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ABSTRACT

In this report we describe the efforts made towards identification of congestion and its side effects
of Head-of-Line (HoL) blocking. Different congestion management strategies and HoL blocking
avoidance techniques are explored and evaluated. Congestion management is still not mature
enough in the Network-on-chip field and these efforts should be seen as preliminary and exploratory
research.

First congestion situation is identified in a CMP configuration where multiple applications are
run in a virtualized environment, where applications run in isolated regions but sharing common
resources like memory controllers. Then, we describe three approaches followed within the project
to address the congestion issue. First, we propose BAHIA and BAHIA-2 mechanisms to address
not the congestion situation but the side effects congestion causes, the HoL-blocking between
congested and non-congested packets. In BAHIA, end nodes detect bursty traffic and sources of
the bursty traffic are informed. Those nodes separate the traffic in two virtual networks, one
used exclusively for bursty flows. In BAHIA-2, congestion is detected within the network and
end-nodes are informed (similarly as done in OCRL). Source nodes separate traffic in two virtual
networks as done in BAHIA. Finally, the OCRL mechanism detects congestion within the network
and source end nodes contributing to the congestion situation are informed. These nodes limit
their injection towards the congestion spot, thus relieving the congestion situation With these
mechanisms, initial congestion identified can be eliminated (with OCRL) or its negative effects
eliminated (with BAHIA and BAHIA-2).

Both research partners (SIMULA and UPV) delved deeply into this issue (congestion), deliv-
ering different, but complementary, approaches. By looking at the buffer occupancy switches to
detect congestion, OCRL increased network throughput by as much as 45% compared to a state
without congestion control, which is 13% below the injected traffic. BAHIA achieves a 66% increase
in network throughput compared to not using the mechanism, which is close to the ideal perfor-
mance. Both mechanisms requires only a few control packets per congestion event, so the task goal
of 90% throughput with 2-3 control packets has been reached. This deliverable is associated with
task 2.3.
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GLOSSARY

• CMP: Chip MultiProcessor

• MPSoC: Multi Processor System-on-Chip

• NoC: Network on Chip

• SCC: Single-chip Cloud Computer

• DRAM: Dynamic Random-Access Memory

• DMA: Direct Memory Access

• BAHIA: Burst-Aware Head-of-line Injection Avoidance

• OCRL: On-chip Rate-Limiting

• MOESI: Cache coherency protocol based on states Modified, Owned, Exclusive, Shared and
Invalid

• LBDR: Logic-Based Distributed Routing

• QoS: Quality of Service

• HoL: Head of Line

• BNN: Burst notification network

• CNN: Congestion notification network

• DDR: Decreased Data Rate
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1 Introduction

The high-performance computing domain is taking advantage of the inclusion of multicore solu-
tions in the form of Chip Multiprocessor (CMP) and System-on-Chip (MPSoC) systems. As the
integration scale goes further, more cores, nodes, or processing units are expected to be included in
the same chip. Examples of the many-core integrated CMPs are the products developed by Intel
inside its Tera-scale Computing Research Program such as two prototype chips: The Teraflops
Research Chip [3] with 80 cores, and the single chip cloud computer (SCC) [2]. Tilera products,
like the Tile-GX [4] with up to 100 cores, represents a good example for a high-end MPSoC sys-
tem. These systems provide support for the specific needs of the different applications to be run
including multimedia, wireless networking, and cloud-computing applications.

Both design platforms, CMPs and MPSoCs, rely on an interconnection network infrastructure
that provides the communication between all the processing nodes. This must be a high-bandwidth,
low-latency network to avoid slowing down processors while waiting for remote data. Networks-
on-chip (NoCs) suit well when a large number of processing nodes are present [6], as is the case of
the Intel prototypes and Tilera products. NoC design is challenging due to the tight constraints
found in on-chip systems. Thus, a NoC must be simple in its mechanisms exhibiting low hardware
overhead, low power demanding, and at the same time performance efficient, not affecting the
performance of the applications running on the system. These are factors that are not present in
the off-chip domain.

One of the trends followed by current chip designers is the use of a tile-based design, as seen
in Figure 1. A typical tile structure consists of a processing core/unit with access to different
cache levels and a router to access the on-chip network. When one tile has been designed with
its local components, then, it is replicated throughout the chip. Tiles are usually homogeneous
in CMP systems. Although MPSoCs are usually built from heterogeneous tiles, they also tend to
conform to a regular design pattern. The tiled chip is completed with the addition of memory
controllers, usually placed at the chip boundaries, to access the off-chip memory (DRAM), with
multiple access points to the chip. This tile-based design method reduces the efforts spent when
designing, building and testing a product.

The two platforms, CMPs and MPSoCs, present totally different network traffic patterns.
Typical application traffic patterns observable in CMPs are described in [14]. CMP traffic is in
general classified into four levels. The first level is the traffic between the CPU and L1 cache, and
between the L1 and L2 caches in the same core. This traffic is generally not considered for NoCs
because it uses a dedicated bus. In typical designs, the L1 cache is private to the core, and the
L2 cache is shared between all cores. Thus, the first traffic level which is relevant to the NoC
is therefore traffic from the private L1 cache to the L2 cache in a different core, and the cache
coherency traffic between the L2 caches of different cores. Some newer designs include more cache
levels in order to improve performance, but the basic idea of traffic levels is still valid. The final
traffic level is that between the last level of cache and off-chip memory. This traffic is directed
through the memory controller ports connected to the chip.

In addition to this traffic breakdown in CMPs, these systems scale to large sizes and become
suitable for concurrently running multiple general-purpose computing applications. Virtualizing
the chip increases the utilization due to application-level parallelism. A single chip simultaneously
running multiple applications leads to highly unpredictable traffic patterns. To support such op-
erations, there are several key properties in the virtualization challenge that must be inherent in
the NoC [6]. Each application must run in isolation, ideally on its own contiguous part of the chip,
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Figure 1: Example of tiled CMP/MPSoC systems

in order to satisfy the requirements of security/privacy and predictability. Additionally, all appli-
cations need to access off-chip memory through memory controllers and/or perform maintenance
and keep coherency between the different cache levels. Hence, each application must be provided
with exclusive access to its private resources, and also with efficient access to shared resources. An
efficient chip virtualization strategy including the NoC is critical to achieve these properties.

A typical scenario in a virtualized CMP is depicted in Figure 1. There are three applications
sharing the chip, and the memory controllers are accessible through one edge of the chip. The
interconnection network at this edge not only has to support traffic from the private application
running on the surrounding cores in one virtual network, but also the shared memory controller
access from applications located at the other end of the chip. Although the different traffic levels
run on different virtual networks, they compete for the same physical channel, thus contributing
to create a congestion situation around the access to the memory controller. These congestion
situations can degrade the overall chip performance if not properly managed by means of suitable
mechanisms.

On the other hand, MPSoCs in general exhibit a different traffic behavior. MPSoC platforms,
especially those in the high-performance computing domain, are designed to run specific applica-
tions with more dedicated approaches. Accelerator devices, DMA devices, and non-coherent traffic
are typical in these systems. In low-end MPSoCs the applications to be run can be known in
advance, so that the system can be accordingly tailored to these applications, but this is not the
case for high-end MPSoCs where multiple applications (with similar characteristics but different at
the end) can be run. In particular, a type of traffic usually present in high-end MPSoCs are bursts
that happen when two end nodes intensely communicate during a small fraction of time. This
kind of traffic may create temporary hotspots where the traffic is concentrated, thereby leading to
the appearance of network congestion that is likely to have a negative impact on the rest of the
traffic. As we will see in this document, dealing with the problems derived from congestion can
significantly improve the overall chip performance.

Indeed, in this document we describe two complimentary solutions researched within the project
to alleviate the negative effects of congestion that may degrade the network performance in both
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virtualized CMPs and MPSoCs. BAHIA is a mechanism that dynamically detects bursty traffic
in the network, then isolating the burst and thus avoiding that non-bursty traffic is affected. The
second method, focused on CMPs, is known as OCRL, and deals with congestion by means of a
notification mechanism that warns of congestion the sources contributing to create it, in order to
throttle packet injection at these sources, thus removing the congestion. Although both methods
may work in isolation they can complement each other in order to achieve better performance.
Indeed, we extend the BAHIA mechanism to support detection of congestion situations (rather
than only bursty traffic). The mechanism is termed BAHIA-2. Preliminary to this, we also analyze
the effect of congestion in CMP systems where the number of memory controllers is limited.

To sum up, we have developed the following mechanisms:

• BAHIA (burst-aware Head-of-line Injection Avoidance) detects and removes the head-of-line
blocking effects of bursty traffic in NoCs. This is achieved at the boundaries of the network
thus not increasing NoC complexity.

• OCRL (On-chip rate-limiting) monitors buffer occupancy in all switch buffers in the network
to detect congestion. Congestion is alleviated through employing rate-limiting at the sources
after being notified of congestion by the switches.

• BAHIA-2. Previous BAHIA mechanism is improved to deal also with congestion and Head-
of-Line blocking effects within the network.

The rest of the document is organized as follows. First present a study of the impact of
congestion in a virtualized CMP scenario in Section 2. In Section 3 the BAHIA mechanism and
its extension (BAHIA-2) is described. OCRL is presented in Section 5. Next, performance results
are provided in Section 6 and some conclusions in Section 8.

2 CMP congestion study

In this section we present a study on how network congestion affects application performance
in a virtualized CMP. A virtualized CMP is a chip multi-processor where several applications
are running simultaneously on continuous and disjoint portions of the chip. Traffic local to each
application (cache coherency traffic) is isolated within the applications partition on the chip, while
access to shared resources such as memory controllers is provided through the global network
so that memory controller traffic from one application may pass through partitions belonging to
several other applications.

When using virtualization to support multiple concurrent applications on a CMP, the local
cache coherency traffic is separated from the memory controller traffic into two different virtual
networks by using virtual channels. This separation means that there is limited interaction between
the two traffic types. The congestion tree caused by the memory controller traffic cannot directly
transfer into the local traffic.

The exact division of link bandwidth between the two virtual channels that share it depends
on the virtual channel arbitration mechanism. In general, the arbitration mechanism must be fair,
allowing each virtual channel equal access to the link bandwidth [9]. The actual implementation
of virtual channels and the arbitration mechanism is subject to numerous variations [6].

A given virtual channel can use any amount of free capacity on the link, but it will always
be guaranteed its fair share, which in the case of two virtual channels is 50% of the available
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bandwidth. Consequently, if the ratio of local traffic to memory controller traffic is significantly
skewed in one direction or the other for a given network link, the presence of one type of traffic
(the one with the smallest ratio) will have an impact on the other traffic type. The absence of
the low ratio traffic will allow the high ratio traffic to consume more of the link bandwidth than
if the low ratio traffic is present. In other words, even though the two traffic types are much more
separated than would be the case if they shared the same buffers/virtual channels in the network,
there is still some degree of interaction between them.

For a CMP where the local traffic is contained within the application partition on the chip, it
is only the memory controller traffic that has the potential of affecting other applications. The
general understanding when mapping applications to CMPs is that increasing the distance to the
memory controller will reduce the performance of the application compared to an application that
is located close to the memory controller [5][1]. This seems reasonable because an application
located further away will have a longer path, and thus more chances of contention which results in
increased queueing time and end-to-end latency. On the other hand, an application located close
to a memory controller would only have a few hops and should therefore be guaranteed better
throughput and latency. After all, the applications located close to the memory controller have
the same probability of accessing each of the channels on the path as the packets coming from
applications located further away, giving it an overall higher probability of access.

The above arguments are valid if we consider only the memory controller traffic type. How-
ever, for many CMP applications the amount of local traffic will often be more than the memory
controller traffic. For the applications located far away from the memory controller this means
that the local traffic will get a larger portion of the link bandwidth than the memory controller
traffic. As we look at applications located closer and closer to the memory controller, the amount of
memory controller traffic will increase within the application partition. Each application partition
must support the memory controller traffic from the local application, as well as transit memory
controller traffic from the applications located further away. This will reduce the amount of local
traffic accepted on the links to a minimum of 50% of the link capacity. This impacts the ability
of the application to expediently carry out its assigned tasks. Following this line of arguments,
the transit memory controller traffic will have a detrimental effect on the execution of the local
application, even though the traffic is separated into different virtual channels. This effect will of
course be significantly worse if there is no traffic separation at all.

There is, of course, still merit to the understanding that memory intensive applications should
be located close to the memory controller, since the memory controller access also has a significant
impact on application performance. The problem we have highlighted in this section is the unfair
penalty given these applications by the transit memory controller traffic from other applications.
This cannot be solved simply by rearranging the applications on the chip, since moving the memory
intensive applications further away from the local memory controllers will reduce their performance.
Fair use of the on chip network resources therefore requires a resource management mechanism (like
congestion control or changing the traffic priorities) to even out the effect of the transit memory
controller traffic and provide predictable CMP performance.

In the next section we present a series of experiments with traffic from real applications to verify
our reasoning above and to quantify the effect this interference has on application performance. We
also explore changing the relative priorities of the two virtual channels carrying local and memory
controller traffic to determine if this simple mechanism can have a positive impact on the variation
in application performance.
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2.1 Simulation environment

Our simulation framework is a combination of tools chosen to simulate a CMP system as closely
as possible. In Figure 2, we present an overview of the simulation environment. Multi2sim [15]
is a simulation framework for heterogeneous computing, including models for superscalar, multi-
threaded, multicore, and graphics processors. It allows one or more applications to run on top of
it without booting a guest operating system, and implements emulation of system calls and x86
instructions. Multi2sim implements contexts which define how an application behaves. It is able
to model a complete memory hierarchy system integrated into the CMP and its connection to the
respective processor cores. Although Multi2sim allows for defining basic interconnection networks
(bus and basic point-to-point), we opted to combine Multi2sim with an in-house cycle-accurate
flit-level network-on-chip simulator called gNoCsim (developed by Universidad Politécnica de Va-
lencia, and being used in the NaNoC project [11] by different partners). gNoCsim is able to
simulate the communication and more complex topologies for all the resources in the chip; caches,
memory controllers, and processor cores. With this simulator, different configurations of routing
strategies, arbitration control, and packet switching policies can be defined, as well as other switch
properties like buffering strategies et cetera.

Figure 2: General overview of the simulation environment

The same simulation environment has been used for the remaining evaluations in this report,
with the exception that different traffic generators have been employed for some of the experiments.

2.2 System configuration

For the evaluation process, we modeled a CMP that resembles current chip configurations. This
configuration implements a tile-based system, and each tile is composed of a processor core, a
private L1 cache, a bank of a L2 shared cache, a memory directory bank to be used with the
directory-based MOESI cache coherency protocol, and different configurations of memory con-
trollers. Each memory controller is connected to the main memory with 2 channels (each memory
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Figure 3: General overview of the CMP model

controller has two access points). The modeled CMP is presented in Figure 3 and a detailed
overview of the chip configuration is shown in Table 1.

The parameters for the on-chip interconnection network are shown in Table 2. A 10 × 10 2-
dimensional regular mesh topology was used for the CMP system. The LBDR [13] mechanism was
used for the routing purposes as it allows the user to define application domains in an easy way in
the mesh, and in combination with the Segment-Based Routing algorithm (SR) [10], LBDR allows
close to minimal-paths with deadlock-free routing. Virtual networks are used for different levels of
traffic of the memory hierarchy system, implemented as multiple virtual channels (a total of two
virtual channels are used).

2.3 Workloads and application-mapping

For the evaluations we use a collection of applications from the SPLASH-2 benchmark [17] with the
default parameters defined in [16]. We have evaluated several configurations of multiple application
instances mapped to the same CMP for different numbers of memory controllers, in order to detect
indications of congestion problems as we scale the number of memory controllers from 1 to 4 (giving
2 to 8 memory controller channels).

The applications are statically mapped to the chip when the experiment is set up. Applications
are mapped to completely fill the chip, giving a fair share of cores to each application. Every
batch consists of a single application type from the benchmark suite rather than being composed
of a collection of mixed applications. This regularity makes it significantly easier to generate
relevant statistics and spot trends in the results, such as to get averaged results for the execution
time comparison. Running a mix of applications will even out some of the variations of the
communication demand over time, but the conclusions will still be the same. See Figure 4 for an
example of the mapping of 12 concurrent applications with 2 memory controllers.
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Parameter Configuration

Core x86
L1 cache 16 KBytes Instructions + 16 KBytes Data

Total 32 KBytes per core
2 cycles latency
2-way associativity
64 bytes block size

L2 cache 256 Kbytes per core
20 cycles latency
4-way associativity
64 bytes block size

Main memory 1 Gbyte total
200 cycles latency

Coherence protocol MOESI CMP, directory-based

Table 1: CMP configuration.

Parameter Configuration

Topology 10× 10 2-dimensional regular mesh
Routing mechanism LBDR + SR
Packet switching Virtual cut-through (VCTlite) [12]
Buffer queue size 12 flits
Flit-size 8 bytes

Table 2: Network-on-chip configuration.

2.4 Results

We now present the results from the different evaluation batches. First, we present the scenario
with just 1 memory controller with 6, 8 or 12 concurrent applications of the same type. The memory
controller was placed like the Memory Controller 1 in Figure 3. We performed evaluations for all
the application types, and similar patterns of congestion problems appear for every application
type. We only present the results for the ocean workload.

Figure 5a shows network throughput results for the ocean application with 6 concurrent appli-
cations. The point series labeled as injected reflect the traffic that the network interfaces try to
push into the network, and the other one reflects the traffic that is currently accepted and is being
forwarded through the network. The results are averaged over all the application instances. This
representation shows that there is no significant gap between the injected and accepted traffic,
meaning that congestion is practically non-existent. This is also the case for the other application
types in the benchmark.

In Figure 5b the results from running 8 concurrent applications are shown, again for the same
application. This figure starts to indicate some minor contention problems. If there is no conges-
tion, the accepted traffic should follow the injected traffic closely as time progresses. In this figure,
however, there is a clear gap between the injected and accepted traffic (accepted being lower) which
indicates that the network is saturated and congestion occurs.
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Figure 4: 12 concurrent applications mapped on the system

This is even clearer in Figure 5c for the ocean application with 12 concurrent instances. As we
can see, there are some significant drops in the throughput for different parts of the execution. In
fact, as shown in Figure 5d, we can see the progression of the different averaged execution times
of all applications with increasing sharing. Please note that the variation between different runs
of the same application at the same location is insignificant, so the baseline for this figure is the
execution time of just 1 instance closest to the memory controller. An increase of more than 8%
in execution time for 12 concurrent applications for several applications is visible.

To further evaluate how the problem scales we evaluated a batch of 12 concurrent applications
and present the results for the ocean workload (which behaves similar to the rest of applications)
in Figure 6a. We have increased the number of memory controllers to 2, located like Memory
Controller 1 and Memory Controller 2 in Figure 3.. As expected, adding more memory controllers
alleviates the congestion problem and balances the traffic in the network. This is the most obvious
solution to the congestion problem, add more memory controllers if it is feasible in the design
process.

However, by increasing the number of concurrent applications in the system (more application
instances, each with fewer cores), we can recreate the previous congestion scenario. Figure 6b
shows the results for 16 concurrent applications and 2 memory controllers.

Although not as significant as the case with 12 concurrent applications and 1 memory controller,
the network suffers from congestion problems. This is even clearer in Figure 6c where execution
time results are displayed.

Finally, we place 4 memory controllers in the system like the configuration visible in Figure 3.
Again, adding more controllers reduces the congestion problem, and when increasing the number
of applications to 32, the congestion problem re-asserts itself. In Figure 7a we show the results
for 32 instances of the ocean application. The results show that congestion problems can appear
again in the event of enough concurrent applications even with 4 memory controllers configured in
the system, and the average execution time is also penalized, as seen in Figure 7b.
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Figure 5: Results for 1 memory controller and different amounts of concurrent applications

Previously, we postulated that the transit traffic has a negative impact on the execution time of
the instances. Let us discuss the distribution of the execution time per application instance in the
scenario with 12 concurrent applications and 1 memory controller located at coordinates (9, 9) and
(8, 9). As seen in Figure 8a which displays the increase in execution time for a fully utilized CMP
for the ocean workload, the instances close to the memory controller are penalized more than the
ones that are further away. Each bar represents one core in the system (although the evaluation
scenario runs 12 concurrent applications, we get the detail to each core) and we can see a variance
of 15% between the fastest instance and the slowest one. As the different types of traffic must
share a physical channel, and the arbitration policy tries to balance between the different virtual
channels, every different type of traffic gets a 50% of the channel share when both traffic types
are fully saturated, and thus, the execution time which is linked to the success of delivering local
traffic, is penalized. To further evaluate this impact, we evaluated this particular batch together
with a simple QoS (quality-of-service) priority system.

In Figure 8b, local traffic was given higher priority than memory traffic, a 60/40 share. Although
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Figure 6: Results for 2 memory controllers and different amounts of concurrent applications

the overall performance has dropped down a bit, compared to the previous case, the gap between
the fastest instance and the slowest instance now corresponds to 11%. Still, we need more fine-
grained balancing to equalize the performance over all the chip. Compared to the averaged runtime
of the ocean case displayed in Figure 5d, which is a 7% increase over the normal execution time,
with this priority configuration, now is displayed with a 7.4% increase. The cost of the increase in
fairness is slightly worse performance.

A more extreme share can be seen in Figure 8c, which displays a 80/20 share between local traffic
and memory controller traffic. Now the application instance farthest away is penalized almost as
much as the one located near the memory controller and the gap between execution times is lower
than the previous scenario. The worst case is 6.8% difference. The averaged execution time has
a 7.55% increase over the normal execution time. Implementing different priorities is not enough
to alleviate the impact of congestion in the chip performance. With just one solution, although
simple, there are still undesirable results under the premise of certain conditions, in this case,
many concurrent applications trying to access a shared chip resource. These findings verify our
assertions.
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Figure 7: Results for 4 memory controllers and different amounts of concurrent applications

2.4.1 Evaluating the effect of 3-D stacking

The congestion patterns we have observed in the previous discussion relate closely to the place-
ment of the memory controller. In future networks on chip we expect 3-D stacking to become
prevalent. Using this technology that previously-chip memory and can be placed on the chip at a
separate chip layer (on top of the regular chip) with vertical links connecting the two layers. This
traffic to changes the location of the memory controllers, and depending on the number of vertical
connections (TSV) it will have significant impact on system performance. With only a single or
a few TSVs the congestion problems will be similar to what we have already observed since there
are a few memory controller hotspots that receive large amounts of the traffic. However, TSVs are
efficient and relatively cheap, so it is conceivable to have as much as one per core on the chip. In
this case the congestion situation alters significantly as it is displayed in Figure 9. This figure is
generated on the same premises as the previous figures, except that each core is now connected
directly to the memory controller through a TSV. The figure shows that the increase in execution
time for the various threads is now much smaller because of the improved memory access.

Summarising, the objective of these evaluation cases was to reproduce scenarios that try to
reflect current chip configurations, and to see in the event of full utilization of the chip, if the
performance of applications would be affected by congestion problems. The trade-off depends on
how much resources are available (in our case, the amount of memory controllers) and there clearly
is a need for congestion management strategies that can alleviate the problem with minimal impact
on the design of the chip. This is the topic for the remaining sections in this report.

3 BAHIA description

BAHIA (Burst Aware HoL blocking Injection Avoidance) provides a method to dynamically isolate
detected bursty traffic in a network. Detection of bursty traffic is performed at the receiving node
of the burstiness. End nodes are then notified and the bursty traffic is separated from normal
traffic. By doing this, we avoid harmful effects between traffic flows thus increasing performance.
BAHIA makes use of virtual networks to separate traffic. This implies that BAHIA needs at least
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(a) Normal priority (b) 60/40 share

(c) 80/20 share

Figure 8: Execution time distribution for 1 memory controller, ocean workload

two virtual networks: the default virtual network, destined to accommodate normal traffic, and
an extra virtual network to accommodate bursty traffic. In a normal operation (no bursty traffic
detected) the traffic is injected through the default virtual network. Nevertheless, when a burst
is detected, the flow will be mapped into the extra virtual network, thus avoiding HoL blocking
between both traffic classes. BAHIA can be divided in three steps as seen in Figure 10: Burst
detection, burst notification, and traffic separation.

3.1 Burst detection

As previously said, traffic burst detection is performed at the receiving node. Each node will
calculate its receiving traffic rate periodically. If the traffic rate exceeds a threshold value, this
node will notify the other nodes it is receiving bursty traffic. Similarly, the end node will detect
the end of the bursty traffic. This is detected by comparing the reception rate with a low threshold
value. In this case nodes will be informed about this.

Notice that detection of bursty traffic could be done at the sources. However, in that case,
combination of bursty traffic at the receiving end node (made of two small traffic rates from two
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Figure 9: Execution time per thread with one TSV per core.

Figure 10: BAHIA behavioral description

different sources) would not be detected. Thus, we opted for a detection at the destination end
node.

3.2 Burst detection notification

In order to notify nodes contributing to a traffic burst BAHIA implements a dedicated simple
signaling network (burstiness notification network or BNN). This network consists of a one-bit-
wide-tree mesh network connecting all nodes as seen in the Figure 11. Each node has a dedicated
control network. Therefore, for a 16-node system 16 control networks are used. However notice
that a control network is made only of a wire with no logic. The complete BNN can be viewed as
a N-bit-link. Every wire in the link corresponds to a node in the network, thus this is equivalent
to having a one-bit-wide dedicated wire for every node in the network. Any node will notify the
rest of nodes by setting to high value its BNN wire while the burst is present at its receiving
channel. With the BNN notification network a node will notify the rest of nodes in few cycles.
The processing of this signal and the hardware required for its implementation is negligible. For
the area overhead of the BNN, we have synthesized a 4-stage pipelined wormhole switch and added

17



the wiring for the 16 1-wire BNNs, obtaining negligible area overheads. Notice that, alternatively,
the BNN used in the OCRL mechanism (described later) can be used for the purposes of notifying
bursty traffic events. Also, we analyzed the effect on performance of a slower notification network,
achieving similar results.

Figure 11: Node 0 communicates burst events through this 1-bit network

3.3 Traffic separation

As a first step every node implements a bitmap of as many bits as nodes exist in the network
(burstiness bitmap). Each bit corresponds to a node in the network as seen in Figure 12. When a
node receives a traffic burst this node will notify it to all nodes through its BNN wire. The rest of
nodes will detect a high value in the BNN wire that corresponds to this node. When this occurs,
every node will set to one the corresponding bit of the burstiness bitmap.

At allocation stage, all messages are queued into the default virtual network. Nevertheless, at
injection time, every message is checked for its destination. In case the packet to be injected is
destined to an affected node according to the burstiness bitmap, this message will not be injected.
Instead, this message will be transferred to the extra virtual network. Obviously, packets destined
to a node with its burstiness bit reset, will be injected from the default VN and will be forwarded
through the network using the default VN.

In Figure 12 we can see an example where the sender node has messages queued for node 1,
5 and 6 in the default virtual network. Currently the sender node is about to inject a message
destined to end node 5. As can be seen in the burstiness bitmap, node 5 previously notified was
receiving bursty traffic, so messages destined to node 5 must be reallocated to the extra virtual
network. Just before injecting, the arbiter of the sender node checks the burstiness bitmap and
transfers the messages to the extra virtual network for a later injection.

Once a node notifies that bursty traffic has been dissipated (reseting its BNN wire), the re-
maining nodes will reset the corresponding bit in their bitmaps and new messages allocated for
this node will be injected through the default virtual network. However, out of order issues could
arise which is treated in the next section.
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Figure 12: Flow followed by messages in an end node

3.4 Out of order avoidance

In a normal situation (no bursty traffic detected) all traffic is sent through the default virtual
network. When a node sends a burst notification, from that moment all traffic destined to this
node will be allocated in the extra virtual network. Nevertheless, at this point it is usual that
previous messages destined to this node had been already queued in the default virtual network. If
the source node just maps new allocated messages to the node receiving bursty traffic on the extra
virtual network there will be messages destined to that node queued in both virtual networks. As
the arbiter is implemented as a simple round-robin, this may introduce out of order injection of
messages destined to the same end node.

In order to avoid this harmful effect a post-processing mechanism has been adopted. The post-
processing mechanism essentially consists in providing the arbiter with some additional intelligence
in order to evaluate whether a message should be injected through the default virtual network or,
if necessary, moving flits (changing its pointers) destined to nodes receiving bursty traffic from
the default virtual network to the extra virtual network. To carry this out, before injecting the
message into the network the extra virtual network queue is inspected. If there are flits destined to
this node the message is moved to the extra virtual network for preserving the order of injection.
This behavior in the arbiter would be represented with the next pseudocode (when dealing with
the packet at the head of the default VN):

i f ( i sNodeRece iv ingBurst (msg . d e s t i n a t i on ) | | numFlitsInExtraVN (msg . d e s t i n a t i on ) >
0) {

moveMessageToExtraVN(msg) ;
injectFromExtraVN ( ) ;

} else {
injectFromDefaultVN ( ) ;
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}

However, is necessary to know whether a destination node has pending flits queued in the extra
virtual network. To do this, every node in BAHIA implements a presence vector. This vector
contains an element per node in the network and every element represents a counter of how many
flits destined to this node are queued in the extra virtual network. Obviously, every counter is
incremented when a new flit is post processed and moved to the extra VN. In the same sense,
the counter is decremented when a flit is injected from the extra VN. Notice that once a burst
is no longer detected, an end node may still inject messages through the extra VN as there are
remaining flits in the extra queue.

4 BAHIA-2

As will be seen later, BAHIA works well in an environment where bursty traffic is common.
However, bursty traffic is not the only source for HoL blocking effects. Congested situations do
not form only from bursty traffic. In order to deal with HoL-blocking produced by in-network
congestion situations, we extend the previous mechanism and adapt it to a real congestion-aware
HoL-blocking removal mechanism. BAHIA-2 will detect in-network congestion ports and will notify
all the sources. The end nodes will react similarly as how they do in BAHIA, that is, separating the
traffic in two VNs one for normal traffic and one for congested traffic. By doing this, HoL-blocking
is removed.

4.1 Congestion detection

Since detection of congestion is now carried at switches, we move the detection logic to switches.
Also, as now in BAHIA-2 we detect congestion rather than bursty traffic, we need a different
detection mechanism. The new mechanism basically consists in measuring how long messages are
queued at the switches waiting for winning an output port. If more than two messages wait longer
than a determined threshold, then we assume the output port they request is congested. In that
situation, a notification is triggered to the end nodes (possibly with a modified BNN or using the
control network assumed in the OCRL mechanism).

The mechanism to detect congestion relies on two counters per output port. One counter keeps
track of the number of active requests to that output port (one request every time a message comes
and is routed to that output port) and the second counter keeps track the time elapsed in cycles
from the time two or more requests are pending. When the first counter reaches two for an output
port (at least two messages are competing for the same output port) the second counter is reset
and starts counting. Congestion is detected when the second counter reaches a threshold. When
the first counter decreases to 1 or zero, the second counter is reset (congestion vanished) and a
end-of-congestion notification is triggered to the end nodes.

4.2 Congestion detection notification

In BAHIA-2 congestion notification must inform of the output port congested in a switch. For
this purpose, every output port in the network has its own congestion notification 1-wire network
(CNN). Similarly as BAHIA, when a switch detects congestion in one of its output ports, it will
set the CNN wire associated to the output port (we will have as many CNN wires as nodes times
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the number of output ports). Alternatively, the control network used in OCRL can be used. As
we will see later, the delay in notification does not severely affect the benefits of the congestion
management strategy.

4.3 Traffic separation

For traffic separation we must take into account that a message must be moved to the extra virtual
network only if this message will go through a congested output port. In order to know which
destination nodes will pass through a congested port we implement a small logic block. The block
has as input the row and column of the switch (assuming a 2D mesh) and the output port (N,
E, W, S) that is congested. The block assumes the use of the XY routing algorithm. From this,
it is straightforward to deduce the end nodes that are reached through the congested port. The
resulting vector bit is ORed with the vector bit used at the end nodes for identifying congested
end nodes (one bit per node). This vector bit is the one used in BAHIA named burstiness bitmap.
A destination is assumed to be congested if the path to reach the destination passes through one
(or more) congested points. For instance, for a E (east) port congested in a switch, only the end
nodes in the same row but at the left of the congested switch will set the bit to destinations located
at the right side of the congested port. Figure 13 shows two examples of different output ports
congested and the end nodes that detect some end nodes as congested.

Figure 13: BAHIA-2 examples of congested destinations (XY routing assumed).

5 OCRL

The OCRL mechanism is an injection throttling mechanism where the switches notify the sources
to adjust the traffic rate in order to remove the congestion present in the network. It is compatible
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with both wormhole and virtual cut through switching, and is composed of three basic elements
(although congestion detection is easiest with the large buffers of virtual cut through switching):

• Every input buffer at each switch has two control thresholds in order to detect the presence
and the absence of congestion.

• Notification packets are delivered through a control network that matches the current data
network topology, which is a 2-D mesh.

• Every processing node implements a congestion table to keep track of the possible destinations
affected by the congested spots in the network.

(a) Thresholds placement (b) Notification packet

(c) Congestion table

Figure 14: OCRL mechanism

The first element is implemented with two thresholds at the input buffer of a switch. Figure 14a
shows different placements used in the evaluations. An upper threshold to detect network conges-
tion (U label in the figure), and a lower threshold (D label in the figure) to detect the removal of
congestion. A control logic monitors these two thresholds. When the buffer occupancy exceeds the
upper threshold, the input port of the switch enters the congested state. In this state it will notify
through the control network the source(s) of the packet(s) currently allocated in the congested
buffer. Upon notification reception, the source(s) will trigger the injection throttling mechanism.
The input port switch remains in this state until the buffer occupancy decreases below the D
threshold and, then, the input port switch returns to its normal state.

22



The notification process is the second element of the mechanism. The switches notify the sources
by sending small congestion notification packets on a parallel control network. In modern CMP
systems, such a control network will often be in place to support fault detection, configuration,
and other management tasks. The format of the packet for this control network is shown in
Figure 14b. The first 8 bits define the coordinates of the source where the notification packet
is headed. The next 8 bits define the coordinates of the destination to be notified as congested.
The last 2 bits define operation codes. In this method we are defining just 1 code, the congested
status. Notification packets will be sent through an ad-hoc control network designed with the
same philosophy as the 18-bits wide dual bus proposed in [7], conforming the average latency as
number of nodes/ts being ts the average latency for a notification packet to cross a switch.

The third element of the mechanism is the congestion tables at the source nodes, shown in Fig-
ure 14c. Each entry is composed of a destination field, a field containing the number of notifications
received, and a timer value which is incremented every cycle. When a node receives a congestion
notification, it creates an entry in the table setting the number of notifications to 1 and setting
the timer for that destination to zero. If a node receives more notification packets for the same
destination before the timer reaches a maximum timer value, the notification counter is increased
and the timer value is reset. If an entry reaches the maximum timer value, then the congestion
has vanished and the entry is removed. The maximum timer value is set in our evaluations to the
average latency displayed by the control network, in order to emulate a notification packet crossing
the network to inform of a non-congested status.

Based on the number of notifications, the node injects messages to the congested node D using
the following formula:

Traffic rate(D) = max traffic rate− (number of notifications(D)×DDR)
where DDR is a constant value representing the amount of traffic decreased for each received

notification. DDR constant value is set differently for each concurrent application scenario. It was
obtained from several tests to remove unpredictability, and it was computed as the inverse value of
the average number of notifications received for each congested situation in a certain destination.

If the actual traffic rate reaches a zero value, it will stay with that value until the timeout
occurs. When the timer expires, the table entry is removed and the traffic rate for the destination is
increased at the rate of DDR/cycle in a similar manner up to max traffic rate (typically 1flit/cycle).

6 Results

In this section we present the evaluations performed in real traffic and bursty traffic scenarios and
an assessment of the hardware overhead for the different mechanisms proposed in the project for
congestion and HoL-blocking removal (OCRL, BAHIA, and BAHIA-2).

6.1 Results for OCRL mechanism

To evaluate OCRL we use real application traffic. The system configuration implements a tile-
based system like in Figure 1, but with a 10×10 2-D mesh, and each tile is composed of a processor
core, a private L1 cache, a bank of a L2 shared cache, a memory directory bank to be used with
the directory-based MOESI cache coherency protocol, and 4 memory controllers. The simulation
parameters are identical to the ones used for the CMP congestion study presented in Section 2.

In order to evaluate the real traffic scenario we launched a set of evaluations with 32 concurrent
applications with 3 different placements of the congestion thresholds at the input buffers as shown
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in Figure 14a, which stands for OCRLA, OCRLB, and OCRLC labels at the figures.
In Figure 15 we can see the effect of sharing NoC resources with other applications on the

same chip. Please note that the variation between different runs of the same application at the
same location is insignificant, so the baseline for this figure is the execution time of just 1 instance
closest to one of the memory controllers. As it is seen, there is an average of 1.5% reduction in
the execution time for the 3 variants when using the congestion time. Notice that this reduction
can make a difference in the total execution time of the system while improving chip utilization if
we aggregate all the averaged time reductions. Real-time constraints that influence certain traffic
types can benefit also for every reduction.

Figure 15: Execution time for 32 concurrent different applications

We performed evaluations for all the application types, and similar patterns of congestion
problems appear for every application type. We only present the results for the ocean workload.
In Figure 16 we show the results for network throughput. The point series labeled as injected
reflect the traffic that the network interfaces try to push into the network, and the one labeled as
accepted reflects the traffic that is currently accepted and is being forwarded through the network
with no congestion control. As shown in the figure, there is an important drop due to congestion
between the cycle 130k and cycle 250k. All OCRL variants are able to alleviate the congestion drop
by 15% in average, although OCRLC seems to perform better. The variant OCRLD is OCRLC in
which we modeled the latency of a faster control network than the one that was set up for previous
evaluations. As it can be seen, OCRLD has almost zero congestion and is a demonstration on how
to tuning the parameters of OCRL in the CMP scenario will lead us to better results.

6.1.1 Area overhead analysis

In order to assess the control network and the logic implementation cost in terms of area, OCRL
was integrated in the virtual channel-based switch presented in [8] and it was supported by a control
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Figure 16: Averaged network throughput for ocean workload

network featuring 18 control bits like the one shown in [7]. To notice that the adopted control
network also features fault-tolerance properties. The synthesis was performed with a low-power 65
nm technology library. As a result, the OCRL mechanism and the control network requires a 9%
of area overhead with respect to the baseline virtual channel-based switch.
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6.2 Results for BAHIA

For the bursty traffic scenario, the gNoCsim network simulator was used for the evaluations. In the
case of BAHIA, the configuration consists of a 2D mesh with 64 switches arranged in a 8×8 distri-
bution where each node is attached to a switch. Regarding to the traffic pattern generated, each
node generates a 0.2 flit/cycle baseline/background traffic following an uniform pattern and, when
simulation reaches cycle 10000, traffic bursts are sent to 4 different nodes following a 4-to-1 strategy
(each hotspot node will receive traffic from 4 nodes) at 1 flit/cycle until cycle 20000 is reached.
Meanwhile, the rest of nodes will continue sending at a 0.2 flits/cycle. See Table I for all configu-
ration parameters. The table shows the upper and lower thresholds used to detect the bursty traffic.

Parameter Value
Topology 8x8 2D regular mesh

Virtual networks
no BAHIA 2VN
BAHIA 1 default VN + 1 extra VN

Packet switching VCT
Flit size 5 bytes

Packet size 10 flits
Message size 40 flits

BAHIA
Upper Limit 0.7 flits/cycle
Lower Limit 0.2 flits/cycle

Polling interval 500 cycles
Notification delay 1 cycle

Table 3: Simulation configuration for BAHIA and BAHIA-2 mechanisms.

In Figure 17.(a) we see the accepted network traffic. As can be seen, the simulation begins
with a background traffic of 0.2 flits/cycle approximately. However, starting at transient 20 (each
transient is made of 500 cycles, thus being cycle 10000), four nodes receive bursty traffic, each
from four different nodes. Nodes receiving the burst are not able to dispatch bursty traffic thus
contention appears. In no-BAHIA NoC both virtual networks are affected equally since there is no
traffic separation, either bursty traffic and normal traffic is allocated without distinction into any
virtual network so performance degradation appears in both virtual networks due to HoL blocking
effects. Nevertheless, in the case of BAHIA NoC, when bursty traffic is detected at the end nodes,
sender nodes are notified so this bursty traffic is isolated into the extra virtual network so there
is no HoL blocking in the default virtual network, improving performance in the overall network.
Average network latency, shown in Figure 17.(b), behaves similarly, achieving best performance for
the implementation with BAHIA. In this case, non-burst traffic latency keeps roughly unaltered.

In Figure 18 a study of the robustness of BAHIA is shown. For these simulations the delay of
the notification has been varied between 1 (value in previous simulations) and 16 cycles. We can
see in the results that increasing the notification delay has a negligible effect in the effectiveness of
the mechanism.
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Figure 17: Accepted traffic and packet latency for BAHIA mechanism.
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Figure 18: Accepted traffic and packet latency for BAHIA mechanism. Different notification delays.

6.3 Results with BAHIA-2

BAHIA-2 can be configured according to the threshold used to trigger the congestion notification
(time elapsed more than two messages block for an output port). This parameter and the delay of
the notification are variables that potentially affect the behavior of the mechanism. To test these
variables, several simulations have been carried out with different values.

In Figure 19 we see the scenario without BAHIA-2. As can be appreciated, both virtual
networks experiment the same behavior as traffic is randomly distributed between both virtual
networks.

In Figure 20 we can see latency and throughput for the same network but, in this case, with
BAHIA-2. In this case the notification is triggered when more than two messages are competing
for an output port more than 50 cycles. A conservative notification delay of 10 cycles is assumed.
Similarly, Figure 21 shows results for a delay in notification of 8 cycles, and Figure 22 shows an
aggressive scenario where detection threshold is set to only 10 cycles and propagation is set to 1
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Figure 19: Throughput and latency for an 8x8 network without BAHIA-2
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Figure 20: BAHIA-2 throughput and latency with a congestion detection threshold of 50 cycles
and a notification delay of 10 cycles.

cycle. As can be deduced, the BAHIA-2 mechanism is largely insensitive to the threshold values.

7 Exporting to CEF

The results from network simulations may reveal traffic hotspots in the network on chip caused by
specific traffic patterns or burst patterns. This information can be useful for the designer to tune
the network on chip implementation in order to minimise the probability and impact of network
congestion.

Currently such information is not supported in the CEF standard, but by utilising the option
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Figure 21: BAHIA-2 throughput and latency with a congestion detection threshold of 50 cycles
and a notification delay of 8 cycles.
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Figure 22: BAHIA-2 throughput and latency with a congestion detection threshold of 10 cycles
and a notification delay of 1 cycles.

of vendor specific tags, it is possible to append this information to the switch specifications in the
CEF file format.

The data entry requires only two tags, < nodeid > and < congestion level >. If desired, and
if this information is available from the simulator results, a third tag can be added to indicate
whether a specific note is the root of a congestion tree, < congestion root >. The congestion
route is the point where all the buffers for the port are full, while at the same time the link is fully
utilised. This is the bottleneck that causes the congestion tree to build up throughout the network,
and dealing with this is the first step to reducing network congestion from the design point.
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8 Conclusions

It is well-known that unpredictable or bursty traffic patterns may lead to network congestion
which can impact on the execution time of the running applications. This document has presented
the research effort within the project to address congestion and HoL blocking effects. To handle
the dynamic traffic variation in CMPs, an injection limiting approach has been developed. To
handle the bursty traffic in MPSoCs, BAHIA was employed to detect and move bursty traffic to
a separate virtual network. In both cases the proposed solutions were able to greatly alleviate
network congestion. For the CMP experiments with real traffic traces, the proposed solution was
able to increase network utilization with 45% which resulted in a 1.5% reduction in application
execution time compared to a fully utilized chip without congestion control. For synthetic traffic,
BAHIA solution was able to completely remove the negative effects of the traffic bursts. Also,
BAHIA-2 mechanism can handle in-network congestion by addressing the HoL-blocking effect it
causes to non-congested traffic. All the mechanisms are within 90% of optimal throughput without
congestion (OCRL is slightly below, but additional tuning will increase this), and require a low
number of control packets. This is within the requirements for deliverable 2.2, so network-on-chip
congestion control has been successfully addressed in the NaNoC project.
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[6] José Flich and Davide Bertozzi. Designing Network On-Chip Architectures in the Nanoscale
Era. Chapman & Hall/CRC, 2010.

[7] Alberto Ghiribaldi, Daniele Ludovici, Michele Favalli, and Davide Bertozzi. System-level
infrastructure for boot-time testing and configuration of networks-on-chip with programmable
routing logic. In VLSI-SoC, pages 308–313. IEEE, 2011.
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