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1 Executive Summary 

This deliverable discusses how formal task models can be used for the assessment of content 
annotation and search tools, both on component and system level. It presents an approach for cost 
assessment and provides experimental results using the proposed methods. It also describes the 
integration of benchmarking tool into an analysis workflows. 

Media production processes can benefit from the use of automatic information extraction tools that 
analyse multimedia content and provide information for content description, indexing and search. 
However, it is difficult to assess the impact of a specific information extraction tool (e.g., genre 
classification) on the overall process in terms of quality improvements or cost savings w.r.t. manual 
processes. One observation is that existing benchmarks of individual components do not always reflect 
the applicability of the methods for a certain task in a process. In order to address this issue, we 
propose to assess tools in the context of a specific task of a real media production workflow, rather than 
evaluating these tools in an isolated lab setting. 

In this document, we discuss issues of specifying and representing ground truth. The basic approach is 
to consider a set of edit operations between two metadata documents (of which one might be part of 
ground truth). These edit operations and related costs can be used to model also cases with multiple 
choices for ground truth or ground truth items with different confidence levels. 

We describe the use of task models for benchmarking and simulation. For benchmarking, we model 
error propagation in content analysis and search tasks. We provide a number of experimental results 
that show that the approach can be also used in cases where the ground truth is incomplete or no 
ground truth but only generated results are available for intermediate steps. For simulation, the task 
model is transformed into a business process, and costs are estimated based on different 
parameterisation of the process. Finally we discuss the integration of the proposed benchmarking and 
simulation approaches with the service oriented architecture of TOSCA-MP. 
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2 Introduction 

2.1 Purpose of this Document 

This document proposes task-based approaches for the assessment of content annotation and search 
methods. This includes both benchmarking methods considering the contribution of individual tools to 
solving an analysis and/or search task in media production as well as methods for estimating the cost 
efficiency of introducing automatic tools into the process. 

2.2 Scope of this Document 

This document describes a task-based view on assessment of content annotation and search tools, 
proposes approaches for task-based benchmarking and cost estimation based on simulation. The 
proposed methods are validated in experiments. The software tools implementing these approaches are 
described. 

2.3 Status of this Document 

Final 

2.4 Related Documents 

This document is based on the task modelling method and the set of task models described in D4.3 
Task Models, and is an update and extension of D4.4 First Version of Benchmarking Methods. 
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3 Motivation 

This part of the work of TOSCA-MP has originally been motivated by the EBU MIM/SCAIE
1
 working 

group, established 2007, which aims at bringing automatic information extraction tools into media 
production processes. It is an acquired concept that media production processes can benefit from the 
use of automatic information extraction tools that analyse multimedia content and provide information 
for content description, indexing and search. However, it is difficult to assess the impact of a specific 
information extraction tool (e.g., genre classification) on the overall process in terms of quality 
improvements or cost savings w.r.t. manual processes. One observation is that existing benchmarks of 
individual components do not always reflect the applicability of the methods for a certain task in a 
process. In order to address this issue, we propose to look at evaluation of automatic information 
extraction methods from a novel perspective. Rather than evaluating these tools in an isolated lab 
setting, the tools are assessed in the context of a specific task of a real media production workflow. 

For example, if we take the benchmark data for a person identification software based on recognition of 
the speaker voice, typically we get figures related to reference data sets used by the research 
community to compare results, and we do not have any indication on how errors (e.g., false detections) 
impact in real usages of the technologies. Here are other examples, where there are mismatches 
between the commonly used benchmarking approaches of components and their contribution to solving 
an actual task. Typically, precision and recall of shot boundaries w.r.t. a ground truth is evaluated. 
However, missed shot boundaries coinciding with scene boundaries will strongly impact the result of a 
subsequent scene clustering tool, while missed shot boundaries within scenes and several false 
positives might be tolerable. For person identification, there might be cues in multiple modalities (e.g. 
face, text insert, name mentioned) that contribute to successful identification. Depending on the 
structure of the data set the overall result varies with the performance of components working on the 
different modalities. For example, if persons are identified by text inserts, and video OCR performs very 
well, this might mask missed detections of a face detector. When performing search for content related 
to a specific location, video segments might not be retrieved because a certain step in indexing failed. 
However, mistakes of various analysis tools might impact the result in a very different ways. Visual 
clustering might assign a clip to an entirely different location, making retrieval of the segment for the 
correct location impossible. ASR or video OCR might misspell an unknown proper name, but phonetic 
matching against a place vocabulary might still help to assign it correctly. 

The second aspect concerns the cost effectiveness of automation in media production processes. 
Automatic tools are not perfect, and manual correction and validation might be needed. The effort 
needed for the manual intervention depends not only on the performance of the automatic process, but 
also on the user friendliness of the tools used for validation and correction, and on the required quality 
level of the results for a certain process. For example, for automatic subtitling exactly timed boundaries 
in the speech transcript are required, while for semantic enrichment based on recognised named 
entities (e.g., annotating the identifier of a place mentioned in the ASR transcript) a few seconds offset 
in timing do not matter. Models of tasks in the media production process put the tools into context and 
provide a holistic picture of the costs involved. Simulations comparing fully manual execution of the 
tasks with variants in which some subtasks are automated, and considering different performance 
values of these tasks, can provide information about the cost effectiveness of the use of (specific) 
automatic tools. This can also help increasing the acceptance of using automatic content annotation 
tools in the media production process. 

This deliverable is structured as follows. Section 4 discusses the needed metadata for the approach 
proposed in this document, i.e. representations for ground truth and deviations from it, and the tools to 
determine these edits. In Section 5 we propose an approach for assessing individual analysis 
components in a task context, and in Section 6 we discuss benchmarking of search and result 
presentation. Section 7 describes a range of experiments that we have performed using the proposed 
methods and discusses their results. Section 8 discusses cost assessment using the task context, and 
Section 9 describes the integration into a service oriented architecture like the one developed by 
TOSCA-MP. 

                                                      
1
 http://tech.ebu.ch/groups/pscaie 
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4 Representing Ground Truth and Deviations 

The methods described in this document need representations of ground truth as well as of the 
deviations between ground truth and outputs of certain components and systems. 

4.1 Ground truth 

The term ground truth denotes the correct output of a component or algorithm for a defined input. While 
this is straight forward e.g. for a binary classifier, ground truth may have a quite diverse nature 
depending on the type of the component under evaluation. 

In addition to straight forward cases where we have a well-defined and correct output for a defined unit 
of input, the following issues related to ground truth occur in practical problems. 

Incompleteness. In some cases ground truth is not complete due to cost reasons. A typical example is 
the evaluation of precision and recall in retrieval problems: For example, checking whether all reported 
examples from a pool of systems are correct (in order to assess precision) is much less effort than 
checking the whole data set for all relevant items (in order to assess recall). In this example, pooling of 
results is an approach to get an estimate of recall, but a relevant item found by a system not in the pool 
will not be counted as correct. Another notion of incompleteness can be found in ground truth for 
temporal segmentation, where it may be specified that a correct boundary occurs around that time, but it 
may not be frame precise. 

Alternative choices. In some cases, alternative choices – possibly subject to constraints – may exist. 
One example is temporal segmentation into scenes, where there may be alternative options to place the 
scene boundaries, with the constraint that only one of a set in a specific time range can be chosen. The 
Differential Edit Distance (DED) has been proposed as a metric for assessing video segmentation 
[Sidiropoulos, 2012]. It is a variant of the edit distance agnostic to the specific symbol representing an 
element and measures differences in segment boundaries. However, based on the application it has 
been designed for, it makes assumptions about the convexity of segments and does not allow for 
temporal shifts. 

Set of reference examples and subjective scores. In cases where the quality of a result is judged 
subjectively, a set of reference examples or users’ judgments may be provided. Examples include the 
evaluation of machine translation (using BLEU [Papineni, 2002]), of video summaries (using VERT [Li, 
2010]) or of temporal segmentation using a model for tolerance [Piazolla, 2010]. For almost all quality 
analysis methods the presence of an impairment (e.g. blur, blocking) or the perceived strength of an 
objectively present impairment (e.g., flicker) depends on statistical comparison to a set of subjective 
judgements. 

Confidence levels. Similar to the case of reference examples, multiple human annotators may not fully 
agree on the ground truth. However, there may be some items in the ground truth that get higher inter-
operator agreement than others (e.g., for scene boundaries). In such a case it is desirable not to treat all 
reference examples independently, but to use the different levels of confidence in the evaluation. 

Different sampling rates. Different sampling intervals for temporally dense data (e.g., sampled data of 
quality properties such as noise or grain level), it might be required to compare information extracted 
with different sampling intervals 

4.2 Deviation from ground truth 

Commonly used performance metrics are aimed at providing a concise representation of the 
performance of a component, ideally a single number. In contrast, we are also interested here in a fine-
grained analysis of different types of errors, not making assumptions about the evaluation metric. Also, 
we are not only interested in what is different between a result and a ground truth, but also in more 
details on how a result differs from the ground truth. For example, a misplaced boundary in a temporal 
segmentation should not represented as one missed and one added, but as shifted (if it is still in a 
certain temporal proximity). 

In general, we are interested in a measure of difference between two metadata documents (of which 
one might describe ground truth). We thus propose using a set of edit operations and an associated edit 
distance for this purpose. The set of edit operations will of course not be universal, but might be 
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different depending on the type of metadata we are dealing with. Even if we are not interested in the 
actual value of the edit distance, i.e., the total cost of edit operations, it still makes sense to assign costs 
to edit operations, as it can give precedence to operations. For example, if a shift of a boundary with +/- 
t frames has a smaller cost than deleting it, we will choose this edit. In addition, the cost for shifting 
could not only be a fixed value, but depends on the number of frames the boundary has to be shifted. 
Costs can be used to support alternative choice of metadata elements (within some constraints, e.g., a 
time window), as well as confidence levels, by assigning higher costs for performing edits on items with 
higher confidence. Costs could also vary depending on the context of the component. Depending on the 
type of metadata we can also make use of constraints introduced in different flavours of edit distances, 
such as enforcing sequential order, limiting the number of matches of one item or supporting gaps. 

Evaluation measures originating from information retrieval (e.g., precision, recall) are also used for 
evaluating content analysis tools. In turn, the edit distance approach can be applied to representations 
of search results, such as inserting/deleting from a result list, rank changes etc.  

Established evaluation measures are typically based on some (weighted) combination of such edits, so 
that they can be easily computed from a set of edits. 

4.3 Data representation 

This section discusses the data representations needed for exchanging and processing data for 
benchmarking. 

4.3.1 Ground truth 

Ground truth is from its nature not different than extracted metadata. Thus the same representation as 
for the corresponding type of metadata should be used, for example MPEG-7 AVDP or ELAN 
Annotation Format (EAF). Metadata formats support the annotation of confidence, which can be used 
for representing different confidence of ground truth annotations as well. If alternative choices of ground 
truth items are needed, multiple descriptions in one metadata document or multiple metadata 
documents (depending on the capabilities of the respective format) can be used. 

For the representation of search results, there are not so obvious metadata representations. Metadata 
standards such as MPEG-7 or MPEG-21 provide means for representing collections of content, which 
can be used for result sets or ranked lists. 

4.3.2 Edits between metadata documents 

There is no common representation for edit operations. As many commonly used metadata formats 
support XML representations, one possibility is to look at languages that represent differences or 
modifications of XML documents. One early example is DUL [Mouat, 2002], emerging from writing a Diff 
tool for XML. XUpdate

2
 aimed at creating an update language for XML in a database context. The same 

goal is shared by the update extension of the W3C XQuery language [Robie, 2011]. 

While basic insert, delete, move, change etc. operations on XML documents are covered, the semantics 
are not appropriate for our purpose. For example, a shifted time index will result in a change of the 
corresponding value in the document, rather than “shift”.  

We thus need to extend existing languages in order to precisely represent the semantics of the edits. As 
DUL is represented using XML document rather than the SQL-like syntax of XQuery, it seems more 
appropriate as a basis for our purpose. 

4.3.3 User logs 

The main information needed from user logs is the time needed by a user to perform a certain type of 
action for modifying/adding metadata or interacting with search results. The type of action should 
correspond (or unambiguously map) to an edit operation for the corresponding type of metadata. 

For Web servers, the Common Log Format
3
 is an accepted standard, for which a tool chain exists. 

However, as the format only gives a time point for an operation, and reports a number of other 
parameters, it does not seem very well suited for our application. 

                                                      
2
 http://xmldb-org.sourceforge.net/xupdate/ 

3
 http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format 



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 13 

Thus a proprietary format containing lines with the triple  

<start-time> <end-time> <operation> 

seems more appropriate for our application. 

4.4 Determining differences between metadata documents 

In order to obtain a representation of edits between metadata documents, we need to extract this 
information from a pair of XML documents. In the following, we discuss the assessment of XML Diff 
tools that may provide a basis for extracting this information. As experiments showed that their output is 
too noisy on complex metadata documents, we describe the tool we have implemented to solve this 
problem. 

4.4.1 Evaluation of XML Diff Tools 

A range of differencing tools for XML exist, many with their own proprietary representation. There are 
some commercial XML editors or diff tools. Oxygen

4
 provides a diff&merge option, but the result cannot 

be serialised. A previously existing XMLDiff API
5
 has been discontinued. Altova DiffDog

6
 is a quite 

powerful tool, that comes with its proprietary serialisation. DeltaXML
7
 inserts attributes into a document 

to markup changes. Other commercial tools are Stylus Studio
8
 and Liquid XmlDiff

9
. 

There is also a number of open source tools, many resulting from research on new XML differencing 
algorithms. XML-Diff

10
 is a tool written in Perl that uses the DIFFGRAM/XCVS notation as output. 

Another Perl tool is XMLDifferenceMarkup
11

, which defines a simple XML output format, supporting 
copy, insert and delete. XyDiff

12
 is a tool written in C/C++ that produces a quite compact, but somewhat 

cryptic output, that is hard to process further.  

diffxml
13

 is a tool written in Java, that uses Delta Update Language (DUL) as its output representation. 
The output is quite cluttered with many inserts and deletes, and XPath expressions with only numbered 
indices. Although DUL supports updates, it seems they are not generated. The output includes also diffs 
on character level, and includes whitespace modifications. We have thus implemented a XSLT 
stylesheet to clean up and add named XPaths. As the trees are incrementally built by insertion, only the 
XPath for the top node can be retrieved. The tree seems to contain many text elements, that are 
counted differently by other XML/XSLT processors (e.g., Xalan, Saxon). 

DiffMk
14

 is a Java tool that outputs changes as attribute markup in the XML document. 

xmldiff
15

 is a Python tool that provides the option to use XUpdate
16

 as output. The tool is however 
limited to documents with 100 nodes. 

X-Diff
17

 is a tool available in Java and C++ versions. It supports delete/insert/update, using an 
unordered node model, i.e., only ancestor relations are significant. The tool inserts its output into the 
input XML document. We have thus implemented a converter of this output to DUL. Because of the 
unordered nodes assumption, child position numbers of insert/delete operations are not always correct, 
and the tool fails on more complex metadata files. 

                                                      
4 
http://www.oxygenxml.com/xml_editor/xml_diff_and_merge.html

 

5 
http://archives.oxygenxml.com/Oxygen/Diff/InstData4.0/Developer/oxygenXMLDiffSDK.zip

 

6
 http://www.altova.com/diffdog/xml-diff.html 

7
 http://www.deltaxml.com/support/documents/deltav2 

8
 http://www.stylusstudio.com/xml_diff.html 

9
 http://www.liquid-technologies.com/compare-xml.aspx 

10
 http://search.cpan.org/dist/XML-Diff/Diff.pm 

11
 http://search.cpan.org/dist/XML-DifferenceMarkup 

12
 http://leo.saclay.inria.fr/software/XyDiff/cdrom/www/xydiff/index-eng.htm 

13
 http://diffxml.sourceforge.net 

14
 http://diffmk.sourceforge.net 

15
 http://www.logilab.org/859 

16
 http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html 

17
 http://pages.cs.wisc.edu/~yuanwang/xdiff.html 

http://www.oxygenxml.com/xml_editor/xml_diff_and_merge.html
http://archives.oxygenxml.com/Oxygen/Diff/InstData4.0/Developer/oxygenXMLDiffSDK.zip
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XmlDiff
18

 is a Java tool, with several limitations w.r.t. size and namespace support. It uses a custom 
format using attributes attached to elements (changed, new, deleted). 

Table 1 provides an overview of XML diff representations of several of the tools considered. Three of 
the representations have been considered as candidates. The Altova format document is not 
accessible. The XyDiff output has turned out to be quite cryptic and hard to process. DUL has found to 
be a useful representation, to which the output of different tools could be successfully converted.  

Table 1: Considered XML diff representations. 

Representation Output Support 
update/change 

Support move Candidate 

Format Diff doc/ 
attributes 

DUL XML doc x x Y 

XUpdate XML doc x  N 

XQuery / Update function 
syntax 

doc x  N 

DIFFGRAM / XCVS XML doc x x Y 

XyDiff XML doc x x Y 

X-Diff XML doc x  N 

XMLDifferenceMarkup XML doc   N 

Altova format XML doc x x Y 

DeltaXML XML attr x  N 

DiffMK XML attr x  N 

 

Large-scale tests have been performed on comparing shot boundary outputs from different analysis 
tools from 1,150 videos of the TOSCA-MP data set. There are several points that cause problems for 
the XML Diff tools being tested. The shot boundary detection results have sometimes small overall 
offsets or small offsets for some segments. This will cause insert/delete operations for all segments with 
nearly all of the tools. For the segments not only start and end time may differ, but identifiers for 
segments are assigned differently by the different tools, thus causing differences in values. Further 
annotations on the shot segments may not be identical (e.g., confidence of detection), causing none of 
the tools to produce satisfactory output. Even segments that would result in minor diffs if they were in 
the correct order are reported as complete insertions and deletions when other segments are missing or 
inserted before. In some cases, the reported sampling rates may be different, even if they refer to the 
same time point (e.g., 25/50 frames/sec, or 500 milliseconds). 

Figure 1 shows an example that causes problems for XML diff tools not aware of the structure of the 
metadata format. The upper and the lower listing show the description for the same three shots in the 
video, as produced by two shot boundary detection tools. The durations of the shots are identical, 
however, there is a constant offset in the timeline of the two videos (e.g., one using the start of the file, 
the other the start of the programme as zero point). Both tools have their own scheme for assigning IDs 
to the segments they create, and one tool describes key frames, while the other does not. Applying XML 
diff tools results in a list consisting of a deletion and an insertion for every segment, rendering the result 
useless for performance evaluation. 

The conclusion is that the output of general purpose XML diff tools is too noisy for our purpose. We 
have thus decided to implement a dedicated tool, aware of the semantics of time-aligned metadata 
rather than post-processing the output of another XML diff tool. 
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 https://github.com/AlinaIoanaFlorea/XmlDiff 
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<AudioVisualSegment id="ID-SHOT-4e42b94004sk"> 

  <StructuralUnit href="http://www.ebu.ch/metadata/cs/mpeg/avdp/StructuralUnitCS#10"/> 

  <MediaTime> 

    <MediaRelIncrTimePoint>428</MediaRelIncrTimePoint> 

    <MediaIncrDuration>84</MediaIncrDuration> 

  </MediaTime> 

</AudioVisualSegment> 

<AudioVisualSegment id="ID-SHOT-4e42b94328sk"> 

  <StructuralUnit href="http://www.ebu.ch/metadata/cs/mpeg/avdp/StructuralUnitCS#10"/> 

  <MediaTime> 

    <MediaRelIncrTimePoint>512</MediaRelIncrTimePoint> 

    <MediaIncrDuration>116</MediaIncrDuration> 

  </MediaTime> 

</AudioVisualSegment> 

<AudioVisualSegment id="ID-SHOT-4e42b94804sk"> 

  <StructuralUnit href="http://www.ebu.ch/metadata/cs/mpeg/avdp/StructuralUnitCS#10"/> 

  <MediaTime> 

    <MediaRelIncrTimePoint>628</MediaRelIncrTimePoint> 

    <MediaIncrDuration>12</MediaIncrDuration> 

  </MediaTime> 

</AudioVisualSegment> 

<AudioVisualSegment id="TRID_6_AV"> 

  <StructuralUnit href="http://www.ebu.ch/metadata/cs/mpeg/avdp/StructuralUnitCS#10"/> 

  <MediaTime> 

    <MediaRelIncrTimePoint>309</MediaRelIncrTimePoint> 

    <MediaIncrDuration>84</MediaIncrDuration> 

  </MediaTime> 

  <MediaSourceDecomposition criteria="..." id="TRID_6_MSD_0" /> <!-- key frames (omitted) --> 

</AudioVisualSegment> 

<AudioVisualSegment id="TRID_7_AV"> 

  <StructuralUnit href="http://www.ebu.ch/metadata/cs/mpeg/avdp/StructuralUnitCS#10"/> 

  <MediaTime> 

    <MediaRelIncrTimePoint>393</MediaRelIncrTimePoint> 

    <MediaIncrDuration>116</MediaIncrDuration> 

  </MediaTime> 

  <MediaSourceDecomposition criteria="..." id="TRID_7_MSD_0" /> <!-- key frames (omitted) --> 

</AudioVisualSegment> 

<AudioVisualSegment id="TRID_8_AV"> 

  <StructuralUnit href="http://www.ebu.ch/metadata/cs/mpeg/avdp/StructuralUnitCS#10"/> 

  <MediaTime> 

  <MediaRelIncrTimePoint>509</MediaRelIncrTimePoint> 

  <MediaIncrDuration>12</MediaIncrDuration> 

  </MediaTime> 

  <MediaSourceDecomposition criteria="..." id="TRID_8_MSD_0" /> <!-- key frames (omitted) --> 

</AudioVisualSegment> 

Figure 1: MPEG-7 AVDP descriptions of the same three shots from two shot boundary detection 
tools. 

4.4.2 Time-aligned Metadata Diff (TAME-Diff) 

We have implemented a tool to determine differences between metadata documents, focusing on time-
aligned metadata of audiovisual content. The input to the tool are two metadata documents (one of 
them being the reference document, i.e., often the ground truth). In case the documents contain multiple 
metadata time lines, the time line to be compared can be specified (using XPath expressions). The tool 
then performs longest common subsequence alignment of the segments in the time line, allowing for 
insertions and deletions. Then a further diff is performed on each of the aligned segments, comparing 
the values of elements and attributes of the segment. Filters for certain elements/attributes can be 
specified (e.g., to ignore identifiers). 

Adapted LCS Algorithm 

Similar to the problem of matching spatial coordinates [Vlachos, 2002] or feature sequences of videos 
[Bailer, 2009], there is no binary match between two metadata segments, but similarity based on their 
time and content distance. We define two parameters, which constrain whether segments are 
considered matching: θ defines the minimum overlap of two segments to be counted as matching, δ 
defines the maximum time distance between start/end times of segments, in case they are non-
overlapping. The algorithm can be configured to apply one of the two constraints only, or link them with 
AND or OR. Based on these parameters, we can determine matching segments in the initial step of the 
LCS algorithm. In the backtracking step of the algorithm, we consider not just a single longest 
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sequence, but consider a set of long sequences (e.g., top k). We perform the backtracking step for each 
of these (possibly partly overlapping) sequences, and determine its similarity score as follows. 

The time distance dt of the segments S1 and S2 is defined as 

             (                   )                      . 

All times are normalised to seconds (as floating point numbers) before distance calculation. 

In addition, a content distance can be defined over a set of values in the segment, specified by a set of 
relative XPath expressions P, and a type of value distance dv (absolute difference, binary equality, string 
edit distance). The content distance dc is then defined as 

          ∑   (                       )

   

  

with xpath(S,P) being a function retrieving the value from a segment S using the XPath expression P, 
and dp the choice of dv for p. The segment distance dS is then a weighted combination of time and 
content distance, with a user defined parameter α: 

                 

In the backtracking step of the LCS algorithm, the per-segment distances dS(Sx,Sy) are summed for all 
segments Sx, Sy that have been determined as matching, yielding an overall distance DS for the two 
documents. We select the matching sequence with minimum DS. 

Determine Segment Differences 

We can directly report unmatched segments in the reference document as deletions and unmatched 
segments in the other input document as insertions, if they do not overlap with any segment in the other 
document. 

In case that they overlap with a segment in the other document, unmatched segments in the reference 
document constitute a split of segments, unmatched segments in the other input document constitute a 
merge of segments. 

Segments that have been matched, but differ in their start and/or end time, and/or values in the set P 
will be reported as updated. In case that the values in P match (i.e., dc(S1,S2)=0 ), segments will be 
reported as shifted (a special case of update). 

Result Representation 

As discussed above, we use Delta Update Language (DUL) as for the representation of the matching 
result. Two elements are added to DUL: 

 Split: Specifies that a segment in the reference document has been split. The split descriptors 
references the segment in the reference document and contains the new segments that have 
been created. 

 Merge: Specifies that segments of the reference document have been merged. The merge 
descriptors link to the segments in the reference document and contains the segment into which 
they have been merged. 

The DUL output for the example of Figure 1 is shown in Figure 2. It contains the updates of IDs and 
time points, as well as the insertion of the key frames. For the performance evaluation of shot boundary 
detection, these ID changes and insertions can of course be ignored. 

In addition, the tool produces statistics for matches and each type of edit between the two documents. 

<update node="AudioVisualSegment[1]/@id">TRID_6_AV</update> 

<update node="AudioVisualSegment[1]/MediaTime[1]/MediaRelIncrTimePoint[1]">309</update> 

<insert parent="AudioVisualSegment[1]" childno="3" nodetype="1"  

        name="MediaSourceDecomposition" /> 

<update node="AudioVisualSegment[2]/@id">TRID_7_AV</update> 

<update node="AudioVisualSegment[2]/MediaTime[1]/MediaRelIncrTimePoint[1]">393</update> 

<insert parent="AudioVisualSegment[2]" childno="3" nodetype="1"  

        name="MediaSourceDecomposition" /> 

<update node="AudioVisualSegment[3]/@id">TRID_8_AV</update> 

<update node="AudioVisualSegment[3]/MediaTime[1]/MediaRelIncrTimePoint[1]">509</update> 

<insert parent="AudioVisualSegment[3]" childno="3" nodetype="1"  

        name="MediaSourceDecomposition" /> 

Figure 2: DUL output for the example description fragments shown in Figure 1. 
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Implementation 

The tool has been implemented to handle metadata documents conforming to the MPEG-7 Detailed 
Audiovisual Profile (AVDP). AVDP groups results of automatic metadata extraction tools into separate 
temporal decompositions of the root audiovisual segment. TAME-Diff can thus work on one of these 
decompositions from two documents. As AVDP also supports the representation of multiple instances of 
analysis results from different tools, TAME-Diff can also be applied to determine differences between 
two temporal decompositions in the same document. 

The implementation of TAME-Diff is general enough to be easily adapted to other metadata formats 
supporting the representation of time aligned metadata. 

4.5 Differences for different types of metadata 

The following table summarises the types of differences considered for analysis and search tool 
developed in TOSCA-MP. 

Table 2: Types of metadata edits. 

Analysis/search tool granularity Type of information Edits 

Action, event, concept 
detection 

segment class insert, delete, substitute 

location symmetric difference of 
region 

Logo Detection  segment  class insert, delete, substitute 

location symmetric difference of 
region 

Sport Camera View 
Classification  

segment type substitute 

Specific content types  segment type/class insert, delete, substitute 

Genre classification global genre substitute 

segment genre insert, delete, substitute 

Quality Analysis segment defect occurrence insert, delete 

classification/value substitute 

Highlight Detection  segment type insert, delete, substitute 

 rating/score substitute 

Near duplicate detection  segment set of links insert, delete 

similarity score substitute 

Video segment clustering segment   

Shot clustering service segment cluster ID inserted to cluster, deleted 
from cluster, shifted, 
inserted, deleted 

Temporal segmentation  time 
stamp/range 

type insert, delete, shift 

Player Detection  s/t region  insert, delete, symmetric 
difference of region 

Face detection s/t region  insert, delete, symmetric 
difference of region 

Player Identification  s/t region identifier insert, delete, substitute 

Automatic Speech segment Transcript + time points insert, delete, substitute 
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Analysis/search tool granularity Type of information Edits 

Recognition  

Machine Translation  segment translated text(s) insert, delete, substitute 

Named entity recognition segment entity insert, delete, substitute 

Spoken Language 
Identification  

segment language ID substitute 

Audio Segmentation And 
Speaker Clustering  

segment speaker ID insert, delete, substitute 

Search Service  global ranked result set, 

global annotations 

insert, delete, rerank 

 

segment ranked result set insert, delete, rerank 
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5 Assessing components in task context 

5.1 Task-based benchmarking 

The advantage of benchmarking components as part of a system rather than stand-alone is that the 
performance for solving the task of the overall system is measured. This means that only those aspects 
of the individual components’ performance contribute to the results that are actually relevant in the 
system context, while individual evaluation cannot make this distinction. In many cases, the overall 
system task is on higher level in terms of both semantics and granularity, making it less effort to 
generate ground truth for the entire system result than for those of individual components. The 
drawback is of course, that it is difficult to draw conclusions about the impact of a single component on 
the system performance and assess the quality of results of an individual component. 

One approach to address this issue is comparative evaluation of components, i.e. benchmarking the 
system with two different implementations of a component. The SOA based architecture of TOSCA-MP 
facilitates this greatly and enables automation, as the process model derived from the task model 
enables resolving any dependencies resulting from the exchange of a component (e.g. further feature 
extraction services needed by one of the implementations). The task model provides information of the 
dependencies of subtasks, and thus about which components can be evaluated independently. This 
helps reducing the number of combinations of components that need to be evaluated. Based on the 
task models, subtask structures that are reused in different system configurations can be identified, so 
that comparative evaluation can also be done on that coarser level of granularity. The same approach 
can of course also be applied to evaluating parameterisations of components, which is specifically 
relevant for TOSCA-MP in order to automatically optimize processing chains to certain types of material. 

Figure 3 shows a schematic diagram of a system implementing the automatic steps of a task model. All 
components depend on a set of parameters θi. Some components (A1) depend only on the input 
audiovisual content (typically performing low-level feature extraction), others depend on both the 
content and outputs of other components (A2), or only on outputs of components earlier in the task (A3, 
A4). 

In order to benchmark an individual component (or parameterization) in the task context, one would 
have to run the system for the entire task for every choice of component and parameters, and using 
different types of content. Doing this on a large scale for a complex system is too time consuming. Thus, 
we aim at breaking the problem into assessing the impact of different contents, inputs and parameters 
to the output and measure these effects per component. 

A1

A2

A3

Content

A4D
a
ta

Data

D
ata

Data
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θ2

param 

θ1
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θ3

param 

θ4

 

Figure 3: Schematic visualisation of a system for executing a content analysis task. 

5.2 Modelling error propagation 

In order to benchmark a component in the task context, we aim at modelling the impact of content 
properties, parameters and errors in the results from previous components on errors in the component’s 
output. 

The task structure of a system can be considered as a directed graph (an acyclic one, if feedback is not 
included). This does not only model the flow of information, but can also be used to build a model of the 
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propagation of different types of errors to subsequent components (if there is sufficient ground truth to 
assess the performance a component individually). Clearly, the influence will differ for each error types, 
and depend on the type of content. Once the model parameters have been estimated for a certain type 
of content, the model can be used to assess the impact on the system performance based on individual 
evaluation results of a component.  

In order to derive such a model of error propagation from a task model, we use the following approach: 

 Each data flow between components is replaced by a set of error nodes. This set consists of 
the types of ground truth edits that are of relevance for the type of metadata exchanged 
between these components. 

 We introduce a node for the parameters of the component, and connect it to its output error 
nodes. 

 If the component accesses the content, we introduce a node for the content properties, and 
connect it to the component’s output error nodes. 

 We connect every input error node of the component (note that they may stem from different 
input error nodes) to every output error node of the component. 

 An output error node represents the probability of this type of ground truth edit, given the 
content properties, the parameters of the component and the probability distributions of input 
errors. 

As a representation for this model we use a Bayesian network. A part of the network resulting from the 
system above is shown in Figure 4. We model the error probabilities as conditional probabilities, 
conditioned on the set of error probabilities in the input (for simplicity, we omit parameters and content 
properties here). For example, output error probabilities of A2 are now given as 
p(e

i
A2|e

1
A1,e

2
A1)p(e

1
A1)p(e

2
A1). We make the assumption, that for the components under test the types of 

input errors are independent. If we test a single component by a simulation that introduces different 
samples of errors this is in fact the case. In the task context, errors may be originally caused by the 
same content property or previous error, but this dependency is actually modelled in links between 
previous nodes in the network. 

The reasons for choosing a Bayesian network as a representation are the following. The Bayesian 
network can be easily derived from the task model, and model error probabilities with various 
distributions and of various origins. The notion of output errors conditioned on input errors and priors 
(e.g. content properties) is quite intuitive. For example, one could as well include the error rates of 
human annotators. Bayesian networks are flexible in terms of structure and types of nodes, which 
enables not only modelling of arbitrary tasks, but also the inclusion of hidden layers in order to model 
more complex relations between input and output errors in components. Typically, the exact 
distributions of the error types are unknown, and can only be estimated from sampled data. Also, 
inference algorithms for Bayesian networks are able to deal with incomplete data, which is a 
requirement in practical applications. 

Bayesian networks have also been proposed in [Bai, 2005] to model software failures. Like in our 
problem, the exact distributions of the error’s probabilities are unknown. An alternative representation is 
a neural network. However, as we do not know the function of each node analytically, estimating 
weights using the traditional back-propagation can only be done with estimating the gradient from 
samples (cf. [Oohori, 2007]). Compared to Bayesian networks, it is more difficult to model arbitrary 
structure, as well as errors that do not only have a probability, but an associated value (e.g. the amount 
of shifting a boundary). 

The model benefits from a modular representation of errors that are ideally as independent as possible. 
Thus, we argue for a representation of errors based on individual edits to the ground truth as proposed 
in Section 4.2, rather than using common measures such as precision or recall, that include various 
types of errors. 

In practical cases, we might experience cases where certain deviations from the input ground truth 
(which are errors) cause improvements of the output. We treat those as errors as well, as they are 
deviations from a target result. 



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 21 

e
1

A1

e
2

A1

e
1

A3

e
2

A3

e
3

A3

e
1

A2

e
2

A2

 

Figure 4: Bayesian network model corresponding to a part of Figure 3. 

A model for a complete network can be assembled from the building blocks for individual components, 
making use of the model parameters estimated in smaller experiments individually for each of the 
components. 

We represent all nodes as univariate Gaussians. We use the EM algorithm for learning the network 
parameters, as implemented in the Bayes Net Toolbox [Murphy, 2001]. 

5.3 Component parameters 

So far, we have only considered the influence of input errors on the output. We can model parameters 
of one component as a node or a set of nodes. Every output error variable is in addition to the input 
errors also conditioned on the parameters. The parameters are tied conditions for the output errors, i.e. 
all output error nodes depend on the same set of parameters.  

As described above for the input errors, we can sample different sets of parameters and assess their 
impact on the output errors. Different implementations of a component can be thought of as entirely 
different parameter sets (with the practical drawback that they cannot be so easily varied). This a typical 
procedure for parameter optimisation and evaluations such as ROC curves. However, the use of the 
results is different, as in the end we may not choose the optimal parameters concerning the output 
errors for the component itself, but the errors of a later component in the process. 

5.4 Content dependency 

The properties of the actual content to be processed have direct impact on components that access the 
content, and not only results of previous components. In this context, low-level features are treated like 
the content itself, as the extracted feature can be assumed to be “correct”, if the extractor has been 
tested. We do not have an intermediate result that abstracts the dependency of the content properties in 
this case, thus any component using low-level features is considered depending on content properties. 

For these components we introduce nodes that represent content-specific information. The probabilities 
output error nodes of a component are conditioned on these nodes. We can consider two options for 
modelling these dependencies. 

Error priors. We can measure output error probabilities for a specific content item (or better, a set of 
content items sharing similar characteristics), using only ground truth for the other inputs (if any). The 
output errors are then conditioned on the respective type of input error, measured on the same content 
(class) using ground truth inputs. The drawback is that we need specific priors for each output error type 
and that the number of measurements we can obtain is typically small. 
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Feature statistics. We can model a set of feature properties as nodes in the Bayesian network, and 
estimate their parameters based on input data. These measurements could be made on smaller 
temporal granularity in order to obtain more and more precise measurements. If we use sufficient data, 
we can expect to obtain a model with good generalisation. While these nodes are tied parameters for all 
output error nodes of all components, the influence on the specific output errors needs to be trained 
separately. [Valdes, 2012] propose a system to predict different evaluation scores of video summaries 
(inclusion of ground truth elements, pleasantness of tempo, low level of redundancy) based on low-level 
features extracted from the video. They manually pre-select appropriate features for each of the criteria 
first, and then train a classifier on this data. They tested neural networks and SVMs, and finally used 
regression trees

19
. 

We represent content properties in a similar way as errors of earlier components in the workflow, and 
model output errors conditioned on values/value ranges of the content properties. 

5.5 Example 

 

Figure 5: Example excerpt of a video analysis task model. 

Figure 5 shows an example excerpt of a task model of a video analysis process. Tasks are either 
automatic or interaction tasks. The tree structure defines decomposition of tasks into subtasks, while the 
links on the same level define temporal dependences and information flow. 

 

Figure 6: Left: Bayesian network modeling dependencies between shot boundary detection and 
clustering errors. Right: Bayesian network modeling dependencies between shot boundary 

detection errors, visual activity and video breakup detection errors. 

The Bayesian networks for modelling the errors of two components from the task model in Figure 5 are 
shown in Figure 6: near-duplicate shot clustering and video breakup detection. Near-duplicate shot 
clustering groups shots that show visually similar action, such as repeated takes of the same scene. We 
model the dependency on the errors of the input shot boundary detection w.r.t. a ground truth (see 
Figure 6 left): merge of two segments (M), split of two segments (S), small shift (<=5 frames) of 
segment boundaries (Sh1), and large shift (>5 frames) of segment boundaries (Sh2). All input values 
are expressed in terms of fractions, normalized by the number of segments. For the output of the 
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 Note: regression tree has only discrete set of output values 
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clustering algorithm, we consider the following edit operations: fraction of takes added to assigned 
clusters (Tc+), fraction of takes missed from assigned clusters (Tc-), fraction of shifts of boundaries of 
all assigned takes (Ts), fraction of added unassigned takes (Tx+) and fraction of missed unassigned 
takes (Tx-).  

Video breakup detection aims at identifying major image disruptions, for example caused by head 
clogging, assemble edits, lost lock, recorded serious digital error corrections, severe TBC hits and 
damaged tapes. Both shot boundaries and some erratic motions (e.g., water surfaces, flames) may 
cause false positives of video breakup detection. We thus model the dependencies on both shot 
boundary detection and the visual activity of the video (see Figure 6 right): the merge of two segments 
(M), the split of two segments (S) and the 0.1, 0.5 and 0.9 quantiles of the visual activity (nodes AQ.1, 
AQ.5, AQ.9). The outputs of the video breakup detector are modelled by false positive (FP) and false 
negative (FN) detections. 
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6 Benchmarking Search and Result Presentation 

We consider a similar approach as for chains of analysis models. A search component is considered a 
component in the processing flow, which depends on previous analysis modules, each producing 
metadata. Like analysis component, the search component depends on the output of previous 
components and its parameters. Instead of depending on the content, the search component depends 
on the provided query. The output is a specific type of metadata, i.e. a result set. A simple schematic 
example is shown in Figure 7. 
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A2 Query
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Data

Data

Result

param 

θ1
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Figure 7: Schematic visualisation of a system performing search based on analysis results. 

We can thus apply the same approach for turning the graph into a Bayesian network of edits to 
metadata, as described in Section 5.2. At the input side, these are the edits to the respective metadata 
items from the analysis. At the output sides, these are edits to the result list, which may include ranking 
changes, modification of relevance scores or changes to clustering (in case that results are grouped). 

6.1 Search types and properties 

Using information from the task descriptions collected in D4.1, we classify different types of search 
tasks, and discuss their properties and constraints. These properties define how specific aspects of the 
search result are weighted in the assessment process. 

Table 3: Properties of different types of search/browsing tasks. 

 Exhaustive 
search 

Most/few 
relevant items 

Known 
item(s) 

Stock shot Browsing, 
exploration 

Use cases BG1.1 

BG1.2 

BG2 

BG8 

BG1.2 

BG6 

BG7 BG1.1 

BG1.2 

Tasks (from 
D4.1) 

Search for 
coverage 
on news 
topics 

Search for 
multilingual 
news 
material 

Material for 
specific news 
item, 

Highlight 
summary 

Material for 
mobile/web 
news story, 
near duplicate 
search  

 Gathering 
material for 
general purpose 
programmes, 
documentaries 

 

Search for 
multilingual 
news material 

Exhaustiveness Yes Completeness 
of highlights 

No Yes Not mandatory 
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 Exhaustive 
search 

Most/few 
relevant items 

Known 
item(s) 

Stock shot Browsing, 
exploration 

Diversity Yes, 
different 
viewpoints, 
different 
languages 

No  Yes, 
different 
viewpoints 

Yes, different 
viewpoints, 
different 
languages 

Inclusion of 
known items 

  Yes, from set 
of broadcast 
items 

  

Ranking Yes,  

Results 
ranked 
w.r.t. the 
query 

Yes,  

Results ranked 
w.r.t. the query 

  Yes,  

Results ranked 
w.r.t. the query 

Importance of 
persons/events/
visual properties 

Persons, 
events, 
places 

Persons, 
events, places 

Persons, 
events, places 

Persons, 
events, 
places 

Specific 
requests on 
topics, persons, 
locations, 
buildings 

Result 
visualisations 

Yes, 
Advanced 
features 
(how 
elements of 
the domain 
are related) 

  List of stock 
shot. 
Additional 
information 
(e.g. 
licence) 

Yes, Advanced 
features (how 
elements of the 
domain are 
related) 

Quality    Important Important 

Frequency >5x / month 1-9 x / day   1-9 x / day 

Available time 4-24 hrs < 0.25 hrs   1-40 hrs 

6.2 Evaluating search 

[Thomas, 2006] surveyed different methods for comparing result sets, including the Cranfield paradigm 
(cf. TREC), the analysis of search logs (mentioning the drawbacks trust bias, quality bias and the lack of 
sufficient user interactions during judging results) and users tests (with the drawback of lab or natural 
settings). They argue that it is possible to predict real-world performance from lab experiments, and 
propose side by side presentation of two results, where users are explicitly asked questions. [Sakai, 
2007] surveyed different measures and found (average) normalised discounted cumulative gain 
((A)nDCG) to be best rank-based measure, and Q-measure to be the best recall based. A drawback of 
the cumulative gain type measures is the need for graded relevance judgements. 

In addition to the evaluation of an initial result set returned, we consider browsing and exploratory 
search. This can be done by evaluating individual steps of an interaction flow, e.g., by considering the 
initial result and proposed links based on a result item as separate steps (cf. the MediaEval Search & 
Hyperlinking task [Eskevich, 2013]). Alternative options are evaluation based on a task goal, e.g. the set 
of content items collected after interactive search process, or by questionnaires (cf. [Bailer, 2009]). The 
disadvantage of the second option is that it cannot be automated, while the first one can be represented 
in our framework by determining differences to one more user defined ground truth result sets. [Wilson, 
2009] proposed a framework for evaluation of exploratory search considering stratified (components of 
the system) vs. episodic (interaction flow) models, information seeking models (cf. [Belkin, 1995], 
[Belkin, 2000]) and strategic models. The method measures for each feature and tactic the number of 
moves required. However, it may not always clear which interaction corresponds to the application of 
which tactic, and the costs for interactions may differ. Thus it is hard to automate this approach. 
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For some of the cases above diversity is an important issue. [Radlinski, 2009] observes that the need 
for diversity may have two reasons: It may in fact be part of the information need (e.g., a query for 
“Olympics games” should not return only results from one year), or it may be the result of the user’s 
uncertainty about the query. They propose to deal with redundant results by assigning the cost of the 
user to skip them. 

[Clarke, 2008] propose a model of novelty and diversity based on “information nuggets” and integrate it 
into a cumulative gain measure. They determine an “ideal gain”, i.e. the optimal cumulative gain over all 
ranks, and evaluate this method on a question answering task. [Zhai, 2003] consider the contextual 
dependence between items in the result set, focusing on grouping into subtopics. The evaluation is then 
done using a combination of subtopic novelty and relevance. When items are grouped by subtopics, this 
representation can also be treated as a clustering problem and evaluated accordingly. Depending on 
the specific problem, it may be sufficient to include any representative item from a cluster in the initial 
result, and leave it to the user to further explore specific topics. 

Another discriminating aspect of the types of searches listed above is the number of relevant 
documents expected. In some cases a few (or even single) relevant document(s) may be sufficient, 
while in other cases all relevant documents must be returned. [Chen, 2006] proposed an evaluation 
model for cases where a single or few relevant documents may answer the query. If a topic has 
subtopic/facets, then one/few for each of them should be returned. 

[DeVries, 2004] discusses dealing with varying granularity of results, rather than countable items with 
binary relevance. They propose a measure called tolerance to irrelevance, defined as the time a user 
would watch an irrelevant video segment before moving away. On the proposal of the TOSCA-MP 
team, this measure was also included in the evaluation of the MediaEval S&H task [Aly, 2013]. 

The methods proposed by [Radlinski, 2009] and [DeVries, 2004] are interesting in the context of 
TOSCA-MP, as they include the notion of users’ costs for dealing with imperfect results. This is well in 
line with the work on cost simulation described in Section 7.6 and enables applying this approach to 
assessing search results. 
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7 Benchmarking experiments 

In this section we describe a number of experiments that we have performed using Bayesian networks 
as proposed in the previous section. These experiments cover both content analysis, search and result 
presentation. In particular, we assess task-based evaluation of temporal segmentation, clustering of 
video segments, quality analysis and ASR and NER, as well as evaluation of search, linking of related 
search results and content visualisation. 

7.1 Clustering similar video segments 

We model a network that represents the inputs and outputs of a clustering component for video 
segments, and we are interested in the following aspects: 

 predicting output error probabilities based on knowledge about input error probabilities 

 including a simple prior of content properties 

 dealing with incomplete data 

 level of detail of deviations from ground truth 

 lack of ground truth for intermediate steps 

7.1.1 Experiment setup 

The component under test is the algorithm for clustering similar takes to scene clusters described in 
[Bailer, 2009]. It has been chosen due to the availability of ground truth from the TRECVID BBC Rushes 
2008 Task [Over, 2008]. We use six videos from this set. 

The component has the following inputs: 

 The content itself (via color, texture and motion features) 

 A temporal segmentation of the video (shots) 

The component has the following outputs: 

 A set of clusters, with assigned take segments 

 Start and end times for the take segments (which may be subshots of the input shots in case of 
partial matches) 

For the input segmentation, we consider the following edit operations (corresponding to possible error 
types) of the input segment w.r.t. a ground truth: 

 Merge of two segments (M) 

 Split of two segments (S) 

 Small shift of segment boundaries (Sh1), (at most 5 frames) 

 Large shift of segment boundaries (Sh2), (more than 5 frames) 

All input values are expressed in terms of fractions, using the number of segments as denominator. 

 

We consider the following edit operations of the output w.r.t. a ground truth (respect to the processing 
result obtained for a ground truth input, see experiment descriptions below for details) 

 Fraction of takes added to assigned clusters (Tc+) 

 Fraction of takes missed from assigned clusters (Tc-) 

 Fraction of shifts of boundaries of all assigned takes (Ts) 

 Fraction of added unassigned takes (Tx+) 

 Fraction of missed unassigned takes (Tx-) 

 

The resulting Bayesian network is shown in Figure 6 (left).  
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7.1.2 Data 

Starting from a ground truth temporal segmentation for each of the videos, we generate a set of 100 
segmentations for each video, where we introduce random errors. 

The parameters of the errors are as follows (normally distributed): 

 Fraction of merged segments: N(0.1;0.05) 

 Fraction of split segments: N(0.1;0.05), the relative split position is N(0.5;0.2), i.e., around the 
center of the segment 

 Fraction of shifted segments: N(0.2;0.05), the shift in number of frames is N(7;3) 

We run the clustering component for each of these input segmentations. Figure 8 shows the output 
errors w.r.t. the results obtained from using the ground truth as input. This excludes the errors occurring 
only based on the content properties. The results show that errors of the types Tc+, Tc- and Ts (i.e., 
those concerning changes in the result clusters) only appear in a small fraction of the result videos, and 
if they occur, only a small fraction of error occurs. 

Figure 9 shows the output errors w.r.t. the actual output ground truth, i.e., including errors independent 
of input errors. The situation is now different, especially concerning Ts, Tx+ and Tx- which have modal 
values larger than 0 and higher variance as before. 

As a baseline, we have generated samples from a univariate Gaussian with mean and standard 
deviation of the measured output errors. The results are shown in Figure 10 through Figure 13. Figure 
10 and Figure 11 show the distribution of the different types of errors, determined against a result using 
the segmentation ground truth and against the actual ground truth, respectively. Figure 12 and Figure 
13 show the errors obtained from a random (per video and across all videos).For the random 
experiment and the other experiments we report the absolute error of the predicted fraction or errors vs. 
the measured fraction of errors. In the plots, the top of the blue box represents the 75 percentile, i.e. 
88.5% of the errors can be expected to be below this value. 

In each of the experiments, we report per video and across videos results. Per video uses 80% of the 
samples of a video for training, and 20% of the same video for prediction. Across videos is leave-one-
out cross-validation, i.e. uses all samples of all but one video for training, and the samples of the 
remaining video for prediction. 

 

Figure 8: Distribution of errors (against result obtained from using the ground truth as input). 
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Figure 9: Distribution of errors (against actual ground truth). 

 

Figure 10: Random prediction (against result from ground truth input), absolute fraction of 
output errors (per video) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 
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Figure 11: Random prediction (against result from ground truth input), absolute error of fraction 
of output errors (across videos) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts,4=Tx+,5=Tx-

). 
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Figure 12: Random prediction (against ground truth), absolute fraction of output errors (per 
video) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 

 

Figure 13: Random prediction (against ground truth), absolute fraction of output errors (across 
videos) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 
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We investigate the correlation between the performance of shot boundary detection (measured by 
precision, recall and F-measure) and the F-measure of the subsequent clustering step. Figure 14 shows 
the relation between the F-measure of the temporal segmentations and the F-measure of the clustering 
results obtained using these segmentations. As is apparent from this figure there is actually no 
correlation when considering F-measure values above 0.5. The correlation coefficient is 0.0036 and the 
rank correlation coefficient is 0.0028. One reason for this poor correlation is that the metric used for the 
temporal segmentation does not take all types of errors into account. Shifted shot boundaries create 
both a true and a false positive, thus reducing both precision and recall. In addition, the different types 
of errors impact the subsequent clustering differently, which is not taken into account by a generic 
metric. We can conclude that the traditional evaluation of temporal segmentation does not help us in 
assessing whether a specific segmentation algorithm (or a specific parameterization) is better for the 
subsequent analysis step than another one. 

 

Figure 14: Scatter plot of the F-measure obtained from clustering results against the F-measure 
of the temporal segmentation. 

7.1.3 Experiment 1: basic prediction of output errors 

In this experiment we predict only the errors w.r.t. a result generated from the ground truth as input. The 
content properties of the video are not taken into account. Figure 15 and Figure 16 show the plots for 
the errors per video and across the videos. 

In general, the prediction works quite well. Across the videos, most of the results are only slightly worse 
than those per video, but with a larger number of outliers.  

Table 4: Difference of root median square error between prediction and random prediction. 

 Tc+ Tc- Ts Tx+ Tx- 

per video 0.0032 0.0017 0.0017 0.0069 0.0218 

across videos 0.0089 0.0018 0.0018 0.0112 0.0188 
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Figure 15: Prediction (against result from ground truth input), absolute fraction of output errors 
(per video) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 

 

Figure 16: Prediction (against result from ground truth input), absolute fraction of output errors 
(across videos) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 
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Predicting F1 

Figure 17 shows the resulting correlation between the estimated and actual F-measures on the test 
data. We obtain a correlation coefficient of 0.50 and a rank correlation coefficient of 0.48. These results 
are a significant improvement over using precision/recall or F-measure, where we could not measure 
any clear correlation. 

 

Figure 17: Scatter plot of the F-measure obtained from clustering results against the estimated 
F-measure from the temporal segmentation. 

7.1.4 Experiment 2: simple content prior 

The model does not explicitly include the dependency of the performance of the content properties of a 
specific video, but only adds prior probabilities for the output errors for each video. Figure 18 shows the 
modified Bayesian network, where the nodes with subscript 0 represent the respective error when using 
ground truth segmentation as input.  

The input is the same data as in experiment 1, but we now compare the output against the actual 
ground truth. 

The results are slightly worse than in experiment 1, probably due to added complexity of the model 
(adding five more nodes, but only providing little data, i.e. one constant value per video and node). 
However, the improvements over the random output shown in Table 5 are better for many of the error 
types than in experiment 1. In additions, this approach allows comparison against actual ground, rather 
than deviation from a result generated with input ground. 

For individual videos no improvement could be expected, as just a constant for each type of error is 
used. For the set, the model is only trained from 5 sets of prior error probabilities, which does not seem 
to be sufficient.  

Table 5: Difference of root median square error between prediction and random prediction. 

 Tc+ Tc- Ts Tx+ Tx- 

per video 0.0060 0.0053 0.0077 0.0147 0.0334 

across videos 0.0002 0.0013 0.0314 0.0079 0.0737 
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Figure 18: Modified Bayesian network including the prior output errors for a video. 

 

Figure 19: Prediction (against ground truth), absolute fraction of output errors (per video) for the 
different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 
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Figure 20: Prediction (against ground truth), absolute fraction of output errors (across videos) 
for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 5=Tx-). 

7.1.5 Experiment 3: missing data 

The experiment is the same as experiment 1, but we omit some of the data on input errors. We assume 
we have no values for merged shots in the input (as it might be easier just going from shot boundary to 
shot boundary and checking the correctness, rather than trying to find missed ones). In training with this 
data, the EM algorithm needs significantly longer to converge, but the results are only slightly worse 
than the ones obtained from complete data. This experiment shows that the Bayesian network is 
capable of dealing with missing data and still provides satisfactory results, which increases the practical 
value of the approach for cases where only partial ground truth can be obtained (e.g., from user 
feedback). 
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Figure 21: Prediction with missing data (against result from ground truth input), absolute 
fraction of output errors (per video) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 

5=Tx-). 

 

Figure 22: Prediction with missing data (against result from ground truth input), absolute 
fraction of output errors (across videos) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 

4=Tx+, 5=Tx-). 
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7.1.6 Experiment 4: precision/recall for input 

In this experiment we try to verify, whether the higher granularity of the deviation against the ground 
truth is actually needed. We use the data from experiment 1, but we convert the input errors into 
precision and recall. Merged and split shots naturally translate into false negatives and false positives. 
Small shifts of shot boundaries are ignored, and large shifts contribute to both false positives and false 
negatives. We remodel the network so that it only has two nodes on the input side, representing 
precision and recall. 

As can be expected, the results are slightly worse as when using the more detailed errors of the input 
ground truth. 

 

Figure 23: Prediction from precision/recall (against result from ground truth input), absolute 
fraction of output errors (per video) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 4=Tx+, 

5=Tx-). 
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Figure 24: Prediction from precision/recall (against result from ground truth input), absolute 
fraction of output errors (across videos) for the different types of errors (1=Tc+, 2=Tc-, 3=Ts, 

4=Tx+, 5=Tx-). 

7.1.7 Experiment 5: no ground truth for intermediate results 

In this experiment, we assume that we have no ground truth for the shot segmentation, but only for the 
final output of the process. We thus generate segmentations of varying quality levels, and try to learn 
the network parameters from this data. 

We use the data from experiment 1. We generate shot boundary results from the ground truth, adding 
errors of each type. We generated 5 levels of quality, adding a normally distributed fraction of errors 
with means 0.05; 0.1; 0.2; 0.3 and 0.4. We then use one of these like the ground truth in experiment 1, 
i.e. we generate variation of it and run the clustering component. 

Figure 25 and Figure 26 show the median error per and across videos. As expected, the error increases 
with decreasing quality of training data. The increase of the error is higher for the per video results than 
across videos. This seems to be due to the fact that the across video results are based on a larger set 
of data and are thus more robust. Despite the increase, the error rates are still in a reasonable range. 
For many analysis tools, error rates not higher than 20-30% can be expected from actual results. This 
means that the approach can be applied even if ground truth is missing for an intermediate step. The 
parameters of the network can also be learned from simulations based on actual results. 
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Figure 25: Median absolute error per video determined from input segmentation with different 
mean errors. 

 

Figure 26: Median absolute error across videos determined from input segmentation with 
different mean errors. 
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7.2 Quality analysis 

We assess the performance of a video breakup detection algorithm, depending on a previous shot 
boundary detector and content properties of the video, in particular the visual activity (including camera 
and object motion).  

7.2.1 Experiment setup 

We use the video breakup detector described in [Fassold, 2012]. 

The video breakup detector has the following inputs: 

 The content itself 

 A temporal segmentation of the video (shots) 

The component has the following outputs: 

 Segments with start and end times where video breakups have been detected 

 A confidence value for each detection 

For the input segmentation, we consider the following edit operations (corresponding to possible error 
types) of the input segment w.r.t. a ground truth: 

 Merge of two segments (M) 

 Split of two segments (S) 

All input values are expressed in terms of fractions, using the number of segments as denominator. 

 

We consider the following edit operations of the output wrt a ground truth: 

 Fraction of false detections (FP) 

 Fraction of missed detections (FN) 

 

The corresponding Bayesian network is shown in Figure 6 (right). 

7.2.2 Data 

For assessing the video breakup detection algorithm, we use a data set collected by the vdQA project
20

. 
The data set consists of 84 videos (9,267 shots) which contain 89 video breakup defects.  

For the activities, we only use the actual measurements from the videos. We generate a set of 1,000 
segmentations for each video, where we introduce random errors. As we do not have ground truth shot 
boundaries, we use the results of an actual shot boundary detector as input to the generation. 

The parameters of the errors are as follows (normally distributed): 

 Fraction of merged segments: N(0.1;0.05) 

 Fraction of split segments: N(0.1;0.05), the relative split position is N(0.5;0.2), i.e., around the 
center of the segment 

We generate outputs of the video breakup detection algorithm, not taking shot information into account 
(one would usually discard detections across shot boundaries). We can apply the shot boundary 
information later, i.e., without rerunning the feature extraction, and generate the video breakup detection 
results for each of the input shot boundaries. We perform 5-fold cross validation, training on 80% of the 
generated shot boundaries and activities of the respective videos and testing on 20% each time. 

As a baseline, we determine the mean absolute error rate for a prediction only based on the statistics of 
output errors of the video breakup detector. This baseline is 0.0298 for false positives, and 0.0250 for 
false negatives. 

7.2.3 Prediction of error rates 

Using shot boundaries only for the prediction, we obtain 0.0277 for false positives and 0.0117 for false 
negatives, using only activities 0.0220 for false positives and 0.0112 for false negatives. These results 
show that activity provides a better prediction, especially for false positives. The error rate for false 

                                                      
20

 http://vdqa.icg.tugraz.at/ 
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positives is in general higher, mainly due to a few large outliers. The MAE for using both shot 
boundaries and activities for the prediction is the same as for activities only. Figure 27 shows the 
statistics of ground truth errors and predicted errors. 

 

Figure 27: Ground truth and predicted error rates for video breakups, using both activities and 
shot boundary errors as input. 

7.3 Using ASR output for named entity extraction and matching 

We assess the influence of the performance of the ASR output on subsequent tasks, in particular, 
named entity recognition (NER) and semantic similarity matching. 

There is work from the area of spoken language understanding that shows that the performance of 
keyword recognition or task identification from speech is not always correlated with the word error rate 
(WER). [Riccardi, 1998] showed that in a system for call routing, small WER improvements can result in 
significant overall performance improvements. [Wang, 2003] observe that there is no correlation or even 
negative correlation between WER and task identification in a language understanding system, when 
WERs are moderate. In contrast, for keyword-based topic detection, [Park, 2008] report that the 
keyword error rate increases more than the WER when the quality of the transcript deteriorates. [He, 
2011] investigated the relation between ASR and subsequent machine translation, and reports that 
optimizing the ASR component of the BLUE score of the subsequent translation improves the results 
over optimizing the ASR component for WER. 

7.3.1 Experiment 1: Named Entity Recognition 

Experiment setup 

We use the speech recognition service developed by FBK and the named entity recognition service 
developed by KUL (see D2.3). 

The named entity recogniser uses the ASR output as its input and outputs a list of named entities, as 
well as their type (person, organisation, location).  

For the ASR output, we consider the following edit operations (corresponding to possible error types) of 
the input segment w.r.t. a ground truth: 

 Inserted words (IASR) 

 Deleted words (DASR) 



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 43 

 Substituted words (SASR) 

All input values are expressed in terms of fractions, using the total number of words as denominator. 
The sum of the error fractions corresponds to the word error rate (WER). 

We consider the following edit operations of the output wrt a ground truth: 

 Fraction of false named entity detections (FP) 

 Fraction of missed named entity detections (FN) 

 

The corresponding Bayesian network is shown in Figure 28 (left). 
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Figure 28: Bayesian network modelling the use of ASR outputs for named entity recognition 
(left) and in the MediaEval Search & Hyperlinking task (right). 

Data 

We use 9 videos from the TOSCA-MP data set. These videos are news broadcasts from DW-TV in 
English with a total duration of about 25mins each. For these files, a manually created speech transcript 
has been created by FBK/CELCT, and NER ground truth has been created by KUL and JRS. 

The NER service has been run on three sets of inputs: 

 The manually generated ground truth 

 Actual output of the ASR service 

 A simulated ASR output, with errors added as follows: The target word error rate was chosen to 
be the same as the ASR output, with 60% of the errors being substitutions, and 20% each 
deletions and insertions. The errors were uniformly distributed over the text and independent of 
word categories. It was assumed that the substituted and inserted words contain the same 
fraction of named entities as the ground truth of the respective video. 

Results 

We assessed the fractions of matching, inserted and deleted words depending on the level and 
distributions of errors in the input text. As expected, performance is best for the ground truth, setting a 
maximum performance level for the NER algorithm under test. The actual ASR output and the simulated 
ASR output have the same word error rate, but the actual ASR output results in a higher error rate of 
the named entities. The results (shown in Figure 29) indicate that the ASR algorithm is more likely to 
have errors on named entities than on other words, which can be expected due to the number of names 
and places appearing in news that have not been encountered before. In some cases, also the 
inconsistent pronunciation of foreign names contributes to this issue.  

In addition to the numbers for matches, insertion and deletions shown in Figure 29, we also assessed 
partial matches of named entities (e.g., only first or last name of a person). The rates for partial matches 
are 0.038 for the ground truth, 0.066 for the actual ASR result and 0.096 for the simulated one. This is 
the only case where the ranking of the results for the three input types is different, i.e. the actual ASR 
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outperforming the generated one. The ASR algorithm seems to more likely succeed or fail on the entire 
named entity, while the simulated result treats each word of multi-word named entities independently. 
We additionally checked for matching entities, but with a wrong entity class assigned. However, this has 
not been observed in the outputs for this data set. 

 

 

Figure 29: Matches, deletions and insertions of named entities. 

7.3.2 Experiment 2: MediaEval Search & Hyperlinking Task 

Experiment setup 

We have used the linking step of the MediaEval 2013 Search & Hyperlinking (S&H) task to assess the 
dependency of the text-based linking on the ASR performance. For short summary of the S&H task, see 
section 7.5. The linking step determines video segments from the collection related to an anchor 
segment based on their similarity. We use only text-based similarity between the segments, taking the 
context segment of the anchor into account. The method is described in [Lokaj, 2013]. 

The textual linking component depends on the ASR output for the segments to be matched and the 
search result for which the anchors are chosen. 

For the ASR output, we consider the following edit operations (corresponding to possible error types) of 
the input segment w.r.t. a ground truth: 

 Inserted words (IASR) 

 Deleted words (DASR) 

 Substituted words (SASR) 

All input values are expressed in terms of fractions, using the total number of words as denominator. 
The sum of the error fractions corresponds to the word error rate (WER). 

In this experiment we do not model the dependency from the performance of the search system, but 
assume the input anchor as fixed. We describe experiments considering this modification in Section 7.5. 

We consider the following edit operations of the output w.r.t. a ground truth: 

 Fraction of segments added (Ri) 

 Fraction of segments deleted (Rd) 

 Fraction of segments ranked higher (R+) 

 Fraction of segments ranked lower (R-) 

 

The corresponding Bayesian network is shown in Figure 28 (right). 

Data 

We use the manual subtitles provided by BBC as the starting point of the experiment. We generate 
versions of the subtitles by randomly introducing errors with a certain target WER, assuming that 20% of 
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the errors will be insertions, 20% deletions and 60% substitutions. We then run the linking approach 
described in [Lokaj, 2013], using textual similarity only.  

Results 

Figure 30 shows the results of the experiment, reporting mean average precision (MAP) and precision 
for the top 5 and 10 ranks. The performance decreases only moderately with increasing WER, esp. the 
precision at the top ranks stays at the same level up to a WER of 0.4. At a WER of 0.7, the MAP is half 
of the value for the unmodified input. This is in line with the official results, which show that there is no 
significant performance difference between the subtitles and ASR outputs (however, the WERs of these 
ASR outputs are not known). 

 

 

Figure 30: Dependency of linking performance on word error rate. 

7.4 Search benchmark 

This following experiment is based on the Search and Hyperlinking Task at MediaEval 2013 [Eskevich, 
2013]. MediaEval is a benchmarking initiative for multimedia evaluation that brings together researchers 
who participated in benchmark tasks to report on their findings, discuss their approaches and learn from 
each other. MediaEval offers different inspiring new scenarios of user interaction to deal with the 
increasing amount of digital multimedia content available. In this case, the underlying use scenario is a 
popular information seeking strategy that is executed millions of times every day: users search for 
relevant information using a query and then follow hyperlinks to further explore the collection. For the 
textual web, this use scenario is already supported by search engines and embedded hyperlinks in web 
pages. Furthermore, there is research in searching for multimedia content and in, mainly manually, 
linking such content. However, there is virtually no research in supporting searching and hyperlinking 
videos. The Search and Hyperlinking Task models a specific instance of this use scenario to encourage 
researchers to develop technology that supports home users in their daily routine.   

About the dataset 

The dataset for the task was formed by textual resources and visual cues.  

On the one hand, a collection of 1,260 hours of video was provided by the BBC. The average length of 
a video was roughly 30 minutes and most videos were in the English language. The collection was used 
both for training and testing of systems. The BBC also provided human generated textual metadata and 
manual transcripts for each video. Participants were also provided with the output of two automatic 
speech recognition (ASR) systems:  
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 All audio files were transcribed by LIMSI-CNRS/Vocapia using the VoxSigma vrbs_trans system 
(version eng-usa 4.0) [Gauvain, 2002]. The models used by the system have been updated with 
partial support from the Quaero program [Gauvain, 2010].   

 The LIUM system [Rousseau, 2011] is based on the CMU Sphinx project, and was developed 
to participate in the evaluation campaign of the International Workshop on Spoken Language 
Translation 2011. LIUM generated an English transcript for each audio.  

On the other hand, participants are provided with shot boundaries, one extracted key frame per shot, as 
well as the outputs of concept detectors and face detectors for these key frames. For each video, shot 
boundaries were determined and a single key frame per shot was extracted by a system kindly provided 
by Technicolor [Massoudi, 2006]. The extracted frame was the most stable I-frame within its shot. In 
total, the system extracted approximately 1,200,000 shots/key frames. Concept detection scores for a 
list of concepts were provided. These concepts were selected by extracting keywords from metadata 
and spoken content. We used the on-the-fly video detector Visor, which was kindly provided by the 
Computer Vision Group of University of Oxford [Chatfield, 2011]. To make the confidence scores 
comparable over multiple detectors, organizers used them as variables in a logistic regression 
framework, which ensures the scores lie in the range [0:1]. They set the logistic regression parameters 
to the expected value of the parameters from over 374 detectors on the Internet archive collection used 
in TRECVid 2011. INRIA [Cinbis, 2011] kindly provided possible bounding boxes in key frames with a 
confidence score that the bounding box contains a face. Additionally, the tool also contained for each 
bounding box, the N most similar faces (bounding boxes) in the dataset. 

About ground truth and evaluation 

For the definition of realistic queries, organizers conducted a study with 30 users between the ages of 
18 and 30. By browsing the collection, the users selected items, a segment of a video with a start and 
an end time, that were interesting to them. The users were then instructed to consider these items as a 
known-item which they have to rediscover. Organizers asked the users to formulate text and visual 
queries that they would use in a search engine to carry out their re-finding. The study resulted in 50 
known-items and corresponding multimodal queries.  

Organizers used the following three metrics in order to evaluate the submissions of the workshop 
participants:  

 Mean reciprocal rank (MRR), which assesses the ranking of the relevant units. 

 Mean generalized average precision (mGAP), which rewards techniques that not only find the 
relevant items earlier in the ranked output list, but also are closer to the ideal point to begin 
playback (the \jump-in" point) of the relevant content. 

 Mean average segment precision (MASP), which takes into account the ranking of the results 
and the length of both relevant and irrelevant segments that need to be listened to before 
reaching the relevant content. 

About the approach 

The TOSCA-MP system was not originally oriented to retrieve segments or scenes but media assets 
exploiting general textual information (e.g. description), time-based textual information (e.g. ASR or 
subtitles), manual or automatic semantic annotations, and other low-level features extracted by external 
analysis services (e.g. concept detection). This basically means that, for any query, the scoring function 
return a list of media assets based on all the metadata available for the media assets. The change in 
the overall behaviour has implications in how the whole system ingests and indexes media assets. 
Thus, the first step is to produce the segmentation of the media assets. There are several approaches 
[Eskevich, 2013] for that:  

 Sliding window: the segmentation is produced into short segments of length approximately the 
same as that of an average relevant segment.  

 Speech segment: the segmentation is produced into consecutive silence bounded by 
utterances from the same speaker.  

 Based on Lexical cohesion: the segmentation is based on the lexical cohesion. For example, 
the algorithm TextTiling computes the cosine similarity between adjacent blocks of sentences 
with fixed size. 

In our case, the system is based on the use of textual resources - manual curated subtitles and 
transcripts (LIMSI) – with a sliding window with a fixed size (30, 90). The system also indexed the 
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metadata of the media assets but we realised that only using metadata showed very low results and the 
tests did not show a clear pattern on how better use metadata plus other information and we omitted it 
in the process. Although we were interested in including visual descriptions into the process, we did not 
converge towards a relevant implementation in time. Thus, for each of the 3.076 videos provided by the 
challenge, the system creates segments with the corresponding subtitles and transcripts for the different 
sliding windows.  

 

Figure 31 - Results for MRR, mGAP, and MASP 

Figure 31 shows MRR, mGAP, and MASP scores for all the runs with window sizes of 30 and 90 
seconds. As would be expected, smaller window size decreases the scores, however the trend of the 
method effectiveness remains the same except for the MASP score (this is because the sliding windows 
are not overlapping).  

The current system is based on textual resources and the effect of scene decomposition and visual 
features on the results should be investigated in details. On the one hand, scene decomposition has 
been reported useful for a better definition of video segments. On the other hand, visual descriptions of 
video content can potentially help for searching as it seems that other approaches using the visual 
concepts in the query slightly increases the results for all measures. 

7.5 Search Results and Linking 

This experiment is based on the Search and Hyperlinking Task at MediaEval 2013 [Eskevich, 2013], 
which uses the following scenario: A user is searching for a segment of video that they know to be 
contained in a video collection (“known item”). If the user finds the segment, she may wish to find 
additional content related to some aspect of this segment. The MediaEval linking subtask is either 
based only on this relevant item (“anchor”) returned by the search system, or one a larger contextual 
segment around the search result (e.g., a news story, a scene). 

Experiment setup 

In this experiment, we perform the linking step of the task, using the method described in [Lokaj, 2013]. 

In the benchmark data set, the input to the linking task is well-defined by a relevant anchor segment and 
its contextual segment. In a real-world setting, we cannot expect that the correct anchor is always 
ranked near the top of the results, or that we have a precise definition of the contextual segment. We 
thus investigate the performance of our linking method on actual search results of different systems and 
with a coarse estimate of the context. These experiments answer the question whether having video 
segments that are not correct, but only close-by hits are good enough as input for the subsequent 
linking step. If this was the case, adding the linking step in the search process would increase the 
practical value of search systems, even if the performance of the initial search result is limited. 

For the search result output, we consider the following edit operations (corresponding to possible error 
types) of the input segment w.r.t. a ground truth: 

 Result deleted (Sd) 

 Result inserted (Si) 

 Result ranked up (S+) 
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 Result ranked down (S-) 

As described below, only the top 10 results of the search output will be considered. 

In this experiment we do not model the dependency from the performance of the ASR output, but 
assume the input anchor as fixed. We describe experiments considering this modification in 7.3.2. 

We consider the following edit operations of the output w.r.t. a ground truth: 

 Fraction of segments added (Ri) 

 Fraction of segments deleted (Rd) 

 Fraction of segments ranked higher (R+) 

 Fraction of segments ranked lower (R-) 

The corresponding Bayesian network is shown in Figure 28 (right). 

Data 

The MediaEval dataset is a collection of 1,260 hours of video provided by the BBC. The average length 
of a video is roughly 30 minutes and most videos are in English. The BBC kindly provided human 
generated textual metadata and manual subtitles for each video. Participants are also provided with the 
output of two automatic speech recognition (ASR) systems, one by LIMSI-CNRS/Vocapia using the 
VoxSigma vrbs trans system [Gauvain, 2002], and the other using the LIUM system [Rousseau, 2011] 
based on the CMU Sphinx project. 

We use the ground truth of the official MediaEval evaluation created from crowd sourcing. Like with all 
pooled evaluations, other runs may contain relevant segments not in the set of segments originally 
judged. We use the evaluation measures described in [Aly, 2013], as well as the evaluation script 
referenced there. As an evaluation measure we report mean average precision (MAP) of a ranked list of 
linked segments, calculated using segment overlap as described in [Aly, 2013]. We determined results 
for the other two methods for MAP calculation described in that paper (binned, tolerance to irrelevance), 
and the results are similar (though those MAP scores are generally lower). We follow the same rules as 
in the official evaluation, i.e., we discard result segments coming from the same programme as is the 
anchor. 

Experiment 1: Automatically Determined Context 

Based on the finding from the MediaEval benchmark, that the use of contextual information around the 
anchor segment provides significant improvements of the results, we investigate how important it is to 
know the precise boundaries of these context segments. We apply the proposed linking method to the 
manually defined context segments from the ground truth and to automatically determined context 
segments that are created by adding k minutes before and after the anchor segment, with k={1,3,5}. 
These values have been chosen to cover different lengths of context segments. 

The results obtained from automatically determined context in terms of MAP and precision at top ranks 
of the linked segments are slightly lower but comparable to those obtained from the manually defined 
context segments from the ground truth. Figure 32 provides an overview of runs with different context 
lengths and textual resources. 

Short context segments (±1 minute) have the best scores for top 5 runs, although the performance is 
slightly lower than for the manually defined ones. In terms of MAP medium length context segments (±3 
minutes) score best. These results show that the additional information from the story around the 
anchor segment is useful, even if it may be incomplete, or parts from adjacent stories are included in the 
context.  
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Figure 32: MAP, precision at 5 and 10 over all anchors, using manually defined context (Cm), or 
automatically defined context segments of certain lengths (C1, C3, C5) and different text 

resources (I, U, S). 

Experiment 2: Starting from an Actual Search Result (Top-ranked) 

The aim of the linking step is to obtain a set of content items that fulfil the user's information need. In a 
real-world setting, linking would have to start from a video segment in the search result. We can assume 
that the top-ranked search result, even if it is not among the correct target items of the search, is 
somewhat relevant to the query. We thus use the top-ranked search result as input to linking. We run 
this experiment on the search submissions from different participants of the MediaEval 2013 Search & 
Hyperlinking task in order to answer the following questions: 

 Is the performance of the linking results comparable to the performance when starting from the 
true anchor item? 

 Is adding context also useful in this case? 

 Is there a correlation between the performance of linking from the top-ranked search result and 
the overall search performance? 

 What is the performance, if the linking result is assessed as the search result? Does it correlate 
with the performance of the initial search result? 

We perform linking both using the actual video segment from the search result as anchor segment, as 
well as using the context around the search result. Due to the lack of information about the actual 
stories/scenes, we define the context as the anchor segment ±3 minutes. For the experiment, we select 
a subset of search submission that reached different performance levels. As several variants of the 
same method (e.g., using different text resources) often yield similar scores there is no added value in 
using all the runs. 

Assuming no knowledge (and user feedback) about the relevance of the video segments in the search 
result, we start the linking process from the top-ranked item in a search result. Figure 33 shows the 
MAP and precision at rank 5 and 10 obtained from a set of actual search runs submitted to the 
MediaEval 2013 Search & Hyperlinking task, using the proposed linking method. The horizontal lines 
indicate the best results obtained from starting with the known item as input for the linking step. We can 
see that the results when starting from the top-ranked item are clearly below this upper limit. We also 
see that the performance decrease affects the top items of the linking result more, while MAP is still 
comparable, at least when starting from some of the search runs.  

An analysis of the results reveals that the main reason for the lower performance is that the context 
around the anchor segment does not improve the results, if we are not starting from the correct item. 
While we observed significant improvement when using context when starting from the correct item, this 
disappears when starting from the top-ranked item of the search results: the linking MAP is 0.164 with 
the anchor only, and 0.160 with the context (this is very similar to the MAP of anchor only when starting 
from the ground truth segment). We can see that for the runs that only use the anchor the performance 
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is still comparable to that obtained when starting from the correct item. Thus, the performance 
difference we observe when starting linking from another item than the correct search result is due to 
the fact that we do not gain improvements from using contextual information. In contrast, while the 
anchor segment (i.e., the search result item) might still be somewhat relevant, the context might be 
completely different, thus decreasing the relevance of the linked items. 

We also investigate the correlation between the correctness of a search result (using mean reciprocal 
rank MRR to assess the search performance as described in [Aly, 2013], with window size 10) and the 
relevance of the items obtained from linking the top-ranked item of the result list. As can be assumed, 
there is a positive correlation, although not very strong (see Figure 34). This means that linking from the 
top-ranked item of a search result list that has the relevant items ranked higher, will result in better 
linking performance. Note that we only use the first item from the search result for linking. Given the 
rather low MRR scores of the search results, the top-ranked one is likely not a relevant one for most of 
the queries. However, the correlation we observe indicates that search systems that rank the relevant 
items higher will have top-ranked items that are more similar to the relevant items, thus resulting in 
higher linking performance. 

Finally, we are interested to know whether linking can help to find the relevant items, that might be 
further down the result list in the initial search result. Linking from the top-ranked item is used here as a 
refinement step of the search result. We treat the linking result as an updated search result and 
compare the MRR obtained. Figure 35 shows the correlation between the MRR from the linking result 
and that of the initial search result (correlation coefficient 0.44, p-value 0.0003). One interesting 
observation is that the MRR from the linking results (mean 0.072, median 0.064) are overall slightly 
worse, but still comparable to those from the initial search results (mean 0.078, median 0.074). For 
several runs, an improvement is achieved, i.e. the linking result has relevant items ranked higher than 
initial search results. It can be assumed that this effect is much stronger, if we do not automatically start 
from the top-ranked segments, but let the user choose the start segment for linking from the top-ranked 
items in the search results. 

 

Figure 33: Mean of MAP, precision at 5 and 10 of the linking results generated from the top-
ranked video segments in actual search runs submitted to the MediaEval 2013 task. The lines 

indicate the best MAP/precision obtained using the same method when starting from the correct 
result item of the search. 
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Figure 34: Correlation between MRR of search runs and MAP of the resulting linking result, 
using the top-ranked item of a search run as input (correlation coefficient 0.30, p-value 0.0178). 

 

Figure 35: Correlation between MRR of search runs and MRR of the linking result, when treating 
the list of linked items as an updated search result (correlation coefficient 0.44, p-value 0.0003). 

Experiment 3: Starting from an Actual Search Result (Related) 

The setup of the experiment is the same as when starting from an actual top-ranked search results, but 
we investigate whether these results change, if we use the first item among the top 10, that is related to 
the query. We thus simulate a user interaction of choosing the first related segment from the search 
results. In the experiment, we define a segment as related to the query, if it occurs in the ground truth of 
the corresponding linking task. 

As in the previous experiment, we start from an actual search result, but we choose the first segment 
among the top 10, which is in the ground truth of the linking result. This is not the known-item result of 
the search task, but a segment that is related to the query. In this way we simulate the interaction of a 
user choosing the first segment in the search result that is somewhat related to the query. 

As can be expected, the results improve significantly, and are comparable to those obtained starting 
from the correct anchor segment. Figure 36 shows the results of this experiment. While the differences 
between using anchor only or also context are not as large as when starting from the correct segment, 
there is still a clear improvement from using context. The mean of MAP over the anchor-only runs is 
0.245, while that of the runs using context is 0.337. 
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Figure 36: MAP, precision at 5 and 10 of the linking result when using relevant search result 
among the top 10 as input. 

7.6 Benchmarking of visual clustering 

7.6.1 Experiment setup 

For the evaluation of the visual clustering method, a ground truth set was created. 

Users on the web-service 'Amazon Mechanical Turk' annotated a set of 500 key frames (50 key frames 
from 10 video's, some of them Royal wedding related) by comparing each pair of two images in this set 
(500*499/2 = 124,750 comparisons in total), and assessing whether these images are 'Very similar', 
'Somewhat similar' or 'Not similar'. Some control questions were added to increase the reliability of 
people's answers. 

Also for these 500 images, descriptor values were calculated for the CSD, EHD and CEDD descriptors. 
All 124,750 distances between all image pairs were calculated using the distance measure 
corresponding to the descriptor type. 

Comparing the calculated distances for each of the descriptors to the ground truth data set allows to 
evaluate the performance of each of the descriptor types, although a mathematical comparison of 
descriptor types to each other gets difficult since for each type, the calculated distances lay in a different 
range with different thresholds or no thresholds at all. 

7.6.2 Results 

The results are shown as box plots in Figure 37 Figure 37: Box plots of the calculated distances 
of the image pairs that were user-rated as ‘Not similar’, ‘Somewhat similar’ or ‘Very similar’, for 
the descriptor types CSD, EHD and CEDD. Box plot boundaries are in Table 6. 

the data for these box plots is in Table 6. For completeness, we also show the mean and standard 
deviation for all the data and the sample size in Table 7. 
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Table 6: Maximum, Q3, Median, Q1 and Minimum values of the calculated distances of the image 
pairs that were user-rated as ‘Not similar’, ‘Somewhat similar’ or ‘Very similar’, for the descriptor 

types CSD, EHD and CEDD. 

  

Not similar Somewhat 
similar Very similar 

CSD 

Max 7937 6543 6381 

Q3 3861 3336 3132 

Median 3224 2703 2439,5 

Q1 2654 2173 1868,75 

Min 424 407 132 

EHD 

Max 240 196 170 

Q3 103 96 90 

Median 85 78 73 

Q1 68 62 57 

Min 5 17 2 

CEDD 

Max 1,000 1,000 0,975 

Q3 0,799 0,628 0,568 

Median 0,661 0,504 0,430 

Q1 0,524 0,394 0,308 

Min 0,042 0,052 0,007 

 

 

 

Figure 37: Box plots of the calculated distances of the image pairs that were user-rated as ‘Not 
similar’, ‘Somewhat similar’ or ‘Very similar’, for the descriptor types CSD, EHD and CEDD. Box 
plot boundaries are in Table 6. 
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Table 7: Mean and standard deviation of the calculated distances of the image pairs that were 
user-rated as ‘Not similar’, ‘Somewhat similar’ or ‘Very similar’, for the descriptor types CSD, 
EHD and CEDD. Sample size indicates how many of the 124,750 image comparisons fall into 

each user-rated category. 

  

Not similar Somewhat 
similar Very similar 

 
Sample size 

124750 

 

116376 7132 1242 

CSD 
Mean 3300,40 2793,02 2494,97 

Standard dev. 900,82 868,83 984,15 

EHD 
Mean 86,996 80,008 73,609 

Standard dev. 26,84 24,40 24,37 

CEDD 
Mean 0,660 0,513 0,435 

Standard dev. 0,184 0,171 0,184 

 

In the box plots in Figure 37, we notice how for CEDD, there is almost no overlap between the boxplot 
‘Not similar’ and ‘Very similar’, which means there is a significant difference in calculated distances 
between these two categories. For CSD, there is more overlap between these boxes, and for EHD even 
more, although for all descriptor types a positive correlation is present between the user-rated values 
and the calculated values (e.g. mean, median). 

These results could prove how CEDD outperforms CSD and EHD in image similarity matching. This 
was also found in [Chatzichristofis, 2008] using the ANMRR (Averaged Normalized Modified Retrieval 
Rank) as an objective measure. The results also learn us that image similarity based on colours is good 
(CSD) but profits from using edges (EHD) since image similarity based on both colours and edges 
(CEDD) is even better. EHD may not be the best descriptor for image similarity, but the reason for its 
lower performance may also be that users understand similarity as equal colours rather than equal 
edges, which is reflected in their ratings (the formulation of the question was: Please rate each of the 11 
pairs of images: do they look visually similar? You should consider similarity as visual similarity of the 
images i.e. colour, appearance, intensity, brightness etc., not semantic or conceptual similarity e.g. if 
both images contain similar objects (humans, cars, animals etc.)). 
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8 Measuring performance by cost 

8.1 Introduction 

The description of task goals received from the responses to the survey (see D4.1) is rather qualitative 
and informal. While it is mostly stated which type of information is expected as a result of the task, there 
is no indication of information quality that could be used in an automatic process. For example, when is 
the annotation of relevant persons in news material good enough? If the person that is subject of the 
news item is identified? Which of the detected persons are the key persons? Is it sufficient to have the 
annotation on a temporal granularity of 30 seconds?  

Clearly, the answers to these questions (and consequently how the ground truth needs to be defined) 
depend on the task context and need a human validation in the loop to specify what that means for a 
specific content item/set. 

Most existing evaluation methods assess the difference to some ground truth. For many annotation 
tasks it will neither be necessary nor feasible to have a “perfect” result (i.e. no errors such as omissions 
at all), but a result that makes the annotation usable for a certain purpose. Some evaluation methods go 
into that direction by assigning costs to certain error types. However, this cannot be done without 
considering the context represented by the process in which a specific tool has to be integrated. 

We can use costs as a measure for the performance of a tool in the process. One aspect are actual 
costs for a human operator performing validation and correction of automatic results, the other aspects 
are costs which are penalties for error that remain in the results. For the first, the effort needed to make 
the result acceptable in a specific task context allows turning performance of a diverse range of tools 
into working time (and thus cost) as performance measure. The number and types of errors corrected 
provide feedback on the types of error that are critical in a specific task context and more fine grained 
costs for different categories of errors can be derived. The task model can be used to trace back the 
component from which the errors originate and thus provide evaluation information for the component. 
Of course the effort for correcting certain types of errors is not a constant, but also depends on the 
efficiency of the user interface available for validation and correction. Thus, providing better tools for the 
manual intervention also influences the equation of how individual components’ performance impacts 
the overall annotation effort. 

Given a manually defined ground truth, the assessment step can be defined using a kind of metadata 
edit distance (cf. Section 4.3). The costs for the different edit operations will differ on the type of error, 
where it occurs, whether it is masked by other components, etc. 

8.2 Cost simulation model 

Real media production processes are a complex combination of human factors and system operations, 
and as such quite distant from the aseptic laboratory settings in which automatic information extraction 
tools are developed. Furthermore, workflows are the result of established practices that involve not only 
practical technical constraints but also personnel-related issues like shifts, contractual regulations and 
professional roles. As a result, costs connected with workflows cannot be estimated taking into account 
individual operations, but considering the whole process. As a consequence, expected workflow 
optimizations introduced by the introduction of automated tools cannot easily be assessed by just 
considering their individual performance (e.g., in terms of precision and recall).  

The proposed approach is then to simulate the entire process under consideration introducing two 
distinct modalities for the specific function being optimized, fully manual operations and computer-
assisted operations, and then perform an analysis on the minimum performance needed by the 
automatic tools to improve the overall cost figures of the process.  

We can model a workflow as a sequence of orchestrated actions, to each of which a cost and an 
execution time can be associated. Both costs and execution times can be either fixed or depending on 
some functions that model the intrinsic operations taking place when the action occurs. Execution times, 
in particular can be associated to personnel costs and equipment costs, depending on variable cost 
models or distributed overhead models. 

A workflow W can be composed of M actions orchestrated in ways determined by logical operators that 
constrain how actions have to follow each other or if one or more actions can run in parallel. In turn, any 
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action in the workflow, to be accomplished, may need the execution of a set of functions on its input 
data.  

Thus, if we want now to analyse what is the impact of substituting a manual implementation of a certain 
subset of all the functions in a workflow with a corresponding automatic implementation we have to 
address, in general terms, a condition which can be expressed as: 

 

 ∑ (  
    

   ) 
    ∑   

  
     (1) 

 

where N is the number of functions in the workflow in which some automatic tool is introduced,   
  is the 

cost connected with the individual execution of the automatic tool implementing function i,   
    is the 

cost connected with the manual check of the automatic tool’s results, and   
  is the cost connected with 

the fully manual implementation of function i. Costs can have a manifold nature and depend both on 
personnel costs and on systemic costs, and these may vary from function to function in the workflow. 
We can assume that fixed costs related to e.g. software licensing and maintenance are absorbed in 

each term   
 . 

This means that analytical estimation of Eq. 1 in real cases can be very complex and expensive. Thus, 
to practically evaluate such trade-off conditions we consider the whole workflow as the function W to be 
evaluated and estimate total costs connected with each of the two workflow versions (automatic (CW

A
) + 

check (CW
chk

) and fully manual (CW
M
)): 
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Developing Eq. 2 distinguishing systemic and personnel costs we obtain: 

  

    
     

       
       

     
   (3) 

 

where we assume, for the sake of simplicity, that    
   , i.e. that costs of personnel for the execution 

of the automatic tool are negligible. 

It has to be noticed that all variables in Equations 1-3 have to be considered as random variables since 
the actions of the underlying workflow can be orchestrated in such a way that the execution of each of 
them is subject to some probabilistic occurrence of some conditions. This for example applies in those 
cases in which a parallel execution of a set of actions at the model level (e.g., expressed in BPMN) 
actually results in the instantiation of only a subset of the possible parallel actions, depending on some 
statistical properties of the input data at each running cycle of the workflow. 

For these reasons, and since a general approach at analytical estimation is not possible, a possible way 
to study the impact of automatic tools on workflows passes through differential simulation, i.e. the 
comparison of two simulation models in which the first is the starting condition (i.e., a fully manual 
workflow) and the second is differing by the change of one or more functions with automatic 
counterparts.  

To obtain meaningfully comparable results, however, an additional condition in the simulation has to be 
implemented, which is directly related to Eq. 3, namely that results of functions implemented by 
automatic tools have to be corrected till complying to what a manual function would produce. This part 
of the simulation is finally depending on the intrinsic performance (in terms of some standard metric as 
precision, recall, F-measure) of the tool implementing the function. If the tool has perfect performance 

then the terms   
    of Eq. 3 have all value zero. As long as the performance decreases, accordingly 

those terms differ from zero in a monotonic way. 

8.3 Cost simulation for segment-based annotations 

We consider the common case of segment-based annotation (e.g., classification), which depends on 
the quality of an earlier segmentation and the component producing the annotation for the segment. We 
can express the probability of having wrong label classification for a segment of media,        as 
depending on the probability of correct (resp. wrong) segmentation        (resp.       ) and in turn 
decomposed in terms of the individual labels generated by the classifier:  
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      ∑         
           

  

   

 

       ∑        
          

  

   

 

(4) 

where    is the number of labels which the classifier is able to assign and    denotes the      label. 
        

     is the probability of wrong classification for label    when segmentation is correct while   

        
     is the probability of wrong classification when the segmentation is wrong. We assume the 

latter to be equal to:  

         
                  

               (5) 

 

where    is the segmentation mismatch (positive or negative) at the start of the segment, and    at the 

end, both expressed as fractions of the true segment. The function    accounts for the sensitivity of the 
classifier to the wrong segmentation for label  . Therefore it holds that              , whereas 
values near to 1 indicate more robustness of the classifier against segment mismatches than values 
near to 0. To identify the functional form and the fine-grained behaviour of such functions the approach 
is to use a numerical fitting technique on a small set of data produced by the classifier under varying 
segmentation error conditions. 

After few algebraic substitutions using the fact that  

                   (6) 

we have:  

 

             ∑  

  

   

              
                                

  

 ∑                                      
     

  

   

 

(7) 

which expresses the global probability of wrong classification under wrong segmentation conditions 
depending on the classification accuracy at each label level         

    , the observed label probability 

of each label        and the global segmentation accuracy       .   

As a further step, we can  decompose         
     taking into account the different classification 

performances a classifier may have for the different labels as follows:              ∑                  

                  with l=j being the ground truth label.  

Now we want to calculate the probability of wrong classification of the ground truth segments   
         , based on the probability of wrong classification of the segments detected automatically 

          .  

In general, for a given true segment    we can have the following conditions:  

 the true segment is perfectly corresponding to one detected segment  

 the true segment corresponds to more than one consecutive detected segments 
(oversegmentation)  

 the true segment corresponds to one larger segment which merges more than one true 
with other segments (undersegmentation)  

Under these conditions, for each true segment    we can always associate a set of detected segments 
whose combination covers    and minimising start and end disalignments. Let’s denote this set to be 

              
 .  

Assuming a majority voting mechanism to select the most likely label among the ones associated to 
each of the elements of   , we can express the probability of wrong classification of    as:  



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 58 

       
  ∑

 

(
  

 
)

  

        

∑ ∏         

        

(
  
 

)

   

∏  

        

            (8) 

 

where        is the      possible subset of    of cardinality   and                 .  

Now let’s relate this model with costs. We can assume that costs related with the model are connected 
with the two main operations that are needed to transform the information coming from the automated 
segmentation and subsequent classification into the ground truth information by some human corrector.  

This is composed by two elements: a) costs related to correcting segmentation; b) costs related to 
correct classification. The first kind of costs can be modelled, for each ground truth segment     , as 

depending on the gap between    and   . A difference holds for cases of merged segments and of split 
segments. The first kind of error being in general heavier than the second since correcting false 
detections is in generally lighter than missed detections. Furthermore, we can assume that correcting 
split segments has a dependency only on the cardinality of    since the corrector should be able to 
decide about a false segmentation point just watching material before and after its boundary.  

Thus, the average cost for correcting the automated segmentation   to be compliant with the ground 

truth   has two components    and    respectively modelling costs related to correcting merged and 
split segments.  

    ∑ 

  

   

       (9) 

 

    ∑  

  

   

      (10) 

 

where    is the number of merged ground truth segments in  ,    is the number of split segments in  , 

   is the unit cost (per unit of time) for correcting merged segments,    is the unit cost (per unit of split 
boundary) for correcting splits. Finally       is the length of segment coverage    of   .  

Notice that both quantities expressed in Equations 9 and 10 yield 0 when detected segmentation is 
compliant to ground truth since both    and    would be 0 in that case.  

The second kind of costs can be considered depending linearly on the length of the true segment   , 
since a corrector must analyse the whole segment to be really sure about the assigned ground truth 
classification.  

Thus, costs related to correcting classification of a certain ground truth segment   ,     , depends linearly 

on the length of the ground truth segment:  

              (11) 

 

where       is the length of segment    and    is the unit cost (per unit of time) for correcting 
classification.  

Since we want to evaluate an expected cost in probabilistic terms, we have to connect this to Equation 

5, so that we have that the expected classification correction cost    is:  

    ∑ 

   

   

     
         (12) 

 

Similar considerations can be made to obtain expected segmentation correction costs starting from the 
probability of wrong segmentation       , and considering the independent effect of merging and 
splitting.  
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We can finally reach the following constraint, which is compliant with the general model of automated 
vs. manual annotation introduced in Section 8.2:  

                (13) 

where    and    are the costs related with the manual operations respectively related to segmentation 
and classification.  

8.4 Costs for correcting segment-based annotations 

For an analysis chain that performs temporal segmentation and classifies segments, we need to 
consider four types of edits: 

 delete annotation (D) 

 add annotation (A) 

 change segment boundaries (Sh) 

 substitute content of annotation (S) 

For tasks with a defined set of annotation values (e.g., classification), D, A, and Sh can be treated 
separately for each class. S may link several classes, as it consists of D for class 1 and A for class 2. 

The costs for each of these edits are structured differently. There is the cost for inspecting the video 
segment for each reported segment, i.e. true and false positives. Depending on the frequency of 
annotations in the video, it may be more efficient to go through reported events by confidence (if their 
total duration is clearly smaller than the duration of the video) or linearly through the video (if the 
duration of annotations is close to the duration of the video). In addition to the inspection time, the cost 
for D is the interaction time needed for deleting an annotation, for Sh the time for adjusting the segment 
boundaries and for S the time for selecting the new content/modifying the content. 

The situation is different for A. As soon as only a single item is to be added, the time for looking through 
the whole video has to be added once. Note that this does not necessarily mean linear time of the 
video, depending on the available tools and type of annotation to be made this step may use fast 
forward or navigation using key frames. In addition, A requires the time for creating the annotation, i.e. 
selecting/entering the content; this will depend on the number of classes/values to select from, or if free 
text needs to be entered, and possibly time for setting the segment boundaries of the segment to be 
labelled. 

For comparing with manual annotation, the frequency and distribution of segments are deciding factors, 
i.e., several annotations in parallel will require to spend more time with a segment, while only one 
annotation at a time will allow to progress closer to real-time. The costs for a manual annotation can be 
determined by requiring edits of type A for every segment in the ground truth. 

8.5 Example 1: Person identification 

We have selected a task model for “identification of persons in news material” and performed a 
simulation analysis using the general cost model introduced in Section 8.2 and under the following 
conditions. (1) We assume that the function related to manual person identification could be substituted 
by a combination of automatic analyses: identification by face, by speaker’s voice, or by open 
caption/graphics. (2) We implement the whole workflow in a simulation tool in the two versions (manual 
and automatic + check). (3) We run the simulation of the manual process. (4) We run a series of 
simulations of the automatic process, under a range of values for the F-measure of the automatic tools. 
(5) We compare results and find a trade-off condition. As shown in Figure 38, the proposed approach 
can be used to relate the performance of an automatic content analysis tools to the cost saving in a 
specific process. Individual cost items (in Euros) have been estimated based on the knowledge of 
typical labour anf system-related costs observable in media production enterprises. Based on measured 
data from actual process, this methodology can help to assess whether the performance of a specific 
automatic content analysis tool is good enough for a specific practical application. 
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Figure 38. Simulation results for person identification. 

Figure 38 reports the variation of the total cost of the process w.r.t. the F-measure of the three detectors 
(face-based, speaker-based and OCR-based, we have considered that all of them share the same 
performance). It can be observed that if F-measure is above 0.8 both total costs and labour costs of the 
automatic version of the workflow are less than the manual counterpart (the first column of the graph). 
Conversely, if F-measure drops towards 0.7 both costs are higher than the manual ones. In the middle, 
there is a region of F-measure values for which at least the labour costs are lower than in the manual 
case. These are of course influenced by the manual check costs. 

8.6 Example 2: Video breakup detection 

We apply the cost simulation to the video breakup detection task described in Section 7.2 using the 
analytical cost model introduced in Section 8.3. Based on the error probabilities of the shot boundary 
detection (playing the role of segmentation) and video breakup detector (playing the role of the 
classifier), the cost simulator assumes a workflow with a manual verification step after this automatic 
part of the process. In the verification step, a user corrects segmentation errors (splits, merges) as well 
as classification errors (setting the correct label for a segment). Missed video breakups are modelled as 
merged segments and false positive detections as split segments. In case of a mismatch of the 
segmentation, the cost simulation tool uses majority voting for the classification, thus both false 
positives and false negatives will result in classification errors. The case of a classification error despite 
correct segmentation is quite rare for short defects like video breakups. Some correction costs depend 
on duration of the involved segments (e.g., reviewing a merged segment to split it correctly) while others 
do not (e.g., deleting a split). We use the same data set as in the previous section, and the error 
probabilities obtained from actual runs of the algorithm. The unit costs were set as follows (with a time 
unit of 0.1 seconds for duration dependent costs): correct split 10, correct merge 100 and correct 
classification label 10. Merges require reviewing the entire segment, and are thus most costly. We used 
the following expression for the function           introduced in Equation 8: 

              
 

             
 

where A is a parameter calculated to fit the average behaviour of the classifier under wrong 
segmentation conditions. 

Figure 39 shows the result of 100 runs of the cost simulation, varying both segmentation and 
classification performance. The costs are shown depending on the classification accuracy obtained 
downstream the segmentation correction, so to take into account the effect of a varying segmentation 
performance on the various kinds of costs. This variation may for example be related to the application 
of the same segmentation algorithm to a different content genre than the one used to train the 
segmenter or to the application of a different configuration of the same segmenter, or to the usage of a 
range of different segmenters with varying performance. This has been simulated by modelling a 
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segmenter performance in terms of probability of over- and under-segmenation and of the 
corresponding average number of respectively split and merged segments. 

We see that the segmentation correction costs are dominant, and only get down to the same range as 
classification costs towards 0.94 accuracy. This threshold may be for example useful to filter out 
segmenters or segmenter configurations among the one simulated. 

Of course, the obtainable cost figure may depend on the organisation and the staff at hand. A parallel 
simulation yielded to the result that using the same cost assumptions as for the corrections, viewing the 
entire content and making annotations for the video breakups would result in costs in the range of 2.9e7 
units, meaning that in the studied case the automatic tool remain quite profitable even under stressful 
segmentation error conditions. 

 

 

Figure 39: Simulated costs depending on classification accuracy. 

8.7 Conclusions 

This part of the work has demonstrated that performance of individual tools can be difficultly put into 
direct relationship with advantages in terms of costs implied by the overall workflows in which they are 
included. Specifically, the intrinsic imperfect performance of these tools introduces the need to have 
manual check points in the automated workflows, which are normally not needed in fully manual 
workflows. Simulating these conditions in a differential way allows however to develop methodologies to 
assess what thresholds in tools’ performance have to be requested in order to improve cost figures. 

The drawback of such an approach resides in the fact that it is normally quite complex to model real 
workflows in practice, specifically to derive coherent figures in terms of execution times and costs and in 
terms of a complete breakdown analysis of actions into individual functions. The recommendation is to 
develop this kind of approaches as part of a general methodology that all industrial processes should 
follow (e.g., as that defined in processes and methods engineering), so that simulation parameters can 
be estimated along with production process design and aligned and optimised during operations. 

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

7,00E+06

8,00E+06

0,905 0,91 0,915 0,92 0,925 0,93 0,935 0,94

Classification Correction Mean Cost

Segmentation Correction Mean Cost

Total Mean Cost



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 62 

9 Integration 

This section discusses the integration of the proposed benchmarking and simulation methods into 
systems, in particular, a service oriented architecture such as the one developed in TOSCA-MP.  

9.1 Benchmarking workflow 

The benchmarking workflow consists of the following steps: 

 Generate a set of jobs for a content basket, possibly with varying parameters 

 Run these jobs and generating results 

 Determine the differences between results and a reference (e.g., ground truth), resulting in a set 
of edits for each pair of result and reference (cf. Section 4.4) 

 Perform one or more of the following 

o Determine performance measures from the edits 

o Train a model of the error dependencies and run error prediction (cf. Section 5) or cost 
simulation (cf. Section 8). 

 Based on the results, select parameters and create/update a workflow configuration with these 
parameters 

Figure 40 provides an overview of this workflow. The steps in the dashed box are implemented in the 
benchmarking service itself. Preparing jobs and displaying the benchmarking results is implemented in 
the control & configuration UI. Job execution is done by the MPMF. Details on the implementation of the 
service and the control & configuration UI can be found in D6.6. 
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Figure 40: Integrated of benchmarking workflow. 
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9.2 Configuration 

9.2.1 Bayesian network 

As described in Section 5, the structural information for the Bayesian network is available in the task 
model. This step of the process could thus be automated (e.g., by generating code needed to construct 
the Bayesian network using a toolkit of choice). However, the following information is not included in the 
current implementation of the task model: 

 The types of data being exchanged between two tasks 

 The edits to this data that are of interest 

These two annotations are added to the task model, CTT provides support for this. 

In addition, there is other information which is typically not available when starting with the model from 
scratch, but needs analysis of actual data. 

 Statistical information about the error data in order to choose the appropriate model for the 
nodes 

 Statistics about the relation between input errors, configuration and content properties and 
output errors, in order to decide about the need for hidden layers in the network design. 

The latter is especially tricky, as it may require starting with an initial model, and then refining it. In the 
experiments performed, hidden layers turned out not to provide any advantage. 

9.2.2 Simulation model 

The model used for the simulation is represented in BPMN. As described in D4.3, the task model 
represented in CTT XML can be automatically transferred to BPMN using an XSL style sheet. Thus, this 
process does in theory not involve any manual interaction. However, in practice, incompatibilities 
between different tools implementing the BPMN standard have been encountered. 

9.3 Gathering data 

Apart from the task model, it is of course necessary to gather as much data as possible in order to 
assess components and run simulations. While ground truth can be generated offline in limited 
amounts, much larger amounts of data can be gathered from a running system. This data includes in 
particular 

 Collecting all intermediate data of all automatic processing in the system, 

 Logging all user changes in verification tools, including time stamps, 

 Logging all user annotations, including time stamps, and 

 Logging all user interactions in search tools, including time stamps. 

In the first three cases, one result of the action is a new or updated metadata document. Storing this 
document in the Distributed Repository Framework (DRF), which supports versioning, allows tracing 
back the history of the metadata document and extracting the modification done in every step. 

In addition, for assessing the effort needed for certain manual interventions and for cost simulations, 
user actions and their time stamps need to be accessed. However, this is not done on the fly, but the 
unit costs are configured based on previous measurements. 

9.4 Benchmarking service functionalities 

In order to run benchmarking and simulation as part of the workflow (assuming the networks/models 
need have been created), we implemented the following functionalities in the service: 

 Extract the set of edits to the difference of two metadata documents (using the approach 
described in Section 4.4.2) 

 Modelling error dependencies, i.e., training the Bayesian network 

 Running predictions and/or cost simulations 

 Derive cumulative measures and statistics 
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A use case for a benchmarking service, including the functionalities described above as well the option 
to update configurations, has been proposed the EBU/AMWA FIMS RfT phase 2. The text of this 
proposal can be found in Annex A. 
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10 Conclusion 

In this document we have described task-based approaches to benchmarking and simulation, and we 
have provided experimental results for both content analysis and search/result visualisation. 

Several of the experiments confirm the expectation, that independent metrics for content analysis 
components are not always suitable in order to assess the performance of the overall analysis or search 
process. Thus, these tools need to be analysed under consideration of the task context. We have 
proposed a model in order to perform prediction of performance based on propagation of errors 
throughout a processing chain. 

In order to assess the practical value of a specific content analysis tool, it is important to represent an 
assessment in terms of cost saving in a workflow. The cost modelling and simulation tools allow 
assigning costs to manual verification and correction of imperfect automatic analysis results, and thus to 
compare total workflow costs of tools with different performance levels as well as with manual 
annotation. 
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12 Glossary 

Terms used within the TOSCA-MP project, sorted alphabetically. 

see D1.2 project handbook, version 3 or later 

BN Bayesian Network 

BPMN Business Process Model and Notation 

CTT ConcurTaskTree 

CTTE ConcurTaskTree Environment 

EM Expectation-Maximisation algorithm 

XML Extensible Markup Language 

XSL Extensible Stylesheet Language 

Partner Acronyms 

DTO Technicolor, DE 

EBU European Broadcasting Union, CH 

FBK Fondazione Bruno Kessler, FBK 

HHI Heinrich Hertz Institut, Fraunhofer Gesellschaft zur Förderung der Angewandten 
Forschung e.V., DE 

IRT Institut für Rundfunktechnik GmbH, DE 

K.U.Leuven Katholieke Universiteit Leuven, BE 

JRS JOANNEUM RESEARCH Forschungsgesellschaft mbH, AT 

PLY Playence S.L., ES 

RAI Radiotelevisione Italiana S.p.a., IT 

VRT De Vlaamse Radio en Televisieomroeporganisatie NV, BE 



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 70 

13 Annex A: Submission on a benchmarking use case 

to EBU/AMWA FIMS RfT phase 2 

This annex contains the text of a use case for a benchmarking service submitted to the EBU/AMWA 
FIMS phase RfT (Jan. 2012). 

Summary: 

Services for automated metadata extraction (e.g., automatic speech recognition), 
linking of metadata (e.g., associating named entities with authority files and 
between media items) and advanced search services (e.g., using semantic 
technologies) are becoming increasingly important in media production processes. 
However, assessing their performance for supporting a particular task in the 
process is important for leveraging the potential of these technologies. This use 
case complements the AIEMPro

2
 and search use cases by describing 

benchmarking services that can be used to assess and optimise these services 
and their configuration. 

Description: 

The performance of automatic metadata extraction and advanced search services 
may strongly vary depending on content properties, such as genre, resolution, 
spoken language etc. Thus benchmarking (i.e., checking the quality of 
metadata/results generated against a validated reference) such a service for a 
new type of content in order to (i) assess whether it is applicable, (ii) select an 
appropriate configuration and (iii) build a tailored process for a certain type of 
content is relevant for using such services in a practical workflow. 

A practical workflow might include a range of metadata extraction and search 
services from different vendors, and even more than one service instance for one 
type of operation, as they might be complementary in terms of different content 
types. Thus a standardised, service oriented approach to benchmarking enables 
efficient and integrated evaluation of metadata extraction and search services. 

A benchmarking process for a metadata extraction or search service (called 
“service to be evaluated” in the following) produces evaluation results and possibly 
updated parameters based on metadata generated by this service and reference 
metadata (“ground truth”). In more detail, the process can be described as follows: 

- A set of metadata documents or search results for a defined set of media 
items, generated by the service to be evaluated, needs to be checked. In 
addition, the configuration used to obtain the result (parameters, queries, 
etc.) is available. 

- For (a subset of) these media items, ground truth, i.e., manually 
annotated/validated metadata, relevant search results, etc., are available. 

- Additionally, data for weighting the importance of specific aspects of the 
result or types of errors might be given (e.g., penalty for missing a named 
entity vs. missing a verb in the ASR transcript, cost of reporting an 
irrelevant vs. missing a relevant result in copy detection or search). 

- Based on these inputs, the benchmarking service produces evaluation 
results in terms of one or more metrics implemented by the benchmarking 
service, represented as metadata documents. Possibly, the service also 
outputs visualisations of these results. 

- Optionally, the benchmarking service might output a modified/optimised 
set of parameters for the service being evaluated. This typically requires 
either a dependency between the benchmarking service and the service 
being evaluated or a standardised set of parameters for a certain type of 
metadata extraction/search task. 
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- If the service being evaluated performs analysis on collection level, the 
same considerations about collections as described in the AIMEPro

2
 use 

case apply. 

Initiating Actor: Archive Administrators, Automation 

Supporting 
Actors: 

Application Monitoring Staff, Software Specialists, R&D Staff 

Inputs: 

Content flows  

- one or more XML documents describing results of automatic metadata 
extraction, linking or search services for a set of media items, conforming 
to relevant metadata standards (e.g, ISO/IEC MPEG-7 Audiovisual 
Description Profile, EBU Core) 

- one or more XML documents carrying ground truth data, conforming to 
relevant metadata standards (e.g, ISO/IEC MPEG-7 Audiovisual 
Description Profile, EBU Core) 

- one or more XML documents carrying configuration information and 
parameters of these services 

- zero or more XML documents containing weighting information for 
assessing the results 

- optionally a reference to the media files on which the results are based 

Information flows 

- a set of or a reference to a collection of automatically generated metadata 
documents or result sets 

- a set of or a reference to a collection of ground truth documents 

- a set of configuration parameters of the services being evaluated 

- a set of parameters for the benchmarking service 

- optionally, a reference to a set of multimedia content items stored in a 
media file already ingested in the system or to be ingested contextually 

Control flows 

- Synchronous status monitoring at task instance level, including 
exceptions, management of retries, fallouts, termination of tasks and task 
model instances 

- Dynamic prioritisation of task instances 

- Basic access and browsing of produced metadata (e.g., HTTP access to 
XML metadata documents being produced, access to plots of result 
statistics) 

Outputs: 

Content Outputs 

 

- A set of (XML) documents containing the results of the benchmarking task 
in terms of appropriate metrics 

- A set of textual files containing detailed logs of each individual task 
execution 



Version of 
2014-04-14 D4.5 Final version of benchmarking methods 

 

 

 

© TOSCA-MP consortium: all rights reserved  page 72 

- Optionally, a set of modified/optimised configuration parameters for the 
service being evaluated 

Information Outputs 

 

- A (reference to) a set of benchmarking results 

- A (reference to) a (portion of) logging information where relevant 

- Optionally, a (reference to a) set of configuration parameters 

Pre-conditions: 

An automated metadata extraction, linking and search service has been performed 
on a set of media items in the system and the results are available in the system 
as XML documents. 

Manually generated or automatically generated and manually validated ground 
truth is available on part of the content metadata extraction has been performed 
for. 

Post-
conditions: 

Absence of severe or unmanaged exceptions, actual execution of tasks, presence 
of output metadata instances, syntactic and semantic conformance of the 
metadata instances to the intended schemas. 

Non-functional 
requirements: 

Execution and memory/storage resource allocation should be pre-estimated and 
communicated in some form to the caller in advance. Estimated completion time 
should be provided. Progress reporting and error notification should be supported 
by the service. 

Default flow: 

1. The process initiator selects the set of automated processing results, the set of ground truth 
documents and configuration parameters for processing by a benchmarking service 

2. The process initiator asks for the execution of a task instance t on the collection C or on the 
individual item I 

3. The system estimates needed resources, and completion time for the execution of t and 
communicates these data to the process initiator. 

4. If the initiator agrees on the provided estimation, the task instance is internally scheduled for 
activation 

5. t gets activated, and the process initiator is notified of the activation 

6. The initiator can optionally decide to postpone the actual start of execution or to manage 
prioritisation of the pool of activated task instances 

7. t gets executed, and the process initiator is notified of the start of execution 

8. The initiator can monitor the execution of t and browse the available benchmarking results as 
soon as they are completed 

9. when the execution is complete, the system notifies the initiator and communicates 
coordinates of the results. These may include information for downloading files from network 
repositories or data from databases. 

10. the initiator accesses the results, optionally verifies and updates proposed configuration 
parameters and feeds back the updates to the related automated metadata extraction/search 
component(s) 
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Exception Handling: 

- if resource estimation fails system-level predefined boundaries (e.g., maximum execution 
time, maximum allocated resources per task model instance), the initiator must be notified 
immediately 

- if the initiator rejects the resource and completion time estimation, there should be a 
negotiation phase 

- if part of the internal transfers for ensuring execution-near-data fail, the system should re-
estimate execution times and notify these back to the initiator. 

- If any task-level unmanaged exception occurs during the execution of the task instance, the 
initiator must be immediately notified. The initiator can decide to retry the task, or to terminate 
its execution 

- If the results are not accessible, the initiator must be able to notify the event to the system 

 

 


