
Contract no. 248972
FP7 STREP Project

NaNoC
Nanoscale Silicon-Aware Network-on-Chip Design Platform

D2.3: Report on Service Differentiation Technique
with Packet Formats to Support Quality of Service

Due Date of Deliverable 31st December, 2012

Completion Date of Deliverable 31st December, 2012

Start Date of Project 1st January, 2010 - Duration 36 Months

Lead partner for Deliverable Lantiq Deutschland GmbH (Lorenzo Di Gregorio)
Approval Status Approved by all partners on February 13, 2013

Revision: v1.0

Project co-funded by the European Commission within the 7th Framework Programme (2007-2013)
Dissemination Level

PU Public Ø
PP Restricted to other programme participants (including Commission Services)
RE Restricted to a group specified by the consortium (including Commission Services)
CO Confidential, only for members of the consortium (including Commission Services)

PUBLIC

Contents

1 Introduction 1
1.1 Motivation for a lightweight approach . 1

1.1.1 Microarchitectual level . 1
1.1.2 Application-level . 2
1.1.3 Experimental Results . 3

1.2 Related work . 3

2 Reservation Frameworks 5
2.1 Reservations on individual nodes . 5
2.2 The NoC as a resource . 5

2.2.1 Service Curves . 6
2.2.2 Traffic Envelope . 7

3 Serving Traffic 8
3.1 Traffic Models . 8

3.1.1 Simple traffic models . 8
3.1.2 Complex traffic models . 10

3.2 Service models . 12
3.2.1 Serving simple traffic . 12
3.2.2 Serving complex traffic . 13

4 Advances on QoS bounds 15
4.1 Remaining Utilization . 15
4.2 Bounded Periods . 18
4.3 Network Latency . 20
4.4 The Nested QoS problem . 21
4.5 Calculation of Deadline Curves . 23

5 Classes of Service 28
5.1 Periodic / sporadic . 28

5.1.1 Indirection of priorities . 28
5.1.2 Route discovery . 28

5.2 Latency-Rate . 29

6 Experimental Results 30
6.1 Models for networks-on-chip . 30

6.1.1 Note on topologies for NoC . 32

NaNoC Deliverable-2.3-v2.0

PUBLIC

6.1.2 Head-of-Line-Blocking Prevention . 32
6.2 Simulation platform . 32

6.2.1 Processor-based System . 34
6.2.2 Software Application . 35

6.3 Results at NoC-level . 35
6.4 Results at application-level . 38

6.4.1 Syntetic results . 38
6.4.2 Real-world results . 42

NaNoC Deliverable-2.3-v2.0

PUBLIC

List of Figures

1.1 Illustration of the “nested QoS” problem: the QoS provided by the NoC to the processor
affects the QoS provided by the processor to the line interface. 3

2.1 Relation of the task models to the traffic models . 6
2.2 On the left a service curve and on the right a workload realization with the same service

curve in evidence. 6
2.3 Periodic model which envelopes a traffic trace. 7

3.1 Relation between data rate, latency and backlog . 9
3.2 Relation of the service curve to a traffic realization . 11
3.3 Relation of the SCED deadlines to the actual traffic . 11
3.4 Deadlines for a server with fix latency and constant rate. 12
3.5 Route A-B-C-D interferes with route E-F-G. 12
3.6 Service curves for a high and low priority transfer. 14

4.1 Graphical interpretation of the remaining utilization. 17
4.2 Higher utilization achieved by shorter periods. 18
4.3 Calculation of utilization achieved by a bound on period. 19
4.4 Implementation of (4.6) in Octave . 20
4.5 Utilization under rate monotonic with release times. 20
4.6 Top: a service curve σ(t) is obtained from C(t) by (4.9). Bottom: the preemption γ

modifies the service curve from σ(t) to σγ(t). 22
4.7 Tolerable capacity delay: assuming a flow can start only at time s, the variable capacity

Ci(·) can be delayed at time t by an amount q − t without violating the minimal service
curve σ̂i(·). 24

4.8 Tolerable delay during scheduling: the tolerable delay ζi(t) is reduced after the variable
capacity Ci(·) has been scheduled by δi(·). 26

4.9 Feasible Region for deadlines: the upper bound of the gray area is the pseudo-inverse of
the “as-late-as-possible” deadline curve. 26

6.1 Components of the simulation infrastructure . 30
6.2 Block diagram of a SystemC model of a NoC node . 31
6.3 One full mash configuration used for experiments. 31
6.4 Dynamic assignment of virtual channels to prioritized traffic 32
6.5 Block diagram of a generic multiprocessor system-on-chip. 33
6.6 Top level specification of the simulation environment, blocks in gray are available from

third parties. 34

NaNoC Deliverable-2.3-v2.0

PUBLIC

6.7 Case study for hyperbolic bound on node reservations. 36
6.8 Low utilization for figure 6.7: slack available. 36
6.9 Critical utilization for figure 6.7: within deadlines. 37
6.10 Overload condition for figure 6.7: deadlines missed. 37
6.11 Case study for utilization bound on network latency. 38
6.12 Low utilization for figure 6.11: interference with slack. 39
6.13 Critical utilization for figure 6.11: interference at critical point. 39
6.14 Overload condition for figure 6.11: interference under overload. 40
6.15 Random delay distributions with same average . 40
6.16 Service curves obtained for random delay distributions with same average 41
6.17 Detail of the service curves shown in figure 6.16 . 41
6.18 Data transport to be achieved under increased latency guarantee in the NoC: the goal is

to be compliant with the worst case . 42
6.19 Performance of a processor core under increasing latency guarantee on NoC traffic 43
6.20 Service provided by the processor to the software application under increaded latency

guarantee in the NoC . 43
6.21 Service provided by the application to the packet stream under increased latency guarantee

in the NoC . 44
6.22 Tolerable slack profile obtained on the processor’s capacity toward the worst case service

to be provided to the packet stream . 44

NaNoC Deliverable-2.3-v2.0

PUBLIC

1. Introduction

In this document we report on investigation and implemention activities within the NaNoC project re-
garding the definition and experimentation of novel techniques for supporting quality-of-service (QoS)within
generic networks-on-chip (NoCs) from the microarchitecture level up to the application level.

As explained in the subsequent section 1.1, our goal has been to identify and develop lightweight
techniques for providing QoS guarantees at microarchitectural level, because single NoC transactions
take place at a very small time scale and do not impact directly application-level QoS. Instead, QoS at
application-level is guaranteed by software applications whose performance is in turn affected at the
microarchitectural level by overall NoC transport characteristics. Because these characteristics are only
indirectly and loosely related to the hardware structures on chip, we are not willing to spend significant
silicon and workload on QoS and an outcome of this work is that this cost is also not necessary to obtain
very good QoS guarantees, because they can be achieved already by defining static routes, computing
schedulability conditions and performance bounds already at design time rather than at execution time.

The novel problem setting of QoS over NoC has driven us to obtain significant theoretical advances
in two areas which have been rather dry for almost a decade:

• utilization-based scheduling

• service curve scheduling

In order to validate and evaluate these advances, we have developed simulation infrastructures based
on SystemC:

• NoC models employing the SystemQ library [17]

• MPSoC (multiprocessor systems-on-chip) models employing the Open Virtual Platform of Imperas
with SystemC wrappers

1.1 Motivation for a lightweight approach

In this section we state the need we see in QoS over NoC at both microarchitectural and application-level.
We argue that the purpose of QoS at microarchitectural level is chiefly to ease the design process, whereas
guarantees obtained at the application level demand a different solution based on holistic techniques.

1.1.1 Microarchitectual level

From a practical and systemic point of view, the extent to which QoS is a necessity within a NoC is
questionable: in real-time applications at a macroscopic level, data transactions over a NoC are hardly
perceived and their lack of determinism is usually only a small component of the overall variability in the
system. Existing real-time operating systems are able to achieve sub-millisecond accuracy without any
special hardware support.

NaNoC Deliverable-2.3-v2.0 Page 1 of 46

PUBLIC

Nevertheless, hardware must be designed for absolute worst cases and QoS in NoCs significantly
impacts on design in several microarchitectural aspects of multiprocessor systems-on-chip (MPSoC): from
buffer sizing to composition of hardware and software modules, reliable timing characteristics are known
to be largely beneficial to the overall design process. For example, due to long worst case response times,
costly measures are required to prevent devices’ starvation or race conditions: with QoS and deterministic
response times in place, this prevention can be achieved by scheduling rather than, for example, by
bloating hardware buffers of every individual module to ensure that enough data is available under worst
case circumstances. Furthermore, QoS enables the allocation of cycle budgets for multiple components
sharing common resources over the network: this budgeting avoids the typical simulate-and-tweak loop,
offering a widely acknowledged benefit in any platform-based design process.

For all these reasons, we have sought an approach which does enable QoS in NoCs, although with
little or possibly no hardware impact. Although we have tried to cover all directions, we have focused on
techniques in which the nodes are not burdened by additional dedicated features: static routes, which can
be set and canceled according to usual connection protocols, are provisioned with QoS by non-exclusive
bandwidth reservation managed in software. Consequently, we have focused on techniques by which the
software overhead for defining many routes through a NoC remains low, in fact we do not see a need to
squeeze out the last bit of performance on QoS routes and expect that at the least some best-effort traffic
will be transported under all practical circumstances.

1.1.2 Application-level

We know from experience in soft real-time scheduling that remarkable improvements of the processor’s
utilization can be achieved allowing small overload phases, which show no practical impact on the appli-
cation’s quality. This happens because the models employed by the theory must make largely conservative
assumptions and absolute worst cases are anyway extremely unlikely to be hit in practice.

While the timing of individual transactions over a NoC does not practically affect application level
guarantees, the plurality of transactions taking place in a NoC does affect the performance of the software
which provides application level guarantees. A QoS guarantee provided to an application by a processor
consists of sustainability for workload characteristics seen at the application’s programming interfaces.
A QoS guarantee provided to a processor by a NoC consists of sustainability for traffic characteristics seen
at the processor’s interfaces like latency, data rate, burst size etc. The application-level characteristics
in a network device are conceptually pretty much the same latency, data rate, burst size etc, seen at the
microarchitectural level, just on another order of magnitude.

Since service to an application by a processor depends largely, although not only, on the service to that
the processor by a NoC, we could term the problem setting as “nested QoS” problem: how does the QoS
guarantee to an application change, if the QoS to the underlaying processor changes?

In section 4.4 we give a precise formulation of this nested QoS problem, which is illustrated by figure
1.1. In order to master such complex of problems it is most useful to gain confidence with the concept of
service curve, which is presented in textbooks like [8]. We can say in informal wording that service curve
is the worst case service seen by a serviced item, such as a data packet, arriving at any random time at a
server, such as a processor.

One important feature of the concept behind service curves is that it is holistic: it does not require a
decomposition of the system under analysis and can hence be employed for complex systems. The service
curve can be devised from design parameters or actually measured from workload realizations. In the
latter case it models only corner cases which are actually hit during the system’s evolution and it might

NaNoC Deliverable-2.3-v2.0 Page 2 of 46

PUBLIC

processor memoryNoC

transport logic

line interface

NoC latency-rateprocessor’s capacity

system’s service

Figure 1.1: Illustration of the “nested QoS” problem: the QoS provided by the NoC to the processor
affects the QoS provided by the processor to the line interface.

turn out in unlikely situations to be over-pessimistic: in such cases the analysis must be done for multiple
service curves, since a single one cannot represent the characteristics of interest. In principle it is also
possible and actually straightforward to disregard corner cases which are extremely unlikely, though this
is seldom a practice because one must discover that such cases are unlikely to take place and this requires
retaining statistical information about the whole evolution of the system.

A solution for the nested QoS problem, is reported in section 4.5 and the presentation relies heavily
on network calculus formalisms. The proposed sólution performs the conversion of the service curve
presented by a processor to an application into a service curve presented by the NoC to the processor.

Once the service curves demanded on the interfaces of a processor have been determined according
to the algorithm presented in section 4.5, the required latencies and throughputs can be obtained from
the NoC employing the techniques we have devised at microarchitectural level for defining static routes
under QoS provisioning.

1.1.3 Experimental Results

Section 6.2 describes in practical details the simulation infrastructure and application scenarios required
to carry out this work.

1.2 Related work

The groundwork for supporting QoS by reserving bandwidth in the nodes of a NoC consists of the two
classical schemes for resource reservation: rate monotonic and earliest deadline first scheduling (for ex-
ample see [15] for an overview).

Qian et al. have employed network calculus concatenations in [11] to calculate the service curves
for a priority scheduler and a weighted round-robin scheduled and concluded that weighted round-robin

NaNoC Deliverable-2.3-v2.0 Page 3 of 46

PUBLIC

schedulers are more flexible than priority schedulers because of the difficulties involved in obtaining
guarantees on delays employing priorities. Quite surprisingly, though, the authors appear to have missed
the whole literature about periodic scheduling.

In contrast, Shi and Burns presented in [16] a framework based on to predict the latency of traffic
flows under periodic scheduling, regarding the NoC nodes as resources which can be reserved in a pre-
emptive manner through a monotonic priority assignment of concurring transactions. They develop a
method for analyzing the interference jitters within a NoC, i.e. the deviations in the release times of flits
indirectly caused by higher priority traffic flows. An obstacle to the practical application of their work,
though, is that they employ the classical latency formula by Audsley in [2], which is computationally
quite demanding (pseudo-polynomial complexity) for being employed within a traffic management soft-
ware for a NoC. One can conjecture that a redesign of the algorithm proposed by Bini e Buttazzo in [5]
would reduce this complexity.

We address both the priority scheduling area, employing the hyperbolic bound presented by Bini et
al. in [4], and the network calculus area, pointing out that the service-curve earliest deadline (SCED)
algorithm by Sariowan et al. in [14] can be employed to derive further policies. A work in this context
which is losely related to ours is the one initiated by Thiele in [18], where the capacity curve has been
introduced and the calculation of the service curve obtained from a variable capacity has been presented
along with other results. Our work can be viewed as a conceptual inversion, in which we devise how far
a capacity curve can be distorted in order to remain compliant to a given service curve.

NaNoC Deliverable-2.3-v2.0 Page 4 of 46

PUBLIC

2. Reservation Frameworks

In the reservation frameworks we have investigated, a NoC node is regarded as a resource to be reserved
and for which multiple data transactions are competing. Every transaction consists of a set of data
transfers to be transported and a set of deadlines, each associated to a transfer, to be met. The goal of
the schedule is to ensure, whenever possible, that all transactions meet their deadlines while the data is
being transported over the NoC node.

2.1 Reservations on individual nodes

Two major models are available for resource reservation among concurring transactions:

• task model: in this model a node can be either busy on a transfer or not. Meeting a deadline means
that a total amount of busy time must be served to a transaction before the deadline expires.

• flow model: in this model, a cumulative function represents how much data has been transfered.
The cumulative function must lay above a boundary which represents the deadlines.

These models are different and equivalent interpretations of the transactions which take place in a
NoC: the task model focuses on busy time of the node while the flow model focuses on the amount of
data transported by the node. Two graphical representations of these models, showing their equivalence,
are provided in figure 2.1 for three transactions which transport periodic data transfers. The upper three
diagrams represent these transactions according to a task model while the lower three diagrams repre-
sent the same transactions according to a flow model. These data transfers can be sporadic: a common
misconception about the scheduling of periodic tasks is that the tasks must actually show periodicity over
the whole time axis, indeed the theory behind the task model is devised for scheduling tasks which may
created and terminate at any time, as long as they show periodicity during their life time.

The task model can be employed for simple traffic models, introduced in section 3.1.1, while the flow
model is employed for more complex traffic models introduced in section 3.1.2.

2.2 The NoC as a resource

Having implemented reservations on individual nodes, we can regard a route as a virtual path with given
transport characteristics. These characteristics can become, in general, rather complex and difficult to
analyze at larget time scales than the one of single transactions.

In order to solve these problems, we have elaborated an holistic solution based on network calculus
and in particular on the concept of the service curve, which opens the possibility to effectively use further
readily available results from the existing literature like the SCED scheduling [13] discipline.

In the following two sections we provide a background on the concepts of service curve and traffic
envelope: these are fundamental tools for the analysis of complex systems, because complex service
curves are hardly manageable and they must be approximated by simpler service curves.

NaNoC Deliverable-2.3-v2.0 Page 5 of 46

PUBLIC

tr
an

s.
1

tr
an

s.
2

tr
an

s.
3

tr
an

sa
ct

io
n

1
tr

an
sa

ct
io

n
2

tr
an

sa
ct

io
n

3

deadline

transfer t

t

t

t

t

t

deadlinetransfer

Figure 2.1: Relation of the task models to the traffic models

∆t

U U

t

A

B

tA tB

Figure 2.2: On the left a service curve and on the right a workload realization with the same service
curve in evidence.

2.2.1 Service Curves

Figure 2.2 provides a graphical representation of the concept behind a service curve. U is a generic
utility, that is a figure of merit like amount of data packets or amount of bytes. The plot on the right
shows as a thick line a workload realization, that is the amount of utility which is serviced over time by an
application. It is important to note that the application must be under backlog, that is it must have data
to process. In lack of inputs an application would be clearly delivering no service merely because there
is nothing to do. At any random point in time it can be guaranteed that the amount of U which shall be
serviced lays above the service curve presented by the plot on the left. We see in the plot on the right
that the service curve can be swept along the whole workload realization and the workload realization
always lays above the service curve. This is the reason why the plot on the left has∆t rather than t on the
horizontal axis: the service curve at time tB represents the worst case service which can be seen over a
timespan of tB time units. In the plot on the left we can also recognize a packet processing characteristic:
in the period between tA and tB the body of the packet is transported at high data rate, before tA the

NaNoC Deliverable-2.3-v2.0 Page 6 of 46

PUBLIC

traffic

periodic model

time

bits

t

Figure 2.3: Periodic model which envelopes a traffic trace.

header is processed at a lower data rate, because the software must carry out more operations per byte,
and after tB the packet has been transported and there is a small inter-packet gap, likely to be caused by
framing.

2.2.2 Traffic Envelope

In this section we explain in simple terms what is a traffic envelope.
A traffic model is a defined function which represents a traffic level over time. For example we can

term a periodic model with period T and burst C the function:

f (x) =

∫ x

0

S(kT − C , kT)dx

where S(a, b) is C between a and b and 0 elsewhere.
The traffic obtained from such a periodic model is presented in figure 2.3. This model is an envelope

for a traffic trace, i.e. a realization of traffic over time, if it lays always above the trace regardless of the
point at which the trace is observed.

In figure 2.3 the worst case traffic begins at time point t: this traffic is represented at time point 0 by
the dotted line. The periodic model represented in figure 2.3 is the lowest model which lays above the
dotted line.

The dotted line is called in network calculus the arrival curve of the traffic and it represents at a
generic time t the maximum increment presented by the traffic between two generic time points q and
q+ t.

NaNoC Deliverable-2.3-v2.0 Page 7 of 46

PUBLIC

3. Serving Traffic

For implementing QoS, incoming traffic must be served by NoC nodes. In the context of this document,
classes of service presented in chapter 5 represent a classification of traffic within the NoC according to
characteristics which are suitable for enforcing QoS. For determining which characteristics are relevant,
in this chapter we study traffic models in section 3.1 and technique to serve traffic under these models in
section 3.2. In order to increase the efficiency in QoS over NoCs, we propose in chapter 4 some advances
on utilization bounds presented in section 3.2.1.

3.1 Traffic Models

Traffic models can be regarded as processes whose realizations are subject to given traffic characteristics.
In sections 3.1.1 and 3.1.2 we present models for which schedulability analysis has been successfully
employed and are hence supported by QoS techniques.

3.1.1 Simple traffic models

Rate-monotonic scheduling is the most common technique for resource reservation. It is commonly
applied to a set of software tasks, but it can be equally applied to a set of transactions if the busy time of a
task represents the busy time of a data transfer, as shown in section 2. With the terminology introduced to
this purpose within this document, rate-monotonic scheduling consists of associating to each transaction
a priority which is inversely proportional to the period of the deadlines. In their seminal work in [10],
Liu and Leyland demonstrated that if the highest priority is always scheduled first and all transactions are
preempt-able, all deadlines are met as long as the n data rates Ui,∀i ∈ 1, . . . , n of all ongoing transactions
satisfy:

n
∑

i=1

Ui ≤ n(
np

2− 1) (3.1)

where:

Ui
.
= Ci/Ti is the definition of data rate.

Ci busy time for one periodic transfer within the transaction i.

Ti period of the deadline within the transaction i.

n number of simultaneous transactions.

The inequality (3.1) states a simple condition under which it is ensured that a set of transactions
bearing periodic transfers whose sole data rate is known, is guaranteed specific bandwidth and latency.

This condition is sufficient but not necessary, and it is not tight in the sense that there exist sets
U1, . . . , Un which violate (3.1) although there exist no combination of C1, . . . , Cn and T1, . . . , Tn which
cannot meet all deadlines under rate-monotonic scheduling.

NaNoC Deliverable-2.3-v2.0 Page 8 of 46

PUBLIC

tr
an

s.
3

tr
an

sa
ct

io
n

3

deadline

transfer t

t

t

average data ratetransfer rate

latency

backlog

Figure 3.1: Relation between data rate, latency and backlog in a guaranteed traffic flow, derived from
the real-time scheduling model of periodic tasks.

Bini et al. have identified in [4] the tightest sufficient condition based on sole data rates Ui, which is:

n
∏

i=1

(Ui + 1)≤ 2 (3.2)

This condition is still sufficient and not necessary, but it can be proved that this is the tightest condition
if only data rates Ui are known, because for every set U1, . . . , Un which violates (3.2) there is at the least
one combination of C1, . . . , Cn and T1, . . . , Tn which cannot meet all deadlines under rate-monotonic
scheduling.

Condition (3.2) imposes an upper limit to the utilization U
.
=
∏n

i=1(Ui + 1) of a NoC node under
periodic guaranteed traffic if only data rates are known.

The periodic or sporadic traffic flows, sustainable through bound (3.2), must bear sufficient backlog
at the beginning of the period: to make this point clear consider that if all flows would start transporting
their backlog just in time to comply with their deadline, without leaving any slack, it would not be
possible to meet all deadlines if any two intervals between start and deadline would overlap. Figure 3.1
provides a graphical representation of the relations among the traffic characteristics of one individual
flow, in particular:

flow latency= deadline

�

1−
average data rate

transfer rate

�

(3.3)

because it is clear from figure 3.1 that

average data rate=
backlog

deadline

transfer rate=
backlog

deadline− latency

In symbols, the flow latency expressed by (3.3) is merely Ti − Ci and it states the necessity of having
the backlog ready at the beginning of the period in order to schedule it under the test of (3.2), in fact the
latency Ti − Ci is exactly the one we have declared by setting the deadline Ti on the flow.

Transporting data over one node delays it because of other interfering transfers, i.e. transfers which
bear a higher priority and increase the latency of the current transfer by preempting it. Consequently,
the backlog after transversing the first node is not ready anymore at the beginning of the period and the
preemption time due to higher priority transfers must be accounted in the schedulability condition. The
delay to which a transfer is subject due to preemptions, is called network latency, not to be confused with
the flow latency expressed by (3.3).

NaNoC Deliverable-2.3-v2.0 Page 9 of 46

PUBLIC

One straightforward approach to account network latency consists of enlarging Ci to cover the pre-
emption time, but this grossly reduces the achievable real utilization of the node, i.e. its the busy time,
because it disregards the fact that during the preemption time of one backlog the node could actually
transport data of another backlog.

In order to increase the utilization of the NoC nodes under further types of guaranteed traffic, further
insight into the traffic characteristics of the transactions must be won. A first step can be carried out by
knowing the deadlines Ti of the transactions and the elapsed fraction of busy time Ci per transaction.
With this data, the earliest deadline first (EDF) scheduling, consisting of scheduling always the transaction
whose earliest deadline is next, can achieve up to 100% utilization of NoC nodes under guaranteed traffic.
While EDF scheduling appears attractive of a single node, it comes on system level at the price of having
to sort out at any generic time all transactions in order to find out which one bears the next earliest
deadline on a node along the route through interfering transaction. This is clearly not feasible.

A feasible solution consists in applying a technique known as deadline monotonic scheduling, proposed
by Audsley in [2], and consisting of assigning the higher priorities to transfers which get closer to their
deadlines. In this solution, the network latency can be simply subtracted from the deadline to produce a
new deadline on which the deadline monotonic scheme can be applied. Yet, before a route can be defined
a schedulability test must be carried out to determine whether the QoS in presence of network latency
can be met and this test is more demanding than the ones based on utilization, which we have seen so
far. A test developed by Bini and Buttazzo in [5] offers a parametrized trade-off between tightness and
complexity, hence it can be employed according to the demands of its users.

While EDF scheduling might definitely be an overkill for simple traffic models, traffic characteristics
can definitely be too complex to be efficiently embedded in periodic sequences of data transfers at fix
rates. If traffic significantly differs from the periodic model into which it has to be embedded, fitting
it into a periodic model would lead to gross loss of utilization. In such cases, loading the node with a
higher utilization might justify more costly solutions and requires exploiting further traffic characteristics
for which classic EDF scheduling does not apply. Service curve scheduling techniques, introduced in the
section 3.1.2, provide solutions to schedule more complex traffic.

3.1.2 Complex traffic models

The traffic characteristics which can be sustained by heterogeneous components can be rather complex:
for example it is common to accept a maximum burst size and a lower data rate, which needs to be paused
by short recovery times, sometimes known in packet-based networks as “inter-frame gap”.

Such components can be characterized by service curves, introduced by Cruz in [6, 7]: figure 3.2
provides a graphical representation of a service curve along with the traffic which has generated it. The
service curve at time t represents the minimal amount of traffic that a component can serve within a time
window of size t if backlog is available. The “translated service curve” in figure 3.2 demonstrates that if
the origin of the service curve is translated to any generic point of a traffic realization, the service curve
always constitutes a lower bound of the traffic. Obviously, the service curve must be the highest of all
lower bounds in order to be a tight bound on the traffic.

An application of service curves in resource reservation for QoS is featured by the SCED algorithm,
proposed in [12]. Behind the formalism employed in [12], the generic SCED algorithm consists of assign-
ing deadlines to data packets outgoing from one node according to the service curves to be guaranteed
to every traffic flow: if packets under such deadlines are scheduled by an EDF policy and the schedule
is feasible (i.e. no overloading situation takes place), then the EDF policy guarantees to every flow its

NaNoC Deliverable-2.3-v2.0 Page 10 of 46

PUBLIC

traffic

service curve

translated service curve

t

se
rv

ic
e

Figure 3.2: Relation of the service curve to a traffic realization

time

da
ta

SCED deadlines

Traffic

Service curves

Figure 3.3: Relation of the SCED deadlines to the actual traffic

assigned service curve even if traffic is random. A representation of a traffic flow with the associated
service curve and deadlines is presented in figure 3.3: the SCED deadlines are constructed sweeping the
service curve along the traffic flow and obtaining the infimum1 of all swept curves.

An implementation of the generic SCED algorithm is not feasible, because it requires iterations over
a long record of past traffic and future deadlines: one should constantly calculate the infimum between
the service curve applied to the current traffic and the already calculated future deadlines. In order to
avoid this computational effort, the work in [12] proposes a class of simple service curves for which this
computation reduces to few simple operations.

This class consists of curves shown in figure 3.4, which present a latency and a constant service rate:
In this case, the deadlines are a straightforward function of the accumulated traffic, with a reset as

soon as the deadlines fall at the value of the latency. Figure 3.4 shows this computation in a graphical
way: one can ideally picture to attach the service curve to the traffic as it had been done in figure 3.3 and
as soon as one translated service curve falls below the currently effective one, it dominates it completely
and becomes the new effective service curve.

1For practical purposes it is obvious that the infimum, also known as greatest lower bound, always corresponds to the mini-
mum, but in network calculus theory it is common to refer to the infimum in order to keep results valid for fluid traffic models.

NaNoC Deliverable-2.3-v2.0 Page 11 of 46

PUBLIC

t

data

Figure 3.4: Deadlines for a server with fix latency and constant rate.

A

C
B D

E

F

G

Figure 3.5: Route A-B-C-D interferes with route E-F-G.

3.2 Service models

Service models can be regarded as time partitioning rules for access to a NoC node or a communication
sink. Simple traffic models are served by techniques mentioned in section 3.2.1. Some advances on
these techniques have been reported in chapter 4. Section 3.2.2 reports management techniques for
more complex traffic, discussed in section 3.1.2.

3.2.1 Serving simple traffic

In this section we employ the bound (3.2) for sustaining traffic guarantees for simple periodic traffic
models to which we assign static priorities. Although the same reasoning applies also to the bound (3.1),
we do not employ this bound because it is looser and merely bears the advantage of a slightly lower
computational effort, which is not significant in our context. In chapter 4 we will present some novel
tighter bounds.

For serving simple traffic, every traffic flow (Ci, Ti) must be transported over a static route through
the NoC, ensuring that the utilization of every node is sufficient for sustaining required throughputs and
achieving achieving given latencies.

Figure 3.5 presents a route across multiple nodes: the route E-F-G interferes with all nodes on the
route A-B-C-D, because they all stop transporting data due to backpressure from the single link sustaining
trunks C and F, if the transfer E-G has higher priority.

Although this is an idealization, because nodes have some buffer and backpressure has a propaga-
tion delay, schedulability analysis assumes worst case phase shifts and stationary behavior: under these

NaNoC Deliverable-2.3-v2.0 Page 12 of 46

PUBLIC

assumptions the fill levels of the buffers and the backpressure propagation delay are negligible.
Consequently, the schedulability test is just (3.2), which can applied to all transfers which have been

transported though one node with interference along their route.
When a transfer travels over multiple nodes with interference, instead, the schedulability test (3.2) is

not directly applicable anymore because the backlog gets distributed over time due to preemption of
interfering transfers. In this case overall network latency experienced by a single flow under preemption
of higher priority transfers over a single node can be computed using a method proposed by Audsley in
[2, 3]:

overall latency= min
k=1,...,+∞

{R(k)i : R(k)i = R(k−1)
i }

+ Ti − Ci

(3.4)

with R(k)i defined by recurrence as

R(0)i = Ci

R(k)i = Ci +
∑

j:T j<Ti

&

R(k−1)
i

T j

'

C j

In practice, the iteration over k must be carried out only until R(k)i = R(k−1)
i . Still, this formula cannot

be directly employed for an online schedulability test because of its pseudo-polynomial complexity. An
algorithm by Bini and Buttazzo in [5] can be employed instead to test schedulability under several trades-
off between computational demand and accuracy of the test.

From (3.4) we can note that we must discover all transfers which are interfering with the one for
which we need to compute the network latency. These are not only transfers which directly preempt the
one in question, but rather also transfer which preempts these preempting transfers. Shi and Burns have
developed a technique for applying (3.4) to a NoC and published it in [16].

3.2.2 Serving complex traffic

Commonly, dynamic priorities refer to the earliest deadline first (EDF) scheduling policy, which states that
at any point in time the transfer with the earliest deadline must get the highest scheduling priority, by
dynamic assignment over time watching all deadlines of outstanding transfers. Obviously, the EDF policy
can be implemented for the traffic models presented in section 3.2.1 and demands a very straightforward
and simple schedulability test:

n
∑

i=1

Ci

Ti
≤ 1

Nevertheless, because of several known engineering difficulties, whose most relevant to NoCs have been
mentioned in section 3.1.1, EDF schedulers are not commonly found in real-time computing systems,
with some notable exceptions like the Xen scheduler.

Conversely, the fix transfer raster which is demanded by the static priority assignment presented
in section 3.2.1 is highly inefficient if the traffic cannot be served with this fix raster. As discussed in
section 3.1.2, such more complex traffic characteristics can be framed within the SCED scheduling policy,
presented in [12], which reduces to the classic EDF policy if traffic is periodic.

The key result behind SCED policies is that the EDF assignment is still optimal if deadlines are assigned
according to service curves and these service curves can be calculated from sinks to sources along the

NaNoC Deliverable-2.3-v2.0 Page 13 of 46

PUBLIC

high priority

low priority

Figure 3.6: Service curves for a high and low priority transfer.

routes in a NoC. In general, these service curves need only to be convex, but the SCED policy can only be
enforced at acceptable costs if the service curves consist of latency-rate characteristics, as shown in figure
3.4.

Figure 3.6 presents a graphical example of this calculation based on a concatenation theorem reported
in [9]. In practice, the service curves are calculated along paths from sources to sinks, adding latencies
and taking the lower slopes. When transfers are transported over common links, either one transfer is
prioritized, as in the example in figure 3.6 or both are interleaved in some round-robin fashion. The
increased latency must be accounted according to the chosen arbitration scheme: in the example shown
in figure 3.6, the high priority transfer retains its latency while the low priority transfer must account for
the preemption time due to the high priority transfer.

Once the service curves are calculated, SCED deadlines can be assigned on every node and EDF
scheduling on every node ensures locally that these deadlines are not violated. The QoS experienced at
the sink is clearly looser than the one imposed at the source: in order to meet given constraints, though,
the computation of the service curves can also be carried out also backward, from sinks to sources. In
this case the traffic is schedulable if the QoS demanded at the sinks is loose enough to accommodate
rates and latencies met along the path and present feasible service curves at the sources.

NaNoC Deliverable-2.3-v2.0 Page 14 of 46

PUBLIC

4. Advances on QoS bounds

In this chapter we report some advances we developed on utilization-based scheduling, which is partic-
ularly attractive if the data rates are known but the burst characteristics of the traffic are not entirely
known, and service curve scheduling, which is attractive to hierarchically propagate the effect of traffic
characteristics of the NoC to the system by modeling the slowdown caused on the software. In section
4.1 a new theorem on utilitation-based scheduling will be introduced and we will show a graphical in-
terpretation of the results which leads to two further theorems in sections 4.2 and 4.3. In section 4.5 a
theory is given leading to an algorithm which determines a bound on the service provided by a NoC in
order to let the software being executed be compliant with service constraints imposed at system level.

4.1 Remaining Utilization

In this section we introduce a theorem for calculating the utilization of the nodes in a NoC under periodic
traffic models presented in section 3.1.1. We provide for this theorem an algebraic proof which demon-
strates that its main formula (4.1) is equivalent to the hyperbolic bound (3.2) presented in [4]. More
interestingly, we provide a graphical interpretation of this result from which tighter bounds are derived
in sections 4.2 and 4.3: these results are no contradiction of the proof in [4] that the hyperbolic bound
(4.1) is the tightest bound on utilization, because they employ the backlog Ck and period Tk individually
and not just Uk

.
= Ck/Tk.

To begin with, we state the following theorem.

Theorem 1 (remaining utilization). If a node under a utilization Ui−1 becomes subject to a periodic traffic
with backlog Ci and period Ti, its utilization becomes:

Ui =
TiUi−1 − Ci

Ti + Ci
(4.1)

In order to prove this theorem, we employ just the hyperbolic bound (3.2) and show that formula
(4.1 can be obtained by algebraic manipulation.

Proof. By employing the hyperbolic bound (3.2) for a set of transfers (C1, T1), . . . , (Cn, Tn), we can find
out what is the remaining utilization Un as:

n
∏

i=1

�

Ci

Ti
+ 1

�

(Un + 1) = 2

from which one can rather simply obtain:

Un =
2
∏n

i=1 Ti −
∏n

i=1(Ci + Ti)
∏n

i=1(Ci + Ti)
(4.2)

NaNoC Deliverable-2.3-v2.0 Page 15 of 46

PUBLIC

Now we must express the product
∏n

i=1(Ci + Ti) in an explicit form. By executing the first iterations
of the product:

n
∏

i=1

(Ci + Ti) = C1

n
∏

i=2

(Ci + Ti) + T1

n
∏

i=2

(Ci + Ti)

= C1C2

n
∏

i=3

(Ci + Ti) + C1T2

n
∏

i=3

(Ci + Ti) + T1C2

n
∏

i=3

(Ci + Ti) + T1T2

n
∏

i=3

(Ci + Ti)

it can be seen that the product consists of a sum of all possible product sequences M1 · · ·Mn with Mi ∈
{Ci, Ti}.

The product
∏n

i=1(Ci + Ti) can be expressed in the following form:

n
∏

i=1

(Ci + Ti) = Cn

n−1
∏

i=1

(Ci + Ti)+

TnCn−1

n−2
∏

i=1

(Ci + Ti)+

TnTn−1Cn−2

n−3
∏

i=1

(Ci + Ti)+

...

Tn · · · T4C3

2
∏

i=1

(Ci + Ti)+

Tn · · · T4T3C2(C1 + T1)+

Tn · · · T4T3T2C1+

Tn · · · T4T3T2T1

(4.3)

Observing that the last addend of (4.3) is
∏n

i=1 Ti, (4.3) can be substituted in (4.2), obtaining:

Un = −
Cn
∏n−1

i=1 (Ci + Ti)
∏n

i=1(Ci + Ti)
+

−
TnCn−1

∏n−2
i=1 (Ci + Ti)

∏n
i=1(Ci + Ti)

+

−
TnTn−1Cn−2

∏n−3
i=1 (Ci + Ti)

∏n
i=1(Ci + Ti)

+

...

−
Tn · · · T4C3

∏2
i=1(Ci + Ti)

∏n
i=1(Ci + Ti)

+

−
Tn · · · T4T3C2(C1 + T1)

∏n
i=1(Ci + Ti)

+

−
Tn · · · T4T3T2C1
∏n

i=1(Ci + Ti)
+

+
Tn · · · T4T3T2T1
∏n

i=1(Ci + Ti)

NaNoC Deliverable-2.3-v2.0 Page 16 of 46

PUBLIC

Ui−1

Ui

Ti

Ci

Ti + Ci
Ti+Ci

2

backlog

time

TiUi−1

Ti Ui−1−Ci

2

Figure 4.1: Graphical interpretation of the remaining utilization.

and simplifying the ratios we obtain:

Un = −
Cn

Cn + Tn
+

−
TnCn−1

∏n
i=n−1(Ci + Ti)

+

−
TnTn−1Cn−2

∏n
i=n−2(Ci + Ti)

+

...

−
Tn · · · T4C3

∏n
i=3(Ci + Ti)

+

−
Tn · · · T4T3C2
∏n

i=2(Ci + Ti)
+

+
Tn · · · T4T3T2
∏n

i=2(Ci + Ti)

T1 − C1

C1 + T1

These terms can be reorganized as:

Un =
Tn

Cn + Tn

Tn−1

Cn−1 + Tn−1
· · ·

T2

C2 + T2

T1 − C1

C1 + T1

−
Tn

Cn + Tn

Tn−1

Cn−1 + Tn−1
· · ·

T3

C3 + T3

C2

C2 + T2
...

−
Tn

Cn + Tn

Tn−1

Cn−1 + Tn−1

Cn−2

Cn−2 + Tn−2

−
Tn

Cn + Tn

Cn−1

Cn−1 + Tn−1

−
Cn

Cn + Tn

from which the recursive structure of (4.1) can be recognized assuming that the node is initially empty,
hence U0 = 1.

A graphical interpretation of formula (4.1) is presented in figure 4.1: a backlog Ci must be deployed
within a period Ti on a node under utilization Ui−1. The utilization Ui−1 guarantees that a total backlog of

NaNoC Deliverable-2.3-v2.0 Page 17 of 46

PUBLIC

Ui

backlog

time

Ūi

Figure 4.2: Higher utilization achieved by shorter periods.

TiUi−1 can be transported, hence a total backlog of TiUi−1−Ci remains available for transport by a further
transaction and a total time of Ti − Ci remains available for transporting it. The remaining transactions
must be periodic, transport the whole backlog TiUi−1 − Ci, and the worst utilization is achieved if the
whole remaining backlog is transported as shown in the figure, because it achieves the maximum distance
from the utilization Ui: every shorter period would increase the utilization. The period for this transaction
is exactly Ti+Ci

2
and the backlog is Ti Ui−1−Ci

2
, the utilization Ui is defined as the fraction of backlog by

utilization and corresponds to formula (4.1).

4.2 Bounded Periods

The graphical interpretation of figure 4.1 has shown that the utilization employed for the hyperbolic
bound (3.2) involves no assumption on the individual backlog and period of the transfers. The utiliza-
tion Ui can only be achieved if the period is Ti+Ci

2
and the corresponding backlog is Ti Ui−1−Ci

2
and gets

transported at the beginning of the two periods: shorter periods would be able to transport the same
backlog in more periods, achieving a higher utilization. This is demonstrated by figure 4.2, which dis-
plays a utilization Ūi > Ui for transporting the same total backlog.

This reasoning can be applied to increase the available utilization if we know that the set of subsequent
transfer, from i + 1 onward, will have an overall period bounded by a known upper limit T̄i+1. This is
the case if merely one subsequent transfer is scheduled or if subsequent transfers i + 1, i + 2, . . . are
harmonic: for example, if Ti+1 = 4 and Ti+2 = 2, they are harmonic because it holds with Ti+1 ≥ Ti+2

that Ti+1/Ti+2 ∈ N, then T̄i+1 = 4. This is also the case if the subsequent transfers i + 1, i + 2, . . . are
not harmonic but they bear relatively small periods with respect to the current transfer i: for example, if
Ti = 10, Ti+1 = 3 and Ti+2 = 2, then T̄i+1 = 6 is considerably lower than Ti.

Figure 4.1 has shown that the remaining utilization is the worst case one reached by a periodic
transfer which transports the backlog TiUi−1−Ci within the time Ti. The problem in this case consists of
determining the C̄i+1 which transports the same backlog if the period Ti+1 is bounded by the upper limit
T̄i+1.

This problem is solved by the following theorem.

Theorem 2 (tighter utilization). If a node under a utilization Ui−1 becomes subject to a periodic traffic with
backlog Ci and period Ti, and the schedule of further transfers bears a period equal to or lower than T̄i+1,

NaNoC Deliverable-2.3-v2.0 Page 18 of 46

PUBLIC

backlog

time

Ui+1

T̄i+1 2T̄i+1 4T̄i+1

TiUi−1 − Ci

Ti

C̄i+1

j

Ti

T̄i+1

k

T̄i+1

Figure 4.3: Calculation of utilization achieved by a bound on period.

its utilization becomes:

Ui =
C̄i+1

T̄i+1
(4.4)

where

C̄i+1 =
TiUi−1 − Ci
j

Ti

T̄i+1

k

+ 1
if C̄i+1 ≤ Ti −

�

Ti

T̄i+1

�

T̄i+1 (4.5)

C̄i+1 =
TiUi−1 − Ci − Ti +

j

Ti

T̄i+1

k

T̄i+1
j

Ti

T̄i+1

k if C̄i+1 ≥ Ti −
�

Ti

T̄i+1

�

T̄i+1 (4.6)

Proof. Inspecting figure 4.3, it can be noted that the backlog transported within Ti depends on whether
the last transfer Ci can complete within Ti or not. If it can be complete within Ti, then the transported
backlog is merely C̄i+1 for the number of periods which fit into Ti, hence:

C̄i+1

�

Ti

T̄i+1

�

if it cannot be completed within Ti, the part of backlog which can be transported within the last period is

Ti −
�

Ti

T̄i+1

�

T̄i+1

These formulae can be organized into the following equation which states that the transfer with period
T̄i+1 must be able to transport the whole remaining backlog TiUi−1 − Ci:

TiUi−1 − Ci = C̄i+1

�

Ti

T̄i+1

�

+min

�

C̄i+1, Ti −
�

Ti

T̄i+1

�

T̄i+1

�

from this formula C̄i+1 can be determined according to (4.5) and (4.6).

As shown in figure 4.4, one can simply try the computation of C̄i+1 according to the more likely
between (4.5) and (4.6) and verify if the condition on C̄i+1 is met. If it is not met, then it must be met in
the other case if the i-th transfer (Ci, Ti) is schedulable.

A careful reader might observe that for T̄i+1→ 0 the utilization Ui →
Ti Ui−1−Ci

Ti
(hint:

j

Ti

T̄i+1

k

+1≈ Ti

T̄i+1

when T̄i+1→ 0).

NaNoC Deliverable-2.3-v2.0 Page 19 of 46

PUBLIC

1 function [Ui] = utilization_bp(Ci ,Ti,Uim ,Tbip)

2

3 Cbip=(Ti*Uim -Ci)/(floor(Ti/Tbip)+1);

4

5 if Cbip >= Ti-floor(Ti/Tbip)*Tbip

6 Cbip=(Ti*Uim -Ci-Ti+floor(Ti/Tbip)*Tbip)/floor(Ti/Tbip);

7 end

8

9 Ui=Cbip/Tbip;

Figure 4.4: Implementation of (4.6) in Octave: Ci is Ci, Ti is Ti, Uim is Ui−1, Tbip is T̄i+1, Cbip is C̄i+1

and Ui is Ui.

Ui−1

Ui

Ti

Ci Ti+Ci+Ri

2

backlog

time

TiUi−1

min(Ti Ui−1−Ci ,Ti−Ci−Ri)
2

Ri + Ci

Ri

Figure 4.5: Utilization under rate monotonic with release times.

4.3 Network Latency

In a NoC, after a transfer has been subject to interference, the backlog has accumulated a network latency
as high as the preemption time due to higher priority transfers. As mentioned in section 3.1.1, if the
backlog to be transfered within a period is not available at the beginning of the period, the schedulability
tests do not guarantee the deadlines anymore.

In this section we employ our graphical interpretation of the schedulability tests to give tighter bounds
on schedulability of transfers subject to propagation delay. As Shi and Burns noted in [16], this problem
is in general NP-hard.

While there are several techniques to deal with schedulability under release times, it is attractive
to retain the simplicity of the rate monotonic scheduling. A straightforward way to do so consists of
replacing the transfer length Ci with the sum Ri+Ci, hence considering the network latency a part of the
transfer.

Figure 4.5 shows an improvement over this basic method: the red curve indicates a transfer of backlog
Ci subject to network latency Ri. Taking the same approach employed in section 4.1, we allocate Ci idle
time between Ri and Ti in the worst case condition, considering that if Ci +Ri gets too close to Ti, there
might be no time to transfer TiUi−1 − Ci backlog and only Ti − Ci − Ri can be transported. The reason
behind this observation is that it might be entirely possible to construct models with one instant in which
a node remains idle for the whole time up to Ri and then must transport Ci plus the backlog resulting
from the utilization Ui. These considerations can be casted as the following theorem.

Theorem 3 (utilization under release times). If a node under a utilization Ui−1 becomes subject to a periodic

NaNoC Deliverable-2.3-v2.0 Page 20 of 46

PUBLIC

traffic with backlog Ci, period Ti and latency Ri, its utilization becomes:

Ui =
min(TiUi − Ci, Ti − Ci − Ri)

Ti + Ci + Ri
(4.7)

Although this result is an improvement over the basic method, it is clear that the bound is still rather
lose and especially if Ri grows high, the scheduling can become rather inefficient. For example note that
if Ci + Ri = Ti, the remaining utilization drops to zero, so this single transfer can occupy an entire node
regardless of the size of Ci.

The reason for this inefficiency is the fact that the utilization parameter does not contain enough
information: in the case Ci + Ri = Ti this is evident because when the transfer i starts at time Ri it
may not be preempted anymore and any utilization greater than zero would allow another transfer with
shorter period to preempt it.

Audsley has proposed in [2] a different policy called deadline monotonic scheduling. In this approach
the priorities are not assigned according to the periods of the transfers, but instead they are assigned
according to the slack available before each deadline. The network latency in this case can be simply
considered a part of the size (Ci → Ci + Ri) and results in a tighter deadline, which in turn results in a
higher priority.

The network latency affecting a flow can be calculated according to [16, eq. (15)], which is a latency
analysis equation to be solved iteratively. An important property is that if a node is executing a deadline
monotonic policy, the utilization-based tests can still be applied: in fact it can be proved that if a set of
transfers is schedulable, the deadline monotonic policy implements a feasible schedule.

We can improve theorem 3 for the deadline monotonic case observing that the problem discussed
for the case Ri + Ci = Ti does not exist under the deadline monotonic policy because the zero slack
corresponds to the top priority. Consequently the minimum operator can be removed, leading to the
following theorem.

Theorem 4 (utilization under release times in deadline monotonic scheduling). If a node under a utiliza-
tion Ui−1 and a deadline monotonic policy becomes subject to a periodic traffic with backlog Ci, period Ti

and latency Ri, its utilization becomes:

Ui =
TiUi − Ci

Ti + Ci + Ri
(4.8)

A better test, with the property of being scalable in workload versus accuracy, has been developed by
Bini and Buttazzo in [5] but it could not be directly employed to our problems and a redesign to apply
its concepts to our context has not been carried out because of a prospective little potential for practical
improvements.

4.4 The Nested QoS problem

Rather than carrying out a static timing analysis of the worst-case execution times (WCET analysis), the
framework of network calculus extracts performance characteristics from a statistically representative
population of workload realizations (soft real-time) or from an analytical model of the workload (hard
real-time). In network calculus, a service curve provides a guaranteed lowest bound on the amount of
events which can be processed over time by the workload. This is a deterministic bound and, if the

NaNoC Deliverable-2.3-v2.0 Page 21 of 46

PUBLIC

Figure 4.6: Top: a service curve σ(t) is obtained from C(t) by (4.9). Bottom: the preemption γmodifies
the service curve from σ(t) to σγ(t).

worst-case is present among the realizations, it corresponds to the outcome of a WCET analysis. In
practice the service curve presents often a more realistic and usually less pessimistic bound than the
one derived by a WCET analysis, because it is extremely unlikely that any reasonable single realization
can stimulate all longest code paths. Furthermore, WCET analysis can hardly account for variability
effects such as the ones described in [1], which are more correctly represented in a proper population of
workload realizations from which the service curve gets computed.

The lowest service curve which a software application must guarantee is a system demand and can
be considered as given: we term it the “target” service curve. Conversely, it can be useful to compute the
service curve presented by a software application with the purpose of testing whether the target curve
lays below the offered one and hence it is satisfied.

For simplification we consider one single software thread in charge of executing an application, al-
though our results can be easily extended to a whole system if the time scale being regarded is large
enough. This thread may be preempted by stalling on NoC accesses only as long as the service curve re-
sulting from the preempted realization of the thread remains above the target one. In order to highlight
that our results are holistic and can be employed for any software which can be regarded as sequential
at a time scale high enough, rather than referring to a thread we refer to a virtual processor.

An example showing the effect of preemption on a service curve is presented in figure 4.6. C(t) is
the capacity of a software to provide a service over time: we will show later how it can be extracted from
several workload realizations. σ(t) is the service curve obtained from C(t) according to [18] as

σ(∆) =min
t≥0
{C(∆+ t)− C(t)} (4.9)

and it lays above σ̂(t), which is the target service curve. The effect of thread preemption on C(t) is
represented by C[γ(t)], from which the service curveσγ(t) is obtained asσγ(∆) =mint≥0{C[γ(∆+ t)]−
C[γ(t)]} according to (4.9). σγ(t) lays just above σ̂(t) and shows that γ(t) is one limit of the preemption

NaNoC Deliverable-2.3-v2.0 Page 22 of 46

PUBLIC

which C(t) can tolerate if a minimal service σ̂(t) has to be guaranteed. In order to determine a valid
thread schedule, we must determine for every thread a γ(t) such that C[γ(t)] delivers σγ(t)≥ σ̂(t).

Since we could find no solution for this problem in the existing literature, we have developed a novel
algorithm for determining an upper bound on every feasible γ(t) and hence providing necessary and
sufficient conditions for the delay which may be introduced into the thread without violating the target
curve. These upper bounds are called deadline curves δi(t) and their calculation can be carried out
through algorithm 1 presented in section 4.5.

4.5 Calculation of Deadline Curves

Because the terminology in [8] has become quite widespread, we borrow and slightly reformulate it
here to adapt it to our case. In agreement with [18] we mean by “traffic flow” a flow of demand for
computation and by the related “backlog” the amount of demand can be placed before results are needed
to generate further demand: this quantity models the latency tolerance capability of a processor, e.g. due
to outstanding load mechanisms, as well as the latency tolerance capability of an application due to non-
blocking accesses to components connected to a NoC.

Definition 1 (arrival curve). Say αi(·) the arrival curve associated to the i-th virtual processor, such that:

αi(t) = sup
Ri(·)

sup
s
{Ri(t + s)− Ri(s)}

according to [18, Prop. 2], where Ri(·) varies over the family of input flows.

This means that αi(·) is the arrival curve for the worst-case input flow.

Definition 2 (variable capacity). Say Ci(·) the variable capacity associated to the trace of the i-th virtual
processor, such that C(t) is maximum guaranteed service provided by the i-th virtual processor up to t time
after it starts.

Definition 3 (service curve). Say σi(·) the service curve associated to the i-th virtual processor, such that:

σi(t)
.
= sup

s
{Ci(t + s)− Ci(s)}

according to [18, Prop. 3].

Let the maximal virtual delay to which the i-th traffic flow is subject be Di and let the maximal backlog
size reserved to the said traffic flow be Mi: this bounds the service presented to the i-th traffic flow by a
minimal service curve:

Lemma 1 (minimal service). Given a maximal virtual delay Di and a maximal backlog Mi associated to
the i-th traffic flow, the minimal service curve σ̂i(t) that the i-th thread may present to the flow is

σ̂i(t)
.
= sup

t≥0
(αi(t − Di),αi(t)−Mi, 0)

Proof. this is a straightforward consequence of [8, Th. 1.4.1] and [8, Th. 1.4.2]

A deadline curve δi(·) is a generalization of the usual concept of deadline. We define it as follows:

NaNoC Deliverable-2.3-v2.0 Page 23 of 46

PUBLIC

timeqi(t,s)capacityts Ci(·)i(·)
Figure 4.7: Tolerable capacity delay: assuming a flow can start only at time s, the variable capacity Ci(·)
can be delayed at time t by an amount q− t without violating the minimal service curve σ̂i(·).

Definition 4 (deadline curve). The deadline curve δi(·) represents the amount of time δi(t) which has to
be spent in the i-th virtual processor trace before time t, for avoiding service violations of the lower bound
σ̂i(t).

Obviously δi(t) is a positive wide-sense increasing function and, since in a scalar architecture no more
than one instruction per unit time can be executed, it must hold that:

0≤
∂
∑

i δi(t)
∂ t

≤ 1 (4.10)

Based on this definition, the capacity of the i-th virtual processor, once it has been scheduled, is
Ci[δi(·)]. Now conditions must be determined on δi(·), such that the service curve of the scheduled i-th
virtual processor is above the the minimal service curve: σi(t)≥ σ̂i(t),∀t. To this purpose the tolerable
capacity delay is defined as follows:

Definition 5 (tolerable delay). Given a variable capacity curve Ci(·) and a minimal service curve σ̂i(·), let
ζi(t, s) be the tolerable capacity delay at time t for a service begun at time s:

ζi(t, s)
.
= inf

q≥s
{q : Ci(t) = σ̂i(q− s) + Ci(s)}

−sup t̄{ t̄ : Ci(t̄) = Ci(t)}}

Referring to the figure 4.7, a flow starting at time s must obtain at time q at least a service σ̂i(q −
s) + Ci(s). Ci(·) reaches this level at t and may not increase it until a time t̄, motivating the definition.
In order to effectively compute the values, it is useful to introduce the pseudo-inverse [8, Def. 3.1.7].

Definition 6 (pseudo-inverse).

f U(x)
.
= sup

t
{t : f (t)≤ x} upper pseudo-inverse

f L(x)
.
= inf

t
{t : f (t)≥ x} lower pseudo-inverse

Once σ̂L
i (·) and CU

i (·) have been computed, the tolerable capacity delay can be obtained as follows.

NaNoC Deliverable-2.3-v2.0 Page 24 of 46

PUBLIC

Lemma 2 (tolerable delay). The tolerable delay ζi(t, s) of a variable capacity Ci(·) serving within a service
bound σ̂i(·) a flow started at time s is:

ζi(t, s) = σ̂L
i [Ci(t)− Ci(s)] + s− CU

i (t)

Proof. per definition of ζi(t, s), Ci(t) = σ̂i(q−s)+Ci(s). This leads to q = σ̂L
i (Ci(t)−Ci(s))+s, where the

lower pseudo-inverse is required by the inf in the definition of ζi(t, s). The proof is concluded observing
that ζi(t, s) = q− t̄ and t̄ = CU

i (t)

For each instant t, there is a minimal tolerable capacity delay ζi(t) which can be achieved for flows
starting at a unique instant time s(t):

Definition 7 (minimal tolerable delay). Given a tolerable delay ζi(t, s), the minimal tolerable delay in t
is:

ζi(t)
.
= inf

s
{ζi(t, s)}

and this is achieved for a single bounding instant s(t) such that:

s(t)
.
= inf

s
{s : ζi(t, s)≥ ζi(t)}

We just write s(t) rather than si(t) because we always refer to the same trace i. This capacity delay
bound can be employed to bound the deadline curve:

Theorem 5 (deadline bound). A virtual processor i, sustaining its arrival curve αi(·), services its flow with
a maximal Di virtual delay and a maximal Mi backlog if its deadline curve is such that:

δU
i (t)−δ

L
i [s(t)]≤ ζi(t) + t − s(t)

Proof. the condition on δi(·) which makes σi(t)≥ σ̂i(t), with σi(t) being the arrival curve of the sched-
uled capacity Ci[δi(·)], is:

inf
s
{Ci[δi(t + s)]− Ci[δi(s)]} ≥ σ̂i(t)

this condition is equivalent to:

Ci[δi(t)]− Ci[δi(s)]≥ σ̂i(t − s),∀s

Referring to figure 4.8, this condition is verified if the delay introduced between t and s(t) by schedul-
ing Ci(t) is less than ζi(t), because s(t) is the earliest point at which the tolerable delay reaches its
minimum and ∂ δi(t)/∂ t ≤ 1, i.e. the scheduling cannot increase the tolerable delay.

Say u the “delayed” s(t), i.e. u= infū{ū : Ci[s(t)] = Ci[δi(ū)]}, and q the “delayed” t, i.e. q = infq̄{q̄ :
Ci(t) = Ci[δi(q̄)]}. The scheduling does not violate the minimal tolerable delay if:

ζi(t)≥ (q− u)− [t − s(t)]

the proof is concluded observing that s(t) = δi(u) and t = δi(q), hence u= δL
i [s(t)] and q = δU

i (t)

NaNoC Deliverable-2.3-v2.0 Page 25 of 46

PUBLIC

timeqcapacity ts(t) Ci(·) iCi[(·)]i(t) Remainingtolerable delayu
Figure 4.8: Tolerable delay during scheduling: the tolerable delay ζi(t) is reduced after the variable
capacity Ci(·) has been scheduled by δi(·).

Figure 4.9: Feasible Region for deadlines: the upper bound of the gray area is the pseudo-inverse of the
“as-late-as-possible” deadline curve.

NaNoC Deliverable-2.3-v2.0 Page 26 of 46

PUBLIC

This theorem shows that for every instant t, there is a limit to the delay that the deadline curve may
introduce during the last t− s(t) execution time. If this limit is not exceeded, the service provided by the
scheduled thread’s capacity satisfies the requirements.

We can employ this observation for defining a feasible region in which the deadline curve must lay.

Algorithm 1 (Feasibility Region). Say

sn(t)
.
= s(· · · s
︸ ︷︷ ︸

n times

(t) · · ·),Φs,h,e(t)
.
=

¨

h+ t − s,∀t ∈ [s, e]
0 otherwise

and build the sequence
δL

i (t, t̄)
.
= Φs(t̄),ζi(t̄), t̄(t)
· · ·

δL
i (t, sn(t1))

.
= Φsn+1(t̄),ζi(sn(t̄)),sn(t̄)(t)
+δL

i [t, sn−1(t̄)]

then take
δL

i (t) = inf
t̄
{ lim

n→∞
δL

i [t, sn(t̄)]}

Referring to figure 4.9, it is easy to see that limn→∞δ
L
i (t, sn(t1)) converges to the dashed line from

below. For a different time instant t2, the continuous line in figure 4.9 is generated. Repeating this
process for a sufficiently large number of instants and taking the infimum of all the generated lines, an
upper bound to δL

i (t) can be determined and this directly corresponds by pseudo-inversion to a lower
bound to δi(t).

NaNoC Deliverable-2.3-v2.0 Page 27 of 46

PUBLIC

5. Classes of Service

Based on the traffic and service models studied in sections 3.1 and 3.2, we can identify two main classes
of service which can be offered for QoS over NoC: the periodic / sporadic classes presented in section 5.1
and the latency-rate classes presented in section 5.2. In these sections we describe the information which
has to be included in the packet formats for supporting these classes.

5.1 Periodic / sporadic

While scheduling transactions has been traditionally linked to a priority field, we have seen that for
periodic models the knowledge of the backlog per period Ci and the duration of the period Ti allow the
computation of tighter bounds on real-time traffic. This information can be employed by the software
for schedulability testing and for assigning a priority to a transaction and does not need to be included
in an header flit: for canonical NoC models which feature virtual channels for wormhole routing and a
scheme for prevention of head-of-line-blocking like the one presented later in figure 6.4, the priority field
is everything we need in the header.

5.1.1 Indirection of priorities

The priority field must be large enough to accommodate a priority for every possible parallel transfer
present in the NoC. The software must hash the values 1/Ti,∀i to an ordered set of priorities such that
Ti > T j → priority(Ti) <→ priority(T j). If the width of this field is limited, this hashing is impossible to
achieve in the general case, hence the priority assignment must always be carried out exploiting specific
knowledge of the traffic. One possibility to provide a general scheme is to add one level of indirection
to the values, hence rather than the priorities themselves the header flit includes merely an index to
a table of priorities and the software has the possibility of dynamically updating this table. For doing
that, though, it must address all nodes containing a replica of this table and update it, consequently a
protocol must be supported to make all transactions update the tables along their static routes. This can
be implemented as additional set of parameters on the same model employed for programming tables to
define static routes.

5.1.2 Route discovery

In some implementations the addressing scheme of the nodes might enable some route discovery tech-
niques: every node can address a multicast set of nodes, so that from source to destination a directed
multi-level network is available in which header flits must select one static route, if available, or cause
backpressure. This scheme is more demanding on the nodes but eases the traffic management in soft-
ware. The computation of the remaining utilization, shown throughout chapter 4, can be employed for
discovering routes which provide QoS. In this case the priority information is not enough anymore and

NaNoC Deliverable-2.3-v2.0 Page 28 of 46

PUBLIC

both Ci and Ti must be communicated in order to allow the nodes to compute themselves their utilization
and accept or reject the route.

5.2 Latency-Rate

The studies presented in sections 3.1.2 and 3.2.2 have shown that the only parameters which can be
employed by scheduling algorithms are latency and rate constraints.

Consequently, a node must present a buffer per flow and every flow must be served according to a
leaky bucket scheme with a specified rate. This information must be local to every node and the only
information which must be carried by the traffic flow is an identifier which addresses the flits into the
corresponding buffers of the nodes.

NaNoC Deliverable-2.3-v2.0 Page 29 of 46

PUBLIC

6. Experimental Results

6.1 Models for networks-on-chip

In order to study QoS in NoCs and carrying out experiments, we have built simulation consisting of the
components represented in figure 6.1.

These models can be assembled in arbitrary topologies and include processing of header flits, they
are developed in SystemC, employing the SystemQ [17] library for traffic generation, network modeling
and probing with data export, for example toward the R package (http://www.r-project.org).

The whole work enviroment includes a number of monitors as well as data reporting scripts and
setups for Eclipse, GDB and SystemQ.

The SystemC models of the nodes are schematically represented by the block diagram shown in figure
6.2. The models implement output queuing and support static routing with n virtual channels. The
routing tables in the node models support m ≥ n entries and if m transactions are pending in a traffic
source while only n virtual channels are available along a static path, this traffic source is subject to
backpressure until the individual flits have been transported along the route, freeing the virtual channels.

The MAC interfaces support a request/response scheme for generating backpressure under congestion
and methods for scheduling can be redefined by inheritance. Inheritance is also the extension mechanism
for decoding of additional header flit types, but all parameters can be set as well through configuration
files.

Figure 6.3 shows a full mesh configuration which has been used for the experiments reported in this
document. All NoC nodes communicate through their network interface with 4-ports nodes. These nodes
feature wormhole routing, so interference is only generated if traffic must share a port and a channel.

component
source sink

component
source sink

interconnect

node node

node
node

node

any topology

Figure 6.1: Components of the simulation infrastructure

NaNoC Deliverable-2.3-v2.0 Page 30 of 46

http://www.r-project.org

PUBLIC

Decoder

virtual channels

Decoder

MAC in

Decoder

virtual channels

Decoder

MAC in

input ports

Scheduler

virtual channels

Scheduler

Scheduler

virtual channels

Scheduler

MAC out

MAC out

input ports

Figure 6.2: Block diagram of a SystemC model of a NoC node

00 01 02 03

10 11

21

31

12

22

32

13

23

3330

20

MASTER
0

MASTER
1

MASTER
2

MASTER
3

MASTER
4

MASTER
5

SLAVE
4

SLAVE
5

SLAVE
6

SLAVE
7

SLAVE
2

SLAVE
1

SLAVE
3

SLAVE
0

MASTER
6

MASTER
7

Figure 6.3: One full mash configuration used for experiments.

NaNoC Deliverable-2.3-v2.0 Page 31 of 46

PUBLIC

Require: virtual channels← [(channel,priority),. . .]
random shuffle(virtual channels) // shuffle vector of pairs in random order
for all pair ∈ virtual channels do

if priority = pair[1] then
if last flit of a transfer then

pair[1] = ;
end if
return pair[0]

end if
end for
for all pair ∈ virtual channels do

if pair[1] = ; then
pair[1] = priority
return pair[0]

end if
end for
return ;

Figure 6.4: Dynamic assignment of virtual channels to prioritized traffic

6.1.1 Note on topologies for NoC

While we present a mesh topology, it is obvious that several different NoC topologies can be designed. In
our experiments, we analyze the interference across individual paths which are statically defined hence
the overall topology is not really relevant to our results. Indeed, since no dynamic routing is carried out,
one could consider the nodes not involved in paths are non-existing. The only reason for having worked
on a mesh NoC has been the ease of configuring and monitoring it.

6.1.2 Head-of-Line-Blocking Prevention

The nodes support header flits with priority information and a hashing method for dynamic virtual chan-
nel assignment which prevents head-of-line-blocking situations. This method is represented in pseudo-
code in figure 6.4.

The vector “virtual channels” contains the assignments of channel numbers and priorities. Whenever
a flit with a priority arrives to a node, a scheduler searches for a virtual channel which is already hashed
to this priority. If none is found, it searches for a free virtual channel and on failing that as well, it causes
backpressure. If a flit terminates a transfer, then it frees the hashed channel. This simple method, which
ensures no head-of-line-blocking if a node sustains as many transfers as virtual channels are available, is
sufficient for experimenting and validating QoS algorithms in simulation.

6.2 Simulation platform

Figure 6.5 shows a block diagram for a rather generic multiprocessor system-on-chip which is common
in our application domain. An ingress queuing system dispatches packets to an array of processors by
storing them in a shared memory system and issuing interrupts to the processors. An application being

NaNoC Deliverable-2.3-v2.0 Page 32 of 46

PUBLIC

P0

P1

P2

P3

interconnect

in
te

rc
on

ne
ct

m
em

or
y

data

pr
og

ra
m

memory

ingress

monitor

Figure 6.5: Block diagram of a generic multiprocessor system-on-chip.

executed on these processors acknowledges the interrupts and processes the packets and obtain some
figures of interest.

In our case study the application has been deep packet inspection and the figure of interest has been
the amount of classified data in the packets.

We have employed the Imperas virtual prototyping platform (http://www.ovpworld.org) which
is freely available as collection of SystemC models and we herewith thankfully acknowledge the kind
support of Imperas in helping us to get started.

The software infrastructure on which the simulation environment has been built is:

Linux Red Hat Enterprise Edition
This is the standard operating system employed for research and development on the Lantiq com-
puter farm.

SystemC 2.2
The Imperas models have wrappers for SystemC 2.2.

TLM 2.0.1
The Imperas software employs the SystemC/TLM2 semantics.

GCC 4.1.2
We have tested that this version links all precompiled object codes.

Imperas OVP for MIPS
We have employed Imperas MIPS models embedded in SystemC 2.2 / TLM 2.0.1 wrappers.

Wireshark
Traffic dumps need to be obtained and Wireshark is the premier tool to obtain them.

NaNoC Deliverable-2.3-v2.0 Page 33 of 46

http://www.ovpworld.org

PUBLIC

MIPS processor

MIPS processor

MIPS processor

MIPS processor

Wireshark

pcap dump

Ethernet

libpcap

loader

scheduler

OpenDPI Interrupt

LinkerGCC

handlerpcap callback

memory
contents

generation

script

Data Memory

Data Memory

Data Memory

Data Memory

data
interconnect

program
memory

subsystem

interrupt

Figure 6.6: Top level specification of the simulation environment, blocks in gray are available from third
parties.

The application code has been simulated on bare metal, i.e. without operating system, but employing
the standard C library and porting a few additional libraries. The Imperas OVP platform provided code
interception (a.k.a. syscall emulation or semihosting) for user output calls to display and store the results.
In order to execure code on bare metal, linker scripts as well as boot routines to allocate the code have
been employed and interrupt handler has been developed.

6.2.1 Processor-based System

Figure 6.6 presents an top-level specification of the simulation environment, with blocks in gray made
available from third parties.

The hardware platform consists of a cluster of parallel processors sharing a program memory and an
interleaved data memory. Packets get uploaded to the data memory which is accessed through an inter-
connect. The interconnect on the program memory is abstracted away but this is a legitimate abstraction
because the application code is rather small and would mostly fit within the caches of high-end MIPS
processors.

The software platform is based on the classical GCC compilation suite and on the PCAP (packet cap-
ture) library for extracting packets sampled by Wireshark.

The SystemC environment includes a loader which performs acquisition from a PCAP interface and
a scheduler which looks for the next available processor and triggers it to load a packet from the data
memory. The processor acknowledges the interrupt and releases the packet entry on terminating the
interrupt service routine.

NaNoC Deliverable-2.3-v2.0 Page 34 of 46

PUBLIC

6.2.2 Software Application

The application of choice is OpenDPI (http://www.opendpi.org). This is an open source package for
deep packet inspection. It has been created and released from a startup company called Ipoque, which
has been acquired by Rodhe & Schwarz. Recently the distribution has been discontinued and the package
has been retired from the repositories, but the LGPLv3 (GNU Lesser General Public License Version 3)
under which the package has been released gives rights to further utilize, modify and distribute the
release.

OpenDPI provides a library of C functions to determine the application layer protocol to which a data
packet belongs. For example, OpenDPI can determine with a very low error rate whether an Ethernet
frame is transporting a part of a Flash video or a part of a large E-Mail.

A C source file named OpenDPI demo.c contains code which employs the packet capture library
libpcap (http://www.tcpdump.org) to analyze traffic dumps. libpcap library allows registering a C
function as callback and executes an endless loop which calls this registered callback whenever a packet
is received either from an Ethernet card or read from a dump file. Not surprisingly, the C function
registered in OpenDPI demo.c is called pcap packet callback().

pcap packet callback() accepts as input a pcap header consisting of packet length, timestamp and
pointer to the first byte of the packet, which must be an Ethernet frame, and returns an identification
number associated to the application layer protocol which is being transported. This packet header has
been assembled in an interrupt service routine which has obtained base address and packet length from
the loader unit in the SystemC environment and has been employed to call pcap packet callback().

6.3 Results at NoC-level

This chapter presents outcomes from some simulations which validate the QoS formulas for reserving
individual nodes. In order to test the utilization bound (3.2), a case study illustrated by figure 6.3 has
been set up.

In this case study, a network-on-chip is built out of

• nodes which support virtual channels and

• packet formats which support a priority field.

Every network node ensures that up to n transfers are not affected by head-of-line-blocking by hashing the
incoming priority to the n available virtual channels: this hashing implies that all transfers with the same
priority are served in first-come-first-served policy within the same virtual channel. Routes are static,
but can be dynamically defined employing (3.2) to test the availability of node bandwidth for real-time
traffic.

Furthermore, network latency has been generated and it has been shown that for met schedulability
conditions the deadline is not violated.

Figure 6.8 shows the channel under a low utilization condition: all transfers have some slack (hor-
izontal difference between normal and dashed line). When the traffic level are increased to reach the
critical utilization, the plot in figure 6.9 shows that the transfers still remain within the deadlines, leaving
zero slack in some critical instants. If the traffic levels exceed this critical utilization limits, the deadline
violations shown in figure 6.10 take place.

NaNoC Deliverable-2.3-v2.0 Page 35 of 46

http://www.opendpi.org
http://www.tcpdump.org

PUBLIC

00 01 02 03

10 11

21

31

12

22

32

13

23

3330

20

MASTER
0

MASTER
1

MASTER
2

MASTER
3

MASTER
4

MASTER
5

SLAVE
4

SLAVE
5

SLAVE
6

SLAVE
7

SLAVE
2

SLAVE
1

SLAVE
3

SLAVE
0

MASTER
6

MASTER
7

Figure 6.7: Case study for hyperbolic bound on node reservations.

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00

QoS

Simulationtime [ns]

B
us

y
tim

e
[n

s]

MASTER#1
MASTER#2
MASTER#3

Figure 6.8: Low utilization for figure 6.7: slack available.

NaNoC Deliverable-2.3-v2.0 Page 36 of 46

PUBLIC

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00

QoS

Simulationtime [ns]

B
us

y
tim

e
[n

s]

MASTER#1
MASTER#2
MASTER#3

Figure 6.9: Critical utilization for figure 6.7: within deadlines.

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00

QoS

Simulationtime [ns]

B
us

y
tim

e
[n

s]

MASTER#1
MASTER#2
MASTER#3

Figure 6.10: Overload condition for figure 6.7: deadlines missed.

NaNoC Deliverable-2.3-v2.0 Page 37 of 46

PUBLIC

00 01 02 03

10 11

21

31

12

22

32

13

23

3330

20

MASTER
0

MASTER
1

MASTER
2

MASTER
3

MASTER
4

MASTER
5

SLAVE
4

SLAVE
5

SLAVE
6

SLAVE
7

SLAVE
2

SLAVE
1

SLAVE
3

SLAVE
0

MASTER
6

MASTER
7

Figure 6.11: Case study for utilization bound on network latency.

The next case study isolates the network latency effect and it is shown in figure 6.11. Also in this case
we observe slack under low utilization, in figure 6.12, zero slack under critical conditions, in figure 6.13,
and deadline violations under overloading conditions, in figure 6.14.

6.4 Results at application-level

In order to validate our theorems we have experimented the software we have written on synthetic mod-
els. Subsequently we have applied them to real world case studies. We have reported some interesting
syntetic results in section 6.4.1 and the final outcome of our work in section 6.4.2.

6.4.1 Syntetic results

Figure 6.15 presents three random distributions of delays which affect a nominal transport throughput.
These three distributions bear the same mean value and different variances.

The folded gaussian distribution has the lowest variance and the expovariate distribution (the expo-
nential distribution derived from Poisson arrivals) has the largest variance.

The service curves obtained from the transport of a nominal throughput, when affected by a random
delay distribution, are shown in figure 6.16. As expected, the calculation has shown that the folded
gaussian distribution offers the best responsive behavior while the expovariate distribution the worst
one.

The plots on figure 6.16 show that the service curves can be approximated by simpler latency-rate
curves. The detailed amount of latency can be observed in figure 6.17, which reproduces the detail of
figure 6.16.

For example, the service curve caused by the shown expovariate distribuition can be well approxi-
mated by a latency of 1000 time units and a rate of 2 data units per time unit.

NaNoC Deliverable-2.3-v2.0 Page 38 of 46

PUBLIC

0 5000 10000 15000 20000 25000

0
10

00
20

00
30

00
40

00
50

00
60

00

time [ns]

B
us

y
tim

e
[n

s]

MASTER#0
MASTER#1
MASTER#6

Figure 6.12: Low utilization for figure 6.11: interference with slack.

0 5000 10000 15000 20000 25000

0
10

00
20

00
30

00
40

00
50

00
60

00

time [ns]

B
us

y
tim

e
[n

s]

MASTER#0
MASTER#1
MASTER#6

Figure 6.13: Critical utilization for figure 6.11: interference at critical point.

NaNoC Deliverable-2.3-v2.0 Page 39 of 46

PUBLIC

0 5000 10000 15000 20000 25000

0
10

00
20

00
30

00
40

00
50

00
60

00

time [ns]

B
us

y
tim

e
[n

s]

MASTER#0
MASTER#1
MASTER#6

Figure 6.14: Overload condition for figure 6.11: interference under overload.

Figure 6.15: Random delay distributions with same average

NaNoC Deliverable-2.3-v2.0 Page 40 of 46

PUBLIC

Figure 6.16: Service curves obtained for random delay distributions with same average

Figure 6.17: Detail of the service curves shown in figure 6.16

NaNoC Deliverable-2.3-v2.0 Page 41 of 46

PUBLIC

Figure 6.18: Data transport to be achieved under increased latency guarantee in the NoC: the goal is to
be compliant with the worst case

6.4.2 Real-world results

In the real-world use case a processor executing the OpenDPI classification on a packet stream is ob-
served while the NoC provides increasing latency guarantees, employing our results on rate and deadline
monotonic scheduling.

Figure 6.18 shows the the target service to be achieved by the processor in terms of processed packet
backlog over time.

This service is achieved by the processor in worst case assumptions, with a performance drop shown
in figure 6.19.

The corresponding service curve obtained on the processor toward the application is reported in 6.20.
This service turns into the service of the application toward the packet stream shown in figure 6.21.
The slack profile which is available to the NoC for enforcing guarantees is shown in figure 6.22. This

plot shows that up to 4 ms of program execution (vertical axis) there is a slack of up to 50 ns time available
with very few violations (horizontal axis). From 4 ms to 12 ms the available slack drops almost linearly
from 50 ns to 10 ns with no violations. Above 12 ns of program execution there are always critical points
which leave no available slack, but it is possible to define an amount of acceptable violations to relax the
timing, for example we see from the plot that a large number critical instants allow more than 20 ns of
slack, so the violations of this deadline could be acceptable from a given application.

The implication of this result is that it is now possible to define soft real-time constraints with an
arbitrary degree of “softness” because the amount of possible violations can be established upfront.

NaNoC Deliverable-2.3-v2.0 Page 42 of 46

PUBLIC

Figure 6.19: Performance of a processor core under increasing latency guarantee on NoC traffic

Figure 6.20: Service provided by the processor to the software application under increaded latency guar-
antee in the NoC

NaNoC Deliverable-2.3-v2.0 Page 43 of 46

PUBLIC

Figure 6.21: Service provided by the application to the packet stream under increased latency guarantee
in the NoC

Figure 6.22: Tolerable slack profile obtained on the processor’s capacity toward the worst case service to
be provided to the packet stream

NaNoC Deliverable-2.3-v2.0 Page 44 of 46

PUBLIC

Bibliography

[1] Alaa R. Alameldeen and David A. Wood. Variability in architectural simulations of multi-threaded
workloads. In HPCA ’03: Proceedings of the 9th International Symposium on High-Performance Com-
puter Architecture, page 7, Washington, DC, USA, 2003. IEEE Computer Society.

[2] Neil C. Audsley. Deadline monotonic scheduling. Technical Report September, University of York,
1990.

[3] Neil C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time Scheduling: The
Deadline Monotonic Approach. In IEEE Workshop on Real-Time Operating Systems and Software,
1991.

[4] Enrico Bini, G.C. Buttazzo, and G.M. Buttazzo. Rate monotonic analysis: the hyperbolic bound.
IEEE Transactions on Computers, 52(7):933–942, 2003.

[5] Enrico Bini and Giorgio C. Buttazzo. The space of rate monotonic schedulability. Real-Time Systems
Symposium, IEEE International, 0:169, 2002.

[6] Rene L Cruz. A Calculus for Network Delay, Part {I}: Network Elements in Isolation. {IEEE} Trans-
actions on Information Theory, 37(1):114–131, 1991.

[7] Rene L Cruz. A Calculus for Network Delay, Part {II}: Network Analysis. {IEEE} Transactions on
Information Theory, 37(1):132–141, 1991.

[8] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet, volume 2050 of Lecture Notes on Computer Science. Springer-Verlag, March
2004.

[9] J.Y. Le Boudec. Network calculus: a theory of deterministic queuing systems for the internet. Online,
2001.

[10] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[11] Yue Qian, Zhonghai Lu, and Qiang Dou. Qos scheduling for nocs: Strict priority queueing versus
weighted round robin. In ICCD, pages 52–59. IEEE, 2010.

[12] H Sariowan and RL Cruz. SCED: a generalized scheduling policy for guaranteeing quality-of-service.
IEEE/ACM Transactions on Networking, 7(5), 1999.

[13] Hanrijanto Sariowan, Rene L Cruz, and George C Polyzos. Scheduling for Quality of Service Guaran-
tees via Service Curves. In Proceedings of the International Conference on Computer Communications
and Networks (ICCCN), pages 512–520, September 1995.

NaNoC Deliverable-2.3-v2.0 Page 45 of 46

PUBLIC

[14] Hanrijanto Sariowan, R.L. Cruz, and G.C. Polyzos. Scheduling for quality of service guarantees via
service curves. In icccn, page 0512. Published by the IEEE Computer Society, 1995.

[15] L. Sha, Tarek Abdelzaher, K.E. �A rzén, Anton Cervin, Theodore Baker, Alan Burns, Giorgio But-
tazzo, Marco Caccamo, John Lehoczky, and A.K. Mok. Real time scheduling theory: A historical
perspective. Real-time systems, 28(2):101–155, 2004.

[16] Zheng Shi and Alan Burns. Real-time communication analysis for on-chip networks with wormhole
switching. In Proceedings of the Second ACM/IEEE International Symposium on Networks-on-Chip,
NOCS ’08, pages 161–170, Washington, DC, USA, 2008. IEEE Computer Society.

[17] Sören Sonntag, Matthias Gries, and Christian Sauer. SystemQ: Bridging the gap between queuing-
based performance evaluation and systemc. Design Automation for Embedded Systems, 11(2):91–
117, September 2007.

[18] Lothar Thiele, Samarjit Chackraborty, and Martin Naedele. Real-time calculus for scheduling hard
real-time systems. In Proceedings to the International Symposium on Computer Architectures and
Systems (ISCAS 2000), pages 101 – 104, May 2000.

NaNoC Deliverable-2.3-v2.0 Page 46 of 46

	Introduction
	Motivation for a lightweight approach
	Microarchitectual level
	Application-level
	Experimental Results

	Related work

	Reservation Frameworks
	Reservations on individual nodes
	The NoC as a resource
	Service Curves
	Traffic Envelope

	Serving Traffic
	Traffic Models
	Simple traffic models
	Complex traffic models

	Service models
	Serving simple traffic
	Serving complex traffic

	Advances on QoS bounds
	Remaining Utilization
	Bounded Periods
	Network Latency
	The Nested QoS problem
	Calculation of Deadline Curves

	Classes of Service
	Periodic / sporadic
	Indirection of priorities
	Route discovery

	Latency-Rate

	Experimental Results
	Models for networks-on-chip
	Note on topologies for NoC
	Head-of-Line-Blocking Prevention

	Simulation platform
	Processor-based System
	Software Application

	Results at NoC-level
	Results at application-level
	Syntetic results
	Real-world results

