and domotics domains are,
respectively, introduced as specializations of the Amigo reference architecture. Further,
Chapter 8 elaborates another key functionality of the Amigo reference architecture, which is
the assurance of security and privacy in the Amigo home.

Amigo IST-2004-004182 70/227

April 2005 Public

4 Application-layer interoperability methods
Service composition in the dynamic, rich Amigo environment is a primary functionality aiming
at complex service provisioning by coordinating the networked services and resources,
ensuring at the same time the correctness of the provided service with respect to target
functional and non-functional properties. An example of service composition in the Amigo
home is detailed later in this chapter (Section 4.1.3.3). This example illustrates how a guest’s
DVD player will compose on the fly existing home services in order to display films stored in
the home’s digital resource database, adapting itself at the same time to the user’s actual
context. Service composition in Amigo shall be dynamic, according to available services at the
specific time and place, QoS-, resource- and context-aware, and shall accommodate service
heterogeneity. Application-layer heterogeneity for services concerns functional and non-
functional properties of services, such as supported interfaces and conversations, and
provided QoS.

In Chapter 2, we established the basis for service composition in Amigo, elaborating semantic
modeling for Amigo services that enables reasoning on conformance and interoperability
between two services in terms of functional properties at both application and middleware
level. Building on the principles set in Chapter 2, we focus, in this chapter, on the application-
layer aspect of service composition and target composition of multiple services. We
assume that interoperability methods may have already been deployed at middleware level
(see Chapters 2 and 5), which allow services to communicate and to be advertised and
discovered, even if they rely on heterogeneous middleware infrastructures. Further, we
address only functional properties, while we consider non-functional properties as part of our
future work within Amigo. Since we address composition of multiple services, which entails a
complex coordination among them, we opt, in our solution, for imposing workflow conformance
between component conversations, i.e., the first of the two alternative approaches discussed
in Section 2.3.2. Our aim is to allow a composite service that contains an abstract, semantic
description of a composition in the form of a workflow – i.e., a description without any
reference to identified services, and with only semantic reference to service operations – to
perform this workflow by integrating on the fly services that are available in the home
environment, without any preliminary knowledge about these services. This is what we call “ad
hoc composition of services” [BeGI05]. Thus, we elaborate in this chapter:

• A concrete conformance relation for matching services of the home environment to the
composition description; and

• An associated application-layer interoperability method enabling the dynamic composition
of multiple services.

Following the principles of Amigo service modeling elaborated in Chapter 2, we employ, in our
approach, Semantic Web Services description languages, i.e., OWL-S and WSDL, to describe
services. Web Services is a convenient SOA-based paradigm, however, our approach is not
dependent on it; any other SOA-based paradigm could be used instead. The main feature of
OWL-S that we exploit is the ability to describe semantic conversations in the form of a
process. More precisely, OWL-S allows the description of the external behavior of a service by
using a semantic model in which each operation involved is described semantically in terms of
inputs/outputs (and potentially preconditions and effects). Our solution introduces a matching
algorithm that attempts to reconstruct the abstract process description of a composite service
by integrating fragments from the process descriptions of the home environment services. The
result obtained is a concrete process description that contains references to available
networked services and that is executable by invoking these services.

The remainder of this chapter is structured as follows. First, we present our approach to the ad
hoc composition of services (Section 4.1). Further, we review related research efforts in the
area of matching algorithms (Section 4.2). Finally, we conclude with a summary of our

Amigo IST-2004-004182 71/227

April 2005 Public

contribution and discuss future perspectives of this work within Amigo (Section 4.3).

4.1 Ad hoc composition of services
Ad hoc composition of services translates into on the fly integration of a set of services to
realize a composite service described in the form of an abstract workflow. Our objective is to
allow this composite service to be executed by integrating available environment's services. A
description of this service is available as an abstract OWL-S conversation. In order to select
the set of services that are suitable to be integrated, and to integrate this set of services, a
matching algorithm is needed. In our approach, we propose a matching algorithm that enables
reconstructing the abstract conversation of the composite service using fragments from the
conversations of the environment’s services. Towards this goal, we first introduce formal
modeling of the conversations as finite state processes (FSP). Other approaches for
formalizing service conversations and compositions have been proposed in the literature,
generally based on process algebras, e.g., π-calculus, CCS [IsTa05, KoBr03, BCPV04], or
Petri nets [AaHo04, HaBe03, NaMc02]. FSP is generally used as a textual notation for
concisely describing and reasoning about concurrent programs, such as workflows of service
compositions [FUMK03]. These processes can be represented graphically using finite state
automata.
In the following, we describe our dynamic composition approach. First, we present the notion
of abstract composition description (Section 4.1.1). Then, we present our model to map OWL-
S conversations to finite state automata (Section 4.1.2). Finally, we describe our matching
algorithm (Section 4.1.3).

4.1.1 Abstract composition description
While we describe networked services as OWL-S processes with a WSDL grounding, i.e.,
operations in the OWL-S process are all supported by the service, we describe composite
services as abstract OWL-S processes without any reference to existing services. An abstract
OWL-S process involves abstract atomic and composite processes.
An abstract atomic process is defined as an elementary operation that has a set of
inputs/outputs. These inputs/outputs are specified with logical names. They carry semantic
definitions, and have to be matched to the inputs/outputs of a concrete OWL-S atomic process
contained in the description of an environment's service. An abstract composite process is
composed of a set of abstract, either composite or atomic, processes, and uses a control
construct from those offered by the OWL-S process model. These control constructs are:
Sequence, Split, Split+Join, Choice, Unordered, If-Then-Else, Repeat-While, and Repeat-Until.
In addition to the description of composite services as abstract OWL-S processes, we allow
the definition of a set of atomic conversations, which are fragments of the composite service
conversation that must be executed by a single service.

4.1.2 Modeling OWL-S processes as finite state automata
Formally, an automaton is represented by the 5-tuple <Q,Σ,δ,S0,F> [HoMU00], where:
• Q is a finite set of states;

• Σ is a finite set of symbols that define the alphabet of the language that the automaton
accepts; ε is the empty symbol;

• δ is the transition function, that is, δ : Q x Σ-> Q;

• S0 is the start state, that is, the state in which the automaton is when no input has been
processed yet (obviously, S0 ∈ Q);

• F a subset of Q (i.e., F ⊂ Q) called final states.

Amigo IST-2004-004182 72/227

April 2005 Public

In our modeling approach, the symbols correspond to the atomic processes involved in the
conversation. The initial state corresponds to the root composite process, and a transition
between two states is performed when an atomic process is executed.
Each process, either atomic or composite, that is involved in the OWL-S conversation, is
mapped to an automaton and linked together with the other ones in order to build the
conversation automaton. This is achieved following the OWL-S process description and the
mapping rules shown in Figure 4-1. In this figure, we can see that an atomic process ap is
modeled as an automaton, where:

• Q = {S0 ,S1};
• Σ = {ap};
• δ(S0, ap) = S1;
• S0 is the start state;
• F = {S1}.

A composite process C that involves a set of processes P1, P2, ..., Pn, represented by the
automata <Q1,Σ1,δ1,S0,1,F1>, <Q2,Σ2,δ2,S0,2,F2>, ... , <Qn,Σn,δn,S0,n,Fn>, respectively, is
represented by an automaton according to the control construct it uses, as follows:
• If C=Repeat-While(P1) then

o Q = Q1;
o Σ = Σ1;
o δ : Q1 x Σ1 → Q1

(x,y) → δ(x,y) = δ1(x,y) when (x,y) ∈ Q1 x Σ1 and
δ(x,y)= S0 when x∈F1 and y=ε ;

o S0 = S0,1 ;
o F= F1 ∪ {S0}.

• If C=Repeat-Until(P1) then
o Q = Q1 ;
o Σ = Σ1 ;
o δ : Q1 x Σ1 → Q1

(x,y) → δ(x,y) = δ1(x,y) when (x,y) ∈ Q1 x Σ1 and
δ(x,y)= S0 when x∈F1 and y=ε ;

o S0 = S0,1 ;
o F= F1 .

• If C=Choice(P1, P2, ..., Pn) then:
o Q = (∪i=1,n (Qi)) ∪ SInit , where SInit is a new start state;
o Σ = (∪i=1,n (Σi));
o δ : (∪i=1,n (Qi x Σi)) → (∪i=1,n (Qi))

 (x,y) → δ(x,y) = δi(x,y) when (x,y) ∈ Qi x Σi and
 δ(x,y)= S0,i when x = SInit and y=ε ;

o S0 = SInit ;
o F = (∪i=1,n (Fi)).

• If C=Sequence(P1, P2, ..., Pn) then:
o Q = (∪i=1,n (Qi));
o Σ = (∪i=1,n (Σi));
o δ : (∪i=1,n (Qi x Σi)) → (∪i=1,n (Qi))

 (x,y) → δ(x,y) = δi(x,y) when (x,y) ∈ Qi x Σi and

Amigo IST-2004-004182 73/227

April 2005 Public

 δ(x,y)= S0,i+1 when x ∈ Fi (i≠n) and y=ε ;
o S0 = S0,1 ;
o F = Fn.

• If C=Split(P1, P2) then C is treated as Choice (Sequence(P1, P2), Sequence(P2, P1)), as we
process parallelism as non-determinism. The Split+Join and the Unordered constructs are
treated as the Split construct.

• If C=If-Then-Else(P1, P2), then C is treated as Choice(P1, P2).

Figure 4-1: Modeling OWL-S control constructs as finite state automata

The conditions involved in the constructs Repeat-While, Repeat-Until and If-Then-Else are not
visible in our automata model. However, these conditions shall be taken into consideration
during the matching process. The OWL-S class Condition that defines those conditions, is
actually a placeholder for further work, and will be defined as a class of logical expressions.
Thus, we consider upgrading accordingly our matching algorithm to incorporate comparison
between such logical expressions.

Figure 4-2: An example of modeling an OWL-S process as a finite state automaton

Amigo IST-2004-004182 74/227

April 2005 Public

An example of mapping an OWL-S process model to a corresponding automaton is depicted
in Figure 4-2. In this figure, the process model contains three composite processes noted C,
C1, C2, and four atomic processes noted a1, a2, a3 and a4. In the automaton represented in
this figure, we have omitted the representation of some useless ε-transitions.

4.1.3 Matching algorithm
One of the most important features of a dynamic service composition approach is the
matching algorithm being used. Following the definition given by Trastour et al. in [TBGC01],
matching is the process by which parties that are interested in having exchange of economic
value are put in contact with potential counterparts. The matching process is carried out by
matching together features that are required by one party and provided by another. Thus,
matching allows the selection of the most suitable services to respond to the requirements of
the abstract composite service. In our approach, matching depends on two important features:
(i) the services’ advertisements; and (ii) the abstract composite service description. A service
advertisement is composed of the information published by the service provider. This
description could be quite simple, for example, a set of keywords describing the service, or
more complex, describing for example the service’s operations, conversation, functional and
non-functional capabilities. This description could further be syntactic (by using XML-based
standards for Web services’ description) or semantic (by using semantic Web languages). In
our approach, networked services are advertised by means of their provided behavior, i.e.,
conversation, as detailed in Chapter 2, while abstract composite services are described by
means of the behavior they require from networked services.
The matching algorithm we propose aims at reconstructing an abstract composite service
behavior by using fragments of the networked services behaviors. This algorithm is performed
in two steps: (i) semantic operation matching, and (ii) conversation matching, which are
detailed bellow. Semantic operation matching aims at selecting a set of services that may be
integrated to compose the target composite service. Our selection criterion is the provision by
the service of at least one semantically equivalent operation from those that are involved in the
composite service. Conversation matching then compares the structure of the composite
service conversation with those of selected services and attempts to compose fragments from
the services’ conversations to reconstruct the composite service conversation.

4.1.3.1 Semantic operation matching
The objective of the semantic matching step is to compare semantically described operations
involved in the composite service conversation with those involved in the networked services’
conversations. This kind of matching is more powerful and more flexible than syntactic
matching, as it allows the use of inference rules enabled by ontologies to compare elements,
rather than comparing their names syntactically.

To perform semantic operation matching, we build upon the matching algorithm proposed by
Paolucci et al. in [PKPS02, SPAS03]. This algorithm is used to match a requested service with
a set of advertised ones. The requested service has a set of provided inputs (inReq), and a set
of expected outputs (outReq), whereas each advertised service has a set of expected inputs
(inAd) and a set of provided outputs (outAd),. In our case, we propose to use this matching
algorithm to compare atomic processes, i.e., operations, rather than high-level services’
capabilities. This matching algorithm defines four levels of matching.

• Exact: if outReq = outAd;

• Plug in: if outAd subsumes29 outReq, in other words, outAd could be used in the place of
outReq;

Amigo IST-2004-004182 75/227

29 Subsumption means incorporating something under a more general category.

April 2005 Public

• Subsumes: if outReq subsumes outAd, in this case, the service does not completely fulfill the
request. Thus, another service is needed to satisfy the rest of the expected data.

• Fail: failure occurs when no subsumption relation between advertisement and request is
identified.

This matching algorithm is also applied between the inputs of the request and the inputs of the
advertisement. A match between an advertisement and a request is recognized when all the
outputs of the request are matched against all the outputs of the advertisement, and all the
inputs of the advertisement are matched against all the inputs of the request.
We propose to use the two first levels of matching: Exact and Plug in matches, as we consider
that a Subsumes match cannot guarantee that the required functionality will be provided by the
advertised service [MaWG04]. Furthermore, as we match operations, we don’t want to split
them between two or more services.
The matching process we are building upon is a complex mechanism that may lead to costly
computations. However, the algorithm uses a set of strategies that rapidly prune
advertisements that are guaranteed not to match the request [PKPS02]. Furthermore, the fact
that we use only the first two levels of matching considerably reduces the cost of the matching.
The main control loop of the semantic matching algorithm is shown in Figure 4-3. Process
model descriptions of services are parsed, and once an operation that offers an Exact or a
Plug in match with one of the composite service description is found, the service is recorded.
More precisely, all the operations of this service that are semantically equivalent to the
abstract service’s operations are recorded.

Match(Abstract_Service.atomic_Processes){

Record_Match= empty list

Forall (service in advertisements) do{

Forall(s_a_p in service.atomic_processes) and (t_a_p is
Abstract_Service.atomic processes)) do{

 If(match(s_a_p,t_a_p)==exact or plug in)

 Record_Match[t_a_p].append(s_a_p)

}

}

}

Figure 4-3: Main control loop of the semantic matching algorithm

4.1.3.2 Conversation matching
The objective of the conversation matching is to compare the structure of the composite
service conversation with the structure of the selected services conversations, in terms of
control constructs involved. In this algorithm, we use the automaton model describing each
service that has been selected and the one describing the composite service. The first step is
to connect the selected services’ automata to form a global automaton. This is achieved by
adding a new initial state and an ε-transition from this state to each of the initial states of the
selected services. Other ε-transitions are also added to link each final state of the selected
services with the new initial state. Figure 4-4 shows an example of connecting the automata of
two services to form a global automaton.

More formally the global automaton obtained after connecting the automata <Q1,Σ1,δ1,S0,1,F1>,
<Q2,Σ2,δ2,S0,2,F2>, ... , <Qn,Σn,δn,S0,n,Fn> is represented by the 5-tuple <Q,Σ,δ,S0,F> where :

• Q = (∪i=1,n (Qi)) ∪ SInit , where SInit is a new start state;

Amigo IST-2004-004182 76/227

April 2005 Public

• Σ = (∪i=1,n (Σi));
• δ : (∪i=1,n (Qi x Σi)) → (∪i=1,n (Qi))

 (x,y) → δ(x,y) = δi(x,y) when (x,y) ∈ Qi x Σi and
 δ(x,y) = S0,i when x = SInit and y=ε and
 δ(x,y) = SInit when x ∈ (∪i=1,n (Fi)) and y=ε;

• S0 = SInit ;
• F = (∪i=1,n (Fi))

Figure 4-4: Global automaton composing the selected services

The next step of our conversation matching algorithm is to parse each state of the composite
service automaton by starting with the initial state and following the automaton transitions.
Simultaneously, a parsing of the global automaton is performed, in order to find at each step of
the parsing process an equivalent state to the current one in the composite service.
Equivalence is detected between a state of the composite service automaton and a state of
the global automaton, when for each input symbol of the former there is at least a semantically
equivalent input symbol30 of the latter. We have implemented this algorithm in a recursive
form. This algorithm checks whether we can find a sub-automaton in the global automaton that
behaves like the composite service automaton. The main logic of this algorithm is described in
Figure 4-5.

Check(Abstract_Service_State, Env_State){

If(Abstract_Service_State is a final state and Env_State is a final
state){

Sucess;

}Else{

If(Env_State.following_Symbols do not include
Abstract_Service_State.following_Symbols){

Fail;

}Else{

Forall(Symbol in Abstract_Service_State.following_Symbols
, state1 in Abstract_Service_State.next_state(Symbol) ,
state2 in Env_State.next_state(Symbol)) do{

 Check(state1,state2)

 }

}

}

}

Amigo IST-2004-004182 77/227

30 We recall that equivalence relationship between symbols is semantic equivalence that has already been checked
during the semantic matching step.

April 2005 Public

Figure 4-5: Main logic of the conversation matching algorithm

This algorithm gives a list of sub-automata of the global automaton that behave like the
composite service automaton. Once this list is produced, a last step consists in checking
whether the atomic conversation constraints, have been respected in each sub-automaton. As
the global automaton is modeled as a union of the selected services automata, it is easy to
check whether an atomic conversation fragment, that is, a set of transitions, is provided by a
single service. Indeed, it is sufficient to verify that for each transition set that corresponds to an
atomic conversation there is no ε-transition going to the initial state before this conversation is
finished (ε-transitions that connect final states to the initial state of the global automaton mark
the end of a service conversation and the passing to a new one).
After rejecting those sub-automata that don’t verify the atomic conversation constraints, we
arbitrarily select one of the remainders, as they all behave as the target composite service.
However it is possible to introduce some selection criteria and to choose one composition
scheme rather than another. For example, we can state that a composition is more complex,
costly, failure-prone to manage when it integrates a large number of services, leading to select
the composition that involves the fewest services. Another example is the QoS offered by a
composition. For example, if we can evaluate the QoS parameters of a composition using the
QoS parameters of the involved services, it will be possible to choose composition schemes
that are closer to the user’s requirements (QoS-aware composition). We can also apply a
selection criterion concerning the middeware platforms of the involved services. In this case, it
is possible to choose a composition scheme that involves services from the same platform, in
order to avoid the use of middleware-layer interoperability methods that will increase the total
response time.
Using the sub-automaton that has been selected, an executable description of the composite
service that includes references to existing environment’s services is generated, and may be
passed to an OWL-S process model execution engine (e.g., the one introduced in [PASS03]),
which can execute this description by invoking the appropriate service operations.
Conversation integration is a difficult task that may lead in some cases to costly computations.
Such cases could be: when the depth of the composite service automaton is very large,
resulting in a high cost due to the automaton parsing; or, when there is a large number of
selected services that offer similar conversations, leading to explore a large number of paths
at the same time. A number of optimizations may be applied to the conversation matching
algorithm in order to reduce the computation cost. Such an optimization is the reduction of the
size of the global automaton, by comparing the conversations offered by services during the
service selection process and rejecting services that offer similar conversations to the already
selected ones. Another kind of optimization is to reduce the number of paths being explored
simultaneously, by exploring only n1 paths at the same time, rather than exploring all the n
available paths at the same time (where n1<n). Thus, if one of the n1 selected paths is
successful, we keep this path and stop the algorithm, otherwise, n1 other paths are explored.
The number of selected services may also be reduced during the service selection step by
taking into account some contextual and/or QoS information.

4.1.3.3 Example
In this section we show a simple example of how our matching algorithm could be used to
match conversations. This example is inspired from one of the Amigo scenarios.
"...Robert, (Maria's and Jerry's son) is waiting for his best friend to play video games. Robert's
friend arrives bringing his new portable DVD player. He proposes to watch a film rather than
playing games, and asks Robert if he has any new films in his home digital resource database.
In order to use his friend's DVD player, Robert has asked the system to consider this device
as a guest device and to authorize it to use the home services. This player is quite complex as
it takes into consideration some user's contextual and access rights information. The former is

Amigo IST-2004-004182 78/227

April 2005 Public

used to display the video streams according to the user's physical environment and
preferences (for example by adapting the luminosity and the sound volume), while the latter is
used to check whether the user is authorized to view a specific stream (for example some
violent films may be unsuitable for children)..."

Figure 4-6: An example: a video application

Figure 4-7: A fragment of a Home Resource Ontology

This DVD player contains a video application that uses Web ontologies to describe its offered
and required capabilities. The conversation that is published by this application is depicted in
Figure 4-6 (left higher corner). This conversation is described as an OWL-S process that
contains concrete offered operations (uncolored) and abstract required operations (in gray)
that have to be bound to the environment's operations. On the other hand Robert's home
environment contains a number of services among which a Digital Resource Database service
and a Context Manager service; both publish OWL-S conversations, as shown in Figure 4-6
(on the right and left lower corner respectively).

Amigo IST-2004-004182 79/227

April 2005 Public

At execution time, this device will discover the missing abstract conversation fragments
involved in its description. The semantic operation matching step will allow the selection of the
two previous services, as they contain operations that match the operations of the video
application. For example, using the ontology fragment depicted in Figure 4-7, the operation
GetFilm of the video application will be matched against the operation GetDigitalResource of
the Digital Resource Database service. More precisely, an exact match is recognized between
the outputs of both operations, as they are both instances of the class Stream. On the other
hand, a Plug In match is recognized between the inputs of both operations as the class
DigitalResource subsumes the class VideoResource. The second step of the matching
algorithm is the conversation matching. In this step, our algorithm attempts to reconstruct the
abstract conversation of the video application by using the conversations of the selected
services. The selected fragments after matching are shown in Figure 4-6.

4.2 Related work
We can classify the related work on service-matching algorithms in two categories: interface-
level matching algorithms and process-level matching algorithms. In the first category,
services are generally advertised as a set of provided outputs and required inputs. These
inputs/outputs constitute the service’s interface. On the other hand, the request is specified as
a set of required outputs and provided inputs. A match between an advertisement and a
request consists in matching all outputs of the request against all outputs of the advertisement
and all inputs of the advertisement against all inputs of the request. An approach for matching
semantic Web services at the interface level has been proposed by Paolucci et al. in [PKPS02,
SPAS03]. We have employed this algorithm to semantically match operations as described in
Section 4.1.3.1. This algorithm is one of the most used in the literature. Because of its
simplicity and efficiency, a number of research efforts such as [PFSi03, MaWG04, TBGC01,
GCTB01, RCG+03], have elaborated matching algorithms that are mainly based on this
algorithm. In the second category of matching algorithms, authors argue that the conversation
description is richer than the interface description, as it provides more information about the
service’s behavior, thus, leading to a more precise matching [BaVi03]. A number of research
efforts have been conducted in this area [KlB04b, AVMM04, MaWG04]. For example, Klein et
al. in [KlB04b] propose to describe services as processes, and define a request language
named PQL (Process Query Language). This language allows finding in a process database
those processes that contain a fragment that responds to the request. While this approach
proposes a new process query language to search for a process, there is no process
integration effort. Thus, the authors implicitly assume that the user’s request is quite simple
and can be performed by a single process. On the contrary, in our approach, a composition
effort is made to reconstruct a complex service workflow by integrating the services’
workflows.
In [AVMM04], Aggarwal et al. propose to describe a composite service as a BPEL4WS31
process. This description may contain both references to known services (static links) and
abstract descriptions of services to be integrated (service templates). At execution time,
services that correspond to the service templates are discovered and the composite service is
carried out by invoking the services following the process workflow. This approach proposes a
composition scheme by integrating a set of services to reconstruct a composite service.
However, the services being integrated are rather simple. Indeed, each service is described
using a semantic model defined by the authors, which specifies the high-level functional and
non-functional capabilities of the service, without describing its external behavior
(conversation). On the contrary, we consider services as entities that can behave in a complex
manner, and we try to compose these services to realize a composite service.

31 Business Process Execution Language for Web Services. IBM, Microsoft, BEA. 1.1 edition, 2003. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

Amigo IST-2004-004182 80/227

April 2005 Public

Another process-level matching algorithm is proposed by Majithia et al. in [MaWG04]. In this
approach, the user’s request is specified in a high-level manner and automatically mapped to
an abstract workflow. Then, service instances that match the ones described in the abstract
workflow, in terms on inputs outputs pre-conditions and effects, are discovered in the network,
and a concrete workflow description is constituted. As we have noticed in the previous
approach, the service composition scheme that is proposed in this approach does not involve
any process integration, as the Web services are only described at the interface level.

4.3 Discussion
In the diverse, dynamic Amigo environment, dynamic composition of multiple services will
enable advanced service provision in numerous ways, combining services from all four Amigo
application domains. Our objective is to allow composite services that are abstractly described,
to be executed in the Amigo environment, by integrating on the fly the available environment’s
services. A key feature of Amigo services is their heterogeneity. Most existing composition
approaches poorly deal with heterogeneity, since they assume that services being integrated
have been developed to conform syntactically in terms of interfaces and conversations.
Refining the generic principles established in Chapter 2, we elaborate a concrete conformance
relation and associated interoperability method enabling the dynamic composition of multiple
services. Our solution offers flexibility, by enabling semantic matching of interfaces, and ad
hoc reconstruction of an abstract composition workflow from the conversations of available
environment’s services. We employ the Semantic Web Services paradigm; however, our
approach is more general and could use another similar paradigm. Our solution is achieved in
two steps. In the first step, we perform semantic matching of interfaces, which leads to the
selection of a set of services that are candidate for integration. In the second step, we perform
conversation matching on the set of the previously selected services, thus obtaining a
conversation composition that behaves as the target composite service. Our matching is
based on a mapping of OWL-S conversations to finite state automata. This mapping facilitates
the conversation integration process, as it transforms this problem to an automaton
equivalence issue.

As already stated, the elaborated approach to conversation integration can be costly in terms
of computation. We have indicated several optimizations aiming at reducing its cost. We aim at
integrating these optimizations into our approach and evaluating it for performance. Further,
the involved semantic matching and the execution of the composed service entail the
employment of OWL reasoning tools and OWL-S execution tools, which introduce additional
runtime overhead. As a whole, service composition within Amigo shall be executed online,
most probably on resource-constrained devices. Thus, as indicated in Chapter 2, we shall
investigate within Amigo base online tools and techniques to support ad hoc service
composition with acceptable runtime cost on wireless, resource-constrained devices. This will
make part of our further work on the elaboration of service composition within Amigo, which
will specifically be addressed in Task 3.6 on adaptive service composition of Work package
WP3.

Amigo IST-2004-004182 81/227

April 2005 Public

5 Middleware-layer interoperability methods
Middleware holds a predominant role in the service-oriented architecture for the networked
home environment. Communication relationships amongst application components involve the
use of protocols, making application-related services tightly coupled to middleware.
Additionally, to overcome resource constraints like network-related limited bandwidth, and
support the various relevant applications, several communication models have arisen. Thus,
as there exist many styles of communication and consequently many styles of middleware, we
have to deal with middleware heterogeneity [GBS03a]. Significantly, a service implemented
upon a specific middleware cannot interoperate with services developed upon another.
Similarly, we cannot predict at design time the execution environment of services deployed in
the networked home, in particular due to the network’s openness. However, no matter which
underlying communication protocols are present, services deployed on the various devices of
the networked home environment must both discover and interact with the services available
in their vicinity. More precisely, service discovery protocols enable finding and using
networked services without any previous knowledge of their specific location (see Chapter 3).
And, with the advent of both mobility and wireless networking, SDPs are taking on a major role
in networked environments, and are the source of a major heterogeneity issue across
middleware. Furthermore, once services are discovered, applications need to use the same
interaction protocol to allow unanticipated connections and interactions with them.
Consequently, a second heterogeneity issue appears among middleware. Summarizing,
middleware for the networked home environment must overcome two heterogeneity issues to
provide interoperability, i.e.:

- Heterogeneity of service discovery protocols, and

- Heterogeneity of interaction protocols between services.

In addition, both SDPs and interaction protocols are not protected from evolution across time
(versioning). Indeed, an application may neither interact correctly nor be compatible with
services if they use different versions of the same protocol [RyWo04]. Protocol evolution
increases communication failure probability between two mobile devices.

As outlined above, interoperability among entities of the networked home environment, which
in particular integrates mobile devices that randomly join the networked home for possibly
short periods of time, is becoming a real issue to overcome. Networked devices must be
aware of their dynamic environment that evolves over time, and further adapt their
communication paradigms according to the environment. Thus, distributed systems for the
networked home environment must provide efficient mechanisms to detect and interpret
protocols currently used, which are not known in advance. Furthermore, detection and
interpretation must be achieved without increasing consumption of resources on the resource-
constrained devices. As presented in Chapter 2, the ability of networked services to compose
relates to the definition of adequate conformance relations and related interoperability
methods, based on customizers, at the connector level. This chapter then introduces base,
concrete mechanisms for achieving interoperability among services based on heterogeneous
middleware platforms, hence elaborating specific conformance relations and interoperability
methods at middleware level for the Amigo system. Compared to Chapter 2, herein, we
elaborate focused, optimized modeling of SDP and interaction protocol middleware, which
enables direct conformance checking within these two well-defined classes of connectors. We
reuse concepts from software architecture enriched with event-based parsing techniques to
drastically improve middleware interoperability, enabling applications to be efficiently aware of
their environment. The originality of our approach comes from the trade-offs achieved among
efficiency, interoperability and flexibility. Our solution may further be applied to any existing
middleware platform.

Amigo IST-2004-004182 83/227

April 2005 Public

This work builds on our previous work specifically focused on Service Discovery
Interoperability, which is detailed in [BrIs04] and has been initially investigated in the context of
service discovery for ubiquitous networks, as part of the IST FP6 STREP UBISEC project32.
Basically, our approach to interoperability benefits from work on reflective middleware and
event-based parsing, as outlined in the next section. Then, based on conceptual similarities
among SDPs, we are able to provide a generic mechanism supporting service discovery
protocol interoperability, as presented in Section 5.2. This may further be extended to cope
with interaction protocol interoperability, as introduced in Section 5.3. Due to its genericity, the
proposed middleware interoperability method introduces a number of generic components that
lead to computation overhead. Such a cost may then be reduced through the deployment of
components customized according to the environment, as presented in Section 5.4 in the
specific context of an OSGi platform. Finally, we assess our solution compared to related work
in Section 5.5, and discuss our future work within Amigo on achieving middleware
interoperability in Section 5.6, which relates to refining the proposed interoperability methods
towards interoperable middleware implementation to be undertaken within the subsequent
Work Package WP3.

5.1 Background
New techniques must be used to both: (i) offer lightweight systems, so that they can be
supported by mobile devices, and (ii) support system adaptation according to the dynamics of
the open networked environment, like the networked home. Classic middleware are not the
most suitable to achieve that objective. Their design is based on fixed network and resources
abundance. Moreover, network topologies and bandwidth are fixed over time. Hence, quality
of service is predictable. Furthermore, with fixed network in mind, the common communication
paradigm is synchronous and connections are permanent. However, many new middleware
solutions, designed to cope with mobility aspects, have been introduced, as surveyed in
[MaCE02]. From this pool of existing middleware solutions, more or less adapted to the
constraints of the networked home environment including its mobility dimension, reflective
middleware seems to be flexible enough to fulfill mobility requirements, including providing
interoperability among networked services.

5.1.1 Reflective middleware to cope with middleware heterogeneity
A reflective system enables applications to reason and perform changes on their own
behavior. Specifically, reflection provides both inspection and adaptation of systems at run-
time. The former enables browsing the internal structure of the system, whereas the latter
provides means to dynamically alter the system by changing the current state or by adding
new features. Thus, the middleware embeds a minimal set of functionalities and is more
adaptive to its environment by adding new behaviors when needed. This concept, applied to
both service discovery and interaction protocols, allows accommodating mobility constraints.
This is illustrated by the ReMMoC middleware [GBS03a], which is currently the only one to
overcome simultaneously SDP and interaction protocol heterogeneity. The ReMMoC platform
is composed of two component frameworks [GBS03a]: (i) the binding framework that is
dedicated to the management of different interaction paradigms, and (ii) the service discovery
framework that is specialized in the discovery of the SDPs currently used in the local
environment. The binding framework integrates as many components as interaction protocols
supported by the platform. The binding framework can dynamically plug in on demand, one at
a time or simultaneously, different components corresponding to the different interaction
paradigms (e.g., publish/subscribe, RPC...). Correspondingly, the service discovery framework
is composed of as many components as SDPs recognized. For example, SLP and UPnP can

32 http://www.ubisec.org

Amigo IST-2004-004182 84/227

April 2005 Public

be either plugged in together or separately, depending on the context. Obviously, such
plugging in of components applies only to components that are specifically developed for the
ReMMoC platform. It is further important to note that the client application is specific to the
ReMMoC API, but is independent from any protocol – the interested reader being referred to
[CBCP02] for further details on the mapping of an API call to the current binding framework.

Although ReMMoC enables mobile devices to use simultaneously different SDPs and
interaction protocols, this still requires the environment to be monitored to allow ReMMoC to
detect over time the SDPs and interaction protocols that need be supported/integrated, due to
the highly dynamic nature of the mobile environment. Such knowledge about the environment
may be made available from a higher level, which would provide the environment profile
updated by context-based mechanisms, which is passed down to the system [GBS03a,
CBM+02]. But, this increases the weight and the complexity of the overall mobile system.
Alternatively, the system can either periodically check or continuously monitor the
environment. However, a successful lookup depends on the pluggable discovery components
that are embedded. The more the components are, the better the detection is. But, the size of
the middleware and the resources needed grow with the amount of embedded components.
This is particularly not recommended for mobile devices. Furthermore, as long as the current
SDP has not been found, the middleware has to reconfigure itself repeatedly with the available
embedded components to perform a new environmental lookup until it finds the appropriate
protocol. As a consequence, this leads both to an intensive use of the bandwidth already
limited due to the wireless context, and to a higher computational load. To save these scarce
resources, a plug-in component, called discoverdiscovery, dedicated to SDP detection
operations, has been added to the ReMMoC service discovery framework. In an initialization
step, mini-test-plug-ins, implemented for each available SDP, are connected to
discoverdiscovery to perform a test by both sending out a request and listening for responses.
Once the detection is achieved, a configuration step begins by loading the corresponding
complete SDP plug-ins. The above mini-test-plug-ins are lightweight and thus consume fewer
resources. Nevertheless, they increase the number of embedded plug-ins, do not decrease
the use of the bandwidth, and finally have to be specifically implemented. Last but not least,
rather than embedding as many components as possible to provide the most interoperable
middleware, it seems to be more efficient to design an optimized lightweight middleware,
which enables loading from the ambient network new components on demand to supplement
the already embedded ones [GBS03a, FSAK01]. But, still, it is necessary to discover, at least
once, the appropriate protocols to interact with a service providing such a capability. This is
rather unlikely to happen, since we do not know the execution context (i.e., all potential
available resources and services at a given time).

Summarizing, solutions to interoperability based on reflective techniques do not bring
simultaneously interoperability and high performance. The SDP interoperability issue needs to
be revisited to improve efficiency of SDP detection, interpretation and evolution. Furthermore,
the ReMMoC reflective middleware does not provide a clean separation between components
and protocols. In fact, pluggable components are tied to their respective protocols. For
example, to maintain interoperability between several versions of the same SDP, a pluggable
component is needed for each version. Instead, we need a fine-grained control over protocols.
Our approach is thus to decouple components from protocols with the use of concepts
inherited from software architecture enhanced with event-based parsing techniques.

5.1.2 Software architecture to decouple components from protocols
Software architecture concepts, like components and connectors, employed to decouple
applications from underlying protocols, offer an elegant means for modeling and reasoning
about mobile systems, as in particular investigated in the context of the Ozone project33

33 http://www.extra.research.philips.com/euprojects/ozone/

Amigo IST-2004-004182 85/227

April 2005 Public

[ITLS04]. Components abstract computational elements and bind with connectors that abstract
interaction protocols through interfaces, called ports, which correspond to communication
gateways [Garl03]. Similarly, connectors bind with components through connector interfaces
named roles (see Figure 5-1).

Amigo IST-2004-004182 86/227

Component
A

Connector role

Component port Intera tion is possible only if component port and
connector role match.

c

Connector

The interaction between both entities is specified
with the connector’s glue process.

Role + glue

Figure 5-1: Components decoupled from protocols

Regarding the issue of achieving interaction protocol interoperability, this may be addressed
through reasoning about the compatibility of port and role. This may be realized using, e.g.,
the Wright architecture description language [AlGa97]. Wright defines CSP-like processes to
model port and role behaviors. Then, compatibility between bound port and role is checked
against, according to the CSP refinement relationship. However, the Wright approach does not
bring enough flexibility with respect to dealing with the adaptation of port and role behavior so
as to make them match when they share an identical aim, as, e.g., in the case of service
discovery.

Event Based
Parsing system

Unit
Parser

Generator

Creates

 Protocol

Composer

Message

 Protocol
Message

Inputs to Outputs

Inputs to
Outputs

Protocol specification

Specifies Specifies

Inputs to

 Protocol
Events

 Protocol
Events

Figure 5-2: Event based parsing system for achieving protocol interoperability

To overcome the aforementioned limitation, [RyWo04] reuses the architectural concepts of
component, connector, port and role. However, port and role behaviors are modeled by
handlers of unordered event streams, rather than by abstract roles processes. The challenge

April 2005 Public

is then to transform protocol messages into events, and interpret them according to a protocol
specification. To achieve this, an event-based parsing system, composed of generator,
composer, unit, parser and proxy, is used (see Figure 5-2). A protocol specification feeds a
generator that generates a dedicated parser and composer. The former takes, as input,
protocol messages that are decomposed as tokens, and outputs the corresponding events.
The latter does the inverse process: it takes series of events and transforms them into protocol
messages. Parser and composer form a unit, which is specific to one protocol. Generators are
able to generate on the fly new units, as needed, for different specifications. As a result,
whatever the underlying protocol is, messages from a component are always transformed into

l interoperability is
maintained.

Summarizing, event-based parsing is interesting in theory for its flexibility, and opens new
perspectives to overcome protocol heterogeneity. However, it is still confined to theory: it has
been applied only to th rotocol interoperability
between two similar protocols that differ with only small changes. Therefore, [RyWo04]
addresses heterogeneity issues neither for SDPs nor for interaction protocols, but brings

event-based parsing applied to
eroperability in the open network

events through the adequate parser, and conversely, events sent towards a component are
always transformed into protocol messages understood by this component through its
adequate composer. Furthermore, events are sent from one component to another through a
proxy, whose role is to forward handled events to the composer of the remote component (see
Figure 5-3). The latter can either discard some events if they are unknown or force the
generator to produce a new unit more suitable to parsed events. Thus, any connector gets
represented as a universal event communication bus, which is able to transport any event,
independently of any protocol, as the protocol reconstruction process is left to each extremity.
Thereby, event streams are hidden from components and thus protoco

e protocol evolution issue, as it is simpler to test p

interesting concepts. In the next section, we show how
software architecture enables efficient SDP detection and int
environment in general and the networked home environment in particular.

Amigo IST-2004-004182 87/227

Proxy

Event
Handler

Component
A

Event-Based
Parsing system

Unit
Parser

Composer

Generator

Event-Based
Parsing system

Unit
Parser

Composer

Generator

Creates
Component

B

Creates

Figure 5-3: Interaction between two components

5.2 Service discovery protocol interoperability
With the emergence of mobility and wireless technologies, SDP heterogeneity becomes a
major issue. Our objective is to provide a solution to SDP interoperability, which both induces
low resource consumption and introduces a lightweight mechanism that may be adapted
easily to any platform and allow for integrating third-party services that cannot be changed,

April 2005 Public

whether client or provider of networked services. To address this challenge, we reuse the
component and connector abstractions, and event-based parsing techniques from software
architecture. Moreover, as our aim is to provide interoperability to the greatest number of
portable devices, we base our technology on IP.

As presented in Chapter 3, the majority of SDPs support the concepts of client, service and
repository. In order to find needed services, clients may perform two types of request: unicast
or multicast. The former implies the use of a repository, equivalent to a centralized lookup
service, which aggregates information on services from services’ advertisements. The latter is
used when either the repository's location is not known or there exists no repository in the
environment. Similarly, services may announce themselves with either unicast or multicast
advertisement, depending on whether a repository is present or not. Two SDP models are
then identified, irrespectively of the repository's existence: the passive discovery model and
the active discovery model.

When a repository exists in an environment, the main challenge for clients and services is to
discover the location of the repository, which acts as a mandatory intermediary between
clients and services [BeRe00]. In this context, using the passive discovery model, clients and
services are passively li

Amigo IST-2004-004182 88/227

stening on a multicast group address specific to the SDP used, and

 existence to the same multicast group address. In contrast,

en a SDP provides both models, the passive discovery model
should be preferred over the active discovery model. Indeed, with the latter, the requester's

 their environment knowledge from the requester’s lookup, because

ilds on [BrIs04] and decomposes into mechanisms for: (i) SDP detection
(§5 1
achieved through translation of SDP functions in terms of
may further evolve 4). Various interoperability scenarios are then
sup r ous nodes that are envisioned for the
networked home environment.

are waiting for a repository multicast advertisement. On the contrary, in an active discovery
model, clients and services send multicast requests to discover a repository, which sends back
a unicast response to the requester to indicate its presence. In a “repository-less” context, a
passive discovery model means that the client is listening on a multicast group address that is
specific to the SDP used to discover services. Obviously, the latter periodically send out
multicast announcement of their
with a repository-less active discovery model, the roles are exchanged. Thereby, clients
perform periodically multicast requests to discover needed services, and the latter are listening
to these requests. Furthermore, services reply unicast responses directly to the requester only
if they match the requested service. To summarize, most SDPs support both passive and
active discovery with either optional or mandatory centralization points. The following details
our solution to SDP interoperability, which is compatible with both the passive and active
discovery models. However, wh

neighbors do not improve
services that the requester wishes to locate send only unicast replies directly to the requester.
So, services’ existence is not shared by all the entities of the peer-to-peer network. Thus, it is
unfortunate not to take benefit from the bandwidth consumption caused by the clients’
multicast lookups. In this context, services’ multicast announcements provide a more
considerable added value for the multicast group members. Secondly, in a highly dynamic
network, mobile devices are expected to be part of the network for short periods of time. Thus,
services’ repetitive multicast announcements provide a more accurate view of their availability.
Therefore, the passive discovery model saves more of the scarce bandwidth resource than the
active discovery model.

Our approach to SDP interoperability introduced herein is a direct elaboration of the
interoperable service discovery block that makes part of the Amigo abstract service discovery
architecture specified in Chapter 3 (see Figure 3-4). The elaboration of the following sections
addresses the abstract service discovery model and the related interoperability methods of the
interoperable service discovery.

The next section introduces the architectural principles of the proposed SDP interoperability
system, which bu

.2.), and (ii) SDP interoperability (§5.2.2). More specifically, SDP interoperability is
events coordination (§5.2.3), and

 according to context (§5.2.
po ted (§5.2.5), allowing for integration of the vari

April 2005 Public

5.2.1 SD
Basically, a group address and a UDP/TCP port that must and have
been assigned by the Internet Assigned Numbers Authority (IANA). Thus, assigned ports and
multicast group addresses are reserved, without any ambiguity, to only one type of use.
Typically, SDPs are detected through the use of their respective address and port. These two
properties form unique pairs. This pair may be interpreted as a permanent SDP identification
tag. Furthermore, it is important to notice that an entity may subscribe to several multicast
groups, and so may be simultaneously a member of different types of multicast groups. These
two characteristics only are sufficient to provide simple but efficient environmental SDP
detection. Due to the dynamic nature of the networked home environment, the environment is
continuously monitored to detect changes as fast as possible. Moreover, we do not need to
generate additional traffic. We discover passively the environment by listening to the well-
known SDP multicast groups. In fact, we learn the SDPs that are currently used from both
services’ multicast announcements and clients’ multicast service requests. As a result, the
specific protocol of either the passive or active service discovery may be determined. To
achieve this feature, a component, called monitor component, embeds two major behaviors
(see Figure 5-4):

- their

P detection
ll SDPs use a multicast

The ability to subscribe to several SDP multicast groups, irrespectively of
technologies; and

- The ability to listen to all their respective ports.

Monitored Environment
Passively scanned

Monitor
Component

Multicast group

Multicast group

Service
Multicast Advertisements

Client
Multicast Requests

SDP1

SDP2

• SDP 1 detected
• SDP 2 detected

The monitor component
passively scans the
environment on the SDP-
IANA-registered UDP/TCP
ports.

UDP/TCP ports

1

2

Figure 5-4: Detection of active and passive SDPs through the monitor component

Figure 5-4 depicts the mechanism used to detect active and passive SDPs in a repository-less
context. The monitor component, located at either the client side or service side, joins both the
SDP1 and SDP2 multicast groups and listens to the corresponding registered UDP/TCP ports.
SDP1 and SDP2 are identified by their respective identification tag. SDP1 is based on an
active discovery model. Hence, clients perform multicast requests to the SDP1 multicast group
to discover services in their vicinity. The monitor component, as a member of the SDP1
multicast group, receives client requests and thus is able to detect the existence of SDP1 in

 the SDP1-dedicated UDP/TCP port identifies the discovery the environment, as data arrival on

Amigo IST-2004-004182 89/227

protocol. Further, in Figure 5-4, SDP2 is based on a passive discovery model. Thus, services
advertise themselves to the SDP2 multicast group to announce their existence to their vicinity.
Once again, similarly to SDP1, as soon as data arrive at the SDP2-dedicated UDP/TCP port,
the monitor component detects the SDP2 protocol. The monitor component is able to

April 2005 Public

determine the current SDP(s) that is (are) used in the environment upon the arrival of the data
at the monitored ports without doing any computation, data interpretation or data
transformation. It does not matter what SDP model is used (i.e., active or passive), as the
detection is not based on the data content but on the data arrival at the specified UDP/TCP
ports inside the corresponding groups.

This component is easy to implement, as both subscription and listening are solely IP features.
Hence, any middleware based on IP can support the monitor component. Obviously, the latter
maintains a simple static correspondence table between the IANA-registered permanent ports
and their associated SDP. Hence, the SDP detection only depends on at which port raw data
arrived. Therefore, the SDP detection cost is reduced to a minimum.

From the standpoint of Chapter 2, SDP detection may be considered as realization of direct
conformance checking between SDPs. Successfully detecting a remote SDP on a node entails
that an appropriate interoperability method can be employed between the native SDP and the
remote SDP, as elaborated in the next section. This interoperability method makes, further,
part of the Amigo interoperable service discovery, specified in Chapter 3 (see Figure 3-4).

5.2.2 SDP interoperability
From a software architecture viewpoint, SDP detection is just a first step towards SDP
interoperability and represents a primary component. The main issue is still unresolved: the
incoming raw data flow, which comes to the monitor component, needs to be correctly
interpreted to deliver the services’ descriptions to the application components. To support such

. The communication between the parser and the composer does not
depend on any syntactic detail of any protocol. semantic level through
the use of events. Indeed, a fixed set of common events has been identified for all SDPs (see
§ 5.2.3). Additionally, a larger, specific set of events is defined for each SDP. For example, a
subset of events generated by a SLP composer,
whereas specific U not provide, are
simply discarded by the SLP composer, as they are unknown. Event streams are totally

edicated to a specific SDP protocol. Then, to support more than

functionality, we reuse event-based parsing concepts (see Figure 5-5). Specifically, upon the
arrival of raw data at monitored ports, the monitor component detects the SDP that is used,
and sends a corresponding event to the appropriate parser to successfully transform the raw
data flow into a series of events. The parser extracts semantic concepts as events from
syntactic details of the SDP detected. Then, the generated events are delivered to the local
components’ composers

 They communicate at

UPnP parser is successfully understood by a
PnP events, due to UPnP functionalities that SLP does

hidden from components outside the SDP interoperability system, as they are assembled into
specific SDP messages through composers. Consequently, interoperability is guaranteed to
existing applications tied to a specific SDP, without requiring any alteration of the applications.
Similarly, future applications do not need to be developed for a specific middleware API to
benefit from SDP interoperability. In general, application components continue to use their own
native SDP. Interoperability is achieved through integration of the SDP interoperability system
at the connector level. It is important to note that this system may be deployed on either the
service provider or the client application side. It may even be distributed among both parties or
deployed on some intermediate (e.g., gateway) networked node (see §5.2.4).

Parsers and composers are d
one SDP, several parsers and composers must be embedded into the system. Embedded
parsers and composers may be: (a) generated and then instantiated on the fly from an existing
specification according to the SDP that is detected; (b) statically instantiated; or (c)
dynamically instantiated. All three solutions have their respective advantages, and any of them
may be selected.

Amigo IST-2004-004182 90/227

April 2005 Public

Monitored
Environment

SDP detection

Monitor
Component

1900

1848

239.255.255.250:1900 : UPnP
239.255.255.253:1848 : SLP
………………………………

SDP1
Parser

Connector

SDP1
 message

SDP2
Composer Connector

Return path
SDP2 Answer

Figure 5-5: SDP detection & interoperability mechanisms

Parsers and composers are further decoupled from the transport protocol used for the
receipt/sending of messages, by enabling various types of connectors, which may further be
changed at runtime. As a result, the same HTTP parser instance may parse streams from a
UDP datagram, generated by either a unicast or multicast request, as well as from a TCP
stream. As we currently assume all-IP networks, we define the corresponding three types of
connectors: multicast connector and unicast connector, where the latter may be either
connection-oriented or connection-less. Such flexibility enables the implementation of system

 of the underlying transport, which decreases the
onents, and hence the need for memory, which is

into a SDP2 message that is then forwarded to a SDP2-related component.
According to several SDP specifications, an incoming message is often followed by a reply
message. In this context, two cases may be c i) the reply is directly sent by the
native SDP, which requires the receiver to translate the message into a message of the hosted
SDP; (ii) the reply is first translated into a message of the destination SDP. The former solution
leads to the sharing of the interoperability tasks among all participating nodes. However, this

components in a way that is independent
system’s complexity and number of comp
scarce on portable devices.

SDP interoperability comes from the composition of parsers and composers dedicated to
different SDPs. As depicted in Figure 5-5, an incoming SDP1 message is successfully
translated

onsidered: (

Amigo IST-2004-004182 91/227

April 2005 Public

requires all the nodes to embed the SDP interoperability system. As a result, nodes that do not
integrate the necessary interoperability mechanisms are likely to be isolated. Therefore, this
specific configuration must be considered as a special case, but cannot be assumed nor
enforced in general. Instead, we consider that a node embedding our interoperability system is
able to take care of the complete interoperability process, i.e., both receiving and sending
messages of non-native SDPs. Thus, interoperability among nodes is achieved without
requiring all the participant nodes to embed our interoperability system. SDP interoperability in
the service-oriented architecture is achieved if the proposed interoperability system is
embedded in at least one of the following nodes: client, server or gateway.

Amigo IST-2004-004182 92/227

SDP2
Parser

SDP2
Composer

Connector

SDP1
Parser

SDP1
Composer

1.1.1.1.1 SDP

Control
Events

SDP1 Reply

SDP1 Request
Semantic
Events

Figure 5-6: Coupling of parser and composer

From the above, it follows that within our interoperability system, a parser is coupled with a
composer that does the reverse translation process, in a way similar to the
marshalling/unmarshalling functions of middleware stubs. Furthermore, depending on the SDP
specification, the parser and composer may have to share one bi-directional connector. Then,
the connector’s output role is bound to the parser’s input port whereas the connector’s input
role is bound to the composer’s output port (see Figure 5-6). Such a coupling occurs when,
e.g., once the parser has received a request message, the composer has to send some
acknowledgement or control message to simply maintain or validate a communication session
with the requester. In general, SDP functions are complex distributed processes that require
coordination between the actors of the specific service discovery function. It follows that the
translation of an SDP function into another is actually achieved in terms of process translation
and not simply of exchanged messages, which further requires coordination between the
parser and composer. This may be realized by embedding the parser and composer within a
unit that runs coordination processes associated with the functions of the given SDP. The unit
is further self-configurable in that it manages the evolution of its configuration, as needed by
the SDP specifics and the evolution of the environment. The behavior of the unit may easily be
specified using finite state machines, as detailed in the next section.

5.2.3 Event-based interoperability
A unit implements event-based interoperability for a specific SDP by: (i) translating messages
of the specific SDP to and from semantic events associated with service discovery; and (ii)
implementing coordination processes over the events according to the behavior of the SDP
functions.

April 2005 Public

SDP1 Reply

SDP1 Request

Events

SDP1 Unit

SDP1
Composer

SDP1
Parser

FSM

Event
Connector

Message
Connector

Parser
Input port

Figure 5-7: Unit configuration

The overall coordination process implemented by the SDP unit is specified using a Finite State
FSM (see Figure 5-7). A SDP FSM f states connected by transitions.

utomaton (DFA) and is typically
(Q, ∑, C, T, q0, F), where Q is a finite set of states, ∑ is the alphabet

defining the set of input events (or triggers) th erates on, C is a finite set of
conditions, T: Q x ∑ x C → Q is the transition fu nd F ⊂ Q
is a set of accepting states. States keep tra DP coordination
process. Transitions are labeled with events, ccurrence of an

t and the
ion. Thus, the state mach tate, and the transitions

move it from one state to another depending on tate, the event fired,
and the transition condition. When a transition
relating to translation of events to/from me d configuration
management. A SDP DFA will in general be l to account for its
specifics and consequently to provide some opt

nts and consist of two parts:
ys considered as triggers for t and eventually

activate some coordination rule. We define events that is
common to all SDPs, and sets of specialized to SDPs. The set of
mandatory events ∑ is defined as the union of a Table 5-1):

∑m= “SDP Control Events” ∪ “SDP Netw Events” ∪

“SDP Request Events” ∪

The set qualified as “SDP Control Events” cont generated by all SDP
to notify their listeners tes. In terms of our SDP
it enables either the un coordination of its registered
er components, register ventually from an upper layer

like the application layer, to trace, in real time echanisms. This is a useful
feature, not only for debugging purposes, but al epresentation of the run-time
interoperability architecture. The set named “ ents” is related to network
properties and, for instance, defines events t messages are either
unicast or multicast, to indicate the SDP used, and to specify the source or target address.
Then, the “SDP Service Even ecessary events to describe
the common functions provided by the different SDPs: service search request, service search
response, service advertisements, and the type of the service searched. Then, the “SDP
Request Events” and “SDP Response Events” sets respectively contain events dedicated to
the description of SDP requests with richer descriptions, and specific events to express

Machine –
Typically, a SDP state machine is a deterministic f

 is a graph o
inite a

defined as a 5-tuple
e automaton op

∈nction, q0 Q is the starting state, a
ck of the progress of the S
conditions and actions. The o

event may cause transitions between states if the event
condition of the transit

 matches both the even
ine begins in the start s
 the SDP DFA’s current s
 is taken, several actions may be executed,
ssage data, coordination an

 dedicated to one protoco
imization.

Events are basic eleme
events are alwa

event type and data. Whatever their types,
the unit components to reac

the minimal/mandatory set of
events that are specific
 number of subsets (see

ork Events” ∪ “SDP Service

 “SDP Response Events”

ains events that may be
components in order of their internal sta
interoperability design,
components; or any oth

it to control the
ed as listeners, e
, SDP internal m

so for a dynamic r
SDP Network Ev

o determine if the SDP

ts” set enriches the above set with n

Amigo IST-2004-004182 93/227

April 2005 Public

possible common SDP answers (e.g., positive or negative acknowledgement, URL of the
service searched etc). The event sets defined above abstract the conceptual and functional
similarities among SDPs. Thus, they may be considered as constituting the abstract service
discovery model of the Amigo interoperable service discovery, specified in Chapter 3 (see
Figure 3-4).

All SDP parsers must at least generate the mandatory events. Conversely, all SDP composers
must also understand them. The mandatory events result from the greatest common
denominator of the different SDP functionalities. Nevertheless, a given SDP parser may
generate further events related to its advanced functionalities. Similarly, a SDP composer may
manage these additional events. However, SDP composers are free to handle or ignore them.
For instance, SLP does not manage UPnP advanced functionalities. Consequently, the SLP
composer ignores UPnP-specific events generated by the UPnP parser. On the other hand, a
Jini-related composer may support some of the UPnP-specific events. In fact, events added to
the mandatory ones enable the richest SDPs to interact using their advanced features without
being misunderstood by the poorest. The behavior of the latter remains unchanged, as they
discard unknown events and consider only the mandatory events. Moreover, the proposed
interoperability system is extensible, and integration of future SDPs is rather direct. In
particular, the possible ality of the translation
process will not trigger a whole cascade of changes on SDP components. This is a direct

introduction of new events to increase the qu

consequence of building our interoperability system upon the event-based architectural style.
We introduce three open, extension sets for the definition of additional events: “Registering
Events”, “Discovery Events” and “Advertisement Events”. For instance, specific SDP
messages involved in the registration of services are translated to events belonging to the
“Registering Events” set, which enriches both “SDP Request Events” and “SDP Response
Events”. The same applies to the “Discovery Events” set. On the other hand, “Advertisement
Events” enriches only “SDP Response Events”, since an advertisement is a one-way message
to spread a service’s location information. As an illustration, Figure 5-8 introduces discovery-
related events specific to SLP and UPnP. The structure definition of event sets is considered
as a useful technique to enable consistency in evolution. For instance, the specifics of SLP
and UPnP are introduced using the extension sets without altering the overall interoperability
mechanisms, still allowing other SDP components to use them. And, if the occurrences of
such events are taken into consideration, they allow specializing the interoperability process.

Event set Event type

SDP Control Events SDP_C_START

SDP_C_STOP

SDP_C_PARSER_SWITCH

SDP_C_SOCKET_SWITCH

SDP Network Events NET_UNICAST

RCE_ADDR

SDP_NET_DEST_ADDR

SDP_NET_TYPE

SDP_

SDP_NET_MULTICAST

SDP_NET_SOU

Service Events SDP_SERVICE_REQUEST

SDP_SERVICE_RESPONSE

SDP_SERVICE_ALIVE

Amigo IST-2004-004182 94/227

April 2005 Public

SDP_SERVICE_BYEBYE

SDP_SERVICE_TYPE

SDP_SERVICE_ATTR

SDP Request Events SDP_REQ_LANG

SDP Response Events SDP_RES_OK

SDP_RES_ERR

SDP_RES_TTL,

SDP_RES_SERV_URL

Table 5-1: Mandatory SDP events

Discovery
Events

Amigo IST-2004-004182 95/227

SDP_REQ_SCOPE
SDP_REQ_ID
SDP_REQ_PREDICAT
SDP_NET_REQUESTERS

1.1.1.1.1.1.1.2 SLP 1.1.1.1.1.1.1.1 UPNP

SDP_SERVICE_URL_EVT
SDP_SERVICE_URL_DESC
SDP_SERVICE_URL_CTRL
SDP_DEVICE_URL_DESC

Figure 5-8: Addition of protocol-specific events

States of the unit’s DFA (or coordination process) are activated according to triggers that
define the event types that can cause transition between states. Transitions imply that the unit
executes some actions or coordination rules. A the unit’s current state, incoming
events are filtered and may be dispatched to different listeners, until new incoming triggers
cause a transi he composer
may rely on data associated with events generated previously by its associated parser. Thus,
event data from previous states are recorded using state variables. Conditions are written as

ccording to

tion to a new state and so on. Reply messages generated through t

Boolean expressions over incoming and/or recorded data and may check their properties,
whereas actions are sequences of operations that a unit can perform to: dispatch events to
components, record events, or reconfigure the composition of its embedded components (e.g.,
changing dynamically the current parser or composer). Actions that may be performed by a
unit are specific to the SDP that it manages. However, all units have to support mandatory
actions (see Table 5-2).

Action Behaviour

SwitchToSocket(ConnectorName) Change the current connector

SwitchToParser(ParserName) Change the current parser

April 2005 Public

Enqueue(SDPEvent) Enqueue the current event

DispatchEvtToComposer(SDPEvent) Dispatch events to composers known by the
unit.

DispatchEvtToListener(SDPEvent) Dispatch events to unit’s listener components

Table 5-2: Mandatory actions

5.2.4 Context-aware, self-adaptive interoperability
The proposed SDP interoperability system is based on a specialization of the event-based
architectural style. It enables us to handle several implementation strategies and possible
compositions. Advantages of using an event-based architecture are: increase of the degree of
decoupling among components, improvement of interoperability, and providing a dynamic and
extensible architecture. Since int
components operate without being

eractions among components are based on events,
ents, and,

consequently, parsers, composers and units may change dynamically at runtime without
altering the system (s

The SDP interoperability sy lve across time due to two main
reasons. First, as devices vironment, whether mobile or
stationary, evolve over time, the current SDP that is used and/or the SDPs with which
interoperability is required may change accordingly. Second, some SDPs are actually based
on a combination of protoc For instance, UPnP uses alternatively SSDP, HTTP, and
SOAP. Furthermore, the SDP components’ composition has to change across time. To
support these two types of changes, we need to define rigorous composition rules to describe

tance is initially defined in terms of
upported SDPs and the corresponding units that need be instantiated. As illustrated in Figure
-9.a, the specifica ration at design time does not describe when and
ow to compose u tion is achieved dynamically according to both the
ontext and the ho p of the
onitor componen presented in Section 5.2.1. At run-time, embedded units of different
pes are instantia cally composed, depending on the environment and the
pplications used. Thus, several configurations may occur (e.g., see Figure 5-9.b, c, d). This
ynamic capacity of the SDP interoperability system realizes our propositions of Section

he correct composition of a

 are totally hidden. In fact, units are seen as components with
two different connector types: message- and event-oriented connectors. Referring to event-

e either event listeners or event generators or both.

 aware of the existence of other compon

ee Figure 5-9).

stem architecture has to evo
joining the networked home en

ols.

the specific architecture of a given instance of the SDP interoperability system. The
configuration of the SDP interoperability system ins
s
5 tion of the system configu

nits. Indeed, unit composih
c
m

sted application components. The context is discovered with the hel
t, as
ed and dynamity t

a
d
2.3.1.3 on automated, dynamic instantiation, configuration and adaptation of interoperability
methods according to the dynamic situation.

At the system level, SDP interoperability is achieved through t
number of units. As depicted in Figure 5-9.c, the translation from SLP to UPnP discovery
corresponds to the composition of an SLP unit with a UPnP unit. At this level, units are only
considered as a computational element that transforms messages to events and vice versa.
The units’ internal mechanisms

based architectures, components can b
The same applies to units; they are both event generators and listeners. Units are composed
and communicate together through their event connector, whereas they use their message
connector to interact with components that are outside the SDP interoperability system.
Therefore, the use of events is internal to the SDP interoperability system. However, the latter
is open to the outside world, thanks to message-oriented connectors.

Amigo IST-2004-004182 96/227

April 2005 Public

Event
Connector

Message
Connector

Dynamic
Composition

System SDP = {
 Component Monitor ={
 ScanPort = { 1900; 1846;4160 } }
 Component Unit SLP(port=1846) ;
 Component Unit UPnP(port=1900);
 Component Unit JINI(port=4160);
}

System specification at design time

Instantiation at
run-time

Jini
Unit

SLP
Unit

UPnP
Unit

SDP System

Monitor

Jini
Unit

SDP System

UPnP
Unit

SLP
Unit Monitor

a)

SLP
Unit

UPnP
Unit

Jini
Unit

SDP System

Monitor

b) c)

Jini
Unit

SLP
Unit

UPnP
Unit

SDP System
Monitor

d)

Figure 5-9: Evolution of SDP interoperability system configuration

Within a unit, coordination and composition rules among embedded SDP components are
specialized with respect to a given SDP, according to the unit’s state machine. The unit is then
in charge of dis here are some
variations applied to th

input ports are bound to the unit’s event bus (see Figure 5-7). A notable feature of our solution

patching event notifications to its registered listeners. However, t
e traditional event-based style. First, the unit does not systematically

forward incoming events to all subscribers. The unit filters events, and may additionally react
to them through actions to modify its current configuration. Events delivery and executed
actions are dependent upon the unit’s state machine described earlier. Message-oriented
connectors’ roles enable the system to interact with components that are not event-oriented.
Nevertheless, although they are not sensitive to events, they are registered with units. Their
registration enables units to be aware of the available communication paradigms, and thus to
provide dynamically a communication port towards the outside world to components that need
it. The current choice of a communication paradigm depends on triggers received by the unit.
According to the nature of the architecture, connectors may change across time without
affecting the other components, and, more generally, it is always possible to change or plug a
component in and out of the architecture without affecting the SDP system. Thereby,
message-oriented connectors are dynamically coupled with composers or parsers. The latter,
are endowed with both event- and message-oriented connectors. Thus, inside the units,
parsers’ input ports are bound to message-oriented connectors, whereas parsers’ output ports
are bound to an event connector controlled through the unit’s state machine. Conversely,
composers’ output ports are bound to message-oriented connectors, whereas composers’

Amigo IST-2004-004182 97/227

April 2005 Public

is that SDP interoperability components that are developed are not necessarily specific to a
SDP. Customization of a unit with respect to a SDP results from the specific configuration and

e specified at design time and easily

ined devices and the
 networked home environment. It is thus

rrentState, triggers, condition-guards, NewState, actions);

in particular the embedded FSM. As a result, interoperability components may be reused in
various units, even if not related to the same SDP. For instance, at the implementation level,
HTTP or XML parsers developed for one SDP may be reused for another. The same applies
to connectors. Definition of a unit then relies upon specifying embedded components, as
exemplified below for a UPnP unit:

Component Unit UPnP = {

 setFSM(fsm, UPNP);
AddParser(component, SSDP);

AddComposer(component, SSDP);

AddConnector(connector, multicast);

…

}

The state machine’s description is itself considered as part of the system specification. Hence,
a new operator is introduced to define state machines:

 Component UPnP-FSM = {

 AddTuple(Cu

In the above tuple, CurrentState and NewState are just labels to name different states, triggers
are taken from the set of previously defined events, condition-guards are Boolean expressions
on events, and actions are those provided by the unit’s interface.

Finally, the overall SDP interoperability system may b

 ….

}

instantiated at run-time through an adequate execution engine. Moreover, at run-time, by
registering observer components to units, it is possible to get a dynamic feedback of the
interoperability system’s state.

5.2.5 Interoperability scenarios
One of our objectives is to provide service discovery interoperability to applications without
altering them. Hence, applications are not aware of interoperability mechanisms, and actually
have the illusion that the remote applications that they discover (and/or discover them) use the
same SDP. Thus, our interoperability system may be seen as a connector-level proxy that acts
as an intermediary between clients and services. In this context, several use cases may be
considered, according to both the nature of the SDPs that are used and the location of the
intermediary, which can be localized on the client, server, both or some node in the network
(e.g., gateway).

Another objective of ours is to save resources on resource-constra
bandwidth that is shared among all devices in the
important to examine the impact of our interoperability system on resource consumption. This
may in particular vary according to the system’s location (i.e., where it is deployed) and usage
context. The usage context of the system depends on the SDP model used by the clients and
services. We recall that there exist two service discovery models: the passive discovery model
and the active discovery model. We thus distinguish cases where the client (resp. service
provider) acts as listener or as requester. Moreover, we assume that either the client or

Amigo IST-2004-004182 98/227

April 2005 Public

service node hosts our interoperability system. As a result, for each possible scenario, two use
cases are possible, according to the location of the SDP system.

Amigo IST-2004-004182 99/227

Client

SDP
System

Service

?????

SDP detected,
translated, and
forwarded to the

Client

SDP
System

Service

?????

client

Client SDP
System

Service

The SDP system
belongs to the
service’s multicast
group.

Service
discovered

Translated to any
known SDPs and
multicasted to the
respective multicast
groups.

Figure 5-10: SDP interoperability and passive service discovery

Consider, first, that both clients and services are based on the passive discovery model (see

-10). Although this specific use case illustrates the high flexibility of

vertisements following the activation of the SDP
inte p is enforced
with t activated only
whe t

Figure 5-10). In this context, clients are listeners, services are requesters. The most optimized
location for the interoperability system is to be hosted on the client side. Indeed, clients are
able to intercept all messages generated by the service, whatever their specific multicast
group or message format (see left-top of Figure 5-10). In contrast, if the interoperability system
is localized on the service side, it is not useful, because it will never intercept messages from
clients, by definition of the passive discovery model (see right-top of Figure 5-10).
Consequently, we must define a network traffic threshold, below which the SDP
interoperability system on the service host must become active, so as to intercept messages
generated from the local SDP, and then have SDP messages generated by all the embedded
units (see bottom Figure 5
our dynamic interoperable architecture to adapt itself to the context, it has non-negligible
impact on resource consumption. Indeed, dynamic reconfiguration of the system has a
processing cost, and service ad

ro erability system increase bandwidth usage. However, interoperability
ou really saturating the bandwidth, as the SDP interoperability system is
n he network traffic is low.

Consider now the case where both clients and services are based on the active discovery
model, i.e., clients are requesters and services are listeners. In order to optimize the usage of
bandwidth and computational resources, the most suitable location for the SDP interoperability
system is on the service side. Otherwise, in a way similar to the previous scenario, ineffective
SDP interoperability may arise when the system is located on the requester side. In general,
when the clients and services are based on the same discovery model, the most convenient
location for the interoperability system is on the listener side.

April 2005 Public

It may be the case that the clients and services are based on different discovery models. If the
clients are based on the active model and services are based on the passive one, then both
clients and services generate SDP messages. Interoperability is guaranteed without additional
resource cost. Nevertheless, some subtleties arise. Hosting of the SDP interoperability system
on the client side means that the client benefits from the advertisements of remote services.
But, the client’s requests will not reach remote t are based on different SDPs, if
they are not interoperable (i.e., they do not host our interoperability system). On the contrary, if
the services embed the SDP interoperability system and not the clients, requests from the
latter w rvices’
advertisements originating from SDPs distinct than the one hosted. Although, in this case,
interoperability is not as effective as expected, clients and services do interact. Furthermore,
interoperability effectiveness may be improved if the bandwidth is under-utilized, thanks to the
SDP system’s reconfigurability.

Conversely, when clients are based on the passive model and services are based on the
active model, both clients and services are listeners. Once again, we are faced with the
recurrent ineffective discovery interoperability. However, in this particular case, dynamic
reconfiguration of the SDP interoperability system does not resolve the clients’ inability to
discover services, since there is no node initiating SDP-related communication. There is no
way to resolve this issue, considering our constraint not to alter the behavior of SDPs, clients
and services. On the other hand, this specific case is unlikely to happen. In current systems, in
practice, clients are always able to generate requests.

Summarizing, irrespectively of the service discovery model used by clients and services, we
are able to guarantee a minimum level of interoperability. Then, depending on the
environment, the bandwidth usage may be increased to enable higher interoperability. The
basic idea is to provide a quasi-full interoperability as long as the bandwidth usage enables it.
Then, interoperability degradation may occur according to the traffic. Furthermore, by design,
our interoperability system is independent of its host. So, it is not mandatory for the SDP
interoperability system to be deployed on the client or service host. The system may be
deployed on a dedicated networked node, depending on the specific networked home
environment. Such a dedicated node may in particular translate messages generated within
the environment from any SDP to messages handled by any other SDP, according to the
traffic condition. Obviously, this specific configuration generates additional traffic, and is onl
valid as long as there is enough bandwidth. It is further more appropriate to qualify such a
configuration as an “interoperable environment” rather than as an interoperable device.

pro
top
est
add
arc
ser
inte

ra
des
kno
protocol, alt ically, unlike the SDP

add

 services tha

ill be taken into consideration by services, whereas clients will not be aware of se

y

5.3 Interaction protocol interoperability
This section discusses how the interoperability mechanisms introduced in the previous section
to specifically achieve SDP interoperability may further be applied to achieve interaction

tocol interoperability, hence leading to core mechanisms for middleware interoperability on
 of IP. Our approach to interaction protocol interoperability directly applies the principles
ablished in Chapter 2 on connector-level interoperability, since we there specifically
ressed connectors realizing interaction protocols. According to the service-oriented

hitectural style, interaction protocols identify two application components: a client and a
vice. The former requires and the latter provides some functionality. Although for any
raction the protocol identifies the client and the service, the client and service roles can be

reversed in another interaction.

P ctically, the service runs at an address that may be known by the client, either statically at
ign time or dynamically using some service discovery protocol. However, in both cases,
wledge of the service’s address does not mean knowledge of the service’s interaction

hough it may be assumed when known statically. Specif
detection mechanism, the interaction protocol detection cannot be simply based on the

ress of the interacting parties. Achieving interaction protocol interoperability further raises
Amigo IST-2004-004182 100/227

April 2005 Public

sim
ser
for
inte

clie
inte
var
with sh-

not
eve d these messages are delivered to the different subscribers that have

 (see Figure 5-11). At this stage, we
target only interoperability between clients and services relying on the same interaction

.g., both interact using synchronous RPC). More
 in our future work, based on the principles of

We n c stub generation. Stubs are then generated
according to the service description. The stub generation

tocols of the client and the service, from the standpoint of

ilar issues as for achieving SDP interoperability, i.e.: (i) dealing with the heterogeneity of
vice description, which relates to the use of diverse service interface definition languages
interaction (e.g., WSDL for SOAP, IDL for CORBA); and (ii) dealing with different
raction protocols.

Service-oriented computing allows for a number of primitive interaction protocols between
nt and service. Service-oriented interaction protocols may be subdivided into two
raction paradigms: RPC-based and message-oriented. The former encompasses the
ious RPC semantics that have been introduced in the literature, which in particular differ
 respect to synchronization and fault tolerance properties. The latter includes publi

subscribe interaction protocols, where the client is called subscriber and the service is called
publisher. The subscriber registers with the publisher for events, and listens to event

ifications from the publisher. The publisher generates asynchronous messages for each
nt of interest, an

registered for that kind of event. To save the client code from dealing with the details of the
service’s reference, interface and interaction protocol, a component, called stub, is usually
provided by the middleware, assuming knowledge of the interaction protocol on which the
service is based. The client then calls methods on the client stub. Stub converts method calls
into network protocol messages, and takes care of marshalling method arguments. If the
service replies with a message to the client call, the stub unmarshals the results and performs
a regular method return to the client application.

Interaction protocol interoperability is achieved using the same method as the one described in
the previous section, i.e., relies on event-based parsing

paradigm, but also on similar properties (e
general interoperability will be investigated
Chapter 2, considering that it is closely related to achieving application-layer interoperability.
We further introduce our solution by considering more specifically interoperability for RPC-
based interactions. Dealing with publish-subscribe interactions is rather direct from it, since we
may consider the event publisher as a service of the RPC-based case, from the standpoint of
achieving interoperability.

Two major issues arise from event-based parsing interoperability to actually achieve
interaction protocol interoperability:

- Mapping of service references between heterogeneous middleware; and

- Identification of the incoming communication protocols, i.e., detection.

 e rich our solution with the facility of dynami
 the client’s required interface and to

is a two-step process. The step-zero takes place during the development of the client, and
corresponds to the classical, static generation of the client-side part of the stub (see Step 0
below), using the client’s required interface as input. The first runtime step corresponds to the
discovery of a service matching the client’s required interface, possibly relying on application-
level interoperability discussed in Chapters 2 and 4. This further reveals the interaction
protocol of the remote service, and may be considered as realization of direct conformance
checking between the interaction pro
Chapter 2. In the second step, the service’s provided interface will be used for the dynamic
generation of the service-side part of the stub (see Step 2 below).

Amigo IST-2004-004182 101/227

April 2005 Public

Amigo IST-2004-004182 102/227

IP2
Parser

IP2
Composer

Connector

IP1
Parser

IP1
Composer

IP1 Reply

IP1 Request
Semantic
Events

Figure 5-11: Interaction protocol interoperability relying on event-based parsing

Static client-side part of the
stub generated from clie 10 and properties obtained from

Remote services descriptions
nt’s

required interface the service discovery step.

Generator

Stub
Remote Service

(SOAP)

Client Application
Component (RMI)

RMI
Parser

SOAP
Composer

23

4

Events

5

6

SOAP
Parser

RMI
Composer

Events

RMI Unit SOAP Unit

Figure 5-12: Interaction protocol interoperability with dynamic stub generation

More specifically, interaction protocol interoperability is achieved as follows (see Figure 5-12):

- Step 0: The generator uses the service’s required interface of the client application
component to generate the client-side part of the stub, along with the interface definition
data that will be used for the dynamic generation in Step 2. In our example depicted in
Figure 5-12, the generator will instantiate the RMI unit (RMI parser and RMI composer),
and will create the definition of the RMI interface that will be used for the dynamic
generation of the SOAP unit (SOAP parser and SOAP composer). The generator must
take into account the interaction protocol paradigm for the instantiation of the components
and the generation of the interface definition data (in the example, RMI uses a
synchronous RPC style).

April 2005 Public

- Step 1: The service’s description and reference are obtained from the service discovery
step. This step is tightly related to the discovery process and the corresponding SDP
interoperability system. The service will be described in the service interface definition
language (e.g., the SOAP service will be described in WSDL).

- Step 2: The generator dynamically instantiates the stub part dedicated to the remote
he

(obtained from Step 0)
from the service description in Step 1). In our example, we assume that the SOAP remote

ence to the remote service.

mentioned issues, i.e.: (i) the mismatch

n LDAP syntax, among which the provided Java interface.

rvice, Amigo services developed in Java can
easily be provided as OSGi services and packed in OSGi bundles. However, OSGi service
registration and lookup allow only discovery and use of services collocated in the same OSGi
platform, hence the proposal of specialized bundles offering communication services across
several OSGi platforms.

service from the service’s description and reference. This part amounts to instantiating t
appropriate unit, taking into account the information on the client’s required interface

and the remote service’s interaction protocol paradigm (available

service follows the synchronous RPC style, like the RMI client application component.

- The stub acts as the intermediary between the client and the rStep 3&4: emote service.
Specifically, the stub presents to the client application component the same interface as
the remote service, but in a compatible format. The client may therefore invoke service
operations. Invocations are forwarded to the remote service in the appropriate format
required by the service through the stub that holds the refer

- Steps 5&6: The remote service, in its turn, may reply to the client with its native protocol,
as if the client were running a matching interaction protocol, thanks to event-based parsing
interoperability.

Note that the proposed solution resolves the two afore
between service references that are specific to interaction protocols (retrieval of the service
reference in Step 1, generation based on the service reference in Step 2, and use of the
service reference in Step 4); and (ii) the identification of the incoming communication protocol
needed to select the appropriate parser (instantiation of the parser in Step 2 and use in Step
5), together with the enforcement of the appropriate communication paradigm (stub generation
based on communication paradigm in Steps 0 and 2). Nevertheless, this assumes a known
mapping between the required and provided interface, which actually relies on application-
layer interoperability, as discussed in Chapters 2 and 4.

5.4 OSGi-based interoperability
This section shows how the OSGi technology can be used as a support for the development
and deployment of services in Amigo. Such services may belong to the middleware layer (like
interoperability methods/mechanisms) or to the application layer. In this section, we focus on
supporting the interoperability methods for interaction protocols. This approach is however
applicable for many middleware services.

OSGi provides its own definition of service. An OSGi platform allows deployable elements,
called "bundles" to be remotely installed from http servers. When started, a bundle will
possibly provide "services". A service is any Java object. The service registry allows:

- Registering an object as a service, that is, to associate this object with a list of
properties described in a

- Look up services matching target criteria.

Additionally, the OSGi framework takes care of the life cycle of services and automatically
suppresses the references of services registered by a bundle when this bundle is stopped. As
any Java object can be registered as an OSGi se

Amigo IST-2004-004182 103/227

April 2005 Public

In the following, we call "server" a program that expose d
"client" a service. Note that
"server" con set o s, and "client" for other services.

Section 5.4.1 shows how OSGi services could help developing protocol-independent "Amigo-
aware" clients and servers, so that the choice of network protocols or SDPs can be decided at
run-time. Section 5.4.2 focuses roperability methods between legacy services, and
shows how Amigo can take a e of standard OSG ices to pr nhanced
interoperability methods.

5.4.1 Export and binding factories
We rely on the fundamental concepts of "export factories" and "binding factories". An "export
factory" is a service that makes a Java object remotely available. To this purpose, an export
factory provides a method (called "export"). The result of "Exporting a service" is a "binding
d scr hat can be serialized and published using a discovery protocol. This "binding
description" contains all useful to the service, such as the
host and here ice Exporting a service may or
not involve the con of some dedicated objects on the server. Symmetrically, a
"binding factory" is u he client to bind t ice, given a "binding description".
A binding factory provid ding description as parameter and
returns an object called "proxy" or "stub". then be used by the client to
communicate with the remote object. Export inding factories can be packaged
in OSGi bundles as follows:

- The generic export bundle provides interfaces of the export process.

- Specialized bundles (the RMI export bundle, the Axis export bundle,…) provide
implementations of the export factory interface based on a specific protocol and a

- The generic bindin rocess.

- Specialized bundles (the RMI binding bundle, the Axis binding bundle…) provide
implementations of the binding factory interface based on a specific protocol and a

y.

ing on platform

OSGi nodes, and provide the possibility for already installed applications to export their
services or access services using this new protocol. This method makes it possible to expose

s a (OSGi) service on the network, an
in reality, the same program will be program that wants to use this

 in what cerns a f service

 on inte
dvantag i serv opose e

e iption" t
elements to allow a client to bind
 can be found, the protocols etc... port w the serv

struction
sed on t

es a "bind" method that takes a bin
o a given serv

 This stub can
 factories and b

specific technology.

g bundle provides interfaces of the binding p

specific technolog

A subset of these bundles will be installed on every OSGi node, depending on which type of
application bundles it will host and what are the capacities of the hardware platform. It may be
desirable to limit the memory print on embedded devices. Also, depending on the network
configuration, a protocol may be preferred (in some circumstances, http protocol may be
preferred because of firewall problems, whereas when possible RMI may be preferred for
performance reasons). Therefore, an OSGi platform running on a PDA and hosting only client
applications could host only binding bundles, and be limited to one binding technology (e.g.,
ksoap) whereas a platform running on a PC and hosting a variety of server and client
applications would host several export and binding factories, so as to maximize interoperability
with other nodes.

As an illustration, Figure 5-13 depicts 3 running OSGi platforms. Platform C contains a
"server" bundle that exports an object. As 2 export factories are present on this server, the
object can be exported through both RMI and SOAP protocols. The client runn
A will use SOAP binding, whereas the client running on platform B uses RMI. The binding
process may involve the downloading of specific code (contained here in "proxy bundles").

The proposed approach facilitates the introduction of new protocols, as this involves only
writing the corresponding export and binding factories and packing those as OSGi bundles
that register the factories as services. These bundles can then be installed on already existing

Amigo IST-2004-004182 104/227

April 2005 Public

a service through several protocols, keeping the overhead for the service programmer as
lightweight as possible. Exposing the same service according to various protocols reduces the
need for translation services and increases communication efficiency. A "client" can access a
service running on a remote OSGi platform, provided there is a binding factory running on the
client's OSGi platform that is compatible with one of the export factories used on the server's
OSGi platform. However, in the case of incompatible binding/export factories (e.g., an
embedded server that would provide only a SOAP export service and an embedded client that
would contain only a RMI binding service), translation services hosted on a separate node can
still be useful. They may of course be packed as bundles and use the binding/exporting factory
mechanism to make themselves available as remote services. Finally, we have focused on

 This is only an example, and this method is applicable for many other export/binding services.
middleware services.

Amigo IST-2004-004182 105/227

so
ap

 e
xp

or
t

so
ap

bi
nd

in
g

OSGi

"c
lie

nt
"

OSGi

rm
i e

rmi skel.

soap
binding service

rmi exportservice
soap servlet

exportable service

rmi
binding service

rmi stub

soap stub

xp
or

t

OSGi
"server"

so
ap

 p
r

bu
nd

leox
y

rm
bi

nd
ii ng

"c
lie

nt
"

rm
i p

r
bu

nd
lox

y e

A B C

Figure 5-13: OSGi and interoperability methods. Vertical dark boxes represent bundles.
Horizontal boxes are services published by those bundles.

5.4.2 OSGi communication services for legacy servers and clients
The previous section shows how programs developed with the knowledge of the export and
binding factories interfaces can take advantage of new protocols at deployment time.
However, Amigo must also provide interoperability methods for non-Amigo-aware programs,
i.e., programs that have been written independently of Amigo.

Amigo will propose an enhanced method for interoperability, applicable to legacy OSGi
bundles based on OSGi standards like the "UPnP base driver". Suppose for example that
some legacy bundle is able to communicate with UPnP devices, and some RMI service is
available on the network and announced via SLP. Figure 5-14 illustrates the benefits of the
OSGi-enhanced interoperability methods in this case.

Figure 5-14-a gives a schematic view of how Amigo standard interoperability methods work
according to Section 5.2. On the right of the figure, on the same node as the client OSGi
platform, a "SLP monitor" detects SLP messages and forwards them to the SLP parser, which

er that composes messages generates SDP events that are transmitted to the UPnP compos

April 2005 Public

5.5 Related work
Service discovery protocol heterogeneity is a key challenge in the mobile computing domain. If

 architecture associated with reflection features allows mobile

r-level interoperability, elaborating concrete, optimized conformance relations and

arties.
The proposed interoperability system is flexible and extensible. In particular, our system may

t or service host or even on an intermediate networked node.

lementing a prototype of the interoperability system to assess its

services are advertised with SDPs different than those supported by mobile clients, mobile
clients are unable to discover their environment and are consequently isolated. Due to the
highly dynamic nature of the mobile network, available networked resources change very
often. This requires a very efficient mechanism to monitor the mobile environment without
generating additional resource consumption. In this context, inspection and adaptation
functionalities offered by reflective middleware are not adequate to support service discovery
protocol interoperability, as they induce too high resource consumption. Section 5.2 has
addressed this challenge, providing an efficient solution to achieving interoperability among
heterogeneous service discovery protocols. Our solution is specifically designed for Amigo
dynamic home networks, which requires both minimizing resource consumption, and
introducing lightweight mechanisms that may be adapted easily to any platform. An
implementation will soon be released to validate both its design and efficiency.

Once services are discovered, applications further need to use the same interaction protocol
to allow unanticipated connections and interactions with them. In this context, the ReMMoC
reflective middleware introduces a quite efficient solution to interaction protocol
interoperability. The plug-in
devices to adapt dynamically their interaction protocols (i.e., publish/subscribe, RPC etc.).
Furthermore, [GBS03b] proposes to use ReMMoC together with WSDL34 for providing an
abstract definition of the remote component’s functionalities. Client applications may then be
developed against this abstract interface without worrying about service implementation
details. However, the solution discussed in [GBS03b] suffers from a major constraint: service
and client must agree on a unique WSDL description. But, once again, in a dynamic mobile
network, the client does not know the execution context. Therefore, it is not guaranteed to find
exactly the expected service. Client applications have to find the most appropriate service
instance that matches the abstract requested service. Such an issue is resolved through
application-layer interoperability methods discussed in Chapters 2 and 4.

5.6 Discussion
This chapter has introduced the base Amigo solution to achieving middleware-layer
interoperability, which decomposes into realizing service discovery protocol and interaction
protocol interoperability. This solution follows the principles established in Chapter 2 on
connecto
associated interoperability methods for SDP and interaction protocols, two well-defined
classes of connectors. Our solution builds on latest results in the middleware and software
engineering domains, and relies on event-based parsing interoperability. Briefly stated,
middleware interoperability is achieved by translating core middleware functionalities (i.e.,
service discovery and interaction) to/from semantic events. As not any middleware offers the
same level of functionalities, interoperability is achieved up to the greatest common
denominator of the functionalities offered by the various middleware of the interacting p

be deployed on the clien

We are currently imp
performance. Early results are encouraging, although the effectiveness of our solution
depends on the environment, as discussed in Section 5.2.5. In addition, an efficient version of
the system may be implemented using latest technologies like OSGi.

n Language, http://www.w3.org/TR/wsdl20/ 34 W3C, Web Services Descriptio

Amigo IST-2004-004182 107/227

April 2005 Public

6 In
Consum
cover m
attracti
cases
stand a
depend
PC-cen
functio
domain the PC-centred
dat e
consum
a DVD
Moreov
networ
installa
around

The att
system
automa
networ
CE dom ts towards an industry agreement for an integrated and
inte p
Allianc
based or
developme
must take
protocols for m
to enforce inte
another issue
trends, in ord
operation. How
open problem direction, especially by the UPnP
Forum.

The next sections hnologies and present standardization
efforts that can be used as a base framework for the integration of the CE domain in Amigo
(Section 6.1). Second, the problem of QoS provided over a heterogeneous home network is
analyzed, introduc
on multimedia interop ithin Amigo are highlighted, the Amigo multimedia streaming
architecture is pre with the Amigo abstract reference service architecture
defined in Chapter 3 (Section 6.3). Finally, conclusions close this chapter (Section 6.4).

6.1 Backgroun
An industry
through severa Alliance (DLNA) brings
together major companies, and intends to provide such an agreement based on open design
guidelines and standards. In few words, the Digital Living Network Alliance (DLNA) vision
[DLN04a, DLN04b] integrates the Internet, mo ds through a seamless,

tegration of the CE domain
er Electronics (CE), e.g., DVD players, TV screens, game consoles, stereo sets, etc.,
ost of the entertainment that is enjoyed at home, and therefore represent a major

on to the typical consumer. Nowadays, CE provide specific functionalities, in most
related to multimedia content, usually in the form of separate specialized products that
round the house, communicating with one or two other products by means of media-
ent interfaces. On the other hand, the typical home network today is data-based and
tered, and emphasizes sharing printers and Internet access within a house. While

nal, it is of limited interest to the typical consumer. Thus, in the average home the CE
 remains as a set of specialized networks with no communication with

a n twork. The former lacks easiness in installation and seamless interaction, leaving to the
er the configuration and usually wired connection of those networks (i.e., connection of

 player to a TV screen and a Hi-Fi, using the available audio and video interfaces).
er, transferring multimedia content from the Internet or the PC to the specialized CE

ks is not a smooth operation in this kind of home (i.e., recording on compatible media,
tion of specialized cards in the PC, connecting cables, and/or moving equipment
 might be required).

ractiveness of the CE domain to the typical user must be enforced by the Amigo home
 by adding value to the existing functionalities. This shall be achieved by providing
tic dynamic configuration, interoperability and seamless operation for the CE devices

ked in the home, without diminishing Quality of Service (QoS). Some companies of the
ain are already making effor

ro erable network at home through alliances and consortiums. The Digital Living Network
e (DLNA)35 brings together major companies and intends to provide such an agreement
on open design guidelines and standards. In turn, these provide a solid base f

nt of smoothly interoperable applications. The development of the Amigo system
into account the industry’s state of the art as well as the new and well-established

ultimedia transmission, namely, RTP/RTCP, HTTP, RTSP, UPnP AV, in order
roperability and performance. Discovery of CE devices and their services is

that must be considered, together again with the industry’s state of the art and
er to achieve automatic dynamic configuration and an overall seamless
ever, integration of QoS in a network with different CE products remains an

, although efforts are being made in this

 introduce, first, those well-known tec

ing UPnP-QoS as a base solution (Section 6.2). Then, once considerations
erability w

sented, in accordance

d
 agreement for an integrated and interoperable home network is presently enforced

l alliances and consortiums. The Digital Living Network

bile and broadcast islan

35 DLNA, http://www.dlna.org

Amigo IST-2004-004182 109/227

April 2005 Public

interoperable netw pportunity for manufacturers and consumers
alike. When talkin y in streaming media systems, different actors are
involved in the s pond to abstract roles that come into play in the
streaming of multi

•

Once d
protoco
the me
The fo diagram shows the overlapping and the common mechanisms related to
inter CE domain,
stan e formats and
protocols m Guidelines v1.0 [DLN04b] will
be followed
DLNA-propo
discovery and
6.1.2 to 6.1.4.

ork that will provide a unique o
g about interoperabilit
cenario. These corres
media content:

• Players: show and play data to users (interpret the file format and play it);

• Servers: must be capable of streaming content using protocols that players can
interpret;

Encoders/content-creation tools: in charge of storing content in files that servers can
read; they further store data in formats that will eventually be interpreted by players.

evices can communicate with each other, they need to agree on a common streaming
l in order to establish media streaming sessions. These devices also need to agree on
dia formats that they support to ensure that the media can be shared and consumed.
llowing Venn

operability between the actors. Summarizing, for interoperability in the
dard codecs (technologies for compressing and decompressing data), fil

ust be used. For these issues, DLNA Interoperability
. In the following, Section 6.1.1 provides an overview of the DLNA vision and
sed standards for interoperability. Proposed standards concerning device

 control, media management, and media transport are surveyed in Sections

Figure 6-1: Interoperability between multimedia roles

6.1.1 DLNA overview
In the DLNA vision of the near future, digital homes will contain one or more intelligent
platforms, such as an advanced set top box (STB) or a PC. These intelligent platforms will
manage and distribute rich digital content to devices such as TVs and wireless monitors from
devices such as digital still cameras, camcorders and multimedia mobile phones. The

Amigo IST-2004-004182 110/227

April 2005 Public

members of the DLNA share a vision of interope in the home that
provide new value p ns and opportunities ct vendors. They
are committed to providing a seamless interaction among CE, mobile and PC devices, and
believe this is best accomplished through a collaborative industry effort focused on delivering
an interoperability framework for networked media devices. The DLNA will develop design
guidelines that refer, as much as possible, to standards from established, open industry
standards organizati s will pro and PC vendors with
the information needed to build interoperable digital home platforms, devices, and
applications. Delivering interoperability in the digital hom on approach, which
DLNA focuses on th ments:

• Industry collaboration: Aligning the key lead e and PC industries
on digital interoperability is an important first step. Historically, these industries have
delivered innovative consumer products side-b rily in concert.
None of thes as the means to drive digital interoperability alone. However,
each industry offers unique capabilities and attributes. CE and mobile device
manufacturers have a history of creating new ategories, adding
brand recognition, maintaining ease-of-use rice points. As a
complement, s differentiate on hardware and software development
and integration. In addition, PC makers are known for delivering new products to
market quick he development and he success of an
interoperable creating nd getting highly
integrated de quickly. Indus ited to just CE,
mobile and PC manufacturers. It is an entire ecosystem of companies that together
offer consumers a broad set of co
properly designed for h the consumer in mind, and
include contributors that can help bring all the necessary elements of the digital home

device interoperability also requires the industry to come

l, as
well as content protection enforcement, as required. DMS products will often
include Digital Media Player (DMP) capabilities described below, and may have

d us ment, rich user
interfaces and media management, aggregation and distribution functions.
Some examples of these devices include:

rable networked devices
for consumers and produropositio

ons. These design guideline

ree key ele

vide CE, mobile

e requires a comm

ers in the CE, mobil

y-side, but not necessa
e industries h

 mass-market product c
and hitting attractive p

 PC manufacturer

ly through t
 network depends on
vices to market

 adoption of standards. T
new product categories a
try collaboration is not lim

mplementary products and services. An ecosystem
digital interoperability must start wit

to market. Industry collaboration must encompass manufacturers, software and
application developers, and service and content providers. A collaboration of industry
leaders can also facilitate industry marketing and promotion, while encouraging
development, interoperability and support of home networked devices.

• Standards-based interoperability framework: While creating new product categories
is important, industry leaders must first co-operate to develop an interoperability
framework. This framework should define interoperable building blocks for devices and
software infrastructure. It should cover physical media, network transports, media
formats, streaming protocols and digital rights management mechanisms. Standards
for these areas are defined in many different forums, and compliance with them is an
important first step. Ensuring
together to produce design guidelines, so that the products of different vendors support
a common baseline for the set of required standards. Since technology and standards
continually change and improve, these design guidelines must also evolve over time
and ensure continued interoperability as new and old technologies are mixed together
in the Digital Living Network.

• Compelling products: Finally, diverse, interoperable products are necessary to
provide consumers with broad, compelling experiences and value throughout their
home. These products will embody one or both of the two following major functions:

o Digital Media Server (DMS) devices provide media acquisition, recording,
storage, and sourcing capabilities based on the DLNA Interoperability Mode

intelligence, such as device an er services manage

Amigo IST-2004-004182 111/227

April 2005 Public

� Advanced set xes (ST

� Personal video recorders (PVR)

� mple, music

� Broadcast tuners

 and imaging capture devices, such as cameras and camcorders

te, and deliver at several levels:

tries must:

1. Align on the framework for digital interoperability.

2. Continue to participate in key standards arenas, such as ISO, the UPnP Forum
and Consumer Electronics Association (CEA), to ensure that future uses and
capabilities are supported.

3. Translate the technology and standards into concrete design guidelines that can
be used to build interoperable products. To support a dynamic uses roadmap,
the design guidelines must progress over time.

• Products: To launch the digital home concept, adapters are needed that bridge the
CE, mobile and PC worlds, and support consumers’ existing home devices. Such
adapters can progressively support the expected growing mainstream market through
increasing integration of common functions. To continue to grow the digital home
category and fuel further demand, CE, mobile, and PC vendors must routinely deliver
new and exciting products that meet consumer needs for functionality, reliability,
performance, and simplicity.

• Open Standards: To assure rapid, broad adoption of the digital home concept, all of
 in the design guidelines and interoperability framework will be

-top bo B)

� PCs

Stereo and home theaters with hard disk drives (for exa
servers)

� Video

� Multimedia mobile phones

o Digital Media Player (DMP) devices provide playback and rendering
capabilities. Some examples of these devices include:

� TV monitors

� Stereo and home theaters

� Printers

� PDAs

� Multimedia mobile phones

� Wireless monitors

� Game consoles

The DLNA offers significant new opportunities for the CE, mobile and PC industries. The vision
articulated here for digital interoperability will require considerable effort to be achieved. The
industry needs to align, co-ordina

• Uses: The CE, mobile and PC industries must define and align on a roadmap of uses
that will drive consumer acceptance of a new category of interoperable digital home
products. By necessity, this roadmap will be dynamic and must progressively reflect
available technology and standards over time. Digital entertainment and media will
most likely be the driving factor for early consumer adoption, while the availability of
technology and standards dictates a planned evolution from personal to commercial
media uses.

• Interoperability Framework: The CE, mobile and PC indus

the mandatory elements
Amigo IST-2004-004182 112/227

April 2005 Public

Amigo IST-2004-004182 113/227

based strictly on open industry standards. Standards bodies and industry groups such
as ISO, the UPnP Forum, CEA, the 1394 Trade Association and others will continue to
be the venue for development of technical specifications that service the digital home
ecosystem. The DLNA is committed to establishing strong, complementary working
relationships with these organizations, in order to constructively reference their
specifications, communicate appropriate feedback, and jointly pursue new standards
and design guidelines. The DLNA has developed the DLNA Home Networked Device
Interoperability Guidelines v1.0 (v1.1 is about to be released), to provide CE, mobile
and PC manufacturers with the information needed to build interoperable platforms,
devices and applications. This collaborative effort will result in the creation of a
networked media products category for the home, providing new business
opportunities for the industry and new experiences that benefit consumers. Figure 6-2
shows the protocols stack proposed in the DLNA Interoperability Guidelines v1.0
[DLN04b].

ry

t of the streaming protocol used for media transport. RTP

Figure 6-2: DLNA Protocols Stack

The DLNA has chosen the work of the UPnP Forum as the most suitable for device discove
and control, and media management and control functionalities inside its architecture: namely,
UPnP Device Architecture for the former and UPnP AV for the latter. Media management and
control involves a streaming session control protocol, that is, a protocol for initiating and
directing delivery of streaming multimedia from media servers. As just indicated, DLNA
recommendation for session control is UPnP AV, while the Internet standard is RTSP. In any
case, both protocols are independen
and HTTP are the two most extensively used streaming protocols, the first being adequate for
real-time transmission, the second for reliable transmission and compatibility with navigators.
The above mentioned protocols adopted by the DLNA and/or widely used in the Internet are
discussed in Sections 6.1.2 to 6.1.4.

In addition, the DLNA guidelines specify a set of required formats for image, audio, and A/V
media, and from these formats, the codecs needed for their reproduction. The guidelines

Wired: 802.3i, 802.3u
Wireless: 802.11a/b/g

IPv4 Protocol Suite

HTTP 1.0 / 1.1

UPnP Device
Architecture 1.0

UPnP AV 1.0

Control

Device Discovery and
Control, Media
Management and

JPEG, LPCM, MPEG2Media
Formats

Media
Transport

Network Stack

Network
Connectivity

April 2005 Public

merge existing individual codec standards (for example, MPEG) and technologies, such as
Windows Media Video (WMV), to build a framework for enabling devices with different codecs
to communicate. The guidelines specify a single required baseline format for each media type
(linear pulse code modulation – LPCM – for audio, JPEG for images, and MPEG2 for video) to
ensure that all devices can talk to each other. Then, they recommend a number of optional
formats that vendors are also encouraged to implement. For audio, these optional formats
include AAC, MP3, WMA, and Sony ATRAC3plus; for video, the options are MPEG1, MPEG4
(ASP and part 10) and WMV9; and for still images, the optional formats are PNG, GIF and
TIFF. Required and optional media formats specified by the DLNA are listed in Table 6-1.

Media Class Required Format Set Optional Format Set

Image JPEG PNG, GIF, TIFF

Audio LPCM AAC, ATRAC3plus, MP3, WMA

Video MPEG2 MPEG1, MPEG4, WMV9

Table 6-1: DLNA required and optional media formats

6.1.2 UPnP overview
As indicated in the previous section, the DLNA guidelines significantly rely on the work of the

itiative designed to enable simple and robust connectivity

the DLNA as the media management and control

ards including TCP/IP, HTTP, SSDP, SOAP,
GENA, XML, etc. These open standards provide the communication infrastructure of the UPnP

UPnP Forum, “[…] an industry in
among stand-alone devices and PCs from many different vendors”36. Specifically, the DLNA
has adopted UPnP Device Architecture v1.0 [InUP03] as the proposed device discovery and
control architecture. UPnP Device Architecture enables a device on the home network to
automatically configure its own networking properties, such as its IP address, discover the
presence and capabilities of other devices on the network, and collaborate with these devices
in a uniform and consistent manner, using XML device and service description documents.
Further, UPnP AV v1.0 is established by
protocol. UPnP AV v1.0 is a subclass of the UPnP Device Architecture specifically addressed
to media transfer, enabling devices and applications to identify, manage and distribute media
content across the home network devices. It defines XML device description documents for
media devices such as renderers and servers, along with XML service description documents
for capabilities implemented by those devices. Furthermore, by defining capabilities relative to
multimedia data flow in these devices, UPnP AV establishes an implicit streaming session
control protocol. The UPnP Device Architecture is discussed in the following, while UPnP AV
is presented in Section 6.1.4.2.

In few words, UPnP is an architecture for pervasive peer-to-peer network connectivity of
devices of all form factors. It is designed to bring easy-to-use, flexible, standards-based
connectivity to ad hoc or unmanaged networks, whether in the home, in a small business,
public spaces, or attached to the Internet. It is a distributed, open networking architecture that
leverages TCP/IP and Web technologies to enable seamless proximity networking, in addition
to control and data transfer among networked devices in the home, office, and public spaces.
UPnP technology uses existing Internet stand

architecture. Figure 6-3 shows the UPnP protocols stack [Fout01].

36 UPnP Forum, http://www.upnp.org

Amigo IST-2004-004182 114/227

April 2005 Public

UPnP Vendor Defined

UPnP Forum Working Committee Defined

UPnP Device Architecture Defined

HTTPMU
(Discovery)

HTTPU
(Discovery)

SOAP
(Control)

HTTP
(Description)

UDP TCP

SSDP GENA SSDP

IP

HTTP
GENA

(Events)

cols Stack

Nodes on the UPnP network communicate with each other in a client-server manner. Clients
are called rol Points (CP) and typically provide a User Interface (UI) for end users.
Servers are l-defined
set of functions called action oints invoke actions, and devices respond
to actions ed. ices, each of
which corresponds to a func set of state
variables and actions that al device and to
control the device’s operation. Invoking an action usually causes a change in the internal state
of the dev uld affec

In order to enable autonomous device interoperability, members o
constructe vice hich can be
used to m s com these device and service
templates o plements the
services th required by
be built independently by different manufacturers with the assurance that they will interoperate
according to the functionality defined by the corresponding UPnP device/service templates.

Since the UPnP architecture is rotocol (IP), each node in the
network requires a unique IP address. This address is assigned either via a Dynamic Host

 or via the ‘Auto-IP’ protocol if a DHCP server is not

is accomplished via the Simple Service
Discovery Protocol (SSDP) by broadcasting a discovery request that identifies the functional
capabilities that the Control Point wants to control. Any device that exposes those capabilities
responds to the request by identifying itself to the Control Point. A device’s response contains
the URL of the XML device description document, which identifies the services that the device

Figure 6-3: UPnP Proto

 Cont
called Controlled Devices (henceforth, called de

s. In all cases, Control P
vices) and provide a wel

 that are receiv Device functionality is exposed using a set of serv
tional component of the device. Each service defines a
low Control Points to obtain the current state of the

ice that wo t the value of certain state variables.

f the UPnP Forum
and service definitions (also known as templates) w
mon devices. Since the behavior of

d a set of de
odel variou

 is well defined, C
at are

ntrol Points can interoperate with any device that im
 the Control Point. In this manner, Control Points and devices can

 built on top of the Internet P

Configuration Protocol (DHCP) server
available. When a DHCP service becomes available, all nodes are required to obtain an
address from it. Once a device or a Control Point has been assigned an address, it is
considered “added” to the network.

When a Control Point is added to the network, it needs to discover (i.e., locate) the devices in
the network that it is capable of controlling. This

Amigo IST-2004-004182 115/227

April 2005 Public

implements, as well as the specific actions and state variables that are supported by each
service. By parsing th inform
capabilitie e. This ts to interact with
and contro ice. , the device may
broadcast fi isting Control
Points that e ntrolled. The
notification includes ument, in the
same way above fo

Once a C er particular device, the Control
Point uses the Simple Object Access Protocol (SOAP) to invoke any of the actions exposed by
the device’s services. The behavior of each action is well defined by the service template
document. Alternatively, an event-bas scheme is supported. As the internal
state of a device may change, either in response to an action or via some internal condition,

e is defined in each of the service templates that are supported by the device.
be moderated, so that rapid changes in this

tate variable do not cause excessive network traffic.

6.1.3 Streaming protocols
Streaming client technology that allows live or pre-recorded data to be transported
in real time, p the network for traditional multimedia applications such as news,
education, ertainment, advertising, and a lot of other uses. Streaming technology
offers a significant improvement over the download-and-play approach to multimedia file
distribution, because it allows t ient as a continuous flow with
minimal delay before playback

There are several Internet protocols available for streaming data. In the following sections, we
will briefly introduce RTP [Schu03] (a d) (Section 6.1.3.1) and HTTP [Fiel99]
(based on (Section 6.1.3.2). RTCP is a part of RTP and helps with lip synchronization
and QoS Generally, a streaming protocol configures data into packets, with
each packet that identifies its contents. The protocol to be used is usually
determine d to have reliable or unreliable communication. DLNA recommendation
for media transport is HTTP (see Figure 6-2), widely used in the Internet community. However,

TTP is the slowest of the protocols and would just serve the stream as fast as it could. HTTP
does not have any concept of real-time transfer in it. Further d server
take turns talking; no bi-directio n, at transport layer, UDP (not
TCP required by HTTP) is the preferred transmission protocol for real-time streaming, because
UDP is not troubled by (or is even aware of) dropped packets. UDP can send packets at a

n or the application's ability to receive them,

is
s of each devic

ation, the Control Point is able to determine the exact
 allows a Control Point to determine if it wan

l a particular dev When a new device is added to the network
 an identification noti

a new device has b
cation to the network. This notification informs ex
en added to the network and is available to be co

 information
 as described

 the URL of the new device’s description doc
r a device’s response.

ontrol Point has det mined that it wants to control a

ed communication

the device can inform one or more Control Points of the state change using the Generic Event
Notification Architecture (GENA) protocol. With this protocol, Control Points that desire to be
informed of state changes within a particular device must register with that device to receive
event notifications. A given device may be monitored by multiple Control Points. When an
internal state change occurs, the device sends an event notification to each Control Point that
has registered with the device. This event notification includes an identification of the state
variable that has changed, along with its new value. The set of state variables that are evented
by the devic
Additionally, each evented state variable may
s

 is a server/
 opening u

 training, ent

he data to be delivered to the cl
can begin.

erivative of UDP
 TCP)
management.

header having a
d by the nee

H
, in HTTP, the client an

nal chatter is allowed. In additio

constant rate, regardless of network congestio
without reducing throughput by retransmitting useless “late” packets. Weaknesses of HTTP
lead us to survey alternative protocols as well.

6.1.3.1 Real-Time Transport Protocol / Real-Time Control Protocol (RTP / RTCP)
The Real-Time Transport Protocol (RTP) [Schu03] is an Internet protocol standard that
specifies a way for programs to manage the real-time transmission of multimedia data over
either unicast or multicast network services. RTP combines its data transport with a control
protocol (RTCP) [Schu03], which makes it possible to monitor data delivery in large multicast

Amigo IST-2004-004182 116/227

April 2005 Public

networks. Monitoring allows the receiver to detect if there is any packet loss and to
compensate for any delay jitter. Both protocols work independently of the underlying transport-
layer and network-layer protocols.

Real-Time Transport Protocol (RTP)
RTP provides end-to-end network transport for real-time applications, such as Interactive
Messaging and Audio/Video playback. RTP contains information about the real-time session;
thus, applications can easily adjust for jitter, improper packet sequencing, and dropped
packets. Much of this information is included in the RTP header. Figure 6-4 shows the
structure of an RTP packet, while Table 6-2 defines each field of the packet.

Figure 6-4: RTP packet structure

Version Identifies the version of RTP

Padding If set to 1, then one or more additional padding octets have been appended to
the end of the payload. The first padded octet indicates the number of

ded.

lications to determine packet loss and to restore proper packet

Real-Time Control Protocol (RTCP)

additional octets that are inclu

Extension If the extension bit is set, then there is an extension header appended to the
fixed RTP header.

CSRC count Lists the number of Contributing Source (CSRC) identifiers that follow the
fixed RTP header.

Marker The RTP profile determines the definition and use of the Marker bit.

Payload type Defines the RTP payload type.

Sequence number The initial sequence number starts with a random value and increases by
increments of one for each RTP packet sent. This value can be used by real-
time app
sequencing.

Timestamp The timestamp value represents the sampling instant of the first octet of the
RTP packet. The sampling frequency used depends upon the data type.

Synchronization
source (SSRC)

The SSRC value, which initiates as a randomly selected number, identifies
the source of the RTP stream for each RTP session.

Contributing source The CSRC value represents a source of multiple contributors to an RTP
(CSRC) session, where the SSRC value of each source is added to the CSRC value

by an RTP mixer.

Table 6-2: RTP packet fields

Amigo IST-2004-004182 117/227

April 2005 Public

RTCP packets contain information regarding the quality of the RTP session and the individuals
particip
to eac to
monitor the quality of the RTP session; for example, to monitor jitter and packet loss. There
are e

er Report) Contains information regarding the quality of the RTP session.

s that one or more sources are no longer active in the RTP
session.

n-defined) For experimental use by new applications.

t blocks, as shown in

ating in the session. Both sender(s) and receiver(s) periodically transmit RTCP packets
h participant in an RTP session. A real-time application can use this information

 fiv RTCP packet types, as shown in Table 6-3.

SR (Sender Report) Contains information regarding the quality of the RTP session.

RR (Receiv

SDES (Source Description) Contains information regarding the identity of each participant in the
RTP session.

BYE (Goodbye) Indicate

APP (Applicatio

Table 6-3: RTCP

Participants in an RTP session send RR packet types, and, if they are active senders, send
SR packet types. The RR packet has two sections, the header and repor
Table 6-4. There is one report block for each source. The SR packet structure, shown in Table
6-5, differs in format from the RR packet only in that it includes a 20-byte section of sender
information. Although RTP and RTCP are specifically designed for the needs of real-time
communication over a packet-based network, they do not provide quality of service
mechanisms. Instead, they leave quality of service issues to the underlying network and data
link layers.

RTCP RR Packet Sections

Header

Report Block 1

Report Block…n

Table 6-4: RR Packet Structure

RTCP SR Packet Sections

Header

Sender Information

Report Block 1

Report Block…n

Table 6-5: SR Packet Structure

6.1.3.2
HT
server. Uncompressed audio and video are first compressed into a single media file for
delivery over the available network bandwidth, such as the one supported by a home modem.

Hypertext Transfer Protocol (HTTP)
TP [Fiel99] is often used for streaming content that can be served via a standard Web

Amigo IST-2004-004182 118/227

April 2005 Public

This media file is then placed on the Web server. Next, a Web page containing the media file's
URL is created and placed on the same Web server. This Web page, when activated,
launches the client-side player and downloads the media file. So far, the actions are identical
to those in a download-and-play case. The difference lies in how the client functions. Unlike in
a download-and-play scenario, the streaming client starts playing the audio or video while it is
being downloaded, after only a few seconds wait for buffering, which is the process of
collecting the first part of a media file before playing. This small backlog of information, or
buffer, allows the media to continue playing uninterrupted even during periods of high network
congestion. With this delivery method, the client retrieves data as fast as the Web server,
network and itself will allow without reg te parameter of the compressed stream.
Only certain media file formats support

HTTP operates on top of TCP transmission, which handles all the data transfers. Optimized for
non-real-time ap ch as file transfer and remote lo P's goal is to maximize
the data transfer rate, while ensuring overall stability and high throughput of the entire network.
To achieve this, using an algorithm called slow start, TCP first sends data at a low data rate,
and then gradually increases the rate until the destination reports packet loss. TCP then
assumes it has hit the bandwidth limit or network congestion, and returns to sending data at a
low data rate, then gradually increasin ing the proces achieves reliable
data transfer by re-transmitting lost pa , it cannot ensure that all resent packets
will arrive at the client in time to be played in the media stream.

6.1.4 Streaming session control protocols
We have seen how to perform delivery of real-time data, including streaming audio and video.
However, a control protocol cting delivery of streaming
multimedia from media servers. Here is where the streaming session protocols come into the

Figure 6-2) (Section
6.1.4.2). However, since we have included RT
use
6.1.4.1). RTSP does not deliver data, though the RTSP connection may be used to tunnel
RT r SP will likely
be used tog hout the other. Next to
the w vant to streaming multimedia
communication, concerning delivery in the Internet-based network (Section 6.1.4.3).

ream which may be sent via a separate

scription (e.g., SDP

responses. The most important RTSP commands are:

ard to the bit-ra
this type of "progressive playback".

plications, su g-in, TC

g, thus, repeat
ckets. However

s. TCP

 is needed for initiating and dire

play. DLNA recommendation for session control is UPnP AV (see
P/RTCP in our previous discussion, it would be

ful to add a real-time alternative for controlling the session: RTSP [Schu98] (Section

P t affic for ease of use with firewalls and other network devices. RTP and RT
ether in many systems, but either protocol can be used wit

 t o above protocols, SIP is another protocol rele

6.1.4.1 Real-Time Streaming Protocol (RTSP)
The Real-Time Streaming Protocol (RTSP) [Schu98] is an application-level protocol for control
over the delivery of real-time data (e.g., audio or video) between a client and a server. It is
similar in syntax and operation to HTTP 1.1 [Fiel99], and uses sessions that act as “remote
control” for multimedia servers. RTSP sessions are not bound to transport connections. During
an RTSP session, a client may open and close many reliable transport connections to the
server to issue RTSP requests. RTSP controls a st
protocol, independent of the control channel. For example, RTSP control may occur on a TCP
connection, while the data flows via UDP. Data delivery continues even if no RTSP requests
are received by the media server.

The information about the individual streams (e.g., RTSP address, encoding, quality) is
described in a presentation description. The format of this presentation de
[Hand98]) is not part of the RTSP specification. A client that wants to access content requests
this presentation description (e.g., using HTTP), and selects the RTSP URLs of the media
streams it wants to access. Several media streams can be located on different servers; for
example audio and video streams can be split across servers for load sharing.

RTSP commands are like HTTP requests and results of these commands are sent like HTTP

Amigo IST-2004-004182 119/227

April 2005 Public

• SETUP
Requests the setup of a media stream via a specified transport mechanism.

 serve m specified in SETUP. The play
start and/or the stop position.

liv

•
n description on
server to start

recording a live presentation.

ol which is described below.

 Control Point uses SSDP (the UPnP discovery service) to

e flow of the content
ek, etc.). As described above, AV Control Points control the
rs and Media Renderers, so that the user can render specific

• PLAY
Tells the r to start sending data via the mechanis
request may be associated with a range indicating the

• PAUSE
Temporary halts the sending of data by the media server.

• TEARDOWN
Stops the de ery of data by the media server and closes the session.

RECORD
Initiates recording a range of media data according to the presentatio
the media server. This can for example be used to instruct the media

6.1.4.2 UPnP AV
UPnP AV is a subclass of the UPnP Device Architecture specifically addressed to media
transfer. As its subclass, it inherits the discovery and command/control capabilities of the
UPnP Device Architecture. Further, it defines XML device and service description documents
for media devices such as renderers and servers, enabling their discovery. By defining
capabilities relative to multimedia data flow in these devices, UPnP AV establishes an implicit
streaming session control protoc

The UPnP AV architecture [Rit02a] distinguishes the following three components: Media
Server [Rit02b], Control Point and Media Renderer [Rit02c]. The Media Server provides
access to content. The Control Point allows a user to discover and control other devices and
the data flow between devices. The Media Renderer implements playback of content on a
device. A Media Server can be used with multiple Media Renderers.

In a typical UPnP scenario, a
discover audio/video (AV) content on one or more Media Servers. The Control Point also uses
the same SSDP service to discover Media Renderers. Then a user uses Control Point features
(using any interface that the Control Point exposes) to browse or search within a Media Server
in order to locate a desired piece of content (e.g., a movie, song, playlist, photo album etc.).
The Control Point then prepares to render this content on a device with an appropriate Media
Renderer. The Control Point further determines an appropriate transfer protocol and data
format to transfer the content from the Media Server to the Media Renderer. After these
transfer parameters have been established, the Control Point controls th
(e.g., Play, Pause, Stop, Se
operation of the Media Serve
content on a particular rendering device. In most end-user scenarios, the Control Point uses a
variation of the following algorithm:

1. Locate the existing Server/Renderer devices in the network;

2. Enumerate the available content for the user to choose from;

3. Query the Server and Renderer to find a common transfer protocol and data format for
the selected content;

4. Configure the Server and Renderer with the desired content and selected
protocol/format;

5. Initiate the transfer of the content according to the desires of the users, such as Play,
Pause, Seek, and so forth;

Amigo IST-2004-004182 120/227

April 2005 Public

6. Adjust how the content is rendered by the Renderer, such as Volume, Brightness, and
so forth.

The Control Point accomplishes this general algorithm by invoking various actions on UPnP
AV services exposed by the Server and Renderer. In this manner, the Control Point can
perform the content distribution tasks that are desired by the user. The actual transfer of the
content is performed directly by the Media Server and Media Renderer, independently from
the Control Point, and does not involve UPnP specifications. In fact, UPnP specifications
indicate that transfer protocols are not within the domain of UPnP. The following figure shows
the UPnP AV architecture:

Control Pont

Media Renderer
(Sink)

Media Server
(Source)

UPnP Actions UPnP Actions

Out-of-Band

Figure 6-5: UPnP AV Architecture

Finally, the UPnP AV Architecture does not enable any of the following:

• Two-way interactive communication, such as audio and video conferencing, Internet
gaming, etc;

• Access control, content protection, or Digital Rights Management (DRM);

• Synchronized playback to multiple rendering devices.

6.1.4.3 Session Initiation Protocol (SIP)
The Session Initiation Protocol (SIP) [Rose02] is a standard signaling protocol used for
establishing sessions over an IP network. SIP is equally

Transfer
Protocol

useful for any kind of collaborative

 HTTP, SIP
uses URIs to address SIP resources. In addition, the SIP protocol defines guidelines for

multi-media session such as telephone call, shared whiteboard and gaming. The SIP protocol
is used to distribute session descriptions among potential participants, to negotiate and modify
the parameters of the session, and finally to terminate the session. SIP may be used in
combination with protocols such as SDP for carrying out negotiation and identification, but still
remains independent of these underlying protocols.

Thus, the SIP protocol does not make any assumption about the transport protocol used in the
multimedia session that it controls. For example, SIP can be used to control a multimedia RTP
stream that flows either via TCP or UDP. Because SIP is an IP-based protocol, it sits
comfortably alongside Internet applications. Hence, signaling services can easily be employed
by application services such as calendars, directories and Web services.

SIP is based on the HTTP protocol and therefore it is a request/response protocol. It uses
similar formats for encoding protocol messages (requests and responses). Like

Amigo IST-2004-004182 121/227

April 2005 Public

defining extensions. Extensions may introduce new requests/responses or new fields in the
messages carried by SIP. Examples of common SIP extension include SIMPLE for instant
messaging and presence. Clients like Microsoft Messenger (v7.0) use SIP as the underlying
protocol for presence and messaging.

The basic SIP commands are:

• INVITE Invite users to participate in a session.

• CANCEL Cancel pending transactions.

• ACK Acknowledge the reception of final response to an INVITE request.

• BYE Abandon a session.

ver about its capabilities, including which methods and

isolated stream (Section 6.2.2) and

rom the new – QoS-aware – DLNA Guidelines, which will be released in
ed (Section 6.2.5).

characteristics of those perturbations. High frequency changes, such as interference, are often
of such a short duration that it is not possible t react in a timely manner; thus, a preventive
measure has to be taken. Typically this results in open-loop control systems, and associated
actions are often taken at a low level (e.g., in or close to the hardware), generally based on
coarse differentiation mechanism evel. On the other hand, less
frequent changes, such as the introduction of a new stream can, and should, be dealt with in a

• OPTIONS Query a ser
which session description protocols it supports.

• REGISTER Tell a server to register the current location of a user.

6.2 Quality of Service in the CE domain
Future home networks, as in particular investigated in Amigo, are assumed to connect mobile,
PC and CE devices. PCs use the network in a best effort way to guarantee a high mean
throughput. On the other hand, CE devices deliver and consume high quality video streams
that imply strict timing requirements on the transport of packets. Mobile devices are per
definition connected to wireless networks. Their introduction into the home requires a wireless
home network part. Unfortunately, the wireless networks by their nature are not suited for
uninterrupted video streaming.

We observe that the current line of thinking over wireless video streaming is very much
influenced by the Internet model of best-effort streaming with adaptive applications to show a
poor picture rather than having to wait. In the following sections, we set out how to manage
multiple high quality video streams through the home network. At this moment it is unclear
which parts of the network will be wired and which part wireless, thus, we discuss some
network topology possibilities.

In the following sections, we discuss the QoS problem in multimedia streaming in the home
network (Section 6.2.1), further analyzing the cases of an
of medium sharing between streams (Section 6.2.3). The need for a QoS-aware middleware to
support network management for QoS assurance is discussed in Section 6.2.4. We propose a
base solution to the QoS problem in multimedia streaming within Amigo, drawing from
information extracted f
mid-2005. This solution is mostly UPnP-QoS-bas

6.2.1 Problem analysis
Any stream in a (wireless) network is subject to external factors that may negatively impact the
resulting video quality. It is necessary to appropriately address these issues, while at the same
time meeting deadlines to assure rendering without delays. Typical causes leading to varying
circumstances are (1) interference, (2) a device fluctuating between being in- and out-of-
range, (3) new streams entering the network, and (4) handovers. A management and control
model that deals with these kinds of problems will have to be based on the specific

o

s introduced at a higher l

Amigo IST-2004-004182 122/227

April 2005 Public

different way. The acceptable response time is sufficient to use slow high-layer (e.g., software-
based) solutions, and base the control strategy on received feedback or other inputs. This
approach is usually called network management.

Interference and other unpredictable packet losses manifest themselves through a decrease
in the available resources, often bandwidth. Typical examples are the use of a microwave in
the network environment; or, the home network of the neighbor interfering with your own
network is another example. The high frequency of the variation demands a low-level
prevention-based approach. A solution is to build an adaptive application, following this
general scheme: the application or video codec uses its knowledge of the video domain to
divide the video into a number of parts that are very important, important and less important.
Next, this separation is made sufficiently explicit, such that at a low level in the network stack a
decision to drop the least important data can easily be taken. A simple example is to
differentiate the layers of a (scalable) MPEG video, and add different packet priorities to
packets containing a specific layer, and drop low priority packets corresponding to higher
layers when bandwidth is insufficient.

A device fluctuating between in/out of range can normally be dealt with at the logical link
(2nd) layer. However, too quick changes may lead to an overload of events at a higher
(software) level, e.g., when a de)announces its capabilities and
services. Generally, thresholds are a controller dealing with
fluctuations. In a distributed system, a membership algorithm can be used to determine

cations have to be broken. The requirements on user-friendly admission control
when dealing with multiple streams at different quality levels are complex. For good results,
quite some knowledge of the network is necessary. Since at the same time the response time
is now in the order of tenths of a second, advanced (software) solutions to the basic control
problem become feasible. In Section 6.2.3, we describe how subsequently higher quality can
be traded for a higher number of s

 user control is
possible and all videos will equally degrade. Another alternative is to reserve capacity at all
relevant access points at the start of a stream that can roam. This potentially leads to a large
over-reservation restricting the number of streams that can be used concurrently.

vice continuously (dis-
 used to smoothen out reactions of

whether a device is part of the group or not; when it is not, its data is rejected by the recipients.

The introduction of a new stream – or a stream leaving the network – can be seen as a
change in the availability of resources. When streams continuously adapt to the available
resources, the quality will decrease whenever new streams are introduced, and eventually the
quality of all streams will be poor. While the user of the last stream is immediately confronted
with a poor quality, users whose streams are already running are confronted with consecutive
decreases in quality. For those users, the unexpected and not-clearly attributable decrease in
quality leads to an unsatisfactory experience. Sometimes, when resources drop below a
certain level, an application cannot work at all. Admission control is the technique that ensures
that existing streams do not suffer from a reduction of resources that they need for a proper
functioning. A new stream that potentially threatens existing streams is not admitted, or only at
lower quality. For a pleasant user experience, admission control is essential. However, it
works by locking streams and hence users out. In specific cases, this is not desirable and the
resource allo

treams.

Handover essentially combines the two previous issues. After a certain moment, a device can
be seen to be associated with a new access point. Consequently, the path of the stream
through the network has to be changed. E.g., by a hand-over to a non-used access point (if it
is detected) the quality can be increased. In another case, the opposite handover can happen,
e.g., when other streams already use this path. The policy of admission control suggests that
the handed-over stream is considered as new, and it should again pass admission control. If
admission fails the stream cannot be handed-over. This is not always as desired by the user,
for whom the stream is not considered new. An alternative is to fall back to the adaptability of
the applications based on the layered video. All applications faced with an overloaded network
segment on their path will adapt by dropping layers automatically. Very little

Amigo IST-2004-004182 123/227

April 2005 Public

Mechanisms are needed to handle fast fluctuating bandwidth changes in the wireless medium

that the non-time-constrained background traffic is reduced
and the stream can continue. So if the network allows, a reservation at a scheduler is made.

tees on bandwidth, delay, and/or jitter. If for

e and consequently reduce the jitter on incoming packets. It can be
implemented using two different techniques: leaky bucket and the token bucket shapers,

-6 illustrates an example in which the network flow of not

due to interference, and moving in and out of range. Other mechanisms are needed to allocate
the network resources in a fair and comprehensible way to the individual video streams.
Through membership protocols, a consistent view is built of which video streams are involved
and which are not. In Section 6.2.3.4, it is indicated that some of these allocation choices
depend on the situation and the roles of the involved users. Video streams are relatively well
behaved, as they have a maximum bandwidth requirement. A file transfer can consume the
complete bandwidth. For a good allocation of bandwidth to streams, the bandwidth
requirements of the individual applications need to be harnessed. In the following two sections,
we further analyze the above issues in the case of a single stream (Section 6.2.2) or of
multiple streams (Section 6.2.3).

6.2.2 The stream in isolation
When at a given moment the needs for bandwidth on the network are higher than the network
can accommodate, this can be: (1) temporary and short-lived because of fluctuations in the
operational conditions of the network, or (2) structural and long-lived because many people
want to enjoy different high quality streams simultaneously. In this section we will deal with the
former case; the latter case will be the subject of the next section. When bandwidth
fluctuations occur, it is advised

When accepted, the scheduler can give guaran
some reasons the total capacity is not enough to support the total requests, then traffic without
reservation is harmed first. Another possibility is to assign a higher priority to the packets of
the stream. This often leads to probabilistic guarantees, e.g., guarantees on expected
bandwidth, expected delay or expected jitter. It may be the case that a high priority has to be
requested. At a certain stage, however, when the capacity that is available to the stream drops
below the needs of the stream, another solution has to be found, and, in principle, the only
solution is to decrease the resource requirements. This is the adaptability of the application as
sketched in Section 6.2.1. Adaptive applications can lower their resource usage by also
lowering quality. A typical method is scalable video and transcoding the video stream to
another format/size (Section 6.2.2.2). Another method is traffic shaping which also reduces the
sending rate at the sending source (Section 6.2.2.1). This behavior is imposed by putting an
upper bound to the number of bits that can be sent over a given interval [LeMS02]. The net
effect is smoother traffic, which leads to fewer disruptions.

Since the solution of an adaptive application works independently of the nature of the other
traffic, it is also possible to use it with multiple streams. In that case, and if reservations are not
possible, too many streams will lead to the streams competing with each other and poor
quality for all of them.

6.2.2.1 Stream shaping
When a stream has bursty characteristics, it may cause a temporary congestion of the
channel. An approach proposed in the literature is traffic shaping. This method is used to
control traffic rat

described in [Tane03]. Figure 6
regulated packets passes through a regulator that maintains a regular interspacing between
packets. This technique is beneficial for video streams where bursts are produced by I frames.

Amigo IST-2004-004182 124/227

April 2005 Public

Figure 6-6: Regulated traffic

A possible regulator is the leaky bucket. A simple model for describing the leaky bucket
technique is a bucket of fixed capacity C filled with incoming packets. The bucket has a hole,
through which it injects packets into the network at a specified rate R. If the source transmits
too many packets, the bucket overflows; in this case, packets are declared not conformant to
the traffic specification and are dropped or marked. The concept is illustrated in Figure 6-7.
This regulator can be used to enforce a constant bit rate when the incoming traffic is variable.

Figure 6-7: Leaky bucket

The leaky bucket technique has the drawback of low flexibility: if an application must send a lot
of packets in a small time interval, it constrains the bit rate at a fixed value. To enforce
Variable Bit Rate (VBR) traffic, a similar technique uses tokens. The bucket is filled at rate ρ
with tokens and a token is used for sending one bit. The bucket contains at most σ tokens,
and no more tokens are added if the bucket is full. The two parameters σ and ρ are selected
bas two parameters are used to regulate incoming traffic
to reach an upper bound on output curve

ed on the traffic characteristics. These
tρσ + , as shown in Figure 6-8. If there are no

inco in accumulate to an extent determined by the QoS policy and
the c th. The amount of tokens accumulated represents the burst size that may be

m g packets, the tokens may
 bu ket dep

admitted into the network. By controlling the depth of the bucket, the network could regulate
the permissible burst size. For example, if a flow needs to be shaped at a particular Time
Division Multiplexing (TDM) type peak rate, then the rate at which the tokens are added to the
counter would specify the peak rate. The concept of token bucket is schematically illustrated in
Figure 6-8.

Amigo IST-2004-004182 125/227

April 2005 Public

Figure 6-8: Token bucket

These techniques can be used to reduce the load of the network. Most suggestions in the
literature concern the sharing of video with other traffic. The other traffic, e.g., file transfer,

own amount of the bandwidth is
on-video traffic. The large difference between a regulator and a reservation

 adapt the video code bit rate to the operational conditions on the

dium sharing between streams

f sufficient bandwidth is available on the average, the tight

ynamic network in which devices are involved in sending or receiving a stream

goes through a network regulator, so that only a limited kn
used by the n
mechanism is that the first regulates the bandwidth, and the second reserves a time window.
The first will try to send the same number of packets per time unit, independently of the failure
rate of the medium. Consequently more time will be spent for the transmission. The second
will allow sending of data within a given time slot, and consequently the effective packet rate
depends on the failure rate of the medium during the time slot of transmission.

6.2.2.2 Transcoding
The increasing number and types of devices and content representations makes the
interoperability between devices and networks more important. Gateways are needed to
connect networks and devices to each other. Transcoding of video content is a key
technology. In the context of this section, transcoding is important to adjust the bandwidth
requirements of the stream.

The majority of interest in transcoders focuses on channel capacity availability and conversion
between Constant Bit Rate (CBR) and Variable Bit Rate (VBR) streams. A cascaded approach
decodes the incoming streams, manipulates the contents and encodes the streams. This is a
very costly approach. In this section, we concentrate on MPEG-x transcoding to reduce the bit
rate. We assume a high quality MPEG stream coming in and a lower bit rate (scalable) MPEG
stream coming out. A typical application for a transcoder is to adapt the video from a high
bandwidth medium to a low bandwidth medium. For example, the transcoder is associated
with an Access Point to
wireless link. It dynamically transcodes an MPEG-2 stream (e.g., one coming from a DVD) to a
less bandwidth-consuming stream or a scalable stream. Transcoding between MPEG-2 and
scalable MPEG-2 can be done in an efficient way [Jarn04]. Together with the possibility to
adapt efficiently to the operational conditions, a transcoder can improve the total perceived
quality at the rendering display.

6.2.3 Me
Ensuring QoS is getting more complex, when requirements of multiple streams have to be
satisfied at the same time. Audio/Video streams are expected to generate an important load
on the network. There are two obvious cases to distinguish: on the average, sufficient
bandwidth is available or not. Even i
requirements on jitter and delay may still demand that better guarantees are given to the
applications at specific moments. Secondly, when there is a structural and long-lived shortage
of bandwidth – because many people want to enjoy different high quality streams
simultaneously – the network resource has to be managed to accommodate the users sharing
it. In the following sections, we first describe how group membership protocols are used to
identify a d

Amigo IST-2004-004182 126/227

April 2005 Public

(Section 6.2.3.1). Next (Sections 6.2.3.2 & 6.2.3.3), we describe how an application would

twork, a view on the connected devices and connected

re started, halted or stopped. In the
wire s e and return within range. Decisions in the home
net r y the members of a group of devices or applications.
Group decisions are required to be consistent, i.e., every member of the group takes the same
decision. W es its input to the other members, the associated message
may not arrive at all group members. Two possibilities exist: (1) all members decide that the
sou member, and those that receive the message ignore it; or (2) all members

on 6.2.2, it was indicated that an application has to acquire network resources to
 that some communication technologies
w the use of a “higher” priority, and yet

deliver quality-of-service (QoS) requests to all nodes

initially request network resources (bandwidth, delay, jitter, etc.) from the network resource
manager. This manager can be implemented in a distributed fashion or on one central device.
This network resource manager has to evaluate whether such a request can be granted. This
requires the network resource manager to have insight in the consequences of assigning time
slots, priorities, etc., to applications. Priorities are also addressed. Finally, Section 6.2.3.4
deals with the issue of how to let the users of the network control their network resources. The
user requirements occasionally demand more streams than can be handled, or different
streams, or streams of different importance, and this may imply that guarantees that were
given to applications before have to be withdrawn to accommodate the new situation. Partially,
network resource management shall be based on individual user preferences and rely on
social structures.

6.2.3.1 Group membership
Group membership is an important concept in fault tolerance and decision procedures in
general. In the context of the home ne
applications (video streams) that is shared by all members helps to solve decision processes
[Veri94]. In the home, the network configuration is supposed to be dynamic. Devices are
connected, disconnected or switched off. Applications a

le s context, devices get out of rang
wo k depend on the input generated b

hen a member distribut

rce is not a
decide the source is a member, and members are made aware that they have not received the
input, when the message does not arrive.

The group membership assures that at a given moment in time, or with respect to a sequence
of input messages, the group membership is defined, and all members of the group know all
other members of the group at the specified moment. Solving the group membership allows a
consistent decision making within the home network. Several membership algorithms exist.
They solve the problem, depending on the fault hypothesis and the time characteristics of the
underlying network. Algorithms also differ in the time it takes before a given member knows
the membership associated with a decision point. For more information, see [StCA94] or
[BLSI03].

6.2.3.2 Reservation / prioritization requests
In Secti
ensure a high-quality transmission. It was described
offer the possibility to make reservations, others allo
others offer no mechanisms at all. For example, RSVP is a resource reservation setup
protocol designed for quality integrated services on Internet. RSVP is used by a host to
request specific qualities of service from the network for particular application data streams or
flows. RSVP is also used by routers to
along the path(s) of the flows, and to establish and maintain state to provide the requested
service. RSVP requests will generally result in resources being reserved in each node along
the data path. Nevertheless, as it turns out, network priorities have different semantics across
different communication standards, and also reservations are required in different terms. For a
programmer of an application that runs in such a heterogeneous network environment it is
necessary that a more uniform mechanism is available.

The continuous spectrum of bit rates makes it often more convenient to reduce the quality
choices to a small discrete set of values. A good approach is to use a model of layers. It is

Amigo IST-2004-004182 127/227

April 2005 Public

assumed that the bandwidth needs are expressed in the number of layers that are required.
This approach does not preclude the storage of content in files with different quality levels.
Thus, every video source has a number of quality attributes. These attributes are:

• layers and their bandwidth needs

• quality class of the source

• quality

The quality class of the source, different from the priority class of the packet, indicates the
minimum tolerable quality of the associated video. Its value depends on the quality of the
screen and the size of the window in which the video is displayed. The quality attribute defines
the current operational quality of the video. The latter can be expressed in the number of
active layers from the total available layer set.

6.2.3.3 Realization of reservation / prioritization on the network
Some communication media deliver possibilities for bandwidth reservation. The prime
examples in this section are IEEE 1394, Homeplug 1.0 and IEEE 802.11e. The bandwidth
control of IEEE 1394 and Homeplug 1.0 is described in a well-established standard, while the
IEEE 802.11e description is, at the time of writing, not yet approved. The alternative method is
the use of priorities.

Bandwidth reservation
Although, generally, one speaks about bandwidth reservation, the standards (IEEE 1394,
IEEE 802.11e) only provide a time-slot in which a sender can transmit without perturbations by
other senders. In the case of IEEE 1394, with its low loss probability, the time-slot is almost
directly coupled to bandwidth. In the less stable media, this relation is lost. In IEEE 802.11e,
the guarantees given are guaranteed transmission opportunities, called TXOPs, rather than
guaranteed receptions.

The level to which given guarantees are actually respected very much depends on the
employed scheduler. In IEEE 802.11e, this scheduler of the hybrid controller resides in the
access point, but is not standardized, and, hence, quality depends very much on the particular
implementation. Ethernet, on the contrary, uses merely Carrier Sense Multiple Access /
Collision Detection (CSMA/CD). All nodes on the Ethernet wire have a certain probability to
successfully send a packet. The success probability goes down with increasing load. With high
loads it is possible that no packets are transported at all.

Prioritization
What happens when using “higher” priorities is very difficult to predict. If only one stream uses
a high priority, one can calculate a guarantee on expected bandwidth, delay or jitter, rather
than on the actual ones. But when more streams use this “high” priority, or even “higher”
priorities, not much guarantees may be left over. Both IEEE 802.11e and HomePlug 1.0
support priorities. However the different implementations lead to very different behavior over
the network. Other network standards may use different implementations again. A few
implementation choices are discussed here.

A common approach is to assign a priority to a message. Allocating the medium to the highest
priority message is done in HomePlug 1.0. The priority is communicated over the network, so
that the device with the highest priority message gets access to the network. This leads to
overhead, because the devices need some time before the medium can be allocated to the
message with the highest priority. A problem occurs when devices simultaneously decide to
send a message with the same priority. The devices will notice the collision and start up a
back-off protocol. According to a back-off protocol, each device involved in the collision selects
a random time to start its transmission. The device that chooses the shortest back-off interval
wins and gains control to the device. Differences occur in the choice of the back-off interval. A

Amigo IST-2004-004182 128/227

April 2005 Public

device first chooses an interval maximum. After every collision, a new larger maximum is
selected. The actual back-off interval can be randomly chosen from a range from zero to the
interval maximum, or from an interval with a range from the former interval maximum to the
new interval maximum.

Another method is to increase the probability of allocation to the medium with increasing
priority. To send a message with a given priority, a random back-off is chosen from the
associated priority interval. Again several ways exist to choose this back-off, either by taking it

ended with every

6.2.3.4 Bandwidth negotiations
ou do not want. There will be

he user(s).

er in this section. Two types of media are considered: (1) media that support

 depends on the quality of the screen and the size of the window in
which the video is displayed. The importance shows whether the quality of a given source
should be higher or lower with respect to another source. Importance can be derived from the

from the complete interval or to choose it from an interval between the current and the interval
of a lower priority. The result is that messages with a given priority have a higher probability to
be sent than messages with a lower priority. This protocol is used by EDCF in IEEE 802.11e
standard.

The set of devices that try to send a message (of the same priority) is called a collision set. In
some protocols, all devices belonging to a collision set must have sent their messages before
new messages can be sent. In other protocols the collision set can be ext
new possibility to send a message.

From the above discussion it is clear that priorities do not always guarantee that a message
with a high priority is sent before a lower priority message. Actually there is a probability that a
message with a high priority is sent before a message with a lower priority. The value of the
probability depends on the protocol implementations, but, generally speaking, the higher the
message priority the higher the probability that it will be sent at the first possible send
occasion.

There is nothing as user-unfriendly as a system doing things y
situations where users want something else than what the system provides on general
principles. Then, the user would want to override the system’s decisions. These situations
require an overall system view which is generally not present in individual applications or
devices, but only at the user or when “brought into the system”. Assuming that user wishes
can be adequately detected, it is necessary that all devices on the network collaborate or are
forced to collaborate, so that the bandwidth resource is allocated as specified by t
Multiple users can come to conflicting requirements; conflicts usually have to be solved “out of
technical bands”, but via social mechanisms. Collaboration means that the devices express
their needs to a bandwidth allocation authority (centralized or distributed), and conform their
behavior to this specification. The management and effectuation should be decoupled from the
devices that happen to have the resources. Example realizations of bandwidth allocation are
discussed lat
reservation from a central authority (e.g., IEEE 802.11), and (2) media that do not support
reservation (e.g., switched Ethernet).

The above also implies that user information has to be captured. We extend a little bit our
model introduced in Section 6.2.3.2. A node can contain a set of video sources. Every video
source has a number of attributes. These attributes are:

• layers and their bandwidth needs

• quality class of the source

• importance

• quality

The quality class of the source can indicate what the minimum tolerable quality is of the
associated video. Its value

Amigo IST-2004-004182 129/227

April 2005 Public

social structures in the fam

Amigo IST-2004-004182 130/227

ily. The quality attribute defines the actual quality of the video. The

rid coordinator can issue a so-called imperative request,
indicating a change in reservation. This message from the hybrid coordinator enables the

use to the new situation. This could be achieved by

en the transmission conditions change, for example by increasing the distance

n can a user interact with
the algorithm directly, before the changes are effectuated. The user can also add more

 took the IEEE 802.11e hybrid coordinator as the
use it has

the w e of
the requests that the other devices in the wireless network make. The hybrid coordinator,
however, do nets. In particular, there is no way to make a
req s
the wir ted, most home networks will be composed of multiple subnets
(wired and wireless). An overall solution requires that the stream requirements can be

latter can be expressed in the number of active layers from the total available layer set. The
quality class of the source can be an attribute of the video that is distributed. The latter may
even be personalized and depends on the identity of the selecting user. The importance of the
video depends on the user’s identity. After addition of a new source, the qualities are
recalculated. When the users are unhappy with the new situation, they can adapt the
importance or quality class of the source.

We now discuss two example realizations of the bandwidth allocation management introduced
above.

Centralized solution (IEEE 802.11e access point)
In the following, we describe how a centralized system would handle bandwidth requests and
later handle bandwidth negotiations. We first consider an IEEE 802.11e wireless network,
where the central authority will be the access point, since it hosts the hybrid coordinator. Later
we discuss alternatives and extensions.

The sender of a stream presents its network demands to the hybrid controller, which
subsequently checks whether this is possible and then informs the sender that the request is
granted. In case of an IEEE 802.11e network, the scheduler is unspecified in the standard and
left to the implementer. It has to calculate a new schedule to see whether and how the request
can be realized. This is the standard check to perform admission control at the scheduler.
Based on the new schedule, the IEEE 802.11e hybrid coordinator starts polling the senders at
the appropriate instance specified by the schedule. In certain cases, such as a handover
scenario, the circumstances can change, and the scheduler cannot live up to all user desires.
It may then calculate an appropriate schedule that can be fulfilled, and inform all involved
senders. In IEEE 802.11e, the hyb

senders to adjust their bandwidth
diminishing the number of layers for video, or using a tighter bucket for other data streams as
described in Section 6.2.2.1. Consequently, through polling, the senders align themselves to
the new schedule, and the scheduler imposes the redistribution of the bandwidth. As indicated
before, there are many situations where a redistribution of the bandwidth is needed. This could
be when a new content is added for distribution over the network, when user requirements
change, or wh
from the sender. In Section 6.2.1, we indicated that some devices may continuously enter and
leave the network, thereby continuously requesting new bandwidth. A membership protocol
can ensure that these devices remain excluded until they are more permanently joining the
network.

Even in this centralized solution, a decision should be taken that follows user preferences. It is
desirable that the sender/receivers communicate the importance of the streams with respect to
other streams for their users, and the importance of the users among each other. Based on
these importance descriptions, an appropriate redistribution of the bandwidth can be made,
which could follow a proprietary algorithm. An algorithm that can calculate appropriate
bandwidth distributions should be in contact with the users. Only the

information to guide the decision.

In the previous part of the discussion, we
basis for our centralized solution. The hybrid coordinator makes a good choice, beca

 po er to enforce its scheduling decisions on the IEEE 802.11 LAN, and the knowledg

es not extend across multiple sub
ue t for resources for a stream that enters through the access point and is then delivered in

eless LAN. As indica

April 2005 Public

com u that hosts the hybrid coordinator of the

For a network consisting
of multiple subnets, it may become necessary to control the resources, not just within the
specific subnet, but also collectively over the entire network. To ensure that the user is in
control of his/her streaming experience, appropriate deadline partitioning is needed. For this to
work, the control needs to be taken from a hybrid coordinator. It has to open up its capabilities
so that other devices in the network can ensure end-to-end QoS.

Distributed solution (IEEE 802.3)
Consider the switched Ethernet infrastructure. Two phases are considered: a first phase, in
which sources are added until the bandwidth is fully consumed, followed by a second phase,
where bandwidth of running streams can be reduced to accommodate the new stream. We
assume that there is no central authority in the switched Ethernet network, and we investigate
a distributed solution. A distributed solution implies that all nodes on the network must know
the load created by each connected node. The state of the network is given by the states of
the nodes at a given time. The state of a node is defined by the video sources and the
bandwidth required by each source. The bandwidth requirement of a video stream can be
expressed in th res the states
of all connected nodes,
node enters the network, the other nodes should communicate their bandwidth consumption to

tual network state number.

emit. This means that every source has

layers, from CE-industry, IT-

m nicated to more devices than just the device
local subnet. It also requires that other (authorized) devices instruct schedulers, such as the
one of the IEEE 802.11e hybrid coordinator, to perform scheduling which matches the overall
requirements and not just the local requirements. The concept of an overall central controller
can be introduced. It will have the possibility to optimize across all subnets, leading to
potentially much better resource utilizations. Depending on the network and the availability of
broadcast mechanisms, centralization may require the transmission of more messages than a
distributed approach, as the results have to be sent back to the devices. Also, a central server
is a single point of failure and it may be necessary to select a backup.

e number of transmitted layers. We assume that every node sto
 called the view. Assume that a broadcast facility exists. Every time a

this node. Every time a node wants to add a source with a given bandwidth requirement, it
calculates the feasibility from its view. If the source can be added, the node broadcasts its new
state to all nodes. If not enough bandwidth is available, then the impossibility is signaled to the
requesting source.

When two sources simultaneously broadcast their sending intent, the conflict needs to be
solved. A standard procedure is to use an ordered broadcast. All messages arrive in the same
order at all nodes. The broadcast of the first source is validated, and the second one is
rejected. To verify whether two messages conflict, it is necessary to enumerate the network
states and specify the new node state with respect to the ac
Conflicting messages contain a change request with respect to the same state number. A
message that concerns an earlier state than the actual one can be rejected.

Consider now the second phase, in which bandwidth requirements of the running streams
need to be reduced to accommodate the new stream. To realize the redistribution, one or
more sources need to adapt the number of layers they
to come to the same conclusion on the new desirable network state. This is a well-known
problem in distributed systems: a group of network nodes coming to a consistent decision. A
possible solution to the problem is to have the same decision algorithm executing at every
node. Every node has the same view on the system state and knows the new request. Having
the same input (the system state) and using the same bandwidth reallocation algorithm, every
node comes to the same allocation result, and collaborates to realize this new allocation.

6.2.4 QoS-interoperability aspects at the middleware
The need of a network-management control model to support high-quality streaming while
leaving the user in control requires communication between different devices. We have
indicated that the home network is a market where many p

Amigo IST-2004-004182 131/227

April 2005 Public

industry, domotics, as well as mobile meet. This means that we need an interoperable
middleware to support a potentially proprietary solution for network management.

One of the first questions is on the location of control. The world has not settled on the
question whether there will be a central authority that coordinates the entire home network,
however, if such an authority shows up, it is likely to be a PC or an Internet gateway. It is
therefore necessary to support the possibility of a distributed solution, wherever possible, to
prevent dependence on a single point of failure. This requires support from a sufficiently rich
middleware.

A key question is whether control of the QoS is restricte
or whether control can be taken by an independent Qo

d to the server and rendering devices,

o QoS. These can be a device’s memory limitations, which pose
 a jitter bound, but there are also the capabilities of differentiating and

 have error correction
cap i possible schedulers that can
be vices and network segments, if we want to allow
dec o routers.
Also, certa tabilized, have to be delivered to
allow higher-layers to appropriately deal with them or at least inform the user that something is
about to happen. ve to be abstracted to present useful
concepts to the en

6.2.5 DLNA and Q
e previous sections of the QoS problem in multimedia home
this section a base solution to this problem for the Amigo

environment. The current forum to make agreements on interoperability for the home network
is the DLN NA, guidelines on the use of existing
standards possibilities. For instance, in its first
guidelines mmittee), the renderer is also the control point,
whereas in the underlying UPnP-AV standard, these are different entities and potentially
diff n NA currently does not address QoS, there have been proposals
for setting d in
Sections 6
to the end poi e further aims at defining device descriptions
for o At the time of writing, the working committee targets towards an early
take off via and wireless
Ethernet a
capabilities of ized QoS is foreseen.

 this second phase, reservations and admission control are added to the standard. In
the UPnP-AV system, surveyed in Section 6.1.4.2, the UPnP forum has
ork for implementing QoS using UPnP-AV components, named UPnP-QoS.

It is expected that DLNA will base their QoS solution on UPnP-QoS. UPnP-QoS is described
in the follo
associated UP Then in Section 6.2.5.5, we prese t the DLNA proposal
for DLNA works and
app a ctions are based on information extracted from new DLNA Guidelines,
which will b

6.2. .1 n
Various ap abilities on the network, such as whether a
media server and/or an intermediate network switch supports packet tagging, or whether a
particular wireless link has available capacity to support a media streaming session. Moreover,

S control point. For independent QoS
control, a middleware standard should support interoperable descriptions of the capabilities of
devices with respect t
requirements on
prioritizing parts of the content, in order to do packetization or to

ab lities. A control point, furthermore, has to be aware of the
employed and the current load of de
isi ns to be taken elsewhere or collectively, rather than only in access points or

in low-level events such as hand-over, when s

 Clearly the items indicated here ha
d-user.

oS
Based on our analysis in th
networking, we propose in

A, which we surveyed in Section 6.1.1. In DL
improve interoperability by limiting the
(released by the DLNA HNv1 subco

ere t devices. Although DL
 up QoS through extension headers of HTTP and RTSP, which we surveye
.1.3.2 and 6.1.4.1, respectively. However, such an approach limits the QoS control

nts. The DLNA working committe
Q S capabilities.

 a phased approach. In the first phase, only single subnets of wired
re taken into account, using only priority-based forwarding. For this, no real QoS

devices need to be exposed. For a later phase, parameter
In
accordance with
defined a framew

wing Sections 6.2.5.1 to 6.2.5.4, which present the UPnP-QoS framework and the
nP-QoS components. n

QoS traffic types, enabling uniform prioritization of traffic for diverse net
lic tions. These se

e released in mid-2005.

5 U uctioPnP-QoS introd
plications may need to detect QoS cap

Amigo IST-2004-004182 132/227

April 2005 Public

certain a y need
to configure the residential gateway to reserve a portion of its bandwidth for the incoming

The tral control point called QoSManager that
set s architecture to indeed support such an
ind e int often requires more
information
in control
Qo o that the streams that are the most important to all users
in t
requires m
WMM (Wir ogram – based on prioritized QoS
par o .2.5.5.

ic functions:

s and devices (Policy);

• of priority to a particular traffic stream based on its characteristics

.

gy elements described in Sections 6.2.1 - 6.2.4 into a

pplications, such as when “Father decided to view a live corporate video”, ma

video stream.

 UPnP-QoS architecture is based on a cen
ility of theup and controls QoS, but the ab

ep ndent QoS control point is unclear, since such a control po
 than what is available in the current UPnP-AV and QoS services. To bring the user
in the way we described in Section 6.2.3.4, UPnP-QoS has to rely on its

SP licyHolder service. To ensure
he home together are the ones that are transmitted, and this at the appropriate quality,

ore. More about UPnP-QoS is explained in the following sections. UPnP-QoS uses
eless Multimedia, the WiFi QoS certification pr

is, which is explained in Section 6ts f 802.11e) as a bas

6.2.5.2 UPnP-QoS framework
UPnP-QoS pursues some bas

• Uniform assignment of priorities across multiple application

• Device QoS capabilities (Discovery);

Assignment
(Management); and

• Admission control based on user importance

These functions are the basis of the UPnP-QoS framework. Figure 6-9 shows a block diagram
of the QoS framework. This framework is currently under development, and its main goal is to
integrate the various QoS technolo
cohesive framework that can provide the necessary policy-based dynamic bandwidth
management features aiming at enhancing the consumer’s entertainment experience. In
addition to the existing QoS elements, this framework also provides a means to discover,
configure, and control QoS capabilities remotely over the home LAN.

Figure 6-9: QoS abstract framework based on UPnP technology

In this framework, a number of UPnP services are introduced that work in concert to provide
the necessary QoS networking functionality, namely a Policy Management service, a Traffic
Shaping service, a Traffic Enforcement service and a Content Directory service, all
coordinated by a UPnP Control Point.

Amigo IST-2004-004182 133/227

April 2005 Public

The main role of the UPnP Traffic Shaping service is to enumerate the traffic control
capabilities on end-systems (PCs and CE devices), expose them to the rest of the UPnP
network, and allow control points to configure and control these QoS capabilities remotely. In
other words, this service provides a UPnP-based interface to access its traffic control
functions, such as packet classification, tagging, and scheduling.

Similarly to the UPnP Traffic Shaping service, the UPnP Traffic Enforcement service provides

he traffic enforcement device.

The P
Server
rela
Manager, such as when a new policy comes in
gen a
info a

The UP
media
con
add
control

The P
regular functionality that it has on the UPnP network, such as discovery of devices and
ser e
For ex
the con
management service, obtain a policy decision and a priority setting from the policy manager,
and then send a command to the traffic shaping service on the media server to instruct it to tag
and shape the packets according to the decision originating from the policy manager.

6.2.5.3 Description of the UPnP-QoS components
This section describes the typical UPnP-QoS components and their supported functionalities,
which are listed below:

Control Point:
- Decides content to be streamed or data to be prioritized
- Invokes the QoS Manager service
- Acquires

o Traffic Type (AV, Gaming, Voice, Bulk, etc.)
o TrafficID from source and sink devices

� Destination IP address and port
� Source IP address and port
� Optional T-SPEC (contains link management configuration, like

requested bandwidth, minimum and maximum LSP packet size) from
UPnP™ AV CDS service

QoS Policy Holder se
- Policy

f network resources

an UPnP-based interface to access the underlying traffic enforcement (policing) capabilities.
The Traffic Enforcement service is designed to allow applications to request network
resources. It also allows a policy management application to enforce a particular policy, by
pushing rules down to t

 U nP Policy Management service is responsible for exposing the capabilities of the Policy
 to the rest of the UPnP network, and as such, it listens to UPnP policy requests and

ys them to the actual Policy Manager Application. When a change occurs at the Policy
to effect, the Policy Management service may

er te an event that triggers other devices and control points to retrieve the new policy
tion. rm

nP AV Content Directory service enumerates content available through the associated
server device. In addition to the traditional information stored in accordance with each

tent item, the QoS framework defines further QoS-related metadata extensions to be
ed for each item, such as the bit rate, packet size, and so forth. These extensions allow a

 point to identify the QoS requirements for each stream.

 U nP Control Point plays a pivotal role in the overall QoS framework. In addition to the

vic s, the control point in the QoS framework acts as a relay between the services defined.
ample, the control point may obtain QoS requirements for a specific content item from
tent directory, use the obtained information to send a resource request to the policy

rvice:

o Controls allocation o
o Influences setting of packet priorities
o Controls admission of streams

- Holds the user policy

Amigo IST-2004-004182 134/227

April 2005 Public

- Policy Holder service
o Based on (TSPEC, Traffic ID, Traffic Class and other optional information)
o Returns (User Importance Number, Traffic Importance Number, Admission

Control Enabled/Disabled state)
- Assumptions

o There will be only one Policy Holder service in the home network
o If no policy holders are discovered, or more than one policy holders are

discovered, UPnP™ QoS uses default (802.1d) priorities

Device Service:
- Provides discoverable Information

o Static: examples: device type ol supported, network technology
type, IP address, etc.

o Dynamic: exam width
- Stream setup

o Responds to path determination queries
o Responds to QoS Manager queries for static/dynamic QoS information

- Stream status feedback
o Setup time
o Run time (Path Change Eventing)

, admission contr

ples: number of traffic streams, band

Figure 6-10: An example instantiation and use of the UPnP-QoS architecture

d Intermediate Devices)

QoS Manager Service:
- Gets policy info from Policy Holder service
- Stream Configuration and Setup

o Identify Path (Source, Sink an

Amigo IST-2004-004182 135/227

April 2005 Public

o Provide Traffic ID, and additional information such as UserID, Content, CP ID to

- St
o Events, such as CP input, network events nt TSPEC from

source
s st a es

- Stream tear down

Figure 6-10 further depict ple instantiation of the UPnP-QoS architecture and
its components step by step:

1. The Control Point Identifies the Source and Sink.
2. The Control Point requests the QoS manager for QoS connection.
3. The QoS Manag am admission policy from the Policy Holder

co
4. The QoS Manager se

6.2.5.4 Summary of the UPnP-QoS framework
To summ ab e ork describe above, list following
its principal f

End-to-end QoS su includes discovery,
configuration, and control of QoS capabilities on end systems, such as source (server) and
sink (renderer) devices, as well as on intermediate network equipment, such as wireless

 underlying link-layer

QoS priority-support functionality to

LAN (802.1D) priority details

QoS device
ream Runtime a

s
djustments

or change in conte

o Modifie re ms based on Policy Chang

s a (logical) exam

er gets the stre
mponent.

ts up QoS devices.

arize the cap
eatures:

iliti s of the QoS framew d we in the

pport in the home: The QoS model in this framework

access points and Ethernet switches.

Priority-based QoS as the baseline: There are in general two broad categories of QoS
mechanisms: priority-based and reservation-based mechanisms. This framework sets priority-
based QoS with dynamic priority assignment as the baseline, due to the availability of link-
layer priority-based mechanisms.

Independence from link-layer technologies: The framework is designed to provide a
common interface for application developers, regardless of the
technology.

6.2.5.5 DLNA QoS traffic types proposal
The DLNA alliance tries to cover all types of networks in the QoS specification for DLNA-
compliant networks. UPnP-QoS is based on the WMM (wireless) priority scheme and is
covered by DLNA, as well as are the wired (802.11D) network types. This section briefly
explains the different QoS priority standards, and presents the single DLNA proposal for DLNA
QoS traffic types covering both wired and wireless networks.

Multimedia applications on IP networks benefit from
optimize the way in which shared network resources are allocated among different
applications. Without QoS priority support, all applications running on different devices have
an equal opportunity to transmit data frames. However, multimedia applications such as video
streaming and music streaming are sensitive to excessive latency variations and throughput
reductions. With prioritized QoS, applications label (tag) packets to indicate the User Priority
(UP) that dictates how the packets are allowed to access network resources.

The DLNA QoS model is intended to allow DLNA applications that wish to take advantage of
User Priority to have common usage rules for tagging. Devices that do not wish to use QoS
must be tolerant of tagging. The DLNA QoS model promotes fair and consistent usage of
priorities and balanced performance across all DLNA Traffic Types, in addition to
interoperability, thus enhancing the overall user experience.

Amigo IST-2004-004182 136/227

April 2005 Public

802.1D is a QoS priority scheme for wired LANs in computer networks. It works with 7 levels of
riority for traffic, listed below. In Figure 6-11, differentiation of traffic according to 802.1D QoS
riorities is illustrated.

• Network h time-critical and safety-critical, consisting o traffic needed
to maintain and supp outing prot ol frames.

• Voice (6): Time-critical, characterized by less than 10 ms delay, such as interactive

 ms delay, such as interactive

• -critical but loss h as streaming multimedia

• not time-critical but loss-sensitive; however, of lower priority
services

p
p

 control (7): Bot f
ocort the network infrastructure, such as r

voice.
• Video (5): Time-critical, characterized by less than 00 1

video.
Controlled load (4): Not time

iness-critical traffic. A

t effort (3): Also

-sensitive, suc
or business apand bus typical use is f plications bject to some

form of reservation or admission control, such as capacity reservation per flow.
Excellen

 su

rmathan controlled load. This is a best-effort type of service that an info tion
organization would deliver to its most important customers.

• Best effort (2): Not time-critical or loss-sensitive. This is LAN traffic handled in the
traditional fashion.

• Background (0): Not time-critical or los ower priority than best
effort. Th bulk transfers and other activities that are permitted on the

s-sensitive, and of l
is type includes

network but should not impact the use of the network by other users and applications.

Figure 6-11: IEEE 802.1D traffic class operation

WMM (Wireless) priority details
Table 6-6 depicts the 4 categories that WMM uses for priority of packets. Then, Figure 6-12
shows an example of how WMM affects throughput for competing data streams. In the top
graph, WMM gives a higher priority to the video application than to the other data streams.
During the first 10 seconds, both the video and the low priority data stream have sufficient
resources. The introduction of a third data stream creates transmission demands that exceed
network capacity. WMM gives the video stream a higher priority to ensure that it has sufficient
resources. In the bottom graph, WMM is not enabled and, therefore, all traffic streams are
given the same access to the wireless medium. In this case, the introduction of the third data
stream penalizes all data streams equally.

Amigo IST-2004-004182 137/227

April 2005 Public

BK WMM Backg

WMM B
round

BE
Priority

Amigo IST-2004-004182 138/227

est-Effort
VI

Priority
WMM Video Priority

VO WMM Voice Priority

Table 6-6: WMM Access Categories

Figure 6-12: Example of the effect of WMM on a video stream

DLNA proposal to QoS traffic types
Table 6-7 shows the proposed DLNA traffic types (DLNAQOS_0 - DLNAQOS_3), and the
corresponding priorities for wired LAN (802.1D), wireless (WMM) and DSCP (Differentiated
Services Code Point) in comparison. With these DLNA traffic levels, we ensure that priority
settings (levels) of packets in a heterogeneous network (typical per network type) have the
same weight (interoperable traffic priority of packets).

April 2005 Public

A 182 139/227 migo IST-2004-004

ric enough to be more widely applied in the Amigo The proposed DLNA traffic types are gene
home environment. For example, to implement QoS also for the domotics domain – presented
in the next chapter – (e.g., house security, fire alarm, etc.), we may use the highest priority
level (DLNAQOS_3) for this type of traffic. In this way, we make sure that the safety of people
in the home is best guaranteed. Other kinds of services in the domotics domain can be
covered with the other defined traffic types.

DLNAQOS_UP DLNA Traffic Types 802.1D

User
Priority

WMM
Access

Category

DSCP

DLNAQOS_3
(highest)

• RTCP messages generated by
rendering endpoints

7 VO 0x38

DLNAQOS_2 • Audio-only streaming

• A/V streaming
• UPnP AV transport stream control
• RTCP messages generated by

serving endpoints

• RTSP messages

5 VI 0x28

DLNAQOS_1 • Default priority for any traffic
defined by DLNA guidelines,
unless specified otherwise

• Image transfers

0 BE 0x00

DLNAQOS_0
(lowest)

• Bulk transfers and error
responses

1 BK 0x08

Table 6-7: Normative priorities for DLNA Traffic Types

6.3 Amigo multimedia streaming architecture
In the previous sections, we presented the CE domain background, mostly based on the
current DLNA guidelines, and we carried out a thorough analysis of the QoS assurance issue
in multimedia networking; we proposed a base approach to this issue, drawing from the –
about to come – new DLNA guidelines. Building on this elaboration, we introduce in this
section our approach to the Amigo multimedia streaming architecture, in accordance with the
Amigo abstract reference service architecture, presented in Chapter 3.

In the Amigo networked home, most of the DLNA guidelines and recommendations will be
llowed for the integration and dispatching of multimedia content. Within Amigo, we will
rther deal with aspects that are not or not yet contemplated in the DLNA guidelines. In Figure

6-13, it is shown how the DLNA guidelines are incorporated into Amigo for realizing multimedia
streaming among devices of the networked home environment. In this integration, will
take over d Media

s QoS analyzed in Section 6.2, and Content Protection
hts Managem .2 (DLNA

does not mandate specific content protection solutions).

The Amigo multimedia streaming architecture elaborated in this section includes five basic
elements, whose design has been inspired by the UPnP hitecture [Rit02a] and the
DLNA guidelines [DLN04b]: Digital Media Server (DMS), Digital Media Renderer (DMR),
Control Point (CP), QoS Manager (QM) and Policy Holder (PH). In additio sixth
element can be added, whic s as a diate Node (IN). This IN aware

 be p S co betwe R and DMS. I

fo
fu

 Amigo
Device Discovery and Control, Media Management and Control, an

Transport, as well a
involving Digital Rig

, which has been
ent (DRM), which is discussed in Section 8.4.3

AV Arc

n to these, a
 should be h function

art of a Qo
n Interme
nnectionof QoS, since it can en a DM n a home

April 2005 Public

network, these elements can be easily identified. For example a Digital Media Server could be
a digital still camera (the digital photos will be the multimedia content in this case), a TV set
could be the Digital Media trol, like the one controlling the TV set,

l Poi r
 home netw lder to get

str olicies.

• All the multimedia contents in the home network should be shared among all the
devices.

der the multimedia contents on any available digital renderer in the

• Multimedia content streaming is controlled to ensure the quality of the playing.

nts shall not be seen but rather as components that can
evice can be a DMS, but could also take the role of a DMR. For

in an example scenario.

 Renderer, and a remote con
nt. The QoS Manager is a component deployed specifically focould be the Contro

ensuring QoS in the
eam admission p

ork. The QoS Manager contacts the Policy Ho

Amigo IST-2004-004182 140/227

Figure 6-13: Amigo in the DLNA stack

We consider three important requirements in this architecture:

Q
o
S

D
R
M

• The user can ren
home network.

The six introduced eleme
be part of a device. A d

 as devices,

example a PC could act as a DMS sharing MP3 music with the TV set. But we can as well see
the photos made with our digital camera on the PC, and, in this case, the PC acts as a DMR.

In the following Sections 6.3.1 to 6.3.6, we detail each element of the Amigo multimedia
streaming architecture, pointing out the mapping of each one on the Amigo abstract reference
architecture. Then, in Section 6.3.7, we illustrate the functioning of the streaming architecture

Wired: 802.3i, 802.3u
Wireless: 802.11a/b/g

IPv4 Protocol Suite

Device Discovery
and Control

 Amigo

JPEG, LPCM, MPEG2Media Formats

, Media
Management and
Control, Media

port

Network Stack

Network
vity

Trans

Connecti

April 2005 Public

6.3.1 Digital Media Server (source)

 devices such as MP3 servers and Home
edia Servers such as the PC. Although these devices contain diverse multimedia content in
ne form or another, the DMS is able to expose this content to the home network in a uniform

an The DMS enables locating content that is available via the home
network. Thus, the DMS allows Control Points to enumerate (e.g., browse or search for)
conte available for the user to render. Figure 6-14 shows how a DMS is
mapped on the layers of the Amigo abstract reference architecture.

At app
seman

At
str reaming Protocols) and those involved in the exchange of control
(St esented in
Sec ls, s . However, such
protocols as well employ Message Communication Protocols; here apply the

The Digital Media Server (DMS) model is a general-purpose device that represents any
Consumer Electronic (CE) device that provides multimedia content to other devices in the
Amigo home. This element provides acquisition, publication, storage and sourcing capabilities
of multimedia contents. Example instances of a DMS include traditional devices such as
VCRs, CD players, DVD players, MP3 players, audio-tape players, satellite/cable receivers,
still-image cameras, camcorders, radio tuners, TV tuners, and set-top boxes. Additional
examples of a Media Server also include new digital
M
o

d consistent manner.

nt items that are

Content
Storage

Message Comm. Protocols

Streaming
Protocols

(RTP/RTCP,
HTTP)

Streaming
Session
Control

Protocols
(RTSP,

UPnP AV)

Service
Discovery

Content
Management

Accounting &
Billing

Multimedia Servic
syntactic +

es
 s nal/end-to-end QoS specification

syntactic media format specification

Amigo IST-2004-004182 141/227

Figure 6-14: DMS mapped on the Amigo abstract reference architecture

lication level, the DMS supports enriched description of Multimedia Services, both
tic and syntactic, in terms of functional and end-to-end QoS properties.

middleware level, communication protocols are included, both those involved in the
ng of eami content (St

r

 might

eaming Session Control Protocols). The streaming session control protocols pr
tion 6.1.4 execute directly on top of transport protoco uch as TCP

emantic functio

QoS support

Stream Shaping
Transcoding
Reservation
Prioritization

DRM

QoS Support

He

Heter
Middleware

Layer

Hete
Platform

terogeneous
Application

Layer

ogeneous

rogeneous

Layer

April 2005 Public

mid
middle
Shapin ritization, which were analyzed in Section 6.2.
Som essage
Communication Protocols. Moreover the middleware layer deals with Service Discovery and
Content Management, which enable DMS discovery by users, and handling, locating and
listing of multimedia items. Finally, to handle the peculiarities of multimedia content in the
sense of copyright and legal protection, enabling paying content and services coming from
external service providers, DRM as part of security and privacy, and Accounting & Billing
services need to be included in this layer. DRM spans also the application layer.

At platform level, the DMS shall include Content Storage services supporting special features
of collecting high amounts of data, which is a common issue when storing A/V contents. In
addition, QoS Support aspects at network level are also included here.

6.3.2 Digital Media Renderer (sink)
The Digital Media Renderer (DMR) model defines a general-purpose device that represents
any Consumer Electronic (CE) device that is capable of rendering AV content from the home
network. It exposes a set of rendering controls with which a Control Point (CP) (presented in
the next section) can control how the specified AV content is rendered (e.g., Brightness,
Contrast, Volume, Mute, etc.). The Digital Media Renderer (DMR) is used to render (e.g.,
display and/or listen to) content obtained from the home network. Additionally, depending on
the transfer protocol that is being used to obtain the content from the network, the DMR may
also allow the user to control the flow of the content (e.g., Stop, Pause, Seek, etc). Example
instances of a DMR include traditional devices such as TVs, stereo systems and speakers.
Some more contemporary examples include digital devices such as MP3 players and
Electronic Picture Frames (EPF). Although most of these devices typically render one specific
type of content (e.g., a TV typically renders video content), a DMR is able to support a number
of different data formats and transfer protocols. For example, a sophisticated implementation
of a TV DMR could also support MP3 data, so that its speakers could be used to play MP3
audio content. Figure 6-15 shows the mapping of a DMR on the Amigo abstract reference
architecture. At application level, the DMR supports enriched description of Multimedia
S
the DMS are included. At platfo ork-level QoS Support.

6.3.3 Control Point
) coordinates and manages the operation of the DMS and DMR as

synchronizes the DMS and the DMR. The access to the contents is

ting over

dleware communication protocols discussed in Chapters 2 to 5. On the other hand, the
ware layer takes care of QoS support aspects applying mechanisms such as Stream
g, Transcoding, Reservation and Prio

e of these mechanisms, if distributed in the home network, may employ M

ervices, same as the DMS. At middleware level, most functional blocks of the same level of
rm level, the DMR includes netw

The Control Point (CP
directed by the user (e.g., play, stop, pause), in order to accomplish the desired task (e.g., play
my favorite music). Additionally, the CP provides the UI for the user to interact with in order to
control the operation of the device(s) (e.g., to select the desired content). Some examples of a
CP might include a TV with a traditional remote control or a wireless PDA-like device with a
small display. The CP
done through this element. It provides to the final user the contents that are available in the
DMS and the possible devices to reproduce them. It also controls the flow of the contents, as
well as some options of the playing, like brightness, volume, etc. Figure 6-16 shows the
mapping of a CP on the Amigo abstract reference architecture.

At application level, the CP does not itself host multimedia services, however, it shall be able
to interpret and reason on Multimedia Service Descriptions to manage service discovery and
set up. At middleware level, Streaming Session Control Protocols, possibly execu
Message Communication Protocols, control streaming sessions between the DMS and the
DMR. Further, Service Discovery and Content Management enable locating appropriate DMS
and DMR devices and content. Finally, Accounting and Billing manages charging of external
paying services.

Amigo IST-2004-004182 142/227

April 2005 Public

Multimedia Services
syntactic + semantic functional/end-to-end QoS specification
syntactic media format specification

Message Comm. Protocols

Streaming
Protocols

(RTP/RTCP,
HTTP)

Streaming
Session
Control

Protocols
(RTSP,

UpnP AV)

Service
Discovery

QoS Support

DRM

QoS Support

Stream Shaping
Transcoding
Reservation
Prioritization

Heterogeneous
Application

Layer

Heterogeneous
Platform

Layer

Heterogeneous
Middleware

Layer

Figure 6-15: DMR mapped on the Amigo abstract reference architecture

Amigo IST-2004-004182 143/227

April 2005 Public

Heterogeneous
Application

Layer

Message Comm. Protocols

QoS Support

Heterogeneous
Middleware

Layer

Heterogeneous
Platform

Layer

Stream Shaping
Transcoding
Reservation
Prioritization

on the Amigo abstract reference architecture

6.3
The Po /user specified/guaranteed), and the
diff n
new o
PH ma
contrib echanisms related to QoS policies (see Section 6.2).

6.3.6
An Inte
router in the network. It may be interposed in the connection between the DMS and the DMR.

Figure 6-17: QM mapped

.5 Policy Holder
licy Holder (PH) holds a list of QoS policies (priority

ere t levels of priority for a certain service/device. It will be contacted by the QM before a
 c nnection will be made between the DMR and the DMS. In Figure 6-18, we can see the

pped on the Amigo abstract reference architecture. At middleware level, the PH
utes to QoS support m

Intermediate Node
rmediate Node (IN) can be a gateway (to connect different types of networks) or a

It should be aware of the QoS mechanisms between the DMS and the DMR. In Figure 6-19,
we can see the IN mapped on the Amigo abstract reference architecture. At middleware
level, the IN includes a number of functional blocks of the same level of the DMS and the
DMR, in order to be able to be interposed between them. At platform level, for the same
reason, the IN includes network-level QoS Support.

Amigo IST-2004-004182 145/227

April 2005 Public

Amigo IST-2004-004182 146/227

Figure 6-18: PH mapped on the Amigo abstract reference architecture

6.3.7 An example scenario
In Figure 6-20, we see a global view of the architecture with the general steps to play AV

Figure 6-19: IN mapped on the Amigo abstract reference architecture

content in the home network:

Message Comm. Protocols

Layer

Heterogeneous
Middleware

Heterogeneous
Platform

Layer

Heterogeneous
Application

Layer

Streaming
Protocols

(RTP/RTCP,
HTTP)

QoS support

Stream Shaping
Transcoding
Reservation
Prioritization

QoS Support

Message Comm. Protocols

QoS Support

Heterogeneous
pplication

Layer

Heterogeneous
Middleware

Layer

Heterogeneous
Platform

A

Reservation
Prioritization QoS Policy List

Layer

April 2005 Public

1. The user accesses th t in o discover DMSs and DMRs. Then, there
is communication with the DMSs (via HTTP or UPnP AV) to find the desired AV
content. The Control Point selects the appropriate DMS. The Control Point then looks
for a DMR (communication via HTTP or UPnP AV) with adequate capabilities (transfer
protocol and data formats) for playing the AV content.

2. The Control Point requests the QoS Manager for a QoS connection between DMS and
DMR.

3. The QoS Man y Holder.
4. The QoS Manager sets up DMS and DMR for QoS.

e Control Poin rder to

ager gets the stream admission policy from the Polic

5. Now, there is end-to-end QoS guaranteed between DMS and DMR. At this stage,
RTP/RTCP or HTTP communication between the DMS and the DMR is established
and the AV content is started to play.

6. The Control Point controls the playback via RTSP or UPnP AV communication.

AV
CONTENT

End-to-end QoS (5)

Amigo IST-2004-004182 147/227

Control
Point

 AV
CONTENTS

UPnP / RTP /
RTCP (2)

HTTP/

AMIGO USER

HTTP/
UPnP AV

(1)
UPnP AV

(1)

Interacts

QoS
Manager

Devices QoS setup (4)

Policy
Holder

Get Stream
admission
Policy (3)

Quality of Service.

The Digital Living Network Alliance (DLNA) effort towards an industry agreement for an
able network at home provides a solid background for the integration

o the Amigo architecture. However, the fact that interoperability is one of the

Figure 6-20: An example functional scenario for the Amigo multimedia streaming architecture
(Intermediate Node not shown)

6.4 Discussion
The attractiveness of the CE domain to the typical user must be enforced by the Amigo home
system by adding value to the existing functionalities. This can be achieved by providing
automatic dynamic configuration, interoperability and seamless operation without diminishing

integrated and interoper
f the CE domain in

April 2005 Public

main objectives of Amigo justifies the acknowledgement, as well, of protocols for multimedia
transmission that are well established in the Internet community, such as RTP and RTSP.

d new products are incorporating

ork. The DLNA approach, using UPnP-

 service architecture. The Amigo middleware

Thus, the Amigo multimedia streaming architecture shall extend that proposed by the DLNA to
assure interoperability and smooth coexistence with other mainstream technologies.

Nevertheless, UPnP is continuously acquiring prestige, an
networking capabilities based on this technology, promoted by the DLNA and the UPnP
Forum. UPnP, therefore, stands as the main device discovery and control protocol in the CE
domain, and opens the possibility of a straightforward integration into the Amigo architecture.
In fact, the, still under development, UPnP-QoS solves much of the problem of QoS integration
into such a heterogeneous network as the home netw
QoS as a basis, would be a reasonable guideline for the Amigo CE QoS control.

In this chapter, we have elaborated an approach to CE integration in Amigo, building on the
above background. The different devices and services involved in this approach have been
mapped on the Amigo abstract reference
manages Device Discovery and Control, Media Management and Control, and Media
Transport, while QoS functions and DRM span the application, middleware and platform
layers.

Amigo IST-2004-004182 148/227

April 2005 Public

7 Integration of the Domotic domain
A domotic environment can be defined as a physical space that contains a set of components
in housing and society, applicable to safety, security, comfort and self-care. Wherever a
domotic system user is, the system should be able to switch the lights on, pull the blinds up,
schedule the garden watering, and control any of the white goods in the house. Also,

herefore, several different bus

interfaces to Generally, domotic technologies depend strongly
on the manufacturer.

• Different QoS needed: as can be easily observed, controlling a blind or a fire sensor
does not need the same QoS: some messages in a domotic network must have higher
priority than others, or can have real time requisites; this issue was briefly discussed in
Section 6.2.5.5, where the DLNA-proposed priorities for different traffic types were
presented.

Currently, there are various bus systems in the domotic area on the market, which allow
building up a simple form of an intelligent home. These systems offer different possibilities
and, of course, have different shares in the market. The problem of integrating such diverse
system components appears to be an enormous task, particularly when seen from each
individual manufacturer’s point-of-view, as unique solutions are required for each integration
link. Besides these systems, there are a lot of other systems with proprietary protocols. About
these systems no general statement is possible. However, at least the integration of the
existing bus systems in the Amigo home environment should be possible. To reach this
objective, we must especially consider the following aims:

• Integration of existing heterogeneous systems. A new coming up middleware shall
be able to integrate the existing systems, and to offer new services upon legacy
devices with communication capabilities (actors, sensors, white goods).

ly

activating the anti-thief system or the heating system should be affordable. An alarm should be
received and the valves could be locked if a gas or water leak were detected. Refrigerator
malfunctions or intruder detections should also be communicated to domotic users, wherever
they are. Energy cost savings, security of persons and goods, comfort improvement are some
of the benefits of Home Automation. Energy cost savings are achieved thanks to temperature
management depending on presence and type of rooms, automatic adaptation of power
consumption to tariff rates, or lighting management. Security of persons and goods is
increased with functions such as detection of fire or gas leakage, tele-transmission of alarm, or
detection of intrusion. Increasing the quality of life brings new facilities for elderly, in-house
distribution of entertainment and services, tele-control of heating and lighting. To achieve all
these new services, home appliances, connected on different communication media, have to
communicate and exchange messages in a structured way. T
systems connecting home devices have been established in the market. The main features of
a domotic device are:

• Simplicity: elemental devices with no complex hardware and with simple
communication technologies.

• Low bandwidth requirements: messages in a domotic network are short and not
frequent. High bandwidth is not a requisite for domotic systems.

• Small resource capabilities: in general, functionality provided by current domotic
devices does not need a big amount of resources.

• Manufacturer dependency: different vendors offer diverse and quite specific
 each particular device.

• Extensibility to new devices. New systems and devices should be easi
incorporated into the home environment by means of an extensible middleware.

Amigo IST-2004-004182 149/227

April 2005 Public

• Easy scenario development and integration. The commissioning and the
uration of a networked home currently need to be done by an

config expert. The
configuration is hard work, and even experts make mistakes, especially when setting

Since we have to deal with a diverse set of systems and devices, the key to be able to
 heterogeneous systems is getting a well-known, common interface, so that the

n this

s protocols presenting their

7.1 rotocols
The o s systems (BatiBUS, EHS, EIB,
KO E ed in the market, and point out the differences and dis-
/advantages of these sy

7.1

up scenarios or automatisms. A scenario is a decentralized controlling of more than
one device, e.g., switching on two lamps. An ex post configuration, like the changing or
adding of a new scenario, done by an ordinary user is unthinkable. Thus, allowing easy
scenario development would facilitate enormously the installation of domotic systems.

integrate such
devices can be addressed independently of the domotic network to which they are connected.
This common interface can be any Amigo-supported Service Discovery Protocol (SDP), like
UPnP, SLP, Jini, etc., and its associated interaction mechanism. Thus, our objective is flexible,
networked domotic services provision in the Amigo home environment. We elaborate i
chapter a structured approach towards building discoverable software proxies (UPnP-enabled,
Jini-enabled, etc.) of all domotic devices, so that they can be discovered and controlled using
the Amigo service discovery and communication, independently of their bus system or
configuration.

In the following, we first survey currently established domotic bu
main features (Section 7.1). Then, we elaborate the Amigo domotic service architecture, in
accordance with the Amigo abstract reference service architecture presented in Chapter 3
(Section 7.2). We finally present our conclusions (Section 7.3).

 Background on domotic bus p
 f llowing sections present the most important bu

NN X, LON, BDF) establish
stems.

.1 BatiBUS
LANDIS & GYR, MERLIN GERIN, AIRLEC and EDF developed BatiBUS37 . These four
firms founded also the BatiBUS Club International (BCI) in 1989 in order to promote the
BatiBUS system. Today the BatiBUS association has over 80 partners mainly engaged in the
fields of energy control, security, access control, lighting and teleservice.

n

 of the

BatiBUS is an open protocol and has been accepted in France as a standard for building
control systems. The French standard is described as NFC 46620 and lays down regulations
for the physical layer, data link layer, application layer, and network management
requirements. The BatiBUS standard is also accepted by the CENELEC (Europea
Electronics Standard Committee) and ISO (International Standards Organization) initiatives.

A twisted-pair is used for the BatiBUS. It can be laid parallel to the mains power supply
network. Any telephone wire pair or twisted electric cable may be used, shielded or not. The
Bus Line interconnects all sensors and actuators in a building control system. Doing so 7680
devices can be connected to the bus at one time.

The BatiBUS topology can be implemented in a line, star, tree or loop formation. Table 7-1
shows the maximum lengths applied to the bus given the cross-sectional area
conducting lines. The distance (D) is the maximum distance between the central unit and the
farthest point. The length (L) is the total network length.

.net/Batibus.htm 37 http://www.batibus.com, http://www.domotica

Amigo IST-2004-004182 150/227

April 2005 Public

Section mm D m L m

0.75 250 1900

1.5 500 2500

2.5 600 2500

Table 7-1: Table with given lengths of transmission

suited to small and medium tertiary buildings including homes, schools,
ice blocks. Actually, it combines different systems on upper lever

Information is transmitted on the b with rate of 4800 bits per second. Each frame is
subdivided into the follow g fie s: message ype field, destination/em field,
destination/emitter addr ield ta f and eck field

To transmit a frame on the bus the frame is split up into 8 bit characters and transmitted on the
bus as 1 start bit, the 8 data bits, a parity bit and a stop bit.

The twisted pair for the bus also provides the power for the BatiBUS participants. The power is
intended for low power devices drawing not more than 3mA, the total power available being
150mA at 15V.

us a
in ld t itter type

ess f , da ield ch

Each participant of the system has to be identified by a BatiBUS address. In small systems the
address configuration can be set manually.

For more complex installations control can be made from a central command and
configuration program. The system then contains a central unit, which is involved in nearly
every communication. The advantage of this is that the system can be configured via software
tools and reconfigured at any time. Especially remote installation and teleservice for
maintenance can be support by these techniques.

Furthermore, easy installation using plug&play methods are not implemented yet. This leads to
non-standard interfaces and connections to further applications like teleservice, remote
configuration etc.

These mentioned disadvantages should be eliminated within the KONNEX standard (see
Section 7.1.4).

BatiBUS is particularly
hotels and small off
communication.

The one major drawback of BatiBUS is that is confined to the twisted pair medium. This
implies that if an existing building is to receive BatiBUS products a twisted pair network must
be installed. This makes it impossible to use it in a subsequent installation.

7.1.2 EHS
European industries developed, with the help of funding from European EUREKA and ESPRIT
programmes, between 1984 and 1992, the home communication system European Home
Systems (EHS) [KJMS00].

The European Home Systems Association (EHSA)38 was founded in 1992 by a group of
leading European electrical firms to promote the use of the European Home Systems
specification. EHSA is an open organization aiming to maintain and to promote the EHS
specification. Inside EHSA, the Standard Control Committee (SCC) is in charge of the
enhancement of the EHS specification and of the co-ordination activities of the Inter-

38 http://www.ehsa.com

Amigo IST-2004-004182 151/227

April 2005 Public

Operability Group (IOG), which ensures the inter-operability between equipment at the
application level.

The EHS specification has been defined to enable home appliances to communicate and
share each other's resources. The EHS protocol is based on a shared communication system
and on unambiguous definitions of the device functionality.

However in an EHSA newsletter entitled “Convergence” the chairman of the board admitted
that the specification was not sufficient to remain on the market. In this regard, EHSA’s new
direction is to focus on converging the two European de facto standards EIB and BatiBUS into
one, together with elements of the EHS specification.

The specification describes completely all the communications aspects. The EHS
communication model follows the structure of the Open Standard Interconnection (OSI)
reference model. The physical layer, the data link layer, the network layer and the application
layer are specified by the EHS specification.

Several physical layers (m nto account the variety of
applications requirements: twisted pair, coaxial cable, power line, radio and infrared. Actually,
the development has been concentrated and increased especially on the power line and radio

 on one bus line of a network. Different lines
nnected, using routers. The total capacity is more than 1012 addresses. The

edium types) are already defined taking i

connection. 256 devices can be accommodated
can be interco
main advantage of EHS is the use of the existing power line network. This makes the
subsequent integration of this technique much easier. Also an additional plug isn’t required.
The configuration is comparable to other bus systems. Table 7-2 shows recommended cable
lengths for each medium.

Medium Number of Devices Cable Length
Twisted Pair 128 500m
Coaxial 128 150m
PowerLine 256 House
Radio Frequency 256 tx/rx dependent
InfraRed 256 Room

Table 7-2: Table with the different cable lengths (dependent on the used medium)

Several participants of the network communicate with each other at different transmissions
rates. Table 7-3 shows the connection between medium, technique and data rate.

Medium Technique Data Rate
Twisted Pair (general purpose) CSMA/CA 9600bps
Twisted Pair(ISDN) CSMA/CD 64kbps
Coaxial CSMA/CA 9600bps
Power Line CSMA/ack 2400bps
Radio Frequency CT2 1200bps
InfraRed - 1100bps

Amigo IST-2004-004182 152/227

Table 7-3: Table with the different data rates for several mediums and techniques

tion transmitted on the bus are specificied through the Medium Access
Control (MAC) function of the EHS protocol. The datagrams consists of several fields: address
The packets of informa

April 2005 Public

field, data field and Cyclic Redundancy Check (CRC). The EHS communication uses the
CSMA (Carrier Sense Multiple Access) protocol. The error detection technique is medium-

ependent. The Power Line uses a combined error correction, error detection technique, due
 its inherent transmission characteristics. Using a power line network implies that each

device must contain its ow ly. The vides 35v (twisted pair) or
15volts DC (coaxial).

In an EHS, network addresses are allocated d n sys tart-up a “System
Unit sible for allo ddresses to e devices on s and establishing
com between t m units ha lication rela ctionality and are
used for the egration an stem units d Device Co-
ordinator, Medium Controller and Router. To co system, a connected to the
“Sys gh a visual interface ea is configur ommunicate with
each is approach , e.g., the re uration. T re the architecture
of EHS network is based on the notion of controllers and devices application
domains (see Figure 7-1). The controller named feature controller (FC) controls the application
and ce of the ap h as reso monitoring, control
algorithm or decision making process. A controller defines one application domain but can
cover several application domains by sharing their resources.

A device pr ater
manages the heating resource, a thermostat manages a threshold temperature. A device

re interchangeable. This two-byte DD gives the necessary
inform r lle now resources are available on the network and how to

 resources. The first byte is the application domain, the second byte gives the
escription of the device itself (e.g., DD = 1611 represents a room temperature sensor in the

d
to

n power supp network pro olts DC

ynamically. Upo tem s
” is respon cating a ach of the the bu
munication

 network int
hem. Syste

d management. The sy
ve no app ted fun

efined are:
nfigure the PC is

tem Unit” and throu ch device ed to c
 other. Th supports mote config herefo

shared into

provides features and intelligen plication suc urces

ovides and manages application resources. For example, an electrical he

belongs to a single application domain but may be shared or controlled by several controllers.
Each device is described by a Device Descriptor (DD) codified by the specification. Thus,
devices having the same DD a

ation fo a contro r to k what
reach those
d
heating application domain). Controllers and devices may establish a logical link, named
enrolment, between them to define an application domain. A device able to be enrolled by a
controller is named complex device (CoD).

Figure 7-1: The architecture of the EHS network is based on the notions of controller and
devices and on the notion of application domains. Application resources are described by a

Amigo IST-2004-004182 153/227

April 2005 Public

Device Descriptor (DD). Commands exchange between controller and devices of the same
application domain are based on EHS codified objects and services.

By their own admission, EHSA has stated that the specification is not sufficient to remain on
the market and instead is concentrating on converging with EIB and BatiBUS. Actually, several
white good producers have passed a new standard, called CECED, which uses the EHS
protocol. This standard is implemented by several manufacturers.

7.1.3 EIB
Founded in 1990 by 15 firms, the European Installation Bus Association (EIBA)39 is now an
association of roundabout 100 electrical installation firms who have joined together for the
purpose of bringing about a common standard for installation buses in the market place.

Their objective for a uniform building management system throughout Europe is achieved by
laying down technical directives for systems and products, devising quality rules, drawing up
test procedures, making system know-how available to members, subsidiaries and licensees,
engaging test institutes to perform quality inspections, granting third parties who pass tests the
use of the “EIB” mark and taking an active part in standardization.

the association is the “EIB” mark. Compared with other bus systems, the EIB40

• 15 Bus Lines pe L es co with Line Couplers; and

• as; Areas coupled together with Area Couplers.

Actual anufactures develop new EIB–Components using different medium
types. Especially components using power line or radio frequency are used to retrofit a bus
system in existing buildings. Other EIB-Components can be operated via an infrared remote
contro

In Nov a draft standard was submitted to the European Electronical Standards
Committee (CENELEC) for processing, and proceeded to a European standard (EN) or
presta the German Electrotechnical Engineering Commission (DKE)
passe isional standard, which was published as DIN V VDE 0829.

The original EIB Installation bus is a twisted-p main power
supply network. The Bus uators of an installation
together. Sensors are command initiators such as switches and pushbuttons. Other types of

everal physical layers (medium types) are already defined taking into account the variety of
applications requirements: twisted pair, coaxial cable, power line, radio and infrared.

The topolog is divided into areas and Figure 7-2). The smallest topology
elemen n a line, up to 64 onnected. Up to 15 of such lines can

The symbol of
[DiKS00] protocol has very strict specifications, which are supervised by the EIBA. This leads
to a very high compatibility of EIB-Devices of different manufacturers. These are some
regulations of the physical specifications of the twisted pair protocol:

• Overall length of a bus line: 1000m;

• Maximum distance between 2 bus devices: 700m;

• 64 devices per Bus Line;

r Area; Bus in upled together

Maximum of 15 Are

ly, more and more m

l.

ember 1991,

ndard (ENV). In July 1992,
rovd the EIB system as a p

air, which is laid parallel to the
 Line interconnects all sensors and act

sensors include temperature sensors, brightness sensors etc. Actuators are command
receivers such as luminaries, blinds, heating, door openers etc.

S

y of the EIB
t is the line. O

 lines (see
 devices can be c

39 http://www.eiba.org/index.html
40 http://www.eib.org, http://www.eib-home.de

Amigo IST-2004-004182 154/227

April 2005 Public

be join ith a Line Coupler rea. Up to 15 of such Bus Areas can
be con h these elements, topology types like a line, ring, star or
tree ca rmed.

Wit
incr
second. No impedance matching is required. For the addressing of the EIB components group

par
whi
con is also called logical address. It combines

n terms of telegrams. Each telegram is
dress field, data field and check field. In

ed together w
by Area Couplers. Wit

to form one Bus A
nected
n be fo

Amigo IST-2004-004182 155/227

Figure 7-2: EIB Topology

h the help of line amplifiers the maximum amount of EIB devices (15x15x64=14400) can be
eased. Devices on the bus communicate with one another at a rate of 9600 bits per

addresses and physical addresses are used. The physical address identifies the single bus
ticipants. It is used for programming, diagnostic issues and includes the line and area in
ch the participant is installed. The physical address is normally allocated once during the
figuration process. The group address

participants acting together (e.g. which sensor is sending information to which actors.). Actors
can listen to more than one group address and normally there are more than one actor
listening to the same group address.

Information transmitted on the bus is described i
subdivided into the following fields: control field, ad
order to ensure orderly communication on the bus an arbitration mechanism is employed,
which only allows one device to communicate on the bus at any one time (CSMA/CA). The
installation bus is driven with low voltage (DC 24V) and in this way is separated from the
heavy current system. There must be at least one power supply per Bus Line.

Configuration of the bus system is achieved using the EIB Tool Software developed by the
EIBA. In the first step a unique identifier must be allocated to each EIB-Component. The
location and physical address (unique identifier) of each bus device is entered in the
architectural drawings. When an installation is complete a serial interface from a personal
computer configures the EIB system. Therefore the configuration can be done remotely with a
special configuration program. In a newer approach, called “easy installation”, developed by
an EIB-device manufacturer, the EHS approach is adapted, where network addresses are
allocated dynamically.

LC LC LC LC

AC

LC LC LC LC

AC

LC LC LC LC

AC

LC LC LC LC

AC

LC LC LC LC

AC

Backbone

Main-Line

Line

April 2005 Public

7.1.4 KONNEX
The Konnex Association41 is the logical consequence of the merging of 3 Associations; BCI
(BatiBUS Club International), EIBA (EIB Asssocation) and EHSA (European Home Systems
Association) into one single Association. 9 companies, emanating from at least one of the
associations mentioned, founded Konnex Association in May 1999. At the moment, the
Konnex Association represents approximately 100 leading companies worldwide, operating in
the field of Home and Building Electronic Systems.

promote its One-Single-Standard called KNX, built

 enlarged with the physical
layers, configuration modes and application experience of BatiBUS and EHS; it covers 3
different configuration modes (see Figure 7-3) and 4 different network media till now. The 3
configuration modes, especially S- and E-Mode, meet the needs for certified, as well as for
basic trained installers (compare with EHS and EIB). The Automatic configuration mode (A-
Mode) is even meant to have domestic s a washing machine or a fridge,
connected and configured to the network even by non-trained customers. With the 4 different
media in the KNX Standa conditions of the building
and the different functions required.

The aim of the Konnex Association is to
upon the technical expertise of the 3 legacy associations. This standard will integrate the
existing bus systems, which automatically guarantees a full interoperability with other
applications. The other interesting aspect for domestic applications is that the standard is
designed to have easy access to the World Wide Web. Another goal is to realize a connection
between the home to the tele-/information backbone. This will bridge the gap and offer
interfaces for telecom companies and the electricity distributors. Their interest in the KNX
standard is its easy access to their networks and the One Single communication protocol for
all different media. On the one hand, it broadens their possibility to offer extra services towards
their clients, and on the other hand, they interest service providers to use their networks for
new offers in e-commerce and e-services to the consumer.

The KNX standard is based on the communication stack of EIB

 appliances, such a

rd, installers can adapt the network to the

One Standard

Figure 7-3: Levels of the different modes

g 41 http://www.konnex.or

Amigo IST-2004-004182 156/227

April 2005 Public

7.1.5 LON
LonWorks42 is a commercial networking technology developed by the Echelon Corporation43 in
1991. It quickly earned acceptance in the industrial and building automation industries. At the
same time, the LonMarks association was formed by leading vendors with the responsibility of
ensurin ion guidelines. Echelon is
commi king protocol. The LonTalk
protocol is the communica rk. The LonTalk protocol
supports networks using different media, including twisted
infrared, coaxial cable and fiber optic media. Today, the most exploited media are the Power

sors and actuators of an installation
d a node. A bus line is called a channel and

te a device is the final application layer code. The
language employed is a derivative of C called Neuron C. The Neuron chip can serve as the
sole processor in most LonWorks nodes. For nodes requiring more processing, the Neuron
chip ca be used as a communications coprocessor working with another host. Until recently,
LonWorks developers were forced to use a Neuron chip in their products. However Echelon
has recently announced that LonWorks can be ported to any processor and has made
available a C language implementation. Because of the dependency on the NeuronChip and
of additional cost, realizations in software of this Chip are also available.

The LonT addressing of up to approx. 32000 nodes. However in reality
the number of nodes is limited depending on the type of transmission medium employed. A
router may be used to extend the maximum channel length or to add a channel to an existing
LonWorks network. Mu capacity or distance
required. Devices on the bus communicate with one another at a variable rate depending on
the transmission media and transceiver type (see Table 7-4).

g that LonWorks based products adhere to implementat
tted to making LonWorks a truly open and standard networ

tion protocol used in a LonWorks netwo
 pair, power line, radio frequency,

Line and Twisted Pair. The bus line interconnects all sen
together. Each participant of the network is calle
channels can be interconnected using “bridges” and “routers”. The complete network is
described as a “domain” and within each domain approx. 32000 nodes are permitted.

In LonWorks terminology, a control network consists of two or more nodes communicating
over one or more media using a common protocol. LonWorks nodes communicate with each
other via the LonTalk protocol that is implemented in firmware on the Neuron Chip, which has
been developed by Echelon in cooperation with Motorola and Toshiba. For a developer, the
only code that needs to be written to crea

n

alk protocol permits the

ltiple routers may be added, depending on the

Medium Transceiver Type Characteristic Data Rate

Twisted Pair TP/XF-1250 Transformer Coupled 1.25Mbps

Twisted Pair TP/XF-78 Transformer Coupled 78kbps

Twisted Pair TP/FT-10 Link Power 78kbps

Twisted Pair TP-RS485-39 EIA RS-485 39kbps

Power Line PL-10(L-N) Line-to-Neutral 10kbps

Power Line PL-10(L-E) Line-to-Earth 10kbps

Power Line PL-20(L-N) Line-to-Neutral 5kbps

Power Line PL-20(L-E) Line-to-Earth 5kbps

Power Line PL-30(L-N) Line-to-Neutral 2kbps

Radio Frequency RF-100 Radio Frequency 4.883kbps

Table 7-4: Different data rate depending on the used medium and type of tranceiver

42 http://www.lon.de
43 http:// lon.com www.eche

Amigo IST-2004-004182 157/227

April 2005 Public

Information transmitted on the bus is described of in terms of frames and frames are called
AC (Media Access Control) Protocol Data Units or MPDUs in LonWork terminology. An
PDU has the following layout:

BitSync ByteSync L2 16 bit CRC

M
M

Hdr NPDU

 which allows all other nodes to synchronize The BitSync and ByteSync fields form a preamble,
their receiver clocks. The L2Hdr, or Layer 2 Header, field is used by the MAC layer of the
protocol. Following this a packet of data called the Network Protocol Data Unit or NPDU is
transmitted. The frame is terminated with a 16 bit CRC field for error detection and correction.
The NPDU packet can be broken down into the following fields:

Version Format Length Address Protocol Data Unit (PDU)

The Version field defines the protocol version.
address field and the data

The Format field describes the format of the
(PDU) field. Depending on the address format the address field can

 and
resolution is optional in this protocol and in general is not implemented. This implies that
messages can go “undelivered” on the bus.

If power is to be provided by the LonWorks network the Power Line or Twisted Pair/Link Power
media must be employed. Using a Power Line network implies that each node must contain its
own power supply. The Twisted Pair/Link Power network provides differential 42 volt output
(i.e. +

contain one or more of the following: Source Node address, Destination Node address, Source
SubNet address, Destination SubNet address and Neuron ID. The Protocol Data Unit field
(PDU) contains the actual data communicated from one device to another.

The LonWorks communication is described as a Predictive p-persistent CSMA (Carrier Sense
Multiple Access) protocol. It is a collision avoidance technique that randomizes channel
access using knowledge of the expected channel load. Note that collision detection

21 volts). The total power drawn by the network should not exceed 36.5 watts.

Configuration of a LonWorks network is implemented when the network is first installed and
when subsequent alterations need to be made. A dedicated hardware unit, the LonMaker,
configures the system in conjunction with PC application software. In LonWorks terminology
the configuration of the network is called the Binding process. The LonMaker binds together
the nodes on the bus. For example a push button switch may be bound to a set of luminaries.
A proximity sensor may be bound to a floodlight etc. When a network is configured, the
LonMaker downloads the necessary embedded data into the hard memory of the Neuron chip
so that when the network is restarted the nodes will communicate with each other. At that
point, the LonMaker can be removed. The LonMaker takes the place of a centralized
configuration unit that other field bus systems [AlDi97] utilize. In order to reconfigure the
system the LonMaker must be reconnected and the network bound once again.

LonWorks first made its mark in large industrial applications and building management
systems. It is now making substantial ground in the home automation field. It as found
enormous commercial success in te a figure of 2 million installed
nodes. However there are severa ocumentation is very heavy with
jargon with the result that for a developer it is very hard to get to the “meat” of the technology.
Development tools are costly, particularly the LonMaker and Node Binding software.

ynamic. There is no compatibility: because of the user

h
 the United States and quo
l drawbacks to LonWorks. D

Configuration of the network is not d
and/or manufacturer-specific applications and configuration, it is most unlikely that two LON-
nodes can talk to each other (e.g., because of different data rate).

Amigo IST-2004-004182 158/227

April 2005 Public

7.1.6 BDF
The defined physical layer for the BDF44 bus is the power line. This is a great advantage
because it makes the integration of new devices very easy: no additional installation is
required. Just plug the new device in, and it works. Four kinds of elements can be connected
to the BDF bus: domotic controller; home appliances; sensors and valves; and plugs and
smart actuators. Some of these elements (home appliances and the domotic controller) have a
fixed address in the bus (see Table 7-5), so only one of each group (two washing machines or
ovens are not allowed) can be connected to the bus.

Element Address

 Domotic controller 0
 Washing-machine 1
 Refrigerator 3
 Heater 5
 Oven 6
 Dishwasher 7
 Hob 8
 Heater remote controller 9
 Antiintrusion system 11

Table 7-5: BDF Appliances address table

The other groups (sensors, valves, plugs and smart actuators) get an address when they are
connected. Each group has an allowed address range (see Table 7-6).

Water sensors From 10h to 1Eh
Gas sensors From 20h to 2Eh
Water valves From 30h to 3Eh
Gas valves From 40h to 4Eh
Plugs From 50h to 6Eh
Smart actuators From 70h to 8Eh

Table 7-6: BDF Sensor and Actuator address table

All the messages transmitted on the bus by any BDF device consist of the following fields:
sync, identifier, source, destination, command, parameters and check field.

Any BDF device can initiate a communication process responding to its own application
events. The communication procedure is as follows: a device sends a message, specifying the
source and destination. All the elements in the network listen to the message but only the
destination device receives it.

One of the main features of the BDF bus, and very helpful for the Amigo middleware, is the
device discovery. Devices announce themselves and the controller searches for connected
devices and checks the ents. No additional or
complex configuration processes are needed, because the bus configures itself. When

 presence of the previously connected elem

44 http://www.fagor.com, http://www.fagor.com/es/domotic_n/index.html

Amigo IST-2004-004182 159/227

April 2005 Public

connected, the domotic controller broadcasts a “search” message in the bus. This message
announces the presence of the controller in the network and enforces a presentation process
in the listening devices. The response to the “search” message depends on the device
address:

• Home appliances (fixed address devices): these devices respond to the “search” sending a
“notify” message to the controller announcing their presence and describing their status, so
that the controller can include them in its current device list. Whenever a device is
connected, it sends a “notify” message announcing itself.

• Non-fixed address devices: as they don’t have a fixed address in the network (just an
er must provide them a valid and unique bus address

). HAVi-compliant

allowed address range), the controll
when they are connected to the bus. Once they have obtained it, they save it and behave
as a fixed address device.

Periodically, the domotic controller checks the presence of the previously connected elements,
refreshing its device list.

7.2 Amigo domotic service architecture
The Amigo domotic service architecture aims at integrating the diverse existing domotic
systems towards flexible, networked domotic services provision in the Amigo home
environment. Thus, mainly based on the level of proprietarity involved in the interaction with
the Amigo middleware, we propose to define a set of Amigo domotic device classes, and we
provide different solutions to integrate these devices into the Amigo middleware, depending on
their class (Section 7.2.1). We then identify the components of the Amigo domotic architecture,
which enable in a structured way common, domotic technology-independent networked
interfaces for domotic devices employing diverse domotic technologies. These architectural
components comply with the Amigo abstract reference service architecture. The introduced
Amigo domotic device classes are then mapped onto the Amigo domotic architecture (Section
7.2.2). We finally introduce development and use of domotic scenarios for enabling complex
domotic tasks involving multiple devices (Section 7.2.3).

7.2.1 Amigo domotic device classes
Our proposal for a set of Amigo domotic device classes is quite similar to the HAVi
classification45. HAVi classifies Consumer Electronics (CE) devices into four categories: Full
AV (FAV), Intermediate AV (IAV), Base AV (BAV) and Legacy AV (LAV
devices are those in the first three categories, while all other CE devices fall into the fourth
category. Similarly, we define Full, Intermediate, Base and Legacy Amigo domotic devices.

7.2.1.1 Legacy Amigo domotic device
This is a very simple domotic device that is not integrated in a domotic bus; thus, it does not
need any domotic bus support. As it is a rather isolated element, communication with this
device will be based on proprietary protocols with a strong dependency on manufacturer
technologies. Due to this dependency, it cannot be discovered by standard service discovery
protocols like UPnP, Jini, SLP, etc. Amigo service discovery incorporates these standardized
protocols; thus, Legacy devices, as they do not support any of these SDPs, cannot be used
directly and transparently by Amigo applications. We shall provide a mechanism to make this
kind of devices available in the Amigo environment. An example of a Legacy Amigo device is a
single lamp controlled via RS232 (see Figure 7-4): it has no domotic bus support, it is not an

45 http://www.havi.org/

Amigo IST-2004-004182 160/227

April 2005 Public

IP-based device, and it does not speak any sta dard SDP. As a result, this device cannot be
discovered and used directly by Amigo services and applications.

n

Amigo IST-2004-004182 161/227

RS232

Figure 7-4: Legacy Amigo domotic device

Base Amigo domotic device
 Amigo domotic device is any domotic element that is integrated in a domotic bus and,
uently, needs some bus support. As surveyed in Sec

7.2.1.2
A Base
conseq tion 7.1, the principal existing bus
sys
BD L
system
target
applica
system
Legacy
manufacturer technologies. Most of the current domotic devices should be classified as Base
Am
similar
controlled via Amigo service discovery and communication. Both of them require a mechanism
to m k e is a
BD v c bus,
they are not IP-based devices, and they do not speak any standard SDP; therefore, they

ectly by Amigo services and applications.

tems, which we aim to incorporate into the Amigo domotic architecture, are EIB, EHS,
F, ON and BatiBUS. In order to be able to integrate bus-dependent devices into the Amigo

, it is necessary to provide domotic bus support in the Amigo architecture. Some of the
buses can discover installed devices, but not by using standard SDPs; thus, Amigo
tions cannot directly discover the services offered by a Base Amigo device. Current bus
s are not interoperable; therefore, communication with such a device will be, as for
 Amigo devices, based on proprietary protocols, with a strong dependency on

igo devices. In short, from the Amigo system point of view, a Base Amigo device is quite
to a Legacy Amigo device, because none of them can be directly discovered or

a e them accessible in the Amigo environment. An example of a Base Amigo devic
F o en or an EIB washing machine (see Figure 7-5): they are connected to a domoti

cannot be discovered and used dir

 EIB Bus (Power-Line)

Figure 7-5: Base Amigo domotic device

7.2.1.3 Intermediate Amigo domotic device

An Intermediate Amigo domotic device is any domotic element that can be discovered using
Amigo service discovery. This means that we are talking about an IP-based device that
supports a standard SDP. This device can be used directly by Amigo services and
applications. However, it is a resource-constrained device and no other Amigo software
components can be deployed on it. It only provides the pre-established domotic services and
cannot accommodate any other software. An example of an Intermediate Amigo device is a
UPnP washing machine (see Figure 7-6).

April 2005 Public

 IP

Figure 7-6: Intermediate Amigo domotic device

7.2.1.4 Full Amigo domotic device
A Full Amigo domotic device is similar to an Intermediate Amigo domotic device. The only
difference is that a Full Amigo device is not constrained to a specific domotic service. For
instance, a Full Amigo dishwasher could provide, apart from the presumed domotic service
(dish washing), other kind of Amigo services (see Figure 7-7). It is a device with possibly rich
resources (processor, memory, disk…), and can accommodate the deployment of other Amigo
software components. For instance, the Amigo service discovery or authentication service
could be deployed on it.

 IP

Figure 7-7: Full Amigo domotic device

7.2.2 Amigo domotic service architecture
We introduce the following architectural components: bus controllers, proprietary device
factories and discoverable device factories, which gradually enable passing from proprietary
access mechanisms to common, technology-independent interfaces for domotic devices
(Sections 7.2.2.1 to 7.2.2.3). We then integrate the Amigo domotic device classes into the
Amigo domotic architecture by employing these components (Section 7.2.2.4), and provide an
instantiation example (Section 7.2.2.5) and a summary (Sections 7.2.2.6).

7.2.2.1 Bus controller
Most of the current domotic systems are bus-dependent; thus, we need Amigo components
that will help us communicate with the different domotic buses. The bus controller component
is responsible for communicating with the legacy domotic bus. As we must integrate several
domotic buses, we must provide a specific bus controller for each bus. The bus controller shall

Amigo IST-2004-004182 162/227

April 2005 Public

manage the legacy bus in terms of bus configuration, device discovery, bus communication,
etc. Figure 7-8 positions the bus controller component in the Amigo domotic architecture.

Amigo Domotic abstract
reference architecture

heterogeneous
middleware
layer

heterogeneous
platform
layer

heterogeneous
application
layer

Bus controllers
e.g. EIB, EHS, BDF, …

Figure 7-8: Bus controllers

7.2.2.2 Proprietary device factory
Since we have to deal with heterogeneous domotic elements, probably connected to different
domotic buses, we cannot directly access the nment. Aiming to offer
domotic services provided by rable via the Amigo service
discovery, we propose two steps to achieve this goal.

s section, we employ proprietary device proxies. Once a
o matter whether we discover it – at a lower level – by

an instantiated interface
ena e, which we call
proprietary device proxy. The purpose of propr
represe a
componen
in the form

Instantiatin e proxy is performed by a proprietary device factory
compo n s configuration, reading a

ing a single "EHS WaMa device factory".

S WaMa and a BDF WaMa, we need two different proxies to control
vice factory", and the latter built using a

m in the Amigo enviro
 domotic elements that will be discove

First, which will be the topic of thi
physical domotic device is found, n
using dynamic mechanisms like search or by advertising messages in a bus, or if we use static
mechanisms like domotic network configuration files, we need

bling us to handle the physical device, i.e., a proxy of the physical devic
ietary device proxies is to provide a first logical

nt tion of each physical device. These proxies are exposed by manufacturer-provided
ts that enclose manufacturer-dependent access to physical devices and may come
 of OSGi bundles, ActiveX components, etc.

g a proprietary devic
ne t. When a new device is detected (bus messages, bu

configuration file…), the proprietary device factory shall respond to this detection and
instantiate the corresponding proprietary device proxy. As diverse devices can be plugged on
a domotic bus, we need a proprietary device factory for each type of device in each bus to be
able to build the corresponding proxy. Two examples are given below:

• If we have two identical EHS WaMa (washing machine), we need two identical proxies
to control them, which should be built us

• If we have an EH
them: the former built using an "EHS WaMa de
“BDF WaMa device factory”.

Amigo IST-2004-004182 163/227

April 2005 Public

Once instantiated, the proprietary device proxies communicate with the domotic bus by means
directly,

 via
 considered as low-level device drivers. Figure 7-9

tary device proxies in the

of the corresponding bus controller. Amigo applications cannot use these proxies
because they can neither be discovered via Amigo service discovery nor be accessed
Amigo service communication. They may be
positions the proprietary device factory components and the proprie
Amigo domotic architecture.

Amigo Domotic abstract
reference architecture

heterogeneous
application
layer

hetero
midd

geneous
leware

layer

heterogeneous
platform
layer Bus controllers

e.g. EIB, EHS, BDF
Proprietary device factory
(build proprietary devices)

Proprietary Device Proxies

rietary device factory/proxy

We now provide an example ntiation. For instance, let us
consider a domotic washing machine. It is connected to the Power Line and supports a
domotic communication protocol. The manufacturer provides an OSGi bundle to listen to

r Line; this is the bus controller component. The manufacturer

es is to instantiate
P proxies) from the current proprietary device proxies, which

r xies. The purpose of these new proxies is to make the domotic
services available in the Am n, be discovered via Amigo
service discovery. Thus, other d control the domotic devices
by using the associated, e.g., UPnP, proxies.

evice proxy from a proprietary device proxy is performed by a

Figure 7-9: Prop

of a proprietary device proxy insta

domotic messages on the Powe
also offers other OSGi bundles (proprietary handlers) to control each different device on the
bus, generally in different ways: the washing machine is not controlled in the same way as the
oven or the heater. These OSGi bundles may encapsulate the associated proprietary device
factories; alternatively, these factories may come in separate bundles. Thus, when the
washing machine is turned on, it advertises itself in the Power Line bus, “speaking” its specific
protocol. The bus controller bundle listens to the message, and, from the OSGi washing
machine bundle, a new OSGi washing machine service is instantiated and registered with the
OSGi framework. This instance is the proprietary device proxy.

7.2.2.3 Discoverable device factory
The second step towards obtaining discoverable Amigo domotic servic
Amigo-aware proxies (e.g., UPn
we call discoverable device p o

igo environment: they could, the
 Amigo services could discover an

Building a discoverable d
discoverable device factory component. As implied in the previous section, proprietary device
proxies depend on the devices that they represent; thus, two washing machines coming from
different manufacturers require two different proprietary device proxies. Hence, discoverable
Amigo IST-2004-004182 164/227

April 2005 Public

device factories are also dependent on the proprietary device proxies that they act upon,
consequently on the corresponding devices. The discoverable device factory is, then, another
component in the platform layer together with the bus controller and the proprietary device
factory. All of them constitute a multi-part low-level device driver to access a domotic device,
while their final outcome (the discoverable device proxy) is made available in the application
layer as an Amigo service. Figure 7-10 positions the discoverable device factory components

s in the Amigo domotic architecture. Following from the
ce the physical devices have been found and the corresponding

a proprietary device proxy as an OSGi service in the OSGi framework. Consequently,
e OSGi framework advertises that a new OSGi service (washing machine) is available.

Paying attention to this advertisement, the associated discoverable device factory instantiates
a discoverable device proxy (e.g., a UPnP proxy) of the OSGi service at runtime. In this way, a
discoverable proxy of the physical washing machine can be obtained, and a new domotic
service is available in the Amigo environment.

and the discoverable device proxie
previous section, on
proprietary device proxies have been instantiated to handle them, discoverable device proxies
shall then be built. The purpose of discoverable device factories is to be aware of the
instantiation of proprietary proxies and, at runtime, instantiate discoverable proxies. Providing,
then, an enriched description (see Chapter 3) for the services provided by these discoverable
proxies, we can provide Amigo domotic services, which may be accessed by Amigo
applications in the same way as any other Amigo service (see Figure 7-10).

We, then, could go one step further and define an ontology of domotic devices at platform
level, in a similar way to standardized UPnP devices, which we discussed in Section 3.2.1.3.
Based on this domotic ontology, a discoverable device factory could build a standardized
discoverable device proxy for a specific type of device, e.g., a washing machine. In this way, a
discoverable device proxy will represent an abstract device independent of the specific
manufacturer features of the underlying physical device. Alternatively, this domotic ontology
could be placed at application level for building generic Amigo domotic services from
manufacturer-specific discoverable device proxies, or for enabling interoperability based on
the application-level interoperability methods introduced in Chapters 2 and 4.

Let us now consider again the washing machine example of the previous section. We there
btained o

th

Amigo Domotic abstract
reference architecture

heterogeneous
platform
layer

heterogeneous
middleware
layer

communication service discovery

heterogeneous
application
layer

Bus controllers
e.g. EIB, EHS, BDF

Proprietary Device Factory
(builds proprietary devices)

Discoverable Device Factory
(builds discoverable devices)

e.g. UPnP devices

Proprietary Device Proxies
e.g. EIB WaMa, BDF Oven,

RS232 Lamp

domotic services
semantic functional

domotic services
semantic functional

Amigo Services
e.g. Amigo Heater, WaMa, Oven, Lamp

Discoverable Device Proxies
e.g. UPnP devices

Figure 7-10: Discoverable device factory/proxy and Amigo domotic services

Amigo IST-2004-004182 165/227

April 2005 Public

7.2.2.4 Mapping the Amigo domotic device classes onto the architecture
Following, we map the Amigo domotic device classes, defined in Section 7.2.1, onto the
Amigo domotic architecture by means of the architectural components introduced in the
previous sections:

• Legacy Amigo domotic device. Since a Legacy Amigo device is not connected to a
domotic bus, it does not need a bus controller. The proprietary device factory builds the
proprietary proxy of the physical device, and the discoverable device factory builds a
discoverable proxy (e.g., UPnP proxy) from the proprietary proxy. Amigo service
discovery can discover this UPnP proxy, so we have achieved our goal to make this
class of devices available in the Amigo environment.

• Base Amigo domotic device. A Base Amigo device is connected to a domotic bus.
Thus, in the Amigo domotic architecture, we need a bus controller to be able to listen to
the bus. When a physical device on the bus is detected by listening to the
corresponding bus messages, the proprietary device factory builds the proprietary
proxy of the device, and the discoverable device factory builds a discoverable proxy
from the proprietary proxy. Again, in this way, we have made this class of devices
available in the Amigo environment.

• Intermediate Amigo domotic device. This class of devices can be directly discovered
by Amigo service discovery, so we do not need any additional component to make
them available in the Amigo environment.

• Full Amigo domotic device. Similar to the Intermediate Amigo domotic device.

7.2.2.5 Instantiation example
Let us consider a number of heterogeneous domotic devices in the Amigo home: a RS232
lamp (Legacy), a BDF oven (Base), an EIB washing machine (Base), and a Jini heater
(Intermediate). Only the last one, the Jini heater, can be directly controlled and used in the
Amigo environment. Figure 7-11 depicts the integration of these devices into the Amigo
domotic service architecture, which is described in the following.

The RS232 lamp needs a proprietary device factory to instantiate the corresponding device
proxy. As the lamp manufacturer only provides an ActiveX component to control the lamp via a
serial port, the factory instantiates a proprietary proxy for the lamp (an ActiveX interface),
which is not accessible in the Amigo environment. We need to build a discoverable proxy (e.g.,
a UPnP proxy) from the instantiated proprietary lamp proxy. This is achieved by means of a
discoverable device factory that uses ActiveX instances to build UPnP devices and instantiate
them at runtime.

The case for the oven and the washing machine is slightly different. They are connected to a
domotic bus (the former to BDF and the later to EIB), so we need two different bus controllers.
The BDF manufacturer provides OSGi bundles to control the BDF devices, so, when the BDF
bus controller announces that the oven has been connected to the bus, the related proprietary
device factory instantiates an OSGi oven service, and, when the OSGi framework is notified
that a new OSGi oven service has been instantiated, the related discoverable device factory
builds the UPnP oven service from the OSGi oven service. A similar process is applied to the
EIB: we need an EIB bus controller, and proprietary and discoverable device factories for EIB
devices.

Amigo IST-2004-004182 166/227

April 2005 Public

heterogeneous

Instantiation example
heterogeneous
application
layer

heterogeneous
middleware
layer

communicationservice discovery

Amigo IST-2004-004182 167/227

platform
layer

Bus controllers
e.g. EIB, EHS, BDF

Proprietary Device Factory
(build proprietary devices)

Discoverable Device Factory
(builds discoverable devices)

e.g. UPnP devices

Proprietary Device Proxies
e.g. EIB WaMa, BDF Oven,

RS232 Lamp

RS232 LampBDF OvenEIB WaMaJini Heater

domotic services
semantic functional

Amigo Services
e.g. Amigo Heater, WaMa, Oven, Lamp

Discoverable Device Proxies
e.g. UPnP devices

Now n
Amigo
env n
Am ,
From t
an EIB
not an
factorie
discoverab
UPnP), but se
one, or both o
by means of

7.2.3 Enabl
We ll
scenar
able to modify a sequence of actions (scenario), based on personal preferences and

o save energy. Then a possible scenario could be: “If the heating system
can provide hot water and the washing machine is ready and waiting, it should be started”.

ed function offered by the manufacturer (of both

Figure 7-11: Instantiation example

7.2.2.6 Summary
 a y domotic device, classified in any Amigo domotic device class, can be discovered via

service discovery; thus, the services offered by the device can be used in the Amigo
ment. We have provided a common interface for domotic seriro vices accessible within

igo independently of the physical devices’ low-level features and communication protocols.
he Amigo application point of view, it is not necessary to know if it is actually accessing
, EHS or BDF lamp, because it just sees an Amigo service enabling control of a lamp,
 EIB, EHS or BDF lamp. The bus controllers, proprietary and discoverable device
s support this common interface of domotic services. We shall also stress that

le device factories can be implemented to enable not only a standard SDP (e.g.,
veral ones. We may decide to develop a UPnP-related factory or a SLP-related
f them. This architecture is easily extensible to support new devices and buses

 adding new bus controllers or updating the factories.

ing complex domotic scenarios
 a agree that every home is different, and that we cannot apply the same predefined

ios related to the management of domotic devices for every user. Each user shall be
 create or

on the available set of domotic devices. The user shall also be able to install existing scenarios
developed by a third party. The Amigo system shall provide mechanisms enabling both types
of scenarios. For example, it is desirable to be able to use the solar heating system with the
washing machine t

This scenario could be an optional predefin
devices), which we can include in the system as a plug-in. Alternatively, the user could
himself/herself build it using a scripting language and integrate it into the Amigo system. Thus,
we shall enable two types of scenario description: script-based scenarios, for which we need a
mechanism to build them, and plug-in-based scenarios. Further, we need an execution engine
in the system for running both types of scenarios, and, additionally, a script parser component
for script-based scenarios. The scenario scripts and plug-ins are simple or composite forms of

April 2005 Public

services lying in the application layer. The script parser and execution engine are middleware
mechanisms used to execute these simple/composite services. Scenario scripts and plug-ins
make part of our approach to service composition within Amigo, as established in Chapter 4.
Figure 7-12 depicts the integration of scenario-support mechanisms into the Amigo domotic
service architecture. We further discuss our approach to script-based scenarios (Section
7.2.3.1), graphical development of scenarios (Section 7.2.3.2) and plug-ins (Section 7.2.3.3) in
the following.

heterogeneous
platform
layer

Amigo Domotic abstract
reference architecture

heterogeneous
application
layer

heterogeneous
middleware
layer

communicationservice discovery

Amigo IST-2004-004182 168/227

Bus controllers
DFe.g. EIB, EHS, B

Proprietary device factory
(build proprietary devices)

Discoverable Device Factory
(builds di

e.g.
scoverable devices)
UPnP devices

Proprietary Devi
e.g. EIB WaMa,

ce Proxies
 BDF Oven,

RS232 Lamp

RS232 LampBDF Oven

Script parserExecution
Engine

Scenario
Script

Scenario
Plug-in

domotic services
semantic functional Amigo Services

e.g. Amigo Heater, WaMa,
Oven, Lamp

Discoverable Devices
e.g. UPnP devices

Jini Heater EIB WaMa

 bedroom or in the living-room and the TV is off (he is not watching TV
en (where the washing

announcing that the washing

-room lamp to be set on.”

In
service ll be able to ask
Am
at hom
above proposed scenar

Figure 7-12: Scenarios and plug-ins

7.2.3.1 Script-based scenarios
Script-based scenarios are sets or sequences of actions for a device or a combination of
devices aiming at enhancing their functionality. An example may be:

“When the washing machine finishes its work, Mike wants to be notified.

• If he is in the
now), he wants the system to switch on a lamp in the kitch
machine is located), and to output a message
machine has finished.

• Otherwise he wants the living

the Amigo home, we will install a set of Amigo devices that will provide simple Amigo
s: some sensors will tell us about the location of people at home; we wi

igo devices about their current state; and we will be able to control all the domotic devices
e. Thus, each Amigo device provides a number of services, but, if we want to run the

io, we need them to compose and cooperate. This scenario may be
realized by the script displayed in Figure 7-13.

<event>WM_Finished
 <if>
 <condition>
 <and>

April 2005 Public

 <or>
 <var>IsLocated(Mike,BedRoom)</var>
 <var>IsLocated(Mike,LivingRoom)</var>
 </or>
 <not>
 <var>IsOn(TV)</var>
 </not>
 </and>
 </condition>
 ns> <actio
 <action>SpeechMessage(WM_Finished)</action>
 </actions>
 <else>
 <actions>
 ation(Mike)))</action> <action>SetOn(getClosestLamp(getLoc
 </actions>
 </else>
 </if>
</event>

Figure 7-13: XML-based scenario

Obv s
listed in executable
cod

<switc

iou ly the supported tags can be extended. We could further include tags like the ones
 Figure 7-14. A script parser would analyze the scenario’s script and build

e that can be run on the execution engine.

h>
<while>
<raiseevent>
<exception>, <exception_handler>
<service>

Figure 7-14: Additional XML tags

l

ecuted when their condition is fulfilled.
A possible view of the Scenario Developer GUI is depicted in Figure 7-15.

7.2.3.2 Scenario Developer
The Scenario Developer is a graphical Toolkit – under development – for creating script-based
scenarios. With this tool it will be possible even for non-professional users to create such
scripts. The tool will support easy-to-use drag-and-drop functionality for defining conditions
and actions. To this end, there will be lists of icons for the different operations/actions and
conditions. For example, a clock-icon could be a symbol for executing actions at a specific
time. It will further be possible to have more than one condition that have to be fulfilled, as wel
as more than one action that are performed. Conditions could be combined using and, or, and
other link operators. Furthermore, a syntax check in the background will be verifying the
syntactic correctness of scripts. The system will generate scenarios as XML-based files from
the user input, and install them, so that they could be ex

Amigo IST-2004-004182 169/227

April 2005 Public

Figure 7-15: Scenario Developer

7.2.3.3 Home plug-ins
Plug-ins are software applications that combine several services at an upper level. Specific
applications can be very complex, so it may not be possible to realize them as script-based
scenarios. Plug-ins can extend existing functionality of basic devices (e.g., provide new

r carry out constant parameter surveillance as test
r safety aspects in general. Plug-ins are written in plain

By means of the Amigo domotic service architecture proposed in this chapter, the Amigo home
re exposed as domotic

e interfaces for heterogeneous domotic devices. Interoperability
between domotic devices and services, key functionality to be provided by the Amigo

tandard service interfaces for domotic devices. We
ic services accessible in the Amigo environment,

pport new devices
and buses by means of adding new bus controllers or updating the proposed

 components. Finally, the use of scenarios and plug-ins

functions for a video recorder), o
applications for failure detection or fo
java (instead of a proprietary language as scripts above) and are not necessarily triggered by
events.

7.3 Discussion

may be provided with extensible domotic services. Domotic devices a
services, compliant with the Amigo abstract reference service architecture. Due to the current
heterogeneity and diversity of domotic devices, buses and device capabilities, it is necessary
to provide a well-defined lower-layer domotic architecture, in order to obtain common,
technology-independent servic

middleware, is based on enabling these s
thus have common interfaces to domot
independent of the physical device specifics and communication protocols. Any domotic
device can be discovered via Amigo service discovery; thus, domotic services can be
integrated into Amigo applications. This architecture can be extended to su

proprietary/discoverable factory
facilitates the development of complex domotic applications: users are able to create or modify
a sequence of actions, based on personal preferences and on the available set of domotic
devices.

Amigo IST-2004-004182 170/227

April 2005 Public

8 Security and Privacy

8.1 Introduction
 an Amigo home should be as secure as in a normal home. That

ill be used with different
capabilities, the range going from those capable of complex processing and data storing by

p, PDA or smart phone, to those that have no storage capability at

sing
user security and privacy. The Amigo environment will face a dilemma in regards to security.

nd better services, connectivity is required, but also, this connectivity

tion. This word is used to describe the different techniques to verify that a
user/entity is who/what he/it claims to be. There are several means to achieve it, either

ificates, passwords or biometric techniques.

o Symmetric encryption. This category comprises all those algorithms where the
d for encryption and decryption of the message is the same. They
ecure as long as the key used is not compromised, which is the main

revent the
illegal reproduction of copyrighted contents, and fight the piracy of contents on the

Security and privacy is a challenging part in the Amigo project, since it is required to ensure
elates to the usability aspect of an

Information and operation in
implies that different services in an Amigo home require different levels of security (for
example, the security of the administration services should be quite higher than that of
comfortability services.)

In the environment of the Amigo home, lots of different devices w

themselves, such as a lapto
all and very reduced processing capacity, if any, such as a light switch or a temperature
sensor.

All this digital data that previously was not stored anywhere, or didn’t exist at all, and access to
the new network-enabled devices may be valuable for some mischievous users, compromi

In order to provide new a
offers more possibilities for compromising sensible information and access to devices.

The Internet is an open network, therefore it can’t be controlled and anyone can access to it.
Looking after users’ safety has been a major concern since its conception, and several means
to attain it have been developed over the years:

• Authentica

through digital cert
• Encryption/decryption refers to the different techniques to grant message privacy. They

consist in encoding the message in a particular known way which can be later decoded
to retrieve the original content. There are lots of different encryption/decryption
algorithms, which offer varying degrees of security. They can be classified in two
different groups:

key use
remain s
inconvenience of these algorithms.

o Asymmetric encryption describes those techniques that use different keys for
encryption and decryption. It’s more complex and requires more processing
capacity, but, generally speaking, it is also more secure.

• DRM protection techniques comprise a great set of techniques devised to p

Internet.

Amigo technologies should try to incorporate all those means of protection, so that users can
freely enjoy the new technologies without having to worry about new risks introduced in their
normal way of life.

8.1.1 Security and privacy in Amigo

maximum trust from a user’s perspective, and directly r
Amigo system. It is possible with today’s technologies to secure any resource or to protect
privacy of information, but these technologies are usually designed in the context of corporate
or large scale networks. They sacrifice either heterogeneity of devices, network technologies,
applications, identification mechanisms and/or usability to achieve their goal. An ambient
Amigo IST-2004-004182 171/227

April 2005 Public

intelligence system and specifically a networked home system might look similar, in its network
infrastructure, for example, to a small corporate network, but its usage (and hence the
requirements on it) are completely different.

By nature, the goal of a security architecture that is designed for corporate networks is to
leverage the traditional security level of resources provided by corporate facilities like secured
premises, buildings, safes and contract signatures to the digital environment. Example
mechanisms are: a clear identity (e.g., a corporate ID card, without which one will not get
access to the premises) or authorization (e.g., security guard or secured area).

Usually a complete department is responsible for maintaining the security of a corporate
network. The mechanisms, i.e., enforcing policies on equipment and users, are completely
different from the ones that can be used in a networked home system. The device lifecycle in a
corporate network is very different from that in a networked home system, where you might
want to grant a device access for a couple of days to limited services. The behavior of
resources in a corporate network is not as dynamic as in a networked home.

Table 8-1 indicates major differences related to security and privacy for a corporate network
compared to a networked home.

 Corporate Network Networked Home

Devices Policy controlled All

Device Lifecycle Static Dynamic

Maintenance Department Automatic

Security Knowledge Security Expert Conceptual Knowledge

Scalability Important N/A

Non repudiation Necessary N/A

Table 8-1: Security aspects of a corporate network versus a networked home

Following the sam rate network, but
now for the Amigo itecture targeting
that specific environment. Nowadays, security and privacy in the home is guaranteed by the

e possible with an Amigo home (e.g., using a visitor’s device to see resources in a

e paradigm that leads to the security architecture of a corpo
 networked home system, we should elect a security arch

security of the house (walls and doors with locks), controlled visibility into the house (curtains
or window shutters) and controlled access to the house (family members have a key, others
require entrance approval of somebody in the house). Once people access the house, they
have nearly unlimited access to the resources in that house (either by design or by lack of
security mechanisms).

Hence, security and privacy in an Amigo system should target:

• To achieve the same level of security and privacy as is possible now (e.g., anybody in
the house can control the lights)

• To enable security and privacy where it is desirable but not or not easily possible today
(e.g., controlling what video games the children play and for how long)

• To ensure security and privacy in scenarios that are not possible with today’s home but
will b
house).

The goal for Amigo is to propose a security architecture that meets the requirements of a
networked home system but at the same time retains a high level of usability. Usability is
defined as one of the critical factors for the acceptance of a networked home system by its
users.

Amigo IST-2004-004182 172/227

April 2005 Public

8.1.2 Relationship to existing security mechanisms
Today a variety of security mechanisms like WLAN security, logon for PCs, wireless security
for mobile networks, etc., exist that offer a comfortable level of security when using these

/UMTS, Bluetooth)

l of access control: either a device is allowed full access or no

tatic in nature (establish a web-key, once established can be used by everybody)

• Closed solution (authenticated by the mobile network, but can not be used to grant
ersa)

 device (e.g., video camera or temperature sensor).

ed when

suit le chitecture as needed for the
Am

Alte a
prim ry
(2) simplify desired fun these mechanisms apply only to a specific

ity & privacy architecture that needs to be applied to all domains (PC, CE, mobile
and o

Therefo ed that is interoperable and
flex e
spe fic

In t
Am
Section 8.3. Based on the elicited requirements, we elaborate the Amigo security and privacy
arc

cs of the Amigo security and privacy architecture, and hence the

appropriate.

technologies. These mechanisms however all suffer from one or more of the following
shortcomings:

• They are infrastructure-dependent (WLAN, GSM/GPRS

• Offer a binary leve
access at all

• Are not distributed (logon to a specific PC, a single Bluetooth partnership)

• Require trust of a 3rd party (a mobile network)

• Do not offer deferred authorization (see Section 8.4.2.1)

• Are complex to setup

• Are s

access to a WLAN or vice v

• Limited access or authorization revoking possibilities (it is not a trivial task to revoke
access of a device on a WLAN, need to know the MAC address)

• Require rich and powerful devices. If security is enabled on a WLAN, the device needs
to implement this security, although it might lack the processing power or UI to enter
keys in the

Existing security mechanisms often target a specific security risk that was not envision
the technology was released. They are often specific to a certain technology, and are not

ab as primary building blocks for a security & privacy ar
igo solution.

rn tively, they might be incorporated in a security architecture (opposed to be used as
a building blocks), but this would only be useful if they (1) offer additional functionality or

ctionality. Since most of
(network) technology or solve a specific problem, it would not be feasible to incorporate them
into a secur

 d motics).

re, an Amigo security and privacy architecture is propos
ibl by design on an application level (including the Amigo middleware), and that puts no
ci security and privacy requirements on the different underlying network infrastructures.

he following sections, we first identify a set of scenarios manifesting requirements on the
igo security and privacy architecture (Section 8.2). These requirements are derived in

hitecture in Section 8.4. We conclude in Section 8.5.

8.2 Supported scenarios
The characteristi
requirements on it, are defined by the set of scenarios it has to support. Describing the system
on the level of scenarios is sufficient for the purpose of deriving an abstract architecture. For
the definition of the concrete implementation, the level of use-cases might be more

Amigo IST-2004-004182 173/227

April 2005 Public

The following scenarios are derived from the higher level Amigo scenarios as described in the
Amigo Description of Work, and verified against the refined Amigo scenarios as described in
Deliverable D1.2 [Amigo-D1.2].

8.2.1 Installation of (new) equipment
New equipment will be introduced into the home on a regular basis. Equipment ranges from
statically installed house-hold equipment (e.g., refrigerators) and consumer electronics (TVs)
to PCs and mobile equipment like phones, PDAs and laptops. Some of this equipment will be

reign equipment

d smart phones. This equipment should have limited access to functions
r
e

liste n tching a photo collection.

8.2.3 Equipment malfunction
Equipment will malfunction, either by errors in design or due to external causes like power
failure, electricity short circuit etc. An Amigo system should take this into account and be
designed with a high level of tolerance towards failures. The doom scenario of not being able
to perform any functio from the house, communication failure, etc.)

ny means.

 example of
ild should not be

Acc s d for a limited period. For example a friend that joins the child to play
the video game. The equipment brought with the friend is allowed access to the Amigo
networked home system for half a day. Another usage is that access to the service itself
(playing the video game) might also be limited to one hour.

programmable and capable of storing information, other might not. No specific requirement
should be imposed on equipment in an Amigo system. Related to the installation of equipment
is also the removal of equipment (broken, sold, etc.).

8.2.2 Fo
Friends and guests will have their own equipment with them that should be capable of being
used in an (other than their own) Amigo home. Examples of this are game consoles,
controllers, PDAs an
inside the home (e.g., they should be able to turn on and off the light or be used fo
communication in the house). This equipment might also be used for temporary access, lik

ni g to music or wa

n (no entrance or exit
should be avoided by a

8.2.4 Equipment is moved outside and back into the home
An Amigo home will be comprised of statically located equipment, but also of mobile
equipment. This mobile equipment can be either personalized equipment (phone) or domestic
equipment. Mobile equipment can be taken out of the Amigo home network (e.g., to work) and
return at a later point in time.

8.2.5 Out of home communication
Some services inside an Amigo home need to communicate to services outside the Amigo
home area (e.g., communication, e-commerce, video on demand). These services might need
account information or other sensitive information that should be protected.

8.2.6 Home service usage
Access to services in the home should be configurable. Some services might require the
approval of an authorized person (other than the one accessing the service). An
this is a child that wants to play a video game that is rated as violent. The ch
able to play the video game without explicit approval of a parent.

es might be grante

Amigo IST-2004-004182 174/227

April 2005 Public

8.3
Functio ments on the Amigo security and privacy architecture can be derived from
the description of an Amigo system and the previous scenarios.

em requiring a

8.3
Since the u eing able to
ma c detailed knowledge of
the n eir implications should directly relate to the
Amigo environment as seen by any ly then, the safety level can be maintained
and n

 Amigo security system,
ma
system
failure
continu

8.3.6
Wh p
Amigo
(rented
enter th
register these devices over and over again.

8.4 A
The p rgeting the
requirements of a networked home system. Basic building blocks for the security and privacy
architecture are two middleware services: the authentication service and the authorization

 Requirements
nal require

8.3.1 Interoperability
An Amigo system will contain a large diversity of devices, and it will not be possible to enforce
policies on the usage or capabilities of these devices in an Amigo home. Therefore, it is
imperative that the security and privacy Architecture takes all these categories of devices into
account while still guaranteeing a safe level of security and privacy.

8.3.2 Pre-configured
It should not be necessary that a security expert is required to install an Amigo system or
verify the security configuration of an Amigo system. The system should guarantee an initial
safe level of security and privacy settings. It is very likely that a security syst
complicated or extensive setup before being regarded safe is turned off or not used at all.

.3 User-friendly
sers of an Amigo home should not become security experts before b

ke hanges to the system, configuration should be possible without
 u derlying technologies. Decisions and th

Amigo user. On
 u derstood.

8.3.4 Self-managed
Nobody in an Amigo home should be appointed as the person responsible for the ‘health’ of
the Amigo security system. Information necessary for the security system should be
maintained by the system itself. If interaction with the security system is inevitable, this
interaction should be performed with as few actions as possible and in a – for an Amigo user –
natural understandable way.

8.3.5 Distributed
Despite quality requirements like reliability and stability on the

lfunction and errors are unavoidable and should be taken into consideration. The security
 should be as resilient as possible, and, therefore, should not become a single point of
in an Amigo home. If part of the security system fails, it should still be possible to
e with a limited number of services or limited functionality of these services.

Dynamic
ile olicies for a corporate network limit the dynamics of resources (devices, networks), an

home will have to deal with them. Amigo users will bring new or temporary devices
, borrowed or carried by visitors) into an Amigo home. These devices will leave and
e network frequently, and the user should, for example, not be bothered by having to

migo security and privacy architecture
roposed Amigo security and privacy architecture is specifically ta

Amigo IST-2004-004182 175/227

April 2005 Public

service. The authentication service handles the verification of an identity; the authorization
service handles the access control for that identity. The authentication solution is based on the
Kerberos [KoNe93] mechanism, extended with identities for devices. The authorization
process is specifically designed for the networked home system using a Role Based Access
Control (RBAC) approach. A similar approach in this direction is SESAME [PaPi95]. In
contrast to SESAME, the solution proposed in this document specifically targets usability in the
home domain and extends the RBAC to devices and services. Instead of depending on an
Access Control List (ACL) per service, the proposed solution utilizes a single Authorization
Scheme (AS) for the complete Amigo system. Figure 8-1 outlines the Amigo security and
privacy architecture.

Amigo IST-2004-004182 176/227

middleware
layer

platform
layer

application
layer

Application
Service

Application

Uses

User

C
D

li
evi

ent
ce

Int
era

cts

Syste
Netw

sou

m &
ork

Re rces

Service

Security Enforcing Application Services

Middleware
ServiceMiddleware

Service

Interacts

Authentication
Service

Authorization
Service

Server
Device

Application
Service

Application
Service

Middleware
Services

Security
Enforcing

Application
Service

Figure 8-1: Security and privacy architectural components

itecture diagram of Figure 8-1, users, evices (i d services (if needed to
cqu identity kens f the a ticatio ervice. en acce ing a secure

tion service
ire a service-specific token (also calle an auth rization t ken). The authorization

ate s request and, plica es cific tok hat can be
e validates the token and grants (or denies) access.

d application layer can be divided into two categories: standard
and security enforcing. Security enforcing services are like y
(1) require clients contacting th en, and (2) use a secure form
of service discovery (see security and privacy applied to service discovery in Section 3.2.1.4).
A security enforcing service verifies the authorization token before providing its services.

 do not impose this requirement on a client, and are hence considered

application-level services) is that clients and devices will not only interact with
app
ma
across

In the arch
be secure) a
service, both the user and the device identity tokens are presented to the authoriza

 d
uthen

f capable) an
n sire to rom Wh ss

to acqu
service valid

d
ble, issu

o
a service-spe

o
s thi if ap en t

used to access the service. The end-servic

Services in the middleware an
any other service, except that the

em to provide an authorization tok

Standard services
unsecured.

One reason for having security enforcing middleware-level services (besides the security
enforcing

lications, but also directly with middleware services (e.g., content distribution, context
nagement, QoS monitoring, etc.). These interactions between middleware components

 devices need to be secured.

April 2005 Public

Ano
betwee ices (e.g., content distribution) might use unsecured communication
cha e

In the sections, besides authentication (Section 8.4.1) and authorization (Section
8.4.2), privacy (Section 8.4.3) and communication security (Section 8.4.4) are addressed as

rivacy architecture.

ave identities (the Amigo system as such might also have an

introduced.

nario for authentication of a user in Kerberos:

 is encrypted with the user’s password.

and decrypts it with his/her password. This token is called
anting ticket in Kerberos.

Then, a s
as follow

• service, and sends the ticket-granting ticket to the

• T llowed access to that service, and, if
allowed, generates another token that is encrypted with the service’s password.

•
it.

Users are registered in an Amigo system by a configuration application. Access to this
configuration application should be restricted to limited group of users and devices.

ther reason for security enforcement of middleware services is that communication
n middleware serv

nn ls (public network) or needs to handle secured content (DRM).

following

essential parts of the Amigo security and p

8.4.1 Authentication
Users, devices and services h
identity, but this is not directly applicable to the security within the home) in the proposed
architecture. Authentication is the process of verifying an identity. Single sign-on (SSO) is a
concept in which a resource is not required to prove its identity every time it wants to access a
service, but only has to be authenticated once (once in the context of a session, where the
system defines a session). In the following sections, the authorization service (Section 8.4.1.1)
and its specialization to users, devices and services (Sections 8.4.1.2 to 8.4.1.4) are

8.4.1.1 Authentication service
The authentication service is based on the Kerberos principle, which means that
authentication tokens (called ticket-granting tickets in Kerberos) are issued for resources that
are authenticated. These authentication tokens can then be used to acquire (service-specific)
authorization tokens (tickets in Kerberos) that grant access to the associated services (the
principle of using an authentication token multiple times to get authorization tokens realizes
the SSO feature).

There follows a simplified example sce

• A user sends his/her user name to the Kerberos system.

• The Kerberos system generates a token that

• The user receives the token
the ticket-gr

implified example scenario for accessing a service using the ticket-granting ticket is
s:

The user wants to access a
Kerberos system with the request to access that service.

he Kerberos system verifies whether the user is a

The user receives the additional token, and presents it to the service when accessing

• The service decrypts the ticket and grants access.

Note that for simplicity reasons, the concept of a session key is skipped, since it does not
change the essential principle of Kerberos.

8.4.1.2 Users

a

Amigo IST-2004-004182 177/227

April 2005 Public

Different mechanisms will be used to proof the identity of a user, which can be categorized as

rvice

A u r
ide y
proven
the au s can be retrieved from the authentication
pro s

The tok
to indiv r the user towards

rvices.

devices that are more or less stationary to devices that
o home. Another type of devices is a guest device; it

A device can re-use a token, and can therefore leave and enter the Amigo system without
ver and over again (identities can be revoked, so a device with a

strong or weak. Strong proofs are username/password, smartcard or biometric proofs. Weak
proofs are single PIN or username.

Weak proofs are in fact identities that can not be verified, and hence solely serve the purpose
of identification (in contrast to authentication, where an identity is verified). The role will be
encoded in the token issued by the authentication service, and it depends on the se
whether it requires a strong or accepts a weak proof. An example of a service accepting a
weak proof could be a service that adjusts room preferences for an Amigo user.

se ’s identity can also be linked to an external (external with respect to the Amigo system)
ntit , like, for example, an identity with an e-commerce Web site. If the users identity was

 using a method in the strong category (that is, the user possesses a token issued by
thentication process), alternative identitie

ce s.

en generated by the authentication service can be used (multiple times) to get access
idual services. Providing a token after authentication enables SSO fo

multiple se

To enable RBAC (see Section 8.4.2), users are assigned a role. Examples of user roles are:

• Administrators;

• Family;

• Kids;

• Guests;

• Others (configurable by Amigo users).

8.4.1.3 Devices
The devices in an Amigo home will range from powerful programmable devices, like laptops,
PDAs and smart phones, to small or simple devices, like temperature sensors, printers or
cameras with limited processing power.

The behavior of devices will vary from
dynamically enter and leave the Amig
enters the Amigo home for a certain period of time and then leaves.

Registration of a device is performed when it is discovered. A device has to acquire a token if
it does not possess a valid token (unless it does not plan to access any security enforcing
components or is not capable of storing tokens). The authentication process can then decide
whether to directly issue a token (because, for example, the built-in token is verified, or the
expired one is extended) or get confirmation from an Amigo user (for example, having the
Administrators role) before issuing a token.

having to identify itself o
revoked identity will not be able to acquire a service-specific authorization token).

Devices also participate in the RBAC (see Section 8.4.2). Example roles are:

• Administrative;

• Domestic;

• Mobile;

• Guest;

Amigo IST-2004-004182 178/227

April 2005 Public

• Unidentifiable (devices not capable or not in possession of a token, including legacy
devices).

8.4.1.4 Services
Services are the security enforcing components in the Amigo security and privacy architecture.
The abstract reference architecture of an Amigo system distinguishes three layers: the
platform, middleware and application layer. Amigo services are implemented in the
middleware and application layer. Users and devices will directly interact with both layers, and
hence there ity enforcing services in both layers.

Services receive their token when they are re
inst t ting

. For

ment (e.g., play video games);

 On the one hand, the authorization

curity system.

 natural or higher level. Assigning (only) to the PC in the study

wever, be relevant to the domain that is to
extensible enables

customizable granularity for authorization (e.g., define different roles for children in
different age groups).

• Assigning services to roles leverages the concept of natural grouping, and enables a
single Authorization Scheme (AS) for the Amigo home. An Amigo user does not need
to know and configure every individual service on every Amigo system, but can
configure the access based on natural (home-specific) roles for services.

will be secur

gistered (installed) in an Amigo architecture
an iation. This token contains (among other data) the key for encrypting and decryp

service discovery information, and can, for example, also be used to verify that the accessed
service is the actual service it pretends to be. This is essential to avoid impersonation of
services (e.g., a guest device impersonating a service discovery repository, and hence
acquiring a complete overview of the devices and services in an Amigo home).

To realize the single Authorization Scheme for RBAC, services are assigned roles
example:

• Administrative (e.g., user registration, AS configuration);

• Secure (e.g., personal communication services like IM, e-mail);

• Entertain

• Home (e.g., climate control, watch TV).

8.4.2 Authorization
Authorization is the process of controlling the access of an identity to a resource. Taking
usability or, more generically, the security and privacy requirements of an Amigo system into
account, authorization becomes a very complex subject.
configuration has to be perfectly secure, in the sense that it does not open or leave any holes
in the security concept. On the other hand, authorization will be configured by Amigo Users,
who are not security experts spending a lot of time on analyzing the consequences of a
change in the se

The proposed architecture addresses this problem in several ways:

• Taking not only the identity of a user but also the identity of a device into account
enables decisions on a
room the Administrative role guarantees that somebody in the living room can not
access any Administrative service, even if that person would know the administrative
password. Assigning to a friend’s PDA device a guest role ensures that this device can
only be used for a limited time with limited access in the home.

• Configuring access based on roles is easier to oversee than configuring them on an
individual level. These roles should then, ho
be secured (in this case the Amigo home). Making the user roles

Amigo IST-2004-004182 179/227

April 2005 Public

8.4.2.1 Authorization service
The authorization service is similar to what is called the ticket-granting server in Kerberos. It
issues a token (ticket) that can be presented to the service for access. The service checks
(decrypts) the token and grants (or denies) access.

To get a token, the client has to present the user token and the device token together with the
request to access a service towards the authorization service (note that for some security
enforcing components the user token might be optional, if they do not care about the user’s
identity). The authorization service then uses the AS to check whether access can be granted,
and, if so, issues a token to the client. This token can then be presented towards the service
when accessing it. The security enforcing service checks the token and grants access.

Another functionality of the authorization service is deferred authorization. If a service’s role
allows deferred authorization, and the user’s token presented to the authorization service does
not have a sufficient level, the authorization service gets the authorization from a user with a
higher role (hence, user roles are related to their security level).

8.4.2.2 Authorization Scheme (AS)

at this is a property of a role and not directly related to the security

Device Role

The authorization scheme implements the access control for user and device roles to service
roles. An entry in the authorization scheme holds additional information, like deferred
authorization, strong or weak user identification (the decision to not form distinct roles for this
is based on the idea th
level), etc. Table 8-2 depicts the introduced authorization scheme.

User Role

Service
Role

Admin. Family Kids Guests Admin. Domestic Mobile Guest

Admin
Application

X*

-

-

-

X

-

-

-

Secure
Application

X*

X*

-

-

X

X

-

-

Standard
Application X X X** X** X X - -

Home
Application

N/A

N/A

N/A

N/A

X

X X X

*) Strong user identification required
**) Deferred authorization

Table 8-2: Authorization scheme

8.4.3 Privacy
Privacy is a broad term concerned with all kinds of mechanisms to protect information against
undesired exposure to other parties. With respect to an Amigo system, privacy protection
involves:

- Privacy protection of discoverable information (see security and privacy applied to
service discovery in Section 3.2.1.4).

Amigo IST-2004-004182 180/227

April 2005 Public

- Privacy protection of user information like configuration, context information, etc.
(Section 8.4.3.1).

- Protection of content delivered to the home, like DRM-protected content (Section
8.4.3.2).

8.4.3.1 Protection of user information
Several services (in middleware and application layer) will have to store and communicate
information sensitive to privacy. Examples of these are user-profiles, context information,
configuration information, etc.

These services are all of the security enforcing kind. This means that all these services require
an authorization token from the client before they perform their service. In this way, the access
to the privacy-sensitive information is controlled. Another aspect is the communication of this
information. To prevent another party from eve-dropping on the privacy sensitive information,
the transmission should be secured by one of the methods described in Section 8.4.4.

 buy a song),
bile devices,

other devices, etc, mainly due to the fact that the user can distribute the content relatively
simply, once this is on his/her device.

The DRM technology’s objective is to provide an answer to the problem associated with the
management of (digital) rights in Amigo enables controlled
distribution and avoids fraudulent usage of content.

consumption form of digital contents.

f the providers, authors of the digital content, operators and

8.4.3.2 Protection of content (DRM)
The evolution of technologies as well as the multimedia capabilities of devices has provided
new and easier means for content distribution between users. Content owners have been
threatened to loose grip on the content distribution process, and have called for an automated
process that regulates the usage and distribution of content.

Nowadays, the rights to access content are enforced by the content owner (e.g.,
but often the same content can be found (unprotected) on the Internet, PCs, mo

on contents. DRM technology

Digital Rights Management affects:

• Users:
New business models are presented that will have direct implications for the

• Content Providers:
Added-value contents should be distributed in a safe way, with the objective to
increment benefits due to controlled distribution.

• Operators:
The operator can adopt different roles in the management of digital rights: offer the
rights management to content providers, being a collector of payments, etc.

Digital Rights Management (DRM) includes business, social, legal and technological aspects.
These aspects must be considered because of the implications associated to the distribution
of contents for the business o
users. The perspectives identified in the management of digital rights are depicted in Figure 8-
2.

Amigo IST-2004-004182 181/227

April 2005 Public

Figure 8-2: Perspectives in Digital Rights Management

Requirements
Although DRM content will most likely not be generated from within an Amigo system, it will

le solution to DRM.

stributed: it should be possible (also for protected content) to be delivered anywhere

 possible solution fulfilling the previous requirements for delivering protected content in an
Amigo home is the Digital Transmission Content Protection (DTCP) approach [HIM+04]. It is a
standard for protecting content while the latter is being moved from device to device, produced
by the Copy Protection Technical Workgroup (http://www.cptwg.org/

still be confronted with Digital Rights Management due to (DRM-protected) content entering
the Amigo home. This could be through an Internet connection, but also on physical media
(e.g., DVD). The scenarios in Amigo envision content being delivered through an Amigo home
(and possibly to the extended home), and this requires an interoperab

Mapping the applicable (high-level) requirements from Section 8.3 to the DRM problem
implies:

• Interoperability: the solution needs to support several DRM standards. It is not feasible
to select a single DRM solution, since there will be different kinds of equipment using
different solutions for protected content.

• Di
in an Amigo home. Content in an Amigo home might be served from a different place
to where it is rendered. This means streaming should be supported.

Solution
A

).

DTCP was initially specified over IEEE 1394 links, later over USB, and lately over IP
(DTCP/IP). Each DTCP-licensed device holds a device certificate issued by the DTLA (Digitial
Transmission License administrator, http://www.dtcp.com/). When copy protected content is
forwarded from (source) device to (sink) device, the source device verifies whether the sink
device is allowed to receive the protected content or not. The copy protection rules (copy
never, copy once etc.) are embedded in the media.

Amigo IST-2004-004182 182/227

April 2005 Public

DTCP can be implemented on PC as well as CE devices, and, since all DTCP-licensed
devices hold a device certificate, it should be possible to use this device certificate for
authentication against an Amigo authentication service.

8.4.4 Communication security
An Amigo system uses a peer-to-peer model for communication. Whether the communication
between these peers needs to be secured is decided by the endpoints. This is similar to a
Web browser accessing the Internet: the site that is being accessed decides whether security
(e.g., SSL) needs to be applied or not. Most security mechanisms depend on the exchange of
secrets in the form of keys for their encryption algorithms. These keys can be provided by the
authentication server and presented in the token. In the following sections, a number of
technologies candidate for supporting communication security in the Amigo home are
presented.

8.4.4.1 WS-Security
This specification [NKHM04], presented in April 2002 by Microsoft, IBM and Verisign, defines a
series of extensions of the headers of SOAP messages. These extensions provide integrity,
confidentiality and authentication at an individual message level. WS-Security further specifies

ic kind of
lly X.509

security protocols
te security solution.

curity element, defined on SOAP, and is the base of the rest
urity road map presented by IBM and Microsoft.

olution, and, therefore, leaves obsolete other initiatives

, in their preliminary versions from Microsoft;

ity tokens (for Web Services) from IBM.

e de variety of security models that
a ns, trust domains, encryption technologies and security at end-to-

ecification does not include aspects like: establishment of a

how to associate security tokens to messages, although it does not require a specif
security tokens. It is also described how to encode security binary tokens, especia
certificates [HPFS02], Kerberos tickets or encrypted keys. The specification is extensible to
high-level descriptions of the credentials characteristics included in the messages, or to
incorporating different technologies.

As it occurs with all of the security specifications associated to Web Services, WS-Security is
not a security solution by itself. WS-Security must be used jointly with other
at Web Services and application levels to provide a comple

This specification is the basic se
of the specifications that make part of the sec
In addition, this specification is an ev
from Microsoft and IBM in this field, like:

• SOAP-SEC;

• WS-Security and WS-License

• Previous encryption documents and secur

ecification is to provide support to a wiTh objective of this sp
en ble: multiple security toke
end message level. This sp
security context, establishment of an authentication mechanism that requires multiple
exchanges (exchange of keys or derivation of keys), or establishment of a trust domain.

This specification is based on XML Signature to provide digital signing to the contents, and
thereby, guarantee the integrity of the messages. To provide confidentiality, this specification
refers to the use of XML Encryption to protect part or the whole of the content.

8.4.4.2 SSL
SSL stands for Secure Sockets Layer. It is a protocol developed by Netscape Communications
Corporation for transmitting private documents via the Internet. It is located on top of the
transport level of the network protocol (TCP/IP) and below the application level.

Amigo IST-2004-004182 183/227

April 2005 Public

Rather than being limited to HTTP transferences (as S-HTTP is), SSL is application-
independent, which makes it especially suitable for information exchange in the Amigo home,
where all kinds of devices and services will interoperate.

The protocol has evolved since its original release to provide better security and
interoperability. The last version of SSL available is V3.0, which has been now superseded by
TLS (Transport Layer Security Protocol), an extension of SSL 3.0, which could be very well
called SSL 3.1.

TLS specification is publicly available as an IETF standard specification [DiAl99]; there are
public implementations under the GPL license. There is also available a variant of TLS for
wireless connections, WTLS.

The main objective of TLS is to provide secure and private communications between any two
applications over the Internet. On top of providing cryptographic security and being
interoperable with most devices and communication protocols, TSL is designed to be efficient
communications-wise by using a session caching scheme that reduces the number of
connections that have to be established from scratch, and extensible, so that it can incorporate
any new key and encryption method as necessary.

The SSL protocol itself is divided in different layers as shown in Figure 8-3.

Figure 8-3: SSL protocol stack

SSL provides basic security services to higher-layer protocols. HTTP is displayed as the
(currently) most common application, but any other protocol with basic security requirements
could be the client application. The other three blocks are used in the management of SSL
exchanges.

SSL introduces the session concept, which is slightly different from connection. A session is
an association between a server and a client, and can be shared among several connections.
This prevents the excessive overload of negotiating the security parameters each time secure
connections are initialized.

To open a new session, public key encryption is used, and once the security parameters are
established, and both client and server have determined private keys, symmetric encryption is
used to exchange information.

Sessions are created by the handshake protocol. During this process, the server is
authenticated, and the client may also be, although it is not mandatory. Initially, in response to
a client request, the server sends its certificate and its cipher capabilities and/or preferences
(algorithms, compression, etc.). The client then generates a master key, which it encrypts with
Amigo IST-2004-004182 184/227

April 2005 Public

Amigo IS 004-004182 185/227 T-2

the server’s public key, and transmits the encrypted master key to the server. If client
authentication is required, it is then

The server and client exchange several randomly ge wi heir
respective and private keys, so that they finally share the same master key, which they will use
to generate

Once they have agreed on the keys and algorithms to use, and
necessa both ends of com nication d master key they
have agreed upon. To g , S se mac gh several
states to ke
Spec Protocol. Of the several states that the p ,
one state is set as is o a
the
messages is issued, th pendi
set.

Exchange o cure data is done through the SSL Record Protocol. The application data is
encrypted with the Cipher specification set during the h
provides co entiality of the data exchanged. To assure message integrity, a MAC is
appended to ck of data, in the SSL header. We may in
Figure 8-4.

Figure 8-4: n

As previously mentioned, the standard is very open, an llow sever
compressio , encryption and hashing algorithms. The compression alg in
the protoco specification, and any or no compression
encrypting, several different secure algorithms can be used,
is provided.

The packet structure de

 that the clien

n keys for the sessio

mu
eys

here
Change Cipher Spec messages

 state replace

t certificate is sent.

erive the session key from the
s a
t is

rotocol has,
 pending

s the

nerated bit

e state, and may flip throu
 purpose of the SSL Cha

 when the session is established
e, which is set ready to

 state and a new

s, encoded

been authenticated (if

th t

state is

the symmetric encryptio

ry),

ep the communication secure. Tha

 state when one of the

n.

hin
sole

 stat

 the
nera

. B

pending

e

e

te k

ut t

SL u

 als

the

current

nge Cipher

 substitute

ng

current
current

SSL data encapsulatio

d it a

can be used. For ha
 and suppor

picted in F

s for
orithm is not

t for future e

igure 8-5.

al different
 defined
shing and
xtensions

n
l

of an SSL Record message has the

is sent. Once one of these

f se

nfid
andshake or later changes, which

 each blo see the schema of the process

April 2005 Public

A go IST-2004-004182 186/227 mi

Figure 8-5: SSL package bits

Finally, SSL uses an Alert protocol that allows sending signals to
re two different levels of alert, a

hreats, and
ely and prevents new connections on the same session.

chnologies, Java RMI was or a trusted
distr e (with the exception of security from downloaded code). In
Java I, there is no authentication of communi d-points, meaning that the server
program does not refuse service to unknown client programs and vice-versa. There is no
priva being exchanged, meaning that anyone connected to the
network and with access to the proper tools can see and analyze invocation parameters and
return values. Additionally, there is no guarantee of message integrity, meaning that an
intermediate node or program can modify the messages being excha d, and that the end-
points will not su t a thing.

These security issues do not pose serious problems within the safety o cted network,
but could be serious security threats within a large corporate intranet or o er the open Internet.
Therefore, multiple approaches to use RMI on top of secure transpor have been
developed to enable the use of RMI in non-trusted environments. RMI

gh remote stubs. The remote stub contains information – such as the
 system listens

g connections – that allows it to communicate with the
efault, the RMI system randomly allo ject at the
ntiation. However, it is possible to specify a fixed port number programmatically by

cific constructor.

roach is to use RMI through SSL connections,
RMI socket factories for secure ones. There are multiple free implementations of these

ories, which make use of the Java Secure Sockets Extension (JSSE).

Another solution to provide security to RMI is to use SSH tunneling. SSH is the most extended
secure shell protocol over the Internet. The process of establishing the tunnel essentially
involves starting the SSH client program on the client machine with information about the local

s to be forwarded, corresponding remote ports, and the remote host running the SSH
g through the end-point authentica

nge

f a prote
v

t protocols
clients invoke methods

corresponding remote
e remote ob

by changing the default

spec

on a remote object throu
hostname or the IP address of the host machine and the port on which the RMI
for incomin
object. By d
time of insta
using a spe

The most common app

cates a free port to th

fact

port
daemon. The SSH client, after goin tion, informs the SSH

 the other end of the
communication when the security is compromised. There a
warning level, which serves to notify possible security t
term

 a fatal level, which
inates the connection immediat

8.4.4.3 RMI and security
Much like most of the early networking te designed f

ibut
 RM

d computing environment
cating en

cy or confidentiality of the data

April 2005 Public

A go IST-2004-004182 187/227 mi

daemon about remote connection addresses and starts listening for incoming connections on
the local ports.

Whenever this SSH client gets a connection request on a port that has been forwarded for
tunneling, it accepts the connection and informs the SSH daemon, which, in turn, establishes

with the corresponding r address. r that, a exchange between the
he server program flows through the SSH client and the SSH daemon, and is

ity.

vironment. It is position

Amigo system.

Security is not enforced on components, there may and will be components in an Amigo
syst t do not need to embed security, as their operation or implication on wrong usage
doe t compromise th the home or other components.

The figuration is ke e home). It does not
ge about the used technologies, nor does it require extensive analysis

f configuration

e stateless,

istributed implementation and avoiding a single point of failure in the
network.

The elaboration of the of our future work in
Amigo; it will specifically be addressed in Task 3.5 on security and privacy of Work package
WP3, and Task 4.3 on p curity issues

connection
client and t
encrypted to ensure privacy and me

8.5 Discussi
The Amigo
a networked home en
enable heterogeneous networks and devices to participate;
that it still allows legacy devices to

em

ssage integr

hit

participat

ote

ecture

Afte

in this

ll d

 is not restrictive, in

ata

on
security and privacy arc outlined

ed at the middleware and application level to

e a

chapter is specifica

 yet
he services

lly designed for

 the sense
nd use all t they would in a non-

em hat
s no e security of

 con pt relatively simple and domain-specific (to th
require specific knowled
in ca

The security-related components (authentication and authorization) ar
that they do not require maintenance and exc
hence allowing a d

se o changes.

in the sense
hange/verification during service executing,

Amigo security and privacy architecture is part

rivacy and personal se of Work package WP4.

April 2005 Public

A 182 189/227 migo IST-2004-004

9 Support of user/technical requirements within
the Amigo architecture

ter, we first (Section 9.1) deduct the tech ments on the Amigo
r requirements (see Deliverable D1.2 [Amigo-

ser require
prioritized o

ry to deliver the best

 view (e.g., because of

Amig bstract architecture, which has been elaborated in the previous chapters. This should
show the support of the technical requirements by the Amigo abstract architecture. We finally
state r conclusions in Section 9.3.

9.1 cting techn iremen e user requirements
we summariz dentified and their priority in Table

 where the user requirements apply to: which application domains
narios), which in t user services, and/or if the user

he system in general. If it applies to the system in general, we will find
r that this usually leads to technical requirements in the middleware.

In Ta 9-1, the application domains are abbreviated as:

• D Home Care and Safety
• D2: Home Information and Entertainment
• D3: Extended Home Environment

And inte ent user services are abbreviated as (as explained in DoW description of WP4):

• S1: Context collection, a nd ion
• S2: User modeling and p
• S3: Awareness and notification
• S4: Content provision, selection and retrieval
• S5: User interface
• S6: S y and priv

ble 9-1, the technical re coming from the user ents
d. This the result volving not only WP1

work was continued and refined in smaller groups later. In

ments on the middleware, on the
ligen

tions (W As you c l tech l requ ng to
more than one user requirement.

nt to realize here that especially the general user requirements, including the very
obvious, will lead to technical requirements for the middleware. Even though some of these
general user requirements seem very obvious, the Amigo system will not be accepted and
valued by the end-user if these requirements are not met. This is why we have given them the

est priority of all (highest priority = 0). Prioritizing of user requirements is necessary, as

middleware

 design and implementa

In this cha
middleware coming from analyzing t
D1.2], volume I for the summarized prioritized
deducted fr
studies. T
offs both in architecture,
possible result for the end-user. Some technical requirements cannot be deducted from a user
point of
other stakeh

We then (Section 9.2)

p

om the user requirements are also
his is n

nical requir

ments). The technica
 b

s or require

e

es not exist

ments), but come from

the middleware with the

he WP1 use

lly the idea

main-specific standard

 u

l system architecture do

u

l re
t fro

quirements
m the user
and trade-

ased on the utpu
ecessary, as usua

 do
ssed in Chapt

tion phase are necessa

er 10 and are not addressed in this chapter.

irements deducted for

olders. They are discu

match the technical req
o a

 ou

Dedu ical requ ts from th
From
9-1. We have analyzed
(coming from the three Amigo sce
requirement applies to t
out l

 D1.2, e the user requirements that were i

telligen

ate

ble

1:

the llig

ecurit

st column of Ta

ut also WP2-7 me

t user services, and proprietary technical requirements only being valid for one of the
e applica

ggregation a
rofiling

acy

is
mbers. In this workshop, the user requirements were

P5-7).

predict

quirements
 of a two-day workshop in

an see

In the la
mentioned are deducte
members, b
into technical requirements. This
this process, a split was made between technical require
intel
proto

 requirem

translated

irements belotyp severa nica

It is importa

high

April 2005 Public

A 182 190/227 migo IST-2004-004

usually the ideal system architecture does not exist and trade-offs both in architecture, design
and implementation ph eliver the best possible result fo e en ser. ase are necessary to d r th d-u

April 2005 Public

Table 9-1: User requirements as taken from D1.2 equirements d

Priority No. B lo gin to ents

 and technical r educted thereof

User requirement e n g Technical Requirem

 D1 D2 D3 S1 S2 S3 S4 S5 S6 General

Device discovery

Service discovery

Service composition

Re-configuration

0 1 Be easy to use and to configure –
no need for programming by the

x x x x

uration of

user

Assisted/ automatic config
services

Multi-user system

Manual service initiation/ interaction

Privacy profiles

0 2
 perception)

x x x x

ser authentication

Not being used for surveillance
(from the users'

Security profiles and u

Personalization and customization

User tracking

0 Enable individual settings and
preferences

x x x x x x 3

Context awareness

Remote configuration & monitoring

Re-configuration of network and devices

0 Be configurable by the user or
service provider

x x x x 4

Same as 3

Customization 0 5 x x x x

Ad-hoc interoperable networking

Be movable, in case of moving
house

Amigo IST-2004-004182 191/227

Public

igo IST-2004-004182 192/227

y No. User requirement Belonging to ical ReTechn quirements
 D1 D3 S1 S2 S3 S5 S6 D2 S4 General

Se e m arvic igr tion

Re nfig ti ces -co ura on of network and devi

“Compon zenti able”

Component based middleware

Standard ized services

"Automat pic u dates"

Service d visco ery

Re-config ti ces ura on of network and devi

Billing se rver

0 6 Be extensible - easy to upgrade x x x x

De di vvice sco ery

Ad c in-ho teroperable networking

Co xt a ente war ness

Device di vsco ery

Service d visco ery

0 7 Be flexible x x x x

 Interope erabl (domotic) interfaces

See 3 0 8 Enable Turn off individu x x x

pe e

al features x

 Intero rabl interfaces

"Compon zenti able":

Compon aseent b d middleware

0 9 Be modular x x x

etection aFault d

 x

April 2005

Am

Priorit

nd recovery

Public

ig 2 193/227 o IST-2004-00418

Priori r t Belonging to Technical Requirements ty No. Use requiremen
 D1 D2 S1 S2 S4 S5 D3 S3 S6 General

Device discovery

Service cove dis ry

Interoperability at network, device,
middleware and interface level

0 10 Be
for

 m fre ., no nee
m by ser)

x x See aintenance
aintenance

e (i.e
the u

d x x 6

"Have user conf ng/ in the looirmi p"

Pre-req: mult m i-user syste

Unobtrusive interfaces, including speech
recognition

1 11 Th
co
oth

e u wa main in
ntr te d never t
er

x x ser must al
ol of the sys
 way around

ys re
m an he

x x

Privacy profiles

See 2 1 12 The s b ure
and p riv f al th and

rld

ystem must
rotect the p

e sec
acy o

, safe
l users

x x x x

"Towards o
outside wo

er acce
"

pted users

Multiple-user system

Group/ comm y prounit files

Personalization and customization

Distr syibuted stem

1 13 The sys pr e an a

multiple the e tim

Multicasting

tem must
value to existing systems for

 users at

ovid

 sam

dded

e

x x x x x

Unobtrusive interfaces 1 14 The system should never
unnecessarily replace direct

on betweinteracti en ple

x x

Context awaren

 x

 peo

April 2005

Am

x

ess

Public

igo IST 27-2004-004182 194/2

Priority e ic No. User requirem nt Belonging to Techn al Requirements
 2 D1 D D3 S1 S2 S3 S4 S5 S6 General

Context awareness

Light sensors, kinetic sensors

Sound adaptation

Personalization and customization

1 mf
d

ac

 15 The home
maintaine
to the syst

 co
d an
em

ort should
not be su

 al
bse

way
rvi

s be
ent

x

User tr king

Context awareness

Multi-user system

"Situation assessment"

User tracking

Privacy profiles

2 m sho
ly the
 to th
riate
.e., fil

sumes, a se
s (note o
rvices th)

x

al

16 The syste
concurrent
information
the approp
locations, i
provide re
preference
existing se

uld provid
 appropri
e right pe
occasion
ter inform

ccordi
people
at the

e
ate
rso
at d
atio
ng
 ref
y kn

ns
iffe
n,

to u
er t
ow

for
rent

r

 x x x x x

Person ization and customization

Da
(m

ta con
ultime

vergence mechanisms
dia communication)

Standardized interfaces (APIs)

2 m should
d usage
om

x

-hoc i

17 The syste
access an
and data fr

 enab
of info

 different sources.

le easy
rmation

 x x x

Ad nteroperable networking

Personal ization and customization

Sto
co

rage me
mmun

system/ repository (multi
ication)

dia

Replication

2 m should rt storag
ing of da iverse

x x

exing r,
ultime

x x e suppo
ta in d

18 The syste
and archiv
ways.

April 2005

Am

x x

Ind
(m

into the real world (pape
dia communication)

…)

Public

migo IST-2004-00 954182 1 /227

Pr No eqiority . User requirement Belonging to Technical R uirements
 2 al D1 D D3 S1 S2 S3 S4 S5 S6 Gener

Context aware a ness, classification of dat

Quality of service

Situation assessment, ontologies

2 19 su
d

x

at

 The system sho
control over dat
best performanc

uld
a an
e

pport having
information for

x x x x x x x x

Distributing d a

Manage
services

ment and overview of domestic

Domotic bus driver

Domotic device drivers

3 20 re
ld
le

s out projec

 The system sho
needed for hous
where possible

uld
eho
do c

duce the time
 chores and
aning jobs

x x x x

 New device of scope of amigo t

Device and service discovery 3 21 uld int
nality

 x x

ability

 The system sho
combine functio

egrate and
of appliances

x x

Interoper

 Power aware

 Prioritization of d evices and services

3 22 uld be

awarene

 The system sho
saving

 energy x x

 Context ss

Billing server 3 23 uld be

e usage
is

 The system sho cost saving x

 Mainly th
implies th

 of the system that

Context awareness

Controllers, sensors, actuators

Personalization and customization

3 24 uld main
ronment
 house
midity, li

g

 The system sho
appropriate envi
conditions of the
(temperature, hu
dust, mites, etc.)

April 2005

A

tain the
al

ght, air,

x

User trackin

Public

migo IST-2004-0 1904182 6/227

Pri o. ng tsority N User requirement Belongi to Technical Requiremen
 D1 D2 D3 S1 S2 S3 S4 S5 S6 General

Context awareness

Automatic data collection and notification

Multi-user system

4 25

we

 The system sh
activity organiz
for multiple per
between home
and work

ould support the
ation and planning
sons at home,
s and between home

 x x x x x x

Sharing information bet en users

Data replication

Security profile and user authentication

4 26

sion

 The system sh
abuse, intrusio
house hackers

ould protect against
ns, loss of data,

 x x x x x x x x

Detecting physical intru

Security and privacy profiles

 Multi-user system

4 27

re

 x x The system sh
controllable ac
individual prefe
authorities

ould provide
cess and respect

nces and

x x x x x x

 User authentication

4 28 ou
div
te s.

 x The system sh
alignment of in
planning, upda

ld support
idual and group

s and notification

 x x x x See 25

Context awareness 5 29 ou
m to

e a of
on

 The system sh
context/environ
account and b
the local situati

ld take
ent conditions in
ware at any time
.

x x x x

 Sensors

Parental control, "monitoring"

Automatic community information

5 30 ou
la
y r
ng

 x x

 in a com

 The system sh
integration of p
games in famil
approved setti

ld support the
ying computer
outine, and
s.

 x x x x x

Sharing of practices munity

Multi-User system 5 31 ou g
er

ld support playin
tainment with

 The system sh
games and ent
multiple people in or

x

nment, S

April 2005

A

 the same room

 x x x

Adaptation of enviro ee 24

Public

igo IST-2004-0041 82 197/227

Priority No. Us equirem lo er r ent Be nging to Technical Requirements
 S2 ner D1 D2 D3 S1 S3 S4 S5 S6 Ge al

Physical interaction

ir

 networked environment.

Additional processing
games

requ ements for

Personalization and customization

Sharing user information for e this purpos

6 yst pli
 ru or into a

x x 32 The s
social

em shoul
les of beh

d ta
avi

ke im cit
ccount

 x x x x x x x

Multi-user system

Always available system 6 yst pport
sin
un nts in mul
nt

 x

erfac
i

 33 The s
increa
comm
differe

em shoul
g numbe
ication m
contexts

d su
r of
ome tiple

 x x x x

Componentizable use
nfrastructure

r int e

Multi-user system 6 yst able
un ultiple pe
sa broadcas

cra nning.

e.g.,

 34 The s
comm
at the
demo

em shoul
ication wi
me time,
tic group

d en
th m
e.g.
pla

ople
ting,

 x x x x

Using "Overlay Netwo
One Option

rk" (P2P), As

Service availability

Transparent interfaces

6 yst pport kee
ch oup of frie
ed connecte
im portant.

x x 35 The s
in tou
no ne
“me”-t

em shoul
with sele
to always
e is just a

d su
ct gr
 be
s im

ping
nds,
d as

 x x x

Context awareness

See 35 6 yst pport feeli
ne to family and
s

x x 36 The s
of con
friend

em shoul
ctedness

d su ng x x x

Location management

Trust management 6 yst d support ‘trus
ns meeting new

e m ough mutual
s.

x x x 37 The s
relatio
peopl
friend

em shoul
hips, e.g.
ainly thr

ted’ x x x x x x

April 2005

Am

Natural interfaces

April 2005 Public

9.1 o the middleware

upc
sum
sco
req
sec e

(0-6

.1 Technical requirements applying t
Table 9-2 lists the deducted technical requirements that apply to the middleware. In the

oming deliverable D2.3, the technical requirements for the intelligent user services will be
marized and the appropriateness of the service architecture will then be validated. The

pe of the current document is limited to the middleware architecture. Some technical
uirements are more vertically integrated in the architecture, for example privacy and
urity profiles and context awareness. In our assessment of the appropriateness of th

middleware architecture to fulfill the requirements, this will be taken into account.

Table 9-2 Technical requirements (fully or partly applying) to the middleware

Priority
)

No. Technical
requirement

Explanation User requirement (s)
(No. from table xx)

0 1 Ad-hoc interoperable A multitude of different
networking (wired like power line and

wireless like WiFi)
networks, take part in one
system

5, 7, 17

2 2 Ad-hoc multimedia
duplex communication

Allow to have duplex
audio-video or still picture
communication

17, 18, 19

everywhere at home
(includes storage,
transcoding and retrieval
of data)

0 3 Component based
middleware components from the

system

Add and remove software 6, 9

0 4 Context awareness Ability to adapt to the
environment.

3, 7, 14, 15, 16, 19,
22, 24, 25, 29, 35, 36

0 5 Device discovery Automatically discover the 1, 6, 7, 9, 10
devices present in the
network

0 6 Distributed system Being able to execute
services and
capture/use/store content
on a different device than
where the user interface
is. This fundamental
technical requirement is
also necessary to support
several other technical
requirements

13

0 7 Interoperability Interoperability At
Network, Device,
Middleware And Interface
Level

This fundamental

7, 9, 17, 21

Amigo IST-2004-004182 198/227

April 2005 Public

Priority
(0-6)

No. Technical
requirement

Explanation User re
(No. fro

quirement (s)
m table xx)

technical requirement is
also necessary to support
several other technical
requirements

0 8 Multi-user system Amigo has to serve
various users at the same
time

2, 13, 16, 25, 27, 31,
32, 34

0 9 Personalization and
customization

Ability to adapt the
ambient and the behavior
of the different devices to
user likes and preferences

3, 4, 13, 15, 18, 24,
32

2 10 Privacy profiles Access Control to 2, 11, 16, 27, 37
personal data and
situations

1 11 Re-configuration Adapt the system to the
new needs, requirements
(automatically done)

4, 5

0 12 Security profiles and
authentication

Who (devices, application,
users) has authority to
use a service, piece of
content or d

2, 26, 27

evice

0 13 Service discovery Automatic discovery of the
services offered in the

appropriate
particular

1, 6, 7, 9, 10

network and find the most
service for a

 objective

0 14 Standardized services Allow applications to
access easily to services
in the network

5, 6, 10

9.2 Support of
architectur

The following sectio 2,
o m

uireme
ted in a se

oc int
 connec an ad hoc

hout worryi
apa
he

ne, e.g., b er and by
 one inte

 the technical requirements within the Amigo middleware
e
ns evaluate the support of the technical requirements listed in Table 9-

within the Amig
technical req
is evalua

iddleware architecture that has been introduced in previous chapters. One
nt is not evaluated, namely ‘interoperability’. This fundamental requirement
parate chapter, namely Chapter 10.

9.2.1 Ad-h
We want to

eroperable networking
t different types of devices together over different networks in

way. Wit
Plug and Play c
related issues. T
can be do

ng about configuration settings and supported protocol standards, we need
bilities of devices and interoperability methods for protocols and service-

 Amigo home should be able to support these communication issues. This
y translating one service description language to anoth

translating raction protocol to another. In the Amigo architecture, an interoperability

Amigo IST-2004-004182 199/227

April 2005 Public

method with parsers onnects devices that use different protocols,
o they can ‘talk’ with each other (see Chapters 3 and 5).

me content and services.

9.2.2 Ad-hoc multimedi
Us migo home expect to watch video and receive multimedia contents (audio, films,

hs
, th

the corridor, the
content; they sh
distortions or inte

The Amigo midd
Amigo Multimedia Streaming Architecture (see Chapter 6). In this architecture, we are taking

 asp
 Nod

Holder and the
developing the d
adaptation of spe
also covered in the middleware, using transcoding techniqu

ideo s
One of the Ami roduce

 relies on t
 orde

¾ Digital Me
¾ Digital Me

ideo server capabilities will be fully covered in Amigo architecture with the Digital Media

 and composers of protocols c
s

In the example of a user walking through the Amigo home with his/her portable device, it
should be possible that the user’s device is able to ‘talk’ with every other Amigo device,
without necessarily using the same network type or protocol. A Jini device in the Amigo home
shall be capable of interoperating with other devices, such as a UPnP device. Also, at higher
levels like OSGi, applications should be capable to talk to devices using different protocols and
communication hardware, while at application level the user does not notice any translation
being done by the Amigo system and therefore works with a smooth system. The Amigo user
does not have to worry about different standards and protocols anymore and can simply
connect every Amigo device with another one and share the sa

a communication
ers of the A

still photograp
is. In addition

, etc.) everywhere in the house, regardless of where the source of this content
ey do not want to worry about what kind of device (mobile phone, a screen in
 loudspeakers of the bathroom, etc.) they have chosen for displaying the
ould be able to receive the data with an acceptable quality and without
rferences (Quality of Service).

leware will cover all this issues with all the elements introduced with the

into account
Intermediate

ects like content distribution between different networks (solved with the
e element), the QoS in multimedia communications (covered by the Policy
QoS Manager), and are establishing source, sink and manager roles for
ispatching of content (Media Server, Media Renderer and Control Point). The
cific content features (e.g., change in resolution) to the device capabilities is

es.

9.2.2.1 V erver
go home main objectives’ is that devices can share, store and rep

content and
elements in

heir capabilities. To achieve this goal, Amigo exposes two types of
r to offer these services:

dia Server (DMS), as presented in Section 6.3.1.
dia Render (DMR), as presented in Section 6.3.2.

V
Server (DMS). Its main functionalities will be to provide acquisition, publication, storage and
sourcing capabilities of video contents.

9.2.2.2 Local database
Dealing with multimedia content requires the management of large amounts of information. A
local database will be integrated in Amigo architecture as a Digital Media Server. Its single
function will be to store and provide content to other devices. For instance, a user wants to
download some songs on his MP3 player or wants to watch a film on the TV. All these actions
will request for content to the database. The local database will be located within the DMS
architecture in the Heterogeneous Platform Layer in Content Storage (see Figure 6-14,
§6.3.1). It will be a very important point inside the architecture for other devices to have a
place to store multimedia information, for example a camera uploading photos to the
database.

Amigo IST-2004-004182 200/227

April 2005 Public

9.2.2.3 External content server
External multimedia content comes from a lot of different sources (films, audio…) with different
protocols. It is necessary to have a point where all this content is checked and managed to be

very diverse and needs a
tion will be treated for each

pes of external sources and dispatching
content in th

9.2.3
The e
obj -
service

9.2.4 reness
Ser e
Amigo
Contex

ranging from physical sensors to Internet applications, combine these pieces of information
to Amigo services so as

eading to provide context-aware

d registry
to discover various kinds of

ser
devices
service discovery, the network can be searched for discoverable devices.

9.2.6
The
orie
dev
com
system
sure th
infrastr The distributed system’s openness is supported even further by elements

 management.

d their guests at the same time.
without interfering with each
ffectively supports multiple

able to circulate them in the network. Multimedia content is
specialized treatment in each case. Different formats of informa
one in a specific way. External content server will be supported by the Amigo Architecture
within Digital Media Server in the middleware layer within “Content Management”. In this layer,
programs will exist, capable of managing different ty

e home network.

Component-based middleware
 s rvice-oriented architecture proposed for the Amigo system builds upon results from

ect based and component-based middleware technologies. Both the middleware and the
s on top are fully composable and work with mobile components (see Chapter 2).

Context-awa
vic description in Amigo is complemented with context information. Context information in

is collected and organized by a specialized context management middleware service.
t management mechanisms span all three layers of the Amigo architecture (see

Chapter 3 and Figure 3-2).

The role of the Amigo Context Manager is to acquire information coming from various sources,

into "context information", and make this context information available
to enable these services to become context-aware, further l
service discovery, context-aware service composition etc. Amigo applications may then be
context-aware, as they can get contextual information from the context manager and use it for
their specific application purposes.

9.2.5 Device discovery
Device Discovery is the process of finding a device present in the network. The Amigo
interoperable service discovery is based on various service discovery protocols an
standards. Thus, the Amigo middleware integrates mechanisms

vices. Most of these protocols (e.g., UPnP) allow the discovery of not only services but also
 (either directly or indirectly via hosted services). Then, using Amigo interoperable

Distributed system
 Amigo architecture is distributed by nature, and is more specifically based on the service-
nted architecture style (see Chapter 2). Service-oriented computing aims at the
elopment of highly autonomous, loosely coupled systems that are able to communicate,
pose and evolve in an open, dynamic and heterogeneous environment. The distributed

 approach is supported further by enforcing autonomy for separate devices, making
at components can appear, disappear and evolve, being able to handle heterogeneous
uctures etc.

like service discovery, semantic-based service interoperability and context

9.2.7 Multi-user system
The Amigo system has to serve all people in a family an
Multiple users should be able to use the system at the same time,
other. The extent to which the Amigo networked home system e

Amigo IST-2004-004182 201/227

April 2005 Public

use
instant
that response times are fast enough when multiple people are sending requests. The QoS as
wel
from m

9.2.8
Services and devices behavior in Amigo will be
user profiles and context situations (see Chapter 3). This feature will in particular be covered in

ter 4). This capability

ded.
versation of the composite

ser

The Am wareness for
effe
adaptiv ddressed at the
leve

9.2.9
al information from

The co igo users can
wor

Privac
disc
ser
guest d
identitie these identifiers, e.g., by using IDs for identities

apped to descriptive names by

ue to the fact that any user can relatively simply
dist
control
the pro gement of (digital) rights on contents. DRM technology
in A

9.2
Automa
middleware (see Chapters 3-5): enhanced service discovery and ad hoc composition of
services. Such a capability further assumes support for self-configuration at the network level.

rs depends on how the system is implemented, to make sure that services can be
iated multiple times to serve multiple people at the same time and also to make sure

l as the user interface system has in particular to support possible contradictory requests
ultiple users.

Personalization and customization
 not fixed but have to be adaptable to different

the middleware with the ad-hoc composition of services (see Chap
translates into the integration on the fly of a set of services to realize a composite service
described in the form of an abstract workflow. The objective is to allow this composite service
to be executed by integrating available environment's services. A description of this service is
available as an abstract OWL-S conversation. In order to select the set of services that are
suitable to be integrated, and to integrate this set of services, a matching algorithm is nee
The matching algorithm enables reconstructing the abstract con

vice using fragments from the conversations of the environment’s services.

igo ad hoc composition of services is to be further coupled with context-a
ctive personalization and customization, which will be investigated in WP3 Task 3.6 on

e service composition. Also, personalization and customization will be a
l of intelligent user services.

Privacy profiles
Privacy is a broad term concerned with all kinds of mechanisms to conce
unauthorized access. With respect to the Amigo system, privacy protection involves (see
Chapter 8):

- Privacy protection of identifiable information like identities.

- Protection of content delivered to the home like DRM protected content.

mbination of these 2 items in Amigo can form privacy profiles where Am
k with in the Amigo home.

y protection of identities: In an Amigo system, identification-, registration- and
overy services all depend on and exchange identities of resources (users, devices and

vices). Without protection, any device that is granted access to an Amigo system (including
evices) is able to see these identities and implicitly track them. Privacy protection of
s can be achieved by anonymizing

instead of descriptive values. If necessary, these IDs can be m
a service that has its access controlled.
Protection of content: Nowadays, the rights to access content are enforced by the content
owner (e.g., buy a song) but often the same content can be found (unprotected) in the Internet,
PCs, mobile devices, etc. This is mainly d

ribute content once it is on his/her device. This further implies that the content owner loses
 on the use on that content. The DRM technology’s objective is to provide an answer to
blem associated with the mana

migo enables controlled distribution and avoids fraudulent usage of content (see §8.4.3.2).

.10 Re-configuration
tic configuration and re-configuration build on a number of functionalities of the Amigo

Amigo IST-2004-004182 202/227

April 2005 Public

How
and wi
prototy aken within Task 3.9
ded

 the networked home system using a Role Based Access
Con

9.2
Service
Amigo nd use services
that reside in nodes whose concrete middleware architecture is also based on the Amigo

to enhanced service

ility requirements within the Amigo environment. This is further complemented
with the Amigo interoperability methods enabling application- and middleware-layer

5).

rking, the Amigo middleware proposes a middleware-
layer interoperability method, detailed in Chapter 5, with parsers and composers of

t they can ‘talk’ with each

lications can be context aware applications because they can get contextual
information from the Amigo “context manager”
pur
com
info

ever, integrated support for (re-)configuration in the Amigo system is still to be devised
ll be further investigated as part of WP3 work on the Amigo middleware refinement and
pe implementation. Such an effort will in particular be undert

icated to mobility management.

9.2.11 Security profiles and authentication
The proposed architecture in Amigo for privacy and security is specifically targeting the
requirements of a networked home system (see Chapter 8). We want to pursue the idea of the
Amigo home to be working with a Trusted Domain approach. Base building blocks for the
security and privacy architecture are two middleware services: authentication and
authorization. Authentication handles the processes of verifying an identity, while authorization
handles the access control for that identity. The authentication solution is based on the
Kerberos system principle (with identities for users, devices and service), the authorization
processes is specifically designed for

trol (RBAC) approach.

.12 Service discovery
 Discovery is the process of finding services with a given capability. The Abstract
Discovery Architecture ensures that the services using it can discover a

Abstract architecture (see Chapter 3). The service discovery is divided in
discovery for Amigo services (see §3.2.1.1) and interoperable service discovery that integrates
various service discovery protocols (see Chapter 5).

9.2.13 Standardized services
For enabling functional interoperability between Amigo services, it is needed to build and
describe those using standardized mechanisms. The Service-Oriented Architecture proposed
in Amigo with Web Services as its main representative, semantically enhanced by Semantic
Web principles into Semantic Web Services, will partially cover the interoperability
requirements within Amigo. OWL-S based modeling will in particular offer enhanced support to
the interoperab

interoperability (see Chapters 3-

9.3 Conclusions
The following conclusions can be drawn from the above assessment:

• For ad-hoc interoperable netwo

protocols to connect devices that use different protocols, so tha
other.

• For ad-hoc multimedia duplex communication, the Amigo Multimedia Streaming
Architecture was introduced in Chapter 6, which supports content distribution between
different devices inside and outside the home.

• Amigo App
and use it for their specific application

poses (see Chapter 3). This manager collects information from various sources and
bines these pieces of information into "context information"; it then makes this context
rmation available to amigo services.

Amigo IST-2004-004182 203/227

April 2005 Public

• The
mid

• Bot between
the
mid
PC
with
pro

• The
ser
highly autonomous, loosely coupled
evolve in an open, dynamic and heterogeneous environment, like the networked home.

The
and
del

Personalization and customization is partly supported in the middleware with the ad-hoc

em. The high-level
middleware architecture provides the basics to deliver automatic (re-)configuration but

large scale open
e the Internet. This architecture will be further studied and extended in the
se of this work package as well as in WP3 and WP4.

•
its

 service oriented architecture as chosen for Amigo is intrinsically a component-based
dleware architecture (see Chapter 2).

h for device and service discovery, an extensive interoperability mechanism
 commonly used protocols within the Amigo domains, is described for the Amigo
dleware architecture. This approach will support interoperability over the different CE,
, mobile and domotic domains, while keeping backwards compatibility and compatibility
 non-Amigo devices in place (see Chapters 3-7). This is a huge advantage of the

posed Amigo middleware architecture, which is further assessed in the next chapter.

 Amigo architecture is distributed by nature and is more specifically based on a
vice-oriented architecture. Service-oriented computing aims at the development of

systems that are able to communicate, compose and

• actual support for a multi-user system is very much dependent on the further design
 implementation of the Amigo system. Support of QoS and other priority mechanisms

iver the possibility of making the Amigo system multi-user proof.

•
composition of services introduced in Chapter 4, which has to be combined with context-
awareness. Also, the actual personalization and customization of services is the topic of
further study within the Amigo intelligent user services.

• There is a base approach considered to guarantee privacy within the Amigo system by
anonymizing certain identifiers. However guaranteeing people’s privacy is clearly broader
than the middleware architecture alone and its implementation is subject of further study
within the service architecture.

• The possibility for automatic (re-)configuration of devices and services is highly
dependent on the actual implementation chosen within the Amigo syst

does not necessary guarantee it.

• The proposed architecture for privacy, security and authentication works with a Trusted
Domain approach and is specifically targeted at a networked home environment. It is
highly suitable for this environment but cannot be extended to very
networks lik
second pha

Standardized services are supported by the chosen middleware architecture, as part of
support for interoperability.

Amigo IST-2004-004182 204/227

April 2005 Public

10 Assessment of Amigo interoperability
The architectural phase is the first phase in the design cycle. During that phase, trade-offs and
design choices are made. Because every such design decision has implications, it is important
to assess the consequences of these trade-offs. In performing such an assessment, one must

ive of the stakeholders in the

(see Amigo Description of Work-DoW), and further refined from analyzing the
nts (see Chapter 9). The key issue that is addressed in Amigo at the

er, and that is also the key focus of this deliverable, is interoperability. Amigo is
foc
home
domain
result
assess
the SE

Thi
various
Section 10.2 identifies various interoperability aspects, and gives motivated assessment
ce) that will be used to ultimately perform the assessment. In Section 10.1

esults are presented, and some conclusions
and recommendations are discussed in Section 10.4.

consider that assessment must be done: (a) from the perspect
ultimate product, and (b) in the light of the quality requirements to the architecture, as stated in
the project plan
user requireme
middleware lay

used on achieving interoperability between heterogeneous services and devices inside the
environment, which now integrates devices from the CE, domotic, mobile and PC
s. In this chapter, we assess whether the Amigo abstract architecture will effectively
in achieving interoperability within the networked home environment. For the
ment process, we found inspiration in the architecture assessment methods defined by
I, in particular ATAM [ClKK02, KaBa02].

s chapter is organized as follows. First, Section 10.1 looks in more detail at the interests of
 stakeholders of the project regarding the features of the Amigo middleware. Then,

s narios (or criteria
the interest of the stakeholders of the project regarding the features of the Amigo middleware
is summarized. Then, Section 10.2 identifies various interoperability aspects, and gives
motivated assessment scenarios (or criteria) that will be used to ultimately perform the
assessment. In Section 10.3, the assessment r

10.1 Stakeholders of Amigo
The stakeholders’ perspectives on the Amigo middleware are summarized in the table below.

Stakeholder Interest

Amigo Partners &
Commission

Prototype implementation of the Amigo system shall be delivered within
time and budget. Also, usefulness of the system must fit with industria
roadmap and European strateg

l

ies, as considered in the Amigo DoW.

End users The Amigo networked home systems shall offer functionalities that meet
the end-users’ expectations, and at least support the user scenarios
presented in the project’s DoW and further analyzed in Amigo Work
package WP1. This viewpoint has basically been addressed in the
previous chapter, and is therefore not taken into account in this chapter.

Developers &
Integrators

Developers/integrators of applications and/or middleware-related functions
for the Amigo networked home systems, shall have a clear understanding

ture and further be provided with a (WP3-8
contributors)

of the Amigo middleware architec
middleware architecture that is complete and extendible.

Architecture
Maintainer

The Amigo middleware shall be maintainable, i.e., enable to locate places
of changes during subsequent refinement of the architecture.

System
Administrator &
Owner

The Amigo middleware shall ease the finding of operational problems
sources and simple day-to-day system management. The Amigo
middleware shall further enforce system availability.

Network
administrator &

The behavior of the Amigo system shall be predictable, and the system
shall ease the configuration of new devices and services, including

Amigo IST-2004-004182 205/227

April 2005 Public

Service provider supporting auto-configuration

Key pr
home e
The tar
interop security, privacy and safety, mobility, context-awareness, and quality of
ser
chapte are must
furt
system

Qu
attri

operties for the Amigo middleware, to enable ambient intelligence in the networked
nvironment were identified in the project’s DoW and have been recalled in Chapter 1.
get properties relate to enforcing usability of the networked home system, and include:
erability,

vice. The Amigo middleware architecture has been devised, as presented in the previous
rs, and will further be refined, to enforce these properties. The Amigo middlew

her enforce base quality attributes that are considered as prime requirements for software
s: performance, security, modifiability, and availability:

ality
bute

Assessment in the Amigo middleware architecture

Perform l design stage, the performance attribute relates to ance At the architectura
assessing whether: (i) we may provide an implementation of the architecture
that is scalable and that offers acceptable performance in terms of both
resource usage and response time for the end users, (ii) there are
explicit/implicit assumptions on the capacity of systems or networks, and (iii)
there are architectural solutions that are used to improve performance in
critical areas (e.g. caching).

Mod

architectural patterns used to improve

ifiability Regarding modifiability, we shall assess: (i) the impact of changes in the
technologies that are used in the architecture, (ii) support for changes in the
architecture itself, such as the ability of integrating new implementations or
algorithms in the system, (iii) whether
modifiability were used in all key areas, and (iv) whether there is support for
versioning.

Security Assessment of the security attribute relies on a security analysis of the
system, and evaluating whether key security requirements are properly met
through provisions of adequate mechanisms in the architecture itself.

Availability Assessing the system’s availability at the architecture level relates to
identifying the critical architectural components and assessing whether the
architecture is defined in such a way that: system availability is ensured when
one of these components fails, and live upgrades are supported.

In order to assess performance of the Amigo middleware at the early architecture design
stage, we are currently implementing a base prototype of the middleware interoperability
mechanisms (see Chapter 5) to further experiment with a system integrating networked

e four domains of interest in the Amigo home environment. This shall provide
ear
arc
a way
is supp
applica ugh the exploitation of the event-based paradigm for
the
Securit
design
orienta ndancy of the system’s functions.
Still, fault tolerant mechanisms may have to be integrated to ensure availability of key services

devices from th
ly feedback about the system’s performance and thus guide refinement of the middleware
hitecture towards detailed design and prototype implementation of the Amigo middleware in

that enforces performance of the Amigo system. Modifiability of the Amigo middleware
orted through architectural design based on the service-oriented paradigm at the

tion and middleware-layer and thro
 mechanisms that are internal to the middleware (i.e., middleware-layer interoperability).

y is accounted for as a prime requirement for the Amigo system and has led to the
 of dedicated support within the middleware architecture (see Chapter 8). Service-
tion of the Amigo system quite naturally supports redu

Amigo IST-2004-004182 206/227

April 2005 Public

like
in the r

10
Interop functionality provided by the Amigo

iddleware. Therefore, interoperability is the core of the assessment addressed in this
hapter. We take the following aspects into account:

agement of services: This has to do with interoperability between
ms, between

• ures are handled in a uniform

In this
aspect

iptions
 and non-functional attributes of a service.

ucted so that the service
can be accessed/found from other ‘application domains’ with maximum (preferably
all) functionality possible.

3. Is it possible for new, Amigo-based applications, to use future (unknown) service
description mechanisms without application code changes (developer viewpoint)?

4. Is it possible to interoperate with common, existing and thus legacy, service
description languages without changing existing devices or entity implementations
while ensuring a minimal level of ‘correctness’ (Amigo partners & Commission
viewpoint)?

10.2.2 Interoperability between service discovery mechanisms
Service discovery mechanisms allow entities to seek and find services that can perform certain
activities for them. This includes functionalities for these services to be ‘found’, e.g., by
registering, advertising or announcing themselves.

Scenarios that are used to assess this interoperability aspect are:

 those related to enforcing security and privacy. Such a requirement will be accounted for
efinement of the Amigo middleware architecture, as part of WP3 work.

.2 Assessment of Amigo interoperability aspects
erability between devices and services is the key

m
c

• Lifecycle man
different service descriptions, between service discovery mechanis
service binding and usage mechanisms (or service invocation mechanisms).

Ensure that common secondary service feat
manner: These secondary functions need a coherent approach across domains and
technologies. The following aspects are relevant here: interoperability between service
management functions, between security mechanisms and between different QoS
mechanisms.

• Ensure that information and content can be used on each device and by all
services: This has to do with content interoperability and with interoperable context
information exchange mechanisms.

 section, we define the assessment criteria for each of the above interoperability
s.

10.2.1 Interoperability between service descr
Service descriptions are used to describe functional
These attributes should be described at both a syntactic and semantic level (see Chapter 3).
The interoperability aspect is then defined by ‘how well’ one type of service descriptions can
be used to describe a service using a different technology, e.g., how well can a UPnP service
be described using WSDL. The service description is the basis for service discovery (i.e.,
finding relevant services from a collection of available services) and the starting point for
service invocation.

Scenarios that are used to assess this interoperability aspect are:

1. Is it transparent for the developer of new, Amigo-based applications, how to describe
a new service, and how this will translate to other technologies (developer
viewpoint)?

2. Is it clear to the developer how Amigo services can be constr

Amigo IST-2004-004182 207/227

April 2005 Public

1. As above, is it transparent for the developer of new, Amigo-based applications, how
to describe a new service, and how this will translate to other technologies (developer
viewpoint)?

2. Is it possible for new, Amigo-based applications, to use future (unknown) service
discovery mechanisms without application code changes (developer viewpoint)?

3. Is it possible to interoperate with common, existing and thus legacy, service
discovery mechanisms without changing existing devices or entity implementations
while ensuring a minimal level of ‘correctness’ (Amigo partners & Commission
viewpoint)?

10.2.3 Interoperability between service binding mechanisms
Service binding occurs after two (or more) entities have discovered each other. Binding makes
it possible for these entities to actually start interacting (using/accessing), and includes setting
up a network connection and, possibly, negotiating details on which protocol and/or protocol
settings to use (e.g., big or little endian, whether to use compression, which port to use).

Scenarios that are used to assess this interoperability aspect are:

1. Is it transparent for the developer of new, Amigo-based applications, which binding
mechanisms will actually be used during run-time (developer viewpoint)?

2. Is it possible for new, Amigo-based applications, to use future (unknown) binding
mechanisms without application code changes (developer viewpoint)?

3. Is it possible to interoperate with common, existing and thus legacy, binding
mechanisms without changing existing devices or entity implementations (Amigo
partners & Commission viewpoint)?

10.2.4 Interoperability between service invocation mechanisms
During service usage, two or more entities exchange messages according to some interaction
protocol (i.e., connector-related behavior), transported over some already existing binding.

Scenarios that are used to assess this interoperability aspect are:

1. Is it transparent for the developer of new, Amigo-based applications, which service
usage mechanisms will be used during run-time (developer viewpoint)?

2. Is it possible for the developer of new, Amigo-based applications, to use future
(unknown) service usage mechanisms without application code changes (developer
viewpoint)?

3. Is it possible to interoperate with common, existing and thus legacy, service usage
mechanisms without changing existing devices or entity implementations (Amigo
partners & Commission viewpoint)?

10.2.5 Interoperability between security mechanisms
Security is a difficult problem for all architectures. It is a cross-cutting concern, in that all
authentication and access control mechanisms that will be employed must somehow
interoperate. Interoperability concerns are:

1. Some (legacy) devices may not have any security-provisions on-board. Are these
devices able to use all services they would otherwise be able to use if Amigo-
middleware was not in place?

2. Reverse from the previous one, are Amigo-based applications able to access services
from these (legacy) devices?

3. Does the Amigo security mechanism compromise any of the existing security
mechanisms for in-home communication from the consumer electronics or domotic
domains?

Amigo IST-2004-004182 208/227

April 2005 Public

Amigo IST-2004-004182 209/227

4. Is the Amigo security m
public services, e.g., to

echanism interoperable with security mechanisms used for
 allow for single sign-on at remote services, or to re-use

bility

incorporated for enhanced usage. Some pointers are further given to relevant language

‘outdoor’ credentials (e.g., SIM card) for in-door authentication?

5. Are security aspects like confidentiality, privacy, integrity, and DRM covered?

10.2.6 Interoperability between QoS mechanisms
Support for Quality of Service (QoS) in the Amigo system basically amounts to allocation of
resources for processing, storage and communication. Allocation of resources to users
requires appropriate QoS mechanisms to enforce QoS agreements and to ensure that
resources are allocated according to end-user requirements. Because QoS mechanisms
require proper behavior of all potential users of system resources, it is important that all
services and devices in the home properly use resource management functions. We use the
following criteria in our assessment:

• Do the selected QoS mechanisms comply with existing or emerging standards (e.g.,
802.11e for QoS management on wireless links, UPnP QoS)?

• To what extent are QoS guarantees possible when devices/services that share the
same resources do not behave properly? This issue is important, because a lot of
legacy devices (that are supported by Amigo) may not be QoS-aware.

10.2.7 Interoperability between context-exchange mechanisms
There are no such standards in the consumer electronics and domotic world, and therefore
interoperability is not really an issue right now.

10.2.8 Interoperability between service management mechanisms
In this deliverable, service management is addressed from the standpoint of service discovery,
and service binding and usage, for which assessment criteria have been introduced above.
Other functions related to service management (e.g., accounting and billing) will be addressed
in subsequent system design steps for which overall service management interoperability shall
be dealt with.

10.3 Assessment results
Assessment of the Amigo middleware architecture with respect to interoperability is based on
the scenarios defined in the previous section, taking into account the state of the art surveyed
in the companion Deliverable D2.2 [Amigo-D2.2]. The latter is mainly used to check whether
relevant standards are taken into account with respect to the interoperability issues that are
addressed in the Amigo middleware.

10.3.1 Assessment of service description interopera
Chapter 3 details the current efforts towards Amigo service descriptions and discovery, which
are to be complemented with application- and middleware-layer interoperability mechanisms
(see Chapters 4&5) to ease interactions among the services that are networked within the
home environment, ranging from Amigo-aware/enhanced services to legacy services.

Assessment:
1. This deliverable does not define the language for service descriptions, which is to be

specified as part of the middleware’s detailed design in Work package WP3. However,
the deliverable gives an overview of the capabilities that service descriptions should
have, i.e., semantic-level and context-related service descriptions should be

April 2005 Public

standards, e.g., OWL-S. Therefore, it is not (yet) possible to assess how convenient it
is for developers to create new Amigo applications that can be found and selected,

 be better exploited when the

cisions for

cular
troduces the Amigo abstract service discovery architecture, and in Chapter 5, which

he design a specific interoperable service discovery component.

Assessment:
1. Chapter 3 mentions the usage of relevant Web Services standards for enhanced

service discovery, with respect to service description and matching. Which standards
will be chosen and how these will be extended will be addressed during the
architecture refinement in the next project phase. Then, convenience of enhanced
Amigo service discovery from the perspective of the developers cannot be assessed at
this stage. However, detailed design of the Amigo solution to interoperable service
discovery, including possible performance enhancement using dedicated platform like
OSGi, has already been addressed (see Chapter 5). The proposed architectural
solution enables to integrate any legacy service discovery protocol as is.

2. The Amigo discovery architecture (see Chapter 3) specifies at a high level
functionalities to enable Amigo-based applications to use future (unknown) service
discovery mechanisms. It however depends on the refinement of this architecture
whether this is actually possible. It especially depends on whether it is possible to
semantically map the future service discovery mechanism to the Amigo mechanism
(including whether the so-called mapping can be implemented).

3. Chapters 3 and 5 explicitly cover the most popular service discovery mechanisms, and
state that the Amigo discovery architecture will interoperate with them.

although it is anticipated to be comparable to that of (semantic) Web services.

2. The description of networked services in the Amigo system may integrate semantic-
level and/or context-related description or be a basic syntactic-only interface definition.
Usage of all the functionalities of a new service will
service description embeds semantic and context information, and the service’s client
integrates Amigo enhanced service discovery. Otherwise, a new service may be
discovered and used by a non Amigo-aware client only if both the client and service
developers use some standard interfaces for service descriptions, be they either
syntactically equal interfaces or interfaces that are mapped to each other in the Amigo
system.

3. The Amigo service discovery architecture identifies the need for interoperability to
legacy and also future service discovery mechanisms and their corresponding service
descriptions. This is encapsulated by the ‘Interoperable service discovery’ block in the
architecture, which should however be elaborated in future refinements.

4. See point 2.

Recommendation: This deliverable does not define the language for ‘Amigo service
descriptions’, which will be undertaken as part of the Amigo middleware’s detailed design
during the next project phase. However, this deliverable has set base design de
service descriptions, with interoperability in mind. Future refinements should define the syntax
and semantics for the Amigo service description language and should continue in the current
spirit of interoperability. Relevant service description and service discovery technologies
should be considered, as already taken into account in the elicitation of the middleware
architecture. Furthermore, the architecture should anticipate future development like what is
being done to incorporate contextual information in the service description.

10.3.2 Assessment of service discovery interoperability
Service discovery in the Amigo middleware is addressed in Chapter 3, which in parti
in
introduces t

Amigo IST-2004-004182 210/227

April 2005 Public

Recommendation:
interoperability in min

The Amigo abstract service discovery architecture is designed with
d as a major requirement, and thus covers it. Further refinement of the

lity shall allow for more thorough assessment,
ti lar fro opers.

s g interoperability
ad t of Chapter 5, which discusses service discovery and

teroperability. However, since
hat subset of functionalities, which is offered by all

ered through this API. Consequences of this
ings (or protocols and

iddle supported. This is a risk, but the impact of this largely
 implementation of this part of the architecture.

ve similar features as existing ones,
 ld be supported without requiring change to the

 architecture, the generalized API must be detailed and
and middleware technologies) that

sses interoperability
otocol interoperability.

ent: ach for all different types of interaction
 dep bridging type of approach, on whether the

at are bridged have sufficiently comparable syntax, semantic expressiveness and
hitecture is too abstract to be able to sufficiently assess

tural level defined in this deliverable, the proposed
po nt scenarios.

ture, the proposed solution to interaction protocol
ability ed with all combination of service usage
sms (ologies) that are relevant to Amigo. This will

id ntifying what is actually syntactically and semantically possible. Also, extendibility of
shall be taken into consideration in the architecture

m nt.

.5 erability
 8. The diversity of (legacy) devices and

abilitie explicitly mentioned. Therefore, the proposed
inimal security requirements or protocols. Instead, an

ite ure ba s system idea is proposed, with Role Based Access Control
exten building blocks are the Authentication

identity and service specific tokens that
s.

 can be applied to the service discovery process is
further discussed in Chapter 3.

Amigo solution to service discovery interoperabi
in par cu m the standpoint of devel

10.3.3 Asse sment of service bindin
Binding is dressed as par

ss. usage/acce

Assessment:
hapter 5 ensures in1. The generalized API discussed in C

this is a generalized API, only t
service binding mechanisms can be off

are for the service binddepend on what those differences
m ware technologies)
depends on the refinement and

2. Assuming new service binding mechanisms ha
future binding mechanisms shou
application code.

3. See point 1.

Recommendation: In the refined
mapped to all service binding mechanisms (thus protocols
are relevant for Amigo.

10.3.4 A sment of service invocation
Chapter 5 addresses interaction pr

Assessm The feasibility of the proposed appro
protocols ends, as is the case with any
protocols th
protocol messages. The current arc
this. However, at the abstract architec
solution sup rts all three assessme

Recommendation: In the refined architec
interoper shall be detailed and experiment
mechani thus protocols and middleware techn
allow e
the interoperability solution at run-time
refine e

10.3 Assessment of security interop
Security and privacy are mainly addressed in Chapter
different cap s with respect to security are
security architecture does not impose m
arch ct sed on the Kerbero
(RBAC) ded to devices and services. The basic
Service and the Authorization Service, which provide
are needed to access certain secured service

How the proposed security architecture

Amigo IST-2004-004182 211/227

April 2005 Public

Assessm ent:
ot need authorization tokens to be provided by a
ices without any security-provisions on-board are,
s they would otherwise be able to use if Amigo

dle ce the Amigo middleware is not restrictive in this

 he pr Amigo-based applications are not restricted (from a
ecurit ssing services from these (legacy) devices.

mechanism compromises any of the existing security
tioned in Chapter 8, since the chapter describes an

ity architecture ‘maps’ to existing security
one can determine if existing security

mised. The link between the proposed abstract
 security mechanisms should become clear in the

ser can be used, divided into strong
ow outside credentials to be (re-)used for in-door

uthen ith respect to Amigo system) services is also
ked to an ‘external’ identity if the users’

entity ong mechanism.

curit rivacy, integrity, and DRM are covered. A DRM
tanda in the abstract security architecture is proposed. The

addressed in

urity architecture operates at the application level
 Ami n of authentication and authorization services

 should be
e to diff not really clear from the presentation, although

ch lexible enough to suggest that this is possible. The refined
sh nt; as is stated in Chapter 8: the level of scenario’s are
 d cture, for the definition of the concrete implementation,

 Only after this is clear, the impact and
ecurity mechanisms can be assessed.

es rability
f QoS ive impact on the end-user experience of Amigo

ssesses interoperability between QoS mechanisms in

lude
. allocation of buffers to compensate for jitter).

migo is currently not on a configurable middleware this

a trade-off between QoS
ible to retransmit lost link-layer packets at the cost

e focus was on multimedia content transfer in
rading factor).

1. Standard (unsecured) services do n
client. This means that (legacy) dev
in principle, able to use all service
mid ware was not in place, sin
sense.

2. T evious also implies that
s y point of view) from acce

3. Whether the Amigo security
mechanisms is not explicitly men
abstract security architecture. How the secur
mechanisms should be described first, before
mechanisms are (possibly) compro
security architecture and existing
revised/detailed architecture.

4. Different mechanism to prove the id
and weak ones. This would all

entity of a u

a tication. The link to external (w
can be linaddressed, where the user identity

id was first proven with a str

5. Se y aspects like confidentiality, p
s rd for use in Amigo that fits
security mechanisms used in different service discovery protocols are
Chapter 3.

Recommendation: The abstract Amigo sec
(including go middleware) and uses the notio
for providing identity and service tokens. How the proposed security architecture
mapp d erent middleware technologies is
the approa is generic and f
architecture ould take this into accou
sufficient for eriving an abstract archite
the level of use-cases might be more appropriate.
possible compromise of existing s

10.3.6 Ass sment of QoS interope
A lack o support will have a negat
services and applications. This section a
the Amigo infrastructure. QoS concerns are mainly addressed in Chapter 6.

Assessment:
� The focus in Chapter 6 is on link-layer QoS mechanisms and seems to exc

application-level QoS support (e.g
However, as the focus of A
seems for now the right direction.

� The QoS requirements are not clear. Usually there is
dimensions. For example, is it poss
of a lower goodput (i.e., currently, th
which retransmitting packets are a deg

Amigo IST-2004-004182 212/227

April 2005 Public

� The QoS control solutions that are discussed, aim for a ‘per flow’ reservation of
ecommended UPnP QoS, seems to lean towards ‘class-
s (like DiffServ). It is not clear how these solutions relate.

achieved by using standards defined by the
t Amigo follows the emerging UPnP QoS standard

entation plans

eems a promising way forward.

refined architecture, between per-flow-based resource
d resource reservation.

s-layer QoS concerns and possible feature
echanisms at the platform, middleware and application

rs. w would a per-flow reservation mechanism at the middleware
r be per-traffic-class reservation mechanism at the platform layer?

mechanisms outside the home environment
 on the public Internet)?

, QoS dimensions (such as speed, goodput and
t are needed to support the Amigo scenarios and

lu commendations
n discusse the Amigo abstract architecture. We found

hod to execute the assessment. As the main focus of the
ig as interoperability, we also focused on this aspect in the

. We first identified stakeholders and then defined relevant assessment scenarios
 scenarios were then assessed against the proposed

 and recommendations are divided in the several key
eas of the a discovery mechanisms, QoS mechanisms, etc.

 as inputs for the refined architecture.

sm that there are no major obstacles, although several
dati ount during the follow-up activities on Amigo

t, in Work Package WP3.

resources (like IntServ). The r
based’ reservation of resource

� QoS interoperability is expected to be
DLNA forum. It is recommended tha
aligns with the DLNA QoS implem

Recommendations:
� Continue on the UPnP QoS path, as it s

� Make a choice, in the
reservation and class-base

� Identify, in the refined architecture, the cros
interactions between QoS m
laye For example, ho
laye supported by a

� Also, consider interoperability with QoS
(e.g., a video is delivered from a server

� Define, in the refined architecture
delay) and QoS requirements tha
guarantee a high-quality end-user experience.

10.4 Conc sions and re
This sectio d the assessment of
inspiration in the IEEE ATAM met
abstract Am o architecture w
assessment
for these stakeholders. The defined
Amigo abstract architecture. Our findings
research ar rchitecture, like service
The proposed recommendations can be used

The asses ent indicated
recommen ons must be taken into acc
middleware developmen

Amigo IST-2004-004182 213/227

April 2005 Public

11 Conclusion
Th p
intelligence vis networked home system towards that
ob s t
application dom
Enabling such erability among the networked devices and
ho ice
abstract archite

The Amigo sy
offering a networked home system structured around autonomous, loosely coupled services
th le to
en nt. I
application- an o
sy ite
between / com
The conforman nd middleware layers of the Amigo
sy ite
re nd
properties. The
provided service operations in terms of middleware-layer service discovery and interaction
pr d
interoperability
reasoning about service properties at a semantic level. This further promotes openness of the
Am e s
the ior
conformance re
conformance that is then enabled depends on the c
interoperability method ming parts. This deliverable has
in e
be further deve
interoperability
regarding in particular performance issue, is key to the acceptance of the Amigo system,
de ign
pro ple

Any device tha
UPnP service) y method may be integrated within the
Am .
if either at le s
is a gateway
further introduces Amigo-enhanced
for increase interopera

Se ta
integration of PC- and
architecture. H
requirements,
extensively add
Integration of C ntroduce the Amigo multimedia streaming architecture
that is based o
tar rope
architecture sp
architecture with functionalities for the streaming and storage of multimedia content.

e Amigo roject aims to develop a networked home system enabling the ambient
ion. Key feature targeted for the Amigo

jective, i o effectively integrate and compose devices and services from the four
ains that are met in today’s home, i.e., CE, domotic, mobile and PC domains.

a feature requires supporting interop
sted serv s, which defines the core requirement for the Amigo middleware, whose

cture design has been introduced in this deliverable.

stem architecture is based on the service-oriented architectural style, hence

at are ab
vironme

 communicate, compose and evolve in an open, dynamic and heterogeneous
nteroperability among heterogeneous services is further supported through
d middleware-layer interoperability methods that are key elements of the Amig

stem arch cture. Specifically, the Amigo interoperability methods enable interaction
position of heterogeneous services, according to given conformance relations.
ce relations apply to both the application a

stem arch
quested a

cture. The former relates to reasoning about the compatibility between
 provided service operations in terms of functional and non-functional
 latter relates to reasoning about the compatibility between requested and

otocols, an enforced quality. The proposed conformance relations and related
 methods exploit ontology-based modeling of services, enabling rigorous

igo hom
ir behav

ystems, by enabling interoperability among networked services according to
al specification, as opposed to their rigid syntactic interfaces. Various
lations may be considered for the Amigo networked home systems. The partial

apacity to deploy an adequate
to compensate for the non-confor

troduced sp cific application-layer and middleware-layer interoperability methods, which will
loped in the next project phase, while still allowing the definition of alternative

 methods. Since supporting effective middleware-layer interoperability,

tailed des
totype im

 of related methods have been presented in this deliverable. In addition,
mentation is already under way.

t implements any technology-specific client and/or service (e.g., Web service,
and possibly some Amigo interoperabilit

igo system
a

 Then, two devices that host heterogeneous service infrastructures may interact
t one of them embeds Amigo middleware-layer interoperability methods or there
embedding the necessary interoperability methods. The Amigo middleware

 services, enriched with semantic and context information,
d

rvice-orien

bility but also context-aware usage.

tion has already been successfully used in the mobile and PC domains. Hence,
 mobile-related devices is rather directly supported by the Amigo system

owever, the CE and domotic system architectures have specific features and
which makes related integration less obvious. This issue has been quite
ressed in this deliverable, in the light of relevant technological developments.
E devices leads us to i
n the DLNA (Digital Living Network Alliance) interoperability guidelines, which
rability in streaming media systems. The Amigo multimedia streaming
ecifically enriches the base Amigo service-oriented interoperable system

get inte

Amigo IST-2004-004182 215/227

April 2005 Public

In of
components, to

Independent o t are integrated within Amigo, one
ke h
is security and ve been introduced based on
th f

The middlewar
undertaken ba tified for the Amigo middleware in the course of the
pr io
pr m
These requirem
middleware arc d design and prototype implementation, it
wa o
middleware-rel ts elicited in
W
ag a
addressed in t
architecture m the Amigo networked home
sy id
guidelines hav
detailed design .

Th inte
the Amigo networked home system. The Amigo system needs to integrate intelligent user
se en
rel ice
will be presen all Amigo system architecture will then be
re ch
prototype imple
through the dev d safety, home information and
en t, ackages WP5-7.

tegration devices from the domotic domain leads us to introduce discoverable proxy
 be associated with devices.

f the specifics of the application domains tha
y property t at must be guaranteed to the end-users by the Amigo networked home system

 privacy. Middleware-related security services ha
e specifics o security and privacy in the home environment.

e architectural design that has been presented in this document has been
sed on requirements iden

oject definit
evious syste

n, which followed from assessment and lessons learnt from the development of
s aimed at enabling ambient intelligence (see Deliverable D2.2 [Amigo-D2.2]).
ents are introduced in the Amigo DoW. However, prior to refine the Amigo

hitecture towards the system’s detaile
s crucial t thoroughly validate our design choices, and, in particular, assess them against

ated technical requirements deriving from the user requiremen
ork package
ainst the v

WP1. In a similar way, it was crucial to assess the Amigo middleware solution
rious interoperability aspects of relevance. Both assessments have been
his deliverable, from which we may conclude that the proposed middleware
eets the middleware-related requirements for

stem, cons ering the abstract level of the architecture design. In addition, a number of
e to be accounted for in the middleware architecture refinement towards
 and prototype implementation, in Work package WP3

e Amigo roperable middleware addresses part of the usability requirement, identified for

rvices for
ated serv

hanced usability and high attractiveness to end-users. Architectural design of
s is being started and will complement the Amigo middleware architecture, as
ted in Deliverable D2.3. The over

fined in te nical Work packages WP3 and WP4, which will deliver detailed design and
mentation. The Amigo system will then be experimented with and assessed
elopment of applications from the home care an

tertainmen and extended home environment domains, within Work p

Amigo IST-2004-004182 216/227

April 2005 Public

Acronyms
AAC

ACL

AS

AV

BCI

BD

CAD

CAM

CB

CD

CE

CEA

CENELEC ittee

Co

CP Point

CR

CSMA

DD

DHCP

DLNA Digital Livin

DMP

DMR

DM

DR

DSCP

DVD

EH

EHSA

EI

EIBA

EPF Electronic Picture Frame

FC Feature con

GENA

G

GUI

Advanced Audio Coding

Access Control List

 Authorization Scheme

Audio/Video

BatiBUS Club International

F Bus Domotico Fagor (Fagor Domotic Bus)

Computer Aided Design

Computer Aided Manufacturing

R Constant Bit Rate

 Collision Detection

Consumer Electronics

Consumer Electronics Association

European Electronics Standard Comm

D Complex Device

Control

C Cyclic Redundancy Check

Carrier Sense Multiple Access

 Device Descriptor

Dynamic Host Configuration Protocol

 g Network Alliance

Digital Media Player

Digital Media Renderer

S Digital Media Server

M Digital Rights Management

Differentiated Services Code Point

Digital Versatile Disc

S European Home System

European Home Systems Association

B European Installation Bus

European Installation Bus Association

 troller

 Generic Event Notification Architecture

IF Graphics Interchange Format

Graphical User Interface

Amigo IST-2004-004182 217/227

April 2005 Public

HA

HTML
HT

IETF
IN

IO

IP

IR

IS

IT

JC

JPEG

LO

LPCM

MAC Medium Acc

MAC
MPDU

M

NPDU

O

OSI

P2P Peer-to-Peer

PC

PD

PH

PK

PNG Portable Network Graphics

PV

QM

Q

RBAC rol

RR

RSVP

RTCP

RTP

RT

SAML

Vi Home Audio Video interoperability

Hypertext Markup Language

TP Hypertext Transfer Protocol

Internet Engineering Task

Intermediate Node

G Inter-Operability Group

 Internet Protocol

Information Retrieval

O International Standards Organization

Information Technology

P Java Community Process

Joint Photographic Experts Group

N Local Operation Network

Linear Pulse Code Modulation

 ess Control

Message Authentication Code

MAC Protocol Data Units

PEG Moving Pictures Experts Group

Network Protocol Data Unit

SGi Open Service Gateway Initiative

Open Standard Interconnection

Personal Computer

U Protocol Data Unit

Policy Holder

I Public Key Infrastructure

R Personal Video recorder

QoS Manager

oS Quality of Service

Role Based Access Cont

 Receiver Report

Resource Reservation Protocol

Real-Time Control Protocol

Real-Time Transport Protocol

SP Real-Time Streaming Protocol

Security Assertion Mark-up Language

Amigo IST-2004-004182 218/227

April 2005 Public

SCC

SD

SDI

SD

SHA
SLA

SL

SOAP

SR

SS

SSL

SSO
STB

TC

TDM

TIFF Tagged Image File For

TLS
TV

UD

UI

UP

UP

VCR Videocasset

W3C

WS

XM

Standard Control Committee

 Service Discovery

Service Discovery Infrastructure

P Service Discovery Protocol

Secure Hash Algorithm

Service Level Agreement

P Service Location Protocol

Simple Object Access Protocol

Sender Report

DP Simple Service Discovery Protocol

Secure Socket Layer

Single Sign-On

Set Top Box

P Transmission Control Protocol

Time Division Multiplexing

 mat

Transport Layer

Television

P User Datagram Protocol

User Interface

User Priority

nP Universal Plug & Play

te recorder

 World Wide Web Consortium

Web Service

L eXtensible Markup Language

Amigo IST-2004-004182 219/227

April 2005 Public

References
[AaHo04] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another workflow

language. Information Systems, 2004.

[AlDi97] Bob Allen, Brian Dillon, Environmental Control and Field Bus systems, 1997,
www.stakes.fi/cost219/fieldbus.doc

[AlGa97] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213-249, 1997.

[Amigo-
D1.2]

Amigo Consortium. Deliverable D1.2: Report on user requirements. February
2005.

[Amigo-
D2.2]

Amigo Consortium. Deliverable D2.2: State of the art analysis including
assessment of system architectures for ambient intelligence. February 2005.

[AnHS02] Anupriya Ankolekar, Frank Huch and Katia Sycara. Concurrent Execution
Semantics for DAML-S with Subtypes. In Proceedings of The First International
Semantic Web Conference (ISWC), 2002.

[AuCH98] C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of QoS architectures.
ACM/Springer Verlag Multimedia Systems Journal, Special Issue on QoS
Architectures, 1998.

[AVMM04] Rohit Aggarwal, Kunal Verma, John Miller and Willie Milnor. Dynamic web
service composition in meteor-s. Technical report, LSDIS Lab, Computer
Science Dept., UGA, 2004.

[BaVi03] Sharad Bansal and Jose M. Vidal. Matchmaking of web services based on the
DAML-S service model. In Proceedings of the second international joint
conference on Autonomous agents and multi-agent systems, pages 926–927.
ACM Press, 2003.

[BCPV04] Antonio Brogi, Carlos Canal, Ernesto Pimentel and Antonio Vallecillo.
Formalizing web services choreographies. In Proceedings of the First
International Workshop on Web Services and Formal Methods, Pisa, Italy,
February 2004.

[BeGI05] Sonia Ben Mokhtar, Nikolaos Georgantas and Valérie Issarny. Ad Hoc
Composition of User Tasks in Pervasive Computing Environments. In
Proceedings of the International Workshop on Software Composition (SC
2005), Edinburgh, Scotland, April 2005.

[BeRe00] C. Bettstetter and C. Renner. A Comparison of Service Discovery Protocols
and Implementation of the Service Location Protocol. In Proceedings of the 6th
EUNICE Open European Summer School: Innovative Internet Applications,
2000.

[BLHL01] Tim Berners-Lee, James Hendler, Ora Lassila. The Semantic Web. Scientific
American, May 2001

[BLSI03] Malika Boulkenafed, Jinshan Liu, Daniele Sacchetti, Valérie Issarny. Group
Management in Mobile Ad Hoc Networks: Design, Implementation and
Experiments. INRIA Research Report 5060, December 2003, INRIA-
Rocquencourt, France.

[BrIs04] Yerom-David Bromberg, Valerie Issarny. Service Discovery Protocols
Interoperability in the Mobile Environment. In Proceedings of the International
Workshop Software Engineering and Middleware (SEM). September 2004.

Amigo IST-2004-004182 221/227

April 2005 Public

Amigo IST-2004-004182 222/227

[Broe04] T. Broens. Context-aware, Ontology-based, Semantic Service Discovery.
Thesis for a Master of Science degree in Telematics from the University of
Twente, Enschede, The Netherlands, 2004.

[BYRR99] R.Baeza-Yates, B.Ribiero-Neto and B.Ribeiro-Neto. Modern Information
Retrieval. Pearson Education, 1st edition, 1999.

[CBCP02] G. Coulson, G. Blair, M. Clarke and N. Parlavantzas. The design of a
configurable and reconfigurable middleware platform. In Distributed
Computing. April 2002.

[CBM+02] L. Capra, G. Blair, C. Mascolo, W. Emmerich, P. Grace. Exploiting reflection in
mobile computing middleware. In ACM Mobile Computing and
Communications Review, May 2002.

[ClKK02] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Architectures:
Methods and Case Studies. Boston, MA: Addison-Wesley, 2002.

[CuMW01] Curbera, F., Mukhi, N., Weerawarana, S. On the Emergence of a Web
Services Component Model. In Proceedings of the WCOP 2001 workshop at
ECOOP 2001, Budapest, Hungary, June 2001.

[DeSA01] Dey, A. K.; Salber, D.; Abowd, G. D., 2001. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction, 16, pp. 97-166, 2001.

[DiAl99] T. Dierks, C. Allen, The TLS Protocol Version 1.0, Internet RFC-2246, January
1999.

[DiKS00] D. Dietrich, W. Kastner, T. Sauter, EIB Gebäudebussystem, ISBN:
3778527959 Hüthig Verlag, 2000

[DiLS00] H. Dijk, K. Langendoen, and H. Sips. ARC: A bottom-up approach to
negotiated QoS. In Proceedings of the IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA'00), 2000.

[DLN04a] DLNA, Overview and Vision (White Paper), June 2004.

[DLN04b] DLNA, Home Networked Device Interoperability Guidelines v1.0, 2004.

[Fiel99] R. Fielding et al., Hypertext Transfer Protocol – HTTP/1.1, Internet RFC-2616,
June 1999.

[Fout01] T. Fout. Universal Plug and Play in Windows XP (White Paper), 2001.

[FrHi98] Friedman-Hill, E. Jess, The Java Expert System Shell. SAND98-8206, Version
4.0, Distributed Computing Systems, Sandia National Laboratories, Livermore,
CA, 1998.

[FSAK01] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS: composable, adaptive
network services infrastructure. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems (USITS), 2001.

[FUMK03] Howard Foster, Sebastian Uchitel, Jeff Magee and Jeff Kramer. Model-based
verification of web service compositions. In IEEE International Conference on
Automated Software Engineering, 2003.

[Garl03] D. Garlan. Formal modeling and analysis of software architecture:
Components, connectors, and events. In Third International School on Formal
Methods for the Design of Computer, Communication and Software Systems.
September 2003.

[GBS03a] P. Grace, G. Blair and S. Samuel. Middleware awareness in mobile computing.
In Proceedings of the 1st international ICDCS Workshop on Mobile Computing

April 2005 Public

Amigo IST-2004-004182 223/227

Middleware, May 2003.

[GBS03b] P. Grace, G. Blair and S. Samuel. A marriage of Web services and reflective
middleware to solve the problem of mobile client interoperability. In
Proceedings of Workshop on Middleware Interoperability of Enterprise
Applications, September 2003.

[GBTI05] N. Georgantas, S. Ben Mokhtar, F. Tartanoglu, V. Issarny. Semantics-Aware
Services for the Mobile Computing Environment. In A. Romanovsky, C. Gacek,
R. de Lemos (Eds.), Architecting Dependable Systems III, Lecture Notes in
Computer Science, Springer-Verlag, 2005 (to appear).

[GCTB01] Gonzalez-Castillo Javier, Trastour David and Bartolini Claudio. Description
logics for matchmaking of services. In Proceedings of the KI-2001, Workshop
on Applications of Description Logics, Vienna, Austria, September 2001.

[GPVD99] E. Guttman, C. Perkins, J. Veizades, M. Day. Service Location Protocol,
Version 2. IETF RFC 2608, June 1999.

[HaBe03] Hamadi Rachid and Benatallah Boualem. A petri net-based model for web
service composition. In Klaus-Dieter Schewe and Xiaofang Zhou, editors,
Fourteenth Australasian Database Conference (ADC2003), volume 17 of
Conferences in Research and Practice in Information Technology, pages 191–
200, Adelaide, Australia, 2003, ACS.

[Hand98] M. Handley et al, SDP: Session Description Protocol, Internet RFC-2327, April
1998.

[HIM+04] Hitachi Ltd., Intel corp., Matsushita Ltd., Sony corp., Toshiba corp., Digital
Transmission Content Protection Specification, Version 1.3,
http://www.dtcp.com/data/info_20040107_dtcp_Vol_1_1p3.pdf, January 2004.

[HoMU00] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (2nd Edition). Addison-
Wesley, 2000.

[HPFS02] R. Housley, W. Polk, W. Ford, D. Solo, Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, Internet RFC-3280,
April 2002.

[InUP03] Intel, Overview of UPnP Architecture, February 2003.

[IST+04] Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan, Rafik
Chibout, Nicole Levy, Angel Talamona. Developing Ambient Intelligence
Systems: A Solution based on Web Services. In Journal of Automated
Software Engineering, Vol. 12(1), January 2005.

[IsTa05] Valérie Issarny, Ferda Tartanoglu. Specifying Web services recovery support
with conversations. In Proceedings of the 38th Hawaii International Conference
on System Sciences (HICSS-38), January 2005.

[ITLS04] V. Issarny, F. Tartanoglu, J. Liu, F. Sailhan. Software Architecture for Mobile
Distributed Computing. In Proceedings of 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA’04). 12-15 June 2004. Oslo, Norway.

[Jarn04] Dmitri Jarnikov, Private communication on transcoding, 2004.

[KaBa02] Rick Kazman, Len Bass, Making Architecture Reviews Work in the Real World,
IEEE Software, January/February 2002, pp 67-73.

[KJMS00] A.Kung, B.Jean-Bart, O.Marbach, S.Sauvage, The EHS European Home
System Network, Trialog, Ref. TR/00/019/DT, Paris, 2000

April 2005 Public

Amigo IST-2004-004182 224/227

[KlB04a] M. Klein and A. Berndtein. Towards High-Precision Service Retrieval. IEEE
Internet Computing, Jan-Feb, 2004

[KlB04b] Klein M., Bernstein A. Towards high-precision service retrieval. In Ian Horrocks
and James Hendler, editors, Proceedings of The First International Semantic
Web Conference (ISWC), 2002, number 2342 in Lecture Notes in Computer
Science. Springer-Verlag, 2342, 2002.

[KoBr03] M. Koshkina and F. van Breugel. Verification of business processes for web
services. Technical report, York University, 2003.

[KoNe93] J. Kohl and B. Neuman, The Kerberos Authentication Service (V5), Internet
RFC-1510, September 1993.

[KoRe03] J. Kopena and W. C. Regli. DAMLJessKB: A Tool for Reasoning with the
Semantic Web. In ISWC 2003, 2003.

[LeMS02] L. Lenzini, E. Mingozzi, G. Stea, A unifying service discipline for providing rate-
based and fair queuing services based on Time Token protocol, IEEE
Transactions on Computers, Vol. 51, Sept 2002, pp 1011-1025.

[LiIs04] Jinshan Liu, Valerie Issarny. QoS-aware Service Location in Mobile Ad Hoc
Networks. In Proceedings of the 5th IEEE International Conference on Mobile
Data Management (MDM'2004), January 2004.

[MaCE02] C. Mascolo, L. Capra, W. Emmerich. Middleware for mobile computing (A
survey). In Advanced Lectures in Networking. Editors E. Gregori, G. Anastasi,
S. Basagni. Springer. LNCS 2497. 2002.

[MaKr96] J. Magee and J. Kramer. Dynamic Structure in Software Architecture. In
Proceedings of the ACM SIGSOFT'96 Symposium on Foundations of Software
Engineering, pages 3-14, 1996.

[MaWG04] Shalil Majithia, David W. Walker and W. A. Gray. A framework for automated
service composition in service-oriented architecture. In 1st European Semantic
Web Symposium, 2004.

[McBr01] B. McBride. Jena: Implementing the RDF Model and Syntax Specification. In
Semantic Web Workshop, WWW 2001, 2001.

[McMa03] S. McIlraith, D. Martin. Bringing Semantics to Web Services, IEEE Intell. Syst.,
18 (1) (2003), 90–93.

[MeBE03] B. Medjahed, A. Bouguettaya, and A. Elmagarmid. Composing Web Services
on the Semantic Web. The VLDB Journal, 12(4):333-351, November 2003.

[MeMP99] N. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software
connectors. In 21st International Conference on Software Engineering,
November 1999.

[Miln99] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

[MPM+04] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D.
McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, K.
Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In
Proceedings of the First International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), July 6-9, 2004, San Diego,
California, USA.

[NaMc02] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and automated
composition of web services. In Proceedings of the eleventh international

April 2005 Public

Amigo IST-2004-004182 225/227

conference on World Wide Web, pages 77–88, ACM Press, 2002.

[NKHM04] A. Nadalin, C. Kaler, P. Hallam-Baker, R. Monzillo, Web Service Security,
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf, March 2004.

[NoMc01] Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A
Guide to Creating Your First Ontology. Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880, March 2001.

[OSLe03] Declan O'Sullivan and David Lewis. Semantically Driven Service
Interoperability for Pervasive Computing. In Proceedings of the Third ACM
International Workshop on Data Engineering for Wireless and Mobile Access,
MobiDE 2003, September 19, 2003, San Diego, California, USA.

[OSS+03] Otero Perez, C. M.; Steffens, L.; van der Stok, P.; van Loo, S.; Alonso, A.;
Ruiz, J. F.; Bril, R. J.; Valls, M. G. QoS-based resource management for
ambient intelligence. Source: Ambient intelligence: impact on embedded
system design, pp. 159--182, 1-4020-7668-1, Kluwer Academic Publishers,
Norwell, MA, USA, 2003.

[PaGe03] M. P. Papazoglou, D. Georgakopoulos (Eds.). Service-oriented computing.
Special section in Communications of the ACM, Volume 46, Issue 10, October
2003.

[PaPi95] T. Parker and D. Pinkas, SESAME Technology Version 4 Overview,
https://www.cosic.esat.kuleuven.ac.be/sesame/doc-txt/overview.txt, December
1995.

[PASS03] Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan and Katia Sycara.
The DAML-S Virtual Machine. In Proceedings of the Second International
Semantic Web Conference (ISWC), 2003, Sandial Island, Fl, USA, October
2003, pp. 290-305.

[PaSy03] M. Paolucci and K. Sycara, Autonomous Semantic Web Services, IEEE
Internet Computing, vol. 7, no. 5, September/October 2003.

[PFSi03] J. G. Pereira Filho and M. van Sinderen. Web service architectures - semantics
and context-awareness issues in web services platforms. Technical report,
Telematica Instituut, 2003.

[PiTB03] T.Piloura, A.Tsalgatidou, and A.Batsakis. Using WSDL/UDDI and DAML-S in
Web Service Discovery. In the Proceedings of Workshop on E-services and
Semantic Web (ESSW), Budapest, Hungary, May 2003.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara.
Semantic Matching of Web Services Capabilities. In Proceedings of the 1st
International Semantic Web Conference (ISWC 02), 2002.

[RCG+03] Rios, D.; Costa, P.D.; Guizzardi, G.; Ferreira Pires, L.; Pereira Filho, J.G., van
Sinderen, M. Using ontologies for modeling context-aware service platforms. In
OOPSLA 2003 Workshop on Ontologies to Complement Software
Architectures, Anaheim, CA, USA, 2003.

[Rit02a] J. Ritchie et al., UPnP AV Architecture: 0.83, June 2002.

[Rit02b] J. Ritchie, MediaServer:1 Device Template Version 1.01, June 2002

[Rit02c] J. Ritchie, MediaRenderer:1 Device Template Version 1.01, June 2002

[RoPM00] G.-C. Roman, G. Picco, and A. Murphy. Software Engineering for Mobility: A
Roadmap. In Proceedings of the 22nd International Conference on Software

April 2005 Public

Amigo IST-2004-004182 226/227

Engineering (ICSE’22), 2000.

[Rose02] J. Rosenberg et al, SIP: Session Initiation Protocol, Internet RFC-3261, June
2002.

[RyWo04] N. Ryan and A. Wolf. Using event-based parsing to support dynamic protocol
evolution. In Proceedings of the 26th International Conference on Software
Engineering (ICSE'04), 2004

[ScAW94] Schilit, B.; Adams, N.; Want, R., 1994. Context-Aware Computing Applications.
IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
California, USA, 1994.

[SCD+97] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence. Taxonomy for
QoS specification. In Proceedings of the International Workshop on Object-
oriented Real-time Dependable Systems (WORDS'97), 1997.

[Schu03] Schulzrinne et al., RTP: A Transport Protocol for Real-Time Applications,
Internet RFC-3550, July 2003.

[Schu98] Schulzrinne et al., Real Time Streaming Protocol (RTSP), Internet RFC-2326,
April 1998.

[SPAS03] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar and Naveen Srinivasan.
Automated discovery, interaction and composition of semantic Web services.
Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 1(1):27–46, December 2003.

[StCA94] P.D.V. van der Stok, M.M.M.P.J. Claessen and D. Alstein, A hierarchical
membership protocol for synchronous distributed systems, 1st European
Dependable Computing Conference, 4-6 Oct, Berlin, LNCS 852, Springer-
Verlag, pp 597-616, 1994.

[SunJ99] Sun. Technical White Paper: Jini Architectural Overview. 1999.

[Tane03] A.S. Tanenbaum, Computer Networks, 4th edition, Pearson Education
International, 2003.

[TBGC01] David Trastour, Claudio Bartolini and Javier Gonzalez-Castillo. A semantic web
approach to service description for matchmaking of services. In First Semantic
Web Working Symposium, Stanford University, California, USA, July 30 -
August 1, 2001SWWS, pages 447–461, 2001.

[TsAH04] A. Tsounis, C. Anagnostopoulos, and S. Hadjiefthymiades. The Role of
Semantic Web and Ontologies in Pervasive Computing Environments. In
Proceedings of Mobile and Ubiquitous Information Access Workshop, Mobile
HCI '04, Glasgow, UK, Sept. 2004.

[UPnP00] Universal Plug and Play Forum. Universal Plug And Play Device Architecture.
2000.

[Veri94] P. Verissimo, Real-time communication in distributed systems, ed. S.
Mullender, Addison Wesley, 2nd ed., 1994.

[Wald99] Waldo, J. (1999). The Jini Architecture for Network-centric Computing. In
Communications of the ACM, July 1999, pp. 76-82.

[WSS+01] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, S. Waldbusser. Terminology for Policy-Based
Management. IETF RFC 3198, 2001.

[ZhCL04] C.Zhou, L.-T.Chia, and B.-S.Lee. DAML-QoS Ontology for Web Services.
ICWS-04, July 6-9, San Diego, California, USA.

April 2005 Public

Amigo IST-2004-004182 227/227

	Table of Contents
	Figures
	Tables
	Introduction
	Middleware-related properties for the networked home system
	Interoperability
	Security, privacy and safety
	Mobility
	Context-awareness
	Quality of service

	Document structure

	Service-orientation for Amigo
	Service-Oriented Architecture (SOA)
	Service-oriented architectural style
	Key properties of service-orientation
	Reference service-oriented architecture
	SOA and Web Services

	Semantic Web and Semantic Web Services

	Modeling services for Amigo
	Modeling components
	Example

	Modeling connectors
	Example

	Semantics-based service interoperability
	Interoperability at connector/middleware level
	Conformance relation
	Interoperability method
	Example

	Interoperability at component/application level
	Conformance relation
	Interoperability method
	Example

	Related work
	Discussion

	Amigo abstract reference service architecture
	Amigo application layer
	QoS-aware services
	Context-aware services

	Amigo middleware layer
	Amigo service discovery
	Amigo enhanced service discovery
	Amigo interoperable service discovery
	Mapping between enriched service description and legacy SDPs
	Security and privacy for service discovery

	Amigo platform layer
	Discussion

	Application-layer interoperability methods
	Ad hoc composition of services
	Abstract composition description
	Modeling OWL-S processes as finite state automata
	Matching algorithm
	Semantic operation matching
	Conversation matching
	Example

	Related work
	Discussion

	Middleware-layer interoperability methods
	Background
	Reflective middleware to cope with middleware heterogeneity
	Software architecture to decouple components from protocols

	Service discovery protocol interoperability
	SDP detection
	SDP interoperability
	Event-based interoperability
	Context-aware, self-adaptive interoperability
	Interoperability scenarios

	Interaction protocol interoperability
	OSGi-based interoperability
	Export and binding factories
	OSGi communication services for legacy servers and clients

	Related work
	Discussion

	Integration of the CE domain
	Background
	DLNA overview
	UPnP overview
	Streaming protocols
	Real-Time Transport Protocol / Real-Time Control Protocol (R
	Hypertext Transfer Protocol (HTTP)

	Streaming session control protocols
	Real-Time Streaming Protocol (RTSP)
	UPnP AV
	Session Initiation Protocol (SIP)

	Quality of Service in the CE domain
	Problem analysis
	The stream in isolation
	Stream shaping
	Transcoding

	Medium sharing between streams
	Group membership
	Reservation / prioritization requests
	Realization of reservation / prioritization on the network
	Bandwidth negotiations

	QoS-interoperability aspects at the middleware
	DLNA and QoS
	UPnP-QoS introduction
	UPnP-QoS framework
	Description of the UPnP-QoS components
	Summary of the UPnP-QoS framework
	DLNA QoS traffic types proposal

	Amigo multimedia streaming architecture
	Digital Media Server (source)
	Digital Media Renderer (sink)
	Control Point
	QoS Manager
	Policy Holder
	Intermediate Node
	An example scenario

	Discussion

	Integration of the Domotic domain
	Background on domotic bus protocols
	BatiBUS
	EHS
	EIB
	KONNEX
	LON
	BDF

	Amigo domotic service architecture
	Amigo domotic device classes
	Legacy Amigo domotic device
	Base Amigo domotic device
	Intermediate Amigo domotic device
	Full Amigo domotic device

	Amigo domotic service architecture
	Bus controller
	Proprietary device factory
	Discoverable device factory
	Mapping the Amigo domotic device classes onto the architectu
	Instantiation example
	Summary

	Enabling complex domotic scenarios
	Script-based scenarios
	Scenario Developer
	Home plug-ins

	Discussion

	Security and Privacy
	Introduction
	Security and privacy in Amigo
	Relationship to existing security mechanisms

	Supported scenarios
	Installation of (new) equipment
	Foreign equipment
	Equipment malfunction
	Equipment is moved outside and back into the home
	Out of home communication
	Home service usage

	Requirements
	Interoperability
	Pre-configured
	User-friendly
	Self-managed
	Distributed
	Dynamic

	Amigo security and privacy architecture
	Authentication
	Authentication service
	Users
	Devices
	Services

	Authorization
	Authorization service
	Authorization Scheme (AS)

	Privacy
	Protection of user information
	Protection of content (DRM)

	Communication security
	WS-Security
	SSL
	RMI and security

	Discussion

	Support of user/technical requirements within the Amigo midd
	Deducting technical requirements from the user requirements
	Technical requirements applying to the middleware

	Support of the technical requirements within the Amigo middl
	Ad-hoc interoperable networking
	Ad-hoc multimedia communication
	Video server
	Local database
	External content server

	Component-based middleware
	Context-awareness
	Device discovery
	Distributed system
	Multi-user system
	Personalization and customization
	Privacy profiles
	Re-configuration
	Security profiles and authentication
	Service discovery
	Standardized services

	Conclusions

	Assessment of Amigo interoperability
	Stakeholders of Amigo
	Assessment of Amigo interoperability aspects
	Interoperability between service descriptions
	Interoperability between service discovery mechanisms
	Interoperability between service binding mechanisms
	Interoperability between service invocation mechanisms
	Interoperability between security mechanisms
	Interoperability between QoS mechanisms
	Interoperability between context-exchange mechanisms
	Interoperability between service management mechanisms

	Assessment results
	Assessment of service description interoperability
	Assessment of service discovery interoperability
	Assessment of service binding interoperability
	Assessment of service invocation interoperability
	Assessment of security interoperability
	Assessment of QoS interoperability

	Conclusions and recommendations

	Conclusion
	Acronyms
	References

