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Abstract

The CHANGE architecture, which is based around the notion of a flow processing platform, aims to

re-enable innovation in the Internet. The processing that is done on the platforms is requested by agents.

Before accepting to host the requested processing, the platform needs to make sure that the requested

processing is secure with respect to the platform and other agents. Furthermore the platform can accept

a request for processing only if it has currently sufficient resources to satisfy the requirements of the

processing. This document, first presents a distributed operating system to be executed on the platforms.

It notably provides a means to verify whether a requested processing respects a set of safety rules. Next,

an approach to decide whether the platform can host a requested processing is presented. For each in-

coming request a new constraint satisfaction problem is solved. Finally this document also describes an

update to the inter-platform signaling framework, to which inter-platform tunnel provisioning function-

alities have been added.

Target Audience

For the project participants this document describes mechanisms that can be used to ensure safety on

CHANGE platforms. Moreover this document describes a technique to allocate new incoming network

services individually. Finally the document also describes an update of the inter-signaling platform

software to which inter-platform tunnel provisioning has been added. The readers are expected to be

familiar with Internet protocols and earlier delivrables.

Disclaimer

This document contains material, which is the copyright of certain CHANGE consortium parties, and may

not be reproduced or copied without permission. All CHANGE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the CHANGE consortium as a whole, nor a certain party of the CHANGE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.
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Executive Summary
The CHANGE vision introduces the common concept of a flow processing platform, instantiated at critical

points in the network. Although the platform and its interfaces are common, the processing performed must

be programmable, allowing the network to evolve and support the needs of rapidly changing applications.

Flow owners can then request processing on the platforms.

Platform owners may want to forbid some types of processing on their platform. On the other hand, the flow

owners requesting the processing may want to ensure no unexpected behavior arises due to transparent mid-

dleboxes between platforms. Thus, platform owners may require a set of properties be enforced on requested

processing, whereas the flow owner may require a set of properties be enforced on path segments connecting

platforms. We address the problem of enforcing such demanded properties in the first part of this document.

We show how heavy-weight mechanisms can be circumvented by using static analysis. The idea is that the

requested processing, as well as the processing done by middle-boxes is specified. This specification corre-

sponds to a configuration based on categorized Click elements. Using our Symbolic Execution tool we can

analyze such configurations individually, but also the composition of configurations, to perform a reachability

analysis and detect loops. All of this is wrapped into the CHANGE architecture, which is the main focus of

this deliverable. More specifically, we describe the architecture, its implementation and evaluation results

from several real-life use cases we implemented.

In the second part of this document we tackle the online problem of handling incoming processing requests

from a resource point of view. A specification of the needed resources is associated with each new service

request received at the platform. These resources are typically expressed in terms of CPU cores, memory,

bandwidth etc. The system must then decide, given the services already running on the platform, whether

sufficient resources are available on the platform to perform the requested service while guaranteeing required

performances. Thus for each new service request a different problem must be solved. To do this we adapt a

constraint satisfaction procedure we developed for the offline problem of assigning a known set of services

to a platform. We also present different alternative components to handle a specific part of the procedure.

We evaluate several configurations of the procedure on different variations of a same online scenario. The

results show that all configurations perform similarly but also that the computational overhead of some of the

configurations does not necessarily pay off in all cases.

The third part of this document presents a software update to the inter-platform signaling framework. We

describe one of the more important latest additions to the framework, the inter-platform tunnel provisioning

functionalities.
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1 Introduction
The main focus of this deliverable is to present the CHANGE architecture, its implementation, and evalu-

ation results arising from it. The CHANGE architecture (see figure 1.1) is built around the notion of flow

processing platforms. These platforms are instantiated at critical points in the network and allow to perform

programmable processing. Flow owners can then request processing of their flows on these platforms and,

if the request is accepted, processing modules are instantiated at one or several platforms. Figure 1.1 fur-

ther shows where two of the components developed in the project fit into the architecture, namely Symnet

(chapter 2) and the inter-platform signaling framework (chapter 4).

Figure 1.1: CHANGE architecture showing deployment at an edge ISP with three platforms and a com-
mon controller containing Symnet and the inter-platform signaling framework presented in this deliverable.
Colored rectangles inside platforms denote instantiated processing modules.

Many of the remaining work developed within this project fit within the platform themselves (figure 1.2).

First, the VALE high-speed software switch is used as a demux back-end between the processing modules

(be them kernel threads as in FlowOS or virtual machines in the case of ClickOS) and the network cards; part

of its performance is derived from the fact that it uses the netmap packet I/O framework. Second, FlowOS

acts as one of the processing module implementations developed within CHANGE, with emphasis on easing

development for flow-based processing (e.g., removing all ads in a particular HTTP flow). Third, ClickOS is

another processing module implementation based around tiny, specialized virtual machines; it uses both the

netmap API and the VALE software switch as network back-ends.

In addition to these data plane components, this deliverable covers, in chapter 3, the platform’s online re-

source allocation mechanism, which is hosted within the platform’s controller (again, shown in figure 1.2).

Processing requests arriving at a platform provide information about the resources (CPU cores, memory and

bandwidth) that are needed by the requested service. With each new request the platform then needs to decide

whether its current available resources are sufficient to host the service. In a previous deliverable (D3.2, [1])
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Figure 1.2: CHANGE Platform showing where the different pieces of work developed in this project fit.

a constraint satisfaction procedure, allowing to allocate resources to a set of such services known before-

hand, was presented. In this deliverable we explain how this procedure can be adapted to an online context.

In the online problem, the processing requests arrive over time, and nothing is known about future incom-

ing requests. We extend the procedure previously described with further alternative components. Different

configurations of the proposed procedure are tested on variations of an online scenario.

Finally, in chapter 4 we present an update to the signaling framework described in deliverable D4.4[3]. We

describe how the framework, and more specifically the Service Manager and Signaling Manager, have been

updated to provision inter-platform tunnels. An example is provided to show how newly introduced com-

mands are used to set up a tunnel. The framework is meant to be run on the architecture’s controller, as

shown in figure 1.1, as well as on the platforms’ controllers (figure 1.2).
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2 The CHANGE Architecture

2.1 Introduction

Middleboxes have long been scorned by end-to-end purists for stifling innovation in the Internet and making

networks difficult to debug. Meanwhile, they have proliferated to the point where most connections in the

Internet pass through two types of middleboxes: transparent middleboxes are deployed at the first hop close

to the client, in corporate networks and access networks, in order to optimize traffic and provide security for

their clients; and explicit middleboxes such as front-end servers and load-balancers are deployed by content

providers or third parties to enhance the client’s connection performance (e.g., [12, 8]).

It is plain to see that innovation has not died in the Internet: networks have been constantly evolving despite

protocol stagnation. Further, there has been a strong push from content providers to bring the processing

closer to the user, either by relying on CDNs (e.g., Akamai [19, 16]) or by deploying hardware in access

networks (e.g., Google Global Cache [5, 10] or Netflix Open Connect [6]). These explicit middleboxes split

connections into a hop using traditional HTTP over TCP that passes most transparent middleboxes, and a

backbone hop where any IP-based transport can be used, allowing innovation. Even end-user applications

deploy middleboxes to bypass NATs, such as Skype supernodes or STUN servers.

While all of these examples show that in-network processing can help evolve the Internet, today’s status quo

also has a few major problems. Middleboxes are complex software that patch specific problems, and there is

no coherent framework to develop or test them. Unfortunately, even operators do not always know exactly

what each of their middleboxes does, and find it difficult to reason about how different middlebox processing

composes when applied to the same traffic. This leads to huge complexity in network management: there

is anecdotal evidence of certain operators being reluctant to remove old middleboxes from their network for

fear of breaking it.

Secondly, innovation is a select club: middlebox deployments are only available to network operators and

CDNs/major content providers, and out of the reach of the small/average content providers and most end-user

applications. This limits the type of changes that can be made, and tilts the balance of power in the tussle

between the end-points on one hand, and the network operators on the other.

Finally, transparent middleboxes make the Internet unpredictable. Connectivity is often limited to only

a few protocols—mostly TCP, and then maybe only ports 80/443—and application optimizers sometimes

enforce that all traffic look like today’s traffic, going as far as even changing packets if needed. The end-

systems’ answer has been to tunnel traffic to get it through the network, and to encrypt it to evade application

optimizers. This is a blow to operators, who cannot apply their security policies anymore, and hurts end-

systems too because tunneling leads to poor performance in many cases (for example, using encryption is

costly, with HTTPS downloads drawing 20% more energy compared to HTTP on a Samsung Galaxy Nexus

device in some of our tests). None of these problems are critical today, but they are only bound to get worse
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as more and more middleboxes are deployed that look deeper into traffic to do their work, forcing clients to

tunnel deeper and deeper to evade them.

The high-level question we ask in this paper is: what changes are needed in access networks to spur

Internet innovation, rather than stifle it? Changing the Internet is notoriously difficult—as testified by the

really slow adoption of IPv6 for example.

We take a step back and observe that all these problems would be feasible to solve if we could reason about

middlebox processing at configuration time. If all parties involved knew a-priori what middleboxes would

do when presented with certain traffic, network management would be a lot easier, operators could run in-

network processing for third parties without security fears, and end-systems could enjoy better service and

performance from the network they are connected to. Counter-intuitively, there are several potentially win-

win scenarios that go unexploited because of this inability by the different parties involved to communicate

and reason about the middleboxes’ emergent behavior.

In this paper we introduce CHANGE , a novel architecture aimed at embracing software middleboxes in order

to invigorate innovation in the Internet. CHANGE (1) allows safe in-network processing for third-parties,

not only the rich few and (2) allows end-users to query the network about changes to their traffic, so that

they may use, in collaboration with their operator, the most effective protocols for their applications, leading

to win-win situations. We accomplish these high-level goals through the following contributions:

• The architecture’s controller and a static checking tool called SymNet which together allow safe, in-

network instantiation of network processing by third parties using an extended version of the Click

modular router language (section 2.3). SymNet can perform stateful checking of large topologies

consisting of over 1,000 nodes in seconds.

• An API and primitives through which different parties can request processing from the operator net-

work, as well as a set of stock packet processing functionality so that clients can easily create middlebox

configurations (section 2.2.2).

• Security rules to ensure that third-party instantiated processing cannot harm other parties, the network,

or the Internet at large (section 2.2.4).

• The architecture’s platform, which can efficiently run isolated middlebox processing on behalf of third-

parties (section 2.4). The platform can handle as many as 1,000 concurrent clients, can instantiate

processing in as little as 30 milliseconds, and can achieve cumulative throughputs of Gigabits per

second while running up to 100 virtualized middleboxes.

We have built and tested the CHANGE architecture’s components in isolation in order to understand their

limits (section 2.5). In addition, we have deployed CHANGE in a wide-area testbed across several countries,

and implemented seven different use cases that showcase the architecture’s potential (section 2.6). Our ex-

periments show that CHANGE scales to large numbers of users and brings performance benefits to end users,

operators and content providers.
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Figure 2.1: CHANGE architecture: access operators deploy processing platforms where they run their own
middleboxes and processing for third parties. A controller deployed by the operator knows the network
topology, router and middlebox configurations. Client requests are deployed by the controller after they are
statically checked for safety.

2.2 The CHANGE Architecture

Our focus is on making pragmatic changes that are deployable. Consequently, we restrict our focus on

access (“eyeball”) networks, intentionally leaving out the core of the network. Focusing on access networks

is a good place to start, as they concentrate most middleboxes processing today, and are the main focus of

network function virtualization (NFV) [7]—a recent trend that aims to make middleboxes software running

on commodity hardware.

At first sight, the shift to NFV might make transparent middlebox problems even worse, because we will have

more such middleboxes that are dynamically instantiated and terminated. We believe the opposite: the trend

towards re-architecturing middleboxes as software running on commodity hardware can be used to mitigate

many of the problems transparent middleboxes create.

We do not want to eliminate transparent middleboxes, but to make the network more predictable such that end-

points can take the right decisions when deploying new application or transport-level functionality. Counter-

intuitively, throughout the paper and especially in section 2.6 where we describe our use cases, we show that

both operators and endpoints can benefit from such a solution. We propose that access network operators

become miniature cloud providers, with a focus on running in-network functionality for themselves,

their clients, or paying third parties.

2.2.1 Overview

What are the basic components needed to make such an architecture viable? At the center of it is a set

of general-purpose, software-based platforms deployed at the operator and able to carry out the necessary

middlebox functionality (see figure 2.1); crucially, we show that such a platform can be built on inexpensive
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commodity hardware while still being able to service 1,000 isolated clients (section 2.5.1).

In addition, we need a controller in order to receive requests from clients and instantiate processing. One

major obstacle is reassuring operators that third-party processing is safe to run—it does not harm other users

or the operator itself—and does not break the operator’s own policies. Our architecture’s controller includes

a static checking tool called SymNet that ensures this is the case; we cover its design and implementation in

detail in section 2.3.

Beyond this, we need primitives and an API so that clients can express the type of processing desired (e.g.,

a firewall blocking all incoming traffic from a set of IPs representing spam servers, or ensuring that client-

initiated TCP traffic to a certain port goes through the operator network unmodified). We further need a way

for client packets to reach platforms, and certain security rules to regulate issues such as to whom a third-

party instantiated middlebox should be allowed to send packets to. In the rest of this section we discuss each

of these items in detail, and wrap up with an example that shows how all of the architectural components

come together to provide safe, in-network processing.

2.2.2 The API

In-network processing is rather domain-specific - both input and output are network traffic. Most operations

applied to packets are simple and include NATs, filters, tunneling, proxies, shaping, forwarding and so on,

and arbitrarily complex functionality can be built by combining these basic building blocks and creating new

ones.

That is why CHANGE clients express processing requests by using an extended version of the configuration

language used by the Click modular router software [15]. The Click language has the notion of elements,

small units of packet processing such as DecIPTTL, Classifier, IPFilter (and hundreds of others)

which users interconnect into acyclical graphs called configurations.

In a CHANGE platform a processing module consists of an instantiation of such a configuration (e.g., a

firewall or NAT). This can essentially take two forms: either a Click configuration using well-known Click

elements; or, if such functionality is not sufficient, a pre-defined “stock” processing module offered by the

platform and implemented with a software package other than Click, such as the content cache in our use

cases. CHANGE further extends the language to allow it to specify processing spanning multiple boxes.

Besides easing client-side development of functionality, the great advantage of using the Click language

is that, as long as a client’s processing request is composed of known elements, we can statically model

the processing done by such processing modules, which allows us to understand a-priori how a composed

configuration behaves.

Client Requests. A client request contains two parts: (1) the processing modules to be instantiated and

the links connecting them and (2) the client requirements that the configuration must satisfy (figure 2.2). A

configuration contains any number of processing modules, links and requirements.

In addition, an operator can offer any number of custom processing modules to improve the service offered to
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FromNetfront() ->
IPFilter(allow udp port 1500) ->
IPRewriter(pattern - - 172.16.15.133 - 0 0)
-> TimedUnqueue(120,100)
-> ToNetfront()

REQUIRE reach 0/0 172.16.15.133 udp 1500

Figure 2.2: Client request with a single processing module for simple UDP port forwarding. Packets are
exchanged through custom To/FromNetfront elements.

clients. The controller implements a listModules call that prints all the stock processing modules available to

the client. Such modules can be implemented in various ways, from Click configurations to software running

on commodity OSes. Our prototype controller, for instance, offers, in addition to modules based on Click

elements, a reverse-HTTP proxy appliance, an explicit proxy (both based on squid), a DNS server that uses

geolocation to resolve customer queries to nearby replicas and an arbitrary x86 VM where customers can run

any processing. The latter offers great flexibility, at the cost of security and understanding of the processing;

such VMs are sandboxed at runtime and are more expensive to run (see section 2.2.4 for a discussion of

sandboxing).

Once the client has specified its processing modules, it can add links between these modules to obtain the

desired processing logic. The links are also specified using Click syntax: pm1 : out1 -¿ pm2 : in1 specifies

that traffic leaving interface 1 on pm1 will reach interface 1 on pm2.

Requirements are of two kinds: reachability and invariants. The reachability requirement has the following

syntax:

REACH prefix|port prefix|port (tcpdump− rule)∗.

A reachability constraint states that the client expects traffic from a given prefix or port reaching another port

or prefix to conform to the set of tcpdump-like rules enumerated. For instance, the client in figure 2.2 expects

that Internet UDP traffic can reach its private IP address on port 1500.

Reachability requirements help the operator identify the appropriate platform to instantiate the client’s pro-

cessing modules, and to understand whether the requests are feasible given its own requirements. By ana-

lyzing client requirements over time, the operator can evolve its network by optimizing it to meet its clients

needs.

Invariant requirements specify that the packet header fields (given in tcpdump-like syntax) do not change

between the two given ports. For instance, a client may require that the TCP payload does not change by

specifying invariant 0/0 172.16.15.133 tcp payload. The operator runs the invariant check on the boundaries

of its network—thus the answer does not capture changes outside the operator’s domain:

INVARIANT {PREFIX—PORT} {PREFIX—PORT} {HEADER}*

Reachability and invariant requirements are sufficient to test if the desired processing can take place and also
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to avoid unwanted processing from occurring along a given path.

Operator configuration. The operator describes its router-level network topology and routing tables as

well as platform locations and addresses using similar syntax. This information is used by the controller

to perform static analysis and to instantiate processing. Each network box (e.g., platforms and routers) is

specified as a separate processing module, and a “legacy” flag is added to tell the controller not to instantiate

this processing. Physical links are specified between these boxes using the Click syntax. When the operator

wants to instantiate its own middleboxes, it uses the same API as regular clients, omitting the legacy flag.

The operator uses reachability and invariant statements to express its policy. In the example in figure 2.1 the

operator specifies that all traffic reaching its HTTP optimizer must be HTTP: reach 0/0 platform2:if allow tcp

port 80 deny all .

Client configuration. The client installs CHANGE software locally and configures it with the address of

the controller it wishes to use. For end-users, this will be their operator’s controller, and may be configured

manually or automatically via DHCP extensions. For content-providers, we assume an out-of-band dissem-

ination mechanism will be used instead. The client software authenticates itself to the controller through a

public/private key-pair registered a-priori, when the end-user starts its relationship with the operator.

The client sends a request including processing modules, links and requirements. To implement the links that

connect different processing modules, our controller instantiates all the processing modules requested by one

user on a single platform, using a software switch to implement the links.

The controller assigns each processing request a client-unique identifier. For each processing module in-

stantiated, the client is given an IP address/protocol/port combination that can be used to reach that module,

useful for traffic redirection. For each requirement, a boolean answer is given. Clients can disable processing

requests by quoting their identifier, thus stopping any processing modules that are active.

2.2.3 Traffic Attraction

CHANGE processing modules are explicitly addressed: an IP address (and maybe port) is assigned when

processing is instantiated. For in-network processing to occur, traffic first needs to be attracted to a processing

module running on a platform. The traffic attraction technique depends on the entity requesting processing.

A traffic source (i.e., the initiator of a connection) that wants in-network processing can simply tunnel its

traffic to the corresponding interface of a processing module. In contrast, a traffic destination will attract

traffic to a platform by configuring dynamic DNS to give the platform’s IP address in response to queries for

its domain name.

A processing module will not usually be the communication’s end-point, so it is necessary to steer the traffic

onto the final destination. Such redirection can be implemented by the processing module either by rewriting

the destination address, or by tunneling the traffic.
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Functionality Third-party Client Operator
DPI 7 7 X
NAT 7 7 X
Transcoder 7 7 X
Implicit Proxy 7 7 X
Explicit Proxy 7 X X
Sendmail 7 X X
Rate limiter X X X
Firewall X X X
IDS X X X
IPS X X X
Scrubber X X X
Tunnel X X X
Multicast X X X
CDN X X X
DNS Server X X X

Table 2.1: CHANGE security rules limit the type of processing allowed by third-party users and clients.

2.2.4 Security

In-network processing allows untrusted users to run custom software inside processing platforms operated

by third parties. Security issues inside a processing platform are similar to those in public clouds, and the

solutions we use are similar. Virtualization offers both performance and security isolation, and accountability

ensures that users are charged for the resources they use, discouraging resource exhaustion attacks against

platforms. However, to be certain that the processing cannot harm itself, other users of the platform, or the

Internet at large, an additional set of security rules apply depending on the three types of users of CHANGE

platforms: external third-parties (e.g., content providers), the operator’s own customers, and the operator

itself.

1. External third-parties can only process traffic destined to their IP addresses: our explicit addressing

ensures that traffic reaching a user’s processing module is destined to that user. What about outgoing traffic?

Should third-party users be allowed to generate traffic to any destination? The answer is obviously no. So

what should be allowed, then?

We cannot easily change the Internet to be default-off [11] and spoofing free1 - but we can make sure that traf-

fic generated by CHANGE platforms obeys these principles. In doing so we ensure that deploying in-network

processing does not add to the long list of Internet security issues. To implement default-off, CHANGE re-

quires that any third-party generated traffic must be authorized by its destination. Authorization can be

explicit or implicit:

• Explicit authorization occurs when either a) the destination has requested the instantiation of the

processing or b) the destination is a processing module belonging to the same user. In the first case,

authorization will be performed when the user registers with the provider; we expect that a limited

number of addresses will be registered, and that changing them will be infrequent. In the second

case, the provider needs to implement a way to disseminate to all interested platforms the IP addresses

1All attempts to date have failed to gain any traction.
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assigned to a certain user.

• Implicit authorization occurs when a host A sends traffic to a processing module PM. If PM is the

destination, then it is implicitly authorized to use A as the destination address of the response traffic;

this rule is similar in spirit to existing firewall behavior that allows incoming traffic corresponding

to established outgoing connections. This rule directly allows CHANGE platforms to reply to traffic

coming from regular end hosts (e.g., to implement a web server). If PM forwards traffic from A, to

prevent spoofing, CHANGE ensures that traffic leaving PM has a) PM’s IP as a source address or b)

the same address as when the traffic entered PM.

These simple rules must be obeyed by all processing modules requested by third-party customers. When

the processing requested is a stock module or a Click configuration, the controller can check at instantiation

time whether the rules hold, meaning that no runtime checks are needed. When the user instantiates a virtual

machine or custom Click elements, the platform monitors the user’s traffic at runtime and enforces these

rules.

2. The operator’s own customers are also allowed to send traffic to any destination, without the destination

explicitly agreeing. This merely extends the service already offered to customers to processing modules. This

implies that customers can also deploy explicit proxies. However, addressing for these middleboxes is still

explicit, forbidding NATs.

3. The operator’s processing modules are allowed to generate traffic as they wish, reflecting the trust

the operator places in them. Static analysis only helps the operator decide whether the box is achieving its

intended purpose (i.e., correctness, as opposed to security).

Enforcing security rules requires a mix of static analysis and sandboxing. The operator’s routing config-

uration together with explicit addressing ensure that a client’s processing module will only receive traffic

destined to it.

The controller runs static analysis on the client configuration by using the topology in figure 2.3. It runs three

checks:

• A stand-alone reachability check from the processing module, where each possible output port is

checked to see whether generated traffic has source address 172.100.10.1 and a destination in the

explicitly approved list. This covers all the traffic generated by the PM in absence of incoming traffic.

• Next, a generic client C generates traffic to the processing module. This implicitly authorizes return

traffic from the PM to C. The output is again checked to see if the rules are obeyed, in particular: the

source addresses of all outgoing packets, on all possible ports, have to be either C or 172.100.10.1.

This covers all stateless processing done by the PM.

• Finally, we run a full TCP reachability check. If the PM forwards traffic to other servers, we have these

reply with SY N/ACK, and then check the behavior of the PM when it receives this traffic. This last

check models the per-flow state of the PM.
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If the rules are satisfied, the module is guaranteed to be safe, as long as individual Click elements are bug-

free. If any of these static checks fail, there is a strong possibility that the PM disobeys the security policies.

It may be that the faulty behavior is not triggered in real life, thus leading to false positive alerts. In this case,

the operator has two options: it may sandbox the PM or refuse to instantiate it.

In order to sandbox a processing module we implement a new Click element called ChangeEnforcer. If

the operator determines that a processing module requires sandboxing, the controller transparently instantiates

two of these elements. The elements will run in the same VM as the user when a Click configuration is being

run, or in a new VM when arbitrary code is run on behalf of the client. In section 2.3 we describe the

controller and its static checking tool in greater detail, and in section 2.5 we quantify the performance costs

of running a sandboxed processing module.

Security Properties. CHANGE has been explicitly designed to provide a default-off behavior for platforms

and to prevent spoofing. CHANGE prevents, by default, Denial of Service Attacks, port scanning, and

even outgoing mail for third-party processing. In table 2.1 we highlight the functionality CHANGE allows

different types of users to run.

2.2.5 A Unifying Example

To make the description of the architecture more concrete, we now work through a simple example to illustrate

how to actually use the CHANGE architecture. In particular, we target push notifications for mobiles, which

are useful for a wide range of applications including email, social media and instant messaging clients. Push

notifications involves the mobile device opening a long-running TCP connection to a cloud server and sending

periodic keep-alives (roughly every minute) to ensure that NAT state does not expire. Apps wanting to notify

the mobile contact the cloud server and, after authentication, are allowed to send data to the mobile.

Unfortunately, this mechanism allows applications to send as many messages as they wish, keeping the

device’s cellular connection awake and thus significantly draining its battery (as much as nine times faster

according to [9]).

To improve this situation we leverage the CHANGE architecture. Assume a mobile customer wants to allow

incoming notifications on port 1500 for UDP traffic. To express this requirement, the customer sends a request

to its provider’s controller asking: reach 0/0 IPclient : 1500 udp.

Next, the controller runs the reachability request against its static model of the topology (recall figure 2.1).

Since the client sits behind Platform 3’s NAT, the response is negative. Instead, the client can ask the provider

to install processing on its behalf. The functionality of the processing module is very simple and shown in the

client request in figure 2.2: traffic received on port 1500 by the processing module is forwarded to the client’s

IP address. Additionally, the module only allows notifications from certain IP addresses, and batches traffic

with a period of 120 seconds to save energy. Upon receiving this request from a customer, the controller:

1. Finds a suitable platform to instantiate the requested processing. At every potential platform (three of

them in our example topology) it uses static analysis to see if both the provider’s and the customer’s
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Figure 2.4: A simple example of static checking a Click configuration.

requirements can be met. In the example provided, only Platform 3 applies, since Platforms 1 and 2

are not reachable from the outside because they lie behind Platform 3’s NAT.

2. If there are suitable platforms, it instantiates the processing; otherwise, it does nothing. In the example

given the processing module is started on Platform 3.

3. Finally, it informs the client of the outcome (the external IP address of the processing module in this

case).

We next discuss, in great detail, the controller’s static checking tool (section 2.3) and our architecture’s

platform (section 2.4). We then provide an evaluation of their scalability when trying to service potentially

thousands of concurrent clients (section 2.5), and follow that up with a set of illustrative use cases that

showcase the architecture’s potential (section 2.6).

2.3 The Controller: Static Analysis
In-network processing comes with tremendous flexibility but will be used only if both providers and users can

reason about its emergent behavior. There are two sides to this problem, both related to the composition of

the solution. First, providers must check whether customer processing is congruent with their own. Second,

customers need to be assured that their processing is running correctly. Each of these two subproblems needs

explicit support from CHANGE .

What is the best tool for this job? Statically checking network routing is a well-established topic, with

reachability analysis as well as loop detection the strong candidates for verification [21]. More recently,

Header Space Analysis (HSA) [14, 13] proposed a more general version of network static analysis that can

also model arbitrary middleboxes as transformations of packet headers from input to output. HSA can find

loops and run reachability analysis in networks with complex configurations.

Header Space Analysis could be used to check CHANGE configurations too, but it has two important short-

comings. First, HSA does not model middlebox state and therefore cannot capture the behavior of common

middleboxes such as stateful firewalls or NATs. Secondly, HSA cannot discover properties that are common

in practice. For example, consider analyzing reachability through a simple tunnel: in this case, HSA will

create a header space representing all possible packets at tunnel ingress, after ingress the header space will

be more specific (the source and destination addressed will be fixed), and finally at egress the header will

revert back to showing all possible packets. A more useful analysis would output that any packet that exits
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the tunnel is the same as when it entered it.

2.3.1 SymNet: Symbolic Execution for Networks

This example suggests that symbolic execution, a technique prevalent in compilers, could be used for check-

ing. We have designed and built SymNet, a tool that uses symbolic execution to statically analyze network

configurations, including Click configurations and CHANGE routing configurations. Our tool extends Header

Space Analysis – packet fields are symbolic variables that are tracked as they pass through the network. The

set of possible values of a packet field, at any point on its path, is still a header space, thus we can run all the

analysis that HSA enables, and more.

Modeling packets. We use symbolic packets to represent a set of packets with certain common constraints

(e.g., all packets sourced by one host). A symbolic packet is a set of variables that model header fields and

even the payload. Each variable can be free or bound to a symbolic expression. A symbolic expression is

either another variable, set of variables, or set of possible values. Free variables can take any value, while

bound variables express restrictions on the values of the corresponding field. For instance, a variable binding

for the SYN Flag could specify that it is set to 1 or cleared.

Modeling the topology. The topology is given as a set of processing modules, each of which can have

multiple interfaces; the provider and client configurations tell us which interfaces are connected, and what the

invariants are. As in Header Space Analysis, we model processing modules as transformations on (symbolic)

packets arriving on interfaces. To this end, we use rules. A rule is a pair of functions (match, apply). The

match function is applied to a packet and an interface, and returns true only if that packet can arrive at the

specified interface. The apply function takes as argument a packet and an input interface, and returns a list of

(packet, output interface), where the packets are modified according to the processing module.

Modeling flow state. Certain processing such as those specific to tunnels or stateful firewalls require us to

capture the state of the flow. Modeling state is achieved through using work variables. For instance, the

entry-point of a tunnel can be modeled by: (i) pushing new, tunnel-dependent work variables in the flow, to

store the content associated to certain header variables and (ii) modifying these header values appropriately.

The tunnel exit point is modeled similarly: the content of the pushed variables is restored to the appropriate

header variables.

Stateful firewalls receive similar treatment: a new, firewall-dependent variable is added to the packet to

simulate flow state. At the receiver, this variable is copied into the return traffic. This allows the firewall to

recognize the return packets as being part of an allowed outgoing connection.

Reachability. Computing reachability between a source s and destination port d, amounts to: (i) taking a

generic symbolic packet as seen at the source interface, (ii) applying all matching rules at a given platform

and (iii) forwarding the resulting packets on all outgoing interfaces. The steps (i), (ii), and (iii) are repeated

for each resulting pair of packets and outgoing interfaces until the destination is reached, on all possible paths.
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The final result tells us which packets are accessible at destination port d from source port s.

Invariants. To check invariants we run reachability between the source and destination ports. We then

compare variables that model the invariants at the source and destination ports. The invariants hold only if

the variables are bound to the same value.

Loop detection is accomplished by taking each interface from a given configuration and unfolding all pos-

sible paths starting at it. The exploration process will cease if no more paths exist or if an already visited

interface has been reached. Loops will be reported iff: (i) a previously visited interface is reached and (ii)

the current flow is more general or equal to the flow detected at the first visit. A flow is more general than

another if all bound variables from the latter are also bound (and to the same values) in the former. Finally, we

note that our loop detection mechanism is conceptually similar to the single infinite loop detection described

in [14].

Example. Let’s discuss how we can use SymNet to analyze the user-provided configuration in figure 2.2. We

show how reachability is run in figure 2.4, where annotations above the Click elements show their SymNet

model. The symbolic packet, shown below the elements, starts up with all header values set to unbound

variables. FromNetfront only allows packets destined to this processing module, thus variable b can only

have value IP3 after passing through this element. Next, IPFilter restricts the possible values for the

proto (PR) and destination port header fields. Finally, IPRewriter changes the value of the destination

header, setting it to a new variable e whose value is bound to 172.16.15.133.

By checking the symbolic packet as it exits the configuration, the controller knows that the only possible

destination address is 172.16.15.133—which is the address of the client in this case. The source address is

the same as when it entered the configuration (variable a), so this processing module is safe to instantiate

without any sandboxing.

Implementation. We have implemented SymNet in Haskell. Verification is achieved by performing reacha-

bility and loop detection tests on a Haskell description of the Click configurations or stock processing mod-

ules. We have modeled individual Click elements and stock processing modules manually.

The CHANGE controller is a front-end to SymNet that we have implemented in Scala. The controller parses

client processing requests and automatically generates the appropriate Haskell model, runs the checker and,

depending on the outcome, instantiates processing and directs traffic into the processing module by configur-

ing the software switch running on the target platform. Finally, the controller replies to the client.

2.4 The CHANGE Platform

CHANGE platforms are based on Xen and so inherit the isolation, security and performance properties af-

forded by paravirtualization. As such, the platforms can run vanilla x86 VMs, though this is not our main

target because it severely limits the scalability of the system to a few tens of users/VMs.
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Figure 2.5: A CHANGE platform running ClickOS VMs as well as more general (but sandboxed) Linux
VMs.

For the platform to be viable, it has to be able to support a potentially large number of concurrent clients while

ensuring isolation between them. As a result, the CHANGE platforms rely on ClickOS, a guest operating

system optimized to run Click configurations. ClickOS consists of a tiny Xen virtual machine built from

(1) Mini-OS, a minimalist, single address-space, paravirtualized operating system distributed with the Xen

sources, and (2) the Click modular router software [15]. We chose Xen because the split driver model affords

us access to modern hardware and drivers (e.g., an Intel 10Gb card and the corresponding ixgbe driver) that

a minimalist OS such as Mini-OS would not normally support.

Figure 2.5 gives an overview of the CHANGE platform based on ClickOS. The control plane consists of a

python API and a CLI built on top of it, both running on the Linux-based dom0 domain. We rely on the

XenStore, a proc-like database, to communicate control information between dom0 and the ClickOS VMs.

For instance, we use it to emulate Click’s element handlers, which under Linux depend on the proc filesystem

or sockets to function.

ClickOS supports a large range of middleboxes such as firewalls, NATs, load balancers, and DNS proxies,

with many more possible thanks to the over 200 Click elements built into the ClickOS VM image. Extending

this with our own elements allowed us to implement other functionality such as a carrier-grade NAT and

software BRAS.

Regarding networking, packets arrive at the NIC and are handled by the device driver in dom0. The interface

is connected to a software bridge, either Open vSwitch or a modified VALE [20] switch for 10Gb/s experi-

ments. The switch sends the packets to the “right” VM, and in particular a VM’s virtual interface (vif). The

vifs are then serviced by a netback driver residing in dom0 2. The netback driver exports a common, ring-

based interface which netfront drivers in the virtual machines implement. In the case of ClickOS, a new Click

2Strictly speaking, the device drivers, switch, vifs and netback driver do not need to be in dom0 but rather a driver domain; in
practice however, the dom0 often acts as the driver domain.
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Figure 2.6: ClickOS reactive architecture. A controller connected to the back-end software switch instantiates
on-the-fly ClickOS VMs for each new flow.
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element that we implemented called FromNetfront, takes care of receiving packets and sending them

down the rest of the Click chain (sending packets follows the reverse path which ends at a ToNetfront

element).

For the full details of ClickOS we refer the reader to [18]. In the rest of this section we focus on modifications

and experimentation we carried out in order to build a viable CHANGE platform around ClickOS.

Starting middleboxes on the fly. By itself ClickOS goes a long way towards meeting our scalability require-

ments. ClickOS virtual machines are tiny (5MB when running) and this allows us to run up to 100 of them

on inexpensive commodity hardware as explained below. Even so, a CHANGE platform is likely to have to

service many more clients.

One key observation is that since ClickOS VMs can boot rather quickly (in about 30 milliseconds), we only

have to ensure that the platform copes with the maximum number of concurrent clients at any given instant.

Thus, we create ClickOS VMs on-the-fly, as the first packet belonging to a certain client arrives, while being

transparent to the client.

To achieve this, we modify ClickOS’ back-end software switch to include a switch controller connected to

one of its ports (figure 2.6). The controller monitors incoming traffic and identifies new flows, where a new
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flow consists of a TCP SYN or UDP packet from a source IP address not yet seen 3.

In addition, we install a special module into the switch’s forwarding logic that consists of a MAC table con-

taining <src MAC, port #> tuples followed by another module with an IP table of <src IP, port

#> tuples. When a packet from a new flow arrives at the switch, no entries for it exist on either table and

so it gets sent to the controller. The controller then takes care of instantiating a new ClickOS VM to handle

the flow and attaches the VM’s virtual interface to the switch. Further, it installs an entry into the IP table

directing packets coming from the source IP address to the port the new VM is attached to, and entries into

the MAC table mapping a generated address in the 00:00:00:00:00:XX range to the switch port of each of

the NICs on the system. Before sending packets back to the switch, each ClickOS VM sets their source

MAC address to one of these addresses, depending on whether the packet came from the client or the server

(figure 2.6 has an example with entries in the tables).

Suspend and resume. Creating VMs on the fly works great as long as the processing is stateless or only

relevant to the single flow the VM was created to handle. For stateful handling, and to be able to still scale to

large numbers of concurrent clients, we add support to Mini-OS to allow us to suspend and resume ClickOS

VMs; we present evaluation results from this mechanism in section 2.5.

Scalability via static checking. The one-client-per-VM model is fundamentally limited by the maximum

number of VMs a single box can run (a few hundred), and on-the-fly instantiation mitigates the problem but

is no panacea. We could of course further increase capacity with servers with large numbers of CPU cores,

or use additional servers, but this would just be throwing money at the problem.

Another approach is to run multiple users’ configurations in the same ClickOS virtual machine, as long as we

can guarantee that the users are properly isolated. To consolidate multiple users onto a single VM we create

a Click configuration that contains all individual user configurations preceded by a traffic demultiplexer;

no links are added between different users’ configurations, and no elements instances are shared. Explicit

addressing ensures that a client’s module will only see traffic destined to it, and our security rules ensure that

processing modules cannot spoof IP addresses.

Standard Click elements do not share memory, and they only communicate via packets. This implies that

running static analysis with SymNet on individual configurations is enough to decide whether it is safe to

merge them.

For Click elements that keep per-flow state, ensuring isolation is trickier: one user could force its configura-

tion to allocate a lot of memory, DoS-ing the other users. To avoid such situations we would need to monitor

and limit the amount of memory each configuration uses. A simpler solution is to not consolidate stateful

processing—this is what our prototype does. In the next section we experimentally quantify the gains that

can be had from this approach in terms of support for larger numbers of flows/clients.

3The choice of source IP address as a flow identifier is unimportant to the rest of the reactive mechanism and can be easily
changed.
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Figure 2.10: Cumulative throughput when having a single ClickOS VM handle Click configurations for
multiple clients.

2.5 Evaluation

CHANGE relies on two main components: its scalable platform software based on ClickOS and SymNet,

the static analysis tool running at the controller. In this section we evaluate the scalability of these two

components.

2.5.1 Platform Scalability

It has been shown that a system with a few ClickOS VMs can process packet rates on the order of millions per

second for basic appliances such as NATs [18]. Without any of our optimizations, around 100 ClickOS VMs

can be run on a single commodity server without affecting total throughput, at least for trivial processing

(packet forwarding).

Our main goal is to understand how many concurrent users can share a CHANGE platform while carrying

out actual middlebox processing. First we test ClickOS’s ability to quickly react to incoming traffic by

instantiating on-the-fly virtualized middleboxes. We connect three x86 servers in a row: the first initiates

ICMP ping requests and also acts as an HTTP client (curl), the middle one acts as the CHANGE platform

and the final one as a ping responder and HTTP server (nginx). For the actual processing we install a stateless

firewall in each ClickOS VM.

All measurements were conducted on an inexpensive (about $1,000), single-socket Intel Xeon E3-1220 sys-

tem (4 cores at 3.1 GHz) with 16 GB of DDR3-ECC RAM running Xen 4.2.0. To obtain the best performance,

we pin interrupts for the NIC connected to the client to core 0, interrupts for the other NIC to core 1, the switch

controller to cores 1 and 2 and all ClickOS virtual machines to core 3.

In our first experiment we start 100 pings in parallel, with each ping sending 15 probes. Each ping is treated
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Figure 2.11: Throughput of a CHANGE platform servicing up to 1,000 clients with different number of VMs
and clients per VM.
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Figure 2.12: Static analysis checking scales linearly with the size of the operator’s network.
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by the platform as a separate flow, and a new VM is started when the first packet is seen. We expect that

the first packet’s delay should be reasonable despite VM creation, and that successive packets in the flow

experience much lower delay. Figure 2.7 shows the results of this experiment. Clearly, the first packet in a

flow is more costly than the ones that come after, but its round-trip time is still 50 milliseconds on average.

For packets 2-15, the ClickOS VM is already in place, and so the RTT drops down significantly. The RTT

increases as more and more ClickOS VMs are running on the system, but even with 100 VMs the ping time

for the first packet of the 100th flow is 100 ms.

Next, we conducted a more realistic experiment consisting of an HTTP client initiating 100 concurrent HTTP

requests capped at 25 Mb/s that go through the ClickOS box in order to reach an HTTP server hosting a

50MB file. Once again, this implies the reactive creation of 100 ClickOS VMs. We measured the time it

takes for the connection to be set up (i.e., including VM creation) as well as the total time to transfer the file,

and plot the results in figure 2.8.

Starting and terminating ClickOS VMs is ideally suited for stateless network processing, such as a plain

firewall. At the extreme, we could instantiate a VM per packet, process it and terminate immediately. This

would allow us to support, at least in theory, any number of users, at the cost of increased packet delays. The

right granularity of VM creation can be optimized for different types of traffic, and is subject of our future

work.

Suspend and resume. When VMs hold per-flow state, however, terminating a VM would effectively termi-

nate the end-to-end traffic, which is unacceptable. The solution in this case is to use suspend/resume instead

of terminate/boot. To this end we have implemented suspend and resume support in Mini-OS and performed

experiments varying the number of active VMs when we suspend and resume a single VM. The results are

shown in figure 2.9 and are comparable to the ClickOS boot times.

Aggregating multiple users onto a single virtual machine. Another way to scale the number of clients

served by a CHANGE box is by consolidating the processing modules of different clients onto a single

ClickOS virtual machine, with proper demultiplexing and multiplexing of traffic (recall that we had already

proven that consolidation is safe as long as the processing is stateless). To understand the scalability of this op-

timization, we create a single ClickOS VM and install a Click configuration containing an IPClassifier

element to act as a destination IP demuxer. For each client we run individual firewall elements, and then

traffic is again multiplexed onto the outgoing interface of the VM.

We start up an increasing number of HTTP flows, one per client, and measure the cumulative throughput

through our platform (figure 2.10). As shown, we can sustain essentially 10Gb/s line rate for up to over 150

clients or so, after which the single CPU core handling the processing becomes overloaded and the rate begins

to drop. While the exact point of inflexion will depend on the type of processing (in this case firewalling)

and the CPU frequency, these results hint that aggregating configurations onto a single VM is an easy way to

increase the number of clients supported by a platform.
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Figure 2.13: Cost of sandboxing in a CHANGE platform.

Finally, we gradually increase the number of clients up to 1,000 by leveraging SymNet’s ability to verify

that running configurations from different clients on shared VMs is safe. We try different numbers of clients

per VM (n=50, 100 or 200), where each client is downloading a web-file at a speed of 8Mbps and the n’th

client triggers the creation of a new VM (for instance, with n=50 and 1,000 clients we create 20 VMs). We

then measure the cumulative throughput at the CHANGE platform and plot the results in figure 2.11. Even

with all VMs pinned to the same CPU core, ClickOS gives 10Gbps line rate throughput in this experiment,

highlighting its scalability to large numbers of clients.

Is 1,000 clients, however, a realistic target? To understand whether CHANGE can scale to real-world work-

loads, we downloaded and processed MAWI traces taken between the 13th and 17th of January; these are

packet traces from the WIDE backbone in Japan. Each trace covers 15 minutes of traffic, and we eliminate

all connections for which we do not see the setup and teardown messages. Most of the traffic we ignore is

background radiation (instances of port scanning), but some of it is due to longer connections intersecting the

15-minute trace period. The results show that, at any moment, there are at most 1,600 to 4,000 active TCP

connections, and between 400 to 840 active TCP clients (i.e., active openers). The exact thresholds varies

with the day of the week, but the main take-away is that a single CHANGE platform running on commodity

hardware could run personalized firewalls for all active sources.

2.5.2 Controller Scalability

We turn our attention to the CHANGE controller: how long does it take to respond to a user’s processing

request? We ran an experiment where the client was connected to a WiFi hotspot, and the WiFi hop dominated

the round-trip time to the controller (around 10ms). The client issued the request shown in our push example

(figure 2.2). The provider runs the static checking alone, without instantiating the VM, and we measure the

wall-clock request execution time at the client. For the provider topology shown in figure 2.1, the whole
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Figure 2.14: CHANGE platforms run many middleboxes on a single core with high aggregate throughput.
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Figure 2.15: Mobile phones save energy when a CHANGE platform batches push traffic into larger intervals.
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request takes 250ms; out of this, the server needs 101ms to compile the Haskell rules our front-end generates,

and just 5ms to run the analysis itself. This result implies that static checking could be used for interactive

traffic, such as deciding the proper way to tunnel traffic.

To understand how this number scales to a larger, more realistic operator topology we randomly add more

routers and platforms to the topology shown and measure the request processing time. The results in Fig-

ure 2.12 show that static processing scales linearly with the size of the network. The biggest contributor

to the runtime is the time needed to compile the Haskell configuration. In practice, the operator will have

a compiled version of its configuration, and we only need to compile the client’s configuration and load it

dynamically. In short, SymNet scales well: checking reachability on a network with 1,000 boxes takes 1.3

seconds.

Stateful checking. SymNet models basic TCP functionality and can model middleboxes that hold per-flow

state. To model TCP connectivity we run reachability between the two endpoints as follows: the active opener

injects a symbolic packet whose protocol is set to TCP, and this is traced all the way to the destination (passive

opener). At the destination, the same symbolic packet is echoed back by reversing the source and destination

addresses and ports, but keeping all the variable bindings.

Next, to model stateful middleboxes—such as a stateful firewall—we attach the state of the box to the sym-

bolic packet. In particular, the firewall adds a state variable to the symbolic packet on its way out, and only

allows return packets through that carry this variable. The time needed for checking is the same as in fig-

ure 2.12. Checking stateful middleboxes is really cheap with SymNet: the memory costs grow linearly with

the number of stateful boxes encountered; there is no state explosion as is the case with model-checking based

techniques (e.g., [17]).

Sandboxing. We use a single ClickOS VM to receive traffic directly via a 10 Gbps NIC or through our

ChangeEnforcer sandboxing element (recall section 2.2.4). Figure 2.13 shows that the throughput drops

by a third for 64B packets, and by a fifth for 128B packets. For other packet sizes there is no measurable

degradation. We conclude that sandboxing is relatively expensive for small packet sizes; luckily, it is not

needed in the first place if we can statically check whether the processing is safe. We have seen in our previous

results that static checking is very fast—in particular, security checking takes a few hundred milliseconds,

out of which Haskell compilation dominates.

Another question is how many false positives appear in practice, which will force us to resort to sandboxing.

To answer this question we ran security checks on processing modules implementing the middlebox func-

tionalities shown in Table 2.1 and found that static analysis accurately characterizes safety in these cases. Of

course, more complex processing may yield more false positives—more experience is needed to understand

how prevalent false positives are.
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Figure 2.16: SCTP performance when tunneling over TCP and UDP, with different measured loss rates.
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Figure 2.17: Defending against a Slowloris attack with CHANGE

2.6 Use-cases

We now discuss a variety of use-cases showcasing the benefits our architecture for the main actors of the

Internet ecosystem: operators, end-users and content-providers.

Software Middleboxes are a great lure for operators and have become prominent with the advent of NFV.

CHANGE offers a scalable way to run many middleboxes on low-end commodity hardware. In our first

use case, we deploy a number of different middleboxes on a CHANGE platform and measure the aggregate

throughput of the box. Traffic is generated by a client running curl connected via a 10 Gigabit pipe to the

platform, itself connected via another 10 Gigabit pipe to a server running nginx and serving content from a

ramdisk. We vary the number of middleboxes (one per VM) that we run on a single core of our server, split

the client traffic evenly between the middleboxes and plot the aggregate throughput through the platform.

Figure 2.14 shows that the CHANGE platform manages to sustain high throughput, regardless of the number

of middleboxes and their type; this goes beyond the work in [18], which measured middlebox throughput
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Figure 2.18: 75 PlanetLab clients downloading a 1KB file from the origin server or a 3-server CHANGE
CDN.

using a single VM.

Push Notifications. Using CHANGE , mobiles can request their cellular operator to forward a port in the

NAT to them, perhaps subject to some security clearance (e.g., only allowing notifications from a certain

source address). Additionally, the clients’ processing can batch messages at the provider, thus reducing the

number of costly “energy tails”—a nickname for the many seconds cellular radios wait before switching back

to the idle state. We instantiated the configuration presented in figure 2.2 using as client a Samsung Galaxy

Nexus mobile phone connected via 3G to the Internet. It takes around 3s for the whole request to be executed

by the CHANGE controller, which finds the proper placement for the processing module, and checks its

security, the clients’ requirements and the operator’s. This time is dominated by the time needed to wake

up the 3G interface. The reply specifies the IP address of the newly allocated processing module. From one

of our servers, we send one UDP message with 1KB payload every 30s to the given address and port; the

platform batches the messages in the processing module and delivers them at different intervals.

We measured the mobile device’s energy consumption with the Monsoon power monitor, and show the results

in figure 2.15. Batching has a massive effect on average energy consumption, reducing it from 240mW to

140mW. In this use-case, CHANGE brings benefits for both the client and the cellular operator: the client

can trade increased delay in receiving notifications for lower energy consumption, while the operator gets the

opportunity to monitor and perhaps filter malicious messages.

Protocol Tunneling. Consider the task of running SCTP (or any other new protocol) over the Internet.

Deploying it natively is impossible because middleboxes block all traffic that is not TCP or UDP. Thus SCTP

must be tunneled, but which tunnel should we use? UDP is the best choice, but it may not work because

of firewalls that just drop non-DNS UDP packets. In such cases, TCP should be used, but we expect poorer

performance because of bad interactions between SCTP’s congestion control loop and TCP’s.

To understand the effect of such interactions, we use iperf to measure bandwidth between two servers con-
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nected via an emulated wide-area link with capacity 100Mbps and a 20ms RTT. We also introduce random

losses to understand how the protocol fares under congestion scenarios. The results in figure 2.16 show how

SCTP over TCP encapsulation dramatically reduces the throughput achieved: at 3% loss rate, TCP tunneling

gives 5 times less throughput than UDP.

SCTP has to be adaptive about the tunnel it uses: first try UDP and fall back to TCP if UDP does not work, but

to make the decision we need at least one timeout to elapse at the sender—three seconds according to the spec.

Instead, the sender could use the CHANGE API to send a UDP reachability requirement to the network. This

request takes around 200ms, after which the client can make the optimal tunnel choice, drastically reducing

connection setup time.

HTTP vs. HTTPS. Mobile apps heavily rely on HTTP to communicate to their servers because it just

works, and in many cases they are even tunneling other traffic over HTTP. Application optimizers deployed

by the network may alter HTTP headers, breaking the application’s own protocol. Should the applications

use HTTPS instead to bypass such optimizers? We have measured the energy consumption of a Samsung

Galaxy Nexus phone while downloading a file over WiFi at 8Mbps. The download times are almost identical,

while the energy consumption over HTTP was 570mW and 650mW over HTTPS, 15% higher. The added

cost of HTTPS comes from the CPU cycles needed to decrypt the traffic.

Smaller energy consumption is a strong incentive for mobiles to use HTTP, but this may break apps, so we

are stuck with the suboptimal solution of using HTTPS. Instead, the client should use CHANGE to send an

invariant request to the operator asking that its TCP payload not be modified. The operator has incentives to

comply with the invariant, because seeing plaintext traffic improves its network’s security.

The provider should turn its HTTP optimizations off for requesting apps, resulting in a win-win situation for

both parties. In our scenario, the operator simply instantiates a processing module on Platform 2, bypassing

the optimizer for the target client’s traffic.

TLS Offloading. A small website wants to enable HTTPS to increase security, but this imposes a burden on

its server’s CPU and increases web page load times because of the extra RTTs required by the TLS handshake.

We deploy a client running wget and a server running apache on different continents, with a round-trip

time between them of around 100ms. With HTTPS, the average download time for 10 requests is 960ms. We

next use CHANGE to deploy a stock reverse-proxy processing module close to the client (10ms RTT) and to

redirect the client to use this proxy via DNS. As a result, the client talks HTTPS to the processing module,

and the module communicates over HTTP with the server. With this setup, the average page download time

goes down to 640ms. The decrease is not as big as one might expect because the CHANGE reverse proxy is

not optimized at all: it opens a new HTTP request to the web server for each connection, which adds almost

100ms to the request.

DoS Protection. We use the same stock processing module to defend against an HTTP attack tool called
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Slowloris that attempts to starve all valid clients of a server by maintaining as many open connections to that

server as possible. Slowloris opens many connections and trickles the HTTP request bytes at a very slow

rate, which prevents the server from timing out the connection. The best known defense is to just ramp up

the number of servers, and this is what we do with CHANGE . When under attack, the web server starts a

number of processing modules at remote operators, and redirects new connections via geolocation to those

servers. In figure 2.17 we plot the number of valid requests serviced per second before, during, and after the

attack. We can see that CHANGE is able to quickly instantiate processing and divert traffic, thus reducing

the load on the origin server.

Content Distribution Network. CHANGE can safely run legacy code in sandboxed processing modules. As

our final use case we run a small-scale content-distribution network as follows. The origin server is located in

Italy, and there are three content caches (located in Romania, Germany and Italy) instantiated on CHANGE

platforms. Each content cache is an x86 virtual machine running Linux and Squid, the latter configured as

a reverse-proxy. The CHANGE controller instantiates sandboxing for such machines using the mechanism

previously described in section 2.2.4.

Traffic is redirected to the caches via DNS. CHANGE also offers as a processing module a simple DNS

server that we have coded which takes a list of platform IP addresses and services queries using geolocation

information 4, directing each client to its closest cache. As clients we used 75 PlanetLab nodes scattered

around Europe – geolocation spreads these clients to the caches approximately evenly. We ran repeated

downloads of 1KB files from all these clients, and we report the results in figure 2.18. We see that the CDN

is behaving as expected: the median download time is halved, and the 90% percentile is four times lower.

4We use the MaxMind geolocation database [4].
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3 Online Resource Allocation
In the CHANGE vision Flowstream platforms must be able to host processing requested by agents. These

requests for processing come in the form of allocation requests for network services. In a previous deliverable

([1]) we gave algorithms to allocate a given set of network services on a Flowstream platform such as to

satisfy some performance criteria. In this deliverable we explain how these methods can be adapted to the

online problem, where the allocation demands from new services arrive over time. Experimental results for

this online problem are provided. In the following, we first recall the different problem components and

then differentiate between the online and the offline problem. Next, the adaptation of the offline constraint

satisfaction procedure to the online problem is described. Some parts of the constraint satisfaction procedure

that are new w.r.t Deliverable 3.2 ([1]) are then highlighted. Finally we test different possible configurations

of the proposed procedure on a number of simulated online scenarios.

3.1 Problem Description

As for the offline problem, the online problem has two main components: a Flowstream platform and a

(previously unknown in the case of the online problem) set of network services .

The Flowstream platform is composed of programmable switches and commodity servers. The switches

interconnect the servers. These servers are characterized by their number of CPU cores, their memory

capacity and their internal communication bandwidth. The servers are located in racks. Each rack is

associated with a Top-of-Rack (ToR) switch, and all communication between servers (whatever their rack)

goes through their corresponding ToR(s). The Flowstream platform is connected to the Internet by a given

number of I/O-nodes. The different nodes (switches, servers and I/O nodes) in the Flowstream platform are

connected via links. With each link is associated a bandwidth and a delay. The Flowstream platform can thus

be seen as a directed graph.

A network service (NS) is a service that must be processed by the Flowstream platform. Each NS is

represented by a directed acylic graph (DAG) containing three types of nodes: source nodes, sink nodes

and Processing Modules (PM). The source and sink nodes represent the entry from and the exit to the

outside world. The processing modules correspond to a computation that needs to be carried out. Each

module requires a given number of CPU cores and a given amount of memory. Some of the modules need

to communicate, this is represented by a link in the DAG. Since the source (sink) nodes are the entry (exit)

point from (to) the Internet, there are no incoming (outgoing) links for these nodes in the DAG. All links in

the DAG are associated with a bandwidth requirement. Furthermore, for each network service, a bound is

imposed on the total delay between the reception of data at a source node and the reception of the processed

data at a sink node.
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In the offline problem, a set of NSs must be deployed on the Flowstream platform. This means that for each

NS, its PMs must be attributed to servers and its sink nodes to I/O nodes (source nodes are fixed to one I/O

node known beforehand). As a server only has a limited number of CPU nodes, limited memory capacity

and a limited internal communication bandwidth, it can only handle a restricted set of PMs at once. The

server’s resources may not be exceeded by the PMs that are allocated to it.

Furthermore communication paths between the PMs and between the PMs and the source and sink nodes

must be computed. These communication paths are paths in the graph representing the Flowstream platform.

Since the links in this graph are associated with a limited bandwidth, care has to be taken to guarantee that

this bandwidth limit is not exceeded on any link. Also the total delay on the paths must allow to respect the

bound on the total delay of the NSs.

A complete model for the offline problem, along with detailed constraints and objectives was given in

deliverable[1].

The online problem is the same as the offline problem, with the difference that the set of NSs is not known

beforehand. The NSs to distribute over the Flowstream platform appear gradually, and servers, I/O nodes

and communication paths need to be chosen for the new NSs while taking into account the resources already

allocated to the NSs currently in execution. At no point is any information about the future known. The

goal of the online problem is to accommodate as many of the incoming NSs as possible while respecting the

problem constraints.

3.2 Notations

In this section we quickly review some notations that will be used in the remainder of this chapter.

A Flowstream platform is modeled as a directed graph D = (F,E), The nodes in F correspond to different

types of switches (I/O nodes, Openflow switches) or servers.

The set of I/O nodes is denoted by FI/O (FI/O ⊂ F ) and the set of servers by FSERVER (FSERVER ⊂ F ).

A network service is modeled as a directed acyclic graph S = (G,H). The nodes in G are partitioned into

three sets: the set of source nodes GSOURCE, the set of sink nodes GSINK and the processing modules GPM.

We have thus G = GSOURCE ∪GSINK ∪GPM.

A solution sol assigns each node from each NS graph to a node in the Flowstream platform graphD. Given a

solution sol, we denote v(sol) the total number of violations of all the constraints of the problem, and h(sol)

the number of servers used by solution sol. Solution sol can be modified by (re-)assigning some node g ∈ G

to some node f ∈ F , the resulting solution is denoted by sol[g, f ].

3.3 Adaptation to the Online Problem

In the offline problem, the set of network services that need to be handled by the Flowstream platform is

known in advance. In the online version of this problem, the networks services appear over time, and for each
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NS, servers must be allocated to its PMs, I/O nodes to its sink nodes and communication paths need to be

determined, all of this given the current allocations of servers and I/O nodes to already running NSs.

The idea is to reuse the approach presented in [1]. The pseudo-code for the online scenario is given in

Algorithm 1. At initialization an empty solution sol is created and the communication paths to be used on the

Flowstream platform are precomputed. This is done to avoid computational overhead during the constraint

satisfaction procedure and is described in detail in section 3.3.1. The system then listens for new incoming

network services. Each time a new service S is received the constraint satisfaction procedure will try to

update the current solution sol w.r.t. the new network service. If the constraint satisfaction procedure is able

to find a mapping between the nodes in S and the nodes in D such that all constraints are respected, service

S is accepted and the current solution sol is updated. In the other case, the network service S is rejected by

the system. The constraint satisfaction procedure is described in section 3.3.2. Note that it is not allowed to

modify the network services already in execution on the Flowstream platform.

Algorithm 1: OnlineScenario

1 sol← ∅;
2 P ← precompute communication paths;
3 while true do
4 S ← get incoming network service;
5 sol′ ← ConstraintSatisfactionProcedure(sol,P ,S,D);
6 if sol′ 6= ∅ then
7 sol← sol′;
8 else
9 Reject S;

3.3.1 Computing communication paths

In order to avoid the computation overhead, the communication paths between servers and between servers

and I/O nodes of the Flowstream platform are precomputed. This is done in such a way that the number of

paths that pass a certain link are balanced. That means we try to avoid situations where a link is shared by

many paths while some other link is used by only a few or no paths. The algorithm for computing paths is

depicted in Algorithm 2. It starts by computing Fp, the set of node pairs between which a path needs to be

computed (line 1). Then a cost associated with each link in graphD is initialized to 1 (lines 2 – 3). Next, node

pairs are randomly selected from Fp (line 4-5). For each node pair, the shortest path in graph D, taking into

account the cost c(l) of each link l ∈ E is computed (line 6). The cost of the links used by this path is then

incremented. The rationale behind this is, that this will deter from the use of these links in the computation of

the shortest path for a different pair of nodes (lines 8–9). This procedure is repeated for every pair of nodes

in Fp.

3.3.2 Online constraint satisfaction procedure

The constraint satisfaction procedure consists of at most two steps:
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Algorithm 2: ComputePaths(D)
Input: Flowstream platform D = (F,E)
Output: P the set of paths between nodes in set FSERVER ∪ FI/O

1 Fp = (FSERVER × FSERVER) ∪ (FI/O × FSERVER) ∪ (FSERVER × FI/O);
2 foreach l ∈ E do
3 c(l)← 1;

4 while Fp 6= ∅ do
5 〈v1, v2〉 ← Pop randomly from Fp;
6 p(v1, v2)← shortest path from v1 to v2;
7 P ← P ∪ p(v1, v2);
8 foreach l ∈ p(v1, v2) do
9 c(l)← c(l) + 1;

1. The computation of an initial solution (possibly not respecting all constraints)

2. A Tabu Search to render the initial solution (from step 1) feasible (if necessary)

In the online mode these steps are executed for each new incoming service. The first step consists in modi-

fying the current solution sol (which assigns elements from the Flowstream platform to the network services

that are currently in execution), in order to accommodate the elements of the new network service on the

Flowstream platform. The resulting, modified, solution sol′ is possibly infeasible (does not respect all the

problem constraints), in that case the Tabu Search can be executed on it. The goal of the Tabu Search is to

further modify solution sol′ in order to render it feasible. If this fails, the original solution sol is kept (and the

network service is rejected, see Algorithm 1). In the experiments we considered both using only Step 1 (the

computation of an initial solution) and Steps 1 & 2 (computation of initial solution on which Tabu Search is

applied).

The Tabu Search has been fully described in [1]. The only modification that has to be made for the online

problem, is that the search may only modify the allocation of the new network service’s elements. This means

that the assignment of already running network services’ elements to elements of the Flowstream platform

must remain untouched.

In [1] we described a round-robin based approach to compute an initial solution for the offline problem. For

the online problem we consider two additional methods. The three methods are described in the following

section.

Computing an initial solution

The job of the algorithms presented in this section is to take a current solution sol, a new network service

S = (G,H) and to assign the network service’s elements to the Flowstream platform D = (F,E) (while

taking into account the network services already running on the platform). The source and sink nodes of the

network service are accommodated randomly on their optional locations. The proposed algorithms thus only

need to map nodes GPM to nodes FSERVER. Again the mapping of already running network services may not

be modified.
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We consider three algorithms to achieve this: Random Initialization, Minimization of #Servers Initialization

and Round Robin Initialization.

Random Initialization

The algorithm is depicted in Algorithm 3. For each processing module gi ∈ GPM we first try to find a server

node j ∈ FSERVER, such that mapping gi to j does not result in (possibly further) violations of the problem

constraints (line 2). If several such servers are available, one of them is chosen randomly. If no such server

is available (line 3), some server is chosen at random (line 4). Finally the current solution sol is updated,

assigning processing module gi to server j. Note that this solution may be infeasible.

Algorithm 3: RandomInit(sol, P,S,D)
Input: Current solution sol, Flowstream platform D = (F,E), incoming network service S = (G,H)
Output: Possibly modified solution sol

1 foreach processing module gi ∈ GPM do
2 j ← select j ∈ FSERVER such that v(sol[gi, j])− v(sol) = 0;
3 if j = ∅ then
4 j ← select randomly from FSERVER;

5 sol← sol[gi, j];

Minimization of #Servers Initialization

The second initialization algorithm is depicted in Algorithm 4. It is similar to the random initialization except

that it first tries to select a server j for the current processing module gi, such that the assignment of gi to j

does not result in (possibly further) violations of the problem constraints and such that the number of servers

used is minimal (line 2). If no such server can be found, we use the server that causes the least constraint

violations when gi is assigned to it. Note that the resulting solution may be infeasible.

Algorithm 4: MinimumServersUsedInit(sol,S,D)
Input: Current solution sol, Flowstream platform D = (F,E), incoming network service S = (G,H)
Output: Possibly modified solution sol

1 foreach processing module gi of GPM do
2 j ← select j ∈ FSERVER such that v(sol[gi, j])− v(sol) = 0 and h(sol[gi, j]) is minimal;
3 if j = ∅ then
4 j ← select from FSERVER such that v(sol[gi, j]) is minimal;

5 sol← sol[gi, j];

Round Robin Initialization

The third algorithm is based on a Round Robin scan. It was already presented in [1]. The idea behind this

algorithm is to favor the placement of processing modules of a same network service on one or more servers

connected to a same ToR. This allows to ease the respect of the limit on the total delay between reception of

data at a source node and the reception of the processed data at a sink node. The algorithm assumes nodes

corresponding to servers located on a same rack (connected to a ToR) are numbered in a consecutive way.
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For completeness’s sake the complete algorithm is depicted in Algorithm 5.

Algorithm 5: RoundRobinInit(sol,S,D)
Input: Current solution sol, Flowstream platform D = (F,E), incoming network service S = (G,H)
Output: Possibly modified solution sol

1 j0 ← currentServer;
2 foreach processing module gi ∈ GPM do
3 j ← j0;
4 if v(sol[gi, j]))− v(sol) > 0 then
5 j ← j + 1;
6 if j > nbServers then
7 j ← 1;

8 found← FALSE;
9 while ¬found do

10 if j = currentServer then
11 break;

12 if v(sol[gi, j]))− v(sol) = 0 then
13 found← TRUE;
14 else
15 j ← j + 1;
16 if j > nbServers then
17 j ← 1;

18 if ¬found then
19 j ← select from FSERVER such that v(sol[gi, j]) is minimal;

20 sol← sol[gi, j];
21 j0 ← j;

3.4 Simulation experiments
We implemented our constraint satisfaction procedure in the Comet language and it is available to all project

partners in the CHANGE SCM repository. We tested different configurations of the constraint satisfaction

procedure on an online scenario under different constraints. The different configurations are obtained by

using algorithms 3, 4 and 5 individually and in combination with the Tabu Search. The configurations are

summarized in Table 3.1.

Name Description
R Random Initialization (Algorithm 3)
R+TS Tabu Search with R procedure for the initial solution
RR Round Robin Initialization (Algorithm 5)
RR+TS Tabu Search with RR procedure for the initial solution
S Minimization of #Servers Initialization (Algorithm 4)
S+TS Tabu Search with S procedure for the initial solution

Table 3.1: Description of constraint satisfaction procedure configurations
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3.4.1 Experimental setup

For the experimental setup we need to simulate both a Flowstream platform and a sequence of incoming

network services.

Simulating a Flowstream platform To test our algorithms we view a Flowstream platform as a large data

center including 32 core switches, 32 intermediate switches, 500 ToR switches and 10000 servers. Each core

switch is furthermore connected to 5 I/O switches. Each server has 8 CPU cores and 2048MB of memory.

The internal bandwidth of servers is assumed to be 10Gbps. The links connecting servers to their ToR have a

bandwidth of 1Gbps. Each remaining link of the data center has a bandwidth of 10Gbps. The delay on each

link is assumed to take value 1.

Simulating a sequence of network services We consider four different types of network service templates.

The properties for each are given in Table 3.2, their topologies are illustrated in Figure 3.1. We assume that

the size of packets transmitted between network service elements is of 1024 bits.

Using the properties from Table 3.2 we generated k = 4000 network service instances for each of the four

types. Thus, in total, we have 16000 network services. A random sequence is then generated from these

16000 network services. Based on this sequence each network service is assigned a sequence number. To

simulate the online character of the problem, these network services are then assumed to appear over time,

respecting the sequence. We assume that all the network services remain in execution until the last network

service in the sequence has arrived. At no point is any information about the upcoming network services

available.

Name #I/O #PM CPU cores Memory (MB) Traffic (pps)
Intrusion Detection 2 5 {0.5, 2} 100..1024 38800..100000
Load Balancing 5 7 {0.7, 1, 1.5} 100..200 25000..100000
Network Access Control 2 3 {0.5, 1} 100..200 96000..100000
Tunneling 3 3 {1.5, 2.5} 200..1024 50000..100000

Table 3.2: Description of network service samples

3.4.2 Experimental results

For our experiments we always keep the same sequence of network services but vary the delay bound for

which we try values {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. We thus obtain 11 instances of the online

problem, on which we test each of the algorithm configurations from Table 3.1.

The constraint satisfaction procedure configurations are compared in terms of two criteria: the sequence

number of the first network service to be rejected and the total number of accepted network services.
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(a) (b)

(c) (d)

Figure 3.1: Network service templates

Table 3.3 indicates the sequence number of the first network service to be rejected by the six algorithm

configurations under different values for the delay bound. Note that when a network service is rejected, this

does not mean that the following network services will be rejected as well. We see that when the delay bound

value is less than 16, the configuration RR+TS is the best one: with a delay bound of 11, RR+TS is able

to allocate the 1193 first network services, while configuration RR can allocate only the first 326 incoming

network services. The remaining configurations already fail to allocate the second incoming network service.

With a delay bound value greater than 15, the configuration S+TS performs best.

Delay bound R R+TS RR RR+TS S S+TS
10 2 2 2 2 2 2
11 2 2 327 1194 2 2
12 2 2 429 2938 4 2
13 2 8 429 10157 2 172
14 2 8 429 10157 8 113
15 2170 5081 10134 10134 58 991
16 10232 10297 10134 10134 8929 11650
17 10301 10279 10134 10134 10186 11652
18 10265 10303 10134 10134 11650 11645
19 10253 10233 10134 10134 11639 11647
20 10264 10253 10134 10134 11637 11635

Table 3.3: Sequence number of first rejected network service

Table 3.4 presents the total number of network services accepted and allocated on the Flowstream platform.

The results are mitigated: none of the configurations outperforms the remaining configurations over all values
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for the delay bound. All of the configurations are able to allocate at least 9950 network services. Configu-

ration R finds better results than the others in 3 out of the 11 instances while R+TS finds better results than

the others in 4 instances. Each of the configurations RR+TS and S+TS finds better results than the others in

1 out of 11 instances, and configuration RR finds better results than the others in 2 out of 11 instances.

Another observation that we make is that the initialization procedures (R, S and RR) do not always perform

worse than their combination with Tabu Search (R+TS, S+TS, RR+TS) in terms of total number of accepted

network services. This may be due to the fact, that the initial solution procedures reject a network service

more easily than the combined procedures. It is possible that rejecting a network service allows to allocate a

number of the following network services, which would not have been possible otherwise, if the first network

service would have been allocated. It is for this reason as well, that a given configuration will not always be

able to allocate a higher total number of network services when the delay bound increases. The same behavior

(in lesser magnitude) can be observed in terms of the first rejected network service, here the variations are

most likely due to random decisions in the constraint satisfaction procedure.

Delay bound R R+TS RR RR+TS S S+TS
10 9950 9986 10775 10918 10942 11141
11 9957 9975 11894 12500 11142 11659
12 9987 9988 12606 12491 11146 11708
13 10009 12460 12627 12510 11200 11882
14 10039 12657 12622 12510 11215 11879
15 11909 13202 12623 12519 11505 11709
16 13131 13167 12506 12505 11640 11649
17 13166 13156 12506 12506 11648 11651
18 13152 13159 12505 12505 11652 11644
19 13146 13138 12505 12505 11646 11647
20 13151 13146 12506 12506 11637 11634

Table 3.4: Total number of accepted network services

3.5 Conclusion
This chapter describes how the constraint satisfaction procedure to allocate a set of network services on a

Flowstream platform can be adapted to the online problem. In this problem a sequence of network services

appear over time, and the system has to decide whether they can feasibly handled, given the current load of the

platform. Our constraint satisfaction procedure consists of two steps: the generation of an initial solution and

the improvement of this solution should it be infeasible. For the initial solution generation we propose three

different strategies. We tested different configurations of our constraint satisfaction procedure on an online

problem under varying delay bounds. The results show that none of the configurations clearly outperforms

the others in terms of total number of accepted network services. However two of the configurations perform

better than the others in terms of the delaying the first rejection of a network service. Future work focuses on

other search heuristics exploiting the dynamic path computation during the allocation of network services:

communication paths between processing modules are neither precomputed nor fixed.
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4 Updates to the inter-platform signaling

framework

4.1 Consolidated inter-platform signaling framework software
The inter-platform signaling framework introduced in deliverable [2] (high level architecture) and in

deliverable [3] (software design) has proven to be solid during the integration and testing phases (I&T). Still

the design fulfills the initial requirements identified for the CHANGE flow processing architecture, and the

overall signaling architecture from [2] is reflected into the inter-platform signaling prototype. Consequently,

the work described in this deliverable primarily focuses on the improvements and addition of functionalities

on the software.

The inter-platform signaling prototype has been released as a GPL2 licensed package, and is accessible to all

the project partners via the CHANGE SCM repository. It passes the unit tests contained into its automated

harness test suite12 as well as the in-house tests which have been executed under varying conditions in

multi-platform simulated and virtualized environments. The description of tests is contained in the software

package and is not included in this document as it does not add a real value to the description of the

actual improvements implemented in the prototype. I&T activities are in progress in the WP5 scope on the

CHANGE testbeds, and may originate further refinements or fixes to the inter-platform signalling software.

These final refinements will be surely included on the final software releases, and detailed in WP5 reports.

The updates to the signaling framework software can be briefly summarized in:

1. improvements to the the package building infrastructure which have been applied in order to build the

software components in less prerequisites demanding Linux/OS based systems;

2. integration of the interplatform signaling software within the CHANGE platform;

3. improvements on the development framework (i.e. the common libraries, shared among all the signal-

ing SW components) to enhance the support to the newly introduced functionalities;

4. implementation of the interplatforms tunnels provisioning.

The activities listed under 1) – 3) are mostly software refinements that do not change the framework design

and major functionalities. On the contrary, the tunnel provisioning function represents an important add-on

1A test harness is a collection of software and test data configured to test a program unit by running it under varying conditions
and monitoring its behavior and outputs. It has two main parts: the test execution engine and the test script repository. Test harnesses
allow for automation testing: they can call functions with supplied parameters, print out the outputs and finally compare the obtained
results to the expected values.

2The signaling package test execution engine is implemented with ad-hoc code embedded into each software module while the
test script repository is represented by the package src/test directory. This repository provides test suites for the Signaling Manager,
the Service Manager and the Service Broker. The package building framework provides an automation testing framework that can
be used to test each component as well as their shared libraries.
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to the prototype and therefore it will be described in more details in the following.

4.1.1 The inter-platform tunnels provisioning

The lifetime of an inter-platform tunnel can be partitioned into three sequential phases: a) the tunnel setup,

b) its (eventual) modification and c) the final teardown.

The information exchanged among the signaling functional entities varies depending on the specific phase

under consideration.

During the setup phase, the provisioning of a tunnel between two signaling-adjacent flow processing plat-

forms can be implemented by the means of two separate FPRO actions, one for each platform/tunnel endpoint

(TEP). Each FPRO action must contain:

• the platform local tunnel identifier (TID)

• the platform local information required for the tunnel instantiation (Tunnel End-Point Data, TEPD)

• a peer scoped FPRO-to-FPRO binding required for the correlation of the FPRO tunnel related actions

contained into the FPR (Tunnel Pair Identifier, TPID).

Therefore, the FPR can be described as follows:

<FPR> ::= <SID> ... <FPRO-1> ... <FPRO-N> <FPRO-(N+1)>

<FPRO-N> ::= <PID> ... <FPRO-ACTION> ... [ <TID> <TEPD> <TPID> ]

<FPRO-(N+1)> ::= ... [ <TID> <TEPD> <TPID> ] ...

The TEPD contents depend on the tunnel type. By restricting to only the nonencrypted and TLS/SSL

encrypted case, the TEPDs can be described as follows:

<TEPDupstream> ::=<addrus> [ <dh><ca><scert><skey> ]

<TEPDdownstream> ::= <addrds> [ <ca> <ccert> <ckey> ]

Where the addr-us, addr-ds, dh, ca, s-cert/c-cert and s-key/c-key represent the upstream and downstream tun-

nel addresses, the Diffie Hellman parameters, the Certification-Authority, the Certificate and Key respectively.

Once the setup phase is complete, either the (PID, TPID) pair or the (PID, TID, TPID) tuple can be used to

uniquely identify each tunnel endpoint, depending on the scope of the identification: the former, i.e. (PID,

TPID), is used between two adjacent platforms; the latter, i.e. (PID, TID, TPID), is used in the service-wide

end-to-end scope.

In order to implement the inter-platform tunnel provisioning functionalities, the following incremental

changes have been applied to the Signaling Manager and the Service Manager, also including their shared

libraries:
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• The FPRO serialization/deserialization has been updated to better support the new object for tunnels

specification (e.g. TEPD, TPID, TID)

• The tunnels lifetime management functionalities have been introduced, as point solutions, into the

Signaling Manager Protocol FSM (see [3])

• The Service Manager CLI has been upgraded with additional tunnel-related commands

The aforementioned changes are further detailed in the following sub-sections and, to better frame them, a

Service Manager CLI based example is also presented.

4.1.2 Signaling Manager updates

In order to support the tunnels related functionalities, the Tunnel Manager has been introduced into the Signal-

ing Manager software architecture. This single-instance component is in charge of tracking all the resources

required by the (platform-local) tunnels management functions as well as hiding their low-level implementa-

tion to all the Service FSM3. The Tunnel Manager is therefore a software component only interfaced to the

low level CHANGE platform tunneling facilities on the one hand, and to the Service FSM on the other hand.

While the former interaction can vary depending on the low-level tunnel implementation (e.g. OpenVPN),

the latter can be summarized with the following high-level interface description:

• allocate: looks for and allocates the resources required for the tunnel provisioning

• setup upstream: implements the tunnel upstream part

• setup downstream: implements the tunnel downstream part

• teardown: shutdowns the tunnel either on the upstream or downstream case (it can be assumed the

opposite of the setup operations)

• release: disposes the tunnel resources (it can be assumed the opposite of allocate operation)

The Service FSM remains unchanged w.r.t. the description presented in [3]. Only point solutions have been

introduced to hookup the aforementioned actions to the FSM transitions, as described in the following:

• MSG SSREQ: The state-transition action (STA) examines the FPRO contents, collects all the TEPs

information (e.g. TEPD, TID, TPID) and repeatedly calls the Tunnel Manager allocate method in order

to allocate the resources required by each TEP. All the TEPs are handled the same way, regardless of

their type (i.e. upstream or downstream)

• RES LOCKED: The STA repeatedly calls the Tunnel Manager setup upstream method for each

upstream TEP

3A service instantiated into a CHANGE platform, by the means of the signaling framework, is supported by a Protocol FSM
instance, as described in [3] in section 4.2.1. A Protocol FSM is also referred as a Service FSM.
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• MSG SSALLOC: The STA repeatedly calls the Tunnel Manager setup downstream method for

each downstream TEP

• SERVICE DOWN: The STA calls the Tunnel Manager release method, for each previously provisioned

tunnel

• ASSOC ERR, RES ERR, SSALLOC ERR, SSCONF ERR, ACK ERR and SSREQ ERR: The

teardown and release methods are called (for each tunnel provisioned for the service the FSM

instance is referring to) upon unrecoverable errors detection, in order to torn down all the tunnels in-

stantiated in either the RES LOCKED or MSG SSALLOC states.

4.1.3 Service Manager updates

The tunnel related commands, introduced into the Service Manager CLI, are the following:

• action-tun-upstream: used to declare the upstream TEPD and TID

• action-tun-downstream: used to declare the downstram TEPD and TID

The two commands have the following syntax:

action-tun-upstream <lcl-id> <rmt-id>

<intf-id-from> <intf-id-to>

[ <dh> <ca> <cert> <key> ]

action-tun-downstream <lcl-id> <rmt-id>

<intf-id-from> <intf-id-to>

[ <ca> <cert> <key> ]

With:

• command: either action-tun-upstream or action-tun-downstream

• lcl-id: a platform local tunnel identifier

• rmt-id: a platform-local tunnel identifier

• intf-id-from: an interface identifier (on the local platform)

• intf-id-to: an interface identifier (on the remote platform)

• dh, ca, cert and key: the Diffie-Hellman, Certificate-Authority, Certificate and Key parameters

required for a SSL/TLS based configuration
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The dh, ca, s-cert and s-key parameters are optional and their presence is used to discriminate between

an encrypted and a non-encrypted tunnel setup.

The data duplication that can be noticed in the commands parameters allows for decoupling the two TEP

specification while keeping the commands syntax simple (in terms of either grammar complexity and

parameters count). The Service Manager performs the parameters mangling, removes the duplications and

finally obtains the minimum (TEPD-upstream, TPID, TID) and (TEPD-downstream, TPID, TID) data that

will be instantiated into their corresponding FPRO actions.

The introduced commands must be used in conjunction with the fpr-add-actions command which

binds each action to its specific FPRO, as described in the following example:

1. action-tun-upstream tun1up tun1down intfA intfB

2. action-tun-downstream tun1down tun1up intfB intfA

3. fpr-add-actions fprX platform0 tun1down

4. fpr-add-actions frpX platform1 tun1up

The first two steps define the upstream and downstream (TEPD, TID) couples while the latter two steps bind

them to their respective FPROs.

The Service Manager automatically builds and sets up the correct sequence of FPRO objects. Moreover, it

also automatically generates the TPIDs that will be injected into the corresponding FPRO actions.

4.2 Tunnel setup example
The following example depicts the Service Manager CLI commands sequence that can be used to create (and

then remove) a service across three different platforms and with two tunnels (one tunnel for each signaling

adjacent platform pair). The configuration details used in the example (e.g. the interfaces Addresses, the

PMs configurations) do not depict a real testbed example and are used only to frame the aforementioned

commands into a simple setup.

# Interfaces definitions

interface-add intf1 eth0 real 192.168.0.1

interface-add intf2 eth1 real 192.168.0.2

interface-add intf3 eth2 real 192.168.0.3

interface-add intf4 eth4 real 192.168.0.4

interface-add intf5 eth5 real 192.168.0.5

interface-add intf6 eth6 real 192.168.0.6

# PMs definitions

pm-add fw1 image1 Raw True constraints intf1 intf2
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pm-add fw2 image2 Raw True constraints intf3 intf4

pm-add fw3 image3 Raw True constraints intf5 intf6

# PMs configurations

pm-config-file fw1 /home/admin/change/sig/test/svcmgr/file_conf1

pm-config-file fw2 /home/admin/change/sig/test/svcmgr/file_conf2

pm-config-file fw3 /home/admin/change/sig/test/svcmgr/file_conf3

# PMs bindings to their respective platform

platform-add platform0 10.0.2.187 50002

platform-config platform0 fw1

platform-add platform1 10.0.2.136 50002

platform-config platform1 fw2

platform-add platform2 10.0.2.146 50002

platform-config platform2 fw3

# FPR instantiation

fpr-create test

# Platforms binding to the FPR

fpr-build test platform0 platform1 platform2

# Actions definition (between platform0 and platform1)

action-tun-upstream tun1up tun1down intf3 intf2

action-tun-downstream tun1down tun1up intf2 intf3

# Actions definition (between platform1 and platform2)

action-tun-upstream tun2up tun2down intf5 intf4

action-tun-downstream tun2down tun2up intf4 intf5

# Actions binding to the FPR

fpr-add-actions test platform0 tun1down

fpr-add-actions test platform1 tun1up
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fpr-add-actions test platform1 tun2down

fpr-add-actions test platform2 tun2up

# Service Setup Request (creates the service)

ssreq-create ssr1

ssreq-build ssr1 1 99 fid1 10.0.2.187 test

ssreq-send ssr1 name1 10.0.2.187 50001 60

# Service Deletion Request (destroys the previous service)

sdreq-create sdr1

sdreq-build sdr1 1 99 fid1 10.0.2.187

sdreq-send sdr1 name2 10.0.2.187 50001 500

4.3 Conclusions
The inter-platform signaling framework introduced in deliverables [2] and [3] has proven to be solid during

the I&T phases and this chapter consequently presents only the most relevant improvements and additions.

The signaling software has been updated in order to perform the provisioning of the inter-platform tunnels

and these changes have been reflected into updates to either the Signaling Manager and the Service Manager,

as well as to the framework common libraries. The software has been released in the CHANGE project

SCM repository and future works will focus on the integration and validation activities in the WP5 scopes.

The signaling framework will be installed into the CHANGE testbeds and it will be integrated with the

applications, in order to provide the functionalities required for the validation of the distributed use cases.

These activities, and the refinements or fixes they might generate, will be finally detailed in the WP5 reports.
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Conclusion
This document has tackled several important mechanisms that are required to enable CHANGE platforms to

process flows in real networks and the global Internet.

Middleboxes tend to carry a social stigma, where even if they are not considered to be the root cause of

many of the Internet’s afflictions, they are at least seen as a contributing factor. In this paper we have tried to

show that while they certainly do not simplify the network, given the right architectural framework middle-

boxes, and especially software ones, can be leveraged as a means to invigorate innovation and derive win-win

situations for all parties involved, including end clients, operators, and content providers.

The core of CHANGE is its ability to automatically reason about middlebox behavior. Our static analysis tool

and the models we have built to describe existing Click elements allow CHANGE to reason automatically

about the safety aspects of customer processing requests, and to scale by consolidating many users in a single

virtual machine. Our platform can scale to thousands of users simultaneously, hinting that it may just be

possible to deploy CHANGE in the wild.

In the second part of this document we showed which methods can be used by a Flowstream platform to

decide whether resources are sufficient to handle new incoming processing requests while ensuring a set of

performance constraints. This is a variant of the offline problem considered in an earlier deliverable where all

requests for processing are known beforehand. We explained how a constraint satisfaction procedure used to

solve the offline problem can be adapted for the online problem, where requests for processing appear over

time. We also extended this procedure with several alternative components. Different configurations of the

procedure were then tested on an online scenario, demonstrating the viability of our method.

Finally, in the third part of this report we described how the inter-platform signaling software has been updated

to encompass inter-platform tunnels provisioning.
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