
Copyright © FT and other members of the 4CaaSt consortium 2012 Page 1

Building the PaaS Cloud of the Future

WP8 - Experimentation

Dissemination Level: Public

Use Case Marketplace for Mass market:
Report on Experimentation

D8.2.5
Version 1.0

Lead Editor: Stéphane Carrié / FT

10/10/2012

Status: Final

The research leading to these results has received funding from the European Union's
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 258862

Seventh Framework Programme

FP7-ICT-2009-5

Service and Software Architectures, Infrastructures and Engineering

Ref. Ares(2012)1217907 - 16/10/2012

Copyright © FT and other members of the 4CaaSt consortium 2012

This is a public deliverable that is provided to the community under a Creative Commons
Attribution 3.0 Unported License: http://creativecommons.org/licenses/by/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain — Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this Web page.

For a full description of the license legal terms, please refer to:

http://creativecommons.org/licenses/by/3.0/legalcode

http://creativecommons.org/licenses/by/3.0/

Copyright © FT and other members of the 4CaaSt consortium 2012

Contributors:

Miguel Jimenez, UPM

Nico Kruber, ZIB

Boris Moltchanov, TI

Charles Souillard, Bonita

Michel Dao, FT

Pablo Arozarena, TI

Internal Reviewer(s):

Anna Gatzioura, NTUA

Charles Souillard, Bonita

Version History

Version Date Authors Sections Affected

0.1 27/06/2012 Michel Dao (FT) Initial version with Table of
Contents

0.2 06/07/2012 Michel Dao (FT) Guidelines sections removed

0.3 5/09/2012 Stéphane Carrié(FT)

0.4 7/09/2012 Miguel Jimenez (UPM),

Boris Moltchanov (TI),

Nico Kruber (ZIB),

Charles Souillard (Bonita)

Consolidation of report on use
case sections

0.5 14/09/2012 Miguel Jimenez (UPM),

Boris Moltchanov (TI),

Nico Kruber (ZIB),

(Bonita)

Consolidation of evaluation as
developer of the prototype

0.6 26/09/2012 Stéphane Carrié (FT) Deliverable alignment with
D8.1.7 and D8.3.7.

0.7 9/10/2012 Anna Gatzioura (NTUA) Review corrections

1.0 10/10/2012 Stéphane Carrié (Ft) Final version

Copyright © FT and other members of the 4CaaSt consortium 2012

Table of Contents

1. Executive Summary ... 6

2. Evaluation overview (per use case) ... 7

2.1. UC.8-2-001 Develop cloud enabled software component 7

2.2. UC.8-2.002 Deploy Software in the marketplace for commercialization11

2.3. UC.8-2.003 Commercialize Service provided by software15

2.4. UC.8-2-004 Choose service in the marketplace ..17

2.5. UC.8-2-005 Buy service from the marketplace ..19

2.6. UC.8-2-006 Enforce SLA ..22

2.7. UC.8-2.007 Enforce metering ..27

3. Evaluation results (per phase) ..30

3.1. Develop Phase – Blueprinting ...30

3.2. Develop Phase –Technology integration ...35

4. Evaluation summary (per Business goal) ...39

4.1. Business goal WP82_001: Support trading of service ecosystem39

4.2. Business goal WP82_002: Lower marginal hosting cost40

4.3. Business goal WP82_003: No limit scalability and reduced development cost41

5. Conclusion ..43

6. References ...44

List of Tables

Table 1. Feature report for UC8.2.001 – Develop cloud enabled … 8

Table 2. Use case fulfilment for UC8.2.001 – Develop cloud enabled … 9

Table 3. Feature report for UC8.2.002 – Deploy service … ..11

Table 4. Use case fulfilment for UC8.2.002 – Deploy service … ...13

Table 5. Feature report for UC8.2.003 – Commercialize … ..15

Table 6. Use case fulfilment for UC8.2.003 – Commercialize … ...16

Table 7. Feature report for UC8.2.004 – Buy service from the marketplace..........................17

Table 8. Use case fulfilment for UC8.2.004 – Buy service from the marketplace18

Table 9. Feature report for UC8.2.005 – Buy service from the marketplace..........................19

Table 10. Use case fulfilment for UC8.2.005 – Buy service from the marketplace20

Table 11. Feature report for UC8.2.006 – Enforce SLA ..22

Table 12. Use case fulfilment for UC8.2.006 – Enforce SLA ...25

Table 13. Feature report for UC8.2.007 – Enforce metering ...27

Table 14. Use case fulfilment for UC8.2.007 – Enforce metering ..29

Table 15. Status of business goal WP82_001 : Support trading ...39

Table 16. Status of business goal WP82_002 : lower marginal … ..40

Table 17. Status of business goal WP82_003 : No limit … ...41

Copyright © FT and other members of the 4CaaSt consortium 2012

Abbreviations

4CaaSt Building the PaaS Cloud of the future

AC Application Component

ARB Abstract Resolved Blueprint

API Application Programming Interface

BPEL Business Process Execution Language

CIF Context Integration Framework

CMF Context Management Framework

COTS Component Of The Shelf

GUI Graphical User Interface

IaaS Infrastructure as a Service

KPI Key Performance Indicator

OVF Open Virtualization Format

PaaS Platform as a Service

PIC Product Instance Component

REC Runtime Execution Container

REST Representational State Transfer

RP1 / RP2 / RP3 Reporting Period 1/2/3 of 4CaaSt project

SaaS Software as a Service

SMS Short Message Service

SOAP Simple Object Access Protocol

VM Virtual Machine

WAR Web application Archive

WP Work Package

WS Web Service

Copyright © FT and other members of the 4CaaSt consortium 2012

1. Executive Summary

This deliverable is the first out of three deliverables reporting experimentation results of the
4CaaSt project and one out of three reports for each of the 4CaaSt use cases, each with a
specific focus in terms of scenario and scenario stakeholder, as well as the 4CaaSt features
evaluated. This report focuses on the deployment of the application with 4CaaSt
components, a resource efficient operation and scalability. This first iteration aims to provide
feedback to the technical work packages and further evolution of the use case to better use
4CaaSt features. Most of the results are experiences of working with the 4CaaSt
components during the use cases implementation as well as initial external feedback. More
detailed grey-box analysis is planned for the next iterations of the deliverables.

The development of custom software benefiting from 4CaaSt reusable services (context),
4CaaSt reusable components (Scalaris key/value datastore), and 4CaaSt “application”
server (JSP with Jonas, process with Bonita, Mashup with Wireshark) has revealed no
4CaaSt specific overhead and is considered to be optimal.

Making an application 4CaaSt compliant does require providing specific descriptors
(blueprint, Marketplace definition, price definition...) and specific glue code (metering,
monitoring probe, SaaS customer management API) but complexity and training cost are
low, while the amount of work is marginal.

Current use cases’ fulfilment is not always of 100% but the whole chain needs to be available
for the scenario to be operational and being in RP2, there is often a piece of the chain
missing. This is hopefully changing quickly as all components are being delivered integrated
and in a usable state.

Current use cases do not cover the work needed to make a standard component 4CaaSt
aware. Yet this is one promise of 4Caast to allow easy addition of a new application server.
In order to reuse effort, we may consider taking as an example one of WP6 components
(Scalaris or Wirecloud).

For the next iteration, as 4CaaSt features become available, we will finalize the whole
process including component configuration, customer purchase and automated SaaS service
provisioning, as well as automated scalability feature all very important for a mass market
scenario.

Present deliverable follows this structure:

 Section 2 gathers results collected while running the 7 use cases on the
integration platform,

 Section 3 formalizes and aggregates results from section 2 by providing
evaluation criteria for every 4CaaSt usage phase

 Section 4 aggregates section 3 results further at a business goal level.

Copyright © FT and other members of the 4CaaSt consortium 2012

2. Evaluation overview (per use case)

This section provides an overview of the evaluation results with respect to the mass market
use cases features introduced in the scenario description [2]. For each use case, the relevant
innovations of the use case are evaluated according to the frameworks specified in the
evaluation guidelines [1].

Note, that the scope of this evaluation is on what has been reported in the integration report
[3]. Other 4CaaSt services (Database, Application Servers and the Network APIs) are
constantly being integrated with the use case when they become available and will be
reported in next releases of this document.

Many of the 4CaaSt features used by the mass market scenario are not evaluated
individually, but they are the result of a combined evaluation, expert interview, questionnaire
or experiment, the following tables map the use case features to a section within the
document to ease the mapping of use cases, features and evaluation.

For each use case (2.1 to 2.7), we provide

 A short reminder on the use cases themselves, (2 .[1 to 7] .1)

 A mapping from features to phase in chapter 3 (2 .[1 to 7] .2)

 A list of evaluation questions with answers (2 .[1 to 7] .[3 to 7])

 A connection to 4CaaSt feature (2 .[1 to 7] .8)

2.1. UC.8-2-001 Develop cloud enabled software
component

2.1.1. Use case reminder

At the beginning of this use case, a software developer needs to develop a software
component that implements a desired feature

At the end of this use case, a software developer has a software component providing
the desired feature

2.1.2. Feature mapping

Innovation / Feature Id &
Name

Evaluation

F#WP6.02

Mashups catalogue

Develop phase – technology integration

F#WP6.03

Mashup platform

Develop phase – technology integration

F#WP6.04

Mashups as building blocks

Develop phase – technology integration

F#WP6.05

Location Context Provider

Develop phase – technology integration

Copyright © FT and other members of the 4CaaSt consortium 2012

F#WP6.06

Context Manager

Develop phase – technology integration

F#WP6.07

Context Consumer API

Develop phase – technology integration

F#WP6.09

Simple API for Data Store
as a Service

Develop phase – technology integration

F#WP6.10

Standardised API for Data
Store as a Service

Develop phase – technology integration

F#WP6.11

Integrated telco services

Develop phase – technology integration

F#WP7.08

Support for BPMN2
Correlation

Develop phase – technology integration

F#WP7.11

Application Server
Deployment Features

Develop phase – technology integration

F#WP7.16

Built on standards

Develop phase – technology integration

Table 1. Feature report for UC8.2.001 – Develop cloud enabled …

2.1.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case description
from deliverable D8.2.1

Comment

(A software developer wants
to develop an application
such as “TOURISM demo
application”. He would like to
save on training, on coding,
on debugging and as a result
have a shorter time to
market.)

(He is able to reuse the
following 4CaaSt features or
services:)

-

Copyright © FT and other members of the 4CaaSt consortium 2012

Write “context query” in
“context query language” to
get access to smart context
information based on
available context sources
(location, weather forecast,
social network)

100%

Context as a Service Enabler has been integrated into
the 4CaaSt cloud by means of a dedicated blueprint
and run for this demo. The necessary information
including the tourist customers, their location and social
relationships are provisioned and ready to be provided
on request from the tourism demo application.
Moreover also the simple security has been integrated
such as authentication and authorisation of an
application to perform context queries regarding the
tourism customer’s context.

Write new web GUI
components using Mashup
platform

90%

Every Mashup planned for the prototype has been
successfully implemented.

New workspace has been created updating previous
widgets and adding newer Context aaS features and
Pub/Sub exploitation.

Integrate Mashup
components

80%

Integration of external components as Mashup has
finished in the case of the Wikipedia Renderer, but is
being finished in the case of the ticket shop.

Write an html page generator
in Java for computing
Wikipedia pages from
scalable key/value storage.

90%

We were able to write the page generator using
standard java technology and the Java-API of Scalaris.

Automatic configuration of connection parameters (to a
Scalaris server) needs to be added. Similarly for the
monitoring and accounting configuration.

Different data models for the wiki pages are currently
under review. They try to overcome certain restrictions
of a simple key/value store compared to a RDBMS
while keeping the inherent scalability of the data store.

Finally, original use case text should be reformulated:

Write an html page generator in Java for rendering
Wikipedia pages stored in a scalable key/value storage.

Store data in scalable
key/value storage using a
standard java storage
mechanism developer are
already accustomed.

0% - RP3

The JPA connector for SCALARIS is under
development at time of writing and is not in a testable
state. Delivery is planned for RP3

Table 2. Use case fulfilment for UC8.2.001 – Develop cloud enabled …

2.1.4. What is needed from 4CaaSt to increase the fulfilment?

Issues regarding development environment and testing would be interesting but are not in
the scope of 4CaaSt. So given current project scope, no additional feature is required from
4CaaSt to increase fulfilment.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.1.5. What new requirements to 4CaaSt can be specified
following this evaluation?

It is hard to reach both high flexibility and little to no customisation work for customer. Yet,
when a customer requires a specificity he would like to specify and code only what is
specific. 4CaaSt should clarify how a customer can add something specific while benefiting
from existing presets.

2.1.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

The challenge of deploying 4CaaSt cloud platform lies much in the complexity of the
coherent configuration of multiple components. Present use cases are quite vague relative to
application configuration requirements. Real world applications generally have a lot of
configuration (http configuration, reverse proxy, server tweaking ...). Next iteration may
consider introducing more complex configuration scenario.

The scenario shall be extended to include a staging phase in the creation of the component.
A customer might want to deploy and test his component and blueprints in a staging area
before going into production.

The scenario shall be also extended to include the creation of custom server component.
This is listed as a feature of 4CaaSt and it is not evaluated. This could be performed by
including the work done in work package 6 to turn standard components into 4CaaSt
compliant components.

The scenario shall be extended to include more detailed application configuration
requirements.

2.1.7. What improvements to the application prototype are
needed to fully exercise this use case?

In order to evaluate the work of turning a “Component off the Shelf” (COTS) into a 4CaaSt
compliant component, we have to include such a component in the scope of the prototype.
This could be simply done by considering that Scalaris, for example, is not part of the 4CaaSt
platform, but part of the mass market prototype. The work performed in WP6 to turn this
“COTS” into a 4CaaSt compliant component could then be evaluated in this document from a
business perspective.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.2. UC.8-2.002 Deploy Software in the marketplace for
commercialization

2.2.1. Use case reminder

At the beginning of this use case, a software developer has a developed application.
(Development is not fully in the scope of 4CaaSt).

At the end of this use case, the software is published in the marketplace and is ready
to be commercialised, meaning that no subsequent development action is needed.

2.2.2. Feature mapping

Innovation / Feature Id &
Name

Evaluation

F#WP2.01

Support the design of a
cloud enabled solution

Develop Phase – Blueprinting

F#WP2.02 Empower cloud
Developers

Develop Phase – Blueprinting

Table 3. Feature report for UC8.2.002 – Deploy service …

2.2.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case
description from deliverable
D8.2.1

Description of fulfilment

(A software developer has
developed an application
such as “TOURISM demo
application”.)

(The logic is developed in
his favourite language,
chosen among those
supported by 4CaaSt.)

-

Copyright © FT and other members of the 4CaaSt consortium 2012

He specifies what his
requirements are regarding
runtime platform using
4CaaSt supported
descriptor (specific versions
or range, specific editor,
etc.).

80%

For front-end and wiki page renders, dependencies could be
defined in the blueprint descriptor. Providing the value of
certain field was not easy, such as the minimum and
maximum number of instances.

Wirecloud can be defined as a requirement of the application,
and it can be provided by Mashup-as-a-Service component in
two flavours, multi-tenant service or deployable component,
although only multi-tenant version is fully available.

It is unclear whether the artifact section simply serves
documentation purposes or whether it is integrated with
deployment (and therefore needs some more scripting
magic).

He provides the numerous
binaries or source of his
application in the 4CaaSt
supported format.

100%

4CaaSt provides a way to declare URL of artefact in the
blueprint descriptor.

The wiki page renderer was bundled in a .war file and is thus
available to 4CaaSt.

He provides 4CaaSt
descriptor specifying the
desired architecture of his
application and how his
components are
interconnected.

Front end : 80%

We were able to provide descriptor, but since the whole
process is not available, it may contain unforeseen bugs or
flaws.

Wiki page renderer : 80%

We were able to provide descriptor, but since the whole
process is not available, it may contain unforeseen issues.
The endpoint location field is useless at the moment, a real
URI cannot be given.

Context: 80%

We were able to provide descriptor but it is not easy to
understand how to treat multi-tenancy for a service. Also, it is
problematic to understand how to integrate the offering
section (pricing model, pricing, etc.) and consequently
charging for an always on and running Service Enablers;.

Bonita: 80%

We were able to provide descriptor but there is nothing to
describe which technology is used to make components be
able to communicate (e.g. database protocol).

All:

Blueprint is missing fields for documentation purposes. We
had to insert XML comment in manually edited blueprint to
account for this requirement.

He provides information
about dependencies toward
external services.

50%

The prototype does require external services (reverse
Wikipedia lookup). It is used in code but not defined in
blueprint.

Copyright © FT and other members of the 4CaaSt consortium 2012

He provides dependencies
towards 4CaaSt built in
services such as key/value
data store, context or any
other service.

80%

The dependency of the wiki page render toward the Scalaris
data store has been defined in the blueprint.

He provides meta-data
about application specific
meters that 4CaaSt needs
to be made aware of.

This section should be been moved to 8-2.007 Enforce
metering use case. It is not a required step for this use case.

He provides meta-data
about application specific
KPIs, that 4CaaSt needs to
be made aware of. He
provides meta-data
information about how his
application nodes can be
scaled up or not.

0%

(This element should be moved to UC8.2-006 Enforce SLA
use case)

If necessary he provides
4CaaSt optional information
such as :

-

(This was Line added
during evaluation. We
may need to extend
existing scenario)

 Required specific scripts
for PaaS automation.

We had not delivered chef script at the time of evaluation.

Yet, learning Chef is not trivial and is not a matter of minutes.
Training costs must be taken into account.

 Self diagnostic and
monitoring logic or meta-
data.

This is not needed in this base use case and is anyway
covered in use cases 6 and 7.

Deletion of this item may be considered for next iteration of
the use case.

 Upgrade or downgrade
logic (data schema
modifications, etc.),

This feature is out of the scope of 4CaaSt although it would
be useful in a real life platform.

 Specific initialization logic
(initial data set, etc.),

30%

4CaaSt may support such a feature by declaring an artefact
in a blueprint and have it processed by a specific initialization
script.

It will be implemented in RP3 for this scenario.

Table 4. Use case fulfilment for UC8.2.002 – Deploy service …

2.2.4. What is needed from 4CaaSt to increase the fulfilment?

Although blueprint structure is not very complex and can be understood quite easily,
editing a blueprint is a tedious task. A Blueprint contains many long identifiers that are used
for cross referencing sections of the blueprint. Manually editing this information, even with a
XML editor, is a painful process as blueprints are used for application representative of real
world.

Copyright © FT and other members of the 4CaaSt consortium 2012

4CaaSt provides a model for defining dependencies between components (blueprint).

Manual blueprint edition is a painful and error prone process as many configuration elements
are identified by strings which need to be copied throughout the document. Also, the logical
dependency which is a graph would be easier to understand if displayed graphically.

4CaaSt does not provide built-in mechanisms for supporting application initialization
logic, upgrade or downgrade logic.

2.2.5. What new requirements to 4CaaSt can be specified
following this evaluation?

Provide a blueprint editor with built-in support for extensions.

Some partners identified the need for inserting comments in the blueprint. Merely
stating that a component requires another component is not always sufficient for human
understanding.

Blueprinting allows creation of dependencies between nodes. Yet, the semantic of the
dependency is not modelled. For example if a component would need two identical
databases for different purposes, we would not be able to model which is which.

2.2.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

4CaaSt consortium decided that component deployment would be demonstrated in 8.1 and
8.3 and that 8.2 would concentrate on Software as a service deployment. Thus our use case
does not demonstrate these aspects. It is a limitation by choice.

The scope of the current use case is currently sufficiently ambitious and challenging for
4CaaSt platform.

2.2.7. What improvements to the application prototype are
needed to fully exercise this use case?

None.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.3. UC.8-2.003 Commercialize Service provided by
software

2.3.1. Use case reminder

At the beginning of this use case, software implementing services have been
published by a software provider in the marketplace but are not available for purchase.

At the end of this use case, the service is available for purchase.

2.3.2. Feature mapping

Innovation / Feature Id &
Name

Evaluation

F#WP3.01 Product
Definition

Market Phase -- Marketplace integration process

F#WP3.10 Product
Specification

Market Phase -- Marketplace integration process

F#WP3.22 Business
Management

Market Phase -- Marketplace integration process

Table 5. Feature report for UC8.2.003 – Commercialize …

2.3.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case
description from deliverable
D8.2.1

Description of fulfilment

Service provider selects
software in the marketplace
that has been put there by a
software provider.

100%

Blueprint of TOURISM service was published in the blueprint
repository and marketplace was able to access and display it
for selection.

Service provider proceeds
to the definition of
commercial information
about the service and
definition of commercial
conditions under which the
software may be purchased.

In the case of the
“TOURISM demo
application”, a flat monthly
subscription fee is defined
(Please refer to enforce
metering for more advanced
price consideration).

100%

This price model could be specified.

(It should be noted that it is a trivial price model without hard
requirement from the scenario because 8.2-007 use case is
dedicated to more complex real world price model.)

Copyright © FT and other members of the 4CaaSt consortium 2012

Service provider marks
service as available for
purchase so the application
becomes visible to service
user.

100%

Feature is available.

Table 6. Use case fulfilment for UC8.2.003 – Commercialize …

2.3.4. What is needed from 4CaaSt to increase the fulfilment?

Current 4CaaSt fulfils this use case.

2.3.5. What new requirements to 4CaaSt can be specified
following this evaluation?

There is no new requirement within the scope of this use case.

2.3.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

This scenario was designed to cover simple nominal case and is not meant to be extended to
cover advanced cases.

2.3.7. What improvements to the application prototype are
needed to fully exercise this use case?

Current prototype is sufficient for this use case.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.4. UC.8-2-004 Choose service in the marketplace

2.4.1. Use case reminder

At the beginning of this use case, a customer is looking for a service matching his
needs and expectations.

At the end of this use case, a customer has found a service that fulfils his needs and
expectations.

2.4.2. Feature mapping

Innovation / Feature Id &
Name

Evaluation

F#WP3.02 Product Search Market Phase -- Marketplace integration process

F#WP3.04 Related
Products

Market Phase -- Marketplace integration process

F#WP3.05
Recommendation

Market Phase -- Marketplace integration process

F#WP3.06 Advertising Market Phase -- Marketplace integration process

F#WP3.07 Community
Rating & Comments

Market Phase -- Marketplace integration process

F#WP3.08 Social Graph
Analysis

Market Phase -- Marketplace integration process

F#WP3.21 User
Management

Market Phase -- Marketplace integration process

Table 7. Feature report for UC8.2.004 – Buy service from the marketplace

2.4.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case
description from deliverable
D8.2.1

Description of fulfilment

A customer connects to the
marketplace website.

100%

Marketplace web application is online in Flexiant hosting
facility.

Marketplace contains so
many services that it is not
practical to browse through
all of them in order to find
the right one.

10%

Marketplace contains only a few services so we are not
exactly in the situation of the scenario wheer it becomes a
problem just to find a service.

Copyright © FT and other members of the 4CaaSt consortium 2012

He enters a set of criteria
and lets the marketplace
find matching services.

100%

Marketplace provides a free text search which could be used
successfully to find our TOURISM offering.

There are still a few
services remaining. He
looks at the first one. The
marketplace displays
additional information about
the chosen service. There
are also links to similar
services. He decides to
navigate to another service.

Feature not planned to be implemented by 4CaaSt but it is in
state of the art so it does not need to be demonstrated.

This time he has found a
service that could match his
expectations. But he has
never heard of this service
and needs advices and
reassurance.

He decides to look at
comments left on the site by
previous customers. Some
customer seems to have
had a good experience with
this service.

0%

Feature is planned for RP3.

He is now reassured and
decides that he will
subscribe to the service.

/

Table 8. Use case fulfilment for UC8.2.004 – Buy service from the marketplace

2.4.4. What is needed from 4CaaSt to increase the fulfilment?

Nothing besides implementing features planned for RP3.

2.4.5. What new requirements to 4CaaSt can be specified
following this evaluation?

There is no new requirement identified for the core features presented at RP2.

2.4.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

Use cases could be more specific about what is expected from social web in the decision
making. Renaming the use case “Support customer purchase decision making” would help
focus the attention on important benefits.

2.4.7. What improvements to the application prototype are
needed to fully exercise this use case?

We have not identified need for improving prototype.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.5. UC.8-2-005 Buy service from the marketplace

2.5.1. Use case reminder

At the beginning of this use case, software implementing services have been
published by a software provider in the marketplace but are not available for purchase.

At the end of this use case, service provided by the software can be purchased from
the marketplace and users can use it.

2.5.2. Feature mapping

Innovation / Feature Id &
Name

Evaluation

F#WP3.09 Product
Resolution

Contract phase – Service contracting process

F#WP3.11 Product
Customization

Contract phase – Service contracting process

F#WP3.13 Basket
Management

Contract phase – Service contracting process

F#WP3.14 Contract
Management

Contract phase – Service contracting process

F#WP3.15 Delivery Support Contract phase – Service contracting process

F#WP3.16 Payment
Support

Contract phase – Service contracting process

F#WP3.17 Pricing &
Charging

Contract phase – Service contracting process

F#WP3.21 User
Management

Contract phase – Service contracting process

F#WP5.01 PIC
Administration

Deploy Phase – Deployment & provisioning of a service

F#WP5.02 Monitoring
infrastructure: Set up and
configure probes

Deploy Phase – Deployment & provisioning of a service

F#WP5.03 Monitoring
infrastructure: product and
platform monitoring

Deploy Phase – Deployment & provisioning of a service

F#WP7.18 Monitoring
capabilities (solution
specific)

Deploy Phase – Deployment & provisioning of a service

Table 9. Feature report for UC8.2.005 – Buy service from the marketplace

Copyright © FT and other members of the 4CaaSt consortium 2012

2.5.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case
description from deliverable
D8.2.1

Description of fulfilment

Customer is on the
marketplace and has
decided to buy a service.
He is on a page displaying
the service.

100%

A button to purchase the service is available.

He has selected a service
but there are still
configurable items such as
sub-services used or price
plan.

0%

Current scenario does not require configuration of sub-
services at time of purchase nor does that platform provides
integrated support for this feature.

Marketplace provides hints
about what would be the
best priced combination for
him.

This feature is demonstrated in 8.1 for service provider. We
have not identified need to demonstrate it for end users as
well.

Customer decides based on
this information and
proceeds to subscription.

 /

Marketplace proceeds to
service provisioning.

70%

Unlike scenarios 8.1 and 8.3, this scenario does not deploy a
software instance per customer but grants user access to a
SaaS. Provisioning of the service is done via the SaaS
provisioning API, and the user is granted (or removed)
access to the service, using the 4CaaSt ID of that contract for
charging individual concepts to the user.

“Service provisioning” should be renamed “SaaS
provisioning” in next iteration of the scenario.

Customer is informed of
delivery evolution.

0%

Customer gets access to
the service.

50%

Service is manually deployed and can be used.

Customer receives a bill
and gets charged.

 0%

Table 10. Use case fulfilment for UC8.2.005 – Buy service from the marketplace

2.5.4. What is needed from 4CaaSt to increase the fulfilment?

Delivery of features planned for RP3 will increase fulfilment.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.5.5. What new requirements to 4CaaSt can be specified
following this evaluation?

No requirement.

2.5.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

Billing of sub-services is not very well defined in the scenario. It shall be possible to reuse
sub-contracts based on

2.5.7. What improvements to the application prototype are
needed to fully exercise this use case?

Configuration

Copyright © FT and other members of the 4CaaSt consortium 2012

2.6. UC.8-2-006 Enforce SLA

2.6.1. Use case reminder

At the beginning of this use case, a service is available in the marketplace but KPIs
and SLAs have not been defined and are not enforced.

At the end of this use case, KPIs are defined and measured and the SLA is defined
and enforced.

2.6.2. How do features contribute to the use case fulfilment

Innovation / Feature Id &
Name

Evaluation

F#WP3.01 Product
Definition

Market Phase -- Marketplace integration process

F#WP3.10 Product
Specification

Market Phase -- Marketplace integration process

F#WP3.11 Product
Customization

Contract phase – Service contracting process

F#WP4.02 Automated
Application Elasticity

F#WP4.03 PaaS API

F#WP5.02 Monitoring
infrastructure: Set up and
configure probes

Deploy Phase – Deployment & provisioning of a service

F#WP5.03 Monitoring
infrastructure: product and
platform monitoring

Deploy Phase – Deployment & provisioning of a service

F#WP6.08 Scalability of
Data Store as a Service

F#WP7.10 Right Sized and
Incremental Application
Server Platform

F#WP7.11 Application
Server Deployment
Features

F#WP7.18 Monitoring
capabilities (solution
specific)

Deploy Phase – Deployment & provisioning of a service

F#WP7.19 Horizontal
scalability support

Table 11. Feature report for UC8.2.006 – Enforce SLA

Copyright © FT and other members of the 4CaaSt consortium 2012

2.6.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case
description from deliverable
D8.2.1

Description of fulfilment

Software developer is
developing an application
such as “TOURISM demo
application”. It is decided
what are the meaningful key
performance indicators of
the application. These
indicators are business
related and need some level
of support from the
application. As an example,
it could be that a special
back office process should
run in less than 15 minutes,
or that a page rendering
should be less than so
many millisecond or
whatever.

100%

4CaaSt project has acknowledged that predefined probes are
not sufficient and that custom metering must be supported by
the whole 4CaaSt stack.

Software developer
develops the KPI probe as
he sees fits in the
application.

He develops the needed
glue code so that the
4CaaSt platform can get
informed of the value of the
KPI.

80%,

We were able to implement a custom KPI probe in the java
wiki page renderer using JMX technology. It remains to be
tested in a fully integrated process.

Software developer extends
the application descriptor so
that 4CaaSt knows that a
KPI probe is provided by the
application.

0%,

At time of writing, 4CaaSt specification of how to define a KPI
probe in a blueprint is not fully available. The current wiki
renderer blueprint does not have a KPI defined yet.

The marketplace is
automatically aware of the
existence of the KPI.

0%,

Planned RP3.

In the marketplace, service
provider can specify SLA
based on KPI constraints
associated with a price plan.
Some customer may
choose stronger SLA
constraints than others and
thus be charged different
prices.

0%,

Planned RP3

Copyright © FT and other members of the 4CaaSt consortium 2012

Original use case
description from deliverable
D8.2.1

Description of fulfilment

When application is
deployed in the
marketplace, 4CaaSt is
aware of the KPI and setups
the environment so the KPI
value will be picked up by
the monitoring software.

0%,

Planned RP3

4CaaSt is aware of the
desired SLA, is able to
monitor the KPI values and
can detect if a SLA breach
is happening or may
happen in a near future.

0%,

Planned RP3

4CaaSt takes appropriate
actions to ensure SLA
respect. 4CaaSt optimizes
resource usage in order to
reach SLA at a minimal
cost.

Minimal cost shall be
proportional to load. In other
word, if load doubles, cost is
expected to double and if
load is divided by a factor of
2, cost is expected to be
divided by 2 as well.

0%,

Planned RP3

4CaaSt scalability will be
evaluated using the
following scenario. First, We
need to develop some
additional code: Implement
a basic load injector to
simulate many parallel page
loads on the “TOURISM
demo application” web
component, in order to
simulate load on context, on
J2EE server on SCALARIS
key/value store.

0%,

Planned RP3

Add a dummy load
simulator in the page
generator in java to ease
load simulation on a J2EE
server. It could be used to
arbitrarily consume variable
quantities of processing
power or memory.

-

(This feature is scenario specific and is not related to
4CaaSt.)

Copyright © FT and other members of the 4CaaSt consortium 2012

Original use case
description from deliverable
D8.2.1

Description of fulfilment

Extend Flexiant platform
with a new fine grained
resource usage report. This
report would provide per
virtual machine report on a
given time interval and allow
fine grain analysis of
4CaaSt resource
consumption.

50%,

This feature has been introduced in the roadmap of
Flexiscale platform. A high end request interface is provided
allowing this kind of feature.

In the meantime, custom queries can be performed on
request by Flexiant support team.

Then, a 3-steps test is
performed. First a load
factor of 100 will be applied
to the platform and resource
consumption will be
measured (RC100). Then
load factor will be lowered
to 50 and resource
consumption will be
measured again (RC50)
Finally, load factor will be
raised back to 100 and
resource consumption will
be measured one last time
(RC100back) Analysis of
4CaaSt platform resource
consumption will provide
insight of 4CaaSt scalability
efficiency.

0%,

Planned RP3

Table 12. Use case fulfilment for UC8.2.006 – Enforce SLA

2.6.4. What is needed from 4CaaSt to increase the fulfilment?

Delivery of feature planned for RP3 will increase fulfilment. Also, blueprint descriptor shall
finalize work on a standard way to declare KPI shared by every 4CaaSt component.

2.6.5. What new requirements to 4CaaSt can be specified
following this evaluation?

Interoperability of 4CaaSt cloud platform relies on the blueprint descriptor as well on required
extensions such as KPI definition. Extensions shall be part of the standard 4CaaSt platform
as well as the blueprint schema. These extensions shall also be supported by the blueprint
editor to be provided.

While probes are defined in the use case, it is not clear yet how these probes shall be
combined into KPI and lead to decisions on starting new server nodes. Also, automatic
configuration of application node is not clearly defined.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.6.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

Current use case already challenges 4CaaSt platform and does not need to be extended.

2.6.7. What improvements to the application prototype are
needed to fully exercise this use case?

We identified no required improvement for the application prototype.

Copyright © FT and other members of the 4CaaSt consortium 2012

2.7. UC.8-2.007 Enforce metering

Please note that due to the 4CaaSt platform being in early stage, this use case is very
partially implemented and any form of conclusion would be preliminary.

2.7.1. Use case reminder

At the beginning of this use case, a service is available in the marketplace without
metering capabilities.

At the end of this use case, a service is available in the marketplace and its price
model includes business and/or technical metering data.

2.7.2. 4CaaSt feature mapping

Innovation / Feature Id &
Name

Evaluation

F#WP3.01 Product
Definition

Market Phase -- Marketplace integration process

F#WP3.10 Product
Specification

Market Phase -- Marketplace integration process

F#WP3.11 Product
Customization

F#WP3.17 Pricing &
Charging

Contract phase – Service contracting process

F#WP5.02 Monitoring
infrastructure: Set up and
configure probes

F#WP5.04 Metering
Capabilities

F#WP7.18 Monitoring
capabilities (solution
specific)

Table 13. Feature report for UC8.2.007 – Enforce metering

2.7.3. What parts of the use case are fulfilled? Qualify the
degree of fulfilment.

Original use case
description from deliverable
D8.2.1

Description of fulfilment

Copyright © FT and other members of the 4CaaSt consortium 2012

Original use case
description from deliverable
D8.2.1

Description of fulfilment

Software developer is
developing an application
such as “TOURISM demo
application”. 4CaaST
marketplace is providing
built-in meters. Although
useful, these meters are not
sufficient for charging a
SaaS service.

100%

4CaaSt project has understood and acknowledged the need
to support custom accounting meters.

It is decided that it is
meaningful to charge
customer based on the
number of pages viewed but
only those that contain more
than a certain number of
characters.

/

(introductory sentence)

Pages that are one-click
away from a page charged
in the last 48 hours are not
charged. A page that has
been displayed in the last
48 hour is not charged
again.

4CaaSt does not provide any mechanism for supporting such
custom complex scheme. Thus it would have to be
implemented at application level.

We will not implement such logic inside application as it does
not demonstrate any feature of 4CaaSt.

This example meter, like
many real life meters,
requires applicative
knowledge from the
application, and thus must
be implemented by the
application providing the
service. Software developer
develops the meter probe
as he sees fits in the
application. He develops the
needed glue code so that
the 4CaaSt platform can get
informed of the value of the
meter.

90%

An accounting plug-in for the Wikipedia renderer has been
fully implemented and pushes an SDR to the accounting
server for each page view.

During deployment, the URL of the accounting server must
be passed to the Wiki Servlet (untested); a tenant ID is
provided in each call from the Mashup.

Note: Replace “meter probe” by “accounting probe” in the
description.

Software developer extends
the application descriptor so
that 4CaaSt knows that a
meter is provided by the
application.

0%

Specification of how to describe an accounting probe was not
available at time of evaluation, although it is available today.

The marketplace is
automatically aware of the
existence of the meter.

30%

At time of writing, marketplace does not implement this
feature but mechanisms are well understood and planned to
be realized.

Copyright © FT and other members of the 4CaaSt consortium 2012

Original use case
description from deliverable
D8.2.1

Description of fulfilment

In the marketplace, service
provider can specify price
plan taking into account the
value of the meter. Some
customers may have a
small or big plan and get
different pricing scheme for
usage of the application.

0%

Marketplace currently uses a predefined list of parameter for
price definition. Also, marketplace only supports one price
model per blueprint.

When application is
deployed in the
marketplace, 4CaaSt is
aware of the meter and
setups the environment so
the meter value will be
picked up by the metering
infrastructure.

0%

By project choice, automatic application deployment is
validated for RP2 in scenarios 8.1 and 8.3. Mass market
scenario concentrates on SaaS deployment.

Table 14. Use case fulfilment for UC8.2.007 – Enforce metering

2.7.4. What is needed from 4CaaSt to increase the fulfilment?

There is no identified improvement on feature covered during RP2.

2.7.5. What new requirements to 4CaaSt can be specified
following this evaluation?

There is no identified improvement on feature covered during RP2.

2.7.6. What are the limitations to this use case with respect to
evaluating 4CaaSt capabilities?

There is no identified improvement on feature covered during RP2.

2.7.7. What improvements to the application prototype are
needed to fully exercise this use case?

Copyright © FT and other members of the 4CaaSt consortium 2012

3. Evaluation results (per phase)

In this section, we provide an aggregated and formalized as criterion view of the results
gathered during the evaluation of the use cases in the previous section.

Criteria and phase definitions are provided by the [1] Experimentation Guideline document.

3.1. Develop Phase – Blueprinting

3.1.1.1. Scalaris& J2EE based components

Criterion Questions Overall
evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was
to grasp the
blueprint model
with respect to
your needs?

Easiness of the
blueprint model
understanding.

++, very easy

 What aspects did
you fail to
understand?

 It is unclear whether the artifact
section simply serves
documentation purposes or
whether it is integrated with
deployment (and therefore needs
some more magic) – two
philosophies exist: since chef
recipes determine how to
deploy/install PICs, there it seems
only documentary, but the
deployment of ACs uses generic
scripts and thus needs the artifacts,
e.g. a war file and some
configuration. This is still unclear.

Effectiveness

Did you achieve
to describe all the
relevant elements
of the application
or technology?

Accuracy and
completeness of
the blueprint
that you
designed with
respect to your
application or
technology.

Mostly yes, the endpoint location of
an offering is still a bit unclear
though, as it cannot be described
without runtime information (see
below)

What aspects of
blueprint should
be added or
improved to allow
a complete
description of the
application or
technology?

 The endpoint location is useless at
the moment, a real URI cannot be
given, maybe a pseudo-URI like
“http://<host>:8080”, additionally, in
the case of a Servlet, its endpoint
location depends on the Servlet
Container, so it will be even more
generic:
“http://<container_location>/scalari
s-wiki/” or similar

Copyright © FT and other members of the 4CaaSt consortium 2012

Efficiency of
use

How
straightforward
was the mapping
from the relevant
elements of the
application or
technology to the
blueprint model
artifacts?

Effort put in
designing the
BP.

++

What aspects of
blueprint should
be added or
improved to make
this mapping
more
straightforward?

 None

3.1.1.2. Mashup based components

Criterion Questions Overall evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was to
grasp the blueprint
model with respect
to your needs?

Easiness of the blueprint
model understanding.

+ Not much problem

For what aspects
did you need
support to
understand them
fully?

 Requirements of
architecture and
components

What aspects did
you fail to
understand?

 None

Effectiveness

Did you achieve to
describe all the
relevant elements
of the application
or technology?

Accuracy and
completeness of the
blueprint that you
designed with respect to
your application or
technology.

Yes, as far as I know
every requirement of
our technologies could
be described

Efficiency of use

How
straightforward
was the mapping
from the relevant
elements of the
application or
technology to the
blueprint model
artifacts?

Effort put in designing the
BP.

Quite easy, once
understood all the
sections, translating it
to our technologies
was not a problem

Copyright © FT and other members of the 4CaaSt consortium 2012

Criterion Questions Overall evaluation
--, -, 0, +, ++

Answers

What aspects of
blueprint should
be added or
improved to make
this mapping more
straightforward?

3.1.1.3. Context related components

Criterion Questions Overall evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was to
grasp the blueprint
model with respect
to your needs?

Easiness of the blueprint
model understanding.

++

It was very easy to
prepare the service
blueprint due to the
CaaS Enabler
simplicity and its
ability to work as
always run for any
service or application.
Nevertheless some
additional features
such as monitoring
and charging are still
to be handled and
evaluated in further
version of the
blueprint and its
integration into the
experimentation.

For what aspects
did you need
support to
understand them
fully?

 +

It is not easy to
understand how to
treat multi-tenancy for
a service, which is not
multitenant itself but
requires some
multitenant-like
provisioning per
service/application or
per customer.

Copyright © FT and other members of the 4CaaSt consortium 2012

Criterion Questions Overall evaluation
--, -, 0, +, ++

Answers

What aspects did
you fail to
understand?

 -

It is impossible to
understand how to
integrate the offering
section (pricing model,
pricing, etc.) and
consequently charging
for an always on and
running Service
Enablers, which are
used by many
different applications
and customers in a
pull (on request) and
push (subscription)
modes;

Effectiveness

Did you achieve to
describe all the
relevant elements
of the application
or technology?

Accuracy and
completeness of the
blueprint that you
designed with respect to
your application or
technology.

0

All required
functionality has been
achieved based on the
designed blueprint
and deployed as the
service.

What aspects of
blueprint should
be added or
improved to allow
a complete
description of the
application or
technology?

 0

None for the moment.

Efficiency of
use

How
straightforward
was the mapping
from the relevant
elements of the
application or
technology to the
blueprint model
artifacts?

Effort put in designing the
BP.

+

Very short time,
couple of hours for
understanding what is
where and what to
leave and customize
in the blueprint
template.

What aspects of
blueprint should
be added or
improved to make
this mapping more
straightforward?

 0

Being already
provided with a
blueprint compositor
and validator, none for
the moment.

Copyright © FT and other members of the 4CaaSt consortium 2012

3.1.1.4. Bonita related components

Criterion Questions Overall evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was to
grasp the blueprint
model with respect
to your needs?

Easiness of the blueprint
model understanding.

+

It was understandable
with some already
done examples

For what aspects
did you need
support to
understand them
fully?

 None

What aspects did
you fail to
understand?

 Perimeter of
components:

If we provide a
Tomcat in our bundle
does it have to be
described in the
blueprint?

Effectiveness

Did you achieve to
describe all the
relevant elements
of the application
or technology?

Accuracy and
completeness of the
blueprint that you
designed with respect to
your application or
technology.

0

There are missing
concepts:

What kind of service is
provided by a
component: e.g. user
interaction using
browser or URL to
start a process

What aspects of
blueprint should
be added or
improved to allow
a complete
description of the
application or
technology?

 There is nothing to
describe which
technology is used to
make components be
able to communicate.

e.g. interact with
database using
database protocol

Efficiency of
use

How
straightforward
was the mapping
from the relevant
elements of the
application or
technology to the
blueprint model
artefacts?

Effort put in designing the
BP.

+

Copyright © FT and other members of the 4CaaSt consortium 2012

3.2. Develop Phase –Technology integration

3.2.1.1. Scalaris& J2EE based components

Criterion Questions Overall
evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was
to grasp the
Chef cookbooks
and recipes
model with
respect to your
needs?

Easiness of the
Chef cookbooks
and recipes
specification
process.

n/a

(deploy/un-deploy AC is provided
by application server)

 Easiness of the
custom meter
specification
process.

n/a

Effectiveness

Did you achieve
to specify all the
needed
deployment
aspects with the
Chef cookbooks
and recipes?

Accuracy and
completeness of
the Chef
cookbooks and
recipes that you
specified with
respect to the
target
technology.

Passing connection details and
other configuration data of the AC
to the (generic) deploy/un-
deploy AC recipe is undefined at
the moment.

If relevant: what
aspects of Chef
cookbooks and
recipes should
be added or
improved to
allow a
complete
description of
deployment of
the target
technology?

 n/a

Accuracy? Accuracy and
completeness of
the custom
meters and KPI
that you defined
with respect to
the target
technology.

n/a

Copyright © FT and other members of the 4CaaSt consortium 2012

Efficiency of
use

How
straightforward
was the
specification of
the deployment
of the
technology
using a Chef
cookbook and
recipes?

Effort put in
specifying Chef
cookbooks and
recipes.

n/a

(deploy/un-deploy AC provided by
application server)

Effort? Effort put in
defining custom
meters and KPI.

n/a

How much effort
did you put in
the adaptation
of the
technology?

Effort put in
adapting the
technology in
order to make it
available in
4CaaSt (besides
blueprint and
Chef cookbooks
and recipes
specifications
and custom
meters and KPI
definition).

not much – only needed to add
support for as-a-service
monitoring/accounting data to be
gathered

3.2.1.2. Mashup based components

Criterion Questions Overall
evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was
to grasp the
Chef cookbooks
and recipes
model with
respect to your
needs?

Easiness of the
Chef cookbooks
and recipes
specification
process.

Yet learning. Technology is
complicated, but it might be not so
hard once fully understood

Effectiveness

Did you achieve
to specify all the
needed
deployment
aspects with the
Chef cookbooks
and recipes?

Accuracy and
completeness of
the Chef
cookbooks and
recipes that you
specified with
respect to the
target
technology.

On process the time of writing.

Copyright © FT and other members of the 4CaaSt consortium 2012

Efficiency of
use

How
straightforward
was the
specification of
the deployment
of the technology
using a Chef
cookbook and
recipes?

Effort put in
specifying Chef
cookbooks and
recipes.

Not measurable until finished, most
of effort concerns learning.

3.2.1.3. Context related components

Criterion Questions Overall
evaluation
--, -, 0, +, ++

Answers

Learnability

How easy it was
to grasp the
Chef cookbooks
and recipes
model with
respect to your
needs?

Easiness of the
Chef cookbooks
and recipes
specification
process.

Not available as well as CaaS is an
always on and running Service
Enabler not requiring Chef for the
integration.

 Easiness of the
custom meter
specification
process.

Not available as far as these
features are not yet implemented in
CaaS Enabler.

Effectiveness

Did you achieve
to specify all the
needed
deployment
aspects with the
Chef cookbooks
and recipes?

Accuracy and
completeness of
the Chef
cookbooks and
recipes that you
specified with
respect to the
target
technology.

Not available as well as CaaS is an
always on and running Service
Enabler not requiring Chef for the
integration.

 Accuracy and
completeness of
the custom
meters and KPI
that you defined
with respect to
the target
technology.

Not available as far as these
features are not yet implemented in
CaaS Enabler.

Copyright © FT and other members of the 4CaaSt consortium 2012

How
straightforward
was the
specification of
the deployment
of the technology
using a Chef
cookbook and
recipes?

Effort put in
specifying Chef
cookbooks and
recipes.

Not available as well as CaaS is an
always on and running Service
Enabler not requiring Chef for the
integration.

Efficiency of
use

 Effort put in
defining custom
meters and
KPIs.

Not available as far as these
features are not yet implemented in
CaaS Enabler.

How much effort
did you put in the
adaptation of the
technology?

Effort put in
adapting the
technology in
order to make it
available in
4CaaSt
(besides
blueprint and
Chef cookbooks
and recipes
specifications
and custom
meters and KPI
definition).

Not available as well as CaaS is an
always on and running Service
Enabler not requiring Chef for the
integration.

Copyright © FT and other members of the 4CaaSt consortium 2012

4. Evaluation summary
(per Business goal)

The following questions are defined in the Experimentation Guideline [1] to be answered by
each use case scenario and serve for evaluating the use case specific 4CaaSt
objectives/goals presented in the Scenario Definition report D9.3.1 [2] . The business goals
are also used to structure the section and are linked with their names and ID in italic.

Deliverable [2] D8.2.1 defines 3 mass market business goal mapped to one or more use
cases where fulfilment can be analysed. This section consolidates the analysis of each
scenario shown in previous section by business goals.

A business goal is fulfilled if every use case it depends on is fulfilled, so this section is a
consolidation of results provided in part 1.

4.1. Business goal WP82_001:
Support trading of service ecosystem

1 2 3 4 5 6 7

D
e

v
e
lo

p
 c

lo
u
d

e
n
a

b
le

d
 s

o
ft

w
a
re

c
o

m
p

o
n

e
n

t

D
e

p
lo

y
 S

o
ft

w
a

re
 i
n

th
e
 m

a
rk

e
tp

la
c
e
 f
o

r

c
o

m
m

e
rc

ia
liz

a
ti
o
n

C
o

m
m

e
rc

ia
liz

e

S
e

rv
ic

e
 p

ro
v
id

e
d

 b
y

s
o

ft
w

a
re

C
h

o
o

s
e
 s

e
rv

ic
e
 i
n

 t
h

e

m
a

rk
e
tp

la
c
e

B
u

y
 s

e
rv

ic
e
 f
ro

m
 t

h
e

m
a

rk
e
tp

la
c
e

E
n

fo
rc

e
 S

L
A

E
n

fo
rc

e
 m

e
te

ri
n
g

/ / Mostly
Fulfilled

Partial
*

Some
features
planned

RP3

Partial
*

Specific
support for

service
provisioning

/ Very
Partial

*
Some

features
Planned

RP3

Table 15. Status of business goal WP82_001 : Support trading

4.1.1. How well do the currently available 4CaaSt platform
capabilities fulfil the business goals from the
experiments of this report?

This business goal is already quite well covered by RP2 version of the 4CaaSt platform with
the exception of metering use case which will allow custom price model to be created by
4CaaSt on custom meters. This is an important use case and without it this business goal
cannot be achieved.

Yet, coverage of the use cases is coherent with the features planned for RP2 and current
status is satisfactory.

Copyright © FT and other members of the 4CaaSt consortium 2012

4.1.2. What evolutions of 4CaaSt are needed to accurately and
completely fulfil those goals?

This business goal deeply depends on features planned for RP3 by 4CaaSt. 4CaaSt is so far
on the right track and no fundamental flaw was discovered. Delivery of RP3 features should
fulfil completely this business goal.

4.1.3. What evolutions of the current business goals and use
cases are needed in order to be a better support to
4CaaSt evaluation?

The business goal itself does not need to be modified as it is labelled as a high level
business goal and does not include assumptions on the technical solutions. Some
modifications are however needed for use cases and are reported in the first section of this
document.

4.2. Business goal WP82_002:
Lower marginal hosting cost

1 2 3 4 5 6 7

D
e

v
e
lo

p
 c

lo
u
d

e
n
a

b
le

d
 s

o
ft

w
a
re

c
o

m
p

o
n

e
n

t

D
e

p
lo

y
 S

o
ft

w
a

re
 i
n

th
e
 m

a
rk

e
tp

la
c
e
 f
o

r

c
o

m
m

e
rc

ia
liz

a
ti
o
n

C
o

m
m

e
rc

ia
liz

e

S
e

rv
ic

e
 p

ro
v
id

e
d

 b
y

s
o

ft
w

a
re

C
h

o
o

s
e
 s

e
rv

ic
e
 i
n

 t
h

e

m
a

rk
e
tp

la
c
e

B
u

y
 s

e
rv

ic
e
 f
ro

m
 t

h
e

m
a

rk
e
tp

la
c
e

E
n

fo
rc

e
 S

L
A

E
n

fo
rc

e
 m

e
te

ri
n
g

/ / / / /

Optimal
*

Very
partially

implemented
*

Many
important
features
planned

RP3

/

Table 16. Status of business goal WP82_002 : lower marginal …

4.2.1. How well do the currently available 4CaaSt platform
capabilities fulfil all or some of the business goals from
the experiments of this report?

Without 4CaaSt features, a customer deploys his architecture and as it is done with manual
deployment, creates more machines than what is needed “most” of the time. Customer has
to choose, whether to get closer to 100% of the time and spend more resources, or lower its
quality of service, his customer satisfaction and ultimately his incomes.

Lowering hosting cost is linked to enforce SLA because savings are obtained in 4CaaSt by
using as little dedicated resources as possible for a given SLA at any point in time.

Copyright © FT and other members of the 4CaaSt consortium 2012

4CaaSt project roadmap has defined that scalability feature would be available for RP3 so
evaluation of this business goal is not possible in present deliverable.

We however already have performed some of the required steps:

 Definition of custom probes in application

 Declaration of custom probes in blueprint

These steps are indeed costs for service providers and they should be minimized. We have
found that these costs are optimal and could not be minimized further given current state of
the art and the need to perform custom actions specific to each application.

As a conclusion, we would say that what the steps currently performed form the optimal way
from a cost analysis point of view.

Regarding future steps, we envision advance automatic scalability feature will allow savings
but we will have to wait RP3 to validate this claim.

4.2.2. What evolutions of 4CaaSt are needed to accurately and
completely fulfil those goals?

Given that use case could be fulfilled optimally by 4CaaSt currently available process, there
is no evolution request to submit at this stage.

4.2.3. What evolutions of the current business goals and use
cases are needed in order to be a better support to
4CaaSt evaluation?

This use case is currently fulfilled very partially so it would be premature to extend it now.

4.3. Business goal WP82_003:
No limit scalability and reduced development cost

No limit scalability means in short that an application developed with 4CaaSt shall scale
horizontally beyond a few servers without major development cost.

1 2 3 4 5 6 7

D
e

v
e
lo

p
 c

lo
u
d

 e
n

a
b
le

d

s
o

ft
w

a
re

 c
o
m

p
o
n

e
n

t

D
e

p
lo

y
 S

o
ft

w
a

re
 i
n

 t
h

e

m
a

rk
e
tp

la
c
e
 f
o

r

c
o

m
m

e
rc

ia
liz

a
ti
o
n

C
o

m
m

e
rc

ia
liz

e
 S

e
rv

ic
e

p
ro

v
id

e
d

 b
y
 s

o
ft
w

a
re

C
h

o
o

s
e
 s

e
rv

ic
e
 i
n

 t
h

e

m
a

rk
e
tp

la
c
e

B
u

y
 s

e
rv

ic
e
 f
ro

m
 t

h
e

m
a

rk
e
tp

la
c
e

E
n

fo
rc

e
 S

L
A

E
n

fo
rc

e
 m

e
te

ri
n
g

Mostly
Fulfilled

*
4CaaSt

Application
developed

Mostly
Fulfilled

*
Blueprint

/ / /

Partial
*

Some
features
planned

RP3

/

Table 17. Status of business goal WP82_003 : No limit …

Copyright © FT and other members of the 4CaaSt consortium 2012

4.3.1. How well do the currently available 4CaaSt platform
capabilities fulfil all or some of the business goals from
the experiments of this report?

In this business goal, we were expecting to bring no limit scalability (horizontal scalability
beyond a few servers) for a reduced development, which means to most qualified internet
developer working in standard companies.

We were able in RP2 to

 Develop the application (UC 1)

 Describe the application and deploy it in the marketplace (UC 2)

We will be able in RP3 to

 Enforce SLA to control horizontal scalability (UC6)

We plan to validate scalability on the Wikipedia page render which uses Scalaris key/value
backend. Applications that are 4CaaSt compliant will be able to benefit from future 4CaaSt
scalability features. Yet, we were not able to test 4CaaSt scalability features as they are
planned for next reporting period.

However, fulfilling most of UC1 and UC2 is already an achievement of the utmost importance
for the future of 4CaaSt.

4.3.2. What evolutions of 4CaaSt are needed to accurately and
completely fulfil those goals?

Use cases required evolution of the blueprint relative to documentation and more precise
definition of the intended use of some of the field.

4.3.3. What evolutions of the current business goals and use
cases are needed in order to be a better support to
4CaaSt evaluation?

This use case is currently fulfilled very partially so it would be premature to extend it now.

Copyright © FT and other members of the 4CaaSt consortium 2012

5. Conclusion

The evaluation results corresponding to the first release of the 4CaaSt scenario 8.2 [2] have
been described in this document. Based on these results, a set of improvements to the
4CaaSt platform have been identified and will be addressed in next releases of the 4CaaSt
platform. The most relevant conclusions reached can be summarised as follows:

4CaaSt evaluated components fulfil business goals defined for the mass market.

Qualitative evaluation:

Current evaluation of 4CaaSt platform has not revealed design flaw that would be
problematic for the future of the platform.

Graph of dependencies between application elements could be successfully
described as XML descriptors, and a level of indirection to link to dependencies
through blueprint requirement is more than enough to account for variability due to
multiple choices and multiple instantiations.

Links between the logical description of the application and action performed by
automation is not always perfectly understood and some work needs to be done on
clarifying these aspects for all partners.

Quantitative evaluation is planned for next reporting period and is already well detailed in the
scenario. This evaluation will provide the percentage of benefit relative to a standard un-
optimized platform.

Improvement points are mainly focused on the blueprint schema which has been used
thoroughly.

 4CaaSt blueprint schema is easy to understand and is well understood as description
formalism.

 4CaaSt blueprint schema is used for every stage of an application lifecycles, yet not all
fields are meaningful at all time and no guidance is provided. The lifecycle state of a
blueprint is also not clear.

 4CaaSt blueprint descriptor schema does not provide enough description fields. Blueprint
users have spontaneously added XML comments in manually edited files to detail the
intended use.

 4CaaSt blueprint describes services with web services in mind. This does not always fit
technical services which uses optimized protocols.

 4CaaSt blueprint schema delegates description of accounting probe and monitoring probe
to extension schema which need to be provided.

Future work related to 8.2 should then encompass the following activities:

 Update the scenario description 8.2 [2] to cover the improvements identified in this
document.

 Implement the corresponding changes in the scenario prototype.

 Integrate the scenario prototype with the new release of the 4CaaSt platform.

 Conduct a new evaluation round of the scenario.

Copyright © FT and other members of the 4CaaSt consortium 2012

6. References

[1] Reports on Experimentation, Experimentation Guidelines, Lead Editor: Michel Dao, FT,
July 2012

[2] 4CaaSt D8.2.1 “Use Case Application eMarketplace for Mass market: Scenario
Definition”, Deliverable D8.2.1, 2011.

[3] 4CaaSt D8.2.3 “Use Case Application eMarketplace for Mass market: Integration
report”, Deliverable D8.3.3, 2012..

