
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
FP7/2007-2013 under grant agreement n° 215483 (S-Cube).

File name: CD-IA-3.2.4 Results of the Second Validation_PAPERS

Title: Results of the Second Validation

Authors: UniDue, POLIMI, CITY, FBK

Editors: Eric Schmieders (UniDue), Andreas Metzger (UniDue)

Reviewers: Michael Parkin (Tilburg)

 Ita Richardson (Lero-UL)

Identifier: CD-IA-3.2.4

Type:

Version: 1

Date: 16 March 2011

Status: Final

Class: Internal

Management Summary

This document is the compilation of the set of papers used to produce the ‘paper-based’ deliverable CD-
IA-3.2.4, which reports the validation of the integration of the IRF building blocks, i.e., the results of
task T-IA-3.2.1.

S-Cube
Software Services and Systems Network CD-IA-3.2.4

 Internal Final Version 1.0, Dated 16 March 2011 2

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/results/deliverables/

S-Cube
Software Services and Systems Network CD-IA-3.2.4

 Internal Final Version 1.0, Dated 16 March 2011 3

Contents

1 Towards Proactive Adaptation: A Journey along the S-Cube Service Life-Cycle 4

2 Design for Adaptation of Service-Based Applications: Main Issues and Requirements 13

3 Using a Lifecycle Model for Developing and Executing Adaptable Interactive

Distributed Applications 28

Towards Proactive Adaptation: A Journey along the
S-Cube Service Life-Cycle

Andreas Metzger∗, Eric Schmieders∗, Cinzia Cappiello†, Elisabetta Di Nitto†,
Raman Kazhamiakin‡, Barbara Pernici†, Marco Pistore‡
∗Paluno (The Ruhr Institute for Software Technology)
University of Duisburg-Essen, 45127 Essen, Germany

Email: {andreas.metzger, eric.schmieders}@paluno.uni-due.de
‡FBK-Irst

Via Sommarive 18, 38050, Trento, Italy
Email: {raman, pistore}@fbk.eu
†Politecnico di Milano, DEI

Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
Email: {dinitto, cappiell, pernici}@elet.polimi.it

Abstract—Service-oriented applications are deployed in highly
dynamic and distributed settings. Therefore, such applications
are often equipped with adaptation capabilities to react to critical
issues during their operation, such as failures or unexpected
changes of third party services or to context changes. In this
paper, we discuss shortcomings of current solutions for adaptive
service-oriented applications. To address those shortcomings, we
introduce techniques that can be utilized to build and evolve
proactive applications. Those techniques have been developed
in S-Cube, the European network of Excellence on Software
Services and Systems. Proactive adaptation capabilities are
considered particularly promising, as they can prevent costly
compensation and repair activities. Using those techniques in an
integrated way is described along the phases of the service life-
cycle. We use a running example to illustrate the shortcomings
of current solutions for self-adaptation and to demonstrate the
benefits of the S-Cube techniques.

I. INTRODUCTION

Service-orientation is increasingly adopted as a paradigm
for building highly dynamic, distributed and adaptive software
systems, called service-oriented (or service-based) systems.
This paradigm implies a fundamental change to how software
is developed, deployed, and maintained [1]: A service-based
system cannot be specified and realized completely in advance
(i.e, during design-time) due to the incomplete knowledge
about the interacting parties (e.g., third party service providers)
as well as the system’s context and communication infrastruc-
ture [2]. Thus, compared to traditional software engineering,
much more decisions need to be taken during the operation of
the service-oriented system (i.e., after it has been deployed).
For instance, those systems will need to react to failures
of their constituent services (e.g., if a service provider fails
to adhere to its contract) to ensure that they maintain their
expected functionality and quality.

In such a dynamic setting, evolution and adaptation methods
and tools become key to enable those systems to respond
to changing conditions. In accordance with the terminology
defined by the S-Cube Network of Excellence [3], this paper
differentiates between evolution and adaptation as follows:

Evolution is considered as the modification of the system’s re-
quirements, specification, models, etc. during design time (also
known as maintenance). In contrast, adaptation is considered
as the modification of a specific instance of a service-based
system during operation. In the current paper we focus on
adaptation needed due to some malfunctioning of the system.
While the general adaptation due to context changes could also
be supported by the proposed techniques, this is not discussed
in the present paper.

A. Problem Statement and Related Work

Adaptive systems automatically and dynamically adapt
to changing conditions. The aim of adaptation (aka. “self-
adaptation”) is to reduce the need of human intervention as
far as possible. While the behavior of a non-adaptive system
is only controlled by user input, adaptive systems consider
additional information about the application and its context
(e.g., failures of constituent services or different network
connectivity). Thus, in order to realize self-adaptive behavior,
methods and tools that realize control loops are established
that collect details from the application and its context (e.g.,
by exploiting monitoring mechanisms) and decide and act
accordingly [4].

So far, the major work on adaptation has been centered
around reactive adaptation capabilities based on monitor-
ing [5]. This means that adaptation is performed after a
deviation or critical change has occurred. Such a reactive
adaptation based on monitoring, however, has at least the
following two important shortcomings (cf. [6], [7] and [8]).
• It can take time before problems in a service-based

system lead to monitoring events that ultimately trigger
the required adaptation. One key trigger for an adaptation
should be the case when the service-based system devi-
ates from its requirements (such as expected response
time for example). If only those requirements are moni-
tored (e.g., see [9]), the monitoring events might arrive so
late that an adaptation of the Service Based Application

(SBA) is not possible anymore. For instance, the system
could have already terminated in an inconsistent state, or
the system has already taken more time than required by
the expected response time.

• Reactive adaptation can become very costly, especially
when compensation or rollback actions need to be per-
formed. As an example, when using stateful (aka. con-
versational) services [10], the state of the failed service
might need to be transferred to an alternative service.

Of course, one can monitor the individual services of an
SBA and trigger an adaptation as soon as the service has
failed, i.e., violated its contract [11]. However, when using
those techniques it remains unclear whether the failure of this
service could lead to a violation of the SBA’s requirements.
This means that there may be situations in which the SBA is
adapted although it would not have been necessary, because
the requirements might still have been met. Consider the
following simple example: Although a service might have
shown a slower response time as (contractually) expected,
prior service invocations (along the workflow) might have been
fast enough to compensate the slower response of that service.

Such unnecessary (or “false positive”) adaptations have the
following shortcomings [6]:
• Unnecessary adaptations can lead to additional costs and

effort that could be avoided. For instance, additional
activities such as Service Level Agreement (SLA) ne-
gotiation for the alternative services might have to be
performed, or the adaptation can lead to a more costly
operation of the SBA, e.g., if a seemingly unreliable but
cheap service is replaced by a more costly one.

• Unnecessary adaptations could be faulty (e.g., if the
new service has bugs), consequently leading to severe
problems.

In summary, one key problem that needs to be solved
to enable proactive adaptation is to determine whether the
service-based application, during its future operation, might
deviate from its requirements.

B. Contribution of Paper

This paper describes techniques developed in the S-Cube1

network of excellence to determine deviations from require-
ments based on monitored failures. Previous publications (such
as [6], [7], [8], [12], [13]) have discussed proactive adaptation
techniques mainly in isolation and confined to individual
phases of the service life-cycle. A first, more integrated view
on adaptation has been presented in [14]. However, the focus
was on reactive adaptation and on the design time activities
needed to build adaptive service-systems. In contrast, in this
paper, we demonstrate how the techniques for determining
proactive adaptation play together across the various life-cycle
phases and how they can be jointly applied in a meaningful
way. As a basis for our discussions, we employ the S-Cube
service life-cycle model [15], [14], [16], [17]. In contrast
to more traditional life-cycle models, this model considers

1http://www.s-cube-network.eu/

the specifics of service-based systems, particularly concerning
evolution and adaptation.

The remainder of the paper is structured as follows: In Sec-
tion II, the S-Cube service life-cycle model is introduced. In
Section IV, the S-Cube techniques that jointly allow building
proactive service-based systems are discussed, differentiating
between activities that are done during design-time and activ-
ities that are done during the operation phase (run-time). This
discussion is illustrated by an example from the eGovernment
domain, which is introduced in Section III.

II. THE S-CUBE SERVICE LIFE-CYCLE MODEL

The life-cycle models for SBAs that have been presented in
the literature (examples include SLDC, RUP for SOA, SOMA,
and SOAD, cf. [14] and [18]) are mainly focused on the phases
that precede the release of software and, even in the cases in
which they focus on the operation phases, they usually do not
consider the possibility for SBAs to adapt dynamically to new
situations, contexts, requirement needs, service faults, etc.

Specifically, the following aspects have not yet been con-
sidered in those life-cycle models:
• Requirements elicitation and design for adaptation: The

requirements engineering phase includes the elicitation
and documentation of the systems functional and quality
requirements. In the dynamic setting of SBAs, not only
the requirements towards the actual application logic
need to be analyzed, designed, and developed, but also
the context in which the system is executed needs to
be understood [1]. Context changes can necessitate the
adaptation of the SBA, for instance if the SLA of a third
party service is violated. During design, the capabilities
to observe, modify and change the SBA during run-time
need to be devised.

• Extended operation phase: The operation phase is not
only responsible for merely executing and monitoring the
application, but it also requires identifying the need for
an adaptation of the system as well as the where and how
to enact such an adaptation [1].

• Continuous quality assurance: Quality assurance has an
impact on all aspects of the life-cycle. Therefore, the
quality characteristics that are to be assessed and ensured
must be identified starting from the requirement analy-
sis phases. Due to open nature, and dynamic contexts
in which SBAs operate, quality properties that have a
lifelong validity need to be ”continuously” asserted [19].
For instance, in the case of third party services, there
is no guarantee that a service implementation eventually
fulfills the contract promised (e.g., stipulated by an SLA),
or it is usually not possible during design-time to model
and thus assess the behavior of the underlying distributed
infrastructure (such as the Internet).

The service life-cycle model envisioned by the S-Cube
network aims at incorporating those aspects. The S-Cube
service life-cycle model [15], [14], [16], [17] relies on two
development and adaptation loops, which can be executed in
an incremental and iterative fashion:

• The development and evolution loop (see right hand side
of Figure 1) addresses the classical development and
deployment life-cycle phases, including requirements and
design, construction and operations and management (see
Section II-A).

• The operation and adaptation loop (see left hand side
of Figure 1) extends the classical life-cycle by explicitly
defining phases for addressing changes and adaptations
during the operation of service-based applications (see
Section II-B).

Requirements
E i i

Identify
Adaptation

EngineeringOperation &
Management

p
Need

Evolution

DesignIdentify
Adaptation

Strategy Adaptation

Realization
Deployment &
Provisioning

gy

Enact g
Adaptation

Fig. 1. The S-Cube Service Life-Cycle

A. Development and Evolution Cycle

Requirements Engineering. In the requirements engineer-
ing phase, the functional and quality requirements for the SBA
are elicited and documented. The specifics of SBAs make
the requirements engineering phase particularly relevant. This
is related to the highly dynamic nature of SBAs and to the
necessity to guarantee the continuous adaptability and the
evolvability of these applications. Indeed, in a context where
the application is in continuous evolution and is characterized
by very blurred boundaries, the study of those requirements
that exist a priori in the organizational and business setting,
and that are hence largely independent from the solution,
becomes very important.

Design. During the design phase, the activities and the
control flow of the application are specified. In the service-
oriented case, this usually means that a workflow is specified
using languages such as BPEL. Together with the definition
of the workflow, candidate services are identified that can
provide the functionality and quality to fulfill the requirements
of the SBA. This means that those services that cover, at
least partially, the expected functionality and quality of service
are identified. This is supported by service matchmaking
techniques, such as the ones presented in [20]. A further task
in this phase is to define adaptation strategies and mechanisms
which enable the application to react to adaptation needs
(cf. [14]).

Construction. After the design phase, the construction of
the system can start. Especially, it has to be taken into account
that SBAs are obtained by the integration and coordination of
services from different providers. Specifically, this means that
for establishing the desired end-to-end quality of those SBAs,

contracts between the service providers and the service con-
sumers on quality aspects of services have to be established.
Typically, this requires some form of SLA negotiation and
agreement. Following [20], this means that for each service,
the best quality of service level for the available budget is
negotiated with the providers of the candidate services that
have been identified in the previous phase.

Deployment and Provisioning. The deployment and provi-
sioning phase comprises all the activities needed to make the
SBA available to its users. It should be noted that an SBA can
itself be offered as a service.

B. Operation and Adaptation Cycle

Operation and Management. This phase specifies all the
activities needed for operating and managing an SBA. The
literature also uses the term governance to mean all activities
that govern the correct execution of SBAs (and their con-
stituent services) by ensuring that they provide the expected
functionality and level of quality during operation. In this
setting, the identification of problems in the SBA (e.g., failures
of constituent services) and of changes in its context play
a fundamental role. This identification is obtained by means
of monitoring mechanism and, more generally, by exploiting
techniques for run-time quality assurance (such as online
testing or run-time verification). Together, those mechanisms
and techniques are able to detect failures or critical conditions.

Identify Adaptation Need. Some failures or critical condi-
tions become triggers for the SBA to leave “normal” operation
and enter the adaptation or evolution cycle. The adaptation
cycle is responsible for deciding whether the SBA needs to
be adapted in order to maintain its expected functionality and
quality (i.e., to meet its requirements). This is an important
decision as it might well be that despite a failure of a service,
the end-to-end quality of the SBA is not affected and hence
there is no need to react to that situation. Such decisions may
be made automatically, or it may require human intervention
(end user, system integrator, application manager). Moreover,
such decisions may be made in a reactive way, when the
problem has already occurred, or in a proactive way, where a
potential, future problem could be avoided. It should be noted
that the decision could also be that there should be an evolution
of the system rather than an adaptation, thereby entering the
“development and evolution” cycle.

Identify Adaptation Strategy. When the adaptation needs
are understood, the corresponding adaptation strategies are
identified and selected. Possible types of adaptation strategies
include service substitution, SLA re-negotiation, SBA re-
configuration or service re-composition. It could also happen
that several adaptation strategies are able to satisfy a specific
adaptation need. The selection of the strategy and its instan-
tiation (e.g., which service to use as a substitute or which re-
configuration to perform) may be automatic if either the SBA
or the execution platform decide the action to perform, or it
can be done by (the help of) a human operator. Specifically,
two questions need to be answered: ”what to adapt?” and ”how
to adapt?”.

Enact Adaptation. After the choice of the adaptation
strategy, the adaptation mechanisms are used to enact the
adaptation. For example, service substitution, re-configuration
or re-composition may be obtained using automated ser-
vice discovery and dynamic binding mechanisms, while re-
composition may be achieved using existing automated service
composition techniques. Depending on the situation, such an
adaptation can be done manually (e.g., by a human operator),
semi-automatically or fully-automatically.

III. APPLICATION SCENARIO

In this section, an example workflow is introduced in order
to illustrate the problems as well as the solution that will be
presented in Section IV. The workflow specifies an eGovern-
ment SBA that allows citizens to pay parking tickets online,
thereby saving effort and costs (see [21] for a description of
the eGovernment application domain as defined in S-Cube).

A. Workflow
The workflow as well as the service composition of the

eGovernment application are depicted in Figure 2 as an
extended activity diagram. The gray boxes denote concrete ser-
vices that can be composed to an eGovernment application. In
the example, each service is provided by a third party, being it
an external organization or a different unit of the governmental
organization. Solid connections between workflow actions and
services denote the bindings established at deployment time.
Dashed connections denote possible alternative services (from
a different provider). In addition, the diagram is annotated with
information about the negotiated response times (which could
be stipulated by means of SLAs).

Let us assume that the overall workflow is expected to have
a response time of at most 1250 ms. This quality requirement
can be satisfied by the bound services, provided that they meet
their negotiated maximum response times (as, altogether, the
maximum response times along the longest path add up to
1200 ms).

In the following subsections we use this example to illustrate
the shortcomings of reactive adaptation, which have been
introduced in Section I-A. We assume that the ePay service of
the example workflow fails during runtime, i.e., takes longer
than the negotiated maximum response time.

B. Scenario A: Requirements Monitoring
As mentioned in Section I-A there are approaches which

are restricted to monitoring of requirements. In that case
monitoring events might arrive so late that an adaptation of the
SBA is not possible anymore. In our example, the ePay service
invoked by Make Payment might take 650 ms to respond
instead of the negotiated maximum response time of 400 ms
(see Scenario A in Figure 3).

Due to the fact that only the requirement (maximum re-
sponse time of 1250 ms) is monitored, this failure is not
registered until after Sign has been invoked. As a consequence
the mechanism was not able to prevent the deviation from
the requirements, even though the failure has occurred much
earlier (see ∆ in Figure 3).

response time ≤100 ms

response time ≤500ms

eSign

response time ≤ 100 ms

DeptATicketHandler

Make Payment

Update Parking
Ticket Record

Send eMail

[authentication]

[no
authentication]

Identify Parking
Ticket

[valid]

[invalid]

ePay

response time ≤ 400 ms

Yahoo

response time ≤ 100 ms

Sign

SecurePay

GMail

[invalid][valid]

= alternative service

= external service

= service bound at
deployment time

DeptCTicketHandler

Fig. 2. Workflow of an eGovernment Application

ePay DepCTicket
Hanlder

YahooDepATicket
Handler

eSign

cumulative response
time [ms]

steps
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

x

x

x
x

x
Δ

end-to-end requirement

= allowed range
according to SLA
= actual response
time

x

failure

end-to-end requirement
deviation

Fig. 3. Scenario A: Requirements Monitoring

C. Scenario B: Service Monitoring

Referring to Section I-A, approaches that monitor individual
services exist. However, in such setting it remains unclear
whether the failure of a single service leads to a violation
of the SBA’s requirements. In the example, let us assume that
instead of 400 ms the ePay service invocation takes 450 ms
(see Scenario B in Figure 4).

This failure is observed by means of monitoring and leads
to an adaptation of the SBA. However, as obvious in the
figure, the overall response time would have still matched
the required response time even if no adaptation would have
been performed. Thus, in this case an adaptation was triggered
although it was not necessary.

In the next section we will present techniques that enable a
more proactive approach to addresses the above shortcomings.

ePay DepCTicket
Hanlder

YahooDepATicket
Handler

eSign

steps
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

x

x

x
x x

end-to-end requirement

= allowed range
according to SLA
= actual response
time

x
failure

cumulative response time [ms]

Fig. 4. Scenario B: Service Monitoring

IV. TOWARDS PROACTIVE ADAPTATION ALONG THE
LIFE-CYCLE

This section describes techniques developed in S-Cube for
enabling proactive adaptation. The description is organized
along the phases of the life-cycle model from Section II. In
order to illustrate the techniques, we refer to the example SBA
and scenarios presented in Section III.

As explained in Section I-A, adaptive SBAs automatically
and dynamically adapt to changing conditions and changes of
service functionality and quality. To enable such an automatic
adaptation, the relevant artifacts, as well as the properties
of the SBAs and their context need to be formalized to
make them amenable to automated checks and decisions. In
the remainder of this section, we thus introduce concrete
formalization approaches, as well as techniques that build on
this formalization.

A. Requirements Engineering

To automatically assess whether the application deviates
from its requirements during operation and thus trigger an
adaptation, functional and non-functional requirements need
to be collected and formally expressed. We propose to formal-
ize the requirements already in the requirements engineering
phase, as this also facilitates an early validation of the re-
quirements, e.g., by means of formal consistency checks (cf.
[22]), and hence reduces the risk of expensive corrections in
later phases.

S-Cube has developed various approaches to formalize
requirements (depending on the actual SBA type). For instance
ALBERT is a specification language based on temporal logics
(presented in [12]). ALBERT is used to encode functional and
quality attributes. In addition, the S-Cube Quality Meta Model
(QMM) has been defined, which provides a set of key concepts
for expressing quality requirements and constraints (see [23]).

To express the requirements for monitoring, an integrated
monitoring framework and the corresponding specification
language has been provided (see [24] and [25]) in the scope
of S-Cube. The framework integrates the capabilities of two
monitoring platforms: Dynamo [11] and ASTRO [9]. On the
one hand, the language enables the specification of complex
point-wise properties over service composition execution (e.g.,
pre- and post-conditions on service calls), taking into account
current and historical values of the process variables, complex
constraints, and event external properties. On the other hand,
simple events and point-wise properties may be aggregated
into complex behavioral expressions, also taking into account
temporal and statistical information necessary for capturing
non-functional requirements. While the latter capability is very
close to the approach used by ALBERT, the notation allows
for expressing properties over classes of processes rather than
over single instances. This capability may be very important in
order to trigger “evolution” of the workflow, when the problem
applies to the whole SBA model rather than to a single SBA
instance.

Example: In our example from Section III, we need to
formalize the required response time rperf of the eGovernment
application. rperf is an element of the given set of require-
ments ReGov against the eGovernment application:

rperf ∈ ReGov

rperf demands the response time of the eGovernment appli-
cation to be at most 1250 milliseconds. Due to the capability
of ALBERT to express the dependencies of monitoring data
along an executed path, we choose this language to specify
the requirement (rperf) as follows:

rperf := onEvent(start, ”Identify Parking T icket”)

→ Within(onEvent(end, ”Send eMail”),

1250)

The onEvent operator evaluates to true if the activity
specified in the second argument performs the state change
denoted in the first argument. The Within operator evaluates
to true if its first argument evaluates to true within the amount
of milliseconds specified in its second argument.

B. Design

Similarly to the requirements, the workflow of the SBA
needs to be formalized to support automated checks. Following
the same reasoning as in the requirements engineering phase
(see above), we suggest to formalize the workflow during
the design phase already in order to reduce the risk of later
corrections. As presented in [8] the checks can be performed
by using Model Checking techniques. In S-Cube the use
of BOGOR has been proposed [12] to assess whether the
specified SBA satisfies the requirements. We thus formalize
the workflow using the input language of the model checker,
in this case BIR (Bogor Input Representation).

Example: In order to use the BOGOR Model Checker (as
proposed in [12]) we specify the eGovnerment Workflow by

using BIR. The resulting specification SeGov (see Listing 1
in the appendix) can be directly executed and analyzed by
BOGOR.

C. Realization

During the realization phase, the quality levels (aka. service
level objectives) that have been negotiated and agreed upon
with the service providers (see Section II), are formalized.

Following the proposal in [8], we treat those quality levels
as assumptions (A) about the SBA’s context. Due to the lack
of control of third-party services, those quality levels could
be violated during the operation of the SBA (see Section I).
To formalize A, we can use one of the quality formalization
approaches as used during the requirements engineering phase.

For checking the violation of the assumptions during the op-
eration of the SBA, monitoring mechanisms are implemented
that collect the relevant data (cf. [24], [25] and [12]). This
is equivalent to collecting the monitoring data in the reactive
case of adaptation (cf. Section III).

Example: According to their SLAs (see Figure 2) ALBERT
is used to formalize the five assumed response times. The set
of assumptions AeGov for the parking ticket SBA is defined
as

AeGov := {aDeptATicketHandler,

aePay, aDeptCTicketHandler,

aeSign, aY ahoo}

The assumption aePay, related to the ePay service invoca-
tion, is formalized as follows:

aePay := onEvent(start, ”Make Payment”)

→ Within(onEvent(end,

”Make Payment”), 400)

D. Deployment

Before deploying the SBA, it is checked whether the
workflow specification (S), under the given assumptions (A),
satisfies the requirements (R):

S,A |= R

This check ensures that the initial composition – the work-
flow and the services – satisfy the requirements. If this is
not the case, the phases of the evolution loop (cf. life-cycle
in Section II-A) are executed again in order to redesign
the application, e.g., to bind faster services. If the SBA is
successfully verified against the requirements the SBA is
deployed.

Example: In our example SeGov and AeGov satisfy ReGov .
In consequence the SBA is deployed.

E. Operation and Management

This phase comprises the execution and the monitoring of
the individual services of the deployed SBA.

Monitoring is supported by monitoring frameworks, such as
Dynamo (presented in [25]). During runtime, the monitoring

framework continuously assesses whether the monitoring data
M satisfies the formalized assumptions A about the services:

M |= A

If a violation occurs, the SBA enters the adaptation loop
(cf. Section II-B). The relevant activities are described below
(Sections IV-F, IV-G, and IV-H).

Example: After finishing the SBA deployment, the eGov-
ernment application is executed. Let us assume that the
first activity, which invokes the DeptATicketHandler ser-
vice, lasts 90 milliseconds. The measured response time of
the DeptATicketHandler call is stored as monitored data
mDeptATicketHandler. mDeptATicketHandler satisfies the as-
sumption that the service responds within 100 milliseconds
(aDeptATicketHandler). In the next step ePay is invoked.
Let us assume, that the invocation of ePay is slower than
expected. This is the same situation as described in Scenarios
A and B (see Section III). Instead of 400 milliseconds as
expected, the ePay invocation takes 450 milliseconds (cf.
Scenario B). Hence, the monitoring data of the second service
invocation mePay doesn’t satisfy the corresponding assump-
tion aePay:

mePay 2 aePay

Due to this violation the phases of the adaptation loop are
entered.

F. Identify Adaptation Needs

In this phase it is checked, whether the requirements are still
satisfied, although the assumptions have been violated (cf. [8]).
For example it might be the case that a slower response time
of one service is compensated by a faster response time of a
previous service, and consequently no adaptation is required.

When the check is performed, there usually are services
which have not been invoked. Only when the workflow is
finished, all services have been invoked. This means, that
there is no monitoring data available for the not yet invoked
services. For those not yet invoked services we continue to use
their assumptions in the checks, i.e. we use a subset A′ ∈ A.
Next, it is checked, whether the workflow specification S, the
monitored data M and the assumptions in A′ satisfy the given
requirements R.

S,M,A′ |= R

If R is satisfied, then the workflow execution is continued.
If R is not satisfied, the SBA must be adapted.

Example: To illustrate that the presented S-Cube approach
is adequate to address the shortcomings from III-B and III-C,
we compare the S-Cube approach with the requirements mon-
itoring approach presented in Section III-B (Scenario A) and
the sequence monitoring approach presented in Section III-C
(Scenario B). It is checked, whether there is a deviation from
the requirements, as this could indicate that an adaptation is
necessary. This check also covers cases with larger delays,
e.g., 500 milliseconds in Scenario A.

The approach presented in Scenario A (see Section III-B)
does not observe failures at the moment when they occur –

as depicted with ∆ in Figure 3. The S-Cube approach does
not have this shortcoming. The continuous monitoring of the
service behavior observes failures as soon as a problem occurs.
Based upon such an observation, the SBA requirements are
immediately checked. This provides the system with the op-
portunity to adapt itself to prevent the predicted requirements
deviation from occurring. Of course the ability of the system
to proactively adapt depends on the time available for such
actions. Typically, if a failure of a service is observed more
at the beginning of the workflow, more time remains to adapt
the remainder of the workflow accordingly.

In order to determine such requirements violations, Model
Checking techniques are used. The workflow specification
(S1), the monitoring data (mDeptATicketHandler and mePay)
together with the assumptions of the outstanding service invo-
cations (aDeptCTicketHandler, aeSign and aY ahoo) are checked
against the requirement rperf . The expected overall runtime
is 1450 milliseconds which exceeds the 1250 milliseconds
demanded in rperf . Hence, the requirement rperf is not satis-
fied. This result is considered as an identified adaptation need.
Subsequent to this check, the adaptation can be performed
proactively, before the requirement is actually violated (i.e.,
before the system in operation deviates from its expected
requirements).

The approach presented in Scenario B (see Section III-C)
is not able to determine, whether a failure of a single ser-
vice leads to a violation of the SBAs requirements. Each
time a service fails, the SBA adapts immediately. The S-
Cube approach presented in this paper allows adapting only
in cases when critical failures occur, thereby avoiding un-
necessary adaptations. The same check as described above
assesses that the expected overall runtime does not exceed
1250 milliseconds. The requirement rperf is still satisfied and
thus no adaptation trigger is needed. Thereby an unnecessary
adaptations is prevented, which would have been performed
in Scenario B.

G. Decide on Adaptation / Identify adaptation strategy

When the need for adapting an SBA is detected, the next
step is to identify and apply an appropriate adaptation strategy
among the ones that are available for the considered applica-
tions. Depending on the application, the adaptation strategies
may range from service re-execution, over replacement of a
single service or of the process fragment, over re-negotiation
of quality properties, to changes in underlying infrastructure,
etc. Note that the adaptation strategies should be designed
with the application since some of them require the adoption
of specific infrastructure or the implementation of additional
components.

Typically, the adaptation strategy is associated with a spe-
cific critical situation or a problem at design time. This associ-
ation may be done either implicitly or explicitly. In the former
case, the mechanisms for choosing one action or another are
“hard-coded” in some decision mechanisms. A typical scenario
is the replacement of a service that violates the SLA or a
SBA requirement with a new one, with appropriate and most

suitable characteristics. Based on the selection criteria (e.g.,
optimization of a quality function, adherence to application
constraints), the appropriate decision mechanism may choose
one service or another. In the scope of the S-Cube project,
several approaches follow this vision. For example, in [26]
the replacement policies realize such a decision mechanism
and define the association between various types of changes
(service failure, changes in service properties and models,
appearance of new services, and changes in the context and
requirements) and the service selection. In [27], the decision
on the adaptation strategy is based on the quality factors
of the SBA that should be improved. Those factors are
identified through the analysis of the dependency tree that
capture the relation between simple quality factors and SBA
requirements. At design time, the adaptation action is assigned
to the quality factors that it influences either positively or
negatively. The selection of the adaptation strategy is based
on the need to improve quality factors that are critical for the
requirement, while trying to minimize the negative effect on
the other factors. In our scenario, the requirement would need
to improve the performance of the last service, and the service
replacement would be proposed such that the new service has
better performance, while having smaller cost with respect to
alternatives.

The definition of the adaptation strategy may be also
explicitly assigned to the critical situation. For example in
[28] the adaptation strategy is represented in the WS-ReL,
a notation for specifying and integrating recovery actions in
service composition. Therefore, the adaptation is defined as a
rule, where in the left hand side a critical situation is defined
(as a formal requirement to be monitored) and in the right
hand side a set of actions to be applied. The possible actions
include re-execution of a service invocation, replacement of
a service or a provider (partner link), ignoring the failure or
halting the execution, executing an extra process fragment, or
rolling back to a safe point. Simple actions may be joined into
a complex strategy by defining a control flow over actions, like
“try action A else try action B and action C”. These rules are
evaluated and applied by the underlying adaptation engine.

Adaptation can also be based on the causes of failures. This
is particularly helpful when invoked services are stateful, and
their invocation modifies the state of the service, such as in
transactional services. For processes involving transactional
services, if a diagnosis mechanism is available, such as in
[29], the adaptation strategy can depend on the cause of the
failure and its implications on the processes. This might imply
an adaptation strategy involving one or more services in the
process which must be dynamically generated.

H. Enact Adaptation

To enact adaptation actions, the SBA or its execution plat-
form should be appropriately instrumented. A typical approach
for realizing adaptation mechanisms for SBAs implemented
as executable (BPEL) processes is to instrument the process
execution engine. Such instrumentation is done via Aspect-
Oriented Programming techniques, as the adaptation activities

are treated as a cross-cutting concern. Using this approach,
the join points allow for injecting the adaptation logic in order
to intercept and adjust process execution logic. In particular,
in [28] a supervision manager component is attached to the
ActiveBPEL process engine and performs the necessary super-
vision activities: monitoring of critical situations, evaluation of
adaptation rules, and calls to the process engine infrastructure
to realize the specific strategy. Similarly, in [30], where aspect-
oriented techniques are adopted in order to dynamically bind
services into service compositions that are realized as BPEL
orchestrations.

V. CONCLUSION AND PERSPECTIVES

This paper has introduced novel techniques developed in S-
Cube (the European Network of Excellence on Software, Ser-
vices and Systems) for equipping service-based applications
with proactive adaptation facilities. Thereby, those techniques
are able to avoid costly compensation and repair activities,
as well as unnecessary adaptations, which are deemed key
shortcomings of current solutions for adaptive service-oriented
applications.

The techniques have been introduced along the key phases
of the S-Cube service life-cycle. Thereby, this paper has
demonstrated when and how those techniques should be ap-
plied when developing, evolving and adapting service-based
applications.

We are confident that those techniques will become espe-
cially relevant in the setting of the “Internet of Services”,
where applications will increasingly be composed from third
party services, which are not under the control of the service
consumer. This implies that applications and their constituent
services need to be continuously checked during their oper-
ation such that they can be dynamically adapted or evolved
in order to respond to failures or unexpected changes of third
party services.

In S-Cube, we are currently striving to push the envelope
towards proactive adaptation even further. In addition to de-
termining the need for adapting the service-based application
based on actual failures of the application’s constituent ser-
vices, we investigate the applicability of online testing for
predicting the quality of those services (e.g., see [6], [7]).
Combined with the approaches introduced in this paper, this
means that critical problems could be observed even earlier,
thus enabling a broader range of adaptation and evolution
strategies. For instance, in our running example we can only
react to the violation of the response time of a constituent ser-
vice by ensuring that the remainder of the workflow executes
faster. However, if the quality prediction techniques forecast a
violation of the expected response time of a specific service,
this very service can be replaced before it is invoked in the
context of the service-based application.

Another challenging problem that will be addressed is how
to make the techniques robust against other kinds of “false-
positives”. Currently our techniques define the assumptions
about a service execution to be the upper limits of the quality
properties as stated in the SLAs. As a consequence, it might

happen that the proactive techniques predict a performance
requirements violation based on a failure of a service despite
the fact that the remaining service invocations of the workflow
might have executed much faster than stated in the SLAs and
thus compensating for this failure. We thus will investigate in
how far past monitoring data could be used to better define
the assumptions that can be made about the quality properties
of a service.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful and
constructive comments.

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube). For further information please visit http://www.s-cube-
network.eu/.

REFERENCES

[1] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl, “A
journey to highly dynamic, self-adaptive service-based applications,”
Automated Software Engineering, 2008.

[2] G. Canfora and M. Di Penta, “Testing services and service-centric
systems: Challenges and opportunities,” IT professional, vol. 8, no. 2,
pp. 10–17, 2006.

[3] A. Metzger and K. Pohl, “Towards the next generation of service-based
systems: The s-cube research framework,” in CAiSE 2009, ser. LNCS,
J. P. van Eck, J. Gordijin, and R. Wieringa, Eds. Berlin Heidelberg:
Springer-Verlag, 2009, pp. 11–16.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, 2009.

[5] S. Benbernou, “State of the art report, gap analysis of knowledge on
principles, techniques and methodologies for monitoring and adaptation
of sbas,” S-Cube Consortium, Deliverable PO-JRA-1.2.1, July 2008.
[Online]. Available: http://www.s-cube-network.eu/results/

[6] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka, “Towards pro-
active adaptation with confidence augmenting service monitoring with
online testing,” in Proceedings of the ICSE 2010 Workshop on Software
Engineering for Adaptive and Self-managing Systems (SEAMS ’10),
Cape Town, South Africa, 2-8 May 2010.

[7] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A framework
for proactive self-adaptation of service-based applications based on
online testing,” in ServiceWave 2008, ser. LNCS, no. 5377. Springer,
10-13 December 2008.

[8] A. Gehlert, A. Bucchiarone, R. Kazhamiakin, A. Metzger, M. Pistore,
and K. Pohl, “Exploiting assumption-based verification for the adapta-
tion of service-based applications,” in SAC ’10: Proceedings of the 2010
ACM Symposium on Applied Computing. New York, NY, USA: ACM,
2010, pp. 2430–2437.

[9] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-Time Moni-
toring of Instances and Classes of Web Service Compositions,” in IEEE
International Conference on Web Services (ICWS 2006), 2006, pp. 63–
71.

[10] D. Dranidis, E. Ramollari, and D. Kourtesis, “Run-time verification of
behavioural conformance for conversational web services,” in Seventh
IEEE European Conference on Web Services (ECOWS 2009), 9-11
November 2009, Eindhoven, The Netherlands, R. Eshuis, P. W. P. J.
Grefen, and G. A. Papadopoulos, Eds., 2009, pp. 139–147.

[11] C. Ghezzi and S. Guinea, “Run-time monitoring in service-oriented
architectures,” in Test and Analysis of Web Services, L. Baresi and E. D.
Nitto, Eds., 2007, pp. 237–264.

[12] D. Bianculli, C. Ghezzi, P. Spoletini, L. Baresi, and S. Guinea, Advances
in Software Engineering, ser. Lecture Notes in Computer Science.
Springer-Verlag, 2008, vol. 5316, ch. A Guided Tour through SAVVY-
WS: a Methodology for Specifying and Validating Web Service Com-
positions, pp. 131–160.

[13] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and
F. Leymann, “Runtime prediction of service level agreement violations
for composite services,” in 3rd Workshop on Non-Functional Properties
and SLA Management in Service-Oriented Computing, co- located with
ICSOC 2009, 2009.

[14] A. Bucchiarone, C. Cappiello, E. D. Nitto, R. Kazhamiakin, V. Mazza,
and M. Pistore, “Design for adaptation of service-based applications:
Main issues and requirements,” in Fifth International Workshop on En-
gineering Service-Oriented Applications: Supporting Software Service
Development Lifecycles (WESOA), 2009.

[15] A. Gehlert, M. Pistore, P. Plebani, and L. Versienti, “First
version of integration framework,” S-Cube Consortium, Deliverable
CD-IA-3.1.3, December 2009. [Online]. Available: http://www.s-cube-
network.eu/results/

[16] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. Di Nitto, and
V. Mazza, “A context-driven adaptation process for service-based appli-
cations,” in PESOS 2010 - 2nd International Workshop on Principles of
Engineering Service-Oriented Systems. (To Appear), Cape Town, South
Africa, 1-2 May 2010.

[17] B. Pernici, Methodologies for Design of Service-Based Systems.
Springer, 2010, ch. 17.

[18] E. Nitto, “State of the art report on software engineering
design knowledge and survey of hci and contextual knowledge,”
Deliverable PO-JRA-1.1.1, 2008. [Online]. Available: http://www.s-
cube-network.eu/results/

[19] D. Bianculli, C. Ghezzi, and C. Pautasso, “Embedding continuous
lifelong verification in service life cycles,” in Proceedings of Principles
of Engineering Service Oriented Systems (PESOS 2009), co-located with
ICSE 2009, Vancouver, Canada. IEEE Computer Society Press, May
2009.

[20] M. Comuzzi and B. Pernici, “A framework for qos-based web service
contracting,” ACM Transactions on web, vol. 3, no. 3, 2009.

[21] E. D. Nitto, V. Mazza, and A. Mocci, “Collection of industrial
best practices, scenarios and business cases,” S-Cube Consortium,
Deliverable CD-IA-2.2.2, 2009. [Online]. Available: http://www.s-cube-
network.eu/results/

[22] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner,
B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing,
and H. Wössner, The Munich Project CIP: Volume I: the wide spectrum
language CIP-L. London, UK: Springer-Verlag, 1985.

[23] A. Gehlert and A. Metzger, “Quality reference model for SBA,”
Deliverable CD-JRA-1.3.2, 2008. [Online]. Available: http://www.s-
cube-network.eu/results/

[24] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore, “An integrated
approach for the run-time monitoring of bpel orchestrations,” in Service-
Wave ’08: Proceedings of the 1st European Conference on Towards a
Service-Based Internet. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
1–12.

[25] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo + astro:
An integrated approach for bpel monitoring,” Web Services, IEEE
International Conference on, vol. 0, pp. 230–237, 2009.

[26] K. Mahbub and A. Zisman, “Replacement Policies for Service-Based
Systems,” in 2nd Workshop on Monitoring, Adaptation and Beyond
(MONA+), co- located with ICSOC 2009, 2009.

[27] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and
F. Leymann, “Adaptation of service-based applications based on process
quality factor analysis,” in Proc. Of 2nd Intl. workshop on Monitoring,
Adaptation and Beyond (MONA+), Collocated with ICSOC/Service-
Wave’09, 2009.

[28] L. Baresi, S. Guinea, and L. Pasquale, “Integrated and composable
supervision of bpel processes,” in International Conference on Service-
Oriented Computing (ICSOC), 2008, pp. 614–619.

[29] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni, “Exception
handling for repair in service-based processes,” IEEE Trans. Software
Eng., vol. 36, no. 2, pp. 198–215, 2010.

[30] D. Karastoyanova and F. Leymann, “Bpel’n’aspects: Adapting ser-
vice orchestration logic,” in International Conference on Web Services
(ICWS), 2009, pp. 222–229.

APPENDIX

Listing 1. Workflow Specification SeGov

system ParkingTicketSpec {
Action identifyParkingTicket;
Action makePayment;
Action updateParkingTicketRecord;
Action sign;
Action sendEMail;

i n t sumMaxResponseTime := 0;

record Action {
s t r i n g serviceName;
i n t maxResponseTime;
boolean serviceInvoked;

}

a c t i v e thread MAIN () {
init();
checkWorkflow();
checkRequirements();

}

f u n c t i o n init() {
identifyParkingTicket :=
createAction("DeptATicketHandler", 100);
makePayment := createAction("ePay", 400);
updateParkingTicketRecord :=

createAction("DeptCTicketHandler", 500);
sign := createAction("eSign", 100);
sendEMail := createAction("Yahoo", 100);
}

f u n c t i o n checkWorkflow() {
executeAction(identifyParkingTicket);
choose

do sk ip;
do
atomic
executeAction(makePayment);
choose

do sk ip;
do
atomic
executeAction(updateParkingTicketRecord);
choose

do executeAction(sign);
do sk ip;

end
executeAction(sendEMail);
end

end
end

end
}

f u n c t i o n checkRequirements() {
a s s e r t sumMaxResponseTime <= 1250;

}

f u n c t i o n executeAction(Action action) {
sumMaxResponseTime := sumMaxResponseTime +

action.maxResponseTime;
action.serviceInvoked := t rue;
}
f u n c t i o n createAction(s t r i n g serviceName,

i n t maxResponseTime) r e t u r n s Action{
Action action;
action := new Action;
action.serviceName := serviceName;
action.maxResponseTime := maxResponseTime;
action.serviceInvoked := f a l s e;
re turn action;

}
}

Design for Adaptation of Service-Based Applications:
Main Issues and Requirements

Antonio Bucchiarone2, Cinzia Cappiello1, Elisabetta Di Nitto1, Raman Kazhamiakin2,
Valentina Mazza1, and Marco Pistore2

1 Politecnico di Milano
Piazza Leonardo Da Vinci 32 20133 Milano, Italy

2 Fondazione Bruno Kessler
Via Santa Croce 77 38100 Trento, Italy

{bucchiarone,raman,pistore}@fbk.eu,
{cappiell,dinitto,vmazza}@elet.polimi.it

Abstract. Service-based applications are considered a promising technology since
they are able to offer complex and flexible functionalities in widely distributed en-
vironments by composing different types of services. These applications have to
be adaptable to unforeseen changes in the functionality offered by component ser-
vices and to their unavailability or decreasing performances. Furthermore, when
applications are made available to a high number of potential users, they should
also be able to dynamically adapt to the current context of use as well as to spe-
cific requirements and needs of the specific users.
In order to address these issues, mechanisms that enable adaptation should be
introduced in the life-cycle of applications, both in the design and in the runtime
phases. Unfortunately, existing design methodologies do not take into account the
problem of service-based applications adaptation in a holistic way, but only in a
fragmented way, proposing specific solutions for particular cases.
In this paper we propose an extension of a basic iterative service-based applica-
tions life-cycle with elements able to deal with the adaptation-specific needs. We
focus, in particular, on the design phase and suggest a number of design princi-
ples and guidelines that are suitable to enable adaptation. We discuss about the
effectiveness of the proposed methodology by means of real-world scenarios over
various types of service-based applications.

Keywords: Life-cycle of service-based applications, Design for adaptation

1 Introduction

In the era of the Internet of Services, advanced service-based applications are consid-
ered the most promising technology since they are able to offer complex and flexible
functionalities in widely distributed environments by composing different types of ser-
vices. Such services are often not under the control of systems developers, but they
are simply exploited to obtain a specific functionality. While this, on the one side, en-
ables separation of concerns and highly simplifies the design effort of those in charge of

2

building service-based applications, on the other side, it introduces critical dependen-
cies between service-based application themselves and the services they are exploiting.
These last ones, in fact, could change without notice or be unavailable for unprecised
time intervals.

Therefore, service-based applications have to be able to adapt to these unforeseen
changes. Adaptation can be accomplished through various strategies that we will dis-
cuss in this paper. For example, the most obvious one is to replace a service that has
revealed to be unsuitable with some other service that either has been identified ear-
lier (for instance, during the design of the application) or is identified on-the-fly when
needed.

Changes of component services are not the only cause that determines the need for
adaptation. Another cause has to do with changes in the context in which service-based
applications are executed. For instance, this context may include the information about
the users of the applications. Users, in fact, may have special needs in terms of the
component services to be used. For instance, who is owning a special business contract
with a certain telecom provider could require that all telecom services exploited by
the service-based application are those offered by that specific provider. Who owns a
code for special offers on some flight reservation services may be willing to use them
whenever possible. And so on.

While the literature presents a good number of approaches that deal with self-
adaptation of service-based applications, most of them address this issue by hard cod-
ing in the infrastructure supporting the execution of service-based applications a limited
number of adaptation strategies that are triggered only when some specific and known
events happen. We argue that this approach does not necessarily cover all needs that
may arise. In some cases these needs are unknown and cannot be foreseen once for all.
The approach that we advocate is based on the idea that adaptation strategies can be
programmed at design/implementation time and be associated with triggering events
whenever possible, either before the execution or during the execution itself. This ap-
proach is adopted in our earlier work [3] and in other works (e.g., [15]). However, even
in these cases the emphasis is on the mechanisms offered to design strategies and to
trigger them, more than on a holistic, coherent, and easy to apply design for adaptation
approach that supports developers in the usage of the available mechanisms.

The objective of this paper is to go in the direction of this design for adaptation
approach. We define a life-cycle for service-based applications where adaptation is a
first class concern. As we think that adaptation works properly only in the case the
application is designed to be adaptable, we focus, in particular, on the identification
of a number of design principles and guidelines that are suitable to enable adaptation.
The effectiveness of such principles and guidelines is analyzed with reference to some
real-world scenarios.

The rest of the paper is structured as follows: Section 2 discusses about the life-
cycles and the adaptation platforms that are available in the literature and highlights
their weaknesses with respect to our objective of providing proper support to design
for adaptation. Section 3 presents three scenarios that will be used to exemplify the
phases, principles, and guidelines we discuss in the paper. Section 4 discusses about the
various facets of adaptation and evolution we deal with. Section 5 presents our life-cycle

3

while Section 6 presents the design for adaptation strategies, principles, and guidelines.
Finally, Section 7 assesses them with respect to the case studies and Section 8 concludes
the paper.

2 Related work

Life-cycles. Engineering service-based applications is based on the results carried out
in the fields of classical software and system engineering, where the definition and
analysis of suitable life-cycles has been a main objective in the past years. The current
service oriented methodologies propose life-cycles built upon existing techniques often
adapting them to SOA.

Almost all life-cycles in the literature do not address explicitly the possibility of a
service-based application to be adaptable. With this respect, the proposals by HP [6]
and Sun [12] are interesting as they aim to offer a mean to monitor and/or intervene on
service-based applications to optimize them. Also the SOUP (Service Oriented Unified
Process) [13] approach, based on the Rational Unified Process and on eXtreme Pro-
gramming, claims to support the possibility of adaptation in order to optimize SOAs
and to manage changes in the requirements and/or in the business needs. ASTRO [17]
addresses the need of the automatic service composition. The methodology covers all
the phases in the life-cycle, starting from requirement analysis to realization, deploy-
ment, and execution. It also supports iterations as when the monitor detects some un-
wanted or unexpected behaviour it is possible to loop back to the design phase. All
these approaches, however, assume the intervention of humans during the adaptation
and therefore do not support the autonomous, on-the-fly initiative of the application it-
self. On the contrary, Linner et al. [11] propose a life-cycle based on the application of
evolutionary principles for adaptation. These evolutionary principles rely on genetic ap-
proaches to support self-adaptation of the service-based application. They, however, do
not provide explicit guidelines on how to design adaptable service-based applications
and seem to rely on a fixed adaptation strategy.

Frameworks to support adaptation. Various frameworks supporting adaptation have
been defined in the literature, each of them addressing a specific issue. Some authors fo-
cus on triggering adaptation strategies as a consequence of a requirement violation [16],
of the need for optimizing QoS of the service-based application [20, 2], or for satisfying
some application constraints [18]. Adaptation strategies could be specified by means of
policies to manage the dynamism of the execution environment [4, 3, 1] or of the context
of mobile service-based applications [15]. The goal of the strategies usually proposed
by the aforementioned approaches range from service selection to rebinding and appli-
cation reconfiguration. In order to support this last strategy, [14] proposes the adoption
of a bioinspired approach.

All aforementioned approaches show interesting features, but even those that en-
able the definition of various adaptation strategies lack a coherent design approach to
support designers in this complex task. The methodology we propose in Section 6 can
be considered as a first step in this direction.

4

3 Motivating scenarios

We have argued that the life-cycles and frameworks that are available in the service-
based applications literature either do not explicitly support adaptation or tend to focus
on specific situations and adaptation strategies. In the following, we consider three sce-
narios that target different domains and focus on different adaptation aspects. They
clearly show that adaptation needs and strategies have different facets and, therefore,
motivate our attempt to define a holistic approach where they are dealt all together.

Automotive scenario. Let us consider complex supply-chain business processes in the
automobile production domain. The activities of the processes include ordering and im-
porting automobile body parts from suppliers, manufacturing activities, customization
of the specific products according to the needs of the customers, etc. The processes
are usually long-running and involve a wide range of enterprise services provided by
organizations such as various suppliers, logistics providers, warehouses, and regional
representatives. All these participate in an Agile Service Network (ASN) where they
rely one on each other services in a dynamic way. The adaptations required in such
scenario could be the following:

– The partners realizing some activity can be chosen at run time from those belonging
to the ASN. Such choice can be based on various business (e.g., reputation, rule
compliance, price, risks, etc.) and QoS (reliability, performance, availability, etc.)
factors. Moreover, it may require adjustments in the interaction protocols between
the service-based application and the services, and re-negotiation of Service Level
Agreements (SLAs).

– The service-based application needs to recover from some problem (e.g., delivery
of some car part did not happen on time or transaction failure).

– The service-based application needs to accommodate to some change in the busi-
ness context (e.g., due to new state regulations) or to address the needs of specific
customers (e.g., introduce some specific personalizations in the car).

Note that such adaptations in these kinds of business scenarios are accomplished within
well defined boundaries where the ASN is rather stable and the changes in the busi-
ness context are quite rare. Indeed, they are not necessarily done autonomously by the
service-based application as business analysts often have an important role when apply-
ing them. Finally, they may result in changes in the invoked services, in the structure of
the business process, or in the data that are managed by the process.

Wine production scenario. In the wine production application domain, the activities
of vineyard cultivation handling, the control of grapes maturation, their harvesting and
fermentation rely on extensive use of a service-based application realized on top of a
Wireless Sensor and Actuator Network (WSAN). In this context sensors and actuators
are seen as service providers able, respectively, to report information regarding the state
of the vineyard and to execute some specific actions.

These devices are not fully reliable. They may crash, run out of battery, or pro-
vide incorrect information. This may happen due to changes in physical context (e.g.,
humidity) or to the activation of new measurement activities (e.g., depending on the

5

season). One of the requirements for the resulting service-based application is, there-
fore, the ability to autonomously detect and handle these problems. In particular, the
service-based application should be able to change the topology of the network to opti-
mize the load and distribution of sensors, activate new sensors (i.e., replacing a service),
signal the crashes, optimize the frequency of data transfer to keep down the power con-
sumption, and so on. While in automotive scenario modification are rare and involve
the experts, here the adaptations are highly dynamic and autonomous.

Mobile users scenario. An increasing number of modern applications aims to give end
users access to various services through mobile devices. Such services include naviga-
tion and route planning services, transport ticket booking, services for accessing social
networks and blogging, and a wide range of information services mashed up by those
applications. For instance, a trip assistant application exploits those services for travel-
ling to a location, finding points of interest, making reservations, and even sharing the
experience with the friends. Differently to the other presented scenarios the distinguish-
ing features characterizing such applications are:

– Continuously changing context: the system heavily depends not only on the op-
erational context (e.g., the network throughput), but also on the user context (e.g.,
location and time) and even the specific situation the user is in (e.g., whether a busi-
ness or personal trip is managed). Furthermore, also the used services are localized
and personalized accordingly, which requires adequate service description, as well
as discovery and engagement mechanisms.

– Continuously changing user goals and activities: there are no predefined business
processes, but a set of various activities that may be organized according to the
continuously evolving user needs. An appropriate handling of such needs is indeed
necessary and may require compensation or transformation of unfinished activities.

Remarks. The above scenarios show that service-based applications have to face
very different adaptation needs, including customization, recovery and repair, self-
optimization and context-driven adaptation. Moreover, the actions used to realize those
activities, as well as the principles underlying the way the adaptation is carried out range
drastically. Indeed, in some cases simple service replacement is automatically triggered
by service unavailability, while in other cases the application change is entailed by com-
plex decision making process involving human actors. The rest of the paper is focused
on presenting a holistic approach that supports the understanding and the design of
these various kinds of adaptation aspects.

4 Adaptation and evolution in service-based applications

Figure 1 shows the main ingredients that are needed for building and operating Adapt-
able Service-Based Applications, which, from now on, we will call Adaptable SBAs or
simply SBAs.

An Adaptable Service Based Application not only is usually able to satisfy some Re-
quirements, but it also poses new requirements in terms of monitoring and adaptation

6

Fig. 1. Main concepts related to the definition and operation of Adaptable SBAs.

aspects. Monitoring Requirements concern the need for detecting (part of) those situa-
tions that may trigger the need for adapting an SBA. From these requirements, designers
should derive the properties to be monitored. These are then observed at runtime by a
Monitoring Engine that, based on their values, is able to emit some Monitored Events.
For example, in the Wine production scenario, the monitoring of the environmental pa-
rameters of the vineyard (such as temperature, wind speed and so on) could lead to the
detection of critical conditions to be managed. Adaptation Requirements are fulfilled
by Adaptation Strategies that can be executed during the Adaptation Process that is
triggered by Monitored Events or by any other external stimulus that can be acquired
by the system and that leads to the modification of the Adaptable SBA. For instance,
in the Automotive Scenario, it can happen when new state regulations (i.e., changes in
business context) are defined or when the SLAs among services are violated. Note that
analogously to the classification traditionally used to characterize software maintanance
[7] we can identify similar types of adaptation: Perfective Adaptation, Corrective Adap-
tation, Adaptive Adaptation, Preventive Adaptation, and Extending Adaptation.

An important role in our view is played by the Context. It includes users and exe-
cution properties. Users’ characteristics and preferences can be obtained explicitly, for
instance, by filling a user profile, or derived implicitly by profiling users at run-time.
Other information such us the users’ geographical position, the temporal details, and the
actions that characterize the interaction of the users with the surrounding space can be
obtained through monitoring. Execution properties are those that concern the conditions
under which the SBA and its component services execute. For instance, in the Mobile
users scenario, the user context is the main source of adaptation since that its loca-
tion or time can be source of adaptation needs (i.e., service substitution, re-negotiation,
re-execution, etc.).

7

Generally adaptation requires some temporary modification permitting to respond
to changes in the requirements and/or in the application context or to faulty situations.
An example of adaptation for a service composition could be the re-execution of a un-
available service or a substitution of a unsuitable service. Other situations could require
the re-design and/or the re-engineering of the application modifying it permanently, in
such case adaptation is called evolution. Moreover evolution could be needed if a faulty
situation requiring adaptation happens very often: in such case, a modification of the
application logic would be preferred to the frequent enactment of the needed adaptation
strategies.

5 Capturing adaptation and evolution aspects in a life-cycle

As discussed in the previous sections, there is a need for introducing a life-cycle for
SBAs that takes adaptation into explicit account. The life-cycle shown in Figure 2 aims
at filling this gap. Its novelty is that it highlights not only the typical design-time it-
eration cycle that leads to the explicit re-design of the application in order to adapt it
to new needs, but it also introduces a new iteration cycle at runtime that is undertaken
in all the cases in which the adaptation needs are addressed on-the-fly. The two cycles
clearly are not conflicting with each other. Instead, they coexist and support each other
during the lifetime of the application. We say, in particular, that design time activities
allow for evolution of the application, that is, for the introduction of permanent and,
usually, important changes, while the runtime activities allow for temporary adaptation
of the application to the specific circumstances that are occurring at a certain time.

Figure 2 also shows the various adaptation- and monitoring-specific actions (boxes)
carried out throughout the life-cycle of the SBA, the main design artifacts that are ex-
ploited to perform adaptation (hexagons), and the phases where they are used (dotted
lines). At the requirements engineering and design phase the adaptation and monitor-
ing requirements are used to perform the design for adaptation and monitoring. During
SBA construction, together with the construction of the SBA, the corresponding moni-
tors and the adaptation mechanisms are being realized. The deployment phase also in-
volves the activities related to adaptation and monitoring: deployment of the adaptation
and monitoring mechanisms and deployment time adaptation actions (e.g., binding).
During the operation and management phase, the run-time monitoring is executed, us-
ing some designed properties, and help the SBA to detect relevant context and system
changes. After this phase the left-side of the life-cycle is executed. Here, we can pro-
ceed in two different directions: executing evolution or adaptation of the SBA. In the
first case we re-start the right-side of the cycle with the requirements engineering and
design phase while in the second case we proceed identifying adaptation needs that can
be triggered from monitored events, adaptation requirements or context conditions. For
each adaptation need it is possible to define a set of suitable strategies. Each adaptation
strategy can be characterized by its complexity and its functional and non functional
properties.

The identification of the most suitable strategy is supported by a reasoner that also
bases its decisions on multiple criteria extracted from the current situation and from the
knowledge obtained from previous adaptations and executions. Details on these issues

8

Identify
adaptation

needs

Identify
adaptation
strategy

Enact
adaptation

Early Requirements
Engineering

Requirements
Engineering &

Design

Construction

Deployment &
provisioning

Operation &
management

Define adaptation and
monitoring requirements

Design for monitoring
and adaptation

Construction of
monitors and
adaptation

mechanisms

Deploy adaptation
and monitoring
mechanisms

Deployment-time
adaptation

Adaptation
mechanisms

Monitored
properties

Decide between
adaptation and

evolution

Run-time
monitoring

Monitored
events

Suitable
strategies

actions

Design artifacts

Context

Adaptation
requirements

Strategy
instance

Fig. 2. The Life-Cycle of Adaptable SBAs.

are discussed in Section 6. After this selection, the enactment of the adaptation strategy
is performed. The execution of all activities and phases in all runtime phases may be
performed autonomously by SBAs or may involve active participation of the various
human actors.

6 Design for adaptation: main ingredients

As discussed in the previous sections, in order to offer efficient and reliable applications,
it is necessary to guarantee that the service components are always aligned with the
changing world around them. At design time possible alternatives to support service
adaptation should be identified. For the same SBA, several adaptation strategies can
be adopted since each adaptation strategy has different functionalities, characteristics,
and consequences, and its suitability for dealing with a specific change can be strictly
related to the context or to the functional and non-functional application requirements.
The selection of the most suitable adaptation strategy to activate can be a complex
issue since different system characteristics have to be considered. In the next sections,
guidelines to support this selection are provided.

6.1 Adaptation Strategies

While a SBA is executing, different changes might occur in the environment and cause
inefficiencies. In order to avoid the application performance degradation, it is necessary

9

to identify the most suitable adaptation strategy that is able to maintain aligned the ap-
plication behaviour with the context and system requirements. Among the adaptation
strategies, it is possible to distinguish domain-independent or domain-dependent strate-
gies. The former are applicable in almost every application context while the adoption
of the latter is limited to specific execution environments. In the following, we aim
at providing a short description of the most common domain-independent adaptation
strategies:

– Service substitution: reconfiguration of the SBA with a dynamic substitution of the
a service with another one.

– Re-execution: the possibility of going back in the process to a point defined as safe
for redoing the same set of tasks or for performing an alternative path.

– (Re-)negotiation: simple termination of the service used on the requester side and
re-negotiation of the SLA properties to complex management on reconfiguration
activities on the provider side.

– (Re-)composition: reorganization and rearrangement of the control flow that links
the different service components in the business application.

– Compensation: definition of ad-hoc activities that can undo the effects of a process
that fails to complete.

– Trigger evolution: insertion of workflow exception able to activate the application
evolution.

– Log/update adaptation information: storing of all the information about the adap-
tation activities for different goals (e.g., service reputation, QoS analysis, outcome
of adaptation, . . .).

– Fail: the system reacts to the changes by storing the system status and causing the
failure of the service and re-executing it.

Considering the examples in Section 3, some domain-dependent strategies can be
identified. In fact, the presence of sensors in the wine scenario could enable Self-
optimization and New Sensor Activation strategies that, in case of performance degra-
dation or sensor failures, allow sensor network to reconfigure itself and to activate a
new sensor respectively.

6.2 Identification of Adaptation Triggers

The adaptation in SBA may be motivated by variety of factors, or triggers. Such triggers
may concern the component services or the context of SBAs. As for the former we can
identify the following types:

– changes in the service functionality: variation of the service interface (e.g., signa-
tures, data types, semantics), variation of service interaction protocol (e.g., ordering
of messages), and failures;

– changes in the service quality: service availability, degrade of QoS parameters, vi-
olation of SLA, decrease of service reputation (e.g., black lists), etc.

As for the contextual triggers, one can distinguish

10

Table 1. Relationships between Adaptation Triggers and Adaptation Strategies

Adaptation Trigger Adaptation Strategy
Changes in the service functionality Service Substitution, Re-execution, Re-negotiation, Re-

composition, Compensation, Fail
Changes in the service quality Service Substitution, Re-Negotiation
Changes in the business context Service Substitution, Re-Negotiation, Re-composition, Trigger

Evolution, Log/update relevant adaptation information
Changes in the computational context Service Substitution, Re-negotiation, Re-composition, Trigger

Evolution, Log/update relevant adaptation information
Changes in the user context Service Substitution, Re-negotiation, Re-composition, Trigger

Evolution, Log/update relevant adaptation information

– changes in the business context, such as changes in agile service networks, new
business regulations and policies;

– changes in the computational context, such as different devices, protocols, net-
works;

– changes in the user context, such as different user groups and profiles, social envi-
ronment or physical settings (e.g., location/time), different user activities.

Some of these aspects may be interleaved. For example, in the mobile users scenario,
if the user moves to a new location (i.e., new user context), new set of services may
be available to the mobile application (i.e., change in business context) with different
bandwidth (i.e., change in the computational context).

As represented in Table 1 each trigger can be associated with a set of adaptation
strategies that are suitable to re-align the application within the system and/or context
requirements. In order to select the adaptation strategy to apply, it is necessary to con-
sider that adaptation triggers may be associated with different requirements that are
important for designing and performing adaptation, in particular:

– Scope of the change, i.e., whether the change affects only a single running instance
of the SBA or influences the whole model. For example, a SLA violation affects
a single instance, while change in the business policy may require modification of
the whole application.

– Impact of the change, i.e., the possibility of the application to accomplish its current
task. For example, one of the services may become unavailable, the corresponding
task may still be completed by another service, while if the business transaction
fails or if the user changes his/her mind, there is a need to accomplish a different
task.

Depending on these parameters different strategies may apply. For example, when
the scope of the change concerns the whole application model “trigger evolution” strat-
egy applies. As for the impact, such strategies as “re-execution” or “substitution” may
apply when the SBA state did not change and the task still can be accomplished. On the
other hand, “compensation”, “fail”, or “trigger evolution” apply when there is no way
to complete the current task (e.g., business transaction fails, the user changes his mind,
critical failure takes place, etc).

11

6.3 Design Guidelines

In order to design adaptable SBAs, it is necessary to relate adaptation triggers and adap-
tation strategies together. This may be done in various ways.

First, this may be done by hard-coding the corresponding elements directly in the
main logic of SBAs. On the one hand, such approach does not require any specific tool
and mechanism on the side of the design and execution infrastructure. On the other
hand, this overloads the logic of the application, thus making it error-prone and difficult
to maintain, and requires ad-hoc and non-reusable solutions when not supported by the
SBA language.

Second, the adaptation logic may be hard-coded in the SBA infrastructure. While
this approach clearly follows principle of separation of concerns, it is not flexible and,
therefore, is hard to change it when a specific adaptation need or application domain is
dealt with.

Finally, it is possible to provide design patterns and tools that allow for flexible
and transparent modeling and integrating adaptation strategies and triggers. On the one
hand, this allows adaptation designers to focus solely on the adaptation aspect. On the
other hand, this would allow for the flexibility and reuse of the adaptation mechanisms.
In particular, it is necessary to come up with the principles and guidelines for:

– Modeling adaptation triggers, i.e., both the situation when the adaptation is needed
(monitored property) and the specific adaptation need.

– Realizing adaptation strategies. This includes modeling strategies, their properties,
and their aggregation, and relating them to the underlying mechanisms and run-time
infrastructure.

– Associating adaptation strategies to triggers. We have already demonstrated how
the scope and impact of change influence this relation. Other factors may include
autonomy (i.e., if the adaptation should be done without human involvement) or
performance (e.g., how fast an adaptation strategy is).

One of the key aspects cross-cutting to these design tasks is the dynamicity of the
environment with respect to the adaptation problem. This refers (i) to the diversity of
specific adaptation needs and (ii) to the diversity of factors the adaptation strategies
depend on. According to this distinction, the following design approaches may be de-
fined:

– Built-in adaptation. If possible adaptation needs and possible adaptation config-
urations are fixed and known a priori, it is possible to completely specify them
at design time. Examples include replacement of a service in automotive domain,
where the number of possible partner services is restricted and fixed; concrete ac-
tivities to be performed for compensating business transaction; change of the pro-
cess variant in case of business workflow customization. The focus is on spec-
ifying situations, under which adaptation is triggered, and the concrete actions
to be performed. The specification may be performed by extending the standard
SBA notations (e.g., BPEL) with the adaptation-specific tools [8] using ECA-like
(event-condition-action) rules [3, 1], variability modeling [5], or aspect-oriented ap-
proaches [10]. Typical strategies suitable for such adaptations are: service substi-

12

tution (by selection from predefined list of options), re-execution, compensation,
re-composition (by using predefined variants), fail.

– Abstraction-based adaptation. When the adaptation needs are fixed, but the possi-
ble configurations in which adaptation is triggered, are not known a priori, the con-
crete adaptation actions cannot be completely defined at design time. In such a case,
a typical pattern is to define a generic model of an SBA and a generic adaptation
strategy, which are then made concrete at deployment/run-time. For example, ab-
stract composition model, where concrete services are discovered and bound at run-
time based on the context [19]; defining at design time a composition goal or utility
function, which is then achieved or optimized by dynamic service re-composition
at run-time based on a specific environment and available services [20]. Here the
focus should be on the design of such abstract models (e.g., for specifying abstract
process models or composition goals) and on the design of parametrized adapta-
tion mechanisms. Strategies that may be used for such adaptation are service con-
cretization, service substitution (by dynamic discovery), re-composition (based on
predefined goal/utility function), re-negotiation.

– Dynamic adaptation. Finally, it is possible that adaptation needs that may occur at
run-time are not known or cannot be enumerated at design time. In such a case, it
is necessary to provide specific mechanisms that select and instantiate adaptation
strategies depending on a specific trigger and situation. The examples of the scenar-
ios, where such adaptation is needed may include modifications or corrections of
business process instances via ad-hoc actions and changes performed by business
analyst, changes in the user activities that entail modification of current compo-
sition and creation of new ones. At run-time, these mechanisms are exploited to
(i) identify one or more suitable adaptation strategies depending on a concrete sit-
uation, (ii) define concrete actions and parameters of those strategies, and (iii)
execute them using the appropriate mechanisms. This type of adaptation may be
built on top of the others to realize specific adaptation needs; the focus, however,
is on the mechanisms for extracting specific adaptation strategies and actions at
run-time. Accordingly, different strategies may apply here: re-composition, service
substitution, and compensation, re-execution, evolution, fail. The realization mech-
anisms, however, are different; they may require active user involvement (e.g., for
making decisions, for performing ad-hoc changes, etc.).

7 Discussion

In this section we illustrate how the design for adaptation activities may be performed in
different scenarios represented in Section 3. In particular, given the specific character-
istics of the scenario, we show the factors triggering adaptation, the types of adaptation
realization suitable for the scenarios, and the appropriate adaptation strategies. Table 2
summarizes all these aspects with reference to the considered case studies.

Automotive scenario. The critical changes that require adaptation in this scenario range
from instance-specific problems (e.g., failures and SLA violations, specific customers)

13

Table 2. Adaptation characteristics of the scenarios in Section 3.

Case Study Properties Adaptation Trigger Design Approach Adaptation Strategy
Automotive Relatively stable context

and potential partners,
long-running SBA in-
stances, diversity of
adaptation needs, de-
cisions require human
involvement

functional changes,
failures, SLA violations,
changes in business
context

Dynamic adapta-
tion (human-driven);
built-in adaptation
(for compensation or
process customization)

Service substitution (select-
ing from ASN partners); SLA
re-negotiation; re-composition
by ad-hoc changes of process
control/data; re-composition by se-
lecting predefined process variants;
compensation; trigger evolution

Wine Fully dynamic and unre-
liable services, fully au-
tonomous SBA

degrade of service (sen-
sor) QoS

Abstraction-based
adaptation

Re-composition of services (to op-
timize resource utility function),
domain-specific actions (e.g., data
transfer frequency changes)

Mobile user Strong dependency from
context and goals of users

context changes, changes
of user activities

Abstraction-based (for
context changes), dy-
namic

service substitution (by dynamic
discovery); re-composition.

to the changes that affect the whole SBA (e.g., changes in business context). In the for-
mer case, it is possible to apply built-in adaptation and define the reactions at design-
time by completely describing the corresponding strategy (compensation activities, pro-
cess variants for different customers) or its parameters (for SLA re-negotiation, for
service substitution). In the latter case, the specific adaptation strategy is chosen at
run-time as the effect of changes on the system is not known. In the business settings,
such a choice can hardly be automated; the business requirements and decisions re-
quire human involvement. In particular, business analysts make decisions on triggering
evolution and/or on how the running process instances should be changed (i.e., ad-hoc
process modifications).

Wine production scenario. In this scenario the dynamically changing state of the
WSAN network requires continuous monitoring and optimization of the resource us-
age. For this purpose, the adaptation should (i) re-arrange the sensor network in order
to minimize the sensor energy consumption, and (ii) optimize the modes, in which the
sensors operate, e.g., by optimizing the data transfer frequency. While the latter solu-
tion requires domain-specific realization mechanisms, the former may be achieved by
dynamic re-composition of services to minimize of the utility function corresponding
to the energy consumption (see, e.g., [20]).

Mobile user application scenario. In this scenario the SBA should adapt (i) to the
changes in its context, including also the context of the user (e.g., changing location
and time, different user settings), and (ii) to the changes in the user activities and plans.
The former may be very dynamic: different services may apply for different locations or
user settings. Abstraction-based adaptation is indeed required in this case: the abstract
activities (e.g., buy a ticket for local transportation) are defined at design-time and made
concrete at run-time using service concretization techniques (e.g., buy a ticket using on-
line service of Milan public transport company). This requires appropriate description
of the abstract activities as well as the services, e.g., using Semantic Web languages.
Besides, it is necessary to take into account that the services may have different proto-

14

cols, or fulfill certain activity only partially: automated composition mechanisms may
be applied in this case.

To deal with the changes in user activities and plans, it is necessary to understand
the impact of those changes on the current processes and state of the SBA (i.e., per-
form dynamic adaptation). Depending on the outcome, different adaptations may apply
(e.g., compensate or re-compose some tasks, fail). Differently from automotive scenario
where the business analysts are high-level domain experts, these decisions can not be
delegated to the mobile user, as they may have no expertise on the low-level technical
details of the SBA. Therefore, it is necessary to design such decision mechanisms that
at run-time may reason on the specific situation in order to reveal an appropriate strat-
egy and its parameters (e.g., to decide whether re-composition may be done, to derive
concrete composition goal and the corresponding composition, etc.). In [9], in particu-
lar, such decision mechanism relies on the analysis of personal information of the user
(e.g., context, agenda, tickets and reservations, etc.).

8 Conclusions

This paper proposes a design method for SBAs that targets the adaptation requirements
of those applications and aims at overcoming the fragmentation in current approaches
for SBA adaptation. The approach is based on a novel life-cycle that considers adap-
tation as a first class concern and that covers the different facets of adaptation, both
during the design phase and at run-time. After describing this life-cycle, the paper digs
into the problem of design for adaptation, i.e., of identifying the design principles that
are suitable to enable adaptation; in particular, different adaptation approaches — built-
in, abstraction-based, dynamic — are identified and their links with adaptation triggers
and adaptation strategies are analyzed.

Admittedly, this paper is just a first step towards our ultimate goal of defining a
holistic design method for adaptable SBAs. Still, the effectiveness of such principles
and guidelines is witnessed by their capability to capture the key aspects of adaptation
in the different, heterogeneous real-world scenarios considered in this paper.

Our future roadmap includes a refinement of guidelines and principles presented in
this paper, their formalization into patterns, and the definition of more precise criteria
to decide on the patterns that are most appropriate for a given adaptation need. We also
intend to work on the development of mechanisms and tools supporting the methodol-
ogy, building on top of the actions and artifacts identified in Figure 2. Finally, we intend
to work on a stronger empirical evaluation of the proposed methodology, by applying it
to the real-world scenarios we already exploited in this paper.

Acknowledgements

The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

15

References

1. L. Baresi, S. Guinea, and L. Pasquale. Self-healing bpel processes with dynamo and the jboss
rule engine. In ESSPE ’07: International workshop on Engineering of software services for
pervasive environments, pages 11–20, New York, NY, USA, 2007. ACM.

2. G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for qos-aware ser-
vice composition based on genetic algorithms. In H.-G. Beyer and U.-M. O’Reilly, editors,
GECCO, pages 1069–1075. ACM, 2005.

3. M. Colombo, E. D. Nitto, and M. Mauri. Scene: A service composition execution envi-
ronment supporting dynamic changes disciplined through rules. In ICSOC, pages 191–202,
2006.

4. A. Erradi, P. Maheshwari, and V. Tosic. Policy-driven middleware for self-adaptation of
web services compositions. In Middleware ’06: Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, pages 62–80, New York, NY, USA, 2006.
Springer-Verlag New York, Inc.

5. A. Hallerbach, T. Bauer, and M. Reichert. Managing Process Variants in the Process Lifecy-
cle. In 10th Int’l Conf. on Enterprise Information Systems (ICEIS’08), 2008.

6. Hewlett-Packard Development Company, http://h71028.www7.hp.com/enterprise/cache/484275-
0-0-225-12 1.html. SOA Governance.

7. O. Is. International Standard - ISO/IEC 14764 IEEE Std 14764-2006. pages 1–46, 2006.
8. D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and A. P. Buchmann. Extending

bpel for run time adaptability. In EDOC, pages 15–26, 2005.
9. R. Kazhamiakin, P. Bertoli, M. Paolucci, M. Pistore, and M. Wagner. Having Services “Your-

Way!”: Towards User-Centric Composition of Mobile Services. In Future Internet Sympo-
sium, 2008.

10. W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati. An Aspect-Oriented Frame-
work for Service Adaptation. In International Conference on Service Oriented Computing.
Springer-Verlag, December 2006.

11. D. Linner, H. Pfeffer, I. Radusch, and S. Steglich. Biology as inspiration towards a novel
service life-cycle. In ATC, pages 94–102, 2007.

12. S. Microsystems. Soa rq methodology. www.sun.com/products/soa/soa methodology.pdf.
13. K. Mittal. Service oriented unified process. http://www.kunalmittal.com/html/soup.html.
14. H. Pfeffer, D. Linner, and S. Steglich. Dynamic adaptation of workflow based service com-

positions. In ICIC ’08: Proceedings of the 4th international conference on Intelligent Com-
puting, pages 763–774, Berlin, Heidelberg, 2008. Springer-Verlag.

15. E. Rukzio, S. Siorpaes, O. Falke, and H. Hussmann. Policy based adaptive services for
mobile commerce.

16. G. Spanoudakis, A. Zisman, and A. Kozlenkov. A service discovery framework for service
centric systems. Services Computing, IEEE International Conference on, 1:251–259, 2005.

17. M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Barbon, P. Bertoli, and
P. Traverso. Astro: Supporting composition and execution of web services. In ICSOC, pages
495–501, 2005.

18. K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu. The meteor-s approach for
configuring and executing dynamic web processes. Technical report, University of Georgia,
Athens, June 2005.

19. K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu. The METEOR-S Approach
for Configuring and Executing Dynamic Web Processes. In Technical report, 2005.

20. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven web
services composition. In WWW ’03: Proceedings of the 12th international conference on
World Wide Web, pages 411–421, New York, NY, USA, 2003. ACM.

Using a Lifecycle Model for Developing and Executing

Adaptable Interactive Distributed Applications

D. Meiländer
1
, S. Gorlatch

1
, C. Cappiello

2
, V. Mazza

2
, R. Kazhamiakin

3
,

and A. Bucchiarone
3

1 University of Muenster (Germany), 2 Politecnico di Milano (Italy),

3 Fondazione Bruno Kessler (Italy)

Abstract. We describe a case study on using the generic Lifecycle Model

developed in the S-Cube project for a novel class of Real-time Online

Interactive Applications (ROIA), which include distributed simulations (e.g.

massively-multiplayer online games), e-learning and training. We describe how

the Lifecycle Model supports application development by addressing the

specific challenges of ROIA: a large number of concurrent users connected to a

single application instance, frequent real-time user interactions, enforcement of

Quality of Service (QoS) parameters, adaptivity to changing loads, and

competition-oriented interaction between users, other actors, and services. We

describe the implementation aspects of the application development and

adaptation using the RTF (Real-Time Framework) middleware, and report

experimental results for a sample online game application.

Keywords: Service-Oriented Architecture, Service Engineering, Real-Time

Online Interactive Applications, Adaptation, Real-Time Framework (RTF)

1 Introduction

Service-oriented applications are developed for constantly changing environments

with the expectation that they will evolve over time. Several service-oriented system

engineering (SOSE) methodologies have been proposed aiming at providing methods

and (sometimes) tools for researchers and practitioners to engineer service-oriented

systems. SOSE methodologies are more complex than traditional software

engineering (TSE) methodologies: the additional complexity results mainly from open

world assumptions, co-existence of many stakeholders with conflicting requirements

and the demand for adaptable systems. A number of service lifecycle models have

been proposed by both industry and academia. However, none of the proposed models

has either reached a sufficient level of maturity or been able to fully express the

aspects peculiar to SOSE. The S-Cube project [1] combines existing techniques and

methodologies from TSE and SOSE to improve the process through which service

based applications will be developed.

This paper describes an industrial-strength case study for the S-Cube Lifecycle

Model in the emerging and challenging area of Real-time Online Interactive

Applications (ROIA) which include such popular and socially important applications

as multi-player online computer games, high-performance simulations, e-learning,

etc. ROIA pose several new challenges: thousands of users connect simultaneously to

one application instance and frequently interact with each other, system must adapt to

changing loads, maintaining QoS requirements, etc. Within the European

edutain@grid project [2], a service-oriented architecture including a novel RTF (Real-

Time Framework) middleware was implemented which focuses on the main

challenges of ROIA.

The paper studies how the application of the S-Cube Lifecycle Model to the

applications on top of the edutain@grid architecture enables the designer to identify

suitable adaptation mechanisms and design patterns for the challenging area of ROIA.

We briefly introduce the S-Cube Lifecycle Model for SOSE in Section 2, followed

by a description of the edutain@grid architecture and RTF in Section 3. We describe

the application of the Lifecycle Model on the case study scenario from edutain@grid

in Section 4 and report experimental results of a sample ROIA application based on

RTF in Section 5. Related work is finally discussed in Section 6.

2 The Lifecycle Model for Service-Oriented Applications

The S-Cube Lifecycle Model for adaptable Service Based Applications (SBAs) (see

Figure 1) comprises two main cycles: (i) a design-time iteration cycle that leads to the

explicit re-design of the application in order to adapt it to new needs (i.e., evolution),

and (ii) an adaptation cycle at runtime that is used when the adaptation needs are

addressed on-the-fly. The two cycles coexist and support each other during the

lifetime of an application [5].

Figure 1: The S-Cube Lifecycle Model.

The development of an SBA starts with the former cycle that inherits some

common aspects from the traditional software lifecycle but is modified in order to

deal with specific adaptation issues. In case of ROIA, already in the Requirements

Engineering & Design phase it is necessary to identify monitoring and adaptation

requirements and methods to guarantee high update rates.

The Construction phase of an SBA is often performed in the form of a service

composition. The construction can be manual (service integrator defines an

executable process composed of concrete and abstract services), model-driven

(service orchestration models are generated by abstract models) or automated (starting

from service models, the executable SBA is automatically generated). For ROIA, it is

necessary to implement suitable parallelization, adaptation and scalability

mechanisms. Then, after the Deployment and Provisioning phase in which the

application is introduced to customers, the Operation and Management phase relies

on the monitoring activities that use the monitored properties to derive the status of

the application and detect changes in the context or in the system that require

adaptation or evolution. Starting from this phase, ROIA developers can decide to

execute the right-hand side of the lifecycle if an evolution of the application is

required (redesigning the application offline, making it temporarily unavailable to

customers), or otherwise the ROIA is managed online by enacting adaptation actions

at runtime (executing the left-hand side). E.g., an iteration of the evolution cycle may

become necessary if the application is facing new attacking mechanisms by fraudulent

users or in case of changing user requirements, since there may be a need to define

additional sensors and monitors, as well as to change adaptation strategies.

In the adaptation cycle, it is important to define the adaptation needs that can be

caused by: changes in the functional and non-functional aspects (e.g., unreliable

hoster resources cannot preserve QoS requirements) or changes of the context in

which the application is running (e.g., increasing user numbers in the evening hours

creating peak load). In the domain of ROIA, adaptation mechanisms need to be

proactive and transparent to users in order to adapt the application during runtime.

3 A Service-Oriented Architecture for ROIA

In this section, we describe the specific features of Real-time Online Interactive

Applications (ROIA) and express their major design and execution aspects in the

context of the S-Cube Lifecycle Model. ROIA pose many new challenges for SOSE

including: large number of concurrent users connecting to a single application

instance, frequent real-time user interactions, enforcement of precise QoS parameters,

adaptivity to changing loads, and competition-oriented interaction between users and

services.

Within the edutain@grid project, a distributed service-oriented architecture (see

Figure 2) was implemented that is based on the interaction of four actors [10]: (1)

End-user accesses ROIA sessions through graphical clients, typically purchased as a

DVD; (2) Scheduler negotiates on behalf of the end-user appropriate ROIA sessions

based on the QoS requirements (e.g. connection latency); (3) Hoster is an

organisation that provides a computational and network infrastructure for running

ROIA servers; (4) Resource broker provides a mechanism for application Schedulers

and Hosters (and possibly other actors) to find each other in a large-scale environment

and negotiate QoS relationships.

Figure 2: The edutain@grid architecture for ROIA.

The service-oriented edutain@grid architecture encompasses stateful web services,

ontologies, business and accounting models, as well as a flexible and generic

communication API for ROIA. In the following, we use the application area of online

gaming to identify suitable services for the implementation of the adaptation cycle in

the S-Cube Lifecycle Model (Figure 1).

Scheduling Service. The web service-based Scheduler receives from the user QoS

requirements which can be performance-related (e.g., maximum allowed latency,

minimum bandwidth) or application-specific (e.g., game genre, minimum number of

users) and negotiates with existing hosters. The result is a contract, called service

level agreement (SLA), for the interaction of the end-user with the application. The

mapping of users to game servers, as well as the allocation of Hoster resources to

game servers, takes place as a distributed negotiation between the Scheduler and

Hosters. The result is a performance contract that the Scheduler offers to the end-user

and which does not necessarily match the original QoS request. The user can accept

the contract and connect to the proposed session, or reject it.

Runtime Steering Service. During the game session, situations may occur which

affect the performance, such that the negotiated SLAs cannot be maintained. Typical

perturbing factors include external load on shared resources, or overloaded servers

due to an unexpected concentration of users in “hot spots”. The steering component is

a web service which interacts at runtime with the monitoring service of each Hoster

for preserving the negotiated QoS parameters for the duration of the session. A

violation of a QoS parameter triggers appropriate adaptive steering or rescheduling

using the API of the real-time layer. Thereby the Runtime Steering Service

contributes to the “Identify Adaptation Needs” and “Identify Adaptation Strategy”

phases of the adaptation circle of the Lifecycle Model.

Resource Allocation Service. Typically, each Hoster owns a Resource Allocation

service responsible for allocating local resources to the clients. This web service

receives from the Scheduler connection requests formulated in terms of QoS

requirements, such as minimum latency or maximum bandwidth, and returns a

positive answer if it can accomodate them. Online games are characterized by a large

number of users that share the same application instance and interact across different

game servers. The atomic resource allocation units for users are, therefore, no longer

coarse-grain processes, but rather fine-grained threads and memory objects, which are

more sensitive to external perturbations.

Capacity Planning Service. The load of a game session depends heavily on internal

events, e.g. interactions of avatars. Also external events may occur, such as the user

fluctuation over the day or week [9]. Hence, it is crucial for a Hoster to anticipate the

future game load. The Capacity Planning web service predicts future load of Hoster

resources by employing neural networks [10] and thereby contributes to the “Identify

Adaptation Needs” and “Identify Adaptation Strategy” phases of the Lifecycle Model.

The real-time layer of edutain@grid is implemented by the Real-Time Framework

(RTF) [3] that distributes game state calculations among the participating servers.

Instead of using web services and SOAP-encoded communication messages which

are not suitable for fast real-time communication, RTF uses TCP/IP sockets

internally. RTF provides efficient parallelisation and adaptation concepts and

implements suitable monitoring capabilities, which we explain in the following.

Figure 3: Adaptation strategies of RTF via (re)distribution.

Real-Time Adaptation Service. To enable the service scalability to a high number

and density of users, RTF distributes game sessions adaptively, based on several

adaptation strategies illustrated in Figure 3. Zoning [8] distributes the game world into

disjoint zones, each zone being assigned to one server. Instancing uses multiple,

independently processed copies of highly frequented subareas of the game world,

each copy processed by one server: if an avatar moves into one frequented subarea, it

is assigned to one of the available copies. Different copies are not synchronized since

users in disjoint copies cannot interact with each other. Replication [13] assigns

multiple servers to a zone with a high load; the responsibility of computing in that

zone is divided equally among the servers. RTF’s adaptation strategies are used in the

“Enact Adaptation” phase of the Lifecycle Model as explained in Section 4.

Monitoring Service observes the QoS parameters negotiated by the Hoster. Several

monitoring parameters are summarized in profiles which support monitoring of low-

level QoS parameters, as well as of game-related metrics (like entity positions,

messages sent or received, or end-user activity information) crucial for an adequate

game experience of the users. RTF's monitoring services are used by the steering and

capacity planning services.

4 Using the Lifecycle Model for Developing ROIA

In this section, we demonstrate how the Lifecycle Model of Section 2 is applied to

ROIA applications by exploiting the edutain@grid architecture of Section 3. The

lifecycle is based on various adaptation- and monitoring-specific actions and related

design artifacts. The main aspects for designing an adaptive application are: the

application requirements, the adaptation strategies, and the adaptation triggers.

Our analysis of ROIA applications has identified the application requirements

shown in Table 1. Besides the functional and non-functional application requirements

described in Section 3, it is also important to identify the requirements to be

considered for the design of adaptation actions. In the case of ROIA, the mechanisms

for monitoring and adaptation should be non-intrusive, i.e., take place in parallel with

the application execution, and users not aware of changes inside the application. Since

the considered system must guarantee the QoS requirements, proactive adaptation

should be supported in order to prevent QoS violations.

Functional Requirements - Correct execution

Non Functional Requirements

Client related requirements

- Short response time (< 100 ms)
- Frequent interactions between users

Game session-related requirements

- Resources use for a variable # of users
- Suitable parallelization concepts
- High number of concurrent users in a single

application instance
- High update rate (5-100 updates/s)

Adaptation Requirements

- Transparency of the adaptation
- Instance-specific adaptation during runtime
- Need for proactive adaptation
- Autonomy (self-adaptability)
- Efficiency of adaptation actions

Table 1: Application requirements for ROIA.

The application requirements drive the selection of the adaptation strategies.

According to the Lifecycle Model, we identify the following five adaptation strategies

for ROIA applications on top of the edutain@grid architecture:

(1) User migration: users are migrated transparently from an overloaded server to

an underutilized server which is replicating the same zone.

(2) Zoning: new zones are added during runtime and assigned to additional game

servers. Zoning provides the best scalability of all adaptation strategies, but is not

transparent to users (since the geography of the virtual world is changed), so it is

generally used for high numbers of users that cannot participate otherwise.

(3) Replication: new game servers are added transparently during runtime in order

to increase computation power for highly frequented zones. When replicating a zone,

a number of users are migrated to the replica and initiate workload redistribution.

However, replication implies an additional inter-server communication and thus, its

scalability is limited. To address the demand for autonomic and self-adaptable

applications, the number of active replicas for a particular zone is monitored to decide

whether activating additional replicas is feasible.

(4) Instancing: creates a copy of a zone which is processed by a different server

than the original zone. Since users in different copies of the same zone cannot interact

with each other, replication is generally preferred to instancing in order to support

high interactivity between users. However, instancing as an adaptation strategy is

useful if the overhead of replication would be too high.

(5) QoS negotiation with several distributed hosters which includes (i) adaptation

of existing contracts, or (ii) negotiation of contracts with new hosters. Typical

scenarios include the usage of stronger resources of the same hoster (QoS adaptation)

or leasing cheaper resources from a new hoster. QoS adaptation can be an alternative

to replication by allocating more powerful resources to serve more users. Since QoS

adaptation needs a longer time, replication and instancing provide better scalability,

but QoS adaptation can be used to overcome small peaks in resource shortage.

For designing adaptable SBAs, adaptation strategies must be related to adaptation

triggers. Adaptation triggers and suitable trigger rules are defined considering all

scenarios at runtime in which application requirements may be violated. For ROIA,

adaptation triggers are related to changes in Service Quality, in the computational

context and in users’ requirements, unexpected increment of the users’ accesses, and

specific users’ needs. In the edutain@grid architecture, proactive adaptation is

planned on the basis of predicted values from the capacity planning service. For

example, load balancing may anticipate increasing user numbers in the evening hours

and request appropriate resources. Then, the adaptation trigger (predicted increase in

user numbers) is related to the change in the context (i.e., time period).

Adaptation triggers provide to the application designers the variables to be

monitored at runtime and thereby drive the design of the monitoring mechanism. In

ROIA, monitored properties include CPU/memory load on hoster resources, the

number of concurrent users in an application instance, bandwidth capacity etc.

By considering the application requirements and the adaptation strategies, we

distinguish the following scenarios for triggering adaptation in ROIA applications:

(1) Change in Quality of Service: QoS violations which were not expected and

predicted, e.g., caused by unreliable hoster resources. In this scenario, user migration,

replication or instancing is used for adaptation in order to overcome performance

bottlenecks. We decide which of the three adaptation mechanisms to use depending

on the amount of free resources and number of active replicas: in order to minimize

costs for the application provider, migrating users to underloaded resources is

preferred if the additional load can be compensated by running resources; otherwise

replication is preferred to instancing in order to support a high level of interactivity

between users; if activating additional replicas implies too high communication

overhead, instancing is used.

(2) Change in computational context: a change in the costs of calculating the

application state, e.g., caused by increasingly or decreasingly frequent interactions

between users. To prevent QoS violations, one of the adaptation strategies is used:

user migration, replication or instancing (depending on free resources and number of

replicas).

(3) Change in business context: a change in user preferences which was not

predicted in advance, e.g., many new users connecting to the application. In this

scenario, user migration, replication or instancing (depending on the amount of free

resources and number of replicas) are used for adaptation.

(4) Prediction results: The capacity planning service gathers information about the

users’ preferences and triggers adaptation proactively and autonomously. Depending

on the predicted number of additional users, either QoS negotiation, replication or

adding new zones at runtime are used for adaptation since predicted adaptations can

be planned ahead. If the maximum number of replicas is already reached, then

instancing can be chosen.

Table 2 shows how the described adaptation triggers and adaptation strategies are

linked together, and provides examples for trigger rules and monitored values:

Adaptation

Trigger
Monitored variable

Adaptation
Trigger rule

Adaptation
Strategy

Change in
Quality of
Service

response time, throughput,
resource usage, average packet
loss, connection latency, update
rate, service availability

update rate < 25
updates/s

user migration,
replication or
instancing

Change in
comput.
context

CPU and memory load,
incoming/outgoing bandwidth

CPU load > 90%
user migration,
replication or
instancing

Change in
business
context

number of concurrent users,
number of requests per
application

number of
concurrent users >
Σ user capability
of application
servers

user migration,
replication or
instancing

Prediction
values from
capacity
planning
service

number of users/hour,
number of requests per
application

predicted users >
current users + △
(threshold)

QoS negotiation,
replication or
instancing/zoning

Table 2: Relationship between Adaptation Triggers and Adaptation Strategies.

We observe that for each adaptation trigger, various adaptation strategies may be

suitable. A ROIA application is realized in the Construction phase of the Lifecycle

Model in order to include all the monitoring features and technical infrastructure

needed for proactive adaptation. The design patterns and distribution concepts offered

by RTF support developers designing and implementing efficient ROIA; application

development on top of RTF was described in [18]. The need for proactive adaptation

has a strong impact on the design and realization of the monitoring mechanisms.

Since ROIA applications are very dynamic, not all failures/critical situations can be

identified at design time. Therefore, there is a need to continuously update the

knowledge about the behavior of the system.

After the construction phase, the application is deployed, i.e. it is ready to be

executed and managed. During the Operation and Management phase, the application

is running and all the previously designed adaptation triggers are monitored to detect

changes in the context or in the system that could require adaptation or evolution.

Starting from this phase, the application is managed online by enacting adaptation

actions during runtime; if evolution is required, the right-hand side of the lifecycle is

executed again conforming to the specific implementation issues for ROIA.

5 State of Implementation and Experimental Results

In order to test the effectiveness of system design using the Lifecycle Model, we

perform some experiments with the central part of the edutain@grid architecture,

responsible for real-time services for ROIA. In particular, we study the suitability of

the zoning and replication adaptation strategies for ROIA. We have implemented the

Real-Time Framework (RTF) [18] as a C++ based library, since C++ is currently the

language of choice for ROIA applications in industry. Using RTF as a development

framework and runtime middleware, we developed several applications, some of them

jointly with industrial partners, from three areas: online computer games [16],

e-learning systems [11], and crowd simulation [19]. We use one such application for

our experiments.

Fig 4: Screenshot of RTFDemo

(avatars managed by different

servers have different colours).

Figure 5: CPU load for zoning adaptation.

The RTFDemo application is an industrial-strength, fast-paced online game that

takes place in a zoned 3D world and is built on top of RTF. RTFDemo is a

Figure 6: CPU load for replication adaptation.

representative of the first-person shooter game category, the most demanding class of

online games requiring a very high state update rate, interactivity and frequent

message exchange. A user participates in RTFDemo by controlling a robot avatar in a

3D virtual world and interacting with avatars controlled by other users. The

characteristics of RTFDemo correspond to a modern commercial online game: the

game state is updated 25 times per second, both seamless migration between different

zones and interactions across zone borders are supported. Fig 4 shows a screenshot of

the RTFDemo game.

We conducted experiments that test the zoning and replication adaptation strategies

implemented in RTFDemo. We use a pool of homogeneous PCs with 2.66 GHz,

CoreDuo 2 CPUs, and 4 GB RAM in a LAN. A static setup of zones and servers was

started with multiple computer-controlled clients (bots) that continuously sent inputs

to their servers. The average CPU utilization was measured on the servers as the

metric to be evaluated. Clients were allowed to move between zones and thereby

generate higher load on some of the servers.

In the experiments with

adaptation by zoning, each

zone was assigned to a

different server. Figure 5

shows the measured number

of players that were able to

participate fluently in the

game for one, two and four

zones, respectively. We

observe that the zoning

adaptation scales almost

linearly.

Our second set of

experiments aims at the

replication adaptation

strategy: we replicate the

computation of a single zone

on up to four servers. Figure 6

shows the measured results for the CPU load. One server is able to serve up to 450

clients at a CPU load of 120% (each core has a load below 100%), which is similar to

the results of zoning. But if more servers are added to the processing of a large zone,

the client numbers can be increased from the previous limit of 450 clients to up to

1000 clients in a four-server setup. This shows that the replication adaptation strategy

allows games to provide a higher level of interactivity.

6 Related Work

Initial SOSE methodologies directly derived from traditional software engineering

(TSE) methodologies, but over time, the need for dealing with new challenges led to

the development of specific approaches (e.g., [5],[14],[15]).

Several approaches (e.g., [4],[6]) deal with the design and realization of service-

based applications. Most of them are not flexible since they base the execution of

service-based applications on static rules that trigger the execution of a pre-defined

adaptation action only when some specific and known events happen. In fact,

applications could address adaptation issues by using built-in adaptation or dynamic

adaptation, but it is suitable when all the adaptation configurations are known at

priori. In such kind of applications, specification is performed by extending standard

notations or using ECA-like rules [7] or aspect-oriented approaches [12]. The main

disadvantage of such adaptation approach is the impossibility to react to unforeseen

events. This paper studies challenging cases in which the adaptation needs are

dynamic and not all the system characteristics are known a priori, i.e. the adaptation

actions cannot be completely defined at design time. Some approaches address this

issue by proposing an abstraction-based adaptation through which at design time, the

adaptation strategies are defined while the concrete mechanism is defined only at run-

time. For example, in [17] the design of the application is based on the abstract

definition of service. Only at run-time the services are effectively selected on the

basis of the situation and context in which the execution is required. The S-cube

lifecycle enables both the built-in and the abstraction adaptation, but it also addresses

the dynamic adaptation, for which it is possible to provide mechanisms that select and

instantiate adaptation strategies depending on a specific trigger and situation [5].

7 Conclusions and Future Work

The main contribution of this paper is the industrial-strength case study in which we

applied the generic Lifecycle Model for developing adaptive service-based

applications to the novel, emerging class of ROIA (Real-Time Interactive

Applications). We demonstrated how the specific, challenging features of ROIA can

be met during the evolution and the adaptation cycles of the application development.

In particular, we identified the adaptation triggers and adaptation strategies that help

to develop high-quality, scalable ROIA applications. We show the effetiveness of the

proposed lifecycle for ROIA applications in which proactive adaptation is mandatory.

Our experimental results confirm the feasibility of applying the S-Cube Lifecycle

Model and identified adaptation mechanisms to developing demanding applications.

In addition to the RTFDemo game described in the paper, we have implemented

several industrial applications using RTF: a multi-server port of the commercial

action game Quake 3 [16], the 3D game Hunter developed by the game company

Darkworks, and the remote e-learning framework edutain@grid Virtual Classroom

[11] developed by the environmental consulting company BMT Cordah Ltd.

Our future work will include implementing the adaptation triggers identified in

Section 4, developing design patterns for the described adaptation scenarios, as well

as further joint experiments with industrial partners. The adaptation capabilities of our

system can be naturally complemented by the advantages of Cloud Computing

offering virtually instantly available, pay-per-use compute resources. We plan to

further enhance our system in order to provide ROIA on Clouds.

References

[1] The S-Cube project, http://www.s-cube-network.eu/, 2010.

[2] The edutain@grid project, http://www.edutaingrid.eu, 2009.

[3] The Real-Time Framework (RTF), http://pvs.uni-muenster.de, 2010.

[4] L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL processes with Dynamo and the

JBoss rule engine. In ESSPE ’07: International workshop on Engineering of software

services for pervasive environments, 2007.

[5] A. Bucchiarone, C. Cappiello, E. Di Nitto, R. Kazhamiakin, V. Mazza and M. Pistore,

Design for Adaptation of Service-Based Applications: Main Issues and Requirements. In

Proc. of the Fifth International Workshop on Engineering Service-Oriented Applications:

Supporting Software Service Development Lifecycles (WESOA), 2009.

[6] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach for QoS-aware

service composition based on genetic algorithms. In GECCO ’05: Proc. of the 2005

conference on Genetic and evolutionary computation, 2005.

[7] M. Colombo, E. Di Nitto, and M. Mauri. Scene: A service composition execution

environment supporting dynamic changes disciplined through rules. In ICSOC, 2006.

[8] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee. A scalable architecture for supporting

interactive games on the internet. In 16th Workshop on Parallel and Distributed

Simulation, pages 60-67, Washington, DC, USA, 2002. IEEE Computer Society.

[9] W.-C. Feng, D. Brandt, and D. Saha. A long-term study of a popular MMORPG. In

NetGames’07, ACM Press., 2007.

[10] S. Gorlatch, F. Glinka, A. Ploss, J. Müller-Iden, R. Prodan, V. Nae, and T. Fahringer.

Enhancing Grids for Massively Multiplayer Online Computer Games. In Euro-Par 2008 -

Parallel Processing, volume 5168 of Lecture Notes in Computer Science, 2008.

[11] S. Gorlatch, F. Glinka, H. Roreger, and C. Rawlings, Distributed e-Learning using the RTF

middleware. In Proc. of the 2nd Annual Forum on e-Learning Excellence, 2009.

[12] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati. An Aspect-Oriented

Framework for Service Adaptation. In ICSOC’06. Springer-Verlag, December 2006.

[13] J. Müller-Iden and S. Gorlatch. Rokkatan: Scaling an RTS game design to the massively

multiplayer realm. In Computers in Entertainment, 4(3):11, 2006.

[14] M. P. Papazoglou, and W. J. Van Den Heuvel. Service-oriented design and development

methodology. In International Journal of Web Engineering and Technology, 2(4):412-442,

2006.

[15] B. Pernici. Methodologies for Design of Service-Based Systems. In International

Perspective of information Systems Engineering, edited by S. Nurcan, C. Senesi, C.

Souveyet, J. Ralyté. Springer, 2010.

[16] A. Ploss, S. Wichmann, F. Glinka, and S. Gorlatch, From a Single- to Multi-Server Online

Game: A Quake 3 Case Study Using RTF. In ACE’08: Proccedings of the 2008 Int.

Conference on Advances in Computer Entertainment Technology, 2008.

[17] K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu. The METEOR-S Approach

for Configuring and Executing Dynamic Web Processes. In Technical report, 2005.

[18] F. Glinka, A. Ploss, S. Gorlatch, J. Müller-Iden. High-Level Development of Multiserver

Online Games. In Int. Journal of Computer Games Technology, 2008(5):1-16, 2008.

[19] O. Scharf, S. Gorlatch, F. Blanke, C. Hemker, S. Westerheide, T. Priebs, C. Bartenhagen,

A. Ploss, F. Glinka, and D. Meiländer. Scalable Distributed Simulation of Large Dense

Crowds Using the Real-Time Framework (RTF). In Euro-Par 2010 - Parallel Processing,

volume 6271 of Lecture Notes in Computer Science, 2010.

	ANNEX.pdf
	1
	2
	3

