
A Fuzzy Service Adaptation based on QoS
Satisfaction

Barbara Pernici and S. Hossein Siadat

Politecnico di Milano, Italy
{pernici,siadat}@elet.polimi.it

Abstract. Quality of Service (QoS) once defined in a contract between
two parties may change during the life-cycle of Service-Based Applica-
tions (SBAs). Changes could be due to system failures or evolution of
quality requirements from the involved parties. Therefore, Web Services
need to be able to adapt dynamically to respond to such changes. Adap-
tation and evolution of services are playing an important task in this
domain. An essential issue to be addressed is how to efficiently select an
adaptation while, there exists different strategies. We propose a fuzzy
service adaptation approach that works based on the degree of QoS sat-
isfaction. In particular, we define fuzzy parameters for the QoS property
descriptions of Web Services. This way, partial satisfaction of param-
eters is allowed through measuring imprecise requirements. The QoS
satisfaction degree is measured using membership functions provided for
each parameter. Experimental results show the effectiveness of the fuzzy
approach using the satisfaction degree in selecting the best adaptation
strategy.

1 Introduction

In Service-Based Applications (SBAs), Quality of Service (QoS) parameters may
change during the life cycle of the application. Web service adaptation is an
important phase to deal with such changes. Handling changes in a demanding
and adaptive environment is a vital task. One main issue lies in QoS property
descriptions of Web Services. This involves specifying service requirements in
a formal way, monitoring and dynamically adapting and evolving the services
with respect to the QoS changes. Static adaptation is impractical due to the
changing environment and high cost of maintenance and development. Specifying
all possible alternative behaviour for adaptation at design time is impossible.
Therefore, a declarative approach is required at run-time to support adaptation
decisions.

In order to perform run-time decisions for adaptation in a volatile environ-
ment, one issue is to consider the imprecise evaluation of QoS properties. Existing
approaches do not allow partial satisfaction of parameters. It is required that
services should be able to tolerate a range of violation in their quality descrip-
tion. However, handling this toleration need to be done with special care. An
important issue to address in SBAs is to what extent the QoS parameters of a

2 Barbara Pernici and S. Hossein Siadat

Web Service are satisfiable. The answer to this issue could be a basic for making
adaptation decisions. However, this issue has not been addressed adequately in
the literatures. Evaluating the extent of parameter satisfaction is necessary to
help the selection of best adaptation strategy.

As an initial step to this, in [3] we provided conditions under which QoS
changes are acceptable. We used a temporal logic namely Allen’s Interval Algebra
(AIA) [2] to formally specify the non-functional properties of web services. We
then used the AIA to reason about changes of quality parameters and their
evolution. In this paper, we extend [3] and propose a fuzzy approach to support
service adaptation and evolution. We define fuzzy parameters for QoS property
description of Web Services. Fuzzy parameters could be considered as fuzzy sets
and measured based on their value of membership. Satisfaction degree of fuzzy
parameters is measured according to their actual distance of the agreed quality
ranges in the contract. The goal of this paper is to provide flexibility for service
specification by applying fuzzy parameters. Using a fuzzy approach allows us to
deal with reasoning on the quality violations that is approximate rather than
accurate. At the end, we propose different categories of adaptation that perform
based on the satisfaction degree. Experimental results show the effectiveness
of using the fuzzy approach over the non-fuzzy one in making decisions for
adaptation.

The remainder of the paper is structured as follows. Section 2 describes the
major related work. In Section 3 we present a definition for QoS property descrip-
tion of services through introducing fuzzy parameters. In Section 4 we specify
satisfaction functions for each parameter to measure to what extend the QoS is
achieved with respect to the existing contract. We explain the decision making
mechanism in Section 5 that works based on the satisfaction degree. Section 6
provides experimental result using a simulator and evaluates the effectiveness of
the proposed approach. Section 7 concludes the paper and discusses our future
work.

2 Related Work

Deviation of quality ranges from the existing contract may produce a system
failure and bring dissatisfaction for customers. To this end, the evolution and
adaptation of web services are becoming two important issues in reacting to
the various changes in order to provide the agreed QoS stated in the contract.
Recently, many adaptation strategies and methods have been proposed in the
literature. However, most of the work in service adaptation concentrates on the
technical issues and definition of mechanisms for adaptation rather than con-
sidering QoS perspective. A list of adaptation strategies for repair processes in
SBAs is provided in [6] and [1]. For example, [7] proposed a service replacement
approach for adaptive Web Service composition and execution, while Canfora
et al. [5] presented a re-composition approach dealing QoS replanning issues at
run time using late binding technique. However, none of these works consider

A Fuzzy Service Adaptation based on QoS Satisfaction 3

the consequences and potential overheads of adaptation. To this end, for exam-
ple, an environment for compensation of Web Service transactions is proposed
in [25]. In order to consider the overall value of a change, [15] presented an ap-
proach called value of changed information (VOC). Furthermore, an adaptation
mechanism is proposed based on VOC in [8]. However, these works have the
limitation that they do not take into account the satisfaction level of services.
Making adaptation decisions and evaluating them is therefore complicated and
has consequences that are often neglected. Some qualitative and quantitative
techniques has been proposed, however evaluating impacts of adaptation still
remains as an open challenge.

One core issue to address is the definition of a flexible description for Web
Services. Formulation of service specifications/requirements has been studied in
the literature. In autonomic systems and in particular web services, reasoning
about such specification is a hard job due to the changing environment that
affects service requirements. Although a lot of research has been conducted for
functional Web Service description, only a few efforts have been done with re-
spect to non-functional properties description of Web Service. Among syntactic
and semantic WS description we refer to the work done in [30], [21] and [16]
which they also provided algorithms for service selection based on such descrip-
tion. A major limitation of those papers and other similar ones is due to not
considering the partial satisfaction of the QoS attributes. With this regards,
[23] provided a semantic Policy Centered Meta-model (PCM) approach for non-
functional property description of web services. A number of operators (e.g.
greaterEqual, atLeast) for numeric values are defined in the model for determin-
ing tradeoffs between various requests. Therefore, the approach can support the
selection of Web Services that partially satisfy user constraints. In [20] and [19],
the authors extend the approach proposed in [23] by proving a solution for Web
Service evaluation based on constraint satisfaction problem. The approach uses
utility function to present the level of preferences for each value ranges defined
in the service description. However, it does not take care of adaptation issues
and controlling values at run-time. In [22], the authors discuss about fixable
and non-fixable properties to deal with bounded uncertainty issue. Constraint
programming is used as a solution, however, there is no evaluation of the work.

It is required to provide a framework to evaluate alternatives and quantify
their impact for making decision decisions. Each alternative has different degree
of satisfaction and their impact has to be evaluated in order to select the best
adaptation strategy. A quantitative approach applying a probabilistic modeling
is used for partial goal satisfaction in [18]. Dealing with the uncertainty issue
is one major problem in order to formulate and manage service specification.
Thus, recently researchers are investigating to incorporate this uncertainty into
the service specification. In [14], the author provides support for reasoning about
uncertainty. A goal-base approach for requirement modeling in adaptive systems
is proposed in [9] which uncertainty of the environment is taken into account.
Furthermore, a language named RELAX is developed for specifying requirements
in adaptive systems [26, 27] in which certain requirements could be temporarily

4 Barbara Pernici and S. Hossein Siadat

relaxed in favor of others. In general, different temporal logics have been used for
formal specification of requirement. Linear Temporal Logic (LTL) has been used
in [4, 11] to formally specify requirements in a goal oriented approach. In par-
ticular, LTL is extended in [31] and named A-LTL to support adaptive program
semantics by introducing an adaptation operator. [3] uses Allen’s interval alge-
bra for the formal specification of service requirement. Those approaches have
limitations such that they are unable to consider environmental uncertainty and
behave in a binary satisfaction manner.

Fuzzy approach [29] is an alternative to concur such limitations of aforemen-
tioned approaches. However, the fuzzy approach may not be the only alternative
to deal with uncertainty. Different mathematical and frameworks are presented
in the literature to address the uncertainty issue and partial satisfaction of the
requirements. For example, making decisions about non-functional properties us-
ing Bayesian networks is proposed in [13] while [17] used a probabilistic method
for this purpose. Applying fuzzy logic to incorporate uncertainty and making
decisions has been proposed in other domains such as management, economy
and many aspects of computer science, however, to the best of our knowledge
there is very little of such application in adaptation of web services. As of such,
[10] proposed a fuzzy approach for assigning fitness degrees to service policies in
a context-aware mobile computing middleware. A trade-off analysis using fuzzy
approach for addressing conflicts using imprecise requirements in proposed in
[28]. With respect to partial satisfaction of requirements, [12] provided a web
service selection approach using imprecise QoS constraints.

There are several different approaches towards adaptation of web services.
This diversity yields from a missing consensus on the required decision making
to automatically perform web service adaptation. Therefore, in this paper we
propose a fuzzy adaptation approach as a possible way in providing a foundation
of such a consensus which is based on the satisfaction degree of QoS parameters.

3 Fuzzy Parameters for QoS Property Description

This section is concerned with QoS property descriptions of Web Services and is
devoted to demonstrate the formal definitions of quality parameters in a service
description. The formal specification we propose has been inspired and is an
extension of our previous work [3]. We extended the work by taking advantage
of a fuzzy approach in which we define fuzzy parameters. Having introduced
the fuzzy parameters it is possible to understand to what extent the quality
parameters are violated/satisfied.

In order to formally define fuzzy parameters, we need to introduce some
background from [3]. We define set D to contain the quality dimensions (such
as availability, execution time, price or throughput) identified and agreed by
the service provider and consumer. Each quality dimension has a domain and
range; e.g., availability is a probability usually expressed as a percentage in the
range 0-100% and execution time is in the domain of real numbers in the range
0..+∞. A quality dimension d can be considered monotonic (denoted by d+) or

A Fuzzy Service Adaptation based on QoS Satisfaction 5

antitonic (d−); monotonicity indicates that values closer to the upper bound of
the range are considered better, whilst with antitonic dimensions values closer
to the lower bound are considered better. A parameter m associates a quality
dimension to a value range.

If a parameter is non-fuzzy (strict) its satisfaction degree will be evaluated
in a binary manner (Yes or No). In contrast, fuzzy parameters (relaxed) will be
evaluated in a fuzzy manner which shows different degree of satisfaction (x ∈
[0, 1]). Note that we also provide value ranges for both parameters regardless of
being fuzzy or non-fuzzy. The satisfaction degree of parameters will be evaluated
using membership functions we introduce in the next section. In the following we
provide the extended definition of a parameter based on the definition introduced
in [3].

Definition 1 (Parameter). We define a Parameter m ∈ M as a tuple m :=
(d, v, f), d ∈ D, v ∈ V, f ∈ {s, r}. where D is the set of quality dimensions, V is
the set of ranges for all quality dimensions D, s represent a strict parameter and
r represent a relaxed parameter.

During a service life-cycle, QoS offerings may change due to several reasons.
Therefore, adaptation of web services needs to be performed in an appropriate
manner to accommodate QoS changes/violations by choosing the best adapta-
tion strategy. Defining service description with the aforementioned fuzzy param-
eters provides a more flexible situation dealing with adaptation decisions. We
discuss how it can facilitate the adaptation of web services through an example.
According to the new definition of parameters, we consider availability and re-
sponse time as fuzzy parameters. Let us assume a contract with a initial value
range of availability between 80% to 90% and response time between 2 to 5
seconds.

In [3] we provided situations in which new QoS ranges could be still ac-
ceptable for both parties according to the existing contract. We defined a com-
patibility mechanism that uses parameter subtyping and used Allen’s Interval
Algebra [2] in order to express the subtyping. The provider and requestor are
compatible with each other according to the existing contract if the QoS changes
are in one of the acceptable situations. If the compatibility is not provided, how-
ever it does not give any information about the degree of satisfaction/dissatis-
faction of the offered service. For example if the new range of availability is less
than 80%, this is not considered as an acceptable situation and it is considered
as a violation. In such cases, we would also like to understand to what extent the
quality parameter and the aggregated service quality are satisfactory. An avail-
ability of 75% might still be acceptable if we consider the partial satisfaction of
quality ranges.

4 Specifying Satisfaction Function

Having defined the fuzzy parameters we are able to apply the fuzzy logic. As
for the first step we need to know the right amount of quality satisfaction.

6 Barbara Pernici and S. Hossein Siadat

Fig. 1: Membership functions for response time

Previously in [3], we provided a compatibility mechanism to understand under
which conditions the changes are acceptable. The approach suffers from the
limitation that changes are considered either compatible or incompatible with
the contract. This means, quality changes are calculated in a binary approach
which it does not take into account clearly the relation of quality parameters
with their satisfaction. To say it in other way, the QoS parameters are measured
in a precise manner and their partial satisfaction is not taken into account.
In the following we provide mechanisms to allow partial satisfaction of quality
parameters imprecisely using fuzzy sets.

The main point of using fuzzy logic is to find a relation and to map our input
space to the output space. The inputs here are namely service availability and
response time and the output is the overall satisfaction degree of them. For each
QoS parameter in the service description we provide a membership function that
represent the level of satisfaction of each parameter. The membership functions
map the value of each parameter to a membership value between 0 and 1. We
use a piece-wise linear function, named trapezoidal membership function, for this
purpose. Membership functions for ResponseTime and availability are shown in
figures 1 and 2.

Having defined the membership functions, the mapping between the input
and output space will be done by defining a list of if-then statements called
rules. We have already defined what do we mean being compatible and incom-
patible for the quality parameters and specified their ranges using membership
functions. Since we are relaxing the antecedent using a fuzzy statement, it is
also required to represent the membership degree of the output (i.e. here sat-
isfaction). Therefore, the satisfaction degree is also represented as fuzzy sets:
satisfaction is low, satisfaction is average and satisfaction is high.

We define three if-then rules as below. it represents the antecedent and con-
sequent of the rule. All the rules are applied in parallel and their order in unim-
portant. We define the fuzzy union/disjunction (OR) and the fuzzy conjunc-
tion/intersection (AND) using max and min functions respectively. Therefore

A Fuzzy Service Adaptation based on QoS Satisfaction 7

Fig. 2: Membership functions for ResponseTime and Availability

AANDB is represented as min(A,B) and AORB is represented as max(A,B).

1. If (ResponseT ime is compatible) and (Availability isCompatible)
then (Satisfaction is high).

2. If (ResponseT ime is incompatible) or (Availability is incompatible)
then (Satisfaction is average).

3. If (ResponseT ime is incompatible) and (Availability is incompatible)
then (Satisfaction is low).

5 Decision Making for Adaptation and Evolution

We use the satisfaction degree calculated using the fuzzy inference system for
the adaptation and evolution decision making. The decision making mechanism
works based on the algorithm we provided in [24]. The algorithm evaluates the
evolution of the service and decides which adaptation strategy to take with
respect to the predefined threshold degree for QoS satisfaction. The two main
decisions are the internal renegotiation in which the changes are compatible
with the service description in the contract and service replacement in which
the changes are incompatible with the existing contract. The former case deals
with the internal contract modification with the same provider and requester
while the earlier case requires the selection of a new service and establishment
of a new contract which can result in a huge loss of time and money.

Having provided such a decision making mechanism allows us to offer a
flexible adaptation mechanism. This is done by identifying threshold to what
constitutes compatible and incompatible. Using satisfaction degree allows us to
define the criticality of a change/violation. Therefore, we are able to understand
whether a violation is critical and it results in a service replacement or the viola-
tion is still acceptable. This way, a slight change from the quality ranges defined
in the contract will not trigger the adaptation. Table 1 shows the result of check-

8 Barbara Pernici and S. Hossein Siadat

ing for compatibility for a possible set of changes. The comparison is between
our fuzzy approach and a traditional non-fuzzy one that works based on the
precise evaluation of the quality ranges in the contract.

Number Change Replacement? Change Replacement?
(Non-fuzzy/Fuzzy) (Non-fuzzy/Fuzzy)

1 S1 = (6, .90) Yes/No S2 = (7, .75) Yes/Yes
2 S3 = (5, .85) No/No S4 = (3, .70) Yes/No
3 S5 = (2, .85) No/No S6 = (2, .78) Yes/No
4 S7 = (2, .60) Yes/Yes S8 = (6, .90) Yes/No
5 S9 = (7, .95) Yes/Yes S10 = (6, .50) Yes/Yes

Table 1: Comparing the adaptation decisions using fuzzy and non-fuzzy approach

For example in S1 = (6, .90), changing the response-time to 6s will not result
a service replacement applying the fuzzy approach since it has the satisfaction
degree of almost 83%. While applying a non-fuzzy approach, it is considered a
violation because it does not respect the initial response-time range (2, 5) in
the contract. However, if a change results in a low satisfaction degree, service
replacement is necessary in both approaches as in the case S10 = (6, .50) which
the satisfaction degree is around 62%.

6 Experiments and Implementation

Having defined the membership functions and rules in the previous sections,
we have built and simulated a fuzzy inference system to interpret rules. The
process has different steps including: fuzzification of input quality parameters,
applying fuzzy operators to the antecedent, implication from the antecedent to
the consequent, aggregation of the results for each rule, and defuzzification. A
view of the simulator including the previous steps is illustrated in figure 3 in
which a complete fuzzy inference system is represented.

The first step is to apply the membership functions to map each QoS pa-
rameters to the appropriate fuzzy set (between 0 and 1). We used two inputs of
Availability (interval between 0 to 100) and Response-time (interval between 0
to 10). The inputs are mapped to fuzzy linguistic sets: availability is compatible,
availability is incompatible, response-time is compatible, and response-time is
incompatible. Figures 1 and 2 show to what extent the availability and response-
time are compatible. The next step is to give the result of the fuzzified input
parameters to the fuzzy operators. According to the rules, AND and OR oper-
ators are applicable. This will give us a degree of support for each rule. Next
is applying the implication method that uses the degree of support to calculate
the output fuzzy set. We used a minimum method to truncate the output fuzzy
set for all the rules separately. However, we apply all the rules in parallel and
we do not define any priority and weight for them.

At the end of the implication, we apply an aggregation method to combine
all the rules. This way, the outputs of each rule represented in fuzzy sets are
combined into a single fuzzy set. A maximum method is used for the aggregation.

A Fuzzy Service Adaptation based on QoS Satisfaction 9

Fig. 3: A view of the simulator for fuzzy inference system

Fig. 4: The output of satisfaction degree according to ResponseTime and Avail-
ability membership function

The last step is to defuzzify the fuzzy set resulted after the aggregation step. We
applied a centroid method to calculate the defuzzification process. The method
returns the center of the area under the curve. Figure 3 shows that the response-
time of 3.67 seconds and availability of 68.6% result a satisfaction degree of
82.8. Figure 4 shows a surface map for the system and the dependency of the
satisfaction degree on the response-time and availability.

We evaluate the effectiveness of the fuzzy approach with a non-fuzzy approach
with respect to the stability of the system in terms of number of times a service
needs to be replaced. The fuzzy approach performs the adaptation based on the
QoS satisfaction. Only if the result of the satisfaction is lower than a threshold
a service replacement occurs. While in the non-fuzzy approach, the replacement
decision is done based on the precise evaluation of the QoS value ranges.

10 Barbara Pernici and S. Hossein Siadat

Fig. 5: Satisfaction degree

We have conducted our experiment 200 times, each time providing random
data for the input parameters. Figure 5 illustrates the output (satisfaction de-
gree) of the experiment. The satisfaction threshold was set to 70%.

Figure 6 represents the stability of the fuzzy and non-fuzzy systems. As it
is shown, the number of service replacement in a non-fuzzy approach is much
higher than when we apply a fuzzy approach. This actually is a direct proof of
our approach. Using fuzzy parameters we allow partial satisfaction of the param-
eters. Therefore, the decision making for adaptation is not based on the precise
evaluation of the quality ranges and it is rather imprecise and allows the param-
eters to be relaxed. The non-fuzzy approach involved the maximum number of
service replacement which includes more queries for the service selection. This
can results in a huge loss of time and money. The cost of establishing a new
contract is also considerable.

7 Conclusions and Future Work

In this paper, we used fuzzy parameters for the QoS property descriptions of Web
Services and a fuzzy approach is taken in order to select adaptation strategy.
However, interpreting and presenting adaptation decisions based on fuzzy logic
is still a hot research area that requires to be investigated more in the research
community of software and service engineering.

In particular, we used linear trapezoidal membership function for the sake of
simplicity. Currently, we are conducting more experiment to investigate the usage
of Gaussian distribution function and Sigmoid curve that have the advantages
of being smooth and non-zero all the time.

As for the future work, we aim to continue exploring the use of fuzzy pa-
rameters for the QoS matching. Applying more sophisticated functions using AI
to Map the satisfaction degree to the appropriate adaptation decision might be
worth exploring. However, there are still challenges that need to be addressed.

A Fuzzy Service Adaptation based on QoS Satisfaction 11

Non-Fuzzy

Fuzzy

0

10

20

30

40

50

60

70

80

Number of Replacements

System Stability

Fig. 6: System stability of using fuzzy and non-fuzzy approach

For example, to what extent a parameter could be relaxed yet consider no vi-
olation? We also plan to incorporate more QoS parameters for calculating the
overall satisfaction degree that influence the process of decision making. This
requires the definition of more complex rules that represent the relation and
dependencies between parameters.

Last but not least, applying an appropriate decision making requires an an-
alytical evaluation based on a cost model. We would like to know under which
circumstances the proposed approach is beneficial considering both QoS and
business value criteria.

Acknowledgements

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

References

1. E. Di Nitto R. Kazhamiakin V. Mazza A. Bucchiarone, C. Cappiello and M. Pis-
tore. Design for adaptation of service-based applications: Main issues and require-
ments. In the Fifth International Workshop on Engineering Service-Oriented Ap-
plications: Supporting Software Service Development Lifecycles (WESOA), 2009.

12 Barbara Pernici and S. Hossein Siadat

2. J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26(11):832–843, November 1983.

3. Vasilios Andrikopoulos, Mariagrazia Fugini, Mike P. Papazoglou, Michael Parkin,
Barbara Pernici, and Seyed Hossein Siadat. Qos contract formation and evolution.
In EC-Web, pages 119–130, 2010.

4. Greg Brown, Betty H. C. Cheng, Heather Goldsby, and Ji Zhang. Goal-oriented
specification of adaptation requirements engineering in adaptive systems. In
SEAMS ’06: Proceedings of the 2006 international workshop on Self-adaptation
and self-managing systems, pages 23–29, New York, NY, USA, 2006. ACM.

5. Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Vil-
lani. Qos-aware replanning of composite web services. In ICWS, pages 121–129,
2005.

6. Cinzia Cappiello and Barbara Pernici. Quality-aware design of repairable processes.
In the 13th International Conference on Information Quality (ICIQ 08), pages 382–
396, 2008.

7. Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Sri-
vastava. Adaptation in web service composition and execution. In ICWS, pages
549–557, 2006.

8. Girish Chafle, Prashant Doshi, John Harney, Sumit Mittal, and Biplav Srivastava.
Improved adaptation of web service compositions using value of changed informa-
tion. In ICWS, pages 784–791, 2007.

9. Betty H. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A goal-based
modeling approach to develop requirements of an adaptive system with environ-
mental uncertainty. In Proceedings of the 12th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’09, pages 468–483, Berlin,
Heidelberg, 2009. Springer-Verlag.

10. Ronnie Cheung, Jiannong Cao, Gang Yao, and Alvin T. S. Chan. A fuzzy-based
service adaptation middleware for context-aware computing. In EUC, pages 580–
590, 2006.

11. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Sci. Comput. Program., 20:3–50, April 1993.

12. Martine De Cock, Sam Chung, and Omar Hafeez. Selection of web services with
imprecise QoS constraints. In Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’07, pages 535–541, Washington, DC, USA,
2007. IEEE Computer Society.

13. N. Fenton and M. Neil. Making decisions: using bayesian nets and mcda.
Knowledge-Based Systems, 14(7):307 – 325, 2001.

14. Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge, MA,
USA, 2003.

15. John Harney and Prashant Doshi. Adaptive web processes using value of changed
information. In International Conference on Service-Oriented Computing (ICSOC,
pages 179–190, 2006.

16. Kyriakos Kritikos and Dimitris Plexousakis. Semantic QoS-based web service dis-
covery algorithms. In ECOWS, pages 181–190, 2007.

17. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Probabilistic symbolic
model checking with prism: A hybrid approach. In TACAS, pages 52–66, 2002.

18. Emmanuel Letier and Axel van Lamsweerde. Reasoning about partial goal sat-
isfaction for requirements and design engineering. SIGSOFT Softw. Eng. Notes,
29:53–62, October 2004.

A Fuzzy Service Adaptation based on QoS Satisfaction 13

19. Pei Li, Marco Comerio, Andrea Maurino, and Flavio De Paoli. Advanced non-
functional property evaluation of web services. In Proceedings of the 2009 Seventh
IEEE European Conference on Web Services, ECOWS ’09, pages 27–36, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

20. Pei Li, Marco Comerio, Andrea Maurino, and Flavio De Paoli. An approach to non-
functional property evaluation of web services. In Proceedings of the 2009 IEEE
International Conference on Web Services, ICWS ’09, pages 1004–1005, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

21. Octavio Mart́ın-Dı́az, Antonio Ruiz Cortés, David Benavides, Amador Durán, and
Miguel Toro. A quality-aware approach to web services procurement. In TES,
pages 42–53, 2003.

22. Octavio Mart́ın-Dı́az, Antonio Ruiz Cortés, José Maŕıa Garćıa, and Miguel Toro.
Dealing with fixable and non-fixable properties in service matchmaking. In IC-
SOC/ServiceWave Workshops, pages 228–237, 2009.

23. Flavio De Paoli, Matteo Palmonari, Marco Comerio, and Andrea Maurino. A
meta-model for non-functional property descriptions of web services. In Proceed-
ings of the 2008 IEEE International Conference on Web Services, pages 393–400,
Washington, DC, USA, 2008. IEEE Computer Society.

24. Barbara Pernici and S. Hossein Siadat. Adaptation of web services based on QoS
satisfaction. In WESOA ’10: Proceedings of the 6th International Workshop on En-
gineering Service-Oriented Applications, Berlin, Heidelberg, 2010. Springer-Verlag.

25. Michael Schäfer, Peter Dolog, and Wolfgang Nejdl. An environment for flexible
advanced compensations of web service transactions. ACM Trans. Web, 2:14:1–
14:36, May 2008.

26. Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel
Bruel. Relax: Incorporating uncertainty into the specification of self-adaptive sys-
tems. In RE, pages 79–88, 2009.

27. Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel
Bruel. Relax: a language to address uncertainty in self-adaptive systems require-
ment. Requir. Eng., 15(2):177–196, 2010.

28. John Yen and W. Amos Tiao. A systematic tradeoff analysis for conflicting im-
precise requirements. In Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering, RE ’97, pages 87–96, Washington, DC, USA, 1997.
IEEE Computer Society.

29. Lotfali Askar Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
30. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant

Kalagnanam, and Henry Chang. Qos-aware middleware for web services composi-
tion. IEEE Trans. Softw. Eng., 30(5):311–327, 2004.

31. Ji Zhang and Betty H. C. Cheng. Using temporal logic to specify adaptive program
semantics. Journal of Systems and Software, 79(10):1361–1369, 2006.

Selection of Service Adaptation Strategies Based on Fuzzy Logic

Barbara Pernici and S. Hossein Siadat
Politecnico di Milano

Dipartimento di Elettronica e Informazione
p.zza Leonardo Da Vinci, 32 - 20133, Milano, Italy

pernici@elet.polimi.it

Abstract—Web Service adaptation and evolution is receiving
huge interest in service oriented architecture community due
to dynamic and volatile web service environment. Regarding
quality of service changes, Web Services need to be able to
adapt dynamically to respond to such changes. However, for-
mulating quality of service parameters and their relationship
with adaptation behaviour of a service based system is a
difficult task. In this paper, a Fuzzy Inference System (FIS)
is adopted for capturing overall QoS and selecting adaptation
strategies using fuzzy rules. The overall QoS is inferred by
QoS parameters, while selection of adaptation strategies is
inferred by the overall QoS, importance of QoS and cost of
service substitution. In particular, hierarchical fuzzy systems
were used to reduce the number of rules. Our approach is able
to efficiently select adaptation strategies with respect to QoS
changes. We test and compare our fuzzy inference adaptation
with a naive adaptation approach that works based on precise
measurement of QoS in order to show the performance of the
approach in reducing the number of service substitutions for
minor deviations.

Keywords-QoS; service adaptation and evolution; fuzzy logic;
service based applications;

I. INTRODUCTION

The performance of Service Based Applications (SBAs)
[1] is relied upon providing a Service Level Agreement
(SLA). SLA is a mutually agreed contract between a service
provider and consumer that describes non-functional prop-
erties of web services. QoS parameters are often changing
due to dynamic and volatile service environment. In such
environment, Web Services need to be able to adapt dy-
namically trying to respect the SLA. For this, changes are
required to be captured, evaluated and proper actions need to
be taken accordingly. Therefore, adaptation and evolution of
Web services are of great importance in order to guarantee
the quality of service (QoS) defined in a contract. With this
regard, we intend to address the following key issues in our
work.

• Selecting Service Adaptation Strategies. Depending
on the adaptation triggers, there exist a set of adaptation
strategies. However, selection of the most suitable adap-
tation strategies is a complex task due to the multiple
criteria involved in the process on decision making [2].
For example different recovery/adaptation actions have
different time and computation complexity. Impact and
scope of change should also be considered as adaptation

requirements. Moreover, adaptation cost needs to be
taken into account for economical reason. Therefore,
understanding the adaptation triggers that may produce
a faulty situation and adaptation requirements is nec-
essary to make an appropriate decision for adaptation
and it has to be done with a special care. We argue
what is missing here is an appropriate decision making
process for selecting adaptation strategies that takes into
consideration different adaptation requirements. In this
paper we are interested in changes of service quality
as symptoms and triggers for adaptation. Besides, we
consider cost of service substitution and importance of
QoS as requirements/factors of adaptation for selecting
the best strategy.

• Quality of Service Management. A SBA has some
very nonlinear characteristics from the QoS perspective.
However, current approaches mostly use precise meth-
ods for QoS property description and quality measure-
ment. This means that QoS parameters are defined us-
ing crisp values and their evaluation is based on precise
measurement of defined ranges in the contract. There-
fore, any deviation from quality ranges is considered
a violation, albeit minor, and thus an adaptation action
(mostly service substitution) takes place regardless to
its consequences. Moreover, partial satisfaction of QoS
parameters can not be supported by applying precise
methods. However, applying precise methods are not
suitable for all circumstances due to uncertainty issues.
For example, large number of QoS parameters and
unclear relation between parameters makes it difficult
and complex to formulate an analytical optimization
model for QoS management in SBAs.

Soft computing is an alternative when above problems
occur by providing inexact solutions for computationally-
hard tasks and relaxing parameters. Applying a soft comput-
ing approach is beneficial for defining QoS description and
measuring quality parameters in order to compute the overall
QoS. Inference methods are used when the input-output
relation can be expressed in the form of if-then rules. Fuzzy
logic [3] is used in this category and describe the system
behaviour by using simple rules. In general, fuzzy logic is
particularly suitable among other techniques in dealing with

uncertainty and using imprecise parameters. The definition
of quality parameters such as dependability, security and
reputation has a high degree of unclarity and ambiguity that
makes it difficult to define them in a precise approach using
crisp values. Furthermore, mapping such quality parameters
to the overall QoS is difficult to be defined using mathemati-
cal expression. In this context, linguistic variables [4] can be
used to define QoS parameters. As an example, reputation
can be expressed with three states of low, medium and high.

In this paper, we take advantage of the fuzzy logic for
measuring overall QoS and selecting service adaptation
strategies. We concentrate on QoS changes in a SBA and
their relations with adaptation actions. We apply hierarchical
fuzzy systems to address the rule explosion problem and
to reduce the number of rules. This provides the ability to
efficiently manage different categories of input parameters,
increase the scalability and improve the reusability of the
system. Our approach employs two fuzzy inference systems
that use if-then rules to manage QoS changes and to support
a decision making to decide which adaptation strategy is the
best to be taken. We consider three adaptation strategies: do-
nothing, renegotiation, and substitution.

The paper is organized as follows. Section II describes
the major related work. The approach overview and the
extended architecture and life cycle of a SBA associated with
fuzzy inference engines are described in Section III. Section
IV introduces the main basic of fuzzy logic systems and
explains the fuzzy inference mechanism. Rules are defined
and QoS changes are evaluated using a fuzzy inference
methodology. Section V shows the experiments in applying a
fuzzy inference system for fault detection and adaptation of
services through our working example. Section VI concludes
the paper and discusses our future work.

II. RELATED WORK

Recently, much work has been done in the area of
adaptation of service base application. Among those we
can refer to works by [5] and [6]. Furthermore, cross-layer
adaptation of service based application is also investigated
in literature [7], considering various factors from different
SBA layers that influence the adaptation behaviour of the
system. However, most of the work takes into account the
functional perspective of services and less attention has been
paid to non-functional aspects. QoS contracting issues is
investigated in [8] and [9]. There are only few approaches
that provide support for QoS adaptation of SBAs. [10]
proposed an approach for QoS-aware adaptation based on
dynamic replanning of service composition. Adaptation of
SBAs based on process quality factor analysis is addressed in
[11]. However, our approach is different in that we consider
the partial satisfaction of QoS parameters through imprecise
QoS measurement, which is not considered in the above
approaches due to the problem of QoS property description
we already mentioned in the Section I.

QoS property description is studied in the literature [12]
in which QoS parameters are measured through mathemat-
ical formulas. The measurement for each quality parameter
depends on the value of the same parameter from other
services in the composition. For example it requires the
maximum and minimum value of each parameter for scaling
phase. However, formulating quality of service parameters
and their relationship with adaptation behaviour of a SBA is
a difficult task. The work in [13], proposed an approach that
allows partial satisfaction of QoS attributes by exploiting
hierarchical constraint logic programming. However, the
overall QoS is not measured and its relation with quality
parameters are not considered.

The work in [14] discusses the impact analysis of repair
actions from a business perspective. The authors present
mathematical models to compute economic values of ap-
plying different repair actions based on satisfaction index
of business entities and cost of adaptation. While similar in
spirit, we consider changes of QoS parameters as triggers
for adaptation and a trade-off approach between quality,
its importance and cost is taken for the analysis which is
based on fuzzy inference rather than applying mathematical
models.

Fuzzy logic has been applied to many fields (e.g. control
and communication) for solving problems and decision
making where the relation of existing parameters are too
complicated to be modelled by conventional mathematical
models and techniques. With respect to QoS, the definition
of quality parameters is associated with uncertainty due
to the complex and dynamic environment. In this context,
fuzzy logic seems to be a promising approach for QoS
management. [15] presented an approach using fuzzy control
for improving QoS performance. Other approaches address
the problem of QoS management in distributed multimedia
applications such as those in [16] and [17]. However, these
systems are either problem-specific or application specific
(e.g. Multimedia applications). Moreover, they are very
dependent to the specific scenario of the application.

Recently, researchers have demonstrated increasing atten-
tion towards fuzzy QoS adaptation. Soft computing tech-
niques, in particular fuzzy logic, for QoS adaptation are
addressed in [18]. An approach for adaptive middleware
infrastructure is presented in [19] for context-aware mobile
applications. The approach defines policies and calculates
their fitness degree using fitness functions which will be
compared with the current fuzzified context situations to
infer adaptation decisions. Our idea in applying hierarchical
fuzzy inference is closely related to the work in [20].
The adaptation decisions are taken by inferring the user
expectation of QoS and network quality. Our approach
follows a broader range, since we consider other adaptation
requirements (e.g. cost aspects) for inferring adaptation
decisions.

Figure 1. Hierarchy approach: the quality model and adaptation require-
ments

III. APPROACH OVERVIEW

Our proposed approach for selecting adaptation strategies
is mainly based on quality changes as adaptation triggers.
For this purpose, we use a quality model that is illus-
trated in Figure 1. Other adaptation requirements, i.e. cost
of adaptation and importance of QoS, are also shown in
the middle level of the figure. We consider four quality
parameters in our web service quality model: response time,
availability, security and reputation. In principle, our quality
model can be extended to include quality metrics such as
those proposed in [21], [22] and [12]. The approach uses
a hierarchy fuzzy system [23], [24]. Particularly, we use
two fuzzy inference engines, namely, QoS assessment engine
and decision making engine. The former is used to infer the
overall degree of QoS and the earlier is used to choose the
adaptation actions.

Each inference engine uses its own fuzzy rules. QoS-
related rules are stored in a knowledge base and adaptation-
related rules are stored in a adaptation rule base. QoS pa-
rameters perform as input variables for the QoS assessment
engine. Fuzzy rules in the knowledge base can be used
for inferring the overall QoS degree. The decision making
engine works based on the results of the QoS assessment
engine. Fuzzy rules in the adaptation rule base will be used
for inferring an adaptation strategy. The fuzzification process
and steps of a fuzzy inference systems will be described in
the next section.

It is also possible to include other types of parameters for
example context-aware, CPU and other resource parameters
that may influence the overall QoS. In this case we may
use a separate fuzzy inference engine for a specific category
of parameters. Other parameters are not yet included in our
approach. However, it can be done by a change analyser to
distinguish different category of parameters and send them
to their specific fuzzy inferring engines. Note that in this
paper we only use QoS parameters in our quality model.

Increasing the number of QoS parameters can expo-
nentially increase the number of rules in a FIS system
which eventually increase computational time. Applying the

hierarchical fuzzy systems provides scalability to the system.
This way can lead to a notable decrease in the number of
rules. Furthermore, it increases the re-usability of the system
and provides support for updating the rules independently.
For example, if we need to involve a new parameter for
calculating the overall QoS, only the QoS-related rule repos-
itory will be updated. In general, using the hierarchical fuzzy
rules allows the system to define independent fuzzy rules for
each category. Therefore, changes in input parameters of one
category do not affect rules in the other category and only
corresponding fuzzy rules will be modified.

A high-level overview of our approach is illustrated in
Figure 2. The approach follows the basic architecture and
life cycle of a SBA and includes phases of contract forma-
tion, execution, monitoring and adaptation. The focus of the
model is on the monitoring and adaptation phases.

Fuzzy QoS Assessment. A fuzzy QoS assessment compo-
nent is placed in the monitoring phase. It includes the QoS
assessment engine and its corresponding QoS rules stored
in the knowledge base. QoS parameters captured by QoS
monitors are used as inputs for the QoS assessment engine.
Therefore, the engine takes the QoS parameters as inputs
and apply the QoS rules from the knowledge database to
provide the overall degree of the QoS. Overall, the quality
parameters will be monitored and evaluated using the QoS
assessment engine.

Decision Making. A decision making engine is placed
in the adaptation phase for selecting adaptation strategies.
The engine uses the overall degree of QoS received from
the QoS assessment engine together with other adaptation
factors. Information about adaptation requirements are kept
in the adaptation rule base. The output of the engine, after
defuzzification, represent the adaptation strategy needs to be
taken.

IV. FUZZY LOGIC AND FUZZY INFERENCE SYSTEMS

The main idea of using fuzzy logic is to understand the
relation between input and output parameters and to map the
input space to the output space. In the following we describe
how a fuzzy inference system works.

A fuzzy inference system consists of five major steps.
The first step is fuzzification of input parameters. Crisp
parameters are converted to linguistic fuzzy parameters using
membership functions. We use quality parameters from our
quality model in Figure 1. Measurable parameters such as
availability, response-time and reputation (to some extent)
can be measured using mathematical techniques such as
the one in [12]. The crisp numerical values can be taken
from service level agreements which define specific ranges
for each parameter. For non-measurable parameter, such as
security, approaches for converting value to level can be used
[8]. Each input parameter then should be defined by a set
of fuzzy linguistic. We use three states of low, medium and
high for all the quality parameters for the sake of simplicity,

Figure 2. Approach Overview

while the output quality parameter, overall QoS, is presented
by five states of very-low, low, medium, high and very-high.

Then we need to know the mathematical meaning of the
linguistic variable. What does it mean to say availability
is high and to what extent?. Therefore, a membership
function shows the degree of affiliation of each parameter
by mapping their values to a membership value between 0
and 1. Different membership functions could be used for
such mapping in which basic functions are namely piece-
wise linear, the Gaussian distribution, the sigmoid curve.
The linear functions have the advantage of simplicity while
the Gaussian functions take the advantage of smoothness
and being non-zero all the time.

For measurable parameters, the primary range of each
parameter is taken from the contract and interpreted to
different states. For example the response-time of [0..3] is
good, [3..7] is medium and [7..10] is weak. As for the non-
measurable parameter, different levels is converted to the
corresponding state. For example, A level security is high,
B level is medium and C level is low. The membership
function of reputation parameter is illustrated in Figure 3
while the membership function of service quality is shown
in Figure 4. Gaussian Membership functions are used for all
the input and outputs variables in this paper.

All the inputs must be fuzzified before applying fuzzy
rules. Given the fuzzy inputs and membership functions,
fuzzy if-then rule statements constitute the fuzzy logic of
the system. The structure of a fuzzy rule with respect to
multiple QoS parameters is shown in the form of equation
1 where A, B, C and D are linguistic values. The inputs are

Figure 3. The membership function of reputation parameter

quality parameters Pi and the output is the overall QoS q.
The if-part of the rule is called antecedent while the then-
part is called consequent.

R : If P1 isAandP2 isB or P3 isC then q isD (1)

Applying rules consists of three steps. First is evaluating
the if-part by applying fuzzy operators to the antecedent.
After evaluating the antecedent, the result will be applied
to the consequent, which is called implication. The result
of implication is a fuzzy set that is truncated using an
implication method. Since there are more than one rule, the
output fuzzy set of each rule is required to be aggregated to

Figure 4. The membership function of Service Quality

Figure 5. Steps of a fuzzy inference system with 2 inputs and 2 if-then
rules

a single fuzzy set, which is called aggregation.
The last step is defuzzification that converts the fuzzy

set resulted from the aggregation to a single crisp value.
There are several defuzzification methods: centroid, middle
of maximum, largest of maximum and smallest of maximum.
Steps of a fuzzy inference system are shown in Figure 5.

V. IMPLEMENTATION AND RESULTS

We have implemented and tested our proposed approach
for selecting adaptation strategies in a simulator. For our
experiment, fuzzy inference systems are applied and the
Mamdani approach is taken for generating fuzzy rules in
the form of linguistic expressions. As we discussed earlier,
we used particularly two fuzzy inference engines. One for
inferring the overall QoS and the other one for inferring
the selection of adaptation strategies called totalQoS and
adaptationPriority respectively. In our experiments, We use
a min function for the implication method, max function
for the aggregation method and centroid function for the
defuzzification methods. The two fuzzy inference systems
are illustrated in Figure 6.

The inputs are the QoS parameters injected into the
system using random values. The values are then scaled to
accommodate the fuzzy logic inputs. Therefore, a saturation
block is placed to keep the input data in a specified range
according to the given parameter.

Each input and output value is accomplished with a mem-
bership function. The totalQoS engine uses four parameters
of response time, availability, security and reputation as
inputs and overall QoS as output. The overall quality of the
system is given to the adaptationPriority engine as an input.
cost of substitution and importance of QoS are other inputs.
The adaptation engine has one output, called actionPriority,
that represents the priority of adaptation strategies. We
associated the low degree of actionPriority to do-nothing
strategy, medium degree to renegotiation strategy and high
degree to substitution strategy.

We have defined fuzzy rules using the linguistic variables
for both fuzzy inference engines. We considered all possible
combination of rules, 81 quality rules and 45 adaptation
rules, since we conducted experiment with low number of
inputs and the computational time was not a distinguishing
factor in this study. However, it is possible to summarize
different combinations. Fuzzy conjunction (AND), inter-
preted as a min function, is applied for all the rules. Figure
7 shows the QoS rules of the system. As an example, one
rule is marked in the figure: when the response-time is good,
availability is medium, reputation is high and security is low,
then the overall QoS will be medium.

We have also defined the adaptation rules for the adap-
tation inference engine as shown in Figure 8. The action
priority is inferred using the overall QoS, importance of QoS
and cost of service substitution. As an example marked in
the figure: with a very low QoS, high importance of QoS
and low cost of substitution, the adaptation strategy should
be a service replacement. Another example, when the QoS
is in a medium range, its importance is low, and the cost of
substitution is high, then action priority is low. This means
that an internal renegotiation action will be done between
the involved parties. Although a deviation is done from the
quality ranges in the contract, but the service substitution is
not a wise decision due to the low importance of the QoS
and high cost of substitution. Other similar decisions could
be inferred by the same reasoning.

The plot of the output surface of the system shows the
dependency of the output on the inputs. Figure 9 displays
the dependency of overall QoS based on availability and
response-time parameters. The figure perfectly shows that
the QoS is very high when the availability is high and
the response-time is low, and the QoS is very low when
the response-time is high and availability is low. Figure 10
depicts the dependency of actionPriority based on the im-
portance of QoS and cost of service substitution. The figure
shows that when the QoS is low, the cost of substitution
can determine the adaptation strategy. The high cost results

Figure 6. Approach design using fuzzy inference systems

Figure 7. QoS-related Rules

in medium actionPriority which means renegotiation is a
dominant strategy, while the decrease of the cost leads to
higher action priority where substitution is preferred. It can
be seen from the figure that actionPriority is very low when
the QoS is high, regardless to the value of cost. Therefore,
do-nothing strategy will be selected for minor deviations.

We evaluated the efficiency of our fuzzy adaptation ap-
proach in comparison with a naive Non-fuzzy approach.
A non-fuzzy approach may perform a service substitution
whenever a deviation occurs from the predefined ranges of
parameters. We performed 8 experiments, with injecting a
sample data per millisecond. A comparison of the approach
with the Non-fuzzy one, with respect to number of service
substitutions is illustrated in Figure 11. In general, the
experiments show that our approach intelligently reduces the
number of service substitutions in comparison to a naive
adaptation method. This is done by a trade-off between
overall degree of QoS, importance and cost of adaptation.

Figure 9. The plot surface of QoS

Figure 8. Adaptation-related Rules

Figure 10. The plot surface of adaptation priority

This way, minor deviations could be ignored due to high
cost of service adaptation and partial satisfaction of QoS
parameters are allowed. The figure shows that the fuzzy
approach is very efficient in longer time and with higher
sample data. The non-fuzzy approach exponentially increase
the number of service substitution in this situation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel approach for
selecting adaptation strategies in SBAs based on fuzzy logic.
We have shown how to model QoS parameters and associate
them to adaptation strategies. We used hierarchical fuzzy
inference systems for this purpose. Firstly, the degree of QoS
can be inferred by changes of QoS parameters using a fuzzy
inference engine. Second, a decision making for adaptation
can be inferred by considering overall QoS, its importance
and cost of substitution. Our approach allows partial sat-
isfaction of QoS attributes by measuring their degree of

Figure 11. Comparing the efficiency of fuzzy with Non-fuzzy approach
regarding the number of service substitutions

membership using various membership functions provided
for each parameter. Moreover, adaptation actions are taken
by trading off between the degree of QoS, its importance and
cost of service substitution. Therefore, the approach is able
to intelligently choose between renegotiation or substitution
of web services, which result in reducing the number of
service substitutions. We particularly used hierarchy fuzzy
systems for the problem of rule explosion and to increase
the scalability and reusability of applied rules.

Our approach is flexible in that it is application inde-
pendent and can support adaptation with respect to changes
of parameters from various categories. However, only QoS
parameters is investigated in this paper. As for the future
work, we intend to consider other parameters (e.g context or
CPU) and study their relation with the adaptation behaviour
of the system. It is expected that increasing the number
and category of parameters makes the fuzzy approach more
applicable due to high complexity of finding a mathematical

relation between all the parameters.
In this work, we assumed that all parameters are able

to be fuzzified. However, there may be parameters that
are requested to be measured precise approaches. In this
case, we would like to combine a fuzzy and non-fuzzy
approach in order to efficiently consider all parameters in
the decision making process. We also intend to consider the
user preferences over each parameter in order to provide
weight of parameters prioritize the importance of them.
Furthermore, we would like to rank the rules accordingly.
In this paper, we considered the same rank for all the rules
and applied them in parallel.

Despite the efficiency of our approach in reducing the
number of substitution, there is still lack of comprehensive
comparison with a non-fuzzy approach in dealing with
QoS management and adaptation decision. In general, a
comparison between existing hard computing techniques and
one of the soft computing techniques, say fuzzy logic, would
be of great importance for the service research community.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, pp. 38–45, 2007.

[2] A. Bucchiarone, C. Cappiello, E. D. Nitto, R. Kazhamiakin,
V. Mazza, and M. Pistore, “Design for adaptation of service-
based applications: main issues and requirements,” in Proc.
ICSOC/ServiceWave, 2009, pp. 467–476.

[3] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[4] ——, “The concept of a linguistic variable and its application
to approximate reasoning,” Inf. Sci., vol. 8, no. 3, pp. 199–
249, 1975.

[5] J. Harney and P. Doshi, “Adaptive web processes using value
of changed information,” in Proc. ICSOC’06, 2006, pp. 179–
190.

[6] G. Chafle, P. Doshi, J. Harney, S. Mittal, and B. Srivastava,
“Improved adaptation of web service compositions using
value of changed information,” in Proc. ICWS’07, 2007, pp.
784–791.

[7] R. Kazhamiakin, M. Pistore, and A. Zengin, “Cross-layer
adaptation and monitoring of service-based applications,” in
Proc. ICSOC/ServiceWave Workshops, 2009, pp. 325–334.

[8] M. Comuzzi and B. Pernici, “A framework for QoS-based
web service contracting,” ACM Transactions on the Web,
vol. 3, no. 3, June 2009.

[9] V. Andrikopoulos, M. Fugini, M. P. Papazoglou, M. Parkin,
B. Pernici, and S. H. Siadat, “QoS contract formation and
evolution,” in Proc. EC-Web’10, 2010, pp. 119–130.

[10] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani,
“QoS-aware replanning of composite web services,” in Proc.
ICWS’05, 2005, pp. 121–129.

[11] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore,
and F. Leymann, “Adaptation of service-based applications
based on process quality factor analysis,” in Proc. ICSOC/Ser-
viceWave, 2009, pp. 395–404.

[12] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “QoS-aware middleware for
web services composition,” IEEE Trans. Softw. Eng., vol. 30,
no. 5, pp. 311–327, 2004.

[13] P. Li, M. Comerio, A. Maurino, and F. D. Paoli, “An approach
to Non-functional property evaluation of web services,” in
Proc. ICWS’09, 2009, pp. 1004–1005.

[14] F. Islam, M. N. Lucky, and B. Pernici, “Business analysis of
web service repairability,” in Proc. RCIS’10, 2010, pp. 463–
472.

[15] B. Qiu, “The application of fuzzy prediction for the im-
provement of QoS performance,” in Proc. IEEE International
Conference on Communications, vol. 3, Jun. 1998, pp. 1769
–1773.

[16] C. Koliver, K. Nahrstedt, J.-M. Farines, J. D. S. Fraga, and
S. A. Sandri, “Specification, mapping and control for QoS
adaptation,” Real-Time Syst., vol. 23, pp. 143–174, July 2002.

[17] B. Li and K. Nahrstedt, “A control-based middleware frame-
work for quality of service adaptations,” IEEE Journal on
Selected Areas in Communications, vol. 17, pp. 1632–1650,
1999.

[18] C. Koliver, J.-M. Farines, and K. Nahrstedt, “QoS adaptation
based on fuzzy theory,” in Soft Computing in Communica-
tions, L. Wang, Ed., 2004, pp. 245–265.

[19] R. Cheung, J. Cao, G. Yao, and A. T. S. Chan, “A fuzzy-based
service adaptation middleware for context-aware computing,”
in Proc. EUC’06, 2006, pp. 580–590.

[20] S.-N. Chuang and A. T. S. Chan, “Dynamic QoS adaptation
for mobile middleware,” IEEE Trans. Softw. Eng., vol. 34, pp.
738–752, November 2008.

[21] J. O’Sullivan, D. Edmond, and A. Ter Hofstede, “What’s in a
service?” Distrib. Parallel Databases, vol. 12, pp. 117–133,
September 2002.

[22] A. Paschke and E. Schnappinger-Gerull, “A categorization
scheme for SLA metrics,” in Proc. Service Oriented Elec-
tronic Commerce, 2006, pp. 25–40.

[23] R. R. Yager, “On the construction of hierarchical fuzzy
systems models,” Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, vol. 28,
no. 1, pp. 55 –66, Feb. 1998.

[24] M.-L. Lee, H.-Y. Chung, and F.-M. Yu, “Modeling of hierar-
chical fuzzy systems,” Fuzzy Sets Syst., vol. 138, pp. 343–361,
September 2003.

Preventing KPI Violations in Business Processes based on Decision Tree Learning
and Proactive Service Substitution

Branimir Wetzstein∗ Asli Zengin† Raman Kazhamiakin† Marco Pistore† Dimka Karastoyanova∗

∗Institute of Architecture of Application Systems
University of Stuttgart, Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

†Fondazione Bruno Kessler IRST
Trento, Italy

{zengin, raman, pistore}@fbk.eu

Abstract—The performance of business processes imple-
mented as service-based applications is measured and mon-
itored in terms of Key Performance Indicators (KPIs). If
monitoring results show that the KPI targets are violated,
the underlying reasons have to be identified and the process
should be adapted accordingly to remove the violations. In
this paper we propose an integrated monitoring, prediction
and adaptation approach for preventing KPI violations of
business process instances. KPIs are monitored continuously
while the process is executed. Based on KPI measurements of
historical process instances we use decision tree learning to
construct classification models which are then used to predict
the KPI value of an instance while it is still running. If a KPI
violation is predicted, we identify adaptation requirements and
adaptation strategies consisting of service substitutions in order
to prevent the violation. The approach has been implemented
and experimentally evaluated.

Keywords-Business Activity Monitoring, Business Process
Intelligence, WS-BPEL, Decision Tree, Process Adaptation

I. INTRODUCTION

In recent years, the industry experienced a wide adoption
of the service-oriented architecture for the implementation of
business processes. Service-based applications realize such
processes by modeling and deploying a complex, distributed
and layered system, where the business model of an appli-
cation is implemented through a service composition which
orchestrates services running on top of service infrastructures.
To be effective, such applications should meet certain business
goals, traditionally expressed as Key Performance Indicators
(KPIs) of the business processes. These KPIs are continuously
monitored at run-time using business activity monitoring
techniques.

If monitoring shows that KPI targets are not reached, then
firstly it is necessary to identify the factors which strongly
influence the KPI and often cause KPI target violations. In
complex business processes, the relations between the overall
business process performance and lower-level influential
factors and their combination are neither explicit nor easy
to reveal. Secondly, in addition to identifying the influential
factors based on historical process executions, it is desirable
to be able to predict for a running process instance whether it

will reach the KPI target. Finally, if a KPI target violation is
predicted, one has to identify adaptation strategies which can
potentially improve the performance of the process instance,
thus preventing the violation.

In this paper we present an integrated monitoring, analysis,
prediction and adaptation approach that aims to address the
above problems. The execution of the business process is
continuously monitored based on runtime events published
by the process execution middleware. Based on monitoring
data of historical process instances, we use decision tree
algorithms in order to learn the dependencies between the
KPI and the influencing lower-level metrics. The resulting
decision tree is used for KPI prediction for future process
instances. If for a running process instance, a KPI target
violation is predicted, adaptation requirements are extracted
from the decision tree which specify conditions on metric
values which should be improved. In the next step, we
identify adaptation strategies consisting of adaptation actions
which should be performed in order to satisfy the adaptation
requirement conditions. In this paper we thereby focus on
service substitution as the only adaptation action type. In a
subsequent step we then filter and rank adaptation strategies
based on constraints and preferences considering the QoS
characteristics of the services to be substituted. Finally, the
process instance is pro-actively adapted in order to prevent
the KPI violation. The presented work builds on the work
presented in [1] which focused on monitoring and KPI
dependency analysis, and extends, refines and evaluates
our preliminary ideas presented in [2], where the overall
monitoring, analysis and adaptation framework has been
described at a higher level.

The paper is organized as follows. We begin with a
motivating scenario that describes the problem and which we
use in the rest of the paper to present our solution. Section
III gives an overview of the approach. Sections IV and
V describe the prediction and adaptation aspects in detail.
Section VI describes the implementation of the approach
and presents results of an experimental evaluation. Finally,
we give a summary of related work and conclude the paper
together with the directions for future work.

Figure 1. Purchase Order Process

II. SCENARIO AND MOTIVATION

In this section we introduce a scenario that we use in
the following sections for explaining our approach. As
shown in Figure 1, the scenario consists of a purchase order
process implemented by a reseller who offers products to
its customers and interacts with external suppliers, banking,
and shipment services for processing the order. Furthermore,
the reseller uses warehouse and customer services, which
are internal to the organization.

For measuring the performance of its business process, the
reseller defines a set of Key Performance Indicators (KPIs).
For instance in this scenario a typical KPI is “order fulfillment
lead time” (process duration from order receipt until shipment
arrives at the customer) or “order delivered in full and in
time” (see Supply Chain Operations Reference Model1). In
addition to the KPI metric measurement specification, a KPI
definition includes also a target value function which specifies
KPI classes based on a business goal, e.g., order fulfillment
lead time < 3 days is “good”, < 5 days is “medium”, and
otherwise “bad”.

After defining the KPIs, they have to be measured based
on executed process instances. If after a while the monitoring
shows an unsatisfactory result, i.e., the KPI targets are
violated for many instances (i.e. purchase orders are late,
in our case), the reseller wants to find out the influential
factors which lead to good or bad KPI values. Understanding
the reasons why certain orders are delivered on time and
others are not, is often not trivial, as the KPI depends on
the combination of several factors such as ordered product
types and amounts (input data of the process), duration and
availability of the internal services, duration, reliability and
SLA conformance of external services etc. For example,
standard shipment duration could take from one to five days
or in exceptional cases even longer, supplier delivery time
might depend on certain product types and amounts. These

1http://www.supply-chain.org/

deviations in service behavior lead to the different outcomes
of process instances considering KPI targets.

After the influential factors for KPI violations based on
a set of a past instances have been understood, the next
logical step is to try to prevent the violations in future.
This can be done using runtime process instance adaptation.
Thereby, in this paper we focus on service substitution as
adaptation mechanism. Therefore, we assume that there is a
set of candidate services for a set of service types used in
the process. E.g, there might be several alternative shippers
which offer different service levels via shipment options (e.g.,
standard, premium, overnight express); each of those options
can be modeled as a candidate service with different quality
of service (QoS) characteristics (such as shipment delivery
time, shipment cost, reputation, etc.)

III. OVERVIEW OF THE APPROACH

In this section we give an overview of our approach by
describing its lifecycle as shown in Figure 2 . The supporting
architecture and implementation will be described in Section
VI. The lifecycle consists of the following phases:

1. Monitoring: In the monitoring phase, all metrics
specified in the metrics model are monitored. That includes
the KPI metrics but also lower-level metrics of the potential
influential factors. As a result, metric values for a set of
executed process instances are stored and provided to the
next phase.

2. KPI Dependency Analysis: After a certain number of
executed process instances, based on a KPI analysis model a
decision tree is trained which helps to understand when a KPI
is violated. The KPI analysis model contains the definition
of the KPI and specifies the subset of the metrics from the
metrics model which should be used for the analysis. The
resulting decision tree serves from now on as a classification
model for future process instances and is used for prediction
(Section IV-A).

3. KPI Prediction: A checkpoint model specifies at which
points in the process the KPI prediction should take place.
When a running process instance reaches a checkpoint, it halts
its execution. The metric values which have been measured
until the checkpoint for that instance are gathered and used as
input to the classification model learned in phase 2 (Section
IV-C). The prediction result is either a predicted KPI class
(e.g., “green”, “yellow” or “red”) or a reduced tree, which
shows which metrics should be improved to reach a specific
KPI class and serves thus as basis for adaptation.

4. Identification of Adaptation Requirements and Adap-
tation Strategies: Adaptation requirements are identified
by extracting metrics which should be improved from
the reduced tree (Section V-A). Based on the adaptation
requirements, a set of alternative adaptation strategies is
identified by taking into account available adaptation actions,
i.e. in our case, service substitutions. An adaptation strategy
thus consists of a set of service candidates which should be

Figure 2. Lifecycle of the Approach

used in the process instance in order to reach a certain KPI
class.

5. Selection of an Adaptation Strategy: The list of al-
ternative adaptation strategies is filtered and ranked based
on a constraints and preferences model. In this paper, we
use maximal cost of the substituted services which an
adaptation strategy has to satisfy as a constraint. Preferences
are specified as weights on the QoS characteristics cost,
duration, and reputation which enables ranking of strategies
according to scores.

6. Adaptation Enactment: The first ranked adaptation
strategy is enacted. This is done by binding selected services
to the process instance. The process instance is unblocked
and continues its execution.

While steps 3-6 are being performed for a certain number
of instances, the monitoring (step 1) is continued. After a
certain number of instances, the effectiveness of the adap-
tations is evaluated by checking how many KPI violations
have been prevented and how many instances still violate
their KPIs. This might lead to adjustment of the models,
e.g., adjustment of KPI targets, (re)moving of checkpoints,
adjustment of the constraints and preferences model.

IV. MONITORING AND PREDICTION OF KPIS

In the following we first give some background information
on KPI dependency analysis based on decision trees, and
then explain how those trees are used for KPI prediction.

A. Background on KPI Dependency Analysis

A KPI is defined as a tuple consisting of a metric definition
and a target value function which maps value ranges of the
metric to categorical values (KPI classes). For example, if we
choose “order fulfillment lead time” as the KPI metric, then

we could specify the function: m < 4 days is “good”, 4 days
< m < 7 days is “medium”, otherwise “bad”. If the KPI
is used for defining a service level objective then typically
a binary function is used (with the classes “violated” and
“fulfilled”).

The KPI class is evaluated per process instance. It depends
typically on the combination of a set of influential factors, e.g.,
input data to the process (ordered product types and amounts),
service outputs and durations (e.g., shipment delivery time).
In order to find out the dependencies of the KPI class and
these factors, we use classification learning known from
machine learning and data mining [3]. In a classification
problem, a dataset is given consisting of a set of examples
(process instances) described in terms of a set of explanatory
attributes (influential factor metrics) and a categorical target
attribute (KPI class). The explanatory attributes, also called
predictive variables, may be partly categorical and partly
numerical. By using a learning algorithm, based on the
example set (training set) a classification model is created,
whose purpose is to identify recurring relationships among the
explanatory variables which describe the examples belonging
to the same class. The goal is to explain past classifications
and also to predict the class of examples for which only the
values of the explanatory attributes are known.

It has already been shown in [1] how decision trees can
be used for explanation purposes, i.e. to explain how KPI
classes depend on a set of influential factor metrics (a.k.a.
KPI dependency trees); in this paper we utilize those trees
for prediction. There are different types of algorithms for
classification model learning and prediction, e.g., artificial
neural networks, classification rules, and support vector
machines [3]. We have decided to use decision trees in
our context because of their following advantages. They
constitute a white box model as they show explicitly the
relationships between explanatory attribute value ranges and
KPI classes. Thus they are easy to understand and interpret
for people and enable human support in the learning and
adaptation phases. In particular they support extraction of
adaptation requirements from the tree paths (Section V-A).
Furthermore, decision trees support both numeric (typically,
time based metrics) and categorical explanatory attributes
(typically process data based metrics).

B. Modeling for Prediction

Prediction for a running process instance is performed
at a checkpoint [4]. One can define several checkpoints
per process model. We define a checkpoint as consisting
of (i) a trigger which is a process runtime event (typically
signaling start or completion of an activity; the event is
typically configured to be blocking, i.e. to stop process
instance execution until prediction and potential adaptation
are performed), (ii) a KPI analysis model (KPI definition and
a set of influential factor metrics (representing the features
in classification learning) from the metrics model), (iii) a

reference to an adaptation action model and (iv) a reference
to a constraints and preferences model. The influential factor
metric set consists of the known metrics until the checkpoint
and a set of unknown metrics at the checkpoint which however
are “adaptable” by the available adaptation actions. At the
warehouse “order in stock” check at the beginning of the
process, known metrics are for example the ordered product
types and amounts, the customer, and the process duration
until that activity. Unknown but adaptable metrics are for
example supplier delivery time and shipment delivery time.
The goal of including unknown metrics into the classification
learning is to enable understanding which adaptations are
needed for preventing a violation (Section V-A).

C. Runtime Prediction based on Decision Trees

At process runtime, after a sufficiently large set of instances
has been executed and monitored, based on the checkpoint
definition, for each checkpoint a decision tree is learned (see
[1] for more information on monitoring and KPI dependency
analysis for explanation purposes). It explains how the KPI
classes of those history instances depend on influential factor
metrics. An example is shown in Figure 3. The tree has
been generated using the J48 algorithm (see Section VI
and [3]) for a checkpoint defined right after the warehouse
“orderInStock?” check at the beginning of the process. The
tree contains known metrics (orderInStock, itemQuantity)
and unknown metrics at the checpoint (shipment delivery
time, supplier delivery time). It shows, for example, that for
“order in stock=true”, and “item quantity ≤ 20” 30 process
instances have reached the KPI class “green”. Quality aspects
of the generated classification model are discussed in the
evaluation section VI.

Figure 3. KPI Dependency Tree for Order Fulfillment Lead Time after In
Stock Check

In the next step the decision tree can be used for
prediction. When the process instance execution reaches
a checkpoint which is signaled by the specified event,
the known metrics for that instance until the checkpoint

are gathered and ”inserted” into the decision tree for that
checkpoint. Therefore we traverse the tree breadth-first; if the
current node corresponds to a known metric, we follow the
outgoing branch whose condition is satisfied by the measured
metric value and replace the current node with the target node
of that branch; otherwise, if the metric is unknown we leave
the node in the tree (and continue with its children until a leaf
node is reached). As the result we get a subtree of the original
one (in the following denoted as predicted tree) consisting
either of (1) just one leaf representing the prediction of
the corresponding KPI class; (2) a tree containing one or
more nodes which correspond to unknown metrics which
are adaptable by the available adaptation actions. Figure 4
shows an example instantiation of the tree from Figure 3
assuming that for the process instance we have measured
“orderInStock=false”.

Figure 4. Instantiated Tree for Order In Stock = False

V. ADAPTATION BASED ON PREDICTION

In the following we describe the identification of adaptation
requirements based on prediction results, the identification
of adaptation strategies, and selection and enactment of one
of those strategies.

A. Identification of Adaptation Requirements

After the predicted tree is generated, we have to decide
whether adaptation is needed, and if yes, which influential
metrics should be improved and how. The predicted tree
shows how the KPI class of the running instance depends
on the unknown adaptable metrics.

If the predicted tree contains only one leaf denoting the
KPI class, then the predicted KPI class is independent of the
adaptable metrics, and thus independent of which services
are invoked. In case of a good KPI class (“green”) simply
the default services can be invoked (i.e., services which are
optimal according to the specified preferences and constraints
model). In case of a medium or bad KPI class, an adaptation
which leads to a better KPI class is not possible, at least
according to history data. In that case, one could send
notifications to affected users or customers, or one could still

Adaptation Requirements Adaptation Strategies
Conditions KPI Class Strategy QoS score Constraints Score Rank

green (0.65)

Sh1 Premium + Su1 Premium 0.25 ok 0.16 1
Shipment Delivery Time < 2,2 Sh1 Premium + Su2 Premium 0.19 ok 0.12 3
Supplier Delivery Time < 3,0 Sh2 Premium + Su1 Premium 0.15 nok 0.10 -

...

yellow (0.35)

Sh1 Premium + Su1 Standard 0.38 ok 0.13 2
Shipment Delivery Time < 2,2 Sh1 Premium + Su2 Standard 0.28 ok 0.10 4
Supplier Delivery Time < 7,5 Sh1 Premium + Su1 Premium 0.25 ok 0.09 5

...

Table I
RANKING OF ADAPTATION STRATEGIES

try to select better services to improve “as much as possible”,
however, this is out of scope of our current approach.

If the predicted tree contains more than just one leaf (as
the one in Figure 4), then the non-leaf nodes correspond
to influential factor metrics which are adaptable by the
predefined adaptation actions. It means that in history
instances those adaptable metrics values have varied in such
a way that different KPI classes have been produced. For
example, the example tree shows that each time a supplier
delivery time was above 7,5 days, the resulting KPI class
was “red”. That happened for 36 instances. If on the other
hand we could ensure a supplier delivery time below 3 days
and a shipment delivery time below 2,2 days we would very
likely (assuming that the classification model has a high
accuracy, see Section VI) reach a “green” KPI class. The
idea towards adaptation is thus (1) to extract those paths and
the corresponding metric conditions, which lead to acceptable
KPI classes, and then (2) select adaptation actions, which
will lead to satisfaction of those metrics conditions.

We call the paths of the predicted tree which lead to
acceptable KPI classes safe paths. The user can configure
which KPI classes are acceptable for an instance (e.g.,
“green”, and “yellow” could be safe, while “red” is to be
avoided) and assign a weight to each KPI class which is
needed later for the calculation of a score of an adaptation
strategy.

If we ensure one of the safe paths, then we avoid all of the
bad paths. Thus, eventually each safe path is an alternative
adaptation requirement. An adaptation requirement (AR) is
defined as a tuple consisting of the target KPI class and a set
of metric conditions which should be achieved in order to
reach the KPI class. An adaptation requirement is extracted
from a safe path as follows: from each branch on the path we
extract the metric value condition and add it to the adaptation
requirement. The conditions are combined by using logical
conjunction, i.e., all conditions have to be true in order to
satisfy the requirement. If on the path there are metrics of
the same type, then we combine their value ranges. Finally,
in the last step if there are conditions which are satisfied

with semantically worse metric values (e.g., if a condition
is “supplier delivery time > 2 days”), then it can be ignored
and removed from the requirement because the value does
not have to be improved.

As a result we get a set of alternative adaptation re-
quirements each consisting of a conjunction of conditions
over adaptable metrics which have to be achieved. In our
case, adaptable metrics are QoS characteristics of candidate
services. For the example tree (Figure 4), we can extract
two adaptation requirements as shown in Table I (first two
columns), one for the KPI class “green” (with weight 0.65)
and one for the KPI class “yellow” (weight 0.35).

B. Identification of Adaptation Strategies

After the requirements have been identified, the next step
is to identify adaptation strategies which can be used to
satisfy the adaptation requirements. An adaptation strategy
(AS) consists of a set of adaptation actions which satisfy
the conditions of an adaptation requirement. In our case,
adaptation actions are service substitutions which bind new
candidate services to the process instance which according
to their QoS characteristics should satisfy the adaptation
requirement conditions. For example, if an AR condition
specifies that supplier delivery time should be below 3 days,
we want to select a supplier service that can reach that target
according to its QoS characteristics. For new services the
QoS characteristics could be derived from SLAs (where some
max or avg values are guaranteed); for services which already
have been used in many instances, the QoS characteristics
can be derived from measurements.

In the first step, for each adaptation requirement a set of
alternative strategies is identified by simply enumerating and
combining all possible service candidates which satisfy the
conditions in the adaptation requirement. The result is a set
of alternative adaptation strategies which all according to
history measurements and the QoS characteristics of service
candidates would lead to an acceptable KPI class.

C. Ranking of Adaptation Strategies

In the second step, that set is further filtered and ranked
according to the constraints and preferences model. We define
constraints as predicates over properties of selected services
and/or metrics measured so far for the running instance (e.g.,
maximal cost of supplier and shipper service < x). If a
constraint evaluation evaluates to false for a strategy, then
that strategy is removed from the set.

For ranking of strategies, we first calculate the QoS
scores of the services used in the strategy. For each selected
candidate service in an AS its QoS score is calculated by
aggregating the QoS properties using the Simple Additive
Weighting - Multiple Criteria Decision Making Approach for
QoS aggregation [5]. Each of the three QoS characteristics we
use (duration, cost, reputation) is assigned a weight (sum of
all weights must be equal to 1). The result of this procedure,
is a score by which the overall QoS of a service candidate
can be compared with the overall QoS of another service
candidate. If there is more than one service substitution per
strategy (e.g., if we need to replace both the supplier and
shipment), we simply sum up scores of all services, for the
time being ignoring process structure for simplicity.

In addition to the QoS score, we have to take into account
that adaptation requirements could have resulted from paths
with different KPI classes. Thus, the overall score of a strategy
is determined by multiplying the KPI class weight and the
QoS score as shown in Table I. Finally, the best strategy
is selected and enacted. In case of a service substitution,
enactment involves binding a new service to the process
instance replacing an existing, default service binding.

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We have implemented the approach as shown in Figure 5.
Our prototype uses Apache ODE2 as the business process
execution engine. The engine has been extended to support
blocking events which stop process instance execution needed
for prediction and instance adaptation[6]. The monitoring is
performed based on the ESPER complex event processing
(CEP) framework3 which calculates metrics based on events
which are published by the process engine and a QoS monitor
as already described in [1]. The classification model learner
is based on the WEKA suite4 which provides decision tree
algorithm implementations. The rest is implemented in Java.
Service substitution has been implemented transparent to the
BPEL process using an AOP based approach [6]. All phases
are supported by a GUI (dashboards) which allow the user
to change settings and model parameters and see the results.

A. Experimental Evaluation

We have implemented the scenario from Section 2 as a
BPEL process interacting with six Web services. The Web

2http://ode.apache.org/
3http://esper.codehaus.org/
4http://www.cs.waikato.ac.nz/ml/weka/

Figure 5. Architecture of the Prototype

services have been implemented in Java and for experimental
purposes simulate certain influential factors (e.g., duration and
output are made dependent on factors such as product types
and amounts, and random behavior). For experimentation,
we have deployed all these components on a single desktop
PC.

We define Order Fulfillment Lead Time as the KPI to
be analyzed and define two checkpoints in the process
(after “Warehouse” check (i.e., both supplier and shipper
can still be selected), and before “Shipment” thus allowing
only the shipper to be selected). We create a set of overall
30 service candidates with different QoS characteristics
(specified as mean values) and create a configuration which
simulates the behavior of those services according to their
QoS characteristics, but with deviations .

Learning Phase: We trigger the execution of 500 process
instances using a test client. During process instance exe-
cution, the previously specified metrics are measured and
saved in the metrics database. Then, for each checkpoint a
decision tree is learned. The performance of the learning of
the trees is about 15 seconds for 500 instances (on a standard
laptop computer) and increases linearly with the number of
instances. As learning can be done in the background it
does not affect the instance execution. For tree generation
we have used the J48 algorithm. The quality of the trained
tree as a classification model can be assessed in terms of its
accuracy, i.e., the percentage of correctly classified instances
(from a test set) by the model. This metric is provided by the
decision tree algorithm after validation of the model (cross-
validation). The accuracy depends among other factors on the
number of instances available for learning, and the selection
of explanatory attributes and how good they describe the
KPI class. In general, the later the checkpoint is defined in
the process the better the tree quality will be, because there
are more known metrics that can be used for training the

tree (see column tree accuracy in Table II). In our approach,
we assume that a classification model with a reasonably high
accuracy has been created and do not take the accuracy into
account in the following prediction and adaptation phases.

Prediction and Adaptation Phase: For the prediction and
adaptation, we use two different constraints and preference
models, one preferring lower cost, the other lower duration.
For each model, we perform three experimental runs with
200 instances per run. The first run is performed using the
default services (optimal according to the preferences model)
without using the prediction and adaptation framework. In
the other two runs, the prediction and (potential) prevention
is performed at two different checkpoints. We evaluate for
each instance what is predicted and whether the prediction
has been correct (”measured”); this is done for the prediction
types “No (Adaptation) Need” (predicted KPI class is “green”
or “yellow”), “Too Late” (predicted KPI class is “red”), and
“Adaptation Need”. The results are shown in Table II.

The prediction and adaptation time together are below a
second, thus making it only a factor for very short running
processes. Firstly, the results show that the KPI performance
(column “KPI Evaluation”) has been considerably improved
by using our framework (run 2 and 3 outperform run 1).
For example, for the first preference model the number of
violations (KPI class = “red”) has been reduced from 64 to 49
and 23, respectively. Secondly, the prevention effectiveness
depends on settings in the preferences model and is in our
case obviously much better when the preference is set on
duration rather than cost. This is because substituted services
are not always behaving as expected from their specified
QoS characteristics (i.e., not satisfying the corresponding
AR condition). Thus, when choosing services which just
so satisfy the AR condition, the risk of a violation of that
AR condition is higher. Thirdly, the later the checkpoint
is chosen, the higher the prevention effectiveness as the
prediction accuracy is higher. On the other hand, there is an
increasing risk that it is too late to adapt (“Too Late” column).
Of course, for even better performance, we could predict and
adapt at both checkpoints for each process instance.

VII. RELATED WORK

Our approach is related to approaches from the area
of business process intelligence which combine service
composition monitoring and performance analysis techniques,
and to approaches from the area of QoS-aware service
composition and adaptation.

In the area of process performance monitoring and analysis,
most closely related to our approach is iBOM [7] which is
a platform for monitoring and analysis of business processes
based on machine learning techniques. It supports similar
analysis mechanisms as in our approach such as decision
trees, but does not deal with adaptation, i.e., extraction of
adaptation requirements from the decision trees and derivation
of adaptation strategies as in our approach. [8] presents an

integrated KPI monitoring and prediction approach which
uses machine learning techniques for prediction. It supports
not only instance level KPI prediction as in our approach but
also time series based prediction across process instances. It
however does not deal with adaptation. We do not exploit
information on process structure during dependency analysis,
as the approach described in [9], but rely on machine
learning algorithms to find those dependencies supporting
not only numerical but also data-based metrics.[4] deals
with prediction of numerical metric values based on artificial
neural networks and introduces the concept of a checkpoint
used for prediction which we have reused in our approach.
[10], [11] also cover the phases monitoring, prediction and
adaptation as in our approach focusing on prevention of SLO
violations by adapting the process via service substitution
and fragment substitution, respectively. The best adaptation
strategy is selected by performing a numerical KPI prediction
for each adaptation strategy alternative separately and then
selecting the best result. Our (analysis and) adaptation
approach is different, as we use decision trees which as
a white box classification model enable explicit extraction of
adaptation requirements and strategies from the classification
model. We also deal with ranking of strategies based on
constraints and preferences.

There are several existing works in the context of QoS-
aware service composition [5], [12] which describe how to
create service compositions which conform to global and
local QoS constraints taking into account process structure
when aggregating QoS values of atomic services. We have
reused concepts from those works when it comes to the
definition of the constraints and preferences model and
calculation of QoS scores [5]. Currently, we are simply
enumerating all combinations of services when identifying
adaptation strategies; that is only feasible for a small number
of service types and could be optimized as described, for ex-
ample, in [5]. Furthermore, these approaches can be used for
QoS-based adaptation by replanning the service composition
during monitoring [13]. In [14] the PAWS (Processes and
Adaptive Web Services) framework is presented which takes
into account local and global QoS constraints for selection
of Web services at composition runtime. After designers
have defined global and local QoS constraints, if at runtime
a QoS requirement cannot be met, the framework chooses
among a set of recovery actions such as retry, substitute, and
compensate. Our approach is different in that we do not look
at the process structure for finding the dependencies, but
use machine learning techniques and also support process
data-based metrics during analysis in addition to numerical
metrics (such as duration and cost).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an integrated monitoring,
prediction and adaptation approach for preventing KPI
violations in service compositions. We use decision trees

Learning Prediction and Prevention (200 instances per run)
Prediction Decision Tree QoS Weights No Need Too late Adaptation Need KPI Evaluation

Point Accuracy/Size time/cost/reput. (predicted/measured) (predicted/measured) (predicted/successful) green/yellow/red

None N/A 0.15/0.7/0.15 N/A N/A N/A 110/26/64
0.5/0.3/0.2 N/A N/A N/A 148/31/21

Warehouse 88,2%/83 0.15/0.7/0.15 102/63 0 98/88 119/32/49
0.5/0.3/0.2 108/105 0 92/90 183/12/5

Shipment 94,7%/77 0.15/0.7/0.15 85/85 6/6 109/92 157/20/23
0.5/0.3/0.2 105/103 5/5 90/88 180/11/9

Table II
EXPERIMENTAL RESULTS

in order to learn how the KPI class depends on a set of
influential factors. At checkpoints, the KPI class of the
running process instance is predicted based on the learned
decision tree and metric data gathered for that instance
until the checkpoint. In order to prevent KPI violations,
adaptation requirements are extracted from the tree and then
a set of alternative adaptation strategies is identified which
can satisfy those requirements. The identified adaptation
strategies are filtered and ranked according to QoS constraints
and preferences. We have implemented the approach and
evaluated it based on a purchase order processing scenario.

In our future work we will extend the approach in several
directions. Firstly, we will implement different types of
adaptation actions (which can be used in adaptation strategies)
beyond service substitution on different applications layers
of a service-based application. In that context, one could
think of infrastructural reconfigurations on service layer,
changes in the control flow of service compositions at the
service composition layer, and others. Secondly, we will
in particular address the cross-layer aspect by looking at
how adaptation actions on different layers influence each
other, e.g., a reconfiguration of the infrastructure has an
impact on all services and process instances running on
that infrastructure. That has to be taken into account during
identification and selection of adaptation strategies.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Communitys Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

REFERENCES

[1] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar,
and F. Leymann, “Monitoring and Analyzing Influential
Factors of Business Process Performance,” in Proceedings
of the IEEE International Enterprise Distributed Object
Computing Conference (EDOC09), 2009, pp. 141–150.

[2] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore,
and F. Leymann, “Adaptation of Service-Based Applications
Based on Process Quality Factor Analysis,” in Proceedings
of the 2nd Workshop on Monitoring, Adaptation and Beyond
(MONA+), 2009.

[3] I. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann Pub, 2005.

[4] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dust-
dar, and F. Leymann, “Runtime Prediction of Service Level
Agreement Violations for Composite Services,” in Proceedings
of the 3rd Workshop on Non-Functional Properties and SLA
Management in Service-Oriented Computing (NFPSLAM-
SOC’09), 2009.

[5] M. C. Jaeger, G. Mühl, and S. Golze, “QoS-Aware Composi-
tion of Web Services: An Evaluation of Selection Algorithms,”
in OTM Conferences (1), 2005, pp. 646–661.

[6] D. Karastoyanova and F. Leymann, “BPEL’n’Aspects: Adapt-
ing Service Orchestration Logic,” in ICWS ’09: Proceedings
of the 2009 IEEE International Conference on Web Services.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
222–229.

[7] M. Castellanos, F. Casati, U. Dayal, and M.-C. Shan, “A
Comprehensive and Automated Approach to Intelligent Busi-
ness Processes Execution Analysis,” Distributed and Parallel
Databases, vol. 16, no. 3, pp. 239–273, 2004.

[8] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang, “Event-
Driven Quality of Service Prediction,” in Proceedings of the
6th International Conference on Service-Oriented Computing
(ICSOC’08), 2008.

[9] L. Bodenstaff, A. Wombacher, M. Reichert, and M. Jaeger,
“Monitoring Dependencies for SLAs: The MoDe4SLA Ap-
proach,” in Proceedings of the 2008 IEEE International
Conference on Services Computing (SCC’08), 2008.

[10] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar,
“Monitoring, Prediction and Prevention of SLA Violations
in Composite Services,” in Proceedings of the 2010 IEEE
International Conference on Web Services (ICWS’10), 2010.

[11] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer,
S. Dustdar, and F. Leymann, “Preventing SLA Violations
in Service Compositions Using Aspect-Based Fragment Sub-
stitution,” in Proceedings of the 8th International Conference
on Service Oriented Computing (ICSOC 2010). Springer
Berlin Heidelberg, December 2010, Conference Paper.

[12] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “QoS-Aware Middleware for
Web Services Composition,” IEEE Transactions on Software
Engineering, vol. 30, no. 5, pp. 311–327, 2004.

[13] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “QoS-
Aware Replanning of Composite Web Services,” in ICWS,
2005, pp. 121–129.

[14] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: A Framework for Executing Adaptive Web-Service
Processes,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

LAYSI: A Layered Approach for SLA-Violation Propagation in Self-manageable
Cloud Infrastructures

Ivona Brandic, Vincent C. Emeakaroha,
Michael Maurer, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Vienna, Austria

{ivona,vincent,maurer,dustdar}@infosys.tuwien.ac.at

Sandor Acs, Attila Kertesz, Gabor Kecskemeti
MTA SZTAKI, P.O. Box 63
1518 Budapest, Hungary

{acs,attila.kertesz,kecskemeti}@sztaki.hu

Abstract—Cloud computing represents a promising comput-
ing paradigm where computing resources have to be allocated
to software for their execution. Self-manageable Cloud in-
frastructures are required to achieve that level of flexibility
on one hand, and to comply to users’ requirements speci-
fied by means of Service Level Agreements (SLAs) on the
other. Such infrastructures should automatically respond to
changing component, workload, and environmental conditions
minimizing user interactions with the system and preventing
violations of agreed SLAs. However, identification of sources
responsible for the possible SLA violation and the decision
about the reactive actions necessary to prevent SLA violation is
far from trivial. First, in this paper we present a novel approach
for mapping low-level resource metrics to SLA parameters
necessary for the identification of failure sources. Second,
we devise a layered Cloud architecture for the bottom-up
propagation of failures to the layer, which can react to sensed
SLA violation threats. Moreover, we present a communication
model for the propagation of SLA violation threats to the
appropriate layer of the Cloud infrastructure, which includes
negotiators, brokers, and automatic service deployer.

Keywords-Cloud Computing; SLA management; autonomic
computing;

I. INTRODUCTION

Cloud computing can be defined as the convergence and
evolution of several concepts from virtualization, distributed
application design, Grid and enterprise IT management to
enable a more flexible approach for deploying and scal-
ing applications [3], [19], [18]. Service provisioning in
the Cloud is based on Service Level Agreements (SLAs)
representing a contract signed between the customer and the
service provider including the non-functional requirements
of the service specified as Quality of Service (QoS). SLA
considers obligations, service pricing, and penalties in case
of agreement violations.

Flexible and reliable management of SLA agreements
is of paramount importance for both, Cloud providers and
consumers. On one hand, preventions of SLA violations
ahead of time can avoid unnecessary penalties a provider
has to pay in case of violations. Sometimes, simple actions
like migrating VMs to available nodes can prevent SLA
violations. On the other hand, based on flexible and timely

reactions to possible SLA violations, interactions with the
users can be minimized increasing the chance for Cloud
computing to take roots as a flexible and reliable form of
on demand computing.

However, current Cloud infrastructures lack appropriate
mechanisms for the self-management of SLAs. Large body
of work concentrates on monitoring of resource metrics of
Cloud resources, which however cannot be easily mapped to
SLA parameters [1], [2]. There is also considerable body of
work done in the area of SLA management in general, which
however is not related to Cloud infrastructures [15]. Thus,
very little work has been done on identifications of SLA
violations ahead of time, before they happen. Furthermore,
there is a lack of appropriate mechanisms to identify which
components of the Cloud infrastructure have to react in order
to avert SLA violations.

In this paper we present LAYSI - A Layered Approach
for Prevention of SLA-Violations in Self-manageable Cloud
Infrastructures, which is embedded into the FoSII project
(Foundations of Self-governing ICT Infrastructures) [8], an
ongoing research project developing self-adaptable Cloud
services. The LAYSI framework represents one of the build-
ing blocks of the FoSII infrastructure facilitating future SLA
violation detection and propagation of the reactive actions
to the appropriate layer of the Cloud infrastructure. We
discuss a layered Cloud architecture utilizing hierarchically
and loosely coupled components like negotiator, broker or
automatic service deployer. For the decision making we use
knowledge databases proposing reactive actions by utilizing
case based reasoning - a process of solving problems based
on past experience. Based on the novel communication
model we present how possible SLA violations can be iden-
tified and propagated to the layer of the Cloud infrastructure,
which can execute appropriate reactive actions in order to
advert SLA violations.

The main contributions of this paper are: (i) discussion
on the solution for mapping low-level resource metrics to
SLA parameters; (ii) description of the integrated SLA-
aware Cloud architecture suitable for the propagation of
the SLA violation threats; (iii) concept for the realization

of the knowledge database using case based reasoning; (iv)
architecture for the autonomic management and propagation
of SLA violation threats.

The rest of this paper is organized as follows: Section
II presents the related work. In Section III we present
the architecture for the autonomic management of Cloud
services and the approach for mapping low-level resource
metrics to SLA parameters. In Section IV we discuss the
LAYSI architecture. In particular we discuss the concept of
knowledge databases and the SLA manager responsible for
the autonomic management of SLA violation threats. Section
V presents our conclusions and describes the future work.

II. RELATED WORK

We classify related work into (i) monitoring of
Cloud/Grid/Web services [1], [2]; (ii) SLA management
including QoS management [9], [6], [14]; (iii) and self-
management of Cloud/Grid/SOA services [15]. Since there
is very little work on monitoring, SLA management, and
self-mamagement in Cloud systems we look particularly into
related areas, i.e., Grid and SOA based systems.

GridRM is an open-source project trying to provide a
unified way of accessing different monitored data sources.
Every domain needs a Java-based gateway to collect and
normalize events from the local monitoring system. How-
ever, it does not provide mapping of monitored values to
SLA parameters [1].

Frutos et al. [9] discuss the main approach of the EU
project BREIN [6]: to develop a framework, which extends
the characteristics of computational Grids by driving their
usage into new target areas in the business domain. BREIN
deals with the provision of the basic infrastructure these
new business models need: enterprise system interoperabil-
ity, flexible relationships, dynamicity in business processes,
security mechanisms, and enhanced SLA and contract man-
agement. However, BREIN applies SLA management to
Grids, whereas we target SLA management in Clouds.
Koller et al. [14] discuss autonomous QoS management
using a proxy-like approach. The implementation is based
on WS-Agreement. Thereby, SLAs can be exploited to
define certain QoS parameters that a service has to maintain
during its interaction with a specific customer. However,
their approach is limited to Web services and does not
consider requirements of Cloud Computing infrastructures
like scalability.

Based on the defined workflow adaptations as MAPE1

decision making [15], Lee et al. discuss the application of
autonomic computing to the adaptive management of Grid
workflows.

III. FOSII INFRASTRUCTURE

In this section we present an overview of the FoSII
infrastructure and its relation to the LAYSI framework. In

1Monitoring, Analysis, Planning, Execution

Figure 1. FoSII infrastructure

particular we describe the mapping of low level metrics
to high level SLAs. Thereafter, we discuss the SLA-based
layered Cloud infrastructure.

A. FoSII overview
The FoSII infrastructure is used to manage self-adaptable

Cloud services following the MAPE lifecycle. Each FoSII
service implements three interfaces: (i) negotiation interface
necessary for the establishment of SLA agreements, (ii)
job-management interface necessary to start the job, upload
data, and similar job management actions, and (iii) self-
management interface necessary to devise actions in order
to prevent SLA violations.

The self-management interface shown in Figure 1 is
implemented by each Cloud service and specifies operations
for sensing changes of the desired state and for reacting
to those changes. The host monitor sensors continuously
monitor the infrastructure resource metrics (input sensor
values arrow a in Figure 1) and provide the autonomic
manager with the current resource status. The run-time
monitor sensors sense future SLA violation threats (input
sensor values arrow b in Figure 1) based on resource usage
experiences and predefined threat thresholds. The mapping
between the sensed host values and the values of the SLA
parameters is described next.

B. Mapping of Low level Metrics to High-level SLAs

In order to explain our mapping approach we consider
the Service Level Objectives (SLOs) as shown in Table I
including incoming bandwidth, outgoing bandwidth, storage,
and availability.

As shown in Figure 1 we distinguish between host mon-
itor and runtime monitor. Resources are monitored by the
host monitor using arbitrary monitoring tools (e.g. Ganglia
[17]). Resource metrics include, e.g., down-time, up-time,
available storage. Based on the predefined mappings stored
in a database, monitored metrics are periodically mapped to

SLA Parameter Value

Incoming Bandwidth (IB) > 10 Mbit/s
Outgoing Bandwidth (OB) > 12 Mbit/s
Storage (St) > 1024 GB
Availability (Av) ≥ 99%

Table I
SAMPLE SLA PARAMETER OBJECTIVES

the SLA parameters. An example SLA parameter is service
availability Av, (as shown in Table I), which is calculated
using the resource metrics downtime and uptime and the
mapping rule looks like the following:

Av = (1 − downtime/uptime) ∗ 100
The mapping rules are defined by the provider using

appropriate Domain Specific Languages (DSLs). These rules
are used to compose, aggregate, or convert the low-level
metrics to form the high-level SLA parameter including
mappings at different complexity levels, e.g., 1 : n or n : m.
The concept of detecting future SLA violation threats is
designed by defining a more restrictive threshold than the
SLA violation threshold known as threat threshold. Thus,
calculated SLA values are compared with the predefined
threat threshold in order to react before SLA violations
happen. The generation of threat thresholds is far from trivial
and is part of our ongoing work including sophisticated
methods for the system state management as described in
Section IV-A.

As described in [7] we implemented a highly scalable
framework for mapping Low Level Resource Metrics to
High Level SLA Parameters (LoM2HiS framework) facilitat-
ing the exchange of large numbers of messages. We designed
and implemented a communication model based on the Java
Messaging Service (JMS) API, which is a Java Message
Oriented Middleware (MOM) API for sending messages
between two or more clients. We use Apache ActiveMQ
as a JMS provider that can manage the sessions and queues.

Once possible SLA violation threats are detected, reactive
actions are taken in order to prevent real SLA violations.
In the following we discuss the layered Cloud architecture
followed by the discussion of the novel concept for the SLA
violation threat propagation.

C. SLA-based Layered Cloud Infrastructures

In the following we present a unified service architecture
that builds on three main areas [11]: agreement negotiation,
brokering, and service deployment using virtualization. We
suppose that service providers and service consumers meet
on demand and usually do not know about the negotiation
protocols, document languages or required infrastructure of
the potential partners. The architectures’ components are
loosely coupled using SLAs between the components. Thus,
in case of failures components can be exchanged easily
by renegotiating with another instance, e.g. another broker.

Figure 2. LAYSI infrastructure

Figure 2 shows our proposed general architecture. In the
following we discuss the actors of the proposed architecture:

• User: A person, who wants to use a service, an agent
or software application acting on behalf of a user.

• Meta Negotiator: A component that manages SLAs. It
mediates between the user and the meta-broker, selects
services, and resources considering prescribed proto-
cols, negotiation strategies, and security restrictions as
described in [5].

• Meta Broker: Its role is to select a broker that is
capable of deploying a service with the specified user
requirements as described in [12].

• Broker: It interacts with virtual or physical resources,
and in case the required service needs to be deployed it
interacts directly with the Automatic Service Deployer
(ADS) [13].

• Automatic Service Deployer: It installs the required
service on the selected resource on demand as described
in [10].

• Service: The service that users want to deploy and/or
execute is described using the concept of virtual appli-
ances.

• Resource: Physical machines, network, or storage
elements on which virtual machines can be de-
ployed/installed.

The SLA negotiation is done as following: The User starts
a negotiation for executing a service with certain QoS re-
quirements. Then, the Meta negotiator asks the Meta broker,
if it could execute the service with the specified requirements
including required negotiation or security protocols. The
Meta broker matches the requirements to the properties of
the available Brokers and replies with an acceptance or a
different offer for renegotiation. The aforementioned steps
may continue for renegotiations until both sides agree on
the terms (to be written to an SLA document) following
the specific negotiation strategy or auction. Thereafter, the
User calls the service with the Service Description (SD) and

the agreed SLA. SDs describe a master image by means of a
self-contained software stack (OS, middleware, applications,
data, and configuration) that fully captures the functionality
of the component type. Moreover, the SD contains infor-
mation and rules necessary to automatically create service
instances from a single parametrized master.

Meta-negotiator passes the SD and the possibly trans-
formed SLA (using a protocol the selected broker under-
stands) to the Meta broker. The meta broker calls the
selected Broker with the SLA and a possibly translated SD
(to the language of the Broker). The Broker executes the
service with respect to the terms of the SLA. The ASD
monitors the states of the virtual resources and deploys
services, as already stated in Figure 1. As shown in Figure
2 SLA generation is done top-down as already described.
Management of the SLA threat violation is done bottom-up
on behalf of the SLA manager, which is implemented by
each component of the SLA layered architecture.

Table II shows the implementation choices for the layered
Cloud architecture and the possible reactive actions each
layer can perform. We use Meta Negotiator [4], Meta Broker
[12], GTBroker [13] and Automatic Service Deployer [10]
components, which have already been used and evaluated to
build an SLA-based resource virtualization environment for
on-demand service provision [11].

IV. LAYSI: A LAYERED APPROACH FOR

SLA-VIOLATION PROPAGATION

In the following we present an architecture for the propa-
gation of the sensed critical SLAs, which might be violated
in the future. In particular we focus on two components:
the knowlege database providing reactive action for possi-
ble detected SLA violation threats considering SLA threat
thresholds and the current system status (Section IV-A), and
the SLA manager propagating the sensed SLA violation
threats to the appropriate layer of the infrastructure for
preventive actions (Section IV-B).

A. Knowlegde DBs

For the decision making we use knowledge databases
proposing the reactive actions by utilizing case based reason-
ing. Case Based Reasoning (CBR) is the process of solving
problems based on past experience. It tries to solve a case
(a formatted instance of a problem) by looking for similar
cases from the past and reusing the solutions of these cases
to solve the current one. In general, a typical CBR cycle
consists of the following phases assuming that a new case
has just been received: (i) retrieve the most similar case
or cases to the new one, (ii) reuse the information and
knowledge in the similar case(s) to solve the problem, (iii)
revise the proposed solution, (iv) retain the parts of this
experience likely to be useful for future problem solving.

As shown in Figure 3, a complete case consists of (a)
the ID of the application being concerned (line 2, Figure 3);
(b) the initial case measured by the monitoring component

1. (
2. (App, 1),
3. (
4. ((Incoming Bandwidth, 12.0),
5. (Outgoing Bandwidth, 20.0),
6. (Storage, 1200),
7. (Availability, 99.5),
8. (Running on PMs, 1)),
9. (Physical Machines, 20)
10.),
11. "Increase Incoming Bandwidth share by 5%",
12. (
13. ((Incoming Bandwidth, 12.6),
14. (Outgoing Bandwidth, 20.1),
15. (Storage, 1198),
16. (Availability, 99.5),
17. (Running on PMs, 1)),
18. (Physical Machines, 20)
19.),
20. 0.002
21.)

Figure 3. CBR example

and mapped to the SLAs consisting of the SLA parameter
values of the application and global Cloud information like
number of running virtual machines (lines 4-10, Figure 3);
(c) the executed action (line 11, Figure 3); (d) the resulting
case measured some time interval later (lines 12-18, Figure
3) as in (b); and (e) the resulting utility (line 20, Figure 3).

We distinguish between two working modes of the knowl-
edge DB: active and passive. In the active mode system
states and SLA values are periodically stored into the
DB. Thus, based on the observed violations and correlated
systems states, cases are obtained as input for the knowledge
DB. Furthermore, based on the utility functions, we evalu-
ate the quality of the reactive actions and generate threat
thresholds. In the passive mode notification are sent by the
SLA manager (or LoM2HiS framework in case the layer=1)
as described in Section III-B.

However, the output of the DB does not tell anything
about how to react to the proposed actions as for example
the suggested action Increase Incoming Bandwidth share by
5% depicted in Figure 3. An obvious reaction would be
to increase the bandwidth share by the particular resource.
However, if this is not possible due to resource restriction,
current load, and services with competing priorities, the
suggested action has to be propagated to the next layer.
Then, in the next layer ASD could migrate the virtual
appliance as specified in Table II (reactive actions of ASD:
suspend, shut-down, and migrate VAs). This propagation can
be continued until a specific layer is able to react to the
particular suggested action.

In the following we discuss how the SLA manager can
propagate the desired changes to the particular layer of the
infrastructure, which can take appropriate actions.

B. SLA Manager

The SLA manager implements the component’s self-
management interfaces and invokes the self-management

Layer Sample Implementation Actions

Meta Negotiator Meta Negotiator in Brandic et al. [4] start new meta-negotiation
Meta Broker Meta-Broker in Kertesz et al. [12] allocate new broker
Broker GTBroker in Kertesz et. al. [13] start, stop, and suspend ASD instances
Automatic Service Deployment (ASD) ASD in Kecskemeti et al. [10] suspend, shut-down, and migrate virtual appliances (VAs)

Table II
IMPLEMENTATION CHOICES AND THE POSSIBLE REACTIVE ACTIONS OF THE PARTICULAR LAYER

Figure 4. SLA Manager

interface of the upper layer in case the announced SLA vio-
lation threat cannot be solved by the layer’s SLA manager.
The SLA manager considers two main parts: the Notification
Broker implemented using the WS-Notification mechanism
and the Autonomic Manager managing the access to the
knowledge DB, accessing the job management interfaces of
the component, and making the decision whether the SLA
violation threats can be handled by the layer or not.

Autonomic Manager: The Autonomic Manager re-
ceives notifications from the lower layer or from the
LoM2HiS framework in case the layer=1. Thereafter, the
knowledge DB is accessed in order to receive states, which
should be achieved. The decision maker consists of two
parts: the layer independent part managing the DB access
and notifications, i.e., the generic part and the layer de-
pendent part, which implements access to the components’
interfaces e.g., in order to take reactive actions. The user
can customize the autonomic manager, e.g., taking into
account the job management interface of the component by
modifying the component’s dependent part using Domain
Specific Languages (DSLs) (step 1, Figure 4). Customization
could include for example utilization of the reactive actions
of a component as shown in Table II. The notification
mechanism for the propagation of SLA violation threats is
explained next.

Notification Broker: The SLA manager employs the
WS-Notification mechanism [21], which provides a set of
standard interfaces to use the notification design pattern
with services. WS-Notification is defined by three specifi-

cations: (i) WS-Topics; (ii) WS-BaseNotification; and (iii)
WS-BrokeredNotification. The WS-Topics present a set of
items of interest for subscription. Topics are very ver-
satile and highly customizable. They even allow us to
create topic trees, where a topic can have a set of child
topics. WS-BaseNotification defines the standard interfaces
used by the notification producer and consumer. The WS-
BrokeredNotification delivers notification from the producer
to the consumer through an intermediate entity (broker). The
SLA manager is also equipped with a queueing network. The
queues are used to temporarily store the notifications for pro-
cessing. With the queueing networks, there is the possibility
of selectively processing higher priority notifications against
the lower priority ones.

Decision makers can subscribe different topics as shown
in Figure 4, step 2 and 3. Once the SLA violation threat is
detected the autonomic manager tries to find a reactive action
by accessing the DB utilizing case based reasoning (step
5, Figure 4). The decision components decides whether the
SLA violation threats can be deferred. If the SLA violation
threats cannot be deferred at that certain layer, the SLA
violation threats are propagated by publishing a message to
the specific topic, e.g., to topic service availability as shown
in step 6, Figure 4. Thereafter, all listeners (i.e., components
of the layer n + 1) are notified, step 7, Figure 4. The topics
are organized in a hierarchical way considering the learning
function of the CBR database. Based on the observed sensed
violations, reactive actions, and the utility of the reactive
action we define dependencies of the reactive actions which
can be reflected in the topic hierarchy. The development
of the advanced techniques for the automatic definition and
utilizations of the topics hierarchies is subject of our ongoing
work.

The LoM2HiS framework publishes monitored SLA pa-
rameters as a specific message of a WS-Topic. Thereafter,
preventive actions of the SLA violation threats should be
notified and handled at the ASD layer. In case the SLA
violation threats can not be handled at layer n, the SLA
manager publishes the problem to layer n + 1. In the worst
case, this propagation continues to the top level, i.e., the
Meta Negotiator, which informs the user about the problem
for a possible renegotiation or aborting the service execution.

V. CONCLUSION AND FUTURE WORK

In this paper we presented how possible and costly SLA
violations can be prevented by utilizing a layered SLA
based Cloud infrastructure. Based on the novel approach for
mapping low-level resource metrics to SLA parameters we
can identify possible SLA violations. We devised a layered
Cloud architecture for the bottom-up propagation of failures
to the layer, which can react to sensed SLA violation threats.
Moreover, we presented a communication model for the
propagation of SLA violation threats to the appropriate layer
of the Cloud infrastructure, which includes meta-negotiators,
brokers, and automatic service deployer.

In the future we will integrate learning functions into the
CBR databases in order to identify whether the propagation
had a positive impact on the prevention of SLA violations.
We plan to integrate trade-off analysis to examine how costly
the interventions for the possible future SLA violations are
instead of just reacting to occurred violations.

ACKNOWLEDGMENT

The work described in this paper was partially supported
by the Vienna Science and Technology Fund (WWTF) under
grant agreement ICT08-018 Foundations of Self-governing
ICT Infrastructures (FoSII), and by the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 under
grant agreement 215483 (S-Cube).

REFERENCES

[1] M. Baker and G. Smith. GridRM: A resource monitoring
architecture for the grid. Lecture Notes in Computer Science,
Vol. 2536, pp. 268-273, 2002

[2] W. Fu and Q. Huang. GridEye: A service-oriented grid moni-
toring system with improved forecasting algorithm. GCCW’06,
pp. 5-12, 2006.

[3] R. Buyya, C.S Yeo, S. Venugopal, J.Broberg, and I. Brandic.
Cloud computing and emerging IT platforms: Vision Hype,
and Reality for delivering computing as the 5th utility. Future
Generation Computer Systems Vol. 25(6) pp. 599-616, June
2009.

[4] I. Brandic, D. Music, S. Dustdar. Service Mediation and
Negotiation Bootstrapping as First Achievements Towards Self-
adaptable Grid and Cloud Services. GMAC09 in conjunction
with ICAC09, Barcelona, Spain, June 15-19, 2009.

[5] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya.Towards
a Meta-Negotiation Architecture for SLA-Aware Grid Services.
SENOPT08, in conjunction with International Conference on
High Performance Computing 2008 (HiPC 2008), Bangalore,
India, December 17 - 20, 2008.

[6] Brein Project (Business objective driven reliable and intelligent
Grids for real business), http://www.eu-brein.com 2009

[7] V. C. Emeakaroha, I.Brandic, M. Maurer, S. Dustdar. Low
Level Metrics to High Level SLAs - LoM2HiS framework:
Bridging the gap between monitored metrics and SLA pa-
rameters in Cloud environments. The 2010 High Performance
Computing and Simulation Conference (HPCS 2010) June 28-
July 2, 2010, Caen, France.

[8] Foundations of Self-governing ICT Infrastructures (FoSII),
http://www.infosys.tuwien.ac.at/linksites/FOSII

[9] H.M. Frutos and I. Kotsiopoulos. BREIN: Business Objective
Driven Reliable and Intelligent Grids for Real Business. In-
ternational Journal of Interoperability in Business Information
Systems, 3(1) 2009.

[10] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, T.
Delaitre. Automatic Service Deployment Using Virtualisation.
16th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP 2008), Toulouse,
France, 13-15 February 2008.

[11] A. Kertesz, G. Kecskemeti, I. Brandic. An SLA-based Re-
source Virtualization Approach for On-demand Service Pro-
vision. VTDC 2009, In conjunction with ICAC09, Barcelona,
Spain, June 15-19, 2009.

[12] A. Kertesz and P. Kacsuk. GMBS: A New Middleware Service
for Making Grids Interoperable. Future Generation Computer
Systems, Volume 26, Issue 4, April 2010, Pages 542-553.

[13] A. Kertesz, G. Sipos, P. Kacsuk. Multi-Grid Brokering with
the P-GRADE Portal. In Post-Proceedings of the Austrian Grid
Symposium (AGS’06), pp. 166-178, OCG Verlag, Austria,
2007.

[14] B. Koller, L. Schubert. Towards autonomous SLA manage-
ment using a proxy-like approach. Multiagent Grid Syst. Vol.3,
2007.

[15] K. Lee, R. Sakellariou, N. W. Paton, A. A. A. Fernandes.
Workflow Adaptation as an Autonomic Computing Problem.
WORKS’07 pages 29-34. in conjunction with HPDC 2007,
Monterey, California, USA, 2007.

[16] G. Lin, G. Dasmalchi, J. Zhu. Cloud Computing and IT as
a Service: Opportunities and Challenges. IEEE International
Conference on Web Services (ICWS08), Beijing China, 23-26
Sept. 2008.

[17] M.L Massie, B.N Chun and D.E Culler. Ganglia distributed
monitoring system: design implementation, and experience.
Parallel Computing, Vol. 30 pp. 817-840, 2004.

[18] D. Nurmi, R. Wolski, Ch. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, D. Zagorodnov. The Eucalyptus Open-source
Cloud-computing System. Proceedings of Cloud Computing
and Its Applications 2008, Chicago, Illinois, October 2008.

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I.
M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres,
M. B.-Y., W. Emmerich, F. Galan. The RESERVOIR Model
and Architecture for Open Federated Cloud Computing., IBM
Journal of Research and Development, 53(4) (2009)

[20] R. Wolski, N.T. Spring and J. Hayes. The network weather
service: A distributed resource performance forecasting service
for metacomputing. In Journal of Future Generation Computing
Systems, Vol. 15, pp. 757-768, 1999.

[21] WS-Notification, http://www.ibm.com/developerworks/
webservices/library/specification/ws-notification

A Soft-Constraint Based Approach
to QoS-Aware Service Selection ?

Mohamed Anis Zemni1, Salima Benbernou1, Manuel Carro2

1 LIPADE, Université Paris Descartes, France
2 Facultad de Informática, Universidad Politécnica de Madrid, Spain

mohamedaniszemni@gmail.com, salima.benbenrou@paridescartes.fr,
mcarro@fi.upm.es

Abstract. Service-based systems should be able to dynamically seek replace-
ments for faulty or underperforming services, thus performing self-healing. It
may however be the case that available services do not match all requirements,
leading the system to grind to a halt. In similar situations it would be better to
choose alternative candidates which, while not fulfilling all the constraints, allow
the system to proceed. Soft constraints, instead of the traditional crisp constraints,
can help naturally model and solve replacement problems of this sort. In this work
we apply soft constraints to model SLAs and to decide how to rebuild composi-
tions which may not satisfy all the requirements, in order not to completely stop
running systems.
Keywords: Service Level Agreement, Soft Constraints.

1 Introduction
A (web) service can be defined as a remotely accessible software implementation of
a resource, identified by a URL. A set of protocols and standards, such as WSDL, fa-
cilitate invocation and information exchange in heterogeneous environments. Software
services expose not only functional characteristics, but also non-functional attributes
describing their Quality of Service (QoS) such as availability, reputation, etc. Due to
the increasing agreement on the implementation and management of the functional as-
pects of services, interest is shifting towards non-functional attributes describing the
QoS. Establishing QoS contracts, described in the Service Level Agreement (SLA),
that can be monitored at runtime, is therefore of paramount importance. Various tech-
niques [1] to select services fulfilling functional and non-functional requirements have
been explored, some of them based on expressing these requirements as a constraint
solving problem [2, 3] (CSP). Traditional CSPs can either be fully solved (when all re-
quirements are satisfied) or not solved at all (some requirements cannot be satisfied).
In real-life cases, however, over-constraining is common (e.g., because available ser-
vices offer a quality below that required by the composition), and problems are likely
not to have a classical, crisp solution. Solving techniques for soft CSPs (SCSP) [4–6]
can generate solutions for overconstrained problems by allowing some constraints to
remain unsatisfied.
? The research leading to these results has received funds from the European Community’s

Seventh Framework Programme FP7/2007-20013 under grant agreement 215483 (S-CUBE).
Manuel Carro was also partially supported by Spanish MEC project 2008-05624/TIN DOVES
and CM project P2009/TIC/1465 (PROMETIDOS).

A C-semiring is a tuple 〈A,+,×,0,1〉 s.t.

– A is a set and 0 ∈ A, 1 ∈ A.
–

∑
(the additive operation)a is defined on subsets of A as follows:
• + is commutative (a+ b = b+ a), associative (a+ (b+ c) = (a+ b) + c), with unit

element 0 (a+ 0 = a) and absorbing element 1 (a+ 1 = 1).
•

∑
∅ = 0 and for all a ∈ A,

∑
{a} = a.

• Given any set of indices S,
∑

i∈S(
⋃
Ai) =

∑
({

∑
i∈S Ai}) (flattening).

– × (the multiplicative operation) is associative, commutative, a× 1 = a and a× 0 = 0.
– × distributes over +, i.e., a× (b+ c) = (a× b) + (a× c).

a Written as infix + when applied to a two-element set.

Fig. 1: Definition of a C-Semiring for Soft Constraints.

Our framework takes into consideration the penalties agreed upon on the SLA by
building a new (Soft) Service Level Agreement (SSLA) based on preferences where
strict customer requirements are replaced by soft requirements allowing a suitable com-
position. This agreement has to include penalty terms to be applied while the contract
terms are violated.

2 Soft Constraints in a Nutshell

A CSP defines a set of variables whose ranges we assume a finite domain (FD)3 and a
set of constraints which restrict the values these variables can take. A solution for a CSP
is an assignment of a value to every variable s.t. all the constraints are simultaneously
satisfied. Soft constraints [5, 6] generalize classical CSPs by adding a preference level
to every tuple in the domain of the constraint variables. This level can be used to obtain
a suitable solution which may not fulfill all constraints, which optimizes some metrics
, and which in our case will be naturally applied to the requirements of the users.

The basic operations on soft constraints (building a constraint conjunctions and pro-
jecting on variables) need to handle preferences in a homogeneous way. This requires
the underlying mathematical structure of classical CSPs to change from a cylindrical
algebra to a semiring algebra, enriched with additional properties and termed a C-
semiring (Figure 1). In it, A provides the levels of preference of the solutions and it
can be proved that it is a lattice with partial order a � b iff a+ b = b, minimum 0, and
maximum 1. When solutions are combined or compared, preferences are accordingly
managed using the operations × and +. Note that the theory makes no assumptions as
to what the preferences mean, or how they are actually handled:× and + are placehold-
ers for concrete definitions which can give rise to different constraint systems, such as
fuzzy constraints, traditional constraints, etc.

Figure 2 summarizes some basic definitions regarding soft constraints. A constraint
takes a tuple of variables and assigns it a tuple of concrete values in the domain of the

3 CSPs can be defined on infinite domains, but assume a FD here because it can accommodate
many real-life problems, as witnessed by the relevance of FD in industrial applications, and
because soft constraint theory requires finiteness.

2

Definition 1 (Constraint). Given a c-semiring 〈A,+,×, 0, 1〉, a set of variables V , and a set
of domains D, one for every variable in V , a constraint is the pair 〈def, con〉 where con ⊆ V
and def : D|con| → A.

Definition 2 (Soft Constraint Satisfaction Problem SCSP). A SCSP is a pair 〈C, con〉 where
con ⊆ V and C is a set of constraints. C may contain variables which are not in con, i.e.,
they are not interesting for the final result. In this case the constraints in C have to be projected
onto the variables in con.

Definition 3 (Constraint combination). Two constraints c1〈def1, con1〉 and c2 =
〈def2, con2〉 can be combined in c1 ⊗ c2 = 〈def, con〉 by taking all the variables in the
original constraints (con = con1

⋃
con2) and assigning to every tuple in the new con-

straint a preference value which comes from combining the values in the original constraints:
def(t) = def1(t ↓con

con1)× def2(t ↓
con
con2).

Definition 4 (Projection). Given a soft constraint c = 〈def, con〉 and a set of variables I ⊆
V , the projection of c over I , denoted by c ⇓I is the constraint 〈def ′, con′〉 where con′ =
con

⋂
I and def ′(t′) =

∑
{t|t↓con

con∩I
=t′} def(t).

Definition 5 (Solution). A solution of a SCSP problem 〈C, con〉 is the constraint (⊗C) ⇓con,
i.e., the combination (conjunction) of all the constraints in C projected over all the variables
con of interest.

Fig. 2: Definitions for Soft Constraints.

variables, plus a preference value (belonging to the set A). Constraints can be com-
bined into other constraints (with ⊗, similar to conjunction) and projected (⇓X

Y) onto
a tuple of variables. The preference value of every tuple in a constraint conjunction is
worked out by applying × to the preference values of the tuples in the individual con-
straints. Projections eliminate “columns” from tuples and retain only the non-removed
tuple components. Repeated rows may then appear, but only one is retained, and its
preference is calculated applying + to the preferences of the repeated tuples. Since a
solution is a projection on some selected set of variables, the preferences of solutions
are naturally calculated using the projection operation. Usually the tuple with the high-
est preference value is selected as the “optimal” solution.

3 Soft Service Level Agreement and SCSPs

A Service Level Agreement (SLA) [7] is a contract between provider(s) and client(s)
specifying the guarantees of a service, the expected quality level, and the penalties to
be applied in case of unfulfillment of duties, and it is therefore an important quality
management artifact. The SLA can be used to identify the responsible of a malfunction
and to decide which action (if any) has to be taken. An SLA should, therefore, be
realistic, achievable, and maintainable.

An SLA has a rich structure from which we underline the properties of the services,
including those measurable aimed at expressing guarantees. This part provides a set
Υ of variables υi (whose meaning is explained in the service description) and their
domains δi ∈ ∆, which can be established by the metric attribute. A Soft SLA (SSLA)
is similar to a SLA but with the addition of a set of user preferences and of penalties

3

Definition 6 (Preference). The set Pr = {〈δi, υi, ai〉|δi ∈ ∆, υi ∈ Υ, ai ∈ A} where δi is
the sub-domain that the ith preference belongs to, υi is the variable defining the preferences,
and ai is semiring value, representing the preferences in an SSLA.

Definition 7 (Penalty). The set Pn = {pni | ∃pri s.t. υi /∈ δi} represents the penalties.

Definition 8 (SSLA document). A SSLA document is a tuple ζ = 〈Υ,∆,A, Pr, Pn, T 〉where
Υ is a set of variables vi, ∆ is a set of variable domains δi (one for each variable), Pr is a set
of preferences Pri, Pn is a set of penalties Pni to apply when the preferences are not satisfied
and T is a set of pairs 〈pri, pni〉 which associates preferences with the penalties to apply in
case of violation.

Fig. 3: Definitions related to a soft SLA.

associated to contract breaking (respectively, Pr and Pn). The preferences are used
to make a composition in the presence of unsatisfied requirements and the penalties
are used to refine found solutions and to protect each party from the violation of the
contract terms. These notions are depicted in Figure 3. The i-th penalty pni ∈ Pn is
applied when the i-th preference pri ∈ Pr is not satisfied.

3.1 Extending SCSP Using Penalties
We will adapt the SCSP framework to handle explicitly penalties for service selection
and to build a Soft Service Level Agreement including preferences and penalties. In this
framework, service selection has three phases:

1. Model the characteristics for the selection using soft constraints.
2. Assuming a pre-selection is made using functional requirements, rank candidate

services using non-functional requirements and the constraint preferences.
3. We assign penalties to unmet user preferences, and these penalties are used to rank

solutions having the same constraint preferences.

Figure 4 shows the definitions for this extended SCSP framework. We extend the
application of semiring operations to penalties. Variables are assumed to take values
over subdomains which discretize a continuous domain, and which for brevity we rep-
resent using identifiers in D{}. The constraint preference function def is also adapted
in order to apply it both to preferences and to penalties. The projection operation is kept
as in the SCSP framework.

3.2 An Example
A delivery service has an order-tracking web service. Companies wishing to hire this
service want to have in the contract non-functional criteria such as availability, reputa-
tion, response time and cost.

Phase 1 Let CS = 〈Sp, D{}, V 〉 be a constraint system and P = 〈C, con〉 be the
problem to be solved, where V = con = {Availability, Reputation, response Time, coSt},
D{} = {{a1, a2}, {r1, r2}, {t1, t2, t3}, {s1, s2}}, Sp = 〈[0, 1], Pn,max,min, 0, 1〉,
C = {c1, c2, c3, c4}. For simplicity, variables and their domains have been written
in the same order.

4

Definition 9 (CP-semiring). A CP-semiring is a tuple S = 〈A,Pn,+,×, 0, 1〉, extending a
C-semiring.A and Pn are two sets with lattice structure stating preference values for solutions
and penalties. Operations × and + are applied when constraints are combined or projected.

Definition 10 (Constraint System). A constraint system is a tuple CS = 〈S,D{}, V 〉, where
S is c-semiring, D{} represents the set of identifiers of subdomains, and V is the ordered set
of variables.

Definition 11 (Constraint). Given a constraint system CS = 〈Sp, D{}, V 〉 and a problem
P = 〈C, con〉 , a constraint is the tuple c = 〈defc, type〉, where type represents the type of
constraint and defc is the definition function of the constraint, which returns the tuple

def : D|con| → 〈pr, pn〉,

Definition 12 (Soft Constraint Satisfaction Problem SCSP). Given a constraint system
CS = 〈S,D{}, V 〉 , an SCSP over CS is a pair P = 〈C, con〉, where con , called set of
variables of interest for C , is a subset of V and C is a finite set of constraints, which may
contain some constraints defined on variables not in con .

Fig. 4: CP-Semiring.

A set of penalties, ranked from the most to then less important one, has been set:
pni � pnj if i ≤ j. The above shown values of the variable domains comes from a dis-
cretization such as availability ∈ {[0, 0.5[, [0.5, 1]}, reputation ∈ {[0, 0.6[, [0.6, 1]},
response time ∈ {[20,∞[, [5, 20[, [0, 5[}, cost ∈ {[1000, 1500[, [1500, 3000]}.

Let us consider the following constraints: c1 = 〈defc1, {availability, reputation}〉 ,
c2 = 〈defc2, {response time}〉 , c3 = 〈defc3, {availability, reputation, cost}〉 , c4 =
〈defc4, {reputation, response time}〉 , where the preference values and corresponding
penalties are in Table 1. For example, for the tuple 〈a2, r1〉, attributes “availability” and
“reputation” are respectively assigned subdomains [0.5, 1] and [0, 0.6[. The function
defc1(〈a2, r1〉) = 〈0.5, pn3〉 shows that these attribute values have a preference 0.5
and company is ready to sign away this preference for a penalty pn3 .

Phase 2 Given the model, we define constraint combination to keep the minimum value
of preferences (resp. for the penalties). For example defc1(〈a2, r1〉) ⊗ defc2(〈t3〉) =
min(〈0.5, pn3〉, 〈0.25, pn6〉) = 〈0.25, pn3〉 and so on with all the tuples to obtain c1,2.
Next, we would combine c1,2 and c3 to get c1,2,3 = c1,2 ⊗ c3 and so on, until all
constraints have been combined. Table 2 shows the results of possible combinations.

〈A,R〉 defc1 〈T 〉 defc2 〈A,R, S〉 defc3 〈R, T 〉 defc4
〈a1, r1〉 〈0,−〉 〈t1〉 〈0.25, pn6〉 〈a1, r1, s1〉 〈0.25, pn8〉 〈r1, t1〉 〈0.5, pn6〉
〈a1, r2〉 〈0.25, pn1〉 〈t2〉 〈0.5, pn5〉 〈a1, r1, s2〉 〈0.25, pn1〉 〈r1, t2〉 〈0.5, pn5〉
〈a2, r1〉 〈0.5, pn3〉 〈t3〉 〈1, pn7〉 〈a1, r2, s1〉 〈0.5, pn1〉 〈r1, t3〉 〈0,−〉
〈a2, r2〉 〈0.75, pn3〉 〈a1, r2, s2〉 〈0.25, pn3〉 〈r2, t1〉 〈0.75, pn2〉

〈a2, r1, s1〉 〈0.75, pn9〉 〈r2, t2〉 〈0.75, pn4〉
〈a2, r1, s2〉 〈0.5, pn8〉 〈r2, t3〉 〈1, pn2〉
〈a2, r2, s1〉 〈0.75, pn2〉
〈a2, r2, s2〉 〈0.25, pn1〉

Table 1: Constraint definitions.

5

〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉 〈A,R, T, S〉 〈pr, pn〉
〈2, 2, 3, 1〉 〈0.75, pn2〉 〈2, 2, 1, 2〉 〈0.25, pn1〉 〈1, 2, 1, 1〉 〈0.25, pn1〉 〈1, 1, 3, 2〉 〈0.0,−〉
〈2, 2, 2, 1〉 〈0.50, pn2〉 〈1, 2, 3, 2〉 〈0.25, pn1〉 〈2, 2, 1, 1〉 〈0.25, pn2〉 〈1, 1, 3, 1〉 〈0.0,−〉
〈2, 1, 2, 2〉 〈0.50, pn3〉 〈1, 2, 3, 1〉 〈0.25, pn1〉 〈2, 1, 1, 2〉 〈0.25, pn3〉 〈1, 1, 2, 2〉 〈0.0,−〉
〈2, 1, 2, 1〉 〈0.50, pn3〉 〈1, 2, 2, 2〉 〈0.25, pn1〉 〈2, 1, 1, 1〉 〈0.25, pn3〉 〈1, 1, 2, 1〉 〈0.0,−〉
〈2, 2, 2, 2〉 〈0.25, pn1〉 〈1, 2, 2, 1〉 〈0.25, pn1〉 〈2, 1, 3, 2〉 〈0.0,−〉 〈1, 1, 1, 2〉 〈0.0,−〉
〈2, 2, 3, 2〉 〈0.25, pn1〉 〈1, 2, 1, 2〉 〈0.25, pn1〉 〈2, 1, 3, 1〉 〈0.0,−〉 〈1, 1, 1, 1〉 〈0.0,−〉

Table 2: Ordered constraint combinations with preferences and penalties.

Phase 3 The set of solutions is ranked by preferences and then by penalties (already in
Table 2). The solution with highest rank is chosen first. If it turns out not to be feasible,
the associated penalty is applied and the next solution is chosen, and so on.

3.3 Mapping SSLA onto SCSP Solvers
Given the our design of an SSLA, mapping it into a SCSP is very easy: variables vi in
the SSLA are mapped onto the corresponding vi in the SCSP; SSLA domains δi are dis-
cretized and every discrete identifier is a domain for a SCSP variable; and preferences
and penalties (both lattices) are handled together by the def function, so they can be
mapped to the A set in a C-semiring with an adequate definition of the def function.

4 Conclusion
We have presented a soft constraint-based framework to seamlessly express QoS prop-
erties reflecting both customer preferences and penalties applied to unfitting situations.
The application of soft constraints makes it possible to work around overconstrained
problems and offer a feasible solution. Our approach makes easier this activity thanks
to ranked choices. Introducing the concept of penalty in the Classical SCSP can also be
useful during the finding and matching process. We plan to extend this framework to
also deal with behavioral penalties.

References

1. C. Miller, A. Ruiz-Cortes, and M. Resinas. An Initial Approach to Explaining SLA Incon-
sistencies. In Service-oriented Computing-Icsoc 2008: 6th International Conference, Sydney,
Australia, December 1-5, 2008, Proceedings, page 394. Springer-Verlag New York Inc, 2008.

2. Ugo Montanari. Networks of Constraints: Fundamental Properties and Application to Picture
Processing. Information Sciences 7, pages 95 – 132, 1974.

3. Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.
4. S. Bistarelli. Semirings for Soft Constraint Solving and Programming. Springer, 2004.
5. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-

tion and optimization. J. ACM, 44(2):201–236, 1997.
6. S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In Proc. IJCAI95,

1995.
7. Philip Bianco, Grace A.Lewis, and Paulo Merson. Service Level Agreements in Service-

Oriented Artchitecture Environment. 2008.

6

Model-driven Management of Services

Luciano Baresi, Mauro Caporuscio, Carlo Ghezzi, Sam Guinea
Politecnico di Milano

Deep-SE Group - Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 - 20133 Milano, Italy

{baresi | caporuscio | ghezzi | guinea}@elet.polimi.it

Abstract—Applications are increasingly composed of re-
mote services provided by independent parties. This dis-
tributed ownership makes it problematic to measure and con-
trol quality of service indicators. Management activities must
become an integral part of the system’s development process,
from requirements elicitation, where users identify the qual-
ity dimensions of interest, to the implementation, where the
actual composition must be paired with suitable means for its
run-time management. This paper presents MDMS (Model-
Driven Management of Services), a model-driven approach
for engineering manageable services. The approach supports
the explicit modeling of quality dimensions, management
objectives, and key performance indicators, and the trans-
formations required to exploit these concepts at runtime.
The methodology is supported by ECoWare, an innovative
prototype framework for the deployment and operation of
managed services.

Keywords-management; distributed/Internet based soft-
ware engineering tools and techniques; performance mea-
sures; quality analysis and evaluation; model-driven engi-
neering

I. INTRODUCTION

The intertwining of service-oriented infrastructures and
flexible business processes is imposing highly dynamic
applications. The different parties can change at run time,
their ownership is distributed, and they are usually pro-
vided through an unreliable communication means (i.e.,
the Internet). In contrast, the result perceived by the user
must be reliable, the application must be robust, and more
and more frequently it must also be able to satisfy nego-
tiated service level agreements. All these characteristics
can only be offered through a proper and strict run-time
management of the application. The execution must be
paired with means to probe the applications behavior,
analyze it, and react to meet the desired qualities of service
and overall objectives. The actual management capabilities
should be able to work proactively, by analyzing trends
and drifts, to anticipate possible problems and change the
application before the actual anomalies manifest [1].

Given the strict intricacies of the application, the paper
claims that effective management cannot be defined and
deployed as a separate entity, but it must be considered
a constituent part of the application. The definition of
precise management objectives, which are refinable into

quantitative KPIs (Key Performance Indicators1), must
proceed in parallel to the definition of the business logic
itself.

The paper proposes a model-driven approach [3], called
Model-Driven Management of Services (MDMS), to sup-
port this bi-faceted view. The proposal spans from the
business perspective down to the actual service-based
implementation, always keeping a clear separation of
concerns between the functional and the management
views. A BPMN (Business Process Modeling Notation [4])
model, along with the first requirements for the actual
management, acts as the Computation Independent Model
(CIM). A SCA (Service Component Architecture [5])
specification, along with a data model, and a model of
the key performance indicators of interest, defines the
Platform Independent Model (PIM). Finally, a Platform
Specific Model (PSM) that depends on specific service
technologies is used to implement the system. MDMS
adopts SCA to widen the set of potential services that can
be composed, and provide a neutral frame for the actual
application.

The paper also presents the tool support provided by
MDMS, and in particular ECoWare (Event Correlation
Middleware), a general-purpose and extensible infrastruc-
ture for managing services. ECoWare is based on two
key technologies: Esper [6], which is a Complex Event
Processor for correlating and aggregating high loads of
events received from different parties, and Siena [7], which
is a publish/subscribe middleware for distributing events.
Even if MDMS considers the functional capabilities of an
application and its management as two sides of the same
coin, the separation of concerns fostered by the approach
allows for the same functionality to be managed in differ-
ent ways, for example, according to the needs and requests
of different stakeholders. At run time, ECoWare can easily
support different management policies concurrently.

Besides presenting the general elements of the ap-
proach, the paper exemplifies them on a simple application
for loan approvals, rendered as a BPEL process. This
choice does not hamper the generality of the proposal,
but allows us to reuse Dynamo [8] for collecting run-time
data about the process execution.

1In this paper, we assume that a KPI is a quantitative measure of
the application’s capabilities [2]. These indicators are not constrained to
the actual performance of the application, but consider different facets.
For example, we may have KPIs for an application’s reliability, costs,
sustainability, security, and data quality.

The rest of this paper is organized as follows. Section II
presents an overview of the MDMS approach, while
Sections III and IV concentrate on modeling the platform-
independent aspects, and on a particular implementation,
respectively. Section V surveys some related approaches,
and Section VI concludes the paper.

II. APPROACH OVERVIEW

The main objective of the Model-Driven Management
of Services (MDMS) approach is to provide a comprehen-
sive MDE solution that considers management throughout
an application’s lifecycle (i.e., from requirements elicita-
tion up to run time), while always maintaining a clear
separation of concerns with respect to its functionality.
The application’s functionality and management features
are developed in parallel, using different, yet related,
models, transformations, and tools. This enables us to
specify one functional view for the system, and as many
different management views as required, since different
stakeholders may identify different QoS dimensions of
interest and different management objectives for the same
application.

Business Process
Model

BPMN

Application
Modeling

Management
Modeling

C
IM

Service Model

SCA

Functional
Model

BPEL

PI
M

PS
M

Management
Dimensions and Objectives

Annotations

RDS Model

SCA-Extension

KPI Model

SCA-Extension

KPI Processing
Model

EcoWare

Data Collection
Model

Dynamo

Figure 1. Overview of the MDMS approach.

Figure 1 summarizes the CIM, PIM, and PSM view-
points of our approach. The first viewpoint consists of
the analysis and collection of computation-independent
requirements for the managed system. This comprises
requirements for its functional design, as well as for
the management features it needs to offer. The former
are captured using BPMN (Business Process Modeling
Notation [4]), while for the latter we propose to use
appropriate management annotations. Different stakehold-
ers (providers, clients, etc.) produce, with the help of
a requirements modeling expert, different annotations to
specify the QoS dimensions they are interested in, and
the objectives they have regarding these dimensions2. For
example, a stakeholder may want a service’s response time
to be less than 30 seconds, or its reliability to be greater

2MDMS does not explicitly focus on SLA management, yet it can be
adopted in the context of already existing SLA management frameworks
such as the one proposed in the SLA@SOI EU project http://sla-at-soi.
eu/

than 95%. Notice that the objectives are assumed to be
SMART properties, i.e., Specific, Measurable, Attainable,
Relevant and Time-bound [9].

The second viewpoint consists of the platform-
independent design of the managed system. MDMS sup-
ports the use of the Service Component Architecture’s
assembly model (SCA [5]) to capture the different par-
ties that need to collaborate to provision the application,
what services they will contribute, and the dependencies
that exist between them. Regarding management, MDMS
maps QoS dimensions to quantitative Key Performance
Indicators (KPIs). The Raw Data Sampling (RDS) model
defines what data are going to be needed at runtime, while
the KPI model defines how these data will be correlated
and aggregated to calculate a KPI’s value, and how the
system will assess if the stakeholder’s objective is being
reached or not.

The third viewpoint transforms the platform-
independent models into platform-specific ones that
can be deployed as a running system. Although we base
our platform-independent modeling on SCA, a SCA-
based execution environment like Apache Tuscany is only
an option and not necessarily required. A completely
different technological setting is viable as long as it
supports the fundamental notions of the service paradigm.
MDMS supplies ECoWare to foster management. It is an
event-based platform for managing distributed services
that can be used in conjunction with different service
execution environments. Run-time data, collected through
appropriate sensors placed in the execution environment,
are run through a network of event processors that
incrementally produce the values of the desired KPIs and
assess whether the stakeholder’s objectives are reached.

A. Running Example

Figure 2 uses BPMN to model the running example
we will use in the rest of this paper to demonstrate the
MDMS approach. The example describes a simple loan
approval business process. The client initiates the process
by applying for a loan. If the requested amount is less
than 10000$, and the client is determined to be a “low-
risk” client, the decision is fast-tracked and approved. If
the requested amount is at least 10000$, or the client is
not “low-risk”, then a thorough assessment is required
before providing the final response. Different stakeholders
will have different requirements for the application; they
will be interested in different QoS dimensions and have

calculateRisk

thorough
Assessment

loanRequest

amount >= 10000

amount < 10000

loan
[approved]

risk == low

risk != low

loan
[decision]

Figure 2. BPMN model of the Loan Approval example.

different objectives. On the one hand, a client will be
interested in having a service with a reliability of at least
95%. On the other hand, the service provider will surely
have a stricter objective and desire a reliability of more
than 99%, in order to react promptly before failing to
comply to a service level agreement.

III. PLATFORM-INDEPENDENT MODELING

MDMS offers two distinct, but complementary, meta-
models for platform-independent management modeling.
The RDS meta-model allows designers to define the data
sources to be sampled at run time, while the KPI meta-
model allows designers to specify the Key Performance
Indicators to be calculated using the sampled data.

A. The RDS Meta-model

MDMS relies on the assumption that the system to
be monitored is modeled by means of SCA. It does not
describe the functional properties of the system itself.
Rather it represents a complementary and incremental
view to the SCA-based functional design.

The cornerstone element of the meta-model is the
ManagedSystem, which identifies the system under
development. It specifies the ServiceComponents
that constitute the system, and that represent the main
ManagedElements of interest. Each ServiceComponent
exposes a set of ServiceComponentActions that
implement its UnitOfWorks –i.e., its functional ele-
ments. A functional element can be classified either as
an InternalAction or an OperationCall.

name : EString
ManagedElement

ServiceComponent
name : EString
UnitOfWork

ServiceComponentAction

InternalAction OperationCall

ServiceOperationCall ReferenceOperationCallWithScope

ConditionalFlow

Loop

Variable

Branch

Iteration
0..*

0..*

0..*

0..*
0..*

0..*

1..*

ManagedSystem

ManagedElement
Property

StartTime

EndTime

Incoming
Msg

Outgoing
Msg

0..1

0..1

0..1

0..1

DataSource
name : EString
startWindow : EDate
endWindow : EDate
repetitionUnit : EString
repetitionValue : EInt

Sampler

interval : EInt

Interrupt
Sampler

interval : ELong

Polling
Sampler

1
samples

samples

1

1..*

1..*

0..*

Value0..1

Figure 3. The RDS meta-model

An internal action identifies the elements that internally
implement the component’s behavior. In our models we
distinguish between internal actions that define a scope
(WithScope), and those that do not. An internal action
defines a scope if its semantics conceptually introduce
a “code” block in which other actions can be placed –
e.g., the Loop action can contain other internal actions
or operation calls. This distinction allows designers to
express the need to monitor and analyze a specific action
in the context of a specific scope. Among the possible
internal actions, Figure 3 shows a few key examples,
namely conditional flows (ConditionalFlow), loops

(Loop), and variables (Variable). However, the RDS
meta-model is extensible and further actions can easily be
added.
OperationCalls are used to specify the elements

that concern the component’s interactions with exter-
nal partner components. Due to the bilateral nature of
these interactions, the RDS meta-model distinguishes be-
tween provided (ServiceOperationCall) and re-
quired (ReferenceOperationCall) operation calls.

The ServiceComponentActions will contribute raw data
to the calculation of the KPIs of interest. The data are
identified by ManagedElementProperties, which
can be general in nature (StartTime and EndTime) or
ServiceComponentAction-specific. For example, operation
calls can identify incoming (IncomingMsg) and outgo-
ing OutgoingMsg messages, as well as start and end
times, while variables can identify their value (Value).
Samplers define how to collect the raw data and

provide them for further processing. To this extent,
the RDS meta-model currently provides two kinds
of samplers. InterruptSamplers monitor the
property of interest and provide it for processing if
and only if the its status changes. These samplers
support the notion of interval to limit their outputs –e.g.,
output once every x changes in the property’s status.
PollingSamplers check a property and provide it for
processing periodically. They also support a notion of
interval to limit their outputs –e.g., output once every x
minutes. Both kinds of samplers can be further configured
to be active only within certain time windows. A time
window is defined by a start date (startWindow)
and an end date (endWindow), and can be repeated
using the repetitionUnit and repetitionValue
attributes. For example, a time window can start
on Monday at 8AM and end on Monday at 10AM,
and be repeated every week (repetitionUnit =
week, repetitionValue = 1, startWindow
= Monday 08.00AM, endWindow = Monday
10.00AM). If no activation window is specified, the
default is to consider the sampler as always active.

B. The KPI Meta-model

While the RDS meta-model allows designers to specify
the sampling of raw data, the KPI meta-model specifies
how the raw data can be correlated and aggregated to
produce the desired performance indicators, and how these
indicators can be analyzed.

Referring to Figure 4, all the data that are processable in
the model are obtained through a DataSource. Samplers
are one example of a DataSource; DataProcessors are
another. They read data from one or more sources, process
them and, if needed, provide the processed data as a
new source. This mechanism allows designers to combine
different DataProcessors in a pipe-and-filter fashion to
achieve more complex data processing.

The KPI meta-model defines two different kinds of
DataProcessors: KPIs and Filters. KPIs read data from
one (or more) sources, combine them by means of well-

DataSource

ManagedSystem

name : EString
DataProcessor

KPI

periodUnit : EString
periodValue : EInt
outputUnit : EString
outputValue : EInt

Reliability ResponseTime

Filter

cutoff : EDouble
LowpassFilter

cutoff : EDouble
HighpassFilter

reads from

reads fromreads from

22

11..*

periodUnit : EString
periodValue : EInt
outputUnit : EString
outputValue : EInt

Rate
reads from

1

Figure 4. The KPI meta-model.

defined rules, and provide their output as a new data
source. In the model we introduce the ResponseTime
KPI, which computes the time elapsed between two time
instants (e.g., the end time of a service operation call and
its corresponding start time), and the Reliability KPI,
which computes the number of correct interactions with
a service over the total number of interactions attempted.
When using a Reliability KPI the designer must also state
(i) over how much time it has to be calculated, and (ii)
how often its output value needs to be made available. For
example, the designer might want to calculate a service’s
reliability considering the last 12 hours, and output a
new value every 5 minutes. This is achieved through its
periodUnit and periodValue, and outputUnit
and outputValue attributes respectively.

Filters read data from a single source and provide them
as a new source if they satisfy a well-defined constraint.
These are useful to define simple KPI analyses. For
example, if we want to be notified when a response time
is higher than a given threshold we can use a Highpass
Filter, and if we want to be notified when a service’s
reliability drops below a given threshold we can use a
Lowpass Filter.

New data processors can easily be added to the KPI
meta-model through extension mechanisms. For each new
data processor we must also provide an ECoWare specific
processing component, as we shall see in § IV-B.

C. Modeling the Loan Approval Process for Management

Starting from the BPMN model presented in Sec-
tion II-A, we need to determine how many parties/services
need to be involved to effectively provide the overall
composite service. Figure 5 illustrates the SCA-based
functional design of our running example. Service op-
eration calls are shown as white arrow blocks, while
reference operation calls are shown as grey ones. In this
example loanApproval is responsible for providing the
service’s loanRequest service operation call. It has two
dependencies that are satisfied by the assessment and
riskCalculation services.

Once the platform-independent application model is
complete, we can model the raw data sampling and the
KPIs. Figure 6 shows how to model the reliability of
loanApproval, and how to use a filter to find out if its

SCA Component

loanRequest loanApproval

SCA Component

assessment

SCA Component

riskCalculation

assess

calculateRisk

Composite Service

Figure 5. The platform-independent application model.

value drops below a given threshold.
The RDS model is presented on the figure’s left-hand

side. To calculate the reliability the system needs to know
the number of requests that are issued to the loanApproval,
and how many of them result in failures. To this end it
is sufficient to sample the service component’s start and
end times. In particular we want to sample the start and
end times of the approve service operation call provided
by the loanApproval ServiceComponent, every time it is
executed. This is why we use two interrupt samplers, both
setup with an interval value of 1. Since we want to leave
the samplers always on, we do not specify any activation
window.

loanApproval
ServiceComponent

approve
SOC

StartTime
StartTime

EndTime
EndTime

ManagedSystem

AlarmFilter
LowpassFilter

cutoff = 0.95

ReliabilityKPI
Reliability

outputUnit = minute
outputValue = 5
intervalUnit = hour
intervalValue = 12ETSampler

InterruptSampler

interval = 1

STSampler
InterruptSampler

interval = 1

RDS Model KPI Model

Figure 6. The Reliability model.

The KPI model is presented on the right-hand side.
In it we use a Reliability KPI that reads data from the
STSampler and the ETSampler. It is configured to
calculate the KPI considering the last 12 hours (interval-
Unit = “hour” and intervalValue = “12”), and to output
a new value every 5 minutes (outputUnit = “minute” and
outputValue = “5”). Finally we use a lowpass filter that
reads the produced reliability values and ignores those that
are higher than the 0.95 threshold.

IV. PLATFORM-SPECIFIC IMPLEMENTATION

In this section we present ECoWare (Event Correla-
tion Middleware), an event-based platform for manag-
ing distributed services. It consists of Esper-based event
processing components that collaborate through Siena, a
publish/subscribe event notification service (see Figure 7).
Esper provides an Event Processing Language (EPL)
that allows developers to easily define complex event
conditions, correlations, and aggregations, thus effectively
minimizing the effort required to keep track of a dis-
tributed system’s behavior. Siena is a publish/subscribe
event notification service implemented as a distributed
overlay-network suitable for large numbers of commu-
nicants and high volumes of events. We use Esper to
implement the DataProcessors of our KPI models (see

Siena

Esper Processor

SienaInputAdapter

Dynamo

Esper Processor

SienaInputAdapter

ActiveBPEL
+

AOP Sensors

SienaOutputAdapter

SienaOutputAdapter

SienaOutputAdapter

Generic
Execution Engine

SienaOutputAdapter

EC
oW

are

Figure 7. The ECoWare Architecture.

§ III-B), while the loose-coupling provided by Siena
ensures that processors can be dynamically combined in
a pipe-and-filter fashion. ECoWare defines a normalized
event format for the data that flow through Siena, and pro-
vides configurable adapters (SienaOutputAdapter
and SienaInputAdapter) that allow the system to
be used in conjunction with different external service
execution environment.

In our ongoing example, we transform the platform-
independent service model into a BPEL implementa-
tion of the loanApproval service, with assessment and
riskCalculation being offered as external services. This
decision allows us to use Dynamo [8] as our execution
environment, and to leverage its data collection capabili-
ties. Dynamo is a feature-enriched execution environment
for BPEL processes. It leverages AOP technology to
extend ActiveBPEL and instrument processes with data
collection, data analysis, and recovery activities. The use
of AOP ensures a clear separation of concerns between
business and management logic, and allows different
stakeholders to define different management activities for
the same process. We have equipped Dynamo with a
SienaOutputAdapter to translate the internal format
it uses for the data it collects into a normalized ECoWare
event, and to publish it to Siena.

A. Data Collection

Dynamo extends ActiveBPEL with data collection capa-
bilities that are implemented through two kinds of sensors:
interrupt and polling sensors. ActiveBPEL exploits the
visitor pattern on an in-memory tree representation of the
executing process, one in which each node implements
a specific BPEL activity (e.g., an invoke, a receive, an
assign, etc.). Interrupt sensors intercept the process’ exe-
cution before or after the visitor’s method is called on a
specific node in the tree, while polling sensors intercept
the process’ instantiation and attach a polling thread to a
specific BPEL variable.

The meta-model in Figure 8 describes the information
needed to configure these sensors. All sensor configura-
tions, regardless of their type, contain a processID,
a Validity, and a UserCorrelation. The pro-
cessID is a unique identifier of the process deployed
within Dynamo. The Validity defines a time-frame within
which the sensor is to be considered active. from and

varName : EString

Interrupt
Sensor

Configuration

DataCollection
SystemConfiguration

1..*

operationID : EString
precede : EBoolean

Activation
Location

0..1

1

correlationKey : EString
correlationValue : EString

User
Correlation

0..1

frequency : ELong
varName : EString

PollingSensor
Configuration

processID : EString

Sensor
Configuration

from : EDate
to : EDate
repetitionType : Estring
repetitionValue : EInt
frequency : EInt

Validity

Figure 8. Dynamo’s data collection configuration meta-model.

to are two dates that define the time-frame, while
repetitionType and repetitionValue define the
frequency with which the time-frame is repeated. A valid-
ity also uses a frequency to state how many process
instances, within the temporal window of activation, need
to be executed between two successive data collections.
If no validity is given, Dynamo’s default behaviour is
to keep data collection active at all times. The User-
Correlation supports the deployment of different data
collection specifications for different process clients. The
correlationKey is the name of an XML element that
is present in the SOAP message that initiates the process
(e.g., “clientName”), and the correlationValue is
the value we expect to find therein at run time (e.g.,
“name”). These data are checked every time a new process
is instantiated to determine whether the sensor needs to be
instantiated. If no UserCorrelation is specified Dynamo’s
default behaviour is to activate the sensor on all instances
of the process.

The configuration of an interrupt sensor adds an op-
tional varName and an ActivationLocation. The
varName parameter identifies a specific BPEL variable
that has to be collected. Note that sensors always pro-
vide a timestamp3, even if no varName is given. The
ActivationLocation indicates the point in the process in
which the sensor needs to be activated. It contains an
operationID, a unique identifier of a BPEL activity
within the process, and a precede parameter that states
whether the sensor needs to be activated prior to, or after,
the operation is execution. The configuration of a polling
sensor adds a mandatory varName, and a frequency
(expressed in seconds) with which to perform the polling
of the variable’s value.

We transform RDS models into Dynamo data col-
lection configuration models using QVT (Query/View/-
Transformation) [11], a standard for model transformation
proposed by the Object Management Group (OMG). In
particular, we use the Relations meta-model to declara-
tively define the relationships that must hold between the

3We use NTP (Network Time Protocol) timestamps generated using
Apache’s Commons Net [10] implementation. It guarantees a synchro-
nized clock when sampling sources on different computers. Its precision
is in the order of 10 milliseconds, which is acceptable given the typical
services deployed in ECoWare.

processID = sCompName
varName = 'null'

isc : InterruptSensorConfiguration

operationID = opID
precede = 'false'

al : ActivationLocation

name = sCompName

sComp :
ServiceComponent

name = socName
soc : SOC

st = StartTime

interval = f
startWindow = sw
endwindow = ew
repetitionUnit = repUnit
repetitionValue = repValue

is : InterruptSampler
from = sw
to = ew
repetitionType = repUnit
repetitionValue = repValue
frequency = f

val : Validity

RDS Dynamo

opID = '//receive[@operation=" ' + socName + ' "] '
when

ec

<<domain>>

<<domain>>

Figure 9. Example of a QVT-based transformation between models.

source RDS model and the target Dynamo model. Due
to the complexity and length of the transformation code
it is impossible for us to report it here in its entirety.
Instead we will concentrate on the transformation of a
simplified example, one in which a StartTime Sampler
is applied to a service operation call, and use QVT
Relations’ graphical syntax to give the reader a flavor
for our transformations. Figure 9 enforces an interrupt
sensor configuration in which the process (sCompName)
is intercepted after (precede = ’false’) its service
operation call (socName)’s corresponding BPEL receive
activity (opID) is executed. Moreover, since we are
dealing with a StartTime, the configuration does not re-
quire a varName. Note that MDMS does not explicitly
acknowledge multi-tenancy. If multi-tenancy is needed,
the UserCorrelation values need to be added to Dynamo’s
configuration by hand.

Dynamo’s data does not directly conform to ECoW-
are’s normalized event format, which requires that all
events contain an eventType, an originID, and an
instanceID. We resolve this by attaching Dynamo-
specific SienaOutputAdapters to our sensors. The event-
Type is used to indicate the kind of event being sent. For
example, in the case of an interrupt sensor it is calculated
by looking at the sensor’s operationID, precede value, and
varName. Sensors on receive activities produce StartTime
or IncomingMsg event types, depending on the presence of
a varName. The same is true for sensors on reply activities,
which produce EndTime or OutgoingMsg event types.
Sensors on invoke activities produce StartTime, EndTime,
IncomingMsg or OutgoingMsg event types, depending on
their varName and precede values. In the case of a polling
sensor the eventType is always a Value. The originID
identifies the sensor producing the event, and is used to
ensure event routing in Siena. The instanceID identifies the
service instance that produced the contents of the event. It
is generated concatenating the name of the process being
executed, the name of the BPEL activity to which the
sensor is attached, and the process instance id generated
at run time by ActiveBPEL. The resulting value is used
by Esper processors to correlate events that come from
different sources. Special care is given to asynchronous
messaging, since in these cases we have to correlate

receive-reply and invoke-receive pairs that have different
activity names; in the first case we use the name of the
receive activity, in the second case we use the name of the
invoke activity.

B. KPI Processing

Complementary to the platform-independent RDS
model, the KPI model specifies “what” KPI needs to
be produced and analysed, and “who” is involved in
producing and analysing it. In our example we want to
analyze the reliability of loanRequest, calculated over the
last twelve hours, and be notified when it drops below
95% (i.e., the “what”). This is achieved composing a basic
Reliability KPI and a LowpassFilter (i.e., the
“who”s).

QVT is used to define and perform the transformations
between the KPI model and the Esper configuration model.
We do not discuss the transformations here, since MDMS
and ECoWare were conceived together and are conceptu-
ally aligned. Suffice to say, in our example the Reliability
KPI is configured using the periodUnit, periodValue, out-
putUnit, and outputValue attributes present in the platform-
independent KPI model (see § II-A), while the Lowpass
Filter is configured using the cutoff attribute. Instead we
will concentrate on how the KPI data processors are
concretely implemented using Esper.

Esper provides an Event Processing Language (EPL)
for defining complex event conditions, correlations, and
aggregations. EPL is an SQL-like language with SELECT,
FROM, WHERE, GROUP BY, HAVING and ORDER BY
clauses. The difference between SQL and EPL is that
instead of running queries against stored data, Esper stores
queries and runs data through them. The execution model
is thus continuous rather than limited to the exact moment
at which the query is submitted.

EPL provides key constructs for building data views
over events, and for analyzing event arrivals with respect to
time constraints. Specifically, an EPL statement is defined
exploiting the following concepts: (i) windows are used to
specify how many past events need to be considered by
Esper when processing EPL statements and, (ii) streams
are used to inform appropriate listeners about events that
enter (insert stream) or leave a window (remove stream).

As discussed in Section IV-A, Dynamo samples
the required data and sends them as Siena events.
A SienaInputAdapter is used by the ReliabilityKPI
to subscribe to the events whose originID is either
STSampler or ETSampler, and to transform them
into StartTime={originID, instanceID,
timestamp} and EndTime={originID,
instanceID, timestamp} respectively.

Reliability is generically defined as R = 1 − Totalf
Totalr

,
where Totalf is the amount of failures associated with
the loanRequest operation in a given amount of time,
and Totalr is the total number of requests made to the
loanRequest operation in that same time frame. The KPI is
therefore implemented using two EPL statements, one for
Totalf , and one for Totalr. Both use a 15 seconds time-

window, i.e., a sliding window that extends 15 seconds
into the past to limit the events they need to keep track
of. The 15 seconds represent the amount of time we are
willing to wait for a response from the service before we
decide that it failed4. The first EPL statement is used to
calculate the total number of requests:

(1) SELECT ∗ FROM S t a r t T i m e . win : t ime (15 s e c)

An Esper listener receives new data as soon as the engine
processes events for such statement. Its reaction is to
accumulate the number of events that occurred within the
window, and update the Totalr value calculated over the
last 12 hours (i.e., historyUnit + historyValue).

The second EPL statement is used to calculate the total
number of failures that occur:

(1) SELECT r s t r e a m ∗ FROM S t a r t T i m e . win : t ime (15 s e c) ST
(2) FULL OUTER JOIN EndTime . win : t ime (15 s e c) ET
(3) ON ST . i n s t a n c e I D = ET . i n s t a n c e I D
(4) WHERE ET . c a l l I D i s n u l l

Specifically, we define a failure as the incapability to
match two corresponding StartTime and EndTime events
within a 15 second time window. The EPL statement uses
the “rstream” keyword to select events from the remove
stream. This means it would tend to notify its listener
every time an event exits the time window. However, it
should only notify its listener if a StartTime is exiting and
no corresponding EndTime can be found. The fact that
an EndTime is missing is discovered thanks to the outer
join (line 2) performed on the instanceID attribute of both
events. In Esper, if an outer join cannot make a match
(line 3), a result is presented nevertheless, and the default
value null is given in place of the missing attributes (line
4). The listener, once again, simply counts the number
of notifications it receives, and updates the Totalf value
calculated over the last 12 hours.

To conclude, the two listeners collaborate once ev-
ery 5 minutes to calculate the new reliability (i.e.,
outputUnit + outputValue), and update their
Totalr and Totalf values to ensure the next reliability
value will not consider requests or failures that have
occurred more than 12 hours ago. As soon as a new
reliability value is available it is disseminated as a Siena
event whose eventType is Reliability; this event
contains an internal attribute called value.

In our example, the Reliability events are run through a
LowpassFilter, and therefore through a further ESP state-
ment. In this case the component compares the reliability
event’s internal value with the value of the cutoff taken
from the model.

(1) SELECT ∗ FROM R e l i a b i l i t y (va lue <0 .95) . win : l e n g t h (1)

The statement uses a length window of size 1, meaning
that only 1 event will be stored in the window at a time.
Only events whose internal value is less than 0.95 are
allowed to enter the window; every time this occurs the old
event is discarded and the component’s listener is notified
of the new arrival.

415 seconds is only an indicative value; in real case studies, it should
be equal to the “timeout” value set up by the service provider.

C. Early evaluation

To run our experiments we set up a Siena overlay
network composed of four server nodes and two clients,
namely a publisher (i.e., the Dynamo sampler) and a
subscriber (i.e., the Esper engine). The Dynamo sampler is
in charge of collecting data and publishing them as events,
while the Esper engine receives and processes them to
calculate the KPIs. The tests were run on a MacBook with
a 2.4Ghz Intel Core 2 Duo processor and 4GB of RAM
running Mac OS X version 10.6.4.

Due to the simplicity of such a case study, in terms
of both the number of events that are delivered and
processed, the overhead introduced by Siena and Esper
is negligible with respect the overhead introduced by
Dynamo for collecting data. In fact, both Siena and Esper
have been designed and implemented to address scalability
– i.e., to manage large amount of events, in terms of
forwarding [12] and processing [13], respectively.

Table I
PERFORMANCE IMPACT IN MILLISECONDS DUE TO DYNAMO.

Setup Collection time
avg min max

ActiveBPEL 21.02 15 216
Dynamo 0 Sensors 32.66 23 308
Dynamo 1 Sensor 34.02 25 364
Dynamo 2 Sensors 35.75 26 386

Table I summarizes the impact that the installation of
sensors has on the execution time of our simple example.
We setup four different tests and ran each 1000 times.
The first test was performed on a standard ActiveBPEL
engine, the second used Dynamo with no sensors installed,
the third used Dynamo with one sensor, and the last one
used Dynamo with two sensors. As we can see Dynamo
introduces an average overhead of 11 milliseconds, regard-
less of the number of sensors installed, and each sensor
introduces an extra average overhead of 2 milliseconds.
This is perfectly aligned with the more detailed analyses
we have performed in [14].

V. RELATED WORK

Management has been a hot topic for standardization by
part of different consortiums. Oasis has proposed the Web
Services Distributed Management (WSDM) [15], a pro-
tocol for the interoperability of management information
and features. It focuses on two main aspects: how to use
web service technology as the foundation of a resource
management framework, and how these notions can be
adapted to Web services themselves. An alternative stan-
dard, called WS-Management [16], has been proposed by
the Distributed Management Task Force (DMTF). Its goal
is similar to WSDM’s, as it provides support for generic
resource management using Web service standards. It also
proposes a special binding for managing resources that are
defined using their Common Information Model (CIM).

Different MDE methodologies for managing extra-
functional properties of service compositions have been
proposed: Chowdhary et al. [17] address the specification

of business-level performance indicators and their direct
transformation to platform specific models, Debusmann et
al. [18] define SLA parameters together with the specific
indicators needed within the SLA itself, and Chan et
al. [19] address the automatic generation of component-
based instrumentations for monitoring specified QoS con-
cerns. The work that most resembles our own is that of
Christof et al. [20]. The main difference with our work
lies in the different level of abstraction proposed. Our
meta-models provide an extensible set of high-level off-
the-shelf KPIs. The definition of the KPIs themselves is an
issue for platform-specific implementations. In their work,
the definition of the KPI is something that needs to be
modeled; to this end they propose lower-level processing
operations (e.g., addition, subtraction, etc.) for defining the
calculation that needs to be performed. We believe that this
level of detail in the modeling makes matters unnecessarily
complex, especially with KPIs that are stochastic or more
fuzzy in nature. Another key difference lies in the nature
of the proposed management infrastructure. Instead of
being centralized, ECoWare’s solution is event-based and
composed of loosely-coupled elements.

VI. CONCLUSIONS AND FUTURE WORK

This paper claimed that the effective management of
service-oriented applications cannot be defined and de-
ployed as a separate entity. Rather, management must be
a constituent part of the application itself, and addressed
starting from the early stages of the development process.
MDMS aims to provide a comprehensive model-driven
approach that considers quality dimensions and manage-
ment objectives as first-class elements that must be prop-
erly addressed. The paper also presented ECoWare, the
distributed management framework developed to support
MDMS, and exemplified the overall approach through a
simple loan approval application. The first experiments
were encouraging and demonstrated the feasibility of the
approach. We will continue to refine the approach and
develop the tools necessary to fully automate it. We will
also further investigate the actual management of hetero-
geneous service-oriented applications, and the integration
of advanced management capabilities with ECoWare.

ACKNOWLEDGMENT

This research has been funded by the Euro-
pean Commission, Programme IDEAS-ERC, Project
227077-SMScom (http://www.erc-smscom.org), FP7 In-
tegrated Project 216556-SLA@SOI (http://sla-at-soi.eu/),
and the Network of Excellence S-Cube (http://www.
s-cube-network.eu/)

REFERENCES

[1] M. P. Papazoglou and W.-J. v. d. Heuvel, “Web services
management: A survey,” IEEE Internet Computing, vol. 9,
no. 6, pp. 58–64, 2005.

[2] D. Parmenter, Key Performance Indicators – Developing,
implementing, and using winning KPIs. John Wiley Sons,
2007.

[3] D. Schmidt, “Model-driven engineering,” IEEE Computer,
vol. 39, no. 2, Feb 2006.

[4] Object Management Group, “Business Process Model And
Notation (BPMN) 1.2,” http://www.omg.org/spec/BPMN/1.
2/, 2009.

[5] OpenSOA, “Service component architecture specifica-
tions,” http://www.osoa.org, 2007.

[6] EsperTech, “Complex event processing,” http://esper.
codehaus.org, 2010.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design
and evaluation of a wide-area event notification service,”
ACM Transactions on Computer Systems, vol. 19, no. 3,
pp. 332–383, Aug. 2001.

[8] L. Baresi and S. Guinea, “Self-supervising bpel processes,”
IEEE Transactions on Software Engineering, vol. 99, no.
PrePrints, 2010.

[9] G. T. Doran, “There’s a S.M.A.R.T. way to write manage-
ments’s goals and objectives,” Management Review, vol. 70,
no. 11, 1981.

[10] Apache, “Network Time Protocol Provider
1.0,” http://directory.apache.org/apacheds/1.0/
ntp-protocol-provider.html.

[11] Object Management Group, “Query/View/Transformation
Version 1.1 - Beta 2,” http://www.omg.org/spec/QVT/1.1/
Beta2/, 2009.

[12] A. Carzaniga and A. L. Wolf, “Forwarding in a content-
based network,” in Proceedings of ACM SIGCOMM 2003,
Karlsruhe, Germany, Aug. 2003, pp. 163–174.

[13] EsperTech, “Esper performance,” http://docs.codehaus.org/
display/ESPER/Esper+performance, 2007.

[14] L. Baresi and S. Guinea, “Self-supervising BPEL Pro-
cesses,” IEEE Transactions on Software Engineering,
vol. 99, no. PrePrints, 2010.

[15] OASIS, “Web Services Distributed Management
(WSDM),” http://www.oasis-open.org/specs/, 2006.

[16] Distributed Management Task Force, “Web Services
for Management,” http://www.dmtf.org/standards/wsman/,
2010.

[17] P. Chowdhary, K. Bhaskaran, N. S. Caswell, H. Chang,
T. Chao, S.-K. Chen, M. Dikun, H. Lei, J.-J. Jeng,
S. Kapoor, C. A. Lang, G. Mihaila, I. Stanoi, and L. Zeng,
“Model driven development for business performance man-
agement,” IBM Syst. J., vol. 45, no. 3, pp. 587–605, 2006.

[18] M. Debusmann, R. Kröger, and K. Geihs, “Unifying ser-
vice level management using an mda-based approach,” in
NOMS, 2004, pp. 801–814.

[19] K. Chan and I. Poernomo, “Qos-aware model driven archi-
tecture through the uml and cim,” Enterprise Distributed
Object Computing Conference, IEEE International, vol. 0,
pp. 345–354, 2006.

[20] C. Momm, M. Gebhart, and S. Abeck, “A model-driven
approach for monitoring business performance in web
service compositions,” in ICIW ’09: Proceedings of the
2009 Fourth International Conference on Internet and Web
Applications and Services, Washington, DC, USA, 2009,
pp. 343–350.

Proactive SLA Negotiation for Service Based Systems

Khaled Mahbub and George Spanoudakis
School of Informatics

City University London, UK
{K.Mahbub, G.Spanoudakis}@soi.city.ac.uk

Abstract

In this paper we propose a framework for proactive
SLA negotiation that integrates this process with dynamic
service discovery and, hence, can provide integrated
runtime support for both these key activities which are
necessary in order to achieve the runtime operation of
service based systems with minimised interruptions. More
specifically, our framework discovers candidate
constituent services for a composite service, establishes
an agreed but not enforced SLA and a period during
which this pre-agreement can be activated should this
become necessary

1. Introduction

A service level agreement (SLA) is an explicit contract
between the provider and the consumers of a service that
defines the quality and, sometimes, functional properties
which should be guaranteed during the provision of the
service, as well as the penalties that should be applied in
case of defaulting [7][10][11]. An SLA is set through a
negotiation process between the provider and the
consumer of a service [4][12]. This process is particularly
complex in the case of composite services since, in order
to ensure that the provision of a composite service S is in
line with the SLAs required by its clients, the provider of
S should also negotiate and establish subordinate SLAs
with the providers of the constituent services of S.
Furthermore, when a constituent service of S becomes
unavailable at runtime or fails to perform according to its
SLA, the provider of S should be able to discover
alternative replacement services for it and negotiate SLAs
with them at runtime.

As it has been suggested in [15], to minimise the
runtime interruption in the provision of composite
services, the discovery of back up replacement services
for their constituents should be proactive, i.e., it should be
performed before a constituent service of S becomes
unavailable or fails to perform according to its established
SLA. Proactiveness is important since service discovery is
a time consuming activity and, therefore, carrying it in a
reactive mode, is likely to cause significant interruption in
the provision of the composite service and violations of its
own SLAs. SLA negotiation should also be proactive as it

will be necessary to have adequate SLAs for the potential
replacement services that have been identified by
proactive discovery attempting SLA negotiation just prior
to binding to an alternative service is likely to cause
significant delay.

Existing work on service level agreements has focused
on SLA specification [13][14], negotiation [4][6] and
monitoring [8]. The need for runtime SLA negotiation or
re-negotiation has been realised in [2][3][5][9], where
either the terms of an SLA are revised to accept a
constituent service from an existing provider [2][5] or a
new SLA is negotiated with a new service provider and an
existing SLA is terminated [3]. All these approaches,
however, are reactive as they support corrective actions
only after an SLA has been violated. Thus they can fail to
guarantee uninterrupted runtime provision of composite
services.

To address this shortcoming, in this paper we introduce
an approach for proactive runtime SLA negotiation. Our
approach is based on an extension of a tool for proactive
runtime service discovery described in [15] enabling it to
support proactive SLA negotiation as part of the discovery
process. More specifically, our approach weaves SLA
negotiation into runtime service discovery and provides a
clear process model for carrying these two activities in a
coordinated manner. It also leverages upon the language
for expressing runtime service discovery queries that has
been developed in [15] and extends it in order to enable
the specification of SLA negotiation criteria. Thus, our
approach provides integrated runtime support for both
proactive service discovery and SLA negotiation that is
necessary for achieving composite service provision with
minimised interruptions at runtime.

Proactive SLA negotiation is weaved into the
discovery process and is performed after the execution of
service discovery queries to ensure that adequate SLAs
can be set for the discovered services. The objective of
proactive negotiation is to establish an agreed but not
enforced SLA and a period during which the consumer of
the service will be able to activate the pre-agreement
should this become necessary. Following this, a
discovered service can be considered as a candidate
constituent service for a composite service. The
negotiation process is also repeated when a pre-agreed
SLA comes close to expiry and, therefore, would cease to
be binding for the provider unless renegotiated.

The rest of this paper is structured as follows. In
Section 2, we discuss the architecture of the framework
for integrated proactive runtime service discovery and
SLA negotiation. In Section 3, we describe the negotiation
process. In Section 4, we provide an overview of the
language for specifying the rules for triggering and
carrying out the SLA negotiation process (SLA triggering
and SLA negotiation rules). In Section 5, we review
related work and finally in Section 6, we provide some
concluding remarks and outline directions for future work.

2. Overview of proactive service discovery
and SLA negotiation framework

The architecture of the integrated service discovery and
SLA negotiation framework is shown in Figure 1.
According to the figure, the framework consists of a
runtime service discovery tool, a service listener, an SLA
negotiation broker and a monitor. It also interacts with
external service registries and event captors.

Figure 1. Architecture for proactive (and reactive)
SLA negotiation

The runtime service discovery tool is used to identify

potential alternative services for the services that a
composite service uses currently. The discovery process is
driven by service discovery queries. These queries are
associated with each of the constituent services Sc of the
composite service S and specify the conditions that should
be satisfied by any service that could replace them in the
composition. These conditions can refer to the structural
(interface), behavioural, contextual, and quality

characteristics that services should have in order to be
acceptable replacements for Sc and, therefore, provide the
criteria for discovering candidate constituent services for
Sc. Service discovery queries can be executed in two
modes: (a) in a reactive mode where the query is executed
when the constituent service Sc it is associated with
becomes unavailable or fails to satisfy an agreed SLA and,
therefore, a replacement service should be identified for it,
or (b) in a proactive mode where the query is executed in
parallel with the operation of the composite service S in
order to discover and maintain a set of candidate
replacement services for its constituent services. In the
proactive execution mode, the query is executed initially
to build a replacement set of services for S (RS) and then
anytime when an event indicating that the description of
some service in RS has been changed or a new service that
could be a candidate for inclusion in RS has emerged.

The negotiation broker is the component that manages
and executes the negotiation process on behalf of a service
consumer (i.e., the composite service) or a service
provider. Our architecture assumes that a separate
instance of the negotiation broker is associated with each
of the two sides (the service provider and consumer) that
participate in the negotiation process. Negotiation brokers
are responsible for negotiating and agreeing the guarantee
terms of an SLA. The negotiation process can be either
reactive or proactive. In proactive negotiation, the
negotiation process is carried out according to a two-
phase protocol that may result in a provisionally agreed
but not activated SLA (see Pre-agreed SLA in Figure 1) or
negotiation failure. In reactive negotiation, the negotiation
process is executed according to a single phase protocol
that can result in an agreed and activated SLA (see Active
SLA in Figure 1) or negotiation failure. In the framework,
a pre-agreed SLA describes a service level agreement that
has been reached but not activated yet. Pre-agreed SLAs
have an expiry period within which they will have to be
activated or cease to exist. A pre-agreed SLA becomes an
Active SLA, if the consumer of the service decides to
activate it.

The service registry contains descriptions of services.
These should include at least a specification of the
interface of the service (WSDL) and SLA templates
indicating the terms (e.g. service quality levels, costs etc)
under which the provider of service is typically willing to
provide it. Additional types of service descriptions that
are supported by the framework are models of service
behavior expressed in BPEL and further quality
characteristics that might not be included in the existing
SLA templates of the service or complement them by
specifying the possible range of values for a given
characteristic as opposed to the individual quality level
points or sub-ranges that are specified in the SLA
templates of a service.

Runtime
Service

Discovery
Tool

Service

Registry

Service Consumer
(SC)

Service
Listener

Service
Provider (SP)

Negotiation

Broker
(Consumer)

SLA:
offers/

counter
offers

Event
Captors (SP)

Specification/
Document

Functional
Component

Negotiation

Broker
(Provider)

Service
Discovery

Query

Monitor

Active
SLA

Negotiation
Triggering

Rules

Event
Captors (SC)

SLA
Templates

WSDL

Service
Behaviour

(BPEL)

Pre-
agreed

SLA

The service listener polls service registries regularly to
identify changes in existing service descriptions or new
services that might have become available.

The monitor is responsible for checking at runtime
whether the provision of a service by a given provider and
the use of it by given service consumer are in line with
established SLAs. In general there are two monitors: one
associated with the service provider and another
associated with the service consumer1. A monitor at either
of these two sides is typically used to detect if the SLA
guarantee terms which should apply to the provision of the
service are satisfied, and whether the conditions of the
negotiation triggering rules of the relevant party are
satisfied in order to generate signals for triggering
negotiation (whether proactive or reactive). A monitor at
the side of the provider may also check the levels of
service usage by the relevant consumer as the latter may
be preconditions of SLA guarantee terms (e.g., a service
provider may have agreed to an average service
throughput only if the rate of service calls by a particular
provider does not exceed a given threshold).

If a monitor detects (or forecasts) that the conditions of
negotiation triggering rules in the negotiation policy of a
service provider or consumer are (or will be) violated, it
will inform the relevant negotiation broker to initiate a
negotiation or renegotiation.

The checks performed by the monitors take into
account events that are intercepted during the use of
services (e.g., service invocations and responses, server
loads). These events are intercepted and notified to the
framework by different types of event captors that may be
associated with different services (e.g. SOAP message
captors). These events are notified to the monitor for
verifying the adherence of services to different SLA
guarantee terms and checking whether some SLA
negotiation activity should be initiated.

Negotiation Triggering Rules determine the
circumstances under which the negotiation of new service
level agreements should start (e.g., when a provisionally
agreed SLA is about to expire). Separate sets of such rules
may be specified by service providers and consumers for
this purpose. The negotiation triggering rules are
monitored once an SLA is established.

3. SLA negotiation process

Figure 2 presents the service discovery process of the
framework with the activity of SLA negotiation embedded

1 It is, however, also possible that the monitors of two parties of an SLA

are realised by a same monitoring service which may be offered by a
trusted external third party. Such a shared monitoring service would in
general be monitoring different sets of rules for each of the involved
parties and based on different sets of events.

within it. The integrated process is specified as a UML
activity diagram.

Figure 2. Integrated service discovery and SLA
negotiation process

The process starts with the submission of a service

discovery query by the composite service (i.e., the
consumer of constituent services). As discussed in Section
2, a query can specify different service discovery criteria,
namely: (a) structural criteria describing the interface of
required services, (b) behavioural criteria describing the
functionality of required services, and (c) constraints
describing quality characteristics of required service. The
initial execution of the service discovery query (see the
action state Execute Query in Figure 2) results in a list of
potential candidate services (RS). The candidate services
are identified by evaluating the structural, behavioural and
quality characteristics specified in a query against the
structural, behavioural and quality of service
specifications in service registries. The execution of the
discovery query also computes distances between a query
and candidate services based on the query criteria, and
ranks the candidate services based on their distances to the
query. The list of potential candidate services is updated
by executing the service discovery query when the
framework is informed by the service listener that a new
service has become available in a registry or the
description of an existing service has been modified (see
the signal accepting state New/Amended Service
Description in Figure 2). This ensures that new or updated
services are considered by the process.

Once an initial set of candidate services has been built
or updated (see the action state Create/Update Candidate
Service Set), the framework selects a service that does not

have a negotiated SLA from RS for negotiation (see the
transition guarded by the condition Exists Service in RS
without Negotiated SLA).

Subsequently, in the negotiation phase (i.e., Negotiate
SLA), the desired level of service is negotiated with the
selected candidate service. In this phase, the QoS
characteristics of each candidate service are negotiated in
order to achieve the best possible SLA that is within the
boundary constraints of the two parties for each of these
services. Negotiation during this phase may fail. If this
happens for a selected candidate service, the service is
removed from RS and a new negotiation will start with
another candidate service in RS that does not have a pre-
agreed SLA. If the negotiation with a selected service
succeeds, however, a provisional SLA is established and
the selected candidate service in RS is updated to flag the
existence of the pre-agreed SLA.

It should be noted that the negotiated SLAs for the
services in RS do not come into force immediately. For
each pre-agreed SLA, the negotiation process establishes
a time period over which the pre-agreed SLA can be
automatically brought into force without further
negotiation. This will happen if the relevant service is
selected for binding to the composite service. If the
validity period of a pre-agreed SLA comes close to expiry
without the candidate service being bound to the
composite service, the framework will proactively re-
negotiate the SLA − see the transition guarded by the
condition Pre-agreed SLA about to expire, from the action
state Create/Update Candidate Service Set to the action
state Select Service RS for Negotiation. The remaining
validity period threshold that determines when a pre-
agreed SLA should be negotiated is selected by the
composite service provider.

Following the selection of a service in RS for binding
at runtime, its SLA is automatically enforced (see the
action state Activate SLA in Figure 2). When an SLA
comes into force, its guarantee terms start being
monitored (see the action states Receive SLA and Service
& SLA Monitoring in Figure 2). If the monitoring process
detects a violation of the SLA or the deployed service
becomes unavailable, the relevant service is replaced by
the best available service in RS (see the transition from the
action state Service & SLA Monitoring to the action state
Select & Bind Best Service in RS). The detection of
violation of the conditions of the negotiation triggering
rules (e.g. active SLA about to expire) triggers the
negotiation phase to establish a new SLA.

The relationship between the quality criteria expressed
in a discovery query and the quality preferences expressed
in the negotiation rules is exemplified in Figure 3. The
figure shows the case where the discovery and negotiation
activity take into account two quality criteria, namely Q1
and Q2 where the service consumer (composite service)
seeks to maximise the value of Q1 (e.g., service

performance) and minimise the value of Q2 (e.g., service
cost). The dotted lines q1 and q2 in the figure show the
minimum acceptable value for Q1 and the maximum
acceptable value for Q2 that the service consumer sets,
respectively. These two boundary lines should be
expressed by quality constraints in the service discovery
query to ensure that no service which does not satisfy
them will be considered any further and could participate
in a negotiation process that is known to fail (such
services cannot become members of the set RS in Figure
2).

Figure 3. Negotiation rules and query criteria

The rectilinear line in Figure 3 shows the preferences

expressed by the negotiation rules of the service
consumer. The figure shows a typical case where the
consumer is prepared to accept increases in Q2 in
exchange of increases in Q1 but cannot agree on any Q2
value that is higher than q2 or any Q1 value that is lower
than q1. Thus, the negotiation process will only try to
agree an SLA with Q1 and Q2 values in the shaded region
of the figure. In this process we assume a multiphase
negotiation protocol where participants are allowed to
generate counter offers to a given offer until an acceptable
goal is reached [13].

4. Specification languages

In this section we describe the languages that are used
in our framework to express: (i) service discovery queries,
(ii) service level agreements, (iii) SLA negotiation rules,
and (iv) SLA negotiation triggering rules.

4.1. Service discovery query language

Service discovery queries are specified in the XML
language introduced in [15]. Figure 4 shows an example
of a query expressed in this language. The query contains
a StructuralQuery, BehaviourQuery and one or more
Constraints. The StructuralQuery specifies the required
interface of candidate services in WSDL. The
BehaviourQuery specifies the required behavioural
characteristics of a service. These characteristics are
expressed in a temporal logic language which allows the
specifications of conditions about: (a) the existence of
certain operations in a service specification; (b) the order
in which these operations should be executed by a service;
(c) other dependencies between operations; (d) pre-

conditions; and (e) loops concerning execution of certain
operations. As they are not related to the negotiation
process, the structural and behavioural parts of a query are
not further shown in Figure 4. Examples of such parts can,
however, be found in [15].

<dqns:ServiceQuery xmlns:dqns =
 "http://scube.eu/schema/DiscoveryQuery"
 xmlns:slac ="http://scube.eu/schema/Constraint"

xmlns:bqns ="http://scube.eu/schema/Behavour_SQL"
 queryID ="Q1">
 < dqns:StructuralQuery ><!—WSDL->
 </ dqns:StructuralQuery >
 < bqns:BehaviourQuery >..</ bqns:BehaviourQuery >
 < slac:Constraint >
 < slac:LogicalExpression >
 < slac:Condition relation ="GREATER-THAN">
 <slac:Arg1 ><slac:QualityAttribute
 name="AVAILABILITY"/>
 </ slac:Arg1 >
 <slac:Arg2 >
 < slac:Constant type ="NUMERICAL"
 unit ="PC"> 75</ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 <slac:LogicalOperator >AND
 </ slac:LogicalOperator >
 <slac:Condition relation ="LESS-THAN">
 <slac:Arg1 ><slac:QualityAttribute
 name="RESPONSE_TIME"/>
 </ slac:Arg1 >
 <slac:Arg2 >
 < slac:Constant type ="NUMERICAL"
 unit ="MS"> 10</ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 </ slac:LogicalExpression >
 </ slac:Constraint >
</ dqns:ServiceQuery >

Figure 4. Example service discovery query

The Constraint part of a discovery query comprises a

set of constraints specifying the required QoS
characteristics of a service. The example query of Figure
4 includes a constraint expressed as a logical combination
of two conditions. These are: (a) a condition stating that
the availability of acceptable services should be greater
than 75% and (b) a condition stating that the response
time of acceptable services should be less than 10ms. As
discussed in Section 3, these constraints will be used to
find suitable candidate services during the discovery
process and set the bottom line for the required QoS
characteristics of services during the negotiation process.

4.2. Service level agreement specification

Service Level Agreements (SLA) in our framework are

expressed in an XML language based on the query
language discussed in 015]. The full XML schema that
defines the SLA specification language of our framework
is available in 0. Our SLA specification language is used
to specify not only final SLAs after an agreement has been

reached but also SLA offers (and counter-offers) that
different parties may create during the negotiation
process.

The attribute scope in the SLAContract element in this
example signifies the status (e.g. under negotiation, pre-
agreed SLA or active SLA) of the SLA. As shown in the
figure, the SLA contract contains two sets of SLA terms
(i.e., constraints over QoS attributes). Each set of SLA
terms is proposed by a participating actor in the
negotiation process. In the example, the first set of SLA
terms is proposed by the actor “XYZ” (see the attribute
name of the sub-element Company of the element Actor).
This actor has the role of a service provider in our
example as indicated by the element Role in the
specification of XYZ.

An actor can also specify its own negotiation strategy,
i.e., the negotiation protocol that it will use to govern the
negotiation process and the communication with the other
party during it. Whilst the details of the negotiation
strategy are hidden from the other participant, information
of the overall protocol that an actor will use should be
revealed in order for the two parties to be able to establish
whether they are using compatible protocols and it is,
therefore, worth engaging in the negotiation process. For
the actor XYZ in the example of Figure 5, the negotiation
strategy is specified as MULTI-PHASE_MULTI-ISSUE.
This strategy indicates that XYZ will consider, in
principle, counter offers in response to a given offer that it
has made until an acceptable goal is reached (MULTI-
PHASE) and that more than one issue can be the subject
of negotiation (MULTI-ISSUE).

The SLA required by XYZ in Figure 5 is specified as a
logical combination of two conditions. The first of these
conditions states that availability of the service offered by
the actor is 80%. The second condition states that the
response time of the service offered by the actor is 9
milliseconds. Based on this offer, it is clear that XYZ
fulfills the boundary conditions of the discovery query of
Figure 4 (i.e., AVAILABILITY > 75% and
RESPONSE_TIME < 10ms), and it could, therefore,
become party to negotiation process where the offer and
counter offer of Figure 5 could be generated.

The second set of SLA terms in the example of Figure
5 is proposed by an actor, called “City” which has the role
of a service consumer. Hence, City is the service
consumer in our example. Furthermore, the service
consumer specifies its quality requirements in terms of a
set of constraints where each constraint in the set signifies
a desired SLA guarantee term.

In this example, the service consumer specifies a
constraint that is a logical combination of two conditions:
(a) a condition stating that availability should be greater
than 90% and (b) a condition stating that the response
time should be less than 8ms. It should be noted, that the
requestor, in this example has made counter offer

<sla:SLAContract xmlns:sla =
 "http://scube.eu/schema/SLA_Contract"
 xmlns:slac ="http://scube.eu/schema/Constraint"
 contractID ="SLA-No-2" name="S-Cube-SLA"
 scope ="UNDER_NEGOTIATION">
 < sla:SLATerms >
 < sla:Actor >
 <sla:Role >PROVIDER</ sla:Role >
 < sla:Type >
 <sla:Company name="XYZ"
 contactInformation ="Street_Address">
 </ sla:Company >
 </ sla:Type >
 <sla:NegotiationStrategy >
 MULTI-PHASE_MULTI-ISSUE
 </ sla:NegotiationStrategy >
 </ sla:Actor >
 < slac:Constraint >
 < slac:LogicalExpression >
 < slac:Condition relation ="EQUAL-TO">
 <slac:Arg1 ><slac:QualityAttribute
 name="AVAILABILITY"/>
 </ slac:Arg1 >
 <slac:Arg2 >
 <slac:Constant type ="NUMERICAL"
 unit ="PC">80</ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 </ slac:LogicalExpression >
 <slac:LogicalOperator >AND
 </ slac:LogicalOperator >
 <slac:LogicalExpression >
 <slac:Condition relation ="EQUAL-TO">
 <slac:Arg1 ><slac:QualityAttribute
 name="RESPONSE_TIME" />
 </ slac:Arg1 >
 <slac:Arg2 >
 <slac:Constant type ="NUMERICAL"
 unit ="MS">9</ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 </ slac:LogicalExpression >
 </ slac:Constraint >
 </ sla:SLATerms >

<sla:SLATerms >
 <sla:Actor >
 <sla:Role >CONSUMER</ sla:Role >
 <sla:Type >
 < sla:Company name="City"
 contactInformation ="Northampton_Sqr">
 </ sla:Company >
 </ sla:Type >
 < sla:NegotiationStrategy >
 MULTI-PHASE_MULTI-ISSUE
 </ sla:NegotiationStrategy >

 </ sla:Actor >
 < slac:Constraint >
 < slac:LogicalExpression >
 < slac:Condition relation ="GREATER-THAN">
 < slac:Arg1 ><slac:QualityAttribute
 name="AVAILABILITY"/>
 </ slac:Arg1 >
 <slac:Arg2 >
 <slac:Constant type ="NUMERICAL"
 unit ="PC"> 90</ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 </ slac:LogicalExpression >
 < slac:LogicalOperator >AND
 </ slac:LogicalOperator >
 < slac:LogicalExpression >
 < slac:Condition relation ="LESS-THAN">
 < slac:Arg1 ><slac:QualityAttribute
 name="RESPONSE_TIME" />
 </ slac:Arg1 >
 < slac:Arg2 >
 < slac:Constant type ="NUMERICAL"
 unit ="MS">8</ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 </ slac:LogicalExpression >
 </ slac:Constraint >
 </ sla:SLATerms >
 < sla:Penalty >... . . .</ sla:Penalty >
</ sla:SLAContract >

Figure 5. Example SLA

for the attributes availability and response time, in
response to the offers made by the service provider.

During the negotiation process the SLA contains
multiple sets of SLA terms where each set is proposed by
a participating actor in the negotiation process. This
facilitates a participant in the negotiation process to
consider all the offers made by all the participants without
storing the offers in local storage. However, after a
successful negotiation when an agreement is reached the
SLA contains only one set of SLA terms that includes the
list of participants that agreed to the constraints, as well as
the penalties that will apply if the SLA is violated and the
time validity of the agreed (pre-agreed SLA).

4.3. Specification of negotiation rules and
negotiation triggering rules

In our framework, negotiation rules and negotiation

triggering rules are specified in an XML language. The

schema of this language can be found in [16]. A
negotiation rule in this language has the generic structure:

IF (condition) THEN (action) ELSE (action)
Conditions in these rules are expressed as atomic

conditions over quality attributes of services or logical
combinations of atomic conditions. Rule actions can be of
three types: (i) accept actions which enable the acceptance
of the value of one or more attributes in a given SLA
offer, (ii) reject actions which enable the rejection of the
value of one or more QoS attributes in a given SLA offer,
and (iii) set actions which allow to define a new value or
range of values for one or more QoS attribute.

An example of a negotiation rule is shown in Figure 6.
This example expresses a rule used by a service consumer.
The rule states that if the service availability offered by a
provider is 90% and the offered service price is half of the
consumer's expected price then the offer should be
accepted.

<tnsr:NegotiationRule >
 < tnsr:If >
 < tnsr:LogicalExpression >
 <slac:Condition relation ="EQUAL-TO">
 < slac:Arg1 >
 <slac:QualityAttribute name="AVAILABILITY"
 party ="PROVIDER"/>
 </ slac:Arg1 >
 <slac:Arg2 >
 <slac:Constant type ="NUMERICAL">90
 </ slac:Constant >
 </ slac:Arg2 >
 </ slac:Condition >
 <slac:LogicalOperator >AND
 </ slac:LogicalOperator >
 <slac:Condition relation ="LESS-THAN">
 < slac:Arg1 >
 <slac:QualityAttribute name="PRICE"
 party ="PROVIDER"/>
 </ slac:Arg1 >
 <slac:Arg2 >
 <slac:ArithmeticExpression >
 <slac:ArithmeticOperand >
 <slac:QualityAttribute name="PRICE"
 party ="CONSUMER"/>
 </ slac:ArithmeticOperand >
 <slac:ArithmeticOperator >MULTIPLY
 </ slac:ArithmeticOperator >
 <slac:ArithmeticOperand >
 <slac:Constant type ="NUMERICAL">0.5
 </ slac:Constant >
 </ slac:ArithmeticOperand >
 </ slac:ArithmeticExpression >
 </ slac:Arg2 >
 </ slac:Condition >
 </ tnsr:LogicalExpression >
 </ tnsr:If >
 < tnsr:Then >
 < tnsr:Action >
 < tnsr:Accept >
 <tnsr:QualityAttribute name="AVAILABILITY"
 party ="PROVIDER"/>
 <tnsr:QualityAttribute name="PRICE"
 party ="PROVIDER" />
 </ tnsr:Accept >
 </ tnsr:Action >
 </ tnsr:Then >
</ tnsr:NegotiationRule >

Figure 6. Example Negotiation Rule

5. Related Work

An agent based framework for SLA management is
presented in [9]. In this framework an initiator agent from
the service consumer’s side and a responder agent from
the service provider’s side take part in the negotiation
process. The responder agent advertises the service level
capabilities and the initiator agent fetches these
advertisements and initializes the SLA negotiation
process. Different stages of SLA life cycle e.g. formation,
enforcement and recovery is performed through the
autonomous interactions among theses agents. In the case
of an SLA violation, the initiator agent may either claim
compensation and renegotiate with the service provider or
select a new service provider. Provision of compensation
in case of violation of SLA is also argued in [1]. This

approach claims that the penalty clauses in the SLA
should not only specify the monetary penalties or impact
on potential future agreements between the parties; rather
the penalty clauses should include several other issues
such as which countries laws will be applied in case a
conflict between the provider and the client arise, the
impact of the penalty clauses on the choice of service
level objectives.

Runtime renegotiation is suggested in [4, 7, 5, 2, 3] to
manage SLA violations. In [2] service level objectives are
revised and renegotiated at runtime and the deployed
service is adjusted to the newly agreed service level
objectives. A similar approach which allows changing
service level objectives whilst keeping the existing SLA is
described in [5]. In [3] a renegotiation protocol is
described that allows the service consumer or service
provider to initiate renegotiation while the existing SLA is
still in forced. In this protocol either party may initiate the
renegotiation due to the changes in the business
requirements and after a successful renegotiation the
existing SLA is superseded by a new contract.

All of these approaches are reactive in nature, i.e.
renegotiation starts only after an existing SLA is violated.
The outcome of renegotiation is either a revised set of
service level objectives allowing the acceptance of a
service from an existing provider or a new SLA for a new
service provider terminating the existing SLA. All these
approaches either affect the quality of the delivered
service or fail to guarantee uninterrupted service. Our
proposed framework integrates SLA negotiation with
dynamic service discovery and, hence, can provide
integrated runtime support for both these key activities
which are necessary in order to achieve the runtime
operation of service based applications with minimised
interruptions.

6. Conclusion and future work

This paper proposes a framework that integrates
service discovery with proactive SLA negotiation. The
integrated service discovery/SLA negotiation process can
be used by service consumers (i.e., composite services
and/or service based applications) in order to identify
potential alternative services for the constituent services
that they currently use. The identification of alternative
services is based on various characteristics of published
services including structural, behavioural and QoS
characteristics.

The framework negotiates with each alternative service
that is identified by the discovery process a service level
agreement over the QoS level of the service. The
negotiation process is carried out according to a two-
phase protocol that may result in a provisionally agreed
but not activated SLA or negotiation failure. A provisional

SLA has an expiry date by which it should either be
activated or cease to exist. The objective of proactive
SLA negotiation is to ensure that a service which could be
potentially used by a service consumer will have an
established set of provision terms if the need to deploy it
arises suddenly at runtime and, therefore, it won’t be
necessary to engage in a possibly lengthy negotiation
process interrupting the operation of the service consumer
application. To achieve this, service providers should be
willing to devote resources in negotiating SLAs with
service consumers that may never become their clients.
This will inevitably lead to some waste of resources from
the providers’ side. However, providers are likely to be
willing to undertake this cost due to the potential of
gaining new clients or if this is the only way to maintain
existing clients.

The presented framework opens a wide scope for
future investigations. The framework can be extended, for
example, to support proactive negotiation for hierarchical
SLAs, i.e., SLAs of complex composite services
deploying other composite services with their own sub-
SLAs which will need to be negotiated separately to come
to an outermost level agreement. Also in the presented
framework, negotiation rules are specified by the
participating parties before the negotiation starts and are
followed in the negotiation process. The framework can
also be extended to support dynamic adaptation of
negotiation rules, i.e. scenarios where the participants will
be able to dynamically change the negotiation rules during
the negotiation process if they realize that they cannot
achieve the desired agreements. Finally, a thorough
experimental evaluation will be necessary to establish the
exact costs and benefits of proactive negotiation under
different operational circumstances.

7. Acknowledgement

The research leading to these results has received

funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under the Grant
Agreement 215483 (S-Cube).

8. References

[1] Omer Rana, Martin Warnier, Thomas B. Quillinan, Fances
Brazier and Dana Cojocarasu, “Managing Violations in Service
Level Agreements”, Proc. of the Usage of Service Level
Agreements in Grids Workshop, 2007

[2] Di Modica G.,Tomarhio O. and Lorenzo V., "A framework
for the management of dynamic SLAs in composite service
scenarios", ICSOC 2007, International Workshops, 2007

[3] Michael Parkin, Peer Hasselmeyer, Bastian Koller, Philipp
Wieder: An SLA Re-negotiation Protocol. In proceedings of the

2nd Workshop on Non Functional Properties and Service Level
Agreements in Service Oriented Computing, November 2008.

[4] Waeldrich, O., Ziegler, W., "A WS-Agreement based
Negotiation Protocol", Technical Report, Fraunhofer Institute
SCAI, 2006.

[5] Rizos Sakellariou and Viktor Yarmolenko, "On the
Flexibility of WS-Agreement for Job Submission", Proc. of the
3rd Int. Workshop on Middleware for Grid Computing, 2005.

[6] Catalin L. Dumitrescu and Ian Foster, "GRUBER: A Grid
Resource Usage SLA Broker", Int. Euro-Par conference, 2005.

[7] Philipp Wieder, Jan Seidel, Oliver Wäldrich, Wolfgang
Ziegler, and Ramin Yahyapour, "Using SLA for Resource
Management and Scheduling - A Survey", Grid Middleware and
Services Challenges and Solutions, Springer, 2008.

[8] Raimondi, F. and Skene, J. and Chen, L. and Emmerich, W.,
"Efficient monitoring of web service SLAs", Technical report.
Research Notes (RN/07/01). UCL, London, UK. 2007.

[9] Q. He, J. Yan, R. Kowalczyk, H. Jin, Y. Yang, "Lifetime
Service Level Agreement Management with Autonomous
Agents for Services Provision". Information Sciences, Elsevier,
2009.

[10] Peer Hasselmeyer, Changtao Qu, Lutz Schubert, Bastian
Koller, and Philipp Wieder. Towards Autonomous Brokered
SLA Negotiation. In: Proceedings of the eChallenges e-2006
Conference, Barcelona, Spain, October 2006.

[11] Paul Karaenke and Stefan Kirn, "Service Level
Agreements: Evaluation from a Business Application
Perspective", Proceedings of eChallenges 2007

[12] Pichot, A.; Wieder, P.; Ziegler, W.; Wäldrich, O. "Dynamic
SLA-negotiation based on WS-Agreement", CoreGRID -
Network of Excellence, 2007, Technical Report; 82, TR-0082

[13] V. Robu, D.J.A. Somefun, and J. A. La Poutre. "Modeling
complex multi-issue negotiations using utility graphs", In Proc.
of the 4th Int. Conf. on Autonomous Agents & Multi Agent
Systems (AAMAS'05), Utrecht, ACM Press, 2005

[14] Kyriakos Kritikos and Barbara Pernici, editors. "Initial
Concepts for Specifying End-to-End Quality Characteristics and
Negotiating SLAs". S-Cube project deliverable, June 2009. S-
Cube project deliverable: CD-JRA-1.3.3. http://www.s-cube-
network.eu/achievements-results/s-cube-deliverables.

[15] A. Zisman, G. Spanoudakis, and J. Dooley. A Framework
for Dynamic Service Discovery, 23rd Int. IEEE/ACM Conf. on
Automated Software Engineering, 2008.

[16] SLA Specifications:
http://www.soi.city.ac.uk/~am697/sla/SLA-Specification.zip

Evolving Services from a Contractual
Perspective?

Vasilios Andrikopoulos1, Salima Benbernou2, and Mike P. Papazoglou1

1 INFOLAB, Tilburg University, Netherlands
2 LIRIS, Université de Lyon 1, France

{v.andrikopoulos, mikep}@uvt.nl, sbenbern@liris.univ-lyon1.fr

Abstract. In an environment of constant change, driven by competition
and innovation, a service can rarely remain stable - especially when it de-
pends on other services to fulfill its functionality. However, uncontrolled
changes can easily break the existing relationships between a service and
its environment (its customers and providers). In this paper we present
an approach that allows for the controlled evolution of a service by lever-
aging the loosely-coupled nature of the SOA paradigm. More specifically,
we formalize the notion of contracts between interacting services that en-
able their independent evolution and we investigate under which criteria
can changes to a contract-bound service, or even to the contract itself,
be transparent to the environment of the service.
Keywords: service evolution, service contracts, compatibility, contract
invariance, contract evolution

1 Introduction

A number of serious challenges like mergers and acquisitions, outsourcing pos-
sibilities, rapid growth, regulatory compliance needs, and intense competitive
pressures require changes at the enterprise level and lead to a continuous busi-
ness process redesign and improvement effort. Service changes that are required
by this effort however must be applied in a controlled fashion so as to mini-
mize inconsistencies and disruptions by guaranteeing seamless interoperation of
business processes that may cross enterprise boundaries.

In general, we can classify service changes depending on their direct and side
effects [1] in shallow, where the change effects are localized to the service or
are strictly restricted to the clients of that service, and deep, that are cascading
types of changes which extend beyond the clients of a service, and possibly to
its entire value-chain, i.e., to clients of the service clients such as outsourcers
or suppliers. Shallow changes characterize both singular services and business
processes and require a structured approach and robust versioning strategy to
support multiple versions of services and business protocols. Deep changes on

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

the other hand are more intricate and require the assistance of a change-oriented
service life cycle where the objective is to allow services to predict and respond
appropriately to changes as they occur [1]. Due to the complexity and scope of
deep changes, this paper discusses only shallow changes, and more specifically
changes to the Structural layer elements of the Service Specification Reference
Model introduced in [2], i.e., to the message content, operations, interfaces, and
message exchange patterns (MEPs), roughly corresponding to WSDL artifacts.

The setting discussed has a number of similarities with the fields of evo-
lution transparency and interoperability preservation that have been discussed
in different forms in [3] and [4] (among others), and essentially boil down to
preventing incompatibility between interoperating (interacting) services. These
works though depend mainly on adaptation mechanisms to maintain interoper-
ability, and adaptation approaches are by definition a posteriori interventions
focusing on incompatibility identification and resolution by modification of a ser-
vice. In that sense, the adaptation process can not discern between shallow and
deep changes and is unable to prevent the propagation of changes throughout
the value chain, since the modification of a service may have unforeseen conse-
quences to the parties that interact with it. For that reason we are focusing on
identifying under which conditions changes to a service are shallow and discuss
an a priori approach that aims to prevent or at least predict and confine the
necessity for adaptation.

The goal of this work is therefore to allow the independent evolution of loosely
coupled interacting parties in a transparent manner so as to preserve their in-
teroperability. In this context, the parties involved in an interaction can either
be services, or services and client (service-based) applications. We only consider
bilateral interactions, and for each such interaction we distinguish two roles: that
of the producer and that of the consumer. It must be kept under consideration
that the role of a service, unlike that of an application that always acts as a con-
sumer, can vary depending on the interaction. An aggregate service for example
plays both roles: that of the producer for its clients, and that of the consumer
when it interacts with the aggregated services to compose a result. To achieve
meaningful interoperability in this context, service clients and providers must
come to a mutual agreement, a contract of sorts between them [5]. A contract of
this type formalizes the details of a service in a way that meets the mutual under-
standing and expectations of both service provider and service client. Building
around this idea, we are presenting mechanisms to effectively deal with the evo-
lution of the structural aspect of both parties, while preserving interoperability
despite the changes that may affect them. After we lay down this foundation we
discuss the evolution of interactions and contracts themselves.

The rest of the paper is organized as follows: section 2 presents a notation
for service description that leverages the decoupling of service providers and
clients through the introduction of the contract construct (section 3). Section
4 shows how the introduced notions can be used to control the evolution of
the interacting parties while maintaining a high degree of flexibility. Section 5
will briefly present related works, and section 6 discusses conclusions and future

work. To facilitate the conversation, we are using the simple service described
below as a point of reference:

Example 1 (Running Example). Let’s assume the case of a very simple inventory
service that checks for the availability of an item and responds that either the
purchase order can be fulfilled, or issues a fault stating that the order cannot be
completed. The WSDL file of this service is shown in listing 1.

...

<types>

<xsd:schema targetNamespace="http://e-grocery.com/InventoryService">

<xsd:complexType name="inventoryItem">

<xsd:sequence>

<xsd:element name="orderID" type="xsd:string"/>

<xsd:element name="itemID" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

<message name="InventoryRequest">

<part name="inventoryItem" type="tns:inventoryItem"/>

</message>

<message name="InventoryConfirmation">

<part name="confirmationMessage" type="xsd:string"/>

</message>

<message name="InventoryFault">

<part name="faultMessage" type="xsd:string"/>

</message>

<portType name="InventoryServicePortType">

<operation name="checkInventory">

<input name="item" message="tns:InventoryRequest"/>

<output name="confirmation" message="tns:InventoryConfirmation"/>

<fault name="fault" message="tns:InventoryFault"/>

</operation>

</portType>

...

Listing 1: Inventory Service WSDL specification

2 Service Specifications

The WSDL description of the inventory service in listing 1 is far from complete in
describing the structural aspect of the service. In specific, apart from providing
an unambiguous schema for the service interfaces (the signature of the service)
to be used by its clients, it lacks completely in providing a) any information on
the services used by the service itself to fulfill its functionality (if any), and b)

the means to connect the information required and provided by its signatures
with that of the signatures of the other services it is using. It is therefore not
suitable for describing the interaction of the service with its environment and has
to be replaced by a declarative specification that fulfills this role. [2] provides
a more exhaustive discussion on the structure and content of such a service
specification scheme. For the purposes of this work, we will only define the
following constructs:

Definition 1 (Element). An element e of a service s is defined as a tuple
(a1, a2, . . . , an), the set of attributes that characterize the element. ai is either
an atomic attribute or another element ei of the service.

For example, InventoryRequest, checkInventory, and the rest of the WSDL
constructs in listing 1 can be represented as elements a1 =(inventoryItem),
a2 =(item, confirmation, fault), etc.

Definition 2 (Subtyping). The specification E of a service is defined by the
set E = {ei, i ≥ 1} of its elements. We associate to E the reflexive and transitive
relation subtyping ≤ on elements (E,≤) defined as: e ≤ e′ ⇔ {a1, . . . , an} ⊆
{a′

1, . . . , a
′
m},m ≥ n ∧ ai ≤ a′

j , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As discussed in the previous section, the approach discussed by this work
assumes that a) both producer and consumer are in the general case services, and
therefore use the same notation to describe their specifications, and b) a producer
in one interaction can also act as the consumer for another interaction. This latter
interaction may or may not be related to the producer’s function in the former.
Beyond this generic case, the same paradigm can also be applied to ”simpler”
cases: autonomous services that implement all of their offered functionalities
without using other services act only as producers. Non-service clients (e.g., GUI-
supported applications) can be perceived as special cases of exclusive consumers.

We define two orthogonal views on E (see figure 1a): the expositions/expectations
view and the required/provided view:

(a) Both views (b) XPO/XPE view (c) REQ/PRO view

Fig. 1: Views on the service specification

These views provide us with reference points in disambiguating the roles and
functions of elements in a service specification like listing 1. More specifically:

2.1 Exposition/Expectation view

This view (figure 1b) classifies the elements within a service specification with
respect to whether they are offered as an interface to the environment or they
are ”imported” into the service specification, referring to interface elements of
other services. In the former case, the service acts as a producer; in the latter as
a consumer. Elements of a service specification can therefore fall into one of the
following categories:

– Exposition Expo: the set of elements that describe the offered functionality
of the service.

– Expectation Expe: the set of elements describing the perceived offering of
functionality to the service by other services.

The WSDL file of the inventory service for example in listing 1 contains the
information on how to access the elements that constitute the inventory service
and what information is exchanged while accessing it. From the perspective of
the producer of the service, this file specifies what the producer will offer to
the service customers: if the checkInventory operation is invoked using the
InventoryServicePortType and the message payload defined, the generated
result or fault message will be a simple string. The elements of the file are in
that sense in the exposition subset of the service producer specification.

On the other hand, when a consumer of this service builds and/or uses an
application that incorporates an invocation of this service, the consumer refers
to what it perceives to be a set of elements that allow it to access the service.
To put it simply, the client is built on the premise of a particular specification
of the provided interface, being bound for example to the service of listing 1.
These elements are therefore contained in the expectation subset of the consumer
specification. What becomes apparent from this is that the same elements can
either be expositions or expectations; it only depends on the adopted viewpoint.

Ideally, this perceived specification and the actual specification of the pro-
vided service are the same - and that is so far the fundamental assumption in
service interactions. But changes to either side, as we will discuss in the follow-
ing sections, could lead to inconsistencies - in other terms incompatibilities -
between those two.

2.2 Required/Provided view

The division enforced by this view (figure 1c) is much more straightforward: it
provides the means to cleanly separate input from output in a service specifica-
tion (irrespective of if it acts as a producer or a consumer). More specifically:

– Required Ereq: contains the input-type elements of the service specification.
– Provided Epro: contains the output-type elements.

InventoryRequest for example is clearly a required element for the producer:
it is the input message type for the service. At the same time it is a provided

element for the consumer since it has to be provided to the producer in order to
use the respective operation. InventoryConfirmation and InventoryFault are
respectively provided elements for the producer - they are produced as output by
the service in one way (normal result) or another (fault message) - and required
elements for the consumer (input to it).

2.3 Combining the views

Since the two views are orthogonal, they can be used in conjunction to describe
the elements of a service specification: Expo ∪ Expe = Ereq ∪ Epro = E (figure
1a).

Example 2. Figure 2 shows how an invocation of the inventory service of listing 1
can be described using the classification presented. Due to the request-response
messaging pattern of the checkInventory operation, the interaction between
the service and its client is broken down into two phases: in the first phase, the
consumer (client) is using the expectation element (1) to invoke the exposition
element (2) of the producer (service). Since (1) is an output for the consumer
it belongs to the Epro

consumer set, and (2) is in the Ereq
producer as the input of the

service. The situation is inversed for the second phase, where the producer uses
(3) to call back (4) in the consumer side.

Element

1 Consumer:InventoryRequest

2 Producer:InventoryRequest

3 Producer:InventoryResponse

4 Consumer:InventoryResponse

Fig. 2: Service Interaction

3 Contracts

This section builds on the notation and classification presented in the previous
section to discuss the interaction of parties in a loosely-coupled environment
and introduce the notion of contracts as the means to leverage the decoupling
between producer and consumer.

By the term contract we do not refer to the legal documents that describe a
binding agreement, but we use the term in the same manner as the (software)
contracts in the Eiffel language [6]. The contracts in this context are documents
that record the benefits expected by each party from their interaction, and the
obligations that each party is prepared to carry out in order to obtain these

promised benefits. In that sense, the contract protects both sides by clearly
defining what is the acceptable contribution and result for a task described by
the contract. Our approach applies the same paradigm on services specifications,
using the different views discussed above to distinguish between those benefits
and obligations, depending on the role that the service plays.

In specific, there is an important distinction in the way that the producer
and the consumer of a service are perceiving a service specification document:
the producer promises to offer the service in the manner specified in it (the
expositions set), and the consumer accepts this promise and builds a client for
it based on this promise (the expectations set). In most contemporary SOA
implementations, by using for example Web services technologies, this funda-
mental difference is bridged by accepting one perspective, that of the producer,
and shifting the consumer side perspective accordingly. But in that case the con-
sumer has to adopt any changes and assumptions that are done by the producer.
Failure to comply with the producer means that the consumer is unable to use
the offered functionality, which explains why producer updates typically fail on
the client side.

In order to amend this situation, we propose to use a construct (the contract)
that bridges the two perspectives and allows for mapping from and to it by
either party. This contract is nothing more than an intermediary specification,
containing a set of commonly agreed elements specified in a party-independent
way. By providing a neutral mapping procedure from each party to the contract
we minimize the producer/consumer coupling. Furthermore, given a contract,
we allow for reasoning by each party in isolation, enforcing the separation of
concerns and responsibilities in service design and operation. In the following we
formally define the contract construct and describe how to formulate a contract
between two parties.

3.1 Contract Definition

In principle only a part of the offered service functionalities may be used by a
specific client; on the other hand, a client may depend on a number of disparate
services in order to achieve its goals. Thus we need a way to identify and isolate
the parts of the interacting parties that actually contribute to the interaction. For
that purpose, we will denote with P ⊆ Expo

producer and C ⊆ Expe
consumer the subsets

from the producer and consumer specifications respectively that participate in
the interaction.

Following on, we define a binding function ϑ that reasons horizontally be-
tween the elements of parties P and C:

Definition 3 (Service Matching). A service matching is a binding function
defined as ϑ : P × C → U,U = P ∪ C such that

ϑ(x, y) = {z ∈ U/
{
x ≤ z ≤ y, x ∈ P req, y ∈ Cpro

y ≤ z ≤ x, x ∈ P pro, y ∈ Creq } (1)

Binding function ϑ is acting in the same manner as a schema matching func-
tion would. Schema matching aims at identifying semantic correspondences be-
tween elements of two schemas, e.g., database schemas, ontologies, and XML
message formats [7]. It is necessary in many database applications, such as
integration of web data sources, data warehouse loading and XML message
mapping. In most systems, schema matching is manual or semi-automatic; a
time-consuming, tedious, and error-prone process which becomes increasingly
impractical with a higher number of schemas and data sources to be dealt with.
In our case though, the matching function relies on the sub-typing relation to
automatically identify elements on either party that are semantically related to
each other according to their respective schemata.

Example 3. Let’s assume that P contains the elements of listing 1 and let’s
denote by x ∈ P req the InventoryItem element: x = (a1, a2), a1 = orderID
and a2 = itemID. A consumer of this service that is bound to listing 1 refers
of course to the same element InventoryItem, and as such it holds that ∃y ∈
Cpro/y = x⇒ ϑ(x, y) = z = (a1, a2).

Now consider the case of another consumer that is bound to listing 2 that
is exactly the same as listing 1 in all aspects except from the definition of
InventoryItem which has an extra argument: y′ = (a1, a2, a3), a3 = comment to
allow for attaching notes to items. As long as the producer can ignore this extra
argument in the requests of the consumer, then by its definition ϑ(x, y′) = z′

returns two possible values: z′ = (a1, a2) or z′ = (a1, a2, a3); selection of one of
these options is a matter of policy in contract formulation (see following section).

...

<xsd:complexType name="inventoryItem">

<xsd:sequence>

<xsd:element name="orderID" type="xsd:string"/>

<xsd:element name="itemID" type="xsd:string"/>

<xsd:element name="comment" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

...

Listing 2: Alternative inventory item definition

Based on the matching function ϑ we can define the Contract R between two
parties as a service mapping:

Definition 4 (Service Mapping). A Service mapping is a Contract R defined
by a triplet < P,C,Θ > between the two parties that is defined as their image
under ϑ, i.e., Θ = {ϑ(x, y)|x ∈ P, y ∈ C}. The elements that comprise R are
called the clauses of the contract.

The mapping therefore consists of the results of the binding function for all
possible pairs in the producer/consumer sets and is formulated by reasoning
vertically through the parties. The contract that is produced by this mapping
identifies and represents the mutually agreed specification elements that will
be used for the interaction of the parties. Figure 3 demonstrates the relation
between P , C, and R graphically.

Fig. 3: Producer/Consumer/Contract relation

3.2 Contract Formulation and Management

The definition of contractR between two parties as a service mapping< P,C,Θ >
allows for a straightforward formulation of the contract: given the two parties’
specifications P and C, each of which defines the elements through which the
interaction is achieved, Θ can be calculated directly by applying the match-
ing function ϑ to them. The issue of contract development therefore shifts in
producing P and C from the service provider Expo

producer and client Expe
consumer

specifications respectively.
Due to the fact that the service provider is unaware of the internal workings

of the service client (represented by the Expe
consumer set) the process of contract

formulation is consumer-driven; more specifically, the steps to be followed are:

1. The consumer decides on the functionality offered by the Producer that will
be used (if more than one is offered).

2. The set of elements from Expo
producer that fulfill this functionality (e.g., the

port type and the associated structural elements) are identified.
3. The identified elements are either copied to the (initially empty) Expe

consumer

set or the existing Expe
consumer is used.

4. The image of P and C under ϑ set is calculated. If the resulting set is empty
then the image is attempted to be re-calculated using alternative values from
ϑ (or cancelled in case all possibilities have been exhausted); otherwise the
contract R =< P,C,Θ > is produced.

5. The consumer submits the formulated contract R to the producer for pos-
terity and begins interaction with producer.

The formulating, storing, and reasoning aspects of the proposed solution
can be incorporated in the service governance infrastructure that supports each
party. Since ϑ may return one or more possible values, depending on the sub-
typing ’distance’ in the element definition between the producer and consumer
specification, a minimum level of ’insight’ on the consumer side is required in
selecting the appropriate elements from the producer and in assigning values to
the binding function ϑ:

Conservative selection policies would opt for the values contributed by the
consumer to the calculation of ϑ, trying to protect the consumer from pos-
sible changes to the producer.

Liberal selection policies on the other hand would pick the values contributed
by the producer and allow for the possibility of the consumer evolving in the
future.

The type of policy to be followed is therefore largely a design and governance
issue and has to be dealt as such. The solution presented assumes that producers
and consumers have the means to formulate, exchange, store, and reason on the
basis of contracts. In absence of these facilities from one or both parties the
interaction between them reverts to the non contract-based modus operandi that,
as we have discussed above, can not guarantee interoperability. The exchange of
contracts requires the existence of a dedicated mechanism for this purpose that
is not part of the service specification.

4 Contract-Controlled Service Evolution

The previous section discussed how to leverage the loose coupling of the producer
and the consumer by means of the contract construct. The following section
discuss how this design solution enables evolutionary transparency that preserves
(under certain conditions) the producer/consumer interoperability.

In the initial ’static’ state of two interoperating parties P and C, and after
a contract R =< P,C,Θ > has been formulated and accepted between them, it
holds in general that P ≡ Θ ≡ C. For example, when a simple client is using
the service described in listing 1 it is safe to assume that due to the granularity
of the service, the client will be using the one (and only) functionality provided
by it. That in turn means that it will refer to all the elements contained in the
WSDL file. Therefore, P ≡ C and by the definition of the contract construct,
P ≡ Θ ≡ C.

But since either party can, or at least should be able to evolve independently
of the other, shifts from this state can occur. When changes for example occur to
the producer then it may hold that P ′ 6≡ Θ ≡ C, or for the consumer side P ≡
Θ 6≡ C ′, or both. These latter states reflect situations of incompatibility between
producer and consumer and they have to be prevented from occurring in order
to avoid the occurrence of deep changes in the context of the interacting parties.
The introduction of a contract between them allows us to reason about the
contribution of each party to the interaction without directly affecting the other

party, ensuring that each party is able to evolve independently but transparently,
that is without requiring modifications, to each other.

For that purpose we will distinguish shallow changes occurring to a party
in two categories: those that respect the contractual invariance and those that
require contractual evolution. Changes to a party that fall in the former category
do not affect the existing contract between the parties. Changes in the latter
category require modifications to the contract but nevertheless do not require
changes to the other party.

4.1 Contract Invariance

Taking advantage of the ability to reason exclusively on one party given an exist-
ing contract, without the need for the other party to participate in this reasoning,
exemplifies the notion of independence in evolution. In order to show how this is
accomplished we will first formally define what it means for a (modified) party
specification to respect, or to be compliant with a contract:

Definition 5 (Compliance to Contract). A version of a party, e.g. version
P ′ of producer P , is said to be compliant with respect to an existing contract
R =< P,C,Θ > with a consumer C denoted by P ′ �R C iff

∀z ∈ Θ/∃x′ ∈ P ′, ϑ(x′, y) = z, y ∈ C (2)

Corollary 1. Consequently, P ′ violates R, and we write P ′ 2R C, iff ∃z ∈
Θ/∀x′ ∈ P ′, ϑ(x′, y) 6= z, y ∈ C.

The definition above allows for a simple algorithm to check for the compliance
of a new version of a party in the producer-consumer relationship: as long as there
is a mapping produced by ϑ to all clauses of the contract from the elements of
the new specification, the two versions are equivalent or compatible with respect
to the contract - or more formally:

Definition 6 (Compatibility w.r.t. existing Contract).

1. Given a party, e.g. consumer C, then two versions of the other party, P and
P ′, are called compatible w.r.t. a contract R denoted by P 7→R P ′ iff they
are both compliant to R: P �R C ∧ P ′ �R C.

2. Two versions of a party S and S′ are called fully compatible iff they are com-
patible for all contracts Ri, i ≥ 1 that they participate in, either as producers
or consumers: S 7→Ri S

′ ∀Ri.

Example 4. Consider the modifications applied to the service specification as
depicted in listing 3. Let’s assume that it is P that is modified in this way;
in that case P ′ is compatible with P , since they are both compliant to the
same contract R. To prove that, we start with the observation that element
x =InventoryConfirmation in listing 1 is in the P pro set, and therefore con-
tributes to the second leg of the binding function (1) which means that

∃y ∈ Creq, z ∈ Θ/y ≤ z ≤ x. (3)

Let’s denote with x′ the changed element from listing 3. It holds that x ≤ x′

and in conjunction with (3) we get: ∃y ∈ Creq, z ∈ R/y ≤ z ≤ x′. Thus,
ϑ(x′, y) = ϑ(x, y), and since the rest of the matchings remain unchanged, by
(2) we can deduce that P ′ �R C. If listing 3 though is depicting changes to the
customer side, then by the same reasoning we can easily prove that C and C ′

are not compatible, since P 2R C ′.

...

<message name="InventoryConfirmation">

<part name="confirmationMessage" type="xsd:string"/>

<part name="confirmationDate" type="xsd:date"/>

</message>

...

Listing 3: New inventory Service WSDL specification

Figure 4 illustrates the similarities between service matching/mapping and
compliance/compatibility: reasoning in the former cases is performed horizon-
tally and in the latter ones vertically.

Fig. 4: Compliance vs. Compatibility
Fig. 5: Backward Compatibility

4.2 Contract Evolution

The previous section discusses the criteria under which changes to one party can
leave the contract between them intact, essentially ensuring that these changes
are shallow. This does not necessarily mean that all changes that do not re-
spect this criteria are deep. The existing interaction between the parties can be
preserved in certain cases, despite the necessity to modify the contract due to
changes to one or both of the parties involved, defined as backward and forward
compatibility preserving cases:

Definition 7 (Backward Compatibility). Two contracts R =< P,Θ,R >
and R′ =< P,Θ′, C ′ > are called backward compatible and we write R 7→b R

′

iff ∀x ∈ P/∃z′ ∈ Θ′,∃y′ ∈ C ′, z′ = ϑ(x, y′).

In that case (see figure 5), changes to the consumer side leave the producer
unaffected. The (new) consumer will use the producer in the same manner as
the old consumer did.

Definition 8 (Forward Compatibility). Two contracts R =< P,Θ,R > and
R′ =< P ′, Θ′, C > are called forward compatible and we write R 7→f R′ iff
∀y ∈ C/∃z′ ∈ Θ′,∃x′ ∈ P ′, z′ = ϑ(x′, y).

Similarly, forward compatibility allows for the seamless replacement of the
(old) producer with a new producer in the interaction with the consumer without
the latter party to have to be modified in any way.

By combining the two definitions we can define when two contracts are com-
patible:

Definition 9 (Contract Compatibility). Two contracts R =< P,Θ,R >
and R′ =< P ′, Θ′, C ′ > are called compatible and we write R 7→ R′ iff they are
both backward and forward compatible: R 7→b R

′ ∧R 7→f R
′.

Contrary to the case of contractual invariance, evolution of the contract itself
requires of the parties to exchange a new contract and replace the old contract
with the new one. This creates an additional communication overhead that nev-
ertheless has to be weighted against the cost of possible inconsistencies in the
current and future interactions of the parties due to the discrepancy between
the contract versions.

5 Related Work

The term ’contract’ and the approach of introducing contracts in software com-
ponents design stems from the Eiffel language [6], [8]; the core ideas of that work
have greatly influenced our approach.

There are a number of works discussing the introduction of adapters between
interacting parties to ensure their interoperability: [9], [10], [3], [11], [12], and [4]
among others. Of specific interest to us is the work in [13], since they also make
a clear distinction between the service producer and service consumer interfaces
and protocols and use mappings to bridge them. Then they proceed to describe
how to semi-automatically identify and resolve incompatibilities (mismatches)
on interface and protocol level. Our approach extends this idea of separating
producer and consumer specifications, but discusses how to avoid mismatches
altogether instead of resolving them.

Furthermore, the W3C Technical Architecture Group has published an edito-
rial draft on the extensibility and versioning of XML-based languages [14]. Their
findings build on a number of previously developed theories and techniques like
[15], [16] and draw lessons from the HTML and HTTP standards. They show

how compatibility can be defined in terms of set theory, using super-sets and sub-
sets to ensure compatibility. Our approach follows a similar way in dealing with
the issue of compatibility, but instead of allowing the direct producer/consumer
interaction, it introduces the contract construct as an intermediary to further
decouple them.

The notion of service mapping comes from the field of schema evolution, i.e.,
the ability to change deployed schemas - metadata structures formally describing
complex artifacts such as databases [17],[18],[7], messages, application programs
or workflows. Typical schemas thus include relational or object-oriented (OO)
database schemas, conceptual ER or UML models, ontologies, XML schemas,
software interfaces and workflow specifications. Effective support for schema evo-
lution is challenging since schema changes may have to be propagated, correctly
and efficiently, to instance data, views, applications and other dependent system
components. Our approach provides the means to identify schema changes that
do not result in propagation of changes.

6 Conclusions & Future Work

In the work presented in the previous sections, we present an approach that
allows for transparency in the evolution of a service as viewed from the perspec-
tive of both clients and providers, in the context of the loosely-coupled nature
of the SOA paradigm. For that purpose we introduce the contract construct as
the means to leverage the decoupling of the interacting parties. We present a
contract constructing function that bridges the gap between service matching
and service mapping. Following on, we build on contractual invariance and con-
tractual evolution to show how to effectively deal with shallow changes to the
service provider and client interaction - without the need for adaptation which
may lead in turn to deep changes.

There are of course a number of issues that are briefly discussed by our
approach that we plan to work on in the future. The matter of management of
the contracts and its relationship to service governance mechanisms is the most
important issue at hand, since it can provide further insights on the proposed
solution. Furthermore, the binding function ϑ value selection policy has to been
further investigated. Using a static selection policy can be very restricting; a
balancing mechanism for example can be applied for a more dynamic approach,
expressed for example by negotiation between the parties in deciding the terms
of the contract. Such a negotiation process during the formulation of the contract
could result in the offering of additional or more specialized functionalities by the
producer and could add a feedback loop to the presented algorithm for contract
formulation. A promising direction when it comes to the implementation of our
approach is to see whether it is possible to use techniques like the mapping
constraints and tools developed by the schema mapping community like ToMAS
[7].

The preservation of interoperability enforced by our approach is only the
foundation in discussing the evolution of the interaction of parties. Following

on, we plan to investigate how we can build on this work to deal with deep
changes and the propagation mechanisms that run through them. On the other
hand, another of the limitations of this work, the focus on the structural aspect
of the service specification has also to be investigated, and examined if it is
possible to apply the same approach to business protocols and policy-related
constraints.

References

1. Papazoglou, M.P.: The challenges of service evolution. In Bellahsene, Z., Léonard,
M., eds.: CAiSE, Springer (2008) 1–15

2. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of
service specifications. In Bellahsene, Z., Léonard, M., eds.: CAiSE, Springer (2008)
359–374

3. Ponnekanti, S.R., Fox, A.: Interoperability among independently evolving web
services, Toronto, Canada, Springer-Verlag New York, Inc (2004) 331–351

4. Senivongse, T.: Enabling flexible cross-version interoperability for distributed ser-
vices, IEEE Computer Society (1999) 201

5. Papazoglou, M.P.: Web Service: Principles and Technology. Prentice Hall. Addison-
Wesley (E) (2007)

6. Meyer, B.: Applying ”design by contract”. Computer 25 (1992) 40–51
7. Velegrakis, Y., Miller, R.J., Popa, L., Mylopoulos, J.: Tomas: A system for adapting

mappings while schemas evolve. In: ICDE. (2004) 862
8. Meyer, B.: Object-Oriented Software Construction (2nd ed.). 2nd edn. Prentice

Hall PTR, Upper Saddle River, NJ, USA (1997)
9. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM

Trans. Program. Lang. Syst. 19 (1997) 292–333
10. Evans, H., Dickman, P.: Drastic: A runtime architecture for evolving, distributed,

persistent systems. Lecture Notes in Computer Science 1241 (1997) 243??
11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing

adapters for web services integration. In: CAiSE, Springer (2005) 415–429
12. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented

framework for service adaptation. (2006) 15–26
13. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions, Banff, Alberta, Canada, ACM (2007)
993–1002

14. Orchard(edt.), D.: Extending and versioning languages: Terminology (2007) W3C
Technical Architecture Group.

15. Orchard, D.: A theory of compatible versions (2006) Published: xml.com article.
16. Hoylen(edt.), S.: Xml schema versioning use cases (2006) Published: W3C XML

Schema Working Group Draft.
17. Miller, R.J.: Retrospective on clio: Schema mapping and data exchange in practice.

In: Description Logics. (2007)
18. Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L.:

Nested mappings: Schema mapping reloaded. In: VLDB. (2006) 67–78

Adaptation of Service-based Business Processes by
Context-Aware Replanning

Antonio Bucchiarone, Raman Kazhamiakin, Marco Pistore and Heorhi Raik
Fondazione Bruno Kessler

Via Sommarive, 18, Trento TN 38100, Italy
{bucchiarone,raman,pistore,raik}@fbk.eu

Abstract—Business processes are typically used by orga-
nizations to meet a specific business goal by executing a
set of coordinated activities realized through Web services
and service compositions. Operating in open and dynamic
environments, business processes often need to be adapted
during the execution to react to changes and unexpected
problems. The aim of this paper is to provide a dynamic and
flexible way to adapt business processes to run-time context
changes that impede the achievement of a business goal. We
define a formal framework that uses a planning technique to
adapt the execution of the service-based business process at
runtime in case of context changes. The adaptation enables the
business process to continue its normal execution by recovering
it to a context, in which the original goal can be achieved.
The proposed solution is implemented and validated using a
scenario from the logistics domain.

Keywords-Business Processes, Adaptation, Services, Context,
Planning.

I. INTRODUCTION

In recent years, service-oriented architectures have been
widely used for the realization of complex business pro-
cesses [1]. Services and service compositions are exploited
in a wide range of application domains, such as logistics,
supply chain management, user-centered processes, etc. In
such processes the activities are realized through the invo-
cation of a set of available services that could be software
services but also human-based services, where the human
actors realize particular tasks.

Modern business processes often operate in very dynamic,
open, and distributed environments, where the relevant prop-
erties are changing continuously. Sometimes these changes
can compromise the overall execution of the process causing
the failure of the entire application execution. In order to
react to such failures, there is a need for mechanisms that
bring the process execution back to the context from which
the business goals can be achieved and the normal execution
can proceed. One way to have a business process adaptable
is to consider a priori all the cases in which the process can
deviate from the normal behavior (i.e., Exception Handling
[2]). In this way, it is possible to completely characterize
the reaction of the system at design time as the activities
(or even subprocesses) implementing the recovery behavior.
This specification may be performed by extending standard

languages (e.g., BPEL) with the adaptation-specific tools
[3], [4], using a set of predefined adaptation rules [5],
[6], using aspect-oriented approaches [7]–[9], or modeling
and managing business process variants [10]. However, in
many situations, such approaches fail to completely solve
the problem of adaptation. First, for complex processes the
variety of alternatives that require specific recovery actions
may be too large for the designers to consider, making the
business process hard to define, implement, and revise. And
still, unexpected situations and changes still may occur at
run-time, requiring the adaptation to be performed even if
the concrete case (and its handling) has not been anticipated
at design time. To deal with such situations, the adaptation
mechanisms should be much more dynamic and flexible, so
that the process can recover from critical deviations without
defining them a priori.

In this paper, we aim at providing a formal framework
that uses an efficient automated planning technique to adapt
the execution of the business process at runtime consider-
ing the state of the context. This approach relies on the
two key ideas. First, adaptation activities are not explicitly
represented and are not associated to a concrete context
situation or context change. Instead, they are dynamically
derived from the currently observed context, the state of
a business process, and business goals. To support this,
we propose an explicit yet compact and efficient model of
context, services, and business goals. Second, we propose
an execution environment, where the context of the process
is continuously observed, and the adaptation is triggered in
case of deviations from what is expected by the business
process activities and policies.

The rest of the paper is structured in the following
way. In Section II we present our motivating example and
discuss the main challenges we face. Section III provides an
overall picture of the presented approach, while in Section
IV the solution is outlined. Specifically, it includes the
formal framework and the implementation of the adaptation
mechanism. Section V is devoted to the evaluation of the
approach using the motivating example and the prototype
implementation of the architecture. In Section VI we discuss
related work and conclude the paper with open issues we
plan to address in the future.

II. PROBLEM STATEMENT

In this section we present the reference scenario from the
logistics domain to illustrate the problem addressed in the
paper. In this scenario a business process is implemented
to handle the delivery of cars from ships to the retailers
in the automobile terminal of the Bremen sea port [11].
Activities of the process include unloading the cars from
the ship, storing, applying treatment procedures to meet
the customer’s requirements and distributing to the retailers.
This business process, depicted in Figure 1, is realized
as an orchestration of appropriate services, which can be
atomic (e.g., Car Check Service, Unloading Service, etc.) or
composite (e.g., Store Car Service), they may exhibit non-
deterministic behavior, and perform asynchronous message
exchanges. Along with the services directly involved in the
main process, additional various services are available in the
application to deal with specific situations.

The business process described here is defined under an
assumption that the involved activities are executed success-
fully leading to proper changes in the operated domain.
However, numerous unexpected situations may take place
at runtime. For example:

• A vehicle may be damaged while moving from the
ship to the storage area. While the necessary activities
for storage (e.g., ticket request) have already been
activated, according to business policies defined for the
domain the damaged cars cannot be stored, and the
process fails.

• There is a queue at the treatment station. A vehicle
has to be brought for treatment (according to specific
customer requests) immediately after the registering at
the storage area, but the treatment station is completely
loaded and the procedure cannot be applied. While
normally the availability of places is ensured by the
storage service, some of the treatments could not be
complete on time leading to the situation not foreseen
by the process.

In the situations of these kind the process cannot proceed
with normal activity execution and fails. In order to be
able to recover business process at run-time, there is a
need for appropriate process adaptation mechanisms. While
there exist approaches that achieve adaptability by the use
of predefined exception handlers, ECA-rules, or explicitly
modelled process variants, in our settings they often fail. In-
deed, in such a volatile context the set of possible situations
to be considered at design time is too large and, moreover,
unexpected situations still may take place.

Ultimately, what we need is a framework, which provides:
• Context-awareness: the role of the context is funda-

mental in realizing the adaptation activities [12] as it
enables identifying when the process adaptation needed
and what should be done. Specifically, we need 1)
to model the context, 2) to relate services to context

changes (to understand in which context they can be
executed and how they affect the context), and 3) to
observe the current process context.

• Dynamic Adaptation: to deal with numerous and often
unforeseen changes, it is critical to be able to construct
adaptation plan dynamically [13], without having all
possible situations predefined in advance. In case of
damaged car, based on the location of the process and
the state of context, it should be possible to construct
a new subprocess that involves evacuation service, car
repairing, and finally bringing the vehicle to the storage
area. In other words, we require dynamic that does not
require any involvement of the process designers while
executing and adapting the reference process nor needs
hard-coded adaptation logics.

In this work we present an approach for dynamic pro-
cess adaptation, based on automated service composition
techniques. While the approach relies on the possibility to
observe the business context and its changes, the specific
monitoring techniques are out of scope of this paper.

III. OVERALL APPROACH

We present a novel adaptation approach that aims at
addressing the problems outlined in Section II. The approach
relies on the following key elements:

• Context-aware model of the application. We explicitly
model the business context, in which the process oper-
ates, and describe how the services and policies of the
application are related to the context and its changes.

• Context-aware execution framework. While executing
business process, the process context is continuously
monitored in order to check whether it changes as
expected by the policies and service specifications.

• Context-aware adaptation based on automated service
composition. If a critical context change is detected,
the adaptation tries to recover the process. This is
achieved through construction of a composite service
that, starting from the actual context state, performs the
necessary changes in the domain to bring the process
and its context to the expected state.

1) Context model: At design time, along with the defini-
tion of a business process and its implementation on top of
a set of available services, relevant contextual information
is modeled. First, to model the context properties and their
evolution, we define context property diagrams that capture
possible values of the property (as the diagram states)
and the changes of the property values (as transitions).
Second, to model how the services change the context, we
annotate them with the effects on the context properties that
correspond to changes of the property value (i.e., to some
of the transitions in the property diagram). In other words,
the context may change due to the service execution or due
to some spontaneous, “unexpected” events. Third, we also

Figure 1: Business Process and Services of the Car Logistics Scenario.

Figure 2: Adaptation Architecture.

capture the business policies over the services to state in
which context setting the service may be executed. We do
this annotating services with the preconditions on the context
property values.

2) Execution framework: The reference architecture of
our execution framework is depicted in Figure 2. The
execution and adaptation of the reference process M is
controlled and coordinated by the Orchestrator component.
The activities of the process are executed by the Process
Engine component that exchanges messages with the ex-
ternal services. Every activity executed by Process Engine
is synchronized with and controlled by Orchestrator: it
receives the execution information o (e.g., messages re-
ceived, operations performed, etc.) and decides whether to
proceed with the next execution step i or to perform process
adaptation.

The decision on adaptation is based on the contextual
information provided by the Context Manager component.

Context Manager continuously monitors and updates the
values of the context properties associated to the process
instance1. When the observed values of the context prop-
erties violates the preconditions of the next activity to
execute, the process adaptation is initiated. Based on the
current configuration of the context and of the process,
Orchestrator derives the specific adaptation problem ξ and
sends the corresponding request to the Adaptor component.
In response, Adaptor generates the new subprocess Madapt,
which aims to do its best to “recover”, so that the blocked
activity can be executed and the main process can continue.
Orchestrator starts the execution of the generated subprocess
and then continues the execution of the main process. If this
execution fails again due to exogenous contextual changes,
a new round of adaptation is undertaken.

It is important to notice that our adaptation is completely
run-time and automated. Furthermore, it does not require
hard-coded adaptation logics: the specific solution is gener-
ated dynamically, based only on the current state and the
available services. Another important aspect is that the ap-
proach constantly observes the context and can immediately
react to the critical changes. In particular, even if during the
execution of the adaptation process some other problem is
detected, the process is immediately terminated and the new
adaptation is requested.

3) Adaptation: The adaptation problem ξ sent to Adaptor
comprises the current status of the system (values of the
context properties, state of the involved services), set of
available services that may be used for adaptation, and
the adaptation requirements. As we already mentioned, the
primary objective of the adaptation is to “unblock” the

1We remark that the specific techniques for the context monitoring is out
of the scope of this paper; approaches like [14] may be exploited for this
purpose

process, i.e., to change the context such that the violated
precondition of the executed activity is satisfied. To ac-
complish this, Adaptor generates a composition of those
services Madapt, which, being executed together, achieve
the necessary effect on the context. The construction of the
composition is performed with the use of automated plan-
ning techniques [15]: the service specifications, the model of
context (i.e., context diagrams), and the goal specifications
are transformed into the planning problem and the resulting
plan is then transformed into the composed service.

It is important to note that for the adaptation we do not
consider the whole model of the context and its evolution
(which may also be incomplete as some unexpected changes
may be unforeseen). Instead, we make an assumption that
during the adaptation no exogenous context changes take
place, but only those that are entailed by execution of the
services involved in the adaptation process. This assumption
brings the following advantages. First, we do not necessary
need to define at design time all possible evolutions of
context: only effects of the services are important. This
allows us to react even to completely unexpected changes.
Second, this drastically simplifies the planning problem and
the construction of the adapting composition becomes very
efficient. On the other hand, this assumption does not lead
to incorrect results. Indeed, if while the execution of the
generated composed process some exogenous contextual
change takes place, the Orchestrator component will im-
mediately react to this, triggering another adaptation. Given
the fact that those exogenous changes aim at representing
extraordinary situations and events, such adaptations should
also happen rarely, and the recovery activities eventually
terminate.

We also remark that as the services may be non-
deterministic (e.g., the diagnosis and repair service may
complete successfully or may fail if the care is heavily
damaged), the primary objective is not guaranteed (e.g.,
there is no way to proceed with unrepairable vehicle). For
such cases, it is possible to associate with the process some
“finalizing” recovery goals (i.e., dispose the car) that should
become secondary objectives of the adaptation process in
such extreme situations.

IV. SOLUTION

In this section we define formally the elements of the
presented approach and the solution. In particular, we give
the formalization of the business process context and its
changes, of the constituent services and their relation to
the context, and of the adaptation problem. We then present
the solution to the adaptation problem in terms of service
composition via planning.

A. The Formal Framework

1) Context Property: In our approach, we explicitly for-
malize the business context of the reference process as a set

of context properties. A context property represents some
important characteristic of the environment that can change
over time. For example, in the logistics scenario context
properties may be the location of the car, the status of
the car (operable/damaged), the status of the treatment area
(busy/occupied), etc. We model the evolution of a context
property with a context property diagram, which is a state
transition system. Here states correspond to possible con-
figurations of a property and transitions stand for possible
property evolutions. Each transition is labeled with an event
that characterize the change.

Definition IV.1 (Context Property Diagram) Context prop-
erty diagram c is a tuple ⟨L,L0, E, T ⟩, where:

• L is a set of configurations and L0 ⊆ L is a set of
initial configurations;

• E is a set of property-specific events;
• T ⊆ L× E × L is a transition relation;

We denote with L(c) and E(c) the corresponding elements
of context propert diagram c.

It is important to note that the context property may evolve
as an effect of service invocations (e.g., vehicle get repaired
after the repair service is engaged), which corresponds to
the “normal” behavior of the domain, but also as a result
of volatile – “unexpected” – changes. In these regards we
can distinguish controllable events, i.e., those that may be
achieved through services, and uncontrollable events, i.e.,
exogenous events of the environment. With uncontrollable
events we capture unexpected situations that may require
process adaptation.

Normally, the context is rather complex and consists
variety of context properties C. The state of the context is
a product of states of its property diagrams.
Example. Context property diagram for the car status may
be presented as follows:

OK

DMG_
LIGHT

DMG_
SEVERE

DMG_
DISPOSED

light_damage

severe_damage

severe_damage

repaired

repaired

unrepairable

The initial state of the diagram is OK (the car is operable).
Due to exogenous events, the car can get slightly or severely
damaged. The corresponding transitions labeled with events
light damaged and severe damage are presented. A dam-
aged car can be repaired with the repairing service (transi-
tions labeled with event repaired). Additionally, a severely
damaged car can be recognized as unrepairable with that
service (event unrepairable).

2) Service: In order to model complex service protocols
that feature asynchronous, stateful and non-deterministic be-
havior (e.g., those specified in BPEL), we use state transition
systems, where transitions correspond to service operations
(input and output messages). To capture the impact of ser-
vice execution on the domain and to represent the business
policies, under which we expect services to operate, we
annotate service transitions with context preconditions and
effects. A precondition P is a set of configurations of C,
in which the execution of the service operation is allowed.
We will use these preconditions to detect the need for
adaptation. An effect E is a set of property-specific events
specified in C, which fire (and thus make C evolve) when a
corresponding service transition takes place. As such, effects
show how the execution of services affects the context.

Definition IV.2 (Annotated Service) Annotated service s is
a tuple ⟨L,L0, I, O, T ⟩, where:

• L is a set of states and L0 ⊆ L is a set of initial states;
• I is a set of input actions (receiving a message);
• O is a set of output actions (sending a message);
• T ⊆ L × P ∗ × A × E∗ × L is a transition relation,

where A = I ∪O is a set of actions; P =
∏

ci∈CL(ci)
is a set of configurations of C, thus P ∗ stands for
a precondition; E =

∪
E(ci), ci ∈ C is a set of

controllable events in C, thus E∗ stands for an effect;

We denote with L(s), I(s) and O(s), the corresponding
elements of annotated service s.

Example. The formalization of annotated Car Repair
service is represented as follows:

?CarRepairRequest

!CarRepairOk !CarRepairFailed

repaired unrepairable

car_status∊{DMG_LIGHT, DMG_SEVERE}
car_location∊{TREATMENT}

car_location∊{TREATMENT}car_location∊{TREATMENT}

Here, a request (input action ?CarRepairRequest is fol-
lowed by a non-deterministic response (output actions
!CarRepairOk and !CarRepairFailed). The preconditions
define that the car should be at the treatment area
when it is being repaired (precondition car location ∈
{TREATMENT}) and that the service should be ap-
plied only to a broken car (precondition car status ∈
{DMG LIGHT,DMG SEV ERE}). The effects of the
output transitions define that the car may be successfully
repaired (event repaired, which brings the status diagram

to the state OK) or is unrepairable (event unrepairable,
bringing the property to the state DMG DISPOSED).

3) Adaptation Problem: The adaptation strategy we adopt
in this paper is to recover from the process failure so that
the process execution can be resumed from the point where
it has been blocked.

Let us consider process M that orchestrates a set of ser-
vices S, whose preconditions defined over context property
diagrams C. When the preconditions of the next activity
(e.g., “move a car”) to execute are violated (e.g., the pre-
condition is that the car is operable, but the car is damaged),
the execution should not proceed and the adaptation of M is
required. In order to adapt reference process M we generate
adaptation process Madapt, which is the orchestration of
services S that implements the above adaptation strategy.
The primary goal of resuming the execution of M can
be expressed as the reachability of the configurations of
services S and context property diagrams C in which the
execution of the next activity is possible. As we already
mentioned, it is also possible to specify additional config-
urations to which the process should be brought when the
above adaptation cannot be achieved. We remark that those
recovery configurations are terminal for the process. We
use them as a secondary (i.e., less preferable) goal for our
adaptation problem. For example, we may require the car to
be disposed, when its repair is not possible anymore.

Formally, adaptation problem may be defined as follows.

Definition IV.3 (Adaptation Problem)
Adaptation problem ξ is a tuple ⟨C, S, I,GI ,GII⟩, where:
• C is a set of context property diagrams;
• S is a set of services defined over C;
• I,∈ L(s1)× . . .× L(sm)× L(c1)× . . .× L(cn), si ∈
S, cj ∈ C is the current configuration of context
property diagrams C and annotated services S;

• GI ,GII ,⊆ L(s1) × . . . × L(sm) × L(c1) × . . . ×
L(cn), si ∈ S, cj ∈ C are sets of primary and
secondary goal configurations;

We denote with C(ξ), S(ξ), I(ξ), GI(ξ), GII(ξ) the corre-
sponding elements of the adaptation problem ξ.

The solution to adaptation problem ξ is process Madapt

that orchestrates services S(ξ). When executed from current
configuration I(ξ), Madapt brings services S(ξ) and context
property diagrams C to one of primary goal configurations
GI(ξ), otherwise to one of secondary goal configurations
GII(ξ). We remark that Madapt succeeds only if no uncon-
trollable events happen during its execution.

B. Adaptation Strategy and Derivation of an Adaptation
Process

In order to automatically solve adaptation problems, we
use the variation of the service composition approach pre-
sented in [15]. According to it, a composition problem

is transformed into a planning problem and the planning
techniques are used to resolve it. So do we.

The planning domain is derived from the adaptive prob-
lem. In particular, a set of n services (s1, . . . , sn) and m
context property diagrams (c1, . . . , cm) are transformed into
STSs using pretty straightforward transformation rules very
similar to those presented in [15]. Before this transforma-
tion, all transitions labelled with uncontrollable events are
removed from context property diagrams (so we plan in
“controllable” environment).

So we get STSs Σs1 . . .Σsn and Σc1 . . .Σcm . The
planning domain Σ is a product of all STSs of the annotated
services and context property diagrams synchronized on
preconditions and effects:

Σ = Σs1∥ . . . ∥Σsn ∥ Σc1∥ . . . ∥Σcm

Initial state r of the planning domain is derived from the
current configuration I(ξ) of the adaptive system, in which
the need for the adaptation aroused.

Finally, the sets of primary and secondary goal configu-
rations (GI and GII respectively) are transformed into the
sets of configurations GΣ

I and GΣ
II of the planning domain

Σ. We denote the planning goal as a reachability goal with
preferences:

ρ = (GΣ
I , G

Σ
II)

which means that the primary planning goal is to reach one
of the states in GΣ

I , and the secondary goal is to reach one
of the states in GΣ

II .
After all, we apply the approach of [16] to domain Σ

and planning goal ρ and generate a controller Σc (plan),
which is such that Σc ◃ Σ |= ρ (domain Σ reaches goal
ρ when controlled by Σc). The state transition system Σc

is further translated into executable process Madapt, which
implements the above described adaptation strategy. The
back translation from STS into executable specification
is quite simple: input actions in Σc model an incoming
message from a component service, while output actions in
Σc model an outcoming message to a component service.
Correctness of the approach. The proof of the correctness
of the approach consists in showing that, under the afore-
mentioned assumptions, all the executions of the adaptation
process Madapt (translation of controller Σc) implement the
adaptation strategy. Here we outline the key points of the
proof. It is easy to see that each execution θ of the adaptation
process is also a run of the domain, i. e., if θ ∈ Π(Σc) then
θ ∈ Π(Σ). Under the requirement that all the executions
of the domain terminate in goal states, we get that the
executions of the domain implements the adaptation strategy.
As a consequence, the following theorem holds.

Theorem IV.1 (Correctness of the approach) Let:

• Σs1 , . . . ,Σsn be the STS encoding of services s1, . . . sn
and

• Σc1 , . . . ,Σcm be the STS encoding of context property
diagrams c1, . . . cm.

Let Σc be the controller for a particular composition prob-
lem

Σ = Σs1∥ . . . ∥Σsn ∥ Σc1∥ . . . ∥Σcm

ρ = (GΣ
I , G

Σ
II)

i.e., Σc ◃ Σ |= ρ. Then the executions Π(Σc) implements
the adaptation strategy.

As we mentioned in Section III, we assume that no
exogenous context changes may take place during the adap-
tation, and therefore in the transformation of the adaptive
system into a planning domain we ignore all uncontrollable
transitions in context property diagrams. Our experiments
show that such an approach leads to very efficient adaptation,
as it significantly increases the performance of the planning
algorithm by reducing the amount of reachable states in the
planning domain. Furthermore, in many domains external
contextual changes are quite improbable so that additional
rounds of adaptation are rarely needed. Compared to [16],
we also use preprocessing of the planning domain by prun-
ing unreachable states, which also increases the performance
of the planning algorithm.

V. EVALUATION

In order to evaluate our approach we implemented the
prototype of the architecture presented in Section III and
designed the reference scenario using the formal framework
introduce in Section IV-A.

In order to formalize the reference scenario with enough
details, we distinguished and specified 10 context property
diagrams (car location, car status, treatment areas status
etc.) and 16 stateful services (services for moving, storing,
repairing, treating, checking the car etc.). Service specifi-
cations were annotated with preconditions and effects over
the context property diagrams. In the initial state the car is
on the ship and it is operable. The goal state is where the
operable car is properly treated and is loaded on the track
waiting for the delivery. The alternative goal state is where
the car is unrepairable and at the disposal area. We also
specified external context changes that model unexpected
light and severe damage of the car and switching of the
treatment areas status from “occupied” to “free” and vice
versa. Finally an implementation of the reference process
was specified.

The implementation of the reference process is quite
complex and dozens of different unexpected situations, each
requiring specific adaptation, may happen. We will consider
only those two mentioned in Section II.

A. Damage on the move

In this example, the car is severely damaged while moving
towards the storage area. There is a storage ticket reserved
for the car, which guarantees a place at the storage area.
This situation requires adaptation since is not considered
in the reference process. There is a number of business
policies that are implemented in the framework using action
preconditions:

• The car can move on its own only if it is not severely
damaged;

• The car can be stored only if it is not damaged;
• The car can be stored only if it has a storage ticket;
• The car can be repaired only at the treatment area;
• The car must have no storage ticket when it is being

repaired (not to waste the space at the storage area);
• The storage ticket can be received only at the terminal;

The goal of the adaptation is to reach the configuration
“the operable car is moving towards the storage with the
storage ticket in hands”. The recovery goal is to leave
the car at the treatment area if it is unrepairable. The
adaptation process Madapt obtained (Fig. 3) is completely
compliant with the context, business policies and goals (the
primary goal is depicted as success and the secondary goal
as failure). We remark that the same severe damage in
different context settings could result in absolutely different
adaptation process generated.

Figure 3: Adaptation process for “Damage on the Move”

B. Waiting for treatment

The car has just moved to the treatment area and is ready
to be treated. The treatment consists of three operations:
equipment, painting and cleaning. It turns out that the
equipment and painting areas are busy. This is an unexpected
situation and the adaptation is undertaken. The following
policies play role for this case:

• The car should complete all three treatment operations
before leaving the treatment;

• Cleaning has to be performed after painting;
The adaptation process (Fig. 4) suggests to use a special
notification service that notifies the client about the treatment
areas just freed. One can see, that the adaptation is successful
only if we receive a message about painting or equipment
areas to be free. The cleaning area is not of interest for
the moment, since cleaning cannot be performed before
painting.

We ran the examples on the double-core 2Ghz Windows
XP laptop with 4 Gb of RAM. The derivation of the two
adaptation processes took 13 and 3 seconds respectively.

While analyzing these numbers we have to realize that
although the adaptation processes presented do not feature
high complexity, they are derived from quite a large domain
that requires significant resolution time. Taking into account
the real complexity of the reference scenario, we consider
these results as a proof of high potential of our approach,
applicable in a vast majority of real application domains.Wait For Treatment Service
Figure 4: Adaptation process for “Waiting for Treatment”

VI. RELATED WORK AND CONCLUSION

Various frameworks can be found in the literature with the
objective to support adaptation of business processes, each
of them addressing a specific issue. When the set of possible
adaptation configurations are fixed and known a priori, it is
possible to completely specify them at design time. In this
case, we talk about built-in adaptation and the adaptation
may be performed using one of the following approaches: by
extending standard notations as BPEL with the adaptation-
specific tools [3], [4] using a set of predefined adaptation
rules [5], [6], [17], using aspect-oriented approaches [8], [9],
[18], or modeling and managing business process variants
[10], [18], [19]. All the aforementioned approaches are able
to capture a precise set of exceptional events or situations
and to use for each of them a predefined adaptation rule.
In this paper, we have presented a novel approach to adapt
business processes where the running application and the
adaptation logic are two separate components and the set of
possible adaptations are generated directly at runtime when
a problem arises (i.e., dynamic adaptation [13]). This means
that it is not necessary to know at design time which actual
conditions will trigger the adaptation, and which kind of
adaptation should be performed to correct it. To understand
when, how, and why a business process should be adapted
we have modeled the execution environment in such a way
that its changes are synchronized with the application execu-
tion and viceversa. When we need to execute adaptation, this
two-way synchronization let the adaptation tool understand
what the current state of the business process and the current
context are. At the same time, using the current context and
its evolution model, we are able to provide the adaptation
engine with the precise goal to reach. The adaptation engine
generates the adaptation process to execute and brings the
main process back to a state from where its execution can
be successfully resumed.

A framework similar to our has been proposed in [20].
It is called SmartPM and is able to adapt processes in

case of unforeseen events. However, we consider our formal
framework to be much more intuitive and easy to use for
the designer. Moreover, the approach in [20] can work with
abstract services and does not allow for using real services
specified in one of standard languages. On the contrary,
our approach is developed for stateful and non-deterministic
services that can be modeled using such a language as BPEL
and transformed into our formalism automatically 2.

In the future, we plan to extend our framework in order to
allow for more sophisticated adaptation strategies that can
be chosen automatically. At the same time, our adaptation
mechanism has been defined to be applied to single instances
of a process model. We want to use a set of adapted instances
together with their execution history as training cases for
evolution mechanisms in order to progressively improve
process model that may be further used if a new process
instance is to be instantiated.

Acknowledgements.

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube) and from the FP7 EU-FET project 213339 ALLOW.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: a Research Roadmap,” Int. J.
Cooperative Inf. Syst., vol. 17, no. 2, pp. 223–255, 2008.

[2] R. de Lemos and A. B. Romanovsky, “Exception handling
in the software lifecycle,” Comput. Syst. Sci. Eng., vol. 16,
no. 2, pp. 119–133, 2001.

[3] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann,
and A. P. Buchmann, “Extending BPEL for Run Time Adapt-
ability,” in Proc. EDOC’05, 2005, pp. 15–26.

[4] A. Marconi, M. Pistore, A. Sirbu, H. Eberle, F. Leymann, and
T. Unger, “Enabling Adaptation of Pervasive Flows: Built-in
Contextual Adaptation,” in Proc. ICSOC/ServiceWave, 2009,
pp. 445–454.

[5] M. Colombo, E. di Nitto, and M. Mauri, “SCENE: A Service
Composition Execution Environment Supporting Dynamic
Changes Disciplined Through Rules,” in Proc. ICSOC’06,
2006, pp. 191–202.

[6] I. Lanese, A. Bucchiarone, and F. Montesi, “A Framework for
Rule-based Dynamic Adaptation,” in Proc. TGC 2010, 2010,
pp. 284–300.

[7] A. Charfi and M. Mezini, “AO4BPEL: An Aspect-oriented
Extension to BPEL,” in Proc. WWW’07, 2007, pp. 309–344.

[8] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati,
“An Aspect-Oriented Framework for Service Adaptation,” in
Proc. ICSOC’06, 2006, pp. 15–26.

2http://astroproject.org/

[9] V. Agarwal and P. Jalote, “From Specification to Adaptation:
An Integrated QoS-driven Approach for Dynamic Adaptation
of Web Service Compositions,” in Proc. ICWS, 2010, pp.
275–282.

[10] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variabil-
ity in business process models: the Provop approach,” Journal
of Software Maintenance, vol. 22, no. 6-7, pp. 519–546, 2010.

[11] F. Böse and J. Piotrowski, “Autonomously controlled storage
management in vehicle logistics applications of RFID and
mobile computing systems,” International Journal of RT
Technologies: Research an Application, vol. 1, no. 1, pp. 57–
76, 2009.

[12] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a Better Understanding of Context
and Context-Awareness,” in Proc. HUC, 1999, pp. 304–307.

[13] A. Bucchiarone, C. Cappiello, E. di Nitto, R. Kazhamiakin,
V. Mazza, and M. Pistore, “Design for Adaptation of Service-
Based Applications: Main Issues and Requirements,” in Proc.
ICSOC/ServiceWave Workshops, 2009, pp. 467–476.

[14] C. Bettini, D. Maggiorini, and D. Riboni, “Distributed Con-
text Monitoring for the Adaptation of Continuous Services,”
World Wide Web, vol. 10, pp. 503–528, 2007.

[15] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore, H. Raik,
and M. Wagner, “Control Flow Requirements for Automated
Service Composition,” in Proc. ICWS’09, 2009, pp. 17–24.

[16] D. Shaparau, M. Pistore, and P. Traverso, “Contingent plan-
ning with goal preference,” in Proc. AAAI’06, 2006, pp. 927–
934.

[17] X. YongLin and W. Jun, “Context-Driven Business Process
Adaptation for Ad Hoc Changes,” in Proc. IEEE ICEBE’08,
2008, pp. 53–60.

[18] G. Hermosillo, L. Seinturier, and L. Duchien, “Using Com-
plex Event Processing for Dynamic Business Process Adap-
tation,” in Proc. IEEE SCC, 2010, pp. 466–473.

[19] Z. Jaroucheh, X. Liu, and S. Smith, “Apto: A MDD-Based
Generic Framework for Context-Aware Deeply Adaptive
Service-Based Processes,” in Proc. ICWS, 2010, pp. 219–226.

[20] M. de Leoni, “Adaptive Process Management in Highly
Dynamic and Pervasive Scenarios,” in Proc. YR-SOC, 2009,
pp. 83–97.

Towards Proactive Adaptation: A Journey along the
S-Cube Service Life-Cycle

Andreas Metzger∗, Eric Schmieders∗, Cinzia Cappiello†, Elisabetta Di Nitto†,
Raman Kazhamiakin‡, Barbara Pernici†, Marco Pistore‡
∗Paluno (The Ruhr Institute for Software Technology)
University of Duisburg-Essen, 45127 Essen, Germany

Email: {andreas.metzger, eric.schmieders}@paluno.uni-due.de
‡FBK-Irst

Via Sommarive 18, 38050, Trento, Italy
Email: {raman, pistore}@fbk.eu
†Politecnico di Milano, DEI

Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
Email: {dinitto, cappiell}@elet.polimi.it

Abstract—Service-oriented applications are deployed in highly
dynamic and distributed settings. Therefore, such applications
are often equipped with adaptation capabilities to react to critical
issues during their operation, such as failures or unexpected
changes of third party services or to context changes. In this
paper, we discuss shortcomings of current solutions for adaptive
service-oriented applications. To address those shortcomings,
we introduce techniques for building and evolving proactive
applications. Those techniques have been developed in S-Cube,
the European network of Excellence on Software Services and
Systems. Proactive adaptation capabilities are considered par-
ticularly promising, as they can prevent costly compensation
and repair activities. Using those techniques in an integrated
way is described along the phases of the service life-cycle. We
use a running example to illustrate the shortcomings of current
solutions for self-adaptation and to demonstrate the benefits of
the S-Cube techniques.

I. INTRODUCTION

Service-orientation is increasingly adopted as a paradigm
for building highly dynamic, distributed and adaptive software
systems, called service-oriented (or service-based) systems.
This paradigm implies a fundamental change to how software
is developed, deployed, and maintained [1]: A service-based
system cannot be specified and realized completely in advance
(i.e, during design-time) due to the incomplete knowledge
about the interacting parties (e.g., third party service providers)
as well as the system’s context and communication infrastruc-
ture [2]. Thus, compared to traditional software engineering,
much more decisions need to be taken during the operation of
the service-oriented system (i.e., after it has been deployed).
For instance, those systems will need to react to failures
of their constituent services (e.g., if a service provider fails
to adhere to its contract) to ensure that they maintain their
expected functionality and quality.

In such a dynamic setting, evolution and adaptation methods
and tools become key to enable those systems to respond
to changing conditions. In accordance with the terminology
defined by the S-Cube Network of Excellence [3], this paper
differentiates between evolution and adaptation as follows:

Evolution is considered as the modification of the system’s re-
quirements, specification, models, etc. during design time (also
known as maintenance). In contrast, adaptation is considered
as the modification of a specific instance of a service-based
system during operation. In the current paper we focus on
adaptation needed due to some malfunctioning of the system.
While the general adaptation due to context changes could also
be supported by the proposed techniques, this is not discussed
in the present paper.

A. Problem Statement and Related Work

Adaptive systems automatically and dynamically adapt
to changing conditions. The aim of adaptation (aka. “self-
adaptation”) is to reduce the need of human intervention as
far as possible. While the behavior of a non-adaptive system
is only controlled by user input, adaptive systems consider
additional information about the application and its context
(e.g., failures of constituent services or different network
connectivity). Thus, in order to realize self-adaptive behavior,
methods and tools that realize control loops are established
that collect details from the application and its context (e.g.,
by exploiting monitoring mechanisms) and decide and act
accordingly [4].

So far, the major work on adaptation has been centered
around reactive adaptation capabilities based on monitor-
ing [5]. This means that adaptation is performed after a
deviation or critical change has occurred. Such a reactive
adaptation based on monitoring, however, has at least the
following two important shortcomings (cf. [6], [7] and [8]).
• It can take time before problems in a service-based

system lead to monitoring events that ultimately trig-
ger the required adaptation. One key trigger for an
adaptation should be the case when the service-based
system deviates from its requirements (such as expected
response time for example). If only those requirements
are monitored (e.g., see [9]), the monitoring events might
arrive so late that an adaptation of the SBA is not possible

anymore. For instance, the system could have already
terminated in an inconsistent state, or the system has
already taken more time than required by the expected
response time.

• Reactive adaptation can become very costly, especially
when compensation or rollback actions need to be per-
formed. As an example, when using stateful (aka. con-
versational) services [10], the state of the failed service
might need to be transferred to an alternative service.

Of course, one can monitor the individual services of an
SBA and trigger an adaptation as soon as the service has
failed, i.e., violated its contract [11]. However, when using
those techniques it remains unclear whether the failure of this
service could lead to a violation of the SBA’s requirements.
This means that there may be situations in which the SBA is
adapted although it would not have been necessary, because
the requirements might still have been met. Consider the
following simple example: Although a service might have
shown a slower response time as (contractually) expected,
prior service invocations (along the workflow) might have been
fast enough to compensate the slower response of that service.

Such unnecessary (or “false positive”) adaptations have the
following shortcomings [6]:
• Unnecessary adaptations can lead to additional costs and

effort that could be avoided. For instance, additional
activities such as Service Level Agreement (SLA) ne-
gotiation for the alternative services might have to be
performed, or the adaptation can lead to a more costly
operation of the SBA, e.g., if a seemingly unreliable but
cheap service is replaced by a more costly one.

• Unnecessary adaptations could be faulty (e.g., if the
new service has bugs), consequently leading to severe
problems.

In summary, one key problem that needs to be solved
to enable proactive adaptation is to determine whether the
service-based application, during its future operation, might
deviate from its requirements.

B. Contribution of Paper

This paper describes techniques developed in the S-Cube1

network of excellence to determine deviations from require-
ments based on monitored failures. Previous publications (such
as [6], [7], [8], [12], [13]) have discussed proactive adaptation
techniques mainly in isolation and confined to individual
phases of the service life-cycle. A first, more integrated view
on adaptation has been presented in [14]. However, the focus
was on reactive adaptation and on the design time activities
needed to build adaptive service-systems. In contrast, in this
paper, we demonstrate how the techniques for determining
proactive adaptation play together across the various life-cycle
phases and how they can be jointly applied in a meaningful
way. As a basis for our discussions, we employ the S-Cube
service life-cycle model [15], [14], [16], [17]. In contrast
to more traditional life-cycle models, this model considers

1http://www.s-cube-network.eu/

the specifics of service-based systems, particularly concerning
evolution and adaptation.

The remainder of the paper is structured as follows: In Sec-
tion II, the S-Cube service life-cycle model is introduced. In
Section IV, the S-Cube techniques that jointly allow building
proactive service-based systems are discussed, differentiating
between activities that are done during design-time and activ-
ities that are done during the operation phase (run-time). This
discussion is illustrated by an example from the eGovernment
domain, which is introduced in Section III.

II. THE S-CUBE SERVICE LIFE-CYCLE MODEL

The life-cycle models for SBAs that have been presented in
the literature (examples include SLDC, RUP for SOA, SOMA,
and SOAD, cf. [14] and [18]) are mainly focused on the phases
that precede the release of software and, even in the cases in
which they focus on the operation phases, they usually do not
consider the possibility for SBAs to adapt dynamically to new
situations, contexts, requirement needs, service faults, etc.

Specifically, the following aspects have not yet been con-
sidered in those life-cycle models:
• Requirements elicitation and design for adaptation: The

requirements engineering phase includes the elicitation
and documentation of the systems functional and quality
requirements. In the dynamic setting of SBAs, not only
the requirements towards the actual application logic
need to be analyzed, designed, and developed, but also
the context in which the system is executed needs to
be understood [1]. Context changes can necessitate the
adaptation of the SBA, for instance if the SLA of a third
party service is violated. During design, the capabilities
to observe, modify and change the SBA during run-time
need to be devised.

• Extended operation phase: The operation phase is not
only responsible for merely executing and monitoring the
application, but it also requires identifying the need for
an adaptation of the system as well as the where and how
to enact such an adaptation [1].

• Continuous quality assurance: Quality assurance has an
impact on all aspects of the life-cycle. Therefore, the
quality characteristics that are to be assessed and ensured
must be identified starting from the requirement analy-
sis phases. Due to open nature, and dynamic contexts
in which SBAs operate, quality properties that have a
lifelong validity need to be ”continuously” asserted [19].
For instance, in the case of third party services, there
is no guarantee that a service implementation eventually
fulfills the contract promised (e.g., stipulated by an SLA),
or it is usually not possible during design-time to model
and thus assess the behavior of the underlying distributed
infrastructure (such as the Internet).

The service life-cycle model envisioned by the S-Cube
network aims at incorporating those aspects. The S-Cube
service life-cycle model [15], [14], [16], [17] relies on two
development and adaptation loops, which can be executed in
an incremental and iterative fashion:

• The development and evolution loop (see right hand side
of Figure 1) addresses the classical development and
deployment life-cycle phases, including requirements and
design, construction and operations and management (see
Section II-A).

• The operation and adaptation loop (see left hand side
of Figure 1) extends the classical life-cycle by explicitly
defining phases for addressing changes and adaptations
during the operation of service-based applications (see
Section II-B).

Requirements
E i i

Identify
Adaptation

EngineeringOperation &
Management

p
Need

Evolution

DesignIdentify
Adaptation

Strategy Adaptation

Realization
Deployment &
Provisioning

gy

Enact g
Adaptation

Fig. 1. The S-Cube Service Life-Cycle

A. Development and Evolution Cycle

Requirements Engineering. In the requirements engineer-
ing phase, the functional and quality requirements for the SBA
are elicited and documented. The specifics of SBAs make
the requirements engineering phase particularly relevant. This
is related to the highly dynamic nature of SBAs and to the
necessity to guarantee the continuous adaptability and the
evolvability of these applications. Indeed, in a context where
the application is in continuous evolution and is characterized
by very blurred boundaries, the study of those requirements
that exist a priori in the organizational and business setting,
and that are hence largely independent from the solution,
becomes very important.

Design. During the design phase, the activities and the
control flow of the application are specified. In the service-
oriented case, this usually means that a workflow is specified
using languages such as BPEL. Together with the definition
of the workflow, candidate services are identified that can
provide the functionality and quality to fulfill the requirements
of the SBA. This means that those services that cover, at
least partially, the expected functionality and quality of service
are identified. This is supported by service matchmaking
techniques, such as the ones presented in [20]. A further task
in this phase is to define adaptation strategies and mechanisms
which enable the application to react to adaptation needs
(cf. [14]).

Construction. After the design phase, the construction of
the system can start. Especially, it has to be taken into account
that SBAs are obtained by the integration and coordination of
services from different providers. Specifically, this means that
for establishing the desired end-to-end quality of those SBAs,

contracts between the service providers and the service con-
sumers on quality aspects of services have to be established.
Typically, this requires some form of SLA negotiation and
agreement. Following [20], this means that for each service,
the best quality of service level for the available budget is
negotiated with the providers of the candidate services that
have been identified in the previous phase.

Deployment and Provisioning. The deployment and provi-
sioning phase comprises all the activities needed to make the
SBA available to its users. It should be noted that an SBA can
itself be offered as a service.

B. Operation and Adaptation Cycle

Operation and Management. This phase specifies all the
activities needed for operating and managing an SBA. The
literature also uses the term governance to mean all activities
that govern the correct execution of SBAs (and their con-
stituent services) by ensuring that they provide the expected
functionality and level of quality during operation. In this
setting, the identification of problems in the SBA (e.g., failures
of constituent services) and of changes in its context play
a fundamental role. This identification is obtained by means
of monitoring mechanism and, more generally, by exploiting
techniques for run-time quality assurance (such as online
testing or run-time verification). Together, those mechanisms
and techniques are able to detect failures or critical conditions.

Identify Adaptation Need. Some failures or critical condi-
tions become triggers for the SBA to leave “normal” operation
and enter the adaptation or evolution cycle. The adaptation
cycle is responsible for deciding whether the SBA needs to
be adapted in order to maintain its expected functionality and
quality (i.e., to meet its requirements). This is an important
decision as it might well be that despite a failure of a service,
the end-to-end quality of the SBA is not affected and hence
there is no need to react to that situation. Such decisions may
be made automatically, or it may require human intervention
(end user, system integrator, application manager). Moreover,
such decisions may be made in a reactive way, when the
problem has already occurred, or in a proactive way, where a
potential, future problem could be avoided. It should be noted
that the decision could also be that there should be an evolution
of the system rather than an adaptation, thereby entering the
“development and evolution” cycle.

Identify Adaptation Strategy. When the adaptation needs
are understood, the corresponding adaptation strategies are
identified and selected. Possible types of adaptation strategies
include service substitution, SLA re-negotiation, SBA re-
configuration or service re-composition. It could also happen
that several adaptation strategies are able to satisfy a specific
adaptation need. The selection of the strategy and its instan-
tiation (e.g., which service to use as a substitute or which re-
configuration to perform) may be automatic if either the SBA
or the execution platform decide the action to perform, or it
can be done by (the help of) a human operator. Specifically,
two questions need to be answered: ”what to adapt?” and ”how
to adapt?”.

Enact Adaptation. After the choice of the adaptation
strategy, the adaptation mechanisms are used to enact the
adaptation. For example, service substitution, re-configuration
or re-composition may be obtained using automated ser-
vice discovery and dynamic binding mechanisms, while re-
composition may be achieved using existing automated service
composition techniques. Depending on the situation, such an
adaptation can be done manually (e.g., by a human operator),
semi-automatically or fully-automatically.

III. APPLICATION SCENARIO

In this section, an example workflow is introduced in order
to illustrate the problems as well as the solution that will be
presented in Section IV. The workflow specifies an eGovern-
ment SBA that allows citizens to pay parking tickets online,
thereby saving effort and costs (see [21] for a description of
the eGovernment application domain as defined in S-Cube).

A. Workflow
The workflow as well as the service composition of the

eGovernment application are depicted in Figure 2 as an
extended activity diagram. The gray boxes denote concrete ser-
vices that can be composed to an eGovernment application. In
the example, each service is provided by a third party, being it
an external organization or a different unit of the governmental
organization. Solid connections between workflow actions and
services denote the bindings established at deployment time.
Dashed connections denote possible alternative services (from
a different provider). In addition, the diagram is annotated with
information about the negotiated response times (which could
be stipulated by means of SLAs).

Let us assume that the overall workflow is expected to have
a response time of at most 1250 ms. This quality requirement
can be satisfied by the bound services, provided that they meet
their negotiated maximum response times (as, altogether, the
maximum response times along the longest path add up to
1200 ms).

In the following subsections we use this example to illustrate
the shortcomings of reactive adaptation, which have been
introduced in Section I-A. We assume that the ePay service of
the example workflow fails during runtime, i.e., takes longer
than the negotiated maximum response time.

B. Scenario A: Requirements Monitoring
As mentioned in Section I-A there are approaches which

are restricted to monitoring of requirements. In that case
monitoring events might arrive so late that an adaptation of the
SBA is not possible anymore. In our example, the ePay service
invoked by Make Payment might take 650 ms to respond
instead of the negotiated maximum response time of 400 ms
(see Scenario A in Figure 3).

Due to the fact that only the requirement (maximum re-
sponse time of 1250 ms) is monitored, this failure is not
registered until after Sign has been invoked. As a consequence
the mechanism was not able to prevent the deviation from
the requirements, even though the failure has occurred much
earlier (see ∆ in Figure 3).

response time ≤100 ms

response time ≤500ms

eSign

response time ≤ 100 ms

DeptATicketHandler

Make Payment

Update Parking
Ticket Record

Send eMail

[authentication]

[no
authentication]

Identify Parking
Ticket

[valid]

[invalid]

ePay

response time ≤ 400 ms

Yahoo

response time ≤ 100 ms

Sign

SecurePay

GMail

[invalid][valid]

= alternative service

= external service

= service bound at
deployment time

DeptCTicketHandler

Fig. 2. Workflow of an eGovernment Application

ePay DepCTicket
Hanlder

YahooDepCTicket
Handler

eSign

cumulative response
time [ms]

steps
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

x

x

x
x

x
Δ

end-to-end requirement

= allowed range
according to SLA
= actual response
time

x

failure

end-to-end requirement
deviation

Fig. 3. Scenario A: Requirements Monitoring

C. Scenario B: Service Monitoring

Referring to Section I-A, approaches that monitor individual
services exist. However, in such setting it remains unclear
whether the failure of a single service leads to a violation
of the SBA’s requirements. In the example, let us assume that
instead of 400 ms the ePay service invocation takes 450 ms
(see Scenario B in Figure 4).

This failure is observed by means of monitoring and leads
to an adaptation of the SBA. However, as obvious in the
figure, the overall response time would have still matched
the required response time even if no adaptation would have
been performed. Thus, in this case an adaptation was triggered
although it was not necessary.

In the next section we will present a proactive approach
which addresses the above shortcomings.

ePay DepCTicket
Hanlder

YahooDepCTicket
Handler

eSign

steps
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

x

x

x
x x

end-to-end requirement

= allowed range
according to SLA
= actual response
time

x
failure

cumulative response time [ms]

Fig. 4. Scenario B: Service Monitoring

IV. PROACTIVE ADAPTATION ALONG THE LIFE-CYCLE

This section describes techniques developed in S-Cube for
enabling proactive adaptation. The description is organized
along the phases of the life-cycle model from Section II. In
order to illustrate the techniques, we refer to the example SBA
and scenarios presented in Section III.

As explained in Section I-A, adaptive SBAs automatically
and dynamically adapt to changing conditions and changes of
service functionality and quality. To enable such an automatic
adaptation, the relevant artifacts, as well as the properties
of the SBAs and their context need to be formalized to
make them amenable to automated checks and decisions. In
the remainder of this section, we thus introduce concrete
formalization approaches, as well as techniques that build on
this formalization.

A. Requirements Engineering

To automatically assess whether the application deviates
from its requirements during operation and thus trigger an
adaptation, functional and non-functional requirements need
to be collected and formally expressed. We propose to formal-
ize the requirements already in the requirements engineering
phase, as this also facilitates an early validation of the re-
quirements, e.g., by means of formal consistency checks (cf.
[22]), and hence reduces the risk of expensive corrections in
later phases.

S-Cube has developed various approaches to formalize
requirements (depending on the actual SBA type). For instance
ALBERT is a specification language based on temporal logics
(presented in [12]). ALBERT is used to encode functional and
quality attributes. In addition, the S-Cube Quality Meta Model
(QMM) has been defined, which provides a set of key concepts
for expressing quality requirements and constraints (see [23]).

To express the requirements for monitoring, an integrated
monitoring framework and the corresponding specification

language has been provided (see [24] and [25]) in the scope
of S-Cube. The framework integrates the capabilities of two
monitoring platforms: Dynamo [11] and ASTRO [9]. On the
one hand, the language enables the specification of complex
point-wise properties over service composition execution (e.g.,
pre- and post-conditions on service calls), taking into account
current and historical values of the process variables, complex
constraints, and event external properties. On the other hand,
simple events and point-wise properties may be aggregated
into complex behavioral expressions, also taking into account
temporal and statistical information necessary for capturing
non-functional requirements. While the latter capability is very
close to the approach used by ALBERT, the notation allows
for expressing properties over classes of processes rather than
over single instances. This capability may be very important in
order to trigger “evolution” of the workflow, when the problem
applies to the whole SBA model rather than to a single SBA
instance.

Example: In our example from Section III, we need to
formalize the required response time rperf of the eGovernment
application. rperf is an element of the given set of require-
ments ReGov against the eGovernmant application:

rperf ∈ ReGov

rperf demands the response time of the eGovernment appli-
cation to be at most 1250 milliseconds. Due to the capability
of ALBERT to express the dependencies of monitoring data
along an executed path, we choose this language to specify
the requirement (rperf) as follows:

rperf := onEvent(start, ”Identify Parking T icket”)

→ Within(onEvent(end, ”Send eMail”),

1250)

The onEvent operator evaluates to true if the activity
specified in the second argument performs the state change
denoted in the first argument. The Within operator evaluates
to true if its first argument evaluates to true within the amount
of milliseconds specified in its second argument.

B. Design
Similarly to the requirements, the workflow of the SBA

needs to be formalized to support automated checks. Following
the same reasoning as in the requirements engineering phase
(see above), we suggest to formalize the workflow during
the design phase already in order to reduce the risk of later
corrections. As presented in [8] the checks can be performed
by using Model Checking techniques. In S-Cube the use
of BOGOR has been proposed [12] to assess whether the
specified SBA satisfies the requirements. We thus formalize
the workflow using the input language of the model checker,
in this case BIR (Bogor Input Representation).

Example: In order to use the BOGOR Model Checker (as
proposed in [12]) we specify the eGovnerment Workflow by
using BIR. The resulting specification SeGov (see Listing 1
in the appendix) can be directly executed and analyzed by
BOGOR.

C. Realization

During the realization phase, the quality levels (aka. service
level objectives) that have been negotiated and agreed upon
with the service providers (see Section II), are formalized.

Following the proposal in [8], we treat those quality levels
as assumptions (A) about the SBA’s context. Due to the lack
of control of third-party services, those quality levels could
be violated during the operation of the SBA (see Section I).
To formalize A, we can use one of the quality formalization
approaches as used during the requirements engineering phase.

For checking the violation of the assumptions during the op-
eration of the SBA, monitoring mechanisms are implemented
that collect the relevant data (cf. [24], [25] and [12]). This
is equivalent to collecting the monitoring data in the reactive
case of adaptation (cf. Section III).

Example: According to their SLAs (see Figure 2) ALBERT
is used to formalize the five assumed response times. The set
of assumptions AeGov for the parking ticket SBA is defined
as

AeGov := {aDeptATicketHandler,

aePay, aDeptCTicketHandler,

aeSign, aY ahoo}

The assumption aePay, related to the ePay service invoca-
tion, is formalized as follows:

aePay := onEvent(start, ”Make Payment”)

→ Within(onEvent(end,

”Make Payment”), 400)

D. Deployment

Before deploying the SBA, it is checked whether the
workflow specification (S), under the given assumptions (A),
satisfies the requirements (R):

S,A |= R

This check ensures that the initial composition – the work-
flow and the services – satisfy the requirements. If this is
not the case, the phases of the evolution loop (cf. life-cycle
in Section II-A) are executed again in order to redesign
the application, e.g., to bind faster services. If the SBA is
successfully verified against the requirements the SBA is
deployed.

Example: In our example SeGov and AeGov satisfy ReGov .
In consequence the SBA is deployed.

E. Operation and Management

This phase comprises the execution and the monitoring of
the individual services of the deployed SBA.

Monitoring is supported by monitoring frameworks, such as
Dynamo (presented in [25]). During runtime, the monitoring
framework continuously assesses whether the monitoring data
M satisfies the formalized assumptions A about the services:

M |= A

If a violation occurs, the SBA enters the adaptation loop
(cf. Section II-B). The relevant activities are described below
(Sections IV-F, IV-G, and IV-H).

Example: After finishing the SBA deployment, the eGov-
ernment application is executed. Let us assume that the
first activity, which invokes the DeptATicketHandler ser-
vice, lasts 90 milliseconds. The measured response time of
the DeptATicketHandler call is stored as monitored data
mDeptATicketHandler. mDeptATicketHandler satisfies the as-
sumption that the service responds within 100 milliseconds
(aDeptATicketHandler). In the next step ePay is invoked.
Let us assume, that the invocation of ePay is slower than
expected. This is the same situation as described in Scenarios
A and B (see Section III). Instead of 400 milliseconds as
expected, the ePay invocation takes 450 milliseconds (cf.
Scenario B). Hence, the monitoring data of the second service
invocation mePay doesn’t satisfy the corresponding assump-
tion aePay:

mePay 2 aePay

Due to this violation the phases of the adaptation loop are
entered.

F. Identify Adaptation Needs

In this phase it is checked, whether the requirements are still
satisfied, although the assumptions have been violated (cf. [8]).
For example it might be the case that a slower response time
of one service is compensated by a faster response time of a
previous service, and consequently no adaptation is required.

When the check is performed, there usually are services
which have not been invoked. Only when the workflow is
finished, all services have been invoked. This means, that
there is no monitoring data available for the not yet invoked
services. For those not yet invoked services we continue to use
their assumptions in the checks, i.e. we use a subset A′ ∈ A.
Next, it is checked, whether the workflow specification S, the
monitored data M and the assumptions in A′ satisfy the given
requirements R.

S,M,A′ |= R

If R is satisfied, then the workflow execution is continued.
If R is not satisfied, the SBA must be adapted.

Example: To illustrate that the presented S-Cube approach
is adequate to address the shortcomings from III-B and III-C,
we compare the S-Cube approach with the requirements mon-
itoring approach presented in Section III-B (Scenario A) and
the sequence monitoring approach presented in Section III-C
(Scenario B). It is checked, whether there is a deviation from
the requirements, as this could indicate that an adaptation is
necessary. This check also covers cases with larger delays,
e.g., 500 milliseconds in Scenario A.

The approach presented in Scenario A (see Section III-B)
does not realize failures at the moment when they occur
– as depicted with ∆ in Figure 3. The S-Cube approach
does not have this shortcoming. The continuous monitoring of
the service behavior registers failures immediately. The SBA

requirements are promptly checked, thus the system can proac-
tively prevent requirement deviations by means of adaptation.
In order to eliminate requirement violations Model Checking
techniques are used. The workflow specification (S1), the
monitoring data (mDeptATicketHandler and mePay) together
with the assumptions of the outstanding service invocations
(aDeptCTicketHandler, aeSign and aY ahoo) are checked against
the requirement rperf . The expected overall runtime is 1450
milliseconds which exceeds the 1250 milliseconds demanded
in rperf . Hence, the requirement rperf is not satisfied. This re-
sult is considered as an identified adaptation need. Subsequent
to this check, the adaptation can be performed proactively,
before the requirement is actually violated.

The approach presented in Scenario B (see Section III-C)
is not able to determine, whether a failure of a single ser-
vice leads to a violation of the SBAs requirements. Every
time a service fails, the SBA adapts immediately. The S-
Cube approach presented in this paper allows adapting only
in cases when critical failures occur, thereby avoiding un-
necessary adaptations. The same check as described above
assesses that the expected overall runtime does not exceed
1250 milliseconds. The requirement rperf is still satisfied and
thus no adaptation trigger is needed. Thereby an unnecessary
adaptations is prevented, which would have been performed
in Scenario B.

G. Decide on Adaptation / Identify adaptation strategy

When the need for adapting an SBA is detected, the next
step is to identify and apply an appropriate adaptation strategy
among the ones that are available for the considered applica-
tions. Depending on the application, the adaptation strategies
may range from service re-execution, over replacement of a
single service or of the process fragment, over re-negotiation
of quality properties, to changes in underlying infrastructure,
etc. Note that the adaptation strategies should be designed
with the application since some of them require the adoption
of specific infrastructure or the implementation of additional
components.

Typically, the adaptation strategy is associated with a spe-
cific critical situation or a problem at design time. This associ-
ation may be done either implicitly or explicitly. In the former
case, the mechanisms for choosing one action or another are
“hard-coded” in some decision mechanisms. A typical scenario
is the replacement of a service that violates the SLA or a
SBA requirement with a new one, with appropriate and most
suitable characteristics. Based on the selection criteria (e.g.,
optimization of a quality function, adherence to application
constraints), the appropriate decision mechanism may choose
one service or another. In the scope of the S-Cube project,
several approaches follow this vision. For example, in [26]
the replacement policies realize such a decision mechanism
and define the association between various types of changes
(service failure, changes in service properties and models,
appearance of new services, and changes in the context and
requirements) and the service selection. In [27], the decision
on the adaptation strategy is based on the quality factors

of the SBA that should be improved. Those factors are
identified through the analysis of the dependency tree that
capture the relation between simple quality factors and SBA
requirements. At design time, the adaptation action is assigned
to the quality factors that it influences either positively or
negatively. The selection of the adaptation strategy is based
on the need to improve quality factors that are critical for the
requirement, while trying to minimize the negative effect on
the other factors. In our scenario, the requirement would need
to improve the performance of the last service, and the service
replacement would be proposed such that the new service has
better performance, while having smaller cost with respect to
alternatives.

The definition of the adaptation strategy may be also
explicitly assigned to the critical situation. For example in
[28] the adaptation strategy is represented in the WS-ReL,
a notation for specifying and integrating recovery actions in
service composition. Therefore, the adaptation is defined as a
rule, where in the left hand side a critical situation is defined
(as a formal requirement to be monitored) and in the right
hand side a set of actions to be applied. The possible actions
include re-execution of a service invocation, replacement of
a service or a provider (partner link), ignoring the failure or
halting the execution, executing an extra process fragment, or
rolling back to a safe point. Simple actions may be joined into
a complex strategy by defining a control flow over actions, like
“try action A else try action B and action C”. These rules are
evaluated and applied by the underlying adaptation engine.

Adaptation can also be based on the causes of failures. This
is particularly helpful when invoked services are stateful, and
their invocation modifies the state of the service, such as in
transactional services. For processes involving transactional
services, if a diagnosis mechanism is available, such as in
[29], the adaptation strategy can depend on the cause of the
failure and its implications on the processes. This might imply
an adaptation strategy involving one or more services in the
process which must be dynamically generated.

H. Enact Adaptation

To enact adaptation actions, the SBA or its execution plat-
form should be appropriately instrumented. A typical approach
for realizing adaptation mechanisms for SBAs implemented
as executable (BPEL) processes is to instrument the process
execution engine. Such instrumentation is done via Aspect-
Oriented Programming techniques, as the adaptation activities
are treated as a cross-cutting concern. Using this approach,
the join points allow for injecting the adaptation logic in order
to intercept and adjust process execution logic. In particular,
in [28] a supervision manager component is attached to the
ActiveBPEL process engine and performs the necessary super-
vision activities: monitoring of critical situations, evaluation of
adaptation rules, and calls to the process engine infrastructure
to realize the specific strategy. Similarly, in [30], where aspect-
oriented techniques are adopted in order to dynamically bind
services into service compositions that are realized as BPEL
orchestrations.

V. CONCLUSION AND PERSPECTIVES

This paper has introduced novel techniques developed in S-
Cube (the European Network of Excellence on Software, Ser-
vices and Systems) for equipping service-based applications
with proactive adaptation facilities. Thereby, those techniques
are able to avoid costly compensation and repair activities,
as well as unnecessary adaptations, which are deemed key
shortcomings of current solutions for adaptive service-oriented
applications.

The techniques have been introduced along the key phases
of the S-Cube service life-cycle. Thereby, this paper has
demonstrated when and how those techniques should be ap-
plied when developing, evolving and adapting service-based
applications.

We are confident that those techniques will become espe-
cially relevant in the setting of the “Internet of Services”,
where applications will increasingly be composed from third
party services, which are not under the control of the service
consumer. This implies that applications and their constituent
services need to be continuously checked during their oper-
ation such that they can be dynamically adapted or evolved
in order to respond to failures or unexpected changes of third
party services.

In S-Cube, we are currently striving to push the envelope
towards proactive adaptation even further. In addition to de-
termining the need for adapting the service-based application
based on actual failures of the application’s constituent ser-
vices, we investigate the applicability of online testing for
predicting the quality of those services (e.g., see [6], [7]).
Combined with the approaches introduced in this paper, this
means that critical problems could be observed even earlier,
thus enabling a broader range of adaptation and evolution
strategies. For instance, in our running example we can only
react to the violation of the response time of a constituent ser-
vice by ensuring that the remainder of the workflow executes
faster. However, if the quality prediction techniques forecast a
violation of the expected response time of a specific service,
this very service can be replaced before it is invoked in the
context of the service-based application.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube). For further information please visit http://www.s-cube-
network.eu/.

REFERENCES

[1] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl, “A
journey to highly dynamic, self-adaptive service-based applications,”
Automated Software Engineering, 2008.

[2] G. Canfora and M. Di Penta, “Testing services and service-centric
systems: Challenges and opportunities,” IT professional, vol. 8, no. 2,
pp. 10–17, 2006.

[3] A. Metzger and K. Pohl, “Towards the next generation of service-based
systems: The s-cube research framework,” in CAiSE 2009, ser. LNCS,
J. P. van Eck, J. Gordijin, and R. Wieringa, Eds. Berlin Heidelberg:
Springer-Verlag, 2009, pp. 11–16.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, 2009.

[5] S. Benbernou, “State of the art report, gap analysis of knowledge on
principles, techniques and methodologies for monitoring and adaptation
of sbas,” S-Cube Consortium, Deliverable PO-JRA-1.2.1, July 2008.
[Online]. Available: http://www.s-cube-network.eu/results/

[6] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka, “Towards pro-
active adaptation with confidence augmenting service monitoring with
online testing,” in Proceedings of the ICSE 2010 Workshop on Software
Engineering for Adaptive and Self-managing Systems (SEAMS ’10),
Cape Town, South Africa, 2-8 May 2010.

[7] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A framework
for proactive self-adaptation of service-based applications based on
online testing,” in ServiceWave 2008, ser. LNCS, no. 5377. Springer,
10-13 December 2008.

[8] A. Gehlert, A. Bucchiarone, R. Kazhamiakin, A. Metzger, M. Pistore,
and K. Pohl, “Exploiting assumption-based verification for the adapta-
tion of service-based applications,” in SAC ’10: Proceedings of the 2010
ACM Symposium on Applied Computing. New York, NY, USA: ACM,
2010, pp. 2430–2437.

[9] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-Time Moni-
toring of Instances and Classes of Web Service Compositions,” in IEEE
International Conference on Web Services (ICWS 2006), 2006, pp. 63–
71.

[10] D. Dranidis, E. Ramollari, and D. Kourtesis, “Run-time verification of
behavioural conformance for conversational web services,” in Seventh
IEEE European Conference on Web Services (ECOWS 2009), 9-11
November 2009, Eindhoven, The Netherlands, R. Eshuis, P. W. P. J.
Grefen, and G. A. Papadopoulos, Eds., 2009, pp. 139–147.

[11] C. Ghezzi and S. Guinea, “Run-time monitoring in service-oriented
architectures,” in Test and Analysis of Web Services, L. Baresi and E. D.
Nitto, Eds., 2007, pp. 237–264.

[12] D. Bianculli, C. Ghezzi, P. Spoletini, L. Baresi, and S. Guinea, Advances
in Software Engineering, ser. Lecture Notes in Computer Science.
Springer-Verlag, 2008, vol. 5316, ch. A Guided Tour through SAVVY-
WS: a Methodology for Specifying and Validating Web Service Com-
positions, pp. 131–160.

[13] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and
F. Leymann, “Runtime prediction of service level agreement violations
for composite services,” in 3rd Workshop on Non-Functional Properties
and SLA Management in Service-Oriented Computing, co- located with
ICSOC 2009, 2009.

[14] A. Bucchiarone, C. Cappiello, E. D. Nitto, R. Kazhamiakin, V. Mazza,
and M. Pistore, “Design for adaptation of service-based applications:
Main issues and requirements,” in Fifth International Workshop on En-
gineering Service-Oriented Applications: Supporting Software Service
Development Lifecycles (WESOA), 2009.

[15] A. Gehlert, M. Pistore, P. Plebani, and L. Versienti, “First
version of integration framework,” S-Cube Consortium, Deliverable
CD-IA-3.1.3, December 2009. [Online]. Available: http://www.s-cube-
network.eu/results/

[16] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. Di Nitto, and
V. Mazza, “A context-driven adaptation process for service-based appli-
cations,” in PESOS 2010 - 2nd International Workshop on Principles of
Engineering Service-Oriented Systems. (To Appear), Cape Town, South
Africa, 1-2 May 2010.

[17] B. Pernici, Methodologies for Design of Service-Based Systems.
Springer, 2010, ch. 17.

[18] E. Nitto, “State of the art report on software engineering
design knowledge and survey of hci and contextual knowledge,”
Deliverable PO-JRA-1.1.1, 2008. [Online]. Available: http://www.s-
cube-network.eu/results/

[19] D. Bianculli, C. Ghezzi, and C. Pautasso, “Embedding continuous
lifelong verification in service life cycles,” in Proceedings of Principles
of Engineering Service Oriented Systems (PESOS 2009), co-located with
ICSE 2009, Vancouver, Canada. IEEE Computer Society Press, May
2009.

[20] M. Comuzzi and B. Pernici, “A framework for qos-based web service
contracting,” ACM Transactions on web, vol. 3, no. 3, 2009.

[21] E. D. Nitto, V. Mazza, and A. Mocci, “Collection of industrial
best practices, scenarios and business cases,” S-Cube Consortium,
Deliverable CD-IA-2.2.2, 2009. [Online]. Available: http://www.s-cube-
network.eu/results/

[22] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner,
B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing,
and H. Wössner, The Munich Project CIP: Volume I: the wide spectrum
language CIP-L. London, UK: Springer-Verlag, 1985.

[23] A. Gehlert and A. Metzger, “Quality reference model for SBA,”
Deliverable CD-JRA-1.3.2, 2008. [Online]. Available: http://www.s-
cube-network.eu/results/

[24] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore, “An integrated
approach for the run-time monitoring of bpel orchestrations,” in Service-
Wave ’08: Proceedings of the 1st European Conference on Towards a
Service-Based Internet. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
1–12.

[25] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo + astro:
An integrated approach for bpel monitoring,” Web Services, IEEE
International Conference on, vol. 0, pp. 230–237, 2009.

[26] K. Mahbub and A. Zisman, “Replacement Policies for Service-Based
Systems,” in 2nd Workshop on Monitoring, Adaptation and Beyond
(MONA+), co- located with ICSOC 2009, 2009.

[27] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and
F. Leymann, “Adaptation of service-based applications based on process
quality factor analysis,” in Proc. Of 2nd Intl. workshop on Monitoring,
Adaptation and Beyond (MONA+), Collocated with ICSOC/Service-
Wave’09, 2009.

[28] L. Baresi, S. Guinea, and L. Pasquale, “Integrated and composable
supervision of bpel processes,” in International Conference on Service-
Oriented Computing (ICSOC), 2008, pp. 614–619.

[29] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni, “Exception
handling for repair in service-based processes,” IEEE Trans. Software
Eng., vol. 36, no. 2, pp. 198–215, 2010.

[30] D. Karastoyanova and F. Leymann, “Bpel’n’aspects: Adapting ser-
vice orchestration logic,” in International Conference on Web Services
(ICWS), 2009, pp. 222–229.

APPENDIX

Listing 1. Workflow Specification SeGov

system ParkingTicketSpec {
Action identifyParkingTicket;
Action makePayment;
Action updateParkingTicketRecord;
Action sign;
Action sendEMail;

i n t sumMaxResponseTime := 0;

record Action {
s t r i n g serviceName;
i n t maxResponseTime;
boolean serviceInvoked;

}

a c t i v e thread MAIN () {
init();
checkWorkflow();
checkRequirements();
}

f u n c t i o n init() {
identifyParkingTicket :=
createAction("DeptATicketHandler", 100);
makePayment := createAction("ePay", 400);
updateParkingTicketRecord :=
createAction("DeptCTicketHandler", 500);
sign := createAction("eSign", 100);
sendEMail := createAction("Yahoo", 100);
}

f u n c t i o n checkWorkflow() {
executeAction(identifyParkingTicket);
choose

do sk ip;

do
atomic
executeAction(makePayment);
choose

do sk ip;
do
atomic
executeAction(updateParkingTicketRecord);
choose

do executeAction(sign);
do sk ip;

end
executeAction(sendEMail);
end

end
end

end
}

f u n c t i o n checkRequirements() {
a s s e r t sumMaxResponseTime <= 1250;

}

f u n c t i o n executeAction(Action action) {
sumMaxResponseTime :=

sumMaxResponseTime +
action.maxResponseTime;

action.serviceInvoked := t rue;
}

f u n c t i o n createAction(
s t r i n g serviceName,
i n t maxResponseTime) r e t u r n s Action{
Action action;
action := new Action;
action.serviceName := serviceName;
action.maxResponseTime := maxResponseTime;
action.serviceInvoked := f a l s e;
re turn action;

}
}

A Pattern-based Approach for Monitor Adaptation

Ricardo Contreras Andrea Zisman
School of Informatics School of Informatics

City University London City University London
London EC1V 0HB, UK London EC1V 0HB, UK

Ricardo.Contreras.1@soi.city.ac.uk a.zisman@soi.city.ac.uk

Abstract

Monitoring of service-based systems can be used to
assist with the verification of the behaviour of the system,
and the quality and contextual information of the services
participating in a system. In this paper, we present a
pattern-based approach to support monitor adaptation:
adaptation of monitor rules used by a monitor tool. Our
work focuses on monitor adaptation due to changes in the
context characteristics of the user interacting with the
system and the set of services used by the system. The
monitor adaptation is based on the use of patterns
represented in Event Calculus for different user context
types such as role, skills, needs, preferences, and
cognition, as well as location, time, and environment.

1. Introduction
Monitoring of service-based systems has been recognized
as a very important activity to support service-oriented
computing. More specifically, monitoring of service-based
systems is concerned with the activity of collecting
information about the execution of a service-based system
and verifying if the system is operating correctly by
comparing the collected information with the properties of
the system (viz. monitor properties or monitor rules).

The monitor can be used to verify the behaviour of a
service-based system [1][2][5][32][25], the quality of
service aspects of the services participating in a system
[11][18][19][20][28], and the contextual information of
the services participating in the system and the system
itself [4][6][8]. Monitoring of service-based systems is
used to support several activities such as (a) adaptation,
repair, and evolution of service-based systems; (b)
discovery and replacement of services participating in the
system; (c) notification of violations of service level
agreements, business rules and KPI values; or (d)
optimization of resource allocations.

Several approaches have been proposed to support
monitoring of service-based systems. These approaches
can be classified in terms of the type of information being
monitored (what), the purpose of the monitoring activity
(why), and the techniques used to support the monitoring
(how) [3]. Existing monitoring techniques can be classified
as intrusive [2] or non-intrusive [1][23][25][32]. Intrusive
techniques are characterized by the use of instrumentation
of the service-based system or its constituent services,
while non-intrusive techniques are characterized by the
use of special components to capture runtime information
about the services and the utilization of this information by
an external monitor component.

All the existing approaches for monitoring service-
based systems assume that the monitor properties (monitor
rules) are pre-defined and known in advance. However,
this is not always the case given that during execution time
of a service-based system it is possible to have changes in
the (i) set of services used by the system, (ii) types of
interaction of the users with the system, and (iii) context
characteristics of the user interacting with the system.

As an example, consider a financial planner service-
based system that provides financial information including
information about stock markets, allows purchasing and
selling of shares in different companies, and provides
instant messaging services among the users of the planner
system. An experienced (skills) broker (role) uses this
application to receive constant information about mining
companies in Asia. Assume that after a while, the user of
the application not only retrieves information from
different companies in Asia, but also starts purchasing
shares from these different companies (case (ii) above). In
this case, new monitor rules relevant to the purchase of
shares, including access to the user’s bank account, are
required (needs). Assume that the broker has used this
service-based application in the past for companies in
South America. Consider also that historical data about the
activities that this broker has executed using this
application, when dealing with companies in South
America, shows that when the values of the stocks
purchased by the user reaches a certain threshold, the user
starts to sell the stocks (user’s needs). In this case, the
historical data together with the fact that the user started to
purchase shares in companies are used to forecast possible
future activities of the user and, in some situations, require
the monitor to be able to give support for the new activity
(i.e., selling of shares) (case (iii) above). Moreover,
suppose the situation that after a while, the service in the
system that provides information about stock markets
becomes unavailable. Assume that a new service that
provides information about stock markets, as well as
analyses the companies and predicts possible outcomes for
the shares of the companies is used to replace the initial
service. In this case, the monitor system needs to verify the
new functionality (i.e., analysis and predictions) (case (i)
above).

Therefore, it is necessary to provide ways to support
monitor adaptation. We define monitor adaptation as
adaptation of the monitor rules used by the monitor
system. The adaptation of the monitor rules can be
executed in three different ways, namely (a) by dynamic
selection of the monitor rules to be used, (b) by automatic
or semi-automatic modifications of monitor rules, and (c)

by automatic or semi-automatic creation of new monitor
rules, triggered by any of cases (i) to (iii) above.

In this paper we present a pattern-based approach to
support monitor adaptation as defined above. More
specifically, our approach is concerned with HCI-aware
monitor adaptation in which changes in the monitor rules
are based on user’s interaction with a service-based system
and different types of user context. The user context
information includes role, skills, needs, preferences, and
cognitive information of the user represented in user
models based on an ontology that we have created. We
have also created patterns for monitor rules representing
the different context types.

The remainder of this paper is structured as follows.
Section 2 describes an overview of our approach,
including our user context ontology and user models.
Section 3 presents the different context-aware patterns and
examples of monitoring rules. Section 4 presents existing
related work. Finally, Section 5 summarizes the work and
describes material for future work.

2. Overview of Our Approach
Figure 1 shows an overview of the process of our monitor
adaptation approach. As shown in the figure, the
characteristics of the users are represented in special
models. These models together with (i) patterns
representing the various types of context related rules and
(ii) existing monitor rules are used by the monitor adaptor
to provide new monitor rules. More specifically, the
monitor adaptor uses the models and the patterns to
identify monitor rules1, to change existing monitor rules,
or to create new monitor rules. The new set of monitor
rules is used by the monitor to support verification of the
service-based system. We assume the use of the
monitoring tool described in [32]. However, our approach
can be used with any monitoring tool that makes use of
monitor rules represented in Event Calculus.

Figure 1: Overview of the approach

The user models are described in an XML format, and
are based on the ontology we have created to specify user

1 In our approach the identified, modified and created rules are

stored in a rule repository

context types. We have built the ontology using protégé
[26] (see Subsection 2.1).

The monitor rules are described in Event-Calculus (EC)
[30]: a language based on first-order logic, which can be
used to support behaviour representation of dynamic
systems. The use of Event Calculus (EC) to describe
monitor rules has been advocated in [11][20][32] and has
shown to be appropriate to support the representation of
several types of rules. More specifically, Event Calculus
allows (i) rules to be represented as first order logic, which
provides sufficient expressiveness for a large range of
applications; (ii) specification of quantitative temporal
constraints and relationships that are necessary to be taken
into consideration when monitoring service-based
systems; (iii) distinction between events and states that are
necessary to describe the behavior of a system and
interaction of users with the system; and (iv) definition of
the influences between events and states despite the
possibility of using multiple states and events.

As mentioned before, our approach supports the
adaptation of monitor rules in three different ways,
ranging from the (a) dynamic selection of monitor rules, to
(b) automatic or semi-automatic modifications of existing
monitor rules, and (c) automatic or semi-automatic
creation of new monitor rules. Any of cases (a)-(c) above
can be triggered by changes in user context and changes in
the services used in a service-based system. The
adaptation of the monitor rules is executed by trying
option (a), followed by option (b), and finally by option
(c), when a rule does not exist or cannot be modified.

We describe below the ontology we have proposed for
the representation of the different types of user context,
and the model that we use to represent user information.

2.1 Ontology for User Context
User context is concerned with information about users
that interact with service-based systems. Based on the
classification proposed in [10][14][29], we classify
information about users in two groups, namely (i) direct
user context types and (ii) related user context types. The
direct user context types represent information of the
characteristics of the users and include role, skills, needs,
preferences, and cognitive context types. The related user
context types represent information that may influence
user information and include time, location, and
environment context types. We define below these various
types of direct and related user context.

Role: It signifies a social behaviour of an individual within
the domain of a service-based system. The roles of an
individual can be concerned with the accessibility to the
system, occupation of the user, privileges that the user
may have to the system.

Skills: It signifies the level of expertise of an individual
with respect to a service-based system. The skills of a user
are directly related to the user knowledge and experience
with the system. The skills can be defined in terms of the
level of expertise of the user (e.g., beginner, average,
advanced) or the years of experience.

Preferences: It signifies an individual’s choice over pre-
established alternatives of computational resources, of a
service-based system. Examples of these preferences are
concerned with security, reliability, response time,
availability, and cost characteristics of a service-based
system.

Needs: It signifies what an individual wants or requires
from a service-based system.

Cognition: It signifies individual’s characteristics
associated to the process of thought. It is concerned with
the way that individuals think, feel, or react. Examples of
these characteristics are reaction, user attention level, and
user comprehensive ability.

Time: It signifies all possible types of information related
to the moment when the user interacts with a service-based
system such as hour, date, day, week, or season.

Location: It signifies information related to the place
where the user interacts with a service-based system such
as coordinates, city, and country.

Environment: It signifies information concerned with the
environment where the system is being used. This context
includes information such as temperature, traffic
conditions, or climate.

Figure 2: User Context Ontology

Figure 2 shows a general graphical representation of
our user context ontology. As shown in Figure 2, the
different context types are represented as classes, with
subclasses in some cases, and are associated with a central
class representing the user. These associations represent
relationships between the different attributes of a context

type (e.g., occupation for context class role) and a user
class. For each class their attributes and respective data
types are presented inside the class. Please note that at this
stage we do not consider associations between the
different context types given that the focus of the work is
on relationships between users and contexts and not
between context and context.

The user class represents information about the user
ranging from unique identification (e.g., user ID, user
name) to profile information (e.g., sex, language, address),
and the associations between a user class and the other
context type classes.

Some of the attributes in the ontology are defined as
symbols of values (e.g., low, medium, high; male, female;
slow, normal, fast; beginner, average, expert), while other
attributes support definition of specific values represented
as string, integer, or real data types.

2.2 User Models
Our user models are represented in XML format. An
example of a user model based on the ontology shown in
Figure 2 is presented in Figure 3.

Figure 3: Example of a User Model

The example in Figure 3 is based on the scenario
described in Section 1. As shown in the figure, a user
called James, with unique identifier 007, is a broker (role)
with 10 years of experience (skills). In this example
different attributes from the skill and role context types
and some user attributes are specified in the model. The
attributes specified for skill and role context types are
associated with the user through relations possesses and
behaves according to, as shown in the figure.

3. Context-aware Monitoring Patterns
3.1 Overview of Event Calculus
As discussed in Section 2, our work assumes monitor rules
described in Event Calculus (EC) [30]. Due to space

limitations we restrict the description of EC elements to
those that are used in the patterns we are proposing.

EC makes use of events and fluents to represent the
behaviour of a system. An event occurs at a specific
instance of time and may change the state of a system. A
fluent is a condition of a system state and may be affected
by the occurrences of events. Both events and fluents are
represented in EC by predicates.

The occurrence of an event, at some time t, is
represented by the predicate Happens(event,t,R(t1,t2)),
which means an event occurs at a time t, where t is within
an interval between t1 and t2. The time boundaries,
represented by t1 and t2, can be specified using time
variables or arithmetic expressions over time variables,
and represent the lower and upper time boundaries.

The initialization of a fluent, is represented by the
predicate Initiates(event,fluent,t), which means a fluent
starts to holds after an event occurs at a time t. The
predicate HoldsAt(fluent,t), means a fluent holds (is valid)
at a time t. The termination of a fluent, is represented by
the predicate Terminates(event,fluent,t), which means a
fluent ceases to hold after an event occurs at a time t.

We have also classified the different types of fluents
and events as: user-triggered-event, representing events
directly triggered by the user; system-triggered-event,
representing events that are not directly triggered by the
user; an-event, representing any event; fluent, representing
any fluent and user-dependent-fluent, representing a fluent
that holds (or not) depending on the occurrence of a user-
triggered-event.

3.2 Patterns
We have developed patterns of monitor rules for different
user contexts named context patterns. Our context patterns
are composed of two parts, namely (a) monitor rules and
(b) assumptions. The monitor rules represent properties of
a service-based system that need to be monitored, while
the assumptions represent event calculus formulae that
need to be used to identify state information of the system.
The state information will be used by the monitor rules. In
the following we describe different patterns for the
different types of user context of our concern.

3.2.1 Pattern for Role
The pattern for role context type has been proposed based
on the belief that, depending on the role of a user, the same
user action can activate different processes in a system. In
this case, it is necessary to have two or more monitor rules
concerned with the same user event (user-triggered-event)
implying different system events (system-triggered-event).
For example, in the financial planner service-based system
described in Section 1, a user that is a broker (occupation
in role) wants to purchase shares from a mining company
in Asia, while another user that is a finance teacher
(occupation in role) wants to collect information about
mining companies in Asia to prepare for a lecture.

Figure 4 presents the pattern for role context type. The
monitor rule part in this pattern states that after the same
user event is triggered (user-triggered-event-A) a different
system event should be triggered depending on the role
(system-triggered-event-A and system-triggered-event-B).

The assumption part in this pattern states that when
different system events occur different fluents are initiated.

monitoring rule:
Happens (user-triggered-event-A, t1, R(t1,t1)) →
Happens (system-triggered-event-A, t3, R(t1,t2))
assumption:
Happens (system-triggered-event-A, t1, R(t1,t1)) →
Initiates (system-triggered-event-A, fluent-A, t1)
monitoring rule:
Happens (user-triggered-event-A, t1, R(t1,t1)) →
Happens (system-triggered-event-B, t3, R(t1,t2))
assumption:
Happens (system-triggered-event-B, t1, R(t1,t1)) →
Initiates (system-triggered-event-B, fluent-B, t1)

Figure 4: Pattern for role context type

Example: To illustrate the use of the role context type
pattern, consider the scenario of the service-based system
described in Section 1 and the broker and the finance
teacher above. Figure 5 shows examples of monitoring
rules related to the two roles above for the role patterns
shown in Figure 4. According to the rules in Figure 5, the
same user action get mining company can trigger the
retrieval of company information or a connection to a bank
to support the purchase of shares if the role of the user is a
teacher or broker respectively.

monitor rule:
Happens (get-mining-company, t1, R(t1,t1)) →
Happens (retrieve-comp-information, t2, R(t1,t1+100))
assumption:
Happens (retrieve-comp-information, t1, R(t1,t1)) →
Initiates (retrieve-comp-information, reports, t1)
monitor rule:
Happens (get-mining-company, t1, R(t1,t1)) →
Happens (connect-bank-account, t2, R(t1,t1+100))
assumption:
Happens (connect-bank-account, t1, R(t1,t1)) →
Initiates (connect-bank-account, secure-connection, t1)

Figure 5: Example of monitoring rules for role
context type

3.2.2 Pattern for Skill
The pattern for skill context type has been proposed based
on the belief that different user actions, capable of
activating the same process in a system, occur depending
on the skill of the user. In this case, it is necessary to have
two or more monitor rules concerned with different user
events implying the same system event. For example, in
the financial planner system, an expert user (experience
level in skills) could retrieve information specifying fields
of interest, while a beginner would use an assistant for
specifying the same fields of interest.

monitor rule:
Happens (user-triggered-event-A, t1, R(t1,t1)) →
Happens (system-triggered-event-A, t3, R(t1,t2))
assumption:
Happens (system-triggered-event-A, t1, R(t1,t1)) →
Initiates (system-triggered-event-A, fluent-X, t1)
monitor rule:
Happens (user-triggered-event-B, t1, R(t1,t1)) →
Happens (system-triggered-event-A, t3, R(t1,t2))
assumption:
Happens (system-triggered-event-A, t1, R(t1,t1)) →
Initiates (system-triggered-event-A, fluent-X, t1)

Figure 6: Pattern for skill context type

Figure 6 presents the pattern for skill context type. The
monitor rule part in this pattern states that after different
user events are triggered, the same system event should be
triggered. The assumption part in this pattern states that
when a system event occurs it initiates a specific fluent.

Example: To illustrate the use of the skill context type
pattern, consider the planner scenario. A skillful user
would retrieve information from mining companies using
the specific feature provided for this purpose. An
unskillful user would retrieve the same information using a
guided assistant. Figure 7 shows examples of monitor
rules related to the skill patterns shown in Figure 6.
According to the rules in Figure 7 different user actions,
manual-selection and guided-selection can trigger the
retrieval of the same information.

monitor rule:
Happens (manual-selection, t1, R(t1,t1)) →
Happens (retrieve-info, t2, R(t1,t1+100))
assumption:
Happens (retrieve-info, t1, R(t1,t1)) →
Initiates (retrieve-info, deliver-companies-info, t1)
monitor rule:
Happens (guided-selection, t1, R(t1,t1)) →
Happens (retrieve- info, t2, R(t1,t1+100))
assumption:
Happens (retrieve- info, t1, R(t1,t1)) →
Initiates (retrieve-info, deliver-companies-info, t1)

Figure 7: Example of monitoring rules for skill
context type

3.2.3 Pattern for Preference
For the preference context type we focused in particular on
the response time. This context type represents the user’s
time flexibility when waiting for the system response. The
pattern has been proposed on the beliefs that a user action
can trigger different processes in the system; however the
activation of a particular process is essential for other
processes to occur. It is also assumed that the essential
process is performed quicker than the other processes.

In this case, it is necessary to have two or more monitor
rules concerned with the same user event implying
different system events; and those system events triggering
the same state. For example, in the planner scenario, a user
retrieves stock information in a low resolution basic text

form if the response time is a concern (level high in
response time), or in a high resolution graphics, if time is
not a concern (level low in response time). In this
example, high resolution depends on low resolution.

Figure 8 presents an example of a pattern for response
time preference context type. The monitor rule part in this
pattern states that after the same user event is triggered,
different system events are triggered.

The assumption part in this pattern states the
initialization of a fluent triggered by the different system
events and system events dependency.

monitor rule:
Happens (user-triggered-event-A, t1, R(t1,t1)) →
Happens (system-triggered-event-A, t3, R(t1,t2))
assumption:
Happens (system-triggered-event-A, t1, R(t1,t1)) →
Initiates (system-triggered-event-A, fluent-A, t1)
monitor rule:
Happens (user-triggered-event-A, t1, R(t1,t1)) →
Happens (system-triggered-event-B, t3, R(t1,t2))
assumption:
Happens (system-triggered-event-B, t1, R(t1,t1)) →
Happens (system-triggered-event-A, t3, R(t1,t2)) ʌ
Initiates (system-triggered-event-B, fluent-A, t3)

Figure 8: Pattern for time preference context type

Example: To illustrate the use of the time preference
context type pattern, consider the planner scenario and a
user that would like to receive updated information about
company shares as fast as possible and a user that would
like to receive the same information in a detailed graphical
format where time is not a concern. Figure 9 shows
examples of monitor rules related to the response time
patterns shown in Figure 8.

According to the rules in Figure 9, the same user action,
request updates, can trigger different actions associated to
the way the information is displayed (i.e. low and high
quality display). The high quality however is dependent on
the low quality and, because of this dependency; it is
assumed it takes more time than a low quality display.

monitor rule:
Happens (request-updates, t1, R(t1,t1)) →
Happens (low-quality-display, t2, R(t1,t1+100))
assumption:
Happens (low-quality-display, t1, R(t1,t1)) →
Initiates (low-quality-display, show-acc-to-quality, t1)
monitor rule:
Happens (request-updates, t1, R(t1,t1)) →
Happens (high-quality-display, t2, R(t1,t1+100))
assumption:
Happens (high-quality-display, t1, R(t1,t1)) →
Happens (low-quality-display, t3, R(t1,t2)) ʌ
Initiates (high-quality-display, show-acc-to-quality, t3)

Figure 9: Example of monitoring rules for time
preference context type

3.2.4 Pattern for Cognition
The pattern for the cognitive context type has been
proposed based on the belief that according to the user

cognition, a user interaction takes more or less time to
occur, affecting a process requiring user intervention. In
this case it is necessary to have a monitor rule concerned
with the occurrence of a user event in a defined period of
time.

Figure 10 presents the pattern for the cognitive context
type. The monitor rule part in this pattern states that
when a fluent is dependent on a user event, the user event
should occur in a defined period of time. The assumption
part in this pattern states that the user dependent fluent can
be initiated by any event and if no user event occurs in a
defined time, the user dependent fluent ends.

monitor rule:
HoldsAt (user-dependent-fluent, t1) →
Happens (user-triggered-event, t3, R(t1,t2))
assumptions:
Happens (an-event-A, t1, R(t1,t1)) →
Initiates (an-event-A, user-dependent-fluent, t1)

HoldsAt (user-dependent-fluent, t1) ʌ
¬Happens (user-triggered-event, t3, R(t1,t2)) →
Happens (system-triggered-event-A, t2, R(t2,t2))

Happens (system-triggered-event-A, t1, R(t1,t1)) →
Terminates (system-triggered-event-A, user-

dependent-fluent, t1, R(t1,t1))

Figure 10: Pattern for cognitive context type

Example: To illustrate the use of the cognitive context
type pattern, consider the financial planner scenario and a
user that checks a bank transaction before authorizing the
funds transfer. Assume the user has been checking
transfers for the last 10 hours and her productivity
decreases (decrement in the user reaction rate).

Figure 11 shows an example of monitor rule related to
the cognitive pattern shown in Figure 10. According to the
monitor rule in Figure 11, the user transaction
confirmation should occur in the specified time or the
bank account ceases to be active.

monitor rule:
HoldsAt (bank-account-active, t1) →
Happens (user-trans-confirmation, t2, R(t1,t1+10))
assumptions:
Happens (stock-purchase, t1, R(t1,t1)) →
Initiates (stock-purchase, bank-account-active, t1)

Holds (bank-account-active, t1) ʌ
¬Happens (user-trans-confirmation, t2, R(t1,t1+10))→
Happens(interact-time-exceeded, t3, R(t1+10,t1+10))

Happens (interact-time-exceeded, t1, R(t1,t1)) →
Terminates (interact-time-exceeded, bank-account-

active, t1, R(t1,t1))

Figure 11: Example of monitoring rules for cognitive
context type

3.2.5 Pattern for Needs
The pattern for need context type has been proposed based
on the belief that a user is able to choose among actions in

a system. Since the need concept is too general to be
represented, we have limited our identification of needs to
mutually exclusive system actions (e.g. use or no use of
graphical interface). For this we focus on the identification
of two rules that may be incompatible.

Figure 12 presents the pattern for the need context type.
The monitor rule part in this pattern states that after the
same user event is triggered the same system event should
either occur or not occur. The assumption part in this
pattern states that the occurrence of a system event
initiates a fluent.

monitor rule:
Happens (user-triggered-event, t1, R(t1,t1)) →
Happens (system-triggered-event, t3, R(t1,t2))
assumptions:
Happens (system-triggered-event, t1, R(t1,t1)) →
Initiates (system-triggered-event, fluent-A, t1)
monitor rule:
Happens (user-triggered-event, t1, R(t1,t1)) →
¬Happens (system-triggered-event, t3, R(t1,t2))
assumptions:
Happens (system-triggered-event, t1, R(t1,t1)) →
Initiates (system-triggered-event, fluent-A, t1)

Figure 12: Pattern for needs context type

Consider, in the planner scenario, that the messaging
feature is automatically disabled when performing a
transaction and enabled after the transaction has finished.

monitor rule:
Happens (confirm-and-logout, t1, R(t1,t1)) →
Happens (restart-messaging, t2, R(t1,t1+100)):
assumptions:
Happens (restart-messaging, t1, R(t1,t1)) →
Initiates (restart-messaging, messaging, t1)
monitor rule:
Happens (confirm-and-logout, t1, R(t1,t1)) →
¬Happens (restart-messaging, t2, R(t1,t1+100))
assumptions:
Happens (restart-messaging, t1, R(t1,t1)) →
Initiates (restart-messaging, messaging, t1)

Figure 13: Example of monitoring rules for need
context type

Example: To illustrate the use of the needs context type
pattern, consider a user who wants to purchase shares
based on information received from colleagues in the form
of messages. Assume that after a while the user realizes
the information from her colleagues is not useful and
decides to work on her own without any interruptions (i.e.
no messaging). Figure 13 shows examples of monitor rules
related to the need of receiving messages and not receiving
messages for the pattern shown in Figure 12.

According to the monitor rules in Figure 13 the
message feature is reactivated after a bank transaction
finishes (confirm and logout) or not reactivated at all.

4. Related Work
Various approaches have been proposed to classify
different context types when dealing with context-aware

systems. Some approaches consider the development of
an application and propose context types concerned to
physical sensing devices [14][16][21][27]. Other
approaches focus on the formulation of general and
hierarchical context sets [12][22][29] that are able to
contain, according to a certain criteria, different context
types. These classifications are formulated taking into
account the different elements and components in a
context-aware system. However, we have observed that in
these approaches the user context types are either
neglected or replaced by related context types such as
location or time.

In [9], an ontology for context-aware pervasive
computing environments is proposed. This ontology is
centered on general concepts including people and places,
and defines a set of properties and relationships associated
with these general concepts. The main restriction in this
proposal is that all the elements are defined according to a
specific scenario and most of the identified user context
types are related to physical attributes. Contrary, in
[15][24] ontologies have been formulated considering the
user as the main element. Similar to our approach, in
these ontologies a central class represents the user profile
and is associated to other classes concerned with other
user characteristics such as skills or abilities. However, our
ontology contains more specific user context types.

Different approaches have been proposed for
monitoring service-based system. In [1][25] monitoring is
performed by checking assumptions and conditions, which
specify how services participate in a composition and the
conditions the composition must satisfy. Assumptions and
conditions are specified as behaviour properties in an
expressive monitoring language. These behaviour
properties are used by a monitor, to check the system
operation, based on intercepted messages from the
processes. A similar approach is taken in [20][32]. In this
case, the correct behaviour is monitored by rules specified
in EC. In this approach the rules are composed of
assumptions and properties of a service-based system.
The rules are used by a monitor to check the correctness of
the system based on intercepted messages from the
service-based system processes. In [2] monitoring is
concerned with timeouts, runtime, and violation of
functional contracts, which are described as monitoring
rules. These monitoring rules are specified as comments in
a BPEL process. When a service is invoked, its content is
serialized, as an XML fragment, and sent together with the
associated rules to another specially designed web service
that acts as a monitor. All the above approaches use rules
for monitoring the correct behaviour of a system. The
rules, however, are formulated to monitor particular
behaviors and processes and do not take into account
changes in a service-based system, context characteristics
of the user interacting with the system.

Some work to support dynamic selection of monitoring
rules based on context information has been proposed in
[13][33]. The approach in [33] uses monitor manager on
top of existing monitoring tools to provide a policy driven
interface for these tools. The policies describe how the
monitoring infrastructure should react in the presence of
changes. However, the rules used by the monitoring tools
are not modified.

In [31] patterns for monitoring security properties such
as confidentiality, integrity and availability have been
proposed. Similar to our work, these patterns are expressed
in EC language. Another approach that uses EC to
represent patterns to support verification of physical
interaction is proposed in [17]. In this work, patterns are
prerequisites for an effective physical interaction. Events
and fluents represent general actions and physical states
(e.g., the location in which a user can have a physical
interaction).

Although several approaches have been proposed for
monitoring of service-based systems based on the use of
monitor rules, none of these approaches consider the need
for adaptation of the monitor rules.

5. Conclusions and Future Work

In this paper, we have presented a pattern-based
approach for adaptation of monitor rules used by a monitor
system. More specifically, in our approach, adaptation of
monitor rules can be executed by (a) dynamic selection of
the rules to be used, (b) automatic or semi-automatic
modifications of monitor rules, and (c) automatic or semi-
automatic creation of new monitor rules. The work is
based on the use of patterns represented in Event Calculus
for different user context types (e.g., roles, skills,
preferences, needs, cognition, time, location, and
environment). We have created an ontology for the
different user context types to support representation of
user models.

Currently, we are developing the monitor adaptor to
support automatic identification of monitor rules,
modifications of monitor rules, and creation of new
monitor rules. We are also extending the set of patterns for
the different user context types.

Acknowledgement
The work reported in this paper has been funded by the
European Community’s 7th Framework Programme under
the Network of Excellence S-Cube – Grant Agreement no.
215483.

References
[1] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-

Time Monitoring of Instances and Classes of Web Service
Compositions,” in IEEE International Conference on Web
Services (ICWS 2006), 2006, pp. 63–71.

[2] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of
WS-BPEL Processes,” in Service-Oriented Computing -
ICSOC 2005, Third International Conference, 2005, pp.
269–282.

[3] S. Bebbernou, L. Cavallaro, M.S. Hacid, R. Kazhamiakin,
G. Kecskemeti, J.L Poizat, F. Silvestri, M. Uhlig, B.
Wetzstein, “ State of the Art Report, Gap Analysis of
Knowledge on Principles, Techniques, and Methodologies
for Monitoring and Adaptation of SBAs, S-CUBE
Deliverable PO-JRA-1.2.1.

[4] C. Betini, D. Maggiorini, and D. Riboni. “Distributed
Context Monitoring for the Adaptation of Continuous
Services”, In World Wide Web Journal (WWWJ), Special
Issue on Multichannel Adaptive Information Systems on
World Wide Web. Springer, 2007.

[5] D. Bianculli and C. Ghezzi, “Monitoring Conversational
Web Services,” in IW-SOSWE’07, 2007.

[6] A. Brown and M. Ryan, “Context-aware Monitoring of
Untrusted Mobile Applications”, Security and Privacy in
Mobile Information and Communication Systems, First
International ICST Conference, MobiSec 2009, Turin,
Italy, June 3-5, 2009, LCN

[7] G. Calvary, J. Coutaz, D. Thévenin: “Embedding plasticity
in the development process of interactive systems”; Proc.
6th Workshop User Interfaces for All, Bristol (2000).

[8] A.T.S. Chan and S.N. Chuang. “MobiPADS: A Reflective
Middleware for Context-Aware Mobile Computing”, IEEE
Transactions on Software Engineering, vol. 29, n. 12, 2003.

[9] H. Chen, T. Finin, A. Joshi. An Ontology for Context-
Aware Pervasive Computing Environments. Special Issue
on Ontologies for Distributed Systems, Knowledge
Engineering Review, May 2004.

[10] G. Chen and D. Kotz. “A Survey of Context-Aware Mobile
Computing Research”, Dartmouth College, 2000.

[11] M. Comuzzi and G. Spanoudakis (2009) "Describing and
Verifying Monitoring capabilities for SLA-driven Service-
Based Systems" Proc. CAiSE Forum 2009, Amsterdam, the
Netherlands.

[12] J.L. Crowley, J. Coutaz, G. Rey, P. Reignier, "Perceptual
Components for Context Aware Computing", UBICOMP
2002, International Conference on Ubiquitous Computing,
Goteborg, Sweden, September 2002.

[13] A-M. Dery-Pinna, J. Fierstone, and E. Picard. Component
model and programming: A first step to manage human
computer interaction adaptation. In Lecture Notes in
Computer Science, pages 456–460. Springer-Verlag, 1999.

[14] A.K. Dey and G.D. Abowd. “The Context Toolkit: Aiding
the Development of Context-Aware Applications, In
Proceedings of the Workshop on Software Engineering for
Wearable and Pervasive Computing, June, 2000.

[15] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras, C.
Halatsis, Creating an Ontology for the User Profile:
Method and Applications, Proceedings of the First IEEE
International Conference on Research Challenges in
Information Science (RCIS), Morocco 2007.

[16] G. Hackmann, C. Julien, J. Payton, and Gruia-Catalin
Roman. Supporting generalized context interactions. In
Proceedings of the Workshop on Software Engineering and
Middleware (SEM 2004), 2004.

[17] F. Ishikawa, B. Suleiman, K. Yamamoto, and S. Honiden,
2009. Physical interaction in pervasive computing: formal
modeling, analysis and verification. In Proceedings of the
2009 international Conference on Pervasive Services
(London, United Kingdom, July 13 - 17, 2009). ICPS '09.
ACM, New York, NY, 133-140.

[18] A. Keller and H. Ludwig, “The WSLA Framework:
Specifying and Monitoring Service Level Agreements for
Web Services,” J. Network Syst. Manage., vol. 11, no. 1,
2003.

[19] H. Ludwig, A. Dan, and R. Kearney, “Cremona: An
Architecture and Library for Creation and Monitoring of
WS-Agreements,” in Service-Oriented Computing -

ICSOC 2004, Second International Conference, 2004, pp.
65–74.

[20] K. Mahbub, G. Spanoudakis. Monitoring WS Agreements:
An Event Calculus Based Approach, Test and Analysis of
Service Oriented Systems, (eds) L. Baresi, E. di Nitto,
Springer Verlag, 2007.

[21] R. Mayrhofer, H. Radi, and A. Ferscha. Recognizing and
predicting context by learning from user behavior.
Radiomatics: Journal of Communication Engineering,
special issue on Advances in Mobile Multimedia, 1(1),
May 2004.

[22] K. Mitchell, “Supporting the Development of Mobile
Context-Aware Computing”, Ph.D. Thesis, Department of
Computing, Lancaster University, January 2002.

[23] O. Moser, F. Rosenberg, and S. Dustdar, Non-intrusive
monitoring and service adaptation for WS-BPEL, Proc.
WWW 2008.

[24] I. Nébel, B. Smith, R. Paschke. A user profiling component
with the aid of user ontologies. In: Proceedings of
workshop learning - teaching - knowledge - adaptivity.
Karlsruhe; 2003.

[25] M. Pistore and P. Traverso, “Assumption-Based
Composition and Monitoring of Web Services,” in Test and
Analysis of Web Services, L. Baresi and E. D. Nitto, Eds.
Springer, 2007, pp. 307–335.

[26] Protégé ontology editor and knowledge acquisition system.
http://protege.stanford.edu/

[27] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen.
Contextphone: A prototyping platform for context-aware
mobile applications. IEEE Pervasive Computing, 4(2):51–
59, 2005.

[28] A. Sahai, V. Machiraju, M. Sayal, A. P. A. van Moorsel,
and F. Casati, “Automated SLA Monitoring for Web
Services,” in 13th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, DSOM
2002, 2002, pp. 28–41.

[29] A. Schmidt. “Ubiquitous Computing – Computing in
Context”, PhD Thesis, University of Lancaster, 2002.

[30] M. Shanahan. "The event calculus explained", In Artificial
Intelligence Today, LNCS: 1600, 409-430, Springer, 1999.

[31] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos,
2007. Towards security monitoring patterns. In
Proceedings of the 2007 ACM Symposium on Applied
Computing (Seoul, Korea, March 11 - 15, 2007). SAC '07.
ACM, New York, NY, 1518-1525.

[32] G. Spanoudakis, K. Mahbub. Non Intrusive Monitoring of
Service Based Systems, International Journal of
Cooperative Information Systems, 15 (3), pp. 325-358,
2006.

[33] V. Talwar, C. Shankar, S. Rafaeli, D. Milojicic, S. Iyer, K.
Farkas, and Y. Chen. Adaptive monitoring: Automated
change management for monitoring systems. In
Proceedings of the 13th Workshop of the HP OpenView
University Association (HP-OVUA 2006) pp. 21-24, 2006.

Identifying, Modifying, Creating, and Removing Monitor
Rules for Service Oriented Computing

Ricardo Contreras

Department of Computing
City University, London, Northampton Square

London EC1V 0HB, UK
+44 20 7040 8552

Ricardo.Contreras.1@soi.city.ac.uk

Andrea Zisman
Department of Computing

City University, London, Northampton Square
London EC1V 0HB, UK

+44 20 7040 8346

a.zisman@soi.city.ac.uk

ABSTRACT
Monitoring of service-based systems is considered an important
activity to support service-oriented computing. Monitoring can be
used to verify the behaviour of a service-based system, and the
quality and contextual aspects of the services participating in the
system. Existing approaches for monitoring service-based systems
assume that monitor rules are pre-defined and known in advance,
which is not always the case. In this paper, we present a pattern-
based HCI-aware monitor adaptation framework to support
identification, modification, creation, and removal of monitor
rules. In the framework, changes in the monitor rules are based on
user’s interaction with a service-based system and different types
of user context such as role, skill, cognition, need, and
preferences. A prototype tool has been implemented to
demonstrate the framework.

Keywords service monitoring, rules, patterns, adaptation, HCI
context

1. INTRODUCTION
Service-oriented computing (SOC) has been recognized as an
important paradigm for software development. Various
approaches and techniques have been proposed to support
different areas and activities related to SOC. One of these
activities is concerned with monitoring of service-based systems;
i.e., the activity of collecting information about the execution of a
service-based system and verifying if the system is operating
correctly by comparing the collected information with the
properties of the system. These properties are known as monitor
properties or monitor rules and can be used to verify the
behaviour of a service-based system [3][4][24][29], the quality of
the services participating in a system [11][17], and the contextual
information of the services participating in the system and the
system itself [6][8].

Existing approaches for monitoring service-based systems assume
that monitor rules are pre-defined and known in advance.
However, this is not always the case given that during execution
time of a service-based system it is possible to have changes in the
(i) service-based system or set of services used by the system (due
to unavailability or malfunctioning of a service), (ii) types of
interaction of the users with the system, and (iii) context
characteristics of the user interacting with the system. Therefore,
it is necessary to have ways of identifying monitor rules,
modifying existing rules, removing existing rules that are
obsolete, or creating new rules to support the needs of the
monitor. We call this process monitor adaptation.
As an example, consider a Cultural Event service-based system
(CE_SBS) that provides general information about cultural events

in a certain city, allows ticket acquisition by different types of
users, supports scheduling of different cultural programs in a year,
provides catering services for certain special performances (e.g.,
premier performances, group performances), and allows both
customers and professional critics to review cultural events.
Suppose that the CE_SBS is used by managers and employees of
several venues in a City (e.g., theaters, show houses, concert halls,
opera houses), and by customers interested in cultural events that
may or not be members of one or several of the venues. For
example, managers of different venues (role) use this application
to schedule and organize the different programs in a year for
his/her venue taking into consideration other performances for
that year in different venues; while a member of a venue (role)
uses the system to periodically receive information about the
different events in the venue based on the member’s interest
(preferences) and has priority on purchasing tickets before
customers that are not members (case (iii) above). In these cases,
it is necessary to have monitor rules for the different services used
in the system depending on the user context. In addition,
customers can book special events that include or not catering
services (case (ii) above). In this case, new monitor rules relevant
to booking and paying for catering services are required (needs).
Moreover, general customers are able to provide simple reviews
about a performance that they have seen (skills), while
professional critics are supposed to provide reviews of a
performance considering several detailed characteristics (skills).
Furthermore, suppose the situation that after a while, the service
in the system that verifies conflicts and constraints about various
events in a City that is used to support the scheduling of events,
becomes unavailable. Assume that a new service that provides
these functionalities, but also allows searching and allocating
necessary physical and personnel resources for the various events
is used to replace the initial service. In this case, the monitor
system needs to verify the new functionality provided by the
service (i.e., resource allocation) (case (i) above).
In this paper we present the MADap (Monitor ADaptation)
framework for monitor adaptation as defined above. The work
presented in this paper has been carried out as part of the European
funded Network of Excellence S-Cube [25]. Our framework
concentrates on HCI-aware monitor adaptation in which changes
in the monitor rules are based on user’s interaction with a service-
based system and different types of user context. The user context
information of our concern includes cognition, role, skill, need,
and preferences of a user, represented in user models based on an
ontology that we have created. The framework is based on the use
of patterns for the monitor rules representing different context
types. The monitor rules are concerned with the execution parts of
a service-based system specification for the user context types.
The patterns are used to support the (a) identification of monitor

rules, (b) modification of monitor rules, (c) creation of new
monitor rules, and (d) removal of obsolete monitor rules.

The remainder of this paper is structured as follows. Section 2
describes an overview of our framework. Section 3 presents the
monitor adaptation process used by the framework, including the
processes to identify, modify, create, and remove monitor rules.
Section 4 presents implementation aspects and initial evaluation
of the framework. Section 5 discusses existing related work.
Section 6 summarizes the work and describes future work.

2. FRAMEWORK OVERVIEW
The MADap framework assumes two different types of user
context, following the classification proposed in [10][13][19],
namely (a) direct user context types and (b) related user context
types. The direct user context types represent information of the
characteristics of the users and include role, skill, need,
preferences, and cognition context types. The related user context
types represent information that may influence user information
and include time, location, and environment context types. We
have developed an ontology to represent the different user context
types. A brief description of the various user context types is
presented in Table 1.

Table 1. Description of user context types

Context Type Description

Direct Role The social behavior of an individual within
the domain of a service-based system

 Skill The level of expertise of an individual with
respect to a service-based system

 Need An individual’s requirement or desire from
a service-based system

 Preferences
An individual’s choice over pre-established
alternatives of computational resources of
a service-based system

 Cognition
Individual’s characteristics associated with
the process of thought (the ways that
individuals think, feel or react)

Related Time The moment an individual interacts with a
service-based system

 Location The place where an individual interacts
with a service-based system

 Environment Information related to the environment
where a service-based system is used

A graphical representation of the ontology we have developed is
shown in Figure 1. As shown in Figure 1, the different context
types are represented as classes, with subclasses in some cases,
and are associated with a central class representing the user. These
associations represent relationships between the different
attributes of a context type (e.g., occupation for context class role)
and a user class. For each class their attributes and respective data
types are presented inside the class. Please note that at this stage
we do not consider associations between the different context
types given that the focus of the work is on relationships between
users and contexts and not between context and context.
As described in Section 1, the framework is based on the use of
rule patterns for the different user context types. It is possible to
have different patterns for the same context type. Both the
patterns and the monitor rules are described in Event-Calculus
(EC) [26]. The use of Event Calculus (EC) to describe monitor
rules has been advocated in [11][29] and has shown to be
appropriate to support the representation of several types of rules.

More specifically, Event Calculus allows (i) rules to be
represented as first order logic, which provides sufficient
expressiveness for a large range of applications; (ii) specification
of quantitative temporal constraints and relationships that are
necessary to be taken into consideration when monitoring service-
based systems; (iii) distinction between events and states that are
necessary to describe the behavior of a system and interaction of
users with the system; and (iv) definition of the influences
between events and states.

Event Calculus uses events and fluents to represent the behavior of
a system. An event occurs at a specific instance of time and may
change the state of a system. A fluent is a condition of a system
state and may be affected by the occurrences of events. Both
events and fluents are represented in EC by predicates.

Figure 1: User context ontology

The occurrence of an event, at some time t, is represented by the
predicate Happens(event,t,R(t1,t2)), which means an event occurs
at a time t, where t is within an interval between t1 and t2. The
time boundaries, represented by t1 and t2, can be specified using
time variables or arithmetic expressions over time variables, and
represent the lower and upper time boundaries. The initialization
of a fluent, is represented by the predicate Initiates(event,fluent,t),
which means a fluent starts to holds after an event occurs at a time
t. The predicate HoldsAt(fluent,t), means a fluent holds (is valid)
at a time t. The termination of a fluent, is represented by the
predicate Terminates(event,fluent,t), which means a fluent ceases
to hold after an event occurs at a time t. A detailed description of
Event Calculus is out of the scope of this paper [26].
A rule pattern is composed of two parts, namely (a) monitor rule
part and (b) assumptions part. The monitor rules represent
properties of a service-based system that need to be monitored.
The assumptions represent event calculus formulae that need to be
used to identify state information of the system. An example of a

rule pattern for role context type and the instantiation of this
pattern for the CE_SBS described in Section 1 for role “Manager”
are shown in Figures 2.a and 2.b, respectively.

Monitor rule
Happens (ic_Initial-Event, t1, R(t1,t1) => Happens (ic_Event,
t2, R(t1,tn))
Assumption
Happens (ic_Event, t, R(t, t)) => Initiates (ic_Event, fluent, t)

Figure 2.a: Rule pattern for role context type

Monitor Rule
Happens (ic_start_CES, t1, R(t1,t1)) =>
Happens (ic_performance_schedule, t2, R(t1,t1+2500))
Assumption
Happens (ic_performance_schedule, t1, R(t1,t1)) =>
Initiates (ic_performance_schedule, per-schedule, t1)

Figure 2.b: Instantiation of rule pattern in Figure 2.a

The monitor rule part in Figures 2.a and 2.b state that after the
initial event of the service-based system specification (ic_Initial-
Event and its instantiation ic_Start_CES) is executed, a system
event concerned with a user context role (ic_Event and its
instantiation ic_performance_schedule) should be executed in a
time t2, where t1 ≤ t2 ≤ tn (t1 ≤ t2 ≤ t1+2500). The assumption
part states that when different system events occur, different
fluents are initiated. In this case, when event
ic_performance_schedule occurs, fluent per-schedule is
instantiated. The patterns used by the framework are general in
order to be employed in different types of service-based systems.
Events in a pattern can represent either requests for an operation
(when specified with ic prefix) or responses from an operation
(when specified with ir prefix).

A rule pattern may have invariant parts, which depend on the
context type associated with the pattern. An invariant part does
not change for distinct instantiations of the pattern. The invariant
parts for the role context type pattern in Figure 2.a is shown in
Figure 3 (variant parts are represented by ____). Other patterns
have been created to represent the other context types and can be
found in [20]. They are not shown here due to space limitations.

Monitor rule
Happens (ic_Initial-Event, t1, R(t1,t1) =>
 Happens (____, t2, R(t1,tn))
Assumption
Happens (____, t, R(t, t)) => Initiates (____, ____ , t)

Figure 3: Example of invariant part for role type pattern

Figure 4 presents the architectural overview of the MADap
framework. As shown in the figure, the main components of the
framework are Rule Adaptor, Path Identifier, Rule Verifier, and
Monitor. The framework also uses Rule Patterns, Semi-
instantiated Patterns, Monitor Rules, User Models, Service-based
System (SBS) Specification, and Service Level Agreements (SLAs).
It assumes rule patterns and monitor rules in a repository.

The Rule Adaptor is responsible for the identification,
modification, creation, and removal of monitor rules. More
specifically, it receives events about changes in the context
characteristics of the user or interaction of the users in the system,

and invokes the Path Identifier to identify paths in the
specification of the service-based system that are relevant to the
event. The Path Identifier retrieves the parts in the specification
that are related to the context type represented in the event and its
instance (e.g., context role, instance manager).

Figure 4. Architecture overview of MADap framework

The Rule Adaptor also uses the context type to identify the
relevant Rule Patterns for this context type and instantiates these
patterns with the identified information from the service-based
system specification and User Models. These are called semi-
instantiated rule patterns. The User Models represent the
characteristics of the users.

The Rule Verifier is used to verify if an existing monitor rule in
the repository is still a valid rule for a service-based system. It is
possible to have rules that become obsolete due to changes in the
service-based system (e.g., certain functionalities are not executed
anymore, new functionalities are added to the system).

We assume specifications of service-based systems in BPEL [7]
due to its wide acceptance, and that the BPEL processes have
conditions on the various user context types and their instances.
This assumption is not unrealistic given that the different behavior
of a service-based system due to different user characteristics
needs to be represented in the service-based system specification.

The Rule Adaptor uses the semi-instantiated rule patterns to
identify monitor rules. In the case where monitor rules that totally
match the semi-instantiated rule patterns are identified, these rules
are either used as they stand by the Monitor component or have
their time values modified, when necessary, and subsequently
used by the Monitor component. In the situation in which no rules
that match the semi-instantiated rule patterns are identified, new
monitor rules are created based on the semi-instantiated patterns.
In the case in which there are monitor rules that match the
invariant parts of the semi-instantiated rule patterns, the Rule
Verifier checks if these rules are still valid for the service-based
system. In positive case, these rules have their time values
modified, if necessary. Otherwise, these rules are removed from
the repository and a new rule based on the semi-instantiated
pattern is created. The newly created rules are added into the
repository and used by the Monitor component to verify the
service-based system.

In the framework, we use the Monitor tool described in [29].
However, our approach can be used with any monitor tool that
makes use of monitor rules represented in Event Calculus. The
Monitor tool receives requests from a service requestor to verify,
at regular intervals, the satisfiability of properties (represented as
monitor rules) of a service-based system. It intercepts run-time

messages exchanged between a service-based system and its
services and verifies the satisfiability of the properties against
these messages. It contains (a) a service client that is responsible
to invoke a service in a service-based system; (b) and event
collector that is responsible to gather information during the
execution of a service-based system and the services deployed by
the service based system, or information exchanged between the
service client and its respective services; and (c) an analyzer that
is responsible to check the satisfiability of the properties.

3. MONITOR ADAPTATION PROCESS
In the framework, the monitor adaptation process is triggered by
an event representing a context type Ci. Based on the context
type, the Rule Adaptor identifies the patterns concerned with
context Ci, invokes the Path Identifier to identify the parts of the
BPEL specification that are related to Ci, and uses this
information to semi-instantiate the identified patterns. The semi-
instantiated patterns are compared to existing rules in the
repository in order to identify if a relevant rule (a) already exists
in the repository and (a.1) can be used as it stands, (a.2) needs to
be modified, (a.3) needs to be removed, or (b) needs to be created.

The need to use information from the service-based system
specification to semi-instantiate the relevant pattern is due to the
fact that in some situations the pattern itself is not sufficient to
support the identification of the correct monitor rule in the
repository. For example, suppose an event for customer role
context type. Assume the pattern for context type role shown in
Figure 2.a and the monitor rules in Figure 5 below in the rule
repository (without the assumptions). In this case, all the three
rules in Figure 5 match the rule pattern in Figure 2.a. However,
rules R1 and R2 are concerned with role customer while rule R3 is
concerned with role manager. If the pattern is used to identify
rules in the repository, all three rules will be returned. But,
following the part of the BPEL specification for the CE_SBS
shown in Figure 6, the events representing the operations shows
and timetables are relevant to role customer. Using these events,
the two semi-instantiated patterns shown in Figure 7 will be
specified and rules R1 and R2 will be correctly matched with the
semi-instantiated patterns. It should be noted that information
about these events could not be part of the initial patterns since the
patterns are general for a certain context type and the events and
the monitor rules are specific to a service-based system and
instances of the various context types.

R1 Happens (ic_start CES, t1, R(t1,t1)) =>
Happens (ic_shows, t2, R(t1,t1+2000))

R2 Happens (ic_start CES, t1, R(t1,t1)) =>
Happens (ic_timetables, t2, R(t1,t1+4000))

R3 Happens (ic_start CES, t1, R(t1,t1)) =>
Happens (ic_performanceSchedule, t2, R(t1,t1+2500))

Figure 5. Examples of monitor rules for role context type
As shown in Figure 7, the semi-instantiated patterns do not have
the values for time variables or time gaps. In order to specify the
boundary of the values for the times, the framework assumes
these values to be identified from the response time information of
a service, or operations of a service, that are normally defined in
Service Level Agreements (SLAs) between the services
participating in the service-based system and the system itself.
Another option is to use historical execution time data for a
service, when available. The assumption that SLAs will be
available for participating services is not unrealistic, since SLAs

are currently used to establish business agreements between
service providers and consumers. Moreover, the response times of
a service or operations are attributes that appear in SLAs.

…<bpel:condition>
<![CDATA[$input.payload/tns:role_occupation="Customer"]]>
</bpel:condition>
<bpel:invoke name="Shows" partnerLink="Shows"
operation="shows" portType="ns:Shows"
inputVariable="ShowsRequest"
 outputVariable="ShowsResponse"> </bpel:invoke>
<bpel:invoke name="TimeTables" partnerLink="TimeTables"
 operation="timeTables" portType="ns:TimeTables"
 inputVariable="TimeTablesRequest"
outputVariable="TimeTablesResponse">
</bpel:invoke> …

Figure 6. Part of the BPEL process for CE_SBS
SI_RP1: Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_shows, t2, R(t1,tn))
SI_RP2: Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_timetables, t2, R(t1,tn))

Figure 7. Examples of semi-instantiated role patterns

Figure 8 presents an algorithm in pseudo-code for the monitor
adaptation process used in the framework. As shown in Figure 8,
the process consists of searching in the repository for monitor
rules that match the semi-instantiated pattern. In the case that
there are rules that fully match the semi-instantiated pattern, the
process verifies if the time values in the rules are consistent with
the response times of the SLAs for the respective operations and
services. In positive case, the rules are maintained in the
repository. Otherwise, the rules are modified with new time
values according to the information in the SLAs.
In the case in which there are rules in the repository that only
match the invariant parts of the semi-instantiated pattern, the time
values of the patterns are instantiated based on information for
SLAs and new rules are created (fully-instantiated patterns). The
process verifies for every identified rule in the repository that
matches the semi-instantiated patterns, if the rule is a valid rule.
This is done by traversing the service-based system specification
and verifying if the information in the rule is still a valid path in
the specification. In positive case, the time values for the rule are
checked against related SLAs and adjusted if necessary. In
negative case, the rule is removed from the repository. The new
created rules are added in the repository.

In the case in which there are no monitor rules in the repository
that match the semi-instantiated patterns, the time values are
instantiated based on information from SLAs, new rules are
created (fully-instantiated patterns), and added to the repository.

As an example, consider the CE_SBS described in Section 1.
Suppose that an opera critic accesses the system to input a review
for the performance of Carmen that is currently being presented at
the London Royal Opera House. In this case, the skill pattern
shown in Figure 9 is identified by the Rule Adaptor after
receiving an event for context skill referring to professional critic
(skillful), and the semi-instantiated pattern in Figure 10 is created
based on information from the BPEL process. In Figure 9, the
variant part of the pattern is shown in grey. Suppose rule R4

shown in Figure 11 in the repository that matches the invariant
parts of the semi-instantiated pattern in Figure 10. Assume, that
rule R4 is not a valid rule for the current version of the service-
based system (operation sceneryAdaptation is not in the BPEL
process anymore due to changes in the system). R4 is removed
from the repository and rule R5 shown in Figure 12, with the time
values identified from respective SLAs, is added to the repository.
Monitor_Adaptation (SI_Rule, SBS_Spec, SLAs, RRep) {
//SI_Rule: semi-instantiated pattern
//FI_Rule: fully-instantiated pattern
//SBS_Spec: service-based system specification
//SLAs: SLAs for the services and operations in the SI_Rule
//RRep: Rule Repository
//R: Rules in RRep
Search SI_Rule in RRep;
If (RRep has Rules that fully match SI_Rule) {
 For Every R in Rules {
 If (time in SLAs is within time values in R) {
 Do-nothing;}
 Else {Adjust time in R based on SLAs;}
 End If
 } End For
Else {
 Create FI_Rule by instantiating SI_Rule time with times in SLAs;
 If (RRep has Rules that only match invariant parts of SI_Rule) {
 For Every R in Rules {
 If (there is a path in SBS_Spec that uses R) {
 // Rule R is not obsolete
 If (time in SLAs is within time values in R) {
 Do-nothing; }
 Else {Adjust time in R based on SLAs; }
 End If
 Else {Remove R from RRep; }
 End If
 } End For
 Add FI_Rule to RRep; }
 Else {
 //There are no rules that match the semi-instantiated rule
 Create FI_Rule by instantiating SI_Rule time with times in SLAs;
 Add FI_Rule to RRep; }
 End If
} End Monitor_Adaptation

Figure 8. Algorithm for the monitor adaptation process

Monitor rule
Happens (ic_Initial-Event, t1, R(t1,t1) and
Happens (ir_Event-User-Op, t2, R(t1,tn_1)) …
=> Happens (ic_LEvent, tn, R(t1,tn_3)) tn > t2
Assumption
Happens (ic_LEvent, t1, R(t1, t1)) =>
Initiates (ic_LEvent, fluent, t1)

Figure 9: Example of skill context pattern

Monitor Rule
Happens (ic_start_CES, t1, R(t1,t1)) and
Happens (ir_artistsPerformance, t2, R(t1,tn_1)) and
Happens (ir_direction, t3, R(t1,tn_2))
=> Happens (ic_professionalReview, t4, R(t1,tn_3) t4>t2, t4>t3
Assumption
Happens (ic_professionalReview, t1, R(t1,t1))

=> Initiates(ic_ professionalReview, professionalReview, t1)

Figure 10: Example of semi-instantiated skill pattern

Monitor Rule
Happens (ic_start_CES, t1, R(t1,t1)) and
Happens (ir_artistsPerformance, t2, R(t1,t1+30001)) and
Happens (ir_sceneryAdaptation, t3, R(t1,t1+40002)) and
Happens (ir_direction, t4, R(t1,t1+50003)) =>
Happens (ic_profesionalReview, t5, R(t1,60004)
t5>t2, t5>t3, t5>t4
Assumption
Happens (ic_profesionalReview, t,R(t,t))

=> Initiates (ic_profesionalReview, profesionalReview, t)

Figure 11: Example of rule R4

Monitor Rule
Happens (ic_start_CES, t1, R(t1,t1)) and
Happens (ir_artistsPerformance, t2, R(t1,t1+30001)) and
Happens (ir_direction, t3, R(t1,t1+45003))
=> Happens (ic_profesionalReview, t4, R(t1,60004)
t4>t2, t4>t3
Assumption
Happens (ic_profesionalReview, t,R(t,t))
=> Initiates(ic_profesionalReview, profesionalReview, t)

Figure 12: Example of rule R5

4. IMPLEMENTATION ASPECTS AND
EVALUATION
A prototype tool of the MADap framework has been implemented
in Java. The tool can be used to adapt monitor rules specified in
Event Calculus [26]. The prototype was designed to take as input
an event representing one of the direct user context (see Table 1)
types and deciding if a monitor rule could be identified, modified,
created, or removed. The prototype tool was used to evaluate the
framework for the four adaptation cases proposed in this paper.

We evaluated the framework in an extension of the CE_SBS
described in Section 1 with seven services, namely: S1:Ticket
Purchase Service, S2:Payment Service, S3:Performance
Information Service, S4:Performance Scheduling Service,
S5:Resource Search and Allocation Service, S6:Reviewing
Services, and S7:Catering Services. The evaluation was conducted
for each direct user context type (role, skill, need, preferences,
cognition) in five different cases, as described below.

Case 1: Empty rule repository
This case was considered to verify the creation of new monitor
rules and assumptions for each different context type. A total of
29 monitor rules and assumptions were created in the repository,
broken down as follows:

 8 rules/assumptions due to context type role,
6 rules/assumptions due to context type need,
4 rules/assumptions due to context type skill,
8 rules/assumptions due to context type cognition, and
3 rules/assumptions due to context type preferences.

The number of rules (and assumptions) for each context type is
directly related to the different roles, needs, skills, cognition, and
preference characteristics of the users of the service-based system,
and the relevant functionalities of the system for the context types.

Case 2: Rule repository with 100 rules not related to CE_SBS
This case was also considered to verify the creation of new
monitor rules for each different context type given that all the 100
unrelated rules did not match fully or partially (matching of the
invariant parts) the semi-instantiated patterns. As in Case 1 above,
29 monitor rules were created in the repository with the same
number of rules for each context type.
Case 3: Rule repository with all 29 relevant rules for CE_SBS
This case was considered to verify if monitor rules that can be
used for monitoring a service-based system at different stages of
its execution could be identified. For each of the different context
types, the relevant rules where identified.
Case 4: Rule repository with all 29 relevant rules for CE_SBS
and with 100 rules not related to the system
This case was also considered to verify if monitor rules that can
be used for monitoring a service-based system at different stages
of its execution could be identified. Despite the extra not related
rules in the repository, as in Case 3 above, the relevant rules for
each different context type were identified from the 29 relevant
monitor rules in the repository.
Case 5: Rule repository with 100 rules not related to the system,
27 rules relevant to the system, and 5 rules that match the
invariant pattern parts for each context type
In this case, the set of 27 relevant rules and 5 rules that match the
invariant pattern parts are different for each context type. More
specifically, for each context type, the 27 rules were selected from
the set of 29 relevant rules by removing two rules for the specific
context type. Given the mixture of the rules in the repository, in
this case, the framework was able to identify the remaining rules
for a certain context from the set of 27 relevant rules, to create the
two rules that were initially removed from the set of relevant
rules, and to identify 5 rules that match the invariant parts and
verify if these rules were supposed to be removed from the
repository or maintained.

This initial evaluation has demonstrated that the framework can
adapt monitor rules for different user context types in the four
proposed ways. It also shows that there is a direct correlation in
the number of monitor rules and the different instances of the
various context types for a service-based system. In addition, the
approach supports the removal of monitor rules for those rules
that become obsolete due to changes in the service-based system
and the verification of this situation when trying to identify rules
in the repository or create new rules in the repository. This allows
maintaining the size of the repository with rules that are useful for
monitoring a service-based system.

5. RELATED WORK
In [9], an ontology for context-aware pervasive computing
environments is proposed. This ontology is centered on general
concepts including people and places. However, in this proposal
all the elements are defined according to a specific scenario and
most of the identified user context types are related to physical
attributes. Contrary, in [16][23] otologies have been formulated
considering the user as the main element. Similar to our
approach, in these ontologies a central class represents the user
models and is associated to other classes concerned with other
user characteristics such as skills or abilities. Our framework
considers more specific types of user context.
Different approaches have been proposed for monitoring service-
based systems. In [24] monitoring is performed by checking
assumptions and conditions, which specify how services
participate in a composition and the conditions the composition

must satisfy. Assumptions and conditions are specified as
behaviour properties in an expressive monitoring language. These
behaviour properties are used by a monitor, to check the system
operation, based on intercepted messages from the processes. A
similar approach is taken in [29] where behaviour is monitored by
rules specified in EC. In this approach the rules are composed of
assumptions and properties of a service-based system. In [4]
monitoring is concerned with timeouts, runtime, and violation of
functional contracts, which are described as monitoring rules.
These monitoring rules are specified as comments in a BPEL
process. When a service is invoked, its content is serialized, as an
XML fragment, and sent together with the associated rules to
another specially designed web service that acts as a monitor. All
the above approaches use rules for monitoring the correct
behaviour of a system. The rules are formulated to monitor
particular behaviors and do not consider changes in a service-
based system and user context characteristics.

Some work to support dynamic selection of monitoring rules
based on context information has been proposed in [14][30]. The
approach in [30] uses monitor manager on top of existing
monitoring tools to provide a policy driven interface for these
tools. The policies describe how the monitoring infrastructure
should react in the presence of changes. The rules used by the
monitoring tools are not modified.

In [28] patterns for monitoring security properties such as
confidentiality, integrity and availability have been proposed.
Similar to our work, these patterns are expressed in EC language.
Another approach that uses EC to represent patterns to support
verification of physical interaction is proposed in [17]. In this
work, patterns are prerequisites for an effective physical
interaction. In [14] the authors propose the use of a pattern-based
approach to support presentation, codification, and reuse of
property specification for finite-state verification. This work is
used in [27] where temporal logic patterns for runtime monitoring
of web service conversations are used.

Recently, a few approaches that support adaptation of service-
based systems have started to appear [1][2][5][21][22]. The work
in [5] proposes an approach towards self-healing for services
compositions based on monitoring rules and reaction strategies.
Another approach for self-healing is found in the PAWS
framework [1] in which monitor and recovery actions are used. In
[2] the authors present a context-aware adaptive service approach.
The VieDAME framework [22] uses an aspect-oriented approach
to allow adaptation of service-based systems for certain QoS
criteria based on various alternative services. The work in [21] is
based on augmenting service monitoring with online testing to
identify possible failures in the system.
Although several approaches have been proposed for monitoring
and adaptation of service-based systems, none of these approaches
consider the need for adaptation of the monitor rules.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a monitor adaptation framework
(MADap) that supports the identification, modification, creation,
and removal of monitor rules due to changes in the (i) service-
based system or set of services used in the system, (ii) types of
user interaction with the system, and (iii) context characteristics of
the user interacting with the system. The framework considers
different types of user context such as role, skill, need,
preferences, and cognition. MADap is based on the use of monitor
rule patterns for each different user context type. The approach
assumes monitor rules, assumptions, and patterns specified in

Event Calculus [26]. A prototype tool has been developed to
illustrate and evaluate the framework. The evaluation has
demonstrated that the framework can identify, modify, create, or
remove obsolete monitor rules when necessary.

We are currently extending the set of patterns for the different
types of user context. We are also conducting other evaluation of
the framework for more complex service-based systems.
Moreover, we are analyzing the performance of the framework
and how a monitor component could use the created, identified,
and modified rules during run-time.

7. ACKNOWLEDGMENTS
The work reported in this paper has been funded by the European
Community’s 7th Framework Programme under the Network of
Excellence S-Cube – Grant Agreement no. 215483.

8. REFERENCES
[1] Ardagna, D., Comuzzi M., Mussi, E., Pernici, B., Plebani, P.

“PAWS: A Framework for Executing Adaptive Web-
Service Processes”. IEEE Software, 24 (6), 2007.

[2] Autili, M., Di Benedetto, P. and Iverardi. “Context-aware
Adaptive Services: The PLASTIC Approach”. Proc. of the
12th International Conference on Fundamental Approaches
to Software Engineering, FASE, 2009.

[3] Barbon, F., Traverso, P., Pistore, M. and Trainotti, M.,
“Run-Time Monitoring of Instances and Classes of Web
Service Compositions,” in IEEE International Conference
on Web Services (ICWS 2006), 2006.

[4] Baresi, L. and Guinea, S., “Towards Dynamic Monitoring of
WS-BPEL Processes. Third International Conference on
Service Oriented Computing, 2005.

[5] Baresi, L., Ghezzi, C., Guinea, S., “Towards Self-Healing
Compositions of Services. Studies in Computational
Intelligence”, v. 42, Springer (2007).

[6] Betini, C., Maggiorini, D. and Riboni, D., “Distributed
Context Monitoring for the Adaptation of Continuous
Services”, In WWW Journal, Special Issue on Multichannel
Adaptive Information Systems on WWW. Springer, 2007.

[7] BPEL4WS.http://www128.ibm.com/developerworks/
library/specification/ws-bpel/

[8] Brown A. and Ryan, M., “Context-aware Monitoring of
Untrusted Mobile Applications”, Security and Privacy in
Mobile Information and Communication Systems, First
International ICST Conference, MobiSec, Italy, June 2009.

[9] Chen, H., Finin, T., Joshi, A., An Ontology for Context-
Aware Pervasive Computing Environments. Special Issue
on Ontologies for Distributed Systems, Knowledge
Engineering Review, May 2004.

[10] Chen G. and Kotz, D., “A Survey of Context-Aware Mobile
Computing Research”, Dartmouth College, 2000.

[11] Comuzzi, M. and Spanoudakis, G., “Describing and
Verifying Monitoring capabilities for SLA-driven Service-
Based System”, Proc. CAiSE Forum 2009, Amsterdam.

[12] Dery-Pinna, A-M., Fierstone, J. and Picard, E., Component
model and programming: A first step to manage human
computer interaction adaptation. In Lecture Notes in
Computer Science, Springer-Verlag, 1999.

[13] Dey A.K. and Abowd, G.D., “The Context Toolkit: Aiding
the Development of Context-Aware Applications, In
Proceedings of the Workshop on Software Engineering for

Wearable and Pervasive Computing, June, 2000.
[14] Dwyer, M.B., Avrunin, G.S. and Corbett, J.C., “Patterns in

Property Specifications for Finite-state Verification”. 31st
International Conference on Software Engineering, 1999.

[15] Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.,
“Model evolution by run-time parameter adaptation.” Proc
on the 31st International Conference on Software
Engineering, Vancouver, Canada, 2009.

[16] Golemati, M., Katifori, A., Vassilakis, C., Lepouras, G.,
Halatsis, C., Creating an Ontology for the User Profile:
Method and Applications, Proceedings of the First IEEE
International Conference on Research Challenges in
Information Science, 2007.

[17] Ishikawa, F., Suleiman, B., Yamamoto, K. and Honiden, S.
Physical interaction in pervasive computing: formal
modeling, analysis and verification. International
Conference on Pervasive Services, 2009, London, UK.

[18] Ludwig, H., Dan, A. and Kearney, R., “Cremona: An
Architecture and Library for Creation and Monitoring of
WS-Agreements,” in Service-Oriented Computing - ICSOC
2004, Second International Conference, 2004, pp. 65–74.

[19] Maiden N., editor. Codified Human-Computer Interaction
(HCI) Knowledge and Context Factors. S-Cube project
deliverable: PO-JRA-1.1.3 http://www.s-cube-
network.eu/achievements-results/s-cube-deliverables.

[20] MADap: Monitor Adaptation Project.
http://vega.soi.city.ac.uk/~abdw747/MADap

[21] Metzger, A., Pohl, K., Sammodi, O., Rzepka, M., “Towards
Proactive Adaptation with Confidence – Augmenting
Service Monitoring with Online Testing. Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, South Africa, 2010.

[22] Moser, O., Rosenberg, F. and Dustdar, S., Non-intrusive
monitoring and service adaptation for WS-BPEL, Proc.
WWW 2008.

[23] Nébel, I., Smith, B., Paschke, R., A user profiling
component with the aid of user ontologies. Proc. of
workshop learning teaching knowledge adaptivity,
Karlsruhe; 2003.

[24] Pistore M. and Traverso P. Assumption-Based Composition
and Monitoring of Web Services, Test and Analysis of Web
Services, L. Baresi and E. D. Nitto Eds., 2007.

[25] SCube. Software Services and Systems Network of
Excellence. http://www.s-cube-network.eu/

[26] Shanahan, M., "The event calculus explained", In Artificial
Intelligence Today, LNCS: 1600, 409-430, Springer, 1999.

[27] Simmonds, J., Chechik, M., Nejati, S., Litani, E., O’Farrel,
B., “Property Patterns for Runtime Monitoring of Web
Service Conversations”. RV 2008: 137-157.

[28] Spanoudakis, G., Kloukinas, C. and Androutsopoulos, K.,
2007. Towards security monitoring patterns. In Proceedings
of the 2007 ACM Symposium on Applied Computing, SAC,
2007. ACM, New York, NY, 1518-1525.

[29] Spanoudakis, G., Mahbub, K., Non Intrusive Monitoring of
Service Based Systems, International Journal of Cooperative
Information Systems, 15 (3), pp. 325-358, 2006.

[30] Talwar, V., Shankar, C., Rafaeli, S., Milojicic, D., Iyer, S.,
Farkas, K. and Chen, Y., Adaptive monitoring: Automated
change management for monitoring systems. 13th
Workshop of the HP OpenView University Association
2006.

A Context-driven Adaptation Process for
Service-based Applications∗

Antonio Bucchiarone and Raman Kazhamiakin∗

Cinzia Cappiello, Elisabetta di Nitto and Valentina Mazza
∗FBK-IRST, Trento, Italy

{bucchiarone,raman}@fbk.eu
Politecnico di Milano, Italy

{cappiell,dinitto,vmazza}@elet.polimi.it

ABSTRACT
When building open systems the evolution of requirements
and context is the norm rather than the exception. There-
fore, it is important to make sure that the system is able to
evolve as well without necessarily starting a completely new
development process, and possibly on the fly. In this paper
we specifically focus on the role of the context in the adapta-
tion activities. For us context has various different facets as
it includes information ranging from the situation in which
users exploit a service-based application to the conditions
under which the component services can be exploited. We
elaborate on how and when the context should be defined,
exploited, and evolved, and on the impact it has on the var-
ious activities related to adaptation of service-based appli-
cations. We use a case study to exemplify our first findings
on this subject.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies

Keywords
Service-oriented Systems, Context-awareness, Adaptation

1. INTRODUCTION
Traditional software systems are usually designed in order
to address a specific set of requirements within a specific
execution context. Even though the evolution of require-
ments and execution context is considered possible, it is as-
sumed that it will have an impact on the new versions of
the software system, not on the one that is currently under
operation. This assumption is not anymore true when we
consider those open systems that are built by composing ex-
isting services available on the network. In these cases we

∗The research leading to these results has received funding
from the European Community Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

should consider the evolution of requirements and context
as the norm rather than the exception, and, as such, we
should make sure that the system is able to evolve as well
without necessarily starting a completely new development
process, and possibly on the fly. As we discuss in the related
work section (see Section 2), the literature offers technical
approaches to manage the on the fly adaptation of service-
based applications. However, to our knowledge, a compre-
hensive approach to design and develop adaptable Service-
Based Applications (SBAs) is still missing. Our work tries
to fill this gap. In this paper we specifically focus on the role
of the context in the adaptation activities. For us context
has various different facets as it includes information rang-
ing from the situation in which users exploit a service-based
application to the conditions under which the component
services can be exploited. In general, the identification of
the aspects that should be part of the context depends on
the specific application and should be performed very early.
In fact, starting from the requirement analysis phase where,
in parallel to the precise definition of requirements, a proper
context model has to be defined. This context model is the
basis for the definition of those situations that trigger the
adaptation or evolution of a service-based application, and,
at runtime, enables the identification and the collection of
the proper context information. Of course, as any other
software artifact, this context model is not fixed once for all
but can evolve together with the application, and therefore
its evolution has to be managed and kept under control as
well.

In this paper we start studying these aspects in detail and
exemplify them through a case study. Consistently, the pa-
per is structured as follows. Section 2 discusses previous
contributions that dealt with context-aware applications and
adaptation needs and describes the main open issues that are
addressed in this paper. Section 3 identifies the additional
requirements and phases that should be considered in the
design life-cycle of an adaptive SBA while the context ele-
ments considered as relevant in the adaptation process are
detailed and modelled in Section 4. A contex-driven adap-
tation process is proposed in Section 5. Finally, Section 6
presents the instantiation of the proposed process on a case
study in the e-government domain.

2. RELATED WORK
In many SBAs the role of the context is fundamental in re-
alizing the adaptation functionalities [4]. Indeed, contextual

changes are often the key factors that entail the SBA adap-
tation and somehow drive the way the adaptation is per-
formed. [14] contains an analysis of the context factors in
context-aware computing and in software engineering. The
knowledge of the computing environment (network charac-
teristics,resources), of the user (profile, location, social situa-
tion), of the physical parameters (all the measurable proper-
ties of the environment such as the noise level, the pressure,
the temperature) contribute to the context knowledge. This
information is often codified in a so called context model.

The literature is rich of proposals for context models. In
[15] context representations are classified as Key-value mod-
els (key-value pairs are used to represent the features of a
system), Mark-up scheme models (a hierarchical structure
for context representation), Graphical models (general pur-
pose modeling instruments are used to represent context
information), Object Oriented Models (each context infor-
mation is represented by a different object and data can be
accessed by defined interfaces), Logic Based models (context
is expressed in terms of facts, expressions, and rules) and, fi-
nally, Ontology Based models (information about real world
is represented using data structure understandable by the
computers). In [16] a Context Dimension Tree is used to
represent the contest factors with different levels of detail.
The model includes constraints and relationships among di-
mension values to eliminate meaningless context configura-
tions. Such model has been proposed for data tailoring in
the database domain, but could be easily adapted to the
context of SBAs (see Section 4).

Context-aware applications are able to sense their current
context and adapt their behaviour accordingly. Even if
automatically enacting adaptation is desired [7], some ap-
proaches in the literature suggest the need to have a semi-
automatic approach in which users are able order to choose
the best adaptation strategy [5]; this would avoid the ex-
ecution of undesired adaption actions. [9] proposes an ap-
proach for context-aware service adaptation based on an on-
tology for the context modeling and a learning mechanism
for the mapping of the context configuration to the appro-
priate adapted service. Due to the uncertainty behind the
context of an application, Cheung et al. [13] propose a fuzzy-
based service adaptation model to improve the effectiveness
of service adaptation by means of fuzzy theory. The formal-
ization of the service adaptation process is made using fuzzy
linguistic variables to define the context situations and the
rules for adopting the policies for the implementation of the
services.

While the short overview we have provided does not aim at
being comprehensive, it should have given the idea that a
number of approaches to context modeling and to the de-
velopment of context-aware adaptable SBAs are being pro-
posed. However, none of them provides a method to de-
velop and execute adaptable SBAs. In [2] we have defined
some design guidelines and a life-cycle for the development
of adaptable SBAs. In this paper we want to enrich the
life-cycle adding information about the context. Therefore,
the aim of this paper is to propose a context model for the
service based applications and to define how the information
contained in the context model could be exploited to enact
adaptation during each phase of the life-cycle.

3. ADAPTATION IN SBA
Figure 1 shows the life-cycle for adaptable SBAs we have
presented in [2]. It highlights not only the typical design-
time iteration cycle that leads to the explicit re-design of
an application, but it also introduces a new iteration cy-
cle at run-time that is undertaken in all cases in which the
adaptation needs are addressed on-the-fly. The two cycles
coexist and support each other during the lifetime of the ap-
plication. Figure 1 also shows the various adaptation- and
monitoring-specific actions (boxes) carried out throughout
the life-cycle of the SBA, the main design artifacts that are
exploited to perform adaptation (hexagons), and the phases
where they are used (dotted lines). At the requirements en-
gineering and design phase the adaptation and monitoring
requirements are used to perform the design for adaptation
and monitoring. During SBA construction, together with
the construction of the SBA, the corresponding monitors
and the adaptation mechanisms are being realized. The de-
ployment phase also involves the activities related to adap-
tation and monitoring: deployment of the adaptation and
monitoring mechanisms and deployment time adaptation ac-
tions (e.g., binding). During the operation and management
phase, the run-time monitoring of the relevant properties
is executed in order to detect important context and sys-
tem changes. After this phase the left-side of the life-cycle
is executed. Here, we can proceed in two different direc-
tions: executing evolution or adaptation of the SBA. In the
first case we re-start the right-side of the cycle with the
requirements engineering and design phase while in the sec-
ond case we proceed identifying adaptation needs that can
be triggered from monitored events and adaptation require-
ments. An adaptation need formally characterizes a specific
problem-situation that demands for adaptation. It takes
into account each monitoring events and tries to answer the
following questions: What needs to be adapted? What is
the cause? What should be the outcome/what is the aim?.
For each adaptation need it is possible to define a set of
suitable strategies that define the possible ways to achieve
the adaptation requirements and needs given the adaptation
mechanisms made available. Each adaptation strategy (e.g.,
service substitution, re-execution, re-negotiation, compensa-
tion, etc..[2]) can be characterized by its complexity and its
functional and non functional properties. The identification
of the most suitable strategy is supported by a reasoner, that
also bases its decisions on multiple criteria extracted from
the current situation and from the knowledge obtained from
previous adaptations and executions. After this selection,
the enactment of the adaptation strategy is performed. The
execution of all activities and phases in all runtime phases
may be performed autonomously by SBAs or may involve
active participation of the various human actors.

4. THE CONTEXT MODEL
The aim of our context model is the formalization of the
most relevant aspects characterizing the SBA. The model
we propose has been inspired by [16] and is a XML repre-
sentation of the main components of the context for service
based applications. It contains six main dimensions able
to describe the status of an application: Time, Ambient,
User, Service, Business and Computational Context. Each
dimension in the XML tree, can have sons able to refine each
factor. An example of the model is shown in Figure 3 and
is discussed in Section 6).

Figure 1: The Life-Cycle of Adaptable SBAs.

The TimeContext dimension refers to the information about
the time in which the access to the application occurs; it
could be expressed in absolute terms (defining a precise
date) or it could indicate a part of the day (morning, af-
ternoon, evening, night). The AmbientContext can be re-
lated to the space factor (expressed in terms of an address
by which the user is accessing) or to the environmental con-
dition of the user (the value of some measurable physical
parameter). The UserContext dimension contains the in-
formation about the privileges, the roles, or the preferences
the user has in the application. Moreover, such dimension
permits to express the goal the user wants to achieve. In-
formation about the services in the application are codified
under the ServiceContext dimension. This element lists all
the services together with their status (if a previous exe-
cution reported an error, or if it is available), the time of
the last failure (if it makes sense), and the similar services.
The latter information could be exploited if a service needs
to be substituted with another one. The BusinessContext
dimension takes into account business application factors.
Finally, the ComputingContext dimension specifies the soft-
ware and/or hardware characteristics that are available at
the end user side. Such element permits to specify, for ex-
ample, the device, the operating system, or the web browser
the user is using for accessing the application services.

5. CONTEXT-DRIVEN ADAPTATION
The role of context, the influence of its factors on the exe-
cutability of the applications, and the possible mechanisms
for their self-adaptation or human-assisted adaptation, should
be properly modelled, designed, and engineered through the
whole life-cycle of the system. Referring to the life-cycle of
Figure 1, we introduce here a number of actions and design
artefacts that are needed to properly build a context model
and exploit it to support the adaptation of applications. The
context information should be considered and explicitly cap-
tured since the very beginning of requirements engineering.
In parallel with the elicitation and refinement of require-
ments we start understanding, which context factors should
be considered for the purpose of possible adaptations. The
identification and characterization of the context factors of
the SBA is continued through the design phase and results
in the activity that we call context modeling. In parallel, an-

other important aspect of the design activities is the identi-
fication of Context-specific adaptation triggers and require-
ments. This refers to the rules and criteria that define the
critical context properties and configurations from the adap-
tation point of view: the context properties that entail SBA
adaptation (i.e., to decide adaptation needs) and the rules
and criteria that define what should be adapted and how
(i.e., to decide adaptation strategies). These properties will
be used to construct the context-driven adaptation reasoners
that drive the adaptation process at run-time. During the
construction phase contextual monitors and contextual adap-
tation mechanisms are developed. The first ones are needed
to deliver important information about context states and
changes during SBA execution. The latter are used to real-
ize different adaptation strategies. Even if some adaptation
mechanisms could be independent of a specific context, some
others could be dependent on it, for instance, a user-specific
service selection policy or the mechanism needed to adapt
the result of a service invocation on the basis of the charac-
teristics of the specific devices used by end users (e.g., PC,
PDAs, or conventional phones). We remark that the pro-
cess of identification, modeling, and refinement of the con-
textual factors and properties is iterative. Indeed, with the
definition of new elements of the application and monitor-
ing/adaptation, new factors may be discovered, triggering
new adaptation needs and corresponding strategies.

The artifacts and elements developed at design time, i.e., the
context model, the contextual monitors, and the adaptation
mechanisms are exploited at run-time to activate and drive
SBA adaptations. First, the contextual monitors are used to
evaluate the context properties. Based on them the contex-
tual adaptation reasoners make decisions whether the adap-
tation should be triggered or not. The decision is driven by
the rules identified at design phase and encoded during the
construction of the appropriate mechanisms. As a next step,
the appropriate adaptation strategy is selected and then en-
acted by the adaptation framework. As in case of adaptation
needs, the selection of the adaptation strategy, as well as its
activation, may rely upon and exploit the knowledge about
context, e.g., exploit information about the user device to
select services and deliver information, about network prop-
erties (such as use of GPRS or 3G networks) to activate SLA
negotiation.

5.1 Context Modelling
During context modeling the model described in Section 4
is instantiated by identifing the list of context dimensions
that can trigger an adaptation or evolution of the function-
alities provided by the analyzed SBA. In fact, different con-
text dimensions are relevant for different applications. For
example, the ambient dimension is irrelevant for all the ap-
plications that do not require to change on the basis of the
geographical position in which they are used. Once the list
of the relevant context dimensions has been defined, the con-
text requirements should be refined by modelling the context
dimensions in terms of their reference domain. To enable the
design for adaptation aspects, it is first necessary to define if
the standard context representation hierarchy is fine for the
application or new categories should be defined (e.g., sea-
sons) and new representations identified (e.g., room numbers
instead of GPS positions). Second, it is necessary to define
the granularity to be used for measuring the context dimen-

sions. For example, as regards our scenario (see Section 6)
and the ambient dimension, the service for the identification
of the health-care public services should adapt its output on
the basis of the exact geographical position in which the user
accesses it while for the identification of the administrative
services, it could be sufficient to retrieve the city from which
the user accesses the platform. This first analysis allows the
designer to provide the following outcomes:

• The instantiation of the generic context model (Section
4) with respect to the given SBA: the relevant context
dimensions, relevant sub-elements of these dimensions,
and important set of values (ranges) these elements
may have with respect to the analyzed SBA.

• The description of the relationships between SBA el-
ements (services, processes and/or subprocesses, etc.)
and the context dimensions in terms of type of impact
and specific context values to monitor. This mapping
defines the starting point for the definition and mod-
eling of adaptation triggers and adaptation require-
ments.

We would like to stress the fact that the context modeling
is an iterative process: the new dimensions and elements
of the model may be added when the application is detailed
and new elements (including also monitoring and adaptation
mechanisms) are added.

5.2 Adaptation Triggers and Requirements
Once the context model and its relation with the applica-
tion model is defined, it is necessary to properly capture and
define the adaptation aspects. In particular, it is important
to define when the contextual changes are critical for the
SBA functioning (i.e., adaptation triggers) and what should
be done or achieved when these changes take place (adapta-
tion needs). Depending on the context dimension/element
and on the specific requirements of an SBA, the definition of
adaptation trigger may vary. As a result, the corresponding
context monitors needed to detect those trigger will have
different, sometimes application-specific, forms and realiza-
tions. Furthermore, in certain cases the adaptation trigger
does not correspond to some value of a particular single con-
text element, but is characterized by the complex combina-
tion of different context dimensions/factors. In the simplest
case, such situations may be directly encoded using the ca-
pabilities provided by the existing monitoring frameworks,
such as Dynamo [1]. In other cases, a sophisticated reason-
ers may be necessary. In particular, in [6], for instance, a
context represents the combination of users personal assets
(agenda, location, social relations, and money), and the crit-
ical context changes characterize some critical combination
of those assets. A dedicated analysis mechanisms is used
to identify those situations (asset conflicts) and to trigger
adaptation solutions.

Each adaptation trigger can be associated with the adapta-
tion requirements that define what should be done in order
to align the SBA with its context. Considering the contex-
tual aspects, it is necessary to take into account that adap-
tations may be performed (i) to customize the system in or-
der to fit to the situation in which the application currently

operates, (ii) to optimize the system in order to improve cer-
tain (usually quality-of-service) issues and characteristics of
the system, or (iii) to prevent and avoid future faults or
undesirable situations in the execution of the system. The
customization is often driven by changes in the application
context and especially by time, ambient, user, business, and
service context dimensions. Optimization is more related to
the service and computing context dimensions but can be
also triggered by changes in the users’ preferences. Finally,
prevention is mostly related to the service and computing
context since changes of the execution environment might
increase the risk of failures and the need for prevention.
The adaptation requirements are captured and realized by
a set of adaptation strategies. The selection of an adapta-
tion strategy to apply may depend on variety of factors [2],
such as scope of the change (i.e., whether the change affects
only a single running instance of the SBA or influences the
whole model), its impact (the possibility of the application
to accomplish its current task or necessity to retract), etc.
Besides, the contextual factors should also be considered:
the different strategies may be applied upon the same trig-
ger. For example, the decision to substitute a service or to
retry with the existing one may depend on the profile of the
user. Again, the selection of the adaptation strategy may
be characterized by a simple rule or a requires advanced
reasoning, based on some ontologies or ad-hoc models, or
may involve user decisions [6]. Table 1 relates some of the
common adaptation strategies with the changes in differ-
ent context dimensions. In conclusion, the outcomes of this
modeling step include the following components:

• Characterization of adaptation triggers as the descrip-
tion of the context configuration, in which the adap-
tation should be applied.

• Relation of adaptation triggers to possible adaptation
strategies used to realize the corresponding adapta-
tion needs. This relation may be also equipped with
the characterization of the contextual conditions that
drive the selection of one or another strategy.

5.3 Construction of Contextual Monitors and
Adaptation Mechanisms

The results of the analyses performed in the previous phases
support the SBA designers in the realization of the moni-
tors and adaptation strategies that should be included in
the SBA design. The need for the analysis of the context
and the deployment of specific adaptation strategies requires
the construction of dedicated platforms and the insertion
of monitors able to detect the context changes and trigger
the correspondent action. As we already discussed in pre-
vious subsection, the realization of such mechanisms may
rely on the existing solutions or may require their exten-
sion and even completely novel approaches. For example
in the Dynamo monitoring framework [1], the monitoring
components for context observation are realized as services,
which allow for the extension of the platform and even for
run-time addition/removal of monitors. Among the other
enabling platforms for realizing such context-based moni-
toring and adaptation solutions one can consider dynamic
aspect-oriented programming [11] that provides means for
application developers to state when and how behaviour of
an application should be adapted. These approaches have

Table 1: Suitability of adaptation strategies to react to context changes
Strategy Time Ambient User Service Computing Business

Service substitution X X X X X X
Re-execution X X

Re-composition X X X
Fail X X X X

Service concretization X X X X X X
Re-negotiation X X X
Compensation X X

Trigger Evolution X X X X X

a limited level of semantic expressiveness since they rely
on general-purpose language constructs. Hence, application
developers have to express adaptations in the format of the
supporting platform which often remains difficult to be un-
derstood. Domain-specific languages offer a solution to en-
able programmers to reason at a higher semantic level. In
[10] a language that provides higher-level constructs for ex-
pressing the adaptation of application behaviour due to a
change in context is proposed. Other approaches are based
on middleware-based approaches. For example, in [3], au-
thors present a framework for self-adaptive components that
follows the Event-Condition-Action pattern and makes use
of events emitted by a context-aware service that provides
information about the execution context of the application.
Furthermore, various rule engines can be also used. In [8], a
dynamic adaptation framework that adapts service objects
in a context-aware policy-based manner, using metatypes is
proposed. The system includes in the policy document a-
priori information for adaptation in the form of default be-
haviours and known adaptations. The system is also able to
deal with adaptation requirements that were unprecedented
when the service was designed and compiled. In fact, recon-
figuration intelligence can be incorporated at runtime by
modifying the policy declarations and the inclusion of new
behaviours in the form of new metatypes. The outcomes of
this construction step include the following components:

• Design and realization of monitors able to detect changes
in the context dimensions on the basis of the specifi-
cations defined in the previous phase.

• Realization of a platform that on the basis of the con-
text analysis define and trigger the corresponding adap-
tation action.

6. PROCESS EVALUATION
In this section we want to explain how the context-aware
design process described in the section 5 is applied to a case
study in the e-government domain that has been defined in
the S-Cube Project [12]. The idea is to build an adaptable
SBA that realizes e-government processes able to support
citizens in various activities. The application aims at provi-
sioning and integrating various public services, including the
health-care services, administrative procedures towards cit-
izens, information services, personal assistance services, etc.
These services range from Internet services (e.g., for book-
ing a visit to a doctor online, online payment, route plan-
ning) to local services (e.g., specific medical centers and labs,
monetary assistance), to personal and human-provided ones
(medical assistance at home, fiscal procedures, monetary as-
sistance, census operations). Moreover, public authorities
own and expose to the citizens various e-government pro-

cesses and procedures, where the single services of private
bodies and public organizations are composed. An example
of an integrated process is the reservation of a medical visit,
where the reservation service is integrated with the local
services of the medical centers, with the route planning sys-
tem and public transportation services to drive the patient
to the doctor and inform it about the available transport
means. Figure 2 presents the general picture of the sce-
nario, it includes all possible services, subdivided in different
categories, and different actors of the application: Citizen,
Service Providers, Public Authorities and the Service Inte-
grator. The Service Integrator is the principal actor that
realizes the e-government SBA using the principles that we
have defined in this paper.

In the scenario introduced above different contextual dimen-
sions are heavily exploited, ranging from computational con-
text (e.g., devices and channels used by the citizens to ac-
cess/receive information from the administrative services),
to physical context (e.g, user location), user context (its.
preferences, social status, medical card), and even to busi-
ness aspects (e.g., the emergency mode of the e-government
procedures). In particular, let us consider the Health-care
public service that one user can access to search for a doctor.
If the request occurs during the night, the list of the available
doctors is different with respect to the one returned during
the morning. For this reason, the TimeContext dimension
will be expressed by means of the PartOfDay element whose
values will belong to the following set: {morning, afternoon,
evening, night} (see the figure 3). In a similar way, some
of the service outputs could depend on the location of the
user accessing the system. In fact, if a citizen wants the list
of the nearest pharmacies, the sorting of the returned items
depends on the zipcode of the area from which the request
comes. In a similar way the behaviour of the application
will depend on the situation (normal life or emergency con-
ditions) the users are living. The study of the application
and of the involved services will guide the definition of the
set of values associated to the context dimensions. An ex-
ample of a simple context model for the proposed scenario
can be found in the Figure 3; the model reports, for each
considered dimension, all the admissible values.

After the definition of the context model, it is possible to go
through the next phase devoted to the identification of the
associations of the critical context changes (adaptation trig-
gers) to the adaptation needs. In Table 2, for each service
involved in the application the relationship with the context
factors is highlighted. It is possible to notice, for example,
that the access to the Administrative or to the Health-care
public services, could depend on the values of the TimeCon-
text dimension in the context model.

Figure 2: General picture of the e-government scenario.

Figure 3: The Context Model for the e-Government scenario.

Table 2: Service/Context table for the E-government scenario
Application Time Ambient User Service Computing Business

Health-care public services X X X X X X
Administrative services X X X X X X

Census and registration services X X X X X
Information services X X X X X X
Auxiliary services X X X X

Table 3: Service/Adaptation Strategy table for the e-government scenario
Adaptation Strategy Health-care

public services
Administrative
services

Census and
registration
services

Information
services

Auxiliary ser-
vices

Service substitution X X X
Re-execution X X X X X

Re-composition X X X X X
Fail X X X X X

Service concretization X X X
Re-negotiation X X X
Compensation X X X X

Trigger Evolution X X X

Changes in the context have to be managed and suitable
adaptation strategies have to be defined. Referring to the
e-government scenario, if we consider a mobile user access-
ing to the e-Health service, we can image that modifica-
tions in the location (expressed using the zipcode for the
specific context dimension) will require the re-execution or
the substitution of the specific e-Health service. Moreover

the transition from a normal to emergency situation could
require the recomposition of the application. During the
second phase of the process, all the context changes and the
corresponding adaptation strategies have to be identified.
On the basis of the analyzed scenario, the context require-
ments, and the characteristics of the adaptation strategies,
process designers in the last phase should build a table Ser-

vice/Adaptation Strategy in which for each service the se-
lected adaptation strategies are identified. Table 3 details
the Service/Adaptation Strategy table for the e-government
scenario. Since almost all the functionalities depend on the
whole set of the context dimensions, they are also suitable
for the adoption of a large set of adaptation strategies. The
public ownership of the administrative and census and reg-
istration services and thus the unavailability of a registry
containing similar services make instead the service substi-
tution and concretization not adoptable. Compensation is
not suitable for all the Information services since the only
read interaction with these services does not require the
intervention of compensation operations. The table Ser-
vice/Adaptation Strategy provides a comprehensive view of
all the applicable strategies and thus supports the designer
in the identification of the elements to design and develop to
enable the construction of a contextual adaptive SBA. For
each service and for each related context dimension, one or
more adaptation strategies should be selected on the basis
of technical constraints and functional and non-functional
requirements. For example, for all the critical services in
which a rapid response is needed, the adoption of adaptation
strategies that increase the response time (e.g., re-execution,
re-negotiation, re-composition, trigger evolution) is not ac-
ceptable.

7. CONCLUSION AND FUTURE WORK
This paper focuses on the role of the context in the adapta-
tion activities. It proposes a framework to support the de-
sign of SBAs that targets the adaptation requirements raised
by context changes. The approach has been described on the
basis of a novel life-cycle that emphasizes the relevance of
the context elements in the different facets of adaptation,
both during the design phase and at run-time. The paper
considers all the issues related to the design of SBAs able
to evolve together with the requirements and the execution
context. The context has been modeled by considering a set
of all the dimensions that can generally influence the system
behaviour. On the basis of this context model, the proposed
approach provides guidelines for the identification of the rel-
evant context dimensions to monitor and for the definition
of the adaptation triggers able to link context changes with
suitable adaptation strategies. The effectiveness of the dis-
cussed principles and guidelines has been evaluated by con-
sidering a real case study based on an e-governement sce-
nario. Results witness the capability of the context-driven
adaptation process to capture the key aspects of adapta-
tion and support designers from the requirements elicita-
tion to the construction of proper adaptation mechanisms.
Our future roadmap includes a refinement of the adapta-
tion process presented in this paper, its formalization, and
validation. We also intend to work on the development of
mechanisms and tools supporting the methodology, building
on top of the actions and artifacts identified in the proposed
life-cycle.

8. REFERENCES
[1] L. Baresi and S. Guinea. Dynamo: Dynamic

monitoring of ws-bpel processes. In ICSOC, pages
478–483, 2005.

[2] A. Bucchiarone, C. Cappiello, E. di Nitto,
R. Kazhamiakin, V. Mazza, and M. Pistore. Design

for adaptation of Service-Based applications: Main
issues and requirements. In International Workshop
on Engineering Service-Oriented Applications (to
appear), 2009.

[3] P.-C. David and T. Ledoux. Wildcat: a generic
framework for context-aware applications. In MPAC,
pages 1–7, 2005.

[4] A. K. Dey and G. D. Abowd. Towards a Better
Understanding of Context and Context-Awareness.
CHI 2000 Workshop on the What, Who, Where,
When, and How of Context-Awareness, 2000.

[5] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday.
An architecture for the effective support of adaptive
context-aware applications. In MDM ’01: Proceedings
of the Second International Conference on Mobile
Data Management, pages 15–26, London, UK, 2001.
Springer-Verlag.

[6] R. Kazhamiakin, P. Bertoli, M. Paolucci, M. Pistore,
and M. Wagner. Having Services “YourWay!”:
Towards User-Centric Composition of Mobile Services.
In Future Internet Symposium, 2008.

[7] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework.
Policies for Distributed Systems and Networks, IEEE
International Workshop on, 0:3, 2003.

[8] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework. In
POLICY, pages 3–14, 2003.

[9] M. Moez, C. Tadj, and C. ben Amar. Context
modeling and context-aware service adaptation for
pervasive computing systems. International Journal of
Computer and Information Science and Engineering,
2008.

[10] J. Munnelly, S. Fritsch, and S. Clarke. An
aspect-oriented approach to the modularisation of
context. In PerCom, pages 114–124, 2007.

[11] A. Nicoara and G. Alonso. Dynamic aop with prose.
In International Workshop on Adaptive and
Self-Managing Enterprise Applications (ASMEA),
pages 125–138, 2005.

[12] E. D. Nitto, V. Mazza, and A. Mocci. Collection of
industrial best practices, scenarios and business cases,
2009.

[13] J. C. Ronnie Cheung, Gang Yao and A. Chan. A fuzzy
service adaptation engine for context-aware mobile
computing middleware. International Journal of
Pervasive Computing and Communications, 2008.

[14] S-Cube. Codified human-computer interaction (HCI)
knowledge and context factors, 2009.

[15] T. Strang and C. L. Popien. A context modeling
survey, September 2004.

[16] L. Tanca, A. Miele, and E. Quintarelli. A
methodology for preference-based personalization of
contextual data. In ACM EDBT 2009, 2009.

Modelling and Automated Composition of
User-Centric Services

Raman Kazhamiakin1, Massimo Paolucci2, Marco Pistore1 and Heorhi Raik1

1 Fondazione Bruno Kessler, via Sommarive 18, Trento TN 38050, Italy
[raman,pistore,raik]@fbk.eu

2 DoCoMo Euro-Labs, Landsberger Strasse 312, 80687 Munich, Germany
paolucci@docomolab-euro.com

Abstract. User-centric services bring additional constraints to theproblem of
automated service composition. While in business-centricsettings the services
are orchestrated in order to accomplish a specific business task, user-centric ser-
vice composition should allow the user to decide and controlwhich tasks are
executed and how. This requires the ability not only to automatically compose
different, often unrelated, services on the fly, but also to generate a flexible in-
teraction protocol that allows the user to control and coordinate composition ex-
ecution. In this paper we present a novel automated composition approach that
aims to support user-centric service provisioning. Specifically, we associate the
service to so-called service objects and provide a declarative notation to express
composition requirements in terms of the evolution of thoseobjects. On top of
these objects we also define the user control activities and constraints. Using the
automated planning techniques, our approach generates a service composition
that orchestrates services in a way it is requested by the user.

1 Introduction

In the past decade, the advances in technology allowed numerous service providers
to introduce thousands of new electronic services as well asto create service-oriented
adapters for conventional services. In these settings, theability to efficiently integrate
and compose those services in order to obtain new functionalities becomes one of the
key factors for the wide adoption of the service-oriented paradigm. A variety of tech-
nologies and approaches is already available to facilitatethe development of service
compositions.

With the growth of the service market more and more prominentrole is gained by
the user-centric services, i.e., the services that are intended to be consumed directly
by the user (e.g., personal agenda, electronic maps, on-line flight booking and check-in,
restaurant finder, etc.), as opposed to business-centric (or B2B) services, which are used
to provide business-to-business cooperation. Although the rapid emergence of user-
centric services is the trend of the last few years, some works already distinguished
them as a separate group of services [5], and some even considered their features from
the service composition perspective ([6] and [9]). While from the technological view-
point user-centric composition may rely on similar composition solutions and standards,
the way such services are composed and delivered to the usersshould adhere to some
specific yet significant requirements and constraints. In particular:

– B2B service composition aims at realizing a specific business task in a structured
way (e.g., by implementing a corresponding business process). In the user-centric
settings the goal is to continuously support the user in performing variety of dif-
ferent tasks, being able to react to the changes in her plans and decisions and to
propagate those changes to the composed services. This requires different ways to
capture composition requirements, shifting from the definition of an ultimate com-
position goal to the definition of the rules and constraints on continuous service
coordination.

– The execution of the business-centric composition is driven and controlled by the
rationale defined by the business goal behind that composition. The execution of
the composed user-centric services is driven and controlled by the user deciding
which activity to execute, when it should be executed and how. The key issue here
is to identify appropriate interaction means that would deliver controllability and
awareness of the execution to the user in an intuitive way.

– In both cases the composition is being constructed from the service models and
composition requirements defined by the designer at design time. In the user-centric
settings, however, the decision of which services should beintegrated and com-
posed is left to the user, which makes the service composition a purely run-time
activity. First, this makes the use of automated service composition techniques un-
avoidable. Second, there is a need for the appropriate modelling techniques, where
the composition requirements are sufficiently abstracted from the service imple-
mentations. Third, this makes the problem of controlling the execution of the com-
position by the user even more complex, since the corresponding interaction proto-
cols should be constructed and provided to the user at run-time, in a composition-
specific manner.

In this paper we present a novel service composition framework which aims to
address these challenges. Building upon our previous techniques for automated service
composition [4], this approach provides the capabilities specifically targeting the needs
of user-centric service compositions. In this framework, we propose:

– A simple yet expressive language for control flow composition requirements, being
able to deal with the problems specific to user-centric service compositions just
discussed. The language relies on the service model, where the essential service
properties are abstracted from the low-level service implementations, thus enabling
dynamic re-use of those models at run-time.

– A set of principles capturing the patterns of interaction with the user, so that he is
always in control and aware of the execution of his services in an intuitive way.

– An automated support for the service composition and derivation of the correspond-
ing user protocol, through which the user can trigger different activities, control
their execution, and receive relevant information about the execution flow.

The rest of the paper is structured in the following way. In Section 2 we present
out motivating example and discuss the main challenges we face. In Section 3, the
general approach is outlined. Section 4 contains some background on wired planning.
In Section 5, the formalization of the composition model is given. Section 6 is devoted
to the implementation of the composition framework and experiments. In Section 7 we
discuss related work.

! flightCancelled! flightDelayed

Flight ticket
is changed

Flight ticket
is deleted

?delete

! flightDeleted

Flight ticket
is deleted

(a) Flight Reservation (b) Flight Cancellation

(c) Flight Status Notification

?request

checkAvail

?ack ?nAck

! notAvail! offer
Flight ticket
is created

?request

checkAvail

?ack ?nAck

! notAvail! offer
Hotel

reservation
is created

(d) Hotel Reservation Management

?delete

! hotelDeleted

Hotel
reservation
is deleted

?change

checkAvail

?ack?nAck

! notAvail! offer

Hotel
reservation
is changed

Fig. 1. Protocols of components in travel domain scenario

2 Motivating Example

For the illustration purposes, we use a case study from the travel domain, which is
widely used in the literature on service composition. In this case study, the user deals
with services that manage different activities over flight bookings and hotel reserva-
tions. More precisely, these services are (Fig. 1):

1. A flight booking service (a). Upon the user request, it sends an offer and waits for
the confirmation.

2. A flight cancellation service (b). It simply cancels the flight upon the user request.
3. A flight status notification service (c). It notifies the user about flight delays and

cancellations.
4. A hotel reservation management service (d). This is a complex service that provides

means to create, modify and cancel hotel reservations.

In this scenario our goal is not simply to allow the user to book a flight and a hotel
for the same trip, but to continuously coordinate their evolution when the changes are
required by the user (e.g., the user wants to cancel the flight) or triggered by exogenous
events (e.g., flight is delayed). Specifically, the coordination requirements may be:

– a flight ticket and hotel reservation should be booked together (i.e., transactionally).
– when the flight is delayed, the hotel reservation should be postponed, and if this is

not possible, both should be cancelled.
– when the flight is cancelled, the hotel reservation should becancelled too.

Furthermore, the composition should enable the user to control the execution. That is,
the user should be able to change his objects (e.g., to cancelthe flight or to modify
the hotel reservation), to be aware of the changes (e.g., to receive notifications), and to
make important decisions (e.g., to accept or reject proposed hotel options).

Finally, we expect that the specific service implementations (i.e., specific flight and
hotel booking services) are selected dynamically, and the concrete composition is cre-
ated at run-time.

The requirements posed by the presented scenario make the service composition
problem much more challenging than in the similar scenariosused to evaluate existing
composition approaches. In particular, the following problems should be addressed:

– Heterogeneity of service implementations. There may be no single service that can
completely manage an entity (e.g., a flight ticket is managedby three different
services, some of them may even belong to different service providers). Moreover,
different provider may define the same service in different ways.

– Continuous service coordination. There is a need to continuously coordinate a few
entities (a flight ticket and a hotel reservation) rather than simply perform a single
task.

– Re-use of composition requirements. The complexity of control-flow requirements
and dynamicity of composition instantiation raises the question of reusing them
with different service implementations. In our example, once specified, composi-
tion requirements should be applicable to different implementations of flight and
hotel management services.

– Dynamicity of user protocols. While there is clearly a need to enable the user to
manipulate services and to control the composition execution, the way the user in-
teracts with the composition, i.e., user protocol, strictly depends on the participating
services and on their implementations. Such a protocol can hardly be predefined for
all possible realizations.

3 Overview

In order to address the problems outlined in Section 2, we introduce a novel service
modelling and composition approach. In this section we present the key elements of the
approach, namely, the composition model and the composition construction process.

Composition Model.Our composition model is shown in the following figure:

service
specifications

control-flow
requirements

user protocol
elements

event
annotations

events protocol
annotations

domain
objects

The central element of this model is the definition ofdomain objectsused to represent
the entities participating to the composition (e.g., a flight ticket, or a hotel reservation)
and their evolution at a high level of abstraction. Details of concrete service implemen-
tations are captured in the definition ofservice specifications. These specifications are
related to domain objects through event annotations that define how the execution of
services makes the corresponding object evolve. The specification of thecontrol-flow
requirementsover the service composition is given in terms of evolution of domain ob-
jects only, regardless of the specific services realizing those objects. Similarly, theuser
protocol elementscapturing the requirements on the user interactions with the compo-
sition are related to the composed objects, and not to the service implementations nor to
composition requirements. We remark that with this distinction we are able to address
the problem of service implementation heterogeneity, re-use of composition require-
ments in different settings, and automatically come up withthe necessary user protocol
regardless of specific composition scenario and the services participating in it.

The domain objects used in our model are represented with anobject diagram, a
state diagram that defines possible object states and transitions between them (e.g., a
flight ticket can be booked, then paid, then checked-in or cancelled or delayed etc.). In
fact, an object diagram is the representation of an object life-cycle, where transitions
correspond to the activities that can be performed over the object (e.g., flight cancella-
tion) or external event that can happen to the object (e.g., flight delay committed by the
airline).

Following the real-world phenomena, in our model we allow for stateful services
with complex protocol, asynchronous and non-deterministic behavior. These services
may be defined using standard notations (e.g., BPEL). To linkservice specifications and
domain objects, we annotate some of the actions in service protocols with the events of
object evolutions. As such, through domain objects our model is able to capture com-
plex and diverse service implementations and to relate independent services managing
the same entity.

The language for the specification of control-flow requirements is defined on top of
object diagrams, i.e., in terms of states and events. The language aims to express var-
ious coordination goals, i.e., alignment of states of different domain objects, reaction
to various events, and so on. With this language our approachsupports continuous co-
ordination requirements, enabling their reuse since the requirements are detached from
service implementations.

When the composition instance and constituent services aredefined, our approach
automatically derives a specific user protocol for the composition. Doing this, the fol-
lowing requirements are considered:

– The user should have a way to manipulate the objects using available services.
– The user should be able to receive notifications about objectevolution.
– During the execution, critical decisions should be delegated to the user.

Following these requirements, the corresponding protocolelements are defined in our
model. Specifically, these elements are used to enable and control the activation of cer-
tain object transitions by the user, to inform the user aboutthe changes, and to capture
critical decisions and the interaction with the user on those decisions. Formal definition

of the elements is given in Section 5.4.

Composition Process.The composition process consists of two major phases: design
time and run time. Atdesign time, IT experts model the domain objects and associate
the existing services to those objects through service annotations. After that, it is pos-
sible to define groups of domain objects that are likely to be composed with each other
(e.g., a flight ticket, a hotel reservation and a car rental are likely to be coordinated in the
context of trip planning). For each such group of objects, a set of control-flow require-
ments is specified which defines how to coordinate them. In fact, these requirements
define a sort ofcomposition templatefor coordinating certain objects (e.g., the template
on how to manage a trip consisting of a flight, a hotel and a car rental). Finally, the
resulting specifications, namely domain objects, services, and composition templates,
are stored in some service repositories. The way the repositories are defined, accessed,
and managed is outside of the scope of this paper.

At run time, the template is instantiated with concrete objects, and services that
can manage these objects are offered to the user. Once the service implementations are
chosen, we use planning techniques to automatically build acomposite service. Our
planning-based composition tool takes as input the models of object diagrams, anno-
tated service specifications, and control-flow requirements, we translate these models
into a planning domain with planning goals over this domain.The plan obtained is in-
tended to implement the behaviour of the composite service that meets the composition
requirements specified. Finally, it is translated back to one of the standard composition
languages (e.g., BPEL).

We remark that the ability to select service implementations at run time is a very im-
portant capability that we consider. The fact that implementations of the same services
can be radically different (e.g., implementations of a flight booking service provided
by various airlines) makes the realization of such capability far from trivial and indeed
requires advanced planning techniques available at run time.

4 Background on Service Composition via Planning

In our approach to service composition we rely on the composition framework pre-
sented in [10] (planning in asynchronous domains). In that research, a planning domain
is derived from service specifications, composition requirements are formalized as a
planning goal, and advanced planning algorithms are applied to the planning problem
to generate the composite service. The advantages of the approach are an asynchronous
communication model, the ability to deal with stateful and non-deterministic services,
considering preference-based (reachability) requirements on services. This is why it
provides a good basis to build upon. Here we discuss the main concepts of that formal
framework.

A planning domain is formally defined as a state transition system, i.e., a dynamic
system that can be in one of itsstates(some of which areinitial statesand/oraccepting
states) and can evolve to new states as a result of performing someactions. Actions
can beinput actions, which represent the reception of messages,outputactions, which

represent messages sent to external services, and internalactionτ , modelling internal
computations and decisions.

Definition 1 (STS).A state transition system is a tuple〈S,S0, I,O,R,SF ,F〉, where:

– S is the set of states andS0 ⊆ S are the initial states;
– I andO are the input and output actions respectively;
– R ⊆ S×Bool× (I ∪O∪{τ})×S is a transition relation, whereBool represents

all boolean expressions over propositionsP ;
– SF ⊆ S is the set of accepting states;
– F : S → 2P is the labelling function.

Given a labeling function theF : S → 2P , we can define whether a boolean
expressionb ∈ Bool over propositions inP holds in states ∈ S, writtens,F |= b. The
definition is the classical one for validity of boolean expressions.

The transitions of STS are guarded: a transition〈s, b, a, s′〉 is possible in the state
s only if the guard expressionb holds in that state, i.e.,s,F |= b. A run π of STS is
a finite sequence of transitionsπ = 〈s0, b0, a0, s1〉, . . . , 〈sn, bn, an, sn+1〉, with ai ∈
I ∪ O ∪ {τ}, si,F |= bi, s0 ∈ S0, andsn+1 ∈ SF . The set of all runs of a STSΣ is
denoted withΠ(Σ).

Component services can be recast as STSs, and, given a set of component services
W1, . . . , Wn, the planning domainΣ is defined as a synchronous product of the all
the STSs of the component services:Σ = ΣW1

‖ . . . ‖ΣWn
. The synchronous product

Σ1‖Σ2 models the fact that the systemsΣ1 andΣ2 evolve simultaneously on common
actions and independently on actions belonging to a single system. A composed service
can also be represented as a state transition systemΣc. Its aim is to control the planning
domain defined by the component services. The interactions of Σc andΣ are modelled
by the following notion of a controlled system.

Definition 2 (Controlled System).
Let Σ = 〈S,S0, I,O,R,SF ,F〉 andΣc = 〈Sc,S

0
c , I,O,Rc,S

F
c ,Fc〉 be two state

transition systems. The state transition systemΣc . Σ, describing the behaviors of
systemΣ when controlled byΣc, is defined as follows:

Σc . Σ = 〈Sc × S,S0
c × S0, I,O,Rc . R,SF

c × SF ,Fc ∪ F〉

where:

〈(sc, s), (bc ∧ b), a, (s′c, s
′)〉 ∈ (Rc . R), if

〈sc, bc, a, s′c〉 ∈ Rc and〈s, b, a, s′〉 ∈ R.

In this setting, generating a composed serviceΣc that guarantees the satisfaction
of a composition goalρ is formalized by requiring that the controlled systemΣc . Σ

satisfies the requirementρ: Σc.Σ |= ρ. In [11] it is shown how planning for preference-
ordered goals may be applied for this purpose, considering alist ρ = (g1, g2, . . . , gn)
of alternative requirements where eachgi is a reachability goal.

In our work, we will use this idea as a basis on top of which we will build our
composition model.

5 Formal Model

In this section, we formally describe each part of our composition framework intro-
duced in section 3. The model is an extension of the formalization presented in [4].
This extension, on the one hand, enriches the modelling capabilities of the approach
and, on the other hand, allows for capturing specific properties of user-centric service
composition.

5.1 Domain Objects

A domain object is intended to model some entity that we can manage using services.
One service composition is likely to manage more than one domain object (in the moti-
vating example, we manage two domain objects: a flight ticketand a hotel reservation).
Every domain object is modelled with an object diagram, which is a state transition sys-
tem. Transitions in an object diagram stand for activities that can be performed over the
object (e.g., to book a flight ticket). To address object diagram transitions in control-flow
requirements and service annotations, we label transitions with object events. Differ-
ently from [4], in this work we distinguish between two typesof transitions. Transitions
that are triggered by executing a certain service are calledcontrollable(e.g., hotel book-
ing) because the user can decide whether to execute them and when. These type of tran-
sitions can have more than one final state corresponding to different non-deterministic
outcomes of service execution. Each non-deterministic outcome is labelled with its own
event. Transitions corresponding to external notifications (e.g., flight delay notification)
are calleduncontrollablebecause they can happen at any time and are out of the user’s
control. These transitions are deterministic and have exactly one final state.

Definition 3 (Object Diagram). An object diagramrepresenting objectO is a tuple
〈L, L0, E , T 〉, where:

– L is a finite set of object configurations andL0 ⊆ L is a set of initial configurations;
– E is a set of possible events that reflect the evolution of the object;
– T ⊆ L× (E ×L)+ is a transition relation that defines non-deterministic evolution

of an object, based on events. We distinguish between controllable transitionsTc

and uncontrollable transitionsTu such thatT = Tc ∪ Tu andTc ∩ Tu = ∅.

We remark that transition relation in domain objects allowsfor a few effects per
transition, each leading to its own final state. Such a model takes into account that
each activity over object may have a few possible non-deterministic outcomes (see the
example below).

Example 1 (Flight Ticket).A possible object diagram for domain object Flight Ticket
may be represented as follows:

CREATED DELETEDNOT-
EXIST created

cancelled
modifiednavail

deleted
del_fail

In this diagram, solid lines correspond to controllable anddashed lines to uncontrol-
lable transitions. Non-deterministic outcomes of the sametransition are marked with
an arc. The diagram has three different configurationsnot-exist, created anddeleted.
The transition corresponding to flight booking is an exampleof a controllable tran-
sition with non-deterministic outcomes. The object moves to statecreated when the
flight booking service is executed successfully (event “created”). At the same time,
non-deterministic fail of this service is still possible (e.g., event “navail” represents
non-availability of the flight with requested attributes).Formally, this transition can be
represented asTcr = (not-exist, {(created, created), (navail, not-exist)}). In state
created, two uncontrollable transitions are presented: if the flight is delayed (event
“modified”) or cancelled (event “cancelled”) by the airline. The ticket cancellation can
also be performed in a controllable way using a corresponding service (events “deleted”
and “del fail”).

5.2 Services

In this research, we reuse the model of annotated services presented in [4]. We deal
with stateful services represented with a service protocol(e.g., a BPEL process) and
a stateless interface (e.g., a WSDL specification). Every service is related to a specific
domain object through special annotations (in certain sense, we use a service to produce
some effect on a corresponding object). These annotations appear within the activities
of the service protocol: an activity may be annotated with a set of events pertaining
to the corresponding object. This implicitly defines how theexecution of the service
changes the object.

We useannotated state transition system(ASTS) as a model of service. “Annotated”
means that each transition in such an STS may be labelled withobject diagram events.
The execution of a labelled transition propagates labelling events to the object. If, for
example, a service transition is annotated with eventtoe(l, o), then objecto moves to
configurationl when this transition takes place.

Definition 4 (Annotated State Transition System).An annotated STSΣ is a tuple
〈S,S0, I,O, E ,R〉 where:

– E is the set of events;
– R ⊆ S × (I ∪ O ∪ {τ}) × E∗ × S is the transition relation.

The semantics of the annotated transition is intuitively described as follows. Let
objecto have a set of eventsE , and a service transition(s, a, ε, s′) ∈ R, wheres, s′ ∈ S,
a ∈ (I ∪ O ∪ {τ}), andε ⊆ E .

The transition is considered to beapplicableto the objecto if the object is in some
configurationl, and eitherε = ∅, or there exists an object transition(l, ε′, l′), such that
ε′ ⊆ ε. Once this transition is performed, in the first case the object will remain in the
same configuration, while in the second case it will evolve tothe configurationl′.

Example 2.An annotated STS of the Flight Cancellation Service (Fig. 1,b) is de-
fined asΣ = 〈{s0, s1, s2}, s0}, {delete}, {flightDeleted}, E,R〉. The output oper-
ation “flightDeleted” is annotated with the eventde(f) (flight is “deleted”), as the

service provider confirms the flight ticket cancellation. That is, E = {de(f)}, and
R = {(l0, ?delete, ∅, l1), (l1, !flightDeleted, {de(f)}, l2)}.

We remark that service protocols can feature branching. Forexample, in the flight
booking service (Fig. 1(a)) after the flight options are offered, it is possible either to ac-
cept or to reject the offer. For such protocols, more than oneexecution path is available.
At any branching point, the decision on which branch to take is delegated to the user
and is a part of the derived user protocol (for details see subsection 5.4).

5.3 Control Flow Requirements

To express control-flow requirements, we use an easy-to-specify language that is in-
dependent from service implementations and expressive enough to specify complex
requirements and can take into account the user’s behaviour. For those reasons, this
language(i) expresses requirements on the evolution of objects, synchronizing object
diagrams and defining “stable” configurations for the systemof object;(ii) specifies
requirements as reaction rules, which define how the composite service shall react to
object events in different situations. Differently from [4], we introduce a “try-catch”
construction. The intuition is to handle the situation where we want some effect to be
provided, but expect that while executing services some fails may happen and these
fails will require additional reaction.

Definition 5 (Composition Constraint). A composition requirement is defined with
the following generic template

premise =⇒ (reaction1 � . . . � reactionn),

wherepremise ≡ ss(o) | ee(o) | pr1 ∨ pr2 | pr1 ∧ pr2

andreaction ≡ ss(o) | ee(o) | r1 ∨ r2 | r1 ∧ r2 | try(r)
catch(pr1) : r1

. . .

catch(prn) : rn

Here pr1, pr2 and prn are premises,r, r1, r2 and rn are reactions,ss(o) is used to
define the fact that the objecto is in the configurations, andee(o) defines that the event
e of the objecto has taken place,try(r)catch(pri) : ri construction means that it is
necessary to do all possible to provide reactionr, but if, while trying to provide this
reaction, situationpri (premise of the catch block) has happened,ri should be provided
instead.

The left side of the constraint defines the “premise” and the right side defines a set of
“reactions” that we expect from the composite service (reactions are ordered according
to their priorities). More precisely, the constraint states that if the situation described
in the “premise” has happened, one of the situation described in the corresponding
“reactions” has to be provided with respect to given priorities. Expressiontry(r) has
to be interpreted as “do your best to provider, bur even if you finally failed you are
successfully done withtry(r)”.

Example 3.The composition requirements of the motivating example in Section 2 can
be written down using our language in the following way:

1. crs(h) ∨ crs(f) =⇒ (crs(f) ∧ crs(h))

Here, the transactional creation of two objectsh (hotel reservation) andf (flight
ticket) is defined, i. e., mandatory bring both objects to thestate “cr” (created) in
case at least one of them is created. In such way we define “stable” configuration
of a system of objects (both are created).

2. mode(f) =⇒ try(mode(h))
catch(refusede(h) ∨ mod navaile(h) :

try(dels(h)) ∧ try(dels(f))
This constraint states that once the flight is delayed (eventmode(f)), the composi-
tion has to do its best to modify the hotel reservation (i. e.,to trigger eventmode(h)
for the hotel reservation). If specific types of fails happenwhile changing the hotel
reservation (non-availabilitymod navaile(h) or the user’s refusal of the new hotel
offerrefusede(h)) then the composition has to try to delete both objects. Thisis an
example of requirements that specify reaction to events that the composite service
has to provide.

3. de(f) =⇒ (try(de(h)).

If the flight is cancelled (eventde(f)), the composition tries to cancel the hotel
reservation (eventde(h)).

The resulting composite process is supposed to continuously satisfy all the control-flow
requirements specified and thus consistently manage the whole life cycle of two object.

We want to emphasize that, due to the fact that the language expresses requirements
purely in terms of the evolution of objects, the requirements themselves remain inde-
pendent from the implementation of services. As such, the same requirements can be
used with various implementations of a conceptual service once these implementations
are properly annotated with object evolution information.

5.4 User Protocol

The user protocol of the composite service should give the user enough control over
the execution of component services. We distinguish three main types of user control
activities that have to be reflected in the user interface andprotocol of the composite
service. They are:

1. Execution activation. Each controllable transition in an object diagram can be trig-
gered through the execution of a particular service. We extend the user interface of
the composite service with additional operations that let the user control the ac-
tivation of each controllable transition (Fig. 2(a)). To activate a certain transition
(i. e., to ask the composite service to execute the corresponding service), the user
calls special operationcalli. If the composite service needs to trigger some con-
trollable transition itself (e. g., in order to meet composition requirements) if first
has to receive the user’s permission for that and only then toproceed. To implement
such interaction we add three more operations:aski, accepti andrejecti. First, the

calli

aski

accepti

rejecti

(a) activation

event1

eventn

...

(b) reporting

decni

dec1i

ask_deci

...

(c) decision

Fig. 2. Interface for user control elements

composite service sendsaski and then the user replies withaccepti if the permis-
sion is granted andrejecti if not. We impose additional restriction which requires
that the user may request the execution of a service only if the composition is not
busy with any other task.

2. Event reporting. Every event that happens to a domain object has to be reported
to the user. Therefore, for each event we add operationeventi to the composition
interface (Fig. 2(b)). They let the user stay informed aboutthe dynamics of the
domain objects.

3. Decision-making. If a service protocol features branching, we allow the user to
make decisions at any branching point. Particularly, for each branching point we
add to the composition interface the following operations:ask deci, dec 1i, . . . ,
dec ni (Fig. 2(c)). At a branching point, the composition sendsask deci and then
receives one of possible decisionsdec 1i, . . . ,dec ni.

6 Composition as Planning Problem

In order to use planning techniques for composing services,we need to replace a service
composition problem with the planning one. More precisely,the formal model has to
be transformed into a set of synchronized state transition systems (STS) that form a
planning domain, and the composition requirements have to be rephrased in terms of
the goal states of these STS’s.

In this section, we define transformation rules for each partof our formal model
and demonstrate how composition requirements can be expressed as planning goals.
We further outline the work of the algorithm and explain how to interpret its results.

Service Transformation. To transform component services we replace a given anno-
tated STS〈S,S0, I,O, E ,R〉 with a corresponding STS〈S,S0, I,O,R′,SF ,F〉. In
order to perform such transformation, for each transition(s, a, ε, s′) ∈ R we define
a corresponding transition(s,>, a, s′) ∈ R′, and the states are not labeled (for each
s ∈ S F(s) = ∅). In order to state that each service once started has to be executed to
one of its final states all the terminating and initial statesof the ASTS are marked as
accepting states in the STS.

Object diagrams transformation. First, we define a set of atomic propositionsP ≡
{sj

s(oi)}, which specify that an objectoi is in statesj for all objects and their states.

?calli

!aski

?e1i ?eni…

?accepti

?rejecti

(a) Activation STS

?ei!eventi

(b) Event reporting STS

?a_initi

!ask_deci

…
!a1i!ani

?dec1i?decni

(c) Decision making STS

Fig. 3. STS diagrams of user control elements

This will allow us to capture object states in requirements.Object diagram〈L, L0, E , T 〉
in transformed into an STS〈S,S0, I,O,R,SF ,F〉, whereS = L, S0 = L0, every
state is labelled with the corresponding proposition (i. e., ∀s ∈ S : F(s) = {ss(o)}),
and all object configurations are accepting (i. e.,SF = S). To obtain the transition
relation of a new STS, for each non-deterministic transition in the object diagram
(l, c, {(ε′1, l

′
1), . . . , (ε

′
n, l′n)}) ∈ T and for any transition(s, a, ε, s′) of some ASTS

such thatε′i ⊆ ε we define a (non-guarded) transition(l,>, a, l′i) ∈ R.

User Protocol Transformation.For each user control element mentioned in subsection
5.4 we provide an STS implementing its semantics:

– The STS for execution activation (Fig. 3(a)) blocks a corresponding controllable
transition in an object diagram (by blocking all events associatede1i . . . eni) until
either the user sends a request (?calli)) or the composite service gets user’s autho-
rization to trigger the transition (accepti).

– The STS for event reporting (Fig. 3(b)) sends a report to the user (!eventi) every
time an associated event (?ei) happens to an object.

– The STS for making decisions (Fig. 3(c)) blocks service execution as soon as a
branching point is reached (?a initi). It asks the user for a decision (!ask deci) and
when the user chooses one of the possible options (?dec1i . . . decni) it unblocks a
corresponding service action (!a1i . . .!ani).

Transformation of constraints.The composition constraints speak of both object states
and occurrences of object events. For every constraint we define a corresponding STS
that reflects the satisfiability of the requirement. Given a clausecl, we define a corre-
sponding STS that contains a single output actionecl representing the completion of the
clause. The diagrams corresponding to different clauses and their combinations, and to
the constraint diagram itself are represented in Fig. 4.

The STS forss(o) (Fig. 4(a)) is blocked until the object is not in the requiredstate:
the transition is guarded with the corresponding proposition. We denote the fact that
objecto is in states with eventes. The STS foree(o) (Fig. 4(b)) waits for any of the
service actions that contain the corresponding event in itseffects: for any transition
(s, a, ε, s′) of some ASTS such thatee(o) ∈ ε a corresponding transition is defined.
When it happens, a completion is reported. The STS forcl1 ∨ cl2 (Fig. 4(c)) waits for

!ecl

[s(o)]
(a) Σ(s(o))

!ecl a1 an…

(b) Σ(e(o))

?ecl1
?ecl2

!ecl

(c) Σ(cl1 ∨ cl2)

!ecl

?ecl1 ?ecl2

?ecl2
?ecl1

(d) Σ(cl1 ∧ cl2)

?eff+r

!ecl !ecl

ls l f

?eff -
r

?eff+r

?eff -
r ?epri?eri

try(r) catch(pri):ri

(e) Σ(try(r) catch(pri) : ri)

?ecl

?ecl1

?ecl
?ecl

?ecln

…

l0

l1 ln

(f) Σ(cl =⇒ (cl1 � . . . � cln))

Fig. 4. STS diagrams of composition constraints

any of the sub-clauses to complete, while the STS of thecl1 ∧ cl2 (Fig. 4(d)) waits for
both of them to be completed.

The transformation of thetry − catch construction (Fig. 4(e)) includes a try-STS
and one STS for eachcatch block. For eachcatch(pri) : ri we create an STS enforcing
that every failurepri is entailed with appropriate reactionri. try(r) is reported to be
completed when either the needed reactionr has been provided successfully (we de-
note this situation with eventeff+(r)) or some fail happened while trying to provider

(eventeff−(r)). Given a transitiont = (l0, {ei, li}) of objecto let finals(t) = {li},
events(t) = {ei}, to(t, e) = l′ if (e, l′) ∈ {ei, li} andreject(t) corresponds to a situ-
ation when permission for triggeringt is not granted (transitionrejecti in 3(a)), which
can be considered as transition failure. Theneff+(r) and eff−(r) can be defined for
different reactions as follows:

– eff+(ss(o)) = es,
eff−(ss(o)) = {e′ : (∃t ∈ T, e′′ ∈ E : to(t, e′′) = s) ∧ (e ∈ events(t))}

⋃

{reject(t) : t ∈ Tc ∧ s ∈ finals(t)};
– eff+(ee(o)) = ee(o),

eff−(ee(o)) = {e′ : (∃t ∈ T : e ∈ finals(t) ∧ e′ ∈ finals(t) ∧ e 6= e′)}
⋃

{reject(t) : t ∈ Tc ∧ e ∈ events(t)};
– eff+(cl1 ∨ cl2) = eff+(cl1) ∪ eff+(cl2), eff−(cl1 ∨ cl2) = eff−(cl1) × eff−(cl2);
– eff+(cl1 ∧ cl2) = eff+(cl1) × eff+(cl2), eff−(cl1 ∧ cl2) = eff−(cl1) ∪ eff−(cl2);
– eff+(try(r)) = eff+(r) ∪ eff−(r), eff−(try(r)) = ∅.

Intuitively, these definitions can be explained in the following way. The attempt to reach
a state fails when the composition tries to trigger one of thetransitions potentially lead-
ing to this state but fails. The attempt to cause some event fails when the composition
tries to trigger one of the transitions potentially causingthis event but fails. The attempt
to providetry(r) is always successful (any outcome of the attempt to trigger atransition

is affordable). It is important to notice thateff−(r) for controllable transitions includes
additional events that do not appear explicitly in an objectdiagram. These events cor-
respond to the situations where the user does not authorize the composite service to
execute a service (message?rejecti in Fig. 3(a)). Indeed, when the system, according
to requirements, is supposed totry to do something, but the user does not grant per-
mission to start necessary service execution, we can conclude that the composition has
actually tried to react but failed. In try-STS, statels is more preferable than statelf .
The corresponding goal with preferences will be:

ρt = (ls, lf) (1)

The STS that represents the evolution of a composition constraint is represented
in Fig. 4(f). The STS is initially in an accepting location (l0). If the premise of the
constraint takes place (ecl is reported), then it moves to a non-accepting state, from
which it may be satisfied by completing one of the clausesecl1 , . . . , ecln (moving to
locationsl1, . . . , ln respectively). The corresponding goal with preferences will have
the following form:

ρc = (l0, l1, . . . , ln). (2)

That is, we require that whenever the premise take place, thecomposition tries to move
the constraint STS to one of the accepting states, respecting the ordering of preferences.

Example 4.The constraintde(f) =⇒ try(de(h)) is modelled with the following STSs:

?edf

?etry

?edf

l0

l1

!edf

!flightDeleted

!flightCancelled

!hotelDeleted

!edh

!etry
!etry

ls l f
?edh

?edh

?rejectdh
?rejectdh

Although the hotel cancellation process is deterministic and cannot fail during the ex-
ecution, negative outcomeeff−(de(f)) for eventde(h) is not empty because, as we
discussed earlier, the user’s refusal to grant permission to execute some service (here
rejectdh) is also considered to be a failure.

6.1 Generating a Composite Service

The approach to automated service composition that we use here refers to the one
presented in [10]. In particular, having a set ofn services (W1, . . . , Wn), m objects
(O1, . . . , Om), k composition constraints (C1, . . . , Ck) and l user control elements
(U1, . . . , Ul) we transform them into STSs using the transformation rulespresented
above so that we get an STS for each part of the model (respectively ΣW1

. . .ΣWn
,

ΣO1
. . .ΣOm

, ΣC1
. . .ΣCk

andΣU1
. . .ΣUl

).

The planning domainΣ is a synchronous product of all the STSs of the compo-
nent services, objects, constraints and user control elements while composition goal is
constructed from the requirements defined according to the formulae (1) and (2):

Σ = ΣW1
‖ . . . ‖ΣWn

‖ ΣO1
‖ . . . ‖ΣOm

‖ ΣC1
‖ . . . ‖ΣCk

‖ ΣU1
‖ . . . ‖ΣUl

ρ =
∧

c

ρc ∧
∧

t

ρt.

Finally, we apply the approach of [10] to domainΣ and planning goalρ and gener-
ate a controllerΣc, which is such thatΣc . Σ |= ρ. The state transition systemΣc is
further translated into executable BPEL process, which implements a composite ser-
vice required. The back translation from STS into BPEL is quite simple: input actions
in Σc model an incoming message from a component service or from the user, while
output actions inΣc model an outcoming message to a component service or to the user.

Correctness of the approach.The proof of the correctness of the approach consists
in showing that all the executions of the composed service (controllerΣc) satisfy the
control flow requirements defined. Here we outline the key points of the proof. It is easy
to see that each executionπ of the composed service is also a run of the domain, i. e., if
π ∈ Π(Σc) thenπ ∈ (Σ). Under the requirement that all the executions of constraint
STS terminate in accepting states, we get that the executions of the domain satisfy the
composition requirements. As a consequence, the followingtheorem holds.

Theorem 1 (Correctness of the approach).Let:

– ΣW1
, . . . , ΣWn

be the STS encoding of component servicesW1, . . .Wn,
– ΣC1

, . . . , ΣCk
be the STS encoding of the constraintsC1, . . . Ck,

– ΣO1
, . . . , ΣOm

be the STS encoding of the domain objectsO1, . . . , Om, and
– ΣU1

, . . . , ΣUl
be the STS encoding of the user control elementsU1, . . . , Ul.

LetΣc be the controller for a particular composition problem

Σ = ΣW1
‖ . . . ‖ΣWn

‖ ΣO1
‖ . . . ‖ΣOm

‖ ΣC1
‖ . . . ‖ΣCk

‖ ΣU1
‖ . . . ‖ΣUl

.

Then the executionsΠ(Σc) satisfy the requirementsC1, . . . , Ck.

6.2 Experiments

We evaluate the potential of our approach by implementing the preliminary version of
the composition framework and testing it with a reference case study. Having service
specifications, object diagram descriptions, compositionrequirements and user control
elements the composition framework generates a planning domain specification with
the goals defined over this domain. After the planning algorithm is applied to the plan-
ning problem, the plan, which encodes the expected behaviour of the composite process,
is translated back into BPEL.

The composed process implements the composition requirements presented. The
process first waits for the request to create a flight ticket ora hotel reservation and

then transactional books both items processing fails when happened. After both object
are created, if the flight is delayed or cancelled, the appropriate reaction follows. The
interaction with the user is embedded into the composite process. In particular, at stable
point of the execution, where all the requirements are satisfied, the user is allowed to
request certain operations on objects (i.e., service executions). Whenever some event
happens, it is reported to the user. Finally, at branching points in service protocols, the
composition asks for the user’s decision and takes it into account later on.

As we shown in Fig. 1, the implementations of component services have fairly com-
plex structure with 14 BPEL activities (such as receive, response etc.) in the most com-
plex process. However, the composed executable process composed is much more com-
plicated, with around 100 BPEL activities, including thoseproviding interaction with
the user. The process features very complex structure with multiple branching points
and several loops. No doubt, its manual coding would take a significant amount of time.

The run of the experiment took less than 15 seconds on a Windows-machine with
dual core 2 GHz CPU and 4Gb of memory. Taking into account further possible opti-
mization, we consider these results to be very promising.

7 Related Work and Conclusions

In this paper, we have presented a novel approach to modelling and composing user-
centric services. Being based on the notion of domain objects, the approach features
an expressive language for control-flow requirements allowing for continuous orches-
tration of services using reactive rules and coordination constraints. The language is
detached from service implementations and expresses the requirements in terms of do-
main object evolution. The approach also provides the automatic derivation of the user
protocol, which enables the user to control the compositionexecution and to be aware of
the current execution progress. While some parts of the composition model have to be
specified manually, the model resolution, which is the most time and effort demanding
phase of the composition process, is completely automated using planning techniques.
The paper also provides some preliminary experimental results, which prove the poten-
tial of our approach.

The new model proposed in this paper is a further developmentof the model of
[4]. Our composition engine relies on the service composition via automated planning
presented in [10]. In this paper, we focused on control-flow composition requirements
and did not consider data-flow composition requirements. Weplan to integrate data-
flow requirements as future work, exploiting the approach described in [8], which is
also based on [10] and is hence compatible with our approach.

There is a wide literature on service composition. Most of the proposed approaches,
however, model services as atomic entities (e.g., [1], [12]and [13]), while we con-
sider services to be non-deterministic, stateful and asynchronous. In particular, while
there are some other user-centric services composition approaches (e.g., [6], [9], [5]),
they give a very different meaning to “user-centricity” than the one we used in this pa-
per, and they address problems that are quite different fromours. The new language for
control-flow requirements and the ability to derive complexuser protocol also make our
approach different from [10], [4], [3] and [7]. The representation of services by more

abstract “object” entities is close to WS-Conversation language [2]. To some extent,
our composition model is closer to the concept of mash-ups [15]. However, mash-ups
are usually exploited for integration of data and of information services, and the exten-
sion to the full-fledged services considered here is not trivial. The mash-up approach
described in [14] is more related to ours. There, mash-up techniques are exploited to
guarantee that the coordination is maintained among the status of a set of components
to be integrated, and that changes in one of the components isreflected in the others. A
key difference is that in [14] the integration and coordination is done at the presentation
layer (i.e., user interface), while our approach addressesthe problem at the application
layer. A better comparison, and possible integration, of the two approaches is part of
our plan to extend out composition approach to cover the presentation layer.

Acknowledgement.The research leading to these results has received funding from the European
Community Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

References

1. R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor. Constraint Driven Web Service Com-
position in METEOR-S. InProc. of SCC’04, pages 23–30, 2004.

2. A. Banerji, C. Bartolini, and D. Beringer. Web Services Conversation Language (WSCL)
1.0. http://www.w3.org/TR/wscl10/, 2002.

3. D. Berardi, D. Calvanese, G. D. Giacomo, and M. Mecella. Composition of Services with
Nondeterministic Observable Behaviour. InProc. ICSOC’05, 2005.

4. P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore, H. Raik, and M. Wagner. Control flow
requirements for automated service composition. InICWS, pages 17–24, 2009.

5. M. Chang, J. He, W. Tsai, B. Xiao, and Y. Chen. Ucsoa: User-centric service-oriented archi-
tecture.E-Business Engineering, IEEE International Conference on, 0:248–255, 2006.

6. A. Corradi, E. Lodolo, S. Monti, and S. Pasini. A user-centric composition model for the
internet of services. InISCC, pages 110–117, 2008.

7. R. Hull. Web Services Composition: A Story of Models, Automata, and Logics. InProc. of
ICWS’05, 2005.

8. A. Marconi, M. Pistore, and P. Traverso. Specifying Data-Flow Requirements for the Auto-
mated Composition of Web Services. InProc. SEFM’06, 2006.

9. T. Nestler, L. Dannecker, and A. Pursche. User-centric composition of service front-
ends at the presentation layer. In1st International Workshop on User-generated Services
(UGS2009), 2009.

10. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services by Planning
in Asynchronous Domains. InProc. ICAPS’05, 2005.

11. D. Shaparau, M. Pistore, and P. Traverso. Contingent planning with goal preferences. In
Proc. AAAI’06, 2006.

12. S. Thakkar, J.-L. Ambite, and C. Knoblock. A data integration approach to automatically
composing and optimizing web services. InProceedings of 2004 ICAPS Workshop on Plan-
ning and Scheduling for Web and Grid Services, Whistler, BC, Canada, 2004.

13. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services
Composition using SHOP2. InProc. ISWC’03, 2003.

14. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera. A framework for
rapid integration of presentation components. InProc. WWW’07, 2007.

15. N. Zang, M. B. Rosson, and V. Nasser. Mashups: who? what? why? InProc. CHI’08, 2008.

