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Abstract

The Internet has grown over the last twenty years to the point where it plays a crucial role in today’s

society and business. However, its limitations are well-known: the Internet does not provide predictable

quality of service, and does not provide a sufficiently robust and secure infrastructure for critical appli-

cations. Worse, making changes to the basic Internet infrastructure is costly, time-consuming and often

unfeasible: operators are paid to run stable, always available networks which is anathema to deploying

new mechanisms.

This document presents the CHANGE architecture which aims to re-enable innovation in the Internet

by embracing flow processing as a first class citizen of the network. Flow processing is performed at

various points in the Internet called flow processing platforms. These provide the building blocks to

allow the Internet to evolve.

Security is a major concern in such an extensible architecture: to avoid unwanted side-effects, flow

processing can only be initiated by the owners of the traffic being processed and ownership is proven

cryptographically. Further, a simple set of rules restrict what can be done to the traffic for certain

changes, reducing the possibility of abuse.

Extensibility is useless unless users understand what happens to their traffic. We propose the concept of

network invariants as a novel way to dynamically change the (currently implicit) contract between the

users and the network. Users specify what processing should NOT be applied to their packets, and the

network checks and enforces such invariants efficiently.

Finally, we discuss a set of practical ways to implement our architecture using existing technologies, as

well as how a few scenarios can be deployed using CHANGE .

Target Audience

Experts in the field of computer networking, the European Comission.

Disclaimer

This document contains material, which is the copyright of certain CHANGE consortium parties, and may

not be reproduced or copied without permission. All CHANGE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the CHANGE consortium as a whole, nor a certain party of the CHANGE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.
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Executive Summary
The great virtue of the Internet architecture has been to enable the deployment of an astonishing range of ap-

plications and services based on a relatively simple organisation and a set of common abstractions. However,

research has shown that the “traditional” Internet architecture model is disappearing. We find through a wide-

scale experimental study (presented in chapter 2) what the new Internet looks like: instead of a transparent

end-to-end path, there are now segments of transparent IP connectivity interconnected by nodes that perform

L4+ processing on flows.

In short, application logic, in the form of middleboxes such as NATs, firewalls, DPIs and a multitude of other

applications, now lives in the middle of the network at the behest of network operators. There are two broad

consequences to this situation. First and foremost, the lack of transparency makes it difficult to reason about

the emergent behaviour of traffic traversing the Internet. The complexity and uncertainty that results from

this hinders the deployment of new applications and services; already existing applications such as Skype

have to depend on a myriad of techniques just to provide an end-to-end service.

Our recent experience on creating Multipath TCP and standardizing is one of the biggest examples of just

how difficult innovation in the Internet has become. The protocol design that was supposed to take a few

months has stretched over 4 long years, resulting in a quite complex specification that aims to cover all the

possible ways middleboxes could disrupt Multipath TCP traffic; this is despite the fact that MPTCP only uses

TCP options to implement its functionality, and that MPTCP is backwards compatible with TCP.

Unchecked, this situation threatens to escalate: innovation will only become harder unless changes are made.

Reverting back to the original end-to-end Internet is also not possible; the trend is already entrenched: for

all the opaqueness middleboxes induce, they also provide functionality that makes network operators deem

them as indispensable.

This report describes the architecture to CHANGE this state of affairs (chapter 3). The architecture embraces

the concept of flow processing and the vision of middleboxes but uses it to re-enable end-to-end innovation.

The principle is very simple: third parties should be able to instantiate functionality inside the network as

long as the functionality provably applies only to the traffic belonging to those parties.

We start by presenting the architecture requirements on a flow processing platform, listing what would be

needed to realise a coherent flow processing architecture for today’s Internet. We then define the foundations

of a flow processing platform, starting from the basic definition of a flow, its labeling and identification.

We decompose the actual flow processing operations into a set of widely applicable primitives, showing both

how they may be used to define instances of processing and the security considerations associated with them.

To be attractive, a new flow processing architecture must not raise any new security vulnerabilities. For this

reason, we describe a set of security rules applied in the CHANGE architecture and explain why they were

chosen and what their overall effect is (chapter 4).

Extensibility is useless unless users understand what happens to their traffic. Today, new protocol design
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(e.g., MPTCP) is very defensive, assuming the worst from the network: we have switched from a very simple

contract with the network (deliver my packets unchanged from TCP up) all the way to a situation where any

part of the TCP header or payload may be altered. While it is possible to cope with the new contract at the

endpoints by simply encrypting everything this is a non-starter because performance will drop significantly.

We propose the concept of network invariants as a novel way to dynamically change the (currently implicit)

contract between the users and the network. Users specify what processing should NOT be applied to their

packets, and the network checks and enforces such invariants efficiently.

We also include motivating scenarios to test both the applicability and flexibility of our approach (chapter 5).

This document finishes with a review of related work (chapter 6) and conclusions (chapter 7).
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1 Introduction

The basic architecture of the Internet has been embodied for thirty years in a set of protocols and design

documents that indicate requirements for Internet hosts and routers. The architecture is a layered one, with

diverse layer 2 networks interconnected by IP routers providing an end-to-end datagram service model at

layer 3. Above this, at layer 4, sits TCP, providing reliable congestion-controlled in-order delivery of data to

applications at the layers above. The concept is simple; routers look at the headers in IP packets, decrement

the TTL and forward the packet on to the next hop if they are able, or drop the packet otherwise. TCP then

functions end-to-end, with only the end-systems understanding its semantics.

The great virtue of this model is that it is possible to reason about the emergent behaviour of all the concate-

nated components, at least if they perform according to spec. In particular, new applications and transport

protocols can be introduced, and only the end-hosts need to know about them. It is this great generality that

has been the Internet’s main advantage, allowing a wide range of new applications to be deployed that were

unforeseeable when TCP and IP were being designed. It can be argued that the Internet doesn’t do any single

task terribly well, but it does everything well enough. And in economic terms, ’well enough’ is what actually

matters. The problem though is that the Internet doesn’t really do everything well enough.

Unfortunately the original Internet architecture has not described the real Internet for around fifteen years

now. Network Address Translators and firewalls were the first commonly deployed middleboxes that placed

layer 4 (or higher) functionality in the middle of the network, not just at the endpoints. More recently it has

become common to employ deep-packet inspection to look within packets and perform rate-limiting of “less

important” traffic. Transparent web proxies and application accelerators improve performance by employing

L4+ knowledge. Intrusion detection systems reassemble flows and snoop everything, as does lawful intercept

equipment. And traffic normalizers try to remove ambiguous corner cases that might represent threats or

attempts to bypass detection equipment.

There are two key problems that this plethora of enhancements to the original architecture bring. First, they

embed the limitations of current protocols and applications within the network, making it very hard to deploy

anything new without jumping through hoops to make it look to the network like existing traffic. Second, they

make it extremely difficult to reason about what precisely will happen to a packet sent across the Internet,

which makes the network fragile and hard to debug.

During our recent work on trying to standardize TCP extensions, it became clear that no-one really knows

what will happen to a TCP packet sent across the Internet if it strays from common practice in any way. To

create a solid basis for a new Internet architecture we need to understand what the Internet looks like today

before we can build the Internet of tomorrow.

In collaboration with Michio Honda from Keio University, we set out to probe the Internet to test its response

to a wide variety of possible extended TCP syntax and semantics. Our study, described in detail in Chapter 2,
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probed 142 access networks in 24 countries (14 of them in the EU) ranging from cellular providers to WiFi

hotspots, residential DSL and cable to university networks, plus a number of corporate networks. By carefully

crafting TCP segments between a client on each network and our server, we can probe corner case behaviour.

As anecdotal evidence indicated that many middleboxes do not treat all ports equally, we repeated the tests

using port 80 (HTTP), port 443 (HTTPS) and a port with no special meaning. The results are somewhat

eye-opening.

• New TCP options are removed from traffic on 6% of paths. However, on port 80 this rises to 14% of

paths.

• TCP sequence numbers are rewritten on 10% of paths. On port 80, 18% of paths rewrite sequence

numbers. Of these on port 80, two-thirds implement some form of TCP proxy which splits the end-to-

end path into two or more distinct TCP path segments, and acknowledge data before it reaches the final

end point. The remainder, and most on other ports, appear to rewrite sequence numbers just to improve

initial sequence number randomization.

• 5% of paths will fail if holes are left in the TCP sequence space. On port 80, the number is 15%.

• If an ACK is sent for data that has not yet been sent, 25% of paths will either drop it or “correct” it. For

traffic on port 80, this rises to 33% of paths.

Thus, over a third of the paths are keeping state and performing L4+ functionality. This does not include NAT

or basic firewall functionality, which is in addition to the figures above but too ubiquitous to be noteworthy

these days. Our study also cannot measure rate-limiting triggered by DPI, lawful intercept, or any form of

L4+ processing at the server end of the connection on typical Internet paths. We expect that functionality

such as intrusion detection systems and server load balancers are commonplace in modern datacenters, but

cannot measure it with the methodology used in this study.

It is clear then that the original end-to-end transparent Internet architecture is disappearing, to be replaced

by one where there are segments of transparent IP connectivity interconnected by nodes that perform L4+

processing on flows. It is also clear that traffic receives significantly different processing depending on the

transport port.

In this context, is it still possible to extend the Internet? Extending IP is not an option anymore [25]; is

the same true for TCP? Our experience in the past years on designing Multipath TCP and TCP Crypt to be

deployable in the current Internet shows it is still possible to extend TCP, but the extensions must be designed

very defensively. For instance, MPTCP includes an additional checksum just to catch application level gate-

ways that alter the TCP payload and change its length. An overview of the design of MPTCP, provided in

Deliverable 4.3, shows just how complicated protocol design has become just because of middleboxes. This

is by far one of the biggest motivations that has driven us to try and change the current status quo.
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It seems futile to attempt to fight this trend of deploying more and more middleboxes - it is too entrenched

at this point. IPv6 may help with NATs, but is unlikely to help with all the other reasons network operators

install these middleboxes. The only reasonable strategy seems to be to attempt to embrace middleboxes and

the concept of flow processing, but to then attempt to provide a unifying architecture in which they have roles

that we can reason about and functionality we can communicate with from the end systems. In particular

we set out to answer the question is it possible to provide an architectural framework in which middleboxes

could actually enhance our ability to deploy new applications?

This document presents the architectural framework to be constructed in the CHANGE project. It is at this

stage still work-in-progress, and will continue to be revised in the light of further developments of both the

platform and the applications that will use the platforms.

We present the overview of our architecture in Chapter 3. The architecture relies on a categorisation of

flow processing into a few simple classes that we can reason about, and enforces a few simple security rules

that ensure its flexibility cannot be misused. A core part of the architecture is the ability to understand the

composition of flow processing functions, which we enable using the novel concept of network invariants:

these allow endpoints to specify what type of service they expect from the network, and the network can then

implement them in the most efficient way possible. In Section 3.7 we discuss some implementation aspects.

We reason about its security properties in Chapter 4. We discuss how to implement motivating scenarios in

Chapter 5. We review related work in Chapter 6 and conclude in Chapter 7.
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2 Understanding the Internet Today
The Internet was designed to be extensible; routers only care about IP headers, not what the packets contain,

and protocols such as IP and TCP were designed with options fields that could be used to add additional

functionality. The great virtue of the Internet was always that it was stupid; it did no task especially well, but

it was extremely flexible and general, allowing a proliferation of protocols and applications that the original

designers could never have foreseen.

Unfortunately the Internet, as it is deployed, is no longer the Internet as it was designed. IP options have

been unusable for twenty years[25] as they cause routers to process packets on their slow path. Above IP, the

Internet has benefited (or suffered, depending on your viewpoint) from decades of optimizations and security

enhancements. To improve performance [5, 17, 37, 6], reduce security exposure [33, 55], enhance control,

and work around address space shortages [42], the Internet has experienced an invasion of middleboxes that

do care about what the packets contain, and perform processing at layer 4 or higher within the network.

The problem now faced by designers of new protocols is that there is no longer a well defined or understood

way to extend network functionality, short of implementing everything over HTTP[44]. Recently we have

been working on adding both multipath support[26] and native encryption[11] to TCP. The obvious way to

do this, in both cases, is to use TCP options. In the case of multipath, we would also like to stripe data across

more than one path.

However, it became increasingly clear that no one, not the IETF, not the network operators, and not the OS

vendors, knew what will and what will not pass through all the middleboxes as they are currently deployed

and configured. Will TCP options pass unchanged? If the sequence space has holes, what happens? If a

retransmission has different data than the original, which arrives? Are TCP segments coalesced or split?

These and many more questions are crucial to answer if protocol designers are to extend TCP in a deployable

way. Or have we already lost the ability to extend TCP, just like we did two decades ago for IP?

In this section we present the results from a measurement study conducted from 142 networks in 24 coun-

tries, including cellular, WiFi and wired networks, public and private networks, residential, commercial and

academic networks. We actively probe the network to elicit middlebox responses that violate the end-to-end

transparency of the original Internet architecture. We focus on TCP, not only because it is by far the most

widely used transport protocol, but also because while it is known that many middleboxes modify TCP be-

havior [16], it is not known how prevalent such middleboxes are, nor precisely what the emergent behavior

is with TCP extensions that were unforeseen by the middlebox designers.

We make three main contributions. The first is a snapshot of the Internet, as of 2011, in terms of its trans-

parency to extensions to the TCP protocol. We examine the effects of middleboxes on TCP options, sequency

numbering, data acknowledgment, retransmission and segmentation.

The second contribution is our measurement methodology and tools that allow us to infer what middleboxes

are doing to traffic. Some of these tests are simple and obvious; for example, whether a TCP option arrives or
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is removed is easy to measure, so long as the raw packet data is monitored at both ends. However, some tests

are more subtle; to test if a middlebox coalesces segments it is not sufficient to just send many segments—

unless the middlebox has a reason to queue segments it will likely pass them on soon as they arrive, even if it

has the capability to coalesce. We need to force it to have the opportunity to coalesce.

2.1 Methodology And Datasets
We use regular end-hosts to actively measure paths in the Internet. Our aim is to test relevant properties that

could impact yet-to-be-deployed TCP extensions. We have resorted to active measurement for a number of

reasons:

• We need to generate traffic that mimics new TCP extensions.

• We generate artificial traffic patterns such as contiguous small segments or gaps in the sequence space.

It is difficult to use passive measurements for this purpose.

• Packets need to be inspected at both sender and receiver for tests detecting TCP option removal, se-

quence number shifting, re-segmentation, etc.

• We need to test different destination ports including ports not normally in use, as middlebox behavior

depends on the destination port.

2.1.1 Testing Tool

Our middlebox inspection tool is called TCPExposure and consists of a client and a server tool. The client

acts as an initiator of a TCP connection (the end that sends the SYN), and the server acts as a responder. These

are a 3000-line program and a 500-line program both written in Python. The initiator and the responder run

tests aiming to trigger on-path middlebox actions. The tools send and receive TCP segments in user space

via a raw IP socket or using the Pcap library similarly to Sting [47].

The client tool was built to be easy to use, as most of our tests are run by contributors. To maximize reach, the

client tool is cross-platform running on Mac OS, Linux and FreeBSD. It is self-contained and only requires

Python and libpcap on the host; these come preinstalled on most systems. The client is straightforward to

run: all users need to do is to download it, launch a single shell script and post the results.

The responder tool runs on Linux. It does not maintain state for the TCP connections it is emulating; its replies

depend solely on the received TCP segments. For example, the responding segment contains SYN/ACK if the

responder has received SYN, acknowledges the end of the sequence number, and has the sequence number

based on the received acknowledgement (ACK) number. This stateless behavior makes it relatively easy to

reason about observed behavior because there is no hidden server state.

2.1.2 Common Procedures

Table 2.1 lists the fixed TCP parameters at the initiator and the responder. These values are used in all our

measurements unless stated otherwise.
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Table 2.1: Default TCP Parameters
Parameter Initiator Responder

Initial Sequence Num (ISN) 252001 11259375
Window Size 8064 32768

MSS 512 512
Window Scale - 6

SACKOK - 1
Timestamp (TS val) - 12345678

Figure 2.1: Echo Headers Command

We use a 512 byte MSS at both ends, less than what most TCP implementations advertise. This value is

smaller than the MTU of most Internet paths, and was chosen to avoid unexpected fragmentation during

tests.

We expect middleboxes to behave differently depending on the application type, and so our responder emu-

lates TCP servers on ports 80, 443, and 34343. Ports 80 and 443 are assigned by IANA for http and https

traffic; port 34343 is unassigned. The client port is randomly chosen at connection setup.

Segments sent from the initiator include commands to operate the responder. The default command is “just

ack”, and the responder sends back a pure ACK (no data). Another command is “echo headers”. Fig. 2.1

illustrates how this command works.

The initiator transmits a crafted segment that includes bytes indicating this command in its payload. The

responder replies with a segment that contains in its payload both the received headers and the headers of

the reply. The client then compares the sent and received headers for both segments to detect middlebox

interference. The last command is “don’t advance ack”. The responder does not advance the ACK number

when it receives this command; instead it sends back an ACK with the first sequence number of the receiving

segment. This command is used in only the retransmission test in Sec. 2.2.5.

2.1.3 Measurement Data

Our measurements target access networks, where ISPs deploy middleboxes to optimize various applications

with the goal of improving the experience of the majority their customers. The core is mostly just doing

“dumb” packet forwarding. Many contributors and we ran the TCPExposure client in a variety of access

networks detailed below. Contributors are mainly from IETF community, related research projects, and our

labs. We ran the server tool (the responder) in sfc.wide.ad.jp, a middlebox-free network operated by our
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Table 2.2: Experiment Venues
Country Home Hotspot Cellular Univ Ent Hosting Total

Australia 0 2 0 0 0 1 3
Austria 0 0 0 0 1 0 1

Belgium 4 0 0 1 0 0 5
Canada 1 0 1 0 1 0 3
Chile 0 0 0 0 1 0 1
China 0 7 0 0 0 0 7
Czech 0 2 0 0 0 0 2

Denmark 0 2 0 0 0 0 2
Finland 1 0 0 3 2 0 6

Germany 3 1 3 4 1 0 12
Greece 2 0 1 0 0 0 3

Indonesia 0 0 0 3 0 0 3
Ireland 0 0 0 0 0 1 1
Italy 1 0 0 0 1 0 2
Japan 19 10 7 3 2 0 41

Romania 1 0 0 0 0 0 1
Russia 0 1 0 0 0 0 1
Spain 0 1 0 1 0 0 2

Sweden 1 0 0 0 0 0 1
Switzerland 2 0 0 0 0 0 2

Thailand 0 0 0 0 2 0 2
U.K. 10 4 4 2 1 1 22
U.S. 3 4 4 0 4 2 17

Vietnam 1 0 0 0 1 0 2

Total 49 34 20 17 17 5 142

japanese colleagues.

From 25th September 2010 to 30th April 2011, we measured 142 access networks in 24 countries. Table 2.2

shows the venues and the network types of the experiments.

Access networks are categorized in six types by human annotation. Home networks consisting of a consumer

ISP and a home-gateway are labeled as Home. Public hotspots for example in cafes, airports, hotels, and

conference halls are labeled as Hotspot. Mobile broadband networks such as 3G and WiMAX are labeled

as Cellular. Networks in universities are labeled as Univ. We count two different networks (e.g., the lecture

and the residence segments) in the same university as two university networks. Enterprise networks (also

including small offices) are labeled as Ent. Networks in hosting services are labeled as Hosting.

2.2 Tests and Results

2.2.1 TCP Option Tests

TCP Options are the intended mechanism by which TCP can be extended. Standardized and widely imple-

mented options include Maximum Segment Size (MSS), defined in 1981; Window Scale, defined in 1988;

Timestamp, defined in 1992; and Selective Acknowledgment (SACK), defined in 1996. IANA also lists TCP

options defined since 1996, but SACK is the most recently defined option in common use, and predates al-

most all of today’s middleboxes. The question we wish to answer is whether it is still possible to rapidly

deploy new TCP functionality using TCP options by upgrades purely at the end systems.
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Unknown TCP options are ignored by the receiving host. A TCP extension typically adds a new option to the

SYN to request the new behavior. If the SYN/ACK carries the corresponding new option in the response, the

new functionality is enabled. Middleboxes have the potential to disrupt this process in many ways, preventing

or at least delaying the deployment of new functionality.

If a middlebox simply removes an unknown option from the SYN, this should be benign—the new function-

ality fails to negotiate, but otherwise all is well. However, removing an unknown option from the SYN/ACK

may be less benign—the server may think the functionality is negotiated, whereas the client may not. Re-

moving unknown options from data packets, but not removing them from the SYN or SYN/ACK would be

extremely problematic: both endpoints would believe the negotiation to use new functionality succeeded, but

it would then fail. Finally, any middlebox that crashes, fails to progress the connection, or explicitly resets it

would cause significant problems.

To distinguish possibly problematic behaviors, we performed the following tests:

(i) Unknown option in SYN. The SYN and SYN/ACK segments include an unregistered option.

(ii) Unknown option in Data segment. The test includes unknown options in data segments sent by client

and server.

(iii) Known option in Data Segment. The test includes a well-known option in data segments sent by

client and server.

All three tests are performed using separate connections. We do not use the unknown option in SYN for test

2 and 3. Test 3 is included to allow us to determine whether it is the unknown nature of the option that causes

a behavior, or just any option. We use an MP CAPABLE option for test 1 and an MP DATA option for test

2; both options are defined in a draft version of MPTCP [27] and neither is currently registered with IANA,

and no known middlebox yet supports them. On receipt of a SYN with MP CAPABLE, our responder returns

a SYN/ACK also containing MP CAPABLE, and on receipt of a data segment with MP DATA, it returns an

ack packet containing an MP ACK option, mimicking an MPTCP implementation.1

For test 3, we used the TIMESTAMP option [35], which is not essential to TCP’s functionality, but which is

commonly seen in TCP data segments. This option elicits a response from the remote endpoint; a stateful

middlebox may also respond, allowing us to identify such middleboxes.

In the unknown option in SYN test, our code tests for the following possible middlebox behaviors:

• SYN is passed unmodified.

• SYN containing the option is dropped.

• SYN is received, but option was removed.

• Connection is reset by the middlebox.
1We use March 2010 draft version of these options’ formats; MP CAPABLE is 12 Byte length, MP DATA is 16 Byte length, and

MP ACK is 10 Byte length. Option numbers are 30, 31 and 32, respectively.
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Table 2.3: Unknown Option in Syn
Observed TCP Port
Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 20 (14%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 2.4: Known Option in Data
Observed TCP Port
Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133 (94%)
Removed 6 (4%) 9 (6%) 6 (4%)
Changed 0 (0%) 4 (3%) 3 (2%)
Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 2.5: Unknown Option in Data
Observed TCP Port
Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 13 (9%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

In the unknown and the known option in data tests, we test for the same behaviors as in the SYN test. After

a normal handshake, the initiator transmits a full-sized TCP segment including MP DATA or TIMESTAMP,

using the “echo headers” command described in Sec. 2.1.2 to identify what the responder received. With this

method we can identify which outbound or inbound option is interfered and whether the option is modified or

zeroed. We also look for middleboxes that split the connection, processing the TIMESTAMP at the middlebox

on either the inbound or outbound leg.

Middlebox Behavior on TCP Options

Tables 2.3 – 2.5 summarize the results of the options tests. 142 paths were tested in total; for ports 80

(http) and 443 (https), we obtained results from all paths for all tests. However seven paths did not pass the

unregistered port 34343, even with regular TCP SYN segments. These paths appear to run strict firewall rules

allowing only very basic services.

Most of the paths we tested passed both known and unknown TCP options without interference, both on

SYN and data packets. The results are port-specific though; 96% of paths passed options on port 34343,

whereas only 80% of paths passed options on port 80. This agrees with anecdotal evidence that http-specific

middleboxes are relatively common.

All the paths which passed unknown options in the SYN also passed both known and unknown options in

data segments. In the tables, the “Removed” rows indicate that packets on that path arrive with the option

removed from the packet. For the unknown options in the SYN packet, this was the only anomaly we found;
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no path modified the option or failed to deliver the packet due to its presence. In addition, all the paths which

passed the unknown option in the SYN also passed unknown options in data segments. This bodes well for

deployability of new TCP options—testing in the SYN and SYN/ACK is sufficient to determine that new

options are safe to use throughout the connection.

Our test did not distinguish between middleboxes that stripped options from SYNs and those that stripped

options from SYN/ACKs. With hindsight, this was an unfortunate limitation of our methodology that uses a

stateless responder. However it is clear that any extension using TCP options to negotiate functionality should

be robust to stripped unknown options in SYN/ACK packets, even if they are passed in SYNs. If it is crucial

that the server knows whether or not the client received the option in the SYN/ACK, the protocol must take

this into account. For example, TcpCrypt requires that the first non-SYN packet from the client contains the

INIT1 option - if this is missing, TcpCrypt moves to the disabled state and falls back to regular TCP behavior.

For port 34343, the only behaviors seen were passing or removing options. The story is more complicated

for port 80 (http) and 443 (https). There were seven paths that did not permit our testing methodology on port

80. In data packets our stateless server relies on instructions embedded in the data to determine its response.

These seven paths appear to be application-level HTTP proxies, and we were foiled by the lack of a proper

HTTP request in our data packets. They are labeled Error in the tables. We were able to go back and manually

verify two of these paths were in fact HTTP proxies; we did not get a second chance to verify the other five.

All seven were in the set that removed options from SYN packets, which is to be expected if they are full

proxies. Two HTTP proxies that we manually verified removed options from data packets and resegmented

TCP packets as well as proxies that are not HTTP-level ones.

There were no other unexpected results with unknown options, but we did observe some interesting results

with the TIMESTAMP “known option in data” test. Four paths passed on a TIMESTAMP option to the respon-

der, but it was not the one sent by the initiator. In these cases, although the responder sent TIMESTAMP in

response, this was not returned to the initiator. This implies that the middlebox is independently negotiating

and using timestamp with the server. These paths are labeled “Changed” in the tables. Paths in the Removed

row in Table 2.5 correspond to those in the Removed or the Changed rows in Table 2.4 for all three ports.

This implies that outbound option removal on data segments is not the unknown nature of the option.

Returning to the middleboxes that remove unknown options from the SYN, we can use the results of ad-

ditional tests to classify these into two distinct categories. In the first category, the SYN/ACK received is

essentially that sent by the responder, whereas in the second the SYN/ACK appears to have been generated

by the middlebox. In Sec. 2.2.4 we explain how fingerprints in the SYN/ACK let us distinguish the two.

Paths in the first category appear to actively eliminate options (we label them “Elim” in Table 2.6), whereas a

middlebox in the second category is acting as a proxy, and unknown options are removed as a side effect of

this proxy behavior (these are labeled “Proxy”).

These two categories (Elim and Proxy) also hold when we look at data segments (see Table 2.7). Paths that
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Table 2.6: Types of removal behavior (SYN)
Path Other Observed TCP Port
Type Effects 34343 80 443
Elim. None 5 4 5

Proxy Proxy SYN-ACK 1 16 4
Total 6 20 9

Table 2.7: Types of removal behavior (Data)
Path Other observed TCP Port
Type effects 34343 80 443
Elim. None 5 4 5

Proxy Proxy Data ACK,
Segment Caching,
Re-segmentation

1 9 4

Total 6 13 9

eliminate SYN options also eliminate data options, whereas paths that show proxy behavior on SYNs also

exhibit proxy behavior for data. In particular, the proxy symptoms we see are Proxy Data Acks (Ack by the

middlebox, see Sec. 2.2.4), segment caching (the middlebox caches and retransmit segments, see Sec. 2.2.5),

and re-segmentation (splitting and coalescing of segments, see Sec. 2.2.6). These proxy middleboxes show

symptoms of implementing most of the functionality of a full TCP stack, rather than just being a packet-level

relay.

Before we ran this study, anecdotal evidence had suggested that cellular networks would be much more

restrictive than other types of network. The results partially support this, as shown in Table 2.8. For port 80,

eight out of 20 cellular networks that we tested remove options; six of the eight proxy the connection. WiFi

hotspots are also relatively likely to remove options or proxy connections, especially for http. Overall though,

the majority of paths do still pass new TCP options.

We conclude that it is still possible to extend TCP using TCP options, so long as the use of new options is

negotiated in the SYN exchange, and so long as fallback to regular TCP behavior is acceptable. However, if

we want ubiquitous deployment of a new feature, the story is more complicated. Especially for http, there

are a significant number of middleboxes that proxy TCP sessions. For middleboxes that eliminate options,

it seems likely that very simple updates or reconfiguration would allow a new standardized option to pass,

Table 2.8: Option removal by Network Type
Remove option (Proxy conn)

Network Type port 34343 port 80 port 443
Cellular (out of 20) 4 (1) 8 (6) 4 (1)
Hotspot (out of 34) 1 (0) 6 (5) 4 (3)

Univ (out of 17) 0 (0) 3 (3) 0 (0)
Ent (out of 17) 1 (0) 3 (2) 1 (0)

Total 6 20 9
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Table 2.9: Sequence Number Modification Test
TCP Port

Behavior 34343 80 443
Unchanged 126 (93%) 116 (82%) 128 (90%)
Mod. outbound 5 (4%) 5 (4%) 6 (4%)
Mod. inbound 0 (0%) 1 (1%) 1 (1%)
Mod. both 4 (3%) 13 (9%) 7 (5%)
Proxy (probably
mod. both)

0 (0%) 7 (5%) 0 (0%)

Total 135 (100%) 142 (100%) 142 (100%)

assuming it were not considered a security risk. But for transparent proxies, the middlebox would not only

need to pass the option, but also understand its semantics. Such paths are likely to be more difficult to

upgrade.

2.2.2 Sequence Number Modification

TCP Selective Acknowledgement (SACK) [40] is an example of a TCP extension that uses TCP options that

quote sequence numbers, in this case to indicate precisely which segments arrived at the receiver. How might

middleboxes affect such extensions?

In our sequence number modification test, we examine both the outgoing and incoming initial sequence

number (ISN) to see whether middleboxes modify the sequence numbers sent by the end systems. Table 2.9

shows the result. Paths where neither the outbound nor inbound sequence number is modified are labeled

as Unchanged. Paths where the outbound or inbound sequence number is modified are labeled as Mod.

outbound and Mod. inbound, respectively. Paths where both the outbound and inbound sequence numbers

are modified are labeled as Mod. both.

Sequence numbers on at least 80% of paths arrive unchanged. However 7% of paths modify sequence num-

bers in at least one direction for port 34343 and 18% modify at least one direction for port 80. For port 80,

the same seven paths identified earlier as having application-level HTTP proxies cannot be tested outbound,

but do modify inbound sequence numbers and almost certainly modify both directions.

One might reasonably expect that middleboxes that proxy a connection would split a TCP connection into

two sections, each with its own sequence space, but that other packet-level middleboxes would have no reason

to modify TCP sequence numbers. If this were the case, then TCP extensions could refer to TCP sequence

numbers in TCP options, safe in the knowledge that either the option would be removed in the SYN at a

proxy, or sequence numbers would arrive unmodified. Unfortunately the story is not so simple.

At a TCP receiver, one use of sequence numbers is to verify the validity of a received segment. If an adversary

can predict the TCP ports a connection will use, only the randomness of the initial sequence number prevents

a spoofed packet from being injected into the connection. Unfortunately TCP stacks have a long history of

generating predictable ISNs, so a number of firewall products try to help out by choosing a new more random

ISN, and then rewriting all subsequent packets and acknowledgments to maintain consistency [33, 55].

We compared those paths that pass unknown options in the SYN with those that modify sequence numbers

Page 22 of (77) c© CHANGE Consortium 2012



Figure 2.2: Sequence Hole Tests: data first (left) and ack first (right)

Table 2.10: Data-First Sequence Hole Test
TCP Port

Behavior 34343 80 443
Passed 131 (97%) 120 (85%) 135 (95%)
No response 2 (1%) 6 (4%) 2 (1%)
Duplicate Ack 1 (1%) 9 (6%) 5 (4%)
Test Error 1 (1%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

in at least one direction. On port 34343, 5 out of 9 allow unknown options and still modify the sequence

numbers. For port 80, 7 out of 26 pass unknown options, and for port 443 it is 7 out of 14. The numbers are

the same for unknown options in data packets.

We conclude that it is unsafe for TCP extensions to embed sequence numbers in TCP options (or anywhere

else), even if the extension negotiates use via a new option in the SYN exchange.2

2.2.3 Sequence Space Holes

TCP is a reliable protocol; its cumulative Ack does not move forwards unless all preceding segments have

been received. What would happen if from the vantage point of a middlebox, a TCP implementation violated

these rules? Perhaps it wished to implement partial reliability analogous to PR-SCTP [50], or perhaps it

simply stripes segments across more than one path in a similar manner to Multipath TCP?

We can distinguish two ways a middlebox might observe such a hole:

• Data-First: it sees segments before and after a hole, but does not see the segment from the hole. If the

middlebox passes the segment after the hole, it sees it cumulatively acked by the recipient, despite the

middlebox never seeing the data from the hole.

• Ack-First: It sees a segment of data, then an ack indicates the receiver has seen data not yet seen by

the middlebox. If the middlebox passes the Ack, the next segment seen continues from the point acked,

leaving a hole in the data seen by the middlebox.

These form the basis of our tests shown in Fig. 2.2. The left side is the initiator’s time-line in both tests.

2SACK does embed sequence numbers in options, but it predates the existence of almost all middleboxes. We hope that these
middleboxes are aware of SACK and either rewrite the options or explicitly remove SACK negotiation from the SYN exchange.
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Table 2.11: Ack-first Sequence Hole Test
TCP Port

Behavior 34343 80 443
Passed 102 (76%) 95 (67%) 105 (74%)
No response 28 (21%) 28 (20%) 29 (20%)
Ack fixed 4 (3%) 5 (4%) 3 (2%)
Retransmitted 1 (1%) 7 (5%) 5 (4%)
Test Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 2.10 shows the result of the data-first sequence hole test. Paths where the second Ack was correctly

received are labeled Passed, and clearly have no middlebox that requires TCP flow reassembly. As before, on

port 80 there are seven paths with http proxies we cannot fully test; these are labeled Test Error. The one path

using port 34343 labeled Test Error was due to high packet loss during the experiment rather than middlebox

interference.

The remaining cases are the most interesting. We observed two distinct middlebox behaviors:

• No response was received to the second data packet.

• A Duplicate Ack was received, indicating receipt of the first data packet and by implication, signaling

loss of the packet in the hole.

A middlebox implementing a full TCP stack would be expected to break the path into two sections, separately

acking packets from the initiator before sending the data to the responder. This would give the Duplicate Ack

behavior. As expected, we see more such middleboxes on port 80.

A middlebox that does not respond to the second packet is clearly maintaining TCP state (or it would pass

the second Ack), but it is not independently acking data. Its reasons for doing so are unclear—perhaps it is

attempting to analyze the stream contents and is unwilling to pass an ack for data it has not seen? Whatever

the reason, we still see more such middleboxes on port 80.

In the ack-first sequence hole test (Fig. 2.2, right), the initiator acks a segment beyond that which is received

(i.e., proactive ack). The responder skips the data acked and sends an ack packet the sequence number

of which follows on from the point that was acked. To receive a response packet from the responder, the

segment from the initiator to the responder also contains data, but what we are interested in is whether the

proactive ack is received, and subsequently whether the packet following the hole is received. Table 2.11

shows the results.

The results of this test were a surprise—even on port 34343, middleboxes interfered with end-to-end behavior

24% of the time. As before, seven paths on port 80 could not be tested. Of those that could be tested, we saw

three distinct behaviors:

• On around 20% of paths we saw no response to the proactive ack. Either the proactive ack was dropped

or the packet above the hole was dropped, but the lack of a response does not allow us to distinguish.
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• On quite a few paths (labeled Ack fixed), an ack packet is received, but the sequence number of which

follows the last packet sent by the responder as if we sent an ack without holes. Perhaps the proactive

ack was re-written by the outgoing middlebox to indicate the highest data cumulatively seen by the

middlebox.

• On some paths, the middlebox itself actually retransmitted the last data packet sent by the responder

from before the hole. These paths also sent back ack packets observed on Ack fixed paths, except for

one path on port 80 and 443.

It is clear from these results that TCP extensions relying on sequence number holes are unsafe. Although

some of the results can be explained by proxy behavior at middleboxes, some paths that did not exhibit

clear proxy behavior (by performing separate acknowledgment) do affect both sequence holes and pro-active

acking. Perhaps some firewalls attempt to protect the initiator from potentially malicious proactive acks? [48].

One interesting observation is that around 10% of home networks give no response in the ack-first sequence

hole test. This is striking because none of the home networks strip unknown options.

2.2.4 Proxy Acknowledgments

In Tables 2.6 and 2.7 we observed that a subset of the paths that remove TCP options appear to show TCP

proxy behavior. We now elaborate on the tests we used to elicit this information.

A hypothetical TCP proxy[5] would likely split the TCP connection into two sections; one from the client to

the proxy and one from the proxy to the server. Each section would effectively run its own TCP session, with

only payload data passed between the two sections. Are the proxies we observed of this form, which is fairly

easy to reason about, or is their behavior more complex?

One symptom of a TCP proxy would be that acknowledgments for data are locally generated by the middle-

box. We performed two tests examining this behavior:

• Proxy SYN-ACK: Is the SYN/ACK locally generated by the proxy? In its SYN/ACKs, our responder

generates quite characteristic values for the initial sequence number, advertised receive window, max-

imum segment size, and Window Scale options. It is improbable that a proxy would generate these

values. We simply check the value of these fields in the SYN/ACK received by the initiator—if they

differ then this is symptomatic of a proxy that crafts its own SYN/ACKs.

• Proxy Data Ack: Is data acknowledged by the proxy before delivering it to the destination? Our

initiator sends a data packet to the responder, requesting the ack is sent on a packet that includes data.

If the ack received does not include data, it is extremely likely it was generated by the proxy rather than

the responder.

Neither test is conclusive by itself, but taken together they give a good picture of proxy behavior. As before,

there are seven paths which have HTTP-level proxies; on port 80, all seven sent proxy SYN/ACKs, but could
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Figure 2.3: Retransmission Test

Table 2.12: Results of Retransmission Test

TCP Port / Retransmitting size
Observed
Behavior

34343 80 443
same smaller larger same smaller larger same smaller larger

Passed 134 (99%) 134 (99%) 132 (98%) 124 (87%) 124 (87%) 123 (87%) 138 (97%) 138 (97%) 136 (96%)
No response 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (1%)
Ack adv’ced 1 (1%) 1 (1%) 1 (1%) 10 (7%) 10 (7%) 10 (7%) 4 (3%) 4 (3%) 4 (3%)
Reset conn 0 (%) 0 (0%) 0 (0%) 1 (1%) 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 1 (1%) 7 (5%) 7 (5%) 7 (5%) 0 (0%) 0 (0%) 1 (1%)
Total 135 (100%) 142 (100%) 142 (100%)

not be tested for proxy data acks. Tables 2.6 and 2.7 show the number of proxies identified. The set of paths

showing Proxy SYN/ACK behavior is precisely the same as those showing either Proxy Data Ack or HTTP

proxy behavior. Taken together, these tests provide good evidence for proxies of the form described above.

2.2.5 Inconsistent Retransmission

If a TCP sender retransmits a packet, but includes different data than the original in the retransmission, what

happens? This might seem like a strange thing to do, but it might be advantageous for extensions that do not

need stale data (such as VoIP over TCP). Given that we know sequence holes are a bad idea (See Sec. 2.2.3),

it might make sense to fill the sequence hole with previously unsent data.

Such inconsistent retransmissions would be explicitly “corrected” by a traffic normalizer[33], as its role is to

ensure that any downstream intrusion detection system sees a consistent picture. Equally, depending on their

implementation, TCP proxies might reassert the original data. We set out to test what happens in reality.

Fig. 2.3 shows our retransmission test. The initiator sends two consecutive segments, but we request that the

responder sends a cumulative ack only for the first segment, then a duplicate Ack. Any stateful middlebox will

infer that the second segment has not been received by the responder, and depending on its implementation, it

may retain the unacked segment. We then send a “retransmission” of the second packet, but with a different

payload (one that requests the responder echo the packet headers so we can see what is received).

We also repeat the test, but with the “retransmitted” packet being either 16 bytes smaller or 16 bytes longer

than the original packet.

From the responses, we can distinguish four distinct middlebox behaviors, as listed in Table 2.12:

• Most paths passed the inconsistent retransmission to the responder unmodified. In the case of port
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34343, only one path did not do this.

• On some paths the initiator observes that the cumulative Ack advanced, but the headers were not

echoed. This implies that the middlebox cached the original segment and resent it. Most of these

paths were ones that we had previously identified as TCP proxies, but one on port 80 was not—it

caches segments but does not separately ack data. We cannot know for sure, but this would be symp-

tomatic of a traffic normalizer or a snoop [6]. For port 443, one path in fact echoed headers after the

separate cumulative ack packet for the retransmission of the 16 byte longer packet. However, what the

responder received is a 16 byte piece that does not overlap with the original—the other part is probably

cached by the middlebox.

• One path returned no response at all when the inconsistent retransmit was larger than the original, and

did so for all ports. There is no obvious reason for such behavior, so we speculate it might be a minor

bug in a middlebox implementation.

• One path on port 80 reset the connection. This seems to be a fairly draconian response.

The usual seven paths with HTTP proxies could not be tested. One path on port 34343 and one on port 443

also failed to complete the test due to high packet loss.

Overall, any extension that wished to use inconsistent retransmissions would encounter few problems, so

long as it did not matter greatly whether the original or the retransmission actually arrives. The one path that

resets connections might however give the designers of extensions cause for concern.

We note that the proposal for TCP extended options might result in retransmissions that appear inconsistent

to legacy middleboxes, even if the payload is consistent. This might occur if the value of an extended option

such as a selective acknowledgment changes between the original and the retransmission.

2.2.6 Re-segmentation

TCP provides a reliable bytestream abstraction to applications, and makes no

promises that message boundaries are preserved. Some TCP extensions such as

TcpCrypt wish to associate a new option with a particular data segment—in the case of TcpCrypt to

carry a MAC for the data. How will such extensions be affected by middleboxes?

We expect that TCP proxies will coalesce small segments if a queue builds in the proxy, and might split

segments if the proxy negotiates a larger MSS with the client than that negotiated by the server. However,

our results show such proxies remove unknown options from the SYN exchange, so any adverse interaction

(beyond falling back to regular TCP) is unlikely. Our concern therefore is whether there are middleboxes

that are not proxies that re-segment packets. In particular, any middlebox that passes new options and also

re-segments data might be problematic.

To test segment splitting, we simply send a full-sized segment. Our responder advertises a relatively small

512 byte MSS. Any middlebox advertising a more normal (larger) MSS will be forced to resegment larger
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Figure 2.4: In-order Segment Coalescing Test

Figure 2.5: Queued Segment Coalescing Test

data packets into smaller ones. In fact, MSS advertised by 16 SYN proxies we observed at port 80 varied

between 1372 – 1460 bytes. We perform the test without option, that with the known option (TIMESTAMP)

and that with the unknown option (MP DATA) to see if options are copied to the split segments.

We found that 1 path on port 34343, 9 paths on port 80 and 4 paths on port 443 split segments in this way.

These are the same paths identified as proxies in Table 2.7. None passed options to the split segments.

The opposite of segment splitting is segment coalescing, where a middlebox combines two or more segments

into a larger segment. To test for this, we must send two consecutive small segments and observe whether

a single larger segment arrives. However, a middlebox that has the ability to coalesce might still not do so

unless it is forced to queue the segments. We therefore perform two versions of the test, as shown in figures

2.4 and 2.5.

• We test if segments are coalesced if the two small segments arrive in order (Fig. 2.4).

• We reorder the segments so that the small segments arrive after a gap in the sequence space, creating

an opportunity for middleboxes to queue them (Fig. 2.5). We then send the segment which fills the

sequence hole. If a middlebox queued the small segments, this will release them, potentially allowing

coalescing to occur.

As before, we repeat the tests without options and with both known and unknown options.

Table 2.13 shows the results. Most middleboxes running TCP proxies coalesced segments in both in-order

and queued cases (labeled Coal. both), and the other proxies did so in only the queued case (labeled Coal.

queued). No middlebox copies either known or unknown options to the coalesced segments. One non-proxy

path did coalesce segments in the in-order test on ports 80 and 34343 (labeled Coal. ordered), but passed all

the other tests. Interestingly, it only coalesced when options were not present.

As before, on port 80 seven HTTP proxy paths could not be tested. Three other cases gave unexpected results.

One path on port 34343 failed in the queued test that does not contain options, but did not coalesce in the

other tests. One path on port 80 acked only the third segment in the queued test—returned no payload; other

tests show this path does not show proxy behavior and does pass TCP options, but gives no reply to the data-

first sequence hole. Likely it is also ignoring out of order segments in this test too. The other path on port
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Table 2.13: Results of Segment Coalescing Test
Observed
Behavior

TCP Port
34343 80 443

Passed 132 (98%) 123 (87%) 138 (97%)
Coal. ordered 1 (1%) 1 (1%) 0 (0%)
Coal. queued 1 (1%) 3 (2%) 1 (1%)
Coal. both 0 (0%) 6 (4%) 3 (2%)
Error 1 (0%) 9 (6%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

80 showed similar behavior except that it does not return payload even in the in-order test and does cache

segments. We do not know what form of middleboxes these are, but their behavior seems fragile.

Among those paths that coalesced, we saw quite a variety of behavior. The two small segments we sent were

of 244 bytes. When coalescing occurred, depending on the path, the first coalesced segment received could

be of 256, 488, 500 or 512 bytes in the first test and 256, 476 or 488 bytes in the second test. We have no idea

what motivates these particular segment sizes.

Overall, the story is quite good for TCP extensions. Although middleboxes do split and coalesce segments,

none did so while passing unknown options (indeed one changed its behavior when options were present).

Thus it seems relatively safe to assume that if an option is passed, it arrives with the segment on which it was

sent.

2.2.7 Intelligent NICs

Most of the experiments in this paper probe the network behavior, but with the rise of “intelligent” Network

Interface Cards, even the NIC can have embedded TCP knowledge. Thus the NIC itself might fight with new

TCP extensions.

We are concerned in particular with TCP Segmentation Offload (TSO), where the host OS sends large seg-

ments and relies on the NIC to resegment to match the MTU or the receiver’s MSS. In Linux, the TCP

implementation chooses the split segment size to allow all the TCP options to be copied to all the split seg-

ments while still fitting within the MTU. But what do NICs actually do—do they really copy the options to

all the split segments?

We tested twelve TSO NICs from four different vendors; Intel (82546, 82541GI, 82566MM, 82577LM,

82567V, 82598EB), Nvidia (MCP55), Broadcom (BCM95723, BCM5755) and Marvell (88E8053, 88E8056,

88E8059). For this, our initiator tool consists of a user application and a custom Linux kernel, and we reused

the responder tool from the earlier middlebox tests. The key points about the experiment are:

• Our application calls write() to send five MSS of data to the socket layer at one time.

• The OS TCP stack composes one TCP segment that includes all the data and passes it to the TSO layer.

This large segment also includes the TIMESTAMP or MP DATA TCP option.
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• The NIC performs TSO, splitting the large segment into multiple segments and transmits them.

• Our responder receives these segments and responds with a segment echoing the headers in its payload

so we can see what was received.

All the NICs we tested correctly copied the options to all the split segments. TSO is now sufficiently com-

monplace so that designers of extensions to TCP should assume it. The implication is that TCP options

must be designed so that when they are duplicated on consecutive segments, this does not adversely affect

correctness or performance.

We also tested Large Receive Offload (LRO) behavior with the Intel 82598EB ten gigabit ethernet NIC to

see how TCP options are treated. First, we receive bulk TCP traffic with the NIC; all packets in the traffic

include an MP DATA option with the same values. Second, we receive similar traffic, but change the values

of the MP DATA between packets. We also conducted the same tests with a TIMESTAMP option instead

of the MP DATA. For both option kinds, packets were coalesced only when their option values are same.

The coalesced segment has one of the options on the original segments. This behavior seems sane: on this

particular NIC, LRO simply tries to undo what TSO did by duplicating options. If options are different, no

coalescing happens.

Both TSO and LRO seem to forbid TCP extensions to reliably use the counts of sent and received options

for signaling. Instead, TCP extensions experiencing offload should be prepared to handle both duplicate and

“merged” options. Disabling offload altogether at endpoints is possible, but will result in a performance

penalty.

2.3 Lessons learned

In the original TCP specification, the options were included to allow TCP extensions to be incrementally

deployed. A typical extension defines a new TCP option and places it in the SYN segment. If the SYN+ACK

contains a similar option, the extension is used. Otherwise, the extension is not enabled. This option-based

extensibility worked well in a network that followed the end-to-end principle. Unfortunately, in a network

that contains middleboxes, this is not sufficient.

In today’s Internet, the three-way-handshake involves not only the two communicating hosts, but also all the

middleboxes on the path. Verifying the presence of a particular TCP option in a SYN+ACK is not sufficient

to ensure that a TCP extension can be safely used. As shown in the previous chapter, some middleboxes

pass TCP options that they don’t understand. This is safe for TCP options that are purely informative (e.g.

RFC1323 timestamps) but causes problems with other options such as those that redefine the semantics of

TCP header fields. For example, the large window extension in RFC1323 changes the semantics of the

window field of the TCP header and extends it beyond 16 bits. Nearly 20 years after the publication of

RFC1323, there are still stateful firewalls that do not understand this option in SYNs but block data packets

that are sent in the RFC1323 extended window. A TCP extension that changes the semantics of parts of the
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packet header must include mechanisms to cope with middleboxes that do not understand the new semantics.

Our own experience in designing Multipath TCP, an extension to TCP described in detail in Deliverable 4.3,

has brought up many design issues that do not exist in an end-to-end Internet. A major issue we encountered

affects all TCP designers and not just MPTCP. This issue is the mutability of the TCP packets. In an end-to-

end Internet, all the information carried inside TCP packets is immutable. Today this is no longer true. The

entire TCP header and the payload must be considered as mutable fields. If a TCP extension needs to rely on

a particular field, it must check its value in a way that cannot be circumvented by middleboxes that do not

understand this extension. Multipath TCP includes an additional checksum (the DSM checksum) in every

packet just to deal with the problem of mutable packets.

The third, but probably most important point about new TCP extensions is that to be deployable they must

necessarily include techniques that enable them to fallback to regular TCP when something wrong happens.

If a middlebox interferes badly with a TCP extension, the problem must be detected and the extension auto-

matically disabled to preserve the data transfer. A TCP extension will only be deployed if its designers can

guarantee that it will transfer data correctly (and hopefully better) in all the situations where a regular TCP is

able to transfer data.

The last point that we would like to raise is that the hidden middleboxes increase the complexity of the net-

work. This gives us a strong motivation to change the network architecture to recognize explicitly their role.

The CHANGE architecture aims to do precisely this, embracing flow-processing and implicitly middleboxes,

while allowing the Internet to evolve at the same time.
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3 CHANGE Architecture
Whether we would like it or not, there is no returning to the original end-to-end transparent Internet archi-

tecture. Quite simply, there are just too many reasons why processing of data flows needs to be performed

within the network, not just in the end-systems. To enable innovation, we need to play to the strengths of

both packet-switching and flow processing, rather than dogmatically camping on one side or the other. We

acknowledge the fundamental advantages offered by packet-switching, but believe that the architecture is

missing the primitives to introduce and reason about flow-processing at selected key points in the network.

We assert that flow processing must not be provided in the form of in situ hacks (as is the current state of

affairs) but in a way that makes it a first class object in the network. Done right, we believe it will allow

operators and application writers to reason about the emergent behaviour of the end-to-end path through such

a network - an arduous task in today’s Internet.

The deployment of a general purpose flow-processing architecture is what is required to break the innovation

log-jam that has been developing over the last fifteen years. This is the overall goal of the project. But before

delving deeper, we must first answer the question; what exactly is flow processing?.

Flow processing is any manipulation of packets where the service given to or the operations applied to a

set packets is differentiated based on their implicit membership of a labeled flow. Flows can be of different

granularity; a single TCP connection might comprise a flow, but equally all the traffic between two sites can

comprise an aggregate flow, or even all the Internet telephony traffic traversing a router. The concept of a flow

is therefore generic, it simply defines a relationship between a set of packets. But what all flow processing

has in common is that it requires the maintenance of some measure of flow state in the network.

The processing that might be applied to flows is very varied. At one extreme, flow processing might involve

providing low-latency forwarding to traffic in a flow. At the other extreme, it might involve the reassembly

of the contents of a packet stream and parsing of application-level content to perform network intrusion

detection, or explicit authentication to a site firewall to allow subsequent packets of a flow to proceed.

To enable innovation, an architecture must be able to support a wide range of flow processing. It must allow

for the rapid innovation and deployment of new flow processing primitives so that flow processors are not

locked into the applications of today. In essence, this means that anything more than simple packet forwarding

should be a software function, so as to allow for quick deployment. Contrast this with the current Internet,

where flow processing is almost always performed in special purpose boxes sold by vendors to solve a specific

problem.

In recent years several trends have come together to transform this general vision and bring it to practical real-

ity. First, general-purpose x86 server hardware has become cheap and powerful enough for packet processing

at rates of up to 20Gbit/s. The combination of PCI-Express, Gigabit or 10-Gigabit Ethernet supporting virtual

queueing, CPUs with many cores, and high-bandwidth NUMA systems architectures, has resulted in low-cost

systems that have been optimized for high-performance network processing on general purpose servers. Such
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machines are equally comfortable at performing network flow processing, and having been optimized for vir-

tualization, individual machines are able perform flow processing on behalf of more than one organization.

Secondly, high-performance Ethernet switch chipsets have become a low-cost commodity item. Such chipsets

have flow-processing capabilities; typically they are able to perform matching and forwarding based on arbi-

trary combinations of packet header fields, as well as supporting multipath forwarding; useful for hash-based

load-balancing across multiple output ports. Current commodity chipsets can support flow tables containing

tens of thousands of flows. OpenFlow [41] takes advantage of such chipsets and provides a common API to

control flow processing in these switches.

Combining OpenFlow-style switches with clusters of commodity servers allows powerful and scalable plat-

forms to be built [30]. The switch provides the first level of classification, and balances traffic directly across

virtual queues on the servers, allowing traffic to be directed to specific CPU cores for more sophisticated pro-

cessing. Such a hardware platform provides a very powerful, scalable and flexible base on which to build a

flow processing system. An enabling goal of CHANGE is to build upon preliminary work on these platforms,

with the aim of realising flow processing systems that can take full advantage of the flexibility inherent in

such a hardware platform.

Flow processing platforms offer the potential to realise several distinct advantages:

• The capacity to scale up processing by merely adding more inexpensive servers

• The capacity to scale down processing by concentrating load on a few boxes at quiet times to save

power consumption

• The capacity to roll out new flow processing functionality at short notice to handle unexpected prob-

lems, or take advantage of unexpected opportunities, with only software reconfiguration required.

• The capacity to support a wide range of functionality thanks to relying on general-purpose hardware

and operating systems

• The capacity to dynamically shift processing between flow processing servers

• The capacity to concurrently run different kinds of processing on different sets of flows while providing

high performance and fairness guarantees

Running isolated CHANGE platforms brings many benefits to the deploying entity: it will be easy to update

processing functionality and to increase processing capacity on demand. However, this is only a small im-

provement with regards to both the transparency and the rapid evolution of the Internet. The real benefits

come when the CHANGE platforms cooperate to ensure end-to-end flow processing, at which point users

will be able to reason about expected performance of their instantiations, detect bottlenecks, and scale out

processing, all in a principled and transparent manner.
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3.1 Architecture Requirements

The Internet is a playing field where different stakeholders fight to impose their requirements. End-hosts

wanting to run new applications would like the Internet to return to the days of ubiquitous reachability (that

allows peer-to-peer operation, for instance) and a “dumb” network that treats all packets equally. The network

operators, on the other hand, must enforce security via firewalls, deal with the depleting IPv4 address space by

deploying NATs, and use DPI to differentiate traffic to impose some notion of “fairness” among users. These

tussles in cyberspace will not be resolved any time soon, they are built in to the fabric of the Internet [20].

Therefore technology must not take sides, and solutions should allow for the tussle to play out in different

ways. Currently the balance of power is tilted towards the middle; ISPs deploy functionality that makes it

harder and harder for the endpoints to deploy new applications, and applications get more complex in order

to jump the hurdles.

We have talked at great length about what MPTCP needs to do to get through the current Internet in the

previous chapter. While it does work, the problem with MPTCP is that its defensive design carries a certain

amount of overhead, for instance adding checksums to each packet. If the network evolves to be friendlier

in the future, MPTCP won’t really be able to tell and will still be as defensive as today when doing its

functionality. The network could help, but there is no way today for the ends to communicate with the

middle. That needs to change.

Skype is another telling example: it does almost everything possible to get through NATs and firewalls,

including tunneling voice traffic over TCP and using application-level proxies to allow conversations between

two hosts behind NATs. Anecdotally, a big part of Skype’s success stems from the very fact that it works

most of the time where no other similar app achieves quite the same results.

While Skype does work, it is far from optimal: voip traffic between two users in the same city can sometimes

end up re-routed through different countries, inflating end-to-end RTT and decreasing user satisfaction. This

state of affairs is suboptimal for the operators too: they have to pay for inter-domain traffic that should have

never left their network.

In fact, this is a symptom of a bigger problem, and Skype is not an isolated case: iPlayer and BitTorrent

are examples of other applications whose traffic can take suboptimal paths that hurt the operators’ economic

interests. The real problem is that the operators’ policy is unknown to the applications, and the applications’

desires are unknown to the operators. The result is an escalating war where DPIs are deployed and P2P traffic

is throttled, then the apps encrypt the traffic to avoid DPI, and so on.

To avoid all apps or endpoints having to include complex functionality just to ensure basic functionality such

as reachability, the network must be able to provide, on request, standard functionality that makes it possible

for endpoints to communicate even if they are behind NATs. One useful functionality is the the ability to

encapsulate and decapsulate packets in the network. Further, the users must be able to tell the network what

they want and the network should help them implement that processing, rather than placing all the processing
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at endpoints - this will allow us to avoid the suboptimal routing we saw earlier and also help design a simpler

MPTCP.

All of these can be accomplished within a flow processing architecture, as proposed by the CHANGE project.

The original Internet architecture lacked the concept of a flow, except as realized at the end systems. The end-

to-end principle provides a good argument against putting functionality in the core of the network, but taken

to its extreme it means than a network operator cannot see if the network is actually functioning. A network

can be moving very large numbers of packets but still getting no useful work done, as in the case of a DDoS

attack. Although packets are the basic forwarding entity, it is flows that perform work, and so it should be

unsurprising that network operators insert equipment into the network to manage and enhance flows.

Retrofitting a flow-processing abstraction to the Internet architecture is difficult to do in a clean way. With

hindsight, the original placement of addresses in IP and ports in TCP and UDP might have been a mistake,

as it places at least one component of flow identification in L4, where it was not intended to be used to make

forwarding decisions. Nevertheless, we assert that it can be done. The main pieces are 1:

• A general-purpose scalable flow processing platform on which L4+ middlebox functionality can be

implemented in software and updated as apps change.

• A categorization of flow processing behavior into a handful of classes, so we can reason about the

behaviour of concatenations of middleboxes without needing to understand the precise functionality of

each.

• A way to identify who can request processing.

• A way to name flows.

• A way for end-systems to discover platforms close to them or to the paths that their flows take.

• Attraction of flows to platforms that will process them.

The requirements above are functional, saying what CHANGE should incorporate to be able to fulfill its

tasks. Given these, how should we choose from the wide range of implementation possibilities that exist?

Our goals are to create an architecture that is feasible to deploy and use in practice and is appealing to both

operators and end-users. In the next section we discuss a few high-level requirements that steer CHANGE

towards these goals.

3.2 End-to-end example

To give the reader a crisper understanding of what CHANGE is trying to achieve, we describe here an end-

to-end example of CHANGE functionality along with the way it is implemented. We will spend the rest of

this document explaining the whole architecture in greater detail.

1These components follow directly from the functional architecture requirements spelled out in Deliverable 2.1
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Consider a user wanting to instantiate an in-network Intrusion Detection System to analyze traffic before

it reaches its premises. The user will create a CHANGE configuration file that describes the processing it

wants instantiated. The configuration file allows the user to specify how its packets should be processed on

CHANGE platforms. It allows platform selection, flow naming, wide-area flow manipulation (redirection,

rerouting, tunneling) as well as arbitrary flow processing.

The software running at the client will parse the configuration file and implement it. First, the user might

specify that it wants a CHANGE platform close to him (in terms of network delay), and this will be imple-

mented by using mechanisms akin to CDNs replica selection, or by using anycast as we propose in Chapter

3.7. The client software will then contacts the platform and prove it owns its address by using the newly

deployed RPKI infrastructure. This convinces the platform that it is safe to run processing on traffic destined

to the user. At this point, an extra step may be needed if the traffic does not naturally pass through the selected

CHANGE platform: DNS or BGP could be used to draw the traffic into the platform. The IDS is then in-

stantiated using the rules provided by the user. To ensure that traffic is not changed between the platform and

the destination, the user specifies a network invariant requesting that existing packets cannot be modified and

that new packets cannot be originated with the same destination address. Finally, the user pays the platform

owner for the processing it is providing, which provides incentives for ISPs to deploy such platforms.

3.3 Flow Naming

We begin our discussion of the CHANGE architecture by asking the most basic question: what is a “flow”?

We need a definition that allows both users and platforms to uniquely identify the packets belonging to a

single flow, both for labeling and processing.

The answer is simple for a single platform: a flow is any subset of the packets passing through that platform.

In this context, then, the question becomes how can a user specify a subset of packets. CHANGE uses a

bitmask for this purpose; we discuss the reasons for this choice in some detail in section 3.3.1. For instance,

a user could run an intrusion detection system on platform P1 analyzing all the traffic addressed to it (as in

our end-to-end example discussed above).

The next question is: how do we define a flow in a wide-area context? Intuitively, we want to be able to

identify on downstream platforms exactly the same packets selected at the ingress CHANGE platform(s).

An ideal solution would be to insert unique, immutable tags in packets specifying the flow they are part

of. The great virtue of this solution is that flow names are explicit and visible throughout the Internet.

However, in practice this solution is infeasible because we cannot implement the required in-band signaling

in a deployable way in the current Internet.

The CHANGE architecture uses implicit flow definitions instead: these cannot be seen by observing the

packets. When it specifies a CHANGE configuration, the user can define a flow as the output of filtering

input packets with bitmaps or as the output of processing modules in the CHANGE platform. The user can

then use the flow name to request processing of that flow on a different CHANGE platforms. To implement
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this functionality, CHANGE uses:

• Bitmasks on each platform to specify which packets belong to each flow. Given the original packet

flow, CHANGE computes new bitmasks that will match the same packets on another platform, and it

can forward the packets to that platform if needed. By itself, the bitmasks are not enough as packets

could be changed in transit or new packets could be injected into the flow.

• To avoid this problem, invariants are used to guarantee that the selected set of packets is indeed the

same as that seen on the ingress platforms.

We discuss in greater detail the reasoning that lead us to this solution in section 3.3.2.

3.3.1 From Packets to Flows

At the highest level of abstraction, flow identification is equivalent to defining a Boolean function, such that

given a flow definition and an arbitrary packet, it returns TRUE iff the given packet belongs to the named

flow and FALSE otherwise.

In principle, there are two basic requirements for a flow naming solution; flexibility and performance. The

flexibility clause is best expressed when we look at how a flow definition may be used. For example, a flow

definition may be required to capture a single TCP connection, or all UDP traffic destined to an IP address,

or ICMP traffic originating from a given source. From these examples it becomes clear that the range of

possibilities is clearly vast, and as such an adequate flow naming solution must be flexible enough to capture

all these flows.

Given that platforms will capture the flows of interest to them by applying filters to the transient traffic they

see, it is obvious that this fundamental task must be carried out efficiently. To realise this, flow naming

must be amenable to a fast, line-speed implementation. This performance requirement is somewhat elusive:

though hardware advances will push the envelope for what processing capacity, it is not adequate to simply

rely on “better hardware in the future”; instead, the basic definition presented must be implicitly suited to

high-performance processing.

Conventional wisdom holds that maintaining and accessing per-flow state for all Internet traffic is in practice

unfeasible. The reasons for this are mostly economic; while it is possible to build routers with large and fast

flow memory in practice these are prohibitively expensive. Though DRAM-based solutions are cheaper, they

are also slower. To allow fast identification of a flow, we require that a flow-processing platform be stateless;

it does not maintain additional per flow state. This means the Boolean function identifying a filter must also

be memory-less so as not have any side effects.

Traditionally, flows are defined using the 5-tuple syntax of (IP SRC, PORT SRC, IP DST,

PORT DST, PROTO), while the corresponding Boolean function implements a check for the exact match-

ing of all the five fields. The most evident disadvantage of the 5-tuple syntax is that it cannot scale up and

down the protocol stack. For example, if a flow consists of all HTTP GET packets to one destination, there is

not a single function that matches all the desired packets.
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A more scalable approach to the problem is to make the flow identification process protocol agnostic. By

this we mean replacing the implicit IP header dependence of the traditional 5-tuple syntax with an easily

generalisable bitmask, such that if the bitmask matches a packet, the packet is labeled as belonging to the

flow that defines the bitmask.

Such a bitmask could be used to address any bit from an IP packet, including payload. For example, given

the first byte of 4 packets as: 0110 0110, 0111 1010, 1010 0110 and 1110 0001 and the bitmask:

*1*0 **** - whereby ∗ defines a wild card, it is clear that AND’ing the bitmask will only match packets

1 and 4.

Because of the generality of this approach, it is trivial to craft bitmasks that can support basic flow identifica-

tion tasks such as:

• Identifying a TCP connection - specify the 5-tuple

• Identifying ICMP traffic originating from a given host- match the ICMP protocol number and the source

address.

• Identifying the packets going to one destination host: we only match the IP DST field.

• Identifying the packets destined for a group of hosts in a subnet: we simply modify the mask, in order

to contain all the hosts from that group. (e.g. match 128.16.6.*)

Matching bitmasks has the advantage that is easy to implement in hardware using TCAM memory - which is

becoming cheaper and increasingly commonplace with the recent advent of OpenFlow switches. While our

flow definition is naturally applicable to packet headers and allows for expressive selection of flows at layers

two, three and four, be they host-to-host, many-to-one or even many-to-many. Further, bitmasks can be used

to select application level flows where port numbers are sufficient for identification.

Though immensely flexible, there exists a whole class of application-level flow definitions (characterised by

the requirement that flow state information be kept) that our solution does not capture. For instance, selecting

flows that contain a certain worm signature or HTTP requests for a given Youtube video or a the packets

associated with a given FTP session or all the sub-flows belonging to a given multipath TCP connection.

In principle some of this functionality can be achieved by applying the bitmasks on packet payloads. For

instance, if the destination IP is that of Youtube and the payload is ‘GET /video.avi’ we could redirect

the traffic to a local cache. However, there are implicit limitations with such an approach. For example:

(i) Packets belonging to a flow may get redirected while others don’t - in the Youtube example, the request

segment is redirected but the SYN exchange or subsequent packets are not. This is not what we would

like to happen: we would like the whole flow to be redirected, or at least the part of flow after the

request.

(ii) Middleboxes could split/re-segment packets, which would make payload bitmasks fail. In the Youtube

example, if the resource name is split across two segments the bitmask will fail to match the segments.
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(iii) Interesting patterns could start at different offsets within the payload (e.g. a worm signature).

The first problem can be fixed if there is some callback for a matched packet (e.g. redirect to rule owner),

whereby a new rule would be inserted when a match occurs. For example, in order to capture the Youtube

cache, a new 5-tuple rule would be inserted to match all subsequent packets associated with the flow.

The second and third problems are more difficult to solve, because they require the flow processing platforms

to reconstruct the TCP payload before they apply the matching. Further, the matching itself needs to be more

complex to support varying offsets; (e.g., full blown regular expressions for searching worm signatures). The

commonality between the listed examples is that they require per flow state to function and as such will not

scale to large numbers of flows.

As discussed, though limited, our bitmask based solution (applied to packet headers) provides the highest

level of generality without instantiating per-flow state. Applications that do require per-flow state can still

be supported, by using a two-stage approach to first identify and then handle their traffic. First the bitmasks

are used to select a slice of the flows (i.e. flows going to a certain destination, or having a certain destination

port, etc.) and then they are redirected to a local processing module. Second, the processing modules keep

per flow state as required, and implement the desired processing functionality, for instance detecting flows

that carry a given worm signature. Once detected, these flows will be either redirected for further processing

(c.f. FlowStream), tunneled to the destination, dropped, etc.

Finally, while we consider a packet-level bitmask to uniquely define flows, there are currently limitations due

to the OpenFlow architecture. OpenFlow currently accepts only bitmasks based on source IP and destination

IP addresses, and exact matches on other L2 and L3 header fields, as well as TCP ports. It is expected that

OpenFlow will in the future support bitmasks for arbitrary bits in the header.

3.3.2 Wide-Area Flow Processing

How do we define a flow in a wide-area context? A strawman solution is to consider that a flow comprises

packets matching the same bitmask on many platforms in the Internet. However, this solution is not adequate

for many reasons. First, packets change during forwarding and the same bitmask may not be able to cap-

ture the same packets as they pass through different platforms—an obvious example here is when the mask

includes the TTL field. Even more conventional bitmasks, such as those based on addresses in packets, can

fall short because of NAT boxes, proxies, and so forth. Even worse, using the same bitmask on different

platforms could match different packets belonging to different users: a filter using non-routable addresses

(192.168.x.y) would fall in this category, matching packets from different users and wrongly placing them in

the same flow.

An ideal solution would allow us to tag the packets selected by the user on the ingress platform: it should be

possible to add a globally-unique identifier to each packet such that a) any CHANGE platform observing the

packet can tell which flow it belongs to and b) it is impossible for anyone except the ingress platform/user to

create a valid packet identifier belonging to that flow.
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Cryptographic techniques can be used to generate such identifiers. For instance, a flow could be uniquely

defined by a public/private key-pair. To mark a packet as belonging to a flow, we would include in the packet

a hash of the public key, and a signature of a predefined part of the packet (for instance, the payload). Then,

any platform that is given a flow definition (the public-key together with the part of the packet that needs to

be checked) can easily verify that the packet belongs to the flow by first matching the public key and then

verifying the signature.

This definition is quite powerful: it allows the packets of a single flow to be marked at multiple ingress plat-

forms. The definition can have strong security implications: any new packets added to the flow must only be

added with the (explicit or implicit) agreement of the user. Further, the changes allowed for packets belonging

to this flow are prescribed: in the example above, payload changes are disallowed. On-path platforms can

easily change packets in any possible way, but the CHANGE platforms will not treat these packets as part of

the original flow. It is up to the user to decide on the security it wants for its flow, and choose an appropriate

identifier. In this process, the user will need to ask itself questions such as: what parts of the packet should

stay intact? who can inject new packets in this flow?

In practice, multiple users may wish to run processing on the same packets (e.g. the destination ISP and

the destination address) and it is difficult to re-use an existing flow definition; even if the users tag the same

packets on the same ingress platform, they still need to “discover” their filters are the same, which could

raise confidentiality concerns. Hence, it should be possible to add an arbitrary number of globally unique

identifiers to each packet. Finally, users must be able to modify or remove packet tags belonging to their

flows. This will allow users to split and merge flows, etc.

Implementing this ideal solution is challenging in practice for multiple reasons. First, the solution requires

that each packet carries its own identifier(s), and protocol-agnostic implementations would necessarily be

using IP options. However, IP options do not get through routers, so the solution cannot be deployed today.

Other issues come from the cost of public-key operations which makes it difficult to achieve good perfor-

mance.

The CHANGE solution sidesteps these two issues. First, we observe that only those platforms that process

a flow need to identify packets belonging to that flow; this removes the need for explicit flow identifiers in

each packet. Secondly, there is an existing trust relationship between the user and the platforms doing the

processing. We leverage this relationship to remove the costly public-key operations from the data path.

At a high level, CHANGE uses a series of packet filters on each platform that needs to process a specified

flow. In the CHANGE configuration file the user defines a new flow by giving a name, a set of packets that

belong to that flow and a desired invariant for the flow. The packets are specified in the following ways:

• A filter (a bitmask) that is applied to incoming packets. This definition will be typically used at the

ingress platform(s) (i.e. the first platforms that attract the packets).

• The output of a processing module.
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Figure 3.1: Flow naming problems when multiple users wish to process the same packets: user 2 will not be
able to process the packets it wants on platform B.

• A combination of the above two.

The invariant specifies how/whether packets are allowed to be changed, or whether new packets are allowed

to be injected by external parties after the flow has been created. If no invariant is specified, packet injection

is permitted and arbitrary packet changes are allowed as long as the packet source and destination addresses

are not allowed.

Once a flow is created, the user can use the flow name on different platforms to refer to the same packets. The

platform transparently creates filters that match the packets on the destination platform as well as invariants

as requested by the user. The filters take into account any flow manipulation requested by the user as well as

the packet changes imposed by the invariants.

Note that the CHANGE architecture uses implicit flow definitions: these cannot be seen by observing the

packets. Only the CHANGE user and the platforms involved in the processing are aware of the flow defi-

nition. Compared to the explicit identifiers we have identified as the ideal solution, this solution has similar

functionality from the perspective of a single user.

However, when multiple non-cooperating users are interested in processing the same packets (such as the

destination ISP and the destination host), the transformations one user makes to the packets of its flow can

affect the packets seen by the other user. An example is given in Figure 3.1. Here two users wish to process

the same flow—packets destined to D—on two platforms each. User X will select packets on platform A

and these will likely be tunneled encrypted to platform C to ensure that the invariant specified—no packet

changes, no new packets added—is satisfied. In this case, user Y will not be able to match the packets on

platform B as it wishes. This problem is inherent in any implicit flow naming solution, but we have to accept

it if we want deployment.

3.4 Types of Processing Primitives

We need to be able to reason about the security requirements and emergent behavior of flow processing

functionality. To this end, it is useful to identify a small number of classes of flow processing:
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• Read (R). The capability to read the contents of the packets to perform some action. Read-only, by

itself, will not affect the flow.

• Filter (F). The capability to drop some or all of the packets of a flow, or to rate-limit that flow. Filter

can change the behavior of flows, but not the contents of their packets.

• ReRoute (RR). The capability to change the path of a flow, but not otherwise affect the flow from an

end-to-end point of view.

• Redirect (RD). The capability to change the destination of a flow.

• Modify (M). The capability to modify the header or payload of packets in a way that changes the end-

to-end semantics of the protocols involved; this does not include changes to the IP addresses in the

packets.

• Originate (O). The capability to originate new packets on behalf of another host.

These categories are fairly broad, and each can be instantiated in more than one way. However, they cor-

respond to different security requirements, and having this classification allows us to reason about many

(although not all) concatenations of flow processing. Actual instantiations of flow processing will often in-

volve concatenations of these classes within the same platform or across platforms.

ReRoute and Redirect are the only classes that can change the path of a flow. Examples of re-routing include

tunneling from one platform to another, or re-writing the source address on packets to be that of the processing

platform.

Consider a bi-directional flow such as a TCP connection: tunneling of packets sent by the active opener pins

the forward path to traverse the platform at the tunnel exit point. By itself this would not affect the reverse

flow. A platform that NATs packets sent by the active opener would have the effect of pinning the reverse

path to traverse the NAT. This also falls within the ReRoute class. Any platform that requires observing both

the forward and reverse directions of a flow needs to pin both the forward and reverse paths, either using

ReRouting or by virtue of being at a natural choke point in the topology that cannot be bypassed. A NAT is

not the only way to pin the reverse path: a TCP-level proxy that split a connection into two could have the

same effect.

The key differentiator of ReRoute from Redirect processing is that after passing through the flow processor,

the flow continues on to its original destination and that the semantics of the flow are unaffected. The TCP-

level proxy mentioned above is of course something of an edge-case. By using its own IP address for the

outgoing connection, it clearly re-routes the reverse path. But the TCP packet headers and options are not

preserved across the proxy. From an L4 point of view, it modifies the flow, but from an application level

point of view it does not. In effect it performs ReRoute processing, but also acts as an L4 modifier. For

classification purposes, we do not consider a NAT to modify a flow, though it does change the flow label, and

this must be taken into account when establishing flow processing.
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Another interesting example is an IPsec tunnel. This pins the forward path (and often the reverse path,

depending on the deployment scenario), but it also pins the contents so they cannot be accessed or modified

by additional flow processing modules between the tunnel endpoints. This capability to pin contents is a key

attribute of some ReRoute processors, but we do not consider this to be a flow Modifier, as the transform is

reversed at the tunnel endpoint, and the flow continues on to its original destination.

The Modify class is the most difficult to reason about. Flows can be modified in arbitrary ways so long as

the path is unchanged - that is reserved for ReRoute and Redirect processing. Clearly we cannot provide

a general framework to reason about arbitrary composition of arbitrary processing; however, if we specify

invariants that restrict the type of changes that can take place, we can understand the emergent behavior. We

describe such invariants in Section 3.5.1.

These classes of primitives offer a considerable amount of flexibility. Table 3.1 shows a broad set of process-

ing functions and the way they fit into these classes.

Type R F RR RD M O
DPI X
NAT X X
Rate limiter X X
Firewall X X
IDS X
IPS X X
Transcoder X X
Multimedia mixer X X X
Implicit Proxy X X
Explicit Proxy X X
Scrubber X X X
Tunnel X X
Multicast X X X

Table 3.1: Flow processing applications built from the classes of primitives.

3.5 Predictable Networking

To do useful work using the Internet, network users—such as end-users, applications running on endpoints

or applications running in the network—expect a well defined behaviour from the network, and implement

their functionality accordingly. This contract is fundamental: it separates the functionality implemented by

both the network and the user, and ensures everything works as expected. It ensures transparency and allows

users to easily troubleshoot network-related problems.

The original contract of the Internet was quite simple: the endpoints give an IP packet to the network, and the

network does its best to get the packet to the destination. There are no hard delivery guarantees: the packet

either arrives or it doesn’t; if it does, the packet will be unchanged (from IP header up) or will contain one or

more random bit errors. Packet ordering is also not guaranteed: packets sent in order by the source host may

arrive out of order at the destination host.

This contract is easy to understand. To implement reliable delivery the endpoints need to retransmit lost
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packets, guard against reordering and check for errors in packets: all these can be easily accomplished by

adding sequence numbers to packets (for reordering and loss detection), acknowledgments (to drive retrans-

missions) and checksums. Indeed, this is a subset of the features of TCP - the prominent transport protocol

in the Internet.

The problem with the Internet today is that the contract between the user and the network has changed and

in many cases the user does not really know what the new contract is. The minimum service level for home

users seems to be “functioning” basic applications such as web browsing, email, VOIP, file downloads, etc:

the network allows this type of traffic to go through, and we have no idea what happens to other traffic

that looks “different”. The minimum level of service offered by the network to mobile users is generally

more constrained: here, web browsing and email typically work across the field, but not much more. VOIP

is regularly blocked, TCP traffic is sometimes allowed only on port 80, and HTTP requests must be well

formed; effectively the contract has moved from offering IP to offering HTTP for mobile users.

These observations are based on empirical evidence rather than something set in stone: the services offered

(or rather allowed) by the network vary wildly between operators in the same areas, and around the globe.

Our measurements presented in chapter 2 quantify the extent to this variability. The reality is that a typical

user has no idea what network service it is getting: contracts do not regularly spell out such technical details.

Even if they did, middleboxes exist at different places in the Internet, and users only have contracts with the

first hop: they can’t know what happens beyond that.

CHANGE opens middleboxes for innovation, allowing users and providers to instantiate new functionality

that changes the network behaviour. To be able to implement new applications, CHANGE users need to know

what the contract offered by the network is and understand whether their application will function correctly

in this environment. This task is quite difficult:

• Today, the network contract is vague at least, and can change without notice.

• Tomorrow, CHANGE processing instantiated by other users or network elements will dynamically

change the contract between the user and the network on timescales much shorter than today. Our

security rules prevent other parties to enable remote processing unless they own the flow, but this

would still allow a user’s provider (that owns the prefix) to instantiate processing unbeknown to the

user.

To mitigate the lack of information and allow predictable, evolvable networking, CHANGE uses invariants.

Invariants can be used by endpoints to check or assert that certain properties they expect from the network

service are indeed met. Invariants are used when the users do not know what the contract offered by the

network is, or when they only have partial information from the network. In an ideal world, processing done

by middleboxes should be visible to the traffic owners; this is not the case today, and it is unlikely to become

so in the near future.
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Invariants help deployment in an Internet where most middleboxes do not implement visibility mechanisms.

The downside of invariants are their associated overheads (which vary depending on invariant type, as we

shall see); if flow processing were visible to the traffic owners then it would be possible to statically check

whether certain compositions make sense. We discuss such compositions in Section 3.5.2.

3.5.1 Invariants: Dynamic Contracts with the Network

In the general case, a user wanting to deploy new functionality does not know what service it will receive

from the network: will the TCP sequence numbers be changed? will the TCP payload be changed?

A first observation is that the user may not care about most of the processing applied to its flows, as long it

does not interfere with its own application. A great example of this is today: most users are fine with the

Internet being heavily “optimized” for TCP and HTTP. Some applications or protocols, however, care that

the TCP payload is not changed (for instance TCPCrypt or Multipath TCP).

Our solution is to have users express invariants about parts of the packets that should not be processed

(changed or read) across a segment of the path (or the whole path). As long as these invariants are satisfied,

the user is sure that his processing is behaving correctly, regardless of any other processing applied to his

flows on that path segment.

The network’s role is to check and possibly enforce these invariants. This will be accomplished by instan-

tiating new flow processing functions at CHANGE platforms residing at both ends of the designated path

segment. The processing may insert additional signaling (out of band) or even change the packets (by adding

in-band signaling) to check the invariant.

Consider the simple end-to-end example we discussed earlier: where the IDS running on a CHANGE plat-

form wants to make sure that the TCP payload is not altered on the path segment between it and the des-

tination. To check that this invariant holds true, the platform can choose one of the following invariant

implementation alternatives:

• Do nothing to check or enforce the invariant if it already knows the invariant is true. This would be the

case when the path segment sits entirely within the AS of the platform’s operator and no middleboxes

are deployed that could change the flow, or when the path segment is already part of an IPSEC tunnel.

• Exchange periodically cryptographic summaries of the payload (such as a keyed HMAC 2 ) of all

the TCP connections. Changes would be detected, but after some time. This solution has very small

overhead.

• Insert a keyed HMAC of the payload in each segment. Payload changes would be detected immediately,

but the overhead is bigger—space is wasted in each packet.

• Encrypt the payload: changes to the payload are detected instantaneously as before. With symmetric

encryption there is no space overhead as with HMACs. We observe that encryption offers a stronger
2the platform would first need to establish a secret key, which is easily done using the destination’s public key.
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invariant than just preventing payload changes; it also prevents anyone from reading payload contents.

The original Internet architecture offered a very strong invariant: packet contents beyond the IP header will

arrive unmodified at the destination (or with random bit errors). Today’s Internet holds invariant the TCP

payload (for the most part), or preserves the HTTP semantics (via web proxies).

Invariants are dynamic contracts between the applications and the network. Useful invariants include: TCP

payload, UDP payload, TCP ports, TCP options, TCP segment boundaries, TCP sequence numbers, etc.

Invariants dynamically separate the tasks of the host and those of the network, building a common ground

where application requirements meet network functionality.

Invariants leverage the reality that the network is better suited to implement certain functionality than the

endpoints. Each operator knows what processing it applies to flows within its own network; it can then check

that invariants hold statically, without adding any runtime overhead.

Although there are many possible ways in which all of these invariants could be enforced, full-blown IPSEC

tunneling (or TLS, or something like TCPCrypt [11]) can not only check but also enforce most invariants.

Why should we not use tunneling to enforce all invariants then?

The answer is efficiency: if the same end-to-end flow is subject to meeting different invariants by different

stakeholders, it could easily end-up being tunneled more than once on the same path segment, adding useless

overhead for no real benefit. In the long run, having several layers of encapsulation is a race to the bottom,

leading to an evolvable but very inefficient Internet.

It is therefore important that the network implementation of invariants is as efficient as possible, being adapted

to the characteristics of the path being monitored. If the same path is being monitored actively already,

satisfying new invariants should reuse whenever possible the existing running functionality on the same path

segment.

The job of the applications is to select proper invariants and inform the network. Applications might be

tempted to just use the original Internet invariants, as they guarantee packets arrive unmodified at the other

endpoint. The problem with this approach is that to enforce such strong guarantees it may be necessary

to use IP over TLS encapsulation: this may get packets through but performance will be miserable when

the network is even slightly congested (due to the tcp-over-tcp encapsulation problems). As they strive for

efficiency and high performance, this gives applications strong incentives to choose the weakest invariant that

still guarantees correctness.

Checking invariants is almost always possible, e.g. by using keyed HMACs. When apps discover their

invariant does not hold true (say the TCP payload is changed), they can request the platforms to enforce the

invariant. This will be accomplished with some sort of encryption, for instance with IPSEC. If the IPSEC

tunnel is allowed through, then all is fine; otherwise a UDP encrypted tunnel might be created, and eventually

a TCP/TLS one. If all of these fail, enforcing the invariant has failed - the app can now choose to give up, or

try to find a weaker invariant that can be successfully implemented in the network.
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A valid question is whether apps can use invariants to bypass operator policies. To some extent, they can as in

the example above via encryption. However, operators can just disable all means of enforcing the invariants

if they wish, blocking the traffic that does not comply.

It is important to note that applications themselves could enforce invariants if they wanted (and some already

do). However, this would be less efficient: applications will enforce invariants for the whole end-to-end path,

whereas network-based implementations can only enforce them on the path segments that would violate the

invariants.

Invariants are not a panacea. Certain desirable behaviour is difficult to capture exactly with invariants, result-

ing in stronger invariants being requested by applications, which will lead to inefficiency. If every application

wanted an invariant to be forced, this would result in an overall inefficient network.

The hope is that when enough applications request certain invariants the networks will just adapt their equip-

ment to offer that invariant natively rather than as an added patch; this will also create healthy competition

between operators.

3.5.1.1 Implementing Invariants

Applications provide the following information to processing platforms describing invariants:

• A list of processing primitives that SHOULD NOT be allowed to be executed on the given flow.

• A path segment where the invariant applies.

• An instruction to either check or enforce the invariant.

• A callback in case the invariant fails or cannot be enforced.

The processing primitives can be any from the list we have described in Section 3.4. Modify processing will

also include the parts of the packet that should not be modified.

The path segment will be given as a pair of IP addresses. The addresses can be those of the endpoints of

the flow, or they can belong to CHANGE platforms. The platform receiving the request will contact path

segment’s endpoints to setup the invariant. The platform will select the best of its invariant implementation

strategies considering the user’s preferences. If the invariant cannot be setup, the user will be informed at a

predefined callback point.

Let’s consider the simple DPI example from before, where the destination expects the TCP payload to be

invariant from the DPI box to itself. For this it will create an invariant preventing Modify in the TCP payload

on the path between the DPI box to itself, asking that the invariant is only checked to ensure minimum

overhead. If the destination is notified that the invariant is not true, then it can reissue the invariant asking for

it to be enforced.

To implement such invariants CHANGE uses its basic building blocks: platforms will be discovered using

the CHANGE discovery service, then authentication will be performed to only allow traffic owners to request
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invariant processing. The security rules will be applied, and their net effect is that both source and destination

can check invariants, but only the destination can enforce them (otherwise the destination has to explicitly

agree to receive the flow). Once everything is setup, traffic can be redirected to the processing platforms.

3.5.2 Understanding the Composition of Flow Processing Functions

Let’s assume all CHANGE platforms are willing to inform authorized users when queried about the process-

ing being applied to their flows. The users can then utilize this information to decide whether their intended

processing would work correctly if deployed; if the answer is negative, this same information allows users to

select the best way to support the new functionality within the current contract offered by the network. The

question we want to answer can be broadly stated as:

Is the processing instantiated by all parties (interested in a flow) working as those parties intended?

A simple example is this: if a filter aims to drop packets based on their source address, but the source address

has been NATted, then the filter is failing its purpose. Can we detect such cases automatically? Is it possible

to give a general answer to our question?

In this section we only consider the case where one party in the network knows about all the relevant process-

ing instantiated (and maybe other relevant network state, e.g., routing tables). The information is collected

from CHANGE platforms on the path of the flow to be processed. Given this information, how do we decide

whether a certain set of processing functionality is safe to execute?

To make things more concrete, we consider that (combinations of) the following types of processing can be

instantiated by different parties on the same end-to-end flow: Read (R), Filter (F), Redirect (RD), Reroute

(RR), Modify (M), Originate. The original Internet can be modeled as follows:

O → F → R

The source Originates packets and gives them to the network. The network forwards the packets towards their

destination, and can lose some of the packets if links are busy and buffers are full; this is represented as the F

function in the middle of the flow. Compared to other Filter functions we will encounter, the Internet did not

Read packet contents before deciding to drop them (hence an R operation does not precede F). Finally, the

destination Reads the packet contents and performs useful processing.

Since virtually all applications can cope with lost packets (or TCP does for them), we observe that R can

be performed regardless of filtering in the network. In the context of CHANGE, where R and F can be

instantiated along the path, we derive the following rules:

RULE 1. Read functionality can be instantiated anywhere along a path and it will function correctly even if

an unlimited number of Filters are in place.

RULE 2. Filter functionality can be safely instantiated anywhere along a path, as it will not impact the

correctness of the applications Reading the packet contents (again, this is because by definition the Internet

can lose packets anyways).
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Note that Rule 2 just says processing will function correctly. It does not cover the following case where

source S originates many packets for D that pass via T (D’s intrusion detection system). S can mount a DoS

attack and then drops all the attack traffic after T, hiding itself from the rest of the network and the destination:

S → T → F → D

Reroute and redirect change the source and/or destination address of the packets, and the way they are routed.

When applying Filter after RR/RD, Filter only works correctly if it is on the new path to the destination. Of

course, Filter can be applied without restrictions before RR/RD.

RULE 3. Any primitive following RR/RD must be placed on the new path to function correctly. Mechanisms

are necessary to detect the new path: if one party knew the state of the network—routing tables, link states,

and so on—it could check whether rule 3 applies.

RULE 4. Read primitives following RR/RD are guaranteed to work correctly only if they do not depend on

the source/destination addresses that were modified by RR/RD.

Current widespread use of NAT implies that neither endpoints nor network elements rely on knowing the

true source address of the traffic (or at least they don’t rely on it too much). Thus, it would seem that Read

processing works fine after NAT-type Reroute. The same is not true for other re-routes - for instance RR

could easily bypass destination-based filtering.

Originate can either create a new flow, or insert packets into an existing flow. In the first case, Originate is

by definition the first processing function applied to that flow: nothing can precede it. When running other

processing P after Originate, Rule 3 applies: P should be executed on the path to the destination to function

correctly (this is true for any type of processing).

If we consider that Originate could be inserting packets in an existing flow, Rule 3 is no longer enough on

its own: a Filter dropping all packets containing a certain signature can be bypassed by originating packets

matching that same signature. To stop such insertion of packets downstream, Filtering could either be applied

as the last processing before the destination, or it should enforce constraints to the rest of a path (such as

no other packets can be injected). For instance, the Filter can also Modify the packet contents, either by

encrypting them, or by adding a MAC that will be checked at or near the destination.

Reasoning about Modify processing is most difficult of all, but there are cases where we can tell whether

processing is sage. One such example is when changes apply to different parts of the stack (i.e. packet

headers), obeying the layering principles. For instance, processing that changes TCP headers but leaves the

payload unchanged can be safely composed with processing that uses the payload only.

Understanding Arbitrary Compositions. As the rules above show, we can reason about many types of

compositions ruling them as either safe or potentially unsafe. However, there are cases when two processing

functions access the same part of the packet and their composition could or could not make sense, depending

on the specific operations. Take the example of an MPTCP connection between two endpoints and an in-
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network middlebox on one of the flows:

• A traffic normalizer reads the whole packet (including payload), keeps per flow state and resends the

same payload if it sees a new packet carrying an old sequence number it has already seen.

• An intrusion detection system reads the payload and checks to see if a virus signature is present.

The normalizer ensures that the subflow (which looks like a tcp connection) is consistent end-to-end, and

works fine with MPTCP. The IDS on the other hand will fail since it does not see all the payload - half the

bytes could go on the other subflow.

How can we automatically tell whether two potentially conflicting processing functions are safe to compose?

To tackle this question we need:

(i) A way to succinctly describe the important functionality of a processing function. This could be

achieved with a description in a high level language or just the implementation of that functionality.

(ii) A way to automatically test whether two functions can be composed.

One system that provides such functionality is Anteater [39]. Anteater translates desirable invariants into

boolean satisfiability problems and checks them using SAT solvers against network state (routing tables,

router configurations). Anteater offers a subset of the functionality that’s needed by CHANGE , but it is a

good start.

The CHANGE architecture does not prescribe a-priori an algorithm to check composition; today we could

use the rules we’ve identified as well as tools like Anteater. We stress that checking composition safety in

this way is inherently centralized, being run by one entity that holds enough information about the network.

To aid transparency, the CHANGE architecture mandates that visibility functionality must be built in all

platforms. Essentially, each platform must be able to answer user queries such as: what processing are you

currently applying to my flows? Supporting these queries are a series of architectural mechanisms includ-

ing flow names (e.g., source or destination IP), user authentication, user-to-platform signaling and platform

discovery.

We further note that, even if all middleboxes spoke CHANGE , there are still good reasons to hide processing

from the endpoints: legal-intercept is an example where a tee is applied to the traffic originating from or

destined to a monitored user, while the user should not know it is being monitored. It follows that, even in

the best possible case where CHANGE is ubiquitous, the user may not have information to decide whether it

is safe to deploy certain functionalities in the network. Thus, invariants offer a more complete solution.

3.6 Signaling
CHANGE uses four distinct types of signaling (these are described in great detail in Deliverable 4.2):

(i) Discovery signaling is used to find nearby platforms to one IP, and has three main components. First,

it can be performed by the user using DNS to find the CHANGE anycast addresses; the user can then
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ping all of these and select the closest ones. Second, both platforms and users can employ on-path

signaling to discover platforms (using techniques similar to traceroute). Finally, the user can contact a

platform directly requesting it finds a platform nearby some IP; the platform could use a geolocation

database and a list of available platforms to build a response (the latter is an instance of user-to-platform

signaling).

(ii) User-to-platform signaling is used to carry requests from users to platforms and responses on the way

back. Many types of requests could be serviced including discovery, setup of processing functionality

(configuration files would be needed for the different elements). These requests need to carry flow

definitions, user credentials and optionally billing information. We expect (but not mandate) that users

will mainly contact their ISPs platform, and the latter will issue requests on behalf of the user to other

platforms. This allows first hop ISPs to apply local policy to user requests, as well as proxy their

requests if flow identifications change (as they do with a Carrier Grade NAT). Any request-response

protocol could be used for this purpose; a good candidate is the web services framework, already used

by major datacenter operators such as Amazon.

(iii) Platform-to-platform signaling is used to setup functionality involving more than one platform which

includes setting up monitoring, enabling checksumming and various types of tunneling for inter-

platform path segments. The signaling protocols must be able to include user and platform credentials

as well the the required service. The requirements here also imply that the functionality should only

be instantiated if all parties agree and have the necessary resources. For these purposes we propose the

use of an inter-platform signaling protocol similar to RSVP-TE (as defined in Deliverable 4.2).

(iv) Call-back signaling is used by platforms to inform CHANGE users that certain events have happened.

Example events include the request to setup a new flow using the user’s IP as a destination, and the

notification that an invariant has failed. Call-back signaling will be performed using a proxy based

architecture (conceptually similar to SIP, but simpler): users register with their provider’s platform

and specify how they can be contacted (for instance they could leave a TCP connection open to the

platform, in case they are behind a NAT). When an event has to be delivered to a user, the platform

must be able to find the platform of that user, so that they can contact him; for this CHANGE can use

mechanisms similar to SIP registrations.

3.7 Implementation Considerations

Auditing and Billing. Processing requests are accompanied by a cryptographic proof that the requesting

entity either owns the subject flow or has been delegated by the flow owner to instantiate processing. Plat-

forms maintain logs of all such requests, so that they may be consulted offline for detecting configuration

problems, security auditing and billing.
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Billing is seemingly orthogonal to the architecture, but it does depend on the deployment model. The deploy-

ment model further influences how the CHANGE architecture is instantiated, and what technical solutions

are most appropriate.

We foresee two basic deployment models; in the first, a single entity, for instance a Content Distribution

Network, deploys a global infrastructure that offers flow processing functionality. In this case flow processing

users get an account with these CDNs, use an interface to make flow processing requests and pay the CDN

for the services they use. In the CDN deployment authentication problems for on-path platforms are reduced,

as there is an implicit trust relationship between all platforms operated by the same provider. However, flow

processing is significantly more powerful then existing CDNs. Any one CDN deployment will likely be

limited in the functionality it offers.

The second model is that of the Internet where a multitude of Internet Service Provides collectively provide

global services. This is the deployment model we think is likely in the long term. The billing for such

deployments is significantly more complex than the current cash flow in the Internet, with money flowing up

the AS hierarchy. Solutions such as anonymous e-cash [18] seem more appropriate in this context.

Platform Discovery. An important part of the architecture is the ability to find appropriate processing

platforms. Existing solutions to this problem exist in the CDN world, where client requests are directed to the

closest server, typically by using geographical distance as a metric; these can be directly used by CHANGE

. We also propose a novel solution based on BGP anycast that can offer better accuracy than IP geolocation,

but is more difficult to deploy. A detailed overview of the different solutions is provided in Deliverable 4.3.

Traffic Attraction. Once an off-path platform is found, traffic needs to be drawn into that platform. Solu-

tions here span a wide range, from DNS to BGP. We review these solutions in detail in Deliverable 4.3.
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4 Security
An on-path platform will regularly receive flow processing requests from third parties. Accepting all requests

creates obvious security concerns, and risks making the Internet even harder to understand and secure. In this

section we describe what security rules are enforced in the CHANGE architecture, we give the reasons for

choosing these rules among the many possible in section 4.1.

We use two layers of defense against potential misuse. The first layer restricts the users that can request

processing: CHANGE platforms allow processing to be instantiated only by traffic sources and destinations.

Authenticating the traffic source and destination is relatively straightforward; in principle, we can check that

the requesting entity is the rightful owner of the source or destination address of the IP packets. If the request

involves a prefix rather than a single IP, authentication could be performed at the prefix level.

There are two practical ways of implementing such authentication in today’s IPv4 world; leveraging DNSSEC

reverse look-ups or using the newly proposed RPKI infrastructure. The basic idea in both of them is that IP

address owners will have a public/private key pair which they can use to authenticate themselves. The public

key will be delivered with X.509 certificates authenticated either by the DNSSEC or RPKI infrastructure. We

discuss these and other alternative solutions in greater detail in Deliverable 4.1. Because of the way address

allocation works, both RPKI and DNSSEC support authentication at the prefix level.

Extending such authentication all the way down to the IP address level is a matter of deploying RP-

KI/DNSSEC infrastructure at every ISP; the resulting host-based certificates could be deployed via new

DHCP options (as proposed in D4.1). Alternatively, an ISP may just sign processing requests from hosts with

its prefix’s secret key. The downside is that this allows L2 impersonation attacks within the ISP network, for

instance ARP spoofing in 802.3 networks.

In IPv6, authenticating individual traffic sources or destinations is easier as it does not require PKI. The 128 bit

IPv6 address is split in two equal parts: the network part of the address that is used by the routing system and

the host part. Hosts can freely choose the host part of the address with Stateless Address Autoconfiguration.

This allows hosts to create addresses that are self-certifying; a given host may create a public/private key pair,

and use the first 64 bits of a cryptographic hash of the public key as the lower 64 bits of the address. The host

can then prove to CHANGE platforms it owns the address by using its secret key. This is the concept used

by Cryptographically Generated Addresses (CGAs) [4]. CGA’s do not allow the ISP to authenticate itself; to

support it, RPKI is also needed.

In certain cases direct authorization is not possible nor desirable. Consider a destination wishing to push out

filtering against a DDoS attack: the destination will want to delegate nearby platforms to instantiate further

filtering upstream, with the aim of stopping attack traffic close to its sources. To allow such functionality, we

employ (as in previous work [59]) capabilities that allow a third party to perform restricted types of processing

on behalf of the owner of the address, for a predefined period of time. In the remainder of this document we

refer to the owner or the delegated owner of an address as the delegated owner. Delegation requires that
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endpoints provide the delegated platform with signed certificates to perform the listed action. They are valid

only for the duration of the delegated operation.

Our second layer of defense is a set of rules that specify when platforms can instantiate processing on be-

half of other parties, and what type of processing is allowed. These rules are enforced by platforms and

their net effect is the prevention of in-network spoofing as well as providing a default-off, destination-based

architecture for re-routed flows.

Only traffic sources and destinations are allowed to request processing regardless of the processing involved.

Within this envelope the architecture must enforce the following low-level security rules:

(i) Changing Source Addresses is permitted only if the new address has been delegated to the requester
1.

(ii) Changing Destination Addresses is permitted only if the new address has been delegated for use

by the requesting party. The net effect is a default-off behavior when traffic is re-routed from its

destination-based path or redirected to a new destination: unless the (new) destination agrees, the

operation will not be allowed.

(iii) Implicit authorization. When a host A initiates a new connection that is visible to the processing

platform and destined to the platform or one of its clients, the platform is implicitly authorized to use

A as the destination address of the response traffic. This rule is similar in spirit to existing firewall

behaviour that allows incoming traffic corresponding to host-established outgoing connections. This

rule directly allows the traffic destination to instantiate a web server as a processing function.

These easy-to-enforce low level rules have direct implications for authorizing processing that re-routes, redi-

rects or originates traffic.

Pinning the forward path (e.g., via a tunnel) is directly allowed for the destination of the traffic: it will contact

the tunnel entry point proving it is the destination of the traffic and will request that traffic is tunneled to

an exit point. The tunnel endpoints will communicate to verify their credentials, and to communicate the

destination’s request. Encapsulation is allowed because both source and destination addresses belong to the

platforms. Decapsulation is allowed because the destination authorizes the destination address rewrite at the

tunnel exit point.

The source of the traffic cannot pin the forward path: it is not allowed the decapsulate step at the tunnel exit

point. This must be authorized explicitly by the destination. Although some flexibility is lost, the fact that

the destination has route visibility helps ensure the correctness of flow processing.

Both the source of traffic (active open) and the destination can pin the reverse path by NATing. For NATs

we make the further restriction that the platform must use its own IP address as the new source address of

the traffic - this helps the accountability of the network. On the return path the destination address has to be

1When the platform owns the new address it will temporarily delegate the address/port to the requester

Page 54 of (77) c© CHANGE Consortium 2012



rewritten to match the source’s IP; this is directly authorized when the source requests the NAT (the source

owns the address) and indirectly authorized when the destination requests the NAT (because the source has

initiated the connection).

It follows from the above that only the destination (or passive opener of a connection) can pin both the forward

and the return path of a connection.

The security rules restrict originating packets from a platform to require the authorization of the destination.

The destination rule allows implementing multicast functionality as follows: the source first instantiates

an inactive “tee” functionality at certain platforms in the Internet. Receivers connect to these platforms

specifying the identifier of the “tee” and authorizing the platforms to send traffic back. From this point on,

traffic flows from the source to the destinations, being “split” at the platforms.

The security rules do not directly influence read, filter and modify processing functions: both sources and

destinations are allowed to instantiate them on path. However, stakeholders can restrict the set of processing

other clients can run on the same traffic, as we discuss next.

Consider implementing a Content-Distribution Network with a flow-processing platform: the web server

authorizes the platform to attract packets destined to it (either via DNS or BGP FlowSpec) and stores the

relevant content. When a web client makes a request, the CDN will receive it and process it; however the

CDN (acting on behalf of the web server) is not allowed to send the packets back, unless the web client

explicitly authorizes it (e.g. by delegating the platform).

The solution is provided by Rule 4 which implicitly authorizes destination address rewrite on the return path,

on the basis that the web client has created the request in the first place. This is similar in spirit to firewalls

allowing outgoing connections and only their corresponding return packets.

4.1 Design Choices

The CHANGE architecture envisions high performance, flexible flow processing. However, if all users are

allowed to freely instantiate processing or retrieve statistics for all other flows in the Internet, CHANGE can

be easily be misused. In this section we describe the design space related to security and explain our decisions

on securing the CHANGE architecture.

The first important question is who may request flow processing? For any point-to-point message exchange,

a reasonable answer must be centered on the “owners” of the flow and could include the traffic source, the

destination, or the network boxes that see the traffic. (We can generalize this definition for many-to-one and

one-to-many traffic patterns by limiting each user to process packets coming to it). Should we allow all of

these to request processing?

It is obvious that the end-hosts or any network element “owning” a flow (i.e. observing the flow’s packets

going through) can today apply any processing it wishes to those packets. CHANGE cannot really stop

all such flow processing from happening, as on path platforms can always drop or redirect/reroute packets.

However, CHANGE can check and enforce invariants, restricting the processing that is permitted to on-

c© CHANGE Consortium 2012 Page 55 of (77)



Figure 4.1: An end-to-end flow in the CHANGE architecture

path platforms to a smaller subset—for instance, encryption dissallows payload read and payload modify

operations.

We stress that the question is: out of the entities that own a flow, which are allowed to request processing to

be performed on their behalf from other platforms? The answer is not straightforward, as it also depends on

what type of processing is in question. Traffic monitoring is essentially a read-only operation, and bears less

security implications than, say, rewriting packet contents.

We note that there is an interesting parallel here to the roles of entities in the routing system today: traffic

(or flow) ownership is centered on the destination; hosts (or networks) can choose to announce or withdraw

routes to their prefixes depending on whether they wish to be reachable or unreachable. Multi-homed sites

can choose one or a subset of uplinks on which to announce their addresses, intermediary routers rank routes

to the same prefix according to their own preference, in order to influence the paths of the traffic that passes

through them. While the source should be able to control the path its traffic takes, in practice it has the least

control over its packets, because extensions such as Loose Source Routing are not widely supported [24].

4.1.1 Once You Forward the Traffic, It’s Yours

Particular properties of the current Internet architecture constrain the possible solutions to flow and entity

authentication. It is easiest to see this with the example shown in Figure 4.1. First, assume that only the

Source, as identified by the IP source address in the packet header, is allowed to make processing requests.

Even if we assume that the source can cryptographically prove that it owns the address it refers to, any on-path

platform can network-address translate or even tunnel packets it wishes to have processed, thus pretending

to be the source. In our example, flowstream A can NAT the flow and request processing on flowstream B,

pretending it is the source of the traffic. In the current Internet this is perfectly acceptable, and there is no

way to prohibit such behaviour. The implication is that any on-path entity has full downstream control of the

flows it forwards if source authentication is allowed.

Now assume that only the destination (DST) of a flow is allowed to request any flow processing functionality,

including changing the destination address to a new arbutrary value. As illustrated in Figure 4.2, consider

an on-path platform A that sees the traffic to the destination and wishes to have it processed downstream by

another platform B. Platform A can apply the following strategy to convince B to do processing on its behalf:

first A creates a tunnel from itself to B. Then, A takes each packet destined to DST, rewrites the destination

address to its own address and sends it through the tunnel to B, and finally at B, it decapsulates the traffic.
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Figure 4.2: Being On-Path Enables Nodes To Re-direct Traffic Arbitrarily

Since B (which was previously off-path) now sees traffic exiting the tunnel labeled to be destined to A, it will

consequently allow A to instantiate new processing on the flow. A can then rewrite the destination address of

the packets back to DST, redirecting the traffic back to its original destination.

Downstream Flow Processing Property: if either the source or the destination of a flow are allowed to

request in-network processing of it, any on-path network element can request processing from other down-

stream platforms.

Note that the downstream distinction is very important; it says that a platform must be able to see the traffic

before it can request processing for it. In general, this effect seems benign: a platform that already has full

control of the traffic can exert its control downstream.

If the traffic going through a platform is encrypted (e.g. an IPSEC tunnel), can a platform misuse flow

processing to read traffic contents downstream? The answer is no: the platform can control downstream

processing up to the tunnel exit point, which is the current destination of the flow. The platform has no

control after the traffic is decapsulated.

Our solution: restricting unauthorized destination-address rewriting This straightforward solution miti-

gates both the security issues and simplifies the detection of reachability problems related to arbitrary desti-

nation address rewriting. All we need is to request that the entity wanting to rewrite the destination address

should either own it or should be delegated to do so by the owner.

In Figure 4.2 this requirement would imply that S should ask permission from �D if it wants to proxy traffic to

D via B. If D grants the permission, it gives A a delegation certificate which B will use to authorize the proxy.

This implies that on-path proxies cannot instantiate arbitrary downstream processing with primitives reserved

to the destination. Reconsider the attack shown in Figure 4.2: A can request B to tunnel, but it cannot redirect

the traffic coming out of the tunnel to DST; it is forced to route it back to one of its own addresses. In

other words, downstream flow processing can be effectively forbidden from certain primitives if only the

destination is authorized to use them.
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Delegated authorization also introduces a few restrictions when the same primitives are used for legitimate

purposes. Consider a source, such as a web server, wanting to create two distinct paths to a given destination;

the host may run Multipath TCP [27] on top of these paths to get increased robustness and throughput for its

flows. A strategy would be to choose the default path provided by BGP as the first path, and to proxy traffic

via a way-point to create the second path. The trouble is that sources cannot instantiate proxied connections

or even tunnels without the destination agreeing.

In the early days of deployment, few ISPs and fewer hosts will support flow processing. In this case there is

no way that the source can get permission to proxy its traffic. The same restrictions apply to tunnels, another

tool that is instrumental to the evolvability of the network. Such restrictions do limit the incentives to deploy

CHANGE , reducing the competitive advantage of early adopters.

To conclude, we choose the more restrictive solution of having destinations explicitly agree with their address

being used to redirect a flow: while this does limit the use-cases of CHANGE , it crucially ensures the

infrastructure cannot be misused.

4.1.2 On-Path Platforms Should Not Be Allowed to Instantiate Upstream Processing

Safely authenticating on-path platforms is quite difficult as it requires in-band, continuous solutions; on-path

challenge-response protocols run at specific points in time are not enough to guard against on-path attackers

that move off-path after processing is started, while filtering precludes in-band authentication altogether. Such

circumstances raise the question: should we allow on-path platforms to instantiate processing on upstream

platforms for any of the listed primitives?

The primitives that seem to pose the least security threats are in the read category, and seem to be the best

candidate.2 It turns out that even in this case in-band solutions are either insecure or difficult to implement.

To understand why this is the case, we can think about two possible strategies for implementing them. In

both cases, a platform is requesting upstream processing. The first strategy is to use on-path challenge-

response when monitoring is started. The first step here is for the user to provide an IP bitmask specifying

the source/and or the destination of the traffic to be monitored, and challenge-response would need to happen

on each individual IP that matches this bitmap. However, checking one or a few individual flows is not

enough to defend against attackers that see a subset of traffic. Hence, a majority of traffic needs to be

included in the challenge-response phase; platforms that only pass a subset of the challenge response test

would not be allowed to monitor traffic. This last solution breaks down if there is genuine packet loss;

the verification platform cannot reliably check whether packets are lost or routed elsewhere, away from the

requesting platform. Similar problems appear with in-band monitoring, we could address this in a number of

ways, for instance by adding a total packet count to each prefix, but this would allow an on-path attacker both

to estimate the total traffic volume going through the monitoring platform, an undesirable effect since such

2Full packet capture (a read operation) along with transfer of the information to a remote site is equivalent to a tee, and thus
has further security implications. However, for the remainder of this discussion, let’s focus our attention on requesting packet-level
statistics (such as counts, drops, rates).
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information is considered sensitive by ISPs.

We conclude that on-path platforms should not be allowed to instantiate upstream processing.

The platform must provide a way to delegate authorization from traffic endpoints to the on-path platforms.

There are straightforward ways of implementing delegation: the endpoint can sign a delegation certificate

that specifies the delegated platform’s IP address, the amount of time the delegation is valid for and the types

of processing primitives allowed. When making a flow processing request, the platform would authenticate

its own address and present the delegation certificate. To ensure correctness, platforms and endpoints must

be loosely time synchronized.

4.2 Security Properties

The design of the CHANGE architecture aims to strike a balance between flexibility and security. Adding

flexibility to the ossified Internet is paramount, and we achieve this by allowing traffic sources and destina-

tions to request and instantiate in-network processing. Avoiding abuse is done through a series of rules that

platforms must enforce when instantiating processing on behalf of others; these were reviewed in Section 4.

DDoS Protection. Processing platforms cannot themselves be used to launch Denial of Service Attacks

against endpoints because of the requirement to have explicit authorization (security rule (ii)). To defend

against traffic originating from existing hosts or misbehaving platforms, destinations can instantiate traffic

attraction and filtering primitives on remote platforms close to the traffic sources.

Routing Policy Enforcement. Destinations have ultimate control over the path taken by incoming packets

(rule (ii)), allowing them to implement routing policy as needed using a mix of traffic attraction functions

such as tunnels, NATs and routing announcements. The spirit of the CHANGE architecture is default-off:

any packet created by CHANGE platforms must be explicitly accepted by the destination.

Preventing Spoofing. ReRoute, Redirect and Originate primitives do not provide spoofing opportunities as

they require new source addresses to be owned by the entity requesting the processing (rule (i)). However,

the Internet is not secure against spoofing and our architecture cannot remedy this. Having said that, if the

owner of the source prefix supports flow processing, the destination can instantiate read-only filters to check

that traffic indeed originates from that address.

Improved Accountability. Flow processing provides a way of discovering and monitoring processing in-

stantiated by cooperating platforms and a way of detecting the existence and pinpointing the location of

misbehaving middleboxes by monitoring flows at multiple vantage points en-route to the destination. In-

variants allow traffic sources and destinations to explicitly say what service they expect from the network,

enabling new extensions and making the network much easier to debug.

Security Limitations. We made the conscious choice of only allowing traffic sources and destinations to

request processing, because authenticating a request from an on-path ISP opens up too many security holes.

If a DDoS attack targets an ISP by sending to downstream destinations, our framework cannot help without

the destination’s consent. However, ISPs may issue requests using the same platforms to defend against such
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attacks if a pre-existing trust relationship exists between the relevant ISPs.

On-path platforms, however, can instantiate downstream processing at their will because they can NAT the

traffic, effectively becoming the new source of the traffic.
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5 Motivating Scenarios
To understand how CHANGE would work in the current Internet we select a few interesting scenarios that

are difficult to implement today and we discuss them in greater detail.

Deploying New Transport Protocols is our first scenario and looks at how network invariants can help deploy

transport protocols in an efficient way. This use-case is instrumental in empowering the users to evolve the

network (i.e. deploy new applications).

Our second scenario, Inbound Traffic Engineering., is an example application useful for ISPs that is very

difficult to implement today with fine granularity. It shows that CHANGE is equally useful to both end-users

and ISPs.

Our third scenario focuses on tackling Distributed Denial of Service Attacks. DDoS attacks have been a

common occurrence for many years, and there are no signs of them going away anytime soon.

Finally, in the Monitoring scenario we show how CHANGE helps users understand what is going on with

their traffic, and helps them both debug the network and their flow processing, as well as helping them to

make the right choices in enabling the desired functionality.

5.1 Deploying New Transport Protocols

The Internet has ossified, and the net effect is that we are “locked in” to an IP world. Deploying new transport

protocols faces many hurdles, the biggest being that packets with new protocol numbers don’t get through

the network.

In the short term, then, new transport protocols must be tunneled over existing protocols such as UDP and

TCP. Tunneling over UDP is possible but UDP has a much harder time getting through the various middle-

boxes than TCP. Should we tunnel new transport protocols over TCP then? This would be nothing short

of disaster, as the new transport protocol will inherit TCP’s built-in functions such as reliable and in-order

delivery, together with their associated problems such as head-of-line blocking.

What is needed is a way to create short TCP tunnels for the parts of the network that only allow TCP to pass

through, and a way to “glue” these with segments that only need UDP encapsulation. Once there is partial

support for a new protocol, native forwarding should be used for the segments of the network that support it.

Once we tunnel traffic over UDP or TCP, we inherit the “optimisations” embedded today in the Internet

for this type of traffic. This means that the TCP and UDP packets sent might very well differ from those

received. CHANGE allows participants to express invariants that the platforms will implement as efficiently

as possible. These invariants will be used to ensure that the packet contents are not altered in a way that is

detrimental to the new transport protocol.

CHANGE can be used to create these tunnels and glue them in a coherent end-to-end path whose properties

are well understood. CHANGE hosts (source or destination nodes) may discover on-path platforms and

setup tunnels between themselves to “hide” traffic from misbehaving middleboxes by creating an encrypted
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tunnel to ferry the traffic between intended targets. To instantiate the tunnel, the initiating host may contact

the platform target of interest and setup the “payment” information. The receiving host does not need to

authenticate the host to setup the tunnel; it will need to authenticate it if further processing is required, for

instance network address translation. Note that implementations of this scenario need to take into account

existing on-path NATs.

An issue of concern for tunneled traffic is the question of how the source address is defined after the traffic

exits the tunnel. The problem here is that the source address of traffic may be used to define its flow id, for

example as is the case for the 5-tuple flow id structure. To address this point, the source host may choose

to change the source address of the traffic exiting the tunnel, as if it were running a NATing at the tunnel

exit point. This is possible because the source host has full control over the source address of the traffic that

entered the tunnel, so it is in a position to know the previous identifier information including the original

source address. Such a set up would also force the return traffic to enter the tunnel, and can enable hosts to

have a private (non-routable) IP address.

A second case is when the source host wishes to setup a tunnel for a path segment in the middle of the

network. In this case, it needs to discover and contact the tunnel entry point and authenticate itself as the

source of the traffic. The tunnel entry point then contacts the tunnel exit point and creates the tunnel. In

this case, we are dependent on destination-based routing to direct the traffic to the tunnel entry point. If we

want to ensure that traffic always goes through the tunnel, we have to either attract destination traffic to the

platform or the source has to rewrite the destination address of the traffic to be the platform (preferred). Now

the tunnel exit point must behave like a proxy, rewriting the destination address. If we also want the reverse

traffic always cross the tunnel, NATing is again required at the tunnel exit point.

In practice we expect that endpoints will instantiate path segments when needed for the “access” part of the

path, to bypass deployed middleboxes, as the core is currently just doing plain packet forwarding. Complexity

for this step is reasonable, as in the worst case one network address translation per path segment needs to be

setup. When the path being created is in the core, though, things are more complicated, as hosts may need to

instantiate both a NAT and a proxy for both directions of traffic or to otherwise draw traffic into processing

platforms, for instance via BGP.

5.2 Inbound Traffic Engineering

In this scenario, we consider a stub Autonomous System (such as a cable or DSL provider) that is multi-

homed to different upstream providers and wishes to balance its traffic over all the links. A concrete example

is AS 1 in Figure 5.1 that has 5 uplinks to upstream ASes. Currently ASes advertise different IP address

blocks over their uplinks, but this is coarse-grained and increases the size of the global routing tables. In

IPv6, only the network part of the address can be advertised, and this technique is effectively unusable.

With CHANGE , AS 1 can choose to advertise its prefix only on two of its uplinks, and it sets up tunnels

from a CHANGE platform in AS10 to use its three links. Within AS 10, the CHANGE platform will attract
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Figure 5.1: Stub AS Performing Inbound Traffic Engineering with CHANGE

all the traffic destined to 1/8 by using FlowSpec. AS 1 can fully control traffic reaching it via AS 10 using

processing on the CHANGE platform: it can choose to receive it using destination-based forwarding or via

one of the three tunnels.

AS 1 owns both 1/8 and the three tunnel exit points; it can use its RPKI certificates to get authorization for

processing. The configuration will be more effective in load-balancing when the amount of traffic crossing

AS 10 (the platform) bound for AS 1 is large. If this is not the case, the host can try to get more traffic into

AS 10 or use another platform upstream of AS5.

Knowing the topology helps speed up the process of instantiating effective load-balancing. AS 1 can discover

nearby platforms and check their AS numbers, and use information on the AS level topology to instantiate

processing at the right place in network. However topology information is sensitive and not easily disclosed

by ASes; if no topology information is available the stub AS can still use trial-and-error to look for an

appropriate load-balancing configuration.

5.3 DDos Filtering

Instantiating DDoS filtering is a simple process with CHANGE . The destination can use its RPKI secret key

to authenticate itself as the traffic owner (or will have its own provider sign its requests using the prefix’s

secret key).

If AS-level topology information is available, the destination needs to discover and instantiate processing

at its closest CHANGE platforms (directly connected/upstream ASes), selectively dropping the malicious

traffic. If the traffic volume is too much for the current set of platforms to handle, filtering must be pushed

further upstream. The destination will delegate platforms to act on its behalf and request further filtering,

quenching the traffic volume.

5.4 Monitoring

Today’s Internet harbours a myriad of middleboxes that independently perform useful functionality. The

behavior of existing protocols like STUN/ICE is difficult enough to predict on their own, but when combined

with other middleboxes that change, drop, scrub packets, re-segment or pro-actively acknowledge TCP traffic,
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understanding network behaviour and finding the causes of problems is a daunting task.

CHANGE can help here with its “read-only” primitives that allow traffic owners to examine their flows at

different vantage points in the network. Traffic sources and destinations can instantiate (preferably on-path)

processing and directly compute packet loss rates for path segments, detect packet changes (e.g. dropped

TCP options), and so forth.

Page 64 of (77) c© CHANGE Consortium 2012



6 Related Work
Despite all research efforts done in networking, and the enormous range and popularity of the applications

that are running over the Internet, the core architecture of the deployed Internet infrastructure has not changed

greatly in the last 15 years.

Many application-level solutions have appeared to answer the deployment barrier, but these solutions are

network and operator policy agnostic, will therefore tend to “hurt” the network if used in large-scale. As

highlighted, one of our purposes is to enhance the Internet architecture in a bottom-up manner, adding flexi-

bility and new processing primitives in a way that provides benefits to early adopters, while ultimately being

guided by the much greater benefits to be had from the coordinated services.

So what is the current network architecture and how can we bypass existing issues to obtain more flexible

solution? We begin this chapter by briefly highlighting history of network architecture, and then provide a

brief survey of more recent trends in research, pointing out how CHANGE stands out.

6.1 History of network architecture

In this section we present a brief history of network architecture, discussing three broad architecture classes

and their relationship to CHANGE , these are; circuit and flow switching, programmable networks, and

service-oriented architectures.

6.1.1 Circuit and Flow Switching

The Internet architecture as we know it today has been based on both the datagram model and the end-to-end

principle. The datagram model assumes that all packets are treated independently in the network while the

end-to-end principle puts intelligence only in the end-systems. These two assumptions have been challenged

during the last two decades.

The first approach to support Quality of Service in the Internet, Integrated Services (Intserv) [13], included

layer-4 flows in the network and required QoS state in the routers. Unfortunately, using layer-4 flows made

the integrated services architecture unscalable and it is still not deployed today in the global Internet. Dif-

ferentiated Services (Diffserv) [12] appeared later as a more scalable alternative to support QoS. Compared

to integrated services, Diffserv introduces less state in the network as it deals only with highly aggregated

flows. Diffserv is the basis for several uses of QoS in today’s IP networks. Multi-Protocol Label Switch-

ing (MPLS) [46] appeared initially as a solution to better integrate layer-2 techniques such as Asynchronous

Transfer Mode (ATM) and FrameRelay into IP networks. However, it quickly evolved as a new layer-2.5

technique with its own header below IP. MPLS is widely used by ISPs to provide services such as VPNs,

VoIP or IPTV. It serves as the basic infrastructure to allow an operator to support multiple services on top of

a single network. Furthermore, GMPLS [10] allows optical networks to be integrated in the IP architecture

in a coherent manner. MPLS also deals with flows and adds state to the routers. Compared to DiffServ and

integrated services, MPLS is slightly more flexible in the definition of the flows that it supports since several
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types of Forwarding Equivalence Classes can be defined. However, most deployments define a flow, either as

all the packets that need to exit a network through an egress router, or as all the packets exchanged between

an ingress and an egress router. From a QoS viewpoint, the main benefit of MPLS compared to Diffserv is

the ability to forward flows along chosen paths to meet traffic engineering constraints.

In parallel with the evolution of support for QoS, we have more recently seen growth in the use of middle-

boxes in IP networks to provide services that were not considered when the architecture was designed. These

include deep-packet-inspection, shaping, firewalls and denial-of-service protection and new services are cre-

ated. These services need to be able to process particular flows at particular locations in the network. Com-

pared to existing flow-based techniques, an important benefit of CHANGE is that it will support a flexible

definition of the flows to be processed. A second benefit is that it will be possible to instantiate some pro-

cessing, whatever its complexity, inside the network on flow processing platforms. These flow processing

platforms will either be on the path followed by the flows to be processed or the network configuration will

be changed to route flows via these platforms. More recently, the OpenFlow [41] concept has been gain-

ing momentum. OpenFlow switches are programmable via a so-called flow table that can be configured by

adding entries. These entries aggregate packets into flows by matching on a number of L2, L3 and L4 fields

and then specify the switch port to which the flow should be sent. In this way, OpenFlow provides a basic

L2-L4 flow classification mechanism. CHANGE will use OpenFlow switches as a fast classifier in its flow

processing platforms, but by also including more programmable hardware we will provide more advanced

processing capabilities.

6.1.2 Programmable Networks

Active and programmable networks [56, 57] were two packet processing models proposed in the mid-1990s.

They shared with CHANGE the laudable aim of enabling more flexible in-network processing. The major

differences between the three lies in the processing model and implementation approach used. In active

networks, data packets carried code to be executed in routers, while in the programmable network model the

code could be pre-loaded in the routers. In both these proposals, the implementation model was that this code

was typically executed on either custom router hardware or on commodity PC hardware adjunct to the router.

As both computational models used packets as the processing unit and hardware speed was severely limited

compared to todays capabilities, performance was a critically limiting scalability factor. Also, because the

approach was packet-centric, the deployment models often required that most, if not all, routers in the network

(and sometimes the network stack in end-hosts) had to be upgraded to achieve desired benefits. As a result,

neither active nor programmable networks gained wide acceptance and both failed to see any deployment.

In contrast, CHANGE proposes the use of flexible flow definitions as processing units. This means that only

the traffic of interest is handled by the programmable flow processing platform. The only operation that takes

place at the packet granularity is classification, where CHANGE exploits, and greatly benefits from, high-

speed, cheap and commoditized hardware solutions (e.g., TCAMs in routers and OpenFlow switches). On the
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processing front, CHANGE also benefits from high-performance multi-processor, multi-core systems. Im-

plementation of the CHANGE processing model can be supported either by off-the-shelf high-performance

custom components (e.g. network processors or tile processors) or even by current high-performance com-

modity server hardware (with their multi-core CPUs and high speed system interconnects). Finally, CHANGE

assumes that flow processing platforms will be deployed only where needed, exploiting virtualization to im-

prove sharing of the platform and isolation of processing.

The major advantage of such a deployment model is that all the assumptions and characteristics that made

the existing Internet so successful are retained, while the notion of flows and processing are only actuated

at processing points. For all these reasons, we therefore believe that CHANGE is poised to succeed where

previous attempts at in-network processing failed, and see an incremental, but eventually wide, deployment.

More recently, router programmability has seen a resurgence of interest.

Projects like Vrouter [23] or RouteBricks [2] exploit software router platforms to provide customized fast

paths. Here, the unit of customization is the router itself so there is no attempt at providing processing differ-

entiation on a per-flow or per-packet basis. When used in conjunction with virtualization techniques, these

approaches allow the sharing of a common hardware box or cluster between several independent software

routers, each running a custom network stack and belonging to a different virtual network. Super-Charging

PlanetLab [53] has the same goal but uses network processors to implement the fast paths of the virtual

routers. CHANGE builds upon this work, and will support flow-centric processing within the same hardware

context as these programmable routers.

6.1.3 Service-oriented Architectures

Until recently, innovation in the Internet was mostly technological, fuelled by the ever increasing need for

speed, growth and reach. This era saw rapid increase in network bandwidth through the advent of high-

speed switch fabrics, optical networking and fast IP lookup, to name just a few. Access to the network

was improved by “last mile” technologies such as ADSL or wireless access. As a result, innovation was

mainly the realm of equipment manufacturers. However, changes to the architecture itself have met much

resistance. For instance, in the mid 1990s there was a great deal of interest in IP Multicast as an enhancement

to the basic Internet architecture that would support multi-point distribution. In practise, although almost

all Internet routers now support multicast, it is rarely enabled inter-domain. In recent years with the rise

of IPTV, multicast has once again become popular with consumer ISPs that wish to distribute video, but it

tends to be limited to the edge ISPs. There are two main reasons for this. First, there is a chicken-and-

egg problem: application writers cannot assume that multicast exists, so don’t add multicast support; ISPs

can’t see any application demand, so don’t enable multicast. Second, IP multicast is complex and difficult

to manage, except in limited deployments. There are real costs for deploying multicast, even though the

hardware supports it. The effect of this failure to deploy multicast has been that application writers have

implemented application-level workarounds. For example, the BBC developed iPlayer, which performed
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peer-to-peer distribution of high-quality video of all the BBC’s programs. While the application worked well,

the effect on British ISPs was predictable; they were overwhelmed with additional traffic taking paths which

were suboptimal. In response ISPs started to implement deep-packet inspection and traffic shaping for iPlayer

traffic.

It is just this sort of response that CHANGE hopes to avert. In-network flow processing platforms have

the potential to serve as traffic fan-out points, but to do so in a manner that satisfies both the ISPs need to

manage their network and the application’s need to push the same content to many customers. It is unlikely

that it is worthwhile deploying dedicated infrastructure for such a task (after all there is still a chicken-and-

egg problem), but CHANGE allows this to be done in flexible flow-processing infrastructure installed for

other purposes, and thus the up-front costs are small. In addition, CHANGE allows this fan-out to be done

outside of the core IP forwarding path, avoiding the risk associated with deploying new services in critical

infrastructure. The same arguments apply to other fundamental architectural changes: CHANGE lowers the

costs and barriers to entry, while enabling deployment as layer-3 flow overlays atop the current IP network.

The transparency of the Internet has greatly encouraged innovation in the end-hosts and facilitated the de-

ployment of successively more complex network-agnostic applications and services. This accounts for the

second area of recent rapid innovations, namely the application layer (e.g. overlays, peer-to-peer, multimedia,

content distribution networks, games, VoIP [34], IPTV, etc). The world-wide web has been particularly con-

ducive to the introduction of many new applications (e.g. YouTube, Facebook, Google Maps, etc.) through

the adoption of development frameworks such as Web2.0 or AJAX.

In fact, we have seen several trends at the application layer. First, applications are more content-rich than in

the past. The importance of audio and video in the global Internet is growing beyond the intra-ISP deploy-

ments to support VoIP and IPTV. Content is often sourced from multiple servers that reside in the same data

center or even in multiple data centers. These data centers are now a key part of the Internet and source more

and more content. Data centers can belong to a single company (for example, Google), but there is a growing

trend towards data centers such as Amazon EC2, Microsoft Azure and OVH that dynamically rent processing

to external users. Their infrastructure is mainly composed of Ethernet switches and x86 servers. Most net-

work specialists expect such data centers to serve an increasing fraction of the content in the future. Another

trend is mashup applications, built by composing several applications that are hosted by different providers.

This allows developers to enrich their application with information coming from several providers; applica-

tions built on top of Google Maps and Facebook are popular examples. CHANGE will allow operators and

application developers to make better use of these data centers by pushing flow-processing capabilities within

the data center itself. However, service innovation has often occurred at the application layer not by choice,

but as a way to bypass the stumbling block to changes that the instrumental TCP/IP network layer represents.

Of course, while introducing new concepts at the application layer simplifies deployment, the solutions are

often far from ideal and can exhibit redundancy and sub-optimality resulting from competing objectives.
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Cisco’s Unified Computing [19] initiative aims to provide an enhanced service-oriented architecture for data

centers. By combining switching, server hardware, storage and virtualization in the same device and adding

a unified management framework, Cisco’s unified computing aims to reduce costs and complexity for data

centers, consolidating and integrating components that were traditionally dissociated. Further, it facilitates the

provisioning and deployment of new services. Nevertheless, this integration preserves the existing networking

model of servers as end-hosts. With CHANGE we go much further and push support for processing not

only within the data centers, but also within the network by building on-path flow processing, realized as

a composition of processing pipelines, which would otherwise be made up of several specialized boxes.

In other words, CHANGE provides a novel way for building complex networks and thus enabling Internet

innovation by enabling the integration and convergence of the components functionality.

A network flow-processing platform such as proposed by CHANGE therefore appears to be a good match

to meet the varied demands for evolution of the Internet. Indeed, the flexibility of the CHANGE platform is

poised to play a crucial role in answering calls for network customization for the future Internet (through the

run-time composition of flow-processing modules) to green networking (through the use of virtualization and

associated module migration for better power control). There is no doubt that the advent of future network ap-

plications will create yet unforeseen communication needs and requirements on the network. We believe the

future Internet Architecture must be sufficiently agile to seamlessly accommodate such future requirements.

By proposing a paradigm shift towards network processing as a software architecture, CHANGE will provide

an agile and flexible base that will allow network providers to quickly meet new communication requirement.

In fact, CHANGE will enable the deployment of inherently flexible service delivery infrastructures, signif-

icantly simplifying long term network provisioning and planning and thus helping reduce ISPs costs while

increasing their competitiveness.

6.2 Survey of Recent Research

Many researchers have recently observed the shortcomings of the current Internet and tried to address them.

There is a vast body of research on how to fix the different perceived problems with the current Internet

architecture, such as [28, 54, 32, 22, 38, 31, 1, 8, 45, 7, 21, 14, 15, 52] to name just a few. The problems

attacked in these works are numerous; we enumerate here the most prominent ones:

• Making the Internet more robust [21] and/or more transparent by including middle-boxes in the Internet

architecture [32, 54].

• Supporting seamless mobility, multi-homing, fixed identities whether at the network level [22, 43] or

at the content level [31, 38, 7].

• Optimizing access to content [31, 38] by treating content as a network entity.

• Supporting accountability at different levels [1, 14].
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• Security - resilience to DDos attacks [1, 8, 45, 14, 58].

• Multicast [45, 9, 36].

• Anycast [31, 38, 45, 29, 51].

• Sharing the internet capacity [14, 52].

Although the problems are diverse, the basic techniques used to solve them seem to revolve around a relatively

small toolset:

• Indirection [22, 21, 43, 29, 51].

• On-path and off-path signalling [22, 32, 54, 34].

• Locator/ID split [31], typically with a flat ID space [38, 22, 54], or even without locators [15].

• Name based routing [31, 38, 15].

Despite this huge research effort few of these techniques have been deployed and even fewer are currently

used. The problem is twofold; first, for many problems there is currently no clear business case at Internet

scale (e.g., multicast, anycast, or name based routing). For the pressing problems, such as security or capacity

sharing, point solutions have been deployed and applied as patches in individual operator networks, or indeed

at application layer, hence there is no pressing need for a global, optimal solution. The main effect of this

myopic approach to problem solving is Internet ossification, as we have also pointed out elsewhere.

Further, for the vast majority of network layer solutions, the biggest barrier has been bootstrapping deploy-

ment, as there is no incentive to deploy unless early adopters get a benefit. Early adopters bear most of the

costs, so they must be able to capitalise on the benefits; if benefits only come from a critical mass of deploy-

ment, early adopters gain nothing. These deployment hurdles exist not only for clean-state approaches, that

require changing all (or a significant fraction of) routers [31, 38, 22, 54, 1, 45], but also solutions that require

modest changes at the IP layer [14].

Application layer solutions such as I3, OASIS, Overcast, ALM, or RON are relatively easy to deploy, but

face other hurdles. By definition these services are network and operator agnostic, and therefore suboptimal

in many respects. For instance they do not (and indeed cannot) consider operator policy, or network topology

when deciding how to provide a service. Compared to their network layer counterparts application layer so-

lutions end up using suboptimal paths (e.g. i3, RON, OASIS, etc.), and/or transferring more data (e.g. ALM).

If used extensively these solutions will effectively fight the network, and the network will respond as it did

with peer-to-peer traffic: downgrade service by embedding even more application knowledge in the network.

In contrast, CHANGE has a clear deployment path, but it also inherits most of the desirable properties of

network-based solutions. Deployment of a single CHANGE platform should require not much more inter-

vention that deploying a DPI box today. Once such a platform is installed, it can be used within the operators
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network in many ways, and can even be rented out to customers for custom processing. Hence, deploying

such a platform can not only simplify the management and the evolution of the operational network, but

also provide additional income (with a business model similar to cloud computing). Once enough individual

platforms are deployed, interconnection benefits become obvious, and we expect there will be a strong push

for unified standards and platform cooperation. The second key difference is that CHANGE does not preach

running every packet through a flow-processing platform: we envision most of the added functionality will

only be needed for a comparatively small number of flows, leaving the bulk of the network to do what its best

at: moving packets. For instance, DDoS defence requires filtering at a few vantage points in any given DDoS

attack, at any given moment in time; this is in contrast with most other proposals [8]. Not only does this

ensure the whole platform scales, but it also limits the initial investment needed to get things going. Finally,

CHANGE includes as basic primitives both indirection (virtual nets) and on-path processing (signalling). We

believe these two mechanisms are fundamental enough to power solutions to most of the aforementioned

problems. CHANGE itself does not set out to solve all the above problems; instead, it extends the Internet

architecture just enough that proper solutions can be deployed when needed.

6.3 Evolution of the CHANGE Architecture
The CHANGE architecture has been evolving in the past years, benefiting from inputs from internal and

external sources.

Internally, the work on MPTCP has spurred the need for invariants, and these have become a central point in

the CHANGE architecture, creating an evolvable framework within which end-users can create flow process-

ing whose properties they can understand.

Development work on the platform primitives (WP3) and on the CHANGE inter-platform protocols and

client-side API (WP4), together with the concept of invariants, have helped crisply defining flow naming in

CHANGE .

Recent publications show the benefits of running middleboxes on commodity hardware [49] and of “out-

sourcing” middleboxes to the cloud [3]. These works are aligned with the CHANGE vision but focus on a

different aspects of the problem space. In particular, two important missing pieces are dealing with security

hazards and the problem of understanding flow processing compositions. CHANGE has focused on both of

these as they are instrumental in getting the flow processing vision deployed widely.
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7 Conclusions
Common knowledge holds that the Internet has ossified because of the many middleboxes that have been

deployed worldwide. In this deliverable we have described an accurate picture of this ossification, focusing

on the TCP protocol. This work has been presented at the ACM Internet Measurement Conference in 2011

and we find that a third of the paths we probed do keep state at layer 4 or above, and they have the potential

to affect future TCP extensions.

Just how difficult is it to extend the Internet today? We have provided an extensive report on our on-going

experience in standardizing Multipath TCP for the past four years. The design process has been a lot more

complicated than we initially expected and most of that complexity is due to the various middleboxes that

affect TCP traffic worldwide. Work will be presented at the Usenix Networked Systems Design and Imple-

mentation (NSDI) conference in April 2012.

While MPTCP does work, the MPTCP protocol design is quite complex and defensive, aiming to cover many

possible misbehaviours from middleboxes. The main reason for this is the lack of a specified contract with

the network; MTPCP tries to find out what the contract is from the endpoints.

Flow processing is the way to break the innovation log jam affecting the Internet today. It provides powerful

tools to end-points and operators alike to evolve the network in a transparent and principled way. Security is

paramount in flow processing; surely a deployed but insecure flow processing platform will make the Internet

worse than it is today.

In this deliverable we have shown how the CHANGE vision can be realised in practice. Our architecture is

built using operator-run, flexible flow processing platforms that traffic sources and destinations can use to

instantiate processing on their traffic.

Security, correctness and practicality constraints limit the ways flow processing can be performed. We have

reasoned about and described a set of rules principles that prescribe what should and should not be allowed in

a CHANGE platform. These principles dictate that only the traffic source and destination or parties delegated

by them are allowed to instantiate processing. Further, changing IP addresses of traffic in the network is only

allowed when the owner of the address agrees.

An important goal of CHANGE is to create a predictable network. To reach this goal we propose the novel

concept of network invariants. These are dynamic contracts between the users and the network: the users

specify what processing should not be applied to their packets, and the network implements these invariants

as efficiently as possible.

Despite these restrictions, CHANGE is a flexible platform. We have discussed how we can implement a

number of interesting use-case scenarios that are very difficult to instantiate today.
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