
Project Number 318772

D7.1 Industrial Evaluation: fortiss Smart Grid

Version 1.0
31 October 2015

Final

Public Distribution

fortiss GmbH

Project Partners: Fondazione Bruno Kessler, fortiss, Frequentis, Inria, LynuxWorks, The Open
Group, RWTH Aachen University, TTTech, Université Joseph Fourier, University
of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however
the D-MILS Project Partners accept no liability for any error or omission in the same.

© 2015 Copyright in this document remains vested in the D-MILS Project Partners.

D7.1 Industrial Evaluation: Fortiss Smart Grid

Project Partner Contact Information

Fondazione Bruno Kessler fortiss
Alessandro Cimatti Harald Ruess
Via Sommarive 18 Guerickestrasse 25
38123 Trento, Italy 80805 Munich, Germany
Tel: +39 0461 314320 Tel: +49 89 36035 22 0
Fax: +39 0461 314591 Fax: +49 89 36035 22 50
E-mail: cimatti@fbk.eu E-mail: ruess@fortiss.org

Frequentis LynuxWorks
Wolfgang Kampichler Yuri Bakalov
Innovationsstrasse 1 Rue Pierre Curie 38
1100 Vienna, Austria 78210 Saint-Cyr-l’Ecole, France
Tel: +43 664 60 850 2775 Tel: +33 1 30 85 06 00
Fax: +43 1 811 50 77 2775 Fax: +33 1 30 85 06 06
E-mail: wolfgang.kampichler@frequentis.com E-mail: ybakalov@lnxw.com

RWTH Aachen University The Open Group
Joost-Pieter Katoen Scott Hansen
Ahornstrasse 55 Avenue du Parc de Woluwe 56
D-52074 Aachen, Germany 1160 Brussels, Belgium
Tel: +49 241 8021200 Tel: +32 2 675 1136
Fax: +49 241 8022217 Fax: +32 2 894 5845
E-mail: katoen@cs.rwth-aachen.de E-mail: s.hansen@opengroup.org

TTTech Université Joseph Fourier
Wilfried Steiner Saddek Bensalem
Schonbrunner Strasse 7 Avenue de Vignate 2
1040 Vienna, Austria 38610 Gieres, France
Tel: +43 1 5853434 983 Tel: +33 4 56 52 03 71
Fax: +43 1 585 65 38 5090 Fax: +33 4 56 03 44
E-mail: wilfried.steiner@tttech.com E-mail: saddek.bensalem@imag.fr

University of York Inria
Tim Kelly Axel Legay
Deramore Lane Inria - Campus de Beaulieu
York YO10 5GH, United Kingdom 35042 Rennes, France
Tel: +44 1904 325477 Tel: +33 2 99 84 73 15
Fax: +44 7976 889 545 Fax: +33 2 99 84 71 71
E-mail: tim.kelly@cs.york.ac.uk E-mail: axel.legay@inria.fr

Page ii Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Contents

1 Summary 1

2 Introduction 3

3 Development Process 9

4 Functional Description 11
4.1 High-Level view . 11

4.2 SmartGrid . 13

4.2.1 Prosumer Energy Agents . 14

4.2.2 Wrapper . 14

4.2.3 Persistency . 15

4.3 Prosumer . 15

4.3.1 Prosumer Energy Agents . 17

4.3.2 Wrappers . 17

4.3.3 Persistency . 19

4.3.4 Aggregation . 20

4.3.5 Rule Component . 20

4.4 AdminArea . 20

4.5 Deployment . 20

5 Design and specification 22
5.1 Design Expressivity . 22

5.2 Design Usability . 23

5.3 Design Feedback . 25

5.4 Design Maturity . 27

6 Verification of Properties 29
6.1 Verification Expressivity . 30

6.1.1 Security property coverage . 30

6.1.2 Safety property coverage . 30

6.2 Verification Usability . 30

6.2.1 Usability for safety and security verification 30

6.3 Verification Performance . 31

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page iii

D7.1 Industrial Evaluation: Fortiss Smart Grid

6.3.1 Solution for security verification . 31

6.3.2 Solution for safety verification . 32

6.3.3 Resources for safety and security verification 32

6.4 Degree of Integration with Design . 33

6.4.1 Integration of functional verification . 33

6.5 Verification Maturity . 33

6.5.1 Maturity of functional verification . 33

7 Assurance case 35
7.1 Assurance Case Usability . 36

7.1.1 Assurance case automation . 36

7.1.2 Assurance case usefulness . 38

7.1.3 Assurance case design integration . 40

7.1.4 Assurance case analysis integration . 40

7.1.5 Assurance case design maturity . 41

7.1.6 Assurance case certification suitability . 45

7.2 Assurance Case Benefit . 48

7.2.1 Manual assurance case comparison . 49

7.2.2 Assurance case change comparison . 56

7.3 The evaluation of the D-MILS assurance patterns 57

8 Deployment 63
8.1 Deployment Performance . 63

8.1.1 Configuration solution time . 63

8.1.2 Configuration Solution efficiency . 63

8.2 Deployment Benefit . 64

8.2.1 Configuration automation . 64

8.2.2 Configuration modification . 66

8.3 Deployment Maturity . 67

8.3.1 Maturity of deployment configuration tools 67

8.3.2 Skills required for deployment configuration tools 68

9 Platform operation 69
9.1 Platform Adequacy . 69

9.2 Platform Performance . 70

9.3 Platform Maturity . 70

Page iv Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

10 Industrial Requirements Measures 72

10.1 Description language and modeling . 72

10.1.1 Requirement SMG_DL.1 . 72

10.1.2 Requirement SMG_DL.2 . 72

10.1.3 Requirement SMG_DL.3 . 73

10.1.4 Requirement SMG_DL.4 . 73

10.1.5 Requirement SMG_DL.5 . 74

10.1.6 Requirement SMG_DL.6 . 75

10.2 System Safety . 75

10.2.1 Requirement SMG_SA.1 . 75

10.2.2 Requirement SMG_SA.2 . 76

10.2.3 Requirement SMG_SA.3 . 77

10.2.4 Requirement SMG_SA.4 . 77

10.2.5 Requirement SMG_SA.5 . 78

10.2.6 Requirement SMG_SA.6 . 79

10.2.7 Requirement SMG_SA.7 . 80

10.2.8 Requirement SMG_SA.8 . 80

10.2.9 Requirement SMG_SA.9 . 85

10.2.10 Requirement SMG_SA.10 . 86

10.2.11 Requirement SMG_SA.11 . 87

10.3 System Security . 88

10.3.1 SMG_SO.1 requirement . 88

10.3.2 SMG_SO.2 requirement . 89

10.3.3 SMG_SO.3 requirement . 92

10.3.4 SMG_SO.4 requirement . 92

10.3.5 SMG_SO.5 requirement . 92

10.3.6 SMG_SO.6 requirement . 93

10.3.7 SMG_SO.7 requirement . 93

10.3.8 SMG_SO.8 requirement . 95

10.3.9 SMG_SO.9 requirement . 98

10.3.10 SMG_SO.10 requirement . 98

10.3.11 SMG_SO.11 requirement . 99

10.3.12 SMG_SO.12 requirement . 102

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page v

D7.1 Industrial Evaluation: Fortiss Smart Grid

10.3.13 SMG_SO.13 requirement . 102

10.3.14 SMG_SO.14 requirement . 102

10.3.15 SMG_SO.15 requirement . 103

10.3.16 SMG_SO.16 requirement . 103

10.3.17 SMG_SO.17 requirement . 103

10.3.18 SMG_SF_DP.1 requirement . 103

10.3.19 SMG_SF_DP.2 requirement . 104

10.3.20 SMG_SF_DP.3 requirement . 104

10.3.21 SMG_SF_IA.4 requirement . 104

10.3.22 SMG_SF_IA.5 requirement . 104

10.3.23 SMG_SF_IA.6 requirement . 105

10.3.24 SMG_SF_IA.7 requirement . 105

10.3.25 SMG_SF_IA.8 requirement . 105

10.3.26 SMG_SF_IA.11 requirement . 106

10.3.27 SMG_SF_TA.12 requirement . 106

10.3.28 SMG_SF_TA.13 requirement . 106

10.4 System Requirements . 109

10.4.1 SMG_SR.1 requirement . 109

10.4.2 SMG_SR.2 requirement . 109

10.4.3 SMG_SR.3 requirement . 109

10.4.4 SMG_SR.4 requirement . 110

10.4.5 SMG_SR.5 requirement . 110

10.5 Hardware / Software Platform . 110

11 Compliance Matrix 111

References 117

Page vi Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

List of Figures

1 MILS Architectural Design and Deployment . 4

2 MILS Architectural Strategy . 5

3 MILS Design Workflow . 6

4 MILS Deployment Workflow . 7

5 Smartgrid case study development process in AF3 9

6 Overview of the SmartGrid AF3 model . 12

7 SmartGrid sub-system . 13

8 SmartGrid Sub-System: Persistency . 15

9 Prosumer Sub-System . 16

10 Prosumer Sub-System: Internal Clock . 18

11 Prosumer Sub-System: Sensor Wrapper . 18

12 Prosumer Battery . 19

13 Prosumer Sub-System: Persistency . 19

14 AdminArea Sub-System . 20

15 Smart Grid Platform Architecture in AF3 . 21

16 Simulation trace in COMPASS . 26

17 D-MILS GSN Editor . 45

18 D-MILS GSN Editor . 45

19 D-MILS GSN Editor . 46

20 Refinement of the D-MILS meta assurance case by D-MILS assurance case patterns . 48

21 The instantiation of the System Properties pattern for the root component visualized
in AF3 GSN editor. 50

22 The instantiation of the Composition pattern for the always((batteryError) = (false))
property of the root component visualized in AF3 GSN editor. 50

23 The instantiation of the Process pattern for the OCRA contract checking process
visualized in AF3 GSN editor. 50

24 The instantiation of the System Properties pattern for the root component visualized
in MBAC. 51

25 The instantiation of the Process pattern for the OCRA contract checking process
visualized in MBAC. 51

26 Refinement of the D-MILS meta assurance case by D-MILS assurance case patterns . 51

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page vii

D7.1 Industrial Evaluation: Fortiss Smart Grid

Document Control

Version Status Date
0.1 Initial outline 16 March 2015
0.2 Revised Document Structure 20 April 2015
0.3 Development Process and Functional Description sections

added
12 May 2015

0.4 Design Specification, Verification and Assurance Case
sections added

1 June

0.5 Deployment, Platform and Requirement sections added 12 July
0.6 Internal Review 3 September
0.7 External Review 6 October
1.0 Final version 31 October

Page viii Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

1 Summary

This document summarizes our experience and analysis of the D-MILS architectural approach and
the corresponding technology for the design and implementation of dependable and secure informa-
tion and communication systems. This analysis is intended to provide feedback to the development
partners and quantitative results on which to base dissemination messages as the project transitions
to the exploitation phase.

The guiding example of our analysis is the smart microgrid living lab at fortiss, which has been de-
veloped, in collaboration with Siemens AG, over the last 6 years for demonstrating and show-casing
novel architectures, programming concepts, architectures, and novel products and services for smart
microgrids. The fortiss smart grid living lab has originally not been designed with respect to de-
pendability and privacy aspects in mind. An adequate and cost-effective design and implementation
solution for these pressing issues, however, is a prerequisite for market entry for this technology.

We have therefore modeled the high-level architecture of the fortiss smart microgrid in MILS-AADL
and implemented it using D-MILS technology as developed, largely, by the consortium partners. In
particular, the communication back-bone of the smart microgrid is replaced with the reliable com-
munication infrastructure of D-MILS, and space partitioning of the resulting distributed separation
kernel of D-MILS ensures that the impact of faults and of malicious attack is localized. Using parts
of this design we analyzed the D-MILS technology:

• MILS-AADL architectural specification language
• Verification of dependability properties
• Generation of assurance cases
• Automated MILS platform configuration compiler
• MILS technical platform

as provided by the D-MILS partners by means of stepping through the D-MILS architectural design
and implementation workflow, according to the supplemental evaluation plan.

In particular, MILS-AADL proved to be a suitable architectural specification language for our pur-
poses with a well-defined semantics. In order to promote wide-spread industrial, however, it is rec-
ommended to provide tutorial introductions and examples of MILS-AADL language features and
their interaction (e.g. on the use of error models).

The range of verification techniques available in the MILS-AADL front-end is impressive indeed, as
it includes a number of world-class verification engines such as nuXsmv (model checking, bounded
model checking, IC3) and latest component-based verification technology as embodied in OCRA.
Temporal specifications and contracts are embedded in the MILS-AADL language. After setting up
formal verification conditions for the smart microgrid corresponding to the requirements in D1.1, the
verification engines could prove these conditions. However, fairness assumptions need to be made
much more explicit, as these constraints are embodied in the transition to back-end verification tools.

Automated construction of assurance cases by means of suitable patterns (e.g. component-based rea-
soning) and application-specific instantiation based on a MILS-AADL specification is an important
innovation, and showed significant potential for certification support in our analysis. In addition,
assurance cases could also be used as the central design artefact for driving the design and supporting

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 1

D7.1 Industrial Evaluation: Fortiss Smart Grid

design decisions during development. Logical specifications should be an integral part of the MILS-
AADL language; this may evolve extending signatures with logical specifications (cmp. Extended
ML) and proving, say, refinement relations, by means of the OCRA verification tool of D-MILS.

The D-MILS technical platform consists of Level 0 hypervisors by LynuxWorks for each multi-
processor node and a TTEthernet communication network. The main properties used for the smart
microgrid are that of space- and time-partitioning in order to avoid uncontrolled spreading of faults
and attacks on parts of the distributed system. Even though the (hard) real-time aspects of TTEthernet
have not been particularly stressed by our case study, this feature of the MILS technical platform is
of utmost importance in more time-critical control applications; e.g. for the tight coordination of
machines on one or several production floors.

An initial set-up and configuration of the D-MILS technical platform took more than one person
month. The MILS platform configuration compiler automates this task of generating application-
specific configurations form the MILS-AADL architectural description. The MILS platform config-
uration compiler is therefore the centerpiece of technology towards industrial up-take of D-MILS
in industrial products and services. Moreover, the MILS platform configuration compiler supports
an intermediate format of MILS configurations, which allows to support additional MILS technical
components. This intermediate format should be standardized in order to encourage a market place
of pre-certified MILS technology components such as separation kernels, MILS network system, and
deterministic networking capabilities.

Altogether the D-MILS architectural design and implementation tool chain together with its platform
lives up to its promise to be able to automate crucial steps in the development of dependable and
secure systems. However, the applicability of D-MILS technological platform is currently restricted
to ultra-dependable distributed control systems, as found, for example, in airplanes and other vehi-
cles. Applicability and wide-spread uptake of the D-MILS technology, however, would be greatly
increased by also considering dynamic and adaptive systems, in which subjects are added, deleted,
or changed at run-time, and security policy architectures are changed dynamically.

Altogether, for wide-spread industrial up-take and increase of applicability - e.g. in the automation,
energy, and IoT domain - we recommend as follow-up steps:

• Extension of D-MILS technology to dynamic and adaptable systems in order to considerably
increase applicability of this technology;

• Wrapping D-MILS architectural design and implementation technology in terms of a well-
defined and well-documented set of services (e.g. simulate this model wrt. the following input,
verify this property for this model, generate a suitable configuration); this allows industrial
users to seamlessly integrate D-MILS into existing model-based development chains;

• Develop specific tutorials for industrial use of D-MILS technology in various domains;
• Standardize interface of D-MILS technological platform, and start populating a marketplace

of pre-certified D-MILS technology platform components and COTS software for applications
with varying dependability and security requirements.

Page 2 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

2 Introduction

This deliverable includes the assessment of the performance of the Distributed MILS for Depend-
able Information and Communication Infrastructures (D-MILS) project in achieving the established
industrial objectives by presenting the results of the evaluation of the technology developed by the
D-MILS project used in the context of the fortiss smart microgrid industrial demonstrator. This deliv-
erable is intended to provide feedback to the development partners and quantitative results on which
to base dissemination messages as the project transitions to the exploitation phase.

D-MILS provides several technologies components such as extensions to the MILS platform includ-
ing distributed system configuration features and a network subsystem that employs a hardware-based
time-triggered ethernet "backplane". The resulting D-MILS deployment platform will make it pos-
sible for an application architecture to seamlessly span multiple computer systems, with scalable
deterministic operation. Automated assistance is indispensable for the development and verification
of dependable distributed systems. Accordingly, D-MILS provides end-to-end and top-to-bottom au-
tomated support for the development and certification of highly-dependable systems. Based on the
SAE standard Architecture Analysis and Design Language (AADL), D-MILS defines MILS-AADL,
a high-level declarative language, and a chain of machine-processable representations within a pow-
erful verification framework to perform sophisticated analyses of probabilistic and non-probabilistic
properties in both finite and infinite-state systems. Using Goal Structuring Notation (GSN), to rep-
resent the assurance case for a system, D-MILS enables a concrete and automated linkage between
the assurance activities performed at various stages and levels of the specification, design and imple-
mentation, and the high-level claims made for the complete D-MILS system. D-MILS culminates
with the automated compilation of detailed resource allocation, scheduling, and interaction policy
configurations of a collection of single- and multi-processor D-MILS platform nodes.

The scope of this deliverable is to provide the description and results of the evaluation and valida-
tion process of these D-MILS technology components by integration of the D-MILS components by
means of our industrial case study. The evaluation process has been guided by a set of evaluation
measures and criteria identified by the D-MILS consortium. Thus, our evaluation process is in the
context of the industrial assessment of D-MILS components with regard to dependability and secu-
rity, timeliness, integrability, usability, and certifiability. The results of our evaluation are intended
to provide needed feedback to the development partners and also industrial based figures that can be
used for promotion and dissemination of project results.

In order to demonstrate the feasibility of D-MILS technologies, we evaluated them by applying them
to an industrial demonstrator. The fortiss smart microgrid industrial demonstrator for energy-efficient
workplaces has been built up over recent years by fortiss with technical support from Siemens and
sponsored by the Bavarian Ministry of Economics. The goals were to develop, study, validate, and
demonstrate the technical feasibility of distributed control for ultra-dependable self-balancing micro
grid nodes in a laboratory environment. Further details on this case study given by the fortiss smart
micro demonstrator such as system description, its business context together with expected improve-
ments offered by the D-MILS technologies and related safety and security requirements are presented
in deliverable D 1.1. As a D-MILS demonstration, the fortiss smart microgrid case study identified
and analyzed safety and security requirements, developed a security architecture, constructed an as-

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 3

D7.1 Industrial Evaluation: Fortiss Smart Grid

MILS
AADL

Performance
Analysis

MILS
AADL

MILS
AADL

Safety
Analysis

MILS Technical Platform

Node1 Node2 Node3

Configurations / Schedules /
Communication Routes

MILS Platform
Configuration

Compiler

App A
Level B

Classified

App B
Level C
Unclassified

App C
Level A
Top Secret

C
Code

C
Code

Ada
Code

Autofocus
Model

Autocode

Simulink
Model

Autocode

A B

C

Implements/
Satisfies

Security
Analysis

Architectural Refinement

Figure 1: MILS Architectural Design and Deployment

surance case and provided evidence backed by verification results in support of the assurance case.
All these have been evaluated and the evaluation results are enclosed in this document.

We first present an overview of the MILS architectural approach to the design and deployment of
dependable and secure systems, as depicted in Figure 1. This design flow starts with a boxes-and-
arrows-like abstract architectural description in MILS-AADL, the so-called (security) policy archi-
tecture, which has been obtained by an appropriate security analysis of the application at-hand. Using
the MILS verification technology, it is possible to state a large number of safety, security, and also
performance properties in terms of temporal logic, and to verify these properties with respect to the
architectural description in MILS-AADL. Architectural descriptions in MILS-AADL may be refined
through property-preserving transformation. In this way, properties can always be established on ab-
stract architectural descriptions, and these properties are preserved by means of architectural transfor-
mation and concretization (e.g. by adding behavior or by introducing sub-components). In Figure 1
we assume that concrete implementations of components are being obtained through autocoding in
established model-based techniques (such as Simulink or Autofocus), are hand-coded (e.g. in a pro-
gramming language such as C, Ada), or are commercial component-off-the-shelf (COTS) products.
In this way, one needs to demonstrate that the implementation thus obtained indeed implements
the corresponding component interface and behavior. In the case of hand-coded component code
this amount to a software verification task, whereas model-based techniques might involve the use
correctness arguments of the autocoder, and COTS components need to be tested as a black-box
component. Each application component may have, among other things, a safety and/or a security
attribute (e.g. safety integrity level) as specified, for example, in domain-specific safety standards
such as DO 178C for flight-critical aerospace software, the ISO 262626 for safety-relevant automo-
tive functionalities, or a security standard such as the Common Criteria (ISO/IEC 15408).

Page 4 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

San Francisco, 18.07.2015

SuC satisfies security/safety goals

MILS
Architectural
Strategy

Architectural description (in MILS-
AADL) satisfies security/safety

goals (in LTL)

Model
Checking

Technical Platform under
consideration satisfies
MILS SKPP (including
isolation, flow control
policy, determinism)

Technical
platform is
verified to

satisfy
SKPP

AND

Safety &
Security

goals
preserved

under
architectural
refinement

Architectural information flow policy implemented
correctly on technical platform

AND

MILS Platform configuration
as generated by the MILS

Platform configuration
compiler exactly implements
architectural information flow

policy

MILS Platform
Configuration

Compiler
formally
verifed

OR

Isomorphism
between

configuration&
architectural
information

clow

Application Code satisfies / implements
architectural constraints

OR

Testing Run-time
wrapper

Once and forall

Application-Specific

Formal
Verification

Figure 2: MILS Architectural Strategy

Given an architectural description in MILS-AADL (and some established properties on this model)
and a number of application components together with additional constraints and attributes, the MILS
platform configuration compiler generates an appropriate configuration for the distributed MILS
technical platform. In this way, a single policy architecture may be span several MILS nodes.

Moreover, the MILS distributed platform provides, similar to a single MILS separation kernel, prop-
erties such as isolation, information flow control, and determinism. In particular, no additional flows
("hidden channels") are introduced by the MILS technical platform, and, because of isolation, faults
and attacks may be contained locally.

In applying MILS architectural design and implementation workflow, the application-developer may
concentrate on application-specific tasks only (colored orange in Fig. 1). This has the potential of
leading to much cheaper development of highly dependable and secure systems as well as faster
time-to-market. In particular, the MILS architectural strategy in Figure 2 for developing a GSN-like
assurance case demonstrates the potential savings of using the MILS technology and infrastructure
as developed in this project. The task of demonstrating dependability and security goals (as obtained
from an appropriate risk analysis, not shown here) are satisfied, and reduces to:

1. Architectural description in MILS-AADL satisfies dependability and security goals (expressed
in LTL, contracts, etc.)

2. Application code implements interface and behavior of corresponding architectural component

3. Architectural (information flow) policy is implemented correctly on the MILS technical plat-
form

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 5

D7.1 Industrial Evaluation: Fortiss Smart Grid

1. The user writes manually the system architecture in MILS-AADL using a text editor.

2. The user extends manually the MILS-AADL model with component state machines using a
text editor.

3. The user simulates the MILS-AADL model with COMPASS.

4. The user starts the assurance case by instantiating the argument patterns with the MILS-AADL
model.

5. The user extends manually the MILS-AADL model with annotations for:

(a) Deadlock checking with BIP

(b) Invariant checking with either BIP or nuXmv

(c) Transitive noninterference properties with BIP

(d) LTL checking with nuXmv

(e) Contract-based LTL checking with OCRA and nuXmv

6. The user runs COMPASS to check the annotated properties.

7. The user extends the assurance case by instantiating the argument patterns with the verification
activities and results.

8. The user extends manually the MILS-AADL model with error models using a text editor.

9. The user runs COMPASS to extend the MILS-AADL model with failures.

10. The user runs COMPASS to check the annotated properties on the extended model

11. The user extends the assurance case by instantiating the argument patterns with the safety
analysis.

Figure 3: MILS Design Workflow

This last task reduces to (1) demonstrating the correctness of the configurations produced by the
MILS platform configuration compiler — either by means of a correctness proof or by using the
compiler validation techniques as proposed in D5.3, and (2) to indeed demonstrate isolation, infor-
mation flow control, and determinism of the MILS technical platform; these validations can be done
once and forall, and have, at least partially, been performed in the context of the D-MILS project.
The first two tasks are application-specific, and the verification technology of the D-MILS project
supports in particular architectural analysis of MILS-AADL models. Notice that the "green" boxes
in Figure 2 denotes evidence that is provided once-and-forall, whereas the evidence of the "orange"
boxes needs to be provided on a case-by-case basis, as these properties are application-specific. Of
course, some of the COTS application code could, and indeed should, also be pre-certified.

Page 6 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

1. The user extends the MILS-AADL model with hardware allocation.

2. The user extends manually the MILS-AADL model with error models for the new hardware
components using a text editor.

3. The user runs COMPASS to extend the MILS-AADL model with failures.

4. The user runs COMPASS to check the annotated properties on the extended model.

5. The user creates additional constraints for the MPCC.

6. The user runs the MPCC to generate a set of MILS platform configurations (set of sets).

7. The user extends the assurance case by instantiating the argument patterns with the configura-
tion details.

8. The user runs Lynx ST tools to configure the separation kernel for the chosen platform config-
uration.

9. The user runs TTTech tools to automatically configure the TTE network.

10. The user deploys D-MILS configuration on technical platform.

11. The user loads and runs application on D-MILS technical platform.

12. The user extends the assurance case by instantiating the argument patterns for the MILS plat-
form

Figure 4: MILS Deployment Workflow

The first step of our evaluation was to make firsthand use of the D-MILS technologies, by following
a certain workflow. The scope of this first evaluation step is to evaluate the D-MILS technologies for
designing, verifying and deploying industrial systems. The followed workflow is the representative
workflow for the typical way D-MILS technologies are intended to be used within an organisation
that is developing and operating critical systems requiring high levels of assurance for security and
dependability. By D-MILS technologies we mean the workflow is built of five categories of tasks,
which, in fact, represent a software development lifecycle for critical systems, as proposed by the
D-MILS technologies:

• Design and specification (using the MILS-AADL declarative language)
• Verification of properties (using COMPASS tool chain)
• Assurance case (using MBAC and the D-MILS assurance case patterns)
• Deployment (using the D-MILS Platform Configuration Compiler)
• Platform operation (on the D-MILS platform)

Figures 3 and 4 state the concrete development steps for the design and the deployment of dependable
and secure applications using the MILS technical platform.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 7

D7.1 Industrial Evaluation: Fortiss Smart Grid

The specific measures which were utilised within each category for evaluating the D-MILS technolo-
gies are described in the D-MILS Supplemental Evaluation Plan document.

After completing the first step of the evaluation, we went to the second step, i.e., checking the de-
gree to which our industrial requirements — specified in deliverable D1.1 — are satisfied for our
smart micro grid demonstrator. The evaluation of the appropriateness level of the D-MILS technolo-
gies for satisfying the industrial requirements has been performed according to evaluation measures
and method for the industrial requirements described in the D-MILS Supplemental Evaluation Plan
document.

All in all, our assessment demonstrates how D-MILS advances beyond the state-of-the-art, based on
the objective measures and methodology defined in WP1.

Page 8 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

3 Development Process

The fortiss Smart Microgrid case study has originally been partly modelled in AutoFOCUS3
(http://af3.fortiss.org/). AutoFOCUS3 (AF3) is a model-based tool that allows modeling and vali-
dating concurrent, reactive, distributed, timed systems on the basis of formal semantics. It offers
several levels of abstraction whereby in our case we used the logical and the technical architecture
views. These models form our starting point for the design and implementation according to the
D-MILS architectural design and implementation approach.

The Logical Architectural View of a system is defined by means of components communicating via
message passing through typed channels, using a clearly defined model of computation. Message
exchange is synchronized with respect to a global, discrete time base. Components can directly
implement behaviour or consist of other components that do so.

Figure 5: Smartgrid case study development process in AF3

The Technical Architecture View describes a hardware topology that is composed of computation
units (e.g. ECUs, cores, etc.), communication units and sensors/actuators.

We modeled the structure and behaviour of our Smart Microgrid demonstrator according to the re-
quirements of D1.1 as a logical architecture in AF3. After the logical architecture is modeled the

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 9

D7.1 Industrial Evaluation: Fortiss Smart Grid

components have to be mapped onto hardware. In case of D-MILS we do not map directly onto hard-
ware but onto subjects. Therefore we implemented a D-MILS specific technical architecture which
consisted of subjects (instead of ECUs). Those subjects are connected by a communication medium,
which in our case is the TTTech switch. Each subject has sensors which represent the interfaces
to the data that is received from outside the Smart Microgrid system (i.e., a SmartGrid component
receives the current energy price and the deviation event). The subjects can be on the same machine
but do not necessarily have to.

Within the scope of this project we adapted the AF3 C Code generator to be compliant with the
D-MILS technology. Therefore we could use the AutoFOCUS Smart Microgrid model to generate
application code. Furthermore using the architectural information from the model we are able to
generate a high-level MILS-AADL file, that can subsequently be used as input for the deployment
generator. The high-level MILS-AADL file only describes the system structure. The differences in
semantics between MILS-AADL and AutoFOCUS3 are therefore in this case irrelevant.

Page 10 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

4 Functional Description

In this section the architecture and functionality of the fortiss Smart Grid System is described. The
system was originally modeled in AutoFOCUS3 (http://af3.fortiss.org). From this model, using the
approach described in the previous section (3), we synthesized the application code. The Smart
Grid System was modeled according to the requirements presented in the D1.1 document. In every
sub-section we mention the requirements that are covered by the corresponding sub-component. This
section is organized as follows: First the high-level architecture of the Smart Grid System is presented
and illustrated using screenshots from AutoFOCUS and the corresponding MILS-AADL description.
In the following sub-sections the main sub-components (SmartGrid, Prosumers, AdminArea) are
presented in more detail. Finally the deployment of the sub-components on subjects is described.

For our system model we use the following assumptions:

• The time unit used is the hour.
• Each day is decomposed into several time slots. Currently, four time slots (of 6 hours each) are

considered.
• The smart grid sub-system sends the current price for electricity and the current grid state once

every hour.
• The values for the electricity price and for deviation/power outage come from outside this

system.

4.1 High-Level view

The AutoFOCUS3 model of the smart micro grid system is divided in four sub-systems (compo-
nents): SmartGrid, AdminArea, Prosumer1 and Prosumer2 (cf. fig. 6). Those components exchange
information, both with each other and with the outside world (systems which are not part of this
model).

The SmartGrid component is the central component in this system. It receives the current price
for the electricity and the current grid state from outside the system. Based on this information it
forwards the price to the prosumers. Additionally, in case of a power grid deviation, the SmartGrid
sub-system can send the prosumers into islandMode. The SmartGrid sub-system receives the current
state (aggregated values and islandMode state) from the prosumers. This information is stored and
can be requested from the AdminArea sub-system.

The AdminArea component allows the system administrator to request information about prosumers
remotely. If a correct password is provided the SmartGrid sub-system grants the access.

The Prosumer components receive the current electricity price and an islandMode signal. If this
signal is true, then the prosumers switch to islandMode. In return the prosumers send aggregated
production/consumption values together with their current islandMode state back to the SmartGrid.
Furthermore, each prosumer has an administrator interface. Providing the correct password the pro-
sumer administrator can request certain data from the prosumers. A prosumer administrator can only
request data from its own prosumer.

The representation of the system’s architecture in MILS-AADL is given in the code listing below:

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 11

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 6: Overview of the SmartGrid AF3 model

Representation in MILS-AADL:
system SmartGridSystem
features

currentPrice: in event port;
deviationEvent: in event port;
inCredentials: in data port (int, int);
inCredentialsPro1: in data port (int, int);
inCredentialsPro2: in data port (int, int);
prosumerData1: out data port (int,int) default (0,0);
prosumerData2: out data port (int,int) default (0,0);

end SmartGridSystem;

system implementation SmartGridSystem.impl

subcomponents
AdminArea: subject AdminArea.impl;
SmartGrid: subject SmartGrid.impl;
Prosumer1: subject Prosumer.impl;
Prosumer2: subject Prosumer.impl;

connections
port inCredentials -> AdminArea.inCredentials;
port currentPrice -> SmartGrid.currentPrice;
port deviationEvent -> SmartGrid.deviationEvent;
port inCredentialsPro1 -> Prosumer1.inCredentialsPro;
port inCredentialsPro2 -> Prosumer2.inCredentialsPro;
port Prosumer1.aggregatedValues -> SmartGrid.prosumerData1;
port Prosumer2.aggregatedValues -> SmartGrid.prosumerData2;
port AdminArea.sendRequest -> SmartGrid.inCredentials;

Page 12 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

port SmartGrid.sendResponse -> AdminArea.recvResponse;
port SmartGrid.price1 -> Prosumer1.price;
port SmartGrid.price2 -> Prosumer2.price;
port SmartGrid.deviationEvent1 -> Prosumer1.deviationEvent;
port SmartGrid.deviationEvent2 -> Prosumer2.deviationEvent;
port Prosumer1.islandModeState -> SmartGrid.islandModeState1;
port Prosumer2.islandModeState -> SmartGrid.islandModeState2;
port Prosumer1.prosumerData -> prosumerData1;
port Prosumer2.prosumerData -> prosumerData2;

end SmartGridSystem.impl;

4.2 SmartGrid

The SmartGrid sub-system consists of four components (cf. fig. 7): a persistency component, a wrap-
per component and two prosumer energy agents (one for input and one for output). The following
subsections describe those components in more detail.

Figure 7: SmartGrid sub-system

Covered Requirements:

[SMG_SO.1] Shall: Communication / Information Flow between components shall be according to
the policy defined in Deliverable 1.1. No other information flow shall occur.

Representation in MILS-AADL:
system SmartGrid
features

currentPrice: in event port;
deviationEvent: in event port;
prosumerIMState1: in event port;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 13

D7.1 Industrial Evaluation: Fortiss Smart Grid

prosumerIMState2: in event port;
aggrProValue1: in data port int;
aggrProValue2: in data port int;
smgPrice1: out event port;
smgPrice2: out event port;
smgIslandModeState1: out event port;
smgIslandModeState2: out event port;
inCredentials: in data port (int, int); -- prosumerNr + password
sendResponse: out data port (int, int) default (0,0); -- authState + proData

end SmartGrid;

system implementation SmartGrid.impl
subcomponents

SmgProAgentIn: subject SmgProAgentIn.impl;
SmgPersistency: subject SmgPersistency.impl;
SmgWrapper: subject SmgWrapper.impl;
SmgProAgentOut: subject SmgProAgentOut.impl;

connections
port currentPrice -> SmgProAgentIn.currentPrice;
port deviationEvent -> SmgProAgentIn.deviationEvent;

...

4.2.1 Prosumer Energy Agents

Both prosumer energy agents (ProAgentIn and ProAgentOut) provide an interface to the outside
world. ProAgentIn receives the data from outside the system and forwards it to the corresponding
sub-components of the SmartGrid system. ProAgentOut on the other hand receives data from the
sub-components of the SmartGrid and forwards it to the outside world.

Covered Requirements:

[SMG_SO.4] Shall: The prosumer energy agent shall communicate only required data by the micro
grid. The micro grid shall not have access to any private data by the prosumer. In particular the
sensor values of prosumer systems shall not be transmitted to the micro grid. The only exception is
the data of the main smart meter, since this is required for stability control.

4.2.2 Wrapper

The wrapper component receives information about a possible deviation event (e.g., a power outage)
in the power grid. In case of a deviation event the wrapper component sends a switchToIslandMode
request to the Persistency component, which forwards it over the ProAgentOut component to the
prosumers.

Covered Requirements:

[SMG_SA.1] Shall: The highest level safety priority is grid stability. Indicators of instability are:
deviation from the frequency 50Hz and deviation from the nominal voltage level. In the case that the
frequency deviates more than 1Hz, the micro grid shall switch to island mode.

Page 14 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

4.2.3 Persistency

The Persistency component collects and forwards data. The task of the Persistency component is
fourfold (cf. fig 8):

1. Save the aggregated prosumer data;

2. Forward the power grid data;

3. Check the administrator authorization;

4. Answer prosumer data requests from the AdminArea in case of a successful authorization.

Figure 8: SmartGrid Sub-System: Persistency

Covered Requirements:

[SMG_SO.12] Shall: The persistency component shall be (a) available and (b) any other component
shall not delete, add or temper with information stored in the persistency component.

4.3 Prosumer

The Prosumer sub-system in our AF3 model consists of Prosumer Energy Agents, Wrapper compo-
nents, a Persistency component and a Rule component (cf. fig. 9). In the AF3 model there are two
Prosumer Energy Agents: ProAgentIn and ProAgentOut, which provide an interface to the Smart-
Grid sub-system. The ProAgentIn component receives a command whether or not it has switch into

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 15

D7.1 Industrial Evaluation: Fortiss Smart Grid

islandMode as well as a price event. This information is forwarded to the Rule component, which
decides over the possible actuators (e.g. lights) of the system. This information is based on the island-
Mode command and the sensor values, which the Rule component receives from the WrapperSensors
component.

Figure 9: Prosumer Sub-System

The sensor values, which are produced based on the current day time, are also stored in the Per-
sistency component. Apart from storing the values, the Persistency component forwards the data
to the Aggregation component, and allows a local administrator to access the stored data using the
corresponding password.

The aggregated sensor values and the current islandMode state of the prosumer are sent back to the
SmartGrid component.

Covered Requirements:
[SMG_SO.1] Shall: Communication / Information Flow between components shall be according to
the policy defined in Figure 9 of D1.1 (Prosumer Information Flow) and Figure 10 of D1.1 (Micro
Grid Information Flow). No other information flow shall occur.

[SMG_SO.4] Shall: The prosumer energy agent shall communicate only required data by the micro
grid. The micro grid shall not have access to any private data by the prosumer. In particular the
sensor values of prosumer systems shall not be transmitted to the micro grid. The only exception is
the data of the main smart meter, since this is required for stability control.

Representation in MILS-AADL:
system Prosumer
features

inCredentialsPro: in data port (int,int);
prosumerData: out data port (int,int) default (0,0);
price: in event port;

Page 16 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

deviationEvent: in event port;
aggregatedValues: out data port int default 0;
islandModeState: out event port;

end Prosumer;

system implementation Prosumer.impl
subcomponents

ProAgentIn: system ProAgentIn.impl ;
WrapperSensors: system WrapperSensors.impl ;
Persistency: system Persistency.impl ;
Rule: system Rule.impl ;
WrapperActuators: system WrapperActuators.impl ;
Aggregation: system Aggregation.impl ;
ProAgentOut: system ProAgentOut.impl ;

connections
port price -> ProAgentIn.smgPrice;
port deviationEvent -> ProAgentIn.smgIslandMode;
port ProAgentIn.islandMode -> Rule.islandMode;
port ProAgentIn.currentTime -> Rule.currentTime;
port WrapperSensors.StatusProduction -> Rule.StatusProduction;
port WrapperSensors.StatusBattery -> Rule.StatusBattery;
port WrapperSensors.StatusConsumption -> Rule.StatusConsumption;
port Rule.currentTimeOut -> WrapperSensors.currentTime;
port Rule.islandModeState -> Aggregation.islandModeState;
port Rule.consumptionRule -> WrapperActuators.consumptionRule;
port WrapperSensors.StatusProduction2 -> Persistency.StatusProduction;
port WrapperSensors.StatusConsumption2 -> Persistency.StatusConsumption;
port WrapperSensors.StatusBattery2 -> Persistency.StatusBattery;
port inCredentialsPro -> Persistency.inCredentials;
port Persistency.prosumerData -> prosumerData;
port Persistency.productionValues -> Aggregation.productionValues;
port Persistency.consumptionValues -> Aggregation.consumptionValues;
port Persistency.batteryValues -> Aggregation.batteryValues;
port Aggregation.prosumerState -> ProAgentOut.prosumerState;
port Aggregation.aggregatedValues -> ProAgentOut.aggrValues;
port ProAgentOut.prosumerStateOut -> islandModeState;
port ProAgentOut.aggregatedValues -> aggregatedValues;

end Prosumer.impl;

The following sub-sections describe the Prosumer sub-components in more detail.

4.3.1 Prosumer Energy Agents

As already mentioned, the Prosumer Energy Agents basically forward the input data to the corre-
sponding components within the prosumers and vice versa. The only difference is the input value
price event. We assume that the SmartGrid sends a new price event every hour. For that reason we
can use this price event as an internal clock for the prosumers. Each time a time event arrives the
internal clock of the prosumer is incremented by one, unless the internal clock is 23. In this case a
24-hours day is over and the clock turns to 0 again (cf. fig. 10).

4.3.2 Wrappers

In our AF3 model there are two different wrappers, one for the sensors and one for the actuators.
The wrapper for the actuators is currently a placeholder, since our demonstrator does not possess any
actuators. In a real system, actuators could be some energy intensive devices, which can be cut off
from the power supply in case of an islandMode.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 17

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 10: Prosumer Sub-System: Internal Clock

Figure 11: Prosumer Sub-System: Sensor Wrapper

The sensor wrapper on the other hand consists of three sensor components (Consumption, Produc-
tion, Battery). The Consumption and Production components generate different values depending on
the current time of the day. In our model we assume that, on average, the consumption during the
night (lights switched on) is higher than the production (solar panels). Depending on the level of
production and consumption, it is decided whether the battery is currently discharged or recharged
(cf. fig. 11). We further assume that the battery has a max. capacity.If this value is reached then the
battery does not charge any further (cf. fig. 12).

Covered Requirements:

Page 18 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

[SMG_SO.1] Shall: Communication / Information Flow between components shall be according to
the policy defined in Figure 9 of D1.1 (Prosumer Information Flow) and Figure 10 of D1.1 (Micro
Grid Information Flow). No other information flow shall occur.

Figure 12: Prosumer Battery

4.3.3 Persistency

The Persistency component has two main tasks to fulfill. On the one hand it stores and forwards
the sensor data, which it gets from the WrapperSensors component, and on the other hand it grants
access to the stored data, provided that the password given is correct (cf. fig. 13).

Figure 13: Prosumer Sub-System: Persistency

Covered Requirements:
[SMG_SO.7] Shall: Authentication: User shall authenticate himself to the control software in both
cases: prosumer and micro grid. Every prosumer system shall be authenticated itself to the micro
grid.

[SMG_SO.8] Shall: Authorization: Every user shall have a limited set of rights. He shall not be able
to obtain more rights than he has.

[SMG_SO.9] Shall: The admin of each prosumer and smart grid system shall be able to access only
his system. Access to other systems shall not be possible.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 19

D7.1 Industrial Evaluation: Fortiss Smart Grid

4.3.4 Aggregation

The Aggregation component aggregates sensor data (consumption, production, battery status) and
forwards it alongside the current islandMode state to the ProAgentOut component.

Covered Requirements:
[SMG_SO.3] Shall: The aggregation component shall only communicate aggregated energy data
to the prosumer energy agent. No sensor or device specific information shall be communicated for
privacy reasons.

4.3.5 Rule Component

The Rule component can switch a prosumer to islandMode and back to normal depending on its
input.

4.4 AdminArea

The AdminArea component allows the system administrator remote access to prosumer data stored
in SmartGrid’s Persistency component. The component waits in the Idle mode for an information
request. An information request consists of a prosumer number and a password. This information
request is forwarded to the SmartGrid component, where it is processed. Until the response is re-
ceived, the AdminArea sub-system remains in the checkAuth mode. The response is forwarded to the
output ports (cf. fig. 14).

Figure 14: AdminArea Sub-System

Covered Requirements:
[SMG_SO.7] Shall: Authentication: User shall authenticate himself to the control software in both
cases: prosumer and micro grid. Every prosumer system shall be authenticated itself to the micro
grid.

[SMG_SO.8] Shall: Authorization: Every user shall have a limited set of rights. He shall not be able
to obtain more rights than he has.

4.5 Deployment

After the logical architecture is modeled the components have to be mapped onto hardware. In
case of D-MILS we do not map directly onto hardware but onto subjects (cf. fig. 15). Therefore

Page 20 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

we implemented a D-MILS specific technical architecture which consisted of subjects (instead of
ECUs). Those subjects are connected by a communication medium, which in our case is the TTTech
switch. Each subject has sensors which represent the interfaces to the data that is received from
outside the Smart Microgrid system (i.e., a SmartGrid component receives the current energy price
and the deviation event). The subjects can be on the same machine but do not necessarily have to (cf.
fig. 6).

After the deployment of the four main components (AdminArea, SmartGrid, Prosumer1, Prosumer2)
on the corresponding subjects is done the application code can be generated.

Figure 15: Smart Grid Platform Architecture in AF3

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 21

D7.1 Industrial Evaluation: Fortiss Smart Grid

5 Design and specification

This section deals with design and specification capabilities of MILS AADL

5.1 Design Expressivity

Description:
The degree to which MILS-AADL is able to represent and address the functional elements that com-
prise an industrial demonstrator application.

Experiment:
Evaluate how many components of the SMG case study that can be represented using MILS-AADL.

Verdict:
In scope of the evaluation of MILS-AADL w.r.t. the ability of representing functional elements of
the Smart Microgrid case study we focus on two essential aspects: ability of expressing behaviour
and the ability of expressing system’s structure.

The behaviour of components can be specified in MILS-AADL language through state automatons.
A state automaton in MILS-AADL consists of a set of modes and a set of transitions between those
modes. A transition between modes has the form as shown in the listing below, where m1 and m2
are modes, e is a trigger event for the transition, v is the event data, g is a guard and f is an effect.
Thereby each of these parts (e, v and g) can be omitted if not needed.
m1 -[e(v) when g then f]-> m2

Modeling component behaviour in MILS-AADL is relatively straightforward. However, problems
may occur if a transition definition exceeds a certain size. A definition can occasionally spread
through several lines, as the one in the listing below. Having a clear understanding of such definitions
and further working with them is cumbersome and error prone.
idle -[when (StatusConsumption < StatusProduction)

and (StatusProduction - StatusConsumption) > charge_thr
then chargingRate := (StatusProduction - StatusConsumption)]

-> productionHigherConsumption;

The MILS-AADL language allows a hierarchical decomposition of system components. The com-
munication among MILS-AADL system components can be depicted by specification of internal and
external communication, and internal and external interfaces. One example of how system structure
is expressed in MILS-AADL can be seen in section 4.1.

After performing our evaluation, we reached the conclusion that MILS-AADL is a rich modeling
language, which can be used to comprehensively depict systems. However, we also detected two
shortcomings of this modeling language. One of them is the missing persistency model (cf. expla-
nation in 5.4 point 3) in MILS-AADL. This affected us while trying to address some of the require-
ments from the D1.1 deliverable (i.e. requirements that deal with logging events). The other detected
shortcoming of the MILS-AADL language is the missing consistency check for the categorization of
composite components Node, Subject or System, as described in D2.1. COMPASS seems to ignore
those keywords.

Page 22 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Since MILS-AADL is a textual modeling language there are some issues w.r.t. to scalability. Ac-
curately modeling complex systems (i.e. system with numerous components and inter-connections)
with MILS-AADL can be problematic. Having an adequate editor with features such as consistency
checks, syntax highlighting or auto-completion would significantly contribute to the resolution of
this problem.

5.2 Design Usability

The perceived relative effort and ease involved in using MILS-AADL to represent and address the
functional elements that comprise an industrial demonstrator application.

Question 1: What is the level of difficulty for representing the functional architecture of the case
study?

Rationale:

As already discussed in the previous sub-section we assume that system’s structure is meant by
functional architecture. We define the system’s structure as the ability of expressing the components
of the systems (also composed components), their interfaces and their inter-connections with each
other or the outside world.

Specifying the system structure in MILS-AADL is straightforward. We suspect that problems would
only appear when defining the structure of an industrial-sized system, consisting of a large set of
components and inter-connections. Nevertheless is this not a negative aspect of the language itself
but rather a motivation to work on tools, that could support developers with state-of-the-art techniques
such as code highlighting, auto-completion, consistency checks etc.

In order to argue the facility of specifying system structure in MILS-AADL we next explain how
we modeled one of our system components, namely the prosumer. An outline of the prosumer’s
structure is showed in the listing below. We started by defining the interface of the component as
the subject’s features. Thereby the input and output ports are declared. Furthermore the data type
of each port is defined at this point. In our example all the ports are of type event. We then defined
in the system’s implementation the subject’s sub-components. In our example we define only two
sub-components, called ProAgentIn and ProAgentOut. At the end of the structure definition one can
define connections between sub-components and between sub-components and ports.
subject Prosumer
features

price: in event port;
deviationEvent: in event port;
islandModeState: out event port;
...

end Prosumer;

system implementation Prosumer.impl
subcomponents

ProAgentIn: system ProAgentIn.impl ;
ProAgentOut: system ProAgentOut.impl ;
...

connections
port price -> ProAgentIn.smgPrice;
port deviationEvent -> ProAgentIn.smgIslandMode;
port ProAgentOut.prosumerStateOut -> islandModeState;
...

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 23

D7.1 Industrial Evaluation: Fortiss Smart Grid

end Prosumer.impl;

Verdict:

Very Difficult – Difficult – Easy – Very Easy

Question 2:

What is the level of difficulty for modeling the behaviour of a single component in MILS-AADL?

Rationale:

Behaviour can be expressed in MILS-AADL either as state automatons or as flows.

Automatons provide an abstraction of the concrete behaviour of a component by providing the for-
malisms for modelling the finite control part of a component. An automaton consists of set of modes
and a set of transitions between them. Every automaton has an initial mode (see listing below). Af-
ter de- and re-activation the execution is resumed in the previous mode. One can attach to modes
linear conditions, which act as invariants. These invariants, together with clocks, enable the user to
constrain the amount of time that may be spent in one mode.

subcomponents
timer: data clock;

modes
idle: initial mode;
enabled: mode while timer <= timeout min;
...

A transition in MILS-AADL consists of three parts: a trigger (beginning of the transition), a guard
(after the when keyword) and an effect (after the then keyword), as showed in the listing below. Each
of these three parts can be omitted. A transition can be either triggered by incoming events (event
data ports) or spontaneously if, for example, a transition does not have a trigger. A guard, similar to
a mode invariant, is a logical expression of data ports and variables (defined in the subcomponents
section of a system implementation). The effect defines the impact of the transition by specifying
some update operations on the data (variables or outgoing ports).
transitions

idle -[engage then timer := 0]-> enabled;
enabled -[when speed < set then control := 1]-> enabled;

Another possibility of defining behaviour of a component is the concept of flows. Flows allow an
immediate reaction of an update of other ports. They provide the possibility to either forward the
data from an incoming port to an outgoing port or perform some operations on this data before
forwarding it, as it is shown in the small example below.
device Adder features

input1: in data port bool default true;
input2: in data port bool default true;
output: out data port (bool, bool);

end Adder;
device implementation Adder.Impl

flows
port (input1 and input2, input1 xor input2) -> output;

end Adder.Impl;

Page 24 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Having all these language constructs for expressing component behaviour, we managed to success-
fully define the functional behaviour of the components of our smart grid. Hence, we affirm that
MILS-AADL is suitable for expressing functional behaviour.

Verdict:

Very Difficult – Difficult – Easy – Very Easy

5.3 Design Feedback

The perceived usefulness of the feedback provided when using MILS-AADL to represent and address
the functional elements that comprise an industrial demonstrator application.

Question 1:

How helpful are the error messages from COMPASS when there is an error in definition of functional
elements?

Rationale:

In the scope of the evaluation of MILS-AADL using the Smart Microgrid Demonstrator the only tool
we used apart from a regular text editor was COMPASS. COMPASS is a tool which offers a set of
analysis and verification techniques for MILS-AADL models. As such, in this evaluation step we
assess the capability of COMPASS for checking MILS-AADL syntax.

COMPASS allows the loading of MILS-AADL models and performs a syntax check on them. In
case the model is syntactically correct the user gets a positive feedback from the tool and is able to
use all its verification and simulation functionalities. In case the model comprises syntax errors the
tool provides the user with information about what might be wrong and the possible locations of the
errors. In most of the cases the feedback provided by the tool was meaningful and it supported us
in creating a syntactically correct model. However, in some cases the feedback which was provided
by COMPASS was sometimes misleading. An example for such a case is the recommendation of
COMPASS to add a bus to a system, even if it was not necessary. The result of following this
recommendation was a syntactically, but not semantically correct model of the Smart Microgrid
demonstrator.

Verdict:

Not helpful at all – Not that helpful – Helpful – Very Helpful

Question 2:

Did the simulation of a MILS-AADL model help you during the design process ?

Rationale:

In scope of the development process of the Smart Grid System case study we used the simulation
functionality for testing whether a model behaves as we expected. We only simulated components,
whose behaviour was modelled as state automatons.

COMPASS offers three different ways of simulating a model: random simulation, guided by transi-
tion or guided by values.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 25

D7.1 Industrial Evaluation: Fortiss Smart Grid

If one chooses random simulation the system, as expected, chooses the values for the system auto-
matically. During our case study we did not use this option extensively, but we assume that it is very
helpful for stress testing of the system.

If one chooses guided by transitions, it is possible to force the system to take certain transitions. It
is not possible though to take any transitions but only those which are available in the current state.
This option was more adequate for the purpose of checking the model’s behaviour as the first one.
However, the simulation guided by values was the most preferred and used type of simulation during
our evaluation.

The simulation guided by values allows the user to choose the input values for the model for the next
step. In our opinion this is the most useful simulation option, since it gives the user the complete
control over what the model should (or is expected to) do in the next step.

In conclusion, we found the simulation functionality of COMPASS very helpful to ensure the cor-
rectness of the model for our Smart Grid System case study.

Verdict:
Not at all – Mostly not – Mostly – A lot
Question 3:
How clear is the feedback provided by the simulation of a MILS-AADL model?

Rationale:
The result of a simulation run COMPASS provides a trace of the model where the values of all
variables and ports are listed (cf. fig. 16). Depending on how complex the model is, the amount of
presented steps varies. An invaluable feature of COMPASS is that after the simulation run COMPASS
announces if there is any deadlock in the model.

Figure 16: Simulation trace in COMPASS

When traces become very large COMPASS offers a filtering functionality. This enables the user to
concentrate only on those parts of the traces, which are relevant for the user.

Page 26 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Verdict:
Very unclear – Mostly unclear – Mostly clear – Very clear

5.4 Design Maturity

The perceived maturity of MILS-AADL technologies to represent and address the functional ele-
ments that comprise an industrial demonstrator application.

Question 1:
How mature are the MILS-AADL technologies in terms of addressing functional elements of SMG
case study?

Rationale: In the scope of our evaluation we confronted ourselves with some difficulties while
trying to address some of the SMG requirements. These requirements are enlisted below. However,
none of the below requirements were classified as SHALL, some of them being classified as MAY.
Therefore, the fact that these requirements could not be (fully) fulfilled does not considerably impact
the maturity of the MILS-AADL technologies.

1. Requirement (SMG_SA3): Switching to island mode shall to be accomplished in less than 20
ms.

Explanation: By using a clock in MILS-AADL, it is possible to represent temporal behaviour in
MILS-AADL. Therefore the language itself supports this requirement. Nevertheless, temporal
behaviour of an embedded system is strongly dependent on the hardware it is running on.
MILS-AADL is a high-level modeling language, which does not capture hardware specific
properties in a granularity which would make predictions of this kind possible.

2. Requirement (SMG_SA7): The rule system of prosumer shall immediately be informed when
micro grid island mode is activated. The available time window depends on the hardware
components, but typical times are around 100ms.

Explanation: Same explanation as for the requirement SMG_SA3.

3. Requirement (SMG_SO10): Logins of the admin shall be logged persistently.

Explanation Theoretically it is possible to use variables to store the last login (or to use enu-
merations to store a set of logins). So we can say that semantically it is possible to express
persistency but it doesn’t seem to be convenient. On the one hand because of a very small set
of available data structures and on the other hand because of the lack of any possibilities for
file manipulation (that would be needed for writing a log file).

4. Requirement (SMG_SO11): Maintenance of the rule system shall be possible for users, which
shall be logged. Users shall not be able to modify or delete log files.

Explanation: We were able to address part of this requirement by having admin users, which
have certain rights (access to information). However the possibility of expressing users
that modify or delete files is not very convenient in MILS-AADL as already stated for the
SMG_SO10.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 27

D7.1 Industrial Evaluation: Fortiss Smart Grid

5. Requirement (SMG_SR2): Rule System shall consider constraints specified by the user.

Explanation: This requirement translates to the fact that it should be possible for a user of
the smart grid to specify new constraints. Similar to the persistency requirements, it would be
possible to express this in MILS-AADL by using enumerations. This would however would
be rather cumbersome.

6. Requirement (SMG_SR5): Dynamic addition of new devices (software and hardware) shall be
possible.

Explanation: MILS-AADL does not have any language constructs that could express this kind
of plug-and-play behaviour of the system. This requirement is classified as a MAY requirement
and therefore is not necessarily to be considered.

Verdict:
Very Immature – Immature – Mature – Very Mature

Page 28 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

6 Verification of Properties

This section presents the evaluation of the D-MILS verification technologies. The objective was to
evaluate the capabilities and performance of the D-MILS verification technologies implemented in
the COMPASS tool for verifying architectural correctness properties of the MILS-AADL model of
the Smart Grid Demonstrator in the process of validating the Smart Grid requirements as defined in
D1.1.

COMPASS is a powerful integrated toolset to support various validation and verification activities, in-
cluding requirements validation, functional verification, safety and dependability analysis, performa-
bility analysis, and fault detection, identification and recovery analysis [3]. Within the scope of this
evaluation in the context of the Smart Grid demonstrator, however, the full range of the COMPASS
V&V support was not employed but focused on the support for functional property verification.

To this end, COMPASS provides a front-end to a state-of-the-art model checking tool NuSMV that
allows to model check both finite discrete and infinite hybrid/timed MILS-AADL models with BDD-
based (for finite discrete models) and SAT-based techniques. The D-MILS verification technologies
support contract-based compositional verification and “monolithic” verification of system properties.
The MILS-AADL models developed for the Smart Grid demonstrator are infinite ones; hence the
evaluation of the verification was restricted to the SAT-based model checking of properties.

Properties are expressed as linear temporal logic formulae; for the contract-based compositional
verification, D-MILS employs the language of the OCRA tool, which is a textual human-readable
version of real-time first-order LTL. For monolithic verification tasks, LTL properties in COMPASS
can be formulated in two ways: as so-called LTL annotations or by using property patterns. In
the first case, properties are written as LTL formula using a textual representation of the logical
expressions and operators; such formulas are then directly added to the MILS-AADL model. For
the monolithic verification tasks in our analysis of the Smart Grid requirements, we used this style
of expressing properties, which, however, requires a certain amount of experience of the user with
specifying properties as temporal logic formulas. A more convenient and more intuitive way is to
use property patterns. Here, frequently used types of properties are presented as patterns in a natural-
language style to the user, who only needs to fill in the atomic propositions specific to the model
concerned. The limitation of this approach is that not all conceivable LTL formulas can be covered
by such patterns. COMPASS supports patterns for propositional, functional, timed, and probabilistic
properties.

For the evaluation of the D-MILS verification support for the Smart Grid demonstrator, we aimed
at formulating properties for each of the demonstrator requirements defined in D1.1, with a specific
emphasis on the safety and security requirements, and at verifying these properties with the D-MILS
verification tool set. Within the Smart Grid verification only functional properties were analysed,
while timed or probabilistic ones were beyond the scope of this analysis.

In the following, the results of the evaluation of verifying safety and security requirements are de-
scribed. In cases where the findings for a certain aspect are common to both safety and security
properties, we collectively present them as findings for the functional verification of properties. The
detailed account of the models used in the verification process, and the specific properties that have
been verified, is given in Sect. 10.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 29

D7.1 Industrial Evaluation: Fortiss Smart Grid

6.1 Verification Expressivity

6.1.1 Security property coverage

Description: The degree to which the specification language is able to represent and address the
security properties for verification for an industrial demonstrator application.

Experiment: Evaluate how many security properties of the SMG case study can be represented using
MILS-AADL.

Verdict: 24 of 28 properties could be expressed. The properties are described in detail in Sect. 10.3.

6.1.2 Safety property coverage

Description: The degree to which the specification language is able to represent and address the
safety properties for verification for an industrial demonstrator application.

Experiment: Evaluate how many safety properties of the SMG case study can be represented using
MILS-AADL.

Verdict: 11 of 11 properties could be expressed. The properties are described in detail in Sect. 10.2.

6.2 Verification Usability

6.2.1 Usability for safety and security verification

The perceived relative effort and ease involved in using D-MILS tools to verify safety and security
properties for an industrial demonstrator application.

Question 1: How would you rate the effort in using D-MILS tools to verify safety and security
properties for the SMG case study?

Rationale:

Carrying out analyses in the COMPASS tool is relatively convenient, as COMPASS provides graph-
ical push-button interface to the underlying model checker. Of course, the MILS-AADL model is
automatically translated into the input language of the model checker. Moreover, the user does not
have to concern himself with passing parameters to the model checker using various command line
options. Instead, the selection of the type of model checking task (such as invariant or LTL check-
ing), of the model checking technique (BDD, BMC), and the setting of bounds for the bounded model
checker, can easily be accomplished through radio-buttons and value pickers. Furthermore, the user
does not have to concern himself with the various checks necessary to establish the correct refinement
of contracts in a compositional verification analysis; these are automatically generated by the COM-
PASS front-end and all executed in a single run. Moreover, models can be checked for dead-locks;
however, automatic dead-lock detection is only supported for finite-state models.

In both the compositional and monolithic verification cases, the model checking analysis can be
started by a simple click on a “run” button, and the user is informed about the status of the analysis

Page 30 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

while it is running, and eventually the results for the various properties examined are presented in a
clearly arranged table.

On the other hand, verifying properties through model checking is generally a challenging task.
Typically, for models and properties of a certain complexity, a given property is rarely verified at the
first try. In such cases, the model checker usually provides an explanation why the property could
not be verified by means of a counterexample. The challenge for the expert is then to analyse the
counterexample to reason out whether there is a flaw in the model, or whether the formulation of the
LTL formula does not match the intended property.

For this task, verification tools can provide a certain degree of support. COMPASS, for instance,
presents a visualization of the counterexample as a trace of states, in the same way as executions of
the model behaviour are presented by the model simulation, see Sect. 5.3. However, it is still left to
the user to analyse the trace to find out which part of the LTL property to be verified is violated.

This becomes a particular concern in a compositional verification task. While checking an individual
contract for a given components is quite similar to checking a LTL formula in a monolithic veri-
fication, the user is not exposed to the checks that are carried out by the tool in order to establish
the correct refinement of a contract of a composite component into those of the individual constituent
components. Consequently, when a verification attempt fails it becomes rather challenging to analyse
the counterexamples, because the underlying properties that are checked for such a refinement are
only implicitly given. Moreover, our experience with the compositional verification of even a rather
simple property such as the one corresponding to the safety requirement presented in Sect. 10.2.8
showed that the contracts can become quite complex. This is due to the fact that the guarantees of
the individual components have to capture a sufficiently strong abstraction of the behaviour of those
components in order to establish the correct refinement of the overall property. We conjecture that
this observation is a direct result of the design approach employed in our Smart Micro Grid study,
which has a bottom-up nature: starting from the architectural design of the SMG, properties of the
individual components where composed to yield desired properties of the overall system. If, one the
other hand, the system design had followed a top-down approach, where complex components and
their properties are broken down into individual constituents, it could be expected that the contracts
of those subcomponents could have been derived more naturally and systematically. Nevertheless,
the successful completion of the compositional verification task, however, was only possible with the
direct support of an OCRA expert.

Altogether, the difficulty of getting the analyses right very often outweighs the ease of executing
instances of model checking runs.

Verdict:

Very Difficult – Difficult – Easy – Very Easy

6.3 Verification Performance

6.3.1 Solution for security verification

Description: The degree to which the D-MILS verification technologies are able to establish the
security properties for an industrial demonstrator application.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 31

D7.1 Industrial Evaluation: Fortiss Smart Grid

Experiment: Evaluate how many security properties could be solved and verified for the SMG case
study.

Verdict: 24 of 28 properties could be verified and solved.

6.3.2 Solution for safety verification

Description: The degree to which the D-MILS verification technologies are able to establish the
safety properties for an industrial demonstrator application.

Experiment: Evaluate how many safety properties could be solved and verified for the SMG case
study.

Verdict: 11 of 11 properties could be verified and solved.

6.3.3 Resources for safety and security verification

The perceived response time and resource usage of the D-MILS tools to verify safety and security
properties for an industrial demonstrator application.

Question 1: How fast are the D-MILS tools to verify safety and security properties for SMG case
study?

Rationale:

COMPASS integrates state-of-the-art model checking technologies. Both the models and the proper-
ties that were applied for the verification of the Smart Grid safety requirements were of only modest
complexity and did thus not really challenge the capabilities of the model checker. Even in cases
when rather high values were chosen for the bounds in bounded model checking, a significant degra-
dation in terms of speed of the analysis could not be perceived; answer times were always within
the range of a few seconds. This is not very surprising, as in an architectural setting models usually
do not suffer from state explosion problems, and hence the verification technology provided by the
D-MILS tools is very suitable for this domain.

Verdict:

Very Slow – Slow – Fast – Very Fast

Question 2: How many resources are needed to verify safety properties of the SMG case study with
the D-MILS tools?

Rationale:

Resources here refer both to the computer memory needed to establish a model checking analysis
and the time required for a user to successfully complete a given property verification. Concerning
the first aspect, for the same reasons as in Question 1 above, the memory requirements of the model
checkers was negligible. All analyses could easily be carried out on standard laptop computers with
a few gigabyte of memory installed.

As for the second aspect, the time it takes for a user to establish a given property through model
checking, the same remarks apply as for the usability evaluation above: even for models of limited

Page 32 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

complexity such the ones deployed here, it usually takes a number of model checking attempts before
a given property can indeed be shown to hold. Nevertheless, due to the small size of the models most
of the properties could be established with only a few iterations of refinement.

Verdict:

Too many Resources – Many Resources – Few Resources – Very few Resources

6.4 Degree of Integration with Design

6.4.1 Integration of functional verification

The perceived level of integration of the D-MILS tools to verify functional properties for an industrial
demonstrator application with the D-MILS design environment.

Question 1: What is the perceived level of integration of the D-MILS tools to verify functional
properties for the SMG case study with the D-MILS design environment?

Rationale:

While COMPASS does integrate a number of tools that can be employed for various V&V tasks
during the system design, the specific support for the system designer to integrate system modelling
and verification is only limited. As described above, the process of verifying given properties typi-
cally amounts to successively refining the model to be developed, and sometimes also the property
of concern. However, there is no specific design tool for expressing models in the D-MILS AADL
language. Models are written in simple text files and then loaded into Compass tool for the purpose
of verification; a graphical editor to develop MILS-AADL models is not provided. Furthermore,
more elaborate feedback to the designer for detecting flaws in models or property formulas would be
helpful, as well as typical book-keeping support such as the tracing of properties which have already
been established.

Verdict:

Not integrated at all – Partially integrated – Integrated – Very well integrated

6.5 Verification Maturity

6.5.1 Maturity of functional verification

The perceived maturity of the D-MILS technologies for carrying out functional verification for an
industrial demonstrator application.

Question 1: What is the perceived maturity of D-MILS technologies for carrying out functional
property verification for SMG case study?

Rationale:

The model-checking tools underlying COMPASS for verifying safety and security properties of D-
MILS models are world-class and state-of-the-art. However, their integration into the COMPASS

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 33

D7.1 Industrial Evaluation: Fortiss Smart Grid

tool as a frontend needs still to be improved in order to be routinely applied for industrial-level
development and analysis tasks.

Foremost, there is no integrated documentation available that encompasses all the capabilities of the
various tools can be used for developing D-MILS AADL models and verifying related properties.
Moreover, in addition to what has been stated in the previous subsections, information provided to
the designer during the development process is not always optimal. For example, while syntax errors
that are found for a MILS-AADL model are reported in very descriptive way that is helpful for the
user, errors that occur during the verification simply result in a message saying that the verification
task could not be completed.

Finally, the different capabilities of the underlying model-checking tools may have an influence on
the way D-MILS AADL models need to be designed in order to accomplish given verification tasks.
For instance, the model checking component for the monolithic verification of LTL properties do
not support explicit fairness assumptions which renders verifying LTL properties difficult for many
practical cases. On the other hand, the front-end to the OCRA tool for compositional verification
offers the choice to include fairness in the verification.

We hence distinguish in our evaluation verdict between the maturity of the verification technology
itself and maturity of its integration in the D-MILS tools.

Verdict:

• Verification technology: Very Immature – Immature – Mature – Very Mature
• Tool integration: Very Immature – Immature – Mature – Very Mature

Page 34 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

7 Assurance case

For applications with specific safety and security requirements, an assurance case is essential to
demonstrate and provide sufficient arguments and evidence that an industrial application is in com-
pliance with regulations for security and dependability. Traditionally, preparing an assurance case is
a very time consuming task for application developers and less widely used for applications where
there are no government certification regulations, even though many other types of applications would
benefit from such usage.

The evaluation of the assurance case technologies from D-MILS has a two-fold scope and includes
both subjective and quantitative evaluation methods. One of the main scopes of the D-MILS as-
surance technology evaluation is the assessment of all of the claimed capabilities of the D-MILS
assurance case tool (MBAC). MBAC claims to have certain capabilities for creating and managing
assurance cases in a model-based fashion. MBAC is an Eclipse-based application which allows its
users to model assurance cases compliant with an Eclipse Modeling Framework (EMF) meta-model
for assurance cases structured according to the Goal Structuring Notation (GSN). The respective
meta-model has been proposed by safety engineers working in the D-MILS project. Furthermore,
MBAC implements model-based transformation to support construction of assurance cases by au-
tomated pattern instantiation. The model-to-model transformation algorithm is implemented as an
Epsilon Object Language (EOL) program that runs on the Eclipse platform. The EOL program re-
quires as input GSN argument pattern models, reference information models and a weaving model.
The instantiation program first identifies the elements requiring instantiation in the GSN argument
pattern models. Second, it determines which information from the reference information model is
required to instantiate each GSN element by querying the weaving model. The program then obtains
the required information from the relevant information models and finally outputs instantiation infor-
mation. The second main scope of this evaluation has been asserting the suitability of the D-MILS
assurance case patterns. These patterns have been created in order to support the certification of a
D-MILS system.

In order to evaluate all of these capabilities, we built during the course of this evaluation a fragment of
the interim assurance case for an industrial demonstrator application, namely a smart grid application.
This assurance case was built twice - first we built it manually, using traditional development methods
and second we built it with the help of D-MILS assurance technologies, which are based on automatic
instantiation of an assembly of interrelated assurance case patterns. In both cases we used three of
the D-MILS patterns (i.e. the System properties, Composition and Process patterns) in order to create
part of the assurance case for our smart grid. We only considered these three patterns because these
patterns were provided by the D-MILS assurance tool at the time when we performed the evaluation.
We then compared the two alternatives for developing assurance cases. For assessing the quality and
relevance of the D-MILS assurance case patterns, we created a meta assurance case for the smart
grid system. A meta assurance case is a an assurance case reasoning on the system’s assurance at
a very high level of abstraction, offering a bird’s eye-view on the assurance of D-MILS systems.
This meta assurance case contains the system properties offered by the D-MILS technologies which
contribute at demonstrating various dependability properties relating to a system or a component such
as security and safety. We also analyzed how much the D-MILS patterns cover the D-MILS meta
assurance case created by us and how much information is contained by the patterns, but not by our
meta assurance case. These analyses and comparison supported us in determining to which extent the

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 35

D7.1 Industrial Evaluation: Fortiss Smart Grid

D-MILS assurance case technologies are adequate for certifying a system which is compliant with
the D-MILS architecture and platform.

Assurance cases are continually in development, along with system development and operation. The
D-MILS assurance technologies support the continuous self-evolution of safety argumentation of a
changing D-MILS system and operation environment. Not using the D-MILS assurance patterns
impacts significantly the quality of the assurance case.

7.1 Assurance Case Usability

Automation of assurance cases is an important innovation claimed by the D-MILS project and several
different aspects related to usability are of particular interest for the tools and methods provided for
preparing the assurance case. These could be considered degree of satisfaction measures amongst
developers who use the tools in fundamental areas such as satisfaction regarding automation, useful-
ness of the assurance case outputs, level of integration with analysis and satisfaction that the results
support formal certification procedures. In the following we evaluate the D-MILS technology w.r.t
assurance cases according to these measures.

7.1.1 Assurance case automation

MBAC’s core feature is the manual creation and editing of assurance cases. In addition to this core
feature, MBAC provides its users with features such as automated construction and assessment of
assurance cases. The automated construction of assurance cases is accomplished by assembling as-
surance cases out of manually created assurance case patterns self-instantiated with content produced
by a formal verification tool or with information provided by system development artifacts, such as
system model, requirements analysis documents. During the evaluation we carried out assurance case
preparation tasks offered by D-MILS assurance technologies while developing an interim assurance
case for our smart grid industrial demonstrator application. In this section we assess the perceived
level of automation offered by these tasks, by addressing both subjective and quantitative metrics.
We evaluated using a survey instrument with relative questions addressing perceived savings in time
and effort in constructing assurance cases and supporting arguments.

Question 1: What is the degree of automation of the D-MILS assurance case tool?

Method of assessment: In the first phase of this evaluation step, we constructed a fragment of the
interim assurance case of our smart grid systems in the traditional fashion. By traditional fashion
we mean that we used a GSN editor (i.e. AF3 GSN editor) [2] to develop our assurance case. In
this editor we integrated the assurance argumentation structures from three of the D-MILS patterns.
The D-MILS patterns have been instantiated in this case manually. In the second phase we used
for the development of the same system’s assurance case the same three D-MILS patterns, whose
instantiation benefited from automated support. We only used MBAC to instantiate the D-MILS
patterns and export them as Extensible Markup Language (XML) files in order to automatically
integrate them in our editor. The rest of the interim assurance case has been created only in the
AF3 GSN editor. We then went through all the claims the developers of MBAC wrote down about
the tool’s performance regarding automation in the D-MILS deliverables. We assessed the validity

Page 36 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

of each of those claims according to our own experience gathered while using D-MILS assurance
technologies during the development of the assurance case for our smart grid system. As for the
quantitative measurement of the perceived level of automation of the assurance case preparation
tasks, we use the X formula. The X formula takes the total number of argument elements which have
been automatically generated by pattern instantiation and divide it by the total number of argument
elements in the assurance case.

Rationale: Using the D-MILS patterns for the creation of the assurance case of a D-MILS system
facilitates significant reduction of the time required for creatively building up the argumentation
structure. This is due to the fact that the core structure of the assurance case can be reused from the
patterns. However, the structure offered by the assurance patterns captures only part of the assurance
case. The rest of the assurance case has to be created in the traditional way. This costs significant
amounts of time and effort. Manually constructing assurance arguments is time consuming especially
due to the creative effort implied by the necessity of building assurance arguments that are valid and
syntactical and logical error-free. The traditional approach is error prone, as it relies much on the
capabilities of the safety engineer creating the assurance case. Moreover, even just one fragment of
an assurance case rapidly evolves into a very large argument structure, which becomes troublesome
to manage and evaluate during iterative system development.

In the second phase of the evaluation we instantiated the three selected D-MILS patterns automat-
ically with the help of the MBAC tool. The D-MILS assurance case technologies contribute at the
increase of the level of automation for the argument creation process as they propose a method for
automated instantiation of patterns. As specified in Deliverable 4.3., in the MBAC tool a weaving
model captures the dependencies between the reference information meta-models and the GSN ar-
gument patterns. The dependency information explicitly captured in the weaving model enables the
automatic instantiation of assurance arguments. On the one hand, automated instantiation of patterns
eases the change management process of evolving assurance cases. With the help of the weav-
ing meta-model the MBAC tool manages to scrutinize large volumes of information, from diverse
sources, and extracts information needed by argument elements from the assurance patterns. Thus,
logical errors in an argument can be avoided by automatically constructing assurance arguments from
system artifacts. On the other hand, another benefit of the automated pattern instantiation feature of
the MBAC tool is that syntactic errors can be eliminated by simple syntax checking. Furthermore,
acyclicity in arguments can be checked by ensuring that there are no loops in the argument structure.

Verdict: On one hand, solely by being able to reuse argument structures from the D-MILS pat-
terns increased the level of automation provided by the D-MILS technologies. These patterns help
the safety engineer at identifying the skeleton of the assurance case for a system which is build ac-
cording to the D-MILS technologies. On the other hand, the automation provided by the D-MILS
technologies is supported by the automatic instantiation of assurance case patterns supported by the
MBAC tool.

Question 2: Once assurance arguments are automatically generated with the D-MILS assurance
case tool how easy it is to integrate them in the system’s assurance case?

Method of assessment: We first evaluate the integration of patterns into the system’s safety assur-
ance case from a technical point of view. This means that we try to export the instantiated patterns
into a safety case graphical editor, where we have developed the rest of the assurance case. We then

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 37

D7.1 Industrial Evaluation: Fortiss Smart Grid

evaluate qualitatively the ease of combining manually created arguments with automatically gener-
ated fragments of the assurance case resulted from automated pattern instantiation.

Rationale: According to our experience, the user can easily export the instantiated patterns from
MBAC in XML format. However, the import of the instantiated pattern into the the user’s assurance
case editor might sometimes be troublesome as the GSN meta-model implemented in the user’s
assurance case editor must be compliant with the GSN meta-model implemented in MBAC. We
have not been able to import the instantiated patterns into our AF3 GSN editor because of model
inconsistencies.

D-MILS patterns offer a clear description of the interface of the module which contains the pattern.
In assurance cases constructed without reusing any argument structures the module interfaces are
not always explicitly and completely specified. Thus, combining manually created arguments with
automatically generated fragments of the assurance case from the D-MILS patterns has a significant
advantage. Whether the instantiation of patterns is done automatically or manually has no impact in
the integration of the instantiated argument patterns into the rest of the assurance case.

Verdict: Very Difficult – Difficult – Easy – Very Easy

7.1.2 Assurance case usefulness

In this section we analyze the perceived usefulness of the D-MILS assurance case tools output for
carrying out certification tasks for an industrial demonstrator application.

Question: What is the usefulness of the D-MILS assurance case tool for creating relevant input for
the certification of the smart grid case study relative to the effort required for their use?

Method of assessment: On the one hand, assurance cases are the basis of discussion among different
stakeholders, such as designers, manufacturers, operators, maintainers and regulators about the level
of assurance of the system under certification. This is due to the fact that assurance cases contain
both claims and evidence on the safety and security of the system. During these discussions, the
stakeholders reason about the assurance arguments and identify potential errors in the arguments or
discover contra-arguments. Hence, during this evaluation step we tried to assess to which extent the
assurance case created with the help of D-MILS assurance technologies facilitates the communication
among stakeholders. The verdict we give is based on the experiences we had on meetings with
different stakeholders about the assurance of the smart grid system. We kept scores by following the
qualities which an assurance case should demonstrate according to [5].

On the other hand, another important contribution of an assurance case for certification is to enforce
design decisions to be in accordance with the safety and security goals of the system. During this
evaluation step, we looked for design and verification decisions driven from the D-MILS assurance
case patterns.

Rationale: During this evaluation, we acknowledge the advantage of using the D-MILS patterns for
building a common understanding among stakeholders of the used terminology by distributing to all
stakeholders the D-MILS deliverable documenting the patterns (see Deliverable D 4.3.). This deliv-
erable contains a thorough description of the pattern, explaining all the claims and also the roles to be
instantiated in the patterns. After reading the deliverable there were no noticeable misunderstandings
among stakeholders concerning the meaning of an argument claim. However, one problem has been

Page 38 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

identified, concerning the evidence availability. During the usage of D-MILS assurance technologies
we missed a system of identification for a particular version of a particular system artifact. It always
takes time to identify the artifact referenced by a certain claim; time which can be significantly re-
duced by having an identification system. However, such kind of identification systems is out of the
scope of this project.

Automatic instantiation of patterns has also its drawbacks. One of these drawbacks is that the safety
engineer risks to rely completely on the automatic instantiation of the patterns, without thinking about
the extent of the impact a change in the system artifacts might have on the assurance argumentation
and the other way around. This might cease in having the construction of the assurance case simply
as a paper exercise to get a system certified. There exists literature on the subject confirmation bias in
safety domain [6]. The concept of confirmation bias affirms that, on the one hand, system engineers
always try to build systems compliant with safety requirements and then to verify by themselves
that the system is safe. When they execute the verification, the system engineers have already the
mind set on the fact that they already did everything possible to develop a safe system. On the other
hand, system safety engineers try to demonstrate that the system is unsafe. By simply running the
automatic pattern instantiation, safety engineers might overlook important aspects of system safety
by not completely reading and analyzing the instantiated assurance argument fragment.

However, patterns encapsulate good practices when it comes to system assurance certification. From
the D-MILS patterns one can extract several verification and development choices, which are seen
as best practice strategies. These encourages the idea that a system can be developed along with its
assurance case, by reasoning about development and verification decisions with the help of the assur-
ance case. A pattern’s contribution at making system design and verification decisions is an indicator
of the contribution of the assurance pattern at the quality of the system it argues assurance for. On
the one hand, if the safety engineer opts for the Composition pattern, the pattern obliges the engineer
to use apply formal reasoning to software in order to demonstrate that a D-MILS system enforces its
required properties. On the other hand, the D-MILS Platform pattern suggest that network communi-
cation in a D-MILS system has to occur in accordance with Global Information Flow Policy and this
is enforced, as suggested by the TTEthernet pattern, by the usage of a TTEthernet network as part of
a D-MILS platform.Without having patterns there is nothing to guide these design decisions from an
assurance perspective. However, the automated pattern instantiation might distract the safety engi-
neer. But, when used rationally, patterns have a valuable contribution to the technologies strategies
applied to a certain system.

Verdict: During meetings concerning the assurance of our smart grid system, we used as basis for
discussion the assurance case constructed with the D-MILS patterns. Our experience during those
meetings revealed absence of vagueness of the text contained in the D-MILS instantiated argument
patterns and correct syntax of the GSN structure. Therefore, we can confirm that the assurance case
generated with the help of the D-MILS technology provides satisfactory means of communication
between different stakeholders.

Also, the D-MILS assurance case patterns provide a means for reasoning about the system in all
of the phases of system development because the usage the D-MILS assurance case patterns while
arguing the safety and security of a D-MILS system is an aid to making design decisions as it sets
out what you will be required to do to make an assurance case, which will then constrain the design
decisions.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 39

D7.1 Industrial Evaluation: Fortiss Smart Grid

Not helpful at all – Not that helpful – Helpful – Very Helpful

7.1.3 Assurance case design integration

The review of the Nimrod accident [6] indicates the necessity of the ability to explicitly define pat-
tern roles traceable to specific types of information in system artifacts. Hence, we evaluate next the
perceived level of integration of the D-MILS assurance case tools with the D-MILS design environ-
ment for an industrial demonstrator application. For this evaluation we used a survey instrument
with relative questions addressing observed integration of the assurance case tools with the design
environment.

Question: How well does MBAC utilize the output of the D-MILS design environment tools in
order to create an assurance case for the smart grid case study?

Method of assessment: We answered this question by firstly inspecting the D-MILS design envi-
ronment and then counting the patterns roles which are to be instantiated with references from the
design environment. Moreover, we compared the references to the design environment from the as-
surance case constructed with the help of the D-MILS assurance technologies against the references
to the design environment we expected to have. We were interested in observing if any important
elements from the design artifacts were omitted in the D-MILS patterns. As a quantitative measure-
ment, we used the following formula, which computes how many of the references from all of the
D-MILS patterns are to the MILS-AADL models:

Degree of design integration = ISdde(Instantiation sources that come from the D−MILS design environment)
ISa(Instantiation source that come from whatever other artifacts such as documents, etc.)

Rationale: The tool employs the output of all of the D-MILS design environment tools, as it uses
for the instantiation of the D-MILS assurance argument patterns information from the MILS-AADL
model (the MILS-AADL file) and from the platform configuration file. Since faults often are caused
by the underlying computing platform, it is a very good indicative that the platform is regarded in the
assurance case, by being referenced in the D-MILS Platform pattern. Moreover, the Trusted Software
Component pattern ensures that the modular architecture of the assurance case maps the modular
design architecture of the system, having one separate assurance argument module for each system
component. This contributes at an effective change management.

Verdict:
Degree of design integration = 22

26

7.1.4 Assurance case analysis integration

In this phase of the evaluation we estimate the perceived level of integration of the D-MILS assurance
case tools with the D-MILS analysis tools for an industrial demonstrator application.

Question: How well does MBAC utilize the output of the D-MILS analysis tools in order to create
the assurance case of the smart case study?

Method of assessment: An assurance case should allow stakeholders to understand assurance
claims without having to understand the technical details of the formal verification process. More-
over, an assurance case should not only include the results of the formal verification, but also should

Page 40 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

comprise a description of the verification environment. During this evaluation phase we looked for
indices of the contribution of a satisfied formal property to the overall safety or security of the sys-
tem. Last but not least, we expected to also have confidence arguments concerning the tool and the
process of the formal verification.

Verdict: The MBAC tool utilizes the output of all of the D-MILS analysis environment tools. MBAC
uses as supporting evidence for the Composition argument pattern verification results provided by
the D-MILS analysis tools after verifying the MILS-AADL model. Also, the fact that inside of
the Composition argument pattern there is an argumentation leg solely concerning the confidence in
the verification process indicates that the assurance case constructed based on the D-MILS patterns
meets our expectations about the integration of the D-MILS assurance case tools with the D-MILS
analysis tools. Moreover, we appreciate the useful feature of the MBAC tool of enabling automatic
report of mismatch between assurance claims and software architecture when a formal property is
not satisfied.

7.1.5 Assurance case design maturity

In this section we evaluate the perceived maturity of the D-MILS technologies for carrying out prepa-
ration of assurance cases for an industrial demonstrator application, by considering the tool’s con-
cepts, the technology requirements, and the demonstrated technology capabilities.

Question: How mature is the D-MILS assurance case tool for generating an assurance case for the
smart grid case study?

Method of assessment: The maturity of the tool is determined by assessing the usability and
sustainability of the MBAC tool and the readiness of the tool to be used in a real assurance cases
development environment. We investigate the maturity of the MBAC tool by using it in a simulated
environment, namely the creation of the assurance case for our case study. The assessment involves
checking whether the software, and the project that develops it, conforms to various characteristics
or exhibits various qualities that are expected of sustainable software. Moreover, we verify in this
evaluation step if all the requirements which have been identified for the D-MILS research and devel-
opment work integrating GSN and MILS-AADL in Deliverable D 1.3. were addressed by the MBAC
tool.

Rationale: The MBAC tool is compliant with all the mandatory requirements presented in the D 1.3.
deliverable. In the following, we enlist all the mandatory tool requirements of MBAC established in
deliverable D 1.3. and explain shortly how each of these requirements was addressed.

Requirement (IGA-WP2.1): Use MILS-AADL to source information about the MILS policy archi-
tecture to build and inform the GSN argument.

Verdict: Addressed in the System Properties pattern. This pattern argues that a D-MILS system
enforces its required properties.

Requirement (IGA-WP2.2): Use MILS-AADL to source information about properties of trusted
components to build and inform the GSN argument.

Verdict: Addressed in the Trusted Software Components pattern. This pattern argues that a software
component implements correctly each of the formal properties as described in the MILS-AADL
specification.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 41

D7.1 Industrial Evaluation: Fortiss Smart Grid

Requirement (IGA-WP2.3): Use MILS-AADL to source information about security annotations on
subjects to build and inform the GSN argument.

Verdict: Addressed in the Composition pattern.

Requirement (IGA-WP2.4): Use MILS-AADL to source information about security annotations on
objects to build and inform the GSN argument.

Verdict: Addressed in the Composition pattern. Every security annotation on an object is seen as
a formal property, hence a source of instantiation for the formal property role in the Composition
pattern.

Requirement (IGA-WP2.5): Use MILS-AADL to source information about security annotations on
data flows to build and inform the GSN argument.

Verdict: Addressed in the Composition pattern. Every security annotation on a data flow is seen as
a formal property, hence a source of instantiation for the formal property role in the Composition
pattern.

Requirement (IGA-WP2.6): Use MILS-AADL to source information about space isolation to build
and inform the GSN argument.

Verdict: Addressed in the D-MILS Platform pattern. This pattern argues that a D-MILS platform
guarantees the required properties. One of the required properties is space isolation and this must be
guaranteed by the way the nodes communicate with each other. Inter-nodal communication is con-
trolled by ensuring that network communication only occurs in accordance with Global Information
Flow Policy (GIFP). The GIFP is a target specific configuration file and the D-MILS Platform pattern
has a reference to this configuration file. The compliance with the Global Information Flow Policy is
assured by the TTEthernet network.

Requirement (IGA-WP2.7): Use MILS-AADL to source information about time isolation to build
and inform the GSN argument.

Verdict: Addressed in D-MILS Platform pattern. One of the required properties is time isolation
and this must be guaranteed by the way the nodes communicate with each other. Inter-nodal com-
munication is controlled by ensuring that network communication only occurs in accordance with
Global Information Flow Policy (GIFP). The GIFP is a target specific configuration file and the D-
MILS Platform pattern has a reference to this configuration file. The compliance with the Global
Information Flow Policy is assured by the TTEthernet network.

Requirement (IGA-WP2.8): Use MILS-AADL to source information about task scheduling to build
and inform the GSN argument.

Verdict: Addressed in the Implementation pattern. Whether or not the generated MILS Configuration
Normal Form (MNCF) file is correct with respect to the MILS-AADL specification and satisfies
all the constraints (the system model, the platform model and the additional defined constraints) is
argued in the Implementation pattern. This pattern has a reference to the MNCF file. Among others,
the MNCF file includes the scheduling of the subjects and nodes.

Requirement (IGA-WP2.9): Use MILS-AADL to source information about the effects of error
injection to build and inform the GSN argument.

Verdict: Addressed in the Composition pattern, as it argues that the MILS-AADL error model is
complete and correct.

Page 42 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Requirement (IGA-WP2.10): Incorporate aspects of the modular design indicated within the AADL
to inform the structure of the argument.

Verdict: Addressed by the proposed frame of a D-MILS assurance case built by the instantiation
of the D-MILS assurance case patterns as individual modules and by creating relationships between
these modules.

Requirement (IGA-WP2.11): Accurately record and represent security properties of the D-MILS
system. This shall detailing the security policy and details on encryption on all data channels.

Verdict: Addressed in the Composition pattern. This pattern argues that formally defined properties
of a D-MILS system, including security properties, are satisfied by a MILS-AADL model of that
system.

Requirement (IGA-WP2.1): Accurately record and represent dependencies in the D-MILS system.

Verdict: Addressed by the proposed frame of a D-MILS assurance case built by the instantiation
of the D-MILS assurance case patterns as individual modules and by creating relationships between
these modules.

We then evaluate the usability of the tool by assessing whether or not it is understandable enough,
well documented, easy to install and it easy to learn how to be used. The D-MILS assurance case tool
can be easily understood without a user guide, assuming that the user is acquaint with the Eclipse
Framework, EMF modeling and XML markup language. However, a comprehensive, appropriate and
well-structured user documentation is provided especially for those users that are not familiar with
the technologies aforementioned. The deliverables, together with the user manual provide description
of both what the software does and how it works. The user manual consists of clear, step-by-step
instructions and gives examples of what the user can see at each step, by providing screen shots.
Moreover, the user guide is based on a running example, example which can be found in the default
workspace of the tool. This workspace is also available on the svn. Also, the user guide states
command names and syntax and says what menus to use. Installing the tool is straight-forward as the
user only needs to unpack a given archive and then run an eclipse instance. An installation manual
is provided which presents the installation requirements. Moreover, once the user reads about all the
functionalities of the tool and experiments with the embedded getting started Starlight example, it is
easy to be able to utilize the tool’s functionalities in order to instantiate the given patterns.

For assessing the sustainability of the MBAC tool, we checked the accessibility, portability, support-
ability, interoperability and understandability of the tool. The MBAC tool can be downloaded from
the svn repository, however, the tool has be released only for Windows. Due to this users that work
under other operation systems cannot work with the tool. Also, there are no source distributions
available for download. However, these can be obtained from the developers. The MBAC tool is
maintained by its developers, namely the people from York University, who also offer user support.
As it is tool independent, MBAC offers a very nice feature to be integrated with a graphical assurance
cases editor of the user’s choice.

Next we describe our experience while using the tool. The user guide also describes very thoroughly
how to create a new GSN pattern from scratch. Allowing users create their own patterns enables
the increase of automation degree provided by the D-MILS assurance technologies. Once a safety
engineer identifies an argumentation structure which encapsulates good practices when it comes to

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 43

D7.1 Industrial Evaluation: Fortiss Smart Grid

assurance argumentation for D-MILS systems, she can create a new pattern, accompanied by a weav-
ing model to help with the instantiation. The creation of a new pattern is intuitive as the user can use
a graphical editor, where she can create new GSN elements by dragging and dropping from a view
which contains all GSN elements. Each newly created GSN element can be annotated with various
properties; properties which are taken from the GSN Standard. After creating the pattern, next time
the user needs such argument structure, she only needs to create the necessary input files, instantiate
the pattern and import the argument structure as an XML file to their own GSN editor.

In order to be able to use MBAC for pattern instantiation the user needs to feed the tool with follow-
ing:

• An XML file containing the MILS-AADL system model. This file can easily be obtained with
the help of the Compass tool.

• An instantiation of the starlight meta-model (ModelElement.xmi), where we point manually
to the role bindings that are not to be found in the MILS-AADL model. This is more time
consuming as it needs to be done by hand. Also, none of the manually created role bindings
appear for more than one time in the argumentation structure. Hence, the instantiations done
in this way are basically done in the old fashioned way of manual pattern instantiation.

• An instantiation of the process model. The creation of such model is also time-consuming.
However, most of the process models can be reused in several assurance cases for different
D-MILS systems (for example the OCRA verification process model).

An instantiated pattern can be visualized in several ways. At first glance, the most convenient way of
visualization for an user would be the graphical visualization as a GSN diagram. MBAC enables the
user to visualize a pattern, instantiated or not, as a GSN diagram (see Figure 17). However, this editor
is quite rudimentary, as it does not depict different GSN elements with the shapes presented in the
[1] GSN Standard. Also, one can only see the title of a certain GSN element, not the claim inside it.
Therefore, this editor allows the user to visualize the structure of the argument, but not its instantiated
or uninstantiated claims. Also there is no depiction of the to be developed or away entities. Another
inconvenience of this editor is the fact that the user cannot zoom in or out. However, the intend
of the D-MILS assurance technologies was to provide a model-weaving instantiation methodology
independent of a GSN editor, so providing a more advanced visualization editor was out of the scope
of the project. The visualization of argument structures as XML files allows the user to import the
argument in a GSN editor of her choice. A much more helpful visualization of instantiated patterns is
an editor which presents an instantiation table (see Figure 18). This table provides a better overview
of how the claims in a pattern have been instantiated, as for each role name of every claim the role
biding is given. This visualization is by far the one we used the most while developing our interim
assurance case. However, for a more detailed description of an instantiated argument structure, we
used the GSNmetamodel Model editor (see Figure 19). Even if the table editor provides a more
intuitive view of how the pattern has been instantiated, the GSNmetamodel Model editor also contains
the full claim, not only its id. Moreover, it offers information related to the status of the claim, namely
whether it is undeveloped or not and whether or not some of its sub-claims are undeveloped.

Verdict: MBAC is mature enough (understandable enough, documented enough, easy to install and
it easy to learn how to be used) to be used by experienced users. However, it might be cumbersome
to be used by users which lack certain technical skills. Another drawback is that it is inopportune

Page 44 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 17: D-MILS GSN Editor

Figure 18: D-MILS GSN Editor

that MBAC is only available for Windows users. Even though the tool is not ready to be used in a
real assurance cases development environment, it does satisfy all its imposed requirements. Having
an industry ready tool was out of the scope of this project. In the context of the D-MILS project it
was only intended that a prototype was created as a proof of concept.

Very Immature – Immature – Mature – Very Mature

7.1.6 Assurance case certification suitability

Certification is an important activity during the development of safety-critical systems. For applica-
tions with specific safety and security requirements it is a regulatory requirement that a safety or an
assurance case is developed and reviewed as part of the certification process. An assurance case is
essential to demonstrate and provide sufficient arguments and evidence that an industrial application
will operate safely. This is usually done by demonstrating compliance with regulations for safety
and security and dependability. In this section we evaluate the perceived suitability of the outputs

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 45

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 19: D-MILS GSN Editor

of the D-MILS assurance case technologies in satisfying certification requirements for an industrial
demonstrator application.

Question: To which extent do the outputs of the D-MILS assurance case technologies support the
certification of the smart grid case study?

Method of assessment: For assessing the suitability of D-MILS assurance technologies for sup-
porting certification we first checked all of the proposed D-MILS argumentation structure against the
argumentation structure overview we built (the aforementioned D-MILS meta assurance case). The
meta assurance case for D-MILS systems (see Figure 2) is an initial screen of what we unquestion-
ably wanted the assurance case of our grid system to contain. Our meta assurance consists of regular
GSN elements. However, we did have some additions to the GSN notation. One special notation is
that of the to-be-refined solutions. A to-be-refined solution suggests the type of the evidence item
which will ultimately support the high-level claim supported by the to-be-refined solution, such as
model checking results. These kind of solutions are to be refined in argumentation structures which
connect the claim that the respective solution supports and the actual reference to the evidence item.
Another alteration is that we classified these to-be-refined solutions in two types. We have the once
and for all type, which suggests that these evidence items, once refined into argumentation structures
can be taken as such to be used for the assurance of any D-MILS system. Hence, this argumentation
structure is an argument template, which can be applied in any assurance case for D-MILS systems.
The other type is the application-specific type, which indicates that the particular evidence item to be
referenced in order to support our argumentation structure needs to be generated for each D-MILS
system in particular.

We then did some literature review on important attributes of assurance cases for certification and,
based on what there is in the literature, we assessed whether the D-MILS assurance case structure
based on the D-MILS patterns has some of those attributes or not.

Page 46 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Rationale: First we assess if and how all of the D-MILS patterns’ intent map to our D-MILS
meta assurance case. The D-MILS meta assurance case encapsulates the main system properties that
need to be demonstrated in order for the system to be certified. Thus, the D-MILS assurance case
patterns should argue those properties. It would also be interesting to have the required properties
evaluated quantitatively, but this is out of the scope of the D-MILS assurance technologies. This
meta assurance case is meant to support us in analyzing whether an assurance case contains the
minimum information required to make the assessment process viable or not. Our proposed meta
assurance case argues the fact that a D-MILS system satisfies dependability, security and safety goals
by referencing the capabilities of distributed MILS (i.e. MILS architectural strategy). The satisfaction
of the goals is argued three fold: the policy architecture argument structure, the application code
argument structure and the D-MILS platform argument structure. These three main argumentation
legs are accompanied by context and assumption GSN elements, which argue about the system’s
environment. In Figure 20 one can see how the D-MILS assurance case pattern can be mapped upon
our meta-assurance case. One the one hand, from Figure 20, one can see that an important assurance
argument was left out in the patterns. Namely, information on whether or not the application code
implements the architectural constraint is completely disregarded by the patterns. One the other
hand, the D-MILS assurance case patterns do cover a significant part of the argumentation structure
we expected. First, there is argumentation on the correctness of architectural refinement, as all of the
architecture refinements (properties and constraints, error and failure conditions) are discussed in the
D-MILS patterns. Moreover, there are arguments about how the system model is transformed into
intermediate languages that are processed by D-MILS tools to perform compositional verification and
generation of configurations and schedules for D-MILS Platform. Second, the D-MILS Platform and
the TTEthernet patterns argue that the architectural information flow policy is implemented correctly
on the technical platform. This is done by specifying that the D-MILS platform includes two or more
nodes, each composed of a separation kernel and a MILS Networking System (MNS). The separation
kernel and the MNS act together to support the realization of a MILS policy architecture transparently
distributed over the nodes. Furthermore, the Composition pattern comprises argumentation about
how the system’s architectural description satisfies safety and security goals.

Second, we evaluate the assumptions from the D-MILS assurance case patterns. Assumptions in
assurance cases are a delicate subject because there is always the question Do we need argumentation
and evidence for a certain claim or Do we have enough confidence and rely on the assumption that
the claim is true?. Every assumption in an assurance case needs to be checked if it is necessary
to be mentioned and if it is reasonable to assume the claim as true and with no need for further
argumentation. Usually the certifier tries to construct a plausible argument that the assumption is
false. If no such argument is to be found, the assumption is left untouched. Otherwise, the operator is
asked to replace the respective assumption with evidence and argumentation. Hence, assumptions are
always hot topics during certification. The D-MILS patterns only contain one assumption, namely
Ass:sysProps The defined system properties must be complete and correct with respect to the threats,
vulnerabilities and hazards of the system. It is not within the scope of the D-MILS assurance case to
argue about these high-level properties and therefore an assumption is made that this is the case. It
is necessary to demonstrate elsewhere that the system properties correctly reflect the system analysis.
This assumption however needs to be transformed into an argumentation fragment. In the assurance
case created by us manually, we include this part of argumentation in the assurance case.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 47

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 20: Refinement of the D-MILS meta assurance case by D-MILS assurance case patterns

Also, in order for an assurance case to support certification, it should be checked against well-known
anti-patterns. We checked the D-MILS patterns against the anti-patterns presented in [7] and could
find, as desired, no matches. Furthermore, it usually helps during certification if the operators doc-
ument conformance with standards in the assurance case. However, there is nothing about standard
requirements in the proposed D-MILS argumentation structure.

Verdict: The D-MILS assurance case patterns cover a significant part of the arguments specified
by the D-MILS meta assurance case. This increases the confidence in the relevance of the D-MILS
assurance case patterns. Also, despite of the fact that the D-MILS assurance technologies do not
consider all the attributes an assurance case should consider in order to be adequate for usage in
certification, they surely provide some of those attributes, supporting the operators in building a
convincing assurance case.

Very Unsuitable – Unsuitable – Suitable – Very Suitable

7.2 Assurance Case Benefit

The use of GSN and the D-MILS tools opens up new opportunities to introduce more robust and
automated methods for carrying out assurance tasks for many types of applications. Quantifying the
benefits of using these innovative assurance techniques from D-MILS will encourage others who are
developing critical applications to exploit D-MILS technologies. Two comparative measures can be
utilised to quantify different types of benefits.

Page 48 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

7.2.1 Manual assurance case comparison

In this evaluation step we assess the improvement in time required to develop assurance case argu-
ments for a small subset of an industrial demonstrator application using the D-MILS assurance case
tools in comparison with existing manual methods.

Experiment: During this evaluation step, a subset of the industrial demonstrator application was be
selected as a test case and the associated assurance case arguments were be identified. A side-by-side
comparison of instantiating three of the D-MILS assurance case patterns (i.e. the System properties,
Composition and Process patterns) with and without the D-MILS MBAC tool will be carried out and
the required time will be captured. The measure was the ratio of the two captured times. Moreover,
we collected several metric scores for the process of creating an assurance case with the help of the
assurance case patterns for a D-MILS system proposed in this project. These scores provide feedback
as to the contribution of the proposed assurance case patterns at the quality of the assurance case.

TGRC(Time gain ratio for creating an assurance argument) =
Tcd(T ime necessary forinstantiating assurance arguments for the SMG case study with the D−MILS technologies)

Tcm(T ime necessary for manually instantiating assurance arguments for the SMG case study)

Rationale: On one hand, the instantiation of the three selected D-MILS assurance case patterns for
the smart grid with the help of MBAC took approximately 15 minutes, including the creation of the
xml file with the MILS-AADL model and the instantiation of the patterns. On the other hand, man-
ually instantiating the arguments suggested by the same three D-MILS patterns took approximately
three hours. In Figures 21, 22, 21, one can see one of the manual instantiations of the three selected
patterns in the AF3 GSN editor. Whereas in Figures 24, 25 and 26 one can see how the same patterns
have been instantiated automatically in MBAC. The instantiated patterns from MBAC in our figures
are visualized with the instantiation table editor. There is one substantial difference in the two types
of instantiation. In MBAC, if a pattern has to be instantiated multiple times (for example the com-
position pattern has to be instantiated for each of formal properties), the instantiation output file (i.e.
the InstantiatedGSNPattern.gsnmetamodel file) contains all the instantiations. Whereas in the AF3
GSN editor for each instantiation of a pattern we have a separate GSN argumentation module. The
instantiation depicted in all of the figures is for the Battery Root system of our smart grid case study,
which contains two sub-components, namely theBattery and the BatteryController. As the assurance
argument structures tend to get large and hence hard to comprehend, we only show in these figures
the instantiation where we only argue the satisfaction of one requirements, namely the Every battery
component shall not be overloaded. This means that if the battery status is full, the control system
shall not send any further loading signal requirement.

In Table 2 we write down for each of the D-MILS pattern the claim coverage. The intent of claim
coverage is to identify how many claims are supported by evidence. The intent of analyzing the claim
coverage of each of the D-MILS patterns is to assess if there is enough overall support for the parent
claim. This helps at establishing the effort the safety engineer needs to put into the assurance case
development after instantiating the pattern in the assurance case. A high coverage is desirable. As
one can see from Table 2, for approximately two thirds of the claims from the patterns there is either
already an argumentation and a solution provided by the patterns or they are further developed in
other D-MILS patterns. However, almost one third of the claims stated in the D-MILS assurance case
patterns need to be further developed without any provided indication on how they should be argued.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 49

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 21: The instantiation of the System Properties pattern for the root component visualized in
AF3 GSN editor.

Figure 22: The instantiation of the Composition pattern for the always((batteryError) = (false))
property of the root component visualized in AF3 GSN editor.

Figure 23: The instantiation of the Process pattern for the OCRA contract checking process visual-
ized in AF3 GSN editor.

Hence, we can say that even with the automation provided by the D-MILS assurance technologies
the construction of the assurance case remains largely manual.

Assurance patterns comprise the structure of an argumentation, without specific information about
the system under certification and therefore can be instantiated in multiple situations. Thus, having a

Page 50 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Figure 24: The instantiation of the System Properties pattern for the root component visualized in
MBAC.

Figure 25: The instantiation of the Process pattern for the OCRA contract checking process visual-
ized in MBAC.

Figure 26: Refinement of the D-MILS meta assurance case by D-MILS assurance case patterns

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 51

D7.1 Industrial Evaluation: Fortiss Smart Grid

catalog of patterns which can be applied to any D-MILS systems, eases the process of assurance case
creation. Also, the D-MILS assurance case patterns suggest design and process choices that should be
made while developing and operating a D-MILS system. Another important feature of the D-MILS
assurance technologies is that they facilitate an easy method of assembling assurance argumentation
fragments by providing a very detailed documentation about the interfaces of the modules comprising
the instantiated patterns.

Pattern Name Coverage of Claims =
number of developed
claims / number of
claims

System
Properties

3/5

Composition 3/3
Trusted
Software
Components

0/1

Implementation 4/5
D-MILS Platform 13/17
Process 5/5
Tool 2/5
Person 2/3
Organisation 1/3
Artefact 1/3
Technique 1/2
TTEthernet 6/9

Table 1: This table depicts for each pattern the claim coverage. The claim coverage identifies how
many claims are supported by evidence or are further developed in other patterns.

Traditionally, the instantiation of patterns occurs manually by obtaining the needed information from
design or analysis documentation, or directly from an engineer. The D-MILS approach of construct-
ing assurance cases directly instantiates argument patterns with information from system artifacts.
This helps at avoid potential humans errors, hence increasing the level of accuracy of the assurance
case. The MBAC tool also offers highlights automatically the claims and evidence where the infor-
mation in the system artifacts is incomplete.

Apart from gaining time by not having to describe the patterns in a tool of her choice, MBAC also
offers other features. One of these features is the automatic generation of claims which support a
higher-level claim by a multiplicity relationship. This feature frees the user from the time-consuming
task of instantiating a single to-be-instantiated claim multiple times for different instantiation items.
Also, not having to instantiate a reference to system artifacts whenever it appears into assurance case
patterns, but instead creating a weaving-model for automatic instantiation of patterns is time saving.
This is an efficient method of avoiding errors caused by user’s distraction. Unfortunately, half of
the to be instantiated elements from the patterns need to be instantiated manually, as they are not to

Page 52 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

be found in the MILS-AADL model. Such elements are instantiated by creating a special mapping
meta-model (Ecore file) and an instance of this meta-model (a XMI file). Furthermore, most of these
to be automatically instantiated elements appear only once the argumentation. Table 2 depicts for
each role form each of the D-MILS assurance case patterns the number of appearances. Also, in
the table it is specified if each of those roles appear more than once in the argument structure. The
more frequently a role appears in a pattern, the higher the level of automation. If a role only appears
only once and it will not be multiple times instantiated, it does not contribute to the level of the
automation of the D-MILS assurance technologies. Whether a role will be instantiated with more
than one artifact, is suggested by the fact that at some point in the argumentation structure, there is a
connection marked with multiplicity on a higher level in the argumentation flow than the claim that
contains this role; flow which also contains the claim containing the role. However, the automatic
instantiation of a role, even if it happens only once, still helps at avoiding instantiation errors. Also,
the idea of automated instantiation has potential for increasing the automation level of the assurance
case preparation tasks if individual to be instantiated elements appear more frequently in the patterns.

Pattern Name Role Number of appear-
ances

Multiple times instan-
tiated

System
Properties

D-MILS System 2 No

System
Properties

MILS-AADL system
model

1 No

System
Properties

D-MILS system prop-
erties

1 No

System
Properties

D-MILS system prop-
erty

3 Yes

System
Properties

formal properties 1 Yes

System
Properties

formal property 3 Yes

System
Properties

trusted software com-
ponents

1 Yes

System
Properties

trusted software com-
ponent

1 Yes

System
Properties

component MILS-
AADL specification

1 Yes

System
Properties

assumed D-MILS plat-
form properties

1 Yes

System
Properties

assumed environmental
properties

1 Yes

System
Properties

assumed environmental
property

1 Yes

Composition formal property 4 No
Composition trusted software com-

ponents
1 No

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 53

D7.1 Industrial Evaluation: Fortiss Smart Grid

Composition assumed environmental
properties

1 No

Composition assumed platform prop-
erties

1 No

Composition formal verification re-
sults for formal prop-
erty

1 No

Composition technique 1 No
Composition property type 1 No
Trusted
Software
Components

trusted software com-
ponent

1 No

Trusted
Software
Components

trusted software com-
ponents

0 No

Trusted
Software
Components

component MILS-
AADL specification

1 No

Implementation MILS configuration-
normal-form (MCNF)
config file

0 Yes

Implementation system model 1 No
Implementation platform components 1 No
Implementation platform component 3 Yes
Implementation types of platform com-

ponents
1 No

Implementation component config file 1 Yes
D-MILS Platform GIFP configuration file 1 No
D-MILS Platform Lynx Secure software

architecture design
5 No

D-MILS Platform nodes 1 No
D-MILS Platform node 1 Yes
D-MILS Platform assumed platform prop-

erties
1 No

D-MILS Platform assumed property 1 Yes
Process Activity 13 Yes
Process participant 4 Yes
Process required artefact 1 Yes
Process technique 1 Yes
Process produced artefact 1 Yes
Process subActivity 1 Yes
Tool participant 1 No

Page 54 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Tool tool 5 No
Tool Activity 1 Yes
Tool required tool integrity 1 No
Tool tool integrity 1 No
Tool objective 1 No
Tool evaluation 2 Yes
Tool criterion 1 Yes
Tool rationale 1 Yes
Tool version ID 1 Yes
Tool date 1 Yes
Person participant 5 Yes
Person Activity 2 Yes
Person capability 1 Yes
Person experience 1 Yes
Organisation organisation 3 Yes
Organisation accreditation 1 Yes
Artefact required artefact 1 No
Artefact produced artefact 3 No
Artefact evaluation 2 Yes
Artefact criterion 1 Yes
Artefact rationale 1 Yes
Artefact version ID 1 Yes
Artefact date 1 Yes
Technique technique 3 No
Technique provenance 1 No
TTEthernet Results of network fault

propagation analysis
1 No

Table 2: This table depicts for each role form each of the
D-MILS assurance case patterns the number of appearances.

From our own experience, even if the automatic instantiation run terminates almost instantly, we still
needed to invest some time in order to configure the ManualElement.xmi file. As the patterns roles
which are instantiated with the help of the ManualElement.xmi file only repeat themselves twice, the
time saving was almost nonexistent. The same happens for the roles whose instantiation reference is
unknown.

Verdict:

TGRC =approx.
1
12

The construction of a model-based assurance case as offered by the the D-MILS assurance tech-
nologies brings the benefits of model-driven engineering, such as automation, transformation and
validation, to what is currently a lengthy and informal process.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 55

D7.1 Industrial Evaluation: Fortiss Smart Grid

7.2.2 Assurance case change comparison

In this section we evaluate the improvement in time required to regenerate the assurance case follow-
ing a component change or replacement for a small subset of an industrial demonstrator application
using the D-MILS assurance case tools versus previous manual methods.

Experiment: A component change was introduced (an extra transition between two modes was
defined) and assurance case was regenerated manually and using D-MILS technologies as a side-
by-side comparison. The time required for regeneration of each assurance case was captured. The
measure was the ratio of the two captured times. We evaluated the improvement in time required
to regenerate the assurance case using D-MILS technologies both qualitative and quantitative. Our
qualitative evaluation consists of the description of our own experience while making changes in
our assurance case. We also compare what we had expected and needed with what is actually
provided by the features of MBAC. As for the quantitative evaluation we use the following for-
mula, which computes the time gain ratio for modifying an assurance case (TGRM): TGRM =
Tmd(T ime necessary for modifying assurance arguments for the SMG case study with the D−MILS technologies)

Tmm(T ime necessary for manually modifying assurance arguments for the SMG case study)

Rationale: During system development, the design of the system frequently suffers alterations.
Moreover, changes can appear even during the operational life-time phase of the system. Hence, as-
surance cases should be regarded as constantly evolving artifacts, being means for continually mon-
itoring and assuring safety throughout the life-cycle of a system. Even small changes in the system
design have potential of having serious impact on the assurance argumentation. Thus, it is valuable to
have a systematic maintenance methodology and the D-MILS assurance technologies propose one.
The D-MILS proposed maintenance methodology explores the connection between assurance case
patterns and software maintainability, by offering the feature that the user can execute the patterns’
instantiation every time one of the system artifacts has been changed. Hence, the argument struc-
tures created by pattern instantiation can be automatically regenerated. However, for the rest of the
argumentation, manual update needs to be done.

Furthermore, in order to keep the certification document updated the safety engineer must relate the
formal verification to the detailed design decisions. When we applied the change to the system de-
sign, we determined which assumptions in the formal verification could have been affected by the
change and we revisited them. Starting a new verification from scratch is inopportune. A notice-
able feature of the D-MILS assurance technologies is that the formal verification is integrated into
the assurance case as a pattern which can be instantiated automatically. The pattern also references
the software component which needs to satisfy the argued formal properties. Hence, we checked in
the interim assurance case the formal properties related to the component where we performed the
change, re-run the formal verification for those specific properties and then re-instantiate the Compo-
sition pattern. Even a better integration of assurance cases with the D-MILS analysis environment,
which would support the change management, would be that the re-run of the formal verification and
instantiation of patterns would be done automatically.

The D-MILS assurance technologies only track changes from models to the assurance case. However,
it would be interesting to investigate how changes in the assurance case impact the other system
artifacts. This would most probably increase the time gain ratio for modifying an assurance case
while using the D-MILS technologies. However, this was out of the scope of the project.

Page 56 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

A crucial aspect of safety case maintenance management is also the challenge of dealing with changes
in the regulatory requirements and thus with the impact of these changes in the assurance argumen-
tation. Another important challenge is the appearance of new evidence through the life-time of the
assurance case, as it is difficult to identify the knock-on effects of changes in one argumentation frag-
ment. A clear structure of argument and an explicit and complete description of the dependencies
among argument fragments would help at identifying these indirect effects. The D-MILS assurance
technologies offer a solution to this challenge by enabling the construction of modular assurance
cases based on the D-MILS patterns. Each pattern, when instantiated, is seen as a separate module
and each pattern is accompanied by a very detailed description of the module interface.

Normally, if information (such as the assumptions and context surrounding safety claims) is not
recorded in the assurance case then the recognition of the impact of any changes in the system artifacts
becomes even more difficult as the creators of the assurance case have to revise the entire assurance
case. Fortunately, context is explicitly considered in the D-MILS assurance patterns.

The maintenance procedure proposed by the D-MILS assurance technologies focuses on how the
assurance case might be syntactically affected by a change in the system artifacts. By syntactic
we mean that the methodology only is capable to detect changes in the roles of the patterns and
instantiate accordingly with the newest version of the system artifacts. However, a systematic method
for evaluating the impact of system changes on the safety argumentation would be very valuable.
For tracing system changes onto the safety argumentation one needs to reason about whether the
safety claims still hold or the changed system violates the previous premises. For example, one
valid question could be For what types of changes in the system architecture do we need re-run
the verification of safety and security properties?. Unfortunately this still remains a question to be
answered solely by the developer, without any method of tracking the semantic impact a change in a
pattern might have on other patterns. By semantic impact we mean an impact in the argumentation
itself. Nonetheless, these facts do not impact the evaluation of the D-MILS assurance technologies,
as they are out of the scope of this project.

We applied a change to the X component, namely we defined an extra transition between the X and
Y modes. In order to investigate the impact of this design change on our assurance case, we had to
formally verify again component X. As our interim assurance case contains an argument structure
(described by the Composition pattern), which is supported by the results of the formal verification,
we needed to ensure that the argument still holds. In order to do this we simply needed to re-
instantiate the pattern. Once we re-instantiated it manually, in our GSN editor and once automatically,
in MBAC.

Verdict: TGRC =approx.
1
2

The usage of the usage and automatic instantiation of D-MILS assurance case patterns promotes
adaptable and self-evolving assurance cases, hence reducing maintenance effort.

7.3 The evaluation of the D-MILS assurance patterns

Method of assessment: In this section we try to assess the adequacy of all of the D-MILS pat-
terns. The evaluation of the D-MILS assurance case patterns helps at controlling the quality of the
assurance arguments and at documenting the benefits and possible withdraws of the instantiation of

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 57

D7.1 Industrial Evaluation: Fortiss Smart Grid

these patterns in an assurance case. Assurance case patterns encapsulate valuable knowledge about
arguing the compliance of a system with its safety or security requirements and, more importantly,
about manners of improving quality of the system. We investigate the effects of the D-MILS patterns
on the quality of an interim assurance case for our case study through thorough measurement. On
the one hand, we assess the patterns qualitatively, documenting our own experience while using the
pattern for the construction of the assurance case of our case study. One the other hand, we perform a
quantitative evaluation of the patterns, using a set of metrics adopted, with adjustments, from design
patterns evaluations and also a set of metrics based on the syntactic/structural properties of argument
structures documented using GSN, taken from [4].

Rationale: Assurance cases are subjective. Therefore, one of the goals of the development of
assurance case is to ease the communication between operators and regulators with the scope of
mutually accepting the subjective assurance argumentation. Among others, the goal of an assurance
case evaluation is to assess if there is a mutual acceptance of the subjective position of the assurance
case. Hence, while evaluating the D-MILS patterns we try answering the following question Are
the premises of the argument strong enough to support the conclusions being drawn?. From our
experience, by using the patterns for the development of the assurance case of our smart grid system,
we conclude that the D-MILS patterns are sufficient for arguing the properties they intent to argue.
We reached to this conclusion because most of the patterns contain separate argument legs dedicated
for the confidence. A confidence argument leg documents the confidence in the structure and bases
of the safety argument. Having separated confidence argument legs gives arguments greater clarity
of purpose, and helps at avoiding the introduction of superfluous arguments and evidence. The D-
MILS assurance case patterns present arguments concerning the confidence in both development
and verification processes and also in the organization, people and tools which acted as resources
during the argued processes. Also, the level of confidence is increased by the appropriateness of the
contexts in which the claims in the D-MILS patterns are made. Confidence is also demonstrated by
identifying the sources of doubt and removing as many such sources as possible. We could not find
any sources of doubt, such as information that contradicts the claim or evidence that an argument
is not necessary true, even if premises are true. While further investigating the confidence we have
in the argumentation structures encapsulated in the D-MILS patterns and also their sufficiency, we
did not find any important assurance statements left unexpressed or argument structures which were
developed from false premises. We also looked for redundancies in argumentation, but did not find
any.

The D-MILS assurance case patterns are very well documented. Their documentation includes the
intent of the argument to be made, the types of evidence that support that argument and a clear outline
of the argumentation. Moreover, it contains detailed description of each claim and how the argument
structure interacts with other argument structures. What is missing, but it was clearly out of the
scope of the project are measures or weighting of the value of particular types of evidence. Also, the
context in which a particular pattern can and cannot be applied is under-specified. Moreover, pitfalls
in applying the D-MILS pattern would be interesting to be documented.

While conducting the patterns evaluation, we tried to analyze various aspects of the patterns and the
results can be seen in the following tables. The purpose of considering assurance case patterns in
conjunction with assurance case metrics has been to determine their compatibility in terms of their
application in the improvement of assurance case quality. The violation of these metrics indicates

Page 58 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

that the application of the pattern which violated the metrics is not appropriate. None of the D-MILS
assurance case patterns violated the metrics they were checked against. Next we go through several
assurance case metrics and discuss the results of the measurements taken according to these metrics
for the D-MILS patterns.

We expected that, after instantiating the patterns in our assurance case for the smart grid, the size of
the assurance case would increase, the complexity would be reduced, the coupling of the assurance
case would be reduced and the cohesion increased. All of our expectation have been met and this is
to be shown next in our evaluation report.

As expected, the size of the argumentation structure increased, as we added the instantiated patterns.
We took some measures of the size of the patterns, which can be found in Table 3. The fact that all
the D-MILS assurance case patterns that are of significant size contain strategies increases the quality
of the patterns.

Pattern Name Number of
goals

Number of
strategies

Number of
solutions

Number of argu-
mentation legs

System
Properties

12 5 0 6

Composition 9 0 1 3
Trusted
Software
Components

1 0 0 1

Implementation 16 8 2 5
D-MILS Platform 35 3 5 17
Process 14 1 0 7
Tool 11 2 1 5
Person 5 1 2 3
Organisation 4 0 1 3
Artefact 7 1 1 3
Technique 3 0 1 2
TTEthernet 21 2 7 9

Table 3: This table depicts the size of each of the pattern. The number of goals in a pattern indi-
cates whether an argumentation structure is rather big or small, as the other argumentation elements
are never as abundant as the goals. The number of strategies is an indicative of how explicit the
argumentation decisions are made in a pattern. The number of solutions in a pattern reflects on the
level of self-sufficiency of the argument enclosed in a pattern. The more solutions in a pattern, the
higher the level of self-sufficiency, as the claims it contains do not have to be further developed in
other modules. The number of argumentation legs reflects how much the main claim is divided in
sub-claims. Having just one leg of argumentation, which is also long, suggests a very complex ar-
gumentation structure which can be very hard managed and therefore it is not desirable. However,
having too many argumentation legs is also disadvantageous and it reflex that the structure must be
reviewed because redundant, irrelevant or unrelated arguments might appear.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 59

D7.1 Industrial Evaluation: Fortiss Smart Grid

During our evaluation we also discovered that the D-MILS patterns are low coupled, as they make
use of modularity, because each of the patterns is to be instantiated as an individual module. The fact
that the argumentation structures from the D-MILS assurance patterns exhibit low coupling and high
cohesion is demonstrated by the coupling and cohesion factors for each of the patterns presented in
Table 4. Cohesion increases when patterns are properly built, meaning that one pattern argues the
assurance of only one well established aspect of the system. All the D-MILS assurance case patterns
follow the single responsibility principle, having only one clear main claim that is afterwards split
into sub-claims, which are eventually demonstrated as satisfied by being supported by evidence. The
D-MILS assurance case patterns have common references in the argumentation elements. All the
references within one pattern are a set of system artifacts which depict only one aspect of the system.
Hence, there is high cohesion in the D-MILS patterns. Low coupling is guaranteed by a modular
structure of assurance cases. Modularity aims at reducing the dependencies between modules, in our
case instantiated patterns.

The complexity of the assurance case built with the D-MILS patterns was reduced due to the low
coupling and high cohesion of the argumentation structure, increasing the level of understandability
and reusability. Also, another indicator of low complexity of an argumentation structure is the depth
of the argumentation. By the depth of the argumentation we mean the maximum distance between the
highest claim in the argumentation structure and a solution, a leaf claim or a claim that is to be further
developed in another module. On the one hand, if the argumentation structure for one claim is very
deep, it is too complex and hard to understand and manage. On the other hand, if the argumentation
structure is very shallow, it suggests it has a very high potential of being insufficient. Hence, in a
pattern we look for an argumentation structure of moderate length , i.e. of 10 argument elements.
Table 5 depicts the length of the argumentation of each D-MILS assurance pattern and from this table
we see that all the argumentation structures from the patterns are of a maximum length of 10, hence
the patterns which encapsulate them are of moderate complexity.

Verdict: As a general assessment of the D-MILS patterns, we affirm that they are easy to understand
due to the detailed documentation one can find in deliverable 4.3, where the patterns are enlisted and
the structure, intent, participants, applicability, consequences and related patterns of the each of
the patterns are described. Also, the D-MILS patterns are easy to be applied due to the automatic
instantiation. This has been demonstrated through the relative ease with which they were applied to
the assurance case of the smart grid by people completely unfamiliar with the patterns. Even though
our evaluation process does not entitle us to judge whether the D-MILS patterns are flexible enough
to be applied to any assurance case of any D-MILS system, we can at least say that they are adequate
for constructing the assurance case for our smart grid, containing arguments regarding some of the
most important properties of a D-MILS system.

Page 60 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Pattern Name Coupling factor =
couplings (away enti-
ties)/max number of
possible couplings in
SC

Cohesion factor =
Number of distinct
referenced artifacts

System
Properties

7/11 2

Composition 2/11 1
Trusted
Software
Components

0/11 1

Implementation 3/11 1
D-MILS Platform 6/11 1
Process 6/11 1
Tool 1/11 1
Person 0/11 1
Organisation 0/11 1
Artefact 0/11 1
Technique 0/11 1
TTEthernet 1/11 1

Table 4: This table depicts the coupling and the cohesion factors of the D-MILS assurance case
patterns. The coupling factor indicates how many connections among the D-MILS assurance case
patterns are. The fewer dependencies are among patterns, the easiest is to manage changes in the
assurance case. The cohesion factor determines whether or not one pattern argues the assurance of
only one well established aspect of the system. A high cohesion factor also indicates that when there
is a change in the system, the safety engineer knows exactly in which pattern changes might appear
in the argumentation.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 61

D7.1 Industrial Evaluation: Fortiss Smart Grid

Pattern Name Depth in the argu-
mentation structure

System
Properties

9

Composition 5
Trusted
Software
Components

1

Implementation 10
D-MILS Platform 9
Process 5
Tool 8
Person 5
Organisation 3
Artefact 6
Technique 3
TTEthernet 8

Table 5: This table depicts the length of the argumentation of each D-MILS assurance pattern in
order to assess the complexity of an assurance case pattern.

Page 62 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

8 Deployment

In this chapter we evaluate the automated deployment approach developed in D-MILS. The approach
is divided in two main steps: 1) Gathering the architecture and platform information from MILS-
AADL files together with optional deployment constraints and creating deployment configurations
as Prolog terms. 2) Translating these Prolog terms into configuration files (XML). At the time of our
evaluation we were able only to evaluate part 1 of this process.

8.1 Deployment Performance

8.1.1 Configuration solution time

Question 1:

How fast is the operation of the configuration compiler ?

Rationale:

In scope of the evaluation of the D-MILS deployment approach we used COTS hardware. On a
MacBook Pro the deployment for the Smart Microgrid case study was computed without any delay.

Verdict:

Very Fast – Fast – Slow – Very Slow

Question 2:

How many resources are needed to compute a configuration ?

Rationale:

We evaluated the deployment approach of D-MILS using the Smart Microgrid case study on a COTS
laptop. During the execution of the configuration computation there was no noticeable resource
usage.

Verdict:

Very Few Resources – Few Resources – Many Resources – Too much resources

8.1.2 Configuration Solution efficiency

Question 1:

Does the generated configuration meet the deployment constraints ?

Rationale:

The D-MILS deployment approach needs the platform and architecture information as an input. This
information is formalized to Prolog terms and represents one part of the constraints, such as how
much memory or which CPU speed a node has. In addition it is possible to specify other constraints
relating usage of hardware resources, deployment neighborhood, memory allocation, scheduling etc
(full list of possible deployment constraints is given in D5.3). In listing 1 one can see that we specified

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 63

D7.1 Industrial Evaluation: Fortiss Smart Grid

a constraint, which states: AdminArea component is not allowed to be on the same node (has to be
physically separated) as the Prosumer components. The result is presented in listing 2. As one can
see Prosumer1 and Prosumer2 are mapped onto node1 and AdminArea is mapped onto node2.

1)
system implementation SmartGridSystem.impl
{MPCC: deployment(not_same([’AdminArea’, ’Prosumer1’]))}
{MPCC: deployment(not_same([’AdminArea’, ’Prosumer2’]))}

2)
% mpcc : generating static deployment constraints
% mpcc : (re)generating dynamic deployment constraints
% mpcc : candidate mapping [Prosumer1-node1,Prosumer2-node1,SmartGrid-node1,AdminArea-node3]
% mpcc : configuration success for node node1
% mpcc : configuration success for node node3
% mpcc : configuration success for node node2
Platform platform_i Configuration
Node node1
subjects [Prosumer1,Prosumer2,SmartGrid]
ss flows [Prosumer1_aggregatedValues__SmartGrid_prosumerData1,Prosumer2_aggregatedValues__SmartGrid_prosumerData2,AdminArea_sendRequest__SmartGrid_inCredentials,SmartGrid_sendResponse__AdminArea_recvResponse,SmartGrid_price1__Prosumer1_price,SmartGrid_price2__Prosumer2_price,SmartGrid_deviationEvent1__Prosumer1_deviationEvent,SmartGrid_deviationEvent2__Prosumer2_deviationEvent,Prosumer1_islandModeState__SmartGrid_islandModeState1,Prosumer2_islandModeState__SmartGrid_islandModeState2]
Processor cpu2
Processor cpu3
Processor cpu0
Processor cpu1
Memory ram
Memory disk
Device es

-- End Node node1
Node node3
subjects [AdminArea]
ss flows [AdminArea_sendRequest__SmartGrid_inCredentials,SmartGrid_sendResponse__AdminArea_recvResponse]
Processor cpu2
Processor cpu3
Processor cpu0
Processor cpu1
Memory ram
Memory disk
Device es

-- End Node node3
Node node2
Processor cpu2
Processor cpu3
Processor cpu0
Processor cpu1
Memory ram
Memory disk
Device es

-- End Node node2
-- End Platform platform_i

Verdict:

Totally – Mostly – Almost not – Not at all

8.2 Deployment Benefit

8.2.1 Configuration automation

Question 1:

Page 64 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

How would you describe the degree of automation of the configuration compiler?

Rationale:
The D-MILS deployment approach requires the description of system structure / architecture (cf. 5.2)
and the description of the hardware platform (cf. listing below). The deployment approach can be
divided in four steps:

• Translation of the information provided in the MILS-AADL files (system’s structure and hard-
ware platform) to Prolog terms.

• Computation of deployment configurations in Prolog (as Prolog clauses) using this informa-
tion. Additionally it is possible to add extra deployment constraints, which will be considered
for the configuration generation.

• Generation of actual configuration files (XML) for the platform from the Prolog clauses.
• Deployment of software to hardware using the configuration files from the previous step.

At the time of the evaluation the implementation of the last two steps was still underway. Neverthe-
less, we think that the translation of Prolog clauses to XML and the actual deployment step are rather
technical issues and the important work has already been done in the first two steps. The deployment
approach (until the step we were able to evaluate) is highly automated. The user just needs to feed
the compiler with the platform and system descriptions as MILS-AADL files and choose additional
deployment constraints. After that, the user only need to run the configuration compiler.

Verdict:
Completely Automatic – Mostly Automatic – Mostly Manual – Completely Manual

Question 2:
How much time is required to obtain the same level of guarantee through manual configuration ? . . .

Rationale:
In order to compare the automatic against manual configuration time, we have to compare the time
needed to learn how to use the tools and the time needed for actually using them. The manual method
requires learning to use the following tools:

• The TTTech tool for configuring the network and the network description language. This took
us almost two full working days.

• The LynxSecure tool for configuring the separation kernel of each node. This took us one
working day.

To evaluate how much time the automatic method takes to learn depends on whether one counts
the MILS-AADL modeling as part of the deployment process or not. As already discussed in the
questions before, the D-MILS deployment methods requires a high-level system and hardware de-
scriptions in MILS-AADL as input. If those descriptions are already available then the time needed
to generate a deployment is very short. The commands one needs to utilize for the deployment
generation are to be simply found in the documentation.

If the MILS-AADL models is not available, the engineer has to first obtain the MILS-AADL knowl-
edge required to create those documents. This implies another two to three hours.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 65

D7.1 Industrial Evaluation: Fortiss Smart Grid

Manual configuration Automatic configuration
Describe the network and communica-
tion between subjects using the network
description language, assisted by the
TTTech tool. (a few hours)

Complete the MILS-AADL model with
annotations indicating deployment con-
straints.

Plan the deployment of subjects to nodes
and make the corresponding mapping
(from a few minutes to a few hours)

Run the Configuration Compiler to ob-
tain a configuration of the network and
the mapping automatically.

Generate binary configurations for the switch and the TTEthernet cards. Upload
the configuration to the switch.
Create partitions on the hard drives of the nodes and copy the corresponding
subject files within them.
Run the auto-discovery tool on each
node. (1min per node)

Run the auto-discovery tool through the
DMPCC interface.

Set the parameters and call the LynxSe-
cure configuration tool to generate an
xml description of the configuration of
each node (a few dozens minutes).

Map nodes and partitions detected on
the hardware to the ones declared in the
configuration, through the DMPCC in-
terface.

Write and compile a configuration file
that binds the configuration of each node
with the configuration of the network (a
few dozens minutes).
Generate the images and boot the system.

Table 6: List of operations needed to obtain a deployed D-MILS system.

The different operations needed to deploy a D-MILS system are presented in Table 6. From this
table, one can see that the manual configuration requires to write files in different languages and run
various tools. Whereas the other configuration method generates these files automatically and runs
the tool, reducing the amount of time and knowledge needed to configure the platform.

In conclusion one can say that the time effort saved using the automatic deployment is between two
and three days.

Verdict:

Much more time – A little more time – A little less time – Much less time

8.2.2 Configuration modification

Question 1:

How would characterize the operations needed to update the configuration according to a small
change in the model ?

Rationale:

Page 66 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

The answer to this question varies according to the type of the change. However, in most cases,
according to our experience, it is advisable to perform all the steps of the deployment approach again
in case of a model change. As already described in the previous sub-sections, the performance of
these steps is straightforward as they are highly automated. Therefore our verdict is that the effort
need for updating the configuration after a model change (regardless of the type and size of the
change) is very low.

Verdict:

Very Easy – Easy – Difficult – Very Difficult

8.3 Deployment Maturity

8.3.1 Maturity of deployment configuration tools

Question 1:

Is the tool usable without reading the user manual ?

Rationale:

In order to be able to use the D-MILS deployment methods, the user needs to understand two impor-
tant steps of the deployment generation flow. On the one hand, the user needs to know how to model
and annotate the system architecture and the hardware. On the other hand, the user has to learn the
commands which are needed to correctly interact with the Python and Prolog scripts. Without this
information the user can not know how to use the tool.

Verdict:

Completely – Partially – Almost not – Not at all

Question 2:

How would you describe the documentation ?

Rationale:

There are two deliverables which cover the usage of the D-MILS deployment procedure. The D5.1
concentrates on how to model the hardware architecture in MILS-AADL and add deployment con-
straints to it. The document D5.2 discusses the steps that have to be done (which scripts and com-
mands has to be executed) in order to execute the deployment process itself. At the time of our
evaluation the second document (D5.2) was outdated. We therefore required support from the devel-
opment team to be able to perform the deployment procedure.

Verdict:

Very Complete – Complete – Incomplete – Empty

Question 3:

How would you characterize the installation process ?

Rationale:

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 67

D7.1 Industrial Evaluation: Fortiss Smart Grid

The installation is very easy to be performed, as, in order to run the tools involved in the D-MILS
deployment approach, Python and Prolog need to be installed.

Verdict:
Straightforward – Easy – Complicated – Very Complicated

8.3.2 Skills required for deployment configuration tools

Question 1:
What is the skill level required for generating a valid configuration solution for the SMG case study?

Rationale:
There are two things needed to be known in order to be able to perform the D-MILS deployment
approach. On the one hand, one needs to have some knowledge of MILS-AADL, especially how to
describe system structure and the platform architecture. On the other hand, one needs to know the
set of commands in Prolog, which are needed for configuring the deployment. This information is
D-MILS specific and cannot be known by anyone outside of the project. Therefore this information
needs to be found in the documentation. With the help of meaningful documentation, any system
engineer should be able to perform the D-MILS deployment approach.

Verdict:
Expert researcher or engineer – Specialized engineer – General Engineer – Simple user

Question 2:
How likely is it to find a person with such a skill level for the SMG case study ?

Rationale:
As already stated in the last question, the only specific information one needs to know is a set of
Prolog Commands and MILS-AADL. This information should be described in the corresponding
documentation and should be easy to comprehend for any system engineer.

Verdict:
Very Likely – Likely – Unlikely – Very Unlikely

Page 68 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

9 Platform operation

9.1 Platform Adequacy

Question 3:
Is the D-MILS platform adequate for developing the SMG system ?

Rationale:
In the current status of the D-MILS project, each subject is implemented as a separation kernel
partition that hosts a fully virtualized operating system. The development of the application code can
thus be done on any platform on which the corresponding OS can run. Additionally, the designer
can reuse existing software developed for supported operating system and include it in the system
through a dedicated subject.

In that sense, the development effort that requires the platform is mainly the inner configuration
of each subject. In particular, the subject configuration should exploit the resources allocated to the
corresponding separation kernel partition. For instance, the communication between distinct subjects
is implemented via virtual Ethernet cards. These virtual cards have to be configured correctly to
enable the connections defined in the original MILS-AADL model of the system.

During the development phase, the developer can easily configure the (regular) network to have
direct access to each subject from the development host. In that setting, the D-MILS platform allows
the developer to run concurrently the different components of the system under development, while
having a direct access to each of them. These conditions are adequate for developing the subjects
composing the SMG system.

Verdict:
Very Adequate – Adequate – Inadequate – Very Inadequate

Question 4:
Is the D-MILS platform adequate for running the SMG system ?

Rationale:
The SMG system is composed of the prosumers and a dedicated smart grid component that coordi-
nates the prosumers. The D-MILS platform is not really adequate to implement this whole system.

First, the studied system typically spans over a geographical area (a few blocks of houses) that is
relatively wide. Each node (house) needs a direct cable connection to a TTEthernet switch, which
requires to deploy new cables (fiber cables if the cable length is more than a few hundred meters) for
the smart grid only. Such a deployment, although technically possible, is not really realistic.

Furthermore, even if dedicated switches and cables are available, the static configuration of the net-
work gives rise to another problem. Whenever adding a new node to the network, reconfiguring the
network potentially requires to reprogram all the switches and ethernet cards. In practice, it would
mean that connecting a new house to the grid would stop the grid until every house applies the new
configuration. Again, such a scenario is not really realistic.

However, the platform can be used to implement each of the prosumers, as well the component
coordinating them. Using the D-MiLS platform in that frame is highly beneficial.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 69

D7.1 Industrial Evaluation: Fortiss Smart Grid

First the network becomes deterministic, which ensures that critical communications, such as mes-
sages indicating to switch to island mode, are guaranteed to arrive in time. It also ensures that
messages sent from the various sensors are not lost.

Moreover, the separation provided by the platform increases the security of the system. A prosumer
has typically three communication points with the outside, namely: the sensors and actuators I/O,
the communication with the rest of the grid and the users interaction through a local wifi network. If
an attacker gets into the systems through one of these points, it cannot access the rest of the system
since the platform restricts the communication.

For these reasons, the D-MILS platform is adequate for deploying one of the prosumers.

Verdict:
Very Adequate – Adequate – Inadequate – Very Inadequate

9.2 Platform Performance

Description: The observed performance of the D-MILS platform, with respect to the hardware re-
sources available, for execution of an industrial demonstrator application.

Experiment: Compare the response time of the SMG case study running on the D-MILS platform
and on a similar platform. The round trip time of a message is measured.

Verdict: The round trip time of a message for both messages was below 1 ms. This means that the
D-MILS platform is adequate for using it with real-time applications.

9.3 Platform Maturity

Question 5:
How informative were the error messages returned by the platform tools when developing the SMG
case study ?

Rationale:
We did not encounter any error message from the separation kernel configuration tool. We encoun-
tered few error messages when using the platform tools, mainly from the network configuration tool.

The error messages indicated an impossibility to configure the network with the imposed constraints.
They did not precise what to change in order to have a usable configuration but gave sufficient infor-
mation to pinpoint the problem and modify the configuration into a usable one.

During the execution of the case study on the platform, we did not encounter any error message.

Verdict:
Very Useful – Useful – Not Useful – Not Useful at all

Question 6:
Did you experience bugs from the platform when running the SMG case study ?

Rationale:

Page 70 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

To our experience, there was no evidence of serious bugs due to a misbehavior of the platform. We
encountered the following issues.

Once a separation kernel partition has been set up, it is necessary to install a operating system on it.
When installing Ubuntu, we had to use a PS/2 keyboard as USB keyboards are not supported at that
point. This bug was corrected in a version of the separation kernel more recent than the one used in
the project.

After a manual configuration of the platform, we were able to exchange small messages between
subjects but not large ones. This was due to the fact that the time triggered switch was configured to
drop packet incoming more frequently that a given rate. By modifying the configuration, we were
able to obtain the intended behavior.

To summarize, we encountered few bugs from the platform. The latter behaved coherently with
respect to our expectations.

Verdict:
Not at all – A dozen – A few dozen – A lot

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 71

D7.1 Industrial Evaluation: Fortiss Smart Grid

10 Industrial Requirements Measures

In this section we describe the analysis results obtained for each of the requirement of the Smart
Micro Grid demonstrator as listed in deliverable D1.1, and provide the evaluation measures collected.

10.1 Description language and modeling

10.1.1 Requirement SMG_DL.1

Description:
Should: Support of compositional modules with interfaces capable representing IEC 61850.

Evaluation:
IEC 61850 defines communication networks and systems for power utility automation, and more
specifically the communication architecture for sub-systems such as substation automaton systems.
For that reason, the standard defines a specific data model.

As already pointed out in section 5.1 MILS-AADL provides the possibility of expressing the structure
of the system, which includes the communication architecture together with the interfaces for each
component. Among other things those interfaces define which kind of data is exchanged between the
sub-components. Even though the IEC 61850 provides a larger number of different data types they
can all be led back to the basic ones, which are supported by MILS-AADL (cf. D2.1).

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.1.2 Requirement SMG_DL.2

Description:
Shall: Support composition mechanisms with asynchronous and synchronous components. In partic-
ular event based communication between software components shall be supported as well as channels
to represent physical behavior of the system.

Evaluation:
The asynchronous (event-based) communication in MILS-AADL is supported by the event ports.
Those ports for example can be used to trigger transitions in state automatons. An example is given
by the code snippet below, where an incoming event, called deviationEvent, is triggering a state
transition.

The synchronous communication in MILS-AADL is supported by the data ports, as prosumerData1
port in the code snippet below. Those ports are not for transmitting events but data, which can be
manipulated by the component.
system SmgProAgentIn
features

deviationEvent: in event port;
prosumerData1: in data port int;

Page 72 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

prosumerData1Out: out data port int;
deviationEventOut: out event port;

end SmgProAgentIn;

subject implementation SmgProAgentIn.impl
flows

prosumerData1Out := prosumerData1;
modes

init: initial mode;
fwdPrice: mode;
fwdDeviation: mode;

transitions
init-[deviationEvent]->fwdDeviation;
fwdDeviation-[deviationEventOut]->init;

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.1.3 Requirement SMG_DL.3

Description:

Shall: Modeling of physical behavior (e.g. energy, power, temperature) should be possible with one
step difference equations using linear arithmetic.

Evaluation: In MILS-AADL the one step difference equations are represented by the transitions of
the state automatons. To change the current state of the system one can use the effect part (which
comes after the then keyword) of the transition. In the example below the dischargingRate is changed
to the difference of StatusConsumption and StatusProduction.
idle -[when(StatusProduction < StatusConsumption)

and (StatusConsumption - StatusProduction) > charge_thr
then dischargingRate := (StatusConsumption - StatusProduction)]

-> consumptionHigherProduction;

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.1.4 Requirement SMG_DL.4

Description:

Shall: Internal state of the system should be representable with state machines extended with real
number attributes, e.g. for describing the physical environment.

Evaluation:

The internal state of the system (or each sub-system) is representable with state machines, as demon-
strated in the code snippet below. This listing shows the behavior of the battery in case the consump-
tion of the prosumer is higher the production. At first if that is the case the battery switches to the
intermediate mode consumptionHigherProduction. From there the battery system has two choices.
Either the battery has enough energy to support the prosumer’s energy usage. In this case the system

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 73

D7.1 Industrial Evaluation: Fortiss Smart Grid

switches into the mode discharging. Or the batteries capacity is too low or the temperature of the
battery is to high. In this case the battery switches back into the idling mode.

-- production < consumption
idle -[when(StatusProduction < StatusConsumption)

and (StatusConsumption - StatusProduction) > charge_thr
then dischargingRate := (StatusConsumption - StatusProduction)]
-> consumptionHigherProduction;

--discharging
consumptionHigherProduction-[when(currentLevel - dischargingRate) >= 0

and dischargingRate <= max_discharging_rate
and temperature < max_temperature] -- see above

-> discharging;

-- batteries capacity too low or discharging rate is to high
consumptionHigherProduction

-[when (currentLevel - dischargingRate) < 0
and dischargingRate > max_discharging_rate

or temperature >= max_temperature]
->idle;

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.1.5 Requirement SMG_DL.5

Description:

Should: The description language should allow the representation of component faults or failures in
order to evaluate their effect on the system.

Evaluation:

MILS-AADL allows the specification of error models. These models specify the behaviour of the
components and the whole system in case of errors. The behaviour of an error model is given by
state automaton operating on error states. Each state is representing an error mode and the transitions
between stated are triggered by error events or error propagations. An error event thereby is internal
to a component and reflects changes of the error state caused by local faults and repair operations.
The outgoing error propagation on the other hand report an error state to other components.

For our Smart Grid case study we used the concept of error models to represent possible deviation or
total black out events of the power grid.
error model VoltageError
features
stable: initial state;
unstable: error state;
down: error state;

end VoltageError;

error model implementation VoltageError.impl
events
variation: error event;
blackout: error event;

transitions
stable -[variation] -> unstable;

Page 74 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

stable -[blackout] -> down;
unstable -[blackout] -> down;
unstable -[reset]-> stable;
down -[reset] -> stable ;

end VoltageError.impl;

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.1.6 Requirement SMG_DL.6

Description:

Should: The description language should support discrete time for modeling of the system behavior.

Evaluation:

MILS-AADL supports two analogue datatypes (clock and continuous), and a set of discrete data
types. In our system (as one can see on the previous code snippets) we use discrete data types
(mostly int) and are able to model the behaviour of our system. Analogue data types were not used
in our system models.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2 System Safety

The safety requirements basically concern two types of properties: the requirements SA.1 – SA.7
and SA.11 deal with the island mode behaviour, and affect the models of the Smart Grid Wrapper
and the Prosumers, while SA.8, SA.9, and SA.10 concern the correct control of the battery.

10.2.1 Requirement SMG_SA.1

Description:

Shall: The highest-level safety priority shall be grid stability. Indicators of instability are: deviation
from the frequency 50 Hz and deviation from the nominal voltage level. In the case that the frequency
deviates more than 1 Hz, the micro grid shall switch to island mode.

Evaluation:

In the model a deviation of frequency or voltage from their nominal value is signalled to the
SMG wrapper via an incoming event port deviationEvent. When this event is received,
the SMG switches to island mode, which is described by setting the outgoing Boolean data port
smgInIslandMode to true. In addition, an (outgoing) event switchToIslandMode is used
to inform the Prosumer components about the island mode state.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 75

D7.1 Industrial Evaluation: Fortiss Smart Grid

subject SmgWrapper
features

deviationEvent: in event port;
smgInIslandMode : out data port bool default false;
switchToIslandMode: out event port;

[...]

end SmgWrapper;

subject implementation SmgWrapper.impl
modes
idle: initial mode;
fwdIM : mode;
islandmode : mode;
[...]

transitions
idle-[deviationEvent]->fwdIM;
fwdIM-[switchToIslandMode then smgInIslandMode := true]->islandmode;
[...]

end SmgWrapper.impl;

The LTL property covering this requirement states that whenever the deviationEvent is received
the SMG switches to island mode by setting smgInIslandMode to true.
{nuXmv:
LTLSPEC
(G ({deviationEvent} -> (F {smgInIslandMode}))) ;

}

This property is easily established with the D-MILS model checking tools.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.2 Requirement SMG_SA.2

Description:
Shall: In case of a power outage, the micro grid shall switch to an island mode.

Evaluation:
This requirement is modelled in the same way as SA.1. We use an additional incoming event port
poweroutageEvent to signal a power outage to the SMG component.
subject SmgWrapper
features
poweroutageEvent : in event port;
[...]

end SmgWrapper;

subject implementation SmgWrapper.impl
[...]

transitions
idle-[poweroutageEvent]->fwdIM;

[...]

Page 76 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

{nuXmv:
LTLSPEC
(G ({poweroutageEvent} -> (F {smgInIslandMode}))) ;

}

end SmgWrapper.impl;

Again, this property can easily be established with the D-MILS model checker.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.3 Requirement SMG_SA.3

Description:

Should: Switching to island mode shall to be accomplished in less than 20 ms.

Evaluation:

While MILS-AADL supports analogue data types that allow to model physical behaviour such as
time and clocks, we have chosen a discretized model, where time is captured on a more abstract
level as a sequence of steps. On this level of abstraction, it takes two steps for the SMG Wrapper
component to switch to island mode (as expressed by setting the variable smgInIslandMode to
true) after the occurrence of a deviationEvent.
{nuXmv:
LTLSPEC
(G ({deviationEvent} -> (X X {smgInIslandMode}))) ;

}

Adequacy of this property with respect to the requirement would have to be substantiated by mea-
surements on the real demonstrator hardware. Initial results of such measurements that we have
performed indicate that corresponding execution times are very low. As the requirement is not fully
reflected in our model, but suitably close, we consider it largely fulfilled.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.4 Requirement SMG_SA.4

Description:

Should: If the voltage of the connection between the micro grid and smart grid becomes higher than
10% of the nominal value (e.g. 400V), the smart micro grid island mode shall be activated to protect
consumer electronics.

Evaluation:

This requirement is similar to SA.1 and SA.2. We use to constants nominal_voltage and
voltage_threshold to model the nominal voltage value and a 10% deviation threshold, re-
spectively. The voltage level is modelled by an incoming data port voltage. A transition is added

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 77

D7.1 Industrial Evaluation: Fortiss Smart Grid

to the SMG Wrapper so that whenever the voltage level deviate by more than 10% the SMG proceeds
to the fwdIM mode, from which it transitions to island mode, cf. SA.1.
constants
nominal_voltage : int := 400;
voltage_threshold : int := 40; -- 10% of nominal value

subject SmgWrapper
features
voltage : in data port int;

[...]

end SmgWrapper;

subject implementation SmgWrapper.impl
[...]
transitions
idle-[when (voltage > nominal_voltage + voltage_threshold)]->fwdIM;
[...]

{nuXmv:
LTLSPEC
(G (({voltage} > {nominal_voltage} + {voltage_threshold})

-> (F {smgInIslandMode}))) ;
}

end SmgWrapper.impl;

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.5 Requirement SMG_SA.5

Description:

Should: If the voltage in the micro grid is above a certain threshold (e.g. 10% above 400V), the
switch box of the prosumer shall activate the prosumer island mode, in order to keep the battery in
safe operation.

Evaluation:

This requirement is analogous to the previous one, but now considers the prosumers. As is in
the case of the Smart Grid, the voltage level is modelled by an incoming data port voltage,
and the island mode status of the Prosumer is modelled through an outgoing Boolean data
port isInIslandMode. When the Prosumer has switched into island mode, it signals a
prosumerIslandMode event.
subject Prosumer
features
voltage : in data port int;
prosumerIslandMode : out event port;
isInIslandMode : out data port bool default false;
[...]

end Prosumer;

subject implementation Prosumer.impl
modes
normal : initial mode;

Page 78 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

switchToIsland : mode;
island : mode;

transitions
normal-[when (voltage > nominal_voltage + voltage_threshold)]->switchToIsland;
switchToIsland-[then isInIslandMode := true]->island;
[...]

end Prosumer.impl;

The requirement is directly translated into a LTL formula just as SA.4 and can easily be established
in the D-MILS verification tool.
{nuXmv:
LTLSPEC
(G (({voltage} > {nominal_voltage} + {voltage_threshold})

-> (F {isInIslandMode}))) ;
}

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.6 Requirement SMG_SA.6

Description:
Should: If prosumer island mode is active and a high consuming device is turned on (e.g. vacuum
cleaner or oven), the power of the corresponding power socket shall be turned off in the switch box.

Evaluation:
To express this requirement we have added another Boolean incoming port
high_consuming_device_status to the Prosumer model, which models whether or
not the respective device is turned on. Since our model does not contain explicit models of switch
boxes or power socket, we describe the status of the power socket of the high consuming device with
an outgoing Boolean data port power_socket_hcd. The default value of this port is true to
express that the power socket is usually switched on.

We extend the Prosumer transitions used for the previous requirement SA.5 with an intermediate step:
an additional mode islandSignal is introduced which is visited when the Prosumer is switched
to island mode, and where the power socket can be switched of in case the high consuming device is
on.
subject Prosumer
features
[...]
high_consuming_device_status : in data port bool;
power_socket_hcd : out data port bool default true;

end Prosumer;

subject implementation Prosumer.impl
modes
[...]
islandSignal: mode;

transitions
switchToIsland-[then isInIslandMode := true]->islandSignal;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 79

D7.1 Industrial Evaluation: Fortiss Smart Grid

islandSignal-[when high_consuming_device_status
then power_socket_hcd := false]->island;

[...]

end Prosumer.impl;

The requirement can most directly be translated into LTL and easily be verified with the model
checker.
{nuXmv:
LTLSPEC
(G ({isInIslandMode} & {high_consuming_device_status}

-> (F !{power_socket_hcd}))) ;
}

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.7 Requirement SMG_SA.7

Description:

Should: The rule system of prosumer shall immediately be informed when micro grid island mode
is activated. The available time window depends on the hardware components, but typical times are
around 100ms.

Evaluation:

Informing the rule system is accomplished by emitting a dedicated event prosumerIslandMode,
which is added as another outgoing event port to the Prosumer. The signalling of the event can
be accomplished by extending the transition mentioned above for SA.6. The first sentence of the
requirement can be directly expressed as LTL property. For analogous reasons as in the case of SA.3,
the constraint on the available time for the rule system to be informed has not been modelled here.
We hence consider the requirement largely fulfilled.
prosumerIslandMode : out event port;

islandSignal-[prosumerIslandMode
when high_consuming_device_status
then power_socket_hcd := false]->island;

{nuXmv:
LTLSPEC
(G ({isInIslandMode} -> (F {prosumerIslandMode}))) ;

}

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.8 Requirement SMG_SA.8

Description:

Page 80 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Shall: Every battery component shall not be overloaded. This means that if the battery status is full,
the control system shall not send any further loading signal.

Evaluation:

The requirements SA.8 to SA.10 concern the Battery component of the Smart Grid together with its
control system. Accordingly, two component specifications have been created, one for the battery
and one for the battery control system.

A number of constant definitions are used to describe the various constraints and bounds on the
battery capacity, temperature, charging rates, etc.
constants
max_capacity: int := 30;
max_temperature: int := 20;
min_temperature: int := 0;
charge_thr: int := 5;
max_charging_rate: int := 10;
max_discharging_rate: int := 10;
coolingRate: int := 2;
heatupRate: int := 2;

The battery provides information in its internal state including load level and temperature via respec-
tive outgoing data ports. The battery receives commands from the control system via its incoming
ports for charging and discharging command together with the respective rates.
subject Battery

features
batteryLoad: out data port int;
temperature: out data port int default 10;
chargingRate: in data port int;
dischargingRate: in data port int;
charge_signal: in event port;
discharge_signal: in event port;
idle_signal: in event port;
done: out event port;

end Battery;

The battery waits for charging or discharging commands from the control system and proceeds to
the respective modes. In the case of charging, the batteryLoad is increased by the current
chargingRate and the status of the battery is modified accordingly. Note that there is no pre-
vention of overloading the battery in this part of the model.
subject implementation Battery.impl
modes
wait: initial mode;
idle: mode;
charging: mode;
discharging: mode;

transitions
wait-[idle_signal]->idle;
wait-[charge_signal]->charging;
wait-[discharge_signal]->discharging;

charging-[done
then batteryLoad := batteryLoad + chargingRate;

temperature := temperature + heatupRate
]->wait;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 81

D7.1 Industrial Evaluation: Fortiss Smart Grid

[...]

end Battery.impl;

The desired property to be established is that the battery load never exceeds its max_capacity.
{nuXmv:
LTLSPEC
(G (!({batteryLoad} > {max_capacity}))) ;

}

Obviously, this property can only hold if the control system prevents the battery from overloading.

The battery controller has ports symmetric to the ones of the battery, plus two more incoming ports
productionLevel and consumptionLevel used for communicating the amount of energy
produced and consumed in the system, respectively.
subject BatteryController
features
batteryLoad: in data port int default 0;
batteryError: out data port bool default false;
temperature: in data port int;
productionLevel: in data port int;
consumptionLevel: in data port int;
chargingRate: out data port int default 0;
dischargingRate: out data port int default 0;
charge_signal: out event port;
discharge_signal: out event port;
idle_signal: out event port;
done: in event port;

end BatteryController;

We consider the transitions of the battery controller for the case of charging the battery. When the pro-
duction is significantly higher than the consumption (above a certain threshold charge_thr), the
chargingRate is calculated. Only if the chargingRate does not increase the batteryLoad
above the maximum capacity a charge_signal is sent to the battery.
subject implementation BatteryController.impl
flows
port (batteryLoad > max_capacity) -> batteryError;

modes
control: initial mode;
wait: mode;
idle: mode;
charge: mode;
charge_safety_check: mode;
[...]

transitions
wait-[done]->control;
[...]

control-[when (consumptionLevel <= productionLevel)
and (productionLevel - consumptionLevel) > charge_thr

then chargingRate := (productionLevel - consumptionLevel)
]->charge_safety_check;

charge_safety_check
-[when (batteryLoad + chargingRate) > max_capacity

or chargingRate > max_charging_rate
or temperature >= max_temperature

]->idle;

Page 82 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

charge_safety_check
-[when (batteryLoad + chargingRate) <= max_capacity

and chargingRate <= max_charging_rate
and temperature < max_temperature

]->charge;

charge-[charge_signal]->wait;

end BatteryController.impl;

Now, the property that the battery is never out-of-bounds can be established. Furthermore, it can
be shown that a charge_signal with a positive chargingRate is not raised as long as the
batteryLoad is at max_capacity. In the LTL formula below, “V” denotes the “release”
operator. The formula p V q is true at time t, if q holds at all time steps t′ ≥ t up to and including
t′′ where p also holds. Alternatively, it may be the case that p never holds, in which case q must hold
in all time steps t′ ≥ t.

Remark: using the until operator U instead of V would be too strong, as q U p requires that p
eventually holds.
{nuXmv:
LTLSPEC
(G (({batteryLoad} = {max_capacity}) ->

(({batteryLoad} != {max_capacity})
V
(!({charge_signal} & ({chargingRate} > 0)))
)));

}

The two properties together establish the requirement SA.8.

To contrast the monolithic verification of this requirement, we also present an analysis following the
compositional verification approach as an example.

To this end, we define the a composite component BatterySystem, which contains the two com-
ponents described above, Battery and BatteryController, as subcomponents.
system BatterySystem
features
productionLevel: in data port int;
consumptionLevel: in data port int;
batteryError: out data port bool;

end BatterySystem;

system implementation BatterySystem.impl
subcomponents
bttry: subject Battery;
ctrl: subject BatteryController;

connections
data port productionLevel -> ctrl.productionLevel;
data port consumptionLevel -> ctrl.consumptionLevel;
event port ctrl.charge_signal -> bttry.charge_signal;
event port ctrl.discharge_signal -> bttry.discharge_signal;
event port ctrl.idle_signal -> bttry.idle_signal;
event port bttry.done -> ctrl.done;
data port ctrl.chargingRate -> bttry.chargingRate;
data port ctrl.dischargingRate -> bttry.dischargingRate;
data port bttry.batteryLoad -> ctrl.batteryLoad;
data port ctrl.batteryError -> batteryError;
data port bttry.temperature -> ctrl.temperature;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 83

D7.1 Industrial Evaluation: Fortiss Smart Grid

end BatterySystem.impl;

For this composition, we would like to establish the property that the battery load will never exceed
the maximum capacity of the battery. This is expressed in the following OCRA guarantee:
{OCRA:
CONTRACT no_overload
assume:

always ({productionLevel} >= 0 and {consumptionLevel} >= 0 and
{productionLevel} - {consumptionLevel} <= {max_charging_rate} and
{consumptionLevel} - {productionLevel} <= {max_discharging_rate}
);

guarantee: (always ({batteryError} = false));
}

The goal is to find contracts for each of the two components that together ensure the overall property.
For the battery controller, we must basically ensure that whenever it sends a charge_signal,
the corresponding chargingRate is such that it will not increase the batteryLoad beyond its
limits, and that its value does not change before the battery has applied the change.
{OCRA:
CONTRACT no_overload
assume: true;
guarantee:
(always ({batteryError} implies {batteryLoad > max_capacity})) and
(always ({dischargingRate}>=0)) and
(always ({charge_signal} implies

(((not change({chargingRate}) and (not {done})) since
({batteryLoad + chargingRate <= max_capacity} and
(not change({chargingRate}) and (not {done})))) and

((not change({chargingRate})) until {done}))));
}

Likewise, it has to be guaranteed that the Battery component applies the changes to the
batteryLoad according to the chargingRate commands received from the controller, and
that the batteryLoad does not spontaneously change between two such commands.
{OCRA:

CONTRACT no_overload
assume: true;
guarantee:
{batteryLoad} = 0 and
(always (change({batteryLoad}) implies {done})) and
(always ({done} implies

({next(batteryLoad) = batteryLoad} or
{next(batteryLoad) = 0} or
{next(batteryLoad) = batteryLoad - dischargingRate} or
({next(batteryLoad) = batteryLoad + chargingRate} and
previously ((not {done}) since ({charge_signal}))))));

}

Together, these two contracts of the components establish a refinement of the overall safety property
for the BatterySystem corresponding to the requirement SA.8.
{OCRA:
CONTRACT no_overload REFINEDBY bttry.no_overload, ctrl.no_overload;

}

We note that the OCRA contracts for the two subcomponents are significantly more complex than
the corresponding LTL formulae used in the monolithic verification approach. This is due to the fact

Page 84 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

that the guarantees of the individual components have to capture a sufficiently strong abstraction of
the behaviour of those components in order to establish the correct refinement of the overall property.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.9 Requirement SMG_SA.9

Description:
Should: The charging or discharging rate of the batteries shall be within the bound specified in the
documents. The control system shall take care that the rate is within the limits.

Evaluation:
In the battery model, we would like to establish the following property corresponding to the first part
of the requirement:
{nuXmv:
LTLSPEC
(G (({charging} ->

(({chargingRate} >= 0) & ({chargingRate} <= {max_charging_rate}))
)
&
({discharging} ->
(({dischargingRate} >= 0) &
({dischargingRate} <= {max_discharging_rate}))

)
));

}

Again, it is the responsibility of the batter controller to achieve this. The transitions shown above for
requirement SA.8 already ensure this for the charging rate: the charge signal is only emitted if the
chargingRate does not exceed the max_charging_rate.

We reproduce the analogous transitions for the case of discharging below:
subject implementation BatteryController.impl
modes
discharge: mode;
discharge_safety_check: mode;
[...]

transitions
[...]

control-[when (productionLevel <= consumptionLevel)
and (consumptionLevel - productionLevel) > charge_thr

then dischargingRate := (consumptionLevel - productionLevel)
]->discharge_safety_check;

discharge_safety_check
-[when dischargingRate > max_discharging_rate

or temperature >= max_temperature
]-> idle;

discharge_safety_check
-[when dischargingRate <= max_discharging_rate

and temperature < max_temperature
]-> discharge;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 85

D7.1 Industrial Evaluation: Fortiss Smart Grid

discharge-[discharge_signal]->wait;

end BatteryController.impl;

Now the second part of the requirement can be expressed as follows and is easily checked with the
D-MILS verification tool.
{nuXmv:
LTLSPEC
(G (({charge_signal} ->

(({chargingRate} >= 0) & ({chargingRate} <= {max_charging_rate}))
)
&
({discharge_signal} ->

(({dischargingRate} >= 0) &
({dischargingRate} <= {max_discharging_rate}))

)
));

}

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.10 Requirement SMG_SA.10

Description:

Should: The battery temperature shall be within the bounds specified in the documents. The control
system shall reduce charge or discharge rate to zero, in case the battery temperature is above the
temperature limit.

Evaluation:

The requirement corresponds to two properties. The first part concerns the battery itself:
{nuXmv:
LTLSPEC
(G (({temperature} >= {min_temperature}) &

({temperature} <= {max_temperature})));
}

The second part is ensured by the battery controller. It states that whenever the battery temperature
has reached its maximum allowed value then the charging or discharging rates will remain zero until
the temperature has decreased below the maximum. Note that “U” in the LTL formula below is the
until operator.
-- SA.10b_charge
{nuXmv:
LTLSPEC
(G (({temperature} = {max_temperature}) ->

(({charge_signal} -> ({chargingRate} = 0))
U ({temperature} < {max_temperature}))

));
}

-- SA.10b_discharge
{nuXmv:
LTLSPEC
(G (({temperature} = {max_temperature}) ->

Page 86 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

(({discharge_signal} -> ({dischargingRate} = 0))
U ({temperature} < {max_temperature}))

));
}

The two properties are fully established with the model checker.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.2.11 Requirement SMG_SA.11

Description:

May: In case of island mode, full batteries and a higher production than consumption - the production
units shall reduce their production.

Evaluation:

This requirement again concerns the Prosumer model, to which three more incoming data ports are
added in order to transmit information about the current load level of the battery, and the level of
production and consumption, respectively.
subject Prosumer
features
batteryStatus: in data port enum (empty,charged,full,outofbounds);
productionLevel: in data port int;
consumptionLevel: in data port int;

reduceProduction : out event port;
[...]

end Prosumer;

In order to ensure the property, an additional mode reduce_production is introduced for
the Prosumer together with a new transition: when the Prosumer has switched to island mode
and the conditions described in the requirement are fulfilled, the Prosumer transitions to the
reduce_production from which it emits the reduceProduction event to inform the rule
system to reduce the production of the production units.
subject implementation Prosumer.impl
modes
[...]
reduce_production : mode;

transitions
[...]

island-[when (batteryStatus = full)
and (productionLevel > consumptionLevel)

]->reduce_production;

reduce_production-[reduceProduction]->island;

end Prosumer.impl;

The property corresponding to the requirement can directly be translated into an LTL formula and
checked with the D-MILS model checker.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 87

D7.1 Industrial Evaluation: Fortiss Smart Grid

{nuXmv:
LTLSPEC
(G (({isInIslandMode})

& ({batteryStatus} = full)
& ({productionLevel} > {consumptionLevel})
-> (F {reduceProduction})));

}

It has to be noted that we do not cover fully the intentions of the requirement, namely that indeed the
production units do reduce their production; it is only considered that the command to do so is sent.
We hence consider the property only largely fulfilled.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3 System Security

This section lists the security requirements for the SMG demonstrator. All security requirements are
specified according the ISO 15408/18045 (Common Criteria). The requirements elicitation is based
on a comprehensive smart grid scenario including system, user and administration considerations.

10.3.1 SMG_SO.1 requirement

SHALL: Communication / Information Flow between components shall be according to the policy
defined for Prosumer and Smart Grid. No other information flow shall occur.

Evaluation: Information flow among components can be modelled using MILS-AADL language.
For example, the requirement that the information flow between aggregation and persistency compo-
nents must be unidirectional, i.e. from persistency to aggregation. This is depicted in the following
model of the prosumer in which all connections of ports are directed from persistency to aggregation
component and not the other way around.
system Prosumer
[...]
end Prosumer;
system implementation Prosumer.impl

subcomponents
Persistency: subject Persistency.impl ;
Aggregation: subject Aggregation.impl ;
[...]

connections
port Persistency.prosumerData -> prosumerData;
port Persistency.productionValues -> Aggregation.productionValues;
port Persistency.consumptionValues -> Aggregation.consumptionValues;
port Persistency.batteryValues -> Aggregation.batteryValues;

[...]
end Prosumer.impl

Page 88 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

For verification purpose, one can extract the information flow graph of the implementation of the
smart grid system and check whether it coincides with the one defined for prosumer and smart grid
components. We refer to Deliverable 5.3 for more details.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.2 SMG_SO.2 requirement

SHOULD: All wrapper events as well as device status data shall be logged by the persistency compo-
nent. This means in particular that no wrapper component can hide events or change of states.

Evaluation: In the below model, there exists a communication link between the wrapper compo-
nent and the persistency component so that the information about the devices can be transferred
to the persistency component. Note that as the status of the energy production and consump-
tion as well as that of the battery is changed, the corresponding events ConsumptionEvent,
ProductionEvent and BatteryEvent are sent to the persistency component. The persistency
component, as a result, stores the new information in local data components saveConsumption,
saveProduction and saveBattery respectively.
system Prosumer
features
aggregatedValues: out data port int default 0;
meterReading: out data port int default 0;
end Prosumer;

system implementation Prosumer.impl

subcomponents

WrapperSensors: system WrapperSensors.impl ;
Persistency: subject Persistency.impl ;
Aggregation: subject Aggregation.impl;
ProAgentOut: subject ProAgentOut.impl;

connections
port WrapperSensors.StatusProduction -> Persistency.StatusProduction;
port WrapperSensors.StatusConsumption -> Persistency.StatusConsumption;
port WrapperSensors.StatusBattery -> Persistency.StatusBattery;

port WrapperSensors.ProductionEvent -> Persistency.ProductionEvent;
port WrapperSensors.ConsumptionEvent -> Persistency.ConsumptionEvent;
port WrapperSensors.BatteryEvent -> Persistency.BatteryEvent;

port Persistency.OutProduction -> Aggregation.productionValues;
port Persistency.OutConsumption -> Aggregation.consumptionValues;
port Persistency.OutBattery -> Aggregation.batteryValues;

port Aggregation.aggregatedValues -> ProAgentOut.InaggregatedValues;
port ProAgentOut.OutaggregatedValues -> aggregatedValues;
port ProAgentOut.meterReading -> meterReading;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 89

D7.1 Industrial Evaluation: Fortiss Smart Grid

end Prosumer.impl;

subject Persistency
features

StatusProduction: in data port int;
StatusConsumption: in data port int;
StatusBattery: in data port int;

ProductionEvent: in event port;
ConsumptionEvent: in event port;
BatteryEvent: in event port;

OutProduction: out data port int;
OutConsumption: out data port int;
OutBattery: out data port int;

end Persistency;

subject implementation Persistency.impl

subcomponents
saveProduction: data int default 0;
saveConsumption: data int default 0;
saveBattery: data int default 0;

modes
idle: initial mode;

transitions

idle-[ProductionEvent
then saveProduction := StatusProduction;
OutProduction := StatusProduction]->idle;

idle-[ConsumptionEvent
then saveConsumption := StatusConsumption;
OutConsumption := StatusConsumption]->idle;

idle-[BatteryEvent
then saveBattery := StatusBattery;
OutBattery := StatusBattery]->idle;

end Persistency.impl;

subject Aggregation
features

productionValues: in data port int;
consumptionValues: in data port int;
batteryValues: in data port int;
aggregatedValues: out data port int default 0;

end Aggregation;

subject implementation Aggregation.impl

flows

(consumptionValues + productionValues + batteryValues) -> aggregatedValues;

end Aggregation.impl;

subject ProAgentOut
features

InaggregatedValues: in data port int default 0;
OutaggregatedValues: out data port int default 0;
meterReading: out data port int default 0;

Page 90 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

end ProAgentOut;

subject implementation ProAgentOut.impl
flows

port InaggregatedValues -> OutaggregatedValues;
port 100 -> meterReading;

end ProAgentOut.impl;

system WrapperSensors
features

StatusProduction: out data port int default 0;
StatusBattery: out data port int default 0;
StatusConsumption: out data port int default 0;

ProductionEvent: out event port;
BatteryEvent: out event port;
ConsumptionEvent: out event port;

end WrapperSensors;

system implementation WrapperSensors.impl

modes
idle: initial mode;
consumptionChanged: mode;
productionChanged: mode;
batteryStatusChanged: mode;

transitions

idle - [then StatusProduction := 1]
-> productionChanged;

productionChanged - [ProductionEvent] -> idle;

idle - [then StatusConsumption := 2] -> consumptionChanged;

consumptionChanged - [ConsumptionEvent] -> idle;

idle - [then StatusBattery := 3] -> batteryStatusChanged;

batteryStatusChanged - [BatteryEvent] -> idle;

end WrapperSensors.impl;

An example property that can be checked for the verification of the above requirement is given as:

{nuXmv:
LTLSPEC
(G ({WrapperSensors.StatusBattery} = 3 -> F ({Persistency.saveBattery} = 3)));

}

which assures that as the status of the battery is updated to 3, this information is also updated in the
persistency component.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 91

D7.1 Industrial Evaluation: Fortiss Smart Grid

10.3.3 SMG_SO.3 requirement

SHALL: The aggregation component shall only communicate aggregated energy data to the prosumer
energy agent. No sensor or device specific information shall be communicated for privacy reasons.

Evaluation: In the model given in SMG_SO.2, this requirement is handled by passing only aggre-
gated data aggregatedValues from the aggregation to the prosumer energy agent component.
For the verification of this requirement, one can check the following property:

{nuXmv:
LTLSPEC
(G ({Persistency.OutProduction}+{Persistency.OutConsumption}+{Persistency.OutBattery})
= {ProAgentOut.InaggregatedValues});

}

which asserts that the value of the in-port InaggregatedValues of the energy agent component
is the sum of the values that persistency component passes to the aggregation component.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.4 SMG_SO.4 requirement

SHALL: The prosumer energy agent shall communicate only required data by the micro grid. The
micro grid shall not have access to any private data by the prosumer. In particular the sensor values
of prosumer systems shall not be transmitted to the micro grid. The only exception is the data of the
main smart meter, since this is required for stability control.

Evaluation: In the model (given in SMG_SO.3), the prosumer energy agent ProAgentOut only
passes aggregated data of the devices OutaggregatedValues and the reading of the main meter
meterReading to the smart grid. This shows that the smart grid does not have access to the internal
data of the prosumer. For the verification of this requirement, one can check the following property:

{nuXmv:
LTLSPEC
(G ({Persistency.OutProduction}+{Persistency.OutConsumption}+{Persistency.OutBattery})
= {ProAgentOut.OutaggregatedValues});

}

which asserts that the value of the out-port OutaggregatedValues of the energy agent compo-
nent is the sum of the values that persistency component passes to the aggregation component.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.5 SMG_SO.5 requirement

SHOULD: A prosumer shall not be able to access the data from any other prosumer.

Page 92 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Evaluation: The above requirement is modeled by not having any connection between two pro-
sumers of the smart grid system, as shown in the below model. This requirement can be verified as
SMG_SO.1.

system SmartGridSystem
[...]

end SmartGridSystem;

system implementation SmartGridSystem.impl

subcomponents
Prosumer1: system Prosumer.impl1 accesses Bus;
Prosumer2: system Prosumer.impl2 accesses Bus;
Bus: bus Bus.impl;

[...]

connections
[...]

end SmartGridSystem.impl;

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.6 SMG_SO.6 requirement

SHOULD: Components (e.g. Rule System) shall receive information events according to the infor-
mation flow policy for prosumer and smart grid. However, subcomponents of a components (e.g. a
certain rule) shall be able to subscribe to a subset of events (e.g. subset of sensors in the room). No
other events shall be communicated to this subcomponent. Every new subscription or subscription
change shall require a confirmation from the system administrator.

Evaluation: The information flow policy can be ensured as discussed in SMG_SO.1. However,
the dynamic behaviour of a system, like subscription for events and addition of new components or
events, cannot be modeled using MILS-ADDL.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.7 SMG_SO.7 requirement

SHALL: Authentication: A user shall authenticate himself to the control software in both cases:
prosumer and micro grid. Every prosumer system shall be authenticated to the micro grid.

Evaluation: In the below model, the smart grid administrator authenticates a prosumer compo-
nent. The prosumer first sets its ID on out-port ProAuthCode and then gives a signal on out-port
ProAuthenticateReq. The administrator component gets this data, authenticates the prosumer
and sends the result back to the prosumer.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 93

D7.1 Industrial Evaluation: Fortiss Smart Grid

constants
Auth_Code_Pro1: int := 222;

[...]
system Prosumer
features

ProAuthenticateReq: out event port;
ProAuthCode: out data port int;

ProAuthenticateRec: in event port;
ProAuthReply: in data port bool;

end Prosumer;

system implementation Prosumer.impl

{nuXmv:
LTLSPEC
(F (mode = mode_Authenticated));

}
subcomponents

Is_Authenticated: data bool default false;
[...]
modes

idle: initial mode;
Auth_Start: mode;
Authentication_Waiting: mode;
Authenticated: mode;
Not_Authenticated: mode;

[...]

transitions

idle -[then ProAuthCode := Auth_Code_Pro1] -> Auth_Start;

Auth_Start -[ProAuthenticateReq] -> Authentication_Waiting;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = true
then Is_Authenticated := true]

-> Authenticated;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = false
then Is_Authenticated := false]

-> Not_Authenticated;

Authenticated - [] -> Authenticated;
Not_Authenticated - [] -> Not_Authenticated;

[...]
end Prosumer.impl;

system SmartGrid
features

Pro1AuthenticateReq: in event port;
Pro1AuthCode: in data port int;
Pro1AuthenticateReply: out event port;
Pro1AuthReply: out data port bool default false;

[...]

end SmartGrid;

system implementation SmartGrid.impl
subcomponents

Page 94 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

IsPro1_Authenticated: data bool default false;
[...]

modes
idle: initial mode;
Pro1_Authenticated: mode;
Pro1_Not_Authenticated: mode;

[...]
transitions

idle -[Pro1AuthenticateReq when Pro1AuthCode = Prosumer1_Auth_Code then
IsPro1_Authenticated := true; Pro1AuthReply := true]
-> Pro1_Authenticated;

idle -[Pro1AuthenticateReq when Pro1AuthCode != Prosumer1_Auth_Code then
IsPro1_Authenticated := false; Pro1AuthReply := false]
-> Pro1_Not_Authenticated;

Pro1_Authenticated - [Pro1AuthenticateReply] -> idle;

Pro1_Not_Authenticated - [Pro1AuthenticateReply] -> idle;
[...]

end SmartGrid.impl;

An example property that can be checked for the verification of the above requirement is given as:

{nuXmv:
LTLSPEC
(G ({ProAuthCode} = 222 -> (F (mode = mode_Authenticated))));

}

which asserts that the prosumer is authenticated by the smart grid system component with the correct
authentication code 222.

Similarly, the smart grid administrator and the prosumer administrator components authenticate their
respective users. In the model given in the requirement SMG_SO.8, prosumer administrator compo-
nent authenticates the prosumer user component.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.8 SMG_SO.8 requirement

SHALL: Authorization: Every user shall have a limited set of rights. He shall not be able to obtain
more rights than he has been assigned.

Evaluation: This requirement is modeled in the following model by showing that the prosumer
user component can only update consumption-rules if it is authorized to do so – depicted by a local
boolean flag Can_Update_Consumption_Level.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 95

D7.1 Industrial Evaluation: Fortiss Smart Grid

constants
ProUser_Auth_Code : int := 444;

ConsumptionLevel1: int := 1;
ConsumptionLevel2: int := 2;

[...]

system Prosumer

end Prosumer;

system implementation Prosumer.impl1

subcomponents

ProUserAdmin: subject ProUserAdmin.impl;
ProUser: subject ProUser.impl;
Rule: subject Rule.impl;

connections

port ProUser.ProAuthenticateReq -> ProUserAdmin.ProAuthenticateReq;

port ProUser.ProAuthCode -> ProUserAdmin.ProAuthCode;

port ProUserAdmin.ProAuthenticateReply -> ProUser.ProAuthenticateRec;

port ProUserAdmin.ProAuthReply -> ProUser.ProAuthReply;

port ProUser.setConsumptionLevel -> Rule.setConsumptionLevel;

end Prosumer.impl1;

subject ProUser
features

ProAuthenticateReq: out event port;
ProAuthCode: out data port int;

ProAuthenticateRec: in event port;
ProAuthReply: in data port bool;

setConsumptionLevel: out data port int default ConsumptionLevel1;

end ProUser;

subject implementation ProUser.impl

subcomponents

Is_Authenticated: data bool default false;
Can_Update_Consumption_Level: data bool default false;

modes
idle: initial mode;
Auth_Start: mode;
Authentication_Waiting: mode;
Authenticated: mode;

Page 96 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

transitions

idle -[then ProAuthCode := ProUser1_Auth_Code] -> Auth_Start;

Auth_Start -[ProAuthenticateReq] -> Authentication_Waiting;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = true
then Is_Authenticated := true] -> Authenticated;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = false
then Is_Authenticated := false] -> idle;

Authenticated -[when Can_Update_Consumption_Level = false]
-> Authenticated;

Authenticated -[when Can_Update_Consumption_Level = true
then setConsumptionLevel := ConsumptionLevel2] -> Authenticated;

end ProUser.impl;

subject ProUserAdmin
features

ProAuthenticateReq: in event port;
ProAuthCode: in data port int;
ProAuthenticateReply: out event port;
ProAuthReply: out data port bool default false;

end ProUserAdmin;

subject implementation ProUserAdmin.impl
subcomponents

IsProUser_Authenticated: data bool default false;
ProUser_Ath_Attempt: data int default 0;

modes
idle: initial mode;
ProUser_Authenticated: mode;
ProUser_Not_Authenticated: mode;
ProUser_Blocked: mode;

transitions

idle -[ProAuthenticateReq when ProAuthCode = ProUser_Auth_Code then
IsProUser_Authenticated := true; ProAuthReply := true] -> ProUser_Authenticated;

idle -[ProAuthenticateReq when ProAuthCode != ProUser_Auth_Code then
IsProUser_Authenticated := false; ProUser_Ath_Attempt := ProUser_Ath_Attempt + 1;
ProAuthReply := false] -> ProUser_Not_Authenticated;

ProUser_Authenticated - [ProAuthenticateReply] -> idle;

ProUser_Not_Authenticated - [ProAuthenticateReply when ProUser_Ath_Attempt<3]
-> idle;

ProUser_Not_Authenticated - [ProAuthenticateReply when ProUser_Ath_Attempt>2]
-> ProUser_Blocked;

ProUser_Blocked - [] -> ProUser_Blocked;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 97

D7.1 Industrial Evaluation: Fortiss Smart Grid

end ProUserAdmin.impl;

For the verification of the above requirement, we can check that the following property will not
hold as the default value of Can_Update_Consumption_Level is false, i.e, the user is not
authorized to update consumption rules.

{nuXmv:
LTLSPEC
(G ((mode = mode_Authenticated) -> F ({setConsumptionLevel} = 2)));

}

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.9 SMG_SO.9 requirement

SHALL: The admin of each prosumer and smart grid system shall be able to access only his system.
Access to other systems shall not be possible.

Evaluation: This requirement is analogous to the second half of the requirement SMG_SO.7. If a
user tries to access another prosumer (not assigned to him), he is not authenticated.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.10 SMG_SO.10 requirement

SHOULD: Logins of the admin shall be logged persistently.

Evaluation: This requirement is analogous to the second half of the requirement SMG_SO.7. Note
that in the model (given in SMG_SO.8) when the prosumer administrator authenticates the prosumer
user, it sets its local boolean flag Is_ProUser_Authenticated to true. This requirement can
be verified by checking the following property:

{nuXmv:
LTLSPEC
(F ({IsProUser_Authenticated}));

}

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

Page 98 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

10.3.11 SMG_SO.11 requirement

SHOULD: Maintenance of the rule system shall be possible for users, which shall be logged. Users
shall not be able to modify or delete log files.

Evaluation: In the below model, the user component of the prosumer can change the consumption-
level rule (as Can_Update_Consumption_Level is true) of the rule component. Moreover,
the updated consumption value is saved in the local variable saveConsumptionLevel of the rule
component. However, MILS AADL does not support modeling the modification and deletion of log
files.

constants

ProUser_Auth_Code: int := 444;
ConsumptionLevel1: int := 1;
ConsumptionLevel2: int := 2;

system Prosumer

end Prosumer;

system implementation Prosumer.impl

subcomponents

ProUserAdmin: subject ProUserAdmin.impl;
ProUser: subject ProUser.impl;
Rule: subject Rule.impl;

connections

port ProUser.ProAuthenticateReq -> ProUserAdmin.ProAuthenticateReq;

port ProUser.ProAuthCode -> ProUserAdmin.ProAuthCode;

port ProUserAdmin.ProAuthenticateReply -> ProUser.ProAuthenticateRec;

port ProUserAdmin.ProAuthReply -> ProUser.ProAuthReply;

port ProUser.setConsumptionLevel -> Rule.setConsumptionLevel;

end Prosumer.impl;

subject ProUser
features

ProAuthenticateReq: out event port;
ProAuthCode: out data port int;

ProAuthenticateRec: in event port;
ProAuthReply: in data port bool;

setConsumptionLevel: out data port int default ConsumptionLevel1;

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 99

D7.1 Industrial Evaluation: Fortiss Smart Grid

end ProUser;

subject implementation ProUser.impl

subcomponents

Is_Authenticated: data bool default false;
Can_Update_Consumption_Level: data bool default true;

modes
idle: initial mode;
Auth_Start: mode;
Authentication_Waiting: mode;
Authenticated: mode;

transitions

idle -[then ProAuthCode := ProUser1_Auth_Code] -> Auth_Start;

Auth_Start -[ProAuthenticateReq] -> Authentication_Waiting;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = true
then Is_Authenticated := true]
-> Authenticated;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = false
then Is_Authenticated := false]
-> idle;

Authenticated -[when Can_Update_Consumption_Level = false]
-> Authenticated;

Authenticated -[when Can_Update_Consumption_Level = true
then setConsumptionLevel := ConsumptionLevel2] -> Authenticated;

end ProUser.impl;

subject ProUserAdmin
features

ProAuthenticateReq: in event port;
ProAuthCode: in data port int;
ProAuthenticateReply: out event port;
ProAuthReply: out data port bool default false;

end ProUserAdmin;

subject implementation ProUserAdmin.impl

subcomponents

IsProUser_Authenticated: data bool default false;
ProUser_Ath_Attempt: data int default 0;

modes
idle: initial mode;
ProUser_Authenticated: mode;
ProUser_Not_Authenticated: mode;
ProUser_Blocked: mode;

Page 100 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

transitions

idle -[ProAuthenticateReq when ProAuthCode = ProUser_Auth_Code then
IsProUser_Authenticated := true; ProAuthReply := true]
-> ProUser_Authenticated;

idle -[ProAuthenticateReq when ProAuthCode != ProUser_Auth_Code then
IsProUser_Authenticated := false;
ProUser_Ath_Attempt := ProUser_Ath_Attempt + 1;
ProAuthReply := false] -> ProUser_Not_Authenticated;

ProUser_Authenticated - [ProAuthenticateReply] -> idle;

ProUser_Not_Authenticated - [ProAuthenticateReply when ProUser_Ath_Attempt<3]
-> idle;

ProUser_Not_Authenticated - [ProAuthenticateReply when ProUser_Ath_Attempt>2]
-> ProUser_Blocked;

ProUser_Blocked - [] -> ProUser_Blocked;

end ProUserAdmin.impl;

subject Rule
features

setConsumptionLevel: in data port int;
consumptionLevel: out data port int default ConsumptionLevel1;

end Rule;

subject implementation Rule.impl

subcomponents
saveConsumptionLevel: data int default 0;

flows
port setConsumptionLevel -> consumptionLevel;

modes

idle: initial mode;
Ruleupdated: mode;

transitions

idle - [when setConsumptionLevel != saveConsumptionLevel]
-> Ruleupdated;

Ruleupdated - [then saveConsumptionLevel := setConsumptionLevel]
-> idle;

end Rule.impl;

For the verification of the above requirement, one can check the following property:

{nuXmv:

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 101

D7.1 Industrial Evaluation: Fortiss Smart Grid

LTLSPEC
(G (({ProUser.setConsumptionLevel}=2) -> F ({Rule.consumptionLevel} = 2 and
{Rule.saveConsumptionLevel} = 2)));

}

which asserts that as the data on the out-port setConsumptionlevel of the user component
updates, it also reflects on the out-port consumptionlevel of the rule component and is saved in
the local variable saveConsumptionLevel.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.12 SMG_SO.12 requirement

SHALL: The persistency component (a) shall always be invoked and (b) shall be tamper-proof, mean-
ing that no other component can delete, add or tamper with information stored in the Persistency
component.

Evaluation: The first part of this requirement is analogous to SMG_SO.2. However, it is not
possible to model addition, deletion or tempering of information stored in Persistency component.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.13 SMG_SO.13 requirement

SHOULD: Each event shall have a trustworthy time stamp to allow safety and security analysis.

Evaluation: MILS-AADL provide a clock data type, which allows for time stamping events. How-
ever, we are not modeling the timing behaviour of our smart grid demonstrator, therefore, we do not
verify this requirement.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.14 SMG_SO.14 requirement

SHOULD: Command events, which trigger certain actions of devices, shall not be lost. A confirmation
of transmission is required.

Page 102 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Evaluation: D-MILS AADL provides constructs to give error models of components. Therefore,
its possible to model a network in which messages are lost with certain probabilities. However,
for our smart grid demonstrator, we are not modeling probabilistic behaviour of components, this
requirement, therefore, is not verifiable.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.15 SMG_SO.15 requirement

SHOULD: The system shall provide a subscription mechanism so that subcomponents can subscribe
to events. The subscription mechanism shall consider the information flow policy.

Evaluation: MILS AADL does not provide constructs to model dynamically changing systems.
Therefore, modeling the subscription mechanism for events is not possible.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.16 SMG_SO.16 requirement

SHALL: The system shall provide a mechanism for authentication and authorization for users.

Evaluation: This requirement is analogous to SMG_SO.7 and SMG_SO.8

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.17 SMG_SO.17 requirement

SHALL: The system shall provide a mechanism to check the rights of a user to enable the control of
the user interaction.

Evaluation: This requirement is analogous to SMG_SO.8

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.18 SMG_SF_DP.1 requirement

SHALL: The TSF shall enforce the information flow control expressed as an annotated information
flow graph.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 103

D7.1 Industrial Evaluation: Fortiss Smart Grid

Evaluation: This requirement is analogous to SMG_SO.7

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.19 SMG_SF_DP.2 requirement

SHOULD: The TSF shall enforce the information flow control policy on all subjects and objects
represented in the flow graph and all operations that cause that information to flow to and from
subjects covered by the SFP1.

Evaluation: This requirement is analogous to SMG_SO.7

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.20 SMG_SF_DP.3 requirement

SHOULD: The TSF shall ensure that all operations that cause any information in the TOE to flow to
and from any subject in the TOE are covered by an information flow control SFP.

Evaluation: This requirement is analogous to SMG_SO.7

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.21 SMG_SF_IA.4 requirement

SHOULD: The TSF shall detect when three unsuccessful authentication attempts occur related to user
authentication events.

Evaluation: In the model given in SMG_SO.8, when there are three unsuccessful attempts
by the prosumer user component, the prosumer user administrator component enters into
ProUser_Blocked mode. This requirement can be verified by checking the following property:

{nuXmv:
LTLSPEC
(G (({ProUser_Ath_Attempt}=3) -> F (mode = mode_ProUser_Blocked)));

}

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.22 SMG_SF_IA.5 requirement

SHOULD: When the defined number of unsuccessful events has been detected, the TSF shall prohibit
new authentication attempts for the next 30 seconds.

1Security Function Policies

Page 104 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

Evaluation: The first half of this requirement is analogous to SMG_SF_IA.4. As MILS AADL
provides clock data type, it allows for modeling authentication-blocking for 30 seconds. However, as
our smart grid demonstrator does not have timing behaviour, we are not verifying the timing aspects
of this requirement.

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.23 SMG_SF_IA.6 requirement

SHOULD: The TSF shall maintain the following list of security attributes belonging to individual
users:

a) The user authentication attributes (name, password)

b) The internal userID

c) The user dedicated roles

d) The active user roles

e) The room numbers related to the user

Evaluation: D-MILS AADL allows to arrange different data types in tuples; this allows us to store
the above attributes for each user.

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.24 SMG_SF_IA.7 requirement

SHOULD: The TSF shall allow access to the login screen on behalf of the user to be performed before
the user is authenticated.

Evaluation: D-MILS AADL does not provide constructs for modeling interaction of a user with a
login screen.

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.25 SMG_SF_IA.8 requirement

SHOULD: The TSF shall require each user to be successfully authenticated before allowing any other
TSF-mediated actions on behalf of the user.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 105

D7.1 Industrial Evaluation: Fortiss Smart Grid

Evaluation: In the model given in SMG_SO.11, a user can only update the consumptionlevel
in the rule component if he is successfully authenticated; otherwise, he is not allowed to make any
changes in the rule component. For the verification of the above requirement, the following property
can be checked which asserts that the consumption rule is changed if the user is in Authenticated
mode.

{nuXmv:
LTLSPEC
(G (({setConsumptionLevel} = 2) -> (mode = mode_Authenticated)));

}

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.26 SMG_SF_IA.11 requirement

SHOULD: The TSF shall associate the following user security attributes with subjects acting on behalf
of that user:

a) User name, internal userID, active user role.

Evaluation: This requirement is analogous to SMG_SF_IA.6

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.27 SMG_SF_TA.12 requirement

SHOULD: The TSF shall terminate an interactive session after 24 hours of user’s inactivity.

Evaluation: MILS AADL provides clock data type that allows for modeling timing behaviour.
However, as our smart grid demonstrator does not have timing behaviour, we are not verifying this
requirement.

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.3.28 SMG_SF_TA.13 requirement

SHOULD: The TSF shall allow user-initiated termination of the user’s own interactive session.

Evaluation: In the model given below, a user in Authenticated mode generates an event
ProCloseSession to close her session. The event is handled by the user administrator com-
ponent which closes the session of the user by setting the flag IsProUser_Authenticated to
false.

Page 106 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

constants
ProUser_Auth_Code : int := 444;

subject ProUser
features

ProAuthenticateReq: out event port;
ProAuthCode: out data port int;

ProAuthenticateRec: in event port;
ProAuthReply: in data port bool;
ProCloseSession: out event port;

end ProUser;

subject implementation ProUser.impl

subcomponents

Is_Authenticated: data bool default false;

modes
idle: initial mode;
Auth_Start: mode;
Authentication_Waiting: mode;
Authenticated: mode;

transitions

idle -[then ProAuthCode := ProUser_Auth_Code] -> Auth_Start;

Auth_Start -[ProAuthenticateReq] -> Authentication_Waiting;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = true
then Is_Authenticated := true]

-> Authenticated;

Authentication_Waiting - [ProAuthenticateRec when ProAuthReply = false
then Is_Authenticated := false]
-> idle;

Authenticated - [ProCloseSession then Is_Authenticated:= false] -> idle;

end ProUser.impl;

subject ProUserAdmin
features

ProAuthenticateReq: in event port;
ProAuthCode: in data port int;
ProAuthenticateReply: out event port;
ProAuthReply: out data port bool default false;
ProCloseSession: in event port;

end ProUserAdmin;

subject implementation ProUserAdmin.impl

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 107

D7.1 Industrial Evaluation: Fortiss Smart Grid

subcomponents

IsProUser_Authenticated: data bool default false;
ProUser_Ath_Attempt: data int default 0;

modes
idle: initial mode;
ProUser_Authenticated: mode;
ProUser_Not_Authenticated: mode;
ProUser_Blocked: mode;

transitions

idle -[ProAuthenticateReq when ProAuthCode = ProUser_Auth_Code then
IsProUser_Authenticated := true; ProAuthReply := true]
-> ProUser_Authenticated;

idle -[ProAuthenticateReq when ProAuthCode != ProUser_Auth_Code then
IsProUser_Authenticated := false;
ProUser_Ath_Attempt := ProUser_Ath_Attempt + 1;
ProAuthReply := false] -> ProUser_Not_Authenticated;

ProUser_Authenticated - [ProAuthenticateReply] -> idle;

ProUser_Not_Authenticated - [ProAuthenticateReply when ProUser_Ath_Attempt<3]
-> idle;

ProUser_Not_Authenticated - [ProAuthenticateReply when ProUser_Ath_Attempt>2]
-> ProUser_Blocked;

ProUser_Blocked - [] -> ProUser_Blocked;

idle - [ProCloseSession when IsProUser_Authenticated = true
then ProUser_Ath_Attempt := 0; IsProUser_Authenticated := false]
-> idle;

end ProUserAdmin.impl;

system Prosumer

end Prosumer;

system implementation Prosumer.impl

subcomponents

ProUserAdmin: subject ProUserAdmin.impl;
ProUser: subject ProUser.impl;

connections

port ProUser.ProAuthenticateReq -> ProUserAdmin.ProAuthenticateReq;

port ProUser.ProAuthCode -> ProUserAdmin.ProAuthCode;

port ProUserAdmin.ProAuthenticateReply -> ProUser.ProAuthenticateRec;

Page 108 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

port ProUserAdmin.ProAuthReply -> ProUser.ProAuthReply;

port ProUser.ProCloseSession -> ProUserAdmin.ProCloseSession;

end Prosumer.impl;

For the verification of the above requirement, the following property can be verified which asserts
that as the user generates an event to close its session, the corresponding flag in the administrator
component is set to false.

{nuXmv:
LTLSPEC
(G (event_ProCloseSession) ->

F (!{IsProUser_Authenticated}));
}

Verdict: Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.4 System Requirements

10.4.1 SMG_SR.1 requirement

Description:

Should: Rule System shall monitor the system and trigger rules specified by the users.

Evaluation: Modeling of dynamic behavior in MILS-AADL is not possible.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.4.2 SMG_SR.2 requirement

Description:

Should: Rule System shall consider constraints specified by the user.

Evaluation: Modeling of dynamic behavior in MILS-AADL is not possible.

Verdict:

Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.4.3 SMG_SR.3 requirement

Description:

Shall: Rule System shall consider safety constraints specified according the safety constraints of the
devices.

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 109

D7.1 Industrial Evaluation: Fortiss Smart Grid

Evaluation: MILS-AADL supports modeling any kind of functional behavior using state automa-
tons. Any safety rules could be encoded using state automatons and therefore would be then consid-
ered by the devices. A possible rule, which we considered in our system, is that when a deviation
event arrives the unnecessary devices are sent into sleep mode.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.4.4 SMG_SR.4 requirement

Description:
May: Wrappers shall send data of sensors to the system as events in real time.

Evaluation: The real time properties of the system was not possible to prove in MILS-AADL.
Therefore we performed an experiment on the platform: We measured the Round Trip Time of a
signal in our demonstrator. The signal took less than 1 ms. Therefore we conclude that using D-
MILS technology it is possible to satisfy real-time requirements.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.4.5 SMG_SR.5 requirement

Description:
May: Dynamic addition of new devices (software and hardware) shall be possible.

Evaluation: Expressing a dynamic addition of new devices (software and hardware) is not possible
in MILS-AADL.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

10.5 Hardware / Software Platform

Description:
Shall: The software shall run on a platform as described in section 9.

Evaluation: Our demonstrator runs on the platform and therefore this requirement is satisfied.

Verdict:
Not Fulfilled – Partially Fulfilled – Largely Fulfilled – Fully Fulfilled

Page 110 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

11 Compliance Matrix

This chapter presents the compliance matrix for Smart Microgrid case study. The compliance matrix
table lists the requirements for the Smart Microgrid case study, defined in the deliverable D1.1 and
shows whether the requirements are addressed by the D-MILS Platform. The verdicts can go from
Not Fulfilled over Partially Fulfilled and Largely Fulfilled to Fully Fulfilled. A detailed justification
for each verdict can be found in section 10.

Table 7: Requirements Compliance Matrix

Req ID Priority Requirement text (may be abbreviated) Verdict
SMG_DL.1 Should Support of compositional modules with interfaces capable

representing IEC 61850.
Largely
Fulfilled

SMG_DL.2 Shall Support composition mechanisms with asynchronous and
synchronous components. In particular event based
communication between software components shall be
supported as well as channels to represent physical behavior
of the system.

Fully
Fulfilled

SMG_DL.3 Shall Modeling of physical behavior (e.g. energy, power,
temperature) should be possible with one step difference
equations using linear arithmetic.

Fully
Fulfilled

SMG_DL.4 Shall Internal state of the system should be representable with
state machines extended with real number attributes, e.g.
for describing the physical environment.

Fully
Fulfilled

SMG_DL.5 Should The description language should allow the representation of
component faults or failures in order to evaluate their effect
on the system.

Fully
Fulfilled

SMG_DL.6 Should The description language should support discrete time for
modeling of the system behavior.

Fully
Fulfilled

SMG_SA.1 Shall The highest-level safety priority shall be grid stability.
Indicators of instability are: deviation from the frequency
50 Hz and deviation from the nominal voltage level. In the
case that the frequency deviates more than 1 Hz, the micro
grid shall switch to island mode.

Fully
Fulfilled

SMG_SA.2 Shall In case of a power outage, the micro grid shall switch to an
island mode.

Fully
Fulfilled

SMG_SA.3 Should Switching to island mode shall to be accomplished in less
than 20 ms.

Largely
Fulfilled

SMG_SA.4 Should If the voltage of the connection between the micro grid and
smart grid becomes higher than 10% of the nominal value
(e.g. 400V), the smart micro grid island mode shall be
activated to protect consumer electronics.

Fully
Fulfilled

SMG_SA.5 Should If the voltage in the micro grid is above a certain threshold
(e.g. 10% above 400V), the switch box of the prosumer
shall activate the prosumer island mode, in order to keep the
battery in safe operation.

Fully
Fulfilled

continued on next page

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 111

D7.1 Industrial Evaluation: Fortiss Smart Grid

continuing from previous page
SMG_SA.6 Should If prosumer island mode is active and a high consuming

device is turned on (e.g. vacuum cleaner or oven), the
power of the corresponding power socket shall be turned off
in the switch box.

Fully
Fulfilled

SMG_SA.7 Should The rule system of prosumer shall immediately be informed
when micro grid island mode is activated. The available
time window depends on the hardware components, but
typical times are around 100ms.

Largely
Fulfilled

SMG_SA.8 Shall Every battery component shall not be overloaded. This
means that if the battery status is full, the control system
shall not send any further loading signal.

Fully
Fulfilled

SMG_SA.9 Should The charging or discharging rate of the batteries shall be
within the bound specified in the documents. The control
system shall take care that the rate is within the limits.

Fully
Fulfilled

SMG_SA.10 Should The battery temperature shall be within the bounds
specified in the documents. The control system shall reduce
charge or discharge rate to zero, in case the battery
temperature is above the temperature limit.

Fully
Fulfilled

SMG_SA.11 May In case of island mode, full batteries and a higher
production than consumption - the production units shall
reduce their production.

Largely
Fulfilled

SMG_SO.1 Shall Communication / Information Flow between components
shall be according to the policy defined for Prosumer and
Smart Grid. No other information flow shall occur.

Fully
Fulfilled

SMG_SO.2 Should All wrapper events as well as device status data shall be
logged by the persistency component. This means in
particular that no wrapper component can hide events or
change of states.

Fully
Fulfilled

SMG_SO.3 Shall The aggregation component shall only communicate
aggregated energy data to the prosumer energy agent. No
sensor or device specific information shall be
communicated for privacy reasons.

Fully
Fulfilled

SMG_SO.4 Shall The prosumer energy agent shall communicate only
required data by the micro grid. The micro grid shall not
have access to any private data by the prosumer. In
particular the sensor values of prosumer systems shall not
be transmitted to the micro grid. The only exception is the
data of the main smart meter, since this is required for
stability control.

Fully
Fulfilled

SMG_SO.5 Should A prosumer shall not be able to access the data from any
other prosumer.

Fully
Fulfilled

continued on next page

Page 112 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

continuing from previous page
SMG_SO.6 Should Components (e.g. Rule System) shall receive information

events according to the information flow policy for
prosumer and smart grid. However, subcomponents of a
components (e.g. a certain rule) shall be able to subscribe to
a subset of events (e.g. subset of sensors in the room). No
other events shall be communicated to this subcomponent.
Every new subscription or subscription change shall require
a confirmation from the system administrator.

Partially
Fulfilled

SMG_SO.7 Shall Authentication: A user shall authenticate himself to the
control software in both cases: prosumer and micro grid.
Every prosumer system shall be authenticated to the micro
grid.

Fully
Fulfilled

SMG_SO.8 Shall Authorization: Every user shall have a limited set of rights.
He shall not be able to obtain more rights than he has been
assigned.

Fully
Fulfilled

SMG_SO.9 Shall The admin of each prosumer and smart grid system shall be
able to access only his system. Access to other systems
shall not be possible.

Fully
Fulfilled

SMG_SO.10 Should Logins of the admin shall be logged persistently. Fully
Fulfilled

SMG_SO.11 Should Maintenance of the rule system shall be possible for users,
which shall be logged. Users shall not be able to modify or
delete log files.

Largely
Fulfilled

SMG_SO.12 Shall The persistency component (a) shall always be invoked and
(b) shall be tamper-proof, meaning that no other component
can delete, add or tamper with information stored in the
Persistency component.

Largely
Fulfilled

SMG_SO.13 Should Each event shall have a trustworthy time stamp to allow
safety and security analysis.

Partially
Fulfilled

SMG_SO.14 Should Command events, which trigger certain actions of devices,
shall not be lost. A confirmation of transmission is required.

Partially
Fulfilled

SMG_SO.15 Should The system shall provide a subscription mechanism so that
subcomponents can subscribe to events. The subscription
mechanism shall consider the information flow policy.

Not Fulfilled

SMG_SO.16 Shall The system shall provide a mechanism for authentication
and authorization for users.

Fully
Fulfilled

SMG_SO.17 Shall The system shall provide a mechanism to check the rights
of a user to enable the control of the user interaction.

Fully
Fulfilled

SMG_SF_DP.1 Shall The TSF shall enforce the information flow control
expressed as an annotated information flow graph.

Fully
Fulfilled

SMG_SF_DP.2 Should The TSF shall enforce the information flow control policy
on all subjects and objects represented in the flow graph and
all operations that cause that information to flow to and
from subjects covered by the SFP.

Fully
Fulfilled

continued on next page

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 113

D7.1 Industrial Evaluation: Fortiss Smart Grid

continuing from previous page
SMG_SF_DP.3 Should The TSF shall ensure that all operations that cause any

information in the TOE to flow to and from any subject in
the TOE are covered by an information flow control SFP.

Fully
Fulfilled

SMG_SF_IA.4 Should The TSF shall detect when three unsuccessful
authentication attempts occur related to user authentication
events.

Fully
Fulfilled

SMG_SF_IA.5 Should When the defined number of unsuccessful events has been
detected, the TSF shall prohibit new authentication attempts
for the next 30 seconds.

Largely
Fulfilled

SMG_SF_IA.6 Should The TSF shall maintain the following list of security
attributes belonging to individual users: (authentication
attributes, userID, roles, room numbers)

Fully
Fulfilled

SMG_SF_IA.7 Should The TSF shall allow access to the login screen on behalf of
the user to be performed before the user is authenticated.

Not Fulfilled

SMG_SF_IA.8 Should The TSF shall require each user to be successfully
authenticated before allowing any other TSF-mediated
actions on behalf of the user.

Fully
Fulfilled

SMG_SF_IA.11 Should The TSF shall associate the following user security
attributes with subjects acting on behalf of that user: user
name, internal userID, active user role.

Fully
Fulfilled

SMG_SF_TA.12 Should The TSF shall terminate an interactive session after 24
hours of user’s inactivity.

Partially
Fulfilled

SMG_SF_TA.13 Should The TSF shall allow user-initiated termination of the user’s
own interactive session.

Fully
Fulfilled

SMG_SR.1 Should Rule System shall monitor the system and trigger rules
specified by the users.

Not Fulfilled

SMG_SR.2 Should Rule System shall consider constraints specified by the user. Not Fulfilled
SMG_SR.3 Shall Rule System shall consider safety constraints specified

according the safety constraints of the devices.
Fully
Fulfilled

SMG_SR.4 May Wrappers shall send data of sensors to the system as events
in real time.

Largely
Fulfilled

SMG_SR.5 May Dynamic addition of new devices (software and hardware)
shall be possible.

Not Fulfilled

SMG_HS.1 Shall The software shall run on a platform as described in section
9.

Fully
Fulfilled

Page 114 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 115

D7.1 Industrial Evaluation: Fortiss Smart Grid

Page 116 Version 1.0
Confidentiality: Public Distribution

31 October 2015

D7.1 Industrial Evaluation: Fortiss Smart Grid

References

[1] Gsn community standard version 1. Technical report, Origin Consulting (York) Limited, Novem-
ber 2011. 44

[2] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hoelzl, and Bernhard Schaetz. Aut-
ofocus 3: Tooling concepts for seamless, model-based development of embedded systems. In
Proceedings of the 8th International Workshop on Model-based Architecting of Cyber-Physical
and Embedded Systems (MODELS 2015), September 2015. 36

[3] The COMPASS project web site. http://compass.informatik.rwth-aachen.de/.
29

[4] Ewen Denney, Ganesh Pai, and Josef Pohl. Advocate: An assurance case automation toolset. In
Proceedings of the 2012 International Conference on Computer Safety, Reliability, and Security,
SAFECOMP’12, pages 8–21, Berlin, Heidelberg, 2012. Springer-Verlag. 58

[5] Patrick Graydon, John Knight, and Mitchell Green. Certification and safety cases. In 28th
International System Safety Conference, August 2010. 38

[6] Prof Nancy Leveson. White paper on the use of safety cases in certification and regulation, 2011.
39, 40

[7] R. Weaver. The Safety of Software - Constructing and Assuring Argument. PhD thesis, 2004. 48

31 October 2015 Version 1.0
Confidentiality: Public Distribution

Page 117

http://compass.informatik.rwth-aachen.de/

	Summary
	Introduction
	Development Process
	Functional Description
	High-Level view
	SmartGrid
	Prosumer Energy Agents
	Wrapper
	Persistency

	Prosumer
	Prosumer Energy Agents
	Wrappers
	Persistency
	Aggregation
	Rule Component

	AdminArea
	Deployment

	Design and specification
	Design Expressivity
	Design Usability
	Design Feedback
	Design Maturity

	Verification of Properties
	Verification Expressivity
	Security property coverage
	Safety property coverage

	Verification Usability
	Usability for safety and security verification

	Verification Performance
	Solution for security verification
	Solution for safety verification
	Resources for safety and security verification

	Degree of Integration with Design
	Integration of functional verification

	Verification Maturity
	Maturity of functional verification

	Assurance case
	Assurance Case Usability
	Assurance case automation
	Assurance case usefulness
	Assurance case design integration
	Assurance case analysis integration
	Assurance case design maturity
	Assurance case certification suitability

	Assurance Case Benefit
	Manual assurance case comparison
	Assurance case change comparison

	The evaluation of the D-MILS assurance patterns

	Deployment
	Deployment Performance
	Configuration solution time
	Configuration Solution efficiency

	Deployment Benefit
	Configuration automation
	Configuration modification

	Deployment Maturity
	Maturity of deployment configuration tools
	Skills required for deployment configuration tools

	Platform operation
	Platform Adequacy
	Platform Performance
	Platform Maturity

	Industrial Requirements Measures
	Description language and modeling
	Requirement SMG_DL.1
	Requirement SMG_DL.2
	Requirement SMG_DL.3
	Requirement SMG_DL.4
	Requirement SMG_DL.5
	Requirement SMG_DL.6

	System Safety
	Requirement SMG_SA.1
	Requirement SMG_SA.2
	Requirement SMG_SA.3
	Requirement SMG_SA.4
	Requirement SMG_SA.5
	Requirement SMG_SA.6
	Requirement SMG_SA.7
	Requirement SMG_SA.8
	Requirement SMG_SA.9
	Requirement SMG_SA.10
	Requirement SMG_SA.11

	System Security
	SMG_SO.1 requirement
	SMG_SO.2 requirement
	SMG_SO.3 requirement
	SMG_SO.4 requirement
	SMG_SO.5 requirement
	SMG_SO.6 requirement
	SMG_SO.7 requirement
	SMG_SO.8 requirement
	SMG_SO.9 requirement
	SMG_SO.10 requirement
	SMG_SO.11 requirement
	SMG_SO.12 requirement
	SMG_SO.13 requirement
	SMG_SO.14 requirement
	SMG_SO.15 requirement
	SMG_SO.16 requirement
	SMG_SO.17 requirement
	SMG_SF_DP.1 requirement
	SMG_SF_DP.2 requirement
	SMG_SF_DP.3 requirement
	SMG_SF_IA.4 requirement
	SMG_SF_IA.5 requirement
	SMG_SF_IA.6 requirement
	SMG_SF_IA.7 requirement
	SMG_SF_IA.8 requirement
	SMG_SF_IA.11 requirement
	SMG_SF_TA.12 requirement
	SMG_SF_TA.13 requirement

	System Requirements
	SMG_SR.1 requirement
	SMG_SR.2 requirement
	SMG_SR.3 requirement
	SMG_SR.4 requirement
	SMG_SR.5 requirement

	Hardware / Software Platform

	Compliance Matrix
	References

