
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the VITAL Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any

third party, in whole or in parts, except with prior written consent of the consortium

SEVENTH FRAMEWORK PROGRAME

Specific Targeted Research Project

Project Number: FP7–SMARTCITIES–2013(ICT)
Project Acronym: VITAL

Project Number: 608682

Project Title:
Virtualized programmable InTerfAces for
innovative cost-effective IoT depLoyments in
smart cities

D3.1.2 Virtual Models,
Data and Metadata for ICOs V2

Document Id: VITAL-D312-231015-Draft

File Name: VITAL-D312-231015-Draft.pdf

Document reference: Deliverable 3.1.2

Version: Draft

Editors: Anne Helmreich, Salma Abdulazis, Zeeshan Jan,
Aqeel Kazmi, Martin Serrano

Organisation: NUI Galway

Date: 23 / 10 / 2015

Document type: Deliverable

Security: PU (Public)

Copyright  2015 VITAL Consortium

Ref. Ares(2015)4646677 - 28/10/2015

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments
V01 Aqeel Kazmi NUI Galway 12/08/2015 Initial version of the document

V02 Nathalie Mitton INRIA 21/08/2015 Updated section 6.5

V03 Angelos Lenis SiLo 06/09/2015 Updated Sections 6.7 and 6.8

V04
Aqeel Kazmi NUIG 29/09/2015 Updates to various sections

Paola Dal Zovo,
Lorenzo Bracco REPLY 08/10/2015 Updated Section 6.3

V05 Miguel Montero ATOS 09/10/2015 Updates to Trust and CEP sections

V06
Aqeel Kazmi NUIG 09/10/2015 Integration of partner contributions.

Yusuf Yaslan ITU 09/10/2015 Section 4.2.3

V07 Aqeel Kazmi NUIG 10/10/2015 Updates to Section 4 & 5.

V08 Aqeel Kazmi NUIG 11/10/2015 Updates to Section 6.

V09 Angelos Lenis SiLo 12/10/2015 Updated Section 6.8.

V10 Aqeel Kazmi NUIG 12/10/2015 Updated Section 6.

V11 Aqeel Kazmi NUIG 15/10/2015 Updated JSON-LD contexts & examples.

V12 Katerina
Roukounaki AIT 20/10/15 Technical Review.

V13 Elisa Herrmann ATOS 20/10/2015 Update to section 6.6

V14 Aqeel Kazmi NUIG 20/10/2015 Review Comments Addressed.

V15 Salvatore Guzzo
Bonifacio INRIA 21/10/2015 Updated section 6.5

V16 Angelos Lenis SiLo 21/10/2015 Updated Sections 6.7 and 6.8

V17 Salvatore Guzzo
Bonifacio INRIA 22/10/2015 Minor fixes

V18
Aqeel Kazmi NUIG 22/10/2015 Minor Fixes and Quality Review

Aqeel Kazmi NUIG 22/10/2015 Circulated for Approval

Draft Martin Serrano NUIG 23/10/2015 EC Submitted

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 2

OVERVIEW OF UPDATES/ENHANCEMENTS OVER D3.1.1

Section Description
Section 1 Updates to the introduction and scope of the second

version of this deliverable.

Section 2 Updates to linked data and semantic descriptions.

Section 3 Updates to sensors and measurements.

Section 4 Updates to smart cities section.

Section 5 Updates to IoT systems and services.

Section 6 Updates to VITAL system and services.

Section 7 Updates to conclusion and further directions.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 3

TABLE OF CONTENTS

OVERVIEW OF UPDATES/ENHANCEMENTS OVER D3.1.1 .. 2	

1	
 INTRODUCTION .. 7	

2	
 LINKED DATA AND SEMANTIC DESCRIPTIONS ... 8	

2.1	
 RDF .. 8	

2.2	
 JSON-LD .. 9	

2.3	
 SPARQL ... 10	

2.4	
 ONTOLOGIES .. 11	

2.5	
 CONCLUSION ... 11	

3	
 SENSORS AND MEASUREMENTS .. 13	

3.1	
 THE W3C SEMANTIC SENSOR NETWORK ONTOLOGY .. 13	

3.2	
 BASIC CONCEPTS AND ONTOLOGIES ... 16	

3.3	
 SENSORS ... 18	

3.4	
 SENSOR MEASUREMENTS .. 21	

3.5	
 CONCLUSION ... 23	

4	
 SMART CITIES .. 24	

4.1	
 CITIES .. 24	

4.2	
 SMART TRANSPORT ... 25	

4.3	
 SMART WORKING ... 28	

4.4	
 CONCLUSION ... 28	

5	
 IOT SYSTEMS AND SERVICES .. 29	

5.1	
 IOT SYSTEMS ... 29	

5.2	
 IOT SERVICES .. 35	

5.3	
 CONCLUSION ... 41	

6	
 VITAL SYSTEM AND SERVICES .. 42	

6.1	
 VITAL SYSTEM .. 42	

6.2	
 DATA ACCESS .. 43	

6.3	
 SECURITY AND ACCESS CONTROL .. 44	

6.4	
 TRUST ... 47	

6.5	
 DISCOVERY AND FILTERING .. 51	

6.6	
 COMPLEX EVENT PROCESSING ... 57	

6.7	
 MONITORING .. 59	

6.8	
 ORCHESTRATION ... 62	

6.9	
 CONCLUSION ... 64	

7	
 CONCLUSION .. 65	

8	
 REFERENCES ... 65	

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 4

LIST OF FIGURES

FIGURE 1: SPARQL EXAMPLE [LWS13] ... 11	

FIGURE 2: THE SSN ONTOLOGY – KEY CONCEPTS AND RELATIONS [CBB+12] 15	

FIGURE 3: EXAMPLE TIME INSTANT SPECIFICATION WITH OWL TIME .. 16	

FIGURE 4: EXAMPLE WGS84 LOCATION WITH THE BASIC GEO VOCABULARY 17	

FIGURE 5: JSON-LD CONTEXT FOR SENSOR .. 20	

FIGURE 6: EXAMPLE SENSOR DESCRIPTION .. 21	

FIGURE 7: EXAMPLE MEASUREMENT ... 22	

FIGURE 8: JSON-LD CONTEXT FOR MEASUREMENT ... 23	

FIGURE 9: EXAMPLE IOT SYSTEM DESCRIPTION .. 30	

FIGURE 10: JSON-LD CONTEXT SPECIFICATION FOR SYSTEMS .. 31	

FIGURE 11: IOT SYSTEM WITH PROVIDED SERVICES DESCRIPTION .. 34	

FIGURE 12: EXAMPLE IOT SERVICE FOR CONFIGURATION (N3) .. 37	

FIGURE 13: EXAMPLE IOT SERVICE FOR CONFIGURATION .. 38	

FIGURE 14: JSON-LD CONTEXT SPECIFICATION FOR SERVICES .. 38	

FIGURE 15: EXAMPLE VITAL DESCRIPTION ... 43	

FIGURE 16: EXAMPLES OF USERS AND GROUPS IN VITAL ... 45	

FIGURE 17: ACCESS CONTROL POLICY FOR SINGLE SENSOR'S OBSERVATIONS 47	

FIGURE 18: TRUST MODEL. .. 48	

FIGURE 19: TYPES OF TRUST PARAMETERS. ... 48	

FIGURE 20: EXAMPLE OF DATASTABILITY ASPECT. .. 49	

FIGURE 21: TRUST CONCEPT EXAMPLE ... 50	

FIGURE 22: TRUST MODEL EXAMPLE. .. 50	

FIGURE 23: TRUSTED ENTITY EXAMPLE. .. 51	

FIGURE 24: EXAMPLE SENSOR DESCRIPTION WITH PREDICTED MOVEMENT PATTERN 54	

FIGURE 25: EXAMPLE SENSOR DESCRIPTION WITH NETWORK CONNECTION DATA 55	

FIGURE 26: EXAMPLE SENSOR DESCRIPTION WITH LOCALIZER ... 56	

FIGURE 27: GETSUPPORTEDPERFORMANCEMETRICS EXAMPLE RESPONSE 60	

FIGURE 28: EXAMPLE VIRTUAL MEASUREMENT FOR SYSTEM UPTIME .. 61	

FIGURE 29: EXAMPLE SENSOR DESCRIPTION WITH HARDWARE COMPONENTS 62	

FIGURE 30: DESCRIPTION OF VITAL:ORCHESTRATION SERVICE IN JSON-LD 63	

LIST OF TABLES

TABLE 1: ONTOLOGY/ LANGUAGE PREFIXES .. 12	

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 5

TERMS AND ACRONYMS

ACL Access Control List

API Application programming interface

CEP Complex Event Processing

COMANTO Context Management Ontology

COMPOSE Collaborative Open Market to Place Objects at your Service

CQELS Continuous Query Evaluation over Linked Stream

CRUD Create Read Update Delete

DCMI Dublin Core Metadata Initiative

DCO Delivery Context Ontology

DOLCE-Lite Descriptive Ontology for Linguistic and Cognitive Engineering Lite

GEO Basic Geo Ontology

GPS Global Positioning System

GSN Global Sensor Network

hRest HTML for REST

HTTP Hypertext Transfer Protocol

ICO Internet Connected Object

ICT Information and communication technology

IoT Internet of Things

IRI Internationalised Resource Identifier

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

LODE Ontology for Linking Open Descriptions of Events

MSM Minimal Service Model

MUO Measurements Unit Ontology

N3 Notion 3

OAE Ontology of Adverse Events

OM Ontology of Units of Measure

OnTraJaCS Ontology Based Traffic Control Systems

OWL Web Ontology Language

OWL-S Web Ontology Language for Web Services

PPI Platform Provider Interface

PPO Privacy Preference Ontology

QUDT Quantities, Units, Dimensions and Data Types Ontologies

RDF Resource Description Framework

REST Representational State Transfer

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 6

S4AC Social Semantic SPARQL Security for Access Control

SA-REST Semantic Annotations for REST

SAWSDL Semantically Annotated WSDL

SOAP Simple Object Access Protocol

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications

SPARQL SPARQL Protocol and RDF Query Language

SSN Semantic Sensor Network

SSO Stimulus-Sensor-Observation pattern

TAC Triple Access Control

TAO Trust Assertion Ontology

UO Units of Measurement Ontology

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTO Urban Traffic Ontology

W3C World Wide Web Consortium

WAC Web Access Control

WADL Web API Definition Language

WSDL Web Service Definition Language

WSMO Web Service Modelling Ontology

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 7

1 INTRODUCTION

This deliverable specifies the data models and ontologies used in the VITAL project.
These models and ontologies are used in three different ways. First, they are used by
applications to communicate data between them and the VITAL platform, e.g.
querying sensor data. Second, they are used by the so-called platform provider
interface (PPI), which specifies an interface between VITAL and external IoT systems
that should be integrated into VITAL, e.g. a description of the services offered by the
IoT system. Third, they are used inside the VITAL platform to communicate data
between VITAL services, e.g. security level information, etc.
Due to this diverse set of users (and usage cases), VITAL has to cover a wide area
of data models. It has to specify how basic IoT sensors and sensor measurements
are modelled, e.g. using the Semantic Sensor Network (SSN) ontology. It has to
define how to describe IoT systems and IoT services, e.g. using the Minimal Service
Model (MSM). It has to identify data models for Smart City applications, e.g. for smart
transport systems. And it has to specify metadata for the VITAL system and its
components, e.g. to model security and monitoring information.
In the first version of this deliverable (D3.1.1) we analysed existing ontologies and
data models that could be used as the basis of the VITAL data models and extended
them as required by VITAL. We subdivided the work into different areas – sensors
and sensor measurements, Smart Cities, IoT systems and services, VITAL systems
and services. For each of these areas we discussed which ontologies were used for
modelling the required data (and why), presented necessary additional data items
and how to model them, and showed examples of the resulting descriptions. The
present version (D3.1.2) of the deliverable is an enhancement to the first version
(D3.1.1). In this version of the deliverable (D3.1.2) we present fine-tuned data
models, incorporate practical experiences and new requirements, and integrate new
data items that we identified during the project lifetime.
The document is intended for: (a) users of the VITAL platform that want to learn
about the used data models to develop applications, (b) IoT platform providers that
want to learn how to integrate their platform with VITAL, (c) the partners of the VITAL
consortium, allowing them to develop their components in a way that ensures easy
integration and interoperability, (d) external researchers and developers that want to
design and/or use data models in Smart City systems beyond VITAL, as well as (e)
the project reviewers to better understand the work done in the project.
This document is structured as follows. First we provide a brief overview on semantic
and linked data technologies. Then we present the different ontologies – as well as
necessary extensions – for the VITAL data model, e.g. for modelling sensor
measurements and sensor descriptions, for Smart Cities, for IoT systems and
services (including the data required for the PPI), as well as for the VITAL system
itself and its services. We finish the deliverable with a short conclusion and outlook
on further work during the VITAL project and beyond.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 8

2 LINKED DATA AND SEMANTIC DESCRIPTIONS

This chapter provides background information required to understand the remainder
of this deliverable. We give a short overview on linked data and its technologies.
First, we explain the basic concepts of Linked Data. After that we briefly present the
most commonly used technologies of Linked Data, namely RDF, SPARQL and
Ontologies. Finally, we discuss how Linked Data will be used in VITAL.
The term ‘Linked Data’ is usually applied to a set of techniques for publishing and
interlinking structured data on the Web. With Linked Data different kinds of data
sources can be integrated (see [HeBi11]). Linked Data is based on four principles,
explained in [HeBi11] and [HKHD09]:

1. The first principle is to use URIs as names for things. After the identification
of items in a domain of interest, they are described in the data set with their
properties and relationships. Each thing must be assigned a globally unique
name, usually an HTTP URI (since this makes it easy to enforce global
uniqueness). The fact that each thing has a globally unique name makes it
possible to integrate local data sets with remote sets that have been
developed independently.

2. The second principle is to use HTTP URIs, so clients can retrieve a
description of the names thing or resource using the HTTP protocol. For
humans the description can be provided as HTML, for machines it can be
provided as RDF triples.

3. The third principle is to use standards to provide information. This usually
means that standards like RDF or SPARQL are used to model and access
data. We explain the most important standards later in this chapter.

4. The last principle is to link to other URIs and to enable the possibility to
discover more things. That means that there should be external links pointing
to other data sources on the Web. By following these links, a larger
(distributed) data space can be explored automatically.

In a nutshell, Linked Data enables the implementation of generic applications
operating over a huge, interconnected (distributed) data space by using Web
standards and a common data model.

2.1 RDF

The most common data model used in the context of Linked Data is the Resource
Description Framework (RDF) [GaSc14], which we introduce in this subsection. We
first describe the basics of RDF, before discussing some of its advantages. RDF is a
popular standard for describing things (known as resources or entities). By itself it is
a graph-based data model that represents information as labelled directed graphs.
This graph is built of triples that describe the data. Each triple (s, p, o) consists of
a subject s, a predicate p and an object o. Take for example the information “The sky
has the colour blue”. This would be modelled as a triple with “Sky” as the subject,
“has colour” as the predicate and “blue” as the object. Note that the predicate in the
middle always denotes the relationship between subject and object. Both the subject
and the predicate are identified by URIs (assigning them globally unique identifiers)1

1 A subject can also be identified by a so-called blank node. A blank node is a local identifier.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 9

while the object can be a URI or a literal value (i.e. a string or a number). The triple in
our example could e.g. look like this (given in N-Triple notation):
<http://example.com/Sky> <http://example.com/hasColour> “blue”

Using RDF in a Linked Data context has some advantages. In the following we briefly
outline the most important ones of these advantages. The reader is referred to
[HeBi11] for more detailed information. Possible advantages are:

• If the identifiers of data items (both used as subjects and objects) and
vocabulary terms (used as predicates) are HTTP URIs, the RDF data model
can be used at global scale and anybody is able to refer to anything.

• Each RDF triple is included in the Web of Data and can be the starting point
for explorations in the data space, because any URI can be looked up in an
RDF graph over the Web.

• It is possible to set RDF links between data from different sources.
• Sets of triples can be merged in a single graph to combine information.
• Terms taken from different vocabularies can be mixed in a RDF graph.

As RDF is just a data model and not a data format, there are a number of data
formats that can be used to write RDF data, either directly as triples or as nodes that
can be mapped to RDF triples, e.g. RDF/XML [GaSc14], RDFa [HASB13], Turtle, N-
Triples and JSON-LD. In the VITAL Project JSON-LD is used.

2.2 JSON-LD

Many developers have little or no experience with Linked Data, RDF or common RDF
serialization formats such as N-Triples and Turtle. This produces extra overhead in
the form of a steeper learning curve when integrating new systems to consume
linked data. To counter this the project consortium decided to use a format based on
a common serialization format such as XML or JSON. Thus, the two remaining
options are RDF/XML and JSON-LD [SLK+14] [jsld]. JSON-LD was chosen over
RDF/XML as the data format for all Linked Data items in VITAL. JSON-LD is a JSON-
based serialisation for Linked Data with the following design goals:

• Simplicity: There is no need for extra processors or software libraries, just the
knowledge of some basic keywords.

• Compatibility: JSON-LD documents are always valid JSON documents, so
the standard libraries from JSON can be used.

• Expressiveness: Real-world data models can be expressed because the
syntax serialises a directed graph.

• Terseness: The syntax is readable for humans and developers need little
effort to use it.

• Zero Edits: Most of the time JSON-LD can be devolved easily from JSON-
based systems.

• Usable as RDF: JSON-LD can be mapped to / from RDF and can be used as
RDF without having any knowledge about RDF.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 10

From the above, terseness and simplicity are the main reasons JSON-LD was
chosen over RDF/XML. JSON-LD also allows for referencing external files to provide
context. This means contextual information can be requested on-demand and makes
JSON-LD better suited to situations with high response times or low bandwidth usage
requirements. We think that using JSON-LD will reduce the complexity of VITAL
development by (1) making it possible to reuse a large number of existing tools and
(2) reduce the inherent complexity of RDF documents. Ultimately, this will increase
VITAL’s uptake and success. In the following we provide a short overview of the main
JSON-LD features and concepts. More information can be found in [SLK+14].
The data model underlying JSON-LD is a labelled, directed graph. There are a few
important keywords, such as @context, @id, @value, and @type. These keywords
are the core part of JSON-LD. Four basic concepts should be considered:

• Context: A context in JSON-LD allows using shortcut terms to make the
JSON-LD file shorter and easier to read (as well as increasing its resemblance
with pure JSON). The context maps terms to IRIs. A context can also be
externalised and reused for multiple JSON-LD files by referencing its URI.

• IRIs: Internationalised Resource Identifiers (IRIs) are used to identify nodes
and properties in Linked Data. In JSON-LD two kinds of IRIs are used:
absolute IRIs and relative IRIs. JSON-LD also allows defining a common prefix
for relative IRIs using the keyword @vocab.

• Node Identifiers: Node identifiers (using the keyword @id) reference nodes
externally. As a result of using @id, any RDF triples produced for this node
would use the given IRI as their subject. If an application follows this IRI it
should be able to find some more information about the node. If no node
identifier is specified, the RDF mapping will use blank nodes.

• Specifying the Type: It is possible to specify the type of a distinct node with
the keyword @type. When mapping to RDF, this creates a new triple with the
node as the subject, a property rdf:type and the given type as the object
(given as an IRI).

2.3 SPARQL

Assuming that there is RDF data, then a developer needs a language to query it.
SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query language
and it is used to retrieve and manipulate data, which is stored in RDF. There are four
query variations that SPARQL can distinguish: SELECT, CONSTRUCT, ASK and
DESCRIBE queries. The most basic constructs of a SPARQL query are graph
patterns, explained in [HaSe13]. A basic graph pattern is similar to a RDF triple
except that the subject and predicate can be variables as well. The example in Figure
1 shows a query that will return the names of all pairs of people that know each
other.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 11

Figure 1: SPARQL example [LWS13]

2.4 Ontologies

In addition to RDF and SPARQL another very important technology in Linked Data
are ontologies. This section provides a brief introduction of ontologies and their
meaning.
Linked Data can be used in cases where data originates from different sources. To
integrate all data, be it from one or different sources, there have to be some rules.
Some rules determine how the RDF graph is to be built and how triples may be
connected or not. These rules are given by ontologies. An ontology specifies formally
the conceptualisation of a domain of interest. As the conceptualisation is formal, a
computer can automatically reason on it. There are practical ontologies for different
domains of interest. An ontology consists of concepts (also referred to as classes),
relations (also called properties), instances and axioms. It defines basic terms and
relationships.
To specify ontologies, the W3C published the Web Ontology Language (OWL2),
which builds on RDF. OWL facilitates mechanism for creating concepts, instances,
relations and axioms. Concepts can have super and sub concepts. Axioms provide
information about classes and properties. This topic is explained in detail by [DSW06]
and [NoMc01].
There are many ontologies that have already been developed. Reuse of existing
ontologies is crucial. If an existing ontology within the domain of use does not meet
all the requirements and some new data models arise they should be attached to the
existing ontology. This ontology grows by doing so and helps users on any of its
nodes to reach every other node in this ontology graph. The user will get much more
information as just of his own model – if he/she wants to.

2.5 Conclusion

Linked Data (using RDF, SPARQL and ontologies) helps to describe and integrate
data that is provided by different organisations in an interoperable way. This is ideally
suited for VITAL. VITAL envisages that a multitude of (independent) organisations

2 www.w3.org/2004/OWL

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name1 ?name2

FROM <http://example.org/foaf>

WHERE {

?person1 foaf:knows ?person2.

?person1 foaf:name ?name1.

?person2 foaf:name ?name2

}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 12

and entities deploy and operate different sensors and IoT systems, which produce
data (and offer functionality) that should be integrated in a platform agnostic way.
VITAL uses Linked Data standards for modelling and accessing data. RDF is used as
the basic data model. JSON-LD is used as the data format. SPARQL is used to
query data using complex sub graph patterns. Finally, ontologies are used to specify
our data formally. To use the potential of Linked Data for interconnecting with as
many external information sources as possible (making their information readily
available for VITAL developers), we use the good practice of reusing as many
ontologies as possible. We require ontologies in different areas. First, VITAL must
allow to model sensors and sensor measurements, which are the basis of any IoT
system. Second, VITAL has to provide means to model entities that are relevant to
Smart Cities. Third, VITAL must allow to model IoT systems and services that are
integrated into the VITAL platform. And finally, it must provide ontologies to model
the VITAL system itself. In the remainder of this deliverable we discuss how to model
these different parts using which ontologies. Table 1 provides an overview of the
main ontologies used in VITAL, their namespaces and the prefixes that we use to
refer to them.

Table 1: Ontology/ Language Prefixes
Prefix Ontology / Language Namespace

dcn Delivery Context ontology http://www.w3.org/2007/uwa/context/deliveryContext.owl#

dul DOLCE+DnS Ultralite ontology http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#

geo Basic Geo (WGS84) ontology http://www.w3.org/2003/01/geo/wgs84_pos#

hrest hRESTS ontology http://www.wsmo.org/ns/hrests#

msm Minimal Service Model
ontology

owl Web Ontology Language http://www.w3.org/2002/07/owl#

rdfs RDF Schema ontology http://www.w3.org/2000/01/rdf-schema#

sawsdl Semantic Annotations for
WSDL and XML Schema
ontology

http://www.w3.org/ns/sawsdl#

ssn Semantic Sensor Network
ontology

http://purl.oclc.org/NET/ssnx/ssn#

time OWL Time ontology http://www.w3.org/2006/time#

vital VITAL ontology http://vital-iot.eu/ontology/ns/#

wsl WSMO-Lite ontology http://www.wsmo.org/ns/wsmo-lite#

xsd XML Schema Definition http://www.w3.org/2001/XMLSchema#

qudt Quantities, Units, Dimensions
and Data Types Ontologies

http://qudt.org/schema/qudt#

foaf Friend of a Friend http://xmlns.com/foaf/

s4ac Social Semantic SPARQL
Security for Access Control

http://ns.inria.fr/s4ac/v2#

otn Ontology of Transportation
Networks

http://www.pms.ifi.lmu.de/rewerse-wga1/otn/OTN.owl

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 13

3 SENSORS AND MEASUREMENTS

Networked sensors and their measurements are one of the most important parts of
any data model for IoT systems and therefore also an integral part of the VITAL data
model. To better define the semantics of IoT data, a number of ontologies have been
developed on multiple layers of abstraction [w3c]:

(1) sensor-centric ontologies like the Ontonym sensor ontology [SKD+09], the
Sensor Data Ontology [ELS07], and OntoSensor [GoRu06];

(2) observation-centric ontologies like the Semantic Sensor Network (SSN)
Ontology [CBB+12], the Sensei Observation and Measurement Ontology
[WeBa09], and stimuli-centered ontologies [SJB+09], as well as

(3) context-centric ontologies like COMANTO [SRA06] and SOUPA [CPF+04].

Clearly it is impossible to specify a single ontology that defines the semantics of all
possible data items, as they are in many cases application (domain) specific. This
has lead to the development of rather abstract and complex ontologies that try to fit
all possible cases by providing a conceptual framework only, omitting concrete
instances like specific sensor models, etc. Such ontologies try to impose an
overarching structure onto IoT systems and their data, e.g. specifying abstract
metadata classes for stimuli, observations, measurements, sensors and features of
interest.
In practice such ontologies must be combined with additional ontologies to define
concrete instances of abstract concepts. As an example, while a generic sensor
ontology may specify how to model what a sensor is measuring, additional definitions
must be used to model a concrete location sensor.
In the following we first present, SSN as the generic sensor ontology that the VITAL
consortium has selected to be used in VITAL. We then discuss a number of further
ontologies as well as additional definitions that are used in VITAL to create concrete
data items.

3.1 The W3C Semantic Sensor Network Ontology

The Semantic Sensor Network (SSN) ontology [CBB+12] defines a conceptual
framework for describing sensors and observations. It was developed by the W3C
Semantic Sensor Network Incubator group (SSN-XG). In the following, the ontology
is explained in more detail to provide an understanding about its meaning by
presenting what it describes, the used pattern (SSO), and the four main perspectives.
Overall the SSN ontology is able to describe:

• sensors including their accuracy and capabilities,
• observations,
• methods for sensing,
• concepts for operating and survival ranges, and
• deployments.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 14

A sensor could be anything that observes, be it an electronic object, a virtual object
or a human. The ranges are used in the definition of sensors conjoined with the
performance of these sensors. The description of deployment includes the
deployment lifetime as well as the sensing purpose of the deployed macro
instrument.

3.1.1 Stimulus-Sensor-Observation Pattern

The ontology is built around an ontology design pattern called Stimulus-Sensor-
Observation (SSO) Pattern. This pattern describes the relationships between
sensors, stimuli and observations.

A sensor is modelled as a physical object (dul:PhysicalObject) and is able to
observe, transform and represent data. How it observes is defined in sensing
methods (imported from other ontologies).
A stimulus (dul:Event) is represented by a change or state which can be detected
and used by a sensor to measure some property. It is comparable to a proxy for an
observation property. A property, in turn, is an observable characteristic of a real-
world entity (ssn:FeatureOfInterest).
Observations are the connectors in the SSO pattern. They can link between the act
of sensing, a stimulus event, a sensor, a method, a result, an observed feature and a
property – and put them in an interpretative context. An observation is modelled as a
social construct (from dul:Situation).

3.1.2 Perspectives

For a better understanding of the ontology in terms of sensors and observations,
there are four main perspectives in the SSN ontology, explained in the following.

Sensor perspective

A sensor is described with a stimulus, a sensing method, observations and
capabilities. The environment can influence the performance of a sensor. This is
referred to as measurement capabilities. Such capabilities are i.e. accuracy,
measurement range, measurement precision, and measurement resolution. One
sensor can have many measurement capabilities, representing the capabilities of the
sensor in different conditions (observable properties of the sensor-environment).

Observation perspective

The observation perspective describes an observation. An observation includes a
context for interpreting incoming stimuli and puts the observation event (including the
stimulus) into an interpreting context. A context includes observed features,
properties, the observing sensor, the result and the used sensing method. As an
observation is a social construct, a stimulus event can be abstracted from its
(potential) interpretations. The sensing method can be a principle underlying a
sensor or a description of how the observations were done.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 15

System perspective

A system can have sub-systems or sub-concepts like devices and sensing devices.
There are operating and survival restrictions for a system, similar to the ones for
sensors and measurement capabilities, which are observable properties of the
system. The operating range specifies the range in which the system aims to
operate. The survival range is a range in which a sensor can bare without release a
lasting damage. The process of combining all life-cycle phases of a deployed system
is named deployment. It includes installation, maintenance and decommissioning of a
system.

Feature and property perspective

The feature and property perspective focuses on properties, more specifically on the
sensors that sense some distinct property or on the observations that were made
about a distinct property. Figure 2 provides the key concepts and relations of the
SSN ontology.

Figure 2: The SSN Ontology – key concepts and relations [CBB+12]

3.1.3 Conclusion

To sum up, the SSN ontology was built to describe sensors, sensing and
measurement capabilities of sensors as well as the resulting observations and
deployment. The ontology covers big parts of the SensorML and O&M standards.
SSN restricts itself to a conceptual view. It does not include specific definitions for
concrete sensors or domain areas. Therefore, to realise a concrete IoT system based
on the SSN ontology additional domain specific ontologies must be imported. For
example you would use a temperature ontology on top of the SSN ontology to model
a temperature sensor. VITAL uses the SSN ontology as the basis for modelling all

Figure 1: The SSN Ontology, key concepts and relations, split by conceptual modules. The concepts not depicted are largely properties for measurement capabilities,
and survival and operating ranges: accuracy, precision, resolution and the like. Note the central importance of sensors, observations and properties, brought out by
the SSO pattern.

ontology, the final report includes sections on the group’s
review of existing sensor and observation related ontologies,
mappings of terms from the ontology to other standards and
vocabularies, and material on the group’s other main deliver-
able on semantic annotation of OGC Sensor Web Enablement
standards.

The section of the final report on the ontology,
http://www.w3.org/2005/Incubator/ssn/wiki/

Incubator_Report#SSN_ontology, contains a full ex-
planation of the ontology with examples and notes on how to
use the ontology in many common scenarios. This article omits
the examples and concentrates on the broad structure and main
concepts and relations of the ontology.

1.2. Development of the SSN Ontology

The SSN ontology was developed by group consensus over a
period of some eleven months. First the core concepts and rela-
tions were developed (sensors, features and properties, observa-
tions, and systems), then measuring capabilities, operating and
survival restrictions, and deployments were added in turn and
finally the alignment to DOLCE-Ultralite and the realisation of
the core Stimulus-Sensor-Observation pattern were added.

For each addition, a group member developed a proposal, in-
cluding ontology extension and, often, examples, that was taken
to the group, debated in meetings, and on the group’s mailing
list, and, when ready, voted on as an addition to the SSN on-
tology. Discussions focused on, and improved, structural as-
pects as well as names, intended scope and meaning, and rele-
vant properties and restrictions. The decision to align to DUL
was made by group vote, and alignment choices were discussed
at meetings, but each alignment choice wasn’t made by group

vote, rather by consensus amongst group members involved in
the alignment. In general, concepts and object properties found
natural alignments in DUL, given the already developed defi-
nitions and intentions. The group choose not to place domain
and range restrictions on object properties, choosing instead to
restrict concepts in terms of defined properties.

In developing final documentation, the group further organ-
ised the ontology into ten conceptual modules of related con-
cepts. At this point, final English definitions and mappings
to sources and similar definitions were added to the ontology,
and scripts were developed to derive navigable documentation
for the wiki. Members of the group also developed and docu-
mented examples using the ontology in their projects.

A review of existing ontologies and standards (see
also Compton et al. [8]), development of use cases and the
participants’ projects, experience and expectations guided the
group in first deciding what would and would not be in the on-
tology and then in developing each part of the ontology.

1.3. The SSN Ontology

The ten conceptual modules and key concepts and relations
of the SSN ontology are shown in Figure 1. The full ontol-
ogy consists of 41 concepts and 39 object properties: that is,
117 concepts and 142 object properties in total, including those
from DUL.

The group decided that the ontology should contain concepts
and relations relevant only to sensors, leaving concepts related
to other, or multiple, domains to be included from other ontolo-
gies when the ontology is used. Doing so makes the ontology
single subject and so aims for modularity and reusability.

2

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 16

entities and activities related to sensor data and metadata in a Smart City. Necessary
extensions with additional ontologies (e.g. for location modelling or domain specific
measurements) are discussed in the remainder of this chapter.

3.2 Basic Concepts and Ontologies

In this section we present ontologies to model basic concepts like time, location and
unit of measurement. These will be used throughout the VITAL system. Thereafter
we discuss how to model sensors and sensor measurements in more detail.

3.2.1 Time

Temporal aspects are essential for any system addressing real world phenomena,
e.g. smart city IoT systems. Timestamps can be used to describe when a sensor
reading was taken or when it was valid. Multiple readings can be ordered by the time
of their occurrence. Clients may specify that they are interested in the current state of
an environment or in the state it had one week ago. To model this, VITAL has to
provide an ontology for time as well as temporal properties and relations. A well-
established ontology for this is OWL Time [HoPa06]. OWL Time allows describing of
temporal properties and relationships. It also supports time intervals as well as
durations, which are useful for example, when describing imprecise measurement
times as well as complex event specifications.
In VITAL, all timestamps, temporal properties and relations are described using OWL
Time. An example for a timestamp in a sensor measurement is given in Figure 3: .

Figure 3: Example Time Instant Specification with OWL Time

3.2.2 Location

Location in the physical world is another basic concept that has to be modelled in
VITAL. There is a multitude of different location models and ontologies available
today, including geographical and symbolic location models. VITAL follows a
practical approach to allow easy usage of the system while at the same time being
flexible enough for advanced use cases.
WGS84 coordinates are used as the basic location model, since they are the de-
facto standard for outdoor localisation using the GPS system. To model them, the

{
 "@context": {
 "time": "http://www.w3.org/2006/time#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "time:inXSDDateTime": {
 "@type": "xsd:dateTime"
 }
 },
 "@type": "time:Instant",
 "time:inXSDDateTime": "2014-08-20T16:47:32+01:00"
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 17

basic Geo (WGS84) vocabulary3 is used. Figure 4: provides an example. In addition,
symbolic names are often used as locations. VITAL allows using symbolic names
instead of WGS84 coordinates. VITAL uses the Linked GeoData system4 to model
more complex location concepts, including symbolic names, cell-based locations and
inter-location relationships. To map between symbolic names and WGS84
coordinates, VITAL uses the GeoNames system5. If a location is given as a symbolic
name, VITAL automatically tries to retrieve the WGS84 coordinates for it and
enriches the location data with them. The same is true the other way round.

Figure 4: Example WGS84 Location with the Basic Geo Vocabulary

3.2.3 Unit Of Measurement

Different properties in the VITAL data models represent physical magnitudes like
“length” or “weight”. Each one of these properties should be associated with an
unambiguous unit of measurement, e.g. “metre” or “kg”. Otherwise, cultural
differences may lead to clients interpreting values incorrectly, e.g. by assuming a
length is given in “feet”, while it is actually given in “metre”. While RDF allows
specifying the type of a given property value by tagging it with a special type identifier
(e.g. "13"^^<http://www.w3.org/2001/XMLSchema#int>), it does not support tagging
values directly with a unit of measurement. At the same time, there is currently no
single accepted ontology to model units of measurements in linked data. A number of
potential ontologies were found and four were chosen for detailed evaluation. We
discuss these four in the following.
Quantities, Units, Dimensions and Data Types Ontologies (QUDT) [HKHS14] is a
family of ontologies developed by TopQuadrant and sponsored by NASA designed to
formalize quantities, units of measurement, dimensions and types in RDF/OWL
formats. Due to this ambitious goal it is incredibly broad and precise. It models base
types such as length and time and builds derived types as a hierarchy (e.g.
Velocity = Length / Time, Kilometres Per Hour = Kilometres
Travelled / Time taken). Where appropriate, it also references similar
ontologies with sameAs and exactMatch relationships as well as DBpedia entries
where appropriate. This gives items associated with QUDT types a huge amount of
semantic information.

3 http://www.w3.org/2003/01/geo/
4 http://linkedgeodata.org/
5 http://www.geonames.org/

{
 "@context": {
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#"
 },
 "@type": "geo:Point",
 "geo:lat": "55.701",
 "geo:long": "12.552",
 "geo:alt": "4.33"
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 18

Similar to QUDT, the Units of Measurement Ontology (UO) [UO] establishes a
hierarchy of base and derived types. It contains a large number of types but is
missing some common derived types such as “Kilometres Per Hour”. It also fails to
link to external resources such as DBpedia where relevant which makes it less useful
that QUDT.
The Ontology of units of Measure (OM) [OM] stands out from the other evaluated
ontologies by using URIs as the value for the majority of each type’s information. This
immediately gives feedback to the user that values are unique. Thanks to each type
using the same signature, this lets the user easily compare types for similarities using
simple methods such as string comparison rather than needing to traverse the type
hierarchy. Each of these URIs (e.g. om:kilometre, om:dimension, om:length-
dimension) can be followed to obtain more information including other users of this
value. OM has a large number of derived types available but – just as UO – lacks
links to external resources such as DBpedia and other ontologies.
Finally, the Measurements Unit Ontology (MUO) [PoBe08] aims to solve the same
problem as the other evaluated ontologies by establishing a hierarchy of base and
derived types. However, it appears to have been abandoned before completion as of
time of writing.
VITAL chooses QUDT as the ontology for units of measurements due to the
impressive scope and amount of information available on each type as well as the
reputation of the maintainer and sponsoring party. QUDT is also actively maintained,
with the latest version that was released in March 2014. In addition, the links to
DBpedia provide a tight integration with a lot of further data items, both DBpedia itself
and in data sources linking to it – even more so since VITAL will use DBpedia to link
to information about cities (see Section 4.1). After the re-evaluation between Om and
QUDT, QUDT remains the best choice. An example for using QUDT is given in
Figure 7: .

3.3 Sensors

After presenting ontologies for basic concepts we can now discuss how to model
sensors, sensor measurements and their descriptions in VITAL. In general, VITAL
reuses and extends the SSN ontology and the Delivery Context (DC) ontologies.

A sensor is modelled as a VitalSensor, a subclass of ssn:Sensor and
dcn:Device6. According to the SSN, a “sensor can do (implements) sensing: that is,
a sensor is any entity that can follow a sensing method and thus observe some
Property of a FeatureOfInterest. Sensors may be physical devices, computational
methods, a laboratory setup with a person following a method, or any other thing that
can follow a Sensing Method to observe a Property” [ssn]. By using the SSN
ontology, VITAL can immediately describe sensors in detail, including aspects like
the properties that they observe, sensor locations, and sensor observations. The
SSN ontology also allows to model non-functional aspects of a sensor, e.g. its
accuracy or reliability, by adding a ssn:hasMeasurementProperty property to the
sensor description that points to a ssn:MeasurementCapability (or a subclass
of it). The reader is referred to the SSN ontology specification at [ssn] for more
information about the ontology. The DC ontology defines a dcn:Device as a class
that “represents a device in the delivery context” [FoLe09]. By using the DC ontology,

6 Note that dcn is the prefix of one of the DC ontologies.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 19

VITAL can reuse a highly detailed set of ontologies describing many aspects of
devices, including their software, their hardware as well as their networking.

Class: VitalSensor

 SubClassOf: ssn:Sensor, dcn:Device

3.3.1 Additional Ontology Definitions

In addition to the SSN and DC ontologies, VITAL defines an additional property for
sensors, hasLastKnownLocation. This property is a sub property of
dul:lastLocation as specified in the SSN ontology description. It links to a
location, which is the last known location of the sensor. Note that this property
replaces dul:hasLocation to make the property’s semantic less ambiguous in
VITAL. The property does not imply that this is the actual current location of the
sensor. If the sensor is mobile, it could have moved to a new location after the
description was created. If the property is not available in a sensor description, then
the location of the sensor may not be known. However, a client may be able to
access the current location using a so-called localizer service (see Section 6.5.4).

ObjectProperty: hasLastKnownLocation

 SubPropertyOf: dul:hasLocation

 Domain: VitalSensor

 Range: dul:Entity

Note that the location of a sensor can be modelled with different types as specified
before, e.g. as a geo:Point in case GPS coordinates are used. To be as flexible as
possible, we use the generic dul:Entity class to represent all different location types
here. It is taken from the DOLCE+DnS Ultralite (DUL) ontology and defines it as
“[a]nything: real, possible, or imaginary, which some modeller wants to talk about for
some purpose.” [dul]
In addition to the basic description of a sensor, some VITAL services may require
additional information. Properties and classes to model this information are described
in Chapter 6 of this deliverable.

3.3.2 JSON-LD Definitions

Note that since Linked Data in VITAL is always formatted as JSON-LD we can
introduce some additional definitions (in a JSON-LD context section as

shown in
Figure 5:) that do not change the used ontology or the resulting RDF triples but align
the JSON-LD representation more closely to ‘normal’ JSON and thus makes it easier
for developers to work with the data. We use this approach repeatedly in this
document. As can be seen in the figure, we first specify that all JSON keys that do
not specify a prefix will be expanded to URIs in the VITAL ontology namespace. This
results in more compact files with less clutter. Then we define that the key uri will be

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 20

mapped to a JSON-LD node identifier (@id). The node identifier is used to create the
URI that is used as the subject in RDF triples.

Figure 5: JSON-LD Context for Sensor

Similarly, we specify that the key type will be mapped to the JSON-LD keyword
@type. This results in an RDF triple being created that specifies the RDF type of a
node. To further simplify the JSON-LD file, we specify that the key name will be
mapped to rdfs:label and the key description will be mapped to
rdfs:comment. We then specify a number of prefixes that can be used in the
JSON-LD description to reduce the length of keys by specifying them as so-called
terms. Terms are automatically expanded using the provided prefix URI. As an
example, the term geo:lat would be expanded to http://www.w3.org/2003/
01/geo/wgs84_pos#lat. Finally we specify type specifications that declare that a
value given for the key ssn:madeObservation or hrest:hasAddress7 should be
mapped to a node id instead of a string. All these mappings are completely
transparent to developers and can be ignored by clients. They are only relevant if the
JSON-LD file is mapped to RDF triples internally. Together, they reduce the
complexity of the resulting JSON-LD file and make it both smaller and easier to read
and understand for JSON developers.

3.3.3 Sensor Description Example

7 see Section 5.2 for more information about hrest and the hRESTS ontology.

{
 "@context": {
 "@vocab": "http://vital-iot.eu/ontology/ns/",
 "vital": "http://vital-iot.eu/ontology/ns/",
 "lsm": "http://lsm.deri.ie/ont/lsm.owl#",
 "ssn": "http://purl.oclc.org/NET/ssnx/ssn#",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "msm": "http://iserve.kmi.open.ac.uk/ns/msm#",
 "hrest": "http://www.wsmo.org/ns/hrests#",
 "hard": "http://www.w3.org/2007/uwa/context/hardware.owl#",
 "soft": " http://www.w3.org/2007/uwa/context/software.owl#",
 "id": "@id",
 "type": "@type",
 "name": "rdfs:label",
 "description": "rdfs:comment",
 "ssn:madeObservation": {
 "@type": "@id"
 },
 "status": {
 "@type": "@id"
 },
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 21

To illustrate the resulting sensor descriptions, we give a short example for a sensor
description (in JSON-LD format) In
Figure 6: . The example uses an external version of the context specification for
VITAL sensors that we have just described. This further reduces the size of the
JSON-LD file. VITAL clients can access the external context file at http://vital-
iot.eu/contexts/sensor.jsonld if necessary. However, we expect that this
will not be necessary for most scenarios and normal operation. The context file can
also be cached on the client side, because it is independent of a specific VITAL

sensor and can be reused.

Figure 6: Example Sensor Description

In the example, we describe a sensor with its name, its type (a VitalSensor), its
URI in the VITAL system and its description. The sensor provides a last known
location as a GPS (WGS84) location (of type geo:Point). It also specifies that it
observes two different parameters, the light level and the temperature, as well as
URIs to retrieve current measurements for both. Finally, a sensor may specify
observations it made in the past, in this case an observation with ID
http://www.example.com/ vital/sensor/123/obsvn/1.

3.4 Sensor Measurements

Similarly to sensors, VITAL uses the SSN ontology to model sensor measurements.
A measurement is modelled as an ssn:Observation. An example can be seen in
Figure 7: . Figure 8: shows the JSON-LD context used by the example. The
observation contains a link to an observed property (using ssn:
observationProperty) to specify what the observation is measuring. In addition,
it specifies when the measurement was taken (ssn:observationResultTime), at
which location (dul:hasLocation) in WGS84 format, the quality of the
measurement (ssn:observationQuality), as well as the measured value

{
 "@context": "http://vital-iot.eu/contexts/sensor.jsonld",
 "name": "TemperatureSensor No.123",
 "type": "VitalSensor",
 "description": "This is an example sensor",
 "id": "http://www.example.com/vital/sensor/123",
 "hasLastKnownLocation": {
 "type": "geo:Point",
 "geo:lat": "53.2719",
 "geo:long": "-9.0489"
 },
 "ssn:observes": [
 {
 "type": "openiot:Temperature",
 "id": "http://www.example.com/vital/sensor/123/temperature"
 }
]
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 22

(ssn:observationResult), 21.0 Degree Celcius, with the unit of measurement
specified with the QUDT ontology.

Figure 7: Example Measurement

{
 "@context": "http://vital-iot.eu/contexts/measurement.jsonld",
 "uri": "http://www.example.com/vital/sensor/123/obsvn/1",
 "type": "ssn:Observation",
 "ssn:observationProperty": {
 "type": "http://lsm.deri.ie/OpenIoT/Temperature"
 },
 "ssn:observationResultTime": {
 "inXSDDateTime": "2014-08-20T16:47:32+01:00"
 },
 "dul:hasLocation": {
 "type": "geo:Point",
 "geo:lat": "55.701",
 "geo:long": "12.552",
 "geo:alt": "4.33"
 },
 "ssn:observationQuality": {
 "ssn:hasMeasurementProperty": {
 "type": "Reliability",
 "hasValue": "HighReliability"
 }
 },
 "ssn:observationResult": {
 "type": "ssn:SensorOutput",
 "ssn:hasValue": {
 "type": "ssn:ObservationValue",
 "value": "21.0",
 "qudt:unit": "qudt:DegreeCelsius"
 }
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 23

Figure 8: JSON-LD Context for Measurement

3.5 Conclusion

Sensors and sensor measurements are a central part of each IoT data model. VITAL
uses (and extends) the well-established SSN ontology to model these information
items, including meta-information like the type of measurements a sensor can
perform or the quality of a measurement. To model basic concepts like time, location
and unit of measurement, VITAL relies on additional ontologies, like OWL Time and
the basic geo ontology. Together with the SSN ontology this provides the means to
specify sensors and measurements in a platform agnostic way, as required by
VITAL. It also allows us to link them with other systems and information sources that
use the same or similar ontologies, like the FP7 project OpenIoT. This also enables
the reuse of existing tools and software components for VITAL, without the need to
implement everything from scratch. An example for this is the VITAL data
management component, which will be based on OpenIoT.
However, we cannot yet describe real physical instances of sensors (or
measurements), since we do not have a common ontology for specific values for our
descriptions. As an example, while we know how to specify what property of the real
world a sensor is observing (by using ssn:observes) we do not have a
specification for modelling real instances of such properties, e.g. temperature, speed
or light level. These are application domain specific. This issue is discussed further in
the next chapter.

{
 "@context": {
 "@vocab": "http://vital-iot.eu/ontology/ns/",
 "vital": "http://vital-iot.eu/ontology/ns/",
 "lsm": "http://lsm.deri.ie/ont/lsm.owl#",
 "ssn": "http://purl.oclc.org/NET/ssnx/ssn#",
 "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "time": "http://www.w3.org/2006/time#",
 "qudt": "http://qudt.org/vocab/unit#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "id": "@id",
 "type": "@type",
 "time:inXSDDateTime": {
 "@type": "xsd:dateTime"
 },
 "qudt:unit": {
 "@type": "@id"
 }
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 24

4 SMART CITIES

‘Smart City’ is quite a broad term that represents many different aspects of a city's
population, economy and [CDN09]. For this document, we define a Smart City as one
that uses ICT to integrate its different capabilities and enhance the quality of life for
its population. Smart cities have many capabilities that must be modelled as part of a
smart city ontology. The most active and relevant producers of data come under the
following headings (see also VITAL deliverable D2.1 [SoKa13]):

• Transport – e.g. dynamic route calculation informed of accidents and
congestion, integration of transport methods such as bus, tram and subway for
public transport users.

• Energy – e.g. optimization of light levels, reporting of faults.
• Emergency Services – e.g. using real-time traffic data to inform emergency

response units and to provide real-time information on accident and crimes.
• Waste Management – e.g. detection of full bins as well as automated

reporting of missing/damaged bins.
• Air and Water – e.g. reporting of high pollution in air and water, radiation

levels reporting of water leaks, automatic irrigation of parks and green areas.
• Recreation – e.g. provide data on local social events as well as nearby

facilities, produce data on large events such as concerts and sports games to
inform public transport and law enforcement systems of potential increased
activity.

• Smarter Working – Mobile workers require optimal working environments to
be available at short notice and without any difficulties to use. Along with the
available work desks in an area additional information is also shown
associated with each workspace e.g. anticipated air quality, temperature,
humidity, and footfall in the requested time window and location etc.

Other capabilities such as smart homes (including advanced integration cases such
as those designed for OAPs and the disabled) and smart business and industry are
mostly consumers but may also provide alerts (e.g. factories may provide notice
when beginning a water-intensive task).
The VITAL use cases (see VITAL deliverable D2.2 [SoKa14]) so far focus on (smart)
transport and traffic management and smart working. Therefore, in the following we
discuss how to model data items and properties that are relevant for smart traffic
scenarios. Clearly, VITAL is not restricted to smart transport scenarios. A user who
would like to use VITAL for other smart city aspects can do so by specifying
additional ontology elements. Due to the nature of Linked Data, these additional
elements can be added at any time without the need to redesign the system. In the
following we first discuss briefly how VITAL includes general information about cities
that may be useful for different aspects of smart city applications. After that we focus
on modelling smart transport and smart working related information.

4.1 Cities

VITAL obtains the majority of its semantic information on cities from DBpedia, using
the classic DBpedia dataset for most information with the option of using DBpedia

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 25

live for information that updates more frequently. It is also encouraged to link real
places and services in cities back to DBpedia to improve the amount of knowledge
available. For example, while Camden Road would be modelled as an otn:Road as
part of a smart transport system, it should also link to dbpedia:Camden_Road.

4.2 Smart Transport

Smart Transport is an important topic in Smart Cities and covers a wide range of
domains. Some examples include tracking pedestrian congestion in an area through
footfalls per minute, smart traffic light systems or route recommendation to empty
parking spaces capable of reserving a spot en route. There are also opportunities for
integrated solutions with other smart city services such as automatic contact of
emergency services in the case of an accident and the ability to detour traffic away
from the scene through the use of traffic light control.
In this section, we’ll first discuss how traffic infrastructure is modelled in VITAL before
going on to discuss what kind of services can be built on top of this infrastructure.
Finally, we’ll discuss how VITAL will showcase the power of integrated IoT smart city
solutions.

4.2.1 Transport Infrastructure

VITAL models transport infrastructure using a combination of ontologies. The core of
these is the Ontology of Transportation Networks (OTN) [OTN]. This ontology allows
easy modelling of a transport network graph with connections between infrastructure
such as bus and train stations as well as events such as accidents and blocked
passages.
Modelling public transport was one of OTN’s main goals during its design so it is
trivial to integrate different public transport methods. For example, a journey that
requires a 20 min train journey, 3 minutes walking to a regional bus station, a 1 hour
bus journey, 2 minutes walking to a city bus service, a 5 minute bus journey and 4
minutes walking to destination can be described as a route through a single graph.
This graph representation of public transport can be used by services such as those
described in Section 4.2.2 to plan journeys. Another example would be providing
automatic detours in the case of accidents and construction and using an
ambulance’s projected route to change traffic lights to red based on its current
location with dynamic recalculation if the ambulance changes from the suggested
route.
VITAL also aims to extend OTN to allow new public and private transport types.
Some common examples include locations of taxi offices and bicycle racks but this
will also allow the addition of less common methods of transport such as rickshaws,
which are extremely popular in some countries and tour buses, which may be
preferable to tourists.
Each node in the OTN graph is also augmented with approximate longitude and
latitude, corresponding DBpedia information and URIs for any sensors located at this
location.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 26

4.2.2 Transport Services

Route recommendation services aim to provide a user with an optimal route to their
destination, generally using live traffic data and other available information such as
construction works and accidents to reach this solution. There are a number of high-
profile examples of these such as Google Maps, Bing Maps and Nokia’s Here Maps.
However, while these solutions attempt to take external factors such as those
previously mentioned into account they cannot take advantage of any knowledge of
other drivers’ routes. Smart cities do not need to suffer this limitation.
The Ontology based Traffic Jam Control System (OnTraJaC) [HaMa12] is designed
to recommend routes to avoid traffic jams and support shorter trip times. It achieves
this by taking into account all subscribed vehicles during route recommendation and
is able to recommend a route to each user that does not conflict with others.
This approach should produce the optimal route for each subscribed user but also
has some interesting opportunities for future expansion and integration with other
Smart City services. For example, this system could be used to tweak subscribed
user’s routes when they conflict with the path of an emergency vehicle. In Section
4.2.1 it was suggested that traffic light infrastructure could be integrated with
emergency response systems. However, this would not affect users driving along the
emergency vehicles path, only those on other routes that would cross it at a junction.
By combining this approach with the route recommendation service, subscribed
users could be recommended to turn off the emergency vehicles projected route just
before the emergency vehicle reaches their position. This would prevent the
emergency vehicle having to potentially overtake them and would be safer for both
subscribed users and emergency response teams.
While there are ontologies that support similar functionality to existing personal route
recommendation systems – such as the Urban Traffic Ontology [UTO] – these should
in theory suggest the same route as OnTraJaCS would for the case of n = 1, where
n equals the number of subscribed users taken into account during route calculation.
Therefore, we have decided there is no need for any other route recommendation
ontology and instead we should simple accommodate a scenario where OnTraJaCS
operates with knowledge of only one user.
To support public transport route planning many ontologies were examined but most
have their own model of how the transport network should be modelled. Since VITAL
has chosen to use a combination of ontologies to represent transport infrastructure
and public transport facilities, chiefly OTN, it is non-trivial to integrate these
ontologies with existing ones. For the purpose of transport and traffic scenarios and
use cases (specifically in Camden Town), VITAL models the following classes:

Class: Line

Class: BusArrival

 SubClassOf: ssn:Property

Class: RailArrival

 SubClassOf: ssn:Property

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 27

Class: TubeArrival

 SubClassOf: ssn:Property

Class: AvailableBikes

 SubClassOf: ssn:Property

To describe general description of Line, VITAL supports two new properties. These
properties are:
ObjectProperty: name

Domain: Line

Range: dul:Entity

ObjectProperty: direction

Domain: Line

Range: dul:Entity

4.2.3 Traffic Management

Safety on the roads is one of the main issues faced by the governments. In order to
ensure safe and efficient use of the road network, traffic management is generally
performed by specialized Traffic Control Centres (TCC). These centres maintain and
operate Intelligent Transportation Systems in the cities and include Traffic Monitoring
and Supervision Cameras, Radar Detectors, Sensors, Variable Message Signs
(VMS, VTS), and similar systems. Still most of the monitoring and operational tasks
are done by human effort in these centres. There are traffic operators and call centre
staff monitoring cameras and observing data coming from the sensors in order to
predict incidents. Therefore there is a high demand for intelligent smart traffic
management systems. Some of the important smart traffic management
functionalities are; traffic speed prediction, congestion control, incident detection,
identification sensor validation, automatic detection of sensor failures. Due to the
number of cars in traffic and long-last travel times especially in big cities giving
instant travel time is mostly insufficient. Instead, it is required to provide estimated
travel time for long trips and for dense traffic situations. Most of the time people need
predictions in order to schedule their travel in big cities. Therefore traffic prediction
functionality plays an important role in city dwellers life. The instant travel information
and predictions are obtained by using the sensor data. Hence the reliability of the
sensor measurements is very important. A faulty sensor could cause a failure, and
must be detected as fast as possible. On the other hand detection of an incident in
traffic is another important functionality that a smart traffic management system
should include. The incident detection can be obtained on the sharp decrease in the
speed of the vehicles passing by a sensor.
Smart traffic management system’s functionalities will benefit from VITAL. The
sensor data reaching the VITAL platform will be obtained by the smart traffic
management systems in JSON-LD data format. In order to achieve some of these
functionalities using VITAL a use case application for Istanbul is planned. The

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 28

application will use the functionalities of the platform and will be used for traffic
prediction, incident detection, and identification of faulty sensors. There have been
no data models selected for traffic management application as yet. The detailed
descriptions of the application and it’s integration with VITAL is given in Deliverable
6.2.1.

4.3 Smart Working

The structural development in advanced economies is influencing the change in
working patterns with (increasingly) employees more likely to work on the move.
Mobile workers require optimal working environments to be available at short notice
and without any difficulties to use. Owners of these suitable environments require
optimal occupancy. To meet these requirements, the smarter working application
(powered by VITAL) will use the following classes (as sub classes of
ssn:Property):

Class: AvailableDesks

SubClassOf: ssn:Property

Class: Availability

SubClassOf: ssn:Property

Each available workspace in the system that meets the specified criteria is shown on
a map and/or list. Additional information is also shown associated with each
workspace e.g. anticipated air quality, temperature, humidity, and footfall in the
requested time window and location etc. In order to model additional information,
following classes are defined as sub classes of ssn:Property:
Class: CarbonMonoxide

SubClassOf: ssn:Property

Class: Ozone

SubClassOf: ssn:Property

Class: Footfall

SubClassOf: ssn:Property

Should the additional information need to be added and modelled by introducing new
classes, they will be added as the scenarios and use cases make progress.

4.4 Conclusion

Modelling the infrastructure and available facilities and services of a smart city is a
non-trivial task. VITAL therefore aims to cover two of the most important
components: Smart Transport (and Traffic management) and Smart Working. Smart

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 29

Transport includes modelling the cities transport infrastructure and services such as
route recommendation, but also explores integration with other smart services such
as emergency response to showcase the power of integrated smart city solutions.
Future services can then be integrated with VITAL’s traffic infrastructure from the
beginning, which will allow scenarios such as automatic route calculation to entities
such as burst water pipes and fallen electricity lines for repair teams. Smart Working
includes modelling available workspaces to support mobile workers.

5 IOT SYSTEMS AND SERVICES

VITAL integrates existing IoT systems (i.e. deployed platforms) and allows clients
(applications as well as VITAL system services) to access (meta) data and services
of such systems. So far the consortium has selected four platforms for which
example deployments will be integrated as a proof of concept: X-GSN, Reply H1,
INRIA FIT and Xively. To integrate systems and work with them, VITAL needs a set
of models to describe IoT services, their data and services. For data, we will use the
models presented in Chapter 3. In the remainder of this chapter we present the
models used for an IoT system itself as well as for generic IoT services.

5.1 IoT Systems

VITAL models an IoT system as a subclass of ssn:System with a number of
additional properties. An IoT system description always includes a basic set of
properties that describe general aspects of the system, e.g. its operator. In addition,
a system description may specify a set of IoT services that it offers.

Class: IotSystem

 SubClassOf: ssn:System

5.1.1 General Metadata

To describe general metadata about the system, VITAL supports three new
properties. These properties are:

• status, pointing to a status description for the system (this property must be
available 0..1 times),

• operator, pointing to the entity that is responsible for operating this system
(this property must be available 0..n times),

• serviceArea, pointing to the spatial context of this system, e.g. the city it is
operating in (this property must be available 0..n times).

ObjectProperty: status

 Domain: IotSystem

 Range: OperationalState

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 30

ObjectProperty: operator

 Domain: IotSystem

 Range: dul:Entity

ObjectProperty: serviceArea

 Domain: IotSystem

 Range: dul:Entity

Note that status provides only coarse-grained aggregated information about the
overall state of the system. The status of an IoT system might change during its
lifecycle, the consortium has decided to represent its values as observations of a
virtual sensor. Thus, VITAL compliant systems that want to expose their current
operational stat must manage a virtual sensor of type MonitoringSensor (sub class of
VitalSensor):

Class: MonitoringSensor

 SubclassOf: VitalSensor

Figure 9: Example IoT System Description

{  
"@context": "http://vital-iot.eu/contexts/system.jsonld",
"id": "http://example.com",  
"type": "vital:VitalSystem",  
"name": "Sample IoT system",  
"description": "This is a VITAL compliant IoT system.",
"operator": "http://example.com/people#john_doe",
"serviceArea": "http://dbpedia.org/page/Camden_Town",
"sensors":  

[
"http://example.com/sensor/1",
"http://example.com/sensor/2"

],
"services":

[
"http://example.com/service/1",
"http://example.com/service/2",
"http://example.com/service/3"

],
"status": "vital:Running"

}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 31

More detailed information about the state of a system may be retrieved from an
optional monitoring service. In case an IoT system does not provide any such
service, the system description may need to be modified manually.

In addition, a VitalSystem supports properties that are independent of VITAL,
namely rdfs:label (to specify a human readable name for a system) and
rdfs:comment (to give a human readable description of a system).

Figure 9 shows an example for such an IoT system description. Note that the
example is using the external JSON-LD context shown in

Figure 10.

Figure 10: JSON-LD Context Specification for Systems

In the example, the system description first associates a name (“Camden Reply
System”) and a description (stating that this is a deployment of the Reply H1 IoT
system for Camden Town) with this system. Note that – similar to before – name,
description and uri are identifiers that have been specified in the context to
make the JSON-LD file cleaner and easier to read for developers with previous
experience with JSON. The context maps them to rdfs:label, rdfs:comment,
and @id (JSON-LD node identifiers), respectively. In the example, the node identifier
http://www.reply.com/camden identifies this system description and – following

{
 "@context": {
 "@vocab": "http://vital-iot.eu/ontology/ns/",
 "vital": "http://vital-iot.eu/ontology/ns/",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "msm": "http://iserve.kmi.open.ac.uk/ns/msm#",
 "hrest": "http://www.wsmo.org/ns/hrests#",
 "id": "@id",
 "type": "@type",
 "name": "rdfs:label",
 "description": "rdfs:comment",
 "status": {
 "@type": "@id"
 },
 "operator": {
 "@type": "@id"
 },
 "serviceArea": {
 "@type": "@id"
 },
 "services": {
 "@id": "vital:providesService",
 "@type": "@id"
 },
 "sensors": {
 "@id": "vital:managesSensor",
 "@type": "@id"
 }
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 32

Linked Data good practice – specifies the location where a client can retrieve the
description via HTTP.
The system in the example is operated by CTU (operator). The serviceArea is
identified by its DBPedia URI. This allows a client to query the DBPedia for more
information about Camden and to integrate this information. The system is currently
in the Running state (see Section 5.1.2 below for a more detailed explanation of
OperationalState).

5.1.2 OperationalState

OperationalState specifies the operational state of a system (or other entities,
e.g. services). So far, the following states are defined in VITAL as sub classes of
OperationalState:

• Operational: The entity is currently not running (and may remain in this
state indefinitely) but could be started if needed (please note that this does not
guarantee that starting it will succeed),

• StartingUp: The entity is in the process of starting and will (probably) be
running soon,

• Running: The entity is currently operating and available to use,
• ShuttingDown: The entity is in the process of shutting down and will soon be

stopped,
• Unavailable: The entity is currently not operating and cannot be started at

this time. Usually this implies that a manual intervention is necessary to return
the entity to the Operational state.

Should additional states be needed, they will be added in later versions of this
deliverable.

Class: Operational

 SubClassOf: OperationalState

Class: StartingUp

 SubClassOf: OperationalState

Class: Running

 SubClassOf: OperationalState

Class: ShuttingDown

 SubClassOf: OperationalState

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 33

Class: Unavailable

 SubClassOf: OperationalState

5.1.3 Provided IoT Services

In addition to the metadata discussed so far, an IoT system may offer a set of IoT
services to access its functionalities. Typical examples of such services are data
access services, data stream management, monitoring, discovery, and configuration
services etc. Each system may offer different services, making it impossible to define
a fixed set of services. VITAL therefore provides the means to specify a large variety
of IoT services with generic service specification ontology. More information about
this can be found in Section 5.2. To allow an IoT system to link to descriptions of
provided IoT services, VITAL introduces a new property providesService.

ObjectProperty: providesService

 Domain: IotSystem

 Range: msm:Service

Figure 11 shows an example that provides description of an IoT system that offers
three IoT services.
The first service (of type ConfigurationService) allows clients to get and set
configurations of an IoT system. The second service (of type MonitoringService)
allows clients to call a number of monitoring functionalities offered by an IoT system
e.g. the status of an IoT system, the status of sensors that an IoT system manages,
performance metrics of an IoT system, etc. The third service (of type
ObservationService) allows clients to retrieve ICO observations made available
by an IoT system.
In the following we describe IoT services and the ontologies used for them in more
detail. To do so, we first discuss existing ontologies. Then, we specify how to
describe IoT services in VITAL.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 34

Figure 11: IoT System with Provided Services Description

[
 {
 "@context": "http://vital-iot.eu/contexts/service.jsonld",
 "id": "http://example.com/service/1",
 "type": "vital:ConfigurationService",
 "operations":
 [
 {
 "type": "vital:GetConfiguration",
 "hrest:hasAddress": "http://example.com/service/1",
 "hrest:hasMethod": "hrest:GET"
 },
 {
 "type": "vital:SetConfiguration",
 "hrest:hasAddress": "http://example.com/service/1",
 "hrest:hasMethod": "hrest:POST"
 }
]
 },
 {
 "@context": "http://vital-iot.eu/contexts/service.jsonld",
 "id": "http://example.com/service/2",
 "type": "vital:MonitoringService",
 "msm:hasOperation":
 [
 {
 "type": "vital:GetSystemStatus",
 "hrest:hasAddress": "http://example.com/system/status",
 "hrest:hasMethod": "hrest:POST"
 },
 {
 "type": "vital:GetSensorStatus",
 "hrest:hasAddress": "http://example.com/sensor/status",
 "hrest:hasMethod": "hrest:POST"
 },
 {
 "type": "vital:GetSupportedPerformanceMetrics",
 "hrest:hasAddress": "http://example.com/system/performance",
 "hrest:hasMethod": "hrest:GET"
 },
 {
 "type": "vital:GetPerformanceMetrics",
 "hrest:hasAddress": "http://example.com/system/performance",
 "hrest:hasMethod": "hrest:POST"
 },
 {
 "type": "vital:GetSupportedSLAParameters",
 "hrest:hasAddress": "http://example.com/system/sla",
 "hrest:hasMethod": "hrest:GET"
 },
 {
 "type": "vital:GetSLAParameters",
 "hrest:hasAddress": "http://example.com/system/sla",
 "hrest:hasMethod": "hrest:POST"
 }
]
 },
 {
 "@context": "http://vital-iot.eu/contexts/service.jsonld",
 "id": "http://example.com/service/3",
 "type": "vital:ObservationService",
 "operations":
 [
 {
 "type": "vital:GetObservations",
 "hrest:hasAddress": "http://example.com/sensor/observation",
 "hrest:hasMethod": "hrest:POST"
 }
]
 }
]

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 35

5.2 IoT Services

In VITAL, an IoT system does not only provide access to IoT data (e.g. sensor
measurements) but may offer a set of distinct and heterogeneous IoT services. An
IoT service may be generic, e.g. a service to discovery ICOs or to access filtered
data, or application specific, e.g. a service to reserve a parking space in a Smart City
IoT system. In fact, VITAL models all functionality that can be exposed by an IoT
system and can be accessed and used by a client as an IoT service, including data
access, e.g. reading a sensor measurement. VITAL therefore specifies a flexible data
model to specify all different kinds of IoT services. This allows extending the system
in case a provider of an IoT system wants to expose new application specific
services. In addition to this, VITAL provides concrete instances of IoT service
specifications for generic (system) IoT services like the aforementioned discovery
and filtering services. Service providers can extend these instances for their specific
IoT system, but they should use instances specified by VITAL to model services if
possible. In the following we briefly discuss different existing ontologies and
modelling approaches for services, before describing the VITAL IoT service model in
more detail.

5.2.1 Service Ontologies And Semantic Description Languages

There are a number of existing ontologies and specification languages to model
services, among them the Web Service Definition Language (WSDL) and the Web
API Definition Language (WADL) for specifying (SOAP-based) web services and
(REST-based) web APIs (also known as RESTful services). Both WSDL and WADL
are not using ontologies. Ontology-based approaches (see [VHM+14] for a recent
survey) can be classified in three main groups: approaches that aim at extending
generic WSDL-based service descriptions with semantic data, approaches that
concentrate on extending descriptions of RESTful services with semantic data, and
approaches that concentrate on providing a conceptual framework for service
descriptions. In the following we briefly discuss some of the existing approaches and
discuss their applicability to the VITAL use case. In general, VITAL aims at modelling
IoT services with a focus on simplicity, minimalism, reuse as well as support from an
active community.

WSDL-based Semantic Service Description Languages

WSDL-based approaches to describe semantic web services, like OWL-S [MBH+04],
Semantically Annotated WSDL (SAWSDL) [FaLa07], and the Web Service Modelling
Ontology (WSMO) [LPR05] focus on generic and complex semantic extensions of
WSDL to describe SOAP-based web services. As an example, OWL-S consists of
three parts that are used to specify three aspects of web services: the service profile
(specifying what the service does for potential clients, e.g. name, description and
quality of service levels), the process model (specifying how to use a service on a
semantic level, e.g. input and output messages), and the service grounding
(specifying details on how to access a service on a technical level, e.g. protocols and
addresses). To fully specify the service grounding, OWL-S relies on an additional
(external) specification. Most commonly WSDL is used. Despite the long availability
of approaches such as OWL-S (having been published as a W3C member
submission in 2004), they have received limited uptake and do not take into account
newer developments and technologies such as REST.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 36

Light-weight Semantic Service Description Languages

To accommodate for this, a number of newer specifications have been developed.
Microformats such as Semantic Annotations for REST (SA-REST) [GRS10] and
HTML for restful Services (hRESTS) [KGV08] embed additional metadata into
(X)HTML-based textual descriptions of (usually RESTful) web services. This
metadata can be used to describe services in more detail and allows creation of
machine understandable descriptions that can be used for discovery and automatic
orchestration. MicroWSMO [KVF09] extends hRESTS with the ability to enhance a
service description with external semantic descriptions as well as transformation
routines to map between raw and semantic data. It is similar to SAWSDL but
simplified to be used for RESTful services, only.

Higher Layer Conceptual Integration Frameworks

WSMO-Lite [VKVF08] is a lightweight subset of WSMO that provides a number of
semantic annotations to describe web services. It can be used in conjunction with
different lower layer ontologies and languages, e.g. on top of SAWSDL/WSDL for
SOAP services and on top of MicroWSMO/hRESTS for RESTful services.
The Minimal Service Model (MSM)8 [KGV08] [PML+10] is a very lightweight ontology
for the semantic modelling of Web service descriptions. It consists of only a few
general concepts (e.g. a service and an operation) that are not detailed further in
MSM. Instead, MSM provides a conceptual framework to integrate semantic
descriptions that have been created using different other approaches. To actually
specify a service, MSM must be combined with other ontologies, e.g. hRESTS,
MicroWSMO and WSMO-Lite. While WSMO-Lite integrates semantic annotations,
MSM integrates the basic concepts of a service description.

5.2.2 VITAL IoT Service Model

There is currently no single, standardised way to model IoT services. Based on the
related work discussed before, the VITAL consortium decided to base its semantic
IoT service model on existing work in the domain of web services. As discussed
before, VITAL aims at providing a semantic model that is generic – yet simple and
minimal, reuses existing ontologies as much as possible and allows to link with an
active community as well as other current projects.
After careful consideration, the consortium selected to use the MSM as the basis of
its IoT modelling ontology. MSM is small and easy to understand while at the same
time providing integration with other languages like SAWSDL, WSMO-Lite and
hRESTS. MSM is also widely used, e.g. by SOA4All [KNSP09], iServe [isrv], as well
as the FP7 project COMPOSE [com]. COMPOSE focuses on transforming the IoT
into an Internet of Services. By aligning VITAL with COMPOSE, applications using
the VITAL platform will be able to participate in the open service marketplace
envisioned in COMPOSE. At the same time, VITAL will be able to easily integrate all
services offered by the COMPOSE marketplace. In addition, using MSM also allows
a direct integration with iServe [isrv], an online service warehouse supporting service
publication, analysis, and discovery. Nevertheless, the consortium will keep

8 http://iserve.kmi.open.ac.uk/ns/msm/msm-2013-05-03.html

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 37

monitoring all usage and experiences with the IoT service ontologies and may extend
the used model to integrate further ontologies, e.g. OWL-S.
With this in mind, we can specify the following: In the VITAL system an IoT service is
modelled as a RESTful (web) service that is described by Linked Data using the
MSM ontologies. This allows publishing a description of the IoT service that can e.g.
be used for discovery or for automatic composition tasks. An example for such an IoT
service is given in Figure 12: and Figure 13: . Other than for earlier examples, to
showcase how the JSON-LD file is mapped to RDF triples, we provide the same
example twice, first in N39 notation, then in JSON-LD format using the context shown
in Figure 14: .

Figure 12: Example IoT Service for Configuration (N3)

In the example, we specify an IoT service for IoT system configuration that allows a
user to request the current configuration of the system using their identifier (ID) by
sending a HTTP GET request to the URI representing the configuration service.
Using VITAL ontology, we first specify a service vital:ConfigurationService
that has two operations vital:GetConfiguration and
vital:SetConfiguration. In addition, we assign a label to the service that helps
to describe the service for human readers. The operations again specify labels
intended for human readers and in addition specify how to access the operations
using the hRESTs ontology by giving its address template and the used HTTP
method (in this case GET and POST). The address template allows to specify not
only a single, fixed URI but a set of URIs (of type hrest:URITemplate) that can be

9 http://www.w3.org/DesignIssues/Notation3.html

@prefix : <http://vital-iot.eu/ontology/ns/> .
@prefix hrest: <http://www.wsmo.org/ns/hrests#> .
@prefix msm: <http://iserve.kmi.open.ac.uk/ns/msm#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vital: <http://vital-iot.eu/ontology/ns/> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/service/1> a vital:ConfigurationService;
rdfs:label “IoT System Configuration Service”;

 msm:hasOperation [a vital:GetConfiguration ;
rdfs:label “Get configurations”;

 hrest:hasAddress
"http://example.com/service/1"^^hrest:URITemplate ;
 hrest:hasMethod "hrest:GET"],
 [a vital:SetConfiguration ;

rdfs:label “Set configurations”;

 hrest:hasAddress
"http://example.com/service/1"^^hrest:URITemplate ;
 hrest:hasMethod "hrest:POST"].

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 38

used with this operation. In this example, the address template specifies that the
operation can be called with the ID of configuration service. As an example, calling
the operation GetConfiguration with address
http://example.com/service/1 would get the configurations of the IoT
system.

Figure 13: Example IoT Service for Configuration

Figure 13: shows the same example again, this time in JSON-LD format. Note that
we could omit the type entry to achieve a more compact description. However, we
did not do this to make it easier to compare the two representations of the example.

Figure 14: JSON-LD Context Specification for Services

{
 "@context": {
 "@vocab": "http://vital-iot.eu/ontology/ns/",
 "vital": "http://vital-iot.eu/ontology/ns/",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "msm": "http://iserve.kmi.open.ac.uk/ns/msm#",
 "hrest": "http://www.wsmo.org/ns/hrests#",
 "id": "@id",
 "type": "@type",
 "name": "rdfs:label",
 "description": "rdfs:comment",
 "hrest:hasAddress": {
 "@type": "hrest:URITemplate"
 },
 "operations": {
 "@id": "msm:hasOperation",
 "@type": "@id"
 }
 }
}

{
 "@context": "http://vital-iot.eu/contexts/service.jsonld",
 "id": "http://example.com/service/1",
 "type": "vital:ConfigurationService",
 "name" : "IoT System Configuration Service",
 "operations":
 [
 {
 "type": "vital:GetConfiguration",
 "hrest:hasAddress": "http://example.com/service/1",
 "hrest:hasMethod": "hrest:GET"
 },
 {
 "type": "vital:SetConfiguration",
 "hrest:hasAddress": "http://example.com/service/1",
 "hrest:hasMethod": "hrest:POST"
 }
]
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 39

Using this combination of commonly used ontologies, IoT systems can specify their
generic services towards the VITAL platform as well as to client applications. The
VITAL discovery service can use this information to allow clients to discover IoT
services at runtime. The VITAL orchestration service can use it to provide semi-
automatic service orchestrations or to provide users with lists of equivalent IoT
services. Clearly, this IoT service model can be extended, e.g. with the ability to
specify other communication protocols. The consortium has decided to extend the
IoT service model with the following services.

5.2.3 Configuration Service

IoT systems (integrated with VITAL platform) may provide configuration
functionalities. In order to model these functionalities, ConfigurationService
class is defined as a sub class of msm:Service along with two operations:
GetConfiguration (to access existing configurations) and SetConfiguration
(to set new configurations):

Class: ConfigurationService

 SubclassOf: msm:Service

Class: GetConfiguration

 SubclassOf: msm:Operation

Class: SetConfiguration

 SubclassOf: msm:Operation

Examples of ConfigurationService and its operations can be found in deliverable
D3.2.2 (See section 3.2).

5.2.4 Monitoring Service

An IoT system can allow VITAL to monitor a number of monitoring functionalities. For
example, the status of an IoT system, the status of sensors that an IoT system
manages, performance metrics of an IoT system, SLA parameters related to an IoT
system, etc. These functionalities are exposed by a MonitoringService class a sub
class of msm:Service with a number of operations:

• GetSystemStatus: To access to status description of an IoT system.
• GetSensorStatus: To access to status description of a sensor within an

IoT system.
• GetSupportedPerformanceMetrics: To access the performance

metrics supported by an IoT system.
• GetPerformanceMetrics: To access the performance metrics of an IoT

system.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 40

• GetSupportedSLAParameters: To access the SLA parameters supported
by an IoT system.

• GetSLAParameters: To access the SLA parameters of an IoT system.

Class: MonitoringService

 SubclassOf: msm:Service

Class: GetPerformanceMetrics

 SubclassOf: msm:Operation

Class: GetSensorStatus

 SubclassOf: msm:Operation

Class: GetSLAParameters

 SubclassOf: msm:Operation

Class: GetSupportedPerformanceMetrics

 SubclassOf: msm:Operation

Class: GetSupportedSLAParameters

 SubclassOf: msm:Operation

Class: GetSystemStatus

 SubclassOf: msm:Operation

Examples of MonitoringService and its operations can be found in deliverable D3.2.2
(See section 3.2).

5.2.5 Observation Service

The VITAL platform can use both a pull and push based mechanism to obtain
observations made by a sensor. An IoT system with various sensors can
provide/support both mechanism by providing an observation service. An IoT system
must support at least one of these two mechanisms in order to allow access to
sensor observations. This service is modelled as ObservationService sub class of
msm:service with the following operations:

• GetObservations: If the IoT system supports a pull-based mechanism, it
must provide this operation to pull observations.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 41

• SubscribeToObservationStream: To subscribe to a specific stream of
observations in the case of push-based mechanism supported by an IoT
system.

• UnsubscribeFromObservationStream: To unsubscribe from a specific
stream of observations (for which there is an active subscription) in the case of
push-based mechanism supported by an IoT system.

Class: ObservationService

 SubclassOf: msm:Service

Class: GetObservations

 SubclassOf: msm:Operation

Class: SubscribeToObservationStream

 SubclassOf: msm:Operation

Class: UnsubscribeFromObservationStream

 SubclassOf: msm:Operation

5.3 Conclusion

One of the central aspects of the VITAL system is to integrate existing (background)
IoT systems. To do so, we require semantic data models to describe such IoT
systems, including metadata about the systems, their operational state and the
services that they provide. Note that VITAL does not allow a system to directly
specify what sensor data or ICOs it provides – nor is it possible to include actual
sensor measurements into the description. Instead, every aspect of the system is
described as an IoT service. To offer access to sensor measurements, a system can
specify that it provides access to a data service. To allow pull based data access, a
system can specify that it offers a stream management service. This greatly
simplifies the system description and reduces its changing rate, while providing a
very flexible way to describe (and integrate) systems. The actual interfaces of
services are not yet fixed. This is the focus of deliverable D3.2.1, which will be
available in M15. However, the general design of VITAL is based on Web
technologies. Services are (so far) always RESTful HTTP services. To allow
continuous (stream) access, technologies such as Server Side Events or
WebSockets will be integrated into VITAL.
In the following section we describe the last area that must be modelled in VITAL, the
VITAL system itself as well as its services.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 42

6 VITAL SYSTEM AND SERVICES

In addition to (meta) data and services of background IoT systems that are integrated
in VITAL, we also need to model the VITAL system itself. This is the aim of this
chapter. Note that the chapter does not specify the exact interfaces of systems or
services (e.g. the PPI). Instead, its main goal is to discuss data items that are
required by these interfaces. Interfaces have been specified in D3.2.1 and D3.2.2.

6.1 VITAL System

A VITAL system is modelled as a collection of RESTful services and an associated
semantic metadata description. From the viewpoint of its semantic description, a
VITAL system is similar to an IoT system, discussed before. A VITAL system is
therefore modelled as a subclass of IotSystem with an additional property.

6.1.1 VitalSystem

A VitalSystem is defined as a subclass of IotSystem that supports an additional
VITAL-specific property providesSystem. The property providesSystem is a sub
property of ssn:hasSubSystem that points to a set of IotSystems, which are
registered in this VitalSystem. Note that since a VitalSystem is a subset of
IotSystem, providesSystem can also point to another VITAL system, making it
possible to create hierarchical VITAL systems.

Class: VitalSystem

 SubClassOf: IotSystem

ObjectProperty: providesSystem

 SubPropertyOf: ssn:hasSubSystem

 Domain: VitalSystem

 Range: IotSystem

In the following we describe a short example of a VITAL system description in JSON-
LD format (see

Figure 15:). Note that the example is similar to the example for an IoT system
given in Figure 9. Due to the similarities the example uses the same generic

external context specification for systems (see
Figure 10) as the IoT system example.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 43

Figure 15: Example VITAL Description

In the example VITAL system, the description first associates a name (“Camden
VITAL System”) and a description (stating that this is a VITAL deployment for
Camden Town) with this system. The example system is operated by CTU (as
specified by operator). The status is set to Running. Similar to the example for
an IoT system, the serviceArea is identified by providing its DBPedia URI, allowing
a client to query the DBPedia for more information about Camden. The example
system description further specifies that this VITAL instance contains four sensors.
Finally, the VITAL system description specifies three VITAL services, similar to the
ones presented for our example IoT system before. Please note that the exact
interfaces of VITAL services are defined in D3.1.2 and D3.2.2. Therefore, the
examples given here may differ slightly.
In the following we describe the currently planned VITAL services. We also provide
models for data required by these services. Since VITAL services are currently under
development, the exact data that they need is not always clear. Therefore, this part of
the deliverable will be clarified and expanded in future versions. For now the
information given should be understood as an outlook and basis for discussions in
the consortium.

6.2 Data Access

Data access is one of the basic services of any IoT system, including VITAL. VITAL
will provide two different service types with different data access patterns. The first
one is a pull-based data access service. The second one is a push-based linked data
stream service. For pull-based access, a client specifies the system entity, e.g. the
ICO or sensor reading type that it wants to retrieve using its URI. The data access

{
 "@context": "http://vital-iot.eu/contexts/system.jsonld",
 "id": "http://example2.com",
 "type": "vital:VitalSystem",
 "name": "Sample 2 IoT system",
 "description": "This is a VITAL compliant IoT system example.",
 "operator": "http://example.com/people#adam_murphy",
 "serviceArea": "http://dbpedia.org/page/Camden_Town",
 "sensors":
 [
 "http://example.com/sensor/1",
 "http://example.com/sensor/2",
 "http://example.com/sensor/3",
 "http://example.com/sensor/4"
],
 "services":
 [
 "http://example.com/service/1",
 "http://example.com/service/2",
 "http://example.com/service/3",
],
 "status": "vital:Running"
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 44

service is modelled as ObservationService sub class of msm:service. See Section
5.2.5 for details on observation service.

6.3 Security and Access Control

6.3.1 Access Control

There are many ontologies available for access control, each utilizing different
approaches that provide unique benefits. We evaluated a number of these based on
maturity and features offered.
WebAccessControl [WAC] is an ontology created by the Read Write Web Community
Group that allows giving access to serialized RDF documents to users and groups,
identifying each as HTTP URLs. The main issue with WAC is that it was designed to
grant access to the entire document, which makes it unsuited to platforms where
more fine-grained permissions are required.
PPO [PPO] and TAC [TAC] are both ontologies designed to extend WAC and allow
defining access on a triple-by-triple basis. Which these are more powerful than WAC
and allow setting access for each triple, they do not define what exactly access is
beyond a Boolean-type value. Both of these ontologies could potentially be extended
to better serve VITAL’s usage scenario.
Social Semantic SPARQL Security For Access Control Ontology (S4AC10) [S4AC]
was developed in response to WAC’s shortcomings like the two aforementioned
ontologies. However, S4AC allows setting fine-grained create, read, update and
delete permissions for each data item. This is highly compatible with the permissions
model used for traditional REST APIs.
After evaluating all of the above vocabularies we decided to use S4AC for VITAL.
The main reason for this decision is that S4AC was the only one to use the CRUD
approach for permissions. This kind of fine-grained control is important for a system
like VITAL where much of the information is highly confidential.
Also, the S4AC access control modelling provides a solid foundation for a versatile
solution. In fact, S4AC allows to use SPARQL ASK clauses where the condition to be
satisfied can be specified in a very flexible way, considering also any desired aspect
of the evaluation context.

6.3.2 Users and Authentication in VITAL

Users in VITAL are represented through the class User, as an extension of the
Friend of a friend ontology [FOAF].
The Agent class is the class of agents; things that do stuff, which can represent
people, organizations or groups. The class can be used when these are overly
specific.
Class: User

 SubClassOf: foaf:Agent

ObjectProperty: providesSystem

10 http://ns.inria.fr/s4ac/v2/s4ac_v2.html

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 45

 SubPropertyOf: ssn:hasSubSystem

 Domain: VitalSystem

 Range: IotSystem

Figure 16: Examples of Users and Groups in VITAL

Figure 16 shows some examples for modelling users and groups in VITAL. The first
two examples show definitions for two users. The third example shows defining a
group that contains the administrators, in this case user 999, for a set of sensors. A
unique identifier, Vital:UserID, is an integer used as an indirect identifier to represent
a user.

{

 "@context": "http://vital-iot.eu/contexts/user.jsonld",

 "@id": "http://www.example.com/vital/users/34423",

 "vital:userID": 34423,

 "@type": "foaf:Person",

 "foaf:name": "Joe Bloggs"

}

{

 "@context": "http://vital-iot.eu/contexts/user.jsonld",

 "@id": "http://www.example.com/vital/users/999",

 "vital:userID": 999,

 "@type": "foaf:Person",

 "foaf:name": "Dave Barlow"

}

{

 "@context": "http://vital-iot.eu/contexts/user.jsonld",

 "@id": "http://www.example.com/vital/user/23",

 "vital:userID": 23,

 "@type": "foaf:Group",

 "foaf:name": "Sensor 100-200 Administrators",

 "foaf:member": [

 "http://www.example.com/vital/users/999"]

}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 46

Users and groups are distinguished by their type, which is foaf:Person for users
and foaf:Group for groups. Groups may also contain foaf:member which are
collections of URIs pointing to users belonging to that group.
A new VITAL system will always contain a group with foaf:name “Administrators”
and foaf:member with a URI pointing to the initial user who setup the system. The
members of this group have full access to the entire system. By creating new groups
associated with access control policies defined in section 6.3.3 a VITAL administrator
can easily create fine-grained permissions for members.

6.3.3 Integrated Security Model

VITAL uses an identity management framework and authentication and authorization
mechanisms for controlling access to VITAL services. This access control is based
on pattern-matching on the resource URL; it will be enhanced with access control
mechanisms at a finer level based on flexible policies. For instance, it shall be
possible to selectively authorize direct or indirect access to observations of a specific
sensor.
For this VITAL uses a system similar to an Access Control List [ACL], using
resources URIs as keys. When a resource is requested via a REST endpoint, the
URI of that resource along with the user’s ID and operation type (using CRUD) is
sent to the access control server after the user’s identity has been verified. The
server then checks if the user’s ID is present in the list of authorized users and
groups and if the operation type is authorized. Finally, the server responds with a
success or fail.
If the requested URI has no permissions associated with it the server will assume
only members of the Administrators group can access it. If the resource contains the
foaf:member property but not the s4ac:hasAccessPrivilege property the
members of the User Set will be granted Read-Only permissions. In the reverse
case, defining permissions without adding members to the members field has no
effect.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 47

Figure 17: Access Control Policy for Single Sensor's Observations

Figure 17: describes the access control policy for all observations of Sensor 123.
The pattern property describes the pattern that should match this access control
policy. While the fine-grained access control system has not yet been implemented
this example is based on the assumption that the policy evaluation will always pick
the most specific match for the provided resource URL and for the subject.
In this example, the users or groups with the IDs 34423, 23 and 500 have read-only
access to sensor 123’s observations, while 457 has full access.

6.4 Trust

VITAL trust will focus on securing the main value of the platform, that is information,
while trying to provide a mechanism to users and applications which let choose the

{
 "@id": "http://www.example.com/vital/access-control/patterns/34",
 "pattern": "http://www.example.com/vital/sensor/123/obsvn/*",
 "vital:hasAccessPolicy": [
 {
 "@type": "s4ac:AccessPolicy",
 "s4ac:hasAccessPrivilege": ["s4ac:Read"],
 "s4ac:hasAccessConditionSet": {

 "@type": "s4ac:DisjunctiveAccessConditionSet",
 "s4ac:hasAccessCondition": [
 {
 "foaf:member": [
 "http://www.example.com/vital/users/34423",
 "http://www.example.com/vital/users/23",
 "http://www.example.com/vital/users/500"
]
 }
]
 }
 },
 {
 "@type": "s4ac:AccessPolicy",
 "s4ac:hasAccessPrivilege": [
 "s4ac:Create", "s4ac:Read", "s4ac:Update", "s4ac:Delete"
],
 "s4ac:hasAccessConditionSet":

{
 "s4ac:hasAccessCondition": [

 {
 "foaf:member": [
 "http://www.example.com/vital/users/457"
]
 }
]
 }
 }
]

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 48

more reliable data sources. These data sources are the ICOs and services provided
by the platforms connected to vital through PPIs.
The model of Trust has two main parts, one related to the entities being evaluated
and other related to the parameters or properties used to calculate the Trust level.

Figure 18: Trust Model.

The parameters evaluated in VITAL in order to calculate the Trust level of the entities
are the SLA parameters, as this can be easily applied to any service or sensor.

Trust Parameter: It is a concept that can be measured directly without needing to
combine other measures. They can be considered unitary concepts which are
grouped in a Trust Aspect. Into the VITAL Ontology a Trust Parameter is an
observation:
Trust parameter is a class of type “ssn:observation” which are shown in Figure 19.

 "type": "http://vital-iot.eu/ontology/ns/ResponseTime",
 "type": "http://vital-iot.eu/ontology/ns/StatusCode",
 "type": "http://vital-iot.eu/ontology/ns/UptimeAvailability",
 "type": "http://vital-iot.eu/ontology/ns/MaxNumReq",
 "type": "http://vital-iot.eu/ontology/ns/ResponseTime",
 "type": "http://vital-iot.eu/ontology/ns/TimeToRestore",
 "type": "http://vital-iot.eu/ontology/ns/MaxNumReqPUser",
 "type": "http://vital-iot.eu/ontology/ns/DataSheetVoxSynt",
 "type": "http://vital-iot.eu/ontology/ns/DataCorrelation",
 "type": "http://vital-iot.eu/ontology/ns/ValIntoThreshold",
 "type": "http://vital-iot.eu/ontology/ns/Variance",
 "type": "http://vital-iot.eu/ontology/ns/StdDeviation",
 "type": "http://vital-iot.eu/ontology/ns/RandomVal",

Figure 19: Types of Trust Parameters.

Trust Aspect: it represents a property to be evaluated in order to calculate the trust,
which is composed by a group of Trust parameters.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 49

At the time of writing this document there is one only Trust Aspect, which is the
composition of the Trust parameters related to the numeric stability of the data. The
name of this aspect is “DataStability”, it is a class into Vital ontology which contains a
list of observation of SLA type (see Figure 20).

{
 "@context": "http://vital-iot.eu/contexts/Aspect.jsonld",
 "name":"DataStability",
 "type":”http://vital-iot.eu/ontology/ns/TrustAspect”
 “uri”:http://www.example.com/vital/sensor/123/dataStability”
 “ssn:observers”:[
 {
 "type": " http://vital-iot.eu/ontology/ns/ValIntoThreshold",
 "id": "http://example.com/sensor/1/ ValIntoThreshold "
 },
 {
 "type": " http://vital-iot.eu/ontology/ns/Variance",
 "id": "http://example.com/sensor/1/Variance"
 },
 {
 "type": " http://vital-iot.eu/ontology/ns/StdDeviation",
 "id": "http://example.com/sensor/1/StdDeviation"
 },
 {
 "type": " http://vital-iot.eu/ontology/ns/RandomVal",
 "id": "http://example.com/sensor/1/RandomVal"
 },
]

}

Figure 20: Example of DataStability aspect.

Trust Concept: it is any entity, which can be included in a trust model. It can be a
Trust Aspect or a Trust Parameter.

Name: name of the concept.
Weight: it is a number that represents the weight of the trust concept within the
trust model. Figure 21 provides an example.

 {
 "@context": "http://vital-iot.eu/contexts/concept.jsonld",
 "name":"DataStability",
 "type":”http://vital-iot.eu/ontology/ns/TrustConcept”,
 “uri”:http://www.example.com/vital/sensor/123/dataStability”,
 “vital:weight”:”0,5”
 },

 {
 "@context": "http://vital-iot.eu/contexts/concept.jsonld",
 "name":"DataStability",
 "type":”http://vital-iot.eu/ontology/ns/TrustConcept”,
 “uri”:http://www.example.com/vital/sensor/123/UptimeAvailability”,
 “vital:weight”:”0,3”
 }
]

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 50

Figure 21: Trust Concept example

Trust Model: it is the model used to evaluate the trustworthiness of a service. It will
contain a set of properties or parameters and the weight in the evaluation.

Name: name of the model
Aggregates: A set of Trust concepts, which are used to calculate the trust within
the model. Figure 22 provides an example for Trust Model.

{
 "@context": "http://vital-iot.eu/contexts/Model.jsonld",
 "name":"model2",
 "type":”http://vital-iot.eu/ontology/ns/TrustModel”,
 “uri”:”http://www.example.com/vital/trustModel2”,
 “vital:TrustConcept”:[
 {
 “uri”:http://www.example.com/vital/sensor/123/dataStability”
 },
 {

“uri”:http://www.example.com/vital/sensor/123/UptimeAvailability”
 }
]
}

Figure 22: Trust Model example.

Trusted Entity: this is a concept that defines all entities that can be trusted, these
entities have to be identified in one only way and provide information about how it
should be evaluated. Figure 23 provides an example for Trusted Entity. In VITAL a
trusted entity can be a sensor or a service.

ID: the identifier
Trust Model: the model used to evaluate the entity,
Trust Level: it is the result of the trust evaluation.

{
 "@context": "http://vital-iot.eu/contexts/TrustEntity.jsonld",
 "name":"sensor12",
 "type":”http://vital-iot.eu/ontology/ns/TrustedEntity”,
 “uri”:http://www.example.com/vital/sensor12/trusted”,
 “vital:model”:
 {
 “type”: ”http://vital-iot.eu/ontology/ns/TrustModel”,
 “uri”: http://www.example.com/vital/trustModel2
 },
 “vital:TrustLevel”:”0,87”
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 51

Figure 23: Trusted Entity example.

At the time of writing this document there is any platform connected to VITAL which
performs Trust evaluation of its data sources, the following concept is introduced to
cope with new platforms that will be able to provide information about the level of
trust of their sensors and services.

Trust Provider: It is an entity, which can be trusted and is able to evaluate trust of
other entities.

AppliesModel: it represents the model applied by the provider to evaluate the
trust of its associated entities.
TrustEntities: it is a list of the entities evaluated by the provider.

6.5 Discovery and Filtering

The VITAL discovery and filtering services will rely on metadata to be provided by the
DMS. The full description and implementation of these two modules are investigated
in WP4 and documented in D4.1 and D4.1.2. Please refer to these deliverables for
details, we only report here the general idea and the connections between the DMS
and Discovery and Filtering modules. The Discovery and Filtering services
concentrate on ICOs, especially sensor devices. They propose basic mechanisms
and enhanced mechanisms to provide more accurate results based on a sensor’s
location (if available), its movement pattern (if known) and its network connectivity
(i.e. whether it is connected intermittently or continuously). The current version of the
discovery modules tries to predict the position of the ICO at the date of the request
and when it will be able to report its date. For this purpose, we have extended a
sensor description (ssn:Sensor) with the following properties:

• hasMovementPattern, a mandatory property that links to an instance of
MovementPattern,

• hasNetworkConnection, an optional property that links to an instance of
NetworkConnection.

• hasLocalizer, an optional property that links to an IoT service specification
that provides access to the current location of the sensor.

Note that the location of a sensor is already modelled in VITAL using the
hasLastKnownLocation property.

ObjectProperty: hasMovementPattern

 Domain: ssn:Sensor

 Range: MovementPattern

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 52

ObjectProperty: hasNetworkConnection

 SubPropertyOf: ssn:hasSubSystem

 Domain: ssn:Sensor

 Range: NetworkConnection

ObjectProperty: hasLocalizer

 SubPropertyOf: ssn:hasSubSystem

 Domain: ssn:Sensor

 Range: msm:Service

6.5.1 MovementPattern

A movement pattern specifies how a device is moving or is expected to move. VITAL
currently defines three basic movement patterns: Stationary (i.e. no movement at
all), Mobile (i.e. no additional information is known), and Predicted (i.e. there is
data available to predict a sensor’s future mobility). Note that it is possible to include
multiple values for a movement pattern, stating e.g. that a sensor movement pattern
is mobile and predicted.

Stationary

If a sensor is stationary, its hasMovementPattern property points to an instance of
Stationary. In this case the sensor may also have a hasLastKnownLocation
property, pointing to its location. If no such property is present, the sensor location is
(currently) unknown. Note that this might change, so a client cannot assume that the
sensor location will not be known in the future.

Class: Stationary

 SubClassOf: MovementPattern

Mobile

A Mobile pattern implies that a sensor may change its location dynamically. Note
that this does not necessarily imply that the location is known. If the description of a
mobile sensor includes a hasLastKnownLocation property, then the provided
location may be out-dated (which is why we call the property ‘last known location’). A
system should update the last know location field in the sensor description but it can
do so when it chooses. This reduces the load on a system, which otherwise would
need to update a sensor description every time a new location reading becomes

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 53

available. A sensor description should not include a last known location if the system
providing it does not update it. A mobile sensor should include a hasLocalizer
property in its description, pointing to a localisation service.

Class: Mobile

 SubClassOf: MovementPattern

Predicted

If the movement pattern of a sensor is set to Predicted, then the system has
additional information about the sensors movement pattern to predict future
movements and locations.

Class: Predicted

 SubClassOf: MovementPattern

It is currently unclear which exact movement pattern data is needed as this

depends on the algorithms that will use them. This is therefore left for future
work. An example for a possible prediction pattern is given in

Figure 24: . The example shows a sensor with a predicted movement pattern that is
based on linear interpolation using a predicted speed and movement direction.

{
 "@context": "http://vital-iot.eu/contexts/sensor.jsonld",

 "name": "TemperatureSensor No.123",
 "type": "vital:VitalSensor",
 "description": "This is an example sensor",
 "id": "http://www.example.com/vital/sensor/123",
 "hasMovementPattern": {
 "type": "Predicted",
 "hasPredictedSpeed": {
 "value":"3.1",
 "qudt:unit": "qudt:KilometerPerHour"
 },
 "hasPredictedDirection": {
 "type":"NormalVector",
 "geo:lat": "53.2719",
 "geo:long": "-9.0489"
 },
 }
 },
 "ssn:observes": {
 "type": "http://lsm.deri.ie/OpenIoT/Temperature",
 "id": "http://www.example.com/vital/sensor/123/temperature"
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 54

Figure 24: Example Sensor Description with Predicted Movement Pattern

6.5.2 NetworkConnection

The NetworkConnection specifies how a sensor is connected at the moment, e.g.
whether the connection is stable or not. It does not necessarily provide a fully
detailed description of the network quality of service that is available. However, it
always specifies the expected connection stability. To realise this, so far
NetworkConnection supports two properties:

• hasStability, a mandatory property linking to a ConnectionStability
instance,

• hasNetworkSupport, an optional property that is a sub property of
net:networkSupport taken from the Network part of the DC ontology
[FoLe09], linking to an instance of net:NetworkSupport from the same
ontology.

ObjectProperty: hasStability

 Domain: NetworkConnection

 Range: ConnectionStability

ObjectProperty: hasNetworkSupport

 SubPropertyOf net:networkSupport

 Domain: ssn:Sensor

 Range: net:NetworkSupport

An example for these properties in given in Figure 25: . This example also contains
an example for ConnectionStability. The described sensor has a stable,
continuous network connection and is connected to a single, wired network. More
information about this network could be added, e.g. the bandwidth, etc.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 55

Figure 25: Example Sensor Description with Network Connection Data

6.5.3 ConnectionStability

ConnectionStability allows specifying whether a sensor is connected to a
communication network continuously, intermittently or not at all (which will usually not
happen). To do so we define three subclasses Continuous, Intermittent and
Disconnected. An example for a stable connection is given in Figure 25: above.

Class: Continuous

 SubClassOf: ConnectionStability

Class: Intermittent

 SubClassOf: ConnectionStability

Class: Disconnected

 SubClassOf: ConnectionStability

6.5.4 Localizer

The property hasLocalizer is used to refer to a localizer service. Such a service
provides (REST-full) access to the current location of a sensor, which is especially
important for mobile sensors. The service is modelled as an IoT Service as specified

{
 "@context": "http://vital-iot.eu/contexts/sensor.jsonld",

 "name": "TemperatureSensor No.123",
 "type": "vital:VitalSensor",
 "description": "This is an example sensor",
 "id": "http://www.example.com/vital/sensor/123",
 "hasMovementPattern": {
 "type": "Stationary",
 },
 "hasNetworkConnection": {
 "hasStability": {
 "type": "Continuous"
 },
 "hasNetworkSupport": {
 "net:connectedNetworks": {
 "type": "net:WiredNetwork"
 }
 }
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 56

in Section 5.2. Note that the localizer service can be realised in different ways,
depending on the sensor at hand. As an example, the sensor could provide the
service itself, e.g. by giving access to its local GPS receiver. Alternatively the sensor
could be localised using an external tracking system and the localizer service could
be provided by the IoT system that manages the sensor. An example for a sensor-
based localizer service is given in Figure 26Error! Reference source not found..

ObjectProperty: hasLocalizer

 Domain: ssn:Sensor

 Range: msm:Service

Figure 26: Example Sensor Description With Localizer

6.5.5 Queries

In addition to all data items described before, the discovery and filtering services
require a way to specify a requested data query, either for ICOs in the case of the
discovery service or for data in the case of the filtering service. Due to the nature of
Linked Data we do not require a new data model for this. Instead VITAL reuses
existing query languages that are well known in the Linked Data community. For
onetime queries, VITAL reuses SPARQL, which allows specifying complex sub graph
patterns. A SPARQL endpoint will be made available as a RESTful service. Similarly,
for continuous (streaming) queries, VITAL reuses the CQELS query language [cql],
which extends SPARQL with support for data streams and time windows.

{
 "@context": "http://vital-iot.eu/contexts/sensor.jsonld",

 "name": "TemperatureSensor No.123",
 "type": "vital:VitalSensor",
 "description": "This is an example sensor",
 "id": "http://www.example.com/vital/sensor/123",
 "hasMovementPattern": {
 "type": "Mobile"
 },
 "hasLocalizer": {
 "type": "GpsService",
 "msm:hasOperation": {
 "type": "GetLocation",
 "hrest:hasMethod": "hrest:GET",
 "hrest:hasAddress":
 "http://www.example.com/vital/sensor/123/location/"
 },
 },
 "ssn:observes": {
 "type": "http://lsm.deri.ie/OpenIoT/Temperature",
 "id": "http://www.example.com/vital/sensor/123/temperature"
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 57

6.6 Complex Event Processing

The CEP module will provide the CEP filtering services by means CEP instances,
these services are divided in two different types, the static ones and the continuous.
For this purpose we have extended the msm:Service description with a new
service:

Class: CEPFitleringService

 SubclassOf: msm:Service

The static filters provide two different operations the filter static data operation the
filter static query operation and to that end we have extended msm:Operation in
order to provide the required functionality:

Class: FilterStaticData

 SubclassOf: msm:Operation

Class: FilterStaticQuery

 SubclassOf: msm:Operation

Filters are a new kind of vital sensor and to that end we have extended the
vital:VitalSensor with the CEPFilterSensor and also we have extended these
new sensors with two different kind of sensors, the one for filtering static data and
the one for filtering static query:

Class: CEPFilterSensor

SubClassOf: vital:VitalSensor

Class: CEPFilterStaticDataSensor

SubClassOf: vital:CEPFilterSensor

Class: CEPFilterStaticQuerySensor

SubClassOf: vital:CEPFilterSensor

The CEPFilterStaticDataSensor filters the data provided as an input of the filter for
this purpose we need to add a new property to this kind of sensors; to that end we
provide a new property:

ObjectProperty: data

Domain: vital:CEPFilterStaticDataSensor

Range: Range: xsd:string

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 58

The CEPFilterStaticQuerySensor filters the data received as a response of a query
provided as an input of the filter for this purpose we need to add a new property to
this kind of sensors; to that end we provide a new property:

ObjectProperty: query

Domain: vital:CEPFilterStaticQuerySensor
Range: xsd:string

In order to provide the continuous filtering functionality we have extended the
msm:Operation with four new operations. These operations allow us to get, create
and delete the CEP filtering instances:

Class: GetContinuousFilters

SubclassOf: msm:Operation

Class: GetContinuousFilter

SubclassOf: msm:Operation

Class: DeleteContinuousFilter

SubclassOf: msm:Operation

Class: CreateContinuousFilter

SubclassOf: msm:Operation

The CEP module also provides CEP instances integrated into the Vital platform as
virtual ICOs, the CEPICOs. For this purpose we have extended the msm:Service
description with a new service:

Class: CEPICOManagementService

SubclassOf: msm:Service

In order to be able to create, delete or get this CEPICOs we have extended the
msm:Operation with four new operations. These operations allow us to manage all
the CEPICOs instances:

Class: GetCEPICOs

SubclassOf: msm:Operation

Class: GetCEPICO

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 59

SubclassOf: msm:Operation

Class: CreateCEPICO

SubclassOf: msm:Operation

Class: DeleteCEPICO

SubclassOf: msm:Operation

The most important of a CEP instance, either as a CEP sensor or as a CEP filter
sensor are the Dolce Rules that models the CEP behaviour. In order to add the Dolce
Rule Specification property to the sensor we have added a new property:

ObjectProperty: dolceSpecification

Domain: vital:CEPSensor vital:CEPFilterSensor

Range: xsd:string

CEP sensors and CEP filter sensors detects complex events over specified
observations so a new measurement type is needed to express this kind of events to
that end a new class is provided:

Class: ComplexEvent

6.7 Monitoring

For purposes of monitoring, IoT systems expose an IoT Service with type ‘Monitoring
Service’. This service provides access to a set of performance metrics as they are
measured by the IoT system. These additional metrics alongside the metadata
descriptions of Systems, Services and Sensors is exploited by higher-level modules
like the Management Platform to monitor the overall health of a Vital installation.

6.7.1 Performance Metrics

Performance Metrics of the monitoring service are modelled as virtual sensor
measurements. This makes it possible to reuse much of the data models defined
before in Chapter 3.4. To retrieve these virtual sensor measurements, clients can
contact RESTful interfaces of the MonitoringService exposed by systems, similar to
the ones used for normal measurements.
The monitoring service can provide information about components like sensors,
services and systems. The prototype version of VITAL defines a core set of
performance parameters that can be extended as required. For each metric we
specify a new type of observation as follows:

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 60

• SysLoad, for a measurement of the load (CPU) of the component,
• SysUptime, for a measurement of the uptime of a component,
• UsedMem, for a measurement of the used memory of a component,
• AvailableMem, for a measurement of the available memory of a component,
• ServedRequests, for a measurement of the total number of requests that a

component has served between the last re-start and the time of the
measurement,

• PendingRequests, for a measurement of the number of requests that were
served at the time of the measurement,

• MaxRequests, for a measurement of the maximum number of requests that a
component can serve simultaneously,

• Errors, for a measurement of the total number of errors that have occurred
between the last re-start and the time of the measurement.

These metrics are integrated in the Vital Ontology as new observation types. An
example of these types is described in Figure 27 where a response of the
GetSupportedPerformanceMetrics operation of the MonitoringSevice is displayed.
While this is example does not display a JSON-LD response, it showcases the actual
namespaces of the observation types as used inside the Vital platform.

Figure 27: GetSupportedPerformanceMetrics example response

Figure 28: shows an example of a virtual measurement as reported by the
monitoring service. The measurement specifies the uptime of a system with the
identifier http://www.example.com/vital/system/123 as 2023546

[{
 "type": "http://vital-iot.eu/ontology/ns/SysLoad",
 "id": "http://example.iot.system/sensor/monitoring/sysLoad"
}, {
 "type": "http://vital-iot.eu/ontology/ns/SysUptime",
 "id": "http://example.iot.system/sensor/monitoring/sysUptime"
}, {
 "type": "http://vital-iot.eu/ontology/ns/MaxRequests",
 "id": "http://example.iot.system/sensor/monitoring/maxRequests"
}, {
 "type": "http://vital-iot.eu/ontology/ns/Errors",
 "id": "http://example.iot.system/sensor/monitoring/errors"
}, {
 "type": "http://vital-iot.eu/ontology/ns/ServedRequests",
 "id": "http://example.iot.system/sensor/monitoring/servedRequests"
}, {
 "type": "http://vital-iot.eu/ontology/ns/AvailableMem",
 "id": "http://example.iot.system/sensor/monitoring/availableMem"
}, {
 "type": "http://vital-iot.eu/ontology/ns/UsedMem",
 "id": "http://example.iot.system/sensor/monitoring/usedMem"
}, {
 "type": "http://vital-iot.eu/ontology/ns/PendingRequests",
 "id": "http://example.iot.system/sensor/monitoring/pendingRequests"
}]

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 61

milliseconds (approximately 34 minutes). Other measurements can be constructed
similarly.

Figure 28: Example Virtual Measurement for System Uptime

6.7.2 Activity Logging

In addition to updates about the state of a system component, the monitoring service
may also provide updates about activities occurring in the system. These updates
could be stored in an activity log, e.g. to log a user logging in or a system starting up.
Such updates can be modelled similarly to state updates as virtual measurements by
specifying new observation types.

6.7.3 Sensor Hardware and Software

Since VITAL reuses the DC ontologies, it already includes a detailed data model for
hardware and software components like a battery, a keyboard, an operating system,
etc. These models can be used to provide a detailed description of both the
components and the status of a sensor. To do so, a sensor description can include
the DC ontology properties hard:deviceHardware and soft:deviceSoftware,
pointing to an instance of hard:DeviceHardware and soft:DeviceSoftware
respectively. These may link to additional information about the sensor’s hardware
and software parts, including their current state (e.g. using hard:status to link to
an instance of hard:HardwareStatus) . An example for this is shown in Figure 29:
. The example description specifies a sensor that is currently active, has a build in
memory size of 128 kByte and a CPU with a maximum speed of 10 MHerz.

{
 "@context": "http://vital-iot.eu/contexts/measurement.jsonld",

 "uri": "http://www.example.com/vital/sensor/monitoring/obsvn/42",
 "type": "ssn:Observation",
 "ssn:observationProperty": {
 "type": "Uptime"
 },
 "ssn:observationResultTime": {
 "inXSDDateTime": "2014-08-23T14:03:11+01:00"
 },
 "observationSubject": "http://www.example.com/vital/system/123",
 "ssn:observationResult": {
 "type": "ssn:SensorOutput",
 "ssn:hasValue": {
 "type": "ssn:ObservationValue",
 "value": "2023546",
 "qudt:unit": "qudt:MilliSecond"
 }
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 62

Figure 29: Example Sensor Description with Hardware Components

6.8 Orchestration

The Vital Orchestrator module acts as a consumer of data and metadata from other
Vital modules, like PPIs (VitalSystems) or the DMS module. By utilising existing
services in dynamic workflows it provides new higher-level services to consumers. Ιt
implements one new type of service the vital:OrchestrationService, in the Vital
platform, for managing meta-services (create new ones, undeploy unnecessary ones
etc). The service description in JSON-LD is documented in the Figure 30.
{
 "@context": "http://vital-iot.eu/contexts/service.jsonld",
 "id": "http://some.service.id",
 "type": "vital:OrchestratorService",
 "operations": [{
 "type": "vital:GetOperationList",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation",
 "hrest:hasMethod": "hrest:GET"
 }, {
 "type": "vital:GetOperation",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation/{id}",
 "hrest:hasMethod": "hrest:GET"
 }, {
 "type": "vital:CreateOperation",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation",
 "hrest:hasMethod": "hrest:POST"
 }, {
 "type": "vital:UpdateOperation",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation/{id}",
 "hrest:hasMethod": "hrest:PUT"
 }, {
 "type": "vital:DeleteOperation",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-

{
 "@context": "http://vital-iot.eu/contexts/sensor.jsonld",

 "name": "TemperatureSensor No.123",
 "type": "VitalSensor",
 "description": "This is an example sensor",
 "uri": "http://www.example.com/vital/sensor/123",
 "deviceHardware": {
 "hard:status": "hard:HardwareStatus_ON",
 "hard:builtInMemory": {
 "size": 131072
 },
 "hard:cpu": {
 "type": "hard:CPU",
 "maxCpuFrequency": 10
 }
 }
}

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 63

web/rest/operation/{id}",
 "hrest:hasMethod": "hrest:DELETE"
 }, {
 "type": "vital:ExecuteOperation",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/execute/operation/",
 "hrest:hasMethod": "hrest:POST"
 }, {
 "type": "vital:GetWorkflowList",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow",
 "hrest:hasMethod": "hrest:GET"
 }, {
 "type": "vital:GetWorkflow",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow/{id}",
 "hrest:hasMethod": "hrest:GET"
 }, {
 "type": "vital:CreateWorkflow",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow",
 "hrest:hasMethod": "hrest:POST"
 }, {
 "type": "vital:UpdateWorkflow",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow/{id}",
 "hrest:hasMethod": "hrest:PUT"
 }, {
 "type": "vital:DeleteWorkflow",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow/{id}",
 "hrest:hasMethod": "hrest:DELETE"
 }, {
 "type": "vital:ExecuteWorkflow",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/execute/workflow",
 "hrest:hasMethod": "hrest:POST"
 }, {
 "type": "vital:GetMetaServiceList",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice",
 "hrest:hasMethod": "hrest:GET"
 }, {
 "type": "vital:GetMetaService",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice/{id}",
 "hrest:hasMethod": "hrest:GET"
 }, {
 "type": "vital:DeployMetaService",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice",
 "hrest:hasMethod": "hrest:POST"
 }, {
 "type": "vital:UndeployMetaService",
 "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice/{id}",
 "hrest:hasMethod": "hrest:DELETE"
 }]
}

Figure 30: Description of vital:Orchestration Service in JSON-LD

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 64

6.9 Conclusion

VITAL handles VITAL system deployments as special cases of IoT system
deployments. This allows creation of hierarchical systems that contain several VITAL
systems. As an example, a smart city like Istanbul might operate a local installation of
VITAL that integrates all IoT systems in Istanbul. In addition, this VITAL system might
be integrated into a larger, transnational VITAL system that may e.g. also include
London and other cities. Besides easier administration, this approach enables e.g.
the ability to fine-tune access rights and security, possibly hiding specific services
and ICOs when integrating the system into the transnational one.
As discussed before, VITAL services that have been developed, their data items
have been precisely defined. In this chapter we provided a second version of data
items that have been identified so far as well as the current state of our analysis for
data models in different areas.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 65

7 CONCLUSIONS

This deliverable provides the basis for the semantic (meta-) data models used in the
VITAL system. We build upon Linked Data principles and technologies to provide
interoperable and platform agnostic data models that are based on existing
ontologies. This allows VITAL applications to integrate other data sources in the
Web, resulting in a large and varied set of usable data items. Although we analysed a
large number of ontologies during the design of the VITAL data models, the work is
not finished. Firstly, for some system components like VITAL services, the actual
data needed were not fully clear during the time of this deliverable’s first version
(D3.1.1). While these services have been developed, new data item are defined in
this version. In addition, for other areas e.g. trust and CEP, which were not clear in
D3.1.1, new data items and ontologies have been included. Secondly, there are other
areas still not clear e.g. Istanbul use case. Thus, it is envisaged that more data
models will be added as the project progresses.

8 REFERENCES

[ACL] "Access Control List", http://www.cisco.com/c/en/us/td/docs/
ios/12_2/security/configuration/guide/fsecur_c/scfacls.html, last visited 28
August 2014.

[CBB+12] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O.
Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V.
Huang, K. Janowicz, W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H.
Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor, "The SSN
Ontology of the W3C Semantic Sensor Network Incubator", in Web
Semantics: Science, Services and Agents on the World Wide Web, vol. 17,
pp. 25-32, Elsevier, 2012.

[CDN09] A. Caragliu, C. Del Bo, P. Nijkamp, “Smart cities in Europe”, in: Serie
Research Memoranda 0048 (VU University Amsterdam, Faculty of
Economics, Business Administration and Econometrics), 2009.

[com] COMPOSE Consortium, “COMPOSE: Collaborative Open Market to
Place Objects at your Service Website”, http://www.compose-project.eu/,
last visited 18 August 2014.

[CoWi01] B. Corona, S. Winter, "Datasets for pedestrian navigation services" in
Angewandte Geographische Informationsverarbeitung, Proceedings of the
AGIT Symposium, 2001

[CPF+04] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard ontology
for ubiquitous and pervasive applications,” in Mobile and Ubiquitous
Systems: Networking and Services, International Conference on, 2004.

[cql] “Continuous Query Evaluation over Linked Stream (CQELS) – CQELS
Language”, https://code.google.com/p/cqels/wiki/CQELS_language, last
visited 25 August 2014.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 66

[DSW06] J. Davis, R. Studer, P. Warren, “Semantic Web Technologies: Trends
and Research in Ontology based Systems”, John Wiley & Sons, 2006.

[dul] “DOLCE+DnS Ultralite (DUL) – The DOLCE+DnS Ultralite ontology”,
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite, last
visited 24 August 2014.

[ELS07] M. Eid, R. Liscano, and A. E. Saddik, “A universal ontology for sensor
networks data,” in Computational Intelligence for Measurement Systems
and Applications (CIMSA 2007), IEEE International Conference on, 2007,
pp. 59–62.

[FaLa07] J. Farrell, H. Lausen, “Semantic Annotations for WSDL and XML
Schema”, W3C Recommendation, http://www.w3.org/TR/sawsdl/, last
visited 20 August 2014, August 2007.

[FOAF] D. Brickley, L. Miller, Friend of a Friend (FOAF) project (of Semantic
Web project), http://www.foaf-project.org/, 2000, last visited 28 August
2014.

[FoLe09] J. M. Cantera Fonseca, R. Lewis, “Delivery Context Ontology”, W3C
Working Draft 16, http://www.w3.org/TR/2009/WD-dcontology-20090616/,
last visited 25 August 2014, June 2009.

[Gal06] S. Galizia, “WSTO: A Classification-Based Ontology for Managing Trust
in Semantic Web Services” in Proceedings of the 3rd European Semantic
Web Conference (ESWC 2006), pp. 697-711, Budva, Montenegro, June
2006.

[GaSc14] F. Gandon, G. Schreiber, “RDF 1.1 XML Syntax”, W3C
Recommendation, http://www.w3.org/TR/rdf-syntax-grammar/, last visited
24 August 2014, 25 February 2014.

[GCB14] F. Gao, E. Curry, S. Bhiri, “Complex Event Service Provision and
Composition based on Event Pattern Matchmaking”, in Proceedings of
DEBS’14, Mumbai, India, May 2014.

[GoRu06] C. Goodwin and D. J. Russomanno, “An ontology-based sensor
network prototype environment,” in Information Processing in Sensor
Networks, Fifth International Conference on, 2006.

[GRS10] K. Gomadam, A. Ranabahu, A. Sheth, “SA-REST: Semantic
Annotation of Web Resources”, W3C Member Submission,
http://www.w3.org/Submission/SA-REST/, last visited 20 August 2014, 05
April 2010.

[HaMa12] Mohamed H. Haggag and Doaa R. Mahmoud, “OnTraJaCS:
Ontology based Traffic Jam Control System”, in International Journal of
Computer Applications vol. 60 (2), p. 6-16, December 2012.

[HASB13] I. Herman, B. Adida, M. Sporny, M. Birbeck, “RDFa 1.1 Primer -
Second Edition: Rich Structured Data Markup for Web Documents”, W3C
Working Group Note, http://www.w3.org/TR/rdfa-primer/, last visited 24
August 2014, 22 August 2013.

[HaSe13] S. Harris, A. Seaborne, eds., “SPARQL 1.1 Query Language”, W3C
Recommendation, http://www.w3.org/TR/sparql11-query/, last visited 20
August 2014, 21 March 2013.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 67

[HCD06] F. K. Hussain, E. Chang, T. S. Dillon, “Trust ontology for service-
oriented environment”, in Proceedings of the ACS/IEEE International
Conference on Computer Systems and Applications (AICCSA), pp. 320-
325, Dubai, UAE, 2006.

[HeBi11] Tom Heath, Christian Bizer, “Linked Data. Envolving the Web into a
Global Data Space”, Morgan & Claypool, 2011.

[HKHD09] B. Heitmann, S. Kinsella, C. Hayes, S. Decker, “Implementing
Semantic Web Applications: Reference Architecture and Challenges”, in
Proceedings of the 5th Workshop on Semantic Web Enabled Software
Engineering, at the International Semantic Web Conference (ISWC09),
http://ceur-ws.org/Vol-524/swese2009_2.pdf, 2009.

[HKHS14] R. Hodgson, P. J. Keller, J. Hodges, J. Spivak, “QUDT - Quantities,
Units, Dimensions and Data Types Ontologies”, http://qudt.org/, last visited
22 August 2014, March 18, 2014.

[HKO+10] M. Houda, M. Khemaja, K. Oliveira, M. Abed, "A public transportation
ontology to support user travel planning" in Research Challenges in
Information Science (RCIS), 2010 Fourth International Conference on,
IEEE, May 2010, pp. 127-136, DOI: 10.1109/RCIS.2010.5507372

[HoPa06] Jerry R. Hobbs, Feng Pan, “Time Ontology in OWL”, W3C Working
Draft, http://www.w3.org/TR/owl-time, last visited 21 August 2014, 27
September 2006.

[HuFo06] J. Huang, M. S. Fox, “An ontology of trust: formal semantics and
transitivity”, in Proceedings of the 8th international conference on Electronic
commerce (ICEC '06): The new e-commerce: innovations for conquering
current barriers, obstacles and limitations to conducting successful business
on the internet, pp. 259-270, USA, 2006.

[isrv] “iServe: Where Linked Data Meets Services“, http://iserve.kmi.open.ac.uk/,
last visited 18 August 2014.

[jsls] “JSON for Linking Data”, http://json-ld.org/, last visited 24 August 2014.
[KGV08] J. Kopecký, K. Gomadam, T. Vitvar, “hRESTS: an HTML Microformat

for Describing RESTful Web Services”, in Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence (WI-08),
Sydney, Australia, December 2008.

[KNSP09] R. Krummenacher, B. Norton, E. Simperl, C. Pedrinaci, “SOA4All:
Enabling Web-scale Service Economies”, in Proceedings of the 2012 IEEE
Sixth International Conference on Semantic Computing (ICSC09), pp. 535-
542, Berkeley, CA, USA, 2009

[KVF09] J. Kopecky, T. Vitvar, D. Fensel, “D3.4.3 MicroWSMO and hRESTS”,
Deliverable 3.4.3, EU FP7 Project SOA4All, http://sweet.kmi.open.ac.uk/
pub/microWSMO.pdf, last visited 20 August 2014, March 2009.

[LPR05] H. Lausen, A. Polleres, D. Roman, et al., “Web Service Modeling
Ontology (WSMO)”, W3C Member Submission, http://www.w3.org/
Submission/WSMO/, last visited 20 August 2014, 3 June 2005.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 68

[LWS13] M. Leggieri, C. von der Weth, M. Serrano, “Semantic Representations
of Internet-Connected Objects”, EU PF7 Project OpenIoT Deliverable 3.1.2
(D312-130315-v07), March 2013.

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew
McDermott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bijan
Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan, Katia Sycara, “OWL-
S: Semantic Markup for Web Services”, W3C Member Submission,
http://www.w3.org/Submission/OWL-S/, last visited 18 August 2014, 22
November 2004.

[NoMc01] N. F. Noy, D. L. McGuinness, “Ontology Development 101: A Guide
to Creating Your First Ontology”, Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical
Report SMI-2001-0880, http://protege.stanford.edu/publications/ontology_
development/ontology101.pdf, last visited 20 August 2014, March 2001.

[OM] “Ontology of units of Measure (OM)”, http://www.wurvoc.org/vocabularies/
om-1.6/, last visited 25 August 2014.

[OTN] “Ontology of Transportation Networks”, Deliverable A1-D4, Project
REWERSE: Reasoning on the Web with Rules and Semantics, originally
available at http://rewerse.net/deliverables/m18/a1-d4.pdf, Unavailable as of
27 August 2014, cached version available at https://webcache.
googleusercontent.com/search?q=cache:gi0h1sBXLHYJ:rewerse.net/delive
rables/m18/a1-d4.pdf #36, last visited 27 August 2014.

[PML+10] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecký, J.
Domingue, “iServe: a linked services publishing platform”, in: Proceedings
Workshop on Ontology Repositories and Editors for the Semantic Web, at
the 7th Extended Semantic Web Conference, Heraklion, Greece, June
2010.

[PoBe08] L. Polo, D. Berrueta, “MUO Measurement Units Ontology”, Working
Draft, http://idi.fundacionctic.org/muo/muo-vocab.html, last visited 25
August 2014, April 2008.

[PPO] “Privacy Preference Ontology (PPO)”, http://vocab.deri.ie/ppo, last
visited 21 August 2014.

[S4AC] “S4AC Vocabulary Specification 0.2 Namespace Document 6 October
2011”, http://ns.inria.fr/s4ac/v2/s4ac_v2.html, last visited 21 August 2014.

[Sac13] O. Sacco, “Trust Assertion Ontology”, DERI, NUI Galway, 2013.
http://vocab.deri.ie/tao, last visited 20 August 2014.

[SJB+09] C. Stasch, K. Janowicz, A. Bröring, I. Reis, and W. Kuhn, “A Stimulus-
Centric Algebraic Approach to Sensors and Observations,” in Proc. 3rd
International Conference on GeoSensor Networks (GSN’09), pp. 169–179,
2009.

[SKD+09] G. Stevenson, S. Knox, S. Dobson, and P. Nixon, “Ontonym: a
collection of upper ontologies for developing pervasive systems,” in
Proceedings 1st Workshop on Context, Information and Ontologies
(CIAO’09), pp. 1–8, 2009.

Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2

Copyright  2015 VITAL Consortium 69

[SLK+14] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, N. Lindstroem,
“JSON-LD 1.0 - A JSON-based Serialization for Linked Data”, W3C
Recommendation, 2014, http://www.w3.org/TR/json-ld/, last visited 21
August 2014.

[SNH+10] W. Sherchan, S. Nepal, J. Hunklinger, A. Bouguettaya, “A Trust
Ontology for Semantic Services”, in Proceedings of the IEEE 7th
International Conference on Services Computing (SCC 2010), pp. 313-320,
USA, 2010.

[SoKa13] J. Soldatos, J. Kaldis, “D2.1 – Report on Stakeholder’s and
Virtualization Requirements”, VITAL Project Deliverable D2.2, December
2013.

[SoKa14] J. Soldatos, J. Kaldis, “D2.2 – Reference and Validation Scenarios for
IoT Virtualization”, VITAL Project Deliverable D2.2, April 2014.

[SRA06] M. Strimpakou, I. Roussaki, and M. E. Anagnostou, “A context
ontology for pervasive service provision,” in Advanced Information
Networking and Applications (AINA 2006), 20th International Conference
on, 2006.

[ssn] The W3C Semantic Sensor Network Incubator Group, “Semantic Sensor
Network Ontology”, http://www.w3.org/2005/Incubator/ssn/ssnx/ssn, last
visited 22 August 2014.

[TAC] “TripleAccessControl Ontology 0.1 Namespace Document 15 September
2011”, http://ns.bergnet.org/tac/0.1/triple-access-control.html, last visited 21
August 2014.

[UO] “Units of Measurement Ontology”, http://bioportal.bioontology.org/
ontologies/UO, last visited 25 August 2014.

[VHM+14] R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M.
Taheriyan, R. Van de Walle, “Survey of Semantic Description of REST
APIs”, book chapter in: REST: Advanced Research Topics and Practical
Applications (C. Pautasso, E. Wilde, R. Alarcon), pp. 69-89, Springer New
York, 2014.

[VKVF08] T. Vitvar, J. Kopecky, J. Viskova, D. Fensel, “WSMO-Lite Annotations
for Web Services”, in Proceedings of the 5th European Semantic Web
Conference, Tenerife, Spain, 2008.

[w3c] The W3C Semantic Sensor Network Incubator Group, “W3C SSN
Incubator Group Review of Sensor and Observation Ontologies”,
http://www.w3.org/2005/Incubator/ssn/wiki/Incubator_Report#Review_of_
Sensor_and_Observation_ontologies, last visited 20 February 2014.

[WAC] “WebAccessControl”, http://www.w3.org/wiki/WebAccessControl, last
visited 21 August 2014.

[WeBa09] W. Wei and P. Barnaghi, “Semantic annotation and reasoning for
sensor data,” in Smart sensing and context (EuroSSC’09), 4th European
conference on, 2009, pp. 66–76.

