
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

File name: JRA 118 v1.04.doc

Title: Validated SBA engineering principles exploiting HCI and contextual
knowledge

Authors: Tilburg, CITY, FBK, Lero, POLIMI, TUW, USTUTT, VUA

Editor: A. Kounkou and N. Maiden (CITY)

Reviewers: Fabrizio Silvestri (CNR)

 Dominik Meil (Munster)

Identifier: Deliverable # CD-JRA-1.1.8

Type: Deliverable

Version: 1.0

Date: 29/02/2012

Status: Final

Class: External

Management Summary

In this deliverable, we present research performed in the last year on SBA engineering principles
exploiting human-computer interaction and contextual knowledge; the work reported here builds upon
and consolidates previous work based on validation results. Some of the presented contributions use and
validate the S-Cube lifecycle model in the context of cloud computing. Other contributions focus on
service-based application adaptation and evolution through context modelling or a change management
methodology. Further contributions focus on practices and challenges of service-oriented architecture
migration in industry and contrast it with academic practices. Finally, some research contributions
investigate challenges in global software development and the related opportunities and relationship that
exist with service-oriented architectures.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 2

Members of the S-CUBE consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-CUBE documents
All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL: http://www.s-
cube-network.eu/results/deliverables/

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 3

The S-CUBE Deliverable Series

Vision and Objectives of S-CUBE

 The Software Services and Systems Network (S-Cube) will establish a unified,
multidisciplinary, vibrant research community which will enable Europe to lead the software-
services revolution, helping shape the software-service based Internet which is the backbone
of our future interactive society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific
excellence in a field that is critical for European competitiveness. S-Cube will accomplish its
aims by meeting the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players
from diverse research areas and by synthesizing and integrating diversified
knowledge, thereby establishing a long-lasting foundation for steering research and for
achieving innovation at the highest level.

• Inaugurating a Europe-wide common program of education and training for
researchers and industry thereby creating a common culture that will have a profound
impact on the future of the field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby
fostering the integration of research communities and the establishment of a common
software services research culture.

• Establishing trust relationships with industry via European Technology Platforms
(specifically NESSI) to achieve a catalytic effect in shaping European research,
strengthening industrial competitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service
based Internet of the future and will accelerate economic growth and improve the
living conditions of European citizens.

S-Cube will produce an integrated research community of international reputation and
acclaim that will help define the future shape of the field of software services which is of
critical for European competitiveness. S-Cube will provide service engineering methodologies
which facilitate the development, deployment and adjustment of sophisticated hybrid service-
based systems that cannot be addressed with today’s limited software engineering approaches.
S-Cube will further introduce an advanced training program for researchers and practitioners.
Finally, S-Cube intends to bring strategic added value to European industry by using industry
best-practice models and by implementing research results into pilot business cases and
prototype systems.

S-CUBE materials are available from URL: http://www.s-cube-network.eu/

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 4

Table of Contents

1  Introduction...7 
1.1  Overview of the deliverable.. 7 
1.2  Relationships with other work packages ... 10 

2  Research contributions...10 
2.1  Exploiting the S-Cube life-cycle .. 10 
2.2  Supporting SBA evolution and adaptation.. 11 
2.3  Supporting global software development .. 14 
2.4  SOA migration in practice ... 19 

3  Conclusions..21 

Appendix A: Using a Lifecycle Model for Developing and Executing Real-Time Online
Applications on Clouds ..23 

Appendix B: Addressing highly dynamic changes in service-oriented systems: Towards agile
evolution and adaptation ...32 

Appendix C: Managing evolving services ...44 

Appendix D: A Variable Context Model for Adaptable Service-Based Applications51 

Appendix F: Going Global with Agile Service Networks ..82 

Appendix G: On the Nature of GSE Organizational Social Structures: an Empirical Study.88 

Appendix H: A Survey of SOA Migration in Industry..99 

Appendix I: The How and Why of SOA Migration in Industry...106 

Appendix J: Exloiting Codified User Task Knowledge to Discover Services..........................119 

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 5

Table of illustrations
Figure 1. ASNs for GSD ..17
Figure 2. OSS types: project team aggregates..18
Figure 3. Research context ...19
Figure 4. Three view Strategy Representation. ..21

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 6

List of acronyms
A&M Adaptation and Monitoring
ASN Agile Service Network
BPEL Business Process Execution Language
BPM Business Process Management
CEP Complex Event Processing
EAI Enterprise Application Integration
GSE Global Software Engineering
GUI Graphical User Interface
KPI Key Performance Indicator
PPM Process Performance Metric
QA Quality Assurance
QoS Quality of Service
ROIA Real-Time Online Interactive Applications
SC Service Composition
SC&C Service Composition and Coordination
SI Service Infrastructure
SLA Service Level Agreement
SN Service Network
SOA Service Oriented Architecture
SOSE Service-Oriented System Engineering
TSE Traditional Software Engineering

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 7

1 Introduction

1.1 Overview of the deliverable
This deliverable reports and summarizes the published joint research publications from JRA-1.1. More
specifically it reports ten papers produced from partner collaborations in JRA1.1 over the last
reporting period. In contrast to the larger numbers of papers reported from this activity in previous
periods that described technical research advances, the papers reported in this deliverable are on
broader themes that will enable the effective exploitation and uptake of the earlier research. Four of
the ten papers report research into the challenges that enterprises face to migrate to service-oriented
technologies and the challenges posed by global software development for service-oriented computing
in this expansion. The remaining six provide principles and foundations for service-oriented
computing, and an application of the S-Cube life-cycle model to cloud computing applied to real-time
interactive applications. The rest of this section reports these new research outcomes in more detail,
and where relevant links them to the JRA1.1 research challenges associated initially reported in
deliverable CD-IA3.1.3.

The deliverable contains three research papers that focus on the relationship between global software
development and service-oriented architectures. In the first, entitled Using the cloud to facilitate
GSD challenges, we report new challenges that global software development poses. With the
expansion of national markets beyond geographical limits, success of any business often depends on
using software for competitive advantage. Furthermore, as technological boundaries are expanding,
projects distributed across different geographical locations have become a norm for the software
solution providers. Nevertheless, when implementing Global Software Development (GSD),
organizations continue to face challenges in adhering to the development life cycle. The advent of the
internet has supported GSD by bringing new concepts and opportunities resulting in benefits such as
scalability, flexibility, independence, reduced cost, resource pools, and usage tracking. It has also
caused the emergence of new challenges in the way software is being delivered to stakeholders.
Application software and data on the cloud is accessed through services which follow SOA (Service
Oriented Architecture) principles. In this paper, we present the challenges encountered in globally
dispersed software projects. Based on goals mutually shared between GSD and the cloud computing
paradigm, we propose to exploit cloud computing characteristics and privileges both as a product and
as a process to improve GSD.

In the second paper, entitled Going global with agile service networks (ASNs), we report that ASNs
are emergent networks of service-based applications (nodes) which collaborate through agile (i.e.
adaptable) transactions. Global software engineering (GSE) comprises the management of project
teams distanced in both space and time, collaborating in the same development effort. The GSE
condition poses challenges that are both technical (e.g. geo-localization of resources, information
continuity between time zones, etc.) and social (e.g. collaboration between different cultures, fear of
competition, etc.). ASNs can be used to support global software engineering and build an adaptable
social network (ASNGSE) supporting the collaborations (edges of ASNGSE) of GSE teams (nodes of
ASNGSE). Agile Service Networks can be used to support Global Software Engineering (GSE). This
work contributes to overcoming the research challenge to support agile service networks with context
modeling. In the third paper, entitled Global software engineering: coordinating organizations or
skills?, we report on organisational challenges related to GSE. We mapped 25 GSE organizational
challenges on results from a systematic literature review of organizational social structures, and found
that the GSE condition creates a social structure in which project teams – which are distanced in both
space and time - are aggregated into a network of practice shaped as a knowledge community of
formal groups. Through this mapping a series of social structure requirements are extracted, and we
found that new requirements concern skills’ retrieval, visibility and shaping. This trend indicates that
governance focus in GSE should be shifted towards skills rather than organizations. We also found
that some organizational challenges are left unmatched. This indicates that further research should be

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 8

invested in constructing an ad-hoc social structure, hybrid of current organizational social structure
types, to match all organizational challenges.

Two related papers report challenges facing the uptake of and migration to service-oriented computing
in industry. Both contribute new S-Cube knowledge to overcome the established research challenge
identification of best practices for SOA migration. In the first, entitled The how and why of SOA
migration in industry, we report that the migration of legacy software to service-based systems is an
increasingly important problem area. So far, many SOA migration approaches have been proposed in
both industry and academia. There are, however, considerable differences between SOA migration
approaches defined in academia and those emerged in industry. This difference pinpoints a potential
gap between theory and practice. To bridge this gap, we conducted an industrial interview survey in
seven leading SOA solution provider companies. Results have been analyzed with respect to migration
activities, the available knowledge assets and the migration process. In addition, industrial approaches
have been contrasted with academic ones, hence discussing differences and promising directions for
industry-relevant research. As a result we found that, in fact, all companies converge to one common
SOA migration approach. This suggests that, with experience, enterprises mature toward a similar
approach to SOA migration. The second paper is entitled A survey of SOA migration in industry. In
industry, enterprises have many software systems to be modernized and made available as added-value
services. The identification of migration strategies and practices for service engineering is critical for
successful legacy migration, and SOA adoption in industrial setting. This paper presents the results of
an interview survey on the migration strategies in industry. The purpose of this paper is two-fold: 1) to
discover the migration strategies that industrial practice adopts, and: 2) to identify the uses of making
such strategies explicit. Results of the survey have been analyzed with respect to migration activities,
the available knowledge assets and the migration process. As a result we found that, in fact, all
companies converge to the same, one, common SOA migration strategy. In addition, the uses of the
strategy pinpoint promising industry- relevant research directions.

In the paper entitled Using a lifecycle model for developing and executing real-time online
applications on clouds, we describe how the generic lifecycle model developed in the S-Cube project
for the design and management of service-based applications (SBA) can be utilized in the context of
cloud computing and Real-Time Online Interactive Applications (ROIA). In particular, we focus on
the fact that the Infrastructure-as-a-Service approach enables the development of ROIA, which include
multi-player online computer games, interactive e-learning and training applications and high-
performance simulations in virtual environments. We illustrate how the lifecycle model expresses the
major design and execution aspects of ROIA on clouds by addressing the specific characteristics of
ROIA: a large number of concurrent users connected to a single application instance, enforcement of
Quality of Service (QoS) parameters, adaptivity to changing loads, and frequent real-time interactions
between users and services. We describe how our novel resource management system RTF-RMS
implements concrete mechanisms that support the developer in designing adaptable ROIA on clouds
according to the different phases of the lifecycle model. Our experimental results demonstrate the
influence of the proposed adaptation mechanisms on the application performance. The paper directly
contributes new S-Cube knowledge to overcome the challenge definition of a coherent life cycle for
adaptable and evolvable SBA and measuring, controlling, evaluating and improving the life cycle and
the related processes.

The final four research papers address services and service-based applications adaptation. In the paper
entitled Managing evolving services, we motivate the need for a methodology to manage changes and
variations so that impacted services in a service chain are appropriately (re-)configured, aligned and
controlled. We outline sources and impact of change for services, review the concept of evolution in
software and services, and hone in on adaptation as a mechanism for addressing service evolution. We
report that due to services’ strongly encapsulated and loosely coupled nature, compatibility and
versioning become important mechanisms for enabling the seamless update of a service without
affecting its existing consumers. However, since such changes are not always possible, we introduce a
change-oriented service lifecycle capable of handling functional (structural and behavioural), non-
functional, policy-induced and operational changes in order to support service developers to consider
the scope and impact of changes and weigh their outcome against the effort and resources required to

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 9

apply them. In the paper entitled Addressing highly dynamic changes in service-oriented systems:
towards agile evolution and adaptation, we set out to introduce relevant foundations concerning
evolution and adaptation of service-oriented systems. The paper starts by sketching the historical
development of software systems from monolithic and mostly static applications to highly-dynamic,
service-oriented systems. Then, it provides an overview and more thorough explanation of the various
kinds of changes that may need to be faced by service-oriented systems. To understand how such
changes could be addressed, the chapter introduces a reference service life-cycle model which
distinguishes between evolution, i.e. the manual modification of the specification and implementation
of the system during design-time, and (self-)adaptation, i.e. the autonomous modification of a service-
oriented system during operation. Based on the discussion of the key activities prescribed by that life-
cycle, the chapter elaborates on the need for agility in both adaptation and evolution of service-
oriented systems. Finally, in the paper entitled A variable context model for adaptable service-
based applications, we present an adaptive approach to context modelling for adaptable SBAs.
Context can be defined as characteristic information that is relevant to the interaction between a user
and an application; it is an important factor for the selection of services and the execution of SBAs that
can adapt to changes in a user’s context and, consequently, changes in their requirements for the
application. A context model enables the identification of context information to be collected and
monitored, but the relevant contextual information may itself vary with the context. To address this,
we propose granular analyses of context data and an approach to context modelling that is adaptive
depending on the current situation. In the paper entitled Exploiting codified user task knowledge to
discover services, we describe at length a mechanism for adapting service discovery to different user
tasks, then report a first evaluation of the mechanism using precision and recall measures. The paper is
a substantial journal extension to a paper first described as part of the year-3 deliverables. The results
revealed that the service discovery algorithm extended with user tasks was more effective than the
original algorithm under certain conditions. Whilst extending service discovery with user task models
improved performance over keyword-based algorithms, it did not increase performance over an
algorithm using sophisticated word sense disambiguation and term expansion algorithms from
information retrieval. This result has implications for the relative cost-effectiveness of using user task
models in service-based application development over other, potentially cheaper approaches.

The remainder of the deliverable is structured as follows. Section 1.2 describes the relationships
between the research presented in this deliverable and other S-Cube work packages. Section 2
describes the research work carried out; table 1 (below) shows the correspondence between its
subsections, corresponding research papers, and their topics. Section 3 concludes the report and relates
the presented contributions to the challenges defined for the work package.

Main topic Paper title

Section

S-Cube life cycle • Using a Lifecycle Model for Developing and Executing
Real-Time Online Applications on Clouds

2.1

Adaptation and
Evolution

• Addressing highly dynamic changes in service-oriented
systems: Towards agile evolution and adaptation

• Managing evolving services
• A Variable Context Model for Adaptable Service-Based

Applications
• Exploiting Codified User Task Knowledge to Discover

Services

2.2

Global software
development

• Using the Cloud to Facilitate Global Software
Development Challenges

• Going Global with Agile Service Networks
• Global software engineering: coordinating organizations

or skills?

2.3

SOA migration • A Survey of SOA Migration in Industry 2.4

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 10

• The How and Why of SOA Migration in Industry
Table 1. Research contributions presented in this deliverable

1.2 Relationships with other work packages
The contributions summarized in this deliverable can be related to research carried out in other S-Cube
work packages as follows:

• The research presented in Section 2.1 relates to IA 3.1 which defines the reference life-cycle;
it further contributes to IA 3.2 which compiles usage scenarios of S-Cube results, and
validates those results, as well as to JRA 1.2 for the adaptation mechanisms presented.

• The research presented in Section 2.2 contributes to JRA 1.2 for the adaptation principles and
mechanisms presented, and to JRA 1.1 for the application of agile methods for the
development of adaptable SBAs.

• The research presented in Section 2.3 contributes to JRA 1.2 as it proposes agile context
awareness strategies for adaptation, and JRA 2.1 as it focuses on supporting business
processes.

• The research presented in Section 2.4 contribute to IA 2.2 as it focuses on European industry
practices.

2 Research contributions

2.1 Exploiting the S-Cube life-cycle

Using a lifecycle model for developing and executing real-time online applications on
clouds
Service-oriented applications are developed for constantly changing environments with the
expectation that they will evolve over time. Several service-oriented system engineering (SOSE)
methodologies have been proposed aiming at providing methods and (sometimes) tools for researchers
and practitioners to engineer service-oriented systems. SOSE methodologies are more complex than
traditional software engineering (TSE) methodologies: the additional complexity results mainly from
open world assumptions, co-existence of many stakeholders with conflicting requirements and the
demand for adaptable systems. A number of service lifecycle models have been proposed by both
industry and academia. However, none of the proposed models has either reached a sufficient level of
maturity or been able to fully express the aspects peculiar to SOSE. Within the S-Cube project a new
Lifecycle Model was designed that combines existing techniques and methodologies from TSE and
SOSE to improve the process through which service-based applications will be developed.

This paper extends our previous work on studying how the S-Cube Lifecycle Model can be applied on
the emerging and challenging domain of Real-Time Online Interactive Applications (ROIA) including
multi-player online games, high-performance simulations, e-learning applications, etc. In particular,
we study how to use server resources economically, which is difficult due to continuously changing
user numbers.

Cloud Computing with its Infrastructure-as-a-Service (IaaS) approach offers new opportunities for
ROIA execution and promises a potentially unlimited scalability by distributing application processing
on an arbitrary number of resources given suitable adaptation mechanisms. Clouds allow for
adding/removing resources on demand. This opens for ROIA an opportunity to serve very high
numbers of users and still comply with QoS demands. Despite a variable number of users, Cloud
resources can be used efficiently if the application supports adding/removing resources during

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 11

runtime. Hence, using Cloud Computing for resource provision and the Lifecycle model for
implementing adaptable ROIA complement each other.

This paper studies how Cloud Computing and the S-Cube Lifecycle Model can be utilized for ROIA
applications. We illustrate how the Lifecycle Model expresses the major design and execution aspects
of ROIA on Clouds and present our novel resource management system RTF-RMS that implements
concrete mechanisms for ROIA development and adaptation according to the Lifecycle. We report
experimental results on the influence of the proposed adaptation mechanisms on the application
performance.

2.2 Supporting SBA evolution and adaptation

Addressing highly dynamic changes in service-oriented systems: towards agile evolution
and adaptation

Modern software technology has enabled us to build software systems with a high degree of
flexibility. The most important development in this direction is the concept of service and the Service-
oriented Architecture (SOA) paradigm. A service-oriented system is built by “composing” software
services (and is thus also called “service composition” or “composed service” in the literature).
Software services achieve the aforementioned high degree of flexibility by separating ownership,
maintenance and operation from the use of the software. Service users do not need to acquire, deploy
and run software, because they can access its functionality from remote through service interfaces.
Ownership, maintenance and operation of the software remains with the service provider. While
service-orientation offers huge benefits in terms of flexibility, service-oriented systems face yet
another level of change and dynamism. Services might disappear or change without the user of the
service having control over such a change. Agility, i.e., the ability to quickly and effectively respond
to changes, will thus play an ever increasing role for future software systems to live in the highly
dynamic “world” as sketched above. Agility can be considered from two view- points:

• First, agility may concern the evolution of the system. This means that it concerns the
development process and how engineering activities (such as requirements engineering and
implementation) should be performed to timely address changes by evolving the software;

• Secondly, agility may concern the adaptation of the system. This means that it concerns the
system itself and how the system should respond to changes. Agility in adaptation is typically
achieved through self- adaptation, i.e., the autonomous modification of a service- oriented
system during operation.

This work sets out to introduce relevant foundations concerning evolution and adaptation of service-
oriented systems. It starts by sketching the historical development of software systems from
monolithic and mostly static applications to highly-dynamic, service-oriented systems. Then, it
provides an overview and more thorough explanation of the various kinds of changes that may need to
be faced by service-oriented systems. To understand how such changes could be addressed, the
chapter introduces a reference service life-cycle model which distinguishes between evolution, viz. the
manual modification of the specification and implementation of the system during design-time, and
(self-)adaptation, viz. the autonomous modification of a service- oriented system during operation.
Based on the discussion of the key activities prescribed by that life-cycle, the chapter elaborates on the
need for agility in both adaptation and evolution of service-oriented systems.

Managing evolving services
Services are subject to constant change and variation, leading to a continuous service re-design and
improvement effort. Service changes originate from different sources such as introducing new

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 12

functionalities to an existing service, modifying the current functionality of a service in order to
improve its performance, or including new regulatory constraints requiring a change of the behavior of
services. Such changes lead to a continuous service re-design and improvement effort. However, they
should not be disruptive by requiring radical modifications in the very fabric of services, or the way
that business is conducted between service providers and consumers.

With the term service evolution we refer to the continuous process of development of a service
through a series of consistent and unambiguous changes. The evolution of services is expressed
through the creation and decommissioning of service versions during their lifetime. These versions
have to be aligned with each other in a non-disruptive manner and in a way that allows a service
designer to track the various modifications and their effects on the service in terms of consistency.
Looking at the effect that service changes have on their consumers in the Service Oriented
Architecture (SOA) paradigm, we can classify them as shallow and deep. Shallow changes are
incremental changes, localized to one service and restricted to the consumers of the service. Such
incremental changes are based on the notion of compatibility between service versions to allow for a
seamless and transparent to the service clients update of the service. Shallow changes therefore require
a robust versioning scheme and an unambiguous definition of compatibility in order to be managed
efficiently. Deep changes, on the other hand, are transformational changes, cascading beyond the
clients of the service and potentially to entire end-to-end service networks. As such, they require a
change-oriented service development methodology that considers the scope, effect, effort and
applicability of such changes in across enterprise environments and throughout entire service chains.

Despite its connections with component evolution, service evolution poses a number of additional
challenges due to the strongly encapsulated and loosely coupled systems (i.e. services) that it deals
with. In this context, service compatibility and versioning become important mechanisms for enabling
the seamless update of a service without affecting its existing consumers. Such changes are not always
possible however. In this case it is required of service developers to consider the scope and impact of
the change and weigh the outcome against the effort and resources required for applying it. A
systematic change-oriented service lifecycle should be used for this purpose. Describing the key
concepts in dealing with evolving services, we provide a sound foundation for a change-oriented
service lifecycle to spread changes in an orderly fashion so that impacted services in a service-chain
are appropriately (re-)configured, aligned and controlled as the changes occur.

A variable context model for adaptable service-based applications
Context is defined as: “any information that can be used to characterize persons, places or objects that
are considered relevant to the interaction between a user and an application, including users and
applications themselves”. Context should be taken into account for service selection. For example, the
service that informs a sailorman about the weather forecasts on a specific route should be very detailed
and focused on the conditions of the sea and of winds, while the service dedicated to a family willing
to decide if to book a trip on the seaside should be focusing on the weather conditions of a specific
place, typically, on a longer time scale.

More generally, service-based applications should be able to adapt the execution flow to address
changes of the execution context. For example, applications have to be flexible in order to satisfy
users’ variable requirements on the basis of the situation (e.g., geographical position, time) in which
users are when they access the application.

A first goal of this paper is to provide a novel context model for adaptable service-based applications
and to point out to its role in the adaptation activities. The context model is the basis for the definition
of triggers enabling adaptation or evolution of service-based applications and enables the identification
of the information that has to be collected and monitored at run-time. We propose an approach to
context modeling which is itself adaptive to the current situation. In fact, the relevant contextual
information might be different in different situations: for instance, the information needed about a
location may be different depending on the location (e.g., a small village vs a large town), or
depending on the user who is interacting with the application (e.g., a user who knows a location well
vs a user who is not familiar at all with the location). In these cases the way the application behaves

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 13

might vary not only according to the context in general, but according to the representation of the
context itself that is variable in the different situations.

Context data are gathered by using different kinds of sensors. An important issue is to understand the
level of granularity at which to collect data. The level of granularity is defined by the amount of
details to catch for representing the significant characteristics of the environment for a given
application. In fact, it is convenient to avoid the collection of unnecessary details of data that are not
suitable to catch changes in the execution context. For example, in case of emergency situations, it is
necessary to collect data values every second in order to have a fine control of the situation, while in
other situations a daily value is enough since a more frequent measure of context data does not provide
any additional relevant information. In location-based applications, in some cases, coarse information
about the location (e.g. a country) may be sufficient, while in other cases it is important also to be
aware of the regional context.

As a result of the previous considerations, another goal of this paper is to address the issue of the
granularity of monitored context data and to propose a way to support adaptation, by analyzing context
data at different granularities and using a proactive approach to establish the adaptation needs and the
dynamic invocation of the services.

Exploiting codified user task knowledge to discover services
This research developed a new software-based algorithm for adapting service discovery to different
user tasks, then reported a first evaluation of the mechanism using precision and recall measures. The
paper is a substantial journal extension to a paper first described as part of the year-3 deliverables. The
results revealed that the service discovery algorithm extended with user tasks was more effective than
the original algorithm under certain conditions. Whilst extending service discovery with user task
models improved performance over keyword-based algorithms, it did not increase performance over
an algorithm using sophisticated word sense disambiguation and term expansion algorithms from
information retrieval. This result has implications for the relative cost-effectiveness of using user task
models in service-based application development over other, potentially cheaper approaches.

In detail we report the development and codification of user task models developing using the
Concurrent Task Trees (CTT) approach and their application to service discovery in one environment
developed to design service-based applications. The user task models were developed at the class-level
(e.g. drive to a destination) to maximize the leverage of each model during service discovery – one
model could potentially be exploited during the design of all service-based applications that instantiate
that task class (e.g. drive from London to Paris via the Channel Tunnel). The codified user task models
were documented in a searchable catalogue, then service queries were generated and fired at a service
repository. An empirical evaluation explored the effect of modifying service queries with codified user
task models on the precision and recall of one service discovery engine.

The algorithm for service discovery based on user task models was trialed against an existing service
discovery algorithm that could be configured to different settings. Evaluation data was to accept or
reject four research hypotheses that informed the experiment. Results revealed that extending rather
than replacing service queries with additional knowledge about user tasks did improve the overall
effectiveness of service discovery. However, the reformulation of service queries with knowledge
about user tasks did not decrease the number of irrelevant services retrieved by the service discovery
engine. We partially accepted the hypothesis that the reformulation of service queries with knowledge
about user tasks would increase the number of relevant services retrieved by a service discovery
engine in some but not all conditions. We also partially accepted the hypothesis that the reformulation
of service queries with knowledge about user tasks would improve the overall correctness of services
retrieved by a service discovery engine, again in some but all conditions. These complex results reveal
that context knowledge about the user task expressed as class-level user task models improved service
discovery, but no more than current other sophisticated service discovery algorithms do. They raise
implications about the overall cost-effectiveness of the role of user task models in service-based
application development and use that are explored in the paper.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 14

2.3 Supporting global software development

Using the cloud to facilitate global software development challenges
The expansion of software and service markets beyond geographical limits has given rise to use of
software for competitive advantage. Furthermore, expanding technological boundaries have changed
the way software and business solutions are developed; the advent of internet for instance has brought
in new methodologies that result in business advantages and reduced costs, but organizations very
often face difficulties due to global distance and the involvement of development teams which are
geographically distributed. Advances in technology and communication channels have made business
organizations to outsource software development operations in multiple geographical locations as the
exchange of information has become more accurate and available. However, outsourcing development
operations to organizations at various outsourcing destinations is not an easy and straightforward task.
While implementing Global Software Development (GSD), software organizations continue to face
challenges in adhering to the development life cycle. It has also caused the emergence of new
challenges in the way software is being developed and delivered to the stakeholders. GSD is software
development incorporating teams spread across the globe in different locations, countries, and even
continents. The business models in low cost countries have provided with capable and cheap work
force to reap the benefits of outsourced and offshore software development. With the emergence of
technologies in a world which has become increasingly globalized, the relationship between culture
and management of remote work has become an unavoidable issue which needs to be addressed.
Because of distance among the software development teams, GSD encounters certain challenges in
terms of collaboration, communication, coordination, culture, management, organizational,
outsourcing, development process, development teams, and tools.

In order to conduct this research, our literature review studied characteristics of services (both SOA
and the cloud). We also identified challenges faced by GSD and held a workshop, attended by all of
the authors of this paper, each of whom has research and/or industrial expertise in GSD and/or SOA.
During this workshop, through interactive discussion and brainstorming, we developed the concepts
presented in this paper. To do this, we summarized the GSD challenges and requirements and
investigated the potential of SOA based cloud services to address these.

Collaboration
Challenges

Issues Negative Impact on
Software Project

Facilitating GSD Using Services (SOA/Cloud
)

Geographic Distance Time
Knowledge
transfer Tools

Communication gaps
Project Delays Ambiguity
on technical aspects
Unequal quality levels
across the software
development sites

Dynamic binding, runtime adaptation, and
timely availability of required services could
help dealing with geographic issues. Also,
availability of SaaS could diminish installation
overheads at each development location.

Cultural Unequal
distribution of
work Lack of
Trust, Fear

Increase in cost Poor skill
management Reporting
problems

Service could maintain a fair distribution of
work between the teams. Only a specific
person will be responsible for the task
assigned to thus skill management would be
easier too.

Linguistics Frequency of
communication
Knowledge
transfer

Loss in project quality
Invisibility on project
development Ineffective
project management

Run time evolution of services can meet with
the linguistic issues. Also, isolation of each
task and related information as a service can
ensure right level of knowledge transfer.

Temporal Lack of
Motivation
Less visibility

Loss in project quality
Poor management of
configuration Chances of

The cloud service models imply that the data
resides on a centralized location where
inventory of services is maintained. Services

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 15

Risk project artifact loss maintain a registry where all of them are
stored. This attribute could be used to store
and retrieve configurations.

Table 2. GSD challenges possibly facilitated by the use of services

We identified different challenges associated with GSD and suggested the likelihood of using the
cloud paradigm to address them. Different GSD development activities were figured out; since
information and data on the cloud is transmitted and shared by means of web services which work on
underlying SOA principle, we take advantage of its benefits like loose coupling, service composition,
and negotiation to facilitate software development practices across multiple development sites in light
of different cloud service models that include IaaS (Infrastructure as a Service), PaaS (Platform as a
Service), and SaaS (Software as a Service) and its characteristics like scalability, performance,
virtualization, and reduced costs .

Virtualization Courtesy of this privilege, cloud providers can enhance their infrastructure to accommodate

in case there is growing demand for services. Usually, a combination of hardware and
software are used on the provider side to meet with the scaling requirements.

Reduced Cost Costs in the cloud do not include server side infrastructure and equipment costs. Moreover,
pay as you go model ensures that subscribers are bound to pay for only those resources
which they use. In short, the distribution costs of software are reduced.

Scalability On-demand provision of application software provides scalability, which results in greater
efficiency. Whereas cloud based application development platforms provide with high level
of scalability thus making the developed application to coup with the fluctuation demands.

Infrastructure Providers’ applications are run on a cloud infrastructure from where a consumer can access
those. Similarly,
consumer-modified information or application can be deployed on the same infrastructure as
well. The privilege is that the consumer does not have to deal with the underlying
infrastructure.

Performance The cloud paradigm can support various levels of performance requirements like service
scaling, response time, and availability of the application based on the needs of the
consumers. In addition indirect performance measures may also be achieved by eliminating
the overheads involved with installation procedures and reduction in unnecessary reduction
among the applications running on the cloud

Multi
Tenancy
Support

Public clouds are elastic in nature as their consumers are not limited. More importantly,
consumers’ workloads are isolated to provide privacy. However, the number of consumers
can be restricted by opting out a specific deployment model.

Table 3. Supporting characteristics of cloud computing for GSD

In addition, we consider an example scenario to understand the GSD collaboration challenges that
could be minimized using the cloud paradigm. We suggest that using a cloud paradigm will result in
GSD benefitting from the cloud’s infrastructure, platform, and provision of software as a service
features. We do not argue that the cloud paradigm can fully serve the purpose but we do believe that,
if designed correctly, GSD can be successfully supported by services. Although the work to date have
already laid some solid foundations, we are embarking on further research to understand whether these
indeed can be of value to both the industrial and research communities.

Going global with agile service networks
A fundamental similarity can be identified between GSE and ASNs. Both stem from business
decisions. Moreover, a crucial complementarity exists between them. On one side, GSE needs
dynamism among nodes (development teams) and their collaboration towards business gain (timely
delivery). On the other, ASNs are supporting dynamic collaborations among nodes which are teaming
up to increase business gain.

Based on these considerations, we argue that GSE challenges can be overcome through an ASN-based
social network (ASNGSE) providing agility of communications and collaborations (edges of
ASNGSE) to globally located IT professionals (nodes of ASNGSE). Global professionals can be

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 16

represented as nodes in an agile (i.e. adaptable and emergent) organizational social network to deliver
the final product, just-in-time and sufficiently-good.

Distances in time and space make it impossible for GSE teams to communicate and coordinate their
effort in an efficient manner. How can ASNs be used to support GSE?

The solution we advocate is an ASN-based social network (ASNGSE). This technology should exhibit
four key characteristics:

1) Agile context awareness. ASNs are able to detect changes in the context and dynamically
support different scenarios as needed. In GSE for instance, round-the-clock productivity could
be supported by dynamically allocating collaborations between teams, by modeling each
developer as a set of skills and allowing for their seamless (re-)allocation based on their
timezone, location and needs. Also, seamless handoff of relevant informations between two
contiguous timezones could be used to ease the coordination of sequential or dependent work
packages.

2) Deployed in the cloud. Cloud computing, has potentials which fit with GSE needs. For
instance, GSE resources rendered available in the cloud allow for rapid resource location and
access on a global scale. Also, communication and information continuity between timezones
may be requested as needed.

3) Satisfying GSE social requirements. GSE teams together create an Organizational Social
Structure (OSS) [3], part of a global corporation. Social interactions in OSSs depend on
personal- or corporate-specific practices, which include work habits, methods, technologies to
support cooperation, etc. In GSE, for instance, supporting social interactions among
developers from different companies and cultures, would require letting them use own tools,
languages and own methods seamlessly. ASNs can help in doing that through adaptable
creation of service compositions or transparent information proxying (i.e. providing seamless
switching between answering nodes in case of difficulty). Another example could be using
ASNs to autonomously try and assemble a common tool workbench for all teams. Lastly, an
ASN to support GSD could compute the work allocation to teams, using (up-to-date and
context-aware information) on project requirements, time constraints, current availability, etc.

4) Project-centric as well as People-centric. Enterprise Social Networking technologies already
exist which could potentially represent (and supporting) the social network of an entire
corporation. What is still missing is the dynamic / automatic adjustment of its granularity, to
support the global software development project (against its changing context) as well as the
people involved (e.g. technicians, developers, managers, etc.). Moreover, none of these
technologies provide flexible and adaptable collaboration channels (e.g. adaptable status-
tracking, always-on reachability of key roles, worldwide project chatter, etc.) among
professionals collaborating in the same GSE effort.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 17

Figure 1. ASNs for GSD

We plan to develop a very initial version of a prototype for the proposed social-networking ASN for
GSE, to initiate industrial action-research validation.

Global software engineering: coordinating organizations or skills?
Global Software Engineering (GSE) and service-oriented development are strongly related even
though this relation has not been recognized yet in the literature.

GSE is a business decision which entails project teams to collaborate globally on the same project, in
different timezones and continents. The need of this collaboration may come from various reasons
ranging from the inherently decentralized organization of many multinational companies to the
opportunity of exploiting some existing skills available in third countries, to the need of tailoring
services to specific local regulations, to the possibility of incorporating existing delocalized services.
The literature on GSE is focusing on addressing the many process and organizational challenges that
arise in this setting and highlights the problems that are introduced by the spatial, temporal and
cultural distances that inevitably occur within the global teams.

While the SBAs literature in most cases disregards the organizational problems and focuses mainly on
technological issues, the development of a SBA where services are owned and operated by third
parties is undoubtedly a GSE issue and, as such, it is appropriate to understand how GSE is declined in
this specific case.

As part of the current work we propose an initial profile of the GSE Organizational Social Structure
(OSS), using empirical data. We conducted a systematic literature review into OSS types and
attributes; in addition, we used a set of 25 organizational challenges stemming from previous action
research in the GSE field. Mapping GSE challenges on OSS types we found that the GSE social
structure is the mix of four types identified in literature, namely: project teams, networks of practice,
knowledge communities and formal groups (see Figure 2).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 18

Figure 2. OSS types: project team aggregates

By analyzing the characteristics of these OSSs and the known challenges for GSE we found out that
while the current literature has deeply investigated the problem of coordination within the global team,
the governance of skills in the global team is still an open research area that requires specific attention
(see Table 4).

Factor Description
Communication the challenge here is in terms of communication. How open it should be? how

should it be enforced or maintained?
Communication
Tools

the challenge here is what tools shold be used. what communication paradigm
should be considered and so on

Temporal Issues the challenge here is how should round-the-clock productivity be maintained?
how should a tool support this maintenance?

Effective
Partitioning

how should work be split and spread across teams in different timezones /
continents?

Skill Management How should the work be spread in terms of skills?
Knowledge Transfer how should knowledge sharing be nurtured?
Defined Roles /
Responsibilities

how should roles and responsibilities be allocated to different engineers /
skills across the project teams?

Team Selection how should members in the teams be selected?
Motivation how should motivation of GSD engineers be monitored and maintained?
Technical Support what kind of technical support tools or specialized engineers should be

deployed to maximize productivity?
Coordination what kind of coordination issues might rise (for the specific project)?
Cooperation what kinds of cooperation practices can be put in place (for the specific

project)?
Culture what kind of cultural practices should be considered / maintained?
Teamness what team building practices should be put in place? how should teamness be

maintained?
Visibility how should visibility of the project be maintained? how should awareness be

kept high?
Trust what trust dynamics should be envisioned? what mechanisms should be put

in place to maintain them?
Fear what social fears might rise (for the specific project)? what kind of fear-

fighting practices should be put in place?
Project Management what tasks should be allotted to management? what should be allotted to local

roles?
Effective
Partitioning

how should work be split and spread across teams in different timezones /
continents?

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 19

Risk Management what risk management policies should be put into practice? what changes in
the context might compromise GSD operativity?

Language how should language difference be mitigated?
Selection tools what tools should be made available to engineers? what should be the full

technical space?
Information what kind of information is to be created / shared / maintained?
True Cost what is the estimated post-mortem cost of the project in any given moment of

time?
Reporting Process what kind of reporting should be procured for the GSD attempt? how should

the software architecture be documented? how should the implementation be
documented? what kind of process should be followed to maximize GSD
effectiveness?

Table 4. 25 organisational factors in GSD

As part of the work we also explored current Enterprise Social Networking (ESNs) tools to see the
extent to which they can be used to enable skills awareness within the global team.

2.4 SOA migration in practice
Service Oriented Architecture (SOA) migration from legacy systems to service-oriented software is
not new. Many methods do exist, originated in both academia and industry. Companies have extensive
experience in both in-house migration of their own legacy information systems to a more agile,
reusable service-oriented paradigm, and consultancy migration to support customer organizations to
port their systems to modern service-oriented technologies, make them available as added-value
services, often with the goal of creating new market opportunities.

Many SOA migration approaches have been developed in both industry and academia. Nevertheless,
we have observed that the industrial approaches are considerably different from the ones originated in
academia. By discussing this observation with practitioners we were suggested that such differences
might pinpoint an undesired gap between theory and practice. It is essential to fill this gap to devise
solutions that fit the goals and problems of industry. This need was further emphasized most recently
in a panel on ``What Industry Wants from Research'' in ICSE 2011. The general consensus among the
panel members was that there is a need to better understand the fundamental problems, goals,
strategies and weaknesses of practice.

Figure 3. Research context

To gain an understanding on industrial migration strategies, we conducted an industrial interview
survey in seven leading SOA solution provider companies. With the objective of understanding the
industrial migration approaches, we designed and executed the interviews. As a result we found that
despite the diversity of participating enterprises, they all converged to the same, one, common SOA
migration strategy: all use similar input knowledge, similar activities, and sequences of activities to
carry out migration. This suggests that with experience enterprises mature toward a similar migration
approach. This would also confirm the SOA migration maturity level of Gartner Hype Cycle as being
in early main stream phase. In addition, and unlike the majority of academic approaches, SOA
migration in industry mostly neglects reverse engineering. Rather, migration follows a forward
engineering process initiated by identifying the ideal state (e.g. ideal business services), which is taken
as a reference to extract and transform legacy elements to services.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 20

The panel of experts following the interview survey investigated the benefits of such overall strategy.
The panel envisioned to use this strategy as a general tool to guide and steer migration projects. We
further elicited a list of extensions to such tool, that would address the recurring problems in industrial
migration, namely identification of the costs and risks of migration projects, and deciding on the best
migration approach to mitigate them. The overall approach with extensions that emerges from the
panel resembles the lean and mean approach of Kruchten, and draws interesting directions for
industry-relevant research.

In addition, we contrasted the industrial approaches with academic ones, which we identified from a
previous Systematic Literature Review (SLR) on SOA migration. Here we use the results of the SLR
to discuss the differences and draw promising directions for industry-relevant research listed below.

Migration approaches fitting activities carried out in industrial approaches. Migration activities that
industrial approaches carry out can act as a frame of mind confining the migration approaches that are
more aligned with practice. From that perspective, one would see that, for instance, the approaches
addressing wrapping the applications as a whole are more in-line with practitioners concerns,
compared to the ones addressing the automatic recovery of the legacy architecture. Hence, this frame
of mind pinpoints the types of industry-relevant research in SOA migration methodologies and
techniques.

To-Be driven migration approaches. Inadequate support for To-Be driven approaches in academia
highlights promising opportunities for research to focus on how to support To-Be driven migration.
For instance, future research can focus on addressing the following challenge of the practitioners: how
to systematically elicit and capture the migration drivers and how to shape the migration process using
those drivers.

Legacy understanding without reverse-engineering. Although reverse engineering is not covered in
industrial migration approaches (see Figure 4), elicitation of the knowledge about the legacy system is
crucial for a successful migration. In this regard, research can benefit practice by providing methods,
techniques, or guidelines that facilitate elicitation of migration-relevant knowledge from different
sources of such knowledge.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 21

Figure 4. Three view Strategy Representation.

Legacy evaluation from multiple perspectives. Companies evaluate and extract the legacy assets for
migration to SOA by depicting their ideal services. This is, however, done in an ad-hoc manner, which
may hinder successful service extraction. An immediate concern calling for further research is how to
systematically evaluate pre-existing legacy assets based on different aspects of the ideal services.

3 Conclusions
The research presented in this deliverable contributes further towards the ultimate fulfillment of JRA-
1.1 challenges outlined in CD-IA-3.1.3 (First version of Integration Framework) and refined in CD-
IA-3.1.5 (Consolidated Revised Integration Framework):

• Definition of a coherent life cycle for adaptable and evolvable SBA and measuring,
controlling, evaluating and improving the life cycle and the related processes. The S-Cube
lifecycle is utilized in Section 2.1 to express key aspects of the engineering of ROIA
applications on clouds, and used as a foundation for the development of new mechanisms for
their development and adaptation. The research presented in Section 2.3 further draws on it by
its focus on software and services development life cycle phases, and on elements of the S-
Cube research framework across JRA-1 and JRA-2 - Engineering and Design and Service
Composition and Coordination. Finally, the research presented in Section 2.2. potentially
extends the lifecycle into a change-oriented service lifecycle for the management of evolving

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 22

services. As such we believe that these new research contributions at least in part plug
previous gaps in our understanding of and prescriptive guidance for delivering a complete life-
cycle for SBAs. Furthermore, given the layered approach used to generate these research
contributions, we believe that the latest research is coherent with previous results because it
builds on them;

• HCI and context aspects in the development of service based applications. The research
presented in Section 2.2, more particularly A variable context model for adaptable service-
based applications, focuses on enhancing the interaction between users and applications
through an improved context modeling and analysis supporting SBA adaptation activities. At
the end of S-Cube the substantial bodies of research in HCI has yet to have a significant
impact on service-oriented computing research and development. The contributions made in
S-Cube represent some of most substantive research in this direction. The attempt to develop a
rigorous model of the large number of context variables represents a sizeable advance in this
direction;

• Identify best practices for SOA migration. The work presented in Section 2.4 contribute to this
research by addressing the gap between theory and practice of SOA migration through an
industry survey and its analysis and contrast against academic practices. The resulting
understanding of current challenges in SOA migration practices will, we believe, lead to
important follow-on applied research and technology transfer activities amongst some of the
S-Cube partners. Furthermore, the SOA migration challenges are now widely recognized as an
impediment to research take-up in the field, and S-Cube has positioned itself as a valuable
source of information, as well as outlet, for example the forthcoming ICSE’2012 tutorial on
the subject;

• Support agile service networks with context modeling. The research presented in Section 2.3
on Going global with agile service networks directly addresses this challenge and lists agile
context awareness as a key characteristic of their proposed ASN-based social network being
prototyped. Clearly there is scope for more research post S-Cube in this direction, and again
the traction and motivation generated by some S-Cube research partners will mean that more
research to address context understanding that enables more agile future service networks will
take place.

To conclude this deliverable builds upon and consolidates research presented in previous JRA 1.1
deliverables. Furthermore, it contributes to cross-package research integration as it relates to work
carried out in other S-Cube work packages. We believe that this research offers the ideal springboard
for future SOA research in important, valuable directions.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 23

Appendices

Appendix A: Using a Lifecycle Model for Developing and Executing Real-
Time Online Applications on Clouds
D. Meiländer, A. Bucchiarone, C. Cappiello, E. Di Nitto, S. Gorlatch

1 Introduction
Service-oriented applications are developed for constantly changing environments with the
expectation that they will evolve over time. Several service-oriented system engineering (SOSE)
methodologies have been proposed aiming at providing methods and (sometimes) tools for researchers
and practitioners to engineer service-oriented systems. SOSE methodologies are more complex than
traditional software engineering (TSE) methodologies: the additional complexity results mainly from
open world assumptions, co-existence of many stakeholders with conflicting requirements and the
demand for adaptable systems. A number of service lifecycle models have been pro- posed by both
industry and academia. However, none of the proposed models has either reached a sufficient level of
maturity or been able to fully express the aspects peculiar to SOSE. Within the S-Cube project [1] a
new Lifecycle Model was designed that combines existing techniques and methodologies from TSE
and SOSE to improve the process through which service-based applications will be developed.

This paper extends our previous work [2] on studying how the S-Cube Lifecycle Model can be applied
on the emerging and challenging domain of Real-Time Online Interactive Applications (ROIA)
including multi-player online games, high-performance simulations, e-learning applications, etc. In
particular, we study how to use server re- sources economically, which is difficult due to continuously
changing user numbers.

Cloud Computing with its Infrastructure-as-a-Service (IaaS) approach offers new opportunities for
ROIA execution and promises a potentially unlimited scalability by distributing application processing
on an arbitrary number of resources given suitable adaptation mechanisms. Clouds allow for
adding/removing resources on demand. This opens for ROIA an opportunity to serve very high
numbers of users and still comply with QoS demands. Despite a variable number of users, Cloud
resources can be used efficiently if the application supports adding/removing resources during
runtime. Hence, using Cloud Computing for resource provision and the Lifecycle model for
implementing adaptable ROIA complement each other.

This paper studies how Cloud Computing and the S-Cube Lifecycle Model can be utilized for ROIA
applications. We illustrate how the Lifecycle Model expresses the major design and execution aspects
of ROIA on Clouds and present our novel resource management system RTF-RMS that implements
concrete mechanisms for ROIA development and adaptation according to the Lifecycle. We report
experimental results on the influence of the proposed adaptation mechanisms on the application
performance.

The paper is structured as follows. We introduce the S-Cube Lifecycle Model in Section 2, followed
by a description of the challenges in ROIA development and execution on Clouds in Section 3.
Section 4 illustrates how the Lifecycle Model is applied for ROIA development on Clouds using RTF-
RMS. Section 5 reports experimental results on the adaptation of a sample ROIA, and Section 6
concludes the paper.

2 Lifecycle Model
Many of the existing development methodologies for service-based applications (SBA) are based on
the results carried out in the fields of classical software and system engineering and do not facilitate
SBA adaptation [3-5]. Some of the reported SBA development approaches such as SOUP (Service

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 24

Oriented Unified Process) [6] or the approach by Linner et al [7] do support some level of adaptation,
however, they lack sufficient process details. Lane and Richardson [8] carried out a systematic
literature review of SBA development approaches, they identified 57 such approaches of which there
were only eight that specifically dealt with adaptation. Only four of these eight approaches target the
adaptation of SBAs, the others target the adaptation of services.

Each of the four approaches shows interesting features, but even those that enable the definition of
various adaptation strategies lack a coherent approach to support de- signers in this complex task.
Moreover, they focus on the implementation process with- out considering what impact adaptation has
on the rest of the development and operational lifecycle [9-11]. Finally, they also tend to focus on
particular types of adaptation, such as adaptation due to requirement violations [12], or service
substitution due to application constraints [13], so it is difficult to elicit generic adaptation
mechanisms from them. In summary, each of these approaches focused on the analysis and design pro-
cesses without consideration for any other development or runtime processes.

The Lifecycle Model proposed in the S-Cube project (see Fig. 1) aims to support the design of
adaptable SBAs [14]. It provides a solid reference [15] for practitioners who are planning to develop
adaptable SBAs since that it has advantages over similar approaches in that it focuses on software
process rather than the specific adaptation mechanism implementation techniques. It highlights not
only the typical design-time iteration cycle, but it also introduces a new iteration cycle that is
performed at runtime when the application needs to be adapted on-the-fly. Both cycles coexist and
support each other during the lifetime of the application. In particular, the design time activities allow
for evolution of the application, i.e., introduction of permanent and, usually, important changes, while
the runtime activities allow for temporary adaptation of the application to a specific situation. At
design time, it is important to analyze functional and non-functional requirements, context and
machine characteristics in order to (i) identify the types of changes that trigger self-adaptation, (ii)
define mechanisms to monitor the environment and the system behavior, and (iii) develop strategies
for self-adaptation.

Fig. 1. Lifecycle for adaptable service-oriented systems.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 25

In the (Early) Requirement Engineering and Design phase, the relevant context dimensions and the
application and system characteristics are considered in order to elicitate adaptation and monitoring
requirements and in particular define the types of changes that trigger self-adaptation. Subsequently,
during the Construction phase, the corresponding monitoring and adaptation mechanisms are
designed, developed and then refined until the Deployment and Provisioning phase. At runtime
(Operation and Management phase), the system is continuously monitored in order to support the
detection of the relevant context and system changes. When changes occur, the system might re- quire
evolution or adaptation interventions. Evolution is performed if the system needs to be redesigned and
thus it requires the reiteration of the described cycle starting from the requirements engineering and
design phase.

In the Identify adaptation need phase, specific situations that demand for adaptation are identified.
Each adaptation need has to be associated with particular Adaptation Strategies that are able to satisfy
the corresponding adaptation requirements. Based on the current situation, the knowledge obtained
from previous executions, and the avail- able adaptation strategies, a reasoner (e.g., a resource
management system) selects the most suitable adaptation strategy that will be performed in the Enact
adaptation phase. Fig. 1 highlights for each phase the various adaptation- and monitoring-specific
actions (boxes) carried out throughout the lifetime of an SBA and the main design artifacts that are
exploited to perform adaptation (hexagons).

3 ROIA Development and Execution on Clouds
In Real-Time Online Interactive Applications (ROIA), there are typically multiple users who
concurrently access a common application state and interact with each other within one virtual
environment. The users access the application from different client machines and control their avatars
that can influence other users’ avatars. Since ROIA have very high performance requirements, the
application state processing is performed on multiple servers: the virtual environment is divided into
disjoint areas (zones) and each server is processing clients inside a particular zone, i.e., the overall
workload of the application is distributed on multiple resources. Hence, ROIA are highly distributed
applications with challenging QoS demands, such as: short response times (about 0.1- 1.5 s), high
update rate of the application (up to 50 Hz), large and frequently changing number of users in a single
application instance (up to 104 simultaneously).

For ROIA, a particular challenge is that the number of users participating in a ROIA session and, thus,
the workload, is often subject to daytime-dependent changes. A negative consequence of this are
expensive up-front investments to build a suitable server pool which is able to handle peak user
numbers but will be underutilized most of the time when the load is below the peak. Hence, dynamic
adaptation of application sessions during runtime is crucial for ROIA.

We address this challenge by using Cloud Computing for resource provision. Cloud Computing allows
to add/remove resources on demand and promises a potentially un- limited scalability by distributing
frequent state computations on an arbitrary number of resources given suitable adaptation
mechanisms. Despite a variable number of users, Cloud resources can be used efficiently if the
application provides suitable adaptation mechanisms. Hence, using Cloud Computing for resource
provision and the Lifecycle Model for implementing adaptable ROIA complement each other.

In order to support ROIA development and adaptation on Clouds, we develop the RTF-RMS resource
management system [16] on top of the Real-Time Framework (RTF) [17]. RTF-RMS implements the
following mechanisms for ROIA development on Clouds:

1. Monitoring of application-specific data, e.g., update rate, number of entities, etc.

2. Distributionhandlingforthedynamicadaptationofapplicationsessionsbyadding/removing Cloud
resources using particular adaptation strategies (described below).

3. Application profiles for implementation of application-specific adaptation triggers.

4. High-level development tools for communication and application state distribution.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 26

4 Using the Lifecycle Model for ROIA development on Clouds
This section describes how RTF-RMS supports the developer in designing adaptable ROIA according
to the different phases of the Lifecycle Model. In [2], we showed how the Lifecycle described in
Section 2 can be applied for ROIA development. In this section, we demonstrate how the Lifecycle
Model is used for ROIA development in Cloud environments by exploiting RTF-RMS.

The design of an adaptive application requires the definition of application and adaptation
requirements, suitable adaptation strategies and adaptation triggers. In the following, we illustrate how
RTF-RMS supports the developer in designing adaptable ROIA in Cloud environments according to
the different phases of the Lifecycle model.

In the “Requirement Engineering” phase, the application developer must identify suitable adaptation
requirements for his application. For ROIA, the mechanisms for monitoring and adaptation should be
non-intrusive, i.e., take place in parallel with the application execution, such that users are not aware
of changes inside the application.

For the “Construction” phase, RTF-RMS provides the developer with a C++ library of high-level
functions for optimized communication handling (client-server and inter- server) and efficient
application state distribution in a multi-server environment. By using RTF-RMS for communication
and distribution handling, monitoring mechanisms are automatically integrated in the application
processing. These monitoring mechanisms are used in the next phase of the Lifecycle to implement
adaptation triggers.

In the “Deployment and Provisioning” phase, trigger rules for each adaptation trigger are defined. We
describe the implementation of adaptation triggers in Section 4.1.

In the “Operation and Management” phase, the application is running and monitoring data are checked
continuously against the trigger rules to detect changes in the context or in the system that could
require adaptation.

In the “Identify adaptation need” phase, RTF-RMS detects a violation of trigger rules which indicates
the demand for adaptation.

In the “Identify adaptation strategy” phase, RTF-RMS analyzes the number of application servers and
their current workload to choose an adaptation strategy. A detailed description of adaptation strategies
provided by RTF-RMS is given in Section 4.2.

In the “Enact adaptation” phase, RTF-RMS enacts the chosen adaptation strategy and changes the
distribution of the application processing accordingly.

It is still possible to consider the application requirements defined in [2]: functional requirements
require the correct execution of the application while non-functional requirements are related to the
management of resources for a high and variable number of users and their frequent interactions. For
adaptation requirements, we identified the demand for transparent, proactive, efficient and
autonomous adaptation.

4.1 Adaptation triggers for ROIA on Clouds
In general, the adaptation is triggered when some changes occurs. Such changes may affect the
component services or the context of the considered application. ROIA require an adaptation when
one of the following changes occurs:

1. Change in Quality of Service: QoS violations may be caused by unreliable Cloud resources. QoS
violations for ROIA may be related to changes in update rate, response time, throughput, resource
usage, packet loss and service availability.

2. Change in computational context: application requirements sometimes change on the basis of
variations of the computational context such as variations of CPU and memory load or
incoming/outgoing bandwidth.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 27

3. Change in business context: it refers to changes in user preferences which were not predicted in
advance, e.g., too many concurrent users connected to the application or the increase of the number of
requests per application.

Listing 1. Excerpt from an example application profile for a fast-paced action game.

RTF-RMS provides a generic mechanism to implement adaptation triggers by specifying an
application profile. In the application profile, developers can specify significant monitoring values for
their particular application, e.g., update rate in Hz, see Listing 1 for an example. For each monitoring
value in the application profile thresholds have to be defined. If a monitoring value exceeds the
addResourceThreshold, a new resource is added to the application processing; if monitoring values
of any application server fall below the removeResourceThreshold dispensable resources are
removed. Applica- tion developers can find suitable values for these thresholds by considering the
runtime behaviour of their application on physical resources and calculating the virtualization
overhead of Cloud resources, or by conducting benchmark experiments in a Cloud.

In order to choose between different adaptation strategies, RTF-RMS creates re- ports for each
application server. A report describes the load of a particular server, e.g., current update rate in Hz. A
zone report is created for each zone by collecting reports from all servers involved in the zone
processing and calculating their average load.

Fig. 2 illustrates an example of choosing adaptation strategies using zone reports. We assigned Server
A to the processing of Zone 1, and Server B and C were assigned to Zone 2. The zone report of Zone 1
identifies an average update rate of 20 Hz. Given an addResourceThreshold of 25 Hz, RTF-RMS
decides to add a new resource to the processing of Zone 1. The zone report of Zone 2 identifies an
average update rate of 60 Hz which is between addResourceThreshold and
removeResourceThreshold, but Server B has an update rate of 20 Hz. Hence, RTF-RMS migrates
users from Server B to Server C to distribute the workload equally on both servers.

Fig. 2. Finding a suitable adaptation strategy using zone reports.

<appProfile >
 <metric>UpdateRate</metric>

<addResourceThreshold>25</addResourceThreshold>
<removeResourceThreshold>100</removeResourceThreshold>

</appProfile >

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 28

Another challenge for the implementation of adaptation triggers on Clouds is the compensation of long
startup time of Cloud resources which may take up to several minutes. In RTF-RMS, multiple requests
for new Cloud resources are sent in parallel to the Cloud API in order to start multiple resources as
quickly as possible. Moreover, RTF- RMS introduces a resource buffer to which a predefined number
of Cloud resources are moved in advance, i.e. before they are demanded by the application. Resources
in the resource buffer are immediately available. If any resource from the resource buffer is integrated
in the application processing, RTF-RMS checks whether new Cloud resources must be started in order
to keep a certain number of resources in the resource buffer. A detailed description of how to choose
the resource buffer size in order to minimize the cost-overhead generated by leasing resources in
advance is provided in [16].

4.2 Adaptation strategies for ROIA on Clouds
The adaptation triggers described in the previous section identify the need for adaptation which is
implemented by different adaptation strategies. In order to react to changes and avoid inefficiencies, it
is necessary to identify the most suitable adaptation strategy that is able to align the application
behaviour with the context and system requirements.

Fig. 3 illustrates how RTF-RMS chooses between four adaptation strategies proposed in our previous
work [18]:

Fig. 3. RTF-RMS chooses between four different adaptation strategies.

1. User migration: Users are migrated from an overloaded server to an underutilized server which is
replicating the same zone. For this purpose, user connections are switched from one server to another.
RTF-RMS distributes users by default equally between the application servers for a particular zone.
User migration is restricted to servers that are replicating the same zone because managing users
located in different zones on the same server would considerably increase the inter-server
communication for processing user interactions which are typically limited to nearby users. User
migration is the preferred action if the load of an overloaded server can be compensated by running
resources.

2. Replication enactment: New application servers are added in order to provide more computation
power to the highly frequented zone. This strategy is called replication: each application server keeps a
complete copy of the application state, but each server is responsible for computing a disjoint subset of
entities. As soon as the new server has been added, RTF-RMS migrates a number of users to the new
replica in order to balance the load. Replication implies an additional inter-server communication, so
its scalability is limited. Since the replication overhead depends on the inter-server communication in
a particular application, the maximum number of replicas per zone can be specified in the application
profile. If the number of active replicas for a particular zone is below the maximum number of replicas

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 29

specified by the application profile, then replication is used; otherwise the resource substitution
strategy (described next) is preferred.

3. Resource substitution: An existing application server is substituted by a more powerful resource in
order to increase the computation power for highly frequented zones. For this purpose, RTF-RMS
replicates the targeted zone on the new resource and migrates all clients to the new server. The
substituted server is shut down.

If no better resources are available for substitution, the application reached a critical user density, i.e.,
large numbers of users in the same geographical area, which cannot be further improved by the
generic adaptation strategies offered by RTF- RMS. In this case, the application requires redesign
according to the design time activities of the Lifecycle Model.

4. Resource removal: If the update rate of an underutilized application server falls below the
removeResourceThreshold, RTF-RMS checks whether the zone that is managed by this server is
replicated by other servers. If not, nothing happens since each zone must be assigned to at least one
application server. If other application servers are replicating this zone, users are migrated equally to
these servers, after which the underutilized server is shut down.

Another challenge for the cost-efficient adaptation of ROIA on Clouds is the consideration of leasing
periods. In commercial Cloud systems, resources are typically leased and paid per hour or some longer
leasing period. Since ROIA have dynamically changing user numbers, the time after which Cloud
resources become dispensable is very variable. However, resources will not be used cost-efficiently if
they are shut down before the end of their leasing period. In RTF-RMS, resources that have become
dispensable are removed from the application processing and moved to the resource buffer. Cloud
resources in the buffer are shut down at the end of their leasing period or they are integrated in the
application processing again if required.

5 Experiments
In the following, we target the “Enact adaptation” phase of the Lifecycle Model and report
experimental results of the replication enactment adaptation strategy using an example of a multi-
player action game called RTFDemo [17]. In our experiments, we evaluate how RTF-RMS triggers
adaptation if QoS changes as described in Section 4.1; from the adaptation triggers described in
Section 4.1, we chose the update rate to trigger adaptation. In order to provide a seamless gaming
experience, users should not receive less than 25 updates per second over a longer time period. Hence,
we defined an adaptation trigger rule with 25 updates per second as the addResourceThreshold.

In our experiments, we use a private Cloud with the Eucalyptus framework (version 2.0.2) [19];
servers are Intel Core Duo PCs with 2.66 GHz and 2 GB of RAM.

We start a single RTFDemo server on a Cloud resource and connect 260 clients to it. Fig. 4 shows that
the update rate of Server 1 initially drops with the growing number of connected clients.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 30

Fig. 4. Load balancing by replication enactment.

When the update rate of Server 1 falls below the threshold of 25 Hz, RTF-RMS requests a new Cloud
resource from the resource buffer (for this experiment, the size of the buffer was configured as 1).
Although the requested resource is already started up (since it is in the buffer), we observe that a
certain time period is still required to add the new server to the application processing and start user
migration. This delay of approximately 15 seconds is caused by the initialization and inter-server
communication that are required to integrate the new server in the application processing. After the
migration is accomplished, the update rate of Server 1 has increased from 20 Hz to about 100 Hz. The
update rate of server 1 and server 2 fluctuates between 50 and 200 Hz caused by the continously changing
number of interactions between the 260 clients. Note that if the resource were not in the buffer and would
have been started up from scratch, the delay would be much longer, in the order of 130 seconds. Hence,
using the resource buffer for starting Cloud resources in advance reduces startup times by a factor of
approximately 9 which allows for faster adaptation enactment in contrast to solutions that start resources
from scratch, e.g., Amazon Elastic Load Balancing [20].

6 Conclusion
This paper presents how the S-Cube Lifecycle Model can be utilized for developing adaptive ROIA on
emerging Cloud systems. We showed how our resource management system RTF-RMS implements
concrete mechanisms for ROIA development and execution on Clouds according to the Lifecycle. In
extension of our previous work that proved the feasibility of applying the S-Cube Lifecycle on ROIA
development on a static set of physical resources [2], this paper targets the specific challenges related
to Clouds. In particular, we illustrated how the Cloud influences the definition of adaptation triggers
and strategies and how RTF-RMS allows for a cost-effective leasing of Cloud resources on demand by
buffering unused resources; thereby the startup times of Cloud resources are reduced. Our adaptation
triggers are based on application-specific monitoring values provided by RTF-RMS, and, hence, go
beyond the state-of-the-art adaptation mechanisms on common Cloud platforms that are based on
generic system information. Our experimental results demonstrate how the replication enactment
adaptation strategy implemented in RTF-RMS improves the performance of a multi-player, real-time
online game and how the resource buffer decreases startup times of Cloud resources.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 31

Acknowledgments: We are grateful to the anonymous reviewers for their helpful re- marks on the
preliminary version of the paper. Our research has received funding from the EC’s 7th Framework
Programme under grant agreement 215483 (S-Cube).

References

[1] “The S‐Cube project.” http://www.s‐cube‐network.eu, 2011. 
[2] D. Meiländer, S. Gorlatch, C. Cappiello, V. Mazza, R. Kazhamiakin, and A. Bucchiarone, “Using a Lifecycle Model for 
Developing and Executing Adaptable Interactive Distributed Applications,” in Towards a Service‐Based Internet, vol. 
6481 of Lecture Notes in Computer Science, pp. 175–186, Springer, 2010. 
[3] Rational, “Rational unified process ‐ best practices for software development teams,” in Tech. Rep. TP026B, 1998. 
[4] M. P. Papazoglou and W. v. d. Heuvel, “Service‐oriented design and development methodology,” in Int. J. Web Eng. 
Technol., vol. 2, no. 4, pp. 412–442, 2006. 
[5] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy, and K. Holley, “SOMA: a method for developing service‐
oriented solutions,” in IBM Syst. J., vol. 47, pp. 377–396, 2008. 
[6] K. Mittal, “Service oriented unified process.” http://www.kunalmittal.com/html/soup.html, 2009. 
[7]  D.  Linner,  H.  Pfeffer,  I.  Radusch,  and  S.  Steglich,  “Biology  as  inspiration  towards  a  novel  service  Life‐Cycle,”  in 
International Conference on Autonomic and Trusted Computing (ATC 2007), p. 94102, 2007. 
[8]  S.  Lane  and  I.  Richardson,  “Process  models  for  service  based  applications:  A  systematic  literature  review,”  in 
Information and Software Technology, 2010. 
[9]  Y. Wautelet,  Y.  Achbany,  J.  Lange,  and M.  Kolp,  “A  process  for  developing  adaptable  and  open  service  systems: 
Application  in  supply  chain  management,”  in  International  Conference  on  Enterprise  Information  Systems  (ICEIS 
2009), vol. 24, pp. 564–576, Springer, 2009. 
[10]  S.  Vale  and  S. Hammoudi,  “Model  driven development  of  context‐aware  service  oriented  architecture,”  in The 
11th IEEE International Conference on Computational Science and Engineering ‐ Workshops, pp. 412–418, 2008. 
[11]  T.  Margaria,  B.  Steffen,  M.  Wirsing,  et  al.,  “SENSORIA  patterns:  Augmenting  service  engineering  with  formal 
analysis, transformation and dynamicity,” in Leveraging Applications of Formal Methods, Verification and Validation, 
Third International Symposium, vol. 17, pp. 170–190, 2008. 
[12]  G.  Spanoudakis,  A.  Zisman,  and A.  Kozlenkov,  “A  service  discovery  framework  for  service  centric  systems,”  in 
Services Computing, 2005 IEEE International Conference on, vol. 1, pp. 251–259, 2005. 
[13] K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu, “The METEOR‐S approach for configuring and executing 
dynamic web processes,” in Tech. Rep., 2005. 
[14]  A.  Bucchiarone,  C.  Cappiello,  E.  di  Nitto,  R.  Kazhamiakin,  V.  Mazza,  and M.  Pistore,  “Design  for  adaptation  of 
Service‐Based applications: Main issues and requirements,” in Service‐Oriented Computing. ICSOC/ServiceWave 2009 
Workshops, vol. 6275 of Lecture Notes in Computer Science, pp. 467–476, Springerg, 2009. 
[15]  S.  Lane,  A.  Bucchiarone,  and  I.  Richardson,  “SOAdapt:  A  Process  Reference  Model  for  Developing  Adaptable 
Service‐Based Applications,” in Information and Software Technology, 2011. 
[16] D. Meiländer, A. Ploss, F. Glinka, and S. Gorlatch, “A Dynamic Resource Management System for Real‐Time Online 
Applications on Clouds,” in Lecture Notes in Computer Science, Springer, 2011. To appear. 
[17] “The Real‐Time‐Framework (RTF).” http://www.real‐time‐framework.com, 2011. 
[18]  F.  Glinka,  A.  Raed,  S.  Gorlatch,  and  A.  Ploss,  “A  Service‐Oriented  Interface  for  Highly  Interactive  Distributed 
Applications,” in Euro‐Par 2009 – Parallel Processing Workshops, vol. 6043 of Lecture Notes in Computer Science, pp. 
266–277, Springer, 2010. 
[19]  D.  Nurmi,  R.  Wolski,  C.  Grzegorczyk,  et  al.,  “The  Eucalyptus  Open‐Source  Cloud‐Computing  System,”  in  9th 
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 124–131, IEEE Computer Society, 2009. 
[20] “Amazon Web Services.” http://aws.amazon.com, 2011. 

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 32

Appendix B: Addressing highly dynamic changes in service-oriented
systems: Towards agile evolution and adaptation
Andreas Metzger and Elisabetta Di Nitto

Abstract. This chapter sets out to introduce relevant foundations concerning evolution and adaptation
of service-oriented systems. It starts by sketching the historical development of software systems from
monolithic and mostly static applications to highly-dynamic, service-oriented systems. Then, it
provides an overview and more thorough explanation of the various kinds of changes that may need to
be faced by service-oriented systems. To understand how such changes could be addressed, the
chapter introduces a reference service life-cycle model which distinguishes between evolution, viz. the
manual modification of the specification and implementation of the system during design-time, and
(self-)adaptation, viz. the autonomous modification of a service-oriented system during operation.
Based on the discussion of the key activities prescribed by that life-cycle, the chapter elaborates on the
need for agility in both adaptation and evolution of service-oriented systems.

1 Introduction
For future software systems and software development processes, the only constant will be change.
The \world" in which those future software systems operate is reaching unprecedented levels of
dynamicity [12, 14]. Those systems will need to operate correctly in spite of changes in, for example,
user requirements, le- gal regulations, and market opportunities. They will have to operate despite a
constantly changing context that includes, for instance, usage settings, locality, end-user devices,
network connectivity and computing resources (such as offered by Cloud computing). Furthermore,
expectations by end-users concerning the personalization and customization of those systems will
become increasingly relevant for market success [2].

Modern software technology has enabled us to build software systems with a high degree of
flexibility. The most important development in this direction is the concept of service and the Service-
oriented Architecture (SOA) paradigm [15, 22, 21]. A service-oriented system is built by \composing"
software services (and is thus also called \service composition" or \composed service" in the
literature). Software services achieve the aforementioned high degree of flexibility by separating
ownership, maintenance and operation from the use of the software. Service users do not need to
acquire, deploy and run software, because they can access its functionality from remote through
service interfaces. Ownership, maintenance and operation of the software remains with the service
provider [14].

While service-orientation offers huge benefits in terms of flexibility, service- oriented systems face yet
another level of change and dynamism. Services might disappear or change without the user of the
service having control over such a change.

Agility, i.e., the ability to quickly and effectively respond to changes, will thus play an ever increasing
role for future software systems to live in the highly dynamic \world" as sketched above. Agility can
be considered from two view- points:

- First, agility may concern the evolution of the system. This means that it concerns the development
process and how engineering activities (such as requirements engineering and implementation) should
be performed to timely address changes by evolving the software.

- Secondly, agility may concern the adaptation of the system. This means that it concerns the system
itself and how the system should respond to changes [29]. Agility in adaptation is typically achieved
through self-adaptation, i.e., the autonomous modification of a service-oriented system during
operation.

In this chapter, we first sketch the historical development of software systems from monolithic and
mostly static applications to highly-dynamic, service- oriented systems (Section 2). Then, we provide

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 33

an overview and more thorough explanation of the various kinds of changes that need to be faced and
how these could be addressed (Section 3). As reference for the remainder of the chapter, we then
introduce a service life-cycle model which integrates evolution and adaptation into a coherent
framework (Section 4). After elaborating on the activities prescribed by that life-cycle, we discuss the
need for agility in evolution (Section 5) and adaptation (Section 6). We conclude this chapter with our
perspectives on agile development for service-oriented systems (Section 7).

2 Historical Development
2.1 The Emergence of the SOA Paradigm

In [14] we gave an extensive account of the historical development of software technology and
methods toward highly dynamic, service-oriented systems. The following paragraphs briefly
summarize the major milestones along this development.

“Genesis": In the late 1960ies software development processes started to get disciplined through the
identification of well-defined stages and criteria, which were to be met in order to progress from one
stage of the process to the next. The waterfall life-cycle model as proposed by Royce in 1970 [30] was
such an attempt. It was very rigid and advocated the need for software developers to focus not only on
coding but also on higher-level activities (requirements analysis and specification, as well as software
design) and on verification and validation. At the time those life-cycle models were defined, the
\world" was assumed to be relatively fixed and static. Stable requirements could thus be elicited at the
beginning of the development process. Additionally, most organizations were monolithic.
Accordingly, solutions addressing their requirements were to a large extent also monolithic and
centralized.

"Enlightenment": It was soon realized that the assumption about the stability of requirements was
not realistic. In most practical cases, requirements cannot be fully gathered upfront and then left
untouched [27]. Specifically, it was realized that often stakeholders do not know what they exactly
expect from a system beforehand. Changing requirements should consequently be considered as an
intrinsic factor that must be dealt with during development. As a consequence, incremental and
prototyping-based life-cycle models emerged. These were introduced to achieve better tailoring of
solutions to requirements and to mitigate the risks involved in software development.
"Industrialization": The development of software technology soon allowed dynamic bindings among
modules and { even more importantly { to extend these bindings across network boundaries (examples
include CORBA and Java RMI). This allowed for the distributed execution of the software. The
development of software technology was accompanied by an increased automation of software
development activities. This included, for instance, automatic verification techniques and tools which
reached a level of maturity that allowed them to be applied to real-life problems. Examples include
model checkers or Boolean satisfiability checkers.

"Globalization": Another major development followed regarding the ownership of software. In the
beginning, software development was under the control of a single organization which ultimately
owned the code completely. Then, component-based software development became dominant. O_-the-
shelf components were developed and provided by third parties who were also responsible for their
quality and their evolution. Software development thus became (partly) decentralized.

The development of software technology and methods further made it possible to support seamless
evolution of the software in order to incorporate certain anticipated changes. These included, for
instance, additional or redefined module functionality. However, as motivated in Section 1, the
demand for software to continuously respond to highly dynamic changes of its context and its
requirements has reached unprecedented levels in the past few years. A further major step in the
development of software technology and methods to address this dynamism was the birth of the
service concept and the Service-Oriented Architecture (SOA) paradigm [15, 22, 21].

2.2 What is SOA?

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 34

When referring to Service Oriented Architecture (SOA) as a paradigm, SOA typically constitutes a set
of guiding principles for building service-based applications. Thanks to these principles, services can
be (re-)used in many difierent settings and service-based applications can meet the requirements for
dynamism and flexibility.

A detailed discussions of the SOA principles can be found in [15, 22, 21], they include:

- Loose coupling: This principle means that a service only makes weak assumptions about its
interactions with other services. For example, instead of services being tightly coupled by means of a
common data model (such as was the case for distributed objects and CORBA), a small set of simple
data types is used. The loose coupling principle of SOA also argues for preferring asynchronous
interactions over synchronous ones, message passing instead of method invocation, as well as flexible
message routing instead of fixed. Finally, late binding during deployment or even run-time (see below)
is preferred over static binding during design-time.

- Dynamic service discovery and late binding: This principle implies that ser- vices can be discovered
and composed into a service-oriented during deployment and during run-time. The discovery of
services is supported by service registries (\yellow pages") or even more powerful service search
engines (see [28] for more details on the latter aspect). Those facilities allow for dynamically re-
configuring a service-based application by replacing services, which may have shown to be unreliable,
with alternative compatible services (possibly from different service providers).

- Service interoperability and protocol independence: Similar to W3C's notion of Web Service, a
software service may be considered a \piece" of software designed to support interoperable machine-
to-machine interaction over the Internet. Existing Internet and Web Service standards allow for service
inter- operability by prescribing ways how services can interact, exchange messages and be located
across the Internet. Those standards have lead to the proliferation of services available over the
Internet and described in terms of WSDL (the Web Services Description Language). As an example,
at the time of writing, the seekda.com search engine has indexing almost 30.000 software services.

- Self-containment and autonomy of services: Self-containment and autonomy means that the logic
that is governed by a service resides within an explicit boundary. The service should only have control
within this boundary and should not depend on other services for it to execute its governance. This
allows for keeping changes and failures isolated and will foster reusability of services.

- Abstraction and service interfaces: The functionality that is exposed by a service naturally abstracts
from the underlying implementation. In addition, the only part of a service that is visible to the outside
world is what is exposed via the service interface. Typically, the underlying logic of the soft- ware,
which is irrelevant to the service user and/or constitutes intellectual property of the service provider,
will not exposed via the service interface. As a consequence, this means that the service interfaces
define a form of formal contract. In order to interact with the service, the service users only need to
have knowledge about the service interface (and not the underlying logic or implementation). This
principle thus is an application of the well-known \information hiding" principle to the realm of
service-based systems. It should be noted that a service-based application or a software service does
not necessarily need to follow all of the aforementioned principles. There may be good reasons that in
certain application scenarios and domains, some of the principles are not applicable. As an example,
for more traditional enterprise applications it may well suffice to have static service bindings and a
more tight coupling between those services by sharing more complex data structures.

2.3 The Impact of SOA
SOA enables us to build software systems with a high degree of flexibility. Soft- ware services
separate ownership, maintenance and operation from the use of the software. Service users thus do not
need to acquire, deploy and run software, because they can access its functionality from remote
through service interfaces. Ownership, maintenance and operation of the software remains with the
service provider [14].

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 35

Similar to what has been enabled by globalization in the real world, third- party software services now
enable organizations to flexibly outsource business functions (typically commodity functions) and to
focus on the innovative functions, which differentiates one organization from another.

Thus, SOA promises huge benefits in terms of dynamism and flexibility. However, service-based
applications also need to become resilient to their services changing, disappearing or violating their
expected quality. Especially in the case of third-party services, the service users do not have control
over such changes, thus, calling for novel solutions to address this new dimension of changes. Luckily,
the introduction of SOA technology was accompanied by another major step in the development of
techniques for automating software engineering activities. Verification and measurement techniques
have started to be extended to the operation phase of the systems, leading to “online" techniques [12],
including monitoring [28], online testing [5] and run-time verification [6]. Those techniques provide
the foundation for service-oriented systems to automatically identify and respond to certain changes
(see Section 3). As an example, by continuously verifying whether the service-oriented system meets
its requirements, an adaptation of the system can be triggered once a failure becomes imminent.

3 Changes
Adaptation and evolution of a service-oriented system are triggered by changes that may occur in three
major areas: (1) the expectations that its users (or other stakeholders) have concerning the
functionality and quality that the sys- tem should provide, (2) the world in which the software system
is executed, (3) the system itself. The first area is the realm of requirements, the second one is
traditionally called context, and the third one is often referred to as the machine [20].

According to the IEEE Standard Glossary of Software Engineering Terminology [19], \a requirement
is: (1) a condition or capability needed by a user to solve a problem or achieve an objective; (2) a
condition or capability that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed documents; (3) a documented
representation of a condition or capability as in (1) or (2)".

The term context derives from the Latin cum (with or together) and texere (to weave). It has been
defined by Dey and Abowd [13] as "any information that can be used to characterize the situation of
entities (persons, places, objects) that are relevant to the interaction between a user and an application,
including the user and the application themselves". According to Hofer et al., context can be [17]
physical, i.e., measured by some hardware sensor or logical, i.e., captured by monitoring user
interaction. When it is physical it refers to location, movement, and any environmental information.
When it is logical it refers to users' goals, emotional state, business processes, etc.

Figure 1 shows typical examples of changes that may occur and trigger the need for adapting or
evolving the service-oriented system.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 36

Fig. 1. Areas for Changes and Examples

Clearly, the examples of changes shown in the figures require different levels of intervention on the
corresponding software system and its artefacts. For instance, the lack of computational resources may
be addressed easily, without modifying the structure of the software system, by exploiting the
flexibility offered by Cloud computing [4]. The failure of a service is also simple to address if our
system is built according to the SOA paradigm that enables dynamic binding (see Section 2) of
alternative and compatible services. In this case, in fact, the substitution of one service for another
service can occur at runtime without performing any reprogramming activity of the software [26].

Other kinds of changes, such as the addition of new features, require a deeper intervention on the
software system. In this case the system may need to be partially redesigned and reimplemented in
order to address the change. All changes that can be addressed by performing some simple reasoning
(e.g., \since the user is in downtown Milano, he/she is certainly interested in knowing about free
parking spaces in that area") or by modifying the bindings to services can be addressed by a service-
oriented system if it incorporates self-adaptation facilities [12]. Vice versa, the changes that require
redesign or reimplementation of the system typically have to be addressed by the intervention of
human beings.

The boundary between the two kinds of changes is not necessarily defined once and for all but
depends on the reasoning abilities that we are able to include in the software system while we build it.
This point will be discussed in more detail in Section 4.

4 Service Life-Cycle Model
This section introduces the service life-cycle model, as defined by S-Cube, the European Network of
Excellence on software, services and systems3. The S-Cube service life-cycle model [28, 25] defines
the relevant activities for self-adaptive service-oriented systems and integrates these into a coherent
framework. Self- adaptive systems automatically and dynamically adapt to certain changes (see
Section 3). The aim of self-adaptation is to reduce the need of human intervention as much as possible
in order to allow those systems to quickly respond to changes. The S-Cube service life-cycle model
consists of the following two loops, which we will detail in the remainder of this chapter. The loops of
the life-cycle can be executed in an incremental and iterative fashion, as follows:

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 37

- The Evolution loop (see right hand side of Figure 2) builds on the more traditional development and
deployment activities, including requirements engineering, design, realization, and deployment (see
Section 5.1). However, it extends those activities with \design-for-adaptation" steps, such as to define
and implement how the system should monitor and modify itself when entering the left-hand side of
the life-cycle (e.g., see [12, 7]).

- The Adaptation loop (see left hand side of Figure 2) explicitly defines activities for autonomously
addressing changes during the operation of service- oriented systems (see Section 6.1). The activities
in the adaptation loop follow the steps of the MAPE loop (Monitor-Analyze-Plan-Execute), which is
typically found in autonomic systems [31].

Fig. 2. The S-Cube Service Life-Cycle Model

It should be noted that in some cases also adaptation requires human intervention. This is often called
human-in-the-loop adaptation [28]. Human-in-the- loop adaptation is different from evolution in the
sense that the activities performed by the humans and the artifacts that are modified differ; e.g., the
change of requirements documents certainly requires to go through the evolution loop, while the
choice between two possible candidate services can be performed as human-in-the-loop adaptation.

5 Evolution
When the system evolves, it goes through a reenginering phase in which it is permanently modified.
The practices used in this phase are being deeply studied in the software maintenance literature (see
for instance the proceedings of the 26th International Conference on Software Maintenance [18]).
Some of these practices have been applied to service-oriented systems as well. In this case, the main
aspects which have been considered concern the issues of maintaining the interface compatibility
between versions of services, of identifying the right timing for evolving services depending on the
contracts currently in place, of identifying the right stakeholders for evolution and of understanding
their impact to the evolution process (see [3] for a detailed overview).

5.1 Activities in the Evolution Loop
As mentioned above, the activities in the evolution loop follow the traditional software development
activities.

Requirements Engineering: During requirements engineering, the functional and quality
requirements for the service-oriented system are elicited and documented. The specifics of service-
oriented systems make requirements engineering a particularly relevant activity. This is related to the
highly dynamic nature of service-oriented systems and to the necessity to realize the continuous

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 38

adaptability of these systems. Indeed, in a context where the application is in continuous evolution and
is thus characterized by rather blurred boundaries, the study of those requirements that exist a priori in
the organizational and business setting and that are hence largely independent from the solution
becomes very important [9].

Design: During the design phase, the workflow of the service-oriented system is typically specified
using languages such as BPEL. Together with the definition of the workflow, candidate services are
identified that can provide the functionality and quality to fulfill the requirements of the system. This
means that those services that provide, at least partially, the expected functionality and quality are
identified. This is supported by service matchmaking techniques, such as the ones presented in [11]. A
further task is to define adaptation strategies and mechanisms which enable the application to react to
adaptation needs [7], i.e., to take \design for adaptation" decisions. Finally, the conditions under which
some changes will have to be enacted during the runtime have to be identified.

Realization: After design, the realization and implementation of the sys- tem can start. This
specifically means that contracts on quality aspects (aka. Service Level Agreements, SLAs) have to be
established with the third-party service providers. Typically, this requires some form of SLA
negotiation and agreement [28, 11]. Moreover, the monitoring and analysis mechanisms needed to
identify the conditions that require changes at runtime have to be defined together with the adaptation
strategies to be executed.

Deployment: Deployment comprises all the activities needed to make the system available to its users,
including the deployment of internal services and software components on computing infrastructures
(including Clouds [4]). It should be noted that the service-oriented systems itself could be offered as a
service and could thus participate in other service compositions.

5.2 Towards Agile Evolution
An important element of the evolution loop is efficiency. In the age of globalization, in fact, changes
need to be handled in a timely fashion. If the execution of the evolution loop is not able to quickly
address changes, there is a risk of delivering a solution that addresses a certain change when this
change is not relevant any longer, for instance, because it has been superseded by other new changes.
Agile development approaches [1, 10] are often mentioned as a way to address changes in a fast and
interactive way, if developers are able to work in close collaboration with the owners of new
requirements or with those who have a deep knowledge about the occurred context changes.

This statement has an initial evidence in the work of Capiluppi et al. [8] where an empirical study has
been conducted which shows how the application of agile methods to support the evolution of a
software system has resulted in a "smooth evolution while avoiding the problems of increasing
complexity or decreasing customer satisfaction".

In the context of SOA, companies such as IBM [23] and OutSystems [33] are suggesting the adoption
of an agile approach. [23] argues that refactoring is an important technique in SOA, where services
and service interfaces need to be continuously adjusted to the needs of new customers. The paper also
observes that management of agility in SOA is simplified by the fact that changes tend to be localized
in specific parts of software systems and, in particular, in the service choreography (aka. service
composition).

The adoption of an agile approach supported by a toolset called the \Agile Service Platform" is
proposed in [33]. Among other features, this platform keeps information about components and
dependencies continuously updated, thus effectively supporting the maintenance and the evolution
activities, for which a 70% reduction in costs has been reported. Interaction with customers during the
development and the evolution phases is strongly encouraged - facilitated by the platfom by means of
creating proper communication channels between customers and the project management.

A technological advancement that pushes agile development of SOA to the extreme is offered by
mashups [34]. Mashups constitute the integration of different web applications and services which
have the purpose of serving the specific needs of some users. They are usually short lived systems
intended to be built not only by expert developers but also by less-experienced people. To this end,

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 39

proper development environments are being developed. These offer a specific component and
composition models and are usually associated to some runtime environment. While these
environments promise to shorten the development cycle in a significant way, they are still not well
integrated into a proper full-edged development methodology.

From a completely different perspective, another interesting step toward agility is the integration of
service selection within the requirement engineering phase suggested by Maiden et al. [35]. They have
proposed a tool called EDDIE that supports engineers in the definition of requirements and use cases,
as well as in the identification of available services that fulfill such requirements with different levels
of precision.

Even though it has not been designed with agile processes in mind, agile methods could be mapped to
the S-Cube life-cycle. Using Scrum [32] as an example, we could assume that each iteration of the
evolution loop is performed as a Sprint which aims at delivering an increment of a service-oriented
system. Given that services represent a natural unit of functionality, each such Sprint could aim at
incorporating a new service in the service-oriented system up to the point where the complete
functionality is offered to the system's users. Still, as the aim is to build self-adaptive systems, an agile
approach targeted at service-oriented systems needs to take into account that the redesign and
redevelopment of the software system has to incorporate the \design for adaptation" principle (see
Section 5.1) in a seamless way. This is an issue which surely deserves further research.

6 Adaptation
6.1 Activities in the Adaptation Loop
As mentioned above, the activities in the adaptation loop follow the MAPE loop as known from
autonomic computing.

Operation and Management: Operation and management include all activities needed for running
and controlling the service-oriented system. The literature also uses the term governance to describe
all activities that oversee the correct execution of service-oriented system (and its constituent
services). The identification of changes, including problems in the running system (e.g., failures of
constituent services) and alteration of its context, plays a fundamental role. This identification is
obtained by means of monitoring mechanism and, more generally, by exploiting techniques for run-
time quality assurance such as online testing or run-time verification [12, 28]. Together, these
mechanisms and techniques are able to detect relevant changes.

Identify Adaptation Need: Certain changes trigger the service-oriented system to leave its \normal"
operation and enter the adaptation or the evolution cycle. As discussed in Section 3, which of the two
loops is being entered depends on the kind of observed change. The adaptation cycle is responsible for
autonomously deciding whether and how the service-oriented system needs to modify itself in order to
maintain its expected functionality and quality.

Identify Adaptation Strategy: When the adaptation loop is entered, possible adaptation strategies are
identified, selected and instantiated. Possible strategies include service substitution (rebinding), SLA
re-negotiation, and re-configuration of the workflow [7]. From the set of possible strategies, the ones
which _t the situation are selected and instantiated, e.g., by deciding which ser- vice to use as a
substitute or which re-configuration of the workflow to perform.

Enact Adaptation: After the adaptation strategy has been selected and instantiated, adaptation
mechanisms are used to execute the actual adaptation. For example, service substitution, re-
configuration or re-composition may be obtained using automated service discovery and dynamic
binding mechanisms, while re-composition may be achieved using existing automated service
composition techniques.

6.2 Towards Agile Adaptation

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 40

In addition to the degree of automation, the point in time when a change can be detected impacts on
the agility of the system in responding to that change; e.g., if the system can forecast an imminent
change, more time and thus more options remain for the adaptation than if the system can only detect
changes once they actually occur.

The following three types of adaptation [24] exemplify the impact that the point in time when changes
are detected has on the agility of the system:

- Reactive adaptation refers to the case in which the system is modified in response to external failures
that have actually occurred, i.e., failures that are actually observed by the users of the system. Repair
and/or compensation activities have to be executed as part of the adaptation in order to mitigate the
effects of the failure; e.g., the user is paid a compensation, or the workflow is rolled-back. Obviously,
such a reactive adaptation can have a severe impact on how agile a system can respond to changes
[16]. As examples, the execution of reactive adaptation activities on the running system can
considerably increase execution time and therefore reduce the overall performance of the running
system, or an adaptation of the system might not be possible at all, e.g., because the system has
already terminated in an inconsistent state.

- Preventive adaptation refers to the case in which an actual local failure or deviation is repaired before
its consequences become visible to the user in the form of an external failure. As an example, if a local
failure occurs (such as a third-party service S1 responding too slow), the system might forecast
whether this may lead to an external failure (visible by the user) and prepare repair mechanisms; e.g., a
faster service S30 could be used instead of service S3 in the remainder of the workflow, thereby
counteracting the slow response of service S1. Due to the time delay between the detection of the local
failure of S1 and the observation of the external failure by the user, there is more flexibility in
modifying the workflow than in the reactive case.

- Proactive adaptation refers to the case in which the system is modified even before a local failure
occurs. As an example, if the system is able to predict that a local failure is imminent (but did not yet
occur), the system can be flexibly modified in advance; e.g., a service S1, predicted to respond too
slow, can be replaced by a quicker service S10. In this case, neither repair nor compensation activities
would be necessary as part of the adaptation, as no failure has actually occurred.

In a nusthell, the more agile the service-oriented system is to become, the stronger the role of
proactiveness in the adaptation loop becomes. This means that already during design (i.e., within the
evolution loop), decisions need to be made about how to predict failures during the execution of the
service-oriented system. However, selecting the right technique can be quite a challenging task due to
the highly dynamic nature of service-oriented systems (see [24] for an in-depth discussion on this
issue).

7 Conclusion and Research Highlights
Agile methods applied in the SOA context are expected to lead to the quick and effective development
and evolution of self-adaptive service-oriented systems. Self-adaptation has a strong implication on
the way the agile development process is organized. Taking Scrum as an example, Sprints should not
only concern the inclusion of new functionalities but also the creation of respective self-adaptation
mechanisms. The challenge is therefore to understand how self-adaptation mechanisms can be
developed in an incremental way, Sprint by Sprint.

Also, Sprints are more effective when associated to the creation of business value. It is thus important
to identify the value that can be associated with a specific self-adaptation capability that allows the
system to reliably work in a globalized environment and to execute resiliently under highly dynamic
changes. How to perform such a quantification is still open and should certainly be part of future
research.

Acknowledgments

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 41

Research leading to these results has received funding from the European Community's 7th
Framework Programme FP7 / 2007-2013 under grant agreement 215483 (S-Cube).

References

1. P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New directions on
agile methods: a comparative analysis. In Proceedings of the 25th International
Conference on Software Engineering, ICSE '03, pages 244{254, Washington, DC,
USA, 2003. IEEE Computer Society.
2. G. Adomavicius and A. Tuzhilin. Personalization technologies: a process-oriented
perspective. Commun. ACM, 48:83{90, October 2005.
3. V. Andrikopoulos. A Theory and Model for the Evolution of Software Services.
Tilburg University, The Netherlands, 2010.
4. M. Armbrust, A. Fox, R. Gri_th, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Commun. ACM, 53:50{58, April 2010.
5. A. Bertolino. Software testing research: Achievements, challenges, dreams. In
FOSE '07: 2007 Future of Software Engineering, pages 85{103, Washington, DC,
USA, 2007. IEEE Computer Society.
6. D. Bianculli, C. Ghezzi, and C. Pautasso. Embedding continuous lifelong veri_cation
in service life cycles. In Principles of Engineering Service Oriented Systems
(PESOS 2009), co-located with ICSE 2009, 2009.
7. A. Bucchiarone, C. Cappiello, E. D. Nitto, R. Kazhamiakin, V. Mazza, and M. Pistore.
Design for adaptation of service-based applications: Main issues and requirements.
In Engineering Service-Oriented Applications: Supporting Software Service
Development Lifecycles (WESOA) co-located with ICSOC, ServiceWave, 2009.
8. A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. Sharp, and N. Smith. An empirical
study of the evolution of an agile-developed software system. In Software
Engineering, 2007. ICSE 2007. 29th International Conference on, pages 511{518,
may 2007.
9. B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein,
C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. Mller, S. Park, M. Shaw, M. Tichy, M. Tivoli,
D. Weyns, and J. Whittle. Software engineering for self-adaptive systems: A research
roadmap. In B. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 1{26. Springer Berlin / Heidelberg, 2009.
10. D. Cohen, M. Lindvall, and P. Costa. An introduction to agile methods. Advances
in Computers, pages 1{66, 2004.
11. M. Comuzzi and B. Pernici. A framework for QoS-based web service contracting.
ACM Transactions on web, 3(3), 2009.
12. R. de Lemos, H. Giese, H. M�uller, M. Shaw, J. Andersson, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cikic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs,
K. M. Goeschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu,
A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz,
M. Pezz_e, C. Prehofer, W. Sch�afer, W. Schlichting, B. Schmerl, D. B.
Smith, J. P. Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel, D. Weyns,
K. Wong, and J. Wuttke. Software Engineering for Self-Adpaptive Systems: A second
Research Roadmap. In R. de Lemos, H. Giese, H. M�uller, and M. Shaw, editors,
Software Engineering for Self-Adaptive Systems, number 10431 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2011. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 42

13. A. K. Dey and G. D. Abowd. Towards a Better Understanding of Context and
Context-Awareness. In Workshop on The What, Who, Where, When, and How of
Context-Awareness, 2000.
14. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey
to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering, 2008.
15. T. Erl. Service-oriented Architecture. Prentice Hall, 2004.
16. J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore. A framework for proactive
self-adaptation of service-based applications based on online testing. In Ser-
viceWave 2008, number 5377 in LNCS. Springer, 10-13 December 2008.
17. T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, and J. Altmann. Contextawareness
on mobile devices: the Hydrogen approach. In 36th Annual Hawaii
International Conference on System Sciences, pages 292{302, 2002.
18. 26th IEEE International Conference on Software Maintenance (ICSM 2010),
September 12-18, 2010, Timisoara, Romania. IEEE Computer Society, 2010.
19. Institute of Electrical and Electronics Engineers, New York. IEEE Standard Glos-
sary of Software Engineering Terminology, IEEE Std 610.12-1990 edition, 1990.
20. M. Jackson. Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, New York, 2001.
21. N. Josuttis. SOA in Practice: The Art of Distributed System Design. O'Reilly
Media, 2007.
22. D. Kaye. Loosely Coupled: The Missing Pieces of Web Services. RDS Press, 2003.
23. P. Krogdahl, G. Luef, and C. Steindl. Service-oriented agility: An initial analysis
for the use of agile methods for SOA development. In IEEE International Confer-
ence on Services Computing, pages 93{100, Los Alamitos, CA, USA, 2005. IEEE
Computer Society.
24. A. Metzger. Towards accurate failure prediction for the proactive adaptation of
service-oriented systems (invited paper). In Proceedings Workshop on Assurances
for Self-Adaptive Systems (ASAS), collocated with ESEC 2011, 2011.
25. A. Metzger, E. Schmieders, C. Cappiello, E. D. Nitto, R. Kazhamiakin, B. Pernici,
and M. Pistore. Towards proactive adaptation: A journey along the s-cube service
life-cycle. In Maintenance and Evolution of Service-Oriented Systems, 2010.
26. O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service
adaptation for WS-BPEL. In Proceeding of the 17th international conference on
World Wide Web, WWW '08, pages 815{824, New York, NY, USA, 2008. ACM.
27. B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
34(3):115{117, 2001.
28. M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger, editors. Service Research
Challenges and Solutions for the Future Internet: Towards Mechanisms and Meth-
ods for Engineering, Managing, and Adapting Service-Based Systems. Springer,
Heidelberg, Germany, 2010.
29. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented
computing: State of the art and research challenges. IEEE Computer, 40(11):38{
45, 2007.
30. W. Royce. Managing the development of large software systems. In IEEE
WESCON, pages 1{9, San Francisco, CA, USA, 1970.
31. M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2), 2009.
32. K. Schwaber. Agile project management with Scrum, volume 7. Microsoft Press
Redmond (Washington), 2004.
33. D. Sprott. Product Overview: OutSystems Agile SOA Platform. CBDI Journal,
pages 15{20, April 2009.
34. J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup development.
IEEE Internet Computing, 12(5):44{52, 2008.
35. K. Zachos and N. Maiden. Inventing requirements from software: An empirical

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 43

investigation with web services. In Proceedings 16th IEEE International Conference
on Requirements Engineering, pages 145{154. IEEE Computer Society Press, 2008.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 44

Appendix C: Managing evolving services
Michael P. Papazoglou, Vasilios Andrikopoulos, Salima Benbernou

INTRODUCTION

Services are subject to constant change and variation, leading to a continuous service re-design and
improvement effort. Service changes originate from different sources such as introducing new
functionalities to an existing service, modifying the current functionality of a service in order to
improve its performance, or including new regulatory constraints requiring a change of the behavior of
services. Such changes lead to a continuous service re-design and improvement effort. However, they
should not be disruptive by requiring radical modifications in the very fabric of services, or the way
that business is conducted between service providers and consumers.

With the term service evolution we refer to the continuous process of development of a service through
a series of consistent and unambiguous changes [Papazoglou2008]. The evolution of services is
expressed through the creation and decommissioning of service versions during their lifetime. These
versions have to be aligned with each other in a non-disruptive manner and in a way that allows a
service designer to track the various modifications and their effects on the service in terms of
consistency. Looking at the effect that service changes have on their consumers in the Service
Oriented Architecture (SOA) paradigm, we can classify them as shallow and deep. Shallow changes
are incremental changes, localized to one service and restricted to the consumers of the service. Such
incremental changes are based on the notion of compatibility between service versions to allow for a
seamless and transparent update of the service to the service clients. Shallow changes therefore require
a robust versioning scheme and an unambiguous definition of compatibility in order to be managed
efficiently. Deep changes, on the other hand, are transformational changes, cascading beyond the
clients of the service and potentially to entire end-to-end service networks. As such, they require a
change-oriented service development methodology that considers the scope, effect, effort and
applicability of such changes in across enterprise environments and throughout entire service chains.

SERVICE AND SOFTWARE EVOLUTION

Evolution in software systems has been traditionally considered as either a part, or a synonym of
software maintenance. The insight gained by early studies resulted in empirical laws that drive and
govern the evolution of software systems. Evolution is particularly important in distributed systems,
and therefore for service-oriented ones too, due to a complex web of software component
interdependencies. As Bennet and Rajlich point out [Bennett2000], attempting to apply conventional
maintenance procedures (halt, modify and re-execute) in large distributed systems (like the ones
emerging in SOA) is not practical for a number of reasons:

• Identifying which services constitute the emerging system is non-trivial, especially in the
context of large service networks.

• Access to the actual source code of third-party services is limited or not existent at all due to
the strong encapsulation and loosely coupled properties enforced by SOA. Many well-known
maintenance techniques like refactoring or impact analysis are therefore very difficult or even
impossible to apply.

Towards this direction, Bennet and Rajlich decompose maintenance into evolution and servicing and
treat the former as an iterative development phase, and the latter as the more traditional post-
development corrective, perfective and preventive actions. The rest of this discussion follows this
distinction and emphasizes the continuous development aspect of evolving services.

EVOLUTION IN COMPONENT-BASED SYSTEMS

Historically and conceptually, Component-Based Systems (CBS) can be considered a predecessor of
SOA, which expands and builds on the same principles of encapsulation, independence and
unambiguous definition of interfaces. Component evolution is a well-documented field with

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 45

established techniques stemming from Software Configuration Management (SCM). Evolving a
component (or a service), includes addressing changes in both its interfaces and its implementation,
with each one of these aspects having different evolutionary requirements. Due to their capacity for
composition and emphasis on reuse, components exhibit strong dependencies with other components
that they consume. Changing a component may therefore have implications, often unforeseen ones, to
other components. Upgrading to a new component may require for both versions (old and new) to be
deployed in parallel while the transition takes place. Finally, identifying and distinguishing between
different versions of components requires the introduction of SCM techniques like version identifiers
incorporated into e.g. the component meta-data. Since version identifiers do not explain what changes
occurred between versions, checking for compatibility with different component versions has usually
to be performed separately.

A crucial difference between component and service evolution however is that, while in the former an
older version of a component can continue to be used if necessary, despite it being deprecated by the
component developer, this is not possible in the latter case. This is because services and service-based
applications rely on invoking remotely other services during their execution, rather than including
them as libraries in their executables. Replacing an older service version with a new, incompatible one
will always result in breaking the clients of the services who cannot fall back on using the older
version since it is not available anywhere anymore. Furthermore, components and services are quite
different in terms of coupling and binding types, invocation methods, and composition mechanisms
[Papazoglou2011]. While, therefore, many of the lessons learned by component evolution can be
reused in the context of service evolution, there are also significant differences between them.

SERVICE ADAPTATION

Adaptation is one of the mechanisms proposed in the literature for dealing with service evolution.
Service adaptation is initiated by a change either in the context of the service (consumer requirements,
laws and regulations, market dynamics, corporate strategy) or the service itself (re-design,
technological advancements). It involves different mechanisms for adapting either the interface or the
implementation of the service (or both) to the interoperability requirements of the service consumers.
Interface adaptation focuses on solving the mismatches in the signature and/or communication
protocol of interacting services by modifying the interfaces accordingly. Some kind of adapter is
usually involved, which is generated in the general case in a semi-automatic manner, and based on the
parametric transformation of the interfaces that are expected by the service consumers and the actually
provided ones by the service. Interface adapters can also be layered on top of each other, allowing
service developers to provide (ideally) a unique implementation endpoint that exposes multiple
versions of interfaces that are mapped to each other with adapters, instead of multiple versions of the
service. The maintenance cost then is moved to ensuring the consistency and efficiency of the layering
of the adapters and out of the service life cycle itself.

Implementation adaptation on the other hand focuses on composite services, i.e. services comprised of
aggregations of other services, in many cases defined as orchestrations in Business Process Execution
Language (BPEL). As in the case of interface adaptation, most approaches use semi-automatic
transformations between different versions, usually included as a set of predefined adaptation
scenarios (dealing with the “known unknowns”). Special provision is taken for replacing services
when they are unavailable or in some way unsuitable for use, e.g. by dropping below an acceptable
Quality of Service (QoS) level, with other equivalent ones. Dynamic binding mechanisms are used in
this case to ensure that the service endpoints invoked by the composite service are changed without
disrupting the operation of the service.

The application of service adaptation techniques however, both for interface and composition, is not
always possible without explicit manual intervention. In this sense, these approaches are limited in
their automation. They may be successful in preserving interoperability with a desired set of
consumers, but by definition they require a number of modifications towards this purpose. These
modifications may in turn interfere with the operation of other services by the same organization in
terms of resources (computational and financial) and code. The benefit of adaptation in a resource-
centric environment like enterprise services should therefore always be weighted first against its cost.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 46

In any case, all existing approaches for service evolution, based on adaption and not, require implicitly
or explicitly the use of a compatibility definition between service providers and consumers in order to
ensure the interoperability between them. For this purpose in the following section we present a set of
theories and techniques for managing service compatibility.

SERVICE COMPATIBILITY

Interface changes affect the ability of service providers and consumer to exchange messages between
them. Ideally, such changes should allow the two parties to be able to exchange (valid and acceptable)
messages, despite any interface changes that may happen to either side. In order to assure that this
exchange is possible, we define on the notion of service version compatibility. Service version
compatibility guarantees that we can introduce a new version of either a provider or a client of service
messages without changing the other [Papazoglou2011]. Compatibility is classified in two dimensions:

• Horizontal compatibility, or interoperability, of two services1. Horizontal compatibility
expresses the requirements that allow two or more services to participate successfully in an
interaction, either as service producers or service consumers, in at least one context under
which the services can fulfill their roles.

• Vertical compatibility or substitutability/replaceability (from the provider's or the consumer's
perspective, respectively) of service versions. Vertical compatibility expresses the
requirements that allow the replacement of one version of a service by another in a given
context.

In both cases, context is defined as a configuration of the environment in terms of the execution state
of both service producer and service consumer, along with the status of their resources, and for a
particular message exchange history [Andrikopoulos2011]. Inverting the traditional viewpoint on
compatibility, there are two types of changes to a service definition that guarantee version
compatibility:

• Backward compatibility: a new version of a message client is introduced and the message
providers are unaffected. The client may introduce new features but should still be able to
support all the old ones.

• Forward compatibility: a new version of a message provider is introduced and the message
clients that are only aware of the original version are unaffected. The provider may have new
features but should not add them in a way that breaks any old clients.

Some changes are both backward- and forward-compatible; for example the addition of a new service
method to an existing service description does not affect its existing consumers if everything else
remains the same. In such cases we talk about full compatibility, or simply compatibility. Full
compatibility allows the replacement of an existing service version with an equivalent (that is,
compatible) one without any effect on the correct operation and performance of its clients.

From a practical standpoint, compatible service evolution in the services description standard Web
Services Description Language (WSDL) is limited to service changes that are either backward or
forward compatible, or both. The types of service changes that are compatible are:

1. Addition of new (WSDL) operations to an existing document.

2. Addition of new XML schema data types in a WSDL document, if and only if they do not
affect existing types.

Incompatible change types on the other hand include most of the modifications possible on a service
interface: removing an operation, renaming an operation, changing the parameters (in data type or

1 We use the term services here in its most general sense, denoting any two or more parties
interacting using the service-oriented paradigm. The definition therefore applies to both the
relation between a composite service and its constituent (composite or not) services, and that
of a service-based application and the services it relies on. A similar assumption applies also
to the following definitions.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 47

order) of an operation and changing the structure of a complex data type. In [Andrikopoulos2011], an
alternative approach is discussed for enabling the compatible evolution of services. Instead of
restricting service changes to the short list above, a theoretical framework is presented which allows
for reasoning on the evolution of services. As a result, further compatible changes (called T-shaped)
are allowed; for example, removing data elements from incoming message data types and adding data
elements in outgoing message data types.

Service version compatibility for changes to the (structural) signatures of the service interfaces is
based on two fundamental premises of type theory, providing a direct connection with object-oriented
programming languages and practices:

• Service argument contra-variance: if the argument of a service is redefined, the new argument
types must always be an extension (generalization) of the original ones.

• Service result co-variance: if the result of a service is redefined, the new result types must
always be a restriction (specialization) of the original ones.

When evolving a business protocol, usually defined in the BPEL language, states and transitions may
be added to or removed from an active protocol. A new version of a protocol is created each time its
internal structure or external behavior changes. The perception that clients have of a specific protocol
is called a protocol view. Since the client's view of a protocol is restricted only to the parts of the
protocol that directly involve the client, a client might have equivalent views on different protocols.
Clients whose views on the original and target protocols are the same are essentially not affected by
evolution. Protocol compatibility aims at assessing whether two protocols can interact, i.e. if it is
possible to have a conversation between the two services despite changes to their protocols.
Compatibility of two protocols can be either complete, i.e. all conversations of one protocol can be
understood by the other protocol, or partial, when there is at least one conversation possible between
the two protocols.

SERVICE VERSIONING

A robust versioning strategy is needed to allow for upgrades and improvements to be made to a
service, while continuously supporting previously released versions. Service versioning is therefore an
important issue for service developers and providers alike [Papazoglou2011]. Versioning as a concept
has its roots in the SCM field, which has contributed in major ways to software maintenance and
evolution [Bennett2000]. From the different mechanisms developed under SCM, of particular interest
for service evolution is that of development support using versioning as summarized in
[Estublier2005]. Versioning in this context refers to the keeping of historical records of the various
software artifacts in the domain of responsibility as they undergo change. The reliance of services on
publishing their service interface descriptions (in the majority of cases in one of the versions of the
WSDL language) adds an additional dimension to the versioning of services, on top of the traditional
one requiring the versioning of their implementing components. More specifically, it requires the
promotion of structured documents to first-class software objects that need to be versioned and related
to the other objects (documentation, code, test-related documents). These service interface description
documents are the only means of interaction with the service and confine for that purpose the
executable code to an internal to the service role. Interface versioning therefore is essential for
allowing services to evolve over time.

VERSIONING TECHNIQUES

Service interface version techniques reuse the methods developed and used in practice for a number of
years in the context of SCM. In particular, versioning approaches also distinguish between major and
minor releases. In the context of services, a major release signifies an incompatible service version,
while minor releases assume the existence of (vertical) compatibility between the new and older
version. Uniquely identifying a service version in the version space usually entails including a
MajorNumber.MinorNumber identifier in the service interface. Version ID “1.2” for example, denotes
the 2nd minor revision of the 1st major release (which has version ID “1.0”). Alternatively, the
naming scheme may incorporate a release date stamp.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 48

Service interfaces are in the vast majority of cases defined as documents of the XML dialect known as
the WSDL language. It follows naturally therefore that version identification should be applicable to
XML documents. Along these lines, version identifier information in practice is included directly in
the XML namespace of the document and/or the namespace of its data types. Using a new namespace
inadvertently results in disrupting the binding of the service on the consumer side, i.e. it “breaks” the
existing consumers of the service. A similar result is achieved by incorporating the version identifier
in the endpoint URL of the service interface. Both methods are therefore meant to be used only if a
major version of a service is deployed.

An alternative, more flexible and informative approach is to include dedicated version identifier
attributes in the root element of the WSDL document and/or to each element of the document (in the
case of allowing different identifiers for the data types and interface signature definitions). Despite its
usefulness, this method is not supported by the WSDL specification. This, in turn, requires the
consumers to be somehow able to process the versioning information and understand the implications
of the naming scheme on application level. Lack of consensus on how this information is supposed to
be handled on a lower, communication level, and the absence of standardization efforts mean that such
a solution can only be used if the service consumer applications are specifically designed to
incorporate them. This generates a degree of coupling that goes contrary to the loose coupling nature
of SOA; it may be acceptable in some cases however.

VERSIONING STRATEGIES

In the case of service evolution, the cost of provisioning for multiple service interfaces is non-linear
[Papazoglou2011]. The development of a new service interface requires additional effort in binding
the interface versions with the underlying implementation(s). Since, as we discussed above, many
changes to the service interfaces lead to incompatible service versions, service providers in practice
need to support multiple active (i.e. non-decommissioned) versions of the same service, as shown in
Fig. 1. Otherwise they need a) to notify their service consumers about the applied changes (which in
many cases it is not possible, e.g. in the case of public services that do not use Service Level
Agreements (SLAs) with their consumers), and b) to rely on the service consumers to adapt to the new
service version (instead of moving to another service provider offering an equivalent service).
Offering multiple active service versions, however, additionally requires access to a number of
resources in the supporting infrastructure for each active version (e.g. computational resources in the
service container, connections to databases, storage space for its transactional logs). Furthermore, each
version adds managerial overhead in terms of monitoring and auditing in order to ensure that its
operation complies with the agreed-upon Service Level Agreements (SLAs) with the provider’s
customers.

FIGURE 1

Providing for multiple active versions can therefore be overtaxing for the service provider. A balance
between the cost of losing customers to the competition due to inconsistent updates to the service, and
that of maintaining many versions of the service at a time, is usually reached by minimizing the
amount of active versions through the use of compatible changes. The best practice for this purpose
relies on a compatibility-oriented strategy for versioning: maintain multiple active service versions for
major releases (i.e. incompatible versions), but cut maintenance costs by grouping all minor releases
under the latest (compatible) one [Andrikopoulos2011], as shown in Fig. 1. Special provision has to be
taken for the decommissioning period of versions to be deprecated. Jerijaervi and Dubrais
[Jerijaervi2008] discuss different approaches for decommissioning versions. Usually, a “grace” period
is given before the version becomes inactive, notifying the service consumers if an SLA has been
signed with them, or they are subscribed to a dedicated informational service which can push version
change notifications to them. This is simply however an industrial best practice which has not been
standardized and therefore it relies on service developers to enforce it.

CHANGE-ORIENTED SERVICE LIFECYCLE

Managing deep service changes requires a change-oriented service life cycle methodology to provide a
sound foundation for spreading changes in an orderly fashion so that impacted services in a service-

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 49

chain are appropriately (re-)configured, aligned and controlled as the changes occur
[Papazoglou2011]. The purpose of the change-oriented service life cycle is to ensure that standardized
methods and procedures are used for the efficient and prompt handling of all service changes, in order
to minimize the impact of change-related incidents upon service operation and quality. This means
that in addition to functional (structural and behavioural) changes, a change-oriented service life cycle
must deal with policy-induced, operational and non-functional changes. The objective is to achieve
actual end-to-end QoS capabilities for end-to-end services to achieve the proper levels of service
required. Toward this goal, the lifecycle focuses on ensuring that services are performing as desired,
and that, out-of-control or out-of-specification conditions are anticipated and responded appropriately.
This includes traditional QoS capabilities, e.g. security, availability, accessibility, integrity and
transactionality, as well as service volumes (e.g. number of service events, number of items consumed,
service revenue) and velocities (i.e. its performance characteristics). The combination of these
measurements provides all the information needed to understand how an enterprise is performing in
terms of its services.

FIGURE 2 – the life-cycle phases

Fig.2 illustrates such a deep change-oriented service life cycle that comprises of a set of inter-related
phases, activities and tasks that define the change process from the start through to completion. Each
phase produces a major deliverable that contributes towards achieving change objectives. The phases
of the life cycle are discussed in the following.

PHASES OF THE CHANGE-ORIENTED LIFECYCLE

As shown in Fig. 2, there are four phases in the lifecycle: need to evolve, analyse impact of changes,
align-refine-define and operational service. The initial phase (need to evolve) focuses on identifying
the need for change and scoping its extent. One of the key activities in this phase is identifying the root
causes of the need for change and their potential implications. For instance, compliance to regulations
is one of the major forces for change and may lead to the transformation of all services within a
service network. The impacted individual services in the end-to-end service (called services-in-scope)
therefore need to be identified. In addition, service performance metrics, such as Key Performance
Indicators (KPIs), need to be collected, both for the services-in-scope and for the end-to-end service.
The information collected in this phase (change causes, scope, services-in-scope and KPIs) is given as
input in the following phase in the cycle.

The second phase (analyse impact of changes) focuses on the actual analysis, re-design and
improvement of the existing services, and the estimation of the cost of applying the proposed changes.
The ultimate objective of this phase is to provide an in-depth understanding of the functionality, scope,
reuse, and granularity of the services-in-scope that are identified for change in the previous phase. The
problem however lies in determining the difference between existing and future service functionality,
and assessing the impact of the transition to the proposed functionality. For this purpose, instead of
applying the changes directly on operational services, organizations rely on the existence of “as-is”
and “to-be” service models. Analysts rely on an “as-is” service model to understand the portfolio of
available services. This model is used as the basis for a comprehensive re-engineering analysis of the
current portfolio of available services that need to evolve. The “to-be” service model is used as the
basis for describing the target service functionality and performance levels after applying the required
changes.

To determine the differences between these two models a gap analysis model is used to help prioritize,
improve and measure the impact of service changes. Gap analysis is a technique that purposes a
services realization strategy by incrementally adding more implementation details to an existing
service to bridge the gap between the “as-is” and “to-be” service models. Gap analysis commences
with comparing the “as-is” with the “to-be” service functionality to determine differences in terms of
service performance (expressed as KPIs) and capabilities. Service capabilities determine whether a
process is able to meet specifications, customer requirements, or product tolerances. Service changes
may spill over to other services-in-scope in the service chain. It is therefore essential during the
analysis to be able to recognize the scope of changes and functionality that is essentially self-sufficient
for the purposes of an evolving service. When dealing with deep service changes, several types of

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 50

problems need to be addressed: service flow problems, service control problems, overlapping and/or
conflicting functionality and input/output problems [Papazoglou2011]. With respect to cost estimation,
this process involves identifying and weighing all services-in-scope that need to be re-engineered in
order to estimate the cost of the re-engineering project. In cases where costs are prohibitive for an in-
house implementation, an outsourcing policy might be pursued, or the decision for re-engineering
might be reconsidered.

During the third phase (align, refine, define), all the new and changed services are aligned, integrated,
tested and when/if found appropriate, put into production. To achieve this, a service integration model
is created to facilitate the implementation of the service integration strategy. The service integration
model establishes the integration relationships between service consumers and providers, determines
the message distribution needs, delivery-responsible parties, and provides a service delivery map.
Finally, the service integration model addresses the message and process orchestration needs for the
resulting end-to-end service. The resulting service integration strategy includes service design models,
policies, SOA governance options, and organizational and industry best practices. The role of the
services integration model ends when a new (upgraded) end-to-end service architecture is completely
expressed and validated against technological specifications provided by infrastructure,
management/monitoring and technical utility services. The resulting service then enters the last phase
of the lifecycle (operational service), until the need for change is again identified, initiating once more
the process described in the previous phases.

CONCLUSIONS

Despite its connections with component evolution, service evolution poses a number of additional
challenges due to the strongly encapsulated and loosely coupled systems (i.e. services) that it deals
with. In this context, service compatibility and versioning become important mechanisms for enabling
the seamless update of a service without affecting its existing consumers. Such changes are not always
possible however. In this case it is required of service developers to consider the scope and impact of
the change and weigh the outcome against the effort and resources required for applying it. A
systematic change-oriented service lifecycle should be used for this purpose.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Community's Seventh
Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 51

Appendix D: A Variable Context Model for Adaptable Service-Based
Applications

Antonio Bucchiarone

Fondazione Bruno Kessler
Via Sommarive, 18, Trento TN 38100, Italy
bucchiarone@fbk.eu

Cinzia Cappiello, Elisabetta Di Nitto, Barbara Pernici and Alessandra Sandonini

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo Da Vinci 32 20133 Milano, Italy
{cappiell,dinitto,pernici}@elet.polimi.it

Keywords

Service-based Applications, Context-Awareness, Modeling, and Adaptation

INTRODUCTION

Service-based applications are deployed in dynamic and distributed settings by composing different services,
possibly owned by different service providers. System developers exploit the functionality offered by services
without having them under their direct control. This introduces critical dependencies between service-based
applications and their component services that could change or be unavailable without notice.
Since the developer of the service-based application usually aims at guaranteeing continuity of service to its
users, service-based applications have to be equipped with adaptation capabilities to react dynamically and
automatically to unavailability of the component services.
Service selection becomes an important aspect of SBAs; such selection depends on the global requirements, on
the functionality and on the quality of service to be provided. Moreover, it may depend also on the context in
which services are executed. Context is defined as: “any information that can be used to characterize persons,
places or objects that are considered relevant to the interaction between a user and an application, including
users and applications themselves” (Dey 2001). Context should be taken into account for service selection. For
example, the service that informs a sailorman about the weather forecasts on a specific route should be very
detailed and focused on the conditions of the sea and of winds, while the service dedicated to a family willing to
decide if to book a trip on the seaside should be focusing on the weather conditions of a specific place, typically,
on a longer time scale.
More in general, service-based applications should be able to adapt the execution flow to address changes of the
execution context. For example, applications have to be flexible in order to satisfy users’ variable requirements
on the basis of the situation (e.g., geographical position, time) in which users are when they access the
application.

A first goal of this paper is to provide a novel context model for adaptable service-based applications and to
point out to its role in the adaptation activities. The context model is the basis for the definition of triggers
enabling adaptation or evolution of service-based applications and enables the identification of the information
that has to be collected and monitored at run-time. We propose an approach to context modeling which is itself
adaptive to the current situation. In fact, the relevant contextual information might be different in different

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 52

situations: for instance, the information needed about a location may be different depending on the location (e.g.,
a small village vs a large town), or depending on the user who is interacting with the application (e.g., a user who
knows a location well vs a user who is not familiar at all with the location). In these cases the way the
application behaves might vary not only according to the context in general, but according to the representation
of the context itself that is variable in the different situations.
Context data are gathered by using different kinds of sensors. An important issue is to understand the level of
granularity at which to collect data. The level of granularity is defined by the amount of details to catch for
representing the significant characteristics of the environment for a given application. In fact, it is convenient to
avoid the collection of unnecessary details of data that are not suitable to catch changes in the execution context.
For example, in case of emergency situations, it is necessary to collect data values every second in order to have
a fine control of the situation, while in other situations a daily value is enough since a more frequent measure of
context data does not provide any additional relevant information. In location-based applications, in some cases,
coarse information about the location (e.g. a country) may be sufficient, while in other cases it is important also
to be aware of the regional context.

As a result of the previous considerations, another goal of this paper is to address the issue of the granularity of
monitored context data and to propose a way to support adaptation, by analyzing context data at different
granularities and using a proactive approach to establish the adaptation needs and the dynamic invocation of the
services.

The paper is structured as follows. Section 2 describes previous work related to context-based adaptation and
highlights the innovative contributions of our approach. Section 3 describes the phases that compose the life
cycle for designing service-based applications together with the specific actions to perform and the artifacts
exploited to perform adaptation. Section 4 provides details about the framework we propose to enable context-
aware adaptation. Capabilities of the presented framework are discussed in Section 5 by means of an example.

RELATED WORK

The goal of this section is to give an overview of approaches and frameworks that are strictly related
to what we propose in this paper. In particular we have categorized them in the following three topics:
adaptation of SBAs, context-aware frameworks for SBAs and approaches for composition and
adaptation of SBAs.

ADAPTATION OF SERVICE-BASED APPLICATIONS

Adaptable systems change their behavior, reconfigure their structure and evolve over time reacting to
changes in the operating conditions, so to always meet users’ expectations. As suggested in (Ardagna
& Pernici 2007), adaptation mechanisms can either be embedded in the description of the adaptable
SBAs or implicit in its structure. Various frameworks can be found in the literature with the objective
to support adaptation of SBAs, each of them addressing a specific issue. Most of them concern built-in
adaptation, i.e. the adaptation logic is completely specified at design time. They concentrate on how to
specify adaptation mechanisms and adaptable applications, exploiting different tools. For instance, the
specification may be performed by extending standard notations (i.e., BPEL) with adaptation specific
tools (Karastoyanova et al.,2005) using event-condition-action like rules (Baresi et al., 2007,
Colombo et al, 2006), variability modeling (Hallerbach et al, 2008) or aspect-oriented approaches
(Kongdenfha et al., 2006).
In the literature there are, however, proposals of frameworks for dynamic adaptation, all featuring an
adaptation manager separated from the application. Notably, all these approaches are in the service-
oriented field. In (Spanoudakis et al., 2005) the authors consider the problem of adapting the

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 53

application by replacing malfunctioning services at runtime. The adaptation rule is fixed at design
time, but it is dynamically applied by a manager component that monitors functional and non-
functional properties, creates queries for discovering malfunctioning services and replaces them with
dynamically discovered replacements.
Narendra et al. (Narendra et al., 2007) proposes an aspect-oriented approach for runtime optimization
of nonfunctional QoS measures. The METEOR-S framework (Verma et al., 2005) supports dynamic
reconfiguration of processes, based on constraints referring to several QoS dimensions.
Reconfiguration is performed essentially at deployment-time. PAWS (Ardagna et al., 2007) is a
framework for flexible and adaptive execution of web service based applications. At design-time,
flexibility is achieved through a number of mechanisms, i.e., identifying a set of candidate services for
each process task, negotiating QoS, specifying quality constraints, and identifying mapping rules for
invoking services with different interfaces. The runtime engine exploits the design-time mechanisms
to support adaptation during process execution, in terms of selecting the best set of services to execute
the process, reacting to a service failure, or preserving the execution when a context change occurs.
Finally, the Vienna Runtime Environment for Service-oriented Computing (VRESCo) (Hummer et al.,
2011) is a framework implemented to address issues like dynamic selection, binding and invocation of
services.

CONTEXT-AWARE FRAMEWORKS

The literature is rich of contributions focusing on the development of context-aware applications. In (Baldauf et
al., 2007) an interesting classification of some well-known frameworks is proposed together with an architectural
model that is suitable for describing the main elements of a context-aware application.

Figure 1. Architectural model of context-aware applications, from (Baldauf et al., 2007).

As shown in Figure 1, this model is structured in five layers. At the lowest layer we have the mechanisms needed
to discover and manage sensors of contextual data. On top of this layer it is possible to collect data from these
sensors. These data are then preprocessed to extract relevant contextual information from them. The contextual
data are stored according to the defined context model and can be queried by application-level components.
While it is possible to build an application from scratch developing all layers shown in Figure 1, specific
frameworks usually provide support for what concerns the first three or four layers in the figure. Some
approaches such as CASS (Fahy & Clarke 2004) offer a centralized context server while others such as
Hydrogen (Hofer et al., 2002) assume that the entire stack of layers is to be offered on small devices like
smartphones. Interested readers can refer to (Baldauf et al., 2007) for a detailed comparison between the various
frameworks.
Other approaches offer a programming model specifically focused on context. For instance, Hirschfeld et al in
(Hirschfeld, Costanza & Nierstrasz 2008) present a programming approach where contextual concepts are first
class elements. The idea behind the approach is that when, during the execution of a program, a context change

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 54

is detected, one or more layers of code are activated/deactivated. Each layer defines a way to change the
behavior of a certain piece of code depending on the context change that has occurred. While the approaches
mentioned above focus mainly on how to acquire context information and on how to handle the corresponding
changes in the software system, the literature on DBMS has been focusing on the problem of determining the
proper interval of data sampling to avoid missing information about relevant events and on time granularity.
Also, some approaches focusing on the definition of rich context models have been proposed. For instance, in
(Cappiello et al. 2006) the problem of modeling several alternative context sub-dimensions (e.g. for space and
time) has been studied, but the granularity of such information is not discussed.
In (Bolchini et al 2009) a context model that captures different context dimensions is presented. It is called
context dimension tree. An example is shown in Figure 2.

Figure 2. An example of context dimension tree (Bolchini et al 2011).

Besides the relationships explicitly shown by the graphical notation that represent either “part of” or “is
alternative to” relationships, other context-validity constraints can be properly defined. Single contexts are
defined as subtrees of a context dimension tree, representing the contexts currently envisaged for a particular
application. A partial order between more or less abstract contexts can also be defined. This context model has
been recently integrated with a framework for acquiring context information from sensors (Camplani et al.,
2011).

CONTEXT-AWARENESS COMPOSITION AND ADAPTATION 

So far we have presented approaches to adapt SBAs and to acquire, model and manage context in generic
pervasive system. The literature offers also approaches focusing on exploiting contextual information within
service composition and on providing context-dependent self-adaptation mechanisms.
In (Autili et al., 2007) a conceptual model for context-aware service oriented applications is introduced: it shows
the relationships among all the entities constituting an adaptable context-aware service-oriented application.
Such conceptual model could be considered as a sort of dictionary for the users and the developers.
(Chaari et al. 2007) propose an architecture for a service based application trying to separate the aspects of
context management and adaptation from the service application core. Authors propose to apply adaptation to
three different levels in the service application: service (application behaviour), data (content adaptation) and
user interface (visualization). Service behaviour can be adapted substituting the current version of a service with
a one that could be more suitable for the measured context. The flexibility of such system is limited since all the
versions of the services have to be pre-built depending on the different contexts. In (Martin et al. 2006) context-
based adaptation for mobile learning systems has been studied: suitable activities are suggested on the basis of
the context in which the user is operating. Each user has preferences in terms of needs, interests, personal
features and learning styles. The proposed adaptation mechanism is implemented in three steps; each of them is

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 55

in charge of the analysis of the information and of the selection of the most suitable activity for a user,
depending on his/her context.
The approach that appears to be closest to ours is the one presented in (Niu, Li, Zhao, Tang & Shi 2011), where
the idea of a multi-granularity context model is presented, in particular, for location and time values, with an
ontological approach to reason on the context and to compose services in the most appropriate way.
The main distinctive element of our approach compared to the others in the literature is that our context model
integrates the idea of various levels of granularity for context with the idea of describing as part of the context
model the dynamics of transition from a context value to the other. Moreover, the context model is integrated
into a highly dynamic self-adaptation approach that is able to compute the proper adaptation policies on the fly,
when they are needed.

Summary. From the analysis of the literature, it is possible to notice a lack of a generic architecture able to
cover all the aspects behind the adaptation of context-aware applications and of a general context model able to
accommodate context variability in the modeling aspects and not only in its values. In this paper the effort would
be focused in such direction. In particular, the proposed framework is able to cover all the aspects that are at the
basis of the construction and operation of a context-aware adaptable application and would constitute a sort of
general environment in which all the approaches in the literature could take place. Our framework enables the
construction of an adaptable service based application. Starting from the context modeling, we aim at offering a
generic framework able to capture all the relevant aspects behind the development of such applications. In
particular we would like to offer a formalization of the main concepts that will be used in the framework for
context-aware adaptation. In particular, we focus on the relationships that could exist among the adaptation
triggers and the decision about the most suitable adaptation strategy to execute.

A LIFE-CYCLE FOR ADAPTABLE SBAs

Figure 3 shows the life cycle for adaptable SBAs presented in (Bucchiarone et al., 2009) and (Bucchiarone et al
., 2010). It is composed of two cycles: (i) evolution cycle that leads to the explicit re-design of an application, (ii)
adaptation cycle that is performed at run time and addresses all the cases in which the adaptation needs are
addressed on-the-fly. The two cycles coexist and support each other during the lifetime of the application. The
figure highlights the various adaptation- and monitoring-specific actions (boxes) carried out throughout the life-
cycle of the SBA, the main design artifacts that are exploited to perform adaptation (hexagons), and the phases
where they are used (dotted lines).

Figure 3 - life-cycle for adaptable SBAs (Bucchiarone et al., 2010).

The initial phase of the life cycle is the (Early) Requirement Engineering and Design in which the adaptation
and monitoring requirements are elicited on the basis of the context dimensions that are considered relevant for

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 56

the considered SBA. During SBA construction, the corresponding monitors and the adaptation mechanisms are
realized and refined until the Deployment phase. When the system is running (operation and management
phase), continuous monitoring is executed supporting the detection of relevant context and system changes.
Here, we can proceed in two different directions: executing evolution or adaptation of the SBA. In the first case
we restart the evolution cycle with the requirements engineering and design phase, while in the second case we
proceed identifying adaption needs that can be triggered from monitored events and adaptation requirements.

An adaptation need can be formally defined as the identification of the specific problem-situation that demands
for adaptation. For each adaptation need it is possible to define a set of suitable strategies that define the possible
ways to achieve the adaptation requirements. On the basis of the current situation, the knowledge obtained from
previous adaptations and executions, and the available adaptation mechanisms, a reasoner selects the most
suitable adaptation strategy that is automatically or manually performed in the enactment phase.

Summarizing, the context-aware adaptation requires the definition of a context model together with the
definition of the respective adaptation conditions. In addition, the monitoring phase has a crucial role since all
the mechanisms able to capture context changes are performed and are responsible to trigger adaptation. Here, it
is fundamental that changes are detected as soon as possible to promptly adapt the application to the new
conditions. Finally, once that the need of adaptation is detected, there is need for adaptation mechanisms and for
modules that promptly select and enact them.

A FORMALIZATION OF CONTEXT AT DIFFERENT LEVELS OF
GRANULARITY

In this section we present our context model. It enables the possibility to model various dimensions. Examples
are:

− User: the person that accesses the application. It is possible to consider different types of users with
different roles (e.g., simple user, administrator) that may interact with the application in different ways.
Thus, this context dimension contains the information about the privileges, the roles, or the preferences
the user has in the application. Moreover, such dimension permits to express the users’ goals.

− Environment: it can be related to the space and time factors. The space factor may be expressed in terms
of an address or may be referred to the environmental condition of the user (the value of some
measurable physical parameter). The time factor refers to the information about the time in which the
access to the application occurs; it could be expressed in absolute terms (defining a precise date) or it
could indicate a part of the day (morning, afternoon, evening, night) or an interval in general.

− Application: this context dimension refers to the characterization of the service invoked for the SBA
execution. It contains information about all the services together with their status (if a previous
execution reported an error, or if it is available), the time of the last failure, and the list of similar
services. The latter information could be exploited if a service needs to be substituted with another one.

− Business context: it considers the characteristics of the domain for which the application has been
developed. The business context usually defines a set of constraints and policies for the application
execution.

− Device: it specifies the software and/or hardware characteristics that are available at the end user side.
Such elements permit to specify, for example, the physical characteristics of the device, the operating
system, or the web browser the user is using for accessing the application services.

The level of abstraction to be used to represent the context relevant to an application depends on the application
itself and can even vary from time to time. For instance, consider a service offering touristic information about
various areas in Europe. In the case the user is located outside Europe, the application may propose, as a default,

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 57

general information concerning the entire continent. In the case the user is located in Europe, then his/her exact
location would be of interest for the application that would propose information about events near to that
location. Indeed, another service calculating the taxes the user has to pay on a certain product purchased through
some web portal is, at the same time, interested in knowing only the country in Europe in which the user is
located. We explicitly represent these different levels of abstraction as part of the context model. Therefore,
considering that the context is composed of different dimensions and that each dimension can be represented at
different levels of abstraction, which we call granularity levels, we provide the following definition.

Definition (Context Model and Context Dimensions): A context model is composed of a set of dimensions C
= {C1, …, Cm}. Each context dimension can be elementary or composite.
An elementary context dimension is defined as Ck = <nk, Vk>, where nk is the name of the context dimension and
Vk is the set of its possible values. This set either categorical or interval. In the former case, the values will be
included in a specific vector V = (vk1...vkh) while, in the latter case V will be defined by its extremes, i.e., V =
[vk

min, vk
max]. The actual values of the quality dimensions can be obtained at execution time.

A composite context dimension is defined as Ck = <nk, SCk>, where nk is, again, its name and SCk is a set that
includes information about all other context dimensions related to Ck through one of the following two
relationships:

• A, which includes all pairs < Ck, Ci> where Ci represents a specific aspect of Ck (think, for instance at
the many possible aspects concerning the user context dimension); and

• F, which includes all pairs < Ck, Cj> where Cj represents a finer grained dimension with respect to Ck
(for instance, Ck could represent geographical continents Cj could represent a country which is located
in a continent).

Figure 4. Example of context model.
More precisely: SCk = {<Ck

1, Rk
1>, …, <Ck

p, Rk
p>}, where Ck

i (for 1 ≤ i ≤ p) are context dimensions and Rk
p are

either some A or some F.

The example in Figure 4 defines the user context dimension as characterized by aspects device and location.
device is an elementary dimension defined by a categorical set of values. location is, in turn, a composite
dimension characterized by aspects kind of environment and continent. This last one, is refined into the
dimensions country and then exact location. Specific values associated to the elementary dimensions are
highlighted in the figure and connected to the corresponding dimension through dotted lines. The reader should
notice that when a pair of context dimensions is in the relationship F, this implies that there exist a way to
compute the value of the lower grained dimension starting from the value of the finer grained one. In the
example, the GPS coordinates characterizing the exact location dimension are used to identify the values for
country and continent.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 58

CONTEXT INSTANTIATION

A context model can be suitable for execution if the transitive closure of each context dimension leads to a set of
values. Intuitively, if we refer to the graphical representation of a context model, this means that all its leaves
have to be associated to concrete values. Of course, the values associated to dimensions can change over time
during the execution of the SBA. In case of discrete and finite sets of values, we can define a State Transition
System where the states correspond to possible configurations of a context dimension and transitions stand for
possible context dimension evolutions. For each context, a set of dimensions and their level of definition is
associated, denoting admissible values. In case of continuous values, we can either define a function that leads
from a value to the other, or group values in ranges that are then used in a state diagram. Figure 5 shows an
example of state transition system associated with the “kind of environment” context dimension.

Figure 5. State Transition System for "kind of environment" context dimension

Usually, these relationships between possible values of context dimensions are not captured as they are not under
the direct control of the context-aware application. However, describing them explicitly can be beneficial for
self-adaptation as it enables the definition proactive adaptation mechanisms that, based on an analysis of the
state transition system, execute adaptation actions before certain context values are actualized. Moreover, it is
important to note that each context dimension may evolve as an effect of service invocations, which corresponds
to the “normal” behavior of the domain, but also as a result of volatile – “exogenous” – changes of the
environment.
One of the aspects to be considered in the design of context-aware service-based applications is the definition of
the possible ways to compute the context. We have identified three possible cases:

− A value Vk is monitored: data are collected by means of sensors that are characterized by precision and
sensing frequency, which can vary during the execution;

− A value Vk is explicitly inserted by the user;
− A value Vk is derived: data are obtained by applying specific assessment algorithms by using estimated

or real data. Values associated to a low grained dimension belong to this category.

The collection of context information itself may vary depending on the specific context of an application. For
instance, collecting location-base information indoors and outdoors requires possibly different types of sensors
or can be inferred by other parameters, such as actions being performed by the user. Therefore context-aware
applications with variable context should include in the design the appropriate context capturing and change
modules to be able to adapt themselves to different context types dynamically and automatically. In our
approach, we assume that the specification of these modules is part of the process design and that the
corresponding context adaptation functionalities are realized as part of the adaptation mechanisms used at
execution time (see the next section).

CONTEXT-AWARE ADAPTATION OF SERVICE-BASED APPLICATIONS

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 59

Adaptation of a SBA is performed by Adaptation Mechanisms that are constructed in the Construction phase of
the life cycle and that can be executed during the Adaptation Process that is triggered by Monitored Events or by
any other external stimulus that can be acquired by the system and that leads to the modification of the SBA.
For this reason a service provider or a service integrator, who compose a set of services, have to specify for each
service the dimensions of the context to which it is related. To do this we use the following function:

Definition (Context Mapping Function): At design time (i.e., in the Requirements Engineering and Design
Phase), it is important to define, for each service included in the SBA, the dimensions of the context that can
affect its behavior. It is called context mapping and can be defined as a function mz: sz →Cz that specifies, for
each service, the set of relevant context dimensions Cz ⊆ C. Considering the union of all the sets of relevant
dimensions ∪z Cz ⊆ C we obtain the set of context dimensions associated with the specific application SBA. For
each context dimension, it is also necessary to define the sub-context dimension considered that is the particular
aspect that will be considered or the granularity with which the context dimensions has to be measured. The sub-
context dimensions can vary dynamically during process execution, as well as their granularity. In case,
adaptation of context dimensions is also part of the adaptation mechanisms, and the designers must specify, in
addition to the set of context dimensions and their sub-context, also the possible changes in the context
representation that can be applied during execution, in terms of conditions for context representation variability
and context changes (for instance, moving to a finer granularity when a context dimension becomes more
critical). It may also happen that the same dimension has to be assessed with different monitoring frequency on
the basis of context changes. This means that in our approach also the monitoring procedure is adaptive. In fact,
for example, in case of emergency, some changes may occur more frequently that in normal conditions and in
such situations it is necessary to monitor data more often. On the contrary, it may also happen that the
monitoring system acquires more data than needed wasting uselessly resources, so the monitoring rate for the
dimensions of interest may be reduced.
As stated above, the context includes users and execution properties. Users’ characteristics and preferences can
be obtained explicitly, for instance, by filling a user profile, or derived implicitly by profiling users at run-time.
Other information such as the users’ geographical position, the temporal details, and the actions that characterize
the interaction of the users with the surrounding space can be obtained through monitoring. Note that defining
the context mapping, we define the requirements for the monitoring mechanisms that are tools (that have to be
realized in the Construction phase) able to gather the needed context data. Since the context mapping specifies
the relevant context dimensions and sub-context dimensions, it provides all the information needed for designing
monitoring mechanisms able to gather data related to a context dimension with different granularities.

As mentioned above, it is also necessary to specify the monitoring frequency, that is the frequency with which
the context values have to be assessed. The definition of the monitoring frequency is a critical issue since it
affects the precision and effectiveness of the adaptation operations. The monitoring mechanisms should be
designed in order to be able to self-define the more suitable monitoring frequency, in relation with the frequency
with which context changes occur. This adaptive behavior is enabled from reasoning on historical data or on the
characteristics of the reference scenario. We assume that we can insert in the process description, in critical
points of the process or as a parallel subprocess, a monitoring dimensions assessment block which enables the
re-evaluation of the monitoring frequency and granularity for context dimensions, that can be based on historical
data and provide reactive or proactive evaluations of the context. Reactive evaluations are mainly based on
thresholds associated to the dimensions, while proactive monitoring can be induced using learning mechanisms
on a training set of process executions.
Once the context mapping is complete, it is necessary to properly capture and define the adaptation aspects (i.e.,
all the activities and artifacts in the adaptation cycle). In particular, it is important to define when the contextual
changes are critical for the SBA functioning (i.e., adaptation triggers) and what should be done or achieved when
these changes occur (adaptation needs).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 60

For each considered SBAs, it is also necessary to consider the available or desired adaptation mechanisms that
are tools that implement a way to execute adaptation. Generally adaptation requires some temporary
modification permitting to respond to changes in the requirements and/or in the application context or to faulty
situations. Examples of adaptation mechanisms are mechanisms that enable re-composition, service substitution,
dynamic binding, compensation, re-execution, evolution, failure.

What we want to deal here are situations where the running SBA need to be resumed from the execution failure
(i.e., a service is not available, the location of the user is changed and the WiFi connection is not available,
etc...). This means to resume its execution from the point where it has been blocked. Let us consider a SBA that
orchestrates a set of services S, and operates in the context represented by different context dimensions CK.
When some of these services cannot be executed due to the value of some context dimensions, the execution
cannot proceed and the adaptation of the SBA is required. In order to adapt the SBA we need to generate an
adaptation process which is the orchestration of services that implements the adaptation strategy. The goal of
resuming the execution of the SBA can be expressed as the reachability of a configuration of the context in
which the execution of the next application task is possible.

Definition (Context-Aware Adaptation Trigger): When a change in the values associated with some Ck
occurs, the application could need adaptation. An adaptation trigger Atk is a predicate composed of an
elementary dimension or of a lower grained dimension Ck, a comparison operator (e.g., =, >, <) or a set operator
(e.g., ∈, ∉) and a value (or set of values) ⊆ Vk.

Definition (Adaptation Strategy): an adaptation strategy as is a tuple (at, ap, p) where at denotes the adaptation
trigger the strategy is devised for, ap is the adaptation plan, and p is the priority associated to the strategy. The
last element is important when there is more than one strategy for each adaptation trigger.

The adaptation plan ap associated with an adaptation strategy as defines the set of adaption mechanisms to use in
order to react appropriately on an adaptation trigger.

In order to handle the phases described in the previous section , in Figure 6 we propose a general framework able
to manage adaptation in service-based application on the basis of context changes. An adaptable SBA not only is
usually able to satisfy some requirements, but it also poses new requirements in terms of monitoring and
adaptation aspects. Monitoring requirements concern the need for detecting (part of) those situations that may
trigger the need for adapting an SBA. From these requirements, designers should derive the properties to be
monitored. These are then observed at runtime by a Monitoring Engine that, based on their values, is able to emit
some Monitored Events. Adaptation Requirements are fulfilled by Adaptation Strategies that can be executed
during the Adaptation Process that is triggered by Monitored Events or by any other external stimulus that can
be acquired by the system and that leads to the modification of the Adaptable SBA.
The architecture we propose is based on the presence of a Context Manager able to gather all the
context information needed by the application, generate monitoring events (threshold violations), and
assess context changes. Each time that context changes or monitoring events are generated, they are
sent to the Event Bus that is responsible for the identification of the events that require the adaptation
in the service-based application. Obviously, not all the changes enact adaptation, but only a subset of
them. If adaptation is required, information is transmitted to the Adaptation Manager that has to define
the most suitable adaptation strategy (i.e., service substitution, re-execution, re-negotiation, re-
composition, Compensation, etc…) to activate for the current context. It is worth noticing that an
adaptation strategy can realized by means of different adaptation mechanisms (i.e., provided by the
adaptable SBA).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 61

Figure 6. A Framework for Context-aware Adaptation of SBAs

The Context Manager is the module delegated to the instantiation of the Context model for the related
application and to the continuous monitoring of the context variables that contain information about the user, the
application, and the environment in which application is running.

The Adaptation Manager (AM) reacts to monitoring events arriving from the SBA and from the Context
Manager. Based on the incoming events, the AM infers an adaptation trigger that characterizes the cause of
adaptation. The component that is in charge to generate the adaptation triggers is called Event Handler. The AM
acts upon a set of adaptation strategies, each of which defines a process for specific adaptation triggers. The
adaptation mechanisms invoked by each adaptation plan are published by the SBA to the Event Bus of the
framework and the AM uses them by its subscription to that bus. For example, if the AM selects a strategy with
the associated plan (ami, amj, amk), it means that the mechanisms are contacted in that precise order.

AN EXAMPLE OF CONTEXT-AWARE ADAPTATION

In this section a simple real-world example is used in order to better explain our approach and show its validity
and effectiveness. Stock management aims at minimizing costs by reducing the amount of stocks in the
warehouse but in the meantime guaranteeing the continuity of the production activities. The stocks are defined as
the goods available in a certain time instant in a company and that can be used in the production activities or that
are ready to be delivered to the customers. A good stock management has to address the following issues:

− the definition of the optimal quantity order to order and store in the warehouse;
− the definition of the period in which a supply is needed

The former issue implies the minimization of the costs related to the stock management that are: supply costs,
stoppage costs, stock-out costs and stock-over costs. If the company work in a market in which there is absence
of uncertainty, the quantity to order is calculated with the Wilson Model (Hax et al., 1984) for which the stock
management issue is related to the supply and stoppage costs and the quantity to order is calculated considering a
trade-off between the two costs. On the basis of this method, every time that the stock level decreases under the
reorder point, the economic order quantity has to be ordered. Summarizing, the Wilson model is applicable when
the reorder point and the economic order quantity have been defined.

The latter problem refers to the identification of the time instant in which it is suitable to place the supply order.
In order to address this issue, the reorder point (RP) is determined in a way that it contains goods sufficient to
maintain active the production during the supplying phase:

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 62

where PT is the supplying time and cr is the consumption rate.

The problem is that neither a perfect, reliable, and secure supplying system nor an exact method to evaluate the
demand exists. Goods may be delivered earlier or later than the expected date. In order to address this
uncertainty, it is necessary to consider the safety stock that is the stock quantity than an organization should have
in order to face variations over time of the demand and of the procurement time. Considering the safety stock
(SS), the formula for the definition of the reorder point is:

Let us consider the scenario in which an organization has different shops located in different places. Each shop
has a local warehouse that receives the goods from a central warehouse each time the stock level is below the
reorder point. The central warehouse has always the adequate level of goods to supply all the different shops if
the orders request always the same amount of goods and are periodic where the time period between two
consecutive orders remains fixed.
This strategy is not optimal since it does not deal with uncertainty. In the shops, it may happen that the demand
varies and consequently the shop has to order different amount of goods or the frequency with which the orders
are places varies over time. For this reason, the central warehouse has to analyze the requests of the different
shops in order to prevent stock-out and stock-over situation. The central warehouse is in charge to perform the
following activities: (i) calculate the demand forecast and (ii) select suitable suppliers.
The first activity is a suitable example to describe the importance of the monitoring granularity, proactive
adaptation, and dynamic service invocation. The second activity is instead useful to show that some processes
can be executed in different ways on the basis of the granularity of input parameters, reactive adaptation, and the
use of dynamic service invocation.

DEMAND FORECASTING
Performing a correct demand forecasting is the fundamental input for planning and coordinating the main
activities of an enterprise. In fact, demand forecasting is the basis to define the production plan, the procurement
strategy and the marketing strategies and to plan the distribution. As a basis for adapting the reorder activities in
this process, some characteristics of context parameters themselves may vary in time during the execution of the
process for a improving the adaptability of the process. For instance, in the given process two relevant
dimensions are associated to the context and its monitoring:

- monitoring frequency T and
- reorder level K.

The identification of these variables is also related to some other context parameters such as: atmospheric
condition, number of holiday days in the considered period, season and geographical position (see Figure 7 for
the context model). Let us assume that the organization has a database that contains historical data about
observations of the demand trend (i.e., descending, ascending, constant) in specific days together with the
context parameters that characterize the observed local warehouse. The dataset is stored as a set of records of
contextual attributes (e.g., sun, 3.1, summer, sea, city) labeled with the assessed demand trend. In this
application, demand forecasting supports stock management in the definition of the most suitable quantity to
order and the frequency with which the different warehouses have to be monitored. A proactive monitoring
adaptation can be obtained by reasoning on the context of the process to vary process context parameters by

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 63

means of a classification algorithm and enables the classification of the current situation of the local warehouses
in order to obtain an estimation of the demand trend.

Figure 7. Context Model of the Scenario.

Through the analysis of these data, the responsible of the central warehouse is able to update the quantity of
goods to order. The analysis of the demand trend is also used to update the monitoring frequency in order to
deal with unforeseen situations. For instance, in Figure 8, as part of the process design a dimensions assessment
block is included, to change dynamically the monitoring frequency and the reorder level according to the orders
trend.

This part of the process to analyze the demand trend and update both the quantity of goods to order and the
monitoring frequency can be executed itself by means of an adaptive service-based application. In fact, this
application can be designed as a process in which two services are sequentially invoked (see Figure 8): (i) a
service that by means of machine learning techniques and classification algorithms is able to estimate the
demand trend (ii) a service that, on the basis of this predicted trend, updates the warehouse data (quantity of
goods to order and the monitoring frequency). The latter service will be executed by using dynamic binding and
thus, at run-time, on the basis of the considered demand trend the suitable update service will be selected (see
Figure 8). For example, if we have a descending demand trend, the service UpdateStoreDescending decreases
both the monitoring frequency and the quantity to order while if the same values will be increased if we have an
ascending demand trend. These changes in the dimensions are performed on the basis of the granularity and sub-
context dimensions defined for this process.

Figure 8 - Demand forecasting dimensions assessment block

SUPPLIER SELECTION

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 64

The central warehouse periodically selects the suppliers. For each product, the quantity needed is identified and
the most suitable supplier has to be selected. In the stock management, many times the products are classified by
considering their “organizational importance”. This classification is often performed by using the ABC analysis
that supports the categorization of the products into groups. These groups are often marked A, B, and C.
Products can be ranked by considering their importance in terms of sales revenues. ABC analysis is frequently
combined with Pareto analysis and consequently we can assign to the A group all the products that are related to
the 80% of sales, to the B group contains all the products that allow to go from 80% to 90% of sales and the C
group contains all the products to go complete the 100% of sales. On the basis of this classification, the products
in the A group are particularly relevant since they are valuable and often requested. The products in the B and in
C group are less critical. For each product, it is necessary to evaluate the quantity to order and to identify the
profile of a suitable supplier on the basis of the importance of the product that is modeled as a context parameter.
The supplier analysis will be more or less accurate depending on the importance of the considered product.
Therefore, we can model the supplier selection as an adaptive service-based application that uses a
SupplierAnalysis service. The supplier analysis should be more or less exhaustive on the basis of the product
relevance. Therefore, at run time, we need to adopt an adaptation mechanism for the dynamic selection of the
most suitable analysis service (see Figure 9).

Figure 9 – Supplier Analysis.

IMPLEMENTATION

The adaptable SBA described in the previous section and the context management and adaptation
mechanisms have been realized using the Eclipse Helios development tool, the WTP (Web Tools
Platform Project) drivers and Axis2 v 1.5.4 functionalities to realize dynamic web service invocation
with the open source ESB (Enterprise Service Bus) v 3.0.1, based on Apache Synapse provided by
WSO2 consortium. Each abstract service is configured as a proxy service, filtering invocation requests
on the basis of the context and service selection rules and invoking the corresponding concrete
services. The input (and similarly the output) message, when necessary, is transformed in order to
make it compatible with the invoked concrete service. For instance, if data are used with different
granularity levels according to the context, the data with the correct level of granularity is send in the
invocation of the concrete service. Similarly, sub-context dimensions may be varied in order to make
the service invocation compatible with the requested input for the service, based on the context model.
The class mediator class, realized in Java in Eclipse synapse-core1-1-1.jar library and inserted in the
ESB, decides at run time on the basis of context parameters which concrete service to invoke.
The services have been realized as Java classes using Apache Tomcat 7.0.11 and the MySql 5.1.49
DBMS. For each adaptive service, an abstract service has been created, and the relevant concrete
services are dynamically invoked on the basis of the context (e.g., in the example of Figure 9, the
abstract service supplier analysis is inserted in the process, and in case of context ProductImportance
= A, the concrete service VeryDetailedAnalysis is invoked.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 65

For process design, the Eclipse Plug-in BPEL designer the Apache ODE (Orchestration Director
Engine) 1.3.5 have been used. For the Context Management modules, Context type changes are
obtained with ad-hoc developed services, such as the the UpdateStore service, invoking the different
UpdateStore concrete services corresponding to a given trend evaluation. The Weka toolkit (Weka
3.6.4, realized at University of Waikato [10]) has been used as a basis for proactive adaptation, to
forecast context trends in context changes, using the NBtree classification algorithm. The updates in
context models are designed as separate processes which update the context data model.

CONCLUDING REMARKS

In this paper we have presented our approach to build context-aware self-adaptable SBAs. The
approach features a rich context model that put together two interesting aspects: a) the fact that
contextual information can be available at different levels of granularity and that such granularity can
vary over time during the execution of the application and b) the fact that evolution of context values
are explicitly described in the model either as state transition systems or as continuous functions.
The first aspect allows the SBA to be designed by exploiting the possibility to change level of
granularity for collecting contextual information thus offering to the users more precise tailoring to
their needs. The second aspect enables the possibility to define adaptation plans in a proactive way
thus anticipating the needs for adaptation that may arise during the application execution.
While the example presented in this paper represents a first experience of usage of our framework, a
deeper evaluation is planned in the short term. This evaluation will concern the extensive
experimentation of our context model both in terms of its expressive capabilities and of its ability to
trigger proper adaptation actions in an effective and timely way.

ACKNOWLEDGEMENTS
Research leading to these results has received funding from the European Community's 7th
Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

REFERENCES

Ardagna D., Pernici B. (2007). Adaptive Service Composition in Flexible Processes. IEEE Trans. Software Eng.
33(6), (pp. 369-384).

Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework for executing adaptive web-
service processes. IEEE Software 24(6), 39–46 (2007).

Autili M., Berardinelli L., Cortellessa V., Di Marco A., Di Ruscio D., Inverardi P., Tivoli M. (2007). A
Development Process for Self-adapting Service Oriented Applications. ICSOC 2007 (pp.442-448).

M. Baldauf, S. Dustdar, F. Rosenberg (2007). A Survey On Context-Aware Systems. International Journal of Ad
Hoc and Ubiquitous Computing, 2(4), p. 263-277, Inderscience Publishers.

Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the JBoss rule engine. In:
Proc. of ESSPE 2007, pp. 11–20. ACM Press, New York (2007).

Cristiana Bolchini, Carlo Curino, Elisa Quintarelli, Fabio A. Schreiber, Letizia Tanca: Context information for
knowledge reshaping. Int. J. Web Eng. Technol. 5(1): 88-103 (2009)

Bucchiarone A., Cappiello C., Di Nitto E., Kazhamiakin R., Mazza V., Pistore M.(2009). Design for Adaptation
of Service-Based Applications: Main Issues and Requirements. Proc. of ICSOC/ServiceWave Workshops (pp.
467-476).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 66

Bucchiarone A., Kazhamiakin R., Cappiello C., Di Nitto E., and Mazza V. (2010). A context-driven adaptation
process for service-based applications. In Proc. of PESOS 2010.

Romolo Camplani, Fabio A. Schreiber, Letizia Tanca, Diego Viganò: Towards autonomic pervasive systems: the
PerLa context language, Electronic Proceedings of the 6th International Workshop on Networking Meets
Databases (Co-located with SIGMOD 2011), pp. 1 - 7, Athens, June 12-16, 2011.
Cappiello C., Comuzzi M., Mussi E., Pernici B. (2006). Context Management for Adaptive Information
Systems. Electr. Notes Theor. Comput. Sci. 146(1), (pp. 69-84).

Chaari T., Laforest F., Celentano A.(2007). Adaptation in context-aware pervasive information systems: the
SECAS project. Int. J. Pervasive Computing and Communications 3(4) (pp. 400-425).

Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execution environment supporting
dynamic changes disciplined through rules. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 191–202. Springer, Heidelberg (2006).

Dey A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5(1), (pp. 4-7).

Fahy, P. and Clarke, S. (2004) ‘CASS – a middleware for mobile context-aware applications’, Workshop on
Context Awareness, MobiSys 2004.

Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process life cycle. In: Proc. of ICEIS,
vol. (3-2), pp. 154–161 (2008).

Hax, AC. and Candea, D. (1984), Production and Operations Management, Prentice-Hall, Englewood Cliffs, NJ,
(pp. 135).

Higel S., Lewis D., Wade V.P. (2005). Realising Personalised Web Service Composition Through Adaptive
Replanning. OTM Workshops (pp. 49-58).

R. Hirschfeld, P. Costanza, O. Nierstrasz . Context-oriented programming. Journal of Object Technology, 2008

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G. and Altmann, J. (2002) ‘Context-awareness on
mobile devices – the hydrogen approach’, Proceedings of the 36th Annual Hawaii International Conference on
System Sciences, pp.292–302.

W. Hummer, Ph. Leitner, A. Michlmayr, F. Rosenberg, S. Dustdar: "VRESCo - Vienna Runtime Environment
for Service-oriented Computing"; in: "Service Engineering: European Research Results", S. Dustdar, F. Li (ed.);
Springer, 2011, (invited), ISBN: 978-3-7091-0414-9, 299 - 324.

Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.P.: Extending BPEL for run time
adaptability. In: Proc. of EDOC 2005, pp. 15–26. IEEE Press, Los Alamitos (2005).

Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented framework for service adaptation.
In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 15–26. Springer, Heidelberg (2006).

Martín E., Carro R. M., & Rodríguez P. (2006). “A mechanism to support context-based adaptation in m-
learning”, in EC-TEL (pp. 302–315).

Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-time adaptation of non-functional
properties of composite web services using aspect oriented programming. In: Kramer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 546–557. Springer, Heidelberg (2007).

Wenjia Niu, Gang Li, Zhijun Zhao, Hui Tang, Zhongzhi Shi. Multi-granularity context model for dynamic Web
service composition. J. Network and Computer Applications, 2011: 312-326

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 67

Sandonini A., Adattivita’ in applicazioni orientate ai servizi basata su un’analisi proattiva e granulare dei dati
contestuali, Master thesis, Politecnico di Milano, July 2011

Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for service centric systems. In:
Proc. of SCC 2005, pp. 251–259. IEEE Press, Los Alamitos (2005)

Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s approach for configuring and
executing dynamic web processes. Technical report, University of Georgia, Athens (2005).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 68

Appendix E: Using the Cloud to Facilitate Global Software Development Challenges

Sajid Ibrahim Hashmi, Viktor Clerc, Maryam Razavian, Christina Manteli, Damian Andrew
Tamburri, Patricia Lago, Elisabetta Di Nitto, and Ita Richardson

Abstract— With the expansion of national markets beyond geographical limits, success of any
business often depends on using software for competitive advantage. Furthermore, as technological
boundaries are expanding, projects distributed across different geographical locations have become a
norm for the software solution providers. Nevertheless, when implementing Global Software
Development (GSD), organizations continue to face challenges in adhering to the development life
cycle. The advent of the internet has supported GSD by bringing new concepts and opportunities
resulting in benefits such as scalability, flexibility, independence, reduced cost, resource pools, and
usage tracking. It has also caused the emergence of new challenges in the way software is being
delivered to stakeholders. Application software and data on the cloud is accessed through services
which follow SOA (Service Oriented Architecture) principles. In this paper, we present the challenges
encountered in globally dispersed software projects. Based on goals mutually shared between GSD
and the cloud computing paradigm, we propose to exploit cloud computing characteristics and
privileges both as a product and as a process to improve GSD.

I. INTRODUCTION

Advances in technology and communication channels has had a positive impact on business growth as
the exchange of information has become more timely, accurate and available. Because of this,
business organizations are no longer reluctant to outsource software development and to have
development operations in multiple geographical locations. They strive to make use of customized
business models to maximize their benefits. In addition, from the marketing perspective, the goals of
globally sourced development [10] include making use of international physical and material
resources, reducing time to market, and taking advantage of marketing business opportunities.

In the remainder of this introduction section, we highlight the context of this research, the research
question, the objective of the research, and the research methodology. Also, we present a synopsis of
the cloud computing, challenges faced by GSD, and our motive for using the cloud paradigm to
support GSD.

A. Context

In the global environment, outsourcing software development projects to low cost economies is
becoming increasingly popular, especially as there is the expectation that companies who embark on
GSD strategies will gain and maintain economic advantage through numerous technical and
commercial factors [1][2]. This increase in GSD implementation is supported by the availability and
accessibility of communication tools as they enhance the options to use a remotely located workforce
[3]. The business models in low cost countries have provided capable and willing workers who
undertake outsourced and offshore software development [4]. This in turn provides cost reduction in
software development projects [5]. However, outsourcing software development to organizations at
various outsourcing destinations is not an easy and straightforward task [8][9][10][11] and
organizations very often face difficulties due to global distance and the involvement of the
development teams which are geographically distributed.

B. Research Question

GSD is software development incorporating teams spread across the globe in different locations,
countries, and even continents. We are motivated by the fact that conducting software projects in
multiple geographical locations is likely to result in benefits such as cost reduction and reduced time-
to-market [14][19], access to a larger skill pool, proximity to customer, and twenty-four hour
development by following the sun [60]. But, at the same time, GSD brings challenges to distributed

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 69

software development activities due to geographic, cultural, linguistic, and temporal distance between
the project development teams.

In order to meet the different challenges posed by GSD, we suggest making use of the cloud
computing paradigm and illustrate that it has potential to enhance the usefulness of GSD. We argue
that different types of geographic and cultural issues can be addressed by making use of different
cloud computing realizations such as PaaS (Platform as a Service), IaaS (Infrastructure as a Service),
and SaaS (Software as a Service). Since data in the cloud is accessed through services [38], we study
its characteristics in the light of Service- Oriented Architecture (SOA). Furthermore, we argue that the
cloud can facilitate GSD both as a process and as a product. The former one could have implications
for the GSD business model in which service providers are organizations and services are parts of a
GSD process, for example, requirements, design, coding, and testing. SOA as a product is developed,
run, and distributed globally. The idea is to identify different types and domains of GSD issues and
investigate the potential of the cloud to address those.

C. Objective of the Research

This paper proposes the development of Global Software Development (GSD) using the cloud
computing paradigm, based on our understanding of current GSD and SOA methods from literature,
and our overall project aim is to propose the re-construction and improvement of the GSD process.
This is done through the use of cloud computing and SOA. We discuss how the GSD process can be
aligned with SOA, and how GSD products can be implemented using services. We have established
that, for example, some web tools such as Wikis support GSD communication processes. However, we
question whether these can be streamlined and re-organized by defining how exactly GSD can work
better by making use of a service based environment.

Initially, we identify problem areas in GSD and subsequently, propose the support of GSD
development activities through services. The emphasis is on facilitating collaboration activities among
GSD teams by structuring those activities. Our rationale is that we can parallel the GSD situation with
manufacturing supply-chain management where systems used are composed of ready-to use service-
oriented systems. The reason services are widely adopted in industry is because they can be integrated
seamlessly. This has resulted in benefits to industry such as increased return on investment and
reduced information technology costs [5]. We argue that services to support GSD activities could be
developed in the form of service based systems and that what we need are heterogeneous services
which could support different development activities. Moreover, output from one service could be
taken as input to the next, in cases, where those services supported interrelated activities. In this
article, terms like SOA (Service Oriented Architecture) and the cloud have been used interchangeably
as different representations of the cloud are being accessed using services.

D. Research Methodology

In order to conduct this research, our literature review studied characteristics of services (both SOA
and the cloud). We also identified challenges faced by GSD. Following this step, we held a
workshop, attended by all of the authors of this paper, each of whom has research and/or industrial
expertise in GSD and/or SOA. During this workshop, through interactive discussion and
brainstorming, we developed the concepts presented in this paper. To do this, we summarized the GSD
challenges and requirements and investigated the potential of SOA based cloud services [47] to
address these. We are embarking on further research to understand whether these indeed can be of
value to both the industrial and research communities.

E. Cloud Computing

Cloud computing is an internet based computing paradigm in which shared resources like software,
hardware, and information are provided to the subscribers on demand [17][18][26]. NIST [55] defines
cloud computing as a model for enabling convenient and on demand network access to shared
computing resources that can be managed and provided rapidly with minimal effort. The aim is to
construct a low cost computing system by using certain entities without compromising on computing
capabilities. Depending on the type of shared resources, the cloud paradigm can have different

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 70

implementations like IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and SaaS
(Software as a Service), to dispense computing capacity to end users.

Infrastructure as a Service (IaaS) includes the delivery of hardware such as processors and storage as a
service, e.g., Amazon Elastic Cloud (EC2) and Simple Storage Service (S3). In other words we can
say that it delivers a platform utilization environment as a service. Instead of physically purchasing
hardware and software infrastructure, clients buy such resources as a fully outsourced service.

In addition to the infrastructure, Platform as a Service (PasS) occurs when a software platform is
provided on which systems can be run. This includes the delivery of programming platforms and tools
as a service. This kind of cloud computing provides a development environment and the infrastructure
provider’s equipment can be used to develop programs which are delivered to end users through
internet and servers.

Software as a Service (SaaS) occurs when applications are delivered as services using IaaS and PaaS.
This implementation of the cloud focuses on separating the ownership and possession of software
from its use [18]. It is based on the idea that software functionality could be provided as set of
distributed services that could be configured and bound at delivery time, to avoid the current
limitations with software use, deployment, and evolution [18]. Since cloud computing stimulates the
provision of online services via the World Wide Web, software can be hosted on web servers as
services [18]. Thus, the advent of SaaS within the cloud computing paradigm has created new
opportunities for organizations to communicate and coordinate among themselves.

F. GSD Challenges

With the emergence of technologies in a world which has become increasingly globalized, the
relationship between culture and management of remote work has become an unavoidable issue which
needs to be addressed [15]. Because of distance among the software development teams, GSD
encounters certain challenges in terms of collaboration [61], communication [62], coordination [63],
culture [64], management [65], organizational [66], outsourcing [35][67], development process [68],
development teams [16][69], and tools [29][70].

Global distance comprises of four elements: geographic, cultural, linguistic, and temporal distance
[57][58]. Geographic distance occurs as the teams are dispersed across countries. Cultural distance
occurs due to teams being made up of members from different cultures, and the additional expectation
that each member will understand and support each other’s culture. When team members speak in
different languages, there needs to one chosen language for work purposes, and as this is everyone’s
first language, linguistic distance occurs. As teams are geographically dispersed, there is the additional
difficulty of temporal distance – members working across different time zones [49][50]. Each of these
differences individually causes problems within GSD teams, and the culmination of these differences
into global distance can and do impede global software development projects [12][13]. Thus, the
management of globally outsourced software development has been accepted as a difficult and
complex task [14]. These four types of GSD challenges are addressed using the SOA based cloud
services (Table 1).

Collaboration
Challenges

Issues Negative Impact on
Software Project

Facilitating GSD Using Services
(SOA/Cloud)

Geographic Distance Time
Knowledge
transfer Tools

Communication gaps Project
Delays Ambiguity on
technical aspects Unequal
quality levels across the
software development sites

Dynamic binding, runtime
adaptation, and timely availability of
required services could help dealing
with geographic issues. Also,
availability of SaaS could diminish
installation overheads at each
development location.

Cultural Unequal
distribution of
work Lack of
Trust, Fear

Increase in cost Poor skill
management Reporting
problems

Service could maintain a fair
distribution of work between the
teams. Only a specific person will be
responsible for the task assigned to
thus skill management would be
easier too.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 71

Linguistics Frequency of
communication
Knowledge
transfer

Loss in project quality
Invisibility on project
development Ineffective
project management

Run time evolution of services can
meet with the linguistic issues. Also,
isolation of each task and related
information as a service can ensure
right level of knowledge transfer.

Temporal Lack of
Motivation Less
visibility Risk

Loss in project quality Poor
management of configuration
Chances of project artifact loss

The cloud service models imply that
the data resides on a centralized
location where inventory of services
is maintained. Services maintain a
registry where all of them are stored.
This attribute could be used to store
and retrieve configurations.

Table 1. GSD challenges potentially facilitated by the use of services

G. Motive for Using the Cloud for Supporting GSD

One of the missions [59] of the cloud architecture is to provide services to customers by not only
managing them but optimizing them by taking into consideration economies of scale. The cloud model
is composed of three service models (IaaS, PaaS, and SaaS), five essential characteristics, and four
deployment models [59]. The cloud deployment models - Private, Community, Public, and Hybrid -
define the scope of the cloud solution. The cloud model is discussed in terms of creation and provision
of services [20] which means that it supports services. Since SOA runs a mechanism for development
and management of distributed dynamic systems and it evolved from the distributed component based
approach [21], we argue that it has potential to cater the challenges of GSD where a project is
developed across different geographical locations. Our thesis is that GSD challenges can be overcome
through Service Oriented Architecture (SOA) support. This will contribute increased interoperability,
diversification, and business and technology alignment. Moreover, the vision behind this architectural
paradigm is to set up common goals and objectives to improve the collective effectiveness of the
enterprises participating in globally distributed projects. Since software processes are software too
[22], we argue that the cloud has potential to reinforce GSD as a process. Initially, we considered the
use of standard procedures to meet the quality challenges posed by GSD. But, since organizations
have to interact dynamically in global environments, these standard procedures cannot scale up to
support dynamism (which is a main feature of SOA). Moreover, the ideology posed by both SOA and
GSD is somehow similar [1, 23], for example, coordination, transaction, context, execution
monitoring, and infrastructure. In addition, SOA is one of the main technical foundations of the cloud
[51].

For GSD, the use of collaboration tools among teams is not new. Existing research has already
proposed further work in this regard [7][24][25]. We adopt the idea of SaaS for GSD to make use of
properties of both cloud and SaaS, such as reusability, reliability, extendibility and inexpensiveness
[27][28]. Teams with frequent communications among their members are likely to collaborate better.
Thus, this frequent communication is important to make full use of GSD advantages, e.g. improved
productivity, reduced time to the market, and reduced cost. However, oral communication is prone to
confusion and misunderstanding. One way could be to minimize the need for communication but such
strategy would emphasize on the involvement of more dedicated personnel from each development
site [48] which could not be feasible either. At the same time it is important for the communication
media to be formal, flexible, and evolvable to ensure the collaboration mechanisms work effectively.

GSD teams also need to collaborate effectively and the attributes of the cloud paradigm, especially
SaaS, can be used to facilitate efficient collaboration between geographically distributed teams during
software development phases such as requirements, design, coding, and testing. The characteristics
and the architecture of the cloud model itself has the potential to fulfill the GSD task requirements. For
example, cloud deployment models allow certain trusted partners (which could be GSD team
members) to share resources among themselves. Service models may not only provide access to
collaboration and productivity tools but also allow network access to computing resources, and the

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 72

“use as you go” feature is likely to reduce the overall project costs across multiple development sites
as computing resources and infrastructure is not required up- front.

We investigate the impacts of the aforementioned collaboration challenges and suggest the likelihood
of using the cloud to address them. We expect to achieve efficiency in collaboration through using the
cloud in different implementations. The essence of using this paradigm to facilitate GSD is that instead
of acquiring and owning the software and project data, GSD team members can access and subscribe
to some of the software at a time (according to the need) in the form of services. In addition, we want
to take advantage of the SOA characteristics [43] like loose coupling, service composition and
negotiation to facilitate a similar level of development practices across multiple sites. Moreover, the
service provider and user are important to the technical and economic changes made possible by cloud
computing. In our model, this concept of provider and consumer is similar to the SOA paradigm.

II. GSD AS A SERVICE ON THE CLOUD

In this section, we describe how GSD as a service can facilitate and improve how GSD is carried out.
We discuss certain GSD challenges and provide a rationale as to how the cloud service models can
address them respectively.

A. GSD Services Concept

Figure 1 illustrates the concept of using the cloud paradigm to support GSD. Service standards and
policies are defined by engineering and project management personnel. Different GSD development
sites (represented as GSD1, GSD2,...,GSD5) are deployed on a private cloud which covers all
geographically distributed development teams.

Figure 1. Using the cloud to support GSD product and process activities

We propose that this concept can support the reduction of difficulties caused by global distance. For
example, the use of services itself reduces the distance factor to meet geographic and temporal
challenges. As far as cultural and linguistic challenges are concerned, the provision of multilingual
services based on the location of GSD teams could improve the problem. We consider an example
scenario to understand the GSD collaboration challenges that could be minimized using the cloud
paradigm. Suppose that an organization in Ireland (GSD1) outsources a software component
development to a company in Germany (GSD3).

As part of the project requirement, people in both countries have to communicate to exchange
information on different development phases and tasks. The project manager from GSD1 sends on
some important instructions regarding requirements and architecture of the potential system. Not only

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 73

should this information be conveyed to the concerned team member but there should be some
assurance that it has indeed reached them, without the risk of being lost or disclosed to other GSD
locations. But, the concerned team member is a novice in the language and also needs to have those
instructions translated into his local language. Thus, a translation service is required on both sides to
facilitate the task.

One would argue that the translation task could be facilitated by a simple word parser, and the use of
cloud and services seemed to be irrelevant, but the situation is not as simple as it appears to be.
Communications between the teams could involve some other artifacts such as design documents,
code snippets, and legal and financial negotiations. All of this could be made available on the cloud in
the form of services which could be accessed by the authorized team members. Also, cloud services
can evolve with changes in the associated business [18], for example, such a change might occur in the
form of a financial or money transfer service after both companies agree on terms and conditions.
Using our proposed system would result in the elimination of GSD3 overhead, i.e. storage of project
artifacts and information, as everything would be stored on cloud infrastructure and would be
accessible from there in the form of services. Table 2 list down the characteristics [46][55] of the
Cloud which can be potentially beneficial for GSD.

Virtualization Courtesy of this privilege, cloud providers can enhance their infrastructure to

accommodate in case there is growing demand for services. Usually, a combination
of hardware and software are used on the provider side to meet with the scaling
requirements.

Reduced Cost Costs in the cloud do not include server side infrastructure and equipment costs.
Moreover, pay as you go model ensures that subscribers are bound to pay for only
those resources which they use. In short, the distribution costs of software are
reduced.

Scalability On-demand provision of application software provides scalability, which results in
greater efficiency. Whereas cloud based application development platforms provide
with high level of scalability thus making the developed application to coup with the
fluctuation demands.

Infrastructure Providers’ applications are run on a cloud infrastructure from where a consumer can
access those. Similarly,
consumer-modified information or application can be deployed on the same
infrastructure as well. The privilege is that the consumer does not have to deal with
the underlying infrastructure.

Performance The cloud paradigm can support various levels of performance requirements like
service scaling, response time, and availability of the application based on the needs
of the consumers. In addition indirect performance measures may also be achieved by
eliminating the overheads involved with installation procedures and reduction in
unnecessary reduction among the applications running on the cloud.

Multi Tenancy
Support

Public clouds are elastic in nature as their consumers are not limited. More
importantly, consumers’ workloads are isolated to provide privacy. However, the
number of consumers can be restricted by opting out a specific deployment model.

Table 2. Supporting characteristics of cloud computing

A. GSD Challenges and Requirements

During our workshop, we identified GSD challenges and requirements which could be, in our view,
solved through using cloudF architecture.

1) Coordination

Coordination among distributed teams is important to GSD but geographic distance negatively affects
the ability to collaborate [23]. For building complex systems, coordination requires interaction over
sequences of operations. However, often, due to collaboration within different time zones, employees
have less time to coordinate their work.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 74

As a product, cloud services ensure interactions among different activities. For example, interaction
between the service consumer and provider on finding and binding of services is independent of the
geographical distance. SOA puts an emphasis on adding transactional guarantees to facilitate the
interaction in the coordination framework [31]. For example, standards have been proposed by IBM
[32][33] and suggested by Sun [34].

Since cloud computing is the key service delivery platform in the field of service computing [44], as a
process, it could allow resource sharing not only for infrastructure and application resources, but also
for software resources and business processes [45][46]. These advantages are likely to support
different disciplines, for example, Infrastructure as a Service (IaaS) could help provide different GSD
teams with resources such as computing power or storage provisioning to store project related data.
Software resources may consist of middleware and development resources like application systems,
database servers, and operating systems. The advantage of using fist two types of resources as a
service is that they are never wasted after the project is over - instead, they can be unsubscribed.
Application resources could assist in providing SaaS with necessary interfaces that could facilitate
collaboration and sharing of information among the teams.

B. Support of Technical Development

A variety of special purpose services can be used for process related software development activities
e.g. requirements, design, and testing. Services which support different process activities, can be
combined together to facilitate the whole process. As shown in Figure 2, supporting development
process activities in the form of services can help alleviate geographic and distance challenges.

As a product, shifting the provision model from Software as an Application to SaaS removes the
dependencies and challenges in terms of architecture and task dependencies that traditional software
development and reuse models impose. Moreover, it can reduce cost by facilitating reuse of services
which provide similar operability for software application development. Hence the development is
reduced on building similar business applications as the only challenge which remains is the
identification of suitable services which can serve the purpose required.

C. Geographical Distance

Physical distance removes the opportunity for face to face communication. As a product, the Platform
as a Service representation can provide a development platform with set of services to assist
application development and hosting on the cloud. It does not require any kind of software downloads
and installations [2], and because of its characteristics, has the capacity to support geographically
distributed teams. Moreover, the philosophy of the cloud paradigm is to facilitate a pool of shared
hardware and software resources.

Facilitating global software development activities as a process in the form of services, can overcome
many software limitations involving software evolution, reuse, and deployment. Such a model is likely
to open not only new opportunities for the business but also the way software is being developed, i.e.
services become part of GSD processes being provided by the outsourcing organizations.

D. Global Project Optimization

In GSD, it is important to share the information in terms of work performed by distributed teams.
Communication and awareness capabilities should be provided by integrating this information not
only into a collaborative environment [1], but also to maintain a rich “project memory” [34].

Provision of this information exchange on software development activities as a process is likely to
reduce the software installation costs across different development sites. In addition, it can make
collaboration more instant and flexible because of the customization and scalability attributes of the
cloud.

SOA not only manages service execution and output information, but also keep track of the new
information without any changes to the underlying infrastructure [23]. This unique feature can ensure
team management and coordination by means of its use as a product, by scaling on to the existing
project information.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 75

E. Optimizing Globally Distributed Software Development

It is true that geographic distance affects the ability to collaborate [1]. Moreover, it has been reported
that communication and collaboration declines as the distance between the two working location
increases [28]. As a process, cloud based collaboration among GSD teams is likely to diminish the
deficiency caused by distance as services are free from geographical boundaries. Yet another type of
resource in the cloud could be business process [45], which may facilitate the optimization of the
overall technical software development.

As a product, it can serve as an intermediary to facilitate users to access and communicate with the
cloud. The services involved in a system can change with the change in the associated business in
terms of requirements, and can perform this change dynamically. The reason for change in GSD could
be the availability of yet another programming task or a need to collaborate on a task which is already
underway.

F Eliminating the Strategic Issues

In GSD, ownership is often lacking [1]. Service ownership is a concept which allows the service users
to focus on their core activities; it also helps the service provider with an opportunity to take
advantage of economies of scale [56]. As a product, well defined ownership exists for each service,
and GSD users benefitting from such services can enjoy this privilege. This ensures that services are
used in a way to give the most to a business.

As a process, SOA addresses ownership by collocating service provisioning by service development.
The wrapping of a GSD task into an independent service can promote ownership, as it can be used
exclusively. In this case, the outsourcing company (the provider) could be the one to convey the
project requirements or architecture knowledge to a specific GSD team or to a single member without
notifying others. Thus, it can incorporate privacy by increasing the eeling of ownership.

G. Enhancing Communication Among Teams

The structure of multi-site software development mimics the team structure [37]. The main distinctive
feature of the cloud is that it allows rapid elasticity, making it straightforward for the service provider
to dimension the resources necessary to support a service dynamically depending on the service
demands [39]. Thus, investigating the potential interactions among the stakeholders would enable
getting insight into the service creation process for collaboration among GSD teams. These
interactions are likely to be among the outsourcing organizations and the teams jointly working on the
same project.

As a product, appropriate service definitions (including their descriptions) may act as proxies for
communication and hence may reduce the need for cross site communication. This privilege could be
useful when teams from different time zones find it difficult to collaborate. On a technical level, the
SOA paradigm provides an appropriate mechanism for cross platform data exchange and sharing by
message passing, service search and collaboration [30]. In addition, the SOA and the XML-described
data, information and knowledge can combine the different loosely coupled subsystems.

H. Managing Project Knowledge Transfer

The transfer of requirements and architecture knowledge across development sites is an issue in GSD.
Services are likely to wrap this knowledge using the correct abstraction level. Using services as a
product diminishes the need for sharing knowledge as the constituent services have sufficient
description about themselves, and because this knowledge is developed locally. Two knowledge
transfer issues in GSD which exist are requirements and architectural knowledge. With SOA, a
sufficient description and transfer of the requirements knowledge diminishes the need for transfer of
other forms of knowledge. Moreover, coordination aspects are hardly needed in services as they are
isolated.

In terms of as a process, isolating any task as a service helps to identify right abstraction level for the
transfer of such information within the task as a service. This form of service provision could take

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 76

care of how requirements should be provided, what the outcome will be, and what should a GSD team
member expect from others. Hence it can help managing the knowledge of a distributed project.

I. Execution Monitoring

In GSD, the potential order in which components interact should dictate the decision on the interaction
among the corresponding teams [1]. Moreover the use of Application Programming Interfaces (APIs)
promotes isolation and reduced information sharing [36]. A crucial aspect is responding to the
constant changes in the business requirements. As a product, SOA can ensure the correct order of
service execution by a central scheduler, which controls the execution of the service and consequently
the right order of communication between the project partners in GSD. As a process, these services
may share their execution context among each other to guarantee the correct execution order. To
support the collaboration activities among geographically distributed teams, the concept of execution
monitoring can be used as the basis for designing the collaboration process.

J. Eliminating Project and Process Management Issues

In GSD, a centralized configuration management system should be made available to manage project
artifacts produced out of components being developed across multiple locations. As a product, this
task can be facilitated by service registries which serve as databases for services. Potential users can
find and bind any service using the service description provided with these registries. Or, alternatively,
since services are a black box, their use is likely to eliminate the need for centralized configuration
management within their scope.

Cooperation and coordination is required to obtain trust between two or more parties [52]. Lack of
trust is always likely to reduce the team cohesion. Teams with higher trust are coordinate better to
achieve better performance [53] which could make management an easier task. A goal of cloud
computing is that its users must be able to access its different implementations at any time [54].

K. Technical Issues

In GSD, a modular approach for software development has been suggested [1], but dependencies are
likely to exist among components in the running version of the software. This nature of such a project
would require evolvable software which could cope with the challenge of component and functional
dependencies. As a product, services are loosely coupled and independent in nature, with minimum
dependencies among them. This characteristic can not only minimize the task dependencies but
ultimately eliminate the risk factor because, in case of a service failure, the failed component can be
replaced with another one at run time. This dynamic replacement is one of the distinguishing features
of services.

Testing software is usually the most costly phase in software development and it can be responsible
for over 50 percent of development costs [41]. Therefore, this phase often becomes responsible for the
ultimate profitability of the product [42]. Carrying out testing activities correctly is important as the
quality assurance, financial incentives, and customer satisfaction of the end product often depend on
the testing activity [40]. Making use of standard procedures to meet the quality challenges posed by
GSD is important, but since organizations have to interact dynamically in global environment, these
standard procedures often cannot scale up to support dynamism. On the other hand, dynamism is
supported by SOA by means of run time evolution and on demand provision. Facilitating collaboration
on testing in the form of the services as a process could ensure higher quality levels.

In normal circumstances, different software tools [29][70] are used to facilitate not only GSD
development but also collaboration among the teams. Unavailability of tools at the right time or
version misalignment can cause delays in global software projects. Use of collaboration tools as a
service can reduce the overhead of tool installation. Using the SOA paradigm, tools, data, and
workspace could be stored and accessed from the cloud, thus eliminating the need for tool installation.
The purpose is not only to cater with the version issue, but also provide GSD teams with all tools
required for the project.

III. DISCUSSION

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 77

In order to propose the use of cloud for GSD, it is important to have a comprehensive understanding of
the GSD processes. We do not expect that all will be served by this technological paradigm, but we do
believe, if designed correctly, GSD can be successfully supported by services. For example, in a
context where different GSD locations are inter-connected and are using the cloud, all of them may
not have the same level functional needs. Determining different level of needs for service provision
could be one of the major concerns among different GSD locations.

The concept of SaaS itself continues to be subject to evolution and revision. In addition, the
availability and subscription of these services because of different types of dependency relationships
among cloud users (tenants) could be considered as a challenge for using the cloud to support GSD.
Moreover, in terms of project knowledge transfer across global software development sites, the right
level of abstraction of the useful codification as well as the reduction in tacit knowledge will remain
an issue. Since the main usage in services comes in connecting pieces of information, sharing services
across different domains and enterprises is also likely to result in further security issues.

IV. CONCLUSIONS

We have proposed using the cloud paradigm to meet with different challenges posed by Global
Software Development (GSD). We are suggesting that this will result in GSD benefitting from the
cloud’s infrastructure, platform, and provision of software as a service features. Information and data
on the cloud is transmitted and shared by means of web services which work on underlying Service
Oriented Architecture (SOA) principle.

We argue that the cloud paradigm has the potential to turn over a few more unturned stones of GSD
issues which are a significant hurdle for the development of successful projects in the GSD situation.
But, we are planning to develop our ideas further with a view to filling the gap between technical
proficiency and meeting the needs of developers. So, like SOA, we cannot expect the cloud paradigm
to address some psychological and social issues like trust but we can reduce their negative impact
through the use of this model.

ACKNOWLEDGMENT T

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube). It was supported, in
part, by Science Foundation Ireland grant 10/CE/I1855 to Lero – the Irish Software Engineering
Research Centre (www.lero.ie), and a Higher Education Authority grant PRTLI 4 to the Lero Graduate
School in Software Engineering.

REFERENCES

[1] J. D. Herbsleb, “Global software engineering: the future of socio- technical coordination,” in
Proceedings of the Future of Software Engineering (FOSE’07), 2007, pp. 188-198.

[2] R.E. Grinter, J.D. Herbsleb, and D.E. Perry, “The geography of coordination: dealing with
distance in R&D work,” in Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work (GROUP ’99), ACM Press, New York, 1999, pp. 306–315.

[3] J. A. O’Brien, “Management information systems: managing information technology in the
business enterprise,” Mc Graw Hill Irwin, 2002.

[4] S. S. Toaff, “Don’t play with “Mouths of Fire,” and other lessons of global software
development.” Cutter IT Journal 15(11), 2002, pp. 23- 28.

[5] E. Carmel and P. Tjia, “Offshoring information technology: sourcing and outsourcing to a
global workforce.” Cambridge, UK, Cambridge University Press, 2005.

[6] A. J. Espinosa and E. Carmel, “The impact of time separation on coordination in global software
teams: a conceptual foundation” Software Process Improvement and Practice, 8(4), 2003, pp. 249 –
266.

[7] A. Sarma and V. D. Hoek, “Towards awareness in the large,” in Proceedings of the International
Conference on Global Software Engineering, 2006, pp. 127-31.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 78

[8] E. Carmel, “global software teams: collaboration across borders and time zones”. Saddle
River, NJ, Prentice Hall, 1999.

[9] D. W. Karolak, “Global software development: managing virtual teams and environments.”
Los Alamitos, CA, USA, IEEE Computer Society Press, 1999.

[10] J. D. Herbsleb and D. Moitra, "Global software development." IEEE Software 18(2), 2001, pp.
16-20.

[11] V. Clerc, P. Lago, and H. V. Vliet, “The architect’s mindset,” 3rd International Conference on the
Quality of Software Architectures, Volume 4880 of Lecture Notes in Computer Science, 2007, pp.
231-249, Springer Berlin / Heidelberg.

[12] E. Carmel, “Building your information systems from the other side of the world: how Infosys
manages time differences,” Management Information Systems Quarterly -MIS Quarterly Executive,
vol. 5, no. 1, Mar 2006, pp. 43-53.

[13] V. Casey, S. Deshpande, and I. Richardson, “Outsourcing and offshoring software development:
the remote developers’ perspective,” Global Sourcing Workshop, Val d’Isere, France March 2008.

[14] F. Lanubile, D. Damian, and H. L. Oppenheimer, "Global software development: technical,
organizational, and social challenges," SIGSOFT Software Engineering Notes 28(6): 1 - 4.

[15] R. T. Watson, T. H. Ho, and K. S. Raman, “Culture: a fourth dimension of group support
systems,” Communications of the ACM, 37-10, 1994, pp. 44-55.

[16] C. M. Beise, “IT project management and virtual teams,” in Proceedings of the 2004 SIGMIS
Conference on Computer Personnel Research: Careers, Culture, and Ethics in A Networked
Environment (Tucson, AZ, USA, April 22 - 24, 2004). SIGMIS CPR '04. ACM, New York, NY, pp.
129-133.

[17] J. Yang and Z. Chen, "Cloud computing research and security issues," International Conference
on Computational Intelligence and Software Engineering (CiSE), 2010, pp. 1-3.

[18] M. Turner, D. Budgen, and P. Brereton, "Turning software into a service," Computer, vol.36,
no.10, Oct. 2003, pp. 38- 44.

[19] S.-o Setamanit, W. Wakeland, and D. Raffo, "Improving global software development project
performance using simulation," Portland International Center for Management of Engineering and
Technology, 5-9 August, 2007, pp. 2458-2466.

[20] K. Zhang, X. Zhang, W. Sun, H. Liang, Y. Huang, L. Zeng, and X. Liu, "A policy-driven
approach for software-as-services customization," in Proceedings of the 4th IEEE International
Conference on Enterprise Computing, E-Commerce, and E-Services, CEC/EEE 2007, pp.123-130.

[21] A. Bertolino and A. Polini, “SOA test governance: enabling service integration across
organization and technology borders”, IEEE International Conference on Software
 Testing V erification and Validation Workshops.

[22] L. Osterweil, “Software processes are software too,” in Proceedings of the 9th International
Conference on Software Engineering, IEEE Computer Society Press Los Alamtos, CA, USA.

[23] S. Dustdar and W. Schreiner, “A survey on web services composition”, International Journal of
Web and Grid Services, vol. 1, no. 1, 2005, pp. 1-30.

[24] L. Cheng, C. DeSouza, S. Hupfer, J. Patterson, and S. Ross, “Building cllaboration into IDEs,”
ACM Queue, vol.1, no.9, 2004, pp. 40-50.

[25] A. Sarma, Z. Noroozi, and A. V. D. Hoek, “Palantír: raising awareness among configuration
management workspaces,” in Proceedings of the 25th International Conference on Software
Engineering, 2003, pp. 444-454.

[26] S. Zhang; S. Zhang, X. Chen, and X. Huo, "Cloud computing research and development trend," in
Proceedings of the 2nd International Conference on Future Networks, 2010, pp. 93-97.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 79

[27] J. Yang and Z. Chen, "Cloud computing research and security issues," in Proceedings of the
International Conference on Computational Intelligence and Software Engineering (CiSE), 2010, pp.
1-3.

[28] T.J. Allen, “Managing the flow of technology,” Cambridge, MA: MIT Press, 1977.

[29] R. Martignoni, “Global sourcing of software development – a review of tools and services”, in
Proceedings of the 4th IEEE International Conference on Global Software Engineering, 2009, pp. 303-
308.

[30] M. P. Papazoglou, “Web Services and Business Transactions”, World Wide Web, vol. 6, no. 1,
March 2003, pp. 49-91.

[31] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey, and S. Thatte, “Web services
transaction specifications,” available online, last accessed 16 August, 2005: http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/

[32] F. Cabrera, et al., “Web services coordination (WS-coordination),” Version 1.0, available online,
last accessed August 2005: ftp://www6.software.ibm.com/software/developer/library/ws-
coordination.pdf

[33] D. Bunting, M.C.O. Hurley, M. Little, J. Mischkinsky, E. Newcomer, J. Webber, and K.
Swenson, “Web services transaction management” (WS- TXM), V er1.0.
http://developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf

[34] D. Cubranic and G. Murphy, “Hipikat: recommending pertinent software development artifacts,”
in Proceedings of the 25th International Conference on Software Engineering, 2003, pp. 408-418.

[35] M. Jensen, S. Menon, L.E. Mangset, and V. Dalberg, “Managing offshore outsourcing of
knowledge intensive projects – A people centric approach,” in Proceedings of the 2nd International
Conference on Global Software Engineering, 2007, pp. 186-196.

[36] C.R.B.D.Souza,D.Redmiles,L.T.Cheng,D.Millen,andJ.Patterson, “Sometimes you need to see
through walls: a field study of application programming interfaces,” in Proceedings of the 2004 ACM
conference on Computer supported cooperative work, pp. 63-71.

[37] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and integrating the code: Conway’s
law revisted,” in Proceedings of the 21st International Conference on Software Engineering, 1999, pp.
85-95.

[38] L. W. Pires, L. F. Wombacher, A. V. Sinderen, and M. J. Chihung Chi, "Stakeholder interactions
to support service creation in cloud computing," in Proceedings of the 14th IEEE International
Enterprise Distributed Object Computing Conference Workshops (EDOCW), 2010, pp. 173-176.

[39] Armbrust et. al., “Above the clouds: a Berkley view of cloud computing,” EECS Department,
University of California, Berkeley Technical Report No. UCB/EECS-2009-28 February 10,
2009.

[40] E. Kit, “Software testing in the real world: improving the process”, Addison-Wesley, Reading,
MA, USA, 1995.

[41] H. Do and G. Rothermel, “An empirical study of regression testing techniques incorporating
context and lifetime factors and improved cost- benefit models,” in Proceedings of 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2006, pp. 141-151.

[42] J. Kasurinen, “Elaborating software test processes and strategies,” in Proceedings of the 3rd
International Conference on Software Testing, V erification, and V alidation, 2010, pp.
 355-358.

[43] L. J. Zhang, “EIC editorial: introduction to the body of knowledge areas of services computing,”
IEEE Transactions on Service Computing, vol. 1, no. 2, April-June, 2008, pp. 62-74.

[44] L. J. Zhang, J. Zhang, and H. Cai, “Services computing, core enabling technology of the modern
services industry,” published by Springer and Tsinghua University Press, 2007.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 80

[45] L. J. Zhang and Q. Zhou, "CCOA: cloud computing open architecture," in Proceedings of the 7th
IEEE International Conference on Web Services, 2009, pp. 607-616.

[46] R. Guha, and D. Al-Dabass, "Impact of Web 2.0 and cloud computing platform on Software
Engineering," in Proceedings of the International Symposium on Electronic System Design (ISED),
2010, pp.213-218.

[47] J. Schaper, “Cloud Services, ” in Proceedings of the 4th IEEE International Conference on Digital
Ecosystems and Technologies, 2010, pp. 91.

[48] A. Elfatatry and P. Layzell, "Software as a service: a negotiation perspective," in proceedings of
the 26th International Conference on Computer Software and Applications Conference, COMPSAC
2002. pp. 501-506.

[49] A. Avritzer, D. Paulish, Y. Cai, and K. Sethi, "Coordination implications of software architecture
in a global software development project," Journal of Systems and Software 83(10), pp. 1881-1895.

[50] P. Hartman, "ESB enablement of an international corporate acquisition, an experience report," in
Proceedings of the 3rd IEEE International Conference on Global Software Engineering, 2008, pp. 200-
204.

[51] M. D. Dikaiakos, G. Pallis, D. Katsaros, P. Mehra, and A. Vakali, “Cloud computing: distributed
internet computing for IT and scientific research,” Internet Computing, vol. 13, no. 5, pp. 10-13.

[52] E. E. Jennings, “Routes to the executive sites,” New York: Mcgraw-Hill, 1971.

[53] S. L. Jarvenpaa and D. E. Leidner, “Communication and trust in global teams,” Journal of
Computer Mediated Communication, vol. 10, no. 6, 1999, pp. 791-815.

[54] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and privacy in cloud computing: a
survey,” in Proceedings of the 6th International Conference on Semantics, Knowledge, and Grids,
2010, pp. 105-112.

[55] L. Badger, T. Grance, R. P.-Comer, J. Voas, “Draft cloud computing synopsis and
recommendations,” National Institute of Standards and Technology, Special Publication 800-146, May
2011.

[56] http://itsm.certification.info/ownership.html

[57] A.Begel,N.Nagappan,C.Poile,L.andLayman,"Coordinationinlarge- scale software teams," ICSE
Workshop on Cooperative and Human Aspects on Software Engineering, 2009, CHASE '09, pp. 1-7.

[58] A.Begel,N.Nagappan,"Globalsoftwaredevelopment:whodoesit?,"in Proceedings of the 3rd IEEE
International Conference on Global Software Engineering, 2008. pp.195-199.

[59] M. Behrendt, et al., “Introduction and architecture overview: IBM cloud computing reference
architecture 2.0,” Draft Version V1.0, 2011.

[60] T. Nguyen, T. Wolf, and D. Damian, "Global software development and delay: does distance still
matter?," in Proceedings of the 3rd IEEE International Conference on Global Software Engineering,
2008, pp. 45- 54.

[61] P. Mohapatra, P. Bjorndal, and K. Smiley, “Causal analysis of factors governing collaboration in
global software development teams,” in Proceedings of the 5th IEEE International Conference on
Global Software Engineering, 2010, pp. 128 – 132.

[62] T. Niinimaki, A. Piri, and C. Lassenius, “Factors affecting audio and text-based communication
media choice in global software development projects”, in Proceedings of the 4th IEEE International
Conference on Global Software Engineering, 2009, pp. 153-162.

[63] M. Cataldo, M. Bass, J. D. Herbsleb, and L. Bass, “Factors affecting audio and text-based
communication media choice in global software development projects”, in Proceedings of the 4th
IEEE International Conference on Global Software Engineering, 2009, pp. 153-162.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 81

[64] V.Casey,“Leveragingorexploitingculturaldifference?”,inProceedings of the 4th IEEE
International Conference on Global Software Engineering, 2009, pp. 8 - 17 .

[65] V. Casey and I. Richardson, “Project management within virtual software teams”, in Proceedings
of the International Conference on Global Software Engineering, 2006, pp. 33-42.

[66] D. Damian, F. Lanubile, and H. L. Oppenheimer, “Addressing the challenges of software industry
globalization- the workshop on global software development,” in Proceedings of the 25th International
Conference on Software Engineering, 2003, pp. 793-794.

[67] R. Heeks, S. Krishna, B. Nicholsen, and S. Sahay,” Synching or sinking- global software
 outsourcing relationships,” IEEE Software, vol. 18, Issue. 2 , 2001, pp. 54 - 60.

[68] H. Klein, A. Rausch, and E. Fischer, “Process-based collaboration in global software
engineering,” in Proceedings of the 35th Euromicro Conference on Software Engineering and
Advanced Applications, 2009, pp. 263 - 266.

[69] H. K. Edwards and V. Sridhar, “Analysis of the efectiveness of global virtual teams in software
engineering projects,” in Proceedings of the 36th Annual Hawaii International Conference on System
Sciences, 2003.

[70] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Piattini “Tools to support global software
development processes: a survey”, in Proceedings of the 5th IEEE International Conference on Global
Software Engineering, 2010, pp. 13 - 22.

1

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 82

Appendix F: Going Global with Agile Service Networks
Damian A. Tamburri advised by Patricia Lago and Hans Van Vliet

Abstract—ASNs are emergent networks of service-based applications (nodes) which collaborate
through agile (i.e. adaptable) transactions. GSE comprises the management of project teams distanced
in both space and time, collaborating in the same development effort. The GSE condition poses
challenges both technical (e.g. geolocalization of resources, information continuity between
timezones, etc.) and social (e.g. collaboration between different cultures, fear of competition, etc.).
ASNs can be used to build an adaptable social network (ASNGSE) supporting the collaborations
(edges of ASNGSE) of GSE teams (nodes of ASNGSE).Agile Service Networks can be used to
support Global Software Engineering (GSE).

I. INTRODUCTION

GSE is a software engineering strategy in which organizations try to achieve round-the-clock
productivity by distributing production along different continents and timezones [10], [11], [19]. GSE
is a business decision. As a consequence of this decision, teams’ time and space distance pose
challenges both social and technical. Social challenges, such as cultural barriers, language difference,
social class, unawareness of others limit the degree to which teams involved in GSE are able to share
information effectively and collaborate efficiently. Technical challenges, such as space distance,
information discontinuity between timezones, geolocalization of development resources hinder the
way productivity can be coordinated on a global scale. These challenges inhibit teams’ communication
and collaboration to a point where project failure risk increases [11], [8], [19]. Major causes for delays
and cost explosion in GSE projects are miscommunication on project requirements, deadlines and
architecture [4]. To exemplify these issues consider the following simple (and very common) scenario,
from a real- life situation [5], [9]:

“An unavoidable technical constraint discovered by a programmer causes design to be reworked,
designers negotiate an adjustment in requirements with system analysts and modify their designs
appropriately. Subsequently, this technical constraint is raised repeatedly by other programmers who
were not informed of the design changes (or are using designs that may have been unrelated to the
adjusted design, but related to the affected requirement). This chaotic disruption wastes time and effort
and causes unnecessary aggravation to the development team.”

GSE technical difficulties should be supported through socially-enabled technologies for the above
challenges to be overcome [11]. These technologies would be able to avert chaos by automatically
linking together the people involved, increasing their awareness. ASNs are emerging networks of
collaborative service applications (nodes) which interoperate through agile transactions (edges), i.e.
transactions which react to context change dynamically adapting themselves [2]. ASNs stem from the
business decision of corporate collaborations to be formed globally, in pursuit of business gain for the
nodes involved (i.e. every corporate partner) [6]. A fundamental similarity can be identified between
GSE and ASNs. Both stem from business decisions. Moreover, a crucial complementarity exists
between them. On one side, GSE needs dynamism among nodes (development teams) and their
collaboration towards business gain (timely delivery). On the other, ASNs are supporting dynamic
collaborations among nodes which are teaming up to increase business gain. These relations led us to
consider three potentials of ASNs: (a) Collaborativeness as well as context adaptability make ASNs
ideal to develop flexible social- networking tools for GSE; (b) being service-based, ASNs can be used
in the cloud, using its services to further support GSE; (c) ASNs’ emergence makes them ideal to build
dynamic communication tools against distance in time and space. Based on these considerations, we
argue that GSE challenges can be overcome through an ASN-based social network (ASNGSE)
providing agility of communications and collaborations (edges of ASNGSE) to globally located IT
professionals (nodes of ASNGSE). Global professionals can be represented as nodes in an agile (i.e.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 83

adaptable and emergent) organizational social network to deliver the final product, just-in-time and
sufficiently-good. The next section provides detail of the research design and challenges for this
proposal. Section IV provides the main contributions we plan to obtain; section II recaps related work.
Finally, section V concludes this paper1.

II. RELATED WORK

We find our efforts most similar to [12], [16], [11] and [7], both in terms of intents and motivation.

In [12] authors represent the industrial/business perspective on digital formations and global
development; [16] and [11] both provide empirical studies in GSE that stress the presence of social
factors which shape the outcome of global development projects. Finally, [7], [15] provides the
previous exploration of social networking technologies as a service network.

In [12] authors examine political, social, cultural and economic implication of the digital revolution.
They explore their influences in modern organizational activities such as business planning, project
management, etc. They conclude that digital formations (i.e. new social structures which emerge in
digitally-supported societies) should be considered a frontier for further research and development
efforts. From the premises and conclusions of this work we draw motivation for our effort, since we
try to research into organizational social structures (a concept from sociology) and use these results to
shape a socially-enabled technology.

In [16] authors recall delay as a typical problem to be tackled in GSE. They explore this problem, its
implication in GSE as well as its actuality. Empirical data from IBM leads the authors to observe that
indeed distance and (mishandled) collaboration are crisis causes in GSE. The authors use social-
network analysis to obtain data on collaboration. Our (empirical) plan is similar to such research. Our
approach is top-down since we try to build a social-network and validate its functions in real-life GSE
scenarios, rather than bottom- up by exploring GSE industrial scenarios to reverse engineer
requirements. The same observations can be made for [11], since the authors operate in a manner
similar to [16]. More in particular in [11], authors provide us motivations to invest in supporting the
GSE OSS since the authors conclude that social networks can play a serious role in increasing the
mutual awareness of professionals involved in GSE.

Finally, in [7], quoting the authors, “[the aim is] a frame- work integrating Web 2.0 social aspects to
automatically enrich Web services with semantic meanings based on community consensus”. In much
the same way. we propose to use both technical and social technologies to enrich the current
collaboration possibilities among GSE professionals, through an agile service social network. In
earlier works such as [15], the same idea was posted as a potential solution to the on-set of the global
collaboration needs in our current market.

III. RESEARCH DESIGN

This section provides two elements: (a) the problem we want to tackle; (b) the description of the
solution we advocate.

A. Problem Statement

Distances in time and space make it impossible for GSE teams to communicate and coordinate their
effort in an efficient manner [11]. Technical challenges, such as information discontinuity between
timezones, limit the advantages of GSE. Social challenges, such as language difference and social
class difference, inhibit collaborativeness among GSE teams, increasing its chances of failure [19].
How can ASNs be used to support GSE?

B. Our Proposed Solution

The solution we advocate is an ASN-based social net- work (ASNGSE). This technology should
exhibit four key characteristics:

1) Agile context awareness. ASNs are able to detect changes in the context and dynamically support
different scenarios as needed. In GSE for instance, round-the-clock productivity could be supported by
dynamically allocating collaborations between teams, by modeling each developer as a set of skills
and allowing for their seamless (re-)allocation based on their timezone, location and needs. Also,

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 84

seamless hand- off of relevant informations between two contiguous timezones could be used to ease
the coordination of sequential or dependent work packages.

2) Deployed in the cloud. Cloud computing, has potentials which fit with GSE needs [14], [20]. For
instance, GSE resources rendered available in the cloud allow for rapid resource location and access
on a global scale. Also, communication and information continuity between timezones may be
requested as needed.

3) Satisfying GSE social requirements. GSE teams together create an Organizational Social Structure
(OSS) [17], part of a global corporation. Social interactions in OSSs depend on personal- or corporate-
specific practices, which include work habits, methods, technologies to support cooperation, etc. In
GSE, for instance, supporting social interactions among developers from different companies and
cultures, would require letting them use own tools, languages and own methods seamlessly. ASNs can
help in doing that through adaptable creation of service compositions or transparent information
proxying (i.e. providing seamless switching between answering nodes in case of difficulty). Another
example could be using ASNs to autonomously try and assemble a common tool- workbench for all
teams. Lastly, an ASN to support GSD could compute the work allocation to teams, using (up-to-date
and context-aware information) on project requirements, time constraints, current availability, etc.

4) Project-centric as well as People-centric. Enterprise Social Networking technologies already exist
which could potentially represent (and supporting) the social network of an entire corporation. What is
still missing is the dynamic / automatic adjustment of its granular- ity, to support the global software
development project (against its changing context) as well as the people involved (e.g. technicians,
developers, managers, etc.). Moreover, none of these technologies provide flexible and adaptable
collaboration channels (e.g. adaptable status-tracking, always-on reachability of key roles, worldwide
project chatter, etc.) among professionals collaborating in the same GSE effort.

Figure 1 tries to visualize the concept we have in mind. In our vision different globally-distributed
teams (upper part) can be linked with devices (e.g. computers, in the lower part). The network links
professionals (below) but brings them together into an emergent social network (above) which
supports their collaboration as well as their sense of participation to a project. This can support them in
coordinating their effort or prevent disaster scenarios.

Figure 1. ASNs for GSD

With respect to the example in section I, the solution we have in mind would make the global software
engineering network, more “agile” in three dimensions: (a) awareness - every node would be
proactively aware of the status and presence of all others; (b) emergence - ASNs could increase-
decrease their functionality through cloud, adding and removing capabilities, devices, people and
commodities as needed; (c) organization - our ASNs would support the OSS of the current GSE,

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 85

adapting it if needed, thereby strengthening the organizational efficiency of GSE efforts, by virtue of
Conway’s law [3].

C. Research Methods

To develop a solution with the mentioned characteristics, we plan the following actions: 1) A
systematic Literature Review (SLR) into OSSs. This review provides the requirements, features and
potentials for social structures present in literature. Mapping GSE on these results can give us the
profile of the OSS for GSE, as well as a picture of its context.

2) Case-study research on ASNs. We have to understand the potentials and limits of the context-
awareness and adaptation mechanisms behind ASNs. For this we plan to study cases from domains in
which dynamic adaptation is of extreme importance (e.g. emergency management). These studies can
give us a feasibility assessment of different adaptation mechanisms avail- able for ASNs.

3) Context-Modeling. To allow ASNs’ adaptability to the GSE context, this must be clearly developed
and formalized. Case-studies, interviews or other empirical research in industries involved in GSE, can
be used to validate the obtained context-model. From a validated context-model a prototype of the
social network can be developed and proposed in industry to be validated through action research.

4) Feasibility studies. To understand ASNs’ feasibility in the cloud, a requirements-based feasibility
study of ASNs in the cloud must be carried out.

5) Prototyping. A prototype of ASN to support the GSE OSS must be developed to evaluate its
practical value against our objectives. The prototype should model and support (at least a portion of)
the GSE OSS, as well as adapting to (at least a portion of) its context’s changes.

6) Validation through action research. We are already in contact with large industrial partners to
validate the a working prototype, using standard 3-to-6-month cycles of action research, across a
three-year period. A working prototype will be deployed and evaluated in real industrial scenarios.

So far (8 months of investigation) we have obtained two key results: (a) we have established the
feasibility of ASNs in the cloud [21], [18]; (b) we have sketched the very first version of a context-
model for GSE [23]. Currently, we are finishing a systematic survey into OSSs [17].

IV. MAIN CONTRIBUTIONS

The dissertation about this research is expected to offer the following key contributions: (a) a clear-cut
definition of ASNs, stating its defining characteristics, operational me- chanics as well as (certified)
applicative grounds (e.g. cloud computing and emergency management through case study research,
GSE, etc.); (b) a validated OSS profile and context- model for GSE including social structure
requirements, so that ad-hoc support tools may be (further) developed for it; (c) an ASN-based social-
network prototype to support collaboration in GSE. The prototype would be validated in practice
through action research.

V. CONCLUSION

In this paper we outlined the proposal of an ASN-based social network (ASNGSE). We elaborated this
proposal into a research plan. We have pointed towards preliminary results which are encouraging us
in exploring the research path futher. Specifically, by analyzing GSE and matching its challenges with
ASNs we concluded that indeed ASNs are supportive [21]. Moreover, by inspecting GSE literature we
were able to draw an initial version of a GSE context-model [23]. In the future we plan to increase this
context-model with social requirements from an SLR we are conducting. Finally, we plan to develop a
very initial version of a prototype for the proposed social-networking ASN for GSE, to initiate
industrial action-research validation.

LIST OF MY PREVIOUS PUBLICATIONS

I was an active author and main contributor in [13], [22], [1], [18], [23], [21]. The last three works are
resulting from the exploration of the idea presented in this symposium paper.

REFERENCES

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 86

[1] Marco Autili, Paolo Di Benedetto, Paola Inverardi, and Damien A. Tamburri. Towards self-
evolving context-aware services. ECEASST, 11, 2008.

[2] Noel Carroll, Eoin Whelan, and Ita Richardson. Applying social network analysis to discover
service innovation within agile service networks. Service Science, 2:pp 225–244, November 2010.

[3] M.E. Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

[4] Daniela Damian. Stakeholders in global requirements engi- neering: Lessons learned from practice.
IEEE Software.

[5] HeatherOppenheimerDanielaDamian,FilippoLanubile.The international workshop on global
software development. In Proceedings of ICSE Conference 2003, 2003.

[6] Shoumen Datta, Bob Betts, Mark Dinning, Feryal Erhun, Tom Gibbs, Pinar Keskinocak, Hui Li,
Mike Li, and Micah Samuels. Adaptive value networks. In Yoon S. Chang, Harris C. Makatsoris, and
Howard D. Richards, editors, Evolution of Supply Chain Management, pages 3–67. Springer US,
2004.

[7] Khaled El-Goarany, Iman Saleh, and Gregory Kulczycki. The social service network - web 2.0 can
make semantic web services happen. In Proceedings of the 2008 10th IEEE Conference on E-
Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-
Services, pages 419–423, Washington, DC, USA, 2008. IEEE Computer Society.

[8] The Standish Group. Standish Chaos Report. 1995-2009.

[9] Elizabeth Hargreaves, Daniela Damian, Filippo Lanubile, and James Chisan. Global software
development: building a research community. SIGSOFT Softw. Eng. Notes, 29:1–5, September 2004.

[10] James D. Herbsleb. Global software engineering: The future of socio-technical coordination. In
Lionel C. Briand and Alexander L. Wolf, editors, FOSE, pages 188–198, 2007.

[11] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An empirical
study of global software development: distance and speed. In ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, pages 81–90, Washington, DC, USA, 2001. IEEE
Computer Society.

[12] Robert Latham and Saskia Sassen, editors. Digital forma- tions: IT and new architectures in the
global realm. Princeton University Press, Princeton, NJ, 2005.

[13] Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, and Damian A. Tamburri. Providing
architectural languages and tools interoperability through model transformation technolo- gies. IEEE
Transactions on Software Engineering, 36(1):119– 140, January 2010.

[14] Ivanka Menken and Gerard Blokdijk. Cloud Computing Best Practice Guide: Strategies, Methods
and Challenges To Managing Services in the Cloud. Emereo Pty Ltd, London, UK, UK, 2009.

[15] Alexander Mikroyannidis. Toward a social semantic web. IEEE Computer, 40(11):113–115,
2007.

[16] Thanh Nguyen, Timo Wolf, and Daniela Damian. Global software development and delay: Does
distance still matter? Global Software Engineering, 2008. ICGSE 2008. IEEE In- ternational
Conference on, pages 45–54, Aug. 2008.

[17] K. Ruikar, L. Koskela, and M. Sexton. Communities of practice in construction case study
organisations: Questions and insights. Construction Innovation, 9(4):434–, 2009.

[18] Maryam Razavian Christina Manteli Patricia Lago Elisabetta Di Nitto Sajid Hashmi, Viktor
Clerc, Ita Richardson, and Damian A. Tamburri. Software as a service in the cloud to support global
software development. In 5th International Workshop on Tool Support and Requirements
Management in Distributed Projects (REMIDI’11). 6th International Confer- ence on Global Software
Engineering (ICGSE 2011).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 87

[19] Raghvinder Sangwan, Matthew Bass, Neel Mullick, Daniel J. Paulish, and Juergen Kazmeier.
Global Software Development Handbook (Auerbach Series on Applied Software Engineering Series).
Auerbach Publications, Boston, MA, USA, 2006.

[20] Stefan Tai, Jens Nimis, Alexander Lenk, and Markus Klems. Cloud service engineering. In Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastin Uchitel, editors, ICSE (2), pages 475–
476. ACM, 2010.

[21] Damian A. Tamburri and Patricia Lago. Satisfying cloud computing requirements through agile
service networks. Pro- ceedings of SERVICES 2011, 2011.

[22] Damian A. Tamburri, Patricia Lago, and Henry Muccini. Leveraging software architectures
through the iso/iec 42010 standard: A feasibility study. In TEAR, pages 71–85, 2010.

[23] Lago P. Tamburri, D. A. Supporting communication and cooperation in global software
development with agile service networks. ECSA 2011, Springer:8 pages, 2011.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 88

Appendix G: On the Nature of GSE Organizational Social Structures: an
Empirical Study

Damian A. Tamburri∗ , Elisabetta Di Nitto†, Patricia Lago∗ , and Hans Van Vliet∗

Abstract—In Global Software Engineering (GSE), people are organized in teams, distanced in space, time

and culture. Organizational research calls this interplay of people an Orga- nizational Social Structure (OSS).
Previous literature in GSE shows that its OSS is highly dynamic and unpredictable. This paper presents a mapping
of OSS types on GSE organizational factors, based on empirical evidence. We made two observa- tions: first,
current OSS types dont support factors related to GSE process management and organizational efficiency
(e.g. risk management, language, etc.). Second, OSSs in GSE have attributes which dont map to any GSE factor,
rather introduce a new one, awareness management (e.g. awareness of skills to others, awareness of tasks, tasks
(re-)localization, etc.). Our conclusions are twofold. On one hand, OSSs for GSE should focus on increasing support
to process management and organizational efficiency. On the other hand, research in GSE should include factors
focusing on awareness management.

Keywords-Global Software Development, Social Computing, Social Structures, Requirements Engineering, Human
Factors, Empirical Study

Global Software Engineering (GSE) is a business decision entailing project teams to collaborate
globally on the same project, from different timezones [7], [8]. Literature shows how this decision
increases failure risks [9], [6]. Different factors cause increased risks. For example, distance in space
and time makes (cross-)dependencies among project tasks very tight; in this web of dependencies a
single unmet deadline can cause a ripple effect compromising the whole project [16]. Also, the
cultural distance among developers in different cultural areas (e.g. Europe vs. India) can cause
fear, mistrust or other “social” problems which hinder communication and collaboration [4].

An Organizational Social Structure (OSS) represents the emergent web of (social) ties, practices and
cognitive approaches between individuals collaborating towards a common goal [19]. An OSS’
purpose is to enable the creation and sharing of knowledge between individuals so that the final goal
can be reached [2]. Within GSE distributed teams collaborate (i.e. they share knowledge) to develop
software systems (i.e. their final goal): by definition, this constitutes an OSS. On the one hand, GSE
incurs an OSS that fits the type of people interactions that naturally arise in that context. On the other
hand, results in OSS can help us understand, and improve, the challenges of GSE [8].

In this paper we map the current state of the art in OSS’s on current practice in GSE. The current state
of the art in OSS’s is derived from a systematic literature review [17], while the current practice in
GSE is derived from empirical research reported in [4], [15].

The empirical research in [4], [15] identifies 25 organizational factors that an organization has to
decide on when embarking on a GSE project. 10 of these factors are not matched by any OSS
discussed in literature. These 10 factors relate to process management and organizational efficiency.
Conversely, the OSS’s that best fit GSE have a number of attributes that address awareness
management (e.g. awareness of people, awareness of their skills, of their allotted tasks, awareness of
tasks (re-)localization as needed, etc.). This factor, namely, awareness management, is not
mentioned in [4], [15].

Figure 1. Our Results: OSSs miss 10 GSE factors, and introduce 1 new factor.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 89

Our conclusions are twofold. On one hand, research in OSS’s for GSE should focus on increasing its
support to “process management” and “organizational efficiency” factors. On the other hand, research
in GSE should include factors focusing on awareness management.

The rest of the paper is structured as follows: section II-B provides an overview of the materials we
used for this study (OSSs and GSE organizational Factors) as well as the results we obtained in
mapping them. Section III provides discussions and observations on results. Finally, section IV
concludes the paper hinting to future work.

II. RESEARCH APPROACH

A. What we used
Two key contributions were used for the work in this paper. The first is a systematic literature review
(SLR) we conducted into OSSs. The second is published in [4] and [15].

We conducted an SLR [17] to obtain the state of the art in OSS’s. Using a grounded-theory approach
to study the literature [12] we obtained 13 types of OSSs together with their defining attributes. We
narrowed down to the types most relevant to the GSE domain by comparing the 13 OSS types with
definitions of GSE from [8], [7], [16] and [6]. We obtained 5 types: Project Teams, Networks of
Practice, Knowledge Communities, Communities of Practice and Formal Groups. Figure 2 captures
their mutual relations.

Figure 2. OSS types relevant in GSE domains

The types are defined as follows:

1) Communities of

Practice (CoP): quoting from [19]
“[CoPs] are groups of people informally
bound together by shared expertise and passion for a joint enterprise – engineers engaged in deep-
water drilling, for example, consultants who specialize in strategic marketing, or frontline managers in
charge of check processing at a large commercial bank”. A CoP consists of co-located groups of
people who share a concern, a set of problems, or a passion about a topic, and who deepen their
knowledge and expertise in this area by interacting frequently and in the same geolocation. Therefore
CoPs serve as scaffolding for organizational learning in one specific practice. For a CoP to take place,
a vital requirement must be satisfied: co-location. All developers have to meet in the same place, at the
same time for the dynamics of CoPs to take place. For example, Software Architects’ workshops in
GSE projects can be seen as an instance of CoPs in GSE, since they entail, co-located professionals to
share a common practice (Software Architecture) for the benefit of the project. Instances of this type
in practice are (co-located) software architects’ meetings: these are common in GSE to synchronize
efforts and plan further progress.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 90

2) Networks of Practice (NoP): Quoting from [11] “NoP comprises a larger, geographically dispersed
group of participants engaged in a shared practice or common topic of interest [...] CoPs and NoPs
share the characteristics of being emergent and self-organizing, and the participants create
communication linkages inside and between organizations that provide an “invisible” net existing
beside the formal organizational hierarchy”. A NoP is a networked system of communication and
collaboration that connects CoPs (which are localized). In principle anyone can join it without
selection of candidates (e.g. an OpenSource forge, like SourceForge, is an instance of NoP). NoPs
have a high geodispersion, i.e. they can span geographical and time distances alike. This increases
their visibility and the reachability by members. An unspoken requirement for entry is the expected IT
literacy of members. IT literacy must be high since the tools needed to take part in NoPs are IT-based
(e.g. Micro-blogs, forums, hang-outs, etc.). NoPs are composed of CoPs (which are co-located). They
inherit from CoPs the enforcement of shared repositories of knowledge for their members, as well as
the presence of a common practice acting as an engagement within the network. Differently than
CoPs, NoPs can be seen as IT-enabled global networks, since their chief aim is to allow
communication (and collaboration) on the same practice through large geographical distance. For
example, each GSE team (e.g. people, skills, documents, etc.) can be seen as a node within a GSE NoP
[18].

3) Formal Groups (FG): FGs, are exemplified in [10] as “[groups of] teams and/or workgroups [. . .].
Numerous different definitions of diversity have been put forth; however, they generally distinguish
between two main sets of characteristics [for FGs]: 1) diversity of observable or visible detectable
attributes such as ethnic background, age, and gender; 2) diversity with respect to non-observable, less
visible or underlying attributes such as knowledge disciplines and business experiences”. FGs a set of
people which is explicitly grouped by corporations to act on (or by means of) them (e.g. governing
employees or ease their job or practice, by grouping them in areas of interests). Each group has a
single organizational goal (governing boards are groups of executives whose goal is to devise and
apply governance practices). In comparison to other types, they seldom rely on networking
technologies to link their members, on the contrary, they are local in nature. Moreover, it is very
common for organizations to have these groups and extract project teams out of them (and therefore
they are composed of project teams). Moreover, since project teams are instances of formal groups but
tailored specifically to solve a particular problem, they inherit organizational aspects of formal groups
such as clear-cut definition of tasks, complementary set of skills, etc. A perfect example of an FG is
the JPL (Jet Propulsion Lab) within NASA. An example in the GSE domain can be seen in the SCR
group at Siemens, in which Siemens researchers, work collaboratively to develop best practices [14].
Formal groups are very similar to the organizational units, or “sites”, which are used in GSE.

4) Knowledge Communities (KC): Quoting from [5] “Virtual knowledge communities are organized
groups of experts and other interested parties, who exchange knowledge on their field of expertise or
knowledge domain in cyberspace within and across corporate and geographical borders. Virtual
knowledge communities focus on their knowledge domain and over time expand their expertise
through collaboration. They interact around relevant issues and build a common knowledge base”.
Essentially KCs, are groups of people with a shared passion to create, use, and share new knowledge
for tangible business purposes (e.g. increased sales, increased product offer, clients profiling,
etc.). The main difference with other types is in their specific tie to precise business goals for the
organizational sponsor. Moreover, they are not limited to use electronic communication and
collaboration means (such as NoPs) but rather they inherit from CoPs the enforcement of co-located
meetings or workshops to devise or explore new ideas. Specific industrial groups such as the JDA
global alliance program 1, focused on supply-chains, can be seen as a knowledge community for GSE,
since they focus on best practices and knowledge interchange around problems specific to (a specific
domain of) GSE.

5) Project Teams (PT): Lindkvist [13] provides a general definition of PTs with the following words:
“[PTs are] temporary organizations or project groups within firms [that] consist of people, most of
whom have not met before, who have to engage in swift socialization and carry out a pre-specified

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 91

task within set limits as to time and costs. Moreover, they comprise a mix of individuals with highly
specialized competences, making it difficult to establish shared understandings or a common
knowledge base”. PTs are made by people with complementary skills who work together to achieve a
common purpose for which they are accountable. They are enforced by their organization and follow
specific strategies or organizational guidelines (e.g. time-to-market, effectiveness, low-cost, etc.).
Their final goal is delivery of a product or service which responds to the requirements provided.
Compared to the other OSS types, they are the most formal type of group. PTs are also defined as
strict and single-minded aggregates of people, (closely) collaborating on well-defined reification
tasks (i.e. tasks which produce a tangible artifact which justifies their effort). Any Scrum project team,
e.g. in [20], is a project team.

Table I compares the OSS types. Column one, contains the attribute types that, according to literature,
characterize OSSs. These attribute types occur often in literature describing with a specific value a
specific OSS type. For instance: the “geodispersion” attribute type, has value “Network-Spanning” in
NoPs, since the nodes part of a NoP are distanced in both time and space (i.e. every one has a different
geolocation and their dispersion is network wide). Each OSS type is identified by a unique set of
attributes’ value which are typical for that specific type and not for others. Columns two to six,
classify each type by giving its attributes their specific value. The remaining 8 types from
our study don’t comply with GSE definitions in [8], [7], [16] or [6] since they do not pursue goals that
are typical for GSE projects. For example, Problem Solving Communities (PSCs) entail extremely
experienced professionals to focus on solving a specific problem to achieve a strategic business
advantage. PSCs are distant from GSE practice, because single GSE projects don’t pursue the strategic
advantage of organizational sponsors, but rather use the strategy advantage of round-the-clock
productivity to deliver products faster. Other examples are Learning Communities and Strategic
Communities, which are specific to practices around learning and development of best-practices.
These communities are not intended to share a practice for a purpose (like in CoPs or NoPs), rather
they are bent on pure learning. Lastly, types such as Social Networks and Informal Networks are too
generic to be considered similar to a domain area such as GSE.

To understand which (sum) of these types matched GSE, we used empirical evidence from [4] and
[15]. In these works, the authors present three GSE case studies, conducted within large GSE
corporations, over a period of nine years. Through action research, 25 organizational factors were
derived and refined, based on organizational problems and issues observed. These 25 factors are
defined as key decisions that need to be taken for management and governance in GSE. Table II shows
the 25 factors and exemplifies the decisions to be made for each factor. On Table II we made a
distinction: the top part shows “socio-organizational factors” which refer to structure or operational
behavior of teams (i.e. relating to people involved); the bottom part, in bold, shows “process
management and efficiency factors” which refer to aspects of the software process or the efficiency of
the GSE organizational structure (i.e. relating to the processes and approaches adopted).

B. Mapping OSS Types to GSE Factors

In the previous section we reported five OSS types which were similar (by definition) to GSE. To
understand which combination of these five could effectively support GSE, we did a systematic
concept mapping of the GSE organizational factors to OSS types. All 25 factors were mapped with
attributes’ values from the OSS types in Figure 2, and vice versa. More in particular, the following
rule was applied:

An OSS attribute “X” is mapped to a GSE organizational factor “Y”, if and only if X’s value is a
decision about organizational factor Y

For example, the “Visibility” organizational factor was mapped to the attribute value “Visibility =
Highest” from Knowledge Communities. Consequently, in this example, the Knowledge Community
type is supportive to GSE, since it supports its “Visibility” organizational factor.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 92

As a result of the mapping, we selected 4 types, namely: Project Teams, Networks of Practice,
Knowledge Communities and Formal Groups. The “CoP – Community of Practice” OSS type was not
selected since its organizational factors were previously mapped by other OSSs (which contained
more factors). This mapping ensures that GSE organizational factors are mapped to supportive OSS
attributes (and, consequently, to the OSSs to which they belong). Specifically, select OSS types
consistently, we used a “greedy” rule, i.e. we selected a minimal set of OSSs by applying the
following rule:

An OSS is selected if and only if its attributes’ values, map to a set of organizational factors which
were not present in previous OSS selections.

Figure 3. OSS mapping and Selection process

The mapping process is summarized in the UML-style activity diagram in Figure 3.

The resulting OSS composite we selected, has two sets of attributes: (a) attributes that map GSE
organizational factors; (b) other attributes of mapped OSS types. The composite OSS type for GSE
can be described as follows: GSE practitioners are organized in project teams; also, they are forced to
collaborate within a network (through the internet), within which they share a common practice
(global software engineering) and the resources relevant to it (software artifacts being produced or
used). Moreover, practitioners in GSE carry out knowledge intensive activities (i.e. preparing
documentation, resolving requirement conflicts, making design decisions, etc.) across time and space
distance, and this makes them similar to knowledge communities. Finally, their status is formally
acknowledged (and governed) as (de-)centralized groups (e.g. development “sites”). Table IV (in the
appendix) is a is a 19 x 25 matrix containing the OSS attributes’ value / 25 GSE Organizational
factors. Columns in bold are factors which remain unmatched by any attribute of any of the four OSS
types we selected for GSE.

Every (I x J) cell matches the I-th attribute value (and consequently the OSS type to which it belongs)
with the organizational factor in the J-th column.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 93

Table I: OSS COMPARISON TABLE

III. DISCUSSION
Two key observations were made on our results. First, 10 out of 25 organizational factors are not
covered by any OSS (in bold on table II and table IV). These are “Project Management”, “Efficient
Partitioning”, “Risk Management”, “Language Selection”, “Tools”, “Culture”, “Information”, “True
Cost”, “Reporting” and “Process”. It is noticeable that all of the un-matched attributes are into
the “process management and organizational efficiency” category (see section II-B), except “Culture”
which can be a considered cross-cutting concern. This suggests OSS literature has not (fully) explored
these factors yet. This should not come as a surprise, since OSSs focus on organizing people rather
than supporting explicitly business purposes (i.e. intended to produce a tangible output such as
software). This notwithstanding, we look at additional ramifications of the OSS meta-model resulting
from our systematic literature review 2. We found that no combination of OSSs can offer support for
all these factors: the “Strategic Community” type (a specialization of Communities of Practice) offers
support to “Project Management”, “True Cost”, and “Fear” through organizational sponsoring
practices, contract value management, as well as team partitioning guidelines (in the form of “previous
experience” policies, “personal goals”). This suggests that the OSS type for GSE could be enriched by
integrating features of a strategic community. Finally, the “Workgroup” type (which inherits from
Networks of Practice) provides cohesion practices that could support both “Risk Management” and
“Fear”.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 94

Process management and organizational efficiency in GSE could benefit from support in the GSE
OSS. Additional research should be invested in constructing an OSS hybrid which can cover all 25
organizational factors.

Table II 25 ORGANIZATIONAL FACTORS IN GSE.

Second, Table III shows the composite OSS for GSE: column 1 contains the OSS types; column 2
contains the attributes’ values, rephrased to represent the GSE domain; column 3 provides a label for
unique identification; column 4 distinguishes new attributes from others that were previously
explored in GSE literature (i.e. are matched by organizational factors). As expected, many of the
attributes in Table III (e.g. attributes R2a and R2e) are not new to software engineering practice and,
specifically, to GSE (e.g. [6], [3], [8]). This confirms that software engineering research has moved
well in coping with many social and organizational factors occurring in GSE. On the other hand many
attributes deriving from OSS characteristics, are new.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 95

New attributes are marked with a capital “yes” on table III. Attribute R1a states this explicitly, by
calling for dynamic indexing and retrieval of professionals (i.e. management must be aware of who is
able to do what, and where). Attributes R2b, R2f, R3d, R3e, suggest ways in which people should be
modelled or organized so that their skills can be easily retrieved or switched (i.e. people should be
organized in such a way as to ease management’s awareness of their abilities). Finally, attribute R3g,
states a way in which people should be formatted in a federated social network to allow for their
cooperation. At a first glance, from the description in table III, these new attributes seem to fall under
the “skills management” factor. Rather, with the exception of R2i (which can be seen as a concern
crosscutting all factors), they all address a different concern: awareness management (e.g. awareness
of skills, awareness of the location and skills of certain people, awareness of task allocations,
awareness of possible (re-)allocations of tasks to skills and people etc.).

Table III OSS FOR GSE ATTRIBUTES

This trend we identified in the attributes indicates a new GSE factor focusing on awareness
management in GSE. Using the new attributes, ad-hoc support tools could be developed, to support
this new concern (e.g. an adaptable and dynamic social network of skills, rather than teams, to allow
for their (re-)localization as needed).

IV. CONCLUSIONS AND FUTURE WORK
This paper provided a profile of the organizational social structure for GSE. Our data and discussions
support two key conclusions.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 96

First, current OSSs fail to support “process management and efficiency” factors in GSE. Additional
investigation should be invested in devising an OSS which matches all 25 organizational factors
relevant in GSE. For example, the definition of the complete OSS for GSE could be used to devise ad-
hoc support tools to bootstrap GSE projects and monitor them.

Second, current practices in management and governance of GSE, have focused on the process, on
coordinating organizations involved, organizing teams into coherent working units: additional effort
should be invested in exploring mechanisms for awareness management in GSE. For example,
mechanisms to support representation and (re-)localization of skills could be critical when certain
project tasks remain dangling (e.g. as a consequence of employee turnover). Also, awareness should
be supported at different granularity levels (i.e. skills, people, tasks, etc.).

In the future, we plan to develop a prototype to incrementally satisfy the profile of the OSS for GSE
and the requirements it imposes. Future work should also be invested in developing a context-model of
the OSS defined in table III (e.g. by refining the one presented in [18]), so that context awareness and
adaptation mechanisms can be developed for the GSE OSS. This can be done by investigating further
in the OSS state of the art (e.g. as provided in [17]) to identify attributes and characteristics which are
part of OSS context.

ACKNOWLEDGMENT
The authors acknowledge the support of the European Community’s Seventh Programme FP7/2007-
2013, grant agreement 215483 (S-Cube), for partially funding this project.

REFERENCES
[1] Anne Bourhis, Line Dubac and Ral Jacob. The success of virtual communities of practice: The
leadership factor. Electronic Journal of Knowledge Management, 3(1):23–34, jul 2005.
[2] John Seely Brown and Paul Duguid. Knowledge and organization: A social-practice perspective.
Organization Science, 12(2):198–213, mar 2001.
[3] E. Carmel and R. Agarwal. Tactical approaches for alleviating distance in global software
development. IEEE Software, 2(18):22–29, March/April 2001.
[4] Valentine Casey and Ita Richardson. Implementation of global software development: a structured
approach. Software Process: Improvement and Practice, 14(5):247–262, 2009.
[5] Angela M. Dickinson. Knowledge sharing in cyberspace: Virtual knowledge communities. pages
457–471, 2002.
[6] Christof Ebert and Philip De Neve. Surviving global software development. IEEE Software,
18(2):62–69, 2001.
[7] James D. Herbsleb. Global software engineering: The future of socio-technical coordination. In
Lionel C. Briand and Alexander L. Wolf, editors, FOSE, pages 188–198, 2007.
[8] James D. Herbsleb and Audris Mockus. An empirical study of speed and communication in
globally distributed software development. IEEE Transactions on Software Engineering,
29(6):481–94, 2003.
[9] James D. Herbsleb and Deependra Moitra. Guest editors’ introduction: Global software
development. IEEE Software, 18:16–20, 2001.
[10] Eli Hustad. Managing structural diversity: the case of boundary spanning networks. Electronic
Journal of Knowledge Management, 5(4):399–409, dec 2007.
[11] Eli Hustad. Exploring knowledge work practices and evolution in distributed networks of
practice. Electronic Journal of Knowledge Management, 8(1):69–78, jan 2010.
[12] Michael Jones and Irit Alony. Guiding the use of grounded theory in doctoral studies an example
from the Australian film industry. International Journal of Doctoral Studies, 2011.
[13] Lars Lindkvist. Knowledge communities and knowledge collectivities: A typology of knowledge
work in groups. Journal of Management Studies, 42(6):1189–1210, sep 2005.
[14] Hartmut Raffler, Matthias Schneider-Hufschmidt, and Thomas Khme. System ergonomics and
human-computer interaction at siemens corporate research and development. In Penny Bauersfeld,
John Bennett, and Gene Lynch, editors, CHI, pages 65–66. ACM, 1992.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 97

[15] Ita Richardson, Valentine Casey, John Burton, and Fergal McCaffery. Global software
engineering: A software process approach. In Ivan Mistrik, J. Grundy, A. van der Hoek, and
J. Whitehead, editors, Collaborative Software Engineering. Springer, January 2010.
[16] Raghvinder Sangwan, Matthew Bass, Neel Mullick, Daniel J. Paulish, and Juergen Kazmeier.
Global Software Development Handbook (Auerbach Series on Applied Software Engineering
Series). Auerbach Publications, Boston, MA, USA, 2006.
[17] Damian A. Tamburri, Patricia Lago, and Hans Van Vliet. Organizational social structures
systematic literature review. Work in progress, 2012.
[18] Damian Andrew Tamburri and Patricia Lago. Supporting communication and cooperation in
global software development with agile service networks. In ECSA, pages 236–243,
2011.
[19] E. C. Wenger and W. M. Snyder. Communities of practice: The organizational frontier. Harvard
Business Review, 78(1):139–+, January 2000.
[20] Laurie Williams, Gabe Brown, Adam Meltzer, and Nachiappan Nagappan. Scrum + engineering
practices: Experiences of three microsoft teams. In ESEM, pages 463–471. IEEE, 2011.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 98

Table IV MATCHING OF OSS ATTRIBUTES TO GSE FACTORS.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 99

Appendix H: A Survey of SOA Migration in Industry
Maryam Razavian and Patricia Lago

1 Introduction

Migration of legacy systems to service-based systems enables enterprises to achieve advantages
offered by SOA, while reusing the business functions embedded in the legacy systems. Enterprises
nowadays have many software systems that are needed to be modernized because they are difficult to
change and they cannot cope with everlasting requirements changes. Service-enabling the legacy
systems allows enterprises to modernize their pre-existing business functions as added-value services,
and therefore achieve SOA promises such as agility and flexibility. Hence, identification of migration
strategies for service engineering is critical for migration of legacies, and SOA adoption in industrial
setting.

So far, many SOA migration approaches have been proposed in both industry and academia with the
ultimate goal of adoption in practice. There is, however, considerable difference between SOA
migration approaches defined in academia and those emerged in industry. For example, while
scientific approaches mainly take a reverse engineering perspective, industrial practitioners developed
best practices in forward engineering from requirements to SOA technologies, where legacy code is
not transformed but used as a reference. This difference pinpoints a potential gap between theory and
practice. One of the key causes of such a gap is that the approaches proposed in academia do not fully
fit the main goals and needs of practice. To bridge this gap, it is necessary to understand the properties
of migration approaches that are both feasible and beneficial for practice.

This paper provides deeper understanding of the types of migration approaches in industrial practice.
To this end, we conducted an industrial inter- view survey in seven leading SOA solution provider
companies. To the best of our knowledge, this is the first survey of this kind. With the objective of
understanding the industrial migration approaches, we designed and executed the interviews. Each
interview was analyzed considering the constituent conceptual elements of a migration process as
proposed in [1], including the activities carried out, the available knowledge assets, and the overall
organization of migration process. Furthermore, we looked for the best practices that companies have
developed out of experience for successful legacy migration.

As a result we found that, in fact, all companies converge to the same, one, common SOA migration
approach. This suggests that industrial migration approaches converge to a similar set of activities,
process organization, and best practices, in other words, with experience enterprises mature toward a
similar approach to SOA migration. In addition, we contrasted the industrial approaches with
academic ones, which we identified from a previous Systematic Literature Review (SLR) on SOA
migration [2]. Here we use the results of the SLR to discuss the differences and draw promising
directions for industry-relevant research.

2 Results

To gain an understanding on industrial migration approaches, we needed to typify the approaches in a
unified manner. For this purpose, we used the SOA Migration Framework (SOA-MF) introduced in
our earlier work [1] (see Fig. 1.I). The analysis of the approaches revealed patterns common among
various com- panies1. These are listed in four key findings presented in this section. Each finding is
summarized in a Reflection Box, which is followed by detailed discus- sion of the finding.
Furthermore, each finding is compared with the results of our previous study on academic SOA
migration approaches (the SLR mentioned in Section 1). Major differences between industrial
approaches and academic ones can reflect gaps between theory and practice.

2.1 Migration Activities

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 100

To answer what is done in industrial approaches, we identified the constituent activities of various
approaches and mapped them on SOA-MF. Fig. 1.III, represents the schematic forms of those
mappings.

Mappings revealed two main findings: a) industrial approaches share the same set of activities for
migration and b) industrial approaches are convergent to a subset of those activities. The two findings
are further discussed in the following.

Finding F1.1. Various companies, independent from the company type (i.e., consultancy vs. in-house)
and migration application domain, share the same set of activities for migration. This is evident from
Fig. 1.III, where the activities correspond to three graphically similar coverage patterns. It should be
noted that the similarity among coverage patterns, thanks to expressiveness of SOA- MF, indicates the
conceptual similarity of constituent activities and artifacts of the migration approaches. According to
[2], SOA migration approaches with similar set of activities constitute a migration family. Similarly,
the three similar approaches identified in the interviewed companies belong to the same family.
Contrast with theory. While the industrial approaches are all members of one family, the SLR revealed
that the academic approaches belong to eight very different families. By covering different sets of
activities each of these eight families provide a very different view on what SOA migration entails.
For instance, one family reverse engineers the legacy code and transforms the extracted code segments
to services, another family only covers the forward engineering sub- process. Considering the
industrial approaches, all the approaches are categorized into (only) one of the eight families.
Interestingly, the size of that family, called industrial family, is the smallest as compared to the others
(i.e. 3% of academic approaches). Thus, one could conclude that 97% of the academic approaches do

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 101

not fit in industrial family. This may indicate that academic research might be digging into aspects
(like sub-processes and techniques) that are less relevant for industry. On the contrary, by looking at
the characteristics of the industrial family research could better focus on the open research questions
pertaining such family and hence have a better chance to close the gap between academic research
results and industry needs.

Finding F1.2. By further analyzing the activities of the industrial approaches, we found that those
common among all approaches, called core activities, are the ones shown in Fig. 1.II with bold boxes.
The variable activities, i.e., those not common to all approaches, pertain to the coverage of the two
transformation activities shown in Fig. 1.II by dashed line boxes. Furthermore, we observed that the
core activities are those performed more frequently and systematically, while the variable activities are
carried out less frequently and in an ad-hoc manner. More precisely, the limitations posed by legacy
systems makes the variable activities less frequent. Several of the interview participants mentioned
that, transformations that require decomposing the legacy systems are rarely carried out because they
are not feasible as legacy systems are mainly monolithic. Furthermore, we observed that core activities
are mainly supported by the state-of-the-practice methodologies and techniques such as SOMA [3].
The variable activities, however, are mainly carried out using local best practices. Consequently, we
argue that, due to higher feasibility of the core activities and support of well-established
methodologies and techniques, the industrial migration approaches are characterized by core activities.

Contrast with theory. None of the migration approaches in the SLR fully covers the core
activities. I.e., none of the academic approaches comprehensively supports the type of
migration that is both feasible and beneficial in indus- trial setting. This indicates an important
gap between the migration activities emerged from practice and the ones researched in
academia.

2.2 Sequencing of Migration Activities

By providing the mappings on SOA-MF, previous section addressed what activities are covered in the
industrial migration approaches. Here we focus on what is the sequencing of those activities. There are
two main types of sequencing of activities in the migration approaches, namely arc-shaped and bowl-
shaped [4]. In summary, in arc-shaped approaches migration is driven by As-Is situation, while it is
the To-Be situation that drives the bowl-shaped ones. All the industrial approaches elicited by our
study were bowl-shaped.

This categorization of approaches is based on the graphical representation resulted from mapping their
sequencing of activities on SOA-MF (e.g. Fig. 1.IV). The sequencing of activities in an arc-shaped
approach starts from the reverse engineering sub-process. In this category, the As-Is situation initiates
and drives the migration. Unlike the arc-shaped category, the bowl-shaped one starts from forward
engineering and the To-Be situation is the main driver of migration.

Finding F2. The bowl-shaped sequencing of activities in industrial approaches implies the following:
in all of the migration approaches the To-Be situation, characterized by requirements or properties of
the target service-based system, drives and shapes the migration. To shape the migration process, first
the To-Be situation is defined within the forward engineering sub-process; further, the To-Be situation
is compared with the As-Is and as such, the legacy elements are selected and re-shaped to services. A
question that arises is why industries perform migration in a bowl-shaped manner. Some of the
participants, in one way or another, stated that in order to reach the migration goals they need to have
the To-Be situation as the primary shaping force behind migration. As such, we conclude that to
ensure achieving the migration goals, companies shape their migration decisions primarily by the To-
Be situation.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 102

Contrast with theory. Unlike the industrial migration approaches, the academic ones are mainly arc-
shaped. In the SLR only 30 % of the primary studies are categorized as bowl-shaped approaches and
the rest are arc-shaped. As such, 70% of the approaches do not support To-Be driven migration, which
is considered as the best practice among the practitioners. This highlights promising opportunities for
research to focus on how to support To-Be driven migration.

2.3 Legacy Understanding through Personalization

Understanding the legacy systems plays an important role in SOA migration as it enhances extracting
the best candidates among existing legacies for migration to SOA. In traditional software engineering,
this understanding is gathered by extracting the representation of the legacy systems using reverse
engineering techniques. As shown in Fig. 1.III, we observed that in the industry-defined approaches
none covers the reverse-engineering subprocess. This observation resulted in two key findings
discussed in the following.

Finding F3.1. To gain the required understanding of the legacy system, the industrial approaches do
not use reverse engineering techniques. This is due to the following two reasons: a) the knowledge
about the pre-existing system mainly resides in the stakeholders’ minds (e.g. maintainer, developer,
and architect). As such, the stakeholders know what functionalities are supported, and where they are
located in the legacy system. As a result, reverse engineering of the pre-existing system is not
favorable considering the little Return On Investment (ROI) it brings.

b) the legacy systems are usually comprised of a set of heterogeneous systems that are implemented in
different programming languages ranging from COBOL to Java. As a result, for reverse engineering of
the code different tools are needed and this implies a considerable amount of costs.

Contrast with theory. To understand the legacy systems, more than 60% of the approaches in the
SLR use reverse engineering techniques. Those approaches extract the representations of the legacy
systems using techniques such as code analysis and architectural recovery. Only one of the academic
approaches (out of 39), supports the legacy understanding without reverse engineering techniques (i.e.
using structured interviews)[5]. This indicates an important gap between theory and practice since
reverse engineering is not favorable in practice.

Finding F3.2. We further observed that the industrial migration approaches elicit the relevant
knowledge by directly asking the stakeholders, who own, developed, or maintained that system. More
precisely, knowledge about the legacy system mainly remains tacit in stakeholders minds. As such,
understanding is achieved by person-to-person knowledge elicitation. We argue that, this type of
knowledge elicitation is in-line with personalization knowledge management strategy [6].
Personalization deals with exchanging tacit type of knowledge. Using personalization, the legacy
understanding is gained by knowing ‘who knows what’ and consequently sharing the tacit knowledge
about the legacy systems in that regard. Contrast with theory. In the SLR, all the approaches focus on
capturing the knowledge by documenting it. As such, they are in-line with codification strategy
addressing explicit documentation of the knowledge. The results of this study, however, suggests the
importance of personalization. As such, research is needed to improve elicitation techniques,
especially targeted for SOA migration, sup- porting personalization strategy.

2.4 Service Extraction by Defining the Ideal Services

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 103

Finding F4.1. The migration approaches, inherently, embrace trade-off anal- ysis between the level of
reuse of legacy elements and characteristics of the ideal services. We observed that, in this trade-off
analysis, the industrial approaches assign considerably higher weight to the later rather than the
former. To do so, first they determine the ideal services during the forward engineering sub- process.
Later, those ideal services are re-shaped in a way that the reuse of pre-existing assets are realized. This
way, the portrait of the ideal service is the main driver of service extraction. That is, the services
identified from the pre-existing capabilities would likely be substantially different in the absence of
that portrait of the ideal service. This is in-line with our other finding that all the migration approaches
are bowl-shaped meaning that the To-Be candidate services guide the analysis and transformation of
the As-Is legacy elements. Contrast with theory. A characteristic of the bowl-shaped approaches is
hav- ing the ideal services (To-Be situation) as the main driver in service extraction. As such, this
finding points out the same gap between theory and practice as discussed in finding F.2, namely
inadequate support of To-Be driven migration.

Finding F4.2. We further observed that, industrial approaches vary in the level of detail in which they
portray their ideal services. Some of the approaches only define the capability of the desired services
at conceptual level (e.g. or- der business service), while some others also provide the design of such
services along with its associated service contract (e.g. order software service design).

Some of the approaches externalize the constraints which each service should meet, while some others
do not explicitly consider any constraints. Interestingly, we observed that the companies with more
experience in providing service-based solutions tend to define the ideal services more detailed
compared to the ones with less experience. Hence, we argue that the extent to which the ideal service
is codified is an indicator of the maturity of the migration approach.

Contrast with theory. Detailed description of the ideal services is a best prac- tice that companies have
developed with experience. Interestingly, we could not trace back this best practice to the academic
approaches.

3 Discussion

In software engineering as an applied science, research in principle should serve the final purpose of
being applied in practice. The extent to which this principle is supported by research, however, has
been subject of debate for decades, and remains a still unsolved problem. The premier conference on
software engineering featured in 2011 a panel on “What Industry Wants from Research” discussing
the current gaps between theory and practice, and how to address them. All panel members in one way
or another hinted the following cause of such gap: what research proposes does not fit the fundamental
problems, goals, strategies and weaknesses of practice. We argue that, this paper is a step towards
filling the theory and practice gap as it sheds light on how migration is performed in practice and
further contrasting it with how academic research addressed the migration problem. By identifying the
characteristics which make these approaches favorable for practice, we could identify directions for
future research that have better chance of adoption by practitioners.

I) Migration approaches fitting core activities. Getting back to finding F1, we argue that core activities
can act as a frame of mind confining the migration approaches that are more aligned with practice.
From that perspective, one would see that, for instance, the approaches addressing wrapping the appli-
cations as a whole are more in-line with practitioners concerns, compared to the ones addressing the

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 104

automatic recovery of the legacy architecture. Hence, this frame of mind pinpoints the types of
industry-relevant research in SOA migration methodologies and techniques.

II) To-Be driven migration approaches. As noted in finding F2, inadequate support for the bowl-
shaped approaches in academia highlights promising opportunities for research to focus on how to
support To-Be driven migration. For instance, future research can focus on addressing the following
challenge of the practitioners: how to systematically elicit and capture the migration drivers and how
to shape the migration process using those drivers.

III) Legacy understanding without reverse-engineering. Although re- verse engineering is not covered
in industrial migration approaches (see finding F3), elicitation of the knowledge about the legacy
system is crucial for a successful migration. In this regard, research can benefit practice by providing
methods, techniques, or guidelines that facilitate elicitation of migration-relevant knowledge from
different sources of such knowledge.

IV) Legacy evaluation from multiple perspectives. As noted, companies evaluate and extract the
legacy assets for migration to SOA by depicting their ideal services. This is, however, done in an ad-
hoc manner, which may hinder successful service extraction. An immediate concern calling for further
research is how to systematically evaluate pre-existing legacy assets based on different aspects of the
ideal services.

4 Conclusions

This paper explored the types of migration approaches employed by leading SOA solution providers in
practice. Results show that by supporting similar set of activities, process organization, and best
practices, industrial migration approaches do converge to one, common, type of migration. As such,
this paper suggests that the industrial approaches mature towards a similar approach to SOA
migration. Further findings (removed for sake of space) show that industrial approaches, strictly
follow incremental migration.

In spite of what academics think, practitioners still face difficulties in con- solidating to a successful
yet cost-effective migration approach. The many avail- able methods often prove to be abstract or
commercial to be applicable. By contrasting the industrial migration approaches and the academic
ones, this pa- per emphasizes important gaps between theory and practice and consequently sketches
the promising industry-relevant research directions. Those research di- rections enable finding
solutions to problems that industrial practice confronts in real-world migration cases and is tailored to
individual needs.

When a company wants to devise or select a specific approach for migration of its pre-existing assets
to services there are many issues that need to be resolved. In this study we identified the type of
industrial migration approaches that is feasible in practice. What issues, goals, assumptions, and
decisions explicitly make that specific type of migration favorable in practice, though, is yet unclear.
We are carrying out follow-up studies to identify the goals, assumptions and issues that shape the
migration decision making process.

References

1. Razavian, M., Lago, P.: Towards a Conceptual Framework for Legacy to SOA Migration. In: Fifth
International Workshop on Engineering Service-Oriented Ap- plications (WESOA’09). (2010) 445–
455

2. Razavian, M., Lago, P.: A Frame of Reference for SOA Migration. In: Towards a Service-Based
Internet. Volume 6481 of Lecture Notes in Computer Science. (2010) 150–162

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariapathy, S., Holley, K.: SOMA: a method for
developing service-oriented solutions. IBM Syst. J. 47 (2008) 377–396

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 105

4. Razavian, M., Lago, P.: A Dashboard for SOA Migration. (2011) Under Submission. 5. Lewis, G.,
Smith, D.B.: Developing realistic approaches for the migration of legacy components to service-
oriented architecture environments. In: Trends in enterprise

application architecture, Springer-Verlag (2007) 226–240 6. Hansen, M.T., Nohria, N., Tierney, T.:
What’s your strategy for managing knowledge? Harvard Business Review 77(2) (1999)

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 106

Appendix I: The How and Why of SOA Migration in Industry
Maryam Razavian, Patricia Lago

Abstract—In industry, enterprises have many software systems to be modernized and made available
as added-value services. The identification of migration strategies and practices for service
engineering is critical for successful legacy migration, and SOA adoption in industrial setting. This
paper presents the results of an interview survey on the migration strategies in industry. The purpose
of this paper is twofold: 1) to discover the migration strategies that industrial practice adopts 2) to
identify the uses of making such strategies explicit. Results of the survey have been analyzed with
respect to migration activities, the available knowledge assets and the migration process. As a result
we found that, in fact, all companies converge to the same, one, common SOA migration strategy. In
addition, the uses of the strategy pinpoint promising industry- relevant research directions.

I. INTRODUCTION

Service-enabling the pre-existing legacy software is an important problem area in both research and
practice. Enterprises have many software systems to be migrated and made available as added-value
services. According to Gartner [1], enterprises migrate their legacy elements for three reasons: a) to
retain legacy applications indefinitely due to their core position in the market, while coping with ever-
changing requirements b) to improve business process efficiency and agility by integrating monolithic
legacy systems c) to move to new delivery solutions such as software-as-a-service (SaaS). In order to
achieve these important goals and to have an effective SOA adoption, identification of successful
migration strategies is of great importance 1. Think of migration examples like the ABN- Amro/Fortis
bank merger, involving thousands of software systems, thousands of applications in the IT portfolio of
the two banks, and the data of millions of customers.

Many SOA migration approaches have been developed in both industry and academia [2].
Nevertheless, we have observed that the industrial approaches are considerably dif- ferent from the
ones originated in academia. By discussing this observation with practitioners we were suggested that
such differences might pinpoint an undesired gap between theory and practice. It is essential to fill this
gap to devise solutions that fit the goals and problems of industry. This need was further emphasized
most recently in a panel on “What Industry Wants from Research” in ICSE 2011 [3]. The general
consensus among the panel members was that there is a need to better understand the fundamental
problems, goals, strategies and weaknesses of practice. In this paper we provide such understanding by
studying how migration is performed in industry.

To this end, we conducted an industrial interview sur- vey in seven leading SOA solution provider
companies, followed by a panel of experts. Despite the diversity of participating enterprises, the
interview survey revealed that they all converged to the same, one, common SOA migration strategy:
all use similar input knowledge, similar activities, and sequences of activities to carry out migration.
This suggests that with experience enterprises mature toward a similar migration approach. This would
also confirm the SOA migration maturity level of Gartner Hype Cycle as being in early main stream
phase [1]. In addition, and unlike the majority of academic approaches, SOA migration in industry
mostly neglects reverse engineering. Rather, migration follows a forward engineering process initiated
by identifying the ideal state (e.g. ideal business services), which is taken as a reference to extract and
transform legacy elements to services.

The panel of experts following the interview survey in- vestigated the benefits of such overall strategy.
The panel envisioned to use this strategy as a general tool to guide and steer migration projects. We
further elicited a list of extensions to such tool, that would address the recurring problems in industrial
migration, namely identification of the costs and risks of migration projects, and deciding on the best
migration approach to mitigate them. The overall approach with extensions that emerges from the
panel re- sembles the lean & mean approach of Kruchten [4], and draws interesting directions for
industry-relevant research.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 107

II. RELATED WORK

Since the early use of SOA, service-enabling legacy assets has caught a lot of attention. Various
studies present an ap- proach for such migration [5], [6], [7]. All these approaches, aim for being
adopted in practice. However, results show [8] that most of many academic migration approaches are
not applied in practice, nor is their applicability in practice exemplified. This implies that those
approaches have less chance of being adopted by practitioners. In addition, we identified very few
works that discuss the migration ap- proaches emerged from practice [9], [10], [11]. Unfortu- nately,
these approaches provide an ad-hoc representation specific for the particular case studied. As a result,
it is not clear if they have the potential to provide a generally reusable holistic view on industrial
migration approaches. By conducting a survey on migration approaches in various enterprises, this
paper provides such holistic view. This work is to the best of our knowledge the first survey of its
kind.

III. RESEARCH CONTEXT

In this paper we build upon our previous studies on SOA migration. Our research context is
schematically depicted in Fig. 1, where the focus of this paper is given in white and earlier work in
gray.

Figure 1. Research context

In our earlier work [2], we carried out a systematic literature review (SLR - see left-hand side of Fig.
1) on SOA migration in which we categorized Academic Approaches. As a co- product of SLR we
further devised the theory of Three-View SOA Migration Strategy [8]. Section IV summarizes this
theory. To gain an understanding on how industrial practice performs migration, we further conducted
an Industrial survey in seven leading SOA solution provider companies. Results showed that the
industrial migration approaches (In- dustrial Approaches in the figure) are considerably different from
the academic ones [12].

These differences motivated us to seek for a deeper un- derstanding of industrial migration
approaches. With this aim, we categorized the them using the three views. In this way we could
uncover a common strategy emerged out of practice, called Industrial Migration Strategy which is
presented in Section VI. It should be noted that, in this work we simply describe the strategy that
resulted from the industrial survey. Accordingly, sections VI-B and VI-C partially recall information
detailed in [12].

Finally, to verify the general applicability of the holistic industrial migration strategy and to
understand its benefits we consulted a panel of experts. The results of the panel are reported in Section
VII.

IV. BACKGROUND ON MIGRATION STRATEGY: A THREE VIEW PERSPECTIVE

Previous work showed that SOA migration can be effectively represented by three distinct yet inter-
related views, each dealing with one aspect of a migration strategy:

(i) Activity view reflects what needs to be done in SOA migration, (ii) Knowledge view highlights the
types of knowledge that shape and drive the migration, (iii) Sequence view focuses on the sequence in
which the activities are carried out. We here discuss our rationale behind choosing this three-view
representation.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 108

a. Migration is a reengineering problem. We consider the problem of migration of legacy systems to
SOA as a reengineering problem. In this view we follow a line of thought shared among various
researchers. In [13] migration is defined as a modernization technique that moves the sys- tem to a
new platform while retaining the original system’s data and functionality. According to [14],
reengineering is the examination and alteration of a subject system to reconstitute it in a new form and
the subsequent imple- mentation of the new form. The commonalities among these two definitions are
considerable. In practice, the notions of “legacy migration”, “integration” and “architectural recov-
ery” which all deal with legacy applications, are considered as approaches to reengineering. b.
Understanding As-Is and To-Be states. According to [15] any reengineering effort embraces a strategy
indicat- ing how to move from the As-Is state to the To-Be state. As such, understanding the As-Is and
To-Be states is essential for carrying out the migration. To determine the migration strategy, the
concern of what knowledge elements define the As-Is and To-Be states have to be addressed. This
concern is reflected in the knowledge view. c. Migration activities. To move from the As-Is to the To-
Be state one needs to identify the best-fitting set of activities to perform the reengineering [15]. To this
end, the decisions regarding the best-fitting activities have to be addressed in the migration strategy,
that is the focus of activity view. d. Trade-offs between As-Is and To-Be states. Reenigeer- ing
inherently embraces trade-off analysis between the de- gree of legacy leverage (i.e. As-Is state) and
characteristics of the ideal state (i.e. To-Be state) [15]. As an example, the trade-offs between reuse of
the monolithic and large legacy components, and well-granular services has to be frequently handled
in migration projects. A migration strategy, should explicitly reflect concerns related to such trade-off
analysis, namely, which of the As-Is and To-Be states has to be the key shaping force regarding the
trade-offs as well as how the sequencing of activities should instrument the key shaping force. This
concern is addressed in the sequence view.

Fig. 2 gives an example of three-view knowledge representation. The knowledge view (Fig. 2.I)
indicates the available input knowledge with color green, and the required input knowledge that is not
available with red. The knowl- edge conversions are represented using arrows. The activity view (Fig.
2.II) represents the activities covered in migration process. To do so this view maps the migration
activities on the SOA Migration Framework (SOA-MF) introduced in our earlier work [16]. SOA-MF
is a skeleton of the holistic migration process along with the distinct conceptual ele- ments involved in
such a process. The framework consists of three sub-processes: reverse engineering, transformation
and forward engineering. Finally the sequence view (Fig. 2.III) shows the order in which the covered
activities are carried out, this being of two types: arc-shaped (because activities are carried out from
left to right, driven by the As-Is state represented by the legacy code, i.e., resembling an arc) or bowl-
shaped (because activities are ordered from right to left, driven by the To-Be state, resembling a
bowl). By selecting one of the two types (see radio button in the figure) one indicates the overall
ordering of activities.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 109

Figure 2. Three-view Strategy Representation

V. DESIGN OF INTERVIEW SURVEY STUDY

This section describes the research methodology of the study that is the focus of this paper (white area
of Fig. 1). Here, we introduce the research questions, the study design, and data analysis method
behind our industrial survey.

A. Research Questions

In order to investigate how migration is performed in industrial practice the following main research
question was formulated: What approaches regarding legacy to SOA migration are used in practice?
This main question is refined as:

• (RQ1) what are the knowledge elements that are used and produced?

• (RQ2) what are the activities carried out?

• (RQ3) what is the sequencing of the activities?

B. Study Design

We chose interview survey as our research method for two main reasons: (i) Survey is the favorable
method for the type of questions our research seeks to answer. In Yin’s categorization [17] our
research questions fall under “what” category (as we look for what activities, what process and what
good practices). These questions are likely to favor surveys, according to [17]. (ii) Our research is of
explorative nature, hence requiring multiple data points. Surveys again are a suitable method for this
purpose as they address a larger target population compared to other research methods such as case
studies. To gather information about industrial SOA migration approaches, we conducted a series of
interviews. Interviews are an appropriate strategy when the goal is to identify the experience of
individuals and/or organizations in carrying out a task [18]. The conducted interviews were semi-
structured. The open-ended questions of this type of interviews allow interviewers to ask follow-on
questions when necessary. The first version of the interview guide was piloted with one researcher and
one practitioner with experience in SOA migration 2. The theoretical population [17] target of this
study included architects (both technical and enterprise architects) with considerable experience in
carrying out SOA migration projects. To recruit suitable architects we created a leaflet illustrating the

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 110

goals of this study. We distributed it both among our industrial network and in the Dutch architecture
conference 2009, a well-known practitioner conference with over 500 participants each year. To
ensure the reliability of the result we carefully chose the companies that are leading SOA solution
providers. To ensure that the industrial survey is based on real-world experience, instead of
participant’s opinion on how migration should be carried out, we asked them to select one recent
project and answer the questions considering that specific project. Finally nine architects, affiliated
with seven international companies residing in the Netherlands and Belgium committed to our study.
Table. I provides an overview of the information about the interviewees, their company and the
domain of the migration project selected for each interview.

Before carrying out the interviews, the interviewees were sent a copy of the interview guide as well as
some back- ground information on the study. This allowed us to better synchronize terminology. The
interviews were conducted on site and were all video-recorded. The initial findings along with any
remaining unanswered questions were iterated with the interviewees to reassure their correctness and
completeness.

Table 1. Interviews overviews

C. Data Analysis

To typify the industrial migration approaches, we analyzed each of interview transcripts. We chose
coding as our qualitative analysis method. In order to carry out the analysis systematically, inspired by
the method of Miles and Huberman [19], we devised the following coding procedure for our purpose:

1) Surfing knowledge elements: Identifying the knowledge elements as well as the conversions among
them (RQ1).

2) Filling in/Surfacing activities involved in migration: coding activities and refining the codes
labeling activities, identifying the new activities (RQ2).

3) Filling in/Surfacing sequencing of activities: coding the inputs and outputs of an activity,
identifying the sequence of activities (RQ3).

VI. RESULTS OF INDUSTRIAL SURVEY

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 111

In this section, we present the results of our analysis on the conducted interviews. Using the coding
procedure explained in V-C, for each interview we codified the migration strategy used at its
associated enterprise. Despite the many differences between the participating enterprises, the analysis
revealed a great deal of similarity between their industrial migration strategies. The study,
interestingly, shows that the approaches converge to, one, common strategy. More precisely, industrial
migration strategies use and produce similar knowledge elements (knowledge view), perform similar
activities (activity view), and follow the same sequencing for those activities (sequence view).
Although we did not specifically ask if this common approach is successful, we see that this approach,
which is working in practice, has emerged out of experience. In other words, with experience
enterprises have matured toward a similar approach to SOA migration. In the reminder of this section
we will describe the details of the analysis results with respect to each of the three views.

A. Knowledge View

By mapping each of the approaches on the knowledge view we isolated (i) the knowledge elements
that enable the migration, and (ii) the conversions among those elements. The analysis of the
mappings revealed that the knowledge view of the industrial approaches converge to the view shown
in Fig. 3.I, and its implications are explained in the following.

The approaches share three main knowledge outputs, and also use similar input knowledge elements
for creation of each output. These three main knowledge outputs are (see Fig. 3.I): (i) migration
lifecycle plan, (ii) representation of ideal services, and (iii) software service models. In more details,
for each of them we observed the following commonalities:

A Migration lifecycle plan - to decide on the migration increments. As reported in [12] migration
processes are incremental. Accordingly, we observed that, similar to any iterative and incremental
software process, migration processes also start with lifecycle planning. In this plan important
decisions such as the number of increments, or the ordering of migrating pre-existing assets have to be
reflected. As shown in Fig. 3.I, the knowledge elements that shape those targets are business goals
(e.g. achieving agility), risks, pre-existing legacy assets, and constraints (e.g. time). Interestingly we
found that to support these decisions, some of the surveyed companies have developed a number of
local practices such as highest-value-service-first, easiest-service- first, and selection-using-enterprise-
architecture. Using the first two practices, services with highest value for the market or services that
are easiest and consequently fastest to create, are first extracted and migrated to SOA. The selection-
using-enterprise-architecture practice suggests forming the sequencing of migrating services using
business and information architecture of the regarding domain. As such, they can select independent
increments to migrate (i.e., portions of legacy elements that can be migrated independently of each
other), the sequencing of the increments to achieve the desired goal, and dealing with inter-
dependencies among legacy elements.

Enterprise architecture - to understand As-Is and To- Be states. We further found that prior to
identification of software services (to be migrated or newly made), identification of ideal services is
carried out. To do so, the industrial approaches first achieve a high level understanding of the As-Is
and To-Be states. An interesting observation here was that to gain such understanding all enterprises
extract the enterprise architecture (EA) of both As-Is and To-Be states. As such, the industrial
approaches (partially) capture the As- Is and To-Be states in terms of EA elements, i.e. business
architecture, data architecture and technology architecture. Business architecture represents the
structural and behavioral architecture of the business. The first represents the key business capabilities
and the interrelationships among them. Examples of business architecture are legacy functional
blueprint (CXB), business service pool (RVS) and domain architecture (RXB). The business
behavioral architecture represents the main behavior of the business domain in terms of business
processes and business rules. Data architecture represents the data entities representing the business.
Finally, technology architecture articulates the embodied software, middleware and hardware
technologies used in As-Is and To-Be states. Besides the As-Is and To-Be enterprise architecture, and
to identify the ideal services, practitioners use as inputs new requirements and goals, and service-
specific characteristics (e.g. loosely coupled services).

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 112

Ideal services - as main drivers. Having identified the ideal services, the next step is to extract the
software service model, i.e., the actual services. We found the ideal service representation to be the
main driver in this process. As noted, migration approaches inherently embrace trade-off analysis
between the degree of reuse of legacy elements and characteristics of the ideal services. We observed
that, in this trade-off analysis, the industrial approaches assign considerably higher weight to ideal
services than to legacy reuse. To do so they reshape the ideal services in a way that the reuse of pre-
existing assets are realized. This way, the representation of the ideal services as well as knowledge
about the design of legacy systems are the main knowledge inputs for service extraction. This is
evident from Fig. 3.I where the input knowledge elements are representation of ideal services as well
as design-related knowledge of the legacy systems (i.e. design models, design constraints, and both
desired and undesired qualities).

B. Activity View

To identify the constituent activities of industrial approaches, we mapped them on SOA-MF [2]. Fig.
3.II, represents the schematic forms of those mappings. Mappings revealed the following findings a)
industrial approaches share the same set of activities for migration and b) industrial approaches are
convergent to a subset of those activities. The two findings are further discussed in the following.

Various companies, regardless of their company type (i.e., consultancy vs. in-house) and market
segment (e.g. telecom, banking, energy), share the same set of activities for migration. This is evident
from Fig. 3.II, where the activities correspond to three graphically similar coverage patterns. By
further analyzing the activities of the industrial approaches, we found that those common among all
approaches, called core activities, are the ones shown in Fig. 3.III with bold boxes. The variable
activities, i.e., those not common to all approaches, pertain to the coverage of the two transformation
activities shown in Fig. 3.III by dashed line boxes. Furthermore, we observed that the core activities
are those performed more frequently and systematically, while the variable activities are carried out
less frequently and in an ad-hoc manner. Consequently, we found that, the industrial migration
approaches converge to one, common, activity view which covers the core activities. The activity
view, as such, represents the following commonalities among the migration approaches.

Core activities. Next to some activities that vary due to the specific domain or context of a migration
project, we found that in all participating companies migration entails three core activities: a) gap
analysis at EA level, b) forward engineering, and c) legacy application wrapping. More precisely, by
covering business model transformation, the industrial approaches support gap analysis between As- Is
and To-Be states that are illustrated using EA. Second, by covering the entire forward engineering
process, the industrial migration approaches cover (not surprisingly) the three activities of service
analysis, service design, and service implementation. Third, by covering the code trans- formation
activity, all elicited migration approaches include transforming pre-existing applications as a whole to
new target services. Transformation here, entails wrapping the legacy system without decomposing it.

Legacy understanding without reverse engineering. As shown in Fig. 3.III the reverse engineering sub-
process is not covered in industrial migration. To gain the required understanding of the legacy
system, the industrial approaches do not use reverse engineering techniques. This is because the
knowledge about the pre-existing system mainly resides in the stakeholders’ minds (e.g. maintainer,
developer, and architect). As such, the stakeholders know what functionalities are supported, and
where they are located in the legacy system. As a result, reverse engineering of the preexisting system
is not favorable considering the little Return On Investment (ROI) it brings. We further observed that
the industrial migration approaches elicit the relevant knowledge by directly asking the stakeholders,
who own, developed, or maintained that system. More precisely, knowledge about the legacy system
mainly remains tacit in stakeholders minds. As such, understanding is achieved by person-to-person
knowledge elicitation.

C. Sequence View

The previous section described what activities are covered in the industrial migration approaches. Here
we focus on the order in which the covered activities (e.g. Fig. 3.II) are carried out (e.g. Fig. 3.V). As
mentioned in Section IV there are two types of sequencing: arc-shaped and bowl-shaped. The

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 113

sequencing of activities in an arc-shaped approach starts from the reverse engineering sub-process. In
this category, the As-Is state initiates and drives the migration. Unlike the arc-shaped category, the
bowl-shaped starts from forward engineering and has the To-Be state as the main driver of migration.

Bowl-shaped sequencing. All the industrial approaches elicited by our study were bowl-shaped
meaning that the To-Be state, characterized by requirements or properties of the target service-based
system, drives and shapes the migration. A question that arises is why industries perform migration in
a bowl-shaped manner. Some of the participants stated that in order to reach the migration goals they
need to have the To-Be situation as the primary shaping force behind migration. For instance, CXB
said: “We start the migration by defining the target blueprint (instead of identifying what are the pre-
existing capabilities), otherwise we cannot ensure achieving the level of flexibility we envision”.

Figure 3. Three view Strategy Representation.

VII. A LEAN & MEAN MIGRATION STRATEGY

The industrial survey presented so far provides a general tool to represent and steer migration. This
tool, in the form of the three-view migration strategy, is common to all seven participating companies.
Whereas this result clearly helps giving structure to a migration project, we wanted to understand if
formalizing it would help industry in solving important problems. In other words, would the three-
view migration strategy provide concrete benefits? And what benefits?

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 114

To further dig into this question, we organized a panel of experts. We invited four senior architects
from three different companies other than those seven participating in the industrial survey. We
intentionally chose senior architects as they are the stakeholders who are aware of the key
characteristics of the migration projects, have long-lasting experience in multiple projects and know
the trends and current practice in use in the company. As a co-product of the panel we gathered further
evidence on the commonality of the three-view migration strategy. Most importantly we elicited a
very interesting list of concrete benefits that the three views could offer for their own company.

The benefits are discussed in the following. Overall, we observed that the way the panel of experts (or
the panel in short) sees the three-views of our migration strategy resembles the idea of a lean & mean
process model [4]. In his paper, Kruchten observed that the process models developed in the last
decades are too rich, hence hindering process support rather than providing guidance. He argues that
more meaningful (i.e. mean) and much simpler (i.e. lean) models would be better and wider
applicable, and they could be extended and customized only in case of need. In a similar vein, our
three-view migration strategy is both mean (covering what really matters for migration) and lean
(screening out details specific to the project at hand). Interestingly enough, the benefits emerged
during the panel discussion identify a whole set of extensions that would eventually offer
customizations reusable by companies only if they need them.

For each view of our strategy, the following discusses the extensions elicited from the panel.

A. Knowledge View

Knowledge-view checklist. By specifying the main input and output knowledge elements, the
knowledge view in practice acts as a checklist. The panel stated that the most important use of this
checklist is not to identify what knowledge is available, but to focus on what is not available. In this
way, practitioners can analyze early enough the costs and risks of eliciting the missing knowledge and
eventually decide whether it is cost-effective to elicit the knowledge or not.

Extensions. The panel also identified various extensions to the knowledge view that provides benefits
to migration. In the following, we describe the most important of those extensions and their related
benefits.

1) What is the source of knowledge: documents or peo- ple? The panel found that the knowledge view
should make the sources of knowledge explicit. The problem is that most of the times knowledge is
not written in documents, but is kept in people’s mind. A major con- tribution of knowledge view in
this case is to highlight where a knowledge resides (documents or people’s mind). Knowing this is
essential for planning the right activities for knowledge elicitation. In this way, again, practitioners can
better analyze and manage the costs and risks of knowledge elicitation activities. It should be noted
that, the distinction between knowledge in documents and knowledge in people’s mind confirms
Nonaka and Takeuchi’s two modes of knowledge: explicit and tacit [20].

2) Validity period for knowledge elements. In addition to the previous point, the panel observed that
the knowl- edge view should make explicit if the availability of some knowledge elements is temporal,
i.e. if it has an expiration time. Quite often migration projects last a long period of time, and people
that participate in the beginning of the project leave the company or retire before it is finished. As
people are typically important sources of knowledge, and knowing if they will become unavailable
before project completion is essential to ensure knowledge transfer in time, hence avoiding delays and
economic losses.

3) What can change. One interesting observation made by panel was that in the lifetime of a project
some knowledge may change. The issue is that in some cases changes are frequent and have important
impacts on migration. As such, if not planned those changes can result in extra costs and efforts. The
panel commented that the knowledge view should be an instrument to identify and highlight which
knowledge elements might undergo changes. In this way, practitioners can analyze early enough what
can change and how to mitigate the related risks.

B. Activity View

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 115

Core activities. The panel found the activity patterns (Fig. 3.II) expressive and conforming to
different categories of their migration projects. What was indicated as most useful was to set one of
the activity patterns as the reference model of their migration process and further derive their process
model using this reference. They also put forward a set of extensions for improving the activity view:

Extensions. The experts emphasized the importance of making explicit various concerns about the
activities the most important being:

1) Costs and risks of activities. The panel emphasized that what is especially important for them is to
explic- itly know the costs and risks of each migration activity. Associating costs and risks to activities
makes the activity view an even more powerful tool for planning how to do migration. For instance,
by knowing the costs of automatic reverse engineering, one might decide to gain understanding about
the legacy system using alternative techniques (e.g. asking stakeholders).

2) Practices related to different activities. The panel also suggested to link the activities in the activity
view to practices. This helps practitioners to select the prac- tices that are emerged out of experience
and are proved to be beneficial for carrying out specific activities. This will result in saving
considerable amount of time and costs. In summary, this extension would help to bring order to
existing practices and further facilitating their selection, and reuse in similar situations.

C. Sequence View

Bowl-shaped sequencing. As for the sequence view, the panel unanimously confirmed that migration
in practice typ- ically follows a bowl-shaped approach. Accordingly, the To- Be state drives the
migration project, and the related goals should be used to regularly measure progress. The panel,
however, commented that during a project practitioners loose track of such goals, eventually causing
deviations and delays. While the sequence view is trivial and as such does not seem to bring specific
benefits, labeling the migration projects with being “bowl-shaped” would increase awareness in
project members about the goals related to the To-Be state and build suitable mechanisms to e.g.
schedule assessments of the project progress, carry out such assessments, and make sure that a project
remains on track.

Extensions. Notwithstanding SOA migration projects are overall bowl-shaped, the panel recognizes
that the individual increments of the iterative incremental approach can be arc- shaped, too. For
instance, while mergers typically migrate their information systems to achieve a uniform To-Be state,
they also need to incrementally reverse engineer the data or the applications of the legacy systems of
the merged com- panies to migrate to the new technology. This requires some increments to be arc-
shaped. The panel indicated as very beneficial if such bowl- and arc-shaped increments would be
made explicit in reusable patterns, and if they would be associated with typical risks, costs and pre-
requisites. This extension of an overall bowl-shaped migration strategy with reusable arc- and bowl-
shaped increments resembles the idea of a ”lean & mean” approach. The panel suggestion specifically
sees as added value the ability to decide on the best extension based on prerequisites, risk- and cost
assessments.

VIII. THREATS TO VALIDITY

Below, we discuss the validity threats regarding reliability and generalizability of this work and what
we did to address them.

Internal validity. Internal validity aims at ensuring that the collected data enables the researchers to
draw valid conclusions [21]. In this survey, the interviews are mainly conducted by a single researcher
and hence subjective inter- pretations might exist. To mitigate this threat, the interview guide was
checked and validated by senior researchers experienced in software engineering, empirical studies
and SOA. Moreover, the first two interviews were coached by a professional consultant expert in the
field of ‘interviewing in qualitative research’, followed by two reflection sessions to review the
execution of the interviews. Threat to validity of the analysis is in the general applica- bility of the
codes used for characterizing and classifying migration approaches. An assuring factor in this regard is
that the start-list of codes is extracted from a conceptual framework published in a service-oriented
computing forum, after being peer reviewed by experts in the field [16]. This framework stems from

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 116

existing theory on reengineering and architectural recovery while it is constantly refined through our
coding procedure. This further consolidates its general applicability. Finally to assure accuracy of
findings, the three-view rep- resentation of approaches and initial findings were iterated with the
interviewees to be confirmed.

External validity. External validity defines to what extent findings from the study can be generalized
[21]. In this regard, a possible threat is that the survey is relatively small and the companies are mainly
situated in the Netherlands and Belgium. As such, the architecture culture of Dutch enterprises might
have influenced the results to be “architec- ture centric”. To mitigate this threat, the interviewees were
chosen from international companies that are geographically distributed. Nevertheless, as a follow-up
study we plan to geographically extend the survey to further investigate the generalizability of results.

Moreover, to increase generalizabality we intentionally chose senior architects as they are the
stakeholders who are aware of the key characteristics of the migration projects, have long-lasting
experience in multiple projects and know the trends and current practice in use in the company. In
order to cover different but relevant perspectives on the subject matter, we chose both enterprise and
technical architects as interviewees.

Finally, we organized a panel with experts other than the ones participated in our study, over a year
after the com- pletion of interviews. This further consolidates the general applicability of the results to
and across populations of persons, and time.

IX. CONCLUSIONS

This paper presents the results of an interview survey on SOA migration strategies in industry. Our
main research question was ‘what approaches regarding SOA migration are used in practice?’. To
answer it we first carried out the industrial survey with the goal of discovering the mi- gration
strategies that industrial practice adopts. Second, we organized the panel of experts with the goal of
identifying the uses (or industrial benefits) of making such migration strategies explicit.

Related to our first goal, the results of the survey show that despite the diversity of enterprises
participating in the study and of their market position, their migration converges to one, common,
strategy - driven by common types of knowledge elements and core activities, fundamentally bowl-
shaped, and with little to no attention to reverse engineering. In addressing the second goal, the panel
envisioned to use this converging migration strategy as a general tool to guide and steer migration
projects. The overall approach with extensions that emerges from the panel resembles Kruchten’s lean
& mean approach, and draws the following promising directions for industry-relevant research:

(i) Aligning risks, costs and value with migration strategy: One of the issues that was repeatedly stated
by the panel was the importance of risks and cost management in SOA migration decision making. We
found risks and cost man- agement to be in fact one of the main drivers of migration and influential on
most decisions. This further confirms a recent interest toward risk-, cost- and value-aware methods
[22], [23] that needs further research.

(ii) Providing decision making tools to support selection of migration solutions: In addition to the
previous point, panel emphasized that industry needs tools to support plan- ning and decision making
for migration. For this purpose, the panel indicated as very beneficial to associate the practices or
extensions with typical risks, costs and pre-requisites. This calls for empirical research studies to
identify and isolate practices and associate them with important decision criteria such as risks, costs
and pre-requisites.

These research directions enable finding solutions to problems that industrial practice confronts in
real-world migration cases and is tailored to individual needs. As such those migration approaches can
communicate better with practitioners and consequently better fill the gap between theory and
practice.

ACKNOWLEDGMENTS

This research has received funding from Jacquard (con- tract 638.001.206 SAPIENSA: Service-
enAbling PreexIsting ENterprISe Assets); and FP7 contract 215483 (S-Cube). We would like to thank

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 117

all architects that participated in this study. Special thanks go to Eoin Woods and Hans van Vliet for
their feedback on earlier versions of this paper.

REFERENCES

[1] G. Inc., “Hype Cycle for Application Development,” Tech. Rep., 2011.

[2] M. Razavian and P. Lago, “A Frame of Reference for SOA Migration,” in Towards a Service-
Based Internet, ser. Lecture Notes in Computer Science, vol. 6481, 2010, pp. 150–162.

[3] “ICSE 2011 Panel on What Industry Wants from Research.” [Online]. Available:
http://margaretannestorey. wordpress.com/2011/08/05/icse-2011-panel-on-%E2%80% 9Cwhat-
industry-wants-from-research%E2%80%9D/

[4] P. Kruchten, “A plea for lean software process models,” in

Proceedings of the 2011 International Conference on on Software and Systems Process, ser. ICSSP
’11. ACM, 2011, pp. 235–236.

[5] G. Lewis, E. Morris, and D. Smith, “Analyzing the reuse po- tential of migrating legacy
components to a service-oriented architecture,” in Software Maintenance and Reengineering, 2006.
CSMR 2006. Proceedings of the 10th European Con- ference on, March 2006, pp. 9 pp.–23.

[6] H. M. Sneed, “Integrating legacy software into a service ori- ented architecture,” in Conference on
Software Maintenance and Reengineering, 2006, pp. 3–14.

[7] J. Hutchinson, G. Kotonya, J. Walkerdine, P. Sawyer, G. Dob- son, and V. Onditi, “Evolving
existing systems to service- oriented architectures: Perspective and challenges,” in Web Services,
ICWS 2007. IEEE International Conference on, 2007, pp. 896–903.

[8] M. Razavian and P. Lago, “A Dashboard for SOA Migration,” 2011, under Submission.

[9] J. Meyer, “Service Oriented Architecture (SOA) Migra- tion Strategy for U.S. Operational Naval
Meteorology and Oceanography (METOC),” in OCEANS 2007 - Europe, 2007.

[10] F. Cuadrado, B. Garcia, J. Dueas, and H. Parada, “A case study on software evolution towards
service-oriented architec- ture,” in Advanced Information Networking and Applications, AINAW 08,
2008, pp. 1399–1404.

[11] R. Heckel, R. Correia, C. Matos, M. El-Ramly, G. Kout- soukos, and L. Andrade, “Architectural
transformations: From legacy to three-tier and services,” Software Evolution, pp. 139–170, 2008.

[12] M. Razavian and P. Lago, “A Survey of SOA Migration in Industry,” in International Conference
on Service Oriented Computing, ICSOC, 2011.

[13] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information systems: Issues and
directions,” IEEE Software, vol. 16, pp. 103–111, 1999.

[14] E. J. Chikofsky and J. H. C. II, “Reverse engineering and design recovery: A taxonomy,” IEEE
Software, vol. 7, no. 1, pp. 13–17, 1990.

[15] S. Tilley and D. Smith, “Perspectives on legacy system reengineering,” Reengineering Center
Software Engineering Institute Carnegie Mellon University, Tech. Rep., 1995.

[16] M. Razavian and P. Lago, “Towards a Conceptual Framework for Legacy to SOA Migration,” in
Fifth International Work- shop on Engineering Service-Oriented Applications (WE- SOA’09), 2010,
pp. 445–455.

[17] R. Yin, Case Study Research, Design and Methods. Sage Publications, 1984.

[18] I. Seidman, Interviewing As Qualitative Research: A Guide
forResearchersinEducationAndtheSocialSciences. Teach- ers College Press, 2006.

[19] M. B. Miles and M. Huberman, Qualitative Data Analysis: An Expanded Sourcebook(2nd
Edition), 2nd ed. Sage Publications, Inc.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 118

[20] I. Nonaka and H. Takeuchi, The knowledge-creating com- pany: How japanese companies create
the dynamics of inno- vation. Oxford University Press, 1995.

[21] J. Creswell, Research design: qualitative, quantitative, and mixed method approaches.
 SAGE, 2003.

[22] E. R. Poort and H. van Vliet, “Architecting as a risk- and cost management discipline,” in Ninth
Working IEEE/IFIP Conference on Software Architecture (WICSA), 2011.

[23] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Zazworka, “Managing tech- nical debt in
software-reliant systems,” in Proceedings of the FSE/SDP workshop on Future of software
engineering research. ACM, 2010, pp. 47–52.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 119

Appendix J: Exloiting Codified User Task Knowledge to Discover Services
Konstantinos Zachos, Angela Kounkou, Neil Maiden

Abstract—Most methods and techniques for engineering service-based applications do not explicitly
exploit knowledge about users and their tasks. However, codified knowledge about user tasks can be
applied to improve service discovery and composition so that it is adapted to these tasks. This paper
reports the application of user task models to improve requirements-based service discovery. It
describes how user task models can be applied to enhance service discovery based on a catalogue of
user tasks. More specifically it reports an evaluation of a new tool that demonstrate its potential utility
when improving the discovery of web services for an e-government service-based application.

1 Introduction

Service-oriented computing increases the number of mechanisms through which software can adapt to
its context [1]. Whilst established context factors such as time and location have been applied to the
design of service-based applications [2], [3], one factor often overlooked in service-oriented
computing is the user task. Service-based applications that invoke services adapted to the user task
have the potential to enable the user to achieve the task goal more effectively than applications not
adapted to the task. However, there has been little research to explore this potential.

User task modeling has been the subject of research in human-computer interaction since the
1980s. User task analysis [4] and models [5] are well-understood concepts. However, there have been
few applications of user task models to the design or delivery of service-based applications, although
exceptions do exist [6] in spite of the potential advantages that the use of such models can offer. Run-
time service environments would be able to select, compose and invoke services that would explicitly
fit with the goals and constraints of the user task, and design-time environments would be able to
overcome ontological mismatches between user requests and descriptions of the software services to
meet these requests [7]. For example, without knowledge of the user task such as drive to a destination
and which classes of service to invoke to support a task, a motorist’s need for an accurate estimated
time of arrival at a destination cannot be associated to software service descriptions for journey
planning, weather forecasting and roadwork alerts. Therefore, in the research reported in this paper,
we investigated whether codified user task knowledge can deliver some of these potential advantages
to the design and use of service-based applications.

Current approaches to designing service-based applications do not exploit codified knowledge
about user tasks. Business process models and notations such as BPEL [8] and BPMN [9] indicate the
process-oriented context in which services need to be invoked, however these models often lack
important information about the actors performing the processes, and their goals, actions and
constraints. Although initiatives such as BPEL4People [10] attempt to incorporate human
considerations into the specification of business processes, they are limited to describing human
activities as simple processes and do not codify knowledge about users and their tasks.

In contrast, codified user task models have the potential to provide different types of knowledge
with which to improve the design of service-based applications. Examples of this knowledge include
the end-state that the user is trying to achieve with the task, the different types of cognitive or
interactive sub-task undertaken, and the concrete physical, financial and time resources needed to
undertake each sub-task. Our research starts from the position that a design-time environment can
exploit knowledge of these types to discover services meeting the user’s goals and resource needs,
compose services to support cognitive and interactive tasks more effectively, and invoke services that
provide resources that users need.

In this paper we report the development and codification of user task models and their application
to service discovery in one environment developed to design service-based applications. The user task
models were developed at the class-level (e.g. drive to a destination) to maximize the leverage of each
model during service discovery – one model could potentially be exploited during the design of all
service-based applications that instantiate that task class (e.g. drive from London to Paris via the

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 120

Channel Tunnel). The codified user task models were documented in a searchable catalogue, then
service queries were generated and fired at a service repository. An empirical evaluation explored the
effect of modifying service queries with codified user task models on the precision and recall of one
service discovery engine.

The remainder of this paper is in six sections. Sections 2 and 3 report current user task modeling
and analysis approaches and their use in the development of service-based applications. Section 4
describes the new approach developed in the S-Cube project to exploit user task models in service
discovery, then section 5 describes how user task models were codified and used in the design-time
service discovery process. Section 6 reports the method and results from a multiphase evaluation study
that investigated the effect of codified knowledge from user task models on the precision and recall of
one service discovery engine. The paper ends with a review of the research hypotheses and threats to
validity, and a discussion of the findings and future research.

2 User Task Models

A user task model is a description of the structured activities that are often executed by a user during
the interaction with a system, influenced by its contextual environment, and performed to attain goals
[11], [12]. Such models have been used extensively to support different phases of the software
development life cycle, from requirement analysis to usability evaluation. During requirements work,
for example, they can help analysts to understand how people perform their work [13] and describe
how activities should be performed with a new application. Similarly, during design work, user task
models can allow for software to be described more formally, analyzed in terms of usability, and be
better communicated to people other than the analysts [14].

Different user task modeling techniques, semantics and syntax have been developed to support
these different phases of the development life cycle [15], [16], [17], [18], [19], [20]. For example
Hierarchical Task Analysis (HTA) [21] enables an analyst to model a task structure precisely during
early design work. The more complex Task Knowledge Structures (TKS) approach [22], [23] also
supports early design work through the description of two different parts of a task knowledge structure
– the goal and taxonomic structures. The goal structure represents the sequencing of task activities,
and the taxonomic structure models extensive knowledge about objects, their relationships and their
behaviours.

A more recent approach is Concurrent Task Trees (CTT) [24], which provided additional semantics
for describing sub-task types and precise temporal relationships between sub-tasks. One example CTT
model describing the user task Making a mobile phone call is shown and described in [25]. The model
enables the analyst to describe the overall task structure – for example that the abstract task Handle
communication is divided into the Connect to network and Use phone sub-tasks. It describes different
user sub-tasks, such as Recall number, interaction tasks such as Switch on, Have conversation and
Switch off, and application tasks undertaken by the computerized device, for example Connect to
network and Show time-battery connectivity. CTT also provides different semantics for expressing the
temporal relations between sub-tasks, for example enable with information passing between the sub-
tasks enter PIN and connect to network.

User task models developed with these and other similar approaches have been applied successfully
in a wide range of domains for human-computer interaction, for example from applications in medical
systems [26] to interactive TV listing guides [27]. The evidence points to the approach as an
established means of describing and analyzing contexts related to tasks undertaken by users.

3 User Task Models for Service-Based Applications

Despite the potential role of user task models in the design and running of service-based applications,
research on the topic is scarce and few published studies are available. Early work by Paterno et al.
[28], [29] delivered an environment to support tasks and services matching with CTT task models to
develop user interfaces. However the association between tasks and services was manually
established, which limits the cost-effectiveness of the approach for the design of service-based
applications. Later, Ruiz et al. [30] proposed a method with which to design web services that
analysed user task descriptions to identify web application’s required operations. Unlike Paterno’s
work, this approach was automated but did not include activities specific to the design of service-
based applications – activities such as discovering, selecting and orchestrating software services. As
such we argue that its role in service-based application design is more limited than it might otherwise

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 121

be.
A more recent approach from Kritikos and Paterno [6] exploited a domain ontology and designer-

provided user task models to produce service models specifying service combinations that realize
application functionality. The approach generated service discovery queries from each system task
description that were executed to discover, categorize and rank services based on a textual similarity
measure. Although extended to activities specific to the design of service-based applications, and
therefore more effective than the previously-reported approaches, we believe that the approach is not
as cost-effective and widely applied as we would like. A designer is still required to design upfront
user task models for each interaction with the envisaged system, which consumes resources and time
unlikely to be available in increasingly short development cycles for service-based applications.
Furthermore the service matching is dependent on a pre-existing domain ontology, thereby restricting
the approach to applications for which a domain analysis has already taken place.

Whilst we conjecture that user task models have the potential to be used to improve the design of
service-based applications, we need to ensure that applications exploiting these models are potentially
cost-effective. For this to happen, we argue that the user task models should be amenable to the forms
of automatic analyses common during service discovery, selection and composition, and their use
possible without a priori domain analysis that restricts their scope of use. Indeed, greater leverage
from a single user task model can be achieved if that model can be exploited to design applications in
more than one domain.

4 User Task Models for Service Discovery

In this paper we report a new approach, supported by software tools, which exploits reusable user

task models to enable context-aware service discovery and defines the context as the modeled user
task. The approach was developed as part of S-Cube, the EU-funded Network of Excellence for
Software Services [31]. It reuses knowledge from application domain-independent user task models,
similar to the approach in KADS [31], to provide user task knowledge missing from other published
service discovery approaches e.g. [32], [33], [34]. It seeks to overcome the semantic mismatch
between problem queries and solution service descriptions.

The approach is depicted graphically in Figure 4_1. The task-based service discovery algorithm
reuses knowledge about classes of service solution linked to tasks modeled in user task models to
reformulate a service query – terms describing the user’s goals, tasks and resources, are extended or
replaced with terms that describe classes of software services that might be relevant, thereby
increasing the likelihood of discovering them. For example, a user task model describing the journey
undertaken by a driver to reach a destination would replace terms in service queries such as plan,
travel, route and help (terms in the application-independent domain of the user task) with terms such
as journey planner, routing, parking space, and global positioning system, which are terms describing
relevant classes of software service for the user task.

Reusing user task knowledge from models to reformulate service queries can, we hypothesise,
improve the levels of precision and recall of service discovery over the levels achieved with existing
keyword matching and information retrieval techniques. User task knowledge can be utilized both to
add new terms to service queries more likely to result in retrieval of relevant services and to filter out
terms likely to result in the retrieval of irrelevant services. Although applicable to support service
discovery at run-time, we first investigated the effect of the approach on the precision and recall of
service queries generated early in the design process – queries that encapsulate user requirements – to
investigate four hypotheses.

We posited one concrete hypothesis to explore the relative effectiveness of different strategies with
which to add new user task knowledge to service queries. Put simply, new user task knowledge can be
used either to add new terms to existing terms in a service query or to replace existing terms. We
hypothesized that adding service query terms would be more effective at design-time because early
design is a divergent activity, and more query terms that have the same or similar meanings to terms
describing software services will lead to retrieval of more relevant services.

Another three concrete hypotheses were posited to explore the relative effectiveness of the new
approach over an original service discovery approach upon which it was based. Again, put simply, the
hypotheses investigated the effect of the introduction of codified user task knowledge on the precision
and recall of selected service queries. We hypothesized that reformulating service queries with terms
describing sought service classes related to classes of task would increase relevant and decrease
irrelevant services that were retrieved because more relevant and fewer irrelevant terms were included
in service queries.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 122

More precisely the four hypotheses, labelled H1 to H4, were:
H1: Extending rather than replacing service queries with additional knowledge about user tasks will

improve the overall effectiveness of service discovery;
H2: The reformulation of service queries with knowledge about user tasks will decrease the number

of irrelevant services retrieved by a service discovery engine;
H3: The reformulation of service queries with knowledge about user tasks will increase the number of

relevant services retrieved by a service discovery engine;
H4: The reformulation of service queries with knowledge about user tasks will improve the overall

correctness of services retrieved by a service discovery engine.
Each hypothesis was investigated empirically in experiments in which the new approach was

compared directly to an original service discovery approach using a predefined set of service queries.
The original approach implemented both common keyword matching and a more sophisticated
information retrieval technique.

5 Codified User Task Models for Service Discovery

This section describes in detail the new approach and how it was developed on top of one existing
service discovery engine. It summarizes the original approach, then describes how we generated and
specified user task models and extended the original service discovery engine with new knowledge
from user task models in the new approach.

5.1 The Original Service Discovery
Approach

We selected the SeCSE service discovery
environment [35] as the original approach upon which
to design and implement the S-Cube approach, and
therefore compare it against. The original service
discovery approach developed to support design-time
acitivities was called the Expansion and
Disambiguation Discovery Engine, or EDDiE for
short [35], and had been subjected to evaluations that
demonstrated its effectiveness on the design of a range
of service-based applications [36].

EDDiE was originally developed to overcome
several service discovery challenges. Previous
research prior to EDDiE – for example SWWS, DIP,
ASG, InfraWebs and NeP4B – demonstrated that
semantic descriptions such as SAWSDL [37],
MicroWSMO [38], WSMO [39] and OWL-S [40] could
be used to enable more precise discovery of services.
However, although these approaches focused on
automation support and flexible matching between
descriptions of services and queries, they did not

address the problem of the heterogeneity of the vocabularies used in service descriptions and user
requirements. Therefore EDDiE deployed established information retrieval techniques to formulate
service queries from use case and requirements specifications expressed in structured natural language
[41]. It can be configured to use either these information retrieval techniques or simpler keyword
matching techniques [42], [43]. The former we call Full-EDDiE, the latter EDDiE-lite. Each is
described in turn. Both were used as baselines with which to exploit codified user task knowledge in
service discovery.

5.1.1. The Full-EDDiE Algorithm

Full-EDDiE adds domain knowledge to service queries to overcome the problem of vocabulary
heterogeneity with service descriptions. It has two important capabilities derived from established
information retrieval techniques:

 Fig. 4_1. Task-based service discovery process

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 123

1. Query expansion – the addition of terms in the query that have the same or similar meaning to
existing query terms, to make the query more complete;

2. Term disambiguation – selecting the meaning, or sense of each term in the query to enable query
expansion, thus making the query unambiguous.

These capabilities were implemented with four components; the Natural Language Processing,

Word Sense Disambiguation, Query Expansion and the Service Matching. In the first the service query
was divided into sentences, then tokenized and part-of-speech tagged and modified to include each
term’s morphological root (e.g. driving to drive, and drivers to driver). Secondly, the algorithm
applied procedures to disambiguate each term by defining its correct sense and tagging it with that
sense (e.g. defining a driver to be a vehicle rather than a type of golf club). Thirdly, the algorithm
expanded each term with other terms that have similar meaning according to the tagged sense, to
increase the likelihood of a match with a service description (e.g. the term driver is synonymous with
the term motorist which is also then included in the query). In the fourth component the algorithm
matched all expanded and sense-tagged query terms to a similar set of terms that describe each
candidate service, expressed using a service description facet [44]. Query matching is in 2 steps: (i)
XQuery text-searching functions to discover an initial set of services descriptions that satisfy global
search constraints; (ii) traditional vector-space model information retrieval, enhanced with WordNet,
to further refine and assess the quality of the candidate service set. This two-step approach overcame
XQuery’s limited text-based search capabilities.

The WordNet on-line lexicon fulfilled an important role for three of the algorithm’s components.
WordNet is a lexical database inspired by current psycholinguistic theories of human lexical memory
[45]. It has two important features. The first divides the lexicon into four categories: nouns, verbs,
adjectives and adverbs. Word meanings, called senses, for each category are organized into synonym
sets (synsets) that represent concepts, and each synset is followed by its definition or gloss that
contains a defining phrase, an optional comment and one or more examples. In the second WordNet is
structured using semantic relations between word meanings that link concepts. Relationships between
concepts such as hypernym and hyponym relations are represented as semantic pointers between
related concepts [45]. A hypernym is a generic term used to designate a whole class of specific
instances. For example, vehicle denotes all the things that are separately denoted by the words train,
chariot, dogsled, airplane, and automobile, and is therefore a hypernym of each of those words. On
the other hand, a hyponym is a specific term used to designate a member of a class, e.g. chauffeur,
taxidriver and motorist are all hyponyms of driver. A semantic relation between word meanings, such
as a hypernymy, links concepts.

5.1.2. The EDDiE-Lite Algorithm

The EDDiE-Lite algorithm only implements two of the four components – Natural Language
Processing and Service Matching. As such it
delivers the functionality of current keyword-
based service discovery approaches (e.g. [42],
[43], [46]), i.e. taking as inputs queries made up
of keywords, and matching the keywords from
the query against those used to describe services
they access in a catalogue or registry. EDDiE-
Lite provides a second, lower baseline against
which to judge the effectiveness of codified user
task knowledge in service discovery.

A comparison between the Full-EDDiE and
EDDiE-Lite discovery activities is listed in Table 5_0. Full-EDDiE undertakes service discovery with
term expansion and EDDiE-Lite undertakes it with no term expansion.

5.2 The TEDDiE Algorithm and User Task Models

Results from previous evaluations of EDDiE [36] indicated that query expansion and term
disambiguation alone, even in the sophisticated form reported, could not overcome all of the semantic
mismatches between user requests and software service descriptions. We hypothesized that user task

TABLE 5_0
DISCOVERY ACTIVITIES ASSOCIATED WITH FULL-EDDIE
AND EDDIE-LITE

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 124

context knowledge was needed. Therefore to
provide this knowledge we extended both versions
of EDDiE with a catalogue of class-level user task
models that link application sub-tasks to classes of
service solution. A new algorithm was implemented
to discover services by first matching terms
describing the user problem to user task models
that, in turn, are used to reformulate the service
queries with terms describing classes of services
linked to relevant application sub-tasks in the user
task model. These reformulated service queries are
then fired at a service registry.

This new approach – a task-based extension to
the EDDiE algorithm – was called TEDDiE. As
with EDDiE, two versions were developed, one to
use information retrieval techniques that adds
domain knowledge to service queries, the other
simple keyword-matching. The former we called
Full-TEDDiE, the latter TEDDiE-lite. Full-
TEDDiE was implemented with information retrieval techniques so that it could be compared directly
to Full-EDDiE, whilst TEDDiE-Lite list was implemented with keyword matching so that it could be
compared directly with EDDiE-Lite.

Both first versions of TEDDiE were implemented with class-level user task models in the e-
government domain. Each could be applied to describe user interactions with a wide range of service-
based applications ranging from self health
diagnosis and planning a shopping trip to
vaccinating children and going on holiday. The
experiments reported in Section 6 use service
queries drawn from one of these applications in
which an end-user uses a government journey
planning service to plan journeys and obtain
weather updates.

The next two sections describe how we
codified user task models as CTT models and
implemented a new service discovery approach with these models.

5.2.1 Codifying User Task Models as CTTs

We chose to represent the user task models in the catalogue using the CTT task modeling formalism
[12] because CTT adapts an engineering approach to user task models. The more complete and precise
semantics of CTT has the potential to support automated service discovery more effectively than other
user task modeling formalisms.

The codification of the user task models was performed manually in a two staged process: In the
first each user task model was specified by completing a set of templates that guided the description of
user task elements in text form and user task models in graphical form, and to map subtasks to classes
of software services. In the second each specified user task model was uploaded into the online
catalogue.

5.2.2 The Structure of a User Task Model

A user task model defines a reusable task structure that encapsulates well-defined functionality for a
recurrent design problem [21]. Figure 5_1 specifies the schema of the user task models in the
catalogue. Key elements of the schema are described.
User task and goal descriptions: each user task was specified with natural language descriptions of the
task in context and the user goal achieved by completing the task. For example the task and associated
user goal for the user task Calculate a distance are described in natural language as shown in Table
5_1.
The CTT model: the task structure was expressed using the CTT formalism [24]. Each sub-task
specified in the CTT model could be an: (i) abstract task that is decomposed further; (ii) user task
undertaken by the user; (iii) interaction task carried out by the interaction of a user with a software

TABLE 5_1
CALCULATE DISTANCE TASK

Fig. 5_1. Outline task model schema expressed as
a UML class diagram

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 125

system, or: (iv) application task fully undertaken by software [18]. Possible sequences of these sub-
task types were described by CTT operators such as concurrent and enable with information passing
[13]. The Calculate a distance task is specified graphically as a CTT task model in Figure A_1 of
Appendix A.

The task hierarchy is described in a tree structure using task decomposition. The higher level task
Calculate distance is decomposed into lower level subtasks that execute it: Input start, Enter
destination, Submit data, Validate data, Compute distance, Display distance and View distance. Two
of these subtasks are themselves decomposed further – Input start comprises Detect current location,
Accept current location and Enter start; and Validate data is decomposed into Check match with
current locations, Request re-input and Confirm data validity. Graphical syntax elements indicate each
of the tree nodes’ types: each task involved in this example falls into one of three categories.
Application tasks () comprise Validate data, Compute distance, Display distance, Detect current
location, Check match with current locations, Request re-input and Confirm data validity, all of which
are executed by a software element without explicit intervention from users. Interaction tasks () on
the other hand comprise Enter destination, Submit data, View distance, Accept current location and
Enter start, all activities that require interaction between a user and a system in order to occur, for
instance to obtain the necessary task resources. The remaining tasks Calculate distance and Input start
are represented as abstract tasks () since they require complex actions and cannot neatly fall into
either of the other task categories of CTT.

Relationships between tasks at a same hierarchical level and their occurrence in time are described
using temporal operators. For example Input start and Enter destination are independent tasks ([]) as
they do not require information flow from each other, and can theoretically occur in any order.
However, Enter destination enables and passes on information (the destination elicited) to Submit
data, which in turn enables and inform Validate data. This same relationship - “enable with
information passing” ([]>>) – also occurs between the pairs Validate data and Compute distance, and
Compute distance and Display distance: this in effect passes on the data resulting from a task’s
processes to the next sequential task for further use. The last temporal operator at this hierarchical
level (|||) designates Display distance and View distance as concurrent tasks. At the lowest hierarchical
level, the Input start sub-tree represents Detect current location as enabling with information passing
Accept current location and the operator ([]) indicates this as an option to the task Enter start
occurring. The other sub-tree (stemming from Validate data this time) represents Check match with
current locations enabling (>>) Request re-input as an option ([]) to Confirm data validity occurring.

Associations to service classes: each user task model associated each application subtask described
in a CTT model to one or more classes of software service. One way of associating user task models to
service classes was to investigate the original design rationale for implemented software services,
however such rationale are rarely available and complete. Another way was to associate service
classes to user task models based on systematic analysis by people with domain expertise. This was
the way adopted in the new approach. A small team of researchers with knowledge of the user task
models, the CTT formalism and the domains in which users would normally undertake these classes of
task, systematically explored each pair-wise association between a user task and service class and
made a design decision as to whether an application sub-task could be wholly or partially
implemented using a software service of that class. An association was created between the sub-task
and service class if enhancement was agreed to take place.

The result was that each application sub-task could be associated with zero, one or many service
classes, and each service class could be associated with one or many application sub-tasks. Returning
to our example with the application sub-task Validate data depicted in Figure A_1 of Appendix A, we
associated it to services of the class DataValidation because one or more such services could be
reasonably invoked by a service-based application.

Description of each service class: we sought to describe each service class associated with a user
task model using neutral terms to avoid unintended bias during service discovery. Each service class’s
name, function and operations were described using terms sourced from online encyclopedia, namely
Wikipedia [47], Encyclopedia Britannica [48] and the more specialized Webopedia computer
dictionary [49]. Continuing the DataValidation example from Figure A_1 of Appendix A, Table 5_2
reports the DataValidation class’ functional description, taken from the source concept definition, and
list of operations derived from the action terms or verbs contained in the concept description.

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 126

The next section describes how these codified user task models were used by both versions of
TEDDiE to add this user task knowledge to service queries.

5.2.2 Task-Based Service Discovery wth TEDDiE

To develop TEDDiE we extended the original EDDiE
algorithm with two new steps that accessed a catalogue
of user task models and used model content to
reformulate service queries:
1. Match to user task models: EDDiE matched a

service query to the natural language
description of each user task model in the
catalogue. Full-EDDiE implemented it with
term expansion and EDDiE-Lite
implemented it with no term expansion.
The result was an ordered set of retrieved
user task models;

2. Reformulate service query: TEDDiE
extracted terms from the descriptions of
service classes associated with each application sub-task in each retrieved user task model to
generate new service queries. Reformulation implemented two activities: (i) extend the original
service query with the new terms extracted from the user task model; (ii) replace the service query
with the new terms extracted from the user task model.

3. Service match: EDDiE used each reformulated service query to discover candidate service
specifications in service registries. Again this was implemented in two ways. Full-EDDiE
implemented it with term expansion while EDDiE-Lite implemented it with no term expansion.
The result was an ordered set of service specifications that match to the revised service query.

To investigate our research hypotheses we implemented the four specific versions of TEDDiE
alongside the two original versions of EDDiE. The sources of knowledge forming the queries
generated by these six versions is shown in Figure 5_3.

EDDiE-Lite generated service queries containing only terms extracted directly from the original
statement of need. TEDDiE-Lite either replaced or extended these terms with terms extracted from
descriptions of service classes in matched user task models. Full-EDDiE added domain knowledge
terms in on-line thesauri to terms extracted from the original statements. Full-TEDDiE added terms
extracted from both domain knowledge in on-line thesauri and descriptions of service classes in
matched user task models to either extend or replace the terms extracted from the original statements
of need.

We chose not to mix information retrieval and keyword matching activities in either new version of
TEDDiE because we wanted to investigate our four research hypotheses – the effect of user task
knowledge on the outcomes of service discovery.

Table 5_3 specifies the six concrete combinations of activities – called strategies – implemented in
the six versions of EDDiE and TEDDiE. The increasingly sophisticated service discovery strategies
are labeled A-F to ease of reference during the results section.
For example, consider the following initial service query:

TABLE 5_2
THE DATA VALIDATION SERVICE CLASS

Fig. 5_3. Sources of knowledge forming the queries generated
by EDDiE and TEDDiE

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 127

The user sends a journey planning request with details about the start, end point and travel
preferences for his journey.

In the first step of the strategy implemented by Full-TEDDiE the algorithm extracts query terms from
the original service query, i.e.

Q’ = [journey, travel, preference, user, start, end point, plan, send],

as well as generate new query terms after the application of term expansion as described in Section
5.1, for example:

Q’’ = [termination, commence, direction, move, place, go].

The query consisting of both Q’ and Q’’ is then matched to the catalogue of user task models. Assume
that one of the retrieved models is Calculate a distance. One of the classes of service associated with
one of its application sub-tasks is Route planning software. The class has the following functional
description:

Route planning software is a computer software programme, designed to plan a (optimal) route
between two geographical locations using a journey planning engine, typically specialised for
road networks as a road route planner. It can typically provide a list of places one will pass by,
with crossroads and directions that must be followed, road numbers, distances, etc. It also
usually provides an interactive map with a suggested route marked on it.

With information about this service class Full-TEDDiE implements extend query reformulation that
then generates the following original and expanded service class terms:

S’ = [direction, crossroads, location, distance, road, map, suggest]

S’’ = [way, itinerary, calculation, travel by, path, motor, travel]

In the final step TEDDiE then generates and fires a reformulated service query based on the extend
query reformulation, i.e.

 Q = {Q’, Q’’, S’, S’’}

or more concretely

Q = {[journey, travel, preference, user, start, end point, plan, send], [termination, commence,
direction, move, place, go], [direction, crossroads, location, distance, road, map, suggest], [way,
itinerary, calculation, travel by, path, motor, travel]}.

6 First Evaluations of TEDDiE

TABLE 5_3
DISCOVERY ACTIVITIES ASSOCIATED WITH EACH DISCOVERY STRATEGY

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 128

We undertook two evaluations of TEDDiE during a series of design-time service discovery activities
to investigate the four hypotheses H1, H2, H3 and H4 reported in Section 4. In the first evaluation, to
investigate hypothesis H1 and determine TEDDiEs’ more effective strategies, we implemented the
four strategies B, C, E and F in Table 5_3 to investigate the effect on relevant and irrelevant service(s)
retrieved from a service registry. In the second, to investigate hypotheses H2, H3 and H4 and the
effect of adding user task knowledge to service queries, we investigated the effect on relevant and
irrelevant service(s) retrieved from a service registry by EDDiE and TEDDiE using the strategies A,
C, D and F. Strategies B and E had been excluded based on the results from the first evaluation.

6.1. Evaluations Method

The two evaluations were undertaken in four stages. In the first stage a set of user task models
extended with knowledge about classes of software service as described in Section 5.2 was developed.
In the second stage human expert judgement was used to classify the services in a target service
registry that a series of pre-defined service queries should retrieve as relevant. In the third each service
query was fired at the target service registry with the corresponding DS. In the final stage we applied
statistical analyses to the collect results to investigate each hypothesis. Each stage, and the target
service registry, is described in turn.

6.1.1 The Target Service Registry

The target service registry for both evaluations was a version of a SeCSE service registry containing

descriptions of 215 existing web services in domains ranging from flight booking and weather
reporting to route planning [44]. The SeCSE registry was developed in 2006 to describe different
aspects of a service stored in it using ten facets including the service signature, description and
quality-of-service [44]. Each facet is described using an XML data structure linked to the UDDI
service entry and accessed using Java APIs. A set of SeCSE APIs with WSDL interfaces allow access
to the UDDI registries and service facets. The registry itself is implemented using eXist, an Open
Source native XML database featuring index-based XQuery processing, automatic indexing and tight
integration with existing XML development tools. The EDDiE and TEDDiE service discovery
algorithms access and match information stored in the description facet composed of attributes with
structured natural language values describing, for example, service goal and service behaviour. A full
description of the XML structure of this facet is provided in [44].

6.1.2 Extending User Task Models with Classes of Software Services

We populated the user task model catalogue with codified user task models relevant to the evaluation.
Seven were codified for tasks that most citizens would be expected to undertake from time to time:

• Obtain health advice
• Access a patient record
• Request a route
• Calculate a distance
• Park a car
• Zoom into a map
• Obtaining a weather forecast

Each user task model was codified so that it was consistent with the structure reported in Section
5.2.2:

A. A natural language description of the overall user task and associated user goal;
B. A full and codified CTT model;
C. Associations between each of these service classes and one or more application sub-tasks

specified in the CTT model;
D. Natural language descriptions of one or more of these service classes.

The full specification of the seven user task models is included in Appendix A. In total, 33 service
classes were associated with the 7 user task models. Table 6_1 shows the association sub-tasks of the
request route user task model to service classes.

6.1.3 Classification of Candidate Services

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 129

Human expert judgement was used to select the services in the target service registry that the pre-
defined service queries should retrieve as relevant. The service queries were, in turn, derived from use
case specifications specified according to the SeCSE service discovery process [41]. The first use case
specified the required behaviour when a citizen undertakes journey planning, and the second the
behaviour when requesting a weather forecast. The concrete input service queries are described in
Appendix B.

We identified the services in the target registry to be retrieved as relevant by each service query
from 12 human judges, all of whom were experts in software services applied to e-government. Each
assessed the relevancy of each service description for each use case specification. The human judges
determined that 37 of the 215 available services should be discovered for the journey planning use
case, and 33 for the weather forecasting use case. These services are listed in Appendix C. These
judgments provided the classified relevant services with which to assess EDDiE and TEDDiE.

6.1.4 Evaluation Measures

We fired a total of 92 service queries at the target service registry. The number of generated EDDiE

service queries was lower than for TEDDiE because of the presence of multiple sub-tasks in user task
models used to generate multiple service queries.

Each discovered service was compared manually against the list of classified relevant services for
the use case specification from which each service query was generated. If the service was on the list,
then the service was categorized as a retrieved relevant service. The totals of classified relevant
services, discovered services and retrieved relevant services where then analyzed using established
measures of precision and recall from information retrieval research [50], [51]. Using these measures
the precision for each service query was defined as:

(Total retrieved relevant services / Total discovered services)*100
The recall for each service query was defined as:

(Total retrieved relevant services / Total classified relevant services)*100
Finally the balanced F-score for each service query was defined as:

(2*Precision*Recall / Precision + Recall)*100
One precision measure, one recall measure and one balanced F-score measure was generated for

TABLE 6_1
ASSOCIATIONS MADE BETWEEN SUB-TASKS OF THE REQUEST ROUTE USER TASK MODEL TO SERVICE CLASSES

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 130

each of the 92 service queries fired at the service registry, providing a total of 276 precision, recall and
balanced F-score measures. Of the 92 service queries 88 were generated by TEDDiE and 4 by EDDiE,
and 46 were generated by Full-EDDiE and Full-EDDiE and 46 TEDDiE and TEDDiE-Lite. Results
are reported in the next section.

6.2 Evaluation Results
We analyzed the totals of retrieved relevant and
irrelevant services for each of the 92 service queries
and 276 computed precision, recall and balanced F-
score measures to investigate each hypothesis in turn.
First we analyzed the totals and measures to explore
the relative effectiveness of the four TEDDiE
strategies B, C, E and F in Table 5_3.

6.2.1 Evaluating TEDDiE’s Most Effective Strategies

Summaries of the results generated by the service queries generated using each of the four strategies
are shown in Table 6_2. Full-TEDDiE with extend resulted in the largest number of retrieved relevant
services but also the largest number of retrieved irrelevant services. An arithmetic mean was used to
calculate average totals of services retrieved by the queries generated with each strategy. The balanced
F-score measures indicated that the two extend strategies were more effective than the two replace
strategies (51% and 53% to 31% and 37%) but the effect of term expansion against no term expansion
was minimal (51% and 31% to 53% and 37%). The arithmetic means of the precision measures for the
four strategies varied little but the means of the recall measures revealed that extend led to better recall
than replace (72% and 59% to 41% and 28%): the strategy with term expansion and extend retrieved
the highest average mean of services per query.

Paired t-test statistical analyses were undertaken as shown in Table 6_3 to analyze the effect of extend
versus replace and term expansion versus no term expansion.

Although precision for TEDDiE-Lite and Full-TEDDiE with extend was not a significant
improvement over precision for TEDDiE-Lite and Full-TEDDiE with replace (t=0.87, p=0.4182 and
t=1.23, p=0.3312 respectively), the balanced F-score measures revealed that queries generated with
extend had significantly higher overall effectiveness than queries generated with replace (t=5.40,
p=0.0011 and t=5.99, p=0.0115 respectively). One reason appears to be better recall by queries
generated with extend: TEDDiE-Lite with extend achieved significantly higher recall measures
(t=8.77, p=0.0002) whilst the difference in the recall measures between Full-TEDDiE with extend and
Full- TEDDiE with replace achieved similar results (t=7.22, p=0.0012).

In conclusion this first evaluation revealed that TEDDiE extending service queries was more
effective than TEDDiE replacing terms in service queries. Therefore we explored how the two
versions of TEDDiE with extend performed against the two equivalent versions of EDDiE – the
strategies A, C, D and F in Table 5_3.

Comparing TEDDiE and EDDiE

We investigated the effectiveness of TEDDiE against EDDiE using the computed arithmetic means

of the totals of relevant and irrelevant retrieved services and the precision, recall and balanced F-score
measures of service queries generated with the
four strategies. These measures were used to
investigate whether TEDDiE and TEDDiE-Lite
decreased the number of irrelevant services,
increased the number of relevant services, and
improved the overall effectiveness against
EDDiE and EDDiE-Lite respectively.

The arithmetic means of the totals of relevant
and non-relevant retrieved services for all service
queries are in Table 6_4.

TABLE 6_2
OVERALL PERFORMANCE OF EACH DS THAT IMPLEMENT

TEDDIE ALGORITHM

TABLE 6_3
PAIRED T -TESTS ON TEDDIE DISCOVERY STRATEGIES

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 131

Results revealed that Full-TEDDiE and TEDDiE-Lite retrieved both more relevant services but also
more irrelevant services than Full-EDDiE and EDDiE-Lite respectively. The balanced F-score
measures of overall effectiveness revealed that service queries with no term expansion were higher
(51% to 41%) whilst there was much less difference for service queries with term expansion (53% to
54%). We then performed paired t-tests to compute p-values to either reject or accept each null
hypothesis using the precision, recall and balanced F-score measures for each of the 92 service
queries. Results are shown in Table 6_5.

The balanced F-score measures revealed that TEDDiE-Lite had significantly higher overall
effectiveness than EDDiE-Lite (t=4.08, p=0.0362) but Full-TEDDiE did not have significantly higher
overall effectiveness than Full-EDDiE (t=0.69, p=0.7575). One reason appears to be better recall by
TEDDiE: TEDDiE-Lite achieved significantly
higher recall measures (t=6.44, p=0.0045)
whilst the difference in the recall measures
between Full-TEDDiE and Full-EDDiE neared
significance (t=3.76, p=0.0538). However
TEDDiE-Lite’s precision was not a significant

improvement over EDDiE-Lite (t=1.13, p=0.5175).
Indeed, Full-EDDiE achieved significantly higher
precision scores than Full-TEDDiE (t=5.75, p=0.0166).
The results are depicted graphically in Figure 6_1.
Because extending service queries with terms from
user task models had significantly increased the recall
measures we investigated whether the number of terms
in a query had any effect on recall. We used Pearson's
correlation coefficient (r) to measure the strength of
association between query length and recall measure.
Results in Table 6_6 revealed that only 56% (r2) of the
variation in the number of query terms was related to

the variation in the recall values, and the
correlation coefficient was not significantly
different from zero (co-efficient score,
p<0.1446). In short there was no evidence that
the number of terms in a query increased recall
measures.

In conclusion our results revealed the
importance of the expansion of queries on
TEDDiE’s performance. With no term expansion
TEDDiE-Lite generated higher recall and balanced
F-score measures than EDDiE-Lite, but with term

expansion Full-EDDiE generated higher precision
measures than Full-TEDDiE. The key results are
depicted graphically in Figure 6_2.

In other words adding only user task knowledge to
service queries generated higher recall and balanced F-
score measures than not adding user task knowledge, but
adding both domain and user task knowledge to service
queries generated lower precisions scores than adding
only domain knowledge.

6.3 The Hypotheses Revisited

The reported results were used to accept or reject each of

TABLE 6_4
OVERALL PERFORMANCE OF EDDIE AND T-EDDIE STRATEGIES

TABLE 6_5
P-VALUES FROM PAIRED T -TESTS

Fig. 6_1. Results depicted graphically

Fig. 6_2. Key results depicted graphically when comparing
TEDDIE and EDDiE

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 132

the four hypotheses under investigation:
H1 That extending rather than replacing service
queries with additional knowledge about user tasks
will improve the overall effectiveness of service
discovery was accepted because the balanced F-
score measures for extend strategies were
significantly higher than for replace strategies;
H2 That the reformulation of service queries with
knowledge about user tasks will decrease the

number of irrelevant services retrieved by a service discovery engine was rejected because the
mean average precision measures generated with TEDDiE were lower than the equivalent measures
with EDDiE;

H3 That the reformulation of service queries with knowledge about user tasks will increase the
number of relevant services retrieved by a service discovery engine was partially accepted
because the recall measures generated with TEDDiE-Lite were significantly higher than the equivalent
measures with EDDiE-Lite. However this was not the case between Full-TEDDiE and Full-EDDiE;

H4 That the reformulation of service queries with knowledge about user tasks will improve the
overall correctness of services retrieved by a service discovery engine TEDDiE will improve the
overall correctness of services retrieved was partially accepted because the balanced F-score
measures for TEDDiE-Lite were significantly higher than for EDDiE-Lite. Again however this was
not the case between Full-TEDDiE and Full-EDDiE.

In short, TEDDiE was more effective than EDDiE only when it extended simple service queries

originally formed of original terms. Why was this?
The acceptance of hypothesis H1 demonstrates that adding user task knowledge to service queries was

more effective, and suggests that these original terms were still needed to retrieve relevant services, at least
with the use case specifications and service queries in the experiment. The result suggests that service
queries from user task knowledge only was not the most effective service discovery strategy. For instance,
two services, Mobile7Navigation and MS2000PortableNavigation, that were judged as relevant with
regards to the journey planning use case contain terms from the original use case description (e.g.
destination) as well as terms from the request route user task model (e.g. position). The combination of
such terms increased the number of matched terms and therefore the overall service match value.

The partial acceptance of hypothesis H3 demonstrates that the addition of user task knowledge to service
queries led to the retrieval of more relevant services. However if TEDDiE and EDDiE both also added
domain knowledge using term expansion with online thesauri, then the positive effect of adding user task
knowledge disappeared: adding domain knowledge had a similar effect to adding user task knowledge. In
conclusion adding user task knowledge was not as effective as hypothesised.

In contrast, the rejection of hypothesis H2 indicates that introducing user task knowledge as defined in
TEDDiE did not decrease the numbers of irrelevant services retrieved. Indeed, results revealed that adding
user task knowledge to domain knowledge in service queries decreased the number of retrieved relevant
services significantly. Such an inverse relation between precision and recall is not uncommon and is one
possible explanation for the low precision score – previous studies have reported on a tendency for
precision to decrease as recall increases [52], [53]. Another possible explanation is that the user task models
in the catalogue were poorly specified. After all, no independent validation of the models had been
undertaken prior to the evaluations. Possible improvements to the specification of the use task models are
discussed at the end of the paper.

Finally our partial acceptance of hypothesis H4 – TEDDiE is more effective than EDDiE without query
expansion – revealed that adding user task knowledge to service queries improved effectiveness. Although
the mean numbers of retrieved relevant and irrelevant services per query both increased, the significant
difference in the balanced F-score measure suggests that the benefits of more relevant services can
outweigh the costs associated with more irrelevant ones. However again, adding user task knowledge to
service queries already expanded with domain knowledge from online thesauri did not improve
effectiveness further. Indeed, combining terms from user task knowledge and domain knowledge in the
same service queries slightly reduced the mean of the balanced F-score measures. The results suggest
effective strategies should expand service queries with user task knowledge or domain knowledge, but not
both. In the discussion section we explore which can be more effective.

6.5 Threats to Validity

TABLE 6_6
NUMBER OF QUERY TERMS COMPARED TO RECALL FOR
EACH STRATEGY

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 133

The reported results were collected using controlled experiments in a laboratory setting – a setting that
creates possible threats to the validity of the results. This section reports different conclusion, internal,
external and construct validity threats [54]. Each is reported in turn.

Threats to construct validity. Construst validity concerns generalizing the results from the reported
study to the concept or theory behind the study, namely the application of user task knowledge
codified in models during design-time service discovery [54]. One obvious threat to construct validity
was the small number of user task models designed for the experiment. The catalogue of 7 rather than
70 user task models probably increased the likelihood that TEDDiE would retrieve relevant user task
models and reformulate service queries that retrieve relevant services. A related threat was the small
number of service queries used to generate the experimental results. Clearly more studies are needed.
That said, extending service query terms from natural language text makes the approach compatible
with most industrial requirements and development approaches from the Rational Unified Process [55]
to agile [56].

However, in our opinion, the largest threat to construct validity was the quality of the specification
of the user task models, and in particular the description of service classes associated to application
sub-tasks. These descriptions were pivotal to effective service query reformulation and retrieval. In the
experiments we adopted a relatively weak approach to describe service classes – simply reusing
unaltered text from publicly-available encyclopedias. We believe that a more thorough description of
service classes in user task models would probably increase rather than decreaee the precision, recall
and balanced F-score measures that TEDDiE would have achieved. The results reported in this paper
are probably a minimum level of success with respect to what is possible with the reuse of user task
models.

The choice of domain was another potential threat to internal validity. The e-government domain
was chosen due its familiarity to the authors as well as the relative availability of domain experts with
which to determine service relevance. At this time we cannot make strong claims about the
applicability of results to other, less well-understood domains with less repeatability in user tasks and
the potential to invoke more complex software services. Repeat studies in other domains are needed.

Threats to internal validity. Threats to the internal validity of the study were influences that could
have affected independent variables related to causality [54]. One potential threat was experimenter
bias in specifying the use cases, service queries and user task models. One strategy used to mitigate
against the threat was to reuse material generated in previous projects without knowledge of the
research hypotheses and method applied in the experiment. To this end TEDDiE searched a version of
a service registry populated in 2006 as part of the earlier SeCSE integrated project [44]. Likewise we
reused use case specifications and service queries from earlier evaluations of EDDiE undertaken
before the user task catalogue was devised and developed [35]. This also offset another important
internal validity threat - that the terms used to describe the use case specifications were biased to be
the similar as the terms used to describe service classes. Both came from different pre-existing
sources.
Threats to external validity. Threats to the external validity of the study were influences that could
have affected independent variables related to causality [54]. One external validity threat was use of
EDDiE as a baseline algorithm and technology against which to compare TEDDiE. A counter-
argument runs that EDDiE is a sophisticated service retrieval algorithm that set the bar too high for
TEDDiE to succeed. However, since TEDDiE was built on top of EDDiE we conjecture that this
comparison is reasonable at least for a first version of evaluation studies.

A related threat was the use of just one technology platform – results might not generalize to other
service discovery platforms. Resource constraints meant that it was not possible to carry out directly
comparative experiments across several technological platforms. However EDDIE-Lite’s
implementation of simple keyword matching based on terms extracted directly from natural language
text is similar to [42], [43], so we conjecture that the basic findings would still hold with other
keyword-based service discovery algorithms and engines. Likewise, whilst detailed natural language
descriptions of services are not common, we believe that our use of basic natural language processing
algorithms to extract keywords with which to build service queries closely replicates current keyword
extraction methods [42], [43].

Threats to conclusion validity. Threats to conclusion validity were concerned with issues that
affected the ability to draw correct conclusions about the relations between the treatment and outcome
[54]. One important conclusion validity threat was the use of human expertise too determine the sets
of relevant and irrelevant services upon which the precision, recall and balanced F-score measures
were computed. This expertise was subject to potential biases and inadequate preoperational
explication. However, we sought to avoid and mitigate against these biases through careful
experimental design. The relevant and irrelevant service sets were created by six judges who worked

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 134

independently to avoid cross-judge bias. We also minimized bias due to lack of expertise by setting
two criteria in selecting each judge. The first was a minimum level of experience with service-oriented
computing, to ensure that the roles of candidate services would be fully understood and indicated in
the resulting service sets. The second was a minimum level of practical experience with eGovernment
web services.

8. FUTURE WORK

In the research reported in this paper we conjectured that reusing knowledge about user tasks codified
in models arising from human-computer interaction research would improve the discovery of services
during design activities. We learned that reformulating service queries with terms from matched user
task models improved service discovery over existing keyword matching, but discovery performance
was broadly equivalent to at least one sophisticated thesaurus-based matching technique. This is a
potential limitation of such reuse. Given that generating and codifying user task knowledge in models has a
cost associated with it not incurred with available on-line thesauri, and that service queries are not restricted
to tasks that instantiate the class-level user task models in a catalogue, the reuse of user task models needs
to offer more capabilities than implemented in TEDDiE. Let us end the paper with a brief exploration of
what these capabilities might be.
The current implementation of TEDDiE associated simple text descriptions of classes of service to invoke
during application sub-tasks – text from which reformulated query terms were extracted. Therefore one
obvious possible extension is a more thorough specification of the terms with which to describe service
classes based on a more rigorous analysis of current service specifications drawn from existing service
registries. Furthermore we can use wider sources of feature descriptions, such as app stores, to ensure a
more systematic and thorough specification of user task models. A second possible extension is to use more
formal languages and ontologies with which to describe service classes. Ontologies such as the recent Open
Group Service Oriented Architecture (SOA) Ontology [57] can be used to provide both the definitions
and a common set of terms for the service classes, but also describe the relationships between those
classes. A third possible extension is to exploit other user task model semantics, such as resource
descriptions to enrich service queries and temporal associations between sub-tasks. This latter information
can provide important guidance not only for service discovery but also for orchestration and choreography
based on the required and permitted orderings of service invocation automatically specified with languages
such as BPMN version 2.0 [58]. Therefore our research aims to explore the potential of reusing codified
user task knowledge describing the problem domain to enhance service-based business process design.

Acknowledgment

The research leading to these results has received funding from the European Community's Seventh
Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

References

[1] L.M. Daniele, E. Silva, L.F. Pires, M. Sinderen, R. Poler, R. Sanchis, “A SOA-Based Platform-Specific

Framework for Context-Aware Mobile Applications”, Enterprise Interoperability, Springer Berlin
Heidelberg, pp. 25-37, 2009

[2] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. Di Nitto, V. Mazza, “A context-driven adaptation process
for service-based applications”, Proceedings of 2nd International Workshop on Principles of Engineering Service-
Oriented Systems. ACM New York, 2010

[3] A. Marconi, M. Pistore, A. Sirbu, H. Eberle, F. Leymann, and T. Unger, “Enabling Adaptation of Pervasive
Flows”, Built-in Contextual Adaptation Lecture Notes in Computer Science, Volume 5900/2009, pp. 445-454,
Springer Berlin / Heidelberg, 2009

[4] D. Diaper, “Understanding Task Analysis for Human Computer Interaction”, D. Diaper and N. Stanton (Eds.),
The Handbook of Task Analysis for Human-Computer Interaction, Lawrence Erlbaum Associates, 2003

[5] F. Paterno, “Task Models in Interactive Software Systems”, Handbook of Software Engineering and Knowledge
Engineering, Volume 1, World Scientific, 817-836, 2002

[6] K. Kritikos, F. Paterno, “Task-Driven Service Discovery and Selection”, Proceedings of the International
Conference on Advanced Visual Interfaces, pp. 89-92, 2010

[7] N. Dourdas, X.Zhu, N.A.M Maiden, S. Jones, and K. Zachos, “Discovering Remote Software Service that
Satisfy Requirements: Patterns for Query Reformulation”, in Proceedings of CAiSE'06, 18th Conference on
Advanced Information System Engineering, June 5-9, 2006

[8] OASIS Standard, Web Services Business Process Execution Language, Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2007

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 135

[9] Object Management Group, Business Process Modeling Notation Specification,
http://www.omg.org/bpmn/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf, 2006

[10] Adobe, “BPEL4People Overview”, http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html,
2007

[11] J. Preece, Y. Rogers, D. Benyon, S. Holland, and T. Carey, “Human-Computer Interaction”, Addison-Wesley, 1994
[12] F. Paterno, and C. Santoro “Preventing User Errors by Systematic Analysis of Deviations from the System Task Model”,

International Journal of Human-Computer Studies, Vol. 56, no 2, pp. 225-245, 2002.
[13] G. Mori, F. Paterno and C. Santoro, “CTTE: Support for Developing and Analyzing Task Models for Interactive System

Design” IEEE Transactions on Software Engineering, vol. 28, no 8, pp. 797-813, 2002.
[14] D. Diaper and N. Stanton, “The Handbook of Task Analysis for Human-computer Interaction”, Lawrence Erlbaum

Associates, 2003.
[15] N. Stanton, “Hierarchical task analysis: Developments, Applications and Extensions”, Applied Ergonomics 37

(1), 55–79, 2006
[16] B.E. John and D.E. Kieras, “The GOMS family of analysis techniques: Tools for design and evaluation”,

Technical Report CMU-CS-94-181, Carnegie-Mellon University, 1994
[17] R.E. Clark, D.F. Feldon, J.J.G. Van Merrienboer, K.A. Yates, and S. Early, “Cognitive task analysis”, Handbook

of research on educational communications and technology, 3rd ed., pp. 577–593, 2008
[18] F. Paterno, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A Diagrammatic Notation for Specifying Task

Models”, Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction, pp. 362-369, 1997
[19] D. L. Scapin, and J.M.C. Bastien, “Analyse des taches et aide ergonomique a la conception: l’approche MAD*,

C. Kolski (Ed.), Analyse et conception de l’IHM: Interaction homme-machine pour les systemes d’information, Vol. 1;
pp. 85–116, Edition Hermes, 2001

[20] M. van Welie, G. van der Veer, and A. Koster, “An Integrated Representations for Task Modelling”,
Proceedings of the Tenth European Conference on Cognitive Ergonomics, pp. 129-138, 2000

[21] B. Kirwan and L.K. Ainsworth, “A Guide to Task Analysis”, London: Taylor and Francis, 1992
[22] P. Johnson, H. Johnson, R. Waddington, and A. Shouls, “Task related knowledge structures: Analysis,

modelling and application”, Jones, D.M., Winder, R. (Eds.). From Research to Implementation, People and
Computers, IV. Cambridge University Press, Cambridge, UK, 1988

[23] H. Johnson and P. Johnson, “Task Knowledge Structures: Psychological basis and integration into system
design”, Acta Psychologica, 78: 3-26, 1991

[24] F. Paterno, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models,”
Proceedings of IFIP TC13 International Conference on HCI, pp. 362-369, 1997

[25] F. Paterno and C. Mancini “Model-Based Design and Evaluation of Interactive Applications”, Springer-Verlag,
London, UK, 1999

[26] L. Francisco-Revilla and F.M. Shipman, “Adaptive Medical Information Delivery Combining User, Task and Situation
Models”, Proceedings of the 5th International Conference on Intelligent User Interfaces (IUI’00), 2000

[27] D. Costa and C. Duarte, “Self-adapting TV Based Applications”, Proceedings of the 14th International Conference on HCI, 2011
[28] F. Paterno, C. Santoro, and L.D. Spano, “User Task-based Development of Multi-device Service-oriented Applications”,

http://cslab.dico.unimi.it/EUD4Services/papers/EUD4Services-Paterno-et-al-paper.pdf, 2009
[29] F. Paterno, C. Santoro, and L.D. Spano, “ConcurTaskTrees and MARIA languages for Authoring Service-based

Applications,” http://www.w3.org/2010/02/mbui/soi/paterno-1.pdf, 2010
[30] M. Ruiz, V. Pelechano, and O. Pastor, “Designing Web Services for Supporting User Tasks: A Model Driven Approach”

CoSS International Workshop on Conceptual Modeling of Service-Oriented Software Systems pp. 193-202, 2006
[31] B.J. Wielinga, “KADS: A modeling approach to knowledge engineering”, Journal of Knowledge Acquisition, vol.4, no.1,

pp.5-53, 1992
[32] U. Keller, R. Lara, and A. Polleres, “WSMO Discovery”, WSMO Working Draft D5.1v0.1.,

http://www.wsmo.org/2004/d5/d5.1/v0.1/, 2004
[33] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel, “A logical framework for web

service discovery”, Workshop on Semantic Web Services at ISWC, 2004
[34] R. Ladner, “Soft computing techniques for web service brokering”, Soft Computing, 12: 1089-1098, 2008
[35] K. Zachos, N.A.M. Maiden, S. Jones, and X. Zhu, “Discovering Web Services To Specify More Complete System

Requirements,” Proc. 19th Conference on Advanced Information System Engineering, pp.142-157, 2007
[36] K. Zachos, N.A.M. Maiden, and R. Howells-Morris, “Discovering Web Services to Improve Requirements Specifications:

Does It Help?” Proceedings of the International Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’08), pp. 168-182, 2008

[37] J. Farrell and H. Lausen, “Semantic Annotations for WSDL and XML Schema,” http://www.w3.org/TR/sawsdl/, 2007
[38] J. Kopecky, T. Vitvar, and D. Fensel, “MicroWSMO: Semantic Description of RESTful Services,”

http://wsmo.org/TR/d38/v0.1/20080219/d38v01 20080219.pdf, 2008
[39] H. Lausen, A. Polleres, and D. Roman, “Web Service Modeling Ontology (WSMO)”, World Wide Web Consortium, 2005
[40] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E.

Sirin, N. Srinivasan, and K. Sycara, “OWL-S: Semantic Markup for Web Services”. W3C Member Submission,
http://www.w3.org/Submission/2004/07, 2004

[41] S. V. Jones, N.A.M. Maiden, K. Zachos, and X. Zhu, “How Service-Centric Systems Change the Requirements Process”.
Proceedings REFSQ’2005 Workshop, in conjunction with CaiSE’2005 , pp 105-119, 2005

[42] M. Klein, and A. Bernstein, “Toward high-precision service retrieval,” Internet Computing, IEEE, vol. 8, no. 1,
pp. 30–36, 2004

[43] D. Bachlechner, K. Siorpaes, H. Lausen, and D. Fensel, “Web service discovery a reality check“, 3rd European
Semantic Web Conference, 2006

[44] J. Walkerdine, J. Hutchinson, P. Sawyer, G. Dobson, and V. Onditi, “A Faceted Approach to Service Specification,”
Proceedings 2nd Int’l Conf. on Internet and Web Applications and Services (ICIW 2007), 2007

S-CUBE Deliverable # CD-JRA-1.1.8
Software Services and Systems Network

External final version 1.0, dated 29/02/2012 Page 136

[45] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller, “Introduction to wordnet: An On-line
lexical database”, Journal of Lexicography, 3(4):235-244, 1990

[46] D. Roman, H. Lausen, and U. Keller, “Web service modeling ontology standard (WSMO-standard)”, Working
Draft D2v1.0, WSMO. http://www.wsmo.org/2004/d2/v1.0/, 2004

[47] Wikipedia, “The free Encyclopedia”, http://en.wikipedia.org/wiki/Main_Page, February 2011
[48] Encyclopaedia Britannica, “Britannica Online Encyclopedia”, http://www.britannica.com/, February 2011
[49] Webopedia, “Online Computer Dictionary for Computer and Internet Terms and Definitions”,

http://www.webopedia.com/ , February 2011.
[50] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval”, New York: ACM Press, Addison-Wesley,

pp. 75ff, ISBN 0-201-39829-X, 1999
[51] G. Salton and M.J. McGill, “Introduction to Modern Information Retrieval”, McGraw Hill Book Co., New York,

1983
[52] M. Buckland and F. Gey, “The Relationship between Recall and Precision,” Journal of the American Society for Information

Science vol 45, no 1, pp. 12-19, 1994
[53] L. Egghe, “The Measures Precision, Recall, Fallout and Miss as a Function of the Number of Retrieved Documents and

their Mutual Interrelations” Information Processing & Management, vol 44, no 2, pp. 856-876, 2008
[54] Wohlin C. “Experimentation in software engineering. An Introduction”. Kluwer Ac. P, 2000
[55] P. Krutchen, “The Rational Unified Process: An Introduction”, Addison-Wesley, 2003
[56] A. Cockburn, “Agile Software Development: The Cooperative Game”, Addison-Wesley, 2006
[57] The Open Group Service Oriented Architecture Ontology, http://www.opengroup.org/bookstore/catalog/c104.htm
[58] BPMN, http://www.omg.org/spec/BPMN/2.0

