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Nano-RF is a European project and the main concept is the development of CNT & graphene based
advanced component technologies for the implementation of miniaturized electronic systems for 2020
and beyond wireless communications and radars.

The developed components and technologies developed during the project will be implemented in the
following demonstrators:

- Reflect array antennae for wake vortex and weather radars

- Graphene receiver module
The demonstrators will exhibit the reconfigurability, systemability, integratability and manufacturability
of the developed technologies and unify advanced More-than-Moore elements and Beyond-CMOS
devices with existing technologies. It addresses "System Perspective" to support miniaturized
electronic systems for 2020 and beyond.
This Nano-RF newsletter intends to present the latest progress obtained during first year of the
project.

Design and Simulation activities

» CNTs Antenna

Existence of a negative imaginary conductivity leads to high inductive behavior compared to classical
metals in microwave domain, leading to potential subharmonic resonances of CNT-based antennas.
CNT-based antenna design is then reachable by parametric simulations directly on material
characteristics through an arbitrary impedance surface definition. Input return losses and impedance,
resonant frequency, frequency bandwidth in association with 3D radiation patterns are determined
from S-parameters and far-field emission simulations results.
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First parametric simulations results have revealed an efficient radiation of a 750um-length CNT
bundle based quarter-wave dipole in the targeted working frequency range although the same
topology implies a resonant frequency (lambda/2) at 100 GHz for a metallic wire of the same length.
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Figure 1: Far field 3D gain radiation pattern at 5 3 GHz (a) a conductive tube with specific complex
resistive surface (Zs = 0.001+j*0.01 Ohm.m2) — (b) Associated antenna input impedance as a functiono  f
frequency (red curve: real part — purple curve: ima  ginary part) - Dipole length:1.5 mm

» Graphene Antenna

We have started to design the graphene antenna which is a device not still reported and we have
chosen a slot antenna in coplanar geometry depicted in the Figure 2 below:

rETotalm¥]
4. Bi45e+003

4. 5220 +000
4. 2381%+DB3
5. 9379 +003

3. B457e+D03
3. 35356 +BB3
3,061 3 003
2.TE91e+003
“ 2. 4758 +003
2. 18462+003
1.5924=+003

1. EOQ2e 003
1. 3058e +083

1.0158e+003
7. 2357 +002
4. 3135 +002
1. 3984 +202

&8x5

-
B A
(a) (b)
Figure 2 : (a) graphene coplanar antenna geometry ( b) Radiation fields of the graphene coplanar

antenna
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Fabrication activities

» CNTs Growth

We have developed various recipes to grow CNTs in difference conditions and morphology for
different applications in this project (RF switch, 3D interconnect and CNT FET). Both thermal
chemical vapour deposition (TCVD) and plasma enhanced chemical vapour deposition (PECVD)
method have been used to grow CNTs on different substrates. Different results are presented in
Figure 3

— 1 HEMMm

() (b)
Figure 3 : (a) CNT vertically aligned obtained by P ECVD for RF switch application; (b) CNT vertically
aligned obtained by TCVD for 3D interconnect applic  ation

» CNTs devices fabrication and characterization

+ 3D interconnect with CNTs

With a strong collaboration between SHT and Chalmers, we have grown high quality CNT bundles in
through silicon vias (TSVs). The CNT bundles are firstly grown on Si surface and then densified by
capillary force. The transferred structure is shown in Figure 4, which shows that the CNT bundle
structure is retained after the transfer process.

1 20 ym

Figure 4 : Transferring densified CNT bundles into TSV structure
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¢ CNTs antenna

UPMC in cooperation with IEMN as sub-contractor has set up an experimental probe test
environment dedicated to vertical SW/MW CNT layer characterization with a 0.04-110 GHz working
frequency. Homemade modeling tools taking into account coplanar multilayered configuration
allowing microwave permittivity extraction were developed in order to qualify vertical MW CNT bundle
material processed by technological process from TRT/SHT/Chalmers partners. Additional CNT
electrical properties extraction, such as lineic inductance/capacitance and contact resistance with
noble metals, are also under study to fulfill CNT-based nanodevices design tools.

First layouts of vertical CNT layer-based test samples for microwave material qualification from
TRT/SHT/Chalmers process have been set up. First CNT-based quarter-wavelength grounded
monopole layouts were designed with respect with technological process compatibility from
TRT/SHT/ Chalmers partners. Microwave mounting tests have been fabricated in order to determine
experimentally effective radiation of monopole MW CNT bundles of 1 x 1 mm3 (Figure 5) in a free
space configuration. S-parameters and radiation patterns measurements are under work.
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Figure 5 : First experimental microwave test struct ure configuration (c) of MW CNT bundle monopole

on doped Si wafer (a) after wafer dicing/etching (T RT/MC2) and report on quartz substrate (b)
implemented inside a protected microwave mounting w ith a 2,4 mm/50 Q coaxial access (with technical
support of IEMN/MC2)

RF Absarbingmaterial layer

» Graphene Growth
There are several ways to obtain graphene material and we started to study the different graphene
synthesis methods.
» Graphene CVD growth on metals
During this period, graphene is grown by CVD method. Using Cu as catalyst, high quality of graphene
films with different number of layers are obtained, as shown in Figure 6 and Figure 7 below. SEM,
TEM and Raman spectroscopy are used to evaluate the quality of the graphene material
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Figure 6 : Graphene grown on Cu Figure 7 : Raman sp  ectra of graphene grown on Cu.
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* SiC decomposition

Growth of graphene on silicon carbide has shown to be able to produce an outstanding
quality over large area, for example demonstrated in spin transport, metrology and quantum
hall physics. The surface rearranges and leaves a single layer of carbon atoms on the wafer.
The silicon carbide substrates thereby may still influence the graphene. We have adapted a
novel optical microscopy technique that allows to characterize the surfaces of graphene on
silicon carbide over large area. This can confirm the uniformity and regular step features over
large area Figure 8) and resolve both irregular features that may appear (inset Figure 8).
This will be applied in the Nano-RF project to use uniform large area layers for further
development.

Figure 8 : Graphene on SiC

+ Graphite ex-foliation

During the first year, different samples containing mono-crystalline graphene flakes produced using
high resistivity silicon wafers (Figure 9) :
/:" GRAPHENE INDUSTRIES G umere mousmes /:,‘ GRAPHENE INOUSTRIES

Flake 1 of 4: x=9.0mm, y=23.5mm, monolayer flake Flake 4 of 4: x=20.5mm, y=19.3mm, mono-, bi- and trilayer
regions (some bubbles of air trapped underneath the flake)

Sample 58111 Datasheet

Parent Wafer

Substrate Map

)

Figure 9 : graphene obtained by ex-foliation techni ¢
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Different samples provided by LiU (SiC decomposition), SHT/CHALMERS (CVD on metal) and
Graphene Industries were analyzed by Raman spectroscopy. Raman characterization are presented

on Figure 10
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Figure 10 : Raman characterization from ICN compare  with Forth
ICN has performed cross-plane thermal conductivity measurements of ZrO, and HfO, high-k
dielectric thin films with thicknesses between 15 nm and 200 nm using the 3 omega method (Figure
11). The thermal conductivity was determined in a wide temperature range between 30 K and 300 K.
The cross-plane thermal conductivity at room temperature was determined to 0.88 W/mK for ZrO,
and 0.65 W/mK for HfO,. The obtained results constitute important input parameters for the
fabrication and optimization of the CNT and graphene based filters, FETs, switches, antennas, and
interconnects.
Moreover, ICN has conducted extensive micro-Raman scattering studies on exfoliated and CVD
grown graphene on different substrates. The measurements provide detailed information about the
quality of the samples including strain, defect concentration, doping, and number of layers (Figure
11). Based on this information, the best fabrication technique is selected in order to ensure optimum
conditions for the fabrication of graphene based RF devices.
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Figure 11 : (Left) Cross-plane thermal conductivity of high-k dielectric thin films ZrO  , and HfO , measured
by the 3 omega method in the temperature range from 30 K to 300 K, (middle) Optical microscopy image

of exfoliated graphene with different number of lay ers, (right) local micro-Raman scattering spectra a  t
the indicated positions of the graphene flakes.

» Graphene device fabrication and characterization

During the 1% year we have worked on graphene material characterization, graphene transfer,
graphene patterning, graphene process modules development (ohmics, dielectrics, T gates for self
align transistors) and graphene transistor fabrication.

However, the highlight, yet not totally confirmed, is the ohmic contact based on two materials and
annealing which yielded very promising results (Table 1, Figure 12) :

0.0z T
——FPd
1 ——Hi
CC RC Rsh pc (Q o071 — Pt
(@) | (Qisq) | cm?) S P
300 0.757 | 1,514 | 6.49x10 = 0,00
(best) 7 3
300 | 2.88 | 1,508 | 3.44x10° =
(mean) 6 0.074 1
350 | 5.05 | 1,715 | 9.2x10° .
AR e T B R S B
voltage (V)
Table 1. TLM results of contact X-Y on
graphene with binary Figure 12: TLM results comparison

CNRS - LAAS has developed an inverted process that enables the realization of a low loss high
frequency complex yet flexible circuit based on graphene and/or CNT active device (Figure 13).

Measured high frequency performance surpasses that of high resistivity silicon in losses and provides
a way to avoid graphene contamination during processing.

10
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Graphene

Figure 13: conventional (left) and inverted (right) processing concepts. The latter provides a
low loss polymeric substrate and at the same time d oes not expose the sensitive graphene
layer to many processing steps which reduces its co ntamination level.

This concept is now being used to fabricate FET devices. An added bonus of this fabrication method
is the fact that flexible circuits can be fabricated (Figure 14).

Figure 14: Circuits shown fabricated using the “inv erted process”

Nano-RF Publications

In the last 12 months the partners of the Nano-RF project published various results related to
the project.

* Publications
D.Dragoman and M.Dragoman, Geometrically induced rectification in two-dimensional
ballistic nanodevices, J.Phys. D 46, 055306 (2013).

» Conference
International Conference on Spectroscopic Ellipsometry (ICSE-VI) Kyoto, Japan
Invited talk at RomPhysChem15, Bucharest, Romania

11




f/f‘lancn;vr: D6.2 : Publication of e- 12/12
fe2020%6%020 202 %e %526 202025 %0}
newsletters #1

Remember to visit us at;
http://project-nanorf.com/

Nano-RF is a project co-funded by the
European
Commission under the FP7 programme
Initiative Advisory Council

Grant Agreement N 318352 ///ﬁdﬂDEF
62620202020 20202e 2020020000’

Contact: Dr. Afshin Ziaei, Nano-RF

SEVENTH FRAMEWORK Coordinator,
FRISRAMME mailto:afshin.ziaei@thalesgroup.com
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