

WP7 – Multi-Device Media Representation and
Interaction

D7.9.3: Multi-Device Media Representation and
Interaction Public Report (Third Version)

Deliverable Lead: TPVI

Contributing Partners: TPVI, ASC, TALK, TIE, NTUA

Delivery Date: 2016-10

Dissemination Level: Public

Final

This deliverable, the third of four deliverables, is the
description of the third prototype implementations of the
Tasks T7.1 SAM multi-device content and media
representation, T7.2 SAM 2nd Screen media interaction,
T7.3 SAM 1st Screen media interaction and T7.4 SAM
multi-device dashboard. The deliverable covers the
descriptions of the software deliverables in WP7. This
document is a living document that is enhanced with each
delivery of the different iterations of the WP7 prototypes.

SAM WP7 Public D7.9.3

2/42

Document Status

Deliverable Lead TP Vision

Internal Reviewer 1 BDS: Barry Smith

Internal Reviewer 2 UA: David Tomas

Type Deliverable

Work Package WP7 – Multi-Device Media Representation and Interaction

ID D7.9.3: Multi-Device Media Representation and Interaction Public Report

Due Date 10.2016

Delivery Date 10.2016

Status Final

Document History

Versions V1.0: including first and second reviews feedback

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its
sole risk and liability.

SAM WP7 Public D7.9.3

3/42

Project Partners

TIE Nederland B.V., The Netherlands

Ascora GmbH, Germany

Talkamatic AB, Sweden

TP Vision Belgium NV, Belgium

Institute of Communication and Computer
Systems, National Technical University of

Athens, Greece

The University of Reading, UK

Universidad de Alicante, Spain

Deutsche Welle, Germany

Bibliographic Data Services Limited, UK

SAM WP7 Public D7.9.3

4/42

Executive Summary

This public document describes the status and results of the different WP7 prototypes
without exposing confidential information such as prototypes access information and
source code. This confidential information can be found in the related Programme
Participants Prototypes (D7.1.3, D7.2.3, D7.3.3 and D7.4.3).

This document is iteratively updated coinciding with the delivery of the different related
software prototypes of WP7:

 SAM Multi-Device Content and Media Representation (T7.1)
 SAM 2nd Screen Media Interaction (T7.2)
 SAM 1st Screen Media Interaction (T7.3)
 SAM Multi-Device Dashboard (T7.4)

Each part is being developed iteratively with 3 prototypes, except for T7.4, which will have
4 prototypes, and will produce a software deliverable and an update of this public
documentation (in the series D7.9.1 - .2 - .3 - .4).

As such, this third version of this deliverable (D7.9.3) describes the developments and
results of the third iteration of the four prototypes in WP7. Although in the original DOW,
T7.4 (SAM multi-device dashboard) was planned to start in M20, it was decided, and also
indicated in D7.9.1, to start it in M14 because it has common parts to be used by both the
1st and 2nd Screen.

At this point in time the deliverable contains the following software prototype information:

Task Component Software Prototype
Deliverable

Due Section

T7.1 SAM Multi-Device Content and Media Representation D7.1.3 M37 3

T7.3 SAM 1
st
 Screen Media Interaction D7.3.3 M37 4

Figure 1: Overview of Tasks and Software Deliverables

This document is being complemented by D7.9.4, which contains the software prototype
information for the components T7.2 – SAM 2nd Screen Media Interaction and T7.4 – SAM
Multi-Device Dashboard, both of which have gone through further developments up to
M37.

For each of the prototypes, the following information is presented:

 Scope and Relationship: Describes the scope of the prototypes implementation, its
purpose and the main relationships with other modules being implemented in SAM

 Requirements and Preparations: Introduces the information needed to deal with the
prototype, in terms of technical and non-technical requirements, software to be
installed, etc.

 Installation: Describes the steps needed to install the software, and how to build it
from source code

 Execution and Usage: Presents the different screens and actions implemented in the
prototype itself, how to access it and how to test the different implemented options

 Limitations: Depicts the current prototypes limitations

 Research Background: Presents relevant references to research publications

 Target Performance: Lists measurable targets for functions and usability

 Summary: Describes the conclusions of the implementation of the third prototype

SAM WP7 Public D7.9.3

5/42

Table of Contents

1 Introduction .. 7
1.1 SAM Project Overview ... 7
1.2 Deliverable Purpose, Scope and Context .. 7
1.3 Abbreviations and Glossary ... 8
1.4 Document Structure ... 8

1.5 External Annexes and Supporting Documents .. 9
2 WP7 Introduction ... 10
3 SAM Multi-Device Content and Media Representation .. 12

3.1 Scope and Relationship ... 12
3.1.1 First Prototype .. 13

3.1.2 Second Prototype ... 14
3.1.3 Third Prototype ... 14

3.2 Requirements and Preparations .. 15

3.2.1 For Users .. 15
3.2.2 For Developers ... 15

3.3 Installation (Deployment) ... 15

3.4 Execution and Usage .. 15
3.4.1 For Users .. 16
3.4.2 For Developers ... 21

3.5 Limitations ... 25
3.6 Research Background ... 26

3.7 Target Performance ... 26
3.7.1 Component KPIs .. 26
3.7.2 User Experience Measurements Tasks .. 28

3.8 Summary ... 28
4 SAM 1st Screen Media Interaction ... 29

4.1 Scope and Relationship ... 29
4.1.1 1st and 2nd Screen Interaction ... 31

4.2 Requirements and Preparations .. 32

4.2.1 For Users .. 32
4.2.2 For Developers ... 33

4.3 Installation (Deployment) ... 33
4.3.1 For Users .. 33
4.3.2 For Developers ... 34

4.4 Execution and Usage .. 34
4.4.1 For Users .. 34
4.4.2 For Developers ... 36

4.5 Limitations ... 36
4.5.1 Possible further improvements ... 36

4.6 Research Background ... 36

4.7 Target Performance ... 37

4.7.1 Component KPIs .. 37
4.7.2 User Experience Measurements Tasks .. 37

4.8 Summary ... 38
5 Document Summary .. 39
References .. 40
Annex A: User Research ... 41

Generic Target Performance KPIs... 41

SAM WP7 Public D7.9.3

6/42

Testing Procedure ... 41

Graphical Editor User Trials Scenarios .. 42

SAM WP7 Public D7.9.3

7/42

1 Introduction

SAM – Dynamic Social and Media Content Syndication for 2nd Screen – is a project funded
by the Seventh Framework Programme of the European Commission under Grant
Agreement No. 611312. It provides a content delivery platform for syndicated data to be
consumed in a contextualised social way through 2nd Screen devices.

1.1 SAM Project Overview

The current generation of Internet-connected devices has changed the way users interact
with media. Previously, users were restricted to being passive and unidirectional
consumers; now, they are proactive and interactive media users. They can comment
on and rate a television show or film and search for related information regarding cast and
crew, facts and trivia or even filming locations. They do this with both friends and wider
social communities through the so-called “2nd Screen”.

Another related phenomenon is “Content Syndication”, which is a field of marketing where
digital content is created once and delivered to consumers through various different
marketing channels (devices, markets and stakeholders) simultaneously, enabling efficient
content control, delivery and feedback.

However, the 2nd Screen phenomenon has grown in a disorderly manner. Tools supplied
by the media provider companies (e.g. as mobile or tablet apps) limit the potential
outreach and, as a result, users are not enjoying relevant contextual syndicated
information. European enterprises wishing to provide services have limited methods of
receiving feedback, restricting the business intelligence that can be extracted and applied
in order to profit from and enrich this growing market.

SAM is reshaping the current disorganised 2nd Screen ecosystem by developing an
advanced social media delivery platform based on 2nd Screen and Content Syndication
within a social media context. This is achieved by providing open and standardised means
of characterising, discovering and syndicating media assets interactively. Users will be
able to consume and prosume digital assets from different syndicated sources and
synchronised devices (e.g. connected televisions), creating more fulfilling experiences
around the original media assets.

The SAM vision that is now becoming reality sees the former, out-dated system of users
searching for the information they desire replaced with a new approach where information
reaches users on their 2nd Screen using content syndication. This is enriched through the
creation of dynamic social communities related to the user and digital asset context (e.g.
profiles, preferences and devices connected). These are continuously evolving social
spaces where people share interests, socialise and build virtual communities. SAM will
enable syndication of comments, ratings, facts, recommendations and new information
that will enrich and energise the virtual community as well as enhance personalised
knowledge and satisfaction.

1.2 Deliverable Purpose, Scope and Context

The purpose of this deliverable is to accompany the software prototypes of WP7 tasks
T7.1 SAM multi-device content and media representation, T7.2 SAM 2nd Screen media
interaction, T7.3 SAM 1st Screen media interaction and T7.4 SAM multi-device dashboard.
Each task will contribute different components to the SAM architecture that are developed

SAM WP7 Public D7.9.3

8/42

iteratively in 3 phases as per milestones 3/4/5 at M19/25/37 for tasks T7.1 and T7.3 and in
4 phases as per milestones 3/4/5/6 at M19/25/31/37 for T7.2 and T7.4 and will produce a
software deliverable and an update of this public documentation (D7.9.x) with the timings
indicated in the following table:

Deliverable Date

D7.9.1 M19

D7.9.2 M25

D7.9.3 M37

D7.9.4 M37

Figure 2: Deliverable Schedule

As the main focus of the tasks is the development of the software itself, this accompanying
document focuses on providing a short summary of the main functionalities and on serving
as user guide for the current status of the development.

This document focuses on T7.1 and T7.3. It is complemented by D7.9.4 that covers T7.2
and T7.4.Document Status and Target Audience

This document is the third iteration of the D7.9.x series and is listed in the DOW as public.
It is primarily aimed at the project partners as a user guide but it also presents status
information of the prototypes of the software components of WP7 to the interested public.

1.3 Abbreviations and Glossary

A definition of common terms and roles related to the realisation of SAM, as well as a list
of abbreviations, are available
at http://wiki.socialisingaroundmedia.com/index.php/Glossary

1.4 Document Structure

This deliverable is broken down into the following sections:

 Section 1 (Introduction): Provides an overview of the entire document and the related
pilot implementation, describing the main objectives, constraints and status

 Section 2 (WP7 Introduction): Provides an overview of WP7 goals and the WP7
prototypes

 Section 3 (SAM Multi-Device Content and Media Representation): Describes the
latest software deliverable developed in T7.1

 Section 4 (SAM 1st Screen Media Interaction): Describes the latest software
deliverable developed in T7.3

 Section 5 (Document Summary): Briefly summarises the work presented at the
deliverable, as well as the overall WP7 status

In Sections 3 and 4, for each component in the SAM Architecture, the following
subsections are provided:

 Scope and Relationship: Describes the scope of the prototype implementation, its
purpose and the main relationships with other modules implemented in SAM.

 Requirements and Preparations: Introduces the information needed to deal with the
prototype in terms of technical and non-technical requirements, software to be
installed, etc.

http://wiki.socialisingaroundmedia.com/index.php/Glossary

SAM WP7 Public D7.9.3

9/42

 Installation: Describes the steps needed to install the software, and how to build it
from source code.

 Execution and Usage: Presents de different screens and actions implemented at the
prototype itself, how to access it, and how to test the different implemented options.

 Limitations: Depicts the current prototype limitations and the expected improvements.

 Research Background: Presents relevant references to research papers and
publications

 Target Performance: Lists measurable targets for functions and usability

 Summary: Describes the conclusions of the implementation of the third prototype.

1.5 External Annexes and Supporting Documents

 D7.1.3: Multi-Device Content & Media Representation

 D7.2.3: 2nd Screen Media Interaction

 D7.3.3: 1st Screen Media Interaction

 D7.4.3: Multi-Device Dashboard

 D7.9.4: Multi-Device Media Representation and Interaction Public Report (Final
Version)

SAM WP7 Public D7.9.3

10/42

2 WP7 Introduction

WP7 is concerned with the multi-device representation and interaction with Asset content
taking into account the wide spectrum of devices with different specifications in the market.

Specific objectives of this WP include:

 To implement a framework for multi-device based media representation (T7.1)

 To provide implementations of advanced user interaction using voice recognition, Inter-
Widget-Communication (IWC) and 1st Screen component detection (T7.2)

 To produce a multi-device dashboard supporting media representation and advanced
user interaction (T7.3, T7.4)

The results of WP7 are a set of related applications where the consumer/user can
experience all the other SAM RTD WPs. Each component is developed iteratively as per
milestones 3/4/5 (for T7.1 and 7.3) at M19/25/37 and 3/4/5/6 (for 7.2. and 7.4) at
M19/25/37/37 and will produce a software deliverable and an update of the public
documentation (D7.9.x – this document series).

Figure 3: WP7 Components Contribution to SAM Architecture

The work in WP7 (as well as in the other development WPs) is managed by using the agile
SCRUM methodology. For that purpose, a dedicated WP7 SCRUM board has been
created in the SAM Jira task management system, with a representative of the WP Lead
(TPVI) as the Scrum Master.

Marketplace

Communication

Control

Data Management

Interaction

Linker

Semantic
Services

Social
Components

Cloud
Storage

Cloud Storage Services

Identity and
Security
Services

Syndicator Brand and Consumer
Protection

Content
Gateways

Analytics 1st Screen

Federated instance

External Resources

Social Networks

End Users

3rd party
systems

Context Control

2nd Screen

Asset Profiler

Asset Editor Business
Intelligence

Social Mining

Muti-device
Representation

Data API
Services

Payment
Gateway

Interconnection bus

Dashboard

Queue

Transformation

Orchestration/
Routing

Voice
Dialogue

Broadcasters Information
Brokers

Data Characterisation

Asset Discovery

Sentiment Analisys

Text Summarisation

Context
Manager

Community
Manager

WP7

T7.1

T7.4

T7.3
T7.2

T7.4

SAM WP7 Public D7.9.3

11/42

Figure 4: WP7 Scrum Board

Sprints are planned and executed monthly, and every story or task is linked to one or more
specific requirements as expressed in D2.3 (User Stories and Requirements).

A Planning meeting is scheduled at the beginning of each sprint in order to plan the next
monthly sprint and discuss the priorities or reschedule the unfinished work from the
previous one. A Retrospective or Review meeting is also scheduled at the end of each
sprint in order to discuss the work done during the sprint and find ways of improving (if
necessary) the way of working.

During the development for the third Prototype of the different components developed in
this WP, two technical meetings were held with all technology partners in which much
progress was made and many of the integration and stability issues were tackled.

SAM WP7 Public D7.9.3

12/42

3 SAM Multi-Device Content and Media Representation

This section describes the software deliverable D7.1.3, which is the third prototype release
of the SAM Multi-Device Content and Media Representation component.

3.1 Scope and Relationship

The Multi-Device Media Representation (MDR) component consists of two
subcomponents: the Graphical Editor and the Format Converter. The former is active
during Production Time while the latter during Prosumption.

Production Time is defined as the phase where Content Providers and SAM
Administrators curate and manage content that will be available to the End Users. This
content is syndicated to all End Users presented in the form of widgets. Each piece of
information will be wrapped in an appropriate widget type. The Prosumption is the phase
where the End Users consume and interact with the data that are supplied to them.

The Graphical Editor aims to enable both the SAM Administrator and Content Owner to
modify the style and functionality of the widgets that will be used to syndicate information
during the Prosumption.

The Format Converter is queried by any SAM component, which needs information about
widget types and their content.

Figure 5 shows the two subcomponents of MDR and the logical connections that have
been established between them.

Figure 5: Multi-Device Representation (MDR) Architecture

For further descriptions of the functional and technical foundations of these
subcomponents, please revisit documents D3.2.1 Section 4.4.2 (Architecture), D3.2.2
Section 4.5.2 (Functional Specification) and D3.3.1 Section 3.5.2 (Technical Specification).

The third Format Converter prototype presents some alterations compared to the previous
one. It no longer injects Asset Data into widgets but rather provides the Syndicator with
CSS and HTML files for it to combine them with the Asset data. Specifically, the 3rd
prototype provides the following improvements:

 Provide the Syndicator with the currently active CSS style for a specific widget type

 Provide Syndicator the HTML style for a specific widget type

<subcomponent>
Data API Services

<subcomponent>
Multi-device Representation

<subcomponent>
Format Converter

<user interface>
Graphical Editor

<component>
Cloud Storage

SAM WP7 Public D7.9.3

13/42

 Provide Widget Editor and Linker with a list of all widget types

 Provide Widget Editor with the ID of the default CSS style for a specific widget type

 Provide Syndicator and the Linker with Asset field – Widget part relations

As can be seen in the list above, the Syndicator can retrieve the CSS and HTML for any
given widget type from the Format Converter in order to be able to send it for displaying on
the 1st and 2nd Screen. Likewise, the Linker and the Widget Editor need to retrieve a list
with all the active widget types that a user can configure. Finally, the Syndicator and the
Linker can retrieve information about which part of a widget will be used to display a
specific Asset field (for example the Header widget part can display the Title Asset field).
This relational list of Asset fields corresponding to Widget parts is called Asset Definitions.

3.1.1 First Prototype

The first Format Converter prototype implemented a first approach to a mechanism that
can provide HTML documents based on the Asset data it is supplied with. No information
on how each specific widget should be handled was embedded in this prototype.

The Graphical Editor was provided in the first prototype with limited editing capabilities of
widget styles. The user could create new style templates for any given widget type and the
dashboard or edit existing ones. These could be created and edited with the following
ways:

 The first way is to use the embedded editor which, in the first prototype, was limited in
adjusting the colour values for various parts of a widget or the dashboard

 The other way of editing a style template is to upload a CSS file and thus be able to
define anything that can be included in such a file

Finally, all changes could be saved in the cloud.

Apart from the various widget types, the Generic Dashboard editor, part of the Graphical
Editor, offered colour configuration only for the header and the main body parts.

The custom CSS files that could be uploaded to the service were automatically applied to
the currently selected widget style template. A preview area had also been implemented
which displayed the current state of the style template. Finally, the Widget Gallery of the
Graphical Editor showed all available style templates stored in the Cloud Storage for a
given widget type.

A summary of the tasks carried out for each subcomponent of the first version of the
prototype is shown in the following table:

Subcomponent Task

Format Converter The base logic of the app has been implemented. Mock Asset data can
be converted to a widget according to a mock style.

Graphical Editor  Style template preview (displaying changes in style)

 Widget Gallery (displaying all stored style templates)

 Custom CSS upload

 Colour settings editing

 Style export (all changes exported to a single CSS file)

 Cloud Storage integration (implemented saving & deleting style
templates in the Cloud Storage)

 Implemented Generic Dashboard specific style settings

Table 1: Tasks carried out during the First Prototype Implementation

SAM WP7 Public D7.9.3

14/42

3.1.2 Second Prototype

The Graphical Editor in the second prototype incorporates various editing capabilities of
widgets and dashboard styles.

The user can select any widget type or the Dashboard and configure the colour values for
specific parts of the widget / Dashboard. Also, the URL of the main image of a widget can
be configured. Alternatively, the user can upload a CSS file for more advanced style
editing and finally export and the current configuration of a template into a CSS file and
download it. A different set of options for colour configuration is available for the
Dashboard.

Any style template that is edited can be set as the default one, that is, as the one that will
be assigned to the widget each time this widget needs to be displayed. A user can store
multiple styles templates in the Cloud Storage, access them through the Template Gallery
and set one of them as the default/active one. The Asset Definitions described above can
be configured by a dropdown list next to each widget part in the Widget Editor.

The functionality of the Widget can also be configured by uploading HTML code. The
uploaded HTML will be first displayed in a Preview pane and upon saving it will be injected
into the Dashboard every time it needs to display the specific widget.

A summary of the tasks carried out for each subcomponent of the second version of the
prototype is shown in the following table:

Subcomponent Task

Format Converter  Get HTML (the HTML code for a specific widget is retrieved)

 Get Widget types (a list of all the defined widget types is retrieved)

 Get Asset definitions (a relation between a specific widget’s parts
and an Asset’s fields is retrieved)

Graphical Editor  Widget HTML code editing

 Communication with other SAM component services through TSB
(and not directly with them)

 Instant preview for all the CSS or HTML changes (instead of having
to press a refresh button)

 Asset definitions configuration through a drop-down menu next to
each widget part

 Extension of CSS editing (image configuration)

 Improved and more robust network operations

 Improved overall User Experience, including better error handling
and reporting, a nicer notifications system and more intuitively
designed menus and tabs

Figure 6: Tasks carried out during the Second Prototype implementation

3.1.3 Third Prototype

The main addition in the third prototype of both Format Converter and Graphical Editor is
the support for accounts. Each content provider can have their own storage place where
styles and functionalities can be stored regarding their widgets.

Additionally, a watcher component has been connected with Format Converter which
secures that the component will always be functional. Also, Format Converter has been
upgraded in order to handle a large number of simultaneous connections in the context of
supporting the user trials in September 2016 – see D8.3.2 for more information.

SAM WP7 Public D7.9.3

15/42

Regarding Graphical Editor, it now contains an HTML Gallery where the user can select
stock widgets in order to add them to a specific widget. The ability to add a new custom
widget has also been implemented. Now the user has to select among some preloaded
and non deletable widgets and any number of user created widgets.

A summary of the tasks carried out for each subcomponent of the third version of the
prototype is shown in the following table

Subcomponent Task

Format Converter  Support for accounts

 Mechanism for securing always-on state

 Support for large number of simultaneous connections

Graphical Editor  Support for accounts

 Increase robustness (extend error handling/logging)

 Improvements based on user feedback

 HTML template gallery (A gallery where previews to stock HTML
codes/widgets will be hosted)

 Support for creation of custom widget types

Figure 7: Tasks carried out during the Third Prototype implementation

3.2 Requirements and Preparations

This section provides information on technical and non-technical requirements for users as
well as for developers.

3.2.1 For Users

The Graphical Editor, being a web application, is intended to be used via any web browser
without any special preparations.

3.2.2 For Developers

The Format Converter is written in Python. The Graphical Editor is built with AngularJS
and is mostly built with plugins and widgets taken from the common SAM template.

3.3 Installation (Deployment)

Currently, the deployment is carried out by the Jenkins Continuous Integration Server1
provided by the SAM consortium. For the MDR component, a Jenkins integration project
has been created and configured to build and deploy each subcomponent in Apache
Tomcat 8.

The Graphical Editor resides in the Administration Tool and the Marketplace while the
Format Converter runs as a backend service on the SAM Server.

3.4 Execution and Usage

In the following subsections the execution and usage of the Graphical Editor and Format
Converter subcomponents will be explained. The “For Users” section will contain only
information about the Graphical Editor, because it is a user interface available through the
Administration Tool and the Marketplace. The “For Developers” section will explain the

1
 http://jenkins-ci.org/

http://jenkins-ci.org/

SAM WP7 Public D7.9.3

16/42

Format Converter because it is a background service which is available to other
components.

3.4.1 For Users

This section describes the steps required for a user to see all available templates for a
given widget type (e.g. Facebook), create a new template for it and save it and adjust its
colour settings. Also, it is shown how to import and export a CSS file. Regarding HTML,
the importing process is explained. Finally, the Asset Definition configuration is explained.

3.4.1.1 See All Available Templates

In order to access this interface, the user needs to be registered within the SAM Platform
and logged into the Marketplace. The Widgets option, on the left-hand side menu, provides
access to the Graphical Editor, as shown in Figure 8.

Figure 8: SAM Marketplace Home Screen

In the widgets screen, the dropdown menu at the top right corner allows to select the
Widget Type (Figure 9). When the user selects one of the Widget Types (e.g., Facebook),
the default style for this widget type is displayed in the HTML Preview, which is below the
dropdown menu.

SAM WP7 Public D7.9.3

17/42

Figure 9: Widgets Component

A user can carry out the following tasks:

 Edit the widget style in the Template Settings tab

 Switch to the Template Gallery tab (Figure 10) and

 See all available templates

 Edit, delete or preview (unavailable for the first prototype) a template

Figure 10: Template Gallery

SAM WP7 Public D7.9.3

18/42

3.4.1.2 Create a New Style

The user can create a new style by clicking the “New” button. The default style settings
will be loaded and the user can select the new configuration. Once the user finishes the
configuration, the style can be saved as template. This can be achieved by pressing the
“Save” button and selecting the “Save As” sub-option. A popup will request a name and
the saving of the template will take place (Figure 11).

Figure 11: Create New Template and Save it

3.4.1.3 Settings Configuration

For the third prototype, colour and main picture configuration is included in the settings.
Also, an Assets Definition dropdown menu is included where the user assigns the specific
widget part to an Asset field. All changes made instantly appear on the Preview window.

3.4.1.4 Import/ Export CSS

At any point the user can export the current template configuration (even if it is not saved
in the Cloud Storage) to a CSS file. This is done by pressing the Export button (Figure
12).

SAM WP7 Public D7.9.3

19/42

Figure 12: CSS Import/Export

A custom CSS can be uploaded by pressing “Import”. A browser window will pop up and a
CSS file can be chosen for uploading (Figure 12). Its content will be directly applied to the
Preview area and the configuration settings.

3.4.1.5 Import/Export HTML

The user can update the HTML code of a Widget type and thus define its functionality. The
user can update the current HTML by pressing the “Import” (Figure 13). They can also
export the current HTML code (even if it is not saved) by pressing the “Export” button
(Figure 13).

Figure 13: HTML Import/Export

SAM WP7 Public D7.9.3

20/42

3.4.1.6 Configure Asset Definitions

The Widget Editor also allows for configuration of Asset Definitions meaning the
assignment of Asset fields (e.g. title, description) on a specific widget part (e.g. main body,
header). This is facilitated by selecting the desired Asset field from the dropdown menu
next to each widget part (Figure 14).

Figure 14: Configuring Asset Definitions

3.4.1.7 Create New Widget Type

In order to create a new widget type the user first has to show the widget list as in Figure 9
and then select the “Manage Widgets” option. Inside the popup the user can add and
remove custom widgets. For creating a new custom widget the text input box has to be
filled in and then the “Add” button to be pressed.

Figure 15: Widget Management Window

SAM WP7 Public D7.9.3

21/42

After the confirmation that the new custom widget was created, the user can select it from
the widget menu and start editing its style and functionalities.

3.4.1.8 Use Stock HTML Templates

The Graphical Editor sports a variety of pre-made HTML templates that the users can
apply to a widget. To do this, they need to select the “HTML Gallery” tab and then click on
“Import” button on any template they would like to apply.

Notice that the template is not saved yet. The “Save” button has to be pressed for that.

3.4.2 For Developers

The Graphical Editor is a graphical interface and thus not programmatically available. The
Format Converter operates as a REST service available for other subcomponents. It can
be queried with the REST methods described below.

3.4.2.1 Request CSS

 Request CSS

Description Requests a CSS string with the default style for a specific widget type

Request

Request
URL

POST http://localhost:9098/get_css

HTTP
Parameters

account

Required string

ID of the account that the CSS data come from

Example: “BDS”

widget_type_id

Required String

ID of the Widget type that the CSS will be
about

Example: “Wikipedia”

Figure 16: HTML Gallery

http://localhost:9098/get_css

SAM WP7 Public D7.9.3

22/42

3.4.2.2 Request Widget List

3.4.2.3 Request HTML

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

Body String A string containing the requested CSSA s

Figure 17: Request CSS Method

Request Widget List

Description Requests a list with all the widgets in use

Request

Request
URL

POST http://localhost:9098/get_widget_types

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

JSON
Attributes

JSON Object An array containing IDs of all widget types in
use

Figure 18: Request Widget List Method

Request HTML

Description Requests an HTML string containing the code of a specific widget type

Request

Request
URL

POST http://localhost:9098/get_html

HTTP
Parameters

account

Required string

ID of the account that the HTML data come
from

Example: “BDS”

html_id

Required String

ID of the Widget type that the HTML will be
about

Example: “Wikipedia”

Response

HTTP Status Value Description

http://localhost:9098/get_widget_types
http://localhost:9098/get_html

SAM WP7 Public D7.9.3

23/42

3.4.2.4 Request Asset Definitions

3.4.2.5 Request non CSS Data

Code 200 Object found

204 Object not found

400 Bad Request

Body String A string containing the requested HTML

Figure 19: Request HTML Method

 Request Asset Definitions

Description Requests all the Asset definitions for a given widget type

Request

Request
URL

POST http://localhost:9098/get_asset_definitions

HTTP
Parameters

account

Required string

ID of the account that the asset definitions
come from

Example: “BDS”

widget_type_id

Required String

ID of the Widget type that the asset definitions
will be about

Example: “Wikipedia”

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

Body JSON Object An object containing the asset definitions

Figure 20: Request Asset Definitions Method

 Request Non CSS Data

Description Requests a JSON object with all non CSS data of a style (e.g. image
URLs)

Request

Request
URL

POST http://localhost:9098/get_non_css

HTTP
Parameters

account

Required string

ID of the account that the non CSS data come
from

Example: “BDS”

widget_type_id ID of the Widget type that the non CSS will be

http://localhost:9098/get_asset_definitions

SAM WP7 Public D7.9.3

24/42

3.4.2.6 Update HTML

3.4.2.7 Delete Widget

Required String about

Example: “Wikipedia”

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

Body JSON object A JSON object containing the requested non
CSS data

Figure 21: Request CSS Method

 Update HTML

Description Submit HTML code for a specific widget type

Request

Request
URL

POST http://localhost:9098/update_html

HTTP
Parameters

account

Required string

ID of the account that the widget type will be
edited of

Example: “BDS”

widget_type_id

Required String

ID of the widget type that will be edited

Example: “Wikipedia”

Body String HTML code

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

Figure 22 Update HTML Method

 Delete Widget

Description Delete specific widget type

Request

Request
URL

POST http://localhost:9098/delete_widget

http://localhost:9098/update_html
http://localhost:9098/delete_widget

SAM WP7 Public D7.9.3

25/42

3.4.2.8 Create Widget

3.5 Limitations

In case that the Graphical Editor becomes a product, an HTML validation tool should be
implemented so that the users get automatically and immediately notified whenever an
HTML is not valid. Also, snapshots of the different styles in the CSS gallery would be
useful so that the user does not need to preview them.

Regarding Format Converter, advanced feedback should make the component easier for
developers. By advanced feedback it is meant a more detailed and specialised error report
when the return value is not the desired one.

HTTP
Parameters

account

Required string

ID of the account that the widget type will be
deleted of

Example: “BDS”

widget_type_id

Required String

ID of the widget type that will be deleted

Example: “Wikipedia”

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

Figure 23 Delete Widget Method

 Create Widget

Description Create a new widget type

Request

Request
URL

POST http://localhost:9098/create_widget

HTTP
Parameters

account

Required string

ID of the account that the widget type will be
deleted of

Example: “BDS”

widget_type_id

Required String

ID of the widget type that will be created

Example: “Wikipedia”

Response

HTTP Status
Code

Value Description

200 Object found

204 Object not found

400 Bad Request

Figure 24 Create Widget Method

http://localhost:9098/create_widget

SAM WP7 Public D7.9.3

26/42

3.6 Research Background

The following figure provides the research publications that helped to design Format
Converter and the Graphical Editor. Apart from that, considerable time was dedicated to
experiment with various techniques in order to tackle specific obstacles in the development
of the Graphical Editor. This experimentation consisted of reading official documentations
of technologies in use and eventually adjusting code appropriately. In cases where this did
not have the expected results, alternative frameworks were experimentally applied and
where the results were satisfactory these frameworks were integrated in the code.

Source Subcomponent Description

[WDJ11] Wilson, S., Daniel, F., Jugel, U., Soi, S.
(2011). Orchestrated User Interface Mashups Using
W3C Widgets. Proceedings of Composable Web
2011.

Format
Converter &
Graphical Editor

Describes the basic principles
and philosophy behind using
widgets as the primary place of
End User interaction.

[BWS13] Balasubramanee, V. Wimalasena,
C. Singh, R. Pierce, M. (2013) Twitter bootstrap and
AngularJS: Frontend frameworks to expedite science
gateway development

Format
Converter &
Graphical Editor

This poster describes the
experiences of Science
Gateways developers of using
Twitter Bootstrap and AngularJS
frameworks in order to address
the balance between design and
implementation. It is described
how using these tools eventually
empowered them to create better
styled and easily maintainable
websites.

[KAA07] Christian Kaar (2007), An introduction to
Widgets with particular emphasis on Mobile Widgets

Format
Converter &
Graphical Editor

Mobile widgets provide an
elegant way of delivering
personalised web content and
especially Web 2.0 services to
mobile devices. This paper
introduces the concept of widgets
and general principles of widget
development. The main section
deals with the characteristics of
mobile widgets and outlines
differences to desktop widgets
and traditional mobile application
development platforms.

Figure 25 Consulted Research Publications

3.7 Target Performance

This section contains the key performance indicators (KPI) (see Section 3.7.1) and user
experience measurement tasks (see Section 3.7.2) for this component.

3.7.1 Component KPIs

The Key Performance Indicators (KPIs) for this component are defined in Figure 26. The
results vary depending on the indicator.

SAM WP7 Public D7.9.3

27/42

Topic Description Target KPI

Responsiveness When a user is interacting with the
Graphical Editor, it needs to be
responsive.

Initial loading time of the Graphical
Editor should be less than 5 sec.
Editing actions which include cloud
storage communication should be
executed in less than 2 sec.

Ease of use The ease of use is an important
aspect of the Graphical Editor. Users
use its UI in order to style widgets,
configure their behaviour and
organize these configurations in the
Cloud Storage. A user-friendly
environment is a necessity in order to
take advantage of all these include
functionalities.

Based on a short user test, the
following metrics are taken under
consideration.

 Completion rate

 Usability problems

 Task time

Accessibility The Graphical Editor should work in
the most important browsers and it
should be well formed HTML and
CSS mark-up.

Graphical Editor should work in
Chrome and Firefox.

Figure 26: Target Performance MDR

Regarding the Responsiveness indicator, the Graphical Editor meets all requirements
excluding the fetching of Asset Characterisations which occasionally may exceed the 2
seconds limit.

Regarding the Ease of use, a short user trial was arranged in order to test the Graphical
Editor (see 3.7.1.1).

Occasional uses of the Graphical Editor with a browser other that the development one
(Chrome) did not show any problems.

3.7.1.1 User Trials

In order to formally test the overall design and functionality of the Graphical Editor and to
complement the feedback given from the various Production Trials a small testing session
was organized in the offices of Talkamatic in Gothenburg, Sweden.

The participants were four and all employees of Talkamatic. The main objective was to
measure the time needed for the testers to complete the tasks given to them. The
participants’ acquaintance with using computer software ranges from extended to
professional. No participant had previous experience of using SAM Marketplace and the
Graphical Editor in particular.
The participants were given a list of scenarios (see Graphical Editor User Trials Scenarios)
and were asked to complete one at a time.

All participants were able to complete all tasks. No task took more than one minute for the
user to complete, with most of them taking less than a half a minute. Overall, the
measurements can be characterised as very satisfactory, especially taking into
consideration that the concept of the SAM Marketplace had to be explained to them briefly
before execution of the scenarios.

SAM WP7 Public D7.9.3

28/42

3.7.2 User Experience Measurements Tasks

Additional to the KPIs in Section 3.7.1, this work package provides user tasks, which form
an input for measuring the subjective user experience in a uniform way. For each of the
tasks below, the task-specific KPIs defined in following Annex A: User Research will be
measured.

Task Description

Customize default
template

The user must find the default template of a specific widget type she wants to edit
and then perform a number of alterations to the template’s settings.

Manage templates The user must promote another template to the default status, delete a template,
create a new one and rename one.

Import and export
template

The user must import and export templates.

Figure 27: Target Performance MDR – Task-Specific Measurements

3.8 Summary

This section provides a description of the third prototype of the Multi Device
Representation component developed in task T7.1 Multi-Device Content and Media
Representation. The main outcomes of this task are two pieces of software: the Graphical
Editor and the Format Converter. This prototype is the third of the three iterations planned
for this component.

The prerequisites necessary for both users and developers to install and use the Graphical
Editor and Format Converter have been described.

Regarding the Format Converter, services for retrieving styles and code from any widget
type have been implemented. For the Graphical Editor, the component is now using TSB,
supports HTML editing and has improved overall user experience.

The last section has been dedicated to describing the performance and limitations of the
third version of the component, which is delivered in M37.

SAM WP7 Public D7.9.3

29/42

4 SAM 1
st

 Screen Media Interaction

This section describes the software deliverable D.7.3.3, which is the third prototype
release of the SAM 1st Screen Media Interaction functionalities.

4.1 Scope and Relationship

The 1st Screen component embeds the Generic Dashboard and enables video streaming
for the End User view. The End User can in some cases also consume related content
displayed inside widgets on the 1st Screen.

Figure 28 shows the different subcomponents of the 1st Screen component, the logical
connections that have been established between them and the relations with other
components and actors in the SAM Platform.

Figure 28: 1st Screen Subcomponents and its Relationships

For further descriptions of the functional and technical foundations of these
subcomponents, please revisit documents D3.2.1 Section 4.13.3 (Architecture), D3.2.2
Section 4.14.2 (Functional Specification) and D3.3.1 Section 3.14.2 (Technical
Specification).

The first prototype of T7.3 provided the basic integration of the Generic Dashboard
component using the Dashboard Viewer subcomponent, which provided the display. Basic
remote control functions had also been implemented using 1st Screen interaction
component, which allowed the End User of the 1st Screen application to navigate through
the screens, select a video stream, start/pause/stop the video and toggle full screen mode.

A summary of the tasks carried out for each subcomponent of the first version of the
prototype is shown in the following table:

<component>
2nd Screen

<component>

1st Screen

<subcomponent>

1st Screen
Launcher

<WebView>

Dashboard Viewer

<subcomponent>

1st Screen
Interaction

<subcomponent>
Inter-Device

Communication –
1st Screen

<subcomponent>
Sync

<External system>
ACR

<component>

Generic
Dashboard

<actor>

End Users

SAM WP7 Public D7.9.3

30/42

Subcomponent Task

1
st
 Screen Interaction Remote control support.

Inter-Device-Communication
1

st
 Screen

Simple communication between 1
st
 and 2

nd
 Screen devices using

centralised Web Socket server.

Dashboard Viewer Display of the Generic Dashboard component. Provide 1
st
 Screen device

specifications.

Sync No tasks planned for the first prototype.

Figure 29: Tasks carried out for the First Prototype of T7.3

The second prototype of T7.3 provided further integration of the Generic Dashboard
component using the Dashboard Viewer subcomponent, which provides the display. The
embedded Web Socket server as a part of 1st Screen Inter-Device Communication was
also implemented, which enables more efficient local communication between 1st and 2nd
Screen devices. Furthermore, to add the possibility of automatic 1st Screen discovery, an
Android NSD protocol implementation was put in place.

A summary of the tasks carried out by each subcomponent of the second version of the
prototype is shown in the following table:

Subcomponent Task

1
st
 Screen Interaction No tasks planned for the second prototype.

Inter-Device-Communication
1

st
 Screen

 Implementation of local Web Socket Server in the 1
st
 Screen allowing.

automatic synchronization between 1
st
 Screen and 2

nd
 Screens over a

local network.

 Advertisement of the 1
st
 Screen application using Android NSD

protocol.

Dashboard Viewer  Implementation of local HTTP Web Server in the 1
st
 Screen allowing

for local storage and access to Generic Dashboard.

Sync No tasks planned for the second prototype.

Figure 30: Tasks carried out for the Second Prototype of T7.3

The third prototype of T7.3 provides the further optimization of the Generic Dashboard
communication with other involved components such as 1st and 2nd Screen and
Syndicator.

Implementation of Android NSD protocol was improved allowing for constant discovery
and reconnection in case of connectivity problems.

Servers were further optimised which resulted in faster loading times of the 1st Screen app.
Caching mechanism was improved to handle different possible use cases.

Several fixes were introduced to improve user experience and to make application more
robust with respect to connection handling (e.g. properly cleaning up connections to 2nd
Screen clients when 1st Screen or 2nd Screen application is stopped).

A summary of the tasks carried out by each subcomponent of the third version of the
prototype is shown in the following table:

SAM WP7 Public D7.9.3

31/42

Subcomponent Task

1
st
 Screen Interaction No tasks planned for the third prototype.

Inter-Device-Communication
1

st
 Screen

 Further optimization of web sockets and web server on 1st Screen.

 NSD reconnection.

Dashboard Viewer  Proper handling of widgets caching mechanism in multiple 2
nd

 Screen
users’ scenario.

Sync No tasks planned for the third prototype.

Figure 31: Tasks carried out for the Third Prototype of T7.3

4.1.1 1st and 2nd Screen Interaction

To facilitate discovery and interaction between 1st Screen and 2nd Screen, some standard
protocols needs to be implemented. For SAM it has been decided to use Network Service
Discovery (NSD) for discovery mechanism between 1st Screen and 2nd Screens (See
section 4.1.1.1). Also a design decision was made to implement Web Socket Server on 1st
Screen to host Generic Dashboard application (See section 4.1.1.2). This decision was
made to improve the performance of the system by host the application in local network
rather than running on remote network (See section 4.1.1.3).

4.1.1.1 Network Service Discovery (NSD)

NSD2 is a simple protocol, which added to an app allows the users of it to discover other
devices on the local network that support the services the app requests. This is useful for a
variety of peer-to-peer applications such as communication between 2nd Screen and 1st
Screen for exchange of information. Android's NSD API simplifies the effort required to
implement such features.

In the third prototype, a major rework of NSD implementation was introduced. To properly
detect connectivity issues, the discovery is always active both on 1st and 2nd Screen and
each time one of the two becomes unreachable, a proper call-back notifies the other about
the issue, allowing a proper clean-up of network resources.

4.1.1.2 Web Socket Server

A design decision was made to move the Web Socket Server implementation from
Generic Dashboard server to 1st Screen application on the TV. Web Socket server on the
TV is triggered from inside the 1st Screen application when the application is started.

The Web Socket server and client implementations are written in Java 1.7 version. The
underlying classes are implemented using java.nio, which allows for a non-blocking event-
driven model (similar to the Web Socket API for web browsers).

Implemented Web Socket protocol versions are:

 RFC 64553

 Hybi 174

 Hybi 105

 Hixie 766

2
 http://developer.android.com/training/connect-devices-wirelessly/nsd.html

3
 http://tools.ietf.org/html/rfc6455

4
 http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-17.txt

5
 http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-10.txt

http://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-17.txt
http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-10.txt

SAM WP7 Public D7.9.3

32/42

 Hixie 757

The org.java_websocket.server.WebSocketServer abstract class implements the server-
side of the Web Socket Protocol8. A Web Socket server by itself does not do anything
except establish socket connections through HTTP. After that it's up to the
implementing subclass to add business logic.

The org.java_websocket.client.WebSocketClient abstract class can connect to valid Web
Socket servers. The constructor expects a valid ws:// URI to connect to. Important events
onOpen, onClose, onMessage and onIOError get fired throughout the life of the Web
Socket Client, and must be implemented in the relevant subclass.

4.1.1.3 Web Server and Hosting Generic Dashboard in 1st Screen

A design decision was made to move Generic Dashboard hosting from the remote server
to the 1st Screen application on TV.

To host the files and related resources, a webserver is needed to be in place. The
webserver needs to take care of following functionalities:

 Host source code files and related resource files, images, icons, etc.

 Process clients’ requests made by 2nd Screen applications and feed them processed
data accordingly

There are different variants of webserver based of the type of protocol used for
implementation. As the Generic Dashboard was previously hosted on a HTTP based
server, it was decided to create the same variant of web server using HTTP protocol in the
1st Screen application. With this in place, all the components which need to interact with
the webserver continue to work in the same way without any modification required on their
side.

4.2 Requirements and Preparations

This section provides information on technical and non-technical requirements for users as
well as for developers.

4.2.1 For Users

The user needs to provide an Android Smart TV device running Android version 5.1 and
supporting SmartTV specification version 3.09. The Android application is not available on
Google Play10. Due to the fact that Philips 2k15 TV’s do not allow apps coming from other
sources than the Google Play Store or the Philips SmartTV Portal, the *.apk file can only
be installed on a Philips Development TV model. On these models the app can be
installed through the usage of android debug bridge (where x.x.x.x is the IP address of the
TV):

adb connect x.x.x.x:5555

adb install 1st-screen.apk

6
 http://tools.ietf.org/id/draft-hixie-thewebsocketprotocol-76.txt

7
 http://tools.ietf.org/id/draft-hixie-thewebsocketprotocol-75.txt

8
 http://www.whatwg.org/specs/web-socket-protocol/

9
 https://developers.smarttv-alliance.org/specification

10
 http://play.google.com/

http://tools.ietf.org/id/draft-hixie-thewebsocketprotocol-76.txt
http://tools.ietf.org/id/draft-hixie-thewebsocketprotocol-75.txt
http://www.whatwg.org/specs/web-socket-protocol/
https://developers.smarttv-alliance.org/specification
http://play.google.com/

SAM WP7 Public D7.9.3

33/42

4.2.2 For Developers

For developers it is strongly recommended to use the Android Studio IDE11 for the
implementation. Going forward, Google has deprecated the support for Eclipse for Android
app development which was used before and is pushing all to migrate to Android Studio
IDE. Also, Android Studio IDE has much better support for Android application
development.

On the other hand, Java-WebSocket is known to work with:

 Java 1.7 (SE 7)
 Android 1.6 (API 4)

Some other Java versions may also be used for this implementation but these have not
been tested.

To create a typical webserver, following steps are required:

1. Initially a server socket needs to be created which should listen to the desired port. To
create a server socket the java.net.ServerSocket class is used. The constructor of this
class accepts a port number to listen for the incoming connections.

2. Once the ServerSocket object is created, it is needed to accept the incoming connection
using ServerSocket.accept() method. This method is blocking, so a separate thread is
created to accept and process the incoming connections. The accept() method returns a
java.net.Socket object which represents the accepted connection.

3. Once the connection is established, the next HTTP request needs to be processed. This
can be done using org.apache.http.protocol.HttpService class. This class provides a
server side implementation which can handle minimal HTTP processing requests. In the
SAM implementation, to handle different HTTP requests, handler map design is used
which is based on URI patterns.

An implementation of a local webserver to serve Generic Dashboard directly from the local
network was decided to be part of the third prototype, but has been implemented in the
second prototype. This decision was made to improve the performance of the system and
to make a better demonstrable product in places with weak Internet connections.

4.3 Installation (Deployment)

This section describes the Installation and deployment process to use the app and source
code for Users and Developers.

4.3.1 For Users

After downloading the 1st Screen application and moving it to the device’s internal or
external storage, the user has to execute the *.apk file. As the first step, the user will be
prompted for the acceptance of the access rights. After the installation, the 1st Screen
application can be started using the icon in the app overview.

11

 http://developer.android.com/tools/studio/index.html

http://developer.android.com/tools/studio/index.html

SAM WP7 Public D7.9.3

34/42

4.3.2 For Developers

Developers have to download the source code first (Deliverable D7.3.3 contains the
required information). The source code of the 1st Screen application is an Android Studio
project and can be opened with Android Studio after downloading.

4.4 Execution and Usage

This section describes how to use the different subcomponents of the prototype.

4.4.1 For Users

The following subsections present the different views of the 1st Screen application.

4.4.1.1 Generic Dashboard Viewer

When the application is started, it will launch a SmartTV capable browser to view the
Generic Dashboard. Depending on the network bandwidth this can take a few seconds
during the first start-up of the application. The home screen of the Generic Dashboard is
shown in Figure 32.

Figure 32: 1st Screen Application Generic Dashboard View

The home screen consists of four navigation buttons and three Widgets. The End User
can employ her/his remote control to navigate between the buttons and Widgets using
remote’s navigation buttons (up / down/ left / right). When the End User navigates the
Generic Dashboard, a blue cursor frame is visible to indicate currently focused element.
Pressing OK will execute requested action. Colour keys on the remote can also be used to
quickly select access the functionality behind the four navigation buttons:

SAM WP7 Public D7.9.3

35/42

Remote button
On screen

button
Function

View the home screen of Generic Dashboard

Toggle full screen video player

View SAM settings page

Exit the 1
st
 Screen application

Figure 33: Generic Dashboard Home Screen

The Widgets presented on the Generic Dashboard are: Video Viewer, Device Info and
Video Info. The Device Information Widget displays, amongst other information, the
display size and density of the device and its GPS position (if known). Video Viewer
displays currently available video streams for End User to browse and view. Once a
selection has been made, the video is buffered and then played. The End User can use
the play/pause/stop buttons on the remote to control the player. Video Info Widget
contains the stream name and current position of streamed video.

4.4.1.2 SAM Settings Page

After selecting the Settings button (or pressing yellow key on the remote), the End User is
presented with SAM settings page (see Figure 34). On this page, the user can toggle the
state of various SAM-related settings (e.g. advertising, statistics, geo-location).

Figure 34: SAM Settings Page of 1st Screen Application

SAM WP7 Public D7.9.3

36/42

Due to the SmartTV application nature, the rest of 1st Screen components have been
included in Generic Dashboard source code. Please, for further details refer to the Generic
Dashboard Section in document D7.9.4Error! Reference source not found..

4.4.2 For Developers

Once the source code is downloaded and opened using Android Studio, the application
can be compiled and executed using Android Studio only. Android Studio has built-in tools
to support compilation and installation of the app on to the device. Also, Android Studio
has built-in tools which support debugging the application.

4.5 Limitations

Development of the third prototype has been concentrating on bringing the last
improvements to the 1st Screen Android application. Due to that, the following
view/function has been provided as mock-up:

 1st Screen Launcher: Currently the third prototype does not include any remote
functionality for 1st Screen Launcher, thus it is needed to manually start the 1st Screen
app before connecting any of the 2nd Screen devices.

4.5.1 Possible further improvements

Given that this project delivers a working prototype and not market ready application, the
following things can be considered when moving this prototype to further stages towards
the market:

 Dashboard branding: From business point of view introducing dashboard themes in
brand colours and logos could be a key in bringing this app to market.

 New 1st screen widgets: 1st Screen widgets are limited currently to those providing
optimal viewing experience of provided content. Furthermore other widgets (similar to
those on 2nd Screen) could be introduced to 1st Screen to enrich this experience.

4.6 Research Background

For the current prototype implementation and the overall approach, the following related
research work was taken into consideration:

Source Subcomponent Description

[ZIE13] Ziegler, C., "Second screen for HbbTV —
Automatic application launch and app-to-app
communication enabling novel TV programme
related second-screen scenarios," Consumer
Electronics Berlin (ICCE-Berlin), 2013.
ICCEBerlin 2013. IEEE Third International
Conference on , vol., no., pp.1,5, 9-11 Sept. 2013

Inter-Device-
Communication 1

st

Screen

This paper has been
considered to implement
communication protocols
according to the HbbTV
standard.

[VAN12] Vanattenhoven, J., Geerts, D. (2012).
Second-Screen Use in the Home: An
Ethnographic Study. In Proceedings 3rd
International Workshop on Future Television,
EuroITV 2012 (p. 12).

Inter-Device-
Communication 1

st

Screen

Input on 2
nd

 Screen users as
background information on
profiling.

[VAN14]] Vanattenhoven, J., Geerts, D., De
Grooff, D. (2014). Television Experience Insights
from HbbTV. In proceedings of the International

Inter-Device-
Communication 1

st

Screen

Highlights results from EU
project Hbb-NEXT, in
particular applied to

SAM WP7 Public D7.9.3

37/42

Workshop on Interactive Content Consumption,
Newcastle upon Tyne

recommenders. See
http://www.hbb-
next.eu/index.php/documents

Figure 35 Consulted Research References

4.7 Target Performance

The performance measurement of the 1st Screen prototype will be measured according to
the defined KPIs (described in Section 4.7.1) with additional End User experience
measurements (described in Section 4.7.2).

4.7.1 Component KPIs

For this component the following Key Performance Indicators (KPIs) have been defined:

Topic Description Target KPI Current KPI

Responsiveness When a user is interacting
with his 1

st
 Screen device, it

needs to be very
responsive.

Initial loading time of the
1

st
 Screen app should be

less than 10 sec.
Navigation actions should
execute in less than 3
sec.

Current loading time
of 1

st
 Screen app is

around 5-8 secs.
Navigation actions
execute in less than
2 secs.

Connection success rate When a 1
st
 Screen

discovers a 2
nd

 Screen (or
vice versa), setting up a
connection should always
be successful.

The discovery of all
available 2

nd
 Screen

devices should be
achieved in 90% of the
test cases.

The discovery
succeeds in 90% test
cases.

Connection setup time The time it takes to setup a
connection between a 1

st

Screen and a 2
nd

 Screen
device needs to be low.

The discovery of all
available 2

nd
 Screen

devices should be
achieved in less than 10
seconds.

The discovery time is
around 5-7 secs.

Figure 36: Target Performance 1st Screen

4.7.2 User Experience Measurements Tasks

Additional to the KPIs in Section 4.7.1, this work package provides user tasks, which are
input for measuring the subjective user experience in a uniform way. For each of the tasks
below, the task-specific KPIs defined in Annex A: User Research will be measured.

Task Description

Pairing The user has to pair the 1
st
 Screen device with the 2

nd
 Screen device.

Controlling the Video
Element

The user has to stop, to shift to a specific time in the video element and start the
video element again.

Making video full
screen

The user has to make the video full screen and later get back to the non-full screen
mode again.

Figure 37: Target Performance 1st Screen – Task-Specific Measurements

http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents

SAM WP7 Public D7.9.3

38/42

4.8 Summary

This section provides a description of the third prototype of the 1st Screen component
developed in task T7.3 1st Screen Media Interaction. The main outcome of this task is the
software of the 1st Screen component. This prototype is the last iteration planned for this
component and the goal of this prototype is to cover 100% of the requirements of the
component (see Section B 1.3.3.7 of the DOW for additional information on the effort
distribution for this component in the lifespan of the project).

The most important goal reached during this third prototype has been the introduction of a
more lenient user experience by further extension of 1st Screen communication protocols.

The requirements necessary for both users and developers have been presented including
installation instructions. The last section has been dedicated to describing the remaining
limitations of the current prototype and potential further improvements when transforming
into a market product.

SAM WP7 Public D7.9.3

39/42

5 Document Summary

This document, D7.9.3, is the third release of the deliverable series D7.9.x to provide early
insight of the prototypes of software deliverables D7.1.3, D7.2.3, D7.3.3 and D7.4.3. This
document provided information about the running tasks in Work Package 7:

 T7.1 Multi-Device Content and Media Representation (Section 3)

 T7.3 1st Screen Media Interaction (Section 4)

The information for each task provided contains:

 Scope of the pilot implementation, its purpose and the main relationships with other
modules implemented in SAM in the third year of development

 Information needed to deal with the pilot in terms of technical and non-technical
requirements, software to be installed, etc.

 Steps needed to install the pilot software and process to build it from source code

 Different screens and actions implemented at the pilot itself, ways to access it, and to
test the different implemented options

 Current pilot limitations and the expected improvements

 Papers and other scientific information considered

 Key Performance Indicators (KPI’s) for the SAM component

 Conclusion of the implementation of the first, second and third prototype

SAM WP7 Public D7.9.3

40/42

References

[WDJ11] Wilson, S., Daniel, F., Jugel, U., Soi, S. (2011). Orchestrated User Interface
Mashups Using W3C Widgets. Proceedings of Composable Web 2011.

[BWS13] Balasubramanee, V. Wimalasena, C. Singh, R. Pierce, M. (2013) Twitter
bootstrap and AngularJS: Frontend frameworks to expedite science gateway development

[KAA07] Christian Kaar (2007), An introduction to Widgets with particular emphasis on
Mobile Widgets

[LAR02] Larsson, S., (2002). Issue-based Dialogue Management, Gothenburg
Monographs in Linguistic

[BCL05] B. Bringert, R. Cooper, P. Ljunglöf, A. Ranta, Multimodal Dialogue System
Grammars. Proceedings of DIALOR'05, Ninth Workshop on the Semantics and Pragmatics
of Dialogue, Nancy, France, June 9-11, 2005, 2005

[BRI07] B. Bringert. Speech Recognition Grammar Compilation in Grammatical
Framework SPEECHGRAM 2007: ACL Workshop on Grammar-Based Approaches to
Spoken Language Processing, June 29, 2007, Prague. 2007.

[ZIE13] Ziegler, C., "Second screen for HbbTV — Automatic application launch and app-
to-app communication enabling novel TV programme related second-screen scenarios,"
Consumer Electronics Berlin (ICCE-Berlin), 2013. ICCEBerlin 2013. IEEE Third
International Conference on, vol., no., pp.1, 5, 9-11 Sept. 2013

[VAN12] Vanattenhoven, J., Geerts, D. (2012). Second-Screen Use in the Home: An
Ethnographic Study. In Proceedings 3rd International Workshop on Future Television,
EuroITV 2012 (p. 12).

[VAN14] Vanattenhoven, J., Geerts, D., De Grooff, D. (2014). Television Experience
Insights from HbbTV. In proceedings of the International Workshop on Interactive Content
Consumption, Newcastle upon Tyne

[BAS13] Bassbouss, L.; Tritschler, M.; Steglich, S.; Tanaka, K.; Miyazaki, Y., "Towards a
Multi-screen Application Model for the Web," Computer Software and Applications
Conference Workshops (COMPSACW), 2013 IEEE 37th Annual , vol., no., pp.528,533,
22-26 July 2013

[ETS15] ETSI TS 102 796 V1.3.1 / HbbTV 2.0 (2015-10)

[WCJ14] Lee, Wei-Po, Che Kaoli, and Jhih-Yuan Huang. "A smart TV system with body-
gesture control, tag-based rating and context-aware recommendation." Knowledge-Based
Systems 56 (2014): 167-178.

[MAY14] Maynard, G. HbbTV and Multi-Screen Strategy. HbbTV Symposium Asia.
Singapore 18 June 2014.

SAM WP7 Public D7.9.3

41/42

Annex A: User Research

Generic Target Performance KPIs

For assessing the target performance of different components of the Multi-Device Media
Representation and Interaction work package (Sections 3 and 4), five Target KPIs were
defined as described below. Every task defined in sections 3.7.2 and 4.7.2 will be used to
measure the three task-specific target KPIs. Next to that, two general usability KPIs were
defined in order to measure the overall user experience.

Type Type Description Target KPI

Task-specific First Click
score

After a limited amount of usage (familiarisation
time, described below), did the user click the
correct button for the optimal path to complete
the requested task?

80% correctness for “top
tasks” should be reached,
65% for other tasks.

Task-specific Task
Completion

Was the user able to complete the task within
a reasonable time? (A reasonable threshold
depends on the task and on the product – it’s
best for someone who knows it well to set
this).

80% correctness for “top
tasks” should be reached,
65% for other tasks.

Task-specific Task
Confidence

How confident is the user that s/he completed
the task requested?

Average score of 5 or
above (7-point scale).

Overall
Usability

System
Usability
Scale (SUS)

12

This is a survey with 11 statements with an
associated 7-point scale. The procedure for
executing the SUS is described on the
website in footnote 12.

Composite of 70 or higher
(100-point scale).

Overall
Usability

Usability
Adjective
Scale

This is a single question that is usually added
to the end of the SUS that gives a scale of
adjectives to describe whatever system is
being measured from “worst imaginable” to
“best imaginable”.

4 or higher (7-point scale).

Figure 38: Generic Target Performance KPIs

Testing Procedure

A very short description of the testing procedure to follow is described below. The details
can be found on the website in footnote 12.

1. Recruit at least 10 research participants with little to no knowledge of the system.
2. Give each of these participants a brief (less than 5 minute) introduction to the feature

under test. If possible, use the actual materials that a consumer would receive.
3. Foresee for each participant a short amount of time to familiarise himself with the

feature (usually less than 5 minutes for a consumer is good).
4. The moderator then asks each participant to complete a series of tasks. These tasks

should be the most common actions users would take when working with the feature.
(For SAM, this would include widget configuration, TV-side navigation, and 2nd Screen
app usage.) Within each of those tasks there may be more than one sub-task for the

12

 http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

SAM WP7 Public D7.9.3

42/42

participant. Of these sub-tasks, identify, by observing the behaviour of the participants,
the sub-tasks that are absolutely crucial for using the feature.

As a general guideline, the moderators should not guide or assist the participants in any
way – they are there only to take notes and ensure the participants attempt each task and
fill out the survey.

After each task, each participant answers a question about the ease of the task and how
confident he is that he successfully completed the task. These statements are graded on a
5 or 7-point scale.

Task instruction Ease of task / Confidence

Please collapse the video info widget

How confident are you that you
successfully completed the task?

The moderator should note whether the participant made the correct first click and whether
the participant successfully completed the task.

After all tasks are completed, the participants are then asked to complete the
SUSincluding the Usability Adjective Scale. This is a survey with 11 statements with an
associated 7-point scale.

Graphical Editor User Trials Scenarios

WIDGET EDITOR SCENARIOS

 1. Select the Test Wikipedia widget.

 2. Change the background colour of the header in the Test Wikipedia widget’s style. Save
the change.

 3. Choose a style that is not the default one and make it default.

 4. Delete a style that is not the default one.

 5. Create a new style.

 6. Save a new style under a new name.

 7. Export a CSS style to your computer.

 8. Import a CSS style from your computer.

 9. Load an HTML template from the HTML gallery and save it as the Wikipedia HTML.

 10. Export an HTML template to your computer.

 11. Import an HTML template from your computer.

