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OVERVIEW OF UPDATES/ENHANCEMENTS OVER D3.1.1 

Section Description 
Section 1 Updates to the introduction and scope of the second 

version of this deliverable. 

Section 2  Updates to linked data and semantic descriptions. 

Section 3 Updates to sensors and measurements. 

Section 4 Updates to smart cities section. 

Section 5 Updates to IoT systems and services. 

Section 6 Updates to VITAL system and services. 

Section 7 Updates to conclusion and further directions. 
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1 INTRODUCTION 

This deliverable specifies the data models and ontologies used in the VITAL project. 
These models and ontologies are used in three different ways. First, they are used by 
applications to communicate data between them and the VITAL platform, e.g. 
querying sensor data. Second, they are used by the so-called platform provider 
interface (PPI), which specifies an interface between VITAL and external IoT systems 
that should be integrated into VITAL, e.g. a description of the services offered by the 
IoT system. Third, they are used inside the VITAL platform to communicate data 
between VITAL services, e.g. security level information, etc.  
Due to this diverse set of users (and usage cases), VITAL has to cover a wide area 
of data models. It has to specify how basic IoT sensors and sensor measurements 
are modelled, e.g. using the Semantic Sensor Network (SSN) ontology. It has to 
define how to describe IoT systems and IoT services, e.g. using the Minimal Service 
Model (MSM). It has to identify data models for Smart City applications, e.g. for smart 
transport systems. And it has to specify metadata for the VITAL system and its 
components, e.g. to model security and monitoring information.  
In the first version of this deliverable (D3.1.1) we analysed existing ontologies and 
data models that could be used as the basis of the VITAL data models and extended 
them as required by VITAL. We subdivided the work into different areas – sensors 
and sensor measurements, Smart Cities, IoT systems and services, VITAL systems 
and services. For each of these areas we discussed which ontologies were used for 
modelling the required data (and why), presented necessary additional data items 
and how to model them, and showed examples of the resulting descriptions. The 
present version (D3.1.2) of the deliverable is an enhancement to the first version 
(D3.1.1). In this version of the deliverable (D3.1.2) we present fine-tuned data 
models, incorporate practical experiences and new requirements, and integrate new 
data items that we identified during the project lifetime.  
The document is intended for: (a) users of the VITAL platform that want to learn 
about the used data models to develop applications, (b) IoT platform providers that 
want to learn how to integrate their platform with VITAL, (c) the partners of the VITAL 
consortium, allowing them to develop their components in a way that ensures easy 
integration and interoperability, (d) external researchers and developers that want to 
design and/or use data models in Smart City systems beyond VITAL, as well as (e) 
the project reviewers to better understand the work done in the project. 
This document is structured as follows. First we provide a brief overview on semantic 
and linked data technologies. Then we present the different ontologies – as well as 
necessary extensions – for the VITAL data model, e.g. for modelling sensor 
measurements and sensor descriptions, for Smart Cities, for IoT systems and 
services (including the data required for the PPI), as well as for the VITAL system 
itself and its services. We finish the deliverable with a short conclusion and outlook 
on further work during the VITAL project and beyond.  
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2 LINKED DATA AND SEMANTIC DESCRIPTIONS 

This chapter provides background information required to understand the remainder 
of this deliverable. We give a short overview on linked data and its technologies. 
First, we explain the basic concepts of Linked Data. After that we briefly present the 
most commonly used technologies of Linked Data, namely RDF, SPARQL and 
Ontologies. Finally, we discuss how Linked Data will be used in VITAL.  
The term ‘Linked Data’ is usually applied to a set of techniques for publishing and 
interlinking structured data on the Web. With Linked Data different kinds of data 
sources can be integrated (see [HeBi11]). Linked Data is based on four principles, 
explained in [HeBi11] and [HKHD09]: 

1. The first principle is to use URIs as names for things. After the identification 
of items in a domain of interest, they are described in the data set with their 
properties and relationships. Each thing must be assigned a globally unique 
name, usually an HTTP URI (since this makes it easy to enforce global 
uniqueness). The fact that each thing has a globally unique name makes it 
possible to integrate local data sets with remote sets that have been 
developed independently. 

2. The second principle is to use HTTP URIs, so clients can retrieve a 
description of the names thing or resource using the HTTP protocol. For 
humans the description can be provided as HTML, for machines it can be 
provided as RDF triples. 

3. The third principle is to use standards to provide information. This usually 
means that standards like RDF or SPARQL are used to model and access 
data. We explain the most important standards later in this chapter. 

4. The last principle is to link to other URIs and to enable the possibility to 
discover more things. That means that there should be external links pointing 
to other data sources on the Web. By following these links, a larger 
(distributed) data space can be explored automatically. 

 
In a nutshell, Linked Data enables the implementation of generic applications 
operating over a huge, interconnected (distributed) data space by using Web 
standards and a common data model. 

2.1 RDF 

The most common data model used in the context of Linked Data is the Resource 
Description Framework (RDF) [GaSc14], which we introduce in this subsection. We 
first describe the basics of RDF, before discussing some of its advantages. RDF is a 
popular standard for describing things (known as resources or entities). By itself it is 
a graph-based data model that represents information as labelled directed graphs. 
This graph is built of triples that describe the data. Each triple (s, p, o) consists of 
a subject s, a predicate p and an object o. Take for example the information “The sky 
has the colour blue”. This would be modelled as a triple with “Sky” as the subject, 
“has colour” as the predicate and “blue” as the object. Note that the predicate in the 
middle always denotes the relationship between subject and object. Both the subject 
and the predicate are identified by URIs (assigning them globally unique identifiers)1 
                                            
1 A subject can also be identified by a so-called blank node. A blank node is a local identifier.  
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while the object can be a URI or a literal value (i.e. a string or a number). The triple in 
our example could e.g. look like this (given in N-Triple notation): 
<http://example.com/Sky> <http://example.com/hasColour> “blue” 

Using RDF in a Linked Data context has some advantages. In the following we briefly 
outline the most important ones of these advantages. The reader is referred to 
[HeBi11] for more detailed information. Possible advantages are: 
 

• If the identifiers of data items (both used as subjects and objects) and 
vocabulary terms (used as predicates) are HTTP URIs, the RDF data model 
can be used at global scale and anybody is able to refer to anything. 

• Each RDF triple is included in the Web of Data and can be the starting point 
for explorations in the data space, because any URI can be looked up in an 
RDF graph over the Web. 

• It is possible to set RDF links between data from different sources. 
• Sets of triples can be merged in a single graph to combine information. 
• Terms taken from different vocabularies can be mixed in a RDF graph. 

 
As RDF is just a data model and not a data format, there are a number of data 
formats that can be used to write RDF data, either directly as triples or as nodes that 
can be mapped to RDF triples, e.g. RDF/XML [GaSc14], RDFa [HASB13], Turtle, N-
Triples and JSON-LD. In the VITAL Project JSON-LD is used. 

2.2 JSON-LD 

Many developers have little or no experience with Linked Data, RDF or common RDF 
serialization formats such as N-Triples and Turtle. This produces extra overhead in 
the form of a steeper learning curve when integrating new systems to consume 
linked data. To counter this the project consortium decided to use a format based on 
a common serialization format such as XML or JSON. Thus, the two remaining 
options are RDF/XML and JSON-LD [SLK+14] [jsld]. JSON-LD was chosen over 
RDF/XML as the data format for all Linked Data items in VITAL. JSON-LD is a JSON-
based serialisation for Linked Data with the following design goals: 
 

• Simplicity: There is no need for extra processors or software libraries, just the 
knowledge of some basic keywords. 

• Compatibility: JSON-LD documents are always valid JSON documents, so 
the standard libraries from JSON can be used. 

• Expressiveness: Real-world data models can be expressed because the 
syntax serialises a directed graph. 

• Terseness: The syntax is readable for humans and developers need little 
effort to use it. 

• Zero Edits: Most of the time JSON-LD can be devolved easily from JSON-
based systems. 

• Usable as RDF: JSON-LD can be mapped to / from RDF and can be used as 
RDF without having any knowledge about RDF. 
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From the above, terseness and simplicity are the main reasons JSON-LD was 
chosen over RDF/XML. JSON-LD also allows for referencing external files to provide 
context. This means contextual information can be requested on-demand and makes 
JSON-LD better suited to situations with high response times or low bandwidth usage 
requirements. We think that using JSON-LD will reduce the complexity of VITAL 
development by (1) making it possible to reuse a large number of existing tools and 
(2) reduce the inherent complexity of RDF documents. Ultimately, this will increase 
VITAL’s uptake and success. In the following we provide a short overview of the main 
JSON-LD features and concepts. More information can be found in [SLK+14]. 
The data model underlying JSON-LD is a labelled, directed graph. There are a few 
important keywords, such as @context, @id, @value, and @type. These keywords 
are the core part of JSON-LD. Four basic concepts should be considered: 
 

• Context: A context in JSON-LD allows using shortcut terms to make the 
JSON-LD file shorter and easier to read (as well as increasing its resemblance 
with pure JSON). The context maps terms to IRIs. A context can also be 
externalised and reused for multiple JSON-LD files by referencing its URI.  

• IRIs: Internationalised Resource Identifiers (IRIs) are used to identify nodes 
and properties in Linked Data. In JSON-LD two kinds of IRIs are used: 
absolute IRIs and relative IRIs. JSON-LD also allows defining a common prefix 
for relative IRIs using the keyword @vocab. 

• Node Identifiers: Node identifiers (using the keyword @id) reference nodes 
externally. As a result of using @id, any RDF triples produced for this node 
would use the given IRI as their subject. If an application follows this IRI it 
should be able to find some more information about the node. If no node 
identifier is specified, the RDF mapping will use blank nodes. 

• Specifying the Type: It is possible to specify the type of a distinct node with 
the keyword @type. When mapping to RDF, this creates a new triple with the 
node as the subject, a property rdf:type and the given type as the object 
(given as an IRI). 

2.3 SPARQL 

Assuming that there is RDF data, then a developer needs a language to query it. 
SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query language 
and it is used to retrieve and manipulate data, which is stored in RDF. There are four 
query variations that SPARQL can distinguish: SELECT, CONSTRUCT, ASK and 
DESCRIBE queries. The most basic constructs of a SPARQL query are graph 
patterns, explained in [HaSe13]. A basic graph pattern is similar to a RDF triple 
except that the subject and predicate can be variables as well. The example in Figure 
1 shows a query that will return the names of all pairs of people that know each 
other. 
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Figure 1: SPARQL example [LWS13] 

 

2.4 Ontologies 

In addition to RDF and SPARQL another very important technology in Linked Data 
are ontologies. This section provides a brief introduction of ontologies and their 
meaning. 
Linked Data can be used in cases where data originates from different sources. To 
integrate all data, be it from one or different sources, there have to be some rules. 
Some rules determine how the RDF graph is to be built and how triples may be 
connected or not. These rules are given by ontologies. An ontology specifies formally 
the conceptualisation of a domain of interest. As the conceptualisation is formal, a 
computer can automatically reason on it. There are practical ontologies for different 
domains of interest. An ontology consists of concepts (also referred to as classes), 
relations (also called properties), instances and axioms. It defines basic terms and 
relationships. 
To specify ontologies, the W3C published the Web Ontology Language (OWL2), 
which builds on RDF. OWL facilitates mechanism for creating concepts, instances, 
relations and axioms. Concepts can have super and sub concepts. Axioms provide 
information about classes and properties. This topic is explained in detail by [DSW06] 
and [NoMc01]. 
There are many ontologies that have already been developed. Reuse of existing 
ontologies is crucial. If an existing ontology within the domain of use does not meet 
all the requirements and some new data models arise they should be attached to the 
existing ontology. This ontology grows by doing so and helps users on any of its 
nodes to reach every other node in this ontology graph. The user will get much more 
information as just of his own model – if he/she wants to. 

2.5 Conclusion 

Linked Data (using RDF, SPARQL and ontologies) helps to describe and integrate 
data that is provided by different organisations in an interoperable way. This is ideally 
suited for VITAL. VITAL envisages that a multitude of (independent) organisations 
                                            
2 www.w3.org/2004/OWL 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

 

SELECT ?name1 ?name2 

FROM <http://example.org/foaf> 

WHERE { 

?person1 foaf:knows ?person2. 

?person1 foaf:name ?name1. 

?person2 foaf:name ?name2 

} 
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and entities deploy and operate different sensors and IoT systems, which produce 
data (and offer functionality) that should be integrated in a platform agnostic way.  
VITAL uses Linked Data standards for modelling and accessing data. RDF is used as 
the basic data model. JSON-LD is used as the data format. SPARQL is used to 
query data using complex sub graph patterns. Finally, ontologies are used to specify 
our data formally. To use the potential of Linked Data for interconnecting with as 
many external information sources as possible (making their information readily 
available for VITAL developers), we use the good practice of reusing as many 
ontologies as possible. We require ontologies in different areas. First, VITAL must 
allow to model sensors and sensor measurements, which are the basis of any IoT 
system. Second, VITAL has to provide means to model entities that are relevant to 
Smart Cities. Third, VITAL must allow to model IoT systems and services that are 
integrated into the VITAL platform. And finally, it must provide ontologies to model 
the VITAL system itself. In the remainder of this deliverable we discuss how to model 
these different parts using which ontologies. Table 1 provides an overview of the 
main ontologies used in VITAL, their namespaces and the prefixes that we use to 
refer to them.  

Table 1: Ontology/ Language Prefixes 
Prefix Ontology / Language Namespace 

dcn Delivery Context ontology http://www.w3.org/2007/uwa/context/deliveryContext.owl# 

dul DOLCE+DnS Ultralite ontology http://www.ontologydesignpatterns.org/ont/dul/DUL.owl# 

geo Basic Geo (WGS84) ontology http://www.w3.org/2003/01/geo/wgs84_pos# 

hrest hRESTS ontology http://www.wsmo.org/ns/hrests# 

msm Minimal Service Model 
ontology 

 

owl Web Ontology Language http://www.w3.org/2002/07/owl# 

rdfs RDF Schema ontology http://www.w3.org/2000/01/rdf-schema# 

sawsdl Semantic Annotations for 
WSDL and XML Schema 
ontology 

http://www.w3.org/ns/sawsdl# 

ssn Semantic Sensor Network 
ontology 

http://purl.oclc.org/NET/ssnx/ssn# 

time OWL Time ontology http://www.w3.org/2006/time# 

vital VITAL ontology http://vital-iot.eu/ontology/ns/# 

wsl WSMO-Lite ontology http://www.wsmo.org/ns/wsmo-lite# 

xsd XML Schema Definition http://www.w3.org/2001/XMLSchema# 

qudt Quantities, Units, Dimensions 
and Data Types Ontologies 

http://qudt.org/schema/qudt# 

foaf Friend of a Friend http://xmlns.com/foaf/ 

s4ac Social Semantic SPARQL 
Security for Access Control 

http://ns.inria.fr/s4ac/v2# 

otn Ontology of Transportation 
Networks 

http://www.pms.ifi.lmu.de/rewerse-wga1/otn/OTN.owl 



Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2  

Copyright  2015 VITAL Consortium  13 

3 SENSORS AND MEASUREMENTS 

Networked sensors and their measurements are one of the most important parts of 
any data model for IoT systems and therefore also an integral part of the VITAL data 
model. To better define the semantics of IoT data, a number of ontologies have been 
developed on multiple layers of abstraction [w3c]:  
 

(1) sensor-centric ontologies like the Ontonym sensor ontology [SKD+09], the 
Sensor Data Ontology [ELS07], and OntoSensor [GoRu06];  

(2) observation-centric ontologies like the Semantic Sensor Network (SSN) 
Ontology [CBB+12], the Sensei Observation and Measurement Ontology 
[WeBa09], and stimuli-centered ontologies [SJB+09], as well as  

(3) context-centric ontologies like COMANTO [SRA06] and SOUPA [CPF+04]. 
 
Clearly it is impossible to specify a single ontology that defines the semantics of all 
possible data items, as they are in many cases application (domain) specific. This 
has lead to the development of rather abstract and complex ontologies that try to fit 
all possible cases by providing a conceptual framework only, omitting concrete 
instances like specific sensor models, etc. Such ontologies try to impose an 
overarching structure onto IoT systems and their data, e.g. specifying abstract 
metadata classes for stimuli, observations, measurements, sensors and features of 
interest.  
In practice such ontologies must be combined with additional ontologies to define 
concrete instances of abstract concepts. As an example, while a generic sensor 
ontology may specify how to model what a sensor is measuring, additional definitions 
must be used to model a concrete location sensor. 
In the following we first present, SSN as the generic sensor ontology that the VITAL 
consortium has selected to be used in VITAL. We then discuss a number of further 
ontologies as well as additional definitions that are used in VITAL to create concrete 
data items. 

3.1 The W3C Semantic Sensor Network Ontology 

The Semantic Sensor Network (SSN) ontology [CBB+12] defines a conceptual 
framework for describing sensors and observations. It was developed by the W3C 
Semantic Sensor Network Incubator group (SSN-XG). In the following, the ontology 
is explained in more detail to provide an understanding about its meaning by 
presenting what it describes, the used pattern (SSO), and the four main perspectives. 
Overall the SSN ontology is able to describe:  
 

• sensors including their accuracy and capabilities,  
• observations, 
• methods for sensing, 
• concepts for operating and survival ranges, and 
• deployments. 
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A sensor could be anything that observes, be it an electronic object, a virtual object 
or a human. The ranges are used in the definition of sensors conjoined with the 
performance of these sensors. The description of deployment includes the 
deployment lifetime as well as the sensing purpose of the deployed macro 
instrument. 

3.1.1 Stimulus-Sensor-Observation Pattern 

The ontology is built around an ontology design pattern called Stimulus-Sensor-
Observation (SSO) Pattern. This pattern describes the relationships between 
sensors, stimuli and observations.  

A sensor is modelled as a physical object (dul:PhysicalObject) and is able to 
observe, transform and represent data. How it observes is defined in sensing 
methods (imported from other ontologies).  
A stimulus (dul:Event) is represented by a change or state which can be detected 
and used by a sensor to measure some property. It is comparable to a proxy for an 
observation property. A property, in turn, is an observable characteristic of a real-
world entity (ssn:FeatureOfInterest). 
Observations are the connectors in the SSO pattern. They can link between the act 
of sensing, a stimulus event, a sensor, a method, a result, an observed feature and a 
property – and put them in an interpretative context. An observation is modelled as a 
social construct (from dul:Situation). 

3.1.2 Perspectives 

For a better understanding of the ontology in terms of sensors and observations, 
there are four main perspectives in the SSN ontology, explained in the following. 

Sensor perspective 

A sensor is described with a stimulus, a sensing method, observations and 
capabilities. The environment can influence the performance of a sensor. This is 
referred to as measurement capabilities. Such capabilities are i.e. accuracy, 
measurement range, measurement precision, and measurement resolution. One 
sensor can have many measurement capabilities, representing the capabilities of the 
sensor in different conditions (observable properties of the sensor-environment). 

Observation perspective 

The observation perspective describes an observation. An observation includes a 
context for interpreting incoming stimuli and puts the observation event (including the 
stimulus) into an interpreting context. A context includes observed features, 
properties, the observing sensor, the result and the used sensing method. As an 
observation is a social construct, a stimulus event can be abstracted from its 
(potential) interpretations. The sensing method can be a principle underlying a 
sensor or a description of how the observations were done.  
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System perspective 

A system can have sub-systems or sub-concepts like devices and sensing devices. 
There are operating and survival restrictions for a system, similar to the ones for 
sensors and measurement capabilities, which are observable properties of the 
system. The operating range specifies the range in which the system aims to 
operate. The survival range is a range in which a sensor can bare without release a 
lasting damage. The process of combining all life-cycle phases of a deployed system 
is named deployment. It includes installation, maintenance and decommissioning of a 
system. 

Feature and property perspective 

The feature and property perspective focuses on properties, more specifically on the 
sensors that sense some distinct property or on the observations that were made 
about a distinct property. Figure 2 provides the key concepts and relations of the 
SSN ontology.  

 
 

Figure 2: The SSN Ontology – key concepts and relations [CBB+12] 
 

3.1.3 Conclusion 

To sum up, the SSN ontology was built to describe sensors, sensing and 
measurement capabilities of sensors as well as the resulting observations and 
deployment. The ontology covers big parts of the SensorML and O&M standards. 
SSN restricts itself to a conceptual view. It does not include specific definitions for 
concrete sensors or domain areas. Therefore, to realise a concrete IoT system based 
on the SSN ontology additional domain specific ontologies must be imported. For 
example you would use a temperature ontology on top of the SSN ontology to model 
a temperature sensor. VITAL uses the SSN ontology as the basis for modelling all 

Figure 1: The SSN Ontology, key concepts and relations, split by conceptual modules. The concepts not depicted are largely properties for measurement capabilities,
and survival and operating ranges: accuracy, precision, resolution and the like. Note the central importance of sensors, observations and properties, brought out by
the SSO pattern.

ontology, the final report includes sections on the group’s
review of existing sensor and observation related ontologies,
mappings of terms from the ontology to other standards and
vocabularies, and material on the group’s other main deliver-
able on semantic annotation of OGC Sensor Web Enablement
standards.

The section of the final report on the ontology,
http://www.w3.org/2005/Incubator/ssn/wiki/

Incubator_Report#SSN_ontology, contains a full ex-
planation of the ontology with examples and notes on how to
use the ontology in many common scenarios. This article omits
the examples and concentrates on the broad structure and main
concepts and relations of the ontology.

1.2. Development of the SSN Ontology

The SSN ontology was developed by group consensus over a
period of some eleven months. First the core concepts and rela-
tions were developed (sensors, features and properties, observa-
tions, and systems), then measuring capabilities, operating and
survival restrictions, and deployments were added in turn and
finally the alignment to DOLCE-Ultralite and the realisation of
the core Stimulus-Sensor-Observation pattern were added.

For each addition, a group member developed a proposal, in-
cluding ontology extension and, often, examples, that was taken
to the group, debated in meetings, and on the group’s mailing
list, and, when ready, voted on as an addition to the SSN on-
tology. Discussions focused on, and improved, structural as-
pects as well as names, intended scope and meaning, and rele-
vant properties and restrictions. The decision to align to DUL
was made by group vote, and alignment choices were discussed
at meetings, but each alignment choice wasn’t made by group

vote, rather by consensus amongst group members involved in
the alignment. In general, concepts and object properties found
natural alignments in DUL, given the already developed defi-
nitions and intentions. The group choose not to place domain
and range restrictions on object properties, choosing instead to
restrict concepts in terms of defined properties.

In developing final documentation, the group further organ-
ised the ontology into ten conceptual modules of related con-
cepts. At this point, final English definitions and mappings
to sources and similar definitions were added to the ontology,
and scripts were developed to derive navigable documentation
for the wiki. Members of the group also developed and docu-
mented examples using the ontology in their projects.

A review of existing ontologies and standards (see
also Compton et al. [8]), development of use cases and the
participants’ projects, experience and expectations guided the
group in first deciding what would and would not be in the on-
tology and then in developing each part of the ontology.

1.3. The SSN Ontology

The ten conceptual modules and key concepts and relations
of the SSN ontology are shown in Figure 1. The full ontol-
ogy consists of 41 concepts and 39 object properties: that is,
117 concepts and 142 object properties in total, including those
from DUL.

The group decided that the ontology should contain concepts
and relations relevant only to sensors, leaving concepts related
to other, or multiple, domains to be included from other ontolo-
gies when the ontology is used. Doing so makes the ontology
single subject and so aims for modularity and reusability.

2
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entities and activities related to sensor data and metadata in a Smart City. Necessary 
extensions with additional ontologies (e.g. for location modelling or domain specific 
measurements) are discussed in the remainder of this chapter.  

3.2 Basic Concepts and Ontologies 

In this section we present ontologies to model basic concepts like time, location and 
unit of measurement. These will be used throughout the VITAL system. Thereafter 
we discuss how to model sensors and sensor measurements in more detail.  

3.2.1 Time 

Temporal aspects are essential for any system addressing real world phenomena, 
e.g. smart city IoT systems. Timestamps can be used to describe when a sensor 
reading was taken or when it was valid. Multiple readings can be ordered by the time 
of their occurrence. Clients may specify that they are interested in the current state of 
an environment or in the state it had one week ago. To model this, VITAL has to 
provide an ontology for time as well as temporal properties and relations. A well-
established ontology for this is OWL Time [HoPa06]. OWL Time allows describing of 
temporal properties and relationships. It also supports time intervals as well as 
durations, which are useful for example, when describing imprecise measurement 
times as well as complex event specifications.  
In VITAL, all timestamps, temporal properties and relations are described using OWL 
Time. An example for a timestamp in a sensor measurement is given in Figure 3: . 

 
Figure 3: Example Time Instant Specification with OWL Time 

  

3.2.2 Location 

Location in the physical world is another basic concept that has to be modelled in 
VITAL. There is a multitude of different location models and ontologies available 
today, including geographical and symbolic location models. VITAL follows a 
practical approach to allow easy usage of the system while at the same time being 
flexible enough for advanced use cases.  
WGS84 coordinates are used as the basic location model, since they are the de-
facto standard for outdoor localisation using the GPS system. To model them, the 

{ 
  "@context": { 
    "time": "http://www.w3.org/2006/time#", 
    "xsd": "http://www.w3.org/2001/XMLSchema#", 
    "time:inXSDDateTime": { 
      "@type": "xsd:dateTime" 
    } 
  }, 
  "@type": "time:Instant",  
  "time:inXSDDateTime": "2014-08-20T16:47:32+01:00" 
} 
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basic Geo (WGS84) vocabulary3 is used. Figure 4:  provides an example. In addition, 
symbolic names are often used as locations. VITAL allows using symbolic names 
instead of WGS84 coordinates. VITAL uses the Linked GeoData system4 to model 
more complex location concepts, including symbolic names, cell-based locations and 
inter-location relationships. To map between symbolic names and WGS84 
coordinates, VITAL uses the GeoNames system5. If a location is given as a symbolic 
name, VITAL automatically tries to retrieve the WGS84 coordinates for it and 
enriches the location data with them. The same is true the other way round.  
 

 
Figure 4: Example WGS84 Location with the Basic Geo Vocabulary 

3.2.3 Unit Of Measurement 

Different properties in the VITAL data models represent physical magnitudes like 
“length” or “weight”. Each one of these properties should be associated with an 
unambiguous unit of measurement, e.g. “metre” or “kg”. Otherwise, cultural 
differences may lead to clients interpreting values incorrectly, e.g. by assuming a 
length is given in “feet”, while it is actually given in “metre”. While RDF allows 
specifying the type of a given property value by tagging it with a special type identifier 
(e.g. "13"^^<http://www.w3.org/2001/XMLSchema#int>), it does not support tagging 
values directly with a unit of measurement. At the same time, there is currently no 
single accepted ontology to model units of measurements in linked data. A number of 
potential ontologies were found and four were chosen for detailed evaluation. We 
discuss these four in the following. 
Quantities, Units, Dimensions and Data Types Ontologies (QUDT) [HKHS14] is a 
family of ontologies developed by TopQuadrant and sponsored by NASA designed to 
formalize quantities, units of measurement, dimensions and types in RDF/OWL 
formats. Due to this ambitious goal it is incredibly broad and precise. It models base 
types such as length and time and builds derived types as a hierarchy (e.g. 
Velocity = Length / Time, Kilometres Per Hour = Kilometres 
Travelled / Time taken). Where appropriate, it also references similar 
ontologies with sameAs and exactMatch relationships as well as DBpedia entries 
where appropriate. This gives items associated with QUDT types a huge amount of 
semantic information.  

                                            
3 http://www.w3.org/2003/01/geo/ 
4 http://linkedgeodata.org/ 
5 http://www.geonames.org/ 

{ 
  "@context": { 
    "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#" 
  }, 
  "@type": "geo:Point",  
  "geo:lat": "55.701", 
  "geo:long": "12.552", 
  "geo:alt": "4.33" 
} 
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Similar to QUDT, the Units of Measurement Ontology (UO) [UO] establishes a 
hierarchy of base and derived types. It contains a large number of types but is 
missing some common derived types such as “Kilometres Per Hour”. It also fails to 
link to external resources such as DBpedia where relevant which makes it less useful 
that QUDT.  
The Ontology of units of Measure (OM) [OM] stands out from the other evaluated 
ontologies by using URIs as the value for the majority of each type’s information. This 
immediately gives feedback to the user that values are unique. Thanks to each type 
using the same signature, this lets the user easily compare types for similarities using 
simple methods such as string comparison rather than needing to traverse the type 
hierarchy. Each of these URIs (e.g. om:kilometre, om:dimension, om:length-
dimension) can be followed to obtain more information including other users of this 
value. OM has a large number of derived types available but – just as UO – lacks 
links to external resources such as DBpedia and other ontologies.  
Finally, the Measurements Unit Ontology (MUO) [PoBe08] aims to solve the same 
problem as the other evaluated ontologies by establishing a hierarchy of base and 
derived types. However, it appears to have been abandoned before completion as of 
time of writing. 
VITAL chooses QUDT as the ontology for units of measurements due to the 
impressive scope and amount of information available on each type as well as the 
reputation of the maintainer and sponsoring party. QUDT is also actively maintained, 
with the latest version that was released in March 2014. In addition, the links to 
DBpedia provide a tight integration with a lot of further data items, both DBpedia itself 
and in data sources linking to it – even more so since VITAL will use DBpedia to link 
to information about cities (see Section 4.1). After the re-evaluation between Om and 
QUDT, QUDT remains the best choice. An example for using QUDT is given in 
Figure 7: . 

3.3 Sensors 

After presenting ontologies for basic concepts we can now discuss how to model 
sensors, sensor measurements and their descriptions in VITAL. In general, VITAL 
reuses and extends the SSN ontology and the Delivery Context (DC) ontologies. 

A sensor is modelled as a VitalSensor, a subclass of ssn:Sensor and 
dcn:Device6. According to the SSN, a “sensor can do (implements) sensing: that is, 
a sensor is any entity that can follow a sensing method and thus observe some 
Property of a FeatureOfInterest. Sensors may be physical devices, computational 
methods, a laboratory setup with a person following a method, or any other thing that 
can follow a Sensing Method to observe a Property” [ssn]. By using the SSN 
ontology, VITAL can immediately describe sensors in detail, including aspects like 
the properties that they observe, sensor locations, and sensor observations. The 
SSN ontology also allows to model non-functional aspects of a sensor, e.g. its 
accuracy or reliability, by adding a ssn:hasMeasurementProperty property to the 
sensor description that points to a ssn:MeasurementCapability (or a subclass 
of it). The reader is referred to the SSN ontology specification at [ssn] for more 
information about the ontology. The DC ontology defines a dcn:Device as a class 
that “represents a device in the delivery context” [FoLe09]. By using the DC ontology, 
                                            
6 Note that dcn is the prefix of one of the DC ontologies. 
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VITAL can reuse a highly detailed set of ontologies describing many aspects of 
devices, including their software, their hardware as well as their networking.  
  

Class: VitalSensor 

    SubClassOf: ssn:Sensor, dcn:Device 

 

3.3.1 Additional Ontology Definitions 

In addition to the SSN and DC ontologies, VITAL defines an additional property for 
sensors, hasLastKnownLocation. This property is a sub property of 
dul:lastLocation as specified in the SSN ontology description. It links to a 
location, which is the last known location of the sensor. Note that this property 
replaces dul:hasLocation to make the property’s semantic less ambiguous in 
VITAL. The property does not imply that this is the actual current location of the 
sensor. If the sensor is mobile, it could have moved to a new location after the 
description was created. If the property is not available in a sensor description, then 
the location of the sensor may not be known. However, a client may be able to 
access the current location using a so-called localizer service (see Section 6.5.4). 
 

ObjectProperty: hasLastKnownLocation 

    SubPropertyOf: dul:hasLocation 

    Domain: VitalSensor 

    Range: dul:Entity 

 
Note that the location of a sensor can be modelled with different types as specified 
before, e.g. as a geo:Point in case GPS coordinates are used. To be as flexible as 
possible, we use the generic dul:Entity class to represent all different location types 
here. It is taken from the DOLCE+DnS Ultralite (DUL) ontology and defines it as 
“[a]nything: real, possible, or imaginary, which some modeller wants to talk about for 
some purpose.” [dul] 
In addition to the basic description of a sensor, some VITAL services may require 
additional information. Properties and classes to model this information are described 
in Chapter 6 of this deliverable. 

3.3.2 JSON-LD Definitions 

Note that since Linked Data in VITAL is always formatted as JSON-LD we can 
introduce some additional definitions (in a JSON-LD context section as 

shown in  
Figure 5: ) that do not change the used ontology or the resulting RDF triples but align 
the JSON-LD representation more closely to ‘normal’ JSON and thus makes it easier 
for developers to work with the data. We use this approach repeatedly in this 
document. As can be seen in the figure, we first specify that all JSON keys that do 
not specify a prefix will be expanded to URIs in the VITAL ontology namespace. This 
results in more compact files with less clutter. Then we define that the key uri will be 
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mapped to a JSON-LD node identifier (@id). The node identifier is used to create the 
URI that is used as the subject in RDF triples. 
 

 
Figure 5: JSON-LD Context for Sensor 

 
Similarly, we specify that the key type will be mapped to the JSON-LD keyword 
@type. This results in an RDF triple being created that specifies the RDF type of a 
node. To further simplify the JSON-LD file, we specify that the key name will be 
mapped to rdfs:label and the key description will be mapped to 
rdfs:comment. We then specify a number of prefixes that can be used in the 
JSON-LD description to reduce the length of keys by specifying them as so-called 
terms. Terms are automatically expanded using the provided prefix URI. As an 
example, the term geo:lat would be expanded to http://www.w3.org/2003/ 
01/geo/wgs84_pos#lat. Finally we specify type specifications that declare that a 
value given for the key ssn:madeObservation or hrest:hasAddress7 should be 
mapped to a node id instead of a string. All these mappings are completely 
transparent to developers and can be ignored by clients. They are only relevant if the 
JSON-LD file is mapped to RDF triples internally. Together, they reduce the 
complexity of the resulting JSON-LD file and make it both smaller and easier to read 
and understand for JSON developers. 

3.3.3 Sensor Description Example 

                                            
7 see Section 5.2 for more information about hrest and the hRESTS ontology. 

{ 
 "@context": { 
  "@vocab": "http://vital-iot.eu/ontology/ns/", 
  "vital": "http://vital-iot.eu/ontology/ns/", 
  "lsm": "http://lsm.deri.ie/ont/lsm.owl#", 
  "ssn": "http://purl.oclc.org/NET/ssnx/ssn#", 
  "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#", 
  "msm": "http://iserve.kmi.open.ac.uk/ns/msm#", 
  "hrest": "http://www.wsmo.org/ns/hrests#", 
  "hard": "http://www.w3.org/2007/uwa/context/hardware.owl#", 
  "soft": " http://www.w3.org/2007/uwa/context/software.owl#", 
  "id": "@id", 
  "type": "@type", 
  "name": "rdfs:label", 
  "description": "rdfs:comment", 
  "ssn:madeObservation": { 
   "@type": "@id" 
  }, 
  "status": { 
   "@type": "@id" 
  }, 
 } 
} 
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To illustrate the resulting sensor descriptions, we give a short example for a sensor 
description (in JSON-LD format) In  
Figure 6: . The example uses an external version of the context specification for 
VITAL sensors that we have just described. This further reduces the size of the 
JSON-LD file. VITAL clients can access the external context file at http://vital-
iot.eu/contexts/sensor.jsonld if necessary. However, we expect that this 
will not be necessary for most scenarios and normal operation. The context file can 
also be cached on the client side, because it is independent of a specific VITAL 

sensor and can be reused. 
 

Figure 6: Example Sensor Description 
 
In the example, we describe a sensor with its name, its type (a VitalSensor), its 
URI in the VITAL system and its description. The sensor provides a last known 
location as a GPS (WGS84) location (of type geo:Point). It also specifies that it 
observes two different parameters, the light level and the temperature, as well as 
URIs to retrieve current measurements for both. Finally, a sensor may specify 
observations it made in the past, in this case an observation with ID 
http://www.example.com/ vital/sensor/123/obsvn/1. 

3.4 Sensor Measurements 

Similarly to sensors, VITAL uses the SSN ontology to model sensor measurements. 
A measurement is modelled as an ssn:Observation. An example can be seen in 
Figure 7: . Figure 8:  shows the JSON-LD context used by the example. The 
observation contains a link to an observed property (using ssn: 
observationProperty) to specify what the observation is measuring. In addition, 
it specifies when the measurement was taken (ssn:observationResultTime), at 
which location (dul:hasLocation) in WGS84 format, the quality of the 
measurement (ssn:observationQuality), as well as the measured value 

{ 
  "@context": "http://vital-iot.eu/contexts/sensor.jsonld", 
  "name": "TemperatureSensor No.123", 
  "type": "VitalSensor", 
  "description": "This is an example sensor", 
  "id": "http://www.example.com/vital/sensor/123", 
  "hasLastKnownLocation": {  
    "type": "geo:Point", 
    "geo:lat": "53.2719", 
    "geo:long": "-9.0489" 
  }, 
  "ssn:observes": [ 
  { 
      "type": "openiot:Temperature", 
      "id": "http://www.example.com/vital/sensor/123/temperature" 
     } 
  ] 
} 
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(ssn:observationResult), 21.0 Degree Celcius, with the unit of measurement 
specified with the QUDT ontology.  

 
Figure 7: Example Measurement 

{ 
  "@context": "http://vital-iot.eu/contexts/measurement.jsonld", 
  "uri": "http://www.example.com/vital/sensor/123/obsvn/1", 
  "type": "ssn:Observation", 
  "ssn:observationProperty": { 
    "type": "http://lsm.deri.ie/OpenIoT/Temperature" 
  }, 
  "ssn:observationResultTime": { 
    "inXSDDateTime": "2014-08-20T16:47:32+01:00" 
  }, 
  "dul:hasLocation": { 
    "type": "geo:Point", 
    "geo:lat": "55.701", 
    "geo:long": "12.552", 
    "geo:alt": "4.33" 
  }, 
  "ssn:observationQuality": { 
    "ssn:hasMeasurementProperty": { 
      "type": "Reliability", 
      "hasValue": "HighReliability" 
    } 
  }, 
  "ssn:observationResult": { 
    "type": "ssn:SensorOutput", 
    "ssn:hasValue": { 
      "type": "ssn:ObservationValue", 
      "value": "21.0", 
      "qudt:unit": "qudt:DegreeCelsius" 
    } 
  } 
} 
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Figure 8: JSON-LD Context for Measurement 

 

3.5 Conclusion 

Sensors and sensor measurements are a central part of each IoT data model. VITAL 
uses (and extends) the well-established SSN ontology to model these information 
items, including meta-information like the type of measurements a sensor can 
perform or the quality of a measurement. To model basic concepts like time, location 
and unit of measurement, VITAL relies on additional ontologies, like OWL Time and 
the basic geo ontology. Together with the SSN ontology this provides the means to 
specify sensors and measurements in a platform agnostic way, as required by 
VITAL. It also allows us to link them with other systems and information sources that 
use the same or similar ontologies, like the FP7 project OpenIoT. This also enables 
the reuse of existing tools and software components for VITAL, without the need to 
implement everything from scratch. An example for this is the VITAL data 
management component, which will be based on OpenIoT.  
However, we cannot yet describe real physical instances of sensors (or 
measurements), since we do not have a common ontology for specific values for our 
descriptions. As an example, while we know how to specify what property of the real 
world a sensor is observing (by using ssn:observes) we do not have a 
specification for modelling real instances of such properties, e.g. temperature, speed 
or light level. These are application domain specific. This issue is discussed further in 
the next chapter. 

  

{ 
 "@context": { 
  "@vocab": "http://vital-iot.eu/ontology/ns/", 
  "vital": "http://vital-iot.eu/ontology/ns/", 
  "lsm": "http://lsm.deri.ie/ont/lsm.owl#", 
  "ssn": "http://purl.oclc.org/NET/ssnx/ssn#", 
  "geo": "http://www.w3.org/2003/01/geo/wgs84_pos#", 
  "time": "http://www.w3.org/2006/time#", 
  "qudt": "http://qudt.org/vocab/unit#", 
  "xsd": "http://www.w3.org/2001/XMLSchema#", 
  "id": "@id", 
  "type": "@type", 
  "time:inXSDDateTime": { 
   "@type": "xsd:dateTime" 
  }, 
  "qudt:unit": { 
   "@type": "@id" 
  } 
 } 
} 
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4 SMART CITIES 

‘Smart City’ is quite a broad term that represents many different aspects of a city's 
population, economy and [CDN09]. For this document, we define a Smart City as one 
that uses ICT to integrate its different capabilities and enhance the quality of life for 
its population. Smart cities have many capabilities that must be modelled as part of a 
smart city ontology. The most active and relevant producers of data come under the 
following headings (see also VITAL deliverable D2.1 [SoKa13]): 
 

• Transport – e.g. dynamic route calculation informed of accidents and 
congestion, integration of transport methods such as bus, tram and subway for 
public transport users. 

• Energy – e.g. optimization of light levels, reporting of faults. 
• Emergency Services – e.g. using real-time traffic data to inform emergency 

response units and to provide real-time information on accident and crimes. 
• Waste Management – e.g. detection of full bins as well as automated 

reporting of missing/damaged bins. 
• Air and Water – e.g. reporting of high pollution in air and water, radiation 

levels reporting of water leaks, automatic irrigation of parks and green areas. 
• Recreation – e.g. provide data on local social events as well as nearby 

facilities, produce data on large events such as concerts and sports games to 
inform public transport and law enforcement systems of potential increased 
activity. 

• Smarter Working – Mobile workers require optimal working environments to 
be available at short notice and without any difficulties to use. Along with the 
available work desks in an area additional information is also shown 
associated with each workspace e.g. anticipated air quality, temperature, 
humidity, and footfall in the requested time window and location etc. 

 
Other capabilities such as smart homes (including advanced integration cases such 
as those designed for OAPs and the disabled) and smart business and industry are 
mostly consumers but may also provide alerts (e.g. factories may provide notice 
when beginning a water-intensive task). 
The VITAL use cases (see VITAL deliverable D2.2 [SoKa14]) so far focus on (smart) 
transport and traffic management and smart working. Therefore, in the following we 
discuss how to model data items and properties that are relevant for smart traffic 
scenarios. Clearly, VITAL is not restricted to smart transport scenarios. A user who 
would like to use VITAL for other smart city aspects can do so by specifying 
additional ontology elements. Due to the nature of Linked Data, these additional 
elements can be added at any time without the need to redesign the system. In the 
following we first discuss briefly how VITAL includes general information about cities 
that may be useful for different aspects of smart city applications. After that we focus 
on modelling smart transport and smart working related information. 

4.1 Cities 

VITAL obtains the majority of its semantic information on cities from DBpedia, using 
the classic DBpedia dataset for most information with the option of using DBpedia 
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live for information that updates more frequently. It is also encouraged to link real 
places and services in cities back to DBpedia to improve the amount of knowledge 
available. For example, while Camden Road would be modelled as an otn:Road as 
part of a smart transport system, it should also link to dbpedia:Camden_Road. 

4.2 Smart Transport 

Smart Transport is an important topic in Smart Cities and covers a wide range of 
domains. Some examples include tracking pedestrian congestion in an area through 
footfalls per minute, smart traffic light systems or route recommendation to empty 
parking spaces capable of reserving a spot en route. There are also opportunities for 
integrated solutions with other smart city services such as automatic contact of 
emergency services in the case of an accident and the ability to detour traffic away 
from the scene through the use of traffic light control. 
In this section, we’ll first discuss how traffic infrastructure is modelled in VITAL before 
going on to discuss what kind of services can be built on top of this infrastructure. 
Finally, we’ll discuss how VITAL will showcase the power of integrated IoT smart city 
solutions.  

4.2.1 Transport Infrastructure 

VITAL models transport infrastructure using a combination of ontologies. The core of 
these is the Ontology of Transportation Networks (OTN) [OTN]. This ontology allows 
easy modelling of a transport network graph with connections between infrastructure 
such as bus and train stations as well as events such as accidents and blocked 
passages.  
Modelling public transport was one of OTN’s main goals during its design so it is 
trivial to integrate different public transport methods. For example, a journey that 
requires a 20 min train journey, 3 minutes walking to a regional bus station, a 1 hour 
bus journey, 2 minutes walking to a city bus service, a 5 minute bus journey and 4 
minutes walking to destination can be described as a route through a single graph. 
This graph representation of public transport can be used by services such as those 
described in Section 4.2.2 to plan journeys. Another example would be providing 
automatic detours in the case of accidents and construction and using an 
ambulance’s projected route to change traffic lights to red based on its current 
location with dynamic recalculation if the ambulance changes from the suggested 
route. 
VITAL also aims to extend OTN to allow new public and private transport types. 
Some common examples include locations of taxi offices and bicycle racks but this 
will also allow the addition of less common methods of transport such as rickshaws, 
which are extremely popular in some countries and tour buses, which may be 
preferable to tourists. 
Each node in the OTN graph is also augmented with approximate longitude and 
latitude, corresponding DBpedia information and URIs for any sensors located at this 
location. 
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4.2.2 Transport Services 

Route recommendation services aim to provide a user with an optimal route to their 
destination, generally using live traffic data and other available information such as 
construction works and accidents to reach this solution. There are a number of high-
profile examples of these such as Google Maps, Bing Maps and Nokia’s Here Maps. 
However, while these solutions attempt to take external factors such as those 
previously mentioned into account they cannot take advantage of any knowledge of 
other drivers’ routes. Smart cities do not need to suffer this limitation. 
The Ontology based Traffic Jam Control System (OnTraJaC) [HaMa12] is designed 
to recommend routes to avoid traffic jams and support shorter trip times. It achieves 
this by taking into account all subscribed vehicles during route recommendation and 
is able to recommend a route to each user that does not conflict with others. 
This approach should produce the optimal route for each subscribed user but also 
has some interesting opportunities for future expansion and integration with other 
Smart City services. For example, this system could be used to tweak subscribed 
user’s routes when they conflict with the path of an emergency vehicle. In Section 
4.2.1 it was suggested that traffic light infrastructure could be integrated with 
emergency response systems. However, this would not affect users driving along the 
emergency vehicles path, only those on other routes that would cross it at a junction. 
By combining this approach with the route recommendation service, subscribed 
users could be recommended to turn off the emergency vehicles projected route just 
before the emergency vehicle reaches their position. This would prevent the 
emergency vehicle having to potentially overtake them and would be safer for both 
subscribed users and emergency response teams. 
While there are ontologies that support similar functionality to existing personal route 
recommendation systems – such as the Urban Traffic Ontology [UTO] – these should 
in theory suggest the same route as OnTraJaCS would for the case of n = 1, where 
n equals the number of subscribed users taken into account during route calculation. 
Therefore, we have decided there is no need for any other route recommendation 
ontology and instead we should simple accommodate a scenario where OnTraJaCS 
operates with knowledge of only one user. 
To support public transport route planning many ontologies were examined but most 
have their own model of how the transport network should be modelled. Since VITAL 
has chosen to use a combination of ontologies to represent transport infrastructure 
and public transport facilities, chiefly OTN, it is non-trivial to integrate these 
ontologies with existing ones. For the purpose of transport and traffic scenarios and 
use cases (specifically in Camden Town), VITAL models the following classes: 
 
Class: Line 

 
Class: BusArrival 

 SubClassOf: ssn:Property 

 
Class: RailArrival 

 SubClassOf: ssn:Property 
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Class: TubeArrival 

 SubClassOf: ssn:Property 

 
Class: AvailableBikes 

 SubClassOf: ssn:Property 

 
To describe general description of Line, VITAL supports two new properties. These 
properties are: 
ObjectProperty: name 

Domain: Line 

Range: dul:Entity 

 
ObjectProperty: direction 

Domain: Line 

Range: dul:Entity 

 

4.2.3 Traffic Management 

Safety on the roads is one of the main issues faced by the governments. In order to 
ensure safe and efficient use of the road network, traffic management is generally 
performed by specialized Traffic Control Centres (TCC). These centres maintain and 
operate Intelligent Transportation Systems in the cities and include Traffic Monitoring 
and Supervision Cameras, Radar Detectors, Sensors, Variable Message Signs 
(VMS, VTS), and similar systems. Still most of the monitoring and operational tasks 
are done by human effort in these centres. There are traffic operators and call centre 
staff monitoring cameras and observing data coming from the sensors in order to 
predict incidents. Therefore there is a high demand for intelligent smart traffic 
management systems. Some of the important smart traffic management 
functionalities are; traffic speed prediction, congestion control, incident detection, 
identification sensor validation, automatic detection of sensor failures.  Due to the 
number of cars in traffic and long-last travel times especially in big cities giving 
instant travel time is mostly insufficient. Instead, it is required to provide estimated 
travel time for long trips and for dense traffic situations. Most of the time people need 
predictions in order to schedule their travel in big cities. Therefore traffic prediction 
functionality plays an important role in city dwellers life. The instant travel information 
and predictions are obtained by using the sensor data. Hence the reliability of the 
sensor measurements is very important. A faulty sensor could cause a failure, and 
must be detected as fast as possible. On the other hand detection of an incident in 
traffic is another important functionality that a smart traffic management system 
should include. The incident detection can be obtained on the sharp decrease in the 
speed of the vehicles passing by a sensor.  
Smart traffic management system’s functionalities will benefit from VITAL. The 
sensor data reaching the VITAL platform will be obtained by the smart traffic 
management systems in JSON-LD data format. In order to achieve some of these 
functionalities using VITAL a use case application for Istanbul is planned. The 
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application will use the functionalities of the platform and will be used for traffic 
prediction, incident detection, and identification of faulty sensors. There have been 
no data models selected for traffic management application as yet. The detailed 
descriptions of the application and it’s integration with VITAL is given in Deliverable 
6.2.1.  

4.3 Smart Working 

The structural development in advanced economies is influencing the change in 
working patterns with (increasingly) employees more likely to work on the move. 
Mobile workers require optimal working environments to be available at short notice 
and without any difficulties to use. Owners of these suitable environments require 
optimal occupancy. To meet these requirements, the smarter working application 
(powered by VITAL) will use the following classes (as sub classes of 
ssn:Property): 
 
Class: AvailableDesks 

SubClassOf: ssn:Property 

 
Class: Availability 

SubClassOf: ssn:Property 

 
Each available workspace in the system that meets the specified criteria is shown on 
a map and/or list. Additional information is also shown associated with each 
workspace e.g. anticipated air quality, temperature, humidity, and footfall in the 
requested time window and location etc. In order to model additional information, 
following classes are defined as sub classes of ssn:Property: 
Class: CarbonMonoxide 

SubClassOf: ssn:Property 

 
Class: Ozone 

SubClassOf: ssn:Property 

 

Class: Footfall 

SubClassOf: ssn:Property 

 

Should the additional information need to be added and modelled by introducing new 
classes, they will be added as the scenarios and use cases make progress. 

4.4 Conclusion 

Modelling the infrastructure and available facilities and services of a smart city is a 
non-trivial task. VITAL therefore aims to cover two of the most important 
components: Smart Transport (and Traffic management) and Smart Working. Smart 
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Transport includes modelling the cities transport infrastructure and services such as 
route recommendation, but also explores integration with other smart services such 
as emergency response to showcase the power of integrated smart city solutions. 
Future services can then be integrated with VITAL’s traffic infrastructure from the 
beginning, which will allow scenarios such as automatic route calculation to entities 
such as burst water pipes and fallen electricity lines for repair teams. Smart Working 
includes modelling available workspaces to support mobile workers.  
 

5 IOT SYSTEMS AND SERVICES 

VITAL integrates existing IoT systems (i.e. deployed platforms) and allows clients 
(applications as well as VITAL system services) to access (meta) data and services 
of such systems. So far the consortium has selected four platforms for which 
example deployments will be integrated as a proof of concept: X-GSN, Reply H1, 
INRIA FIT and Xively. To integrate systems and work with them, VITAL needs a set 
of models to describe IoT services, their data and services. For data, we will use the 
models presented in Chapter 3. In the remainder of this chapter we present the 
models used for an IoT system itself as well as for generic IoT services. 

5.1 IoT Systems 

VITAL models an IoT system as a subclass of ssn:System with a number of 
additional properties. An IoT system description always includes a basic set of 
properties that describe general aspects of the system, e.g. its operator. In addition, 
a system description may specify a set of IoT services that it offers.  
 
Class: IotSystem 

    SubClassOf: ssn:System 

 

5.1.1 General Metadata 

To describe general metadata about the system, VITAL supports three new 
properties. These properties are: 
 

• status, pointing to a status description for the system (this property must be 
available 0..1 times), 

• operator, pointing to the entity that is responsible for operating this system 
(this property must be available 0..n times), 

• serviceArea, pointing to the spatial context of this system, e.g. the city it is 
operating in (this property must be available 0..n times). 

 
ObjectProperty: status 

    Domain: IotSystem 

    Range: OperationalState 
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ObjectProperty: operator 

    Domain: IotSystem 

    Range: dul:Entity 

 
 
ObjectProperty: serviceArea 

    Domain: IotSystem 

    Range: dul:Entity 

 

Note that status provides only coarse-grained aggregated information about the 
overall state of the system. The status of an IoT system might change during its 
lifecycle, the consortium has decided to represent its values as observations of a 
virtual sensor. Thus, VITAL compliant systems that want to expose their current 
operational stat must manage a virtual sensor of type MonitoringSensor (sub class of 
VitalSensor): 
 
Class: MonitoringSensor 

 SubclassOf: VitalSensor 

 

 
Figure 9: Example IoT System Description 

{   
"@context": "http://vital-iot.eu/contexts/system.jsonld",  
"id": "http://example.com",   
"type": "vital:VitalSystem",   
"name": "Sample IoT system",   
"description": "This is a VITAL compliant IoT system.",  
"operator": "http://example.com/people#john_doe",  
"serviceArea": "http://dbpedia.org/page/Camden_Town",  
"sensors":   

[  
"http://example.com/sensor/1",  
"http://example.com/sensor/2"  

],  
"services":  

[  
"http://example.com/service/1",  
"http://example.com/service/2",  
"http://example.com/service/3"  

],  
"status": "vital:Running"  

}  
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More detailed information about the state of a system may be retrieved from an 
optional monitoring service. In case an IoT system does not provide any such 
service, the system description may need to be modified manually.  

In addition, a VitalSystem supports properties that are independent of VITAL, 
namely rdfs:label (to specify a human readable name for a system) and 
rdfs:comment (to give a human readable description of a system).  

Figure 9 shows an example for such an IoT system description. Note that the 
example is using the external JSON-LD context shown in  

Figure 10. 
 

Figure 10: JSON-LD Context Specification for Systems 
 

In the example, the system description first associates a name (“Camden Reply 
System”) and a description (stating that this is a deployment of the Reply H1 IoT 
system for Camden Town) with this system. Note that – similar to before – name, 
description and uri are identifiers that have been specified in the context to 
make the JSON-LD file cleaner and easier to read for developers with previous 
experience with JSON. The context maps them to rdfs:label, rdfs:comment, 
and @id (JSON-LD node identifiers), respectively. In the example, the node identifier 
http://www.reply.com/camden identifies this system description and – following 

{ 
 "@context": { 
  "@vocab": "http://vital-iot.eu/ontology/ns/", 
  "vital": "http://vital-iot.eu/ontology/ns/", 
  "rdfs": "http://www.w3.org/2000/01/rdf-schema#", 
  "msm": "http://iserve.kmi.open.ac.uk/ns/msm#", 
  "hrest": "http://www.wsmo.org/ns/hrests#", 
  "id": "@id", 
  "type": "@type", 
  "name": "rdfs:label", 
  "description": "rdfs:comment", 
  "status": { 
   "@type": "@id" 
  }, 
  "operator": { 
   "@type": "@id" 
  }, 
  "serviceArea": { 
   "@type": "@id" 
  }, 
  "services": { 
        "@id": "vital:providesService", 
        "@type": "@id" 
     }, 
     "sensors": { 
   "@id": "vital:managesSensor", 
   "@type": "@id" 
     }   
 } 
} 
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Linked Data good practice – specifies the location where a client can retrieve the 
description via HTTP.  
The system in the example is operated by CTU (operator). The serviceArea is 
identified by its DBPedia URI. This allows a client to query the DBPedia for more 
information about Camden and to integrate this information. The system is currently 
in the Running state (see Section 5.1.2 below for a more detailed explanation of 
OperationalState).  
 

5.1.2 OperationalState 

OperationalState specifies the operational state of a system (or other entities, 
e.g. services). So far, the following states are defined in VITAL as sub classes of 
OperationalState: 
 

• Operational: The entity is currently not running (and may remain in this 
state indefinitely) but could be started if needed (please note that this does not 
guarantee that starting it will succeed), 

• StartingUp: The entity is in the process of starting and will (probably) be 
running soon, 

• Running: The entity is currently operating and available to use, 
• ShuttingDown: The entity is in the process of shutting down and will soon be 

stopped, 
• Unavailable: The entity is currently not operating and cannot be started at 

this time. Usually this implies that a manual intervention is necessary to return 
the entity to the Operational state. 

 
Should additional states be needed, they will be added in later versions of this 
deliverable.  
 
Class: Operational 

    SubClassOf: OperationalState 

 
Class: StartingUp 

    SubClassOf: OperationalState 

 
Class: Running 

    SubClassOf: OperationalState 

 
Class: ShuttingDown 

    SubClassOf: OperationalState 
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Class: Unavailable 

    SubClassOf: OperationalState 

 

5.1.3 Provided IoT Services  

In addition to the metadata discussed so far, an IoT system may offer a set of IoT 
services to access its functionalities. Typical examples of such services are data 
access services, data stream management, monitoring, discovery, and configuration 
services etc. Each system may offer different services, making it impossible to define 
a fixed set of services. VITAL therefore provides the means to specify a large variety 
of IoT services with generic service specification ontology. More information about 
this can be found in Section 5.2. To allow an IoT system to link to descriptions of 
provided IoT services, VITAL introduces a new property providesService.  
 
ObjectProperty: providesService 

    Domain: IotSystem 

    Range: msm:Service 

 
Figure 11 shows an example that provides description of an IoT system that offers 
three IoT services.  
The first service (of type ConfigurationService) allows clients to get and set 
configurations of an IoT system. The second service (of type MonitoringService) 
allows clients to call a number of monitoring functionalities offered by an IoT system 
e.g. the status of an IoT system, the status of sensors that an IoT system manages, 
performance metrics of an IoT system, etc. The third service (of type 
ObservationService) allows clients to retrieve ICO observations made available 
by an IoT system. 
In the following we describe IoT services and the ontologies used for them in more 
detail. To do so, we first discuss existing ontologies. Then, we specify how to 
describe IoT services in VITAL. 
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Figure 11: IoT System with Provided Services Description 

[ 
  { 
    "@context": "http://vital-iot.eu/contexts/service.jsonld", 
    "id": "http://example.com/service/1", 
    "type": "vital:ConfigurationService", 
    "operations":  
    [ 
      { 
        "type": "vital:GetConfiguration", 
        "hrest:hasAddress": "http://example.com/service/1", 
        "hrest:hasMethod": "hrest:GET" 
      }, 
      { 
        "type": "vital:SetConfiguration", 
        "hrest:hasAddress": "http://example.com/service/1", 
        "hrest:hasMethod": "hrest:POST" 
      } 
    ] 
  }, 
  { 
    "@context": "http://vital-iot.eu/contexts/service.jsonld", 
    "id": "http://example.com/service/2", 
    "type": "vital:MonitoringService", 
    "msm:hasOperation":  
    [ 
      { 
        "type": "vital:GetSystemStatus", 
        "hrest:hasAddress": "http://example.com/system/status", 
        "hrest:hasMethod": "hrest:POST" 
      }, 
      { 
        "type": "vital:GetSensorStatus", 
        "hrest:hasAddress": "http://example.com/sensor/status", 
        "hrest:hasMethod": "hrest:POST" 
      }, 
      { 
        "type": "vital:GetSupportedPerformanceMetrics", 
        "hrest:hasAddress": "http://example.com/system/performance", 
        "hrest:hasMethod": "hrest:GET" 
      }, 
      { 
        "type": "vital:GetPerformanceMetrics", 
        "hrest:hasAddress": "http://example.com/system/performance", 
        "hrest:hasMethod": "hrest:POST" 
      }, 
      { 
        "type": "vital:GetSupportedSLAParameters", 
        "hrest:hasAddress": "http://example.com/system/sla", 
        "hrest:hasMethod": "hrest:GET" 
      }, 
      { 
        "type": "vital:GetSLAParameters", 
        "hrest:hasAddress": "http://example.com/system/sla", 
        "hrest:hasMethod": "hrest:POST" 
      } 
    ] 
  }, 
  { 
    "@context": "http://vital-iot.eu/contexts/service.jsonld", 
    "id": "http://example.com/service/3", 
    "type": "vital:ObservationService", 
    "operations":  
    [ 
      { 
        "type": "vital:GetObservations", 
        "hrest:hasAddress": "http://example.com/sensor/observation", 
        "hrest:hasMethod": "hrest:POST" 
      } 
    ] 
  } 
] 
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5.2 IoT Services 

In VITAL, an IoT system does not only provide access to IoT data (e.g. sensor 
measurements) but may offer a set of distinct and heterogeneous IoT services. An 
IoT service may be generic, e.g. a service to discovery ICOs or to access filtered 
data, or application specific, e.g. a service to reserve a parking space in a Smart City 
IoT system. In fact, VITAL models all functionality that can be exposed by an IoT 
system and can be accessed and used by a client as an IoT service, including data 
access, e.g. reading a sensor measurement. VITAL therefore specifies a flexible data 
model to specify all different kinds of IoT services. This allows extending the system 
in case a provider of an IoT system wants to expose new application specific 
services. In addition to this, VITAL provides concrete instances of IoT service 
specifications for generic (system) IoT services like the aforementioned discovery 
and filtering services. Service providers can extend these instances for their specific 
IoT system, but they should use instances specified by VITAL to model services if 
possible. In the following we briefly discuss different existing ontologies and 
modelling approaches for services, before describing the VITAL IoT service model in 
more detail.  

5.2.1 Service Ontologies And Semantic Description Languages 

There are a number of existing ontologies and specification languages to model 
services, among them the Web Service Definition Language (WSDL) and the Web 
API Definition Language (WADL) for specifying (SOAP-based) web services and 
(REST-based) web APIs (also known as RESTful services). Both WSDL and WADL 
are not using ontologies. Ontology-based approaches (see [VHM+14] for a recent 
survey) can be classified in three main groups: approaches that aim at extending 
generic WSDL-based service descriptions with semantic data, approaches that 
concentrate on extending descriptions of RESTful services with semantic data, and 
approaches that concentrate on providing a conceptual framework for service 
descriptions. In the following we briefly discuss some of the existing approaches and 
discuss their applicability to the VITAL use case. In general, VITAL aims at modelling 
IoT services with a focus on simplicity, minimalism, reuse as well as support from an 
active community.  

WSDL-based Semantic Service Description Languages 

WSDL-based approaches to describe semantic web services, like OWL-S [MBH+04], 
Semantically Annotated WSDL (SAWSDL) [FaLa07], and the Web Service Modelling 
Ontology (WSMO) [LPR05] focus on generic and complex semantic extensions of 
WSDL to describe SOAP-based web services. As an example, OWL-S consists of 
three parts that are used to specify three aspects of web services: the service profile 
(specifying what the service does for potential clients, e.g. name, description and 
quality of service levels), the process model (specifying how to use a service on a 
semantic level, e.g. input and output messages), and the service grounding 
(specifying details on how to access a service on a technical level, e.g. protocols and 
addresses). To fully specify the service grounding, OWL-S relies on an additional 
(external) specification. Most commonly WSDL is used. Despite the long availability 
of approaches such as OWL-S (having been published as a W3C member 
submission in 2004), they have received limited uptake and do not take into account 
newer developments and technologies such as REST.  
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Light-weight Semantic Service Description Languages 

To accommodate for this, a number of newer specifications have been developed. 
Microformats such as Semantic Annotations for REST (SA-REST) [GRS10] and 
HTML for restful Services (hRESTS) [KGV08] embed additional metadata into 
(X)HTML-based textual descriptions of (usually RESTful) web services. This 
metadata can be used to describe services in more detail and allows creation of 
machine understandable descriptions that can be used for discovery and automatic 
orchestration. MicroWSMO [KVF09] extends hRESTS with the ability to enhance a 
service description with external semantic descriptions as well as transformation 
routines to map between raw and semantic data. It is similar to SAWSDL but 
simplified to be used for RESTful services, only.  

Higher Layer Conceptual Integration Frameworks 

WSMO-Lite [VKVF08] is a lightweight subset of WSMO that provides a number of 
semantic annotations to describe web services. It can be used in conjunction with 
different lower layer ontologies and languages, e.g. on top of SAWSDL/WSDL for 
SOAP services and on top of MicroWSMO/hRESTS for RESTful services. 
The Minimal Service Model (MSM)8 [KGV08] [PML+10] is a very lightweight ontology 
for the semantic modelling of Web service descriptions. It consists of only a few 
general concepts (e.g. a service and an operation) that are not detailed further in 
MSM. Instead, MSM provides a conceptual framework to integrate semantic 
descriptions that have been created using different other approaches. To actually 
specify a service, MSM must be combined with other ontologies, e.g. hRESTS, 
MicroWSMO and WSMO-Lite. While WSMO-Lite integrates semantic annotations, 
MSM integrates the basic concepts of a service description. 

5.2.2 VITAL IoT Service Model 

There is currently no single, standardised way to model IoT services. Based on the 
related work discussed before, the VITAL consortium decided to base its semantic 
IoT service model on existing work in the domain of web services. As discussed 
before, VITAL aims at providing a semantic model that is generic – yet simple and 
minimal, reuses existing ontologies as much as possible and allows to link with an 
active community as well as other current projects.  
After careful consideration, the consortium selected to use the MSM as the basis of 
its IoT modelling ontology. MSM is small and easy to understand while at the same 
time providing integration with other languages like SAWSDL, WSMO-Lite and 
hRESTS. MSM is also widely used, e.g. by SOA4All [KNSP09], iServe [isrv], as well 
as the FP7 project COMPOSE [com]. COMPOSE focuses on transforming the IoT 
into an Internet of Services. By aligning VITAL with COMPOSE, applications using 
the VITAL platform will be able to participate in the open service marketplace 
envisioned in COMPOSE. At the same time, VITAL will be able to easily integrate all 
services offered by the COMPOSE marketplace. In addition, using MSM also allows 
a direct integration with iServe [isrv], an online service warehouse supporting service 
publication, analysis, and discovery. Nevertheless, the consortium will keep 

                                            
8 http://iserve.kmi.open.ac.uk/ns/msm/msm-2013-05-03.html  
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monitoring all usage and experiences with the IoT service ontologies and may extend 
the used model to integrate further ontologies, e.g. OWL-S. 
With this in mind, we can specify the following: In the VITAL system an IoT service is 
modelled as a RESTful (web) service that is described by Linked Data using the 
MSM ontologies. This allows publishing a description of the IoT service that can e.g. 
be used for discovery or for automatic composition tasks. An example for such an IoT 
service is given in Figure 12:  and Figure 13: . Other than for earlier examples, to 
showcase how the JSON-LD file is mapped to RDF triples, we provide the same 
example twice, first in N39 notation, then in JSON-LD format using the context shown 
in Figure 14: . 
 

 
Figure 12: Example IoT Service for Configuration (N3) 

 
In the example, we specify an IoT service for IoT system configuration that allows a 
user to request the current configuration of the system using their identifier (ID) by 
sending a HTTP GET request to the URI representing the configuration service. 
Using VITAL ontology, we first specify a service vital:ConfigurationService 
that has two operations vital:GetConfiguration and 
vital:SetConfiguration. In addition, we assign a label to the service that helps 
to describe the service for human readers. The operations again specify labels 
intended for human readers and in addition specify how to access the operations 
using the hRESTs ontology by giving its address template and the used HTTP 
method (in this case GET and POST). The address template allows to specify not 
only a single, fixed URI but a set of URIs (of type hrest:URITemplate) that can be 
                                            
9 http://www.w3.org/DesignIssues/Notation3.html 

@prefix : <http://vital-iot.eu/ontology/ns/> . 
@prefix hrest: <http://www.wsmo.org/ns/hrests#> . 
@prefix msm: <http://iserve.kmi.open.ac.uk/ns/msm#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix vital: <http://vital-iot.eu/ontology/ns/> . 
@prefix xml: <http://www.w3.org/XML/1998/namespace> . 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 
 
<http://example.com/service/1> a vital:ConfigurationService; 
rdfs:label “IoT System Configuration Service”; 

    msm:hasOperation [ a vital:GetConfiguration ; 
rdfs:label “Get configurations”; 

            hrest:hasAddress 
"http://example.com/service/1"^^hrest:URITemplate ; 
            hrest:hasMethod "hrest:GET" ], 
        [ a vital:SetConfiguration ; 

rdfs:label “Set configurations”; 

 
            hrest:hasAddress 
"http://example.com/service/1"^^hrest:URITemplate ; 
            hrest:hasMethod "hrest:POST" ]. 
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used with this operation. In this example, the address template specifies that the 
operation can be called with the ID of configuration service. As an example, calling 
the operation GetConfiguration with address 
http://example.com/service/1 would get the configurations of the IoT 
system.  

 
Figure 13: Example IoT Service for Configuration 

Figure 13:  shows the same example again, this time in JSON-LD format. Note that 
we could omit the type entry to achieve a more compact description. However, we 
did not do this to make it easier to compare the two representations of the example.  

 
Figure 14: JSON-LD Context Specification for Services 

{ 
 "@context": { 
  "@vocab": "http://vital-iot.eu/ontology/ns/", 
  "vital": "http://vital-iot.eu/ontology/ns/", 
  "rdfs": "http://www.w3.org/2000/01/rdf-schema#", 
  "msm": "http://iserve.kmi.open.ac.uk/ns/msm#", 
  "hrest": "http://www.wsmo.org/ns/hrests#", 
  "id": "@id", 
  "type": "@type", 
  "name": "rdfs:label", 
  "description": "rdfs:comment", 
  "hrest:hasAddress": { 
   "@type": "hrest:URITemplate" 
  }, 
  "operations": { 
   "@id": "msm:hasOperation", 
   "@type": "@id" 
     }  
 } 
} 

{ 
    "@context": "http://vital-iot.eu/contexts/service.jsonld", 
    "id": "http://example.com/service/1", 
    "type": "vital:ConfigurationService", 
    "name" : "IoT System Configuration Service", 
    "operations":  
    [ 
      { 
        "type": "vital:GetConfiguration", 
        "hrest:hasAddress": "http://example.com/service/1", 
        "hrest:hasMethod": "hrest:GET" 
      }, 
      { 
        "type": "vital:SetConfiguration", 
        "hrest:hasAddress": "http://example.com/service/1", 
        "hrest:hasMethod": "hrest:POST" 
      } 
    ] 
} 
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Using this combination of commonly used ontologies, IoT systems can specify their 
generic services towards the VITAL platform as well as to client applications. The 
VITAL discovery service can use this information to allow clients to discover IoT 
services at runtime. The VITAL orchestration service can use it to provide semi-
automatic service orchestrations or to provide users with lists of equivalent IoT 
services. Clearly, this IoT service model can be extended, e.g. with the ability to 
specify other communication protocols. The consortium has decided to extend the 
IoT service model with the following services.  

5.2.3 Configuration Service 

IoT systems (integrated with VITAL platform) may provide configuration 
functionalities. In order to model these functionalities, ConfigurationService 
class is defined as a sub class of msm:Service along with two operations: 
GetConfiguration (to access existing configurations) and SetConfiguration 
(to set new configurations): 
 
Class: ConfigurationService 

 SubclassOf: msm:Service 

 

Class: GetConfiguration 

 SubclassOf: msm:Operation 

 

Class: SetConfiguration 

 SubclassOf: msm:Operation 

 
Examples of ConfigurationService and its operations can be found in deliverable 
D3.2.2 (See section 3.2). 

5.2.4 Monitoring Service 

An IoT system can allow VITAL to monitor a number of monitoring functionalities. For 
example, the status of an IoT system, the status of sensors that an IoT system 
manages, performance metrics of an IoT system, SLA parameters related to an IoT 
system, etc. These functionalities are exposed by a MonitoringService class a sub 
class of msm:Service with a number of operations: 

• GetSystemStatus: To access to status description of an IoT system. 
• GetSensorStatus: To access to status description of a sensor within an 

IoT system. 
• GetSupportedPerformanceMetrics: To access the performance 

metrics supported by an IoT system. 
• GetPerformanceMetrics: To access the performance metrics of an IoT 

system. 
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• GetSupportedSLAParameters: To access the SLA parameters supported 
by an IoT system. 

• GetSLAParameters: To access the SLA parameters of an IoT system. 

 
Class: MonitoringService 

 SubclassOf: msm:Service 

 

Class: GetPerformanceMetrics 

 SubclassOf: msm:Operation 

 

Class: GetSensorStatus 

 SubclassOf: msm:Operation 

 

Class: GetSLAParameters 

 SubclassOf: msm:Operation 

 

Class: GetSupportedPerformanceMetrics 

 SubclassOf: msm:Operation 

 

Class: GetSupportedSLAParameters 

 SubclassOf: msm:Operation 

 

Class: GetSystemStatus 

 SubclassOf: msm:Operation 

 
Examples of MonitoringService and its operations can be found in deliverable D3.2.2 
(See section 3.2). 

5.2.5 Observation Service 

The VITAL platform can use both a pull and push based mechanism to obtain 
observations made by a sensor. An IoT system with various sensors can 
provide/support both mechanism by providing an observation service. An IoT system 
must support at least one of these two mechanisms in order to allow access to 
sensor observations. This service is modelled as ObservationService sub class of 
msm:service with the following operations: 

• GetObservations: If the IoT system supports a pull-based mechanism, it 
must provide this operation to pull observations. 
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• SubscribeToObservationStream: To subscribe to a specific stream of 
observations in the case of push-based mechanism supported by an IoT 
system. 

• UnsubscribeFromObservationStream: To unsubscribe from a specific 
stream of observations (for which there is an active subscription) in the case of 
push-based mechanism supported by an IoT system. 

 
Class: ObservationService 

 SubclassOf: msm:Service 

 

Class: GetObservations 

 SubclassOf: msm:Operation 

 

Class: SubscribeToObservationStream 

 SubclassOf: msm:Operation 

 

Class: UnsubscribeFromObservationStream 

 SubclassOf: msm:Operation 

 

5.3 Conclusion 

One of the central aspects of the VITAL system is to integrate existing (background) 
IoT systems. To do so, we require semantic data models to describe such IoT 
systems, including metadata about the systems, their operational state and the 
services that they provide. Note that VITAL does not allow a system to directly 
specify what sensor data or ICOs it provides – nor is it possible to include actual 
sensor measurements into the description. Instead, every aspect of the system is 
described as an IoT service. To offer access to sensor measurements, a system can 
specify that it provides access to a data service. To allow pull based data access, a 
system can specify that it offers a stream management service. This greatly 
simplifies the system description and reduces its changing rate, while providing a 
very flexible way to describe (and integrate) systems. The actual interfaces of 
services are not yet fixed. This is the focus of deliverable D3.2.1, which will be 
available in M15. However, the general design of VITAL is based on Web 
technologies. Services are (so far) always RESTful HTTP services. To allow 
continuous (stream) access, technologies such as Server Side Events or 
WebSockets will be integrated into VITAL.  
In the following section we describe the last area that must be modelled in VITAL, the 
VITAL system itself as well as its services.  
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6 VITAL SYSTEM AND SERVICES  

In addition to (meta) data and services of background IoT systems that are integrated 
in VITAL, we also need to model the VITAL system itself. This is the aim of this 
chapter. Note that the chapter does not specify the exact interfaces of systems or 
services (e.g. the PPI). Instead, its main goal is to discuss data items that are 
required by these interfaces. Interfaces have been specified in D3.2.1 and D3.2.2. 

6.1 VITAL System 

A VITAL system is modelled as a collection of RESTful services and an associated 
semantic metadata description. From the viewpoint of its semantic description, a 
VITAL system is similar to an IoT system, discussed before. A VITAL system is 
therefore modelled as a subclass of IotSystem with an additional property.  

6.1.1 VitalSystem 

A VitalSystem is defined as a subclass of IotSystem that supports an additional 
VITAL-specific property providesSystem. The property providesSystem is a sub 
property of ssn:hasSubSystem that points to a set of IotSystems, which are 
registered in this VitalSystem. Note that since a VitalSystem is a subset of 
IotSystem, providesSystem can also point to another VITAL system, making it 
possible to create hierarchical VITAL systems. 
 
Class: VitalSystem 

    SubClassOf: IotSystem 

 
ObjectProperty: providesSystem 

    SubPropertyOf: ssn:hasSubSystem 

    Domain: VitalSystem 

    Range: IotSystem 

 
In the following we describe a short example of a VITAL system description in JSON-
LD format (see  

  
Figure 15: ). Note that the example is similar to the example for an IoT system 
given in Figure 9. Due to the similarities the example uses the same generic 

external context specification for systems (see  
Figure 10) as the IoT system example. 
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Figure 15: Example VITAL Description 

 
In the example VITAL system, the description first associates a name (“Camden 
VITAL System”) and a description (stating that this is a VITAL deployment for 
Camden Town) with this system. The example system is operated by CTU (as 
specified by operator). The status is set to Running. Similar to the example for 
an IoT system, the serviceArea is identified by providing its DBPedia URI, allowing 
a client to query the DBPedia for more information about Camden. The example 
system description further specifies that this VITAL instance contains four sensors. 
Finally, the VITAL system description specifies three VITAL services, similar to the 
ones presented for our example IoT system before. Please note that the exact 
interfaces of VITAL services are defined in D3.1.2 and D3.2.2. Therefore, the 
examples given here may differ slightly. 
In the following we describe the currently planned VITAL services. We also provide 
models for data required by these services. Since VITAL services are currently under 
development, the exact data that they need is not always clear. Therefore, this part of 
the deliverable will be clarified and expanded in future versions. For now the 
information given should be understood as an outlook and basis for discussions in 
the consortium.  

6.2 Data Access 

Data access is one of the basic services of any IoT system, including VITAL. VITAL 
will provide two different service types with different data access patterns. The first 
one is a pull-based data access service. The second one is a push-based linked data 
stream service. For pull-based access, a client specifies the system entity, e.g. the 
ICO or sensor reading type that it wants to retrieve using its URI. The data access 

{ 
  "@context": "http://vital-iot.eu/contexts/system.jsonld", 
  "id": "http://example2.com", 
  "type": "vital:VitalSystem", 
  "name": "Sample 2 IoT system", 
  "description": "This is a VITAL compliant IoT system example.", 
  "operator": "http://example.com/people#adam_murphy", 
  "serviceArea": "http://dbpedia.org/page/Camden_Town", 
  "sensors": 
  [ 
    "http://example.com/sensor/1", 
    "http://example.com/sensor/2", 
    "http://example.com/sensor/3", 
    "http://example.com/sensor/4" 
  ], 
  "services": 
  [ 
    "http://example.com/service/1", 
    "http://example.com/service/2", 
    "http://example.com/service/3", 
  ], 
  "status": "vital:Running" 
} 
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service is modelled as ObservationService sub class of msm:service. See Section 
5.2.5 for details on observation service. 

6.3 Security and Access Control 

6.3.1 Access Control 

There are many ontologies available for access control, each utilizing different 
approaches that provide unique benefits. We evaluated a number of these based on 
maturity and features offered. 
WebAccessControl [WAC] is an ontology created by the Read Write Web Community 
Group that allows giving access to serialized RDF documents to users and groups, 
identifying each as HTTP URLs. The main issue with WAC is that it was designed to 
grant access to the entire document, which makes it unsuited to platforms where 
more fine-grained permissions are required. 
PPO [PPO] and TAC [TAC] are both ontologies designed to extend WAC and allow 
defining access on a triple-by-triple basis. Which these are more powerful than WAC 
and allow setting access for each triple, they do not define what exactly access is 
beyond a Boolean-type value. Both of these ontologies could potentially be extended 
to better serve VITAL’s usage scenario. 
Social Semantic SPARQL Security For Access Control Ontology (S4AC10) [S4AC] 
was developed in response to WAC’s shortcomings like the two aforementioned 
ontologies. However, S4AC allows setting fine-grained create, read, update and 
delete permissions for each data item. This is highly compatible with the permissions 
model used for traditional REST APIs. 
After evaluating all of the above vocabularies we decided to use S4AC for VITAL. 
The main reason for this decision is that S4AC was the only one to use the CRUD 
approach for permissions. This kind of fine-grained control is important for a system 
like VITAL where much of the information is highly confidential. 
Also, the S4AC access control modelling provides a solid foundation for a versatile 
solution. In fact, S4AC allows to use SPARQL ASK clauses where the condition to be 
satisfied can be specified in a very flexible way, considering also any desired aspect 
of the evaluation context. 

6.3.2 Users and Authentication in VITAL 

Users in VITAL are represented through the class User, as an extension of the 
Friend of a friend ontology [FOAF]. 
The Agent class is the class of agents; things that do stuff, which can represent 
people, organizations or groups. The class can be used when these are overly 
specific. 
Class: User 

    SubClassOf: foaf:Agent 

ObjectProperty: providesSystem 

                                            
10 http://ns.inria.fr/s4ac/v2/s4ac_v2.html 
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    SubPropertyOf: ssn:hasSubSystem 

    Domain: VitalSystem 

    Range: IotSystem 

 

Figure 16: Examples of Users and Groups in VITAL 
 
Figure 16 shows some examples for modelling users and groups in VITAL. The first 
two examples show definitions for two users. The third example shows defining a 
group that contains the administrators, in this case user 999, for a set of sensors. A 
unique identifier, Vital:UserID, is an integer used as an indirect identifier to represent 
a user. 

{ 

  "@context": "http://vital-iot.eu/contexts/user.jsonld", 

  "@id": "http://www.example.com/vital/users/34423", 

  "vital:userID": 34423, 

  "@type": "foaf:Person", 

  "foaf:name": "Joe Bloggs" 

} 

 

{ 

  "@context": "http://vital-iot.eu/contexts/user.jsonld", 

  "@id": "http://www.example.com/vital/users/999", 

  "vital:userID": 999, 

  "@type": "foaf:Person", 

  "foaf:name": "Dave Barlow" 

} 

 

{ 

  "@context": "http://vital-iot.eu/contexts/user.jsonld", 

  "@id": "http://www.example.com/vital/user/23", 

  "vital:userID": 23, 

  "@type": "foaf:Group", 

  "foaf:name": "Sensor 100-200 Administrators", 

 

  "foaf:member": [ 

    "http://www.example.com/vital/users/999"] 

} 
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Users and groups are distinguished by their type, which is foaf:Person for users 
and foaf:Group for groups. Groups may also contain foaf:member which are 
collections of URIs pointing to users belonging to that group. 
A new VITAL system will always contain a group with foaf:name “Administrators” 
and foaf:member with a URI pointing to the initial user who setup the system. The 
members of this group have full access to the entire system. By creating new groups 
associated with access control policies defined in section 6.3.3 a VITAL administrator 
can easily create fine-grained permissions for members. 

6.3.3 Integrated Security Model 

VITAL uses an identity management framework and authentication and authorization 
mechanisms for controlling access to VITAL services. This access control is based 
on pattern-matching on the resource URL; it will be enhanced with access control 
mechanisms at a finer level based on flexible policies. For instance, it shall be 
possible to selectively authorize direct or indirect access to observations of a specific 
sensor. 
For this VITAL uses a system similar to an Access Control List [ACL], using 
resources URIs as keys. When a resource is requested via a REST endpoint, the 
URI of that resource along with the user’s ID and operation type (using CRUD) is 
sent to the access control server after the user’s identity has been verified. The 
server then checks if the user’s ID is present in the list of authorized users and 
groups and if the operation type is authorized. Finally, the server responds with a 
success or fail. 
If the requested URI has no permissions associated with it the server will assume 
only members of the Administrators group can access it. If the resource contains the 
foaf:member property but not the s4ac:hasAccessPrivilege property the 
members of the User Set will be granted Read-Only permissions. In the reverse 
case, defining permissions without adding members to the members field has no 
effect. 
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Figure 17: Access Control Policy for Single Sensor's Observations 

 
 

Figure 17:  describes the access control policy for all observations of Sensor 123. 
The pattern property describes the pattern that should match this access control 
policy. While the fine-grained access control system has not yet been implemented 
this example is based on the assumption that the policy evaluation will always pick 
the most specific match for the provided resource URL and for the subject. 
In this example, the users or groups with the IDs 34423, 23 and 500 have read-only 
access to sensor 123’s observations, while 457 has full access. 

6.4 Trust 

VITAL trust will focus on securing the main value of the platform, that is information, 
while trying to provide a mechanism to users and applications which let choose the 

{ 
  "@id": "http://www.example.com/vital/access-control/patterns/34", 
  "pattern": "http://www.example.com/vital/sensor/123/obsvn/*", 
  "vital:hasAccessPolicy": [ 
    { 
      "@type": "s4ac:AccessPolicy", 
      "s4ac:hasAccessPrivilege": [ "s4ac:Read" ], 
      "s4ac:hasAccessConditionSet": { 

  "@type": "s4ac:DisjunctiveAccessConditionSet", 
        "s4ac:hasAccessCondition": [ 
          {  
            "foaf:member": [ 
              "http://www.example.com/vital/users/34423", 
              "http://www.example.com/vital/users/23", 
              "http://www.example.com/vital/users/500" 
            ] 
          } 
        ]  
      } 
    }, 
    { 
      "@type": "s4ac:AccessPolicy", 
      "s4ac:hasAccessPrivilege": [ 
        "s4ac:Create", "s4ac:Read", "s4ac:Update", "s4ac:Delete" 
      ], 
      "s4ac:hasAccessConditionSet":  

{ 
    "s4ac:hasAccessCondition": [ 

          {  
            "foaf:member": [ 
              "http://www.example.com/vital/users/457" 
            ]  
          } 
        ]  
      }  
    }  
  ] 
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more reliable data sources. These data sources are the ICOs and services provided 
by the platforms connected to vital through PPIs. 
The model of Trust has two main parts, one related to the entities being evaluated 
and other related to the parameters or properties used to calculate the Trust level. 
 

 

 
 

Figure 18: Trust Model. 
 

The parameters evaluated in VITAL in order to calculate the Trust level of the entities 
are the SLA parameters, as this can be easily applied to any service or sensor. 

 
Trust Parameter: It is a concept that can be measured directly without needing to 
combine other measures. They can be considered unitary concepts which are 
grouped in a Trust Aspect. Into the VITAL Ontology a Trust Parameter is an 
observation: 
Trust parameter is a class of type “ssn:observation” which are shown in Figure 19. 

 
    "type": "http://vital-iot.eu/ontology/ns/ResponseTime", 
    "type": "http://vital-iot.eu/ontology/ns/StatusCode", 
    "type": "http://vital-iot.eu/ontology/ns/UptimeAvailability", 
    "type": "http://vital-iot.eu/ontology/ns/MaxNumReq", 
    "type": "http://vital-iot.eu/ontology/ns/ResponseTime", 
    "type": "http://vital-iot.eu/ontology/ns/TimeToRestore", 
    "type": "http://vital-iot.eu/ontology/ns/MaxNumReqPUser", 
    "type": "http://vital-iot.eu/ontology/ns/DataSheetVoxSynt", 
    "type": "http://vital-iot.eu/ontology/ns/DataCorrelation", 
    "type": "http://vital-iot.eu/ontology/ns/ValIntoThreshold", 
    "type": "http://vital-iot.eu/ontology/ns/Variance", 
    "type": "http://vital-iot.eu/ontology/ns/StdDeviation", 
    "type": "http://vital-iot.eu/ontology/ns/RandomVal", 
 

 

Figure 19: Types of Trust Parameters. 
 
Trust Aspect: it represents a property to be evaluated in order to calculate the trust, 
which is composed by a group of Trust parameters. 



Deliverable 3.1.2: Virtual Models, Data and Metadata for ICOs V2  

Copyright  2015 VITAL Consortium  49 

At the time of writing this document there is one only Trust Aspect, which is the 
composition of the Trust parameters related to the numeric stability of the data. The 
name of this aspect is “DataStability”, it is a class into Vital ontology which contains a 
list of observation of SLA type (see Figure 20).  
 

{ 
  "@context": "http://vital-iot.eu/contexts/Aspect.jsonld", 
  "name":"DataStability", 
  "type":”http://vital-iot.eu/ontology/ns/TrustAspect” 
  “uri”:http://www.example.com/vital/sensor/123/dataStability” 
  “ssn:observers”:[ 
    { 
      "type": " http://vital-iot.eu/ontology/ns/ValIntoThreshold", 
      "id": "http://example.com/sensor/1/ ValIntoThreshold " 
    }, 
    { 
      "type": " http://vital-iot.eu/ontology/ns/Variance", 
      "id": "http://example.com/sensor/1/Variance" 
    }, 
    { 
      "type": " http://vital-iot.eu/ontology/ns/StdDeviation", 
      "id": "http://example.com/sensor/1/StdDeviation" 
    }, 
    { 
      "type": " http://vital-iot.eu/ontology/ns/RandomVal", 
      "id": "http://example.com/sensor/1/RandomVal" 
    }, 
  ] 

} 

 
Figure 20: Example of DataStability aspect. 

 
Trust Concept: it is any entity, which can be included in a trust model. It can be a 
Trust Aspect or a Trust Parameter.  

Name: name of the concept. 
Weight: it is a number that represents the weight of the trust concept within the 
trust model. Figure 21 provides an example.  

 
 
  { 
    "@context": "http://vital-iot.eu/contexts/concept.jsonld", 
    "name":"DataStability", 
    "type":”http://vital-iot.eu/ontology/ns/TrustConcept”, 
    “uri”:http://www.example.com/vital/sensor/123/dataStability”, 
    “vital:weight”:”0,5” 
  }, 

  { 
    "@context": "http://vital-iot.eu/contexts/concept.jsonld", 
    "name":"DataStability", 
    "type":”http://vital-iot.eu/ontology/ns/TrustConcept”, 
    “uri”:http://www.example.com/vital/sensor/123/UptimeAvailability”, 
    “vital:weight”:”0,3” 
  } 
] 
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Figure 21: Trust Concept example 

 
Trust Model: it is the model used to evaluate the trustworthiness of a service. It will 
contain a set of properties or parameters and the weight in the evaluation. 

Name: name of the model 
Aggregates: A set of Trust concepts, which are used to calculate the trust within 
the model. Figure 22 provides an example for Trust Model. 
 

 
{ 
  "@context": "http://vital-iot.eu/contexts/Model.jsonld", 
  "name":"model2", 
  "type":”http://vital-iot.eu/ontology/ns/TrustModel”, 
  “uri”:”http://www.example.com/vital/trustModel2”, 
  “vital:TrustConcept”:[ 
    { 
      “uri”:http://www.example.com/vital/sensor/123/dataStability” 
    }, 
    {   
       
“uri”:http://www.example.com/vital/sensor/123/UptimeAvailability” 
    } 
  ] 
} 
     

       

 

Figure 22: Trust Model example. 
 

Trusted Entity: this is a concept that defines all entities that can be trusted, these 
entities have to be identified in one only way and provide information about how it 
should be evaluated. Figure 23 provides an example for Trusted Entity. In VITAL a 
trusted entity can be a sensor or a service. 

ID: the identifier 
Trust Model: the model used to evaluate the entity,  
Trust Level: it is the result of the trust evaluation. 
 

{ 
  "@context": "http://vital-iot.eu/contexts/TrustEntity.jsonld", 
  "name":"sensor12", 
  "type":”http://vital-iot.eu/ontology/ns/TrustedEntity”, 
  “uri”:http://www.example.com/vital/sensor12/trusted”, 
  “vital:model”: 
  { 
    “type”: ”http://vital-iot.eu/ontology/ns/TrustModel”, 
    “uri”: http://www.example.com/vital/trustModel2 
  }, 
  “vital:TrustLevel”:”0,87” 
} 
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Figure 23: Trusted Entity example. 

 
At the time of writing this document there is any platform connected to VITAL which 
performs Trust evaluation of its data sources, the following concept is introduced to 
cope with new platforms that will be able to provide information about the level of 
trust of their sensors and services. 
 
Trust Provider: It is an entity, which can be trusted and is able to evaluate trust of 
other entities. 

AppliesModel: it represents the model applied by the provider to evaluate the 
trust of its associated entities. 
TrustEntities: it is a list of the entities evaluated by the provider. 

6.5 Discovery and Filtering  

The VITAL discovery and filtering services will rely on metadata to be provided by the 
DMS. The full description and implementation of these two modules are investigated 
in WP4 and documented in D4.1 and D4.1.2. Please refer to these deliverables for 
details, we only report here the general idea and the connections between the DMS 
and Discovery and Filtering modules. The Discovery and Filtering services 
concentrate on ICOs, especially sensor devices. They propose basic mechanisms 
and enhanced mechanisms to provide more accurate results based on a sensor’s 
location (if available), its movement pattern (if known) and its network connectivity 
(i.e. whether it is connected intermittently or continuously). The current version of the 
discovery modules tries to predict the position of the ICO at the date of the request 
and when it will be able to report its date. For this purpose, we have extended a 
sensor description (ssn:Sensor) with the following properties: 
 

• hasMovementPattern, a mandatory property that links to an instance of 
MovementPattern, 

• hasNetworkConnection, an optional property that links to an instance of 
NetworkConnection. 

• hasLocalizer, an optional property that links to an IoT service specification 
that provides access to the current location of the sensor. 

 
Note that the location of a sensor is already modelled in VITAL using the 
hasLastKnownLocation property. 

 
ObjectProperty: hasMovementPattern 

    Domain: ssn:Sensor 

    Range: MovementPattern 
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ObjectProperty: hasNetworkConnection 

    SubPropertyOf: ssn:hasSubSystem 

    Domain: ssn:Sensor 

    Range: NetworkConnection 

 
 
 
ObjectProperty: hasLocalizer 

    SubPropertyOf: ssn:hasSubSystem 

    Domain: ssn:Sensor 

    Range: msm:Service 

 

6.5.1 MovementPattern 

A movement pattern specifies how a device is moving or is expected to move. VITAL 
currently defines three basic movement patterns: Stationary (i.e. no movement at 
all), Mobile (i.e. no additional information is known), and Predicted (i.e. there is 
data available to predict a sensor’s future mobility). Note that it is possible to include 
multiple values for a movement pattern, stating e.g. that a sensor movement pattern 
is mobile and predicted. 

Stationary 

If a sensor is stationary, its hasMovementPattern property points to an instance of 
Stationary. In this case the sensor may also have a hasLastKnownLocation 
property, pointing to its location. If no such property is present, the sensor location is 
(currently) unknown. Note that this might change, so a client cannot assume that the 
sensor location will not be known in the future. 
 
Class: Stationary 

    SubClassOf: MovementPattern 

 

Mobile 

A Mobile pattern implies that a sensor may change its location dynamically. Note 
that this does not necessarily imply that the location is known. If the description of a 
mobile sensor includes a hasLastKnownLocation property, then the provided 
location may be out-dated (which is why we call the property ‘last known location’). A 
system should update the last know location field in the sensor description but it can 
do so when it chooses. This reduces the load on a system, which otherwise would 
need to update a sensor description every time a new location reading becomes 
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available. A sensor description should not include a last known location if the system 
providing it does not update it. A mobile sensor should include a hasLocalizer 
property in its description, pointing to a localisation service. 
 
Class: Mobile 

    SubClassOf: MovementPattern 

 

Predicted 

If the movement pattern of a sensor is set to Predicted, then the system has 
additional information about the sensors movement pattern to predict future 
movements and locations.  
 
Class: Predicted 

    SubClassOf: MovementPattern 

 
It is currently unclear which exact movement pattern data is needed as this 

depends on the algorithms that will use them. This is therefore left for future 
work. An example for a possible prediction pattern is given in  

Figure 24: . The example shows a sensor with a predicted movement pattern that is 
based on linear interpolation using a predicted speed and movement direction. 
 

{ 
  "@context": "http://vital-iot.eu/contexts/sensor.jsonld", 
 
  "name": "TemperatureSensor No.123", 
  "type": "vital:VitalSensor", 
  "description": "This is an example sensor", 
  "id": "http://www.example.com/vital/sensor/123", 
  "hasMovementPattern": {  
    "type": "Predicted", 
    "hasPredictedSpeed": { 
      "value":"3.1", 
      "qudt:unit": "qudt:KilometerPerHour" 
    }, 
    "hasPredictedDirection": { 
      "type":"NormalVector", 
      "geo:lat": "53.2719", 
      "geo:long": "-9.0489" 
      }, 
    } 
  }, 
  "ssn:observes": { 
    "type": "http://lsm.deri.ie/OpenIoT/Temperature", 
    "id": "http://www.example.com/vital/sensor/123/temperature" 
  } 
} 
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Figure 24: Example Sensor Description with Predicted Movement Pattern 

 

6.5.2 NetworkConnection 

The NetworkConnection specifies how a sensor is connected at the moment, e.g. 
whether the connection is stable or not. It does not necessarily provide a fully 
detailed description of the network quality of service that is available. However, it 
always specifies the expected connection stability. To realise this, so far 
NetworkConnection supports two properties:  

• hasStability, a mandatory property linking to a ConnectionStability 
instance, 

• hasNetworkSupport, an optional property that is a sub property of 
net:networkSupport taken from the Network part of the DC ontology 
[FoLe09], linking to an instance of net:NetworkSupport from the same 
ontology.  

 
ObjectProperty: hasStability 

    Domain: NetworkConnection 

    Range: ConnectionStability 

 

ObjectProperty: hasNetworkSupport 

    SubPropertyOf net:networkSupport 

    Domain: ssn:Sensor 

    Range: net:NetworkSupport 

 

An example for these properties in given in Figure 25: . This example also contains 
an example for ConnectionStability. The described sensor has a stable, 
continuous network connection and is connected to a single, wired network. More 
information about this network could be added, e.g. the bandwidth, etc.  
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Figure 25: Example Sensor Description with Network Connection Data 

 

6.5.3 ConnectionStability 

ConnectionStability allows specifying whether a sensor is connected to a 
communication network continuously, intermittently or not at all (which will usually not 
happen). To do so we define three subclasses Continuous, Intermittent and 
Disconnected. An example for a stable connection is given in Figure 25:  above. 
 
Class: Continuous 

    SubClassOf: ConnectionStability 

 

Class: Intermittent 

    SubClassOf: ConnectionStability 

 
Class: Disconnected 

    SubClassOf: ConnectionStability 

 

6.5.4 Localizer 

The property hasLocalizer is used to refer to a localizer service. Such a service 
provides (REST-full) access to the current location of a sensor, which is especially 
important for mobile sensors. The service is modelled as an IoT Service as specified 

{ 
  "@context": "http://vital-iot.eu/contexts/sensor.jsonld", 
 
  "name": "TemperatureSensor No.123", 
  "type": "vital:VitalSensor", 
  "description": "This is an example sensor", 
  "id": "http://www.example.com/vital/sensor/123", 
  "hasMovementPattern": {  
    "type": "Stationary", 
  }, 
  "hasNetworkConnection": { 
    "hasStability": { 
      "type": "Continuous" 
    }, 
    "hasNetworkSupport": { 
      "net:connectedNetworks": { 
        "type": "net:WiredNetwork" 
      }  
    } 
  } 
} 
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in Section 5.2. Note that the localizer service can be realised in different ways, 
depending on the sensor at hand. As an example, the sensor could provide the 
service itself, e.g. by giving access to its local GPS receiver. Alternatively the sensor 
could be localised using an external tracking system and the localizer service could 
be provided by the IoT system that manages the sensor. An example for a sensor-
based localizer service is given in Figure 26Error! Reference source not found..  
 
ObjectProperty: hasLocalizer 

    Domain: ssn:Sensor 

    Range: msm:Service 

 
Figure 26: Example Sensor Description With Localizer 

 

6.5.5 Queries 

In addition to all data items described before, the discovery and filtering services 
require a way to specify a requested data query, either for ICOs in the case of the 
discovery service or for data in the case of the filtering service. Due to the nature of 
Linked Data we do not require a new data model for this. Instead VITAL reuses 
existing query languages that are well known in the Linked Data community. For 
onetime queries, VITAL reuses SPARQL, which allows specifying complex sub graph 
patterns. A SPARQL endpoint will be made available as a RESTful service. Similarly, 
for continuous (streaming) queries, VITAL reuses the CQELS query language [cql], 
which extends SPARQL with support for data streams and time windows.   
 

{ 
  "@context": "http://vital-iot.eu/contexts/sensor.jsonld", 
 
  "name": "TemperatureSensor No.123", 
  "type": "vital:VitalSensor", 
  "description": "This is an example sensor", 
  "id": "http://www.example.com/vital/sensor/123", 
  "hasMovementPattern": {  
    "type": "Mobile" 
  }, 
  "hasLocalizer": { 
    "type": "GpsService", 
    "msm:hasOperation": { 
      "type": "GetLocation", 
      "hrest:hasMethod": "hrest:GET", 
      "hrest:hasAddress":  
        "http://www.example.com/vital/sensor/123/location/" 
    }, 
  }, 
  "ssn:observes": { 
    "type": "http://lsm.deri.ie/OpenIoT/Temperature", 
    "id": "http://www.example.com/vital/sensor/123/temperature" 
  } 
} 
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6.6 Complex Event Processing 

The CEP module will provide the CEP filtering services by means CEP instances, 
these services are divided in two different types, the static ones and the continuous. 
For this purpose we have extended the msm:Service description with a new 
service: 
 
Class: CEPFitleringService 

 SubclassOf: msm:Service 

 
The static filters provide two different operations the filter static data operation the 
filter static query operation and to that end we have extended msm:Operation in 
order to provide the required functionality:  
 
Class: FilterStaticData 

 SubclassOf: msm:Operation 

 
Class: FilterStaticQuery 

 SubclassOf: msm:Operation 

 
Filters are a new kind of vital sensor and to that end we have extended the 
vital:VitalSensor with the  CEPFilterSensor and also we have extended these 
new sensors with two different kind of sensors,  the one for filtering static data and 
the one for filtering static query: 
 
Class: CEPFilterSensor 

SubClassOf: vital:VitalSensor 

 
Class: CEPFilterStaticDataSensor 

SubClassOf: vital:CEPFilterSensor 

 
Class: CEPFilterStaticQuerySensor 

SubClassOf: vital:CEPFilterSensor 

 
The CEPFilterStaticDataSensor filters the data provided as an input of the filter for 
this purpose we need to add a new property to this kind of sensors; to that end we 
provide a new property:   
 
ObjectProperty: data 

Domain: vital:CEPFilterStaticDataSensor 

Range: Range: xsd:string 
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The CEPFilterStaticQuerySensor filters the data received as a response of a query 
provided as an input of the filter for this purpose we need to add a new property to 
this kind of sensors; to that end we provide a new property: 
 
ObjectProperty: query 

Domain: vital:CEPFilterStaticQuerySensor 
Range: xsd:string 

 

In order to provide the continuous filtering functionality we have extended the 
msm:Operation with four new operations. These operations allow us to get, create 
and delete the CEP filtering instances: 
 
Class: GetContinuousFilters 

SubclassOf: msm:Operation 

 
Class: GetContinuousFilter 

SubclassOf: msm:Operation 

 
Class: DeleteContinuousFilter 

SubclassOf: msm:Operation 

 
Class: CreateContinuousFilter 

SubclassOf: msm:Operation 

 
The CEP module also provides CEP instances integrated into the Vital platform as 
virtual ICOs, the CEPICOs. For this purpose we have extended the msm:Service 
description with a new service: 
 
Class: CEPICOManagementService 

SubclassOf: msm:Service 

 
In order to be able to create, delete or get this CEPICOs we have extended the 
msm:Operation with four new operations. These operations allow us to manage all 
the CEPICOs instances: 
 
Class: GetCEPICOs  

SubclassOf: msm:Operation 

 
Class: GetCEPICO 
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SubclassOf: msm:Operation 

 
Class: CreateCEPICO 

SubclassOf: msm:Operation 

 
Class: DeleteCEPICO 

SubclassOf: msm:Operation 

 
 
The most important of a CEP instance, either as a CEP sensor or as a CEP filter 
sensor are the Dolce Rules that models the CEP behaviour. In order to add the Dolce 
Rule Specification property to the sensor we have added a new property: 
 
ObjectProperty: dolceSpecification 

Domain: vital:CEPSensor vital:CEPFilterSensor 

Range: xsd:string 

 

CEP sensors and CEP filter sensors detects complex events over specified 
observations so a new measurement type is needed to express this kind of events to 
that end a new class is provided: 
 
Class: ComplexEvent 

  

6.7 Monitoring 

For purposes of monitoring, IoT systems expose an IoT Service with type ‘Monitoring 
Service’. This service provides access to a set of performance metrics as they are 
measured by the IoT system. These additional metrics alongside the metadata 
descriptions of Systems, Services and Sensors is exploited by higher-level modules 
like the Management Platform to monitor the overall health of a Vital installation. 

6.7.1 Performance Metrics  

Performance Metrics of the monitoring service are modelled as virtual sensor 
measurements. This makes it possible to reuse much of the data models defined 
before in Chapter 3.4. To retrieve these virtual sensor measurements, clients can 
contact RESTful interfaces of the MonitoringService exposed by systems, similar to 
the ones used for normal measurements. 
The monitoring service can provide information about components like sensors, 
services and systems. The prototype version of VITAL defines a core set of 
performance parameters that can be extended as required. For each metric we 
specify a new type of observation as follows:  
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• SysLoad, for a measurement of the load (CPU) of the component, 
• SysUptime, for a measurement of the uptime of a component,  
• UsedMem, for a measurement of the used memory of a component, 
• AvailableMem, for a measurement of the available memory of a component, 
• ServedRequests, for a measurement of the total number of requests that a 

component has served between the last re-start and the time of the 
measurement, 

• PendingRequests, for a measurement of the number of requests that were 
served at the time of the measurement,  

• MaxRequests, for a measurement of the maximum number of requests that a 
component can serve simultaneously, 

• Errors, for a measurement of the total number of errors that have occurred 
between the last re-start and the time of the measurement. 

These metrics are integrated in the Vital Ontology as new observation types. An 
example of these types is described in Figure 27 where a response of the 
GetSupportedPerformanceMetrics operation of the MonitoringSevice is displayed. 
While this is example does not display a JSON-LD response, it showcases the actual 
namespaces of the observation types as used inside the Vital platform. 
 

 
 

Figure 27: GetSupportedPerformanceMetrics example response 
 

 
Figure 28:  shows an example of a virtual measurement as reported by the 
monitoring service. The measurement specifies the uptime of a system with the 
identifier http://www.example.com/vital/system/123 as 2023546 

[{ 
    "type": "http://vital-iot.eu/ontology/ns/SysLoad", 
    "id": "http://example.iot.system/sensor/monitoring/sysLoad" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/SysUptime", 
    "id": "http://example.iot.system/sensor/monitoring/sysUptime" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/MaxRequests", 
    "id": "http://example.iot.system/sensor/monitoring/maxRequests" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/Errors", 
    "id": "http://example.iot.system/sensor/monitoring/errors" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/ServedRequests", 
    "id": "http://example.iot.system/sensor/monitoring/servedRequests" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/AvailableMem", 
    "id": "http://example.iot.system/sensor/monitoring/availableMem" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/UsedMem", 
    "id": "http://example.iot.system/sensor/monitoring/usedMem" 
}, { 
    "type": "http://vital-iot.eu/ontology/ns/PendingRequests", 
    "id": "http://example.iot.system/sensor/monitoring/pendingRequests" 
}] 
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milliseconds (approximately 34 minutes). Other measurements can be constructed 
similarly. 

 
 

Figure 28: Example Virtual Measurement for System Uptime 
 

6.7.2 Activity Logging 

In addition to updates about the state of a system component, the monitoring service 
may also provide updates about activities occurring in the system. These updates 
could be stored in an activity log, e.g. to log a user logging in or a system starting up. 
Such updates can be modelled similarly to state updates as virtual measurements by 
specifying new observation types.   

6.7.3 Sensor Hardware and Software 

Since VITAL reuses the DC ontologies, it already includes a detailed data model for 
hardware and software components like a battery, a keyboard, an operating system, 
etc. These models can be used to provide a detailed description of both the 
components and the status of a sensor. To do so, a sensor description can include 
the DC ontology properties hard:deviceHardware and soft:deviceSoftware, 
pointing to an instance of hard:DeviceHardware and soft:DeviceSoftware 
respectively. These may link to additional information about the sensor’s hardware 
and software parts, including their current state (e.g. using hard:status to link to 
an instance of hard:HardwareStatus) . An example for this is shown in Figure 29: 
. The example description specifies a sensor that is currently active, has a build in 
memory size of 128 kByte and a CPU with a maximum speed of 10 MHerz.  

{ 
  "@context": "http://vital-iot.eu/contexts/measurement.jsonld", 
 
  "uri": "http://www.example.com/vital/sensor/monitoring/obsvn/42", 
  "type": "ssn:Observation", 
  "ssn:observationProperty": { 
    "type": "Uptime" 
  }, 
  "ssn:observationResultTime": { 
    "inXSDDateTime": "2014-08-23T14:03:11+01:00" 
  }, 
  "observationSubject": "http://www.example.com/vital/system/123", 
  "ssn:observationResult": { 
    "type": "ssn:SensorOutput", 
    "ssn:hasValue": { 
      "type": "ssn:ObservationValue", 
      "value": "2023546", 
      "qudt:unit": "qudt:MilliSecond" 
    } 
  } 
} 
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Figure 29: Example Sensor Description with Hardware Components 

6.8 Orchestration 

The Vital Orchestrator module acts as a consumer of data and metadata from other 
Vital modules, like PPIs (VitalSystems) or the DMS module. By utilising existing 
services in dynamic workflows it provides new higher-level services to consumers. Ιt 
implements one new type of service the vital:OrchestrationService, in the Vital 
platform, for managing meta-services (create new ones, undeploy unnecessary ones 
etc). The service description in JSON-LD is documented in the Figure 30. 
{ 
    "@context": "http://vital-iot.eu/contexts/service.jsonld", 
    "id": "http://some.service.id", 
    "type": "vital:OrchestratorService", 
    "operations": [{ 
        "type": "vital:GetOperationList", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation", 
        "hrest:hasMethod": "hrest:GET" 
    }, { 
        "type": "vital:GetOperation", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation/{id}", 
        "hrest:hasMethod": "hrest:GET" 
    }, { 
        "type": "vital:CreateOperation", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation", 
        "hrest:hasMethod": "hrest:POST" 
    }, { 
        "type": "vital:UpdateOperation", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/operation/{id}", 
        "hrest:hasMethod": "hrest:PUT" 
    }, { 
        "type": "vital:DeleteOperation", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-

{ 
  "@context": "http://vital-iot.eu/contexts/sensor.jsonld", 
 
  "name": "TemperatureSensor No.123", 
  "type": "VitalSensor", 
  "description": "This is an example sensor", 
  "uri": "http://www.example.com/vital/sensor/123", 
  "deviceHardware": {  
    "hard:status": "hard:HardwareStatus_ON", 
    "hard:builtInMemory": {  
      "size": 131072  
    }, 
    "hard:cpu": {  
      "type": "hard:CPU",  
      "maxCpuFrequency": 10  
    } 
  } 
} 
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web/rest/operation/{id}", 
        "hrest:hasMethod": "hrest:DELETE" 
    }, { 
        "type": "vital:ExecuteOperation", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/execute/operation/", 
        "hrest:hasMethod": "hrest:POST" 
    }, { 
        "type": "vital:GetWorkflowList", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow", 
        "hrest:hasMethod": "hrest:GET" 
    }, { 
        "type": "vital:GetWorkflow", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow/{id}", 
        "hrest:hasMethod": "hrest:GET" 
    }, { 
        "type": "vital:CreateWorkflow", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow", 
        "hrest:hasMethod": "hrest:POST" 
    }, { 
        "type": "vital:UpdateWorkflow", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow/{id}", 
        "hrest:hasMethod": "hrest:PUT" 
    }, { 
        "type": "vital:DeleteWorkflow", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/workflow/{id}", 
        "hrest:hasMethod": "hrest:DELETE" 
    }, { 
        "type": "vital:ExecuteWorkflow", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/execute/workflow", 
        "hrest:hasMethod": "hrest:POST" 
    }, { 
        "type": "vital:GetMetaServiceList", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice", 
        "hrest:hasMethod": "hrest:GET" 
    }, { 
        "type": "vital:GetMetaService", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice/{id}", 
        "hrest:hasMethod": "hrest:GET" 
    }, { 
        "type": "vital:DeployMetaService", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice", 
        "hrest:hasMethod": "hrest:POST" 
    }, { 
        "type": "vital:UndeployMetaService", 
        "hrest:hasAddress": "http://some.url/vital-orchestrator-
web/rest/metaservice/{id}", 
        "hrest:hasMethod": "hrest:DELETE" 
    }] 
} 
 

Figure 30: Description of vital:Orchestration Service in JSON-LD 
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6.9 Conclusion 

VITAL handles VITAL system deployments as special cases of IoT system 
deployments. This allows creation of hierarchical systems that contain several VITAL 
systems. As an example, a smart city like Istanbul might operate a local installation of 
VITAL that integrates all IoT systems in Istanbul. In addition, this VITAL system might 
be integrated into a larger, transnational VITAL system that may e.g. also include 
London and other cities. Besides easier administration, this approach enables e.g. 
the ability to fine-tune access rights and security, possibly hiding specific services 
and ICOs when integrating the system into the transnational one.  
As discussed before, VITAL services that have been developed, their data items 
have been precisely defined. In this chapter we provided a second version of data 
items that have been identified so far as well as the current state of our analysis for 
data models in different areas.  
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7 CONCLUSIONS 

This deliverable provides the basis for the semantic (meta-) data models used in the 
VITAL system. We build upon Linked Data principles and technologies to provide 
interoperable and platform agnostic data models that are based on existing 
ontologies. This allows VITAL applications to integrate other data sources in the 
Web, resulting in a large and varied set of usable data items. Although we analysed a 
large number of ontologies during the design of the VITAL data models, the work is 
not finished. Firstly, for some system components like VITAL services, the actual 
data needed were not fully clear during the time of this deliverable’s first version 
(D3.1.1). While these services have been developed, new data item are defined in 
this version. In addition, for other areas e.g. trust and CEP, which were not clear in 
D3.1.1, new data items and ontologies have been included. Secondly, there are other 
areas still not clear e.g. Istanbul use case. Thus, it is envisaged that more data 
models will be added as the project progresses. 
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