

IST Amigo Project
Deliverable D3.5

Amigo overall middleware:
Final prototype implementation

& documentation

Annex: Qualitative & quantitative assessment
of the middleware

IST-2004-004182

Public

December 2007 Public

Amigo IST-2004-004182 1/48

Project Number : IST-004182

Project Title : Amigo

Deliverable Type : Report

Deliverable Number : D3.5

Title of Deliverable : Amigo overall middleware: Final prototype implementation &
documentation – Annex: Qualitative & quantitative
assessment of the middleware

Nature of Deliverable : Public

Internal Document Number : assesment_annex_amigo_d3.5_final

Contractual Delivery Date : 30 November 2007

Actual Delivery Date : 31 December 2007

Contributing WPs : WP3

Editor(s) : INRIA: Graham Thomson, Nikolaos Georgantas

Author(s) : FT: Anne Gérodolle, Mathieu Vallée

 ICCS-NTUA: Ioanna Roussaki, Dimitris Tsesmetzis, Yiannis
Papaioannou, Miltiades Anagnostou

 IMS: Edwin Naroska

 INRIA: Graham Thomson, Sébastien Bianco, Nikolaos
Georgantas, Sonia Ben Mokhtar, Valérie Issarny, Nicolas
Palix, Charles Consel, Laurent Réveillère, Wilfried Jouve

 Microsoft: Ron Mevissen, Stephan Tobies, Rich Hanbidge

 TELIN: Pravin Pawar, Remco Poortinga

 TID: José María Miranda, Álvaro Ramos, David Cordón,
Andrés Tuells

 VTT: Jarmo Kalaoja, Ilkka Niskanen, Toni Piirainen

Abstract
This document presents the assessment annex of the deliverable “D3.5 Amigo overall middleware: Final
prototype implementation & documentation – Final integrated methodology (‘how to’) for employing the
middleware”. Included are a number of assessment results addressing the middleware components
developed within WP3. We have performed a thorough assessment of the middleware, both qualitative
– based on self-evaluation and a survey carried out among internal Amigo developers, and quantitative
– based on experimental tests.

Keyword list
Assessment, ambient intelligence, networked home system, interoperability, mobile / personal
computing / consumer electronics / domotic domain, semantic concept, ontology, service description
vocabulary, service description language, semantic reasoning, service matching, service composition,
service adaptation, service execution, middleware, service discovery protocol, service interaction
protocol, programming and deployment framework, context, quality of service, multimedia streaming,
content distribution, security, data storage.

December 2007 Public

Amigo IST-2004-004182 2/48

Table of Contents

Table of Contents...2

1 Introduction...4

2 Amigo API Assessment Survey ..5

3 Programming and Deployment Frameworks Assessment6
3.1 Development, configuration, deployment, management aspects6

3.1.1 Interoperability...6
3.1.2 Portability ..6

3.2 Runtime aspects...6
3.2.1 Performance..6
3.2.2 Discovery ..6
3.2.3 Service interaction...7
3.2.4 Results ..8
3.2.5 Conclusion ..10

4 Interoperability Framework Assessment11
4.1 Development, configuration, deployment, management aspects11

4.1.1 Service Discovery ...11
4.1.2 Service Interaction ..12

4.2 Runtime aspects...14
4.2.1 Service Discovery ...14
4.2.2 Service Interaction ..16

5 Security Framework Assessment ...20
5.1 Development, configuration, deployment, management aspects20

6 Semantic Service Framework Assessment....................................21
6.1 Complex service workflows ..21

6.1.1 Development, configuration, deployment, management aspects21
6.1.2 Runtime aspects ...22

6.1.2.1 Experimental set-up.. 23
6.1.2.2 Discovery time measurements ... 23
6.1.2.3 Composition Time Measurements.. 25

6.2 Context Aware Services ..27
6.2.1 Development, configuration, deployment, management aspects27

6.2.1.1 Ease of learning.. 27
6.2.1.2 Additional development effort ... 27
6.2.1.3 Tooling .. 28

6.2.2 Runtime aspects ...29
6.2.2.1 Performance ... 29

December 2007 Public

Amigo IST-2004-004182 3/48

6.2.2.2 Resource consumption ... 31
6.2.2.3 Scalability .. 31
6.2.2.4 Persistent lookup .. 32

6.2.3 Conclusions .. 32
6.3 Quality of Service Aware Services ... 32

6.3.1 Development, configuration, deployment, management aspects 32
6.3.2 Runtime aspects ... 34

6.4 Event-based Services.. 34
6.4.1 Development, configuration, deployment, management aspects 34

7 Multimedia Content Framework Assessment36
7.1 Development, configuration, deployment, management aspects....................... 36

7.1.1 Content Adaptation DMS .. 36
7.1.2 Content Discovery .. 36
7.1.3 Content Distribution .. 36

7.2 Runtime aspects .. 37
7.2.1 Content Adaptation DMS .. 37

7.2.1.1 Performance ... 37
7.2.1.2 Resource Consumption .. 37
7.2.1.3 Scalability .. 37
7.2.1.4 Robustness ... 37

7.2.2 Content Discovery .. 38
7.2.2.1 Performance ... 38
7.2.2.2 Resource Consumption .. 38
7.2.2.3 Scalability .. 38
7.2.2.4 Robustness ... 38

8 Datastore Framework Assessment ...39
8.1 Development, configuration, deployment, management aspects....................... 39

9 Assessment of Home Configuration with VantagePoint...............40
9.1 Development, configuration, deployment, management aspects....................... 40

9.1.1 Introduction ... 40
9.1.2 Assessment Results ... 41
9.1.3 Discussion .. 45

10 Summary..47

11 Resources..48

December 2007 Public

Amigo IST-2004-004182 4/48

1 Introduction
This document presents the assessment annex of the deliverable “D3.5 Amigo overall
middleware: Final prototype implementation & documentation - Final integrated methodology
(‘how to’) for employing the middleware”. Included are a number of assessment results
addressing the middleware components developed within WP3. We have performed a
thorough assessment of the middleware, both qualitative – based on self-evaluation and a
survey carried out among internal Amigo developers, and quantitative – based on
experimental tests.

A range of aspects are addressed by the assessment of each component. These include:

• Development, configuration, deployment, management aspects, such as: ease of
learning and ease of use; the time and effort required for development, and the
resulting efficiency; provided aid in dealing with complex, tedious, error-prone
development tasks; and additional tool aid in system design and development; and
portability/interoperability.

• Runtime aspects, such as: effectiveness; performance; resource consumption;
scalability; and robustness.

The elicited assessment approach and target assessment aspects reflect our initial objectives
in WP3 and the resulting nature of WP3 software. The development of the Amigo Base
Middleware software focused on producing research prototypes that explored novel
applications in a new domain, and exhibited extensive interoperability. Therefore, our
evaluation effort focused on assessing the capacity of the Amigo middleware to enable
promising perspectives, rather than on a complete assessment of a commercial product.
Overall, the Amigo middleware software is judged sufficient to meet such expectations.

In the following, Chapter 2 presents the results of an assessment survey completed by internal
Amigo developers on their experiences of using the Amigo software API, which includes the
Base Middleware and Intelligent User Services API. Thus, this part of our assessment
concerns the whole Amigo software. Chapters 3 to 8 present the results of our self-
assessment, both qualitative and quantitative, of the components of the Base Middleware.
Chapter Error! Reference source not found. describes the findings of a component-specific
questionnaire conducted to assess the VantagePoint tool. Finally, Chapter 10 presents a
summary of the assessment results.

December 2007 Public

Amigo IST-2004-004182 5/48

2 Amigo API Assessment Survey
The full text and results of the Amigo API assessment survey completed by internal Amigo
developers are included in the delivery of this annex. This chapter provides a summary and
analysis of these results. Participants of the survey were asked to complete a questionnaire
consisting of 27 questions concerning their experience with using the Amigo Middleware API,
which includes the Base Middleware and Intelligent User Services APIs. Thus, this part of our
assessment concerns the whole Amigo software. The questionnaire was proposed by
Microsoft and reviewed by the rest of the WP3 partners. The survey was carried out with the
technical support of Vanguard Software Corporation, an external software company
specialized in interactive Web applications for e-business and desktop tools for quantitative
analysis. This company also processed the input data of the survey and provided the full
report document included in the delivery of this annex.

Over one third of the respondents used the Amigo Middleware to build an application or demo,
while the two thirds used the middleware to build both a middleware component and to build
an application or demo. Two thirds of the respondents had previous experience in distributed
programming, while just under one third claimed to have very little previous experience.

Concerning the overall experience of using the Amigo Middleware, the feedback was positive,
with 62% of the respondents rating the experience to be as expected, and the remaining 38%
better than expected. Furthermore, the majority of respondents reports that they used just the
right amount of classes, that the classes were at the expected level of abstraction, and that
they were satisfied with the experience of learning how to use the different classes.

When asked about performing tasks with the Amigo Middleware, the majority of respondents
replied that they felt they had to do an expected number things in order to accomplish the task,
and that they had to keep track of additional information, such as writing something down on
paper or committing something to memory, a reasonable number of times.

Few respondents found that they had to reverse a designing decision using the Amigo
Middleware, nor had to remedy the negative consequences related to this. Furthermore, the
majority of respondents felt that they only had to understand a reasonable amount of the
implementation details of the middleware in order to use it successfully, and that they
experienced no cases where they had to make changes to classes they had already written
due to the way the middleware was implemented.

A large majority of the respondents found it easy to understand the role of the classes they
used, that there was a high level of consistency throughout, and that almost all classes
represented concepts they expected.

Almost all of the respondents felt that using the Amigo Middleware saved some or a lot of
development time, that implementing an application or service with the middleware was easy
or very easy, and that is was easy or very easy to learn how to use the middleware.
Furthermore, a large majority (86%) felt that the tool support for the middleware available to
them was as or more than expected.

A large majority of the respondent reported that they had no performance, quality, or
interoperability issues with the Amigo Middleware, and almost all respondents agree that the
Amigo Middleware enabled new scenarios that would not have been possible, or would have
been difficult to do, without it.

Overall, this gives a very positive response for the use of the Amigo Middleware.

December 2007 Public

Amigo IST-2004-004182 6/48

3 Programming and Deployment Frameworks
Assessment

3.1 Development, configuration, deployment, management aspects

3.1.1 Interoperability
Both the OSGi and .NET Programming and Deployment Frameworks have been developed
keeping in mind interoperability. The OSGi and .Net tutorials [OSGi/.NET] show how to
develop applications in both frameworks, so that an application based on either the .Net or the
OSGi framework can discover services running on either the .Net or the OSGi framework, and
can interact with the discovered services, that is: place remote calls to the methods that these
services expose; as well as subscribe to event sources and receive notifications.

Several applications and middleware components developed in the other Amigo work-
packages have helped assessing interoperability.

3.1.2 Portability
Applications developed with the Amigo .Net framework should in principle run on any platform
running .NET 2.0 (or .Net 2.0 compact framework). We have successfully checked the
portability on various PCs running either Windows XP or Windows Vista, as well as on
different PDAs and smart phones.

Applications developed with the Amigo OSGi framework should in principle run on any Java
runtime J2SE (>= 1.4) or J2ME/Personal Profile. We have successfully tested the following
configurations:

• various PCs or laptops, on Windows XP, Windows Vista or Linux, with the standard Java
packages (1 .4, 1.5, 1.6) installed

• PDAs (Windows CE / Pocket PC) running IBM/J9

• NSLU2/ Linux, with the embedded Java runtime JamVM.

3.2 Runtime aspects

3.2.1 Performance
The results presented in this section must be considered with caution, as the performance of a
networked application depends on many factors.

3.2.2 Discovery
We have not performed quantitative measurements on the discovery process. As the
discovery protocol used in Amigo (WS-discovery) is based on IP Multicast, its “performances”
depend highly on the network congestion. In highly congested networks, some services may
even not be discovered at all, as there is no guarantee brought by the protocol that multicast
packets will be received at all. To reduce the risk of a service not being discovered, the WS-
discovery protocol specifies that each WS-discovery message must be sent 3 times with a
random delay between each sending.

We have observed problems when running distributed applications on a network with no DNS
server. This has lead to improvements in the discovery framework, so that the robustness is
increased.

December 2007 Public

Amigo IST-2004-004182 7/48

3.2.3 Service interaction
We have made a series of experiments to evaluate the time of a remote call between a client
application and an Amigo service on a local network.

We have considered several networking conditions: wired (company network), wired (home
network), wireless (home network) or mixed (one machine wired on the home gateway, the
other machine on Wifi).

For both .Net and OSGi frameworks, we have developed an Amigo service with 3 methods,
and a client that measures the time necessary for calling these methods. Two types of
measurements were done: measuring the time between calling the service and receiving the
result (this allowing to possibly observing discrepancies between several “identical” calls), and
measuring the average time of a series of 10 successive calls.

For example, the code of the OSGi client looked as follows:
 for (int i = 0; i < 10; i++) {
 System.gc();
 t0 = System.currentTimeMillis();
 library.helloString("hello");
 t1 = System.currentTimeMillis();
 long elapsed = t1 - t0;
 System.out.println("call time=" + elapsed);
 }

 System.gc();
 t0 = System.currentTimeMillis();

 for (int i = 0; i < 10; i++) {
 library.helloString("hello");
 }
 t1 = System.currentTimeMillis();
 long elapsed = t1 - t0;
 System.out.println("average call time=" + elapsed/10);

The server code was kept as simple as possible, so that the processing of the call was
negligible (note that these are not realistic conditions for a middleware in use, but we wanted
to isolate specifically the middleware).

We have deployed the clients and servers on different platforms, as follows:

 Hardware OS OSGi or .Net Java runtime

PC Linux OSGi Intel Pentium 4 CPU
3.20 GHz

Linux 2.6.18 OSGi Sun J2SE 1.4

Sun J2SE 1.5

Sun J2SE 1.6

PC Win OSGi Windows XP

Windows Vista

OSGi Sun J2SE 1.4

Sun J2SE 1.5

Sun J2SE 1.6

PC XP Net Windows XP .Net n.a.

iPaq Intel PXA 270 624
MHz (only Wifi)

Windows mobile OSGi IBM J9

NsLU2 Xscale-IPX42x 133
MHz (only wired)

Linux 2.6.18 OSGi JamVM

December 2007 Public

Amigo IST-2004-004182 8/48

Other PCs with different hardware characteristics, under Linux or Windows were also tested,
with similar results.

3.2.4 Results
Generally, there was no significant difference between the average time of a call to a void
method, and that of a method taking a few arguments.

When several Java runtimes were available on a machine, we varied the runtimes used in the
tests. We did not notice any change in the results.

The following table summarizes the results (average call time observed during the different
trials, in ms):

Client \ server PC Linux
OSGi
(wired)

PC Win
OSGi
(wired)

PC Win
OSGi
(wifi)

PC Win
Net
(wired)

PC
Win
Net
(wifi)

iPaq
(Wifi)

NsLU2
(wired)

PC_Linux_OSGi
(wired)

5-8 8-10 - 8-10 - - 40

PC_Win_OSGi
(wired)

6-10 6-10 8-12 6-10 8-12 50 40-50

PC_Win_OSGi
(WiFi)

- 8-12 10-14 8-12 10-14 50

PC_Win_Net 6-10 300-330 300-330 300-330 300-
330

40-60

PC_Win_Net
(Wifi)

 300-330 300-330 300 300 - 40-60

iPaq (Wifi) 400-500 400-500 400-
500

- -

NsLU2 (wired) 100-120 100-120 - 100-120 - - 120-150

We were surprised by the high average call time, compared to other test configurations, when
using a Windows .Net client and a Windows (.Net or OSGi) server. After investigation, we
found that the reason for low performance was related to the packet scheduling strategy on
Windows, and particularly to the use of the Nagle algorithm that delays sending small packets.
After Microsoft EMIC had made some changes to the client software and the .Net stack, the
results were changed as follows:

Client \ server PC Win Net
(original)

PC Win OSGi
(original)

PC Win Net (modified
stack)

PC Win Net (original) 300 300 -

PC Win OSGi (original) 10-14 10-14 10-14

PC Win Net (modified
client)

200 300 2-3

December 2007 Public

Amigo IST-2004-004182 9/48

After the correction, the interaction time between .Net platforms was highly decreased. The
interaction between a .Net client and an OSGi server on Windows remains the same. A reason
could be that the OSGi server closes the connection after each call. However, interactions of
OSGi clients with the same server are much faster (< 10ms), as are interactions of the .Net
client with OSGi servers running on Linux platforms. At this time, we do not have a satisfactory
explanation.

The following tests aim at measuring performances when the payload of the call is big. In the
first two tests, we measure the average call time of a method with several parameters. The
first parameter is a string containing 1000 or 10000 characters.

The server returns the concatenation of the 3 parameters.

In the third test, a byte array (size 10000) is passed as parameter. The server return is void.

Test with big payload (sting size=1000)

Client \ server PC Linux OSGi
(wired)

PC Win OSGi
(wired)

PC Win Net
(wired)

NsLU2
(wired)

PC Linux OSGi
(wired)

5 4-7 5-10 100-120

PC Win OSGi
(wired)

4 <10 <10 110-125

PC Win Net - - -

NsLU2 (wired) 145 150-200 145-150 230-280

Test with very big payload (sting size=10000)

Client \ server PC Linux OSGi
(wired)

PC Win OSGi
(wired)

PC Win Net
(wired)

NsLU2
(wired)

PC Linux OSGi
(wired)

10-30 10-30 10-20 630-660

PC Win OSGi
(wired)

10-15 10-15 10-15 640-660

PC Win Net - - - -

NsLU2 (wired) 680-800 710-7260 710-750 1150-1340

Test with big payload (byte array size=10000)

Client \ server PC Linux OSGi
(wired)

PC Win OSGi
(wired)

PC Win Net
(wired)

NsLU2
(wired)

PC Linux OSGi
(wired)

10 10-20 20-25 350-390

PC Win OSGi
(wired)

15-20 15-20 15-20 380-400

PC Win Net - - - -

NsLU2 (wired) 780-800 830 860 1100-1120

December 2007 Public

Amigo IST-2004-004182 10/48

Although the call times are increased compared with calls of methods with “small” arguments,
they remain “low” when executed by clients and servers running on PCs. The call time
increases to some 100 ms when clients and server are on nsLU2. In the worst case (string
size 10000 characters, both clients and server on nslu2), the average duration was a little
more than 1s.

3.2.5 Conclusion
Though these tests are limited to only time measures of method calls, they provide important
insights about the performance developers can expect from the Amigo middleware. Also they
allowed to spot some issues and to improve the middleware. To summarize:
Interaction between powerful platforms (PCs) is typically below 15 ms, and response time
does not depend as much as could have been expected on networking conditions (wired or
wireless). We did not make experiments on highly congested network.

Interaction between PCs and resourse-constrained devices is slower (as expected). However,
the figures are not symmetrical: the time needed for a client on a constrained platform to call a
server on a PC is much higher than the reverse (client on PC, server on constrained platform).

December 2007 Public

Amigo IST-2004-004182 11/48

4 Interoperability Framework Assessment
In this chapter, we present our assessment of the Amigo Interoperability Framework that we
carried out on two earlier prototypes of the service discovery and service interaction
subsystems, as already reported in Deliverables D3.1b and D3.2 respectively. Even if this
evaluation does not concern the final Interoperability Framework prototype, the produced
results are representative of the qualities of the Interoperability Framework.

4.1 Development, configuration, deployment, management aspects

4.1.1 Service Discovery
The assessment reported herein concerns the first prototype of the service discovery
interoperability subsystem of INMIDIO, the Amigo interoperable middleware core, which
included a UPnP unit and a SLP unit. Although that prototype was not yet optimised, it was
robust enough for assessing the performance of our approach in different use cases. The
following discusses key elements of the prototype. We first discuss its small code footprint
requirements compared to existing solutions. We then evaluate its performance by comparing
supported response times with native service discovery.

Amigo middleware size requirements

 Size (KB) Classes NCSS Overhead
Core framework 44 15 789 -

UPnP Unit 125 18 1515 -
SLP Unit 49 6 606 -

Total 218 39 2910 -
SDP library size requirements

OpenSlp Library 126 21 1361 -
Cyberlink UPnP 372 107 5887 -

Total 498 128 7248 -
Size requirements to provide interoperability with and without Amigo middleware

SLP &UPnP Library +
SLP & UPnP clients

514 - - -
UPnP client & Library +

Amigo middleware
598 - - 14%

SLP client & Library + Amigo
middleware

352 - - -31.5%

Table 4-1: Footprint requirements in KBytes for known libraries and the Amigo middleware
core.

The prototype is implemented in Java to take advantage of cross platform portability. We are,
in particular, able to deploy our solution on any mobile device that embeds J2ME1, which
provides a Java virtual machine customized for devices with limited resources.

In Table 4-1, we compare the footprint requirements of the Amigo middleware core with the
ones of common open-source libraries like OpenSlp2 and Cyberlink for Java3. The overall
Amigo middleware core consists of 39 Java classes and 2910 lines of Non-Commented
Source Statement Classes (NCSS). The overall system size is 218 Kbytes. This includes

1 http://java.sun.com/j2me/index.jsp
2 http://www.openslp.org/
3 http://www.cybergarage.org/net/upnp/java/

December 2007 Public

Amigo IST-2004-004182 12/48

125Kbytes for the UPnP Unit and 49Kbytes for the SLP Unit. To be interoperable, nodes
running UPnP (resp. SLP) applications need to host a native UPnP (resp. SLP) library plus the
Amigo middleware core. This is to contrast with an interoperable device that is not equipped
with our interoperable system, which needs: (i) to host both the full UPnP stack and the SLP
library, and (ii) some engineering effort to develop and host an additional SLP (resp. UPnP)
client that is equivalent in terms of functionalities to the UPnP (resp. SLP) client.

As further depicted in Table 4-1, the size requirements of a middleware that needs to be
interoperable and does include the Amigo interoperable middleware core (includes both full
SLP and UPnP) is 514Kbytes when hosting one simple service. In contrast, the size
requirement for a middleware dedicated to UPnP (resp. SLP) equipped with the Amigo
middleware core is 598Kbytes (resp. 352Kbytes). Then, the size requirements increase
proportionally with the number of hosted services. The size requirements of an interoperable
middleware without the Amigo interoperable middleware core increase faster than the ones of
a middleware equipped with the Amigo interoperable middleware core, because, for the
former, each time we add a service, we have to add two implementations of the service (e.g.,
SLP service + UPnP service). Thus, the small size overhead introduced by the Amigo
interoperable middleware core with UPnP applications disappears when the number of hosted
services increases.

Further, a middleware that needs to host different services, in terms of both functionalities and
service discovery protocol (SDP) used, must have all the corresponding native libraries
irrespectively of the use of Amigo middleware. However, in this case, the latter still provides
efficient interoperability: it reduces drastically both the number of hosted services and, in the
long term, the overall middleware size since we do not have to develop and deploy services
for each existing SDP.

4.1.2 Service Interaction
The assessment reported herein concerns the second (but not final) prototype of the service
interaction interoperability sub-system of INMIDIO. This INMIDIO prototype is implemented in
ANSI-C. The C programming language has been chosen for several reasons: (i) it enables the
deployment of INMIDIO without requiring any additional software (e.g., requirement of the
Java virtual machine) as embedded system kernels are mainly developed in C, and (ii) it
increases the execution speed, which is a key requirement. However, INMIDIO may be
developed in any other programming language and/or dedicated to one specific software
platform to increase further its efficiency.

INMIDIO provides 2 instances of the SUN compliant RMI stack (See RMI_1 and RMI_2, Table
4-2: The RMI stacks of INMIDIO vs. Sun JVM) through the use of 4 units developed in C: the
Java Remote Method Protocol (JRMP), Java Object Stream Protocol (JOSSP), HTTP protocol
and Java Mobile Code. As given in Table 4-2, the RMI stack of INMIDIO requires at most 636
Kb against about 3Mb for the Java Micro Edition environment with the additional packages to
support RMI as a client. Note that we reuse existing non optimised HTTP library. In addition,
through an adequate configuration of the protocol units, INMIDIO can act not only as an RMI
client but also as an RMI service and is therefore able to generate dynamically Java
proxy/stub code on the fly. This behaviour is, normally, only possible on the desktop Java
runtime environment whose size is of 45 Mb. INMIDIO drastically reduces the size
requirements to support the full features of the RMI specification, as it needs neither a JVM
nor Java class libraries at all.

December 2007 Public

Amigo IST-2004-004182 13/48

INMIDIO SUN JVM

Units Size
RMI

Stack
1

RMI

Stack
2

JRE J2ME

Parser Mobile
Code Composer

140 - X - -

Parser
JOSSP

Composer
56 X - - -

Parser
JRMP

Composer
40 X - - -

Parser
HTTP

Composer
164 - X

- -

IO abstraction 36 X X

Event Manager 200 X X

TOTAL in Kb 636 332 540 45000 3000

Table 4-2: The RMI stacks of INMIDIO vs. Sun JVM

To support the Web services communication protocol, the INMIDIO prototype builds on an
existing SOAP library developed in C, to implement the required SOAP and HTTP units.
Unfortunately, to the best of our knowledge, there does not exist any optimised SOAP library,
developed in C, dedicated to resource constrained devices in the open source community.
Consequently, we reuse the CSOAP4 library, which has the severe constraint to be memory
consuming, as given in Table 4-3. GSOAP [EG02] is known to be more appropriate for saving
resources, but it does not provide the ability to create dynamically SOAP calls at run-time. It is
interesting to note that some commercial SOAP versions require only 150Kb against the
1524Kb for CSOAP. Accordingly, it is very promising for the next INMIDIO prototypes in terms
of memory cost. Nevertheless, although the current INMIDIO prototype is half optimised, its
size is already less than the J2ME runtime, while providing interoperability.

INMIDIO

Units Size Web services
Stack

Parser SOAP

Unit Composer
1360 X

Parser HTTP

Unit Composer
164 X

Event Manager 200 X

TOTAL in Kb 1724 1724

Table 4-3: The CSOAP-based Web services stack of INMIDIO

4 http://csoap.sourceforge.net

December 2007 Public

Amigo IST-2004-004182 14/48

4.2 Runtime aspects

4.2.1 Service Discovery
Again, this assessment concerns the first prototype of INDMIDIO – the Amigo interoperable
middleware core – service discovery. We evaluate the performance of our interoperability
mechanisms by investigating the response time of the Amigo interoperable middleware core
when enabling a client dedicated to one SDP to discover a service based on another SDP.
Specifically, the experiments consider the case where a SLP (resp. UPnP) client searches a
SLP (resp. UPnP) service. We then compare the native client waiting time to get an answer
from a native service with its waiting time to get an answer from an Amigo-interworked service.
The impact of the Amigo middleware core on performance varies according to its location,
either on the client or on the service side. Thus in the following, we consider the two cases. In
addition, as interoperability is achieved without generating additional traffic, we have not
evaluated the network bandwidth consumption. Indeed, the generated traffic is well known
since we are neither providing a new service discovery protocol nor altering native protocols.

Although our solution is dedicated to various devices, including resource-constrained ones, all
tests are performed on workstations equipped with 256Mbytes RAM on Intel PIV processor
rated at 1.8GHz. In fact, currently, to the best of our knowledge, there does not exist any
UPnP profile for J2ME devices in the open source community. Thus, the operating system, the
Java virtual machine and the performance tools platform used are, respectively, Linux from
Redhat Fedora Core 2, JDK1.4.2 from Sun, and the Hyades platform from the Eclipse
Foundation. Moreover, the SLP (resp. UPnP) client and SLP (resp. UPnP) service are hosted
on different hosts connected to a LAN at 10Mb/s. The SLP client and service are based on
OpenSlp, whereas the UPnP client and service use Cyberlink for Java. The given
measurements are in msec and are the median of 30 successful tests to avoid a mean skewed
by a single high or low value.

 SLP -> SLP UPnP -> UPnP

Median value
(ms)

0.7 40

Figure 4-1: Native clients & services

In Figure 4-1, we first give the response time of a search request generated by a native client
to get a successful answer from a native service: for SLP, we get 0.7 ms, whereas for UPnP,
we get 40ms. It is clear that using SLP is much more efficient than UPnP, which is a higher-
level protocol than SLP. These results are considered as references values to enable us to
interpret the following results.

SLP ServiceSLP Client
Slp Messages

UPnP Client UPnP Service
UPnP Messages

Network

December 2007 Public

Amigo IST-2004-004182 15/48

 Slp->[Slp-UPnP] UPnP->[UPnP-Slp]
Median value (ms) 65 40

Figure 4-2: Performance with Amigo located on the service side

Consider now the case where the Amigo middleware core is located on the service side to
enable the latter to be interoperable with any client independently of its SDP (Figure 4-2). In
the context where the client is SLP and the service is UPnP, the client gets an answer in
65ms. The translation between SLP and UPnP is not direct. For instance, UPnP and SLP
search responses are semantically different: a SLP client expects a direct reference to interact
with the service discovered, whereas a UPnP client expects a reference to a description file
corresponding to the service found. Consequently, the Amigo middleware core has translated
the SLP request into two local UPnP requests to get the information that is necessary to
generate on the network the corresponding SLP response. This means that the Amigo
middleware core has waited and parsed successively two UPnP responses, thus increasing
the SLP responsiveness latency. On the service side, it is clear that the Amigo middleware
core simulates a UPnP client, and therefore we cannot interfere on the native time taken to get
a UPnP response from the service. In this context, the Amigo middleware core result is pretty
good.

Still in Figure 4-2, when the client is UPnP and the service is SLP, the response time to get an
answer is 40ms. In fact, it corresponds exactly to a search request generated on the network
from a native UPnP client to a native UPnP service. On the service side, the response time to
a SLP request is negligible as the latter is generated locally.

 [Slp-UPnP]->UPnP [UPnP-Slp]->Slp
Median value (ms) 80 0.12

Figure 4-3: Performance with Amigo located on the client side

a) SLP search request to a UPnP service

Client side

UPnP Service

AmigoSLP Client

Network

UpnP

messages

Local

Slp

Client side

Slp Service

AmigoUPnP Client

Network

Slp

messages

Local

UPnP

b) UPnP search request to a SLP service

SLP ServiceUPnP Client Amigo

Network Local

UPnP

Messages Slp

UPnP SeviceSlp Client Amigo

Slp

Messages UPnP

December 2007 Public

Amigo IST-2004-004182 16/48

When the Amigo interoperable middleware core is located on the client side (Figure 4-3a), the
latter becomes interoperable and can discover any service whatever its SDP. If the client is
SLP and the service is UPnP, the SLP client gets the answer to its search request in 80ms. It
corresponds globally to two native UPnP responses from a native UPnP service. This is
obvious, since, as previously, the Amigo interoperable middleware core has translated the
SLP request into two network UPnP requests to get the necessary information to generate
locally the corresponding SLP response. Once again, the Amigo interoperable middleware
core result is encouraging. It is important to note that compared to the case depicted in Figure
4-2, the response time is higher than previously, simply because the UPnP traffic goes across
the network between the Amigo interoperable middleware core and the UPnP service,
increasing by 15 ms the response time. In the same context, the high response time inherent
to the UPnP protocol is confirmed, as a UPnP client gets a response from a SLP service in
only 0.12ms (Figure 4-3b). This is due to the fact that, first, the UPnP traffic is local and, then,
the only traffic that goes across the network is SLP, which is particularly fast. In addition, the
necessary information to generate a search response for UPnP is tiny. We can consider this
case as the best case.

The above results show that the Amigo interoperable middleware core is particularly efficient
in providing interoperability in all possible contexts.

4.2.2 Service Interaction
Again, this assessment concerns the second (but not final) prototype of INMIDIO service
interaction. We evaluate the performance of INMIDIO by investigating the latency required for
a client to get an answer to its RPC request from a remote service based on a different RPC
protocol. The latency does not include the time needed for the service to export its interface.
Although the exporting step is mandatory, it is more related to the service/registry discovery
process than the interoperable interaction mechanism. Accordingly, our experiments focus on
the latency of remote service invocation, for which we implemented an echo service that
echoes to the client the string given as an argument in the RPC request. We compare then the
resulting latency with the one of a native RPC between a client and service based on an
identical RPC protocol.

Although our solution is dedicated to various devices, including resource constrained ones, all
tests are performed on a workstation equipped with 256Mbytes RAM on Intel IV processor
rated at 1.8GHz as our focus is on assessing performance against native cases. Hence, the
operating system is Linux Redhat Fedora Core 2. INMIDIO is compiled with the gcc compiler
and the glibc library version 3.2.2. The Web services client and service are based either on the
CSOAP library or Java Apache Axis5, whereas the RMI client and service are based on JDK
1.4.2 from SUN. The given measurements are in ms and are the median of 15 successful tests
to avoid a mean skewed by a single high or low value. Moreover, all the tests are run on a
single host to avoid the network delays, as we want to measure the INMIDIO performance.
Indeed, INMIDIO provides interoperability without affecting the existing protocols and therefore
does not increase the network bandwidth consumption.

Figure 4-4 depicts a RMI request/response between a RMI client and service. If the client has
already the proxy byte-code of its desired remote service, the overall latency (Figure 4-4,
Steps &), including both the RMI invocation and the RMI lookup request (i.e., to get the
stub of the remote service from a regular RMI registry), is 201ms. However, if we consider
exclusively the RMI invocation from the client perspective, the request/response latency takes
only 1 ms against 8.08 ms or 20 ms for a similar SOAP interaction between a Web services
client and service developed respectively in C or Java (See Figure 4-5).

5

http://ws.apache.org/axis/.

December 2007 Public

Amigo IST-2004-004182 17/48

 Elapsed time

(ms)

 RMI lookup 200

 RMI request/response 1

Total with proxy 201

Figure 4-4: Native RMI RPC with and without mobile code

 Latency (ms)

 CSOAP Java AXIS

Total 8 20

Figure 4-5: Native SOAP invocation in C and Java

Since the RMI RPC is binary oriented, RMI invocations are obviously faster than SOAP ones.
Furthermore, the latency difference between the C and Java SOAP native call hints at the
impact of the C programming language on performance.

Consider now the case where the client and service are based on heterogeneous RPC
protocols and rely on INMIDIO as a transparent intermediary that achieves interoperability.
When the client is SOAP and the remote service is RMI-based, the overall latency of the
SOAP interaction, from the client perspective, is of about 9 ms (see Figure 4-6). Comparing to
the C-based SOAP native call, the latency of 1 ms overhead corresponds to the latency of a
Java-based RMI interaction. In other terms, the interoperability between a SOAP client and a
RMI service takes as much time as is needed for exactly both one C-based SOAP interaction
and one Java-based RMI interaction. Comparing now the 9 ms with the 20 ms required for
Java-based SOAP interaction, INMIDIO clearly performs better. However, if we compare
solely with the RMI native case, INMIDIO performs poorly but this is inherent to the SOAP
protocol.

Rmi client Rmi
service

Rmi
registry

Lookup

Proxy

Invocation

Latency

1

2

3

Soap client

Invocation

Soap service

Latency

December 2007 Public

Amigo IST-2004-004182 18/48

 Latency
(ms)

SOAP Parser 5

RMI Composer 0.2

RMI Parser 0.2

SOAP Composer 3

Total 9

Figure 4-6: Interoperable invocation between a Web service client and a RMI service with
INMIDIO

 Latency (ms)

 STUB Generation 0.30

 Mobile Code Generation 0.85

 Invocation 9
 Total with proxy 9.30
 Total without proxy 10.15

Figure 4-7: Interoperable invocation between a RMI client and a Web service with INMIDIO

Consider next that the client is RMI-based and the service is SOAP-based, INMIDIO acts, from
the client side, as both a compliant RMI registry and a RMI remote service (See Figure 4-7).

Req (Rmi)

Resp (Soap) Resp (Rmi)

Latency

1
2

3
4

INMIDIO Rmi service Web services Client

Resp (Soap)

Lookup (rmi)

Req (Soap)

Send Stub

Ask Proxy

Send Proxy

Req (rmi)

Resp (rmi)

Rmi client INMIDIO Soap service

2

1

3

December 2007 Public

Amigo IST-2004-004182 19/48

The mandatory lookup request from the client to get the stub of the service takes about 0.30
ms when INMIDIO acts as a RMI registry, whereas it takes 200ms with a standard java-based
registry. In the case where the client does not have found in its JVM the proxy byte-code
corresponding to the received stub, the latency increases of 0.85 ms. This overhead
corresponds to the cost for the client to get from INMIDIO the proxy byte-code, which is
dynamically generated from the interface exported by the Web services remote service (Figure
4-7, Step). Moreover, excluding Steps & , the latency of the client RMI invocation (Figure
4-7, Step) is almost equal to the similar C-based SOAP invocation of the previous scenario.
In fact, once clients have all the necessary information to perform their RPC call (i.e.,
endpoints, stubs, proxy byte-code), the cost of the interoperability processes between Web
services and RMI entities is finally independent of the nature of the client/service (i.e., either
RMI or SOAP based) and stays nearly constant: about 9 ms.

Summarising, for sending a lookup, the latency increases of 0.30 ms whereas for getting the
proxy byte-code, the latency increases of 0.85 ms. Therefore the overall latency is, in the best
case, of 9ms, and in the worse case, of 10.15 ms (See Figure 4-7) . It is clear that the latency
required for an interoperable interaction between RMI and SOAP entities can not be smaller
than the sum of the latency required for both a native RMI call and a native C-based SOAP
call. Hence, the overhead of INMIDIO is negligible.

December 2007 Public

Amigo IST-2004-004182 20/48

5 Security Framework Assessment

5.1 Development, configuration, deployment, management aspects
Security has been an essential component from the first design on in the Amigo Service
Oriented Architecture. It was a challenging task to come up with a reliable and secure solution
that had on one hand, the same security level as a traditional security solution but on the other
hand was maintenance free and easy to use by regular Amigo home inhabitants.

The provided solution consists of 2 parts: a distributed server solution written in .Net and a
client solution written in .Net and in Java. Application and Service developers use either the
.Net or the Java client depending on their preferred platform. Securing a regular service is
simply enabled by wrapping existing Web Service calls with methods provided by the client. In
this way the effort for the developer is kept to a minimum. The server uses an automatic
replication method to guarantee high reliability. If a security server is no longer available,
another one in the Amigo infrastructure will seamlessly take over without causing any
disruption in the security function.

From an Amigo home inhabitant point of view, the security solution is:

• Very user friendly when adding new devices/services to the home (no admin
functionality/equipment) required

• Enables Single Sign On (user do not have to repeatedly enter their credentials)

• Guaranteed maintained security quality through a multiple role based configuration model.
Adding new devices, services and users do not require thread analysis as long as the
multiple role model is sufficient.

• Allows parental control by deferring authorization decisions to users with a higher
authorization level (e.g. parents)

• Handles authentication as well as authorization (who is who and who is allowed to do
what)

From an application/service developer point of view, the security solution is:

• Easy to embed since existing methods only have to be wrapped using standard wrappers
from the client software.

• Uses standardized/interoperable XML files for data storage on the client

• Based on existing and proven security solutions (Kerberos)

• Fully interoperable between Java and .Net

• Leverages existing standards (Web Services, XML files) and therefore cross platform

The security solution is demonstrated in the extended home scenario that demonstrates that it
can even be used to enable and ensure security across multiple homes.

December 2007 Public

Amigo IST-2004-004182 21/48

6 Semantic Service Framework Assessment

6.1 Complex service workflows

6.1.1 Development, configuration, deployment, management aspects
Developing and using semantic services involves several stages: services must be given a
semantic description and user tasks must be created; semantic services must be deployed
and made available to Amigo applications; applications must discover the semantic services
that are currently available in the environment; in the cases where no single service can match
an application’s request, a composition of services, adapted where necessary, may be
constructed to satisfy the request; and finally, semantic services, whether a single service or
composed, must be executed by the application. The SD-SDCAE middleware assists the
developer at each of these stages of development.

The SD-SDCAE developer has several tools at his/her disposal to assist him/her in creating
service descriptions. The Protégé ontology editor can be used to graphically edit descriptions.
The Eyeball OWL checker tool, available from the Jena project website, is a lint-like command-
line tool that can be used to check that service descriptions are free of certain common OWL
errors [Eyeball]. Developers who prefer to work directly with Amigo-S XML can of course
create service descriptions using their favourite text editor.

However, there is also a tool that has been specifically developed for SD-SDCAE, called
amigosgen, that can significantly decrease the effort required to create semantic service
descriptions. The amigosgen tool takes a service’s WSDL description as input and creates an
almost complete semantic service description. All the developer must do to complete the
description is to replace a few placeholder tags with the semantic concepts to be used for
each capability.

Figure 6-1 shows a snippet of the output of amigosgen for a coffee maker service, as
developed in the SD-SDCAE User’s Guide [SD-SDCAE]. The tags the developer must edit are
surrounded by double ampersands.
 <service:Service rdf:ID="@@ SEMANTIC SERVICE NAME @@">

 <lang:ServiceType rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#string">
 @@ SERVICE TYPE SEMANTIC URI @@
 </lang:ServiceType>

 <service:presents>
 <capabilities:ServiceProfile rdf:ID=

 "@@ SEMANTIC SERVICE NAME @@Profile">

 <!-- Provided capabilities -->
 <lang:hasProvidedCapability>
 <capabilities:@@ switchOn CAPABILITY SEMANTIC @@

rdf:ID="CoffeeMachineServiceSwitchOnCapability">
 <lang:hasConversation rdf:resource=

 "#CoffeeMachineServiceSwitchOnConversation"/>
 <lang:hasOutput rdf:resource=

 "#CoffeeMachineServiceSwitchOnOutput"/>
 </capabilities:@@ switchOn CAPABILITY SEMANTIC @@>
 </lang:hasProvidedCapability>

 <lang:hasProvidedCapability>
 <capabilities:@@ brew CAPABILITY SEMANTIC @@ rdf:ID=

December 2007 Public

Amigo IST-2004-004182 22/48

"CoffeeMachineServiceBrewCapability">
 <lang:hasConversation rdf:resource=

 "#CoffeeMachineServiceBrewConversation"/>
 <lang:hasOutput rdf:resource="#CoffeeMachineServiceBrewOutput"/>
 </capabilities:@@ brew CAPABILITY SEMANTIC @@>
 </lang:hasProvidedCapability>

Figure 6-1: A snippet of the template generated by the amigosgen tool for an example coffee
maker service.

The amigosgen tool affords a significant reduction in the effort required to create semantic
service descriptions as, rather than have to write complete, often large OWL XML files, the
user simply has to make (C * O * I) + 2 trivial edits to the template generated by amigosgen,
where C is number of capabilities of the service, O the average number of unique outputs, and
I the average number of inputs.

On the other hand, deploying services in the Amigo home environment is straightforward, and
performed either graphically using the VantagePoint tool or programmatically using the
standard mechanisms from the OSGi Programming and Deployment Framework. Using
VantagePoint affords a visual representation of the semantic services, making registration of
services with the semantic service repository simple for users by offering an intuitive drag-and-
drop interface. Using the OSGi Programming and Deployment Framework affords the
developer programmatic control over the semantic service repository, allowing precise control
over the registration and further manipulation of services.

Furthermore, the discovery, composition and adaptation facilities of the semantic service
repository are easily accessed through a single, common interface. The user simply has to
supply the description of the abstract task he/she requires to be realized from the services in
the environment in a single method call on the repository, and all matching, composed, and/or
adapted services will be returned.

By describing a task in an abstract way, we are not bound to any particular remote service in
terms of the capabilities provided or the specific orchestration of these capabilities, thus
increasing the availability and promoting interoperability of the potentially matching services.
Creating a semantic service description for a basic service allows the service to be discovered
via semantic matching at both the service and capability levels, thus increasing the service’s
availability and promoting its interoperability. Furthermore, describing a semantic service’s
provided capabilities as conversation-based workflows allows the expression of data and
control dependencies between the service’s capabilities. Complex conversations can be
automatically and reliably composed, while offering fine-grained control over the placement of
capabilities in the task, and guaranteeing that the data and control dependencies of each of
the provided capabilities are preserved.

Once the abstract task has been realised, an Amigo application developer simply calls the
public methods, that is, the required capabilities of the task as he/she would call a normal web
service from application code, and the SD-SDCAE ensures that the execution of the workflow
of capabilities it contains is performed automatically and transparently by the ActiveBPEL
execution engine.

6.1.2 Runtime aspects
In this section, we present an evaluation of the runtime performance of the SD-SDCAE
middleware. Specifically, we focus on semantic service discovery and composition response
times over a variety of repository and service configurations.

December 2007 Public

Amigo IST-2004-004182 23/48

6.1.2.1 Experimental set-up
Figure 6-2 shows the topology and Table 6-1 the specification of the machines that were used
to perform the measurements given below. The names of the machines are “Sas” and
“Chico1”.

Figure 6-2: The network set up.

Sas Chico1

Dell Precision 380

Intel Pentium 4 – 3.4 GHz

2 GB RAM

Dell Precision M60

Intel Pentium M – 1.7 GHz

1 GB RAM

Run under eclipse 3.2.2 with memory
parameters: -Xms768M -Xmx1024M

JDK1.5.0_06, Tomcat 5.5, Axis 1.4,
ActiveBPEL 4.1

Table 6-1: The machine specifications.

6.1.2.2 Discovery time measurements
This presents the results of measuring the average response time for discovering a semantic
service as the number of services registered with the semantic service repository increases.

For these measurements, the repository was filled with synthetic semantic services generated
using the JavaServiceGenerator tool available in the SD-SDCAE source bundle. This tool
provides a useful aid for measuring the performance of a service repository set-up. All of the
services were deployed on the Chico1 machine.

Each generated service had 5 atomic, provided capabilities, with each capability having 3
inputs and 1 output. For each service that matched the task, the semantics used for each
capability, input, and output for both the service and the task were the same. For every other
service that did not match the task, the semantics used for each capability, input, and output
were distinct.

The WSDL description of a service was retrieved from Axis by issuing the HTTP request
http://urlOfTheService?wsdl. Using this WSDL description, a semantic description template
was created for each service using the amigosgen tool. The declarations of each of the

December 2007 Public

Amigo IST-2004-004182 24/48

capability, input, and output semantics for a non-matching service were then completed using
the following substitutions:

• Capability Semantic Type "http://www.inria.fr/myGeneratedOntology.owl” +
"#GeneratedCapabilitySem_"+ serviceID + "_" + methodID

• Input Semantic Type "http://www.inria.fr/myGeneratedOntology.owl” +
“#GeneratedInputSem_" + serviceID + "_" + methodID + "_" + inputID

• Output semantic type "http://www.inria.fr/myGeneratedOntology.owl” +
#GeneratedOutputSem_" + serviceID + "_" + methodID;

The declarations were generated in similar fashion for the matching services, though here, the
ID parameters were fixed to have suitably matching values.

The task used for these measurements was created manually, and contained 5 required
capabilities. Testing for a match is performed on a per-capability basis. First, the semantic of a
required capability of the task is compared with the semantic of a provided capability of a
service. If a match occurs, the semantics of each of the inputs of the required capability is
compared with those of the provided capability. If the inputs also match, then the required and
provided capabilities’ outputs are also compared. If these 3 comparisons are successful, then
the task’s required capability is said to be matched by the service’s provided capability. For
these measurements, the services were constructed such that a single service would provide
each of the 5 capabilities required by the task.

Services Task Parsing SD Single SD Single FR SD All SD All FR
1 2000 35 578 41 680
10 2000 35 592 46 774
20 2000 36 601 49 818
30 2000 38 639 49 820
40 2000 41 683 51 843

Table 6-2 presents the results. The standard error of each of the timings shown here, as in the
following tables, was less than 1%. The first column shows the number of services registered
with the repository. The second column shows the time taken to parse the task description.
The following columns show two different extremes of the service discovery performance. The
thirds and fourth columns shows the time taken by service discovery when the task matches a
single service out of all of the services registered with the repository. The fifth and sixth
columns show the time taken by service discovery when the task matches all of the services
registered with the repository. The first service discovery request received by the semantic
repository will take longer than subsequent requests, as it incurs the additional cost of parsing
and inferring relationships from all of the necessary ontologies. The fourth and sixth columns
show the longer first request times, while the third and fifth columns show the shorter
subsequent request times, for matching a single and all services, respectively.

From

Services Task Parsing SD Single SD Single FR SD All SD All FR
1 2000 35 578 41 680
10 2000 35 592 46 774
20 2000 36 601 49 818
30 2000 38 639 49 820
40 2000 41 683 51 843

Table 6-2 we can see that the discovery time increases gradually and linearly as the number
of services increases. Furthermore, based on the subsequent request times, matching all
services takes on average only 10 milliseconds (27%) longer than matching a single service.
In both cases, the cost of semantic discovery is significantly shorter than the time required to
parse the task’s Amigo-S XML description.

December 2007 Public

Amigo IST-2004-004182 25/48

Services Task Parsing SD Single SD Single FR SD All SD All FR
1 2000 35 578 41 680
10 2000 35 592 46 774
20 2000 36 601 49 818
30 2000 38 639 49 820
40 2000 41 683 51 843

Table 6-2: Service discovery times. All times are shown in milliseconds.

Services Task Parsing SD Single SD Single FR SD All SD All FR
1 2000 35 578 41 680
10 2000 35 592 46 774
20 2000 36 601 49 818
30 2000 38 639 49 820
40 2000 41 683 51 843

Table 6-2 showed results for service discovery where full semantic reasoning was employed.
That is, all inferred relationships, in addition to those explicitly stated, are included when
considering concept equality. However, not all Amigo applications will require this level of
power. The semantic service repository also supports simple semantic reasoning, where only
explicit relationships are considered when comparing semantic concepts for equality.

Services SD Simple SD Full
1 4 35
10 5 35
20 6 36
30 8 38
40 9 41

Table 6-3: A comparison of service discovery times using simple semantic matching and full
semantic matching.

Services SD Simple SD Full
1 4 35
10 5 35
20 6 36
30 8 38
40 9 41

Table 6-3 shows the results of repeating the single match measurements, though this time
using simple, rather than full, semantic reasoning. We can see that this provides a dramatic
increase in service discovery performance, with response times typically taking only 17% of
the times of previous measurements.

6.1.2.3 Composition Time Measurements
Figure 6-3 shows the results of measuring the average response times of requesting a task
that requires a number of services to be composed. Results of using both simple and full
semantic reasoning are presented.

December 2007 Public

Amigo IST-2004-004182 26/48

Service composition response times

0

5000

10000

15000

20000

25000

30000

35000

40000

1 10 20 30 40

Number of services involved in the composition

R
ep

so
ne

 ti
m

e
(m

ill
is

ec
on

ds
)

Full
Simple

Figure 6-3: A comparison of service composition response times using full and simple
semantic reasoning.

For these measurements, 40 distinct semantic services were registered with the repository.
Each service had 5 atomic, provided capabilities each with 1 output and no inputs. The
semantics used for each capability and output were distinct. The number of services involved
in a composition reflects the number of capabilities that featured in the task’s sequential
conversation. Each capability required by the task would be matched by a single provided
capability from a distinct service. So when a task contained a conversation featuring 40
capabilities, 40 distinct services would be involved in the composition.

From Figure 6-3 we see that cost of composition increases approximately linearly with the
number of services involved in the composition. On average, an additional 133% increase in
response time is incurred for each doubling of the number of services involved in a
composition. Furthermore, we can see that the response times are faster using simple
reasoning over full, approximately 30% faster on average.

A breakdown of the relative consumption of the different stages of the composition process for
each of the different composition sizes is shown in

Services Parsing % Disc. % Comp. % BPEL % Total
1 744 31.7% 77 3.3% 1301 55.4% 227 9.7% 2349

10 2645 34.7% 165 2.2% 2874 37.7% 1929 25.3% 7612
20 5686 39.5% 233 1.6% 4612 32.0% 3867 26.9% 14397
30 9788 41.6% 309 1.3% 7543 32.0% 5906 25.1% 23546
40 15294 41.8% 377 1.0% 12641 34.6% 8267 22.6% 36579

Table 6-4 and

Services Parsing % Disc. % Comp. % BPEL % Total
1 802 72.7% 16 1.4% 18 1.6% 269 24.3% 1104

10 2732 53.2% 22 0.4% 178 3.5% 2201 42.9% 5132
20 5779 54.0% 35 0.3% 720 6.7% 4159 38.9% 10691

December 2007 Public

Amigo IST-2004-004182 27/48

30 9857 54.7% 43 0.2% 2329 12.9% 5791 32.1% 18020
40 15672 51.9% 51 0.2% 6514 21.6% 7938 26.3% 30174

Table 6-5. The columns show the number of services involved in the composition, the time and
percent of the total response time spent parsing the task, the time and percent of the total
response time spent in service discovery (excluding first request times), the time and percent
of the total response time spent in service composition, the time and percent of the total
response time spent generating the BPEL file that represents the resulting composed service,
as well as the total response time.

Services Parsing % Disc. % Comp. % BPEL % Total
1 744 31.7% 77 3.3% 1301 55.4% 227 9.7% 2349

10 2645 34.7% 165 2.2% 2874 37.7% 1929 25.3% 7612
20 5686 39.5% 233 1.6% 4612 32.0% 3867 26.9% 14397
30 9788 41.6% 309 1.3% 7543 32.0% 5906 25.1% 23546
40 15294 41.8% 377 1.0% 12641 34.6% 8267 22.6% 36579

Table 6-4 provides an analysis of the measurements using full semantic reasoning, and

Services Parsing % Disc. % Comp. % BPEL % Total
1 802 72.7% 16 1.4% 18 1.6% 269 24.3% 1104

10 2732 53.2% 22 0.4% 178 3.5% 2201 42.9% 5132
20 5779 54.0% 35 0.3% 720 6.7% 4159 38.9% 10691
30 9857 54.7% 43 0.2% 2329 12.9% 5791 32.1% 18020
40 15672 51.9% 51 0.2% 6514 21.6% 7938 26.3% 30174

Table 6-5 provides an analysis of the measurements using simple semantic reasoning. Note
that in both cases, the total response time is dominated by XML processing, which involves
parsing Amigo-S abstract task descriptions and generating BPEL concrete task descriptions.
BPEL generation involves combining the internal automata-based model of a service
composition with the in-memory representations of the services it composes, to produce the
resulting XML-based BPEL representation. Using full semantic reasoning, abstract task
parsing consumes on average 38% of the total processing time, while BPEL generation of the
composed concrete task consumes 22%, giving a total of 60% for XML processing. This
dominance is even greater when using simple semantic reasoning, where abstract task
parsing consumes on average 57% of the total processing time, while BPEL generation of the
composed concrete task consumes 33%, giving a total of 90% for XML processing.

Services Parsing % Disc. % Comp. % BPEL % Total
1 744 31.7% 77 3.3% 1301 55.4% 227 9.7% 2349

10 2645 34.7% 165 2.2% 2874 37.7% 1929 25.3% 7612
20 5686 39.5% 233 1.6% 4612 32.0% 3867 26.9% 14397
30 9788 41.6% 309 1.3% 7543 32.0% 5906 25.1% 23546
40 15294 41.8% 377 1.0% 12641 34.6% 8267 22.6% 36579

Table 6-4: Semantic composition response times using full semantic reasoning. All times are
shown in milliseconds.

Services Parsing % Disc. % Comp. % BPEL % Total
1 802 72.7% 16 1.4% 18 1.6% 269 24.3% 1104

10 2732 53.2% 22 0.4% 178 3.5% 2201 42.9% 5132
20 5779 54.0% 35 0.3% 720 6.7% 4159 38.9% 10691
30 9857 54.7% 43 0.2% 2329 12.9% 5791 32.1% 18020
40 15672 51.9% 51 0.2% 6514 21.6% 7938 26.3% 30174

December 2007 Public

Amigo IST-2004-004182 28/48

Table 6-5: Semantic composition response times using simple semantic reasoning. All times
are shown in milliseconds.

6.2 Context Aware Services
This section provides an assessment of Context Aware Service Discovery (CASD), developed
as part of the Amigo Semantic Services Framework. The assessment will cover several
aspects of CASD, such as a comparison between the Basic Service Discovery (BSD) (as
supported by the Amigo Programming and Deployment Frameworks) and CASD, development
effort needed for using CASD, performance, and estimated memory footprint, covering both
development and runtime aspects. All assessments will be done relative to Basic Service
Discovery (BSD), since that is the service discovery mechanism normally used for Amigo
services and because it is used as the basis for Context Aware Service Discovery (CASD) as
well.

6.2.1 Development, configuration, deployment, management aspects
Next to the performance aspects of using CASD there are also development aspects; which
relate to the effort of implementing additional functionalities to clients or services in order to be
able to use CASD. In other words: what extra time and effort is needed for using CASD
instead of basic service discovery?

6.2.1.1 Ease of learning
For determining how easy it is to learn to use CASD relative to basic service discovery, we
assume developing for BSD to be the baseline; that is: developers are assumed to be skilled
already in developing Amigo services using Amigo BSD. The difference is then in the
additional effort to learn to use CASD.

The biggest difference between regular service discovery and context aware service discovery
is in the use of context sources for both services and clients. If the developer is unfamiliar with
context management, context source development, and/or the use of ontologies in general,
then there is a steep learning curve, since he or she first has to become familiar with (the use
of) context and ontologies. If the developer has already some familiarity with the subject then
the learning curve will be gentler, since one of the tutorials provided by Amigo is the CMS
tutorial for developing and using context and context sources. The CMS tutorial does assume
some basic understanding of ontologies.

6.2.1.2 Additional development effort
Discovery Client

For the client side, the additional effort is in creating a Context Source (CS) that provides (at
least) the context needed for the specific type of context aware discovery (such as location, if
the client wants to find the ‘CLOSEST’ service of a certain type).

For creating a CS, helper libraries and bundles as well as tutorials are available for both OSGi
and .NET deployment environments6.

For using CASD itself, a helper bundle is available as well. The helper bundle will take care of
administrative tasks such as discovering the CASD service in the network, so that the client
can work with CASD in a similar fashion as with the basic service discovery.

6 Available at https://gforge.inria.fr/frs/?group_id=160.

December 2007 Public

Amigo IST-2004-004182 29/48

If we take a look at the example CASD Helper client, the following code does the actual call to
CASD, which is very similar to a regular service discovery call.

 String[] services = new String[0];
 try {
 services = casdHelper.lookup(
 "AmbulanceService",
 new String[] { clientcs.getAmigoReference().toString() },
 "CLOSEST");
 } catch (CASDException e1) {
 e1.printStackTrace();
 }

The same holds for persistent CASD, comparable to ‘passive discovery’ of regular service
discovery. Instead of implementing the ServiceListener interface of regular service discovery
to receive information about (dis)appearing services, the client has to implement the
ICASDServiceChanged interface. The CASD helper will call this interface with the initial results
of the context aware service discovery and call it again whenever the results of the discovery
change. This is again comparable with the regular (passive) service discovery approach (and
needed effort).

Discoverable Service

Every service potentially discoverable by CASD also has to implement a Context Source
providing relevant context for CASD to use in refining the results of BSD. The additional effort
for services is bigger than for clients, since the CS of a service has to be able to provide every
type of context for which it wants to be considered by CASD. So, if a service wants to be part
of the matching process done by CASD for finding the ‘CLOSEST’ service, then it should
provide location context information. If it wants to be part of matching for the cheapest service,
it should also provide pricing information, etc.

Apart from that, creating and exporting a service for discovery is very similar to regular
services.

AmigoExportedService myService;
AmbulanceServiceImpl service;

service = new AmbulanceServiceImpl("Amigo Ambulance Service ");
try {
 logger.debug("Trying to export the Ambulance service");
 myService=serviceExporter.createService(server[i]);
 myService.addProperty("oid","AmbulanceService"+i);
 myService.addProperty("ServiceType","AmbulanceService");
 myService.addProperty("Scope","urn:amigo");
 myService.addProperty("ContextSourceURL", acs[i].getReference().getUrl());
 myService.exportInterface(AmigoReference.DEFAULT, IAmbulance.class);
} catch (AmigoException e) {
 logger.info("Exception when exporting object",e);
 e.printStackTrace();
}

December 2007 Public

Amigo IST-2004-004182 30/48

6.2.1.3 Tooling
As stated before the main difference between regular service discovery and context aware
service discovery is the use of context sources. For the Context Management Service (CMS)
of Amigo, support is available in the form of helper libraries and/or bundles as well as a set of
test tools such as the Context Source Tester for dynamically trying out context sources. Since
the context sources used by CASD are regular CMS context sources, the libraries and tooling
support for CMS can also be used for testing context sources created for CASD.

6.2.2 Runtime aspects

6.2.2.1 Performance
The most important run time aspect of CASD is the performance with respect to BSD. In order
to estimate the relative performance, a test setup was created. This test setup consisted of a
CASD client, the CASD service itself, and a number of services, all with associated context
sources (See Section 6.3 in [D3.5]). The number of services to be discovered and processed
by CASD was variable, for the test 1, 15, and 45 services were used.

The type of selector (i.e. what context and rating algorithm) is flexible with CASD, but for this
test the typically most used ‘CLOSEST’ was chosen. Note that the selector used does
influence the performance, but, since CLOSEST is the most used and also not optimised for
performance, it is a good indicator nonetheless.

To avoid network performance to skew the results, all the tests were run on one computer,
although no optimisation was done to take advantage of the fact that all services and
endpoints were running on the same machine. In other words: the ordinary web service calls
and mechanisms were used, just as if the services would have been running on different
machines.

All tests were run on the same machine, a laptop with an Intel Core 2 Duo T5600 processor at
1.83 GHz, with 1.5 GB of RAM, running Windows XP Professional SP2. The JVM used was
1.6.0_03-b05 from Sun.

At a number of places in the CASD code, the time was taken and logged to the screen; other
than that no changes were made to the standard CASD implementation.

The following times were measured using this technique; these correspond to the columns in
Table 6-6:

• The time it takes the basic service discovery to discover the X services (BSD)

• The time it takes to get all needed context from the services (Ctxt get)

• The average time per service (calculated), by dividing the previous number by the
number of services X (Ctxt/svc)

• The time it takes to retrieve the client context (Client Ctxt)

• The time it takes to run the matching algorithm; ‘CLOSEST’ in this case (Matching)

• The total time from the start of the call to CASD to the point where the services are
returned (Total)

The tests were done with a varying number of services to be discovered and matched in 3
batches of 1, 15, and 45 services. Every batch was run 5 times to even out the measurements
and influence of the first run (although the first run was taken into account for determining the
average/min/max times).

The Oscar setup used for the tests is shown in Figure 6-4 below. Note that bundle#25
provides X number of Ambulance services, each with a different location, for the CASD Helper
Client (performing the actual test) to discover.

December 2007 Public

Amigo IST-2004-004182 31/48

Figure 6-4: Oscar setup used for the tests.

An example output from a test run is shown below:
2008-01-30 20:06:22,625 DEBUG - *** Finding services took: 3266ms
2008-01-30 20:06:22,843 DEBUG - *** Getting context took:203ms
2008-01-30 20:06:22,843 DEBUG - *** 4 ms/service
2008-01-30 20:06:22,843 DEBUG - *** Finding services+context took: 3484ms
2008-01-30 20:06:22,875 DEBUG - *** Getting client context took: 32ms
2008-01-30 20:06:22,937 DEBUG - *** Matching services+context took: 62ms

The results from the measurement are shown in Table 6-6 below. For every batch, the
minimal, average and maximum time is mentioned per sub-item of the test individually. Please
note that this means that e.g. the max total time does not necessarily coincide with the max
Ctxt Get time for example.

The Basic Service Discovery time is the time it would take a client anyway when discovering
multiple services with basic service discovery. As can be seen in the results, this time is mostly
determined by the time spent waiting for answers, specified by the client, to the Web Service
discovery request. In this case the waiting time was set to 3 seconds, which was enough in all
cases to discover every service active during the test. From the table, one can clearly see that
processing the answers to discovery requests takes more time as more services are available,
ranging from practically nothing (not significant) to about 0.5 seconds in the case of 45
services.

The total additional time added by CASD to the BSD time can be determined by subtracting
the first column from the last column, since the total time includes the time spent using BSD.
The additional overhead induced by CASD varies from 0.2 s in the case of 1 service, to 0.7
seconds (on average) in case of 45 services.

December 2007 Public

Amigo IST-2004-004182 32/48

services Min/Average/Max BSD Ctxt get Ctxt/Svc Client Ctxt Matching Total

Min 3 s 0 ms 0 ms 47 ms 0 ms 3.1 s

Average 3 s 78 ms 78 ms 98 ms 12 ms 3.2 s

1

Max 3 s 297 ms 297 ms 203 ms 31 ms 3.4 s

Min 3.2 s 78 ms 5 ms 31 ms 31 ms 3.3 s

Average 3.2 s 290 ms 19 ms 66 ms 39 ms 3.6 s

15

Max 3.2 s 890 ms 59 ms 172 ms 62 ms 4.2 s

Min 3.4 s 0.2 s 4 ms 16 ms 47 ms 3.8 s

Average 3.5 s 0.6 s 14 ms 20 ms 63 ms 4.2 s

45

Max 3.5 s 1.94 s 43 ms 31 ms 93 ms 5.6 s

Table 6-6: Performance measurement results for CASD.

Most time of this additional time is taken by retrieving the context from every context source
associated with the services, ranging from approximately 0.08 seconds for one service to 0.6
seconds for 45 services. The average time it takes per service to get the context decreases
slightly with an increasing number of services.

The least amount of overhead is, perhaps surprisingly, caused by the matching algorithm;
increasing only slightly from 12 ms in the case of 1 service to approximately 60 ms in the case
of 45 services. Note that the matching algorithm, at least in this case of ‘CLOSEST’, retrieves
the needed information (per service) from a semantic description of the context of that service,
which shows that semantic processing, using Jena, is not as big an overhead as is sometimes
assumed.

6.2.2.2 Resource consumption
No exact measurements were done to determine the memory footprint of CASD, but to get a
feeling for the memory footprint, the test setup was slightly changed so that the services to be
discovered and the client of CASD ran on a different computer. The original laptop ran only the
CASD service. The same test batches were run again, but this time only once for every batch,
doing a clean Oscar start before every batch. After every batch was run, the total amount of
memory taken by Oscar was estimated by reading it from the process list of the Task
Manager. Just before every test run, the memory taken was 41 MB; after running it for 15
services, the memory occupied was 48 MB, increasing to 49 MB for 45 services, which
suggests that the additional increase in memory consumption is not likely to cause problems
for an even larger number of services.

6.2.2.3 Scalability
When looking at the result for performance and resource consumption, for the normal number
of services to be expected in the home, using CASD should not pose problems; neither with
respect to performance nor with respect to memory usage. If the number of services increases
substantially, say to hundreds of (similar!) services, the performance may no longer be
sufficient. However, in those circumstances it is questionable whether ordinary service

December 2007 Public

Amigo IST-2004-004182 33/48

discovery would still suffice, and indeed whether the whole architecture and distribution of
functionalities over the different services is well thought out for that particular situation.

6.2.2.4 Persistent lookup
CASD also offers functionality to do a persistent lookup. With a persistent lookup the discovery
request is stored by CASD. CASD keeps track of changes in the availability of the potential
candidate services and changes in the context of those services. Whenever one of these
changes would lead to a different answer to the original discovery request, the client will be
informed of these changed results. The performance aspects of a persistent lookup are the
same as for the ‘standard’ context aware service discovery, since CASD will perform the same
operations whenever the availability of services or their context changes. Therefore no
separate measurements of this type of lookup are necessary.

6.2.3 Conclusions
The difference in run-time performance between regular service discovery and CASD is
relatively minor, especially when compared with the waiting time, for which 3 seconds is a
realistic minimum to be able to discover all services.

Creating context sources for both the client and the services is fairly easy to do, if the
developer is familiar with Amigo CMS. If not, then tutorials are available to get acquainted with
CMS. The extra amount of code needed is only the additional Context Sources created; which
can be limited by using the provided CMS helper bundles and libraries; the actual calls
themselves have a similar amount of required lines of code.

All this does not mean that CASD should be used regardless. There is a performance impact
and additional required coding effort, however small or easy they may be. If the situation does
not ask for taking context into account when trying to discover services, then there is no need
to use CASD in the first place. Also if the regular service discovery can be used to achieve the
same goals without jumping through hoops, then that should be used. For example: for
discovering all services in one room, CASD could be used. However, the same could be
achieved by using different scoping properties (set to room names for example) with regular
service discovery. The basic rule should be: choose the (technically) most straightforward
solution for any given problem. So, if the information influencing the clients’ service discovery
decisions is static, then consider regular service discovery; whenever the information (about
services or clients) becomes dynamic (in other words: context) then CASD should be
considered.

6.3 Quality of Service Aware Services

6.3.1 Development, configuration, deployment, management aspects
This section aims to thoroughly assess the QoS-aware Service Selection Tool (QASST).
QASST provides a mechanism for filtering a list of services and selecting the most appropriate
one that addresses specific QoS requirements set by an Amigo User. Several parameters will
be examined to assess the QASST. These parameters are: correctness, robustness, required
resources, scalability, usability, portability, debugging, extensibility and complexity
(performance) of the selection algorithm.

Concerning the correctness of the tool, it has been examined whether QASST addresses in
full the requirements that have been set. In the course of the project, these requirements have
been modified to make the QASST compliant with the Amigo platform. More specifically,
QASST was supposed to filter services that were available either inside or outside the Amigo
home. However, the services available outside the Amigo Home were eventually not
discoverable by the discovery mechanisms provided by the Amigo system. Thus, as QASST is

December 2007 Public

Amigo IST-2004-004182 34/48

based on these discovery mechanisms, the requirements had to be changed and the filtering
of services is restricted to services that are offered only inside the home from other Amigo
components. All the other requirements have been addressed in full.

Concerning the robustness of the QASST, several tests have been conducted in order to
ensure that the code does not fail on run-time in any case. Thus, it is ensured that the QASST
is completely reliable, as no QASST crashing has been observed after the final code updates.

With regards to the required resources, it can be stated that the QASST is a very lightweight
component. Taking into account programmatic techniques for creating extensible and efficient
code, the QASST has been designed and implemented by 6 classes of approximately 600
lines of code. Thus, the compilation time of the QASST code is extremely fast. Nevertheless,
the libraries that are mandatory for the QASST to run properly require a considerable amount
of space (approximately 10MB). Also, the frameworks (.NET v2.0, Java v1.5, Oscar) that have
to be installed in order for QASST to run successfully are also very demanding in resources
(approximately 210MB). However, once the Amigo platform is up and running, starting-up the
QASST requires minimal time.

The scalability of the QASST is not of critical importance for the Amigo platform. This is due to
the fact that it is not expected that a large number of users will be concurrently using the
QASST in the Amigo home. The QASST is designed so that one instance is required per
Amigo user, if QoS-aware service selection is requested. Therefore, the maximum number of
QASST instances running in parallel in the Amigo home is equal to the maximum number of
persons located in the Amigo home. The QASST has been tested for 10 users in parallel
(admittedly not a demanding scalability requirement) and no problems have occurred.

In order to test the usability of the QASST, its source code accompanied with all the required
software components and libraries, as well as the relevant documentation (User’s and
Developer’s Guides) were given to 3 students of the Electrical and Computers Engineering
School of the National Technical University of Athens (NTUA). The students were assigned
with two tasks. First, they were asked to configure and install the QASST on the Oscar
platform. All students succeeded in this task, the completion of which required from them
maximum 1 working day. After installing and running the QASST tool, their second task was to
understand and experiment with the code, as well as to use the functionality of the QASST.
The students’ general opinion was that it was easy to alter certain parts of the code, as it’s
described in detail in the developer’s guide. Furthermore, two of the students found quite easy
and straightforward the process of adding services with QoS parameters to the repository,
adding users with QoS preferences for these services, changing these values and observing
the discovery and selection of different services when these values are updated. The only
drawback reported by the students concerns the fact that, each time a new service was added
to the repository, the QASST had to be restarted. In total, it took the students 3 working days
in average to interpret the code, configure it, install it, start the QASST and use it successfully.

As already mentioned, the .NET framework is required for the QASST to run. Thus, portability
of QASST is restricted to Windows-based platforms.

With regards to debugging, the implementation of the QASST tool aimed to facilitate the
discovery of potential bugs. This is achieved via the provision of detailed logging information in
core parts of the source code. Thus, the developer was able to quickly identify the location of
the bugs and easily correct them. Furthermore, the QASST has been designed in order to
keep all the provided core functionalities distinct and separate, which also accelerates the
debugging process.

Concerning the extensibility of QASST, this tool can be extended in two possible ways. The
first one is to enhance it so that support for filtering and selection of services that are offered
outside the Amigo home is also provided. In order to achieve this, new discovery mechanisms
have to be implemented. Once these discovery mechanisms are in place, the QASST can be
easily extended to exploit these new discovery facilities. The second way to extend QASST

December 2007 Public

Amigo IST-2004-004182 35/48

would be to use an alternative service selection algorithm. This might be useful in cases where
specific priorities in selection of services have to be considered. This is easily achieved in
QASST due to the reason that the provided core functionalities are distinct and separate.
Thus, the developer has to modify only the method that implements the selection of services
(more details are available in the developer’s guide).

6.3.2 Runtime aspects
The assessment of QASST is completed with the study of the performance / complexity of the
selection algorithm. The algorithm is used in order to select a service from a provided list of
available services of a specific service type with criteria based on the QoS service properties
and the QoS preferences of the user that requested the service. This list of services includes
services that are offered only inside the Amigo home via other Amigo components. Thus, the
number of these services is expected to be quite low (i.e. not more than 20), which allows for
the application of the exhaustive solution algorithm for the service selection problem, even
though the problem is NP-complete. This did not cause any noticeable performance
deterioration for the algorithm, as the number of services and users is low. Several tests have
been conducted with 20 services (a relatively large number) for a specific service type in each
of them and 5 users. All the services had several QoS properties with different values and the
same held also for the users’ QoS preferences. The performance of the selection algorithm
was really fast: all tests conducted required far less than 1 sec to run and select the service
that addressed best all users’ requirements. Of course, in case the QASST is used outside the
Amigo home, in cases where thousands of users and services exist, then the exhaustive
selection algorithm will have to be replaced by an approximation algorithm of polynomial
complexity.

6.4 Event-based Services

6.4.1 Development, configuration, deployment, management aspects
By using the Amigo Event-based Semantic Services Framework, programmers can focus on
the service interface in terms of typed high-level operations, namely command and event. Our
system manages the event throughout its lifecycle and uses the command operation as is.
While commands are used for synchronous communication between services, events can be
used for asynchronous communication. It is important to provide both because, in a ubiquitous
environment, deployed services use heterogeneous communication modes (i.e., synchronous
and asynchronous). The event design pattern for asynchronous communication relies on
several low-level synchronous operations, i.e., subscription and notification. Providing a high-
level viewpoint prevents programmers from dealing with these low-level operations when it is
unnecessary. Semantic services and their instances can then be separately developed.
Indeed, developers only express the communication means, command or event, of semantic
services in a typed manner. Typed event enables a safer service composition. Valid
composition can then be ensured, i.e. event consumers handle properly received events from
event producers.

In our approach, each event is uniquely associated with a type (and vice versa). Consider the
following types: Luminosity, Temperature or Availability. One can define an event for each of
these types; the defined event then inherits from the semantics of the corresponding type.

From a more quantitative viewpoint, our approach frees developers from painful, error-prone
and repetitive development. Table 6-7 illustrates the benefits of the approach in terms of
conciseness for a small example that consists of 3 services. Further, the more services the
developer declares, the more bundles the compiler generates. In the example considered, a
manager subscribes to an event produced by a sensor service. The manager then controls an
actuator according to the event value received. Thanks to the framework, the application

December 2007 Public

Amigo IST-2004-004182 36/48

written by a developer only consists of three classes, one for each service instance. The total
number of lines, for these three classes, is 175.

Table 6-7: Expansion factor for the Light Manager example

The above Light Manager example is a very simple example. The domain compiler has also
been used with the Bluetooth Presence Manager example. This example involves four
services and four data types. Its goal is to coordinate Bluetooth readers with a database. The
Bluetooth Presence Manager follows Bluetooth tags throughout a building and publishes
Presence information about the tag owner. In this example, the expansion factor rises to at
least 23 (for the size of the files). The domain compiler generates over 26 more lines from the
verbose OWL domain description in XML. Note that the empty lines have been ignored, as
they are meaningless. Finally, the Bluetooth Presence Manager domain has been written in a
couple of hours by a developer who knows the Amigo-S syntax. The skeletons have been
filled and debugged in a few hours.

Table 6-8: Expansion factor for the Bluetooth Presence Manager example

To summarize, our approach enables high-level development, thanks to the event abstraction
and the code generation, and separation of concerns, thanks to the separation between
semantic service description and service instance. A semantic discovery process enables to
find event-based service instances by checking their event-based semantic descriptions.

Domain Description
in Amigo-S (XML)

Generated Amigo bundles

(Java)

3 Services 1 Data type 1 API bundle 3 bundle skeleton

Ratio

of bytes 3 567 335 28 536 27 229 14

of words 110 22 2 076 2 077 31

of lines 86 11 974 958 19

Domain Description
in Amigo-S (XML)

Generated Amigo bundles

(Java)

4 Services 4 Data types 1 API bundle 4 bundle skeleton

Ratio

of bytes 4 391 1 084 73 351 54 689 23

of words 142 61 5 726 3 336 44

of lines 102 35 2 126 1 479 26

December 2007 Public

Amigo IST-2004-004182 37/48

7 Multimedia Content Framework Assessment
The Amigo Multimedia Content Framework package is composed of three components:
Content Distribution Service or Interface, the Content Adaptation (Enabled) Digital Media
Server (DMS) and Content Discovery. Each of these components is assessed separately.

7.1 Development, configuration, deployment, management aspects

7.1.1 Content Adaptation DMS
The Content Adaptation DMS is thoroughly and successfully used in the Home Information
and Entertainment applications. The CADMS enables storage of content in a dynamic
interoperable environment by implementing UPnP Digital Media Server interfaces.
Furthermore, it provides enhanced adaptation functionalities via a configurable plugin-based
content adaptation framework. These functionalities are published via UPnP and are therefore
discoverable.

7.1.2 Content Discovery
The Content Discovery allows discovering content dynamically, independently of its physical
location. Similarly it can discover renderers. Besides, Content Discovery is in charge of
metadata aggregation and semantic functionalities. Content Discovery is configurable and is
developed as a bundle within the OSGi framework.

7.1.3 Content Distribution
The content distribution component is a middleware component that enables the discovery
and playback of multimedia on an Amigo infrastructure.

It is based on the UPnP standard and hence enables standard UPnP and DLNA equipment to
be seamlessly used by services and applications.

 The key features of this component are:

• It is the single point of contact for applications and services that want to do something with
multimedia content in an Amigo home

• Automatic discovery and embedding of multiple media sources (Digital Media Servers,
either embedded in Hardware or in Software)

• Automatic discovery of multiple media renderers (Digital Media Renderers, either
embedded in Hardware or in Software)

• Automatic adaptation of content streams for media renderers in order to save bandwidth
and guarantee optimal user perceived quality, even on resource constrained devices. New
and unknown Media Renderers can be integrated into the Amigo home by using
standardized profiles that describe device capabilities.

Like all Amigo middleware components, it provides a simple but powerful interface towards
applications and services while using standard Web Services, WS-Discovery and WS-
Eventing. Besides the basic functionality of starting, stopping and pausing multimedia
sessions, the interface allows advanced functionality like:

• Setting extended properties on multimedia content (e.g. setting metadata like actor name
on a movie or modifying the tags on an audio file)

• Supports advanced semantically controlled conversions by adding the appropriate codecs
and transcoders (e.g. Text->Speech or Video->Slideshow).

December 2007 Public

Amigo IST-2004-004182 38/48

• Allows multimedia files to be relocated within the home (move from a server to another
server)

The power of the content distribution middleware component is currently being demonstrated
by the MediaManager demo application.

7.2 Runtime aspects

7.2.1 Content Adaptation DMS

7.2.1.1 Performance
The CADMS presents the following average performance measures of 100 tests on a Pentium
D 3.40 Ghz/ 3.50 GB RAM.

Measure Value

Startup time (Tstartup) 4.234 seconds + TsynchronizeDB

Database synchronization (TsynchronizeDB) 0.25 sec/file *

Adaptation: Time to respond with a proposal
after invoking the NegotiateAdaptation method. 0.017 seconds

Time to perform adaptation Depends highly on plugin performance.

Search invocation response time
0.077 seconds for 3 items

0.189 seconds for 30 items

Browse invocation response time
0.109 seconds for 3 items

0.216 seconds for 20 items

UpdateObject invocation response time. 0.312 seconds

* New files not detected before by the component on previous runs. Average file size 6 MB

7.2.1.2 Resource Consumption
Requires at least hardware with the following characteristics:

RAM consumption by component 22 MB

Processor Pentium III

7.2.1.3 Scalability
UPnP/SOAP is not exactly a lightweight protocol. Thus, recursive invocations to Browse
actions may have scalability problems due mainly to network bandwith consumption and
associated delay.

7.2.1.4 Robustness
In its current version, the CADMS has been running for weeks in the integrated HIE
demonstrator without any crashes.

December 2007 Public

Amigo IST-2004-004182 39/48

7.2.2 Content Discovery

7.2.2.1 Performance
The Content Discovery presents the following average performance measures of 100 tests on
a Pentium D 3.40 Ghz/ 3.50 GB RAM.

*average file size 6 MB

Measure Value

Startup time (Tstartup) 3.823 seconds + TsynchronizeDB

Database synchronization (TsynchronizeDB) 0.25 sec/file *

Search invocation response time
0.171 seconds for 3 items

0.656 seconds for 30 items

Browse invocation response time
0.062 seconds for 3 items

0.102 seconds for 30 items

UpdateObject invocation response time. 0.765 seconds

7.2.2.2 Resource Consumption
Requires at least hardware with the following characteristics:

RAM consumption by component 30 MB

Processor Pentium III

7.2.2.3 Scalability
UPnP/SOAP is not precisely a lightweight protocol. Thus, recursive invocations to Browse
actions may have scalability problems due mainly to network bandwith consumption and
associated delay.

7.2.2.4 Robustness
In its current version, the Content Discovery has been running for weeks in the integrated HIE
demonstrator without any crashes.

December 2007 Public

Amigo IST-2004-004182 40/48

8 Datastore Framework Assessment

8.1 Development, configuration, deployment, management aspects
The Datastore is a .Net middleware component in the Amigo architecture available to any
other service or component that needs to store some form of data.

The Datastore abstracts a concrete database implementation and adds extra functionality to it
following the standard Amigo Service Oriented Architecture. This means that it can be
accessed using standard Web Services, can be located through WS-Discovery and that
notifications are send through WS-Eventing. This enables interoperable and cross platform
usage of this component.

 The abstracted interface is intentionally kept simple to enable a short learning curve for
Service or Application developers. Developers do not need to know low-level details or learn
specific languages like for example SQL in order to use the component, yet they still benefit
from the full performance and reliability of the backend. The volume of data that can be stored
is only dependent on the capabilities of the backend, which are usually only limited by
available hard disk capacity.

The Datastore was designed with a zero maintenance effort in mind. This means that the
Datastore itself will automatically backup its contents, and, on the other side, detect any
defects and automatically repair its contents.

The Datastore is currently being used by the content distribution middleware and indirectly by
the MediaManager demo application.

December 2007 Public

Amigo IST-2004-004182 41/48

9 Assessment of Home Configuration with
VantagePoint

9.1 Development, configuration, deployment, management aspects

9.1.1 Introduction
VantagePoint is a tool for the developer of Amigo applications and services. It offers views to
semantic context data and a graphical user interface to the Context Broker and Semantic
Service Repository, thus making the management of both components easier in the
application development phase. This chapter presents the assessment of VantagePoint.

The assessment of VantagePoint was carried out with a qualitative and empirical approach.
The evaluators had to work with VantagePoint and perform given tasks, and respond to a
questionnaire afterwards. From the results of both oral and written feedback, we gathered the
results compiled in Section 9.1.2.

VantagePoint was to be assessed more from the developer and usability viewpoints, since it is
not an actual middleware component nor does it affect the middleware efficiency at all. The
ease of use and added value in Amigo application and service development as well as
middleware component management are more interesting aspects to assess in the context of
VantagePoint. Hence the runtime and performance evaluation of VantagePoint is discarded in
this assessment.

Most of the time, developers using VantagePoint do not use it at the API level but through its
GUI. Indeed, developers deal with the Amigo middleware API when developing their
applications and use the VantagePoint user interface to observe context sources and service
registries. This suggests that API level assessment can also be considered not as interesting
as evaluating the actual tool.

While VantagePoint assessment falls into the category of evaluating a software tool like a
product, we stress that VantagePoint is software created entirely within a research project.
Creating professional user interfaces is another research topic in its own. Nevertheless, in our
questionnaire, we asked multiple questions about the usability of the GUI. Even if we had
predicted that most of the critique would deal with the shortcomings or complexity of the user
interface, regardless of how the user interface applies the guidelines of usability, we wanted to
see how useful the evaluators see the features of VantagePoint. Is the whole idea of having
such a tool worthwhile? Does it offer any help in stepping into the world of semantic context
data, context sources and service registries when developing applications on top of the Amigo
middleware?

The questionnaire used a 5 level grading system where 5 is the best and 1 the worst grade, 3
being the average. After each question, there was the possibility to add free comments, and
the evaluators did use this opportunity. The phase where each evaluator worked with
VantagePoint was monitored, but the questionnaires were returned anonymously.

The tasks that the evaluators had to do included: starting up VantagePoint, creating semantic
house models and registering them as context sources in the Amigo middleware, creating own
item libraries, registering services with the semantic service repository, and testing context
sources and service discovery. The evaluators were given written instructions of how to
perform the tasks, but these were not very detailed: this was to help in assessing the usability
and ease of learning of VantagePoint.

The evaluators were VTT staff of various backgrounds and Amigo developers. The number of
evaluators that performed tasks with VantagePoint was 9. Even though the amount of

December 2007 Public

Amigo IST-2004-004182 42/48

participants was not that high, they were rich in comments, and the results indicate clear high
and low points.

9.1.2 Assessment Results
In Figure 9-1, the average grades are given from all the questions. The questions with zero
grades did not have grading possibility and are handled together with the comments from all
questions.

Average Grades

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Question Number

G
ra

de

Average Grade

Figure 9-1: The average grades from all questions of the VantagePoint questionnaire.

Below is a list of all the questions and some of the most interesting comments that the
evaluators gave during the assessment. Notice that comments were given also to questions
with grading possibility.

1. How would you rate your overall experience with VantagePoint?
Comments:
“Overall experience was a bit confusing.”

“Some difficulties, but learning was fast.”

“Nice GUI, at first a bit confusing.”

2. How easy was the graphical user interface to follow?
Comments:
“Easy enough, at least with the instructions”

“Some difficulties to understand the meaning of some fields and finding the right buttons etc.”

“Too cryptic messages in the information area”

December 2007 Public

Amigo IST-2004-004182 43/48

3: How easy it was to install VantagePoint?
Comments:
“Pretty straightforward OSGi bundle installation”

4: Have you worked with OSGi bundles before?
Most respondents had at least some kind of experience in working with OSGi bundles

Comments:
“Yes, I have developed some and used many”

5: How easy it was to create a house model?
Comments:
“Logical operations”

“I wish I could drag ‘n drop items straight from the list”

“I’d like to have different kind of floors”

“Once I learned how to use the GUI, it was very easy.”

6: How easy it was to register context sources?
Comments:
“It was easy”

“Just press the button”

“Output could be clearer and delays shorter”

7: How easy it was to build items?
Comments:
“You need to know RDF/OWL”

“There is no GUI support for this task”

“Why not an integrated tool?”

“I did not find the MyItems.owl”

8: How easy it was to register services?
Comments:
“More difficult than context sources with those descriptions and groundings”

“Output was not clear to non-expert like me”

December 2007 Public

Amigo IST-2004-004182 44/48

9: How useful do you find the possibility to test context source and service discovery
with the graphical user interface?
Comments:
“GUI is always nice compared with command prompts”

“This is honey for the developer”

“Useful, but not intuitive for a layman”

“This is a very powerful idea”

10: How useful do you find the VantagePoint console logging all the method calls for
context sources and service registries?
Comments:
“Useful if you understand what you are doing…”

“Very useful but mystical”

“Could be useful for a Guru user”

“Good for debugging”

11: How good was the installation and quick start guide for VantagePoint?
Comments:
“Guide needs some editing”

“A little confusing in some parts”

12: Have you used VantagePoint to test your context-aware Amigo application? If yes,
how have you used it?
Most of the evaluators had not used VantagePoint to test Amigo applications.

Comments:
“To receive context events”

“I will use it as a location context source for the user”

13: How easy it was to learn how to use VantagePoint?
Comments:
“Pretty easy, some difficulties in understanding fields in the GUI.”

“GUI helps a lot but is not yet completely self-explanatory.”

“A how-to would be a great help”

December 2007 Public

Amigo IST-2004-004182 45/48

14: Estimate the overall added efficiency in the development process of Amigo context-
aware applications when using VantagePoint
Comments:
“It is very handy indeed but quite complex.”

“VantagePoint clarifies the process.”

15: If you were to develop a context-aware service or an application to Amigo
middleware, do you feel that you could save time by using VantagePoint? If so, how
much?
Comments:
“I feel that I wouldn’t save much time because I’d play around with it too much.”

“I guess a lot, because it helps the testing work so much.”

“The time of developing my own location (or other) context source.”

16: How useful do you consider VantagePoint in general when developing with the
Amigo Middleware?
Comments:
“Works great with the middleware and is a concrete example of an application that deploys the
services it provides.”

“It’s good for the CMS and semantic service repository parts only.”

17: Did you encounter any performance issues?
Most evaluators encountered some kind of problems

Comments:
“Yes, some delays were too long.”

“A couple of short waiting periods”

“A little delay with the semantic service repository when adding items with services”

18: Did you encounter any quality issues? (e.g. the number of bugs encountered,
responses to bugs found, etc.)
Few evaluators encountered problems

Some comments:
“One with Oscar”

“Some bundle crashed in the beginning.”

“The interface is not very intuitive”

December 2007 Public

Amigo IST-2004-004182 46/48

19: Did you encounter any interoperability issues? (e.g. between different operating
systems, types of host machine, etc.)
No one did.

Comments:
“Worked even with an abnormal resolution”

20: This is the last one. Here you can give free feedback, comments, suggestions or
whatever about VantagePoint.
Comments:
“More test work in order to find all the bugs.”

“Actions that cause delays should be put into their own threads so they won’t block the GUI”

“It would be nice to see easily to which item a service is attached to”

“Nice tool, it is a pity we didn't have it at the beginning of the project”

“I didn’t fully understand what I was doing but otherwise the application seemed cool. GUI was
easy to use”

“A nice piece of software that could be refined to commercial product class with a bit more
work and extra developers”

9.1.3 Discussion
In general the assessment was very useful and revealed some extremely interesting points
about the VantagePoint tool. With the help of this assessment, we discovered which features
of VantagePoint users find useful and easy to use and which parts of the application still need
to be improved. The assessment consisted of two parts: the user testing and the
questionnaire. The results produced by these two phases are further discussed in this section.

To start with, the overall experience of working with VantagePoint was considered as positive.
The graphical user interface was functional and easy to learn, at least with instructions. The
technologies and topics covered in Amigo were a bit unfamiliar for a big part of the
respondents, which caused confusion. For example, the messages produced by the
application were in many cases found to be too cryptic. Also the true meaning of some
functions and/or buttons was hard to understand for some respondents. But in general, the
graphical appearance and the user interface of the application received positive feedback.

The test situation included various tasks. Creating new models, adding areas and items, and
registering a model as a context source to the Amigo network were considered as easy tasks
in general. On the contrary, building one’s own items was judged complicated by many users,
because they had to edit RDF descriptions with a text editor. A number of respondents
commented that there should be a graphical editor within VantagePoint to support this task,
which is valuable feedback for the developer team. Finally, adding services was considered
more difficult than adding context sources.

Besides questions about the actual use of VantagePoint, the questionnaire included questions
about the experienced usefulness of the tool. In general, VantagePoint was considered to
support well the process of creating context aware services and applications on top of the
Amigo middleware. The time taken to create one’s own context sources is noticeably
decreased, and the monitoring of the context sources and service registries was found to ease
debugging. Nevertheless, many respondents still remarked upon the complexity of the tool. In
addition, one respondent thought that using VantagePoint would not save much time because
he/she would play around with it too much.

December 2007 Public

Amigo IST-2004-004182 47/48

VantagePoint itself did not cause any quality issues during the user tests. However, most
respondents reported some performance issues, especially when adding new services into the
model. This is a matter that most certainly needs attention in the future development work on
VantagePoint. In a nutshell, VantagePoint was considered as a useful and nice-looking but a
bit complex tool.

December 2007 Public

Amigo IST-2004-004182 48/48

10 Summary
This document presented the results of a number of assessment efforts mainly of the Amigo
Base Middleware, and to a small extent, of the Amigo Middleware (Base Middleware and
Intelligent User Services) as a whole.

Chapter 2 described the findings of the internal Amigo developer survey, which showed that
the majority of developers felt that the Amigo Middleware as a whole was easy to use, they did
not experience performance or quality problems, and that the Amigo Middleware enabled new
scenarios that would not have been possible, or would have been difficult to do, without it.

In Chapter 3, the assessment of the Amigo Programming and Deployment Frameworks
exhibited the high rate of interoperable platform interaction the frameworks afford, as well as
resolving performance issues on the Windows platform.

Chapter 4 presented the Amigo Interoperability Framework, demonstrating not only its utility,
but also that the performance overhead of using the framework is negligible.

The ease of use and inter-home capabilities of the Amigo Security Framework were discussed
in Chapter 5.

Chapter 6 presented assessment of both development aspects and runtime aspects of the
complex service workflows, context aware, quality of service aware, and event-based parts of
the Amigo Semantic Service Framework, while Chapter 7 provided similar assessment for the
Amigo Multimedia Content Framework.

The utility of the Amigo Datastore was examined in Chapter 8.

And finally, Chapter Error! Reference source not found. presented the results of the
VantagePoint-specific questionnaire, which showed that VantagePoint was considered useful
for visualising and configuring services in the Amigo home, and was also pleasant to use.

Overall, this assessment annex has demonstrated that the prototype implementations
developed for the Amigo Base Middleware provide a comprehensive, efficiently usable,
effective, and sufficiently performing platform for developing novel applications for the Amigo
networked home.

December 2007 Public

Amigo IST-2004-004182 49/48

11 Resources
[D3.5] Amigo D3.5 Amigo overall middleware: Final prototype implementation &

documentation - Final integrated methodology (‘how to’) for employing the
middleware. Available on-line at: http://www.hitech-
projects.com/euprojects/amigo/deliverables.htm.

[EG02] R. van Engelen, K. Gallivan. The gSOAP toolkit for web services and peer-to-
peer computing networks. In Proc. IEEE International Symposium on Cluster
Computing and the Grid, 2002.

[Eyeball] Eyeball: a tool for checking RDF/OWL for common problems. See:
http://jena.sourceforge.net/Eyeball/.

[OSGi/.NET] The OSGi and .Net Programming and Deployment Framework User’s Guides
are available at: https://gforge.inria.fr/frs/?group_id=160.

[SD-SDCAE] The SD-SDCAE User’s Guide is available at:
https://gforge.inria.fr/frs/?group_id=160.

