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Abstract 

This document is the third deliverable of task 3.3 ‘Cognitive Spectrum Access’ which presents 
additional improvements on algorithms developed and reported on in earlier deliverables to deliver 
dynamic spectrum access for Public Safety and Disaster Relief (PPDR) and temporary event 
scenarios. The performance of transfer learning based K-means clustering algorithms to deliver 
improved cognitive spectrum management is investigated for ABSOLUTE public safety scenario. 
Knowledge transfer and processing, and knowledge reward are the major issues in transfer learning. 
Data mining techniques are selected to solve this problem. A scheme combining Reinforcement 
Learning (RL) and case based reasoning (CBR) is then proposed to improve the stability of RL based 
dynamic spectrum access (DSA) for temporary event networks with dynamic topologies that use 
secondary LTE spectrum sharing. A novel heuristically accelerated reinforcement learning (HARL) 
approach is also designed to overcome the common disadvantage of RL algorithms, which is the need 
for many learning iterations to converge on an acceptable solution. The HARL algorithm is 
developed to speed up RL algorithms, using a radio environment map (REM) to mitigate the problem 
of poor temporal performance of RL algorithms applied to DSS problem. 
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Executive Summary 
This document is the third deliverable of task 3.3 ‘Cognitive Spectrum Access’ scheduled in month 
32. The purpose of this deliverable is to propose detailed performance evaluation of cognitive dynamic 
spectrum access and improvements to algorithms reported on in the earlier deliverables in this task. 
Two scenarios are discussed here: the Pubic Protection and Disaster Relief (PPDR) in Callania and the 
Temporary Event in Bastian. In the PPDR scenario (Callania), seven use cases are included based on 
the work defined in D2.1 [1]: ABS.UC.01, ABS.UC.02, ABS.UC.03, ABS.UC.04, ABS.UC.05, 
ABS.UC.17 and ABS.UC.18. Three transfer learning based algorithms are designed for different 
scenarios in order to reduce the convergence speed for newly deployed eNBs and improve the system 
performance (e.g. retransmission probability and average delay). In the temporary event scenario 
(Bastian), four use cases are considered: ABS.UC.01, ABS.UC.02, ABS.UC.19 and ABS.UC.20. Two 
algorithms are developed to guarantee the high throughput density and reduce the convergence speed.  

In the first part of this deliverable, an overview and introduction of this document is presented. 

The second part shows an approach for cognitive spectrum resource management in the PPDR 
scenario. The main requirement is to develop a rapidly deployable and flexible network solution with 
broadband service in a large scale area (e.g. rural areas) [1] A transfer learning based cognitive 
spectrum assignment approach for PPDR scenario is introduced to achieve this goal , which includes 
the knowledge transfer and processing and the knowledge reward. A data mining technique, K-means 
clustering, is selected to deal with these problems. The details of the system model, the K-means 
learning model and the K-means learning algorithm are all described. Three transfer learning based 
cognitive spectrum management schemes are designed for different conditions in order to provide a 
flexible network solution, including newly deployed eNBs, existing eNBs looking for extra spectrum 
and existing eNB assigning spectrum.  

The third part shows a case based cognitive cellular system for the temporary event scenario (Bastian) 
using the ABSOLUTE system. The main target of temporary event scenario is to provide network 
capacity enhancement in urban areas [1]. A combination of RL and case based reasoning (CBR) is 
investigated to improve the stability of reinforcement learning (RL) based dynamic spectrum access 
(DSA) algorithms for temporary event networks with dynamic topologies that use secondary LTE 
spectrum sharing, aimed at providing a high throughput density service and highly agile 
reconfiguration through reduced convergence speeds of the learning algorithm. 

Next, a heuristically accelerated reinforcement learning (HARL) approach is proposed to speed up RL 
algorithms, particularly in the multi-agent domain. A radio environment map (REM) is used to 
improve the performance of RL algorithms applied to Dynamic Spectrum Sharing (DSS) problem. 

Finally, a recommendation and conclusion chapter is given to present how to use all the material and 
recommended schemes in ABSOLUTE system. Then, it provides a summary of the work in the task. 
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1 Introduction  
The main goal of ABSOLUTE is to ‘design and validate a holistic and rapidly deployable mobile 
network to provide broadband services based on a flexible, scalable, resilient and secure network 
design’ [1]. Innovative concepts like cognitive mechanisms are of significant importance to 
ABSOLUTE’s future success. Dynamic cognitive spectrum management techniques aim to enable a 
seamless network reconfiguration as well as efficient self-organizing networking, ensuring maximum 
system coverage, capacity and reliability. 

In the ABSOLUTE project, cognitive spectrum management has been chosen as the solution to 
achieve the project’s main goal. Under the first phase of work task T3.3, a thorough state-of-the-art 
summary has be presented, mainly dealing with spectrum assignment issues tailored to the 
heterogeneous requirement of ABSOLUTE. Meanwhile, preliminary recommendations are given as a 
basis for subsequent developments. The contributions have been shown in detail in the first deliverable 
of T3.3, “D3.3.1: Initial Approaches for Cognitive Spectrum Assignment using Distributed Artificial 
Intelligence”. In the second phase of T3.3, the initial performance of a transfer learning based K-
means clustering algorithm to deliver improved cognitive spectrum management is investigated for the 
PPDR scenario. The integration of the spectrum awareness techniques with the spectrum management 
approaches has also been discussed. Meanwhile, a cognitive dynamic spectrum management (DSM) 
scheme combined with distributed Q-learning and inter-cell interference coordination (ICIC) is 
proposed to provide better and more robust Quality of Service (QoS) than purely heuristic ICIC 
approach and a pure distributed Q-learning approach in the LTE downlink for temporary event 
scenario. Moreover, the possible interference between the AeNB and satellite is investigated for S-
band. The research has been presented in the second deliverable of T3.3, “D3.3.2: Interim 
Performance Results of Cognitive Dynamic Spectrum Access”. 

The purpose of this deliverable is to propose the Performance Evaluation of Cognitive Dynamic 
Spectrum Access in 4G LTE-A ABSOLUTE system. This work is produced in month 32 of the 
ABSOLUTE project, which includes additional simulation results and analysis of ABSOLUTE 
cognitive dynamic spectrum management compared to the work in D3.3.2. The Callania Public Safety 
and Disaster Relief (PPDR) scenario and the Bastian temporary event scenario are considered in this 
document. The PPDR scenario requires a rapidly deployable and flexible network solution with 
broadband service [1].  The related use cases include ABS.UC.01, ABS.UC.02, ABS.UC.03, 
ABS.UC.04, ABS.UC.05, ABS.UC.17 and ABS.UC.18. The temporary event scenario aims to provide 
network capacity enhancement in the urban area. The following use cases are considered: ABS.UC.01, 
ABS.UC.02, ABS.UC.19 and ABS.UC.20. Meanwhile, the simulation experiments of approaches 
incorporating T3.1 awareness technique and the distributed reinforcement learning scheme for 
dynamic secondary spectrum sharing are also investigated. 

Chapter 2 presents the further discussion of the transfer learning algorithms based on K-means 
clustering techniques for cognitive spectrum management in ABSOLUTE for PPDR scenario. 
Cognitive Spectrum Assignment techniques are highly desirable for LTE-A in ABSOLUTE because 
of their self-organizing and self-optimizing features, which are considered to improve the system 
Quality of Service (QoS) and reduce the convergence speed compared to traditional Q-learning 
algorithms.  Knowledge transfer and Knowledge reward are the major issues in transfer learning. Data 
mining techniques are used to overcome these challenges, where a K-means clustering algorithm is 
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considered to find the hidden structure based on the information exchanged. Three transfer learning 
based schemes are designed to work for different conditions. 

Chapter 3 proposes a way of improving the stability of reinforcement learning (RL) based dynamic 
spectrum access (DSA) algorithms for temporary event networks with dynamic topologies that use 
secondary LTE spectrum sharing. A combination of RL and case based reasoning (CBR) is 
investigated to solve this problem, which has been successfully applied to decision problems. A 
distributed Q-learning based DSA is also explained, and then the details of a case-based Q-learning 
scheme for dynamic secondary spectrum sharing are provided. 

In Chapter 4, a heuristically accelerated reinforcement learning (HARL) approach is designed to 
overcome the common disadvantage of RL algorithms described in Chapter 3, which is the need for 
many learning iterations to converge on an acceptable solution. The goal of HARL is to speed up RL 
algorithms, particularly in the multi-agent domain. Here, the HARL algorithm uses a radio 
environment map (REM) to mitigate the problem of poor temporal performance of RL algorithms 
applied to DSS problem. 

The final chapter provides a discussion on all the material and competing schemes investigated in this 
deliverable, in order to show how to make use of these schemes in ABSOLUTE system. A summary 
and conclusion of the work is also provided here.  
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2 Advanced Transfer Learning based Cognitive Spectrum 
Management in 4G LTE ABSOLUTE with K-means 
Clustering 

 

2.1 Introduction 
In the work on spectrum management for disaster recovery and event servicing in the LTE-A 
ABSOLUTE [1] system, the main challenges are the highly dynamic feature of the ABSOLUTE 
system and the unpredictable post-disaster and temporary event scenarios, which makes spectrum 
management extremely complex. Traditional fixed frequency assignment is unlikely to perform well 
in such scenarios because firstly ABSOLUTE has AeNBs as well as a variety of different TeNBs. The 
coverage areas associated with the ABSOLUTE eNBs are significantly different, and there is likely to 
be potentially considerable overlapping of coverage areas. Secondly, network planning is unlikely to 
be performed in a post-disaster scenario so that the ABSOLUTE base stations are unlikely to be 
deployed in optimal locations or even sub-optimal locations. Thirdly, the ABSOLUTE system is 
designed to cope with a changing environment which means that the topology of the system changes 
with time. The spectrum assignment aspect of the ABSOLUTE system is required to be able to adjust 
itself with any changes form the environment and the system itself. Cognitive spectrum management 
techniques therefore are highly desirable for ABSOLUTE because of its self-organizing and self-
optimizing features. 

The purpose of this chapter is to investigate further cognitive spectrum management techniques for 
LTE-A ABSOLUTE system, which is the advanced work of Chapter 4, D3.3.2. The Callania PPDR 
scenario is assumed here based on the work in D2.1. The use cases include ABS.UC.01, ABS.UC.02, 
ABS.UC.03, ABS.UC.04, ABS.UC.05, ABS.UC.17, and ABS.UC.18. By using reinforcement-based 
learning, eNBs will assess the success level of a particular action. Transfer learning techniques tailored 
to ABSOLUTE are proposed to improve the system performance. By allowing neighbouring entities to 
exchange information gained through reinforcement learning at the minimum level, transfer learning 
approaches are proven to be significantly effective in reducing convergence time [2]. The further 
approaches of the transfer learning within the context of the LTE-A network are also discussed. Three 
transfer learning based schemes are designed to work for different conditions. 

The remaining part of this chapter is structured as follows. Section 2.2 forms the system model and the 
role of reinforcement learning and transfer learning in CSM. The major issues for transfer learning in 
LTE-A ABSOLUTE network are then given in Section 2.3. The basic process of a powerful data 
mining technique (K-means clustering algorithm) is also introduced here to solve the knowledge 
transfers and process problem. Section 2.4 shows three TL based CSM algorithms for different 
conditions in details. Simulation results are presented in Section 2.5. Finally, conclusions are given in 
Section 2.6. 
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2.2 System Model 
An urban/suburban/rural area with M AeNBs and N TeNBs is considered. Figure 2.1 is an example of 
how transfer learning based cognitive spectrum management with K-means clustering works in the 
ABSOLUTE network. It is assumed that TeNB 1 is the centre target TeNB, TeNB 2-7 are the adjacent 
TeNBs of TeNB 1. The reinforcement learning is used to develop knowledge of the local agents based 
on their own radio environments. The role of transfer learning is to exchange knowledge (The Q-
values and received signal strength of the learning agents) from neighbouring TeNBs (TeNB 2-7), and 
then the exchanged information is processed locally (TeNB 1) to extract useful information. Here, K-
means clustering algorithm plays an important role in processing exchanged information, which helps 
to find the more/less frequently used spectrum bands by adjacent TeNBs. 

 

Figure 2.1 Transfer Learning Example 

The transfer learning aims to help the target TeNB learn the spectrum assignment ‘habits’ from its 
adjacent TeNBs. The purpose of this is to avoid using the spectrum bands which are frequently used 
by adjacent TeNBs. In this chapter, the information received from neighbouring TeNBs are the Q-
values of source tasks and the received signal strength, which tell us the overall spectrum allocation 
‘habits’ at a specific service area and the ‘weight’ of adjacent TeNBs to be obtain. In other words, the 
frequently used spectrum bands on adjacent TeNBs with high received signal strength will have more 
impact on the target TeNB than the remaining adjacent TeNBs.  

 

2.3 Major issues in Cognitive Spectrum Management 
There are three major issues for the transfer learning based cognitive spectrum management in the 
ABSOLUTE system: 

• Knowledge transfer and processing. 
• Knowledge reward. 

TeNB 1

TeNB 6

TeNB 5

TeNB 4

TeNB 3

TeNB 2
TeNB 7
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• Coping with transfer learning in LTE networks. 

 

2.3.1 Knowledge Transfer and Processing 
In this report, the knowledge being transferred is assumed related to two attributes: Q-Tables and 
received signal strength from adjacent TeNBs. Data mining is selected to find hidden structure of the 
knowledge transferred from neighbouring eNBs. The definition of Data Mining is given in [3]: Data 
Mining, an interdisciplinary subfield of computer science, is the computational process of discovering 
patterns in large data sets, involving methods at the intersection of artificial intelligence, machine 
learning, statistics, and database system. 

For Q-Tables, the patterns we would like to discover in the cognitive spectrum management are the 
Virtual Resource Blocks (VRBs) which are frequently used by adjacent eNBs. For received signal 
strength, the impact of neighbouring eNBs is distinguished. Some eNBs will be considered to have 
higher weights than others for the target eNB. Specifically, the cluster analysis of data mining is used 
to achieve these goals. Clustering is concerned with grouping together objects that are similar to each 
other and dissimilar to the objects belonging to other clusters [4]. 

 

2.3.1.1 Data Pre-processing 
Data pre-processing is a data mining technique that involves transforming raw data into an 
understandable format. Data have quality if they satisfy the requirements of the intended use. There 
are many factors comprising data quality, including accuracy, completeness, consistency, timeliness, 
believability, and interpretability. Even when the data is in the standard form it cannot be assumed that 
it is error free. In real-world datasets erroneous values can be recorded for variety of reasons, 
including measurement errors, subjective judgements and malfunctioning or misuse of automatic 
recording equipment. As shown in Figure 2.2, the major work of data pre-processing are summarized 
as follows [5]: 

• Data cleaning – To clean the data by filling missing values, smoothing noisy data, identifying or 
removing outliers and resolving inconsistencies. 

• Data integration – To combine data residing in different sources and providing users with a 
unified view of data. 

• Data reduction – To obtain a reduced representation of the data set that is much smaller in 
volume, yet produces the same or similar analytical results. 

• Data transformation – Normalization, data discretization and concept hierarchy generation. 
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Figure 2.2 Forms of data pre-processing, directly reproduced from [5] 

 

Data pre-processing in cognitive spectrum management 

The purpose of data pre-processing in ABSOLUTE’s cognitive spectrum management is to transform 
the raw data received from adjacent eNBs into an understandable, simplified format. We consider a 
target eNB received Q-Tables from L adjacent eNBs, which is shown in Figure 2.3. It is assumed in 

principal that all eNBs have the access to all N available VRBs (frequency bands).∪
Sj

j
SQ

∈

 are the Q-

values of source tasks and i
TQ are the Q-values of the target task i. The received signal strength of 

eNBs from source eNBs to target eeNB i are denoted as ),,(= ,1,, iL
r

i
r

ij
r ppp … , where j is the thj

source eNBs and ],1[ Lj∈ . 
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Figure 2.3 Q-Tables received from adjacent eNBs 

 

The details of data pre-processing in cognitive spectrum management can be shown as follows: 

1) Data cleaning (remove noise) 

For the Q-tables received from neighbouring eNBs, we are interested in the VRBs with high Q-values 
(frequently used VRBs). Here, the VRBs with low Q-values mean the signal qualities of these VRBs 
are not good or these VRBs did not have a chance to be sensed. They are considered as the ‘noise’, 
which impact negatively on the processing of data mining. Thus, we set the low Q-values to zero if the 
Q-values are smaller than a threshold: 
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,  is the Q-value of tht  VRB of thj  eNB, α is the factor of removing Q-values. In this 

report, it is assumed 4.0=α . 

For the received signal strength from neighbouring eNBs, we assume that the eNBs with low signal 
strengths have very limited impacts on the target eNB. In other words, these eNBs are far away from 
target eNB. Thus, the information received from these eNBs can be ignored. Thus, we have: 
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where thresrp ,  is the threshold to ignore the information from adjacent eNBs, this value will be equal to 

0 after normalization. 

 

2) Data transformation 

Here, Min-Max Normalization is selected to normalize both Q-values and the received signal strength 
into a specific range ]15,0[∈B . Thus, the data requirement associated with a specific Q-value is 
4 bits. 
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For the Q-tables, the normalized Q-values are: 
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where j
SQ  is the set of Q-values of thj eNB, B is the set of the normalized data. 

For the received signal strength, the normalized received signal strengths are: 
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where thresrp , is the threshold to ignore the information from adjacent eNBs, B is the set of normalized 

data. 

 

3) Data integration and reduction 

The VRBs with high Q-values, and the eNBs with high received signal strength may provide more 
interference than the others. Thus, the converted Q-value on a specific VRB based on the information 
received from adjacent eNBs is shown as:  

∑
=

⋅=
L

j

ij
newr

tj
newS

t
P pQQ

1

,
,

,
, )(  

where tj
newSQ
,
, is the normalized Q-table of thj eNB in tht VRB, ij

newrp
,
,  is the normalized received 

signal strength of thj eNB. A high value of t
PQ  means tht VRB is frequently used by neighbouring 

eNBs. 

 

2.3.1.2 K-means Clustering Algorithm in ABSOLUTE CSM 
K-means clustering is an exclusive clustering algorithm, which is straight forward to implement 
(computationally faster than hierarchical clustering) and can be applied to even large data sets. This 
algorithm is widely used in market segmentation, computer vision, geostatistics, astronomy and 
agriculture [6]. In this deliverable, K-means clustering can be used in our scheme to find the VRBs in 
which we are interested. Each object is assigned to precisely one of a set of clusters. For this method 
of clustering it starts by deciding how many clusters (k clusters) we would like to form the data. Next, 
k points are selected as the centroids of k clusters. Then, each of the points in the data is assigned one-
by-one to the cluster which has the nearest centroid, which is shown as: 

 

We recalculate the centroids of the k clusters based on the assigned clusters, and then repeat the 
previous steps until the centroids no longer move. The entire process of the algorithm is summarised 
in as Table 2.1 [4]: 
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Table 2.1 K-means clustering algorithm [4] 

K-means algorithm:
1. Decide how many clusters (k) we would like to form from our 
data.
2. Select k objects, use them as the initial set of k centroids.
3. Assign each of the objects to the cluster for which is nearest 
the centroid.
4. Recalculate the centroids of the k clusters.
5. Repeat steps 3 and 4 until the centroids no longer move.

 

 

In Figure 2.4, we consider a set of pre-processed data of the Q-values (Converted Q-Table) in every 
VRB (channel, 30 VRBs/channels in total). Here, we try to divide the VRBs into three groups (High 
Q-values, middle Q-values and low Q-values). The initial cluster heads (centroids) of these three 
groups are set as: the maximum Q-value of the converted Q-Table, the mean Q-value of the converted 
Q-Table and the minimum Q-value of the converted Q-Table. 

 

Figure 2.4 K-means algorithm example 1 

In Figure 2.5, The Q-values are divided into three clusters based on K-means algorithm. The low Q-
value cluster includes the VRBs which are seldom used by neighbouring eNBs. In other words, they 
are the potential available VRBs of the target eNB.   
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Figure 2.5 K-means algorithm example 2 

 

2.3.2 Knowledge Reward 
In this report, knowledge reward is related to how to make use of the information received from 
neighbouring eNBs in order to improve the system performance. The following conditions are 
considered in the ABSOLUTE systems: 

• Reward when new eNB is deployed 
• Reward when an existing eNB tries to explore additional potential available VRBs 
• Reward when an existing eNB ties to assign VRBs for new arrivals 

The principles of how to reward the above three scenarios are presented in the upcoming sub-sections. 
The details of these transfer learning algorithms will be introduced in Section 2.4.  

 

2.3.2.1 Reward when new eNB is deployed 
When a new eNB is deployed in ABSOLUTE system, it has no historical knowledge about local radio 
environment. In other words, its Q-Table is empty. That means it may take a long time for this eNB to 
develop its own ‘habit’ on spectrum assignment. However, it is possible to generate a converted Q-
Table based on the information received from its adjacent eNBs. In Figure 2.6, the newly deployed 
TeNB1 could receive Q-Tables and received signal strength from its neighbours (TeNB2-7). The less 
frequently used spectrum bands by neighbours can be considered as the potential good spectrum for 
TeNB1. 
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Figure 2.6 Reward a newly deployed eNB 

2.3.2.2 Reward when exploring potential available VRBs 
In some situations, the group of most frequently used VRBs of the target eNB may be fully occupied. 
Thus, the target eNB is required to find other potential available VRBs. The typical solution of 
learning based algorithm is to sense the high Q-value VRBs in remaining available spectrum bands 
from local Q-Table. Transfer Learning algorithm can be used here to improve the performance of such 
process. A joint consideration of spectrum ‘habits’ from neighbouring eNBs and target eNB may 
reduce the number of VBRs to be sensed and increase the convergence speed of system.   

 

2.3.2.3 Reward when assigning VRBs for new arrivals 
Figure 2.7 is an example of new arriving UE, where TeNB1 can provide the best link. It is assumed 
that TeNB1-4 are located close to the UE and TeNB5-7 are far away from it, even though TeNB2-7 
are the adjacent TeNBs of TeNB1. It can be clearly noticed that the ‘habits’ of TeNB2-4 play more 
important roles than TeNB5-7. Thus, the knowledge of TeNB2-4 is considered as useful information 
when TeNB1 tries to allocate VRBs for this UE. This is because TeNB1 should avoid the frequently 
used VRBs in TeNB2-4 in order to limit interference at the boundary of two adjacent eNBs. The 
‘near/far’ information from TeNBs to UEs can be obtained when newly arriving UEs try to access the 
system, where the link environments between UE and potential available TeNBs are measured. The 
details of how it works in the ABSOLUTE system will be explained in Section 2.4. 
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Figure 2.7 New Arrival (UE) 

Here, we present a small scale scenario with 7 TeNBs, similar to that shown in Figure 2.7. It is 
assumed that the number of UEs being served by centre TeNB1 is twice that of other TeNBs’. The 
offered traffic is set at high level, and the UEs which are located in the middle of two or more TeNBs 
may provide/suffer significant interference. The number of VRBs (channels) is 10. Figure 2.8 and 
Figure 2.9 show the number of channels being used by each TeNB after 500, 1k, 3k and 10k events. 
During the first 500 events, the best SINR scheme is used only to develop eNBs’ spectrum selection 
habits. The transfer learning algorithm works from 501 events. It can be found out that there is no 
specific spectrum selection ‘habit’ in the first 500 event diagram. This is because the spectrum 
assignment scheme is the best SINR scheme before the learning algorithm starts. Based on the 
performance of TeNB1 from 1k events to 10k events, spectrum is efficient used with low interference 
(blocking probability = 3%) here. It is noticed that all spectrum bands are frequently used, but some 
are more frequently. This is because new arrivals only need to avoid the frequently used channels of 
their own adjacent TeNBs, rather than all the neighbours of target TeNB1. 
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Figure 2.8 Number of channels being used on each TeNB (500 and 1k events) 

  
Figure 2.9 Number of channels being used on each TeNB (3k and 10k events) 
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2.3.3 Approach for Utilising Transfer Learning in 4G LTE ABSOLUTE 
Networks 

The main difficulty with applying transfer learning to LTE-A networks is that extra information is 
transferred from adjacent eNBs. In the current LTE-A standard, such mechanisms for transfer learning 
have not been designed. However, it is possible for this to be achieved by exchanging information 
between adjacent eNBs over the X2 interface in LTE network [7]. Here, X2 is defined as a “logical” 
interface between only neighbouring eNBs and can be switched over the existing transport network 
[3]. Currently, the X2 interface is mainly used for handover, load management, Co-ordinated Multi-
Point transmission or reception (CoMP), Network Optimisation, eNB configuration update, mobility 
optimisation and general management. Next, it is necessary to optimize the information exchanged 
(limit data size delivered per second) over X2 interface in order to avoid too much resource being 
taken by transfer learning mechanism. The total volume of data transferring from one eNB to another 
can be calculated as: 

sTableQdataTL fLL ⋅= −−  

where TableQL − is the data length of a typical Q-Table, sf is the transferring frequency (per second) 

between adjacent eNBs . 

Thus, there are two possible ways to reduce the negative impact on the system capacity: reducing the 
data size of Q-Tables or increasing the transferring period.  Figure 2.10 gives an example of a typical 
Q-Table, at least 11bits (or 12) is required to deliver a specific Q-value in binary.  

 

 

Figure 2.10 Example of a typical Q-Table 

However, it is possible to deliver quantized Q-Table instead of the original one. Assuming there are 16 
quantized levels Figure 2.11, the volume of a specific Q-value is 4 bits, only one third the volume of 
data is required to transmit compared to scheme forwarding the original Q-Table to neighbouring 
eNBs directly. 

 

Figure 2.11 Quantized Q-Table 
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2.4 Advanced Transfer Learning CSM with K-means Clustering in details 
In this section, the details of transfer learning algorithm in 4G LTE ABSOLUTE cognitive spectrum 
management are introduced. The learning model on a specific eNB (Single State Q-Learning) is 
present firstly, and then how transfer learning is applied into the system for different scenarios is 
discussed.  

Single-State Q-Learning is originally proposed to solve Single-state games in Computer Science. A 
reformulation of the standard Q-learning algorithm is carried out that the Q values of actions are 
effectively the estimation of the usefulness of the actions in the next step of the learning process. By 
maintaining a Q value for each action, the agent is able to select the action based entirely on it Q value 
and the Q value of the selected action will be updated by receiving a reward. The update function is 
defined as: 

 ))()(()()( aQaraQaQ −+← γ   

𝛾 is the learning rate (0 ≤ 𝛾 < 1) and 𝑟 𝑎  is the immediate reward of choosing action 𝑎. 

Thus, instead of pursuing the optimal policy 𝜋∗, the objective of each agent 𝑖 is to find the action with 
the highest estimated Q-value Q*. This greatly reduces the complexity of the learning model as the 
definition of the states and the state transition probability are no longer required. However, in this case 
the reward r(a) needs to be properly defined so that the feedback of taking an action reflects the 
successfulness correctly. Particularly in wireless communication systems, the reward is more useful 
when associated with the physical measurements of the system in order to facilitate the learning 
process. It is proposed at the early stage that the SINR measurements and/or link capacity 
measurements are taken as rewards. If we assume that an eNB select the spectrum band r with action a 
then the reward function can then be defined as follows: 

 i
rCar =)(

 

 

Or 

 i
rar γ=)(

 

 

The role of transfer learning is to exchange the Q-values of the learning agents, and then the 
exchanged information is processed locally to extract useful information. Some aspects of transfer 
learning based topology management were introduced in D4.1.4 [9]. The flow chart of transfer 
learning is shown in Figure 2.12. The process includes two parts: knowledge transfer and initial 
processing, knowledge reward. In other words, they are ‘what information is received’ and ‘how to 
make use of the information’. The first part has been explained in the previous sections. The data pre-
processing techniques are used to process the raw data received from neighbouring eNBs, and then the 
K-means clustering algorithm is carried out to find the potential available VRBs for the target eNB. 
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Figure 2.12 Flow chart of transfer learning 

 

In the second part,  
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where Tf is the target predictive function. ∪
Sj

j
SQ

∈

are the Q values of source tasks and i
TQ are the Q 

values of the target task i. The focus of the cognitive spectrum assignment task is to discover the most 
suitable target predictive function Tf  in the context of ABSOLUTE. The transfer learning is assumed 

to provide positive impact on the target eNB for three different scenarios in this deliverable. 
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2.4.1 Transfer Learning algorithm for Newly Deployed eNBs (TL-ND 
algorithm) 

Transfer Learning algorithm for Newly Deployed eNBs (TL-ND) aims to help the newly deployed 
eNB learn the spectrum allocation ‘habits’ from its adjacent eNBs. The less frequently used VRBs will 
be positive rewarded in the Q-Table of new eNB. In other words, these VRBs are expected to obtain 
higher priority being selected compared to the remaining VRBs, in order to avoid interference from 
nearby.  

Here, the group of less frequently used VRBs is denoted as lowVRB based on the work in Section 2.3. 

The converted Q-values on all spectrum band is denoted as t
PQ . Thus, the converted Q-values on the 

group of less frequently used VRBs are lowVRB
PQ . The VRB with least converted Q-values means it is 

the top choice for the newly deployed eNB. The reward is considered as: 

)(min))min()(max(
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qVRB
P

VRB
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−
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where qVRB
P

lowQ ,  is the converted Q-value on thq VRB, B is the set of the normalized data, ]10,0[∈B . 

If the Q-Table of newly deployed eNB is empty, we have: 

)(arQiT =  

 

2.4.2 Transfer Learning algorithm for Exploring extra available Spectrum 
Bands (TL-ESB algorithm) 

TL-ESB algorithm provides a solution of exploring extra available spectrum bands for existing eNBs. 
If the number of VRBs being sensed when an UE tries to access the network is higher than a threshold, 
and this has happened continuously in the past few transmissions, we assume that the convergence of 
system is not at stable stage. The target eNB needs to find extra potential VRBs. For example, it is 
assumed that the threshold is equal to two, and we only look back the past three transmissions. Here, a 
small number of past transmissions help the system start exploration fast. It means that if the VRBs 
with the top two Q-values in the Q-Table are not suitable for access, over the past three transmissions, 
extra exploration is required, so that the target eNB needs to process the radio environment 
information received from adjacent eNBs, in order to find new available VRBs. Here, the reward 
depends on the difference between the maximum Q-value in the group of low Q-values and the Q-

value of thq VRB. The details are presented as: 
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where qVRB
P

lowQ ,  is the converted Q-value on thq VRB, )min(/)max( lowlow VRB
P

VRB
P QQ is the 

maximum/minimum element in the set of lowVRB
PQ , C is the set of the normalized data, ]3.0,05.0[∈C . 

Then, we update the Q-value vector: 
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))()(()()( aQaraQaQ −+← γ  

 

2.4.3 Transfer Learning algorithm for Assigning Spectrum Bands (TL-
ASB algorithm) 

TL-ASB algorithm is used when new UE arrives. The basic process is shown in Figure 2.13. The 
target TeNB receives information from its neighbours firstly. Next, UEs are required to measure 
channel quality when accessing into LTE networks, and then a TeNB is chosen with the best link. In 
this example,  TeNB1 is selected as the best link. Meanwhile, the UE reports the difference of received 
signal power to TeNB1 (best performance). A small value of difference means the UE is located in the 
middle of two TeNBs (TeNB1 and TeNB3), which means the UE may provide/suffer significant 
interference to/from TeNB3. We then rank TeNB3 as a high risk TeNB for the UE. Thus, the VRBs 
being assinged to the new arriving UE must avoid the frequently used VRBs in TeNB3. Similarly, we 
rank the TeNBs (TeNB4) with medium value of difference as medium risk TeNBs for the UE. It may 
provide/suffer some inteference to/from TeNB4. The TeNBs with a high value of difference are 
ignored and considered as noise. The final step is a joint process of K-means algorithm and knowledge 
received. The purpose is to find the potential high interference spectrum bands from the adjacent 
TeNBs of new arriving UEs depending on their risk levels, and avoid to use these spectrum bands 
during spectrum assignment. Here, only high and medium risk TeNBs are considered in the process. 
Meanwhile, we reward high risk TeNBs with a factor of 3.  

 

Figure 2.13 Process of TL-ASB algorithm 
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−Pr is the pre-processed Q-Table of TeNB i, Pe
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−Pr is the pre-processed received signal 

strength from TeNB i to new arriving UE, UEiRF ,  is the risk factors of TeNB i to new arriving UE (

0;1;3 === risklowriskmediumriskhigh ). 

The potential available VRBs with high Q-values and less interference for new arriving UE are shown 
as: 
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Where high

ett

VRB
Qch arg

 is the group VRBs wtih high Q-values on target TeNB,  high

P

VRB
Qch  is the group of 

frequently used VRBs based on the result of converted Q-Table. 

 

2.5 Performance Evaluation 
This section examines the performance of cognitive spectrum management with transfer learning in a 
large scale simulation, with comparisons to conventional Q-Learning algorithm. The results of three 
TL algorithms will be presented as well. 

 

2.5.1 ABSOLUTE’s Large Scale Deployment 
Here, we present a large scale ABSOLUTE architecture used in D3.3.2. The PPDR (Callania) scenario 
is used here for simulation and comparison. The use cases defined based on the work in D2.1 include 
ABS.UC.01, ABS.UC.02, ABS.UC.03, ABS.UC.04, ABS.UC.05, ABS.UC.17 and ABS.UC.18 [10].  
As shown in Figure 2.14, two Aerial eNBs are deployed to provide macro cell services for a 40 km by 
20 km rural area. The potential coverage radius of Aerial eNB (AeNB) is more than 10 km. Several 
terrestrial eNBs are deployed on the north east of the service area aiming to enhance the capacity for 
local hotspot areas (e.g. little town or village). The hotspot area occupies a 5 km by 4 km area. There 
are 30 possible deployment locations for Terrestrial eNBs (TeNBs) in the hotspot area, 25 of them 
have been deployed before the simulation starting. The remaining 5 will be switched on during 
simulation. 
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Figure 2.14 ABSOLUTE large scale architecture 

 

The system level simulation uses the parameters proposed on D2.5.2 and D2.6.1. The details are 
shown in Table 2.2. 
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Table 2.2 System Parameters 

Parameters Values 

Number of AeNBs 2 

Number of TeNBs 25+5 (switched on later) 

Number of UEs 1500 

Number of Events 150000 

Probability of UEs in wide area 10% 

Probability of UEs in hotspot area 90% 

Transmit Power 
AeNB 25 dBm 

TeNB 25 dBm 

UE 23 dBm 

Thermal Noise -174 dBm/Hz 

File Transfer  

Traffic Model 

Inter-arrival time Pareto distribution 

Mean file size 1 MB 

Antennas Omni-directional 

Bandwidth AeNB (uplink) 5 MHz; 25 RBs (180kHz/RB) 

TeNB (uplink) 5 MHz; 25 RBs (180kHz/RB) 

Carrier Frequency AeNB 700 MHz 

TeNB 2.6 GHz 

Propagation Aerial Free space path loss + Log-normal 

shadowing coefficient 8 Terrestrial WINNER II D1 (LOS 400-500 m) 

Antenna height 
AeNB 300m 

TeNB 15m 

UE 1.5m 

Back off Time (ms) LTE Back off Parameter B 

Link Selection Best signal 

Transfer Learning Period (ms)  200 ms 

 

2.5.2 Simulation Results 
A) Transfer Learning algorithm for Newly Deployed eNBs (TL-ND) 

In the first set of results, the TL-ND algorithm is examined to show how transfer learning based 
cognitive spectrum management schemes reward newly deployed TeNBs. A total number of 25 
TeNBs are activated at the beginning of the simulation. 5 more TeNBs will be switched on during the 
simulation. The average offered traffic per TeNB is kept constant. Convergence is a crucial issue in 
the previously proposed Q-learning based cognitive radio network, where the speed of achieving a 
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stable state is very slow. Transfer learning with the received information from neighbouring eNBs 
provides a preliminary knowledge of radio environment. The newly deployed TeNBs can obtain 
information, like the VRBs that are less frequently used by neighbouring eNBs, and the potentially 
available VRBs themselves. 

Figure 2.15 shows the convergence efficiency of the transfer learning algorithm and a traditional Q-
learning algorithm. Here, convergence efficiency is defined as the probability of an eNB being in a 
stable state. It is assumed that the stable state occurs when the number of tries of sensing VRBs in 
order to assign a VRB to UE is less than a threshold. A small threshold value of three is selected in 
this report in order to achieve a fast exploration. The performance is estimated every 2000 data file 
transmissions. The measurement of convergence efficiency starts from the 5 extra eNBs being 
switched on. 

  

Figure 2.15 Convergence Efficiency 

It can be noticed the system with transfer learning algorithm there is almost a constant probability of a 
stable state while the number of transmissions increasing. This is because an initial Q-Table was 
generated based on newly deployed TeNBs using the information received from adjacent TeNBs. In 
contrast, the Q-learning algorithm has very poor performance at the beginning, which is due to the Q-
Tables of newly deployed TeNBs being empty. The convergence speed is very slow for the newly 
deployed TeNBs learning radio environment from scratch. When the Q-learning scheme has 
converged, the network with transfer learning still has better performance compared to the results of 
Q-learning, an average improvement of 3%-10% probability of stable states. Thus, we conclude that 
transfer learning significantly improves convergence on traditional Q-learning. 
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B) Transfer Learning algorithm for Exploring available Spectrum Bands (TL-ESB) 

Secondly, TL-ESB algorithm is presented to show how transfer learning based CSM reward existing 
eNBs when exploring extra available spectrum bands. The CDF of the number of VRBs being sensed 
in order to allocate a VRB when an UE tries to access the system is observed in Figure 2.16. It is 
demonstrated that the 95% of VRBs being sensed in order to assign a VRB are equal or less than two 
in the Transfer Learning scheme, this value drops to 87% in the Q-Learning scheme. Moreover, the Q-
Learning scheme converges to a set of poor VRBs, which causes a significantly number of extra VRBs 
to be sensed. Thus, the transfer learning algorithm contributes to both good decisions and fast 
convergence. 

 

Figure 2.16 CDF of numbers of tries 

 

C) Transfer Learning algorithm for Assigning Spectrum Bands (TL-ASB) 

Figure 2.17, Figure 2.18 and Figure 2.19 compare the system performance of the network in terms of 
the system throughput, retransmission probability and average delay, using typical Q-Learning, the TL 
for Exploring extra Spectrum Bands (TL-WSB) and the TL for Assign Spectrum Bands (TL-ASB) 
schemes. The performance of all three schemes at low traffic level has almost no difference. 
Meanwhile, there is a similar result for system throughput when applying both transfer learning based 
algorithms and Q-learning algorithm. However, a significant improvement is achieved by transfer 
learning based algorithms when it comes to the retransmission probabilities and average delay. It is 
noticed that up to 10%(TL-ESB)/15%(TL-ASB) improvement is obtained when the system offered 
traffic is at middle/high level for retransmission probabilities, showing the effectiveness of transfer 
learning techniques in improving QoS in ABSOLUTE systems. This is explained that the transfer 
learning schemes converge to a set of good VRBs (spectrum pools), which causes less interference 
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compared with pure Q-Learning scheme in simulation. The average delays of transfer learning 
schemes decrease while the retransmission probabilities reduce. This is because these schemes with 
better retransmission probability have reduced back off times. Here, the transfer learning based 
algorithm for assigning spectrum bands (TL-ASB) has the best performance among the other two 
schemes. 

  

Figure 2.17 System throughput 
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Figure 2.18 Retransmission probability 

  

Figure 2.19 Average delay 
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2.6 Conclusions  
In this chapter we investigated the cognitive spectrum management for Callania Public Protection and 
Disaster Relief scenario. The use cases discussed include ABS.UC.01, ABS.UC.02, ABS.UC.03, 
ABS.UC.04 ABS.UC.05, ABS.UC.17 and ABS.UC.18. Three transfer learning schemes with K-means 
clustering to deliver cognitive spectrum management for different conditions within 4G LTE-A 
ABSOLUTE system. The system model and the major issues of applying transfer learning in an LTE-
A network were proposed. The novel transfer learning algorithms have been developed to optimize the 
system QoS, reduce the convergence delay and number of times that VRBs to be sensed when 
performing spectrum allocation in comparison to the Q-Learning schemes. 

Here, the process of transfer learning is designed as two major functions: knowledge transfer and 
processing, and knowledge reward. The knowledge transfer and processing function achieves the 
spectrum information received from neighbouring eNBs. Data mining techniques are used to find the 
hidden structure of data in this function, including data pre-processing and K-means clustering 
algorithm. Specifically, the hidden information we are interested is the more/less frequently used 
spectrum bands by adjacent eNBs. The knowledge reward function determines how to make use of the 
converted information processed in the previous function for three conditions: newly eNBs deployed, 
existing eNB looking for extra spectrum bands and existing eNB assigning spectrum bands for new 
arriving UEs. With the aid of transfer learning, the severe negative impact of topology changes on 
radio environment can be minimized, and the system can effectively handle the dynamics of user 
traffic with reduced interference. 

A large scale public safety event proposed in D3.3.2 has been used for system level simulation. The 
simulation results show that the transfer learning algorithms contribute to both good decisions of 
selecting potential VRBs and fast convergence, where the transfer learning algorithm for assigning 
spectrum bands (TL-ASB) has the best system performance. 
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3 Case based Cognitive Cellular Systems for Temporary Events 
The purpose of this chapter is to propose a way of improving the stability of reinforcement learning 
(RL) based dynamic spectrum access (DSA) algorithms for temporary event networks with dynamic 
topologies that use secondary LTE spectrum sharing. The technique investigated for solving this 
problem is case-based RL, a combination of RL and case-based reasoning (CBR). CBR is broadly 
defined as the process of solving new problems by using the solutions to similar problems solved in 
the past [11]. In case-based RL these solutions are learned by using an RL algorithm. The combination 
of these two techniques has been successfully applied to various decision problems, e.g. dynamic 
inventory control [12] and RoboCup Soccer [13]. However, the only example of applying this 
methodology in the wireless communications domain is described by us in Subsection 3.2.3 of D3.3.1, 
where a DSA scheme is designed for a small generic cellular network with its own dedicated 
spectrum, i.e. without secondary spectrum sharing and the presence of the primary users. 

The rest of the chapter is organised as follows: Section 3.1 introduces the temporary event scenario. 
Section 3.2 explains distributed Q-learning based DSA. In Section 3.3 we introduce the concept of 
case-based RL and propose a case-based Q-learning scheme for dynamic secondary spectrum sharing. 
Simulation results are discussed in Section 3.4, and the conclusions are given in Section 3.5. 

 

3.1 Temporary Event Scenario 
The spectrum sharing problem investigated in this chapter is designed for a temporary event (Bastian, 
as seen in D2.1) scenario and related to the ABSOLUTE user cases of ABS.UC.01, ABS.UC.02, 
ABS.UC.19 and ABS.UC.20. It involves a temporary cognitive cellular infrastructure that is deployed 
in and around a stadium to provide extra capacity and coverage to the mobile subscribers and event 
organizers involved in a temporary event, e.g. a football match or a concert, as described in Section 
4.2 of D2.1. This scenario is depicted in Figure 3.1, where a small cell network is deployed inside the 
stadium to provide ultra-high capacity density to the event attendees, and an eNB on an aerial platform 
is deployed above the stadium to provide wide area coverage. 

 

Figure 3.1. Stadium temporary event scenario 
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The cognitive small cells and the AeNB have secondary access to a 20 MHz LTE channel, also used 
by a network of 3 local primary eNBs (PeNBs). The goal of the small cell network and the AeNB is to 
use distributed machine intelligence methods to form a self-organizing heterogeneous cellular system 
which reuses the LTE spectrum of the local primary LTE network. Furthermore, in this chapter we 
consider a dynamic topology case, where the AeNB can be switched on and off several times 
throughout the duration of the event. For example, it can be switched on for providing the event 
organizers with a dedicated access network when required, and switched off to have its batteries 
recharged or to minimise the energy consumption in general. Therefore the additional challenge faced 
by the cognitive cellular system is to adapt to these sudden changes in their radio environment, while 
not affecting the QoS in the local primary system. 

3.2 Distributed Q-learning Based Dynamic Spectrum Access 
In distributed reinforcement learning (RL) based DSA the task of every eNB is to learn to prioritise 
among the available subchannels only through trial-and-error, with no frequency planning involved, 
and with no information exchange with other eNBs. In this way, frequency reuse patterns emerge 
autonomously using distributed artificial intelligence with no requirement for any prior knowledge of 
a given wireless environment. 

3.2.1 Distributed Stateless Q-learning 
One of the most successful and widely used RL algorithms is Q-learning, introduced in [14]. Since the 
distributed DSA learning problem does not require a state representation, a simple stateless variant of 
this algorithm, as formulated in [15], is used. Figure 3.2 shows a flowchart of the distributed Q-
learning based DSA algorithm for one file transmission. 

Each eNB maintains a Q-table Q(a) such that every RBG a has an expected reward or Q-value 
associated with it. The Q-value represents the desirability of assigning a particular RBG to a file 
transmission. Upon each file arrival, the eNodeB either assigns an available RBG to its transmission or 
blocks it if no RBGs are available. It decides which RBG to assign based on the current Q-table and 
the greedy action selection strategy described by the following equation: 

𝑎 =   argmax
!

𝑄 𝑎 , 𝑎 ∈ 𝐴!,𝐴! ⊂ 𝐴 

where 𝑎 is the RBG chosen for assignment out of the set of currently unoccupied RBGs A', Q(a) is the 
Q-value of RBG a, and A is the full set of RBGs. 

The Q-table is updated by the corresponding eNodeB each time it attempts to assign a RBG to a file 
transmission in the form of a positive or a negative reinforcement. The update equation for stateless Q-
learning, as defined in [15], is given below: 

𝑄! 𝑎 =   𝑄 𝑎 +   𝛼   𝑟   −   𝑄 𝑎  

where Q(a) and Q'(a) represent the Q-value of the RBG a, before and after the update respectively, r is 
the reward associated with the most recent trial and is determined by a reward function, and 𝛼 ∈ [0, 1] 
is the learning rate parameter which weights recent experience with respect to previous estimates of 
the Q-values. 



ABSOLUTE  D3.3.3 
 

Dissemination Level PU Page 39 
 

 

The reward function returns two discrete values: 

• r=-1 (negative reinforcement), if the file is scheduled for retransmission due to SINR being 
lower than the minimum transmission threshold (1.8 dB) on the selected RBG, or if it is later 
interrupted for the same reason. 

• r=1 (positive reinforcement), if the file is successfully transmitted using the RBG chosen by 
the eNB, i.e. if SINR is higher than 1.8 dB throughout the whole transmission. 

The choice of the learning rate value for this type of distributed Q-learning based DSA problems is 
thoroughly investigated by us in [16]. The best performance is achieved by using the Win-or-Learn-
Fast (WoLF) variable learning rate principle described by the equation below: 

𝛼 = 0.01 𝑟 = 1
0.05 𝑟 = −1 

There, a lower value of α is used for successful trials (when r=1), and a higher value of α is used for 
failed trials (r=-1). In this way, the learning agents are learning faster when ``losing" and more slowly 
when ``winning". 

The values in the Q-tables are initialised to zero, so all eNBs start learning with equal choice among 
all available RBGs. 

Figure 3.2. Flowchart of the distributed stateless Q-learning algorithm 
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3.3 Case-Based Reinforcement Learning 
Figure 3.3 shows a flow diagram of the processes involved in case-based RL. It also demonstrates that 
it is an extension of classical RL, i.e. classical RL can be viewed as a special case of case-based RL. 

In Figure 3.3, the unfilled blocks and solid lines constitute a flow diagram of a regular RL algorithm. 
There is an outer output-state-action loop, where outputs of the environment are observed and 
processed to yield the environment state information, and then the best action is chosen for the current 
state based on the policy of the learning agent. In the context of our DSA problem, the output of 
interest is whether or not the last file transmission got blocked or interrupted, and the action is an RBG 
allocated to it. There is also an inner learning loop, whose role is to learn a good policy to be used by 
the learning agent. It achieves this goal by observing the actions taken by the learning agent and their 
outcomes and directly estimating the entries in the Q-table. A policy is then derived from the 
estimated Q-table and used for choosing an action in the current environment state. 

 

Figure 3.3. Block diagram of processes involved in case-based reinforcement learning 

The highlighted blocks and dashed arrows represent additional functionality afforded by case-based 
reasoning to enable the system to learn several solutions to different cases of the environment at once. 
It introduces another parallel inner loop which continuously observes the input/output relationship of 
the environment, and identifies its current model or case. In some circumstances it may also have 
access to other information supplied from elsewhere to aid the identification process. The idea is that 
for different cases of the environment the estimated models will be sufficiently different to be detected 
by the identification algorithm, and for every identified model of the environment there will be a 
stored Q-table associated with it. In this way, a case-based RL algorithm will always know what phase 
the environment is currently in and will be able to use a Q-table most suitable for it. 

3.3.1 Distributed Case-Based Q-learning 
Figure 3.4 shows our proposed adaptation of this case-based RL  approach to the dynamic secondary 
spectrum sharing scenario described in Section 3.1. The functionality afforded by CBR, as an 
extension to classical RL, is described by steps 5, 6, and 10 of the algorithm in Figure 3.4. Before 
making an RBG assignment decision based on Q-learning, the given eNB first identifies the current 
case of the environment, i.e. whether the AeNB is on or off. It then retrieves the Q-table that 
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corresponds to the identified case, or uses its current Q-table, if there are none stored for the required 
case. Afterwards, when the spectrum assignment decision is made, the outcome is observed and the 
current Q-table is updated with a positive or a negative reinforcement, the eNB stores the updated Q-
table in its case base and associates it with the current case. In this way, all eNBs undergo two learning 
processes in parallel, depending on whether the AeNB is on or off, with the aim of achieving more 
stable and reliable spectrum sharing policies. 

 

Figure 3.4. RBG Assignment using case-based Q-learning for dynamic secondary spectrum sharing 

3.4 Simulation Results and Discussion 
The spectrum sharing problem described in Section 3.1 involves an AeNB and a network of small cell 
eNBs that have to share spectrum among them and with a primary system of local eNBs operating in 
the area. 

The primary system is assumed to employ a dynamic ICIC scheme, where all three eNBs exchange 
their current spectrum usage as RNTP messages every 20 ms, and exclude the subchannels currently 
used by the other two eNBs from their available subchannel list [17]. We assume that they always try 
to assign an available subchannel with the lowest index if any, e.g. they always scan the availability of 
the subchannels in the same order from the first subchannel to the last. In this way, the primary 
network makes its spectrum usage less random and more appropriate for the cognitive cellular system 
to share, which is in the interests of both the primary and the secondary system. However, the cased-
based Q-learning scheme presented in Figure 3.4 does not assume this and would also work regardless 
of the spectrum management strategy of the primary system. 

The results of implementing the following three schemes in the secondary system are discussed in this 
section: 

• “Dynamic ICIC” - all systems use ICIC signalling as described above for the primary system. 
The stadium eNBs receive ICIC messages from the AeNB and from their neighbouring small 
cells. They only report subchannels used at a Tx power above -3 dB with respect to the 
average power in the cell, and choose randomly among the subchannels deemed ``safe". The 
AeNB randomly assigns subchannels not used by the primary system, based on the ICIC 
messages of the latter. 

• “Q-learning” - the AeNB and the stadium small cells run a distributed Q-learning algorithm 
described in Subsection 3.2.1. 

• “Cased-based Q-learning” - all cognitive eNBs run a case-based Q-learning algorithm 
proposed in Subsection 3.3.1. 
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The “dynamic ICIC” approach represents a heuristic baseline DSA scheme, typical for LTE networks 
[17], whereas the ``Q-learning" approach represents a pure RL based approach without the CBR 
functionality added to it. 

3.4.1 Simulation Setup 
The stadium small cell network architecture is shown in Figure 3.5. There, the users are located in a 
circular spectator area 53.7 - 113.7 m from the centre of the stadium. The spectator area is covered by 
78 eNBs arranged in three rings at 1 m height, e.g. with antennas attached to the backs of the seats or 
to the railings between different row levels. The seat width is assumed to be 0.5 m, and the space 
between rows is 1.5 m, which yields the total capacity of 43,103 seats. 25% of the stadium capacity is 
filled with randomly distributed wireless subscribers, i.e. approximately 10,776 user equipments 
(UEs). 500 UEs are randomly distributed outside the stadium in a circular area from the stadium 
boundary out to 1.5 km from the stadium centre point. The offered traffic is 20 Mb/s outside of the 
stadium and 1 Gb/s inside. The other parameters and assumptions of the simulation model are listed in 
Table 3.1. 

 

Figure 3.5. Stadium small cell network architecture 

The cognitive small cell network and the AeNB which is located above the stadium centre point at 300 
m altitude have secondary access to a 20 MHz LTE channel also used by the primary network. The 
latter consists of 3 primary eNBs (PeNBs) whose coordinates, with respect to the centre point of the 
stadium, are (-600, -750), (100, 750) and (750, -800) m. Therefore, the goal of the cognitive small cell 
eNBs and the aerial eNBs is to efficiently utilize the 20 MHz LTE channel, normally reserved for the 
PeNBs, whilst avoiding interference with them. 
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Table 3.1. Network model parameters and assumptions 

Parameter Value 

Channel bandwidth 20 MHz: 100 LTE virtual resource blocks (VRBs) 

Subchannel (RBG) bandwidth 4 VRBs: 4 x 180 kHz [18] 

Frequency band 2.6 GHz 

UE receiver noise floor 94 dBm (290K temperature, 20 MHz bandwidth, 7dB noise figure) 

Stadium propagation model WINNER II B3 [19] 

Outdoor propagation model WINNER II C1 [19] 

Propagation model between 
stadium and outdoors 

Combined WINNER II C4 with C1 term [19] 

Propagation model between 
aerial platform and ground 

Free space + 8dB log-normal shadowing 

Traffic model 3GPP FTP Traffic Model 1 [20], file size – 4.2 Mb (≈ 0.5 MB) 

Retransmission scheduling Uniform random back-off between 0and 960 ms 

Link model 3GPP Truncated Shannon Bound Model [21] 

Primary eNB Tx power 10 dBW 

Assumptions 

UEs inside the stadium are associated with a small cell or aerial eNB with a minimum estimated 
downlink pathloss, based on the Reference Signal Received Power (RSRP). 

UEs outside the stadium are associated with a primary or aerial eNB based on the strongest RSRP. The 
reference signal Tx power of the primary eNB is 13 dB higher than that of the AeNB. 

Cognitive small cell and aerial eNBs employ open loop power control, using a constant Rx power of -
74 dBm (20 dB Signal-to-Noise Ratio). 

The minimum Signal-to-Interference-plus-Noise Ratio (SINR) allowed to support data transmission is 
1.8 dB. 

One RBG (4 VRBs) is allocated to every data transmission. 

 

3.4.2 Temporal Performance 
Figure 3.6 shows the average temporal performance of the secondary network in terms of its 
probability of retransmission (P(retransmission)). The plots are obtained by averaging every data 
point using the results from 50 simulations with different randomly generated UE locations and initial 
traffic. P(retransmission) is calculated as follows: 

𝑃 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =   
𝑁!

𝑁! +   𝑁!
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where Nr is the number of retransmissions and Ns is the number of successfully completed 
transmissions during a given sampling period. All simulations start with the AeNB being switched off. 
The vertical dash-dot lines in Figure 3.6 represent the times at which the AeNB is switched on and 
back off again. The time dimension in the graphs is expressed in terms of the total number of 
transmissions performed in the simulations, most of which take place inside the densely populated 
stadium. On average the simulation length is equivalent to ≈2h20'. 

 

Figure 3.6. Probability of retransmission in the secondary cognitive network 

Figure 3.6a shows how well the stadium small cell network adapts to the sudden irregular changes in 
its environment caused by the AeNB being switched on/off. It compares the performance of three 
DSA strategies – “dynamic ICIC”, “Q-learning” and the “case-based Q-learning” approach proposed 
in this paper. At the start of the simulation both learning based schemes start at a poorer QoS level 
than “dynamic ICIC”, but then gradually improve on it until the AeNB is switched on for the first 
time. At this point, the stadium network starts receiving interference from the AeNB in addition to the 
primary system, which causes its P(retransmission) to significantly increase using all DSA schemes. 
Afterwards the same pattern of gradual improvement of the RL algorithms compared to “dynamic 
ICIC” is observed. When the AeNB is switched off again, it takes time for a regular RL algorithm to 
adapt to the sudden change in the environment. In contrast, the “case-based Q-learning” scheme is 
able to retrieve the solution to the DSA problem with the AeNB switched off and rapidly improve the 
network-wide QoS to the previously achieved level. The performance gap between “case-based Q-
learning” and “Q-learning” increases further every time the AeNB is switched off again, due to the 
ability of the former to seamlessly switch between two learning processes. 
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The difference in performance between the scheme proposed in this chapter and the two baseline 
schemes is more substantial in Figure 3.6b, which shows the average P(retransmission) temporal 
response of the AeNB. Firstly, both learning schemes significantly outperform the purely heuristic 
“dynamic ICIC” approach. Secondly, the novel CBR functionality implemented in all stadium small 
cell eNBs and in the AeNB results in a 70% reduction in P(retransmission) experienced by the AeNB 
users shortly after the AeNB is switched on for the second time and all subsequent times. This 
demonstrates that by using the “case-based Q-learning” approach the cognitive AeNB can be 
repeatedly re-introduced into a spectrum sharing environment with no need to relearn its spectrum 
management strategy. 

3.4.3 Primary User Quality of Service 
An essential requirement for cognitive cellular systems is to ensure that they do not have a harmful 
effect on the QoS in the primary system. Table 3.2 compares the QoS provided to the users outside of 
the stadium with and without the presence of the stadium users and the secondary network. In addition 
to the average probability of retransmission, it describes the statistical distribution of user throughput 
(UT) achieved by the primary network. The equation for calculating UT for any given UE, as defined 
in [20], is given below: 

𝑈𝑇 =   
𝑆!!

!!!

𝑇!!
!!!

 

where F is the number of files downloaded by the given UE, Sf is the size of the f'th file, and Tf is the 
time it took to download it. 

Table 3.2. Primary user QoS with and without the presence of the secondary network (SN) 

QoS metric Without SN With SN 

Probability of retransmission 3.0 x 10-3 3.4 x 10-3 

Mean user throughput (UT), Mb/s 3.04 3.07 

95th percentile UT, Mb/s 3.16 3.16 

5th percentile UT, Mb/s 2.70 2.89 

Mean UT 0-100 m from the stadium, Mb/s 2.96 2.89 

 

Table 3.2 shows that the introduction of the secondary stadium network and the AeNB results in an 
insignificant degradation in the average probability of retransmission and the mean UT provided to the 
primary users in the 100 m vicinity of the stadium. Interestingly, it even achieves an improvement in 
the 5th percentile UT, which represents the lowest UT provided to at least 95% of the users and is an 
important metric for ensuring fair QoS distribution across the whole network. This is because that the 
AeNB manages to provide higher quality opportunistic links to some primary users than those that 
could be provided by the local eNBs. The results in Table 3.2 emphatically show that it is possible to 
develop a temporary heterogeneous cognitive network that is capable of servicing a dramatic increase 
in the offered traffic (1 Gb/s in addition to the original 20 Mb/s, i.e. by a factor of 51), but with no 
need for additional spectrum and with no degradation in the primary user QoS. 
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The further work currently underway on case-based RL for dynamic secondary spectrum sharing 
investigates the application of these principles to ABSOLUTE temporary event networks with more 
complex and realistic topology management schemes in place. 

 

3.5 Conclusion 
In this chapter, a cognitive spectrum management solution for Bastian temporary event scenario is 
proposed. The related use cases include ABS.UC.01, ABS.UC.02, ABS.UC.19 and ABS.UC.20. The 
case-based RL method introduced here is an effective and feasible approach to dynamic secondary 
spectrum sharing in temporary cognitive cellular systems with dynamic topologies. System level 
simulations that involve a stadium small cell network, an eNB on an aerial platform and a local 
primary LTE network show that augmenting RL with the CBR functionality results in increased 
adaptivity of the cognitive cellular system to sudden changes in its radio environment, caused by the 
aerial eNB being dynamically switched on and off. For example, it is capable of achieving a 70% 
reduction in the number of retransmissions of the aerial eNB shortly after being switched on, 
compared to a classical RL approach. Furthermore, the cognitive cellular system, that employs the 
proposed DSA scheme with only secondary access to an LTE channel, is shown to accommodate a 51-
fold increase in the offered traffic with no need for additional spectrum and with no degradation in the 
QoS of the primary users. In further work on this topic, more complex and realistic topology 
management schemes are investigated, which provide a greater number of cases and a more 
challenging case identification task. 
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4 Distributed Heuristically Accelerated Reinforcement Learning 
for Dynamic Secondary Spectrum Sharing 

Although RL algorithms such as Q-learning described in Section 3.2 have been shown to be a 
powerful approach to problem solving, their common disadvantage is the need for many learning 
iterations to converge on an acceptable solution. One of the more recent promising solutions to this 
issue, proposed in the artificial intelligence domain, is the heuristically accelerated reinforcement 
learning (HARL) approach. Its goal is to speed up RL algorithms, particularly in the multi-agent 
domain, by guiding the exploration process using additional heuristic information [22]. In [23], case-
based reasoning is used for heuristic acceleration in a multi-agent RL algorithm to assess similarity 
between states of the environment and to make a guess at what action needs to be taken in a given 
state, based on the experience obtained in other similar states. In [22], Bianchi et al. prove the 
convergence of four multi-agent HARL algorithms and show how they outperform the regular RL 
algorithms. The only example of the HARL approach being applied in the wireless communications 
domain is the DSA scheme introduced in Chapter 5 of D3.3.2 and used as an integral part of DSS 
algorithms developed in this chapter. There is no evidence in the literature of the HARL approach 
being applied to a problem of spectrum sharing between two or more separate cellular systems. 

The purpose of this chapter is to propose a novel HARL based framework, which uses a radio 
environment map (REM), to mitigate the problem of poor temporal performance of RL algorithms 
applied to DSS problems. The temporary event (Bastian, as seen in D2.1) scenario is selected here, 
and the following use cases are considered: ABS.UC.01, ABS.UC.02, ABS.UC.19 and ABS.UC.20. 
The principles and features of the proposed HARL framework also aim to be generally applicable to a 
wide range of learning problems beyond the wireless communications domain. 

The rest of the chapter is organised as follows: Section 4.1 explains the principles behind RL and 
HARL based DSA. In Section 4.2 we propose a novel HARL framework and show how it can be 
applied to the spectrum sharing problem in hand. Section 4.3 evaluates the performance of the 
proposed schemes by simulating a large scale LTE spectrum sharing scenario. 

4.1 Cognitive Dynamic Spectrum Access 
In order to discuss secondary spectrum sharing, the DSA mechanism for scheduling resources of the 
cognitive cellular system alone needs to be introduced first. This section presents the concept of 
heuristically accelerated RL (HARL), and explains the details of the HARL based cognitive DSA 
algorithm from Chapter 5 of D3.3.2 designed for the secondary system, initially without considering 
the presence of a primary system. 

4.1.1 Heuristically Accelerated Reinforcement Learning 
A common disadvantage of machine learning algorithms, such as distributed Q-learning described in 
Subsection 3.2.1, is that they are normally used to learn solutions only through trial-and-error with no 
prior knowledge of the problem in hand. Consequently, it takes a large number of trials for them to 
learn acceptable solutions. This is undesirable in real-time applications such as DSA in cellular 
systems. An emerging technique to mitigate this poor initial performance problem is the HARL 
approach, where additional heuristic information is used to guide the exploration process [22]. 
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Figure 4.1 shows our block diagram representation of the processes involved in HARL. It 
demonstrates that HARL is an extension of regular RL algorithms. The unfilled blocks and solid lines 
constitute a block diagram of regular RL, whereas dashed lines and shaded blocks indicate the 
additional functionality afforded by the heuristic acceleration. 

 

Figure 4.1. Block diagram of heuristically accelerated reinforcement learning 

The role of the inner RL loop is to learn a good policy to be used by the learning agent. It is identical 
to that described in Section 3.3.  

The key additional element provided by HARL is the derivation of a heuristic policy. According to 
Bianchi et al. [22], a heuristic policy is derived from additional knowledge, either external or internal, 
which is not included in the learning process. Generally, the goal of the heuristic policy Ht(s, a) is to 
influence the action choices of a learning agent, i.e. to modify its current policy πt(s) in a way which 
would accelerate the learning process. The format and dimensions of Ht(s, a) should be compliant with 
the Q-table used by the given learning agent, such that its new combined policy 𝜋!!(𝑠) can be derived 
using the following equation: 

𝜋!! 𝑠 = 𝑎𝑟𝑔max
!
(𝑄! 𝑠, 𝑎 +𝐻! 𝑠, 𝑎 ) 

where 𝜋!!(𝑠) is the combined policy of the given learning agent for state s at time t based on its Q-
table Qt(s, a) and the heuristic policy Ht(s, a). If Ht(s, a) is always zero, the algorithm becomes a 
regular Q-learning algorithm with a greedy action selection strategy. In the case of the stateless Q-
learning algorithm described in Section 3.2, the heuristic policy does not have a state dimension and 
can be denoted by Ht(a). 

4.1.2 Distributed ICIC Accelerated Q-Learning 
The only existing HARL based DSA scheme is known as distributed ICIC accelerated Q-learning 
(DIAQ), proposed in Chapter 5 of D3.3.2. It uses inter-cell interference coordination (ICIC) signalling 
in the LTE downlink as heuristic acceleration for a distributed stateless Q-learning algorithm 
described in Subsection 3.2.1. It achieves dramatic improvements in initial and steady-state quality-of-
service (QoS), as well as in learning convergence rate, in a cognitive cellular system with dedicated 
spectrum. 
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The format of the messages exchanged between eNBs using ICIC in the LTE downlink is standardized 
by the 3GPP and referred to as the Relative Narrowband Transmit Power (RNTP) indicator [18]. It 
contains a bitmap which indicates on which resource blocks an eNB is planning to transmit at high 
power by setting their corresponding bits to 1, i.e. on which resource blocks it is likely to cause 
interference in adjacent cells. For example, in a case where a 20 MHz LTE channel has 25 RBGs, the 
length of an RNTP message is 100 bits or 25 hexadecimal characters [18]. Since every RBG consists 
of 4 adjacent resource blocks, every group of 4 bits (i.e. every hexadecimal character) in an RNTP 
message describes a particular RBG. For example, if an eNB is planning to use high transmit power on 
a given RBG, its corresponding bits in the RNTP message are 1111 or 0xF. 

The choice of the RNTP threshold used to decide whether a given transmit power is high or low is set 
to -3 dB with respect to the average transmit power in a cell. To avoid excessive signalling 
requirements, the time interval between the ICIC message exchanges is assumed to be 20 ms [17]. 

When a request for a new file transmission is received, the eNodeB starts by aggregating the latest 
RNTP messages from its neighbours into an ICIC bitmask using a bitwise OR operation, as described 
by the following equation: 

𝑀𝑎𝑠𝑘!"!" = 𝑅𝑁𝑇𝑃!

!

!!!

 

where MaskICIC is a 25 hexadecimal character string representing the RBGs reserved by any of the 
neighbouring base stations by 0xF, and representing the “safe-to-use” RBGs by 0x0, RNTPn is a 25 
hexadecimal character RNTP message of the n'th neighbouring eNodeB, and N is the total number of 
neighbouring eNodeBs. 

After creating the ICIC mask, the eNodeB creates a heuristic policy HICIC(a) using the following 
principle: 

𝐻!"!"(𝑎) =
ℎ!"!" 𝑀𝑎𝑠𝑘!"!" 𝑎 = 0𝑥𝐹
0 𝑀𝑎𝑠𝑘!"!" 𝑎 = 0𝑥0 

where HICIC(a) is the heuristic policy value of RBG a, and hICIC is a fixed negative number with greater 
amplitude than the difference between the minimum and the maximum possible values in the Q-tables. 
HICIC(a) can then be employed to create a temporary masked Q-table Qm(a) using the following 
equation: 

𝑄! 𝑎 = 𝑄 𝑎 + 𝐻(𝑎) 

Qm(a)  is then used for heuristically guided decision making, whilst a normal learning process is taking 
place using the original Q-table Q(a). 

By using such a heuristic policy HICIC(a), the eNodeB is guaranteed to prioritise the RBGs marked as 
“safe” by the ICIC bitmask before the “unsafe” RBGs by shifting the Q-values of the latter to the 
bottom of the Q-table, whilst still preserving their respective order in terms of the Q-values (due to the 
fixed value of hICIC). 

4.2 HARL Based Dynamic Spectrum Sharing 
The stadium temporary event spectrum sharing scenario investigated in this chapter is described in 
Section 3.1. It consists of a network of primary eNBs (PeNBs) operating in a suburban area and a 
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secondary cognitive cellular system that itself consists of two separately operating entities - an aerial 
eNB (AeNB) for wide area coverage and a small cell network for high capacity density inside the 
stadium. 

A study in [24] has demonstrated that successful dynamic spectrum sharing between a low power 
stadium small cell system and a relatively high power local PeNB infrastructure can be facilitated 
using an independent distributed Q-learning algorithm from Subsection 3.2.1 implemented in the 
former. This is largely because the interference between the two systems is attenuated by the stadium 
shell. However, the scenario investigated in this paper also involves an AeNB serving line-of-sight 
(LoS) users both inside and outside the stadium. Therefore, it presents two additional challenges - 
spectrum sharing between the PeNBs and the AeNB, and spectrum sharing between the AeNB and the 
stadium small cell network. 

Our proposed way of achieving these two spectrum sharing tasks is to use a small scale database, 
referred to as the radio environment map (REM), to continuously monitor and store the information 
about spectrum usage of the PeNBs and the AeNB. In this way, the AeNB has a means to avoid 
interfering with the primary system, and the small cell network can avoid interfering with the AeNB. 
This type of setup is depicted in Figure 4.2. Secondary spectrum sharing using a spectrum monitoring 
system and a radio environment map (REM), which is a classical way of achieving coexistence 
between cognitive radio networks and primary spectrum users, especially in the TV white space 
context, e.g. [25]. 

 

Figure 4.2. Secondary spectrum sharing using a spectrum monitoring system and a radio environment map 
(REM) 

The task of the spectrum monitoring system with a REM database is to detect the occupancy of the 
spectrum resources used by the PeNBs and the AeNB. It is then possible to estimate the probability of 
spectrum occupancy at every eNB on every individual RBG that, in turn, can be used to influence the 
spectrum assignment decisions of the secondary systems. 

4.2.1 Spectrum Occupancy Estimation 
The spectrum sharing algorithms proposed in this section assume the ABSOLUTE spectrum 
monitoring system can periodically detect whether or not a particular RBG is being used by a 
particular AeNB or PeNB. It is designed to return 1 if it is occupied or 0 otherwise. 
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Given this mechanism for obtaining a stream of binary spectrum occupancy data, it is then important 
to estimate the probability of RBG occupancy at every observed eNB, i.e. a probability of a particular 
RBG being occupied at a particular eNB based on the previous observations. 

A simple and appropriate way of tracking the mean of a data sequence, whilst simultaneously giving 
more recent observations higher weight compared to older estimates, is the exponentially weighted 
moving average (EWMA) method [26]. It can be calculated using the following recursive equation: 

𝑦   ← 1 − 𝜆 𝑦   +   𝜆𝑥 

where y is the mean estimate of the data sequence x, and λ is a factor which controls how quickly the 
estimated mean adapts to new observations. The role of λ in EWMA estimation is identical to that of 
the learning rate α in the Q-learning update formula described in Subsection 3.2.1. 

We propose adapting the EWMA method to estimate the probability of RBG occupancy p(occupied) 
in the following way: 

𝑝 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 ← 1 − 𝜆 𝑝 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 +   𝜆𝑏, 𝑏 ∈ {0, 1} 

where b is a current binary RBG occupancy measurement, i.e. b=1 if the given RBG is occupied, b=0 
if it is not. In this way, the EWMA equation is used to estimate the mean of a stream of 1's and 0's, 
representing p(occupied). 

4.2.2 REM Based Heuristic Function 
A threshold Pmin to determine whether a particular RBG should be avoided, based on an estimate of 
p(occupied), can then be defined to obtain the following heuristic function: 

𝐻!"#(𝑎) =
ℎ!"# 𝑝! 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 ≥ 𝑃!"#
0 𝑝! 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 < 𝑃!"#

 

where HREM(a) is the value of the REM based heuristic function for RBG a, pa(occupied) is the 
EWMA estimate of p(occupied) for RBG a, hREM is a fixed negative value which shifts the Q-values of 
the undesirable RBGs down, such that the other are prioritized before them. This heuristic function 
follows the same principle of shifting Q-values as the one used in DIAQ (see Subsection 4.1.2). 

Such a heuristic function HREM(a) aims to guide the learning process of the cognitive eNBs in a 
direction desirable for secondary spectrum sharing. The small cell eNBs can coexist with the AeNB by 
applying this heuristic function to the AeNB spectrum occupancy observations, hereafter referred to as 
HREM-AeNB(a). The AeNB in turn can coexist with the PeNBs by applying the same principle to PeNB 
spectrum occupancy observations. In this case, since the wide area coverage AeNB is going to 
interfere with all PeNBs in the area of interest, the probability of RBG a being occupied by any PeNB 
is obtained by calculating the sum of pa(occupied) values of every individual PeNB: 

𝑝!!!"#$%(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑) = 𝑝!!!!!  !"#$(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)
!

!!!

 

where N is the total number of PeNBs. The REM based heuristic function HREM-PeNBs(a) can then be 
calculated using pa-PeNBs(occupied). 
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4.2.3 Superimposed Heuristic Functions 
With the introduction of the REM based heuristic function for secondary spectrum sharing, a 
framework for using several heuristic functions at once is required. For example, in addition to using 
an ICIC based heuristic function HICIC(a) introduced in Subsection 4.1.2 for internal dynamic spectrum 
access, the small cell eNBs are now also required to share spectrum with the AeNB using another 
heuristic function HREM-AeNB(a), such that their masked Q-tables Qm(a) could be constructed using the 
following principle: 

𝑄! 𝑎 = 𝑄 𝑎 +   𝐻!"!" 𝑎 +   𝐻!"#!!"#$(𝑎) 

where Q(a) ∈ [-1, 1] is an original Q-table of a given eNB maintained using the stateless Q-learning 
algorithm described in Subsection 3.2.1. There, two heuristic functions HICIC(a) and HREM-AeNB(a) have 
to be superimposed to modify a learning eNB's policy, such that it incorporates both ICIC and REM 
information into its learning process. 

We propose a method where every new heuristic function superimposed on the Q-table splits the Q-
values into two non-overlapping regions, as shown in Figure 4.3. The normal range of Q-values Q(a) 
maintained by the stateless Q-learning algorithm from Subsection 3.2.1 is [-1, 1]. If the hICIC 
parameter of the HICIC(a) heuristic function is -3, it shifts Qm(a) values of disapproved RBGs into a 
non-overlapping region of (Q(a)-3) ∈  [-4, -2], thus prioritizing them below the RBGs with            
Qm(a) ∈ [-1, 1]. If another heuristic function HREM-AeNB(a) is used and its hREM constant is -7, it will 
split Qm(a) into two regions Qm(a) ∈ [-4, 1] and Qm(a) ∈ [-11, -6] In this way, the RBGs disapproved 
by HREM-AeNB(a) are guaranteed to be prioritized below any other RBG. This approach allows an 
unlimited number of further heuristic functions superimposed on top of each other, as long as their 
respective importance is known. For example, in this case we prioritize HREM-AeNB(a) responsible for 
spectrum sharing above HICIC(a) responsible for internal stadium network DSA by setting hREM < hICIC. 

 

Figure 4.3. An example of the effect of superimposed heuristic functions HICIC(a) and HREM-AeNB(a) on the range 
of masked Q-table values 

4.2.4 Q-Value Based Admission Control 
The HARL algorithm required for the AeNB to coexist with the primary system only includes one 
heuristic function HREM-PeNBs(a), since it is a separately controlled entity with no ICIC-compatible 
neighbouring base stations. Therefore, it uses the following masked Q-table for guiding its learning 
process: 

𝑄! 𝑎 = 𝑄 𝑎 +   𝐻!"#!!"#$%(𝑎) 
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However, another important aspect of secondary spectrum sharing is the primary user protection, i.e. 
making sure the secondary system, in this case the AeNB, does not produce harmful interference for 
the primary system, in our case the users connected to the PeNBs. A technique that could be easily and 
effectively embedded into the HARL framework developed in this paper, i.e. where HREM-PeNBs(a) 
shifts part of the Q-values by a fixed negative number hREM-PeNBs , is Q-value based admission control 
(Q-AC) introduced in [27]. There, a Q-value threshold qAC is defined, such that: 

𝐴!""#$%& = 𝑎     𝑎 ∈ 𝐴!   ∧ 𝑄(𝑎) ≥ 𝑞!"} 

where A' is the set of currently unoccupied RBGs, i.e. those available for assignment, and Aallowed is the 
set of RBGs allowed for assignment based on the admission threshold qAC. In this way, the RBGs with 
Q(a) < qAC are never assigned to data transmissions, which are blocked instead. 

The value of qAC can be chosen such that: 

𝑞!"# 𝑎 − ℎ!"#!!"#$% <   𝑞!" <   𝑞!"# 

where qmin and qmax are the minimum and the maximum possible value of Q(a) respectively. In this 
way, the RBGs disapproved by the heuristic function HREM-PeNBs(a) will be forbidden to be assigned at 
the AeNB, due to their Q-values being shifted below qAC, thus guaranteeing protection of the PeNBs 
from secondary interference. 

4.2.5 HARL Algorithms for Dynamic Spectrum Sharing 
Algorithms in Figure 4.4 and Figure 4.5 summarize the HARL schemes for dynamic secondary 
spectrum sharing developed in this section. Figure 4.4 shows the sequence of steps in the distributed 
REM and ICIC accelerated Q-learning (DRIAQ) scheme, designed for stadium small cells to mitigate 
interference among themselves and the AeNB, using two superimposed heuristic functions. Figure 4.5 
shows the REM accelerated Q-learning algorithm with Q-value based admission control (RAQ-AC), 
designed for the AeNB to share spectrum and avoid interference with the primary system. 

 
Figure 4.4. Distributed REM and ICIC accelerated Q-learning (DRIAQ) for stadium small cells 

Lines {2, 8, 9} of the algorithm in Figure 4.4 and lines {2, 8-12, 14} of the algorithm in Figure 4.5 are 
specific to the novel HARL schemes developed in this section. If they are removed and Qm(a) is 
substituted by Q(a), the algorithms are simplified down to classical stateless Q-learning introduced in 
Subsection 3.2.1. 
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Figure 4.5. REM accelerated Q-learning with Q-value based admission control (RAQ-AC) for the AeNB 

4.2.6 Choice of Parameters 
The final details required to complete the design of the REM and the REM based heuristic functions 
are the values of the EWMA algorithm parameter λ and the probability of RBG occupancy threshold 
Pmin for computing the heuristic functions HREM-AeNB(a) and HREM-PeNBs(a). We propose using Pmin= λ 
and λ=0.008, while the REM is updated every 200 ms, which is frequent enough to capture the traffic 
variations of the PeNBs and the AeNB, yet not too frequent to introduce a large overhead of additional 
REM information that has to be broadcast to all cognitive eNBs. 

The value of λ is chosen based on the rate of decay of a pa(occupied) estimate, e.g. the time it would 
take for a once heavily used RBG to be assumed unused, if the eNB of interest stopped using it. For 
example, if pa(occupied)=0.99 and afterwards RBG a is not used for 600 consecutive REM updates, 
i.e. 2 minutes, the new pa(occupied) estimate, based on the EWMA equation proposed in Subsection 
4.2.1, is the following: 

𝑝! 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 = 0.99  ×  (1 − 𝜆)!"" = 0.00799 

which is just below Pmin = λ = 0.008. Therefore RBG a would no longer be undesirable for secondary 
reuse, based on the heuristic function HREM(a). This value of λ is high enough to be applicable in 
dynamic environments where the monitored spectrum usage patterns change over time, yet not high 
enough to dismiss valuable historical spectrum usage information too quickly. This trade-off between 
the speed and accuracy of the EWMA algorithm, controlled by the λ parameter, is essential and must 
be carefully considered, e.g. using numerical examples such as the one described above. 

4.3 Simulation Results 
The simulation experiments described in this section use the stadium temporary event spectrum 
sharing scenario described in Section 3.1 with the same simulation model parameters and assumptions 
as those used in Section 3.4, but with the AeNB being permanently switched on. The results of 
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implementing the following three schemes in the secondary cognitive system are discussed in this 
section: 

• “Isolated ICIC” - the AeNB and the stadium network are working independently, without any 
learning and without considering coexistence between each other or with the primary system. 
The stadium network independently employs a dynamic ICIC scheme, such as the one used in 
the primary system. Every eNB chooses randomly among the subchannels deemed ``safe" by 
the RNTP messages from its neighbours with the RNTP threshold of -3 dB. The AeNB 
assigns spectrum randomly, since it operates as an independent one cell network. 

• “DIAQ + Q-learning” - all networks are also working completely independently. However, the 
stadium network employs the DIAQ scheme introduced in Subsection 4.1.2, and the AeNB is 
using stateless Q-learning from Subsection 3.2.1. This scheme represents a state-of-the-art 
distributed RL based solution to the spectrum sharing problem. 

• “DRIAQ + RAQ-AC” - the combination of novel HARL based schemes developed in Section 
4.2 and summarized in Figure 4.4 and Figure 4.5. 

4.3.1 Spectrum Occupancy Analysis 
Figure 4.6 shows the spectrum occupancy distribution of the PeNBs, the AeNB, and the small cell 
eNBs using three different spectrum sharing strategies described in the beginning of this section. The 
distributions were calculated by measuring the amount of time every eNB spent occupying every 
subchannel and dividing it by the total simulation time. 

 

Figure 4.6. RBG (subchannel) occupancy of of primary eNBs, aerial eNB and small cells using different 
dynamic spectrum sharing schemes 

Figure 4.6a shows that, in the case of “isolated ICIC” implemented in all systems with no learning or 
coexistence control, both the AeNB and the small cell network use the whole spectrum approximately 
uniformly. Figure 4.6b demonstrates the difference made by introducing distributed Q-learning into 
the DSA process. The two challenging spectrum sharing relationships associated with this scenario 
tend to be addressed through distributed machine intelligence: 

• the AeNB learns to avoid using the same spectrum as the PeNBs, 
• the small cell eNBs tend to learn to use the RBGs preferred by the AeNB less than the others, 

i.e. they learn to avoid interfering with the AeNB, since it often results in blocked and 
interrupted file transmissions. 

However, Figure 4.6c shows how the novel heuristically accelerated approach further improves the 
autonomously emerging spectrum sharing pattern by strictly guiding the learning process of the AeNB 
to avoid interfering with the PeNBs, and discouraging the small cell eNBs from exploring and 
assigning the RBGs frequently used by the AeNB. Firstly, there is no overlap in the spectrum used by 
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the AeNB and the PeNBs. Secondly, the AeNB uses fewer RBGs, since the small cells successfully 
avoid using a number of the AeNB's top RBGs. This in turn positively reinforces the use of the same 
RBGs by the AeNB through the Q-learning algorithm. 

4.3.2 Spatial Distribution of User Throughput 
Figure 4.7 shows the spatial distribution of user throughput (UT) across the area outside of the 
stadium, covered by the PeNBs and the AeNB. 

 

Figure 4.7. Spatial distribution of user throughput (Mb/s) outside of the stadium (the triangles represent the 
primary eNB locations) 

The contour plots indicate that the area most susceptible to harmful interference is that in the vicinity 
of the stadium, where the UEs are connected to the AeNB as well as the PeNBs. There is also 
interference radiating from the ultra-dense stadium small cell network. Figure 4.7a shows that the 
“isolated ICIC” approach, with approximately uniform spectrum occupancy distribution seen in Figure 
4.6a, performs poorly and results in a significant decrease in UT in the vicinity of the stadium. Such 
performance degradation of the UEs located outside of the stadium is unacceptable from the viewpoint 
of secondary spectrum sharing. A significant improvement in the spatial UT distribution is achieved 
by using the learning based “DIAQ + Q-learning” approach. The performance is further improved by 
using the novel “DRIAQ + RAQ-AC” approach proposed in Section 4.2 due to its ability to 
autonomously achieve the significantly better spectrum partitioning pattern seen in Figure 4.6c. 

4.3.3 Statistical Analysis 
So far the results shown in Figure 4.6 and Figure 4.7 have assessed the performance of the networks in 
one specific simulation scenario, i.e. with the same UE locations, same path losses between each UE 
and each eNB, and consequently the same UEs connected to the AeNB, each PeNB and each small 
cell. The results in Figure 4.8 verify the statistical significance in performance improvements gained 
by using the HARL based “DRIAQ + RAQ-AC” scheme proposed in Section 4.2. It shows the results 
from 50 different simulation setups, i.e. with different random seeds, in the form of boxplots [28], a 
compact way of depicting key features of probability distributions. The box boundaries represent the 
first and third quartile of the distribution, the line between them marks the median result, and the 
whiskers show the minimum and the maximum point within 1.5×IQR distance from the box 
boundaries. IQR is the inter-quartile range, the difference between the 3rd and the 1st quartile (the 
width of the box). Any results further than 1.5×IQR away from the box are considered as the outliers 
and are plotted as individual data points. 
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Figure 4.8. Boxplots of the primary and secondary system performance from 50 different simulations 

Figure 4.8a shows that the variation in mean UT of the users outside the stadium is negligibly small, 
when comparing different DSA and spectrum sharing strategies. However, the box plots of 5% UT 
outside of the stadium in Figure 4.8b reveal a more significant difference in their performance. 5% UT 
for a single simulation is obtained by calculating the 5th percentile of the UT values of 500 users 
outside the stadium. It is a more important metric than the mean UT, since it represents a minimum 
quality of service (QoS) guaranteed to 95% of the users, and thus shows how fair the spatial QoS 
distribution is. Introducing learning algorithms into the spectrum sharing strategies (“DIAQ + Q-
learning”) results in an 18% increase in the median 5% UT outside the stadium, whereas the “DRIAQ 
+ RAQ-AC” scheme improves it by a further 3%. These improvements are statistically significant 
since there is no overlap between the boxes in the plot. The same improvement pattern is observed in 
Figure 4.8c which shows the mean UT of the users located in the vicinity of the stadium (0-100m from 
the boundary). 

Figure 4.8d demonstrates the most notable performance improvement achieved by “DRIAQ + RAQ-
AC”. It almost entirely eliminates the retransmissions, i.e. the blocked and interrupted file 
transmissions, at the AeNB. It results in a 99% decrease in the probability of retransmission P(re-tx) 
compared to “Isolated ICIC” and a 96% decrease compared to a significantly better “DIAQ + Q-
learning” scheme. P(re-tx) is defined as the ratio between the number of retransmissions and the total 
number of transmissions. This improvement is achieved due to high controllability provided by the 
REM based heuristic functions designed in Section 4.2. They successfully steer the learning process of 
the AeNB such that it avoids interfering with the PeNBs, whereas the small cell eNBs are 
continuously discouraged from occupying the resources preferred by the AeNB. 

Figure 4.8e and Figure 4.8f show that the improvements in QoS, provided by the “DRIAQ + RAQ-
AC” scheme to the PeNB and AeNB users, come at the cost of a ≈12% decrease in mean UT and a 
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≈15% decrease in 5% UT provided to the small cell users. However, this concession made by the 
stadium small cell network is relatively insignificant and essential in the context of dynamic secondary 
spectrum sharing. It results in the increased feasibility of secondary LTE spectrum reuse by a 
temporarily deployed eNB on an aerial platform and an ultra-high capacity density stadium small cell 
network. Furthermore, the “DRIAQ + RAQ-AC” scheme achieves remarkable reliability of AeNB 
communications (due to the lack of retransmissions). For example, this could be extremely useful in 
the temporary event scenario for providing robust wireless communication links to event organizers 
both inside and outside the stadium. 

4.3.4 Temporal Performance 
Figure 4.9 shows the temporal performance of the two learning based schemes, “DIAQ + Q-learning” 
and “DRIAQ + RAQ-AC”, in terms of the probability of retransmission at the AeNB. All data points 
are spaced 1 minute apart and were obtained by averaging over 50 different simulations. The time 
response of “DIAQ + Q-learning” demonstrates that it behaves as a classical RL algorithm, i.e. starts 
at a poor performance level and gradually improves over time, while the AeNB and the small cell 
eNBs are learning appropriate spectrum sharing patterns. In contrast, the “DRIAQ + RAQ-AC” time 
response is a great demonstration of the temporal performance improvements achieved by introducing 
heuristic acceleration into the learning process. It starts at a superior P(re-tx) level and maintains it 
throughout the whole simulation. 

 

Figure 4.9. Probability of retransmission time response at the aerial AeNB 

 

4.4 Conclusion 
The HARL based framework proposed in this chapter utilizes a radio environment map (REM) as 
external information for guiding the learning process of cognitive cellular systems, which are thus able 
to reuse the LTE spectrum owned by another cellular network. The performance of the DSS and DSA 
schemes investigated in this chapter is assessed using system level simulations of a stadium temporary 
event scenario. This involves an eNB on an aerial platform, a small cell stadium network and a local 
primary LTE network. Two novel dynamic secondary spectrum sharing schemes are described in 
detail - distributed REM and ICIC accelerated Q-learning (DRIAQ) used by the small cell network, 
and REM accelerated Q-learning with Q-value based admission control (RAQ-AC) used by the aerial 
eNodeB. These schemes are shown to achieve high controllability of spectrum sharing patterns in a 
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fully autonomous way. They also result in a significant decrease in primary system QoS degradation 
due to the interference from the secondary cognitive systems, compared to a state-of-the-art RL 
solution and a purely heuristic LTE solution that does not attempt to co-ordinate the cellular networks 
involved. The spectrum sharing patterns that emerge by using the proposed schemes also result in 
remarkable reliability of the cognitive eNodeB on the aerial platform due to a 96% decrease in the 
probability of retransmission compared to a classical RL approach. 

Furthermore, the novel principle of superimposed heuristic functions proposed in the context of 
HARL, as well as the general Q-table mask structure of these functions, are not specific to the 
investigated spectrum sharing scenario, and are generally applicable to a wide range of self-
organization problems. 
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5 Conclusions and Recommendations 

5.1 Conclusions 
This deliverable has investigated the performance evaluation of cognitive dynamic spectrum 
management within the ABSOLUTE project. The cognitive spectrum management schemes developed 
in this document contributed towards two scenarios: the Callania Public Protection and Disaster Relief 
(PPDR, as seen in D2.1) scenario and the temporary event (as seen in D2.1 Bastian) scenario. In the 
PPDR scenario, the related use cases included ABS.UC.01, ABS.UC.02, ABS.UC.03, ABS.UC.04, 
ABS.UC.05, ABS.UC.17 and ABS.UC.18. Based on the requirement of PPDR in D2.1 (rapid 
deployable and flexible network solution with broadband service over a large scale area), three 
transfer learning based algorithms have been designed to provide flexible solutions for different 
conditions in order to improve the system performance, which focus on the scenario with more 
unpredictable and random topologies deployment. In the Bastian temporary event scenario, the main 
goal is to provide network capacity enhancement in the urban areas. Thus, several algorithms have 
been developed to fit the scenario with more predictable and repeatable patterns of spectrum usage and 
network topologies. The following use cases have been investigated: ABS.UC.01, ABS.UC.02, 
ABS.UC.19 and ABS.UC.20. 

Chapter 2 investigated the transfer learning scheme with K-means clustering in ABSOLUTE cognitive 
spectrum management for the PPDR scenario. The system model and the major issues of applying 
transfer learning in an LTE-A system were introduced. The novel transfer learning algorithms have 
been developed to optimize the system QoS and reduce the convergence speed comparison to the 
traditional Q-Learning schemes. In this report, the major process of transfer learning was designed as 
two functions: knowledge transfer and processing, and knowledge reward. Data mining techniques are 
used to find the hidden structure of data in this function, including data pre-processing and K-means 
clustering algorithm. The knowledge reward function determines how to make use of the converted 
information processed in the previous function for three conditions. With the aid of transfer learning, 
the severe negative impact of topology changes on radio environment can be minimized, and the 
system can effectively handle the dynamics of user traffic with reduced interference. 

In Chapter 3, a case-based RL method was introduced as an effective and feasible approach to 
dynamic secondary spectrum sharing in temporary cognitive cellular systems with dynamic 
topologies. The simulation result show that the augment RL with the CBR increases the adaptivity of 
the cognitive cellular system to sudden changes in its radio environment, caused by the AeNB being 
dynamically switched on/off. 

Chapter 4 proposed a HARL based framework to utilize a REM as external information for guiding 
the learning process of cognitive cellular systems, aiming to reuse the LTE spectrum owned by 
another cellular network for temporary scenario. Two novel dynamic secondary spectrum sharing 
schemes were described in detail for stadium temporary event scenario: distributed REM and ICIC 
accelerated Q-learning (DRIAQ) used by the small cell network, and REM accelerated Q-learning 
with Q-value based admission control (RAQ-AC) used by the aerial eNB. They achieve high 
controllability of spectrum sharing patterns in a fully autonomous way and decrease the interference 
from the secondary cognitive systems to the primary system. Furthermore, the novel principle of 
superimposed heuristic functions proposed in the context of HARL, as well as the general Q-table 
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mask structure of these functions, are not specific to the investigated spectrum sharing scenario, and 
are generally applicable to a wide range of self-organization problems. 

Chapter 5 presented a conclusion of this document and a recommendation of how to make use of all 
the schemes introduced in ABSOLUTE systems. 

 

5.2 Recommendations 
This deliverable has provided a description of how cognitive spectrum management can be applied to 
Public Protection and Disaster Relief and temporary event networks. 

1) The learning techniques (both reinforcement learning and transfer learning) have been tailored to 
ABSOLUTE to improve the system performance, and in general is becoming more and more 
applicable to the increasing demand for efficient spectrum reuse. Several learning based 
algorithms have been developed to meet the special requirements of the two scenarios in 
ABSOLUTE project. For the Callania PPDR scenario, the transfer learning based schemes are 
designed to ensure the network is better able to cope with more unpredictable and random 
topologies. For the Bastian temporary event scenario, the solutions are more applicable in a 
network with a large number of base stations, where more predictable and repeatable patterns of 
spectrum usage and network topologies. The schemes developed are in general compatible with 
existing user equipment, with changes restricted to the network side, or an additional app 
download on the UE. Future capabilities of ABSOLUTE like network equipment could be readily 
achieved. 

2) The transfer learning with K-means clustering algorithms provide a good solution of the cognitive 
spectrum management for PPDR scenario in ABSOLUTE, where the PPDR focuses on a rapidly 
deployable and flexible network solution with broadband service in large scale areas. Three 
algorithms are designed to meet the requirements of PPDR scenarios: newly deployed eNBs, 
existing eNBs looking for extra spectrum bands and existing eNBs assigning spectrum bands for 
new arrivals. These transfer learning based algorithms improve the system performance and 
reduce the convergence speed. This approach is suitable to exploit in PPDR networks like Callania 
scenario, where are more unpredictable, flexible and random topologies.   

3) Data mining techniques, like K-means clustering, have been shown efficiently dealing with the 
knowledge process in the transfer learning based algorithms. It helps to find out the hidden data 
structure behind information exchanged, and should possibly to be used within a broader concept 
of spectrum management and topology management in the ABSOLUTE network. 

4) The intelligent reinforcement learning based approach to spectrum management provides a good 
method of using spectrum more efficiently. Such intelligent algorithms are especially important 
for temporarily deployable high capacity networks, where the efficient reuse of spectrum could 
result in significant capacity enhancements, vital in a PPDR scenario and temporary event 
scenario. 

5) The case-based reinforcement learning approach improves the stability of RL based DSA 
algorithms in dynamically changing environments with a number of potentially reoccurring 
network topology patterns. It is computationally inexpensive and does not require access to any 
additional information, except for the topology updates in the network, e.g. which would be 
readily available in the REM. This approach should be exploited in temporary event networks, 
where more predictable and repeatable patterns of spectrum usage and network topology changes 
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take place. It will have limited effects in the networks like PPDR, which are more incremental in 
nature. 

6) The heuristically accelerated RL methods proposed significantly improve the initial performance 
and the convergence properties of RL based DSA algorithms in such rapidly deployable cognitive 
cellular systems as those investigated in the ABSOLUTE project. They make excellent use of the 
heuristic information contained in the ICIC signals of the secondary systems, as well as the REM 
of the wider radio environment. These techniques bring significant primary and secondary user 
QoS benefits to any future RL based DSA network, where such heuristic spectrum management 
information is available, e.g. ICIC signals or the REM, and thus should be considered in any 
future network design based on shared spectrum LTE-A scenarios, including LTE-A in the 
unlicensed band.  
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