
Grant Agreement No 215483

Title: Validated set of adaptation and monitoring principles, techniques and method-
ologies considering context and HCI

Authors: CITY, FBK, POLIMI, SZTAKI, USTUTT, TUW, TILBURG, UNIDUE, UCBL

Editor: Gabor Kecskemeti (SZTAKI)

Reviewers: Harald Psaier (TUW)
Claudia Di Napoli (CNR)
Annapaola Marconi (FBK)
Andreas Metzger (UNIDUE)

Identifier: Deliverable # CD-JRA-1.2.7

Type: Deliverable

Version: 1.0

Date: February 29, 2012

Status: Final

Class: External

Management summary

This deliverable aims to present the research progress of the project partners in the project’s
last year. First, this deliverable puts special emphasis on the further refinements of the compre-
hensive adaptation and monitoring scenarios introduced in CD-JRA-1.2.5. Next, the research
summarized in this document was focusing on the unexpected situations that could occur in
cross-layer adaptation and monitoring techniques while they are maintaining context indepen-
dent and HCI aware execution of large scale and heavily distributed service-based applications.
The research results are presented through systematically listing and detailing the related re-
search papers of the project partners. Finally, the deliverable offers an outlook on the future
research directions in the field of adaptation and monitoring frameworks.

Copyright ©2012 by the S-Cube consortium – All rights reserved.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement no 215483 (S-Cube).

Ref. Ares(2012)319394 - 19/03/2012

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero – The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:
http://www.s-cube-network.eu/results/deliverables/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,
vibrant research community which will enable Europe to lead the software-services revolution, helping
shape the software-service based Internet which is the backbone of our future interactive society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific excel-
lence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by meeting
the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from diverse
research areas and by synthesizing and integrating diversified knowledge, thereby establishing a
long-lasting foundation for steering research and for achieving innovation at the highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and in-
dustry thereby creating a common culture that will have a profound impact on the future of the
field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the in-
tegration of research communities and the establishment of a common software services research
culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial com-
petitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based In-
ternet of the future and will accelerate economic growth and improve the living conditions of
European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European com-
petitiveness. S-Cube will provide service engineering methodologies which facilitate the development,
deployment and adjustment of sophisticated hybrid service-based systems that cannot be addressed with
todays limited software engineering approaches. S-Cube will further introduce an advanced training
program for researchers and practitioners. Finally, S-Cube intends to bring strategic added value to Eu-
ropean industry by using industry best-practice models and by implementing research results into pilot
business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

External Final Version 1.0, Dated February 29, 2012 iii

Foreword

This deliverable, CD-JRA-1.2.7 “Validated set of adaptation and monitoring principles, techniques and
methodologies considering context and HCI” aims to address the following goals:

• to continue, refine and consolidate the monitoring and adaptation scenarios defined in CD-JRA-
1.2.5, so they could encompass a contextual changes and HCI awareness while also reveal oppor-
tunities for handling unexpected situations in SBAs.

• through the summaries of the joint papers, present the research results and experiences on the
realization and experimentation efforts while concretizing the previously defined scenarios.

• to identify future research directions derived from the research experiences in the current research
domains of the different S-Cube partners that lead us towards the vision of the project.

iv

Contents

1 Introduction 3
1.1 Relations with the Integrated Research Framework . 4

1.1.1 Contribution to WP Challenges . 4
1.1.2 Relations with other work-packages . 4

1.2 Deliverable Structure . 5

2 Individual contributions 6
2.1 Template for presenting the results . 6
2.2 Summary of the individual contributions to the integrated cross-layer adaptation and

monitoring principles . 8
2.2.1 Identifying, Modifying, Creating, and Removing Monitor Rules for Service Ori-

ented Computing . 8
2.2.2 CLAM (Cross-layer Adaptation manager) . 9
2.2.3 Adaptation of Service-based Business Processes by Context-Aware Replanning . 10
2.2.4 Multi-layer Monitoring and Adaptation . 12
2.2.5 Facilitating self-adaptable Inter-Cloud management 13
2.2.6 Web Service Interaction Adaptation using Complex Event Processing Patterns . 15
2.2.7 Design for Self-adaptation in Service-oriented Systems in the Cloud 17
2.2.8 A Classification of BPEL Extensions . 18
2.2.9 A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules 20

3 Future Research challenges and Conclusions 22
3.1 Future Research Challenges . 22

3.1.1 Challenge 1. Approaches for retrieving and analyzing context information to
support individuals in performing the right adaptation decisions in user-centric
systems. 22

3.1.2 Challenge 2. Decentralized models and techniques to monitor and predict service
quality issues. 22

3.1.3 Challenge 3: Techniques for combining and cross-correlating observations, pre-
dictions and events from different sources and provided by different techniques. . 23

3.1.4 Challenge 4: Assurances for adaptation. 23
3.2 Conclusions . 23

A Identifying, Modifying, Creating, and Removing Monitor Rules for Service Oriented Com-
puting 26

B CLAM (Cross-layer Adaptation manager) 34

C Adaptation of Service-based Business Processes by Context-Aware Replanning 43

D Multi-layered Monitoring and Adaptation 52

1

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

E Facilitating self-adaptable Inter-Cloud management 68

F Adaptation of Web Service Interactions using Complex Event Processing Patternst 77

G A Classification of BPEL Extensions 86

H A Penalty-based Approach for QoS Dissatisfaction using Fuzzy Rules 113

I Design for Self-adaptation in Service-oriented Systems in the Cloud 122

External Final Version 1.0, Dated February 29, 2012 2

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Chapter 1

Introduction

In highly dynamic service environments, where the service availability, quality and reliability is depen-
dent on several application-independent factors, the behavior and user experience about Service-Based
Applications (SBAs) are highly dependent on the monitoring and adaptation techniques utilized during
application execution. The different layers (e.g. BPM, SCC) of the SBAs however can be monitored
and adapted with different approaches. These layers earlier were individually addressed, and with our
previous deliverable we have shown several adaptation and monitoring scenarios that address the locality
issues of the adaptation strategies (e.g., adaptation on the SCC layer could break BPM layer behavior of
the SBA). Therefore the work package has explored different and orthogonal directions of integration of
adaptation methodologies. These methodologies were first introduced in CD-JRA-1.2.3, then integrated
in CD-JRA-1.2.4, finally adapted for a set of integration show cases in CD-JRA-1.2.5. In alignment with
T-JRA-1.2.2 (“Integrated Adaptation Principles, Techniques and Methodologies”), the current deliver-
able validates, consolidates and, if needed, refines the show case scenarios with jointly written research
papers and it provides an overview of the future research directions that lead towards sustainable research
among the work package members even after the end of the project.

In several service-based applications, e.g., in the telecommunications domains, services need to in-
teract heavily with humans, and it is important to adapt the interactions to different kinds of users and
to different situations. This kind of adaptation should take into account different types of users (from
developers to end-users), different levels of expertise, as well as different contexts of usage (e.g., con-
nectivity, available devices, etc.). The contributed research papers in the deliverable provide the founda-
tions for cross-layer, context-aware and user-driven monitoring, i.e., theories, principles, methodologies,
and techniques that use contextual information and information about the user of monitoring results to
drive monitoring activities. The deliverable – completing research task T-JRA-1.2.3 (“Comprehensive,
Context-Aware Monitoring”) – also reveals how the project members adapted the show case scenarios in
order to handle the previously mentioned dynamically changing contexts and HCI environments.

This deliverable also aims at revealing the findings of the project partners about the principles, tech-
niques and methodologies for proactive adaptation, i.e., to timely anticipate the need for changes across
different functional layers. This deliverable reviews those joint scientific efforts that discuss the ho-
mogenization of proactive adaptation mechanisms in the different service-based application layers that
experience different degrees of autonomy. The proactive adaptation capabilities discussed in the con-
tributed research papers are also considering techniques to detect and handle unexpected situations, con-
text awareness and user-driven adaptation taking into account different context factors, including those
related to human errors or quality aspects of the operational environment of the service-based application
(a strongly related research issue with work package JRA-1.3).

External Final Version 1.0, Dated February 29, 2012 3

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

1.1 Relations with the Integrated Research Framework

1.1.1 Contribution to WP Challenges

The scope and the results of the deliverable directly contribute to the research challenges of the WP-
JRA-1.2 and the S-Cube Integrated Research Framework. Specifically, this deliverable addresses the
following challenges:

Comprehensive and integrated adaptation and monitoring principles, techniques, and methodologies.
The research results focused on the scenario “Quality-driven Multilayer SBA Monitoring and
Adaptation” are related to this challenge in sections 2.2.2, 2.2.4, 2.2.5, 2.2.7 and 2.2.9.

Proactive Adaptation and Predictive Monitoring. The scenario titled “Assumption-based Proactive
Monitoring and Adaptation” focuses on this challenge, and it is detailed in several novel research
papers that are detailed in sections 2.2.6 and 2.2.9.

Context- and HCI-aware SBA monitoring and adaptation. Those newly introduced research papers
that are related to the scenario titled “Context-based Adaptation and Monitoring” address this
challenge. See sections 2.2.1, 2.2.3 and 2.2.7.

The scenarios referred in the challenges listing were defined in CD-JRA-1.2.5 and are shortly summa-
rized in Section 2.1.

1.1.2 Relations with other work-packages

As with previous research results, the crosscutting nature of the topic of the work package is represented
in several joint research opportunities that were exploited during the last year of the project. The deliver-
able in several cases presents joint research papers that were collaboratively produced among the various
work packages of the project. In the following, we list the most prominent connections of the research
results presented in this deliverable:

Connections with JRA-1.1 Work package JRA-1.1 is focusing on the software engineering aspects of
SBAs. The HCI and context aware automated adaptation of the monitoring system represents a
new software engineering challenge that was collaboratively investigated between the JRA-1.1
and JRA-1.2. These collaborative efforts are reflected in section 2.2.1. The analysis and then the
classification of the various BPEL extensions in section 2.2.8 reveals the effects on methodologies
considering adaptation-aware business process design.

Connections with JRA-1.3. This work package aims at the quality characteristics of the SBAs. First,
in section 2.2.5, we present how service quality aware autonomous behavior of federated cloud
infrastructures supporting service-based applications could reduce SLA violations. Later on, in
section 2.2.9, we propose the use of fuzzy rules in the field of proactive adaptation and monitoring
in order to predict and reduce QoS dissatisfaction in service-based applications.

Connections with JRA-2.1. This work package targets the issues that occur in the Business Processes
Layer during the execution of service based applications. In sections 2.2.2, 2.2.4 we investigate
various aspects of the cross layer behavior of monitoring and adaptation frameworks. These works
present A&M approaches that not only allow the BPM layer to get notifications from layers below,
but we also present methodologies and techniques that interactively involve the BPM layer in
selecting and enacting efficient adaptation strategies meeting all the requirements of the involved
service-based application layers.

Connections with JRA-2.2. The work package JRA-2.2 circles around the research questions of ser-
vice compositions and coordination. In this deliverable, several contributed research papers ad-
dress context aware adaptation of service compositions, thus they were developed with strong
collaboration with JRA-2.2 (e.g. see sections 2.2.1 or 2.2.3). In section 2.2.7, we propose service
compositions deployed and dynamically managed over the Amazon EC2 cloud infrastructure, this
work has involved also JRA-2.3 along with JRA-2.2.

External Final Version 1.0, Dated February 29, 2012 4

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Connections with JRA-2.3. Self-* service infrastructures and various discovery mechanisms are the
main concerns of this work package. Thus, the topic of utilizing service-based applications on
infrastructure as a service cloud computing systems has been discussed in two sections: 2.2.5
and 2.2.7. Building on top of these solutions the CLAM (cross layer adaptation and monitoring)
framework is proposed (see sections 2.2.2 and 2.2.4) allowing the business and composition lay-
ers of service-based applications to consider infrastructure level events and adaptation options in
unexpected situations.

1.2 Deliverable Structure

This document aims to present our achievements regarding the validated set of adaptation and monitoring
principles, techniques and methodologies considering context and HCI. This deliverable is structured as
follows:

• First, chapter 2 circles around the scientific papers we have written in collaboration aiming at the
deliverable’s target objectives. These papers are attached to the deliverable, and therefore this
deliverable only provides a structured view on them. This chapter is subdivided into sections as
follows:

– Afterwards, in section 2.1, we define the way the research results of the S-Cube partners
will be presented. Throughout the section, we shortly summarize the relevant content of the
previous deliverables as a result, reading the current deliverable will not need an extensive
knowledge about past results.

– Next, in section 2.2, we provide a listing of the various research papers contributed to this
deliverable. This listing not only provides the tables describing the individual contibutions,
but it also provides brief descriptions of the research ideas that initiate the integration of
monitoring and adaptation principles across service-based application layers. We remark that
the results presented in this chapter are based on the materials presented in a set of papers
that are referred from and attached to the current deliverable only.

• Then, in chapter 3, concludes the deliverable and the last year of work of the S-Cube project in the
scope of adaptation and monitoring approaches.

• Finally, in the Appendix, the contributed papers are attached to the document and reported as
separate chapters.

External Final Version 1.0, Dated February 29, 2012 5

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Chapter 2

Individual contributions

The goal of this chapter is to provide an overall view of the research carried out during the last year
of the work package. The chapter presents the results of the work package through the latest research
papers that present the improved and consolidated validation results and methodologies even considering
unexpected situations. The chapter first provides a schematic overview about how each research paper
will be presented (see section 2.1). Then, based on this schema, in section 2.2 we will present and align
the novel approaches developed by the S-Cube partners that aim at addressing and supporting the context
and HCI aware integrated cross-layer adaptation and monitoring.

2.1 Template for presenting the results

In order to provide a synthetic overview of the contributions of the partners and to relate them to the
cross-layer adaptation & monitoring principles, techniques, scenarios and methodologies presented in
CD-JRA-1.2.5, a synthetic template is proposed (Table 2.2). Through the template we aim at presenting
the research contributions of the various S-Cube members to the overall research results and future
research directions of the project in relation with work package JRA-1.2.

For each contributed research paper, the template in Table 2.2 is filled out considering four major
areas.

• First, it describes the paper in general.
• Then, it puts the paper in context of the research executed in the work package.
• Afterwards, it dives into the details of the contributed research paper.
• Finally, the template table is followed by the extended abstract of the paper that describes the

concepts, the research questions and highlights the proposed solutions.

In the general description, first, the title and the authors of the article is specified. The authors field
not only lists the researchers contributing to the particular paper but it also highlights if the paper was
jointly developed by two or more project members. Next, the authors are followed by the type and a short
description of the research presented in the filled in template. The type can indicate if a new methodology
is introduced for a particular adaptation and monitoring related domain. Also, the type can reveal if a new
model is proposed to describe the A&M behavior inside service-based applications. Then, the research
paper could also contribute with a new technique applicable in cross-layer A&M that is also highlighted
as a new type. In the type field, the template could also highlight the inclusion of experimental evaluation
in the described research paper. Finally, the classification type of contribution reveals that the particular
research carried out has provided a systematic evaluation and provided a taxonomic discussion of the
research field.

The work package related contextual description in the template starts with the identification of the
targeted integration scenario. The integration scenarios were introduced in the previous deliverable
of this work package (titled “CD-JRA-1.2.5 – Comprehensive, integrated adaptation and monitoring

External Final Version 1.0, Dated February 29, 2012 6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

principles, techniques and methodologies across functional SBA layers considering context and HCI”)
to provide a common reference for the adaptation and monitoring problem in hand, providing a common
basis for the different research works developed within the project. In the following we provide a short
overview of the three identified scenarios:

Quality-driven Multilayer SBA Monitoring and Adaptation. The SBA reference model in this sce-
nario primarily targets applications implemented as long-running business processes and work-
flows. The primary adaptation and monitoring problem in this scenario considers the quality re-
quirements expressed as KPI, PPM, SLA, and other metrics of the application, across its functional
layers. The scenario exploits data mining techniques to perform the diagnosis of the problem that
leads to the violation of the high-level quality requirements. Regarding the individual quality prop-
erties at different layers, the scenario associates different adaptation actions (also in that layer) that
are expected to improve the specific quality factor and, therefore, contribute to an overall improve-
ment in quality.

Assumption-based Proactive Monitoring and Adaptation. In this scenario we consider business pro-
cesses that are realized on top of executable service compositions implemented in BPEL. The idea
that distinguishes this approach in this integrated scenario is based on the use of assumptions.
This scenario uses assumptions to relate the continuously monitored data to the SBA require-
ments. The scope of the scenario is to be able to anticipate the needs for adaptation and to provide
the corresponding monitoring and adaptation support in order to enable proactive adaptation of
service-based business processes in case of failures and requirement violations.

Context-based Adaptation and Monitoring. In this scenario we primarily focus on SBAs, in which
the context of those SBA plays the key role in the various activities across the SBA life-cycle.

Title the title of the research work
Authors Authors of the contribution
Type Type of contribution (Methodology / Model / Technique / Classification / Exper-

imental Evaluation / ..)
Short description Brief description of the contribution with respect to the research problem pre-

sented in the integration scenario
Targeted integration sce-
nario

One or more scenarios from the previous deliverable, namely: (i) Quality-driven
Multilayer SBA Monitoring and Adaptation, (ii) Assumption-based Proactive
Monitoring and Adaptation, (iii) Context-based Adaptation and Monitoring.

Contribution to the adap-
tation problem

Specific adaptation problem addressed by the approach (if any)

Contribution to the mon-
itoring problem

Specific monitoring problem addressed by the approach (if any)

Integrated SBA Layers
for Monitoring

Any combination of monitoring across BPM, SCC, SI layers that the research
work has provided a consolidated approach for.

Integrated SBA layers for
adaptation

Any combination of adaptation solutions through BPM, SCC, SI layers that the
contributed article has aimed at.

Cross-layer mechanisms Mechanisms applied for interaction between SBA layers involved
Unexpected situations
handled

List of unexpected situations identified and handled by the approach

Architecture elements Specify and refine the relevant components of the architecture
Requirements/constraints The important assumptions and limitations of the current approach. These might

be referred in the future research directions (e.g. possible ways to reduce limita-
tions)

Refined SBA Life Cycle
activities

Which activities of the SBA lifecycle were affected and updated by the current
research paper

Future research direc-
tions

List the the remaining research issues that needs to be addressed in the topic of
the actual scientific result

Table 2.2: Contribution overview template

External Final Version 1.0, Dated February 29, 2012 7

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

The distinguishing factor of the SBAs participating in this scenario refers to the fact that these
SBAs operate in continuously changing environments. This integrated scenario relies on the use
of templates that characterize the monitoring and adaptation activities in general settings, which
are then instantiated in different way for the specific contexts.

The rest of the WP related contextual description is focused on the particular paper’s relations and effects
on the monitoring and adaptation problem: (i) Contribution to the adaptation problem, (ii) Contribution
to the monitoring problem, (iii) Integrated SBA Layers for Monitoring, (iv) Integrated SBA layers for
adaptation, (v) Cross-layer mechanisms.

Finally, the last four rows of the template detail the paper and underline its strongest contributions
to the work package. Therefore, for each paper, we have described the unexpected situations that the
research identified and proposed solutions for. In the following row, the template lists the architecture
elements to provide insights to architectures that could handle the previously identified problems and
unexpected behavior. Afterwards, we have listed those requirements and/or constraints that need to
be met in order to allow the correct operation of the proposed approach. Next, the table summarizes the
SBA life-cycle elements and activities (first defined by the work package JRA-1.1 in [3]) that were refined
while carrying out the research described in the paper. In the last row, for every contributed paper, the
table summarizes the future research directions that S-Cube researchers identified for sustainable and
continued research in the area of monitoring and adaptation of service-based applications.

2.2 Summary of the individual contributions to the integrated cross-layer
adaptation and monitoring principles

2.2.1 Identifying, Modifying, Creating, and Removing Monitor Rules for Service Ori-
ented Computing

Title Identifying, Modifying, Creating, and Removing Monitor Rules for Service Ori-
ented Computing [4]

Authors Ricardo Contreras (CITY), Andrea Zisman (CITY)
Type Technique
Short description Supports the adaptation of the monitor activity due to changes in the context of

the user of the SBA (context HCI-aware)
Targeted integration sce-
nario

Context-based Adaptation and Monitoring.

Contribution to the adap-
tation problem

The technique can be combined with techniques/approaches capable of dealing
with SBA adaptation

Contribution to the mon-
itoring problem

Automatic specification and deployment of monitor rules. This is performed
based on the user context and the specification of the SBA

Integrated SBA Layers
for Monitoring

Focus on SCC

Integrated SBA layers for
adaptation

Focus on SCC

Cross-layer mechanisms -
Unexpected situations
handled

Optimisation: monitor rules repository kept to a minimum size

Architecture elements Rule Adaptor: identifies, creates, modifies and removes monitor rules.
Path Identifier: retrieves the part of the specification related to a user context

type.
Rule Verifier: whether a rule is valid for a SBA or not. Monitor: uses rules to

verify the SBA

External Final Version 1.0, Dated February 29, 2012 8

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Requirements/constraints (i) Uses event calculus (EC) for the specification of rules. (ii) Use of pat-
terns (also specified in EC) for the different user context types. (iii) Assumes
the existence of user context annotations to retrieve the part of the specification
related to a particular context.

Refined SBA Life Cycle
activities

Operation and Management: monitoring mechanisms for the identification of
problems.

Requirements Engineering and Design: context types present in the SBA
(annotations)

Future research direc-
tions

To investigate new techniques dealing with the (semi-) automatic adaptation of
the monitor as a reaction to changes/adaptation in the application.

Extended abstract

Monitoring of service-based systems is considered an important activity to support service-oriented
computing. Monitoring can be used to verify the behaviour of a service-based system, and the qual-
ity and contextual aspects of the services participating in the system. Existing approaches for monitoring
service-based systems assume that monitor rules are pre-defined and known in advance, which is not
always the case. We have created a pattern-based HCI-aware monitor adaptation framework to support
identification, modification, creation, and removal of monitor rules. In the framework, changes in the
monitor rules are based on users interaction with a service-based system and different types of user
context.

2.2.2 CLAM (Cross-layer Adaptation manager)

Title CLAM (Cross-layer Adaptation manager) [5]
Authors Annapaola Marconi (FBK), Marco Pistore (FBK), Asli Zengin (FBK), Luciano

Baresi (Polimi)
Type Methodology / Model / Technique
Short description CLAM (i) analyzes the effects and consequences of an adaptation trigger for

the whole service-based system, (ii) addresses the negative influences on the
system through a gradual construction of adaptation strategies.

Targeted integration sce-
nario

Quality-driven Multilayer SBA Monitoring and Adaptation

Contribution to the adap-
tation problem

Handling of cross-layer adaptations

Contribution to the mon-
itoring problem

–

Integrated SBA Layers
for Monitoring

–

Integrated SBA layers for
adaptation

BPM, SCC, SI

Cross-layer mechanisms State-of-the-art analysis and adaptation techniques are integrated at the CLAM
platform. CLAM provides a cross-layer managing mechanism to coordinate
these techniques.

Unexpected situations
handled

Searching for existing approaches and finding the running adaptation tools is not
trivial. We try to handle this issue by searching through what S-Cube partners
can provide and by directly contacting the authors / developers of the tools.

External Final Version 1.0, Dated February 29, 2012 9

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Architecture elements Rule engine, model updater, tree constructor, ranker:
• The core part of CLAM is the rule engine. It reasons on its predefined

rules and contacts the appropriate tool at each step of its analysis.
• The model updater is responsible for creating and keeping the updated

SBS configurations each time an adaptation is proposed in the process.
• The tree constructor keeps the proposed adaptation alternatives in a tree-

form structure where each tree branch corresponds to an alternative adap-
tation strategy.

• The ranker gets the complete tree and select the best path based on some
pre-defined selection criteria.

Requirements/constraints (i) High level cross-layer dependency model of the SBS should be given as
input to the CLAM. (ii) Each time a new tool is plugged in the platform, cross-
layer rules should be updated. (iii) The performance of CLAM depends on the
integrated tools. The more tools CLAM has, the more comprehensive will be
the analysis, but it will take more time as well.

Refined SBA Life Cycle
activities

All parts of the SBA life cycle activities

Future research direc-
tions

In the current implementation we showed the CLAM approach on a case study.
Future research will comprise the enhancement and evaluation of the approach
through the trial of various case studies from different application scenarios. The
use of CLAM in different adaptation cases and in different domains and possibly
with different sets of tools will demonstrate the applicability, extensibility and
flexibility of the approach.

Extended abstract

Adaptation is a cross- and multi-layer problem, and at each layer it could target different, possibly con-
flicting, system aspects. For example, when reorganizing the composition, one could privilege the ap-
plication’s price, its speed, or the compliance with some external regulations. Many existing solutions
have addressed adaptation in a “local” way by only considering one system aspect at one layer; in con-
trast CLAM fosters a comprehensive approach able to address different layers and aspects concurrently,
reason on the dependencies and consequences among them, and identify global solutions. These so-
lutions must harmonize layers and system aspects, and provide an integrated adaptation plan based on
local activities. CLAM relies on a comprehensive high-level model of the application and of the layers
behind it. Each model element is associated with a set of analyzers to understand the problem, solvers,
to identify possible solutions, and enactors, to apply them on the element. The coordinated operation
of analyzers, solvers, and enactors is governed by predefined rules that identify the dependencies, and
consequences, between the elements of the model and run the different tools. For each adaptation need,
CLAM produces a tree of alternative adaptations, identifies the most convenient one, and applies it.

2.2.3 Adaptation of Service-based Business Processes by Context-Aware Replanning

Title Adaptation of Service-based Business Processes by Context-Aware Replanning
[6]

Authors Antonio Bucchiarone (FBK), Raman Kazhamiakin (SayService), Marco Pistore
(FBK), Heorhi Raik (FBK)

Type Methodology / Technique
Short description Adaptation of business processes to exogenous context changes and negative

operation outcomes which are not handled by the process by the run-time and
context-aware planning of the adaptation activities

Targeted integration sce-
nario

Context-based Adaptation and Monitoring

External Final Version 1.0, Dated February 29, 2012 10

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Contribution to the adap-
tation problem

Run-time adaptation of business processes to exogenous context changes and
negative operation outcomes unhandled by the process

Contribution to the mon-
itoring problem

–

Integrated SBA Layers
for Monitoring

–

Integrated SBA layers for
adaptation

SCC

Cross-layer mechanisms –
Unexpected situations
handled

exogenous context changes and negative operation outcomes that are not handled
by the process

Architecture elements The architecture contains four elements communicating to each other:
1. Execution engine coordinates the work of other elements and tracks the

execution of the process;
2. Process engine provides the execution of process activities;
3. Context manager tracks exogenous context changes;
4. Adaptor, given an adaptation problem, uses a planner to derive an adap-

tation procedure;

Requirements/constraints (i) Only one adaptation strategy is used (local adaptation that tries to change the
problem locally, so that the process can be executed from the point where it has
failed); (ii) The approach is supposed to be used as short-term adaptation, i.e.
instance based adaptation versus process model evolution; (iii) The adaptation
process optimality criterion is the just minimal number of execution steps;

Refined SBA Life Cycle
activities

–

Future research direc-
tions

The approach can benefit from using different adaptation strategies (for example,
jump forward or roll back and compensate strategies). The approach can be
successfully used to refine abstract activities at run time. In this case some most
volatile activities remain abstract and are refined only immediately before the
execution, taking into account the current context. The adaptation history can be
successfully used to bring corresponding changes to the process model (process
evolution). While deriving the adaptation activities, different optimality criteria
can be used.

Extended abstract

Service-based business processes are typically used by organizations to achieve business goals through
the coordinated execution of a set of activities implemented as services and service compositions. Since
they are executed in dynamic, open and non-deterministic environments, business processes often need
to be adapted to exogenous context changes and execution problems. In this paper we provide an adap-
tation approach that can automatically adapt business processes to run-time context changes that impede
achievement of a business goal. We define a formal framework that adopts planning techniques to au-
tomatically derive necessary adaptation activities on demand. The adaptation consists in identifying re-
covery activities that guarantee that the execution of a business process can be successfully resumed and,
as a consequence, the business goals are achieved. The solution proposed is evaluated on a real-world

External Final Version 1.0, Dated February 29, 2012 11

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

scenario from the logistics domain.

2.2.4 Multi-layer Monitoring and Adaptation

Title Multi-layer Monitoring and Adaptation [7]
Authors Sam Gunea (Polimi), Gabor Kecskemeti (SZTAKI), Annapaola Marconi (FBK),

and Branimir Wetzstein (USTUTT)
Type Methodology / Technique
Short description We propose a framework that integrates layer specific monitoring and adaptation

techniques, and enables multi-layered control loops in service-based systems.
The proposed approach is evaluated on a medical imaging procedure for Com-
puted Tomography (CT) Scans, an e- Health scenario characterized by strong
dependencies between the software layer and infrastructural resources.

Targeted integration sce-
nario

Quality-driven Multilayer SBA Monitoring and Adaptation

Contribution to the adap-
tation problem

Multi-layer adaptation of service based systems: identification and enactment of
holistic adaptation strategies coordinating layer-specific adaptation mechanisms.

Contribution to the mon-
itoring problem

Multi-layer monitoring and analysis of service-based systems: correlation (as
general and domain-specific metrics) of monitoring events captured by layer-
specific sensors, and holistic identification of the adaptation need through the
analysis of the aggregated data.

Integrated SBA Layers
for Monitoring

BPM, SCC, SI

Integrated SBA layers for
adaptation

BPM, SCC, SI

Cross-layer mechanisms Cross-layer correlation of monitoring events, cross-layer analysis of adaptation
needs, cross-layer identification of adaptation strategies, cross-layer adaptation
enactment.

Unexpected situations
handled

Integration of heterogeneous, layer-specific monitoring and adaptation tech-
niques.

Architecture elements The main architectural elements of the framework are:
Monitoring and Correlation Component: obtains low-level data/events from

the process or from the context of execution using Dynamo, or from the
infrastructure using Laysi; aggregates the monitoring events using the
event correlation capabilities provided by EcoWare.

Adaptation Needs Analysis Component: the Influential Factor Analysis com-
ponent identifies the relations between the set of metrics (potential influ-
ential factors) and the KPI category based on historical process instances;
the Adaptation Needs Analysis component uses this information to iden-
tify the adaptation needs, i.e., what is to be adapted in order to improve
the KPI.

Cross Layer Adaptation Manager Component: identifies the application
components that are affected by the adaptation actions, and computes an
adaptation strategy that properly coordinates the layer-specific adaptation
capabilities.

Adaptation Enactment component: enacts the adaptation strategy properly
coordinating software adaptations through DyBPEL, and infrastructure
adaptations through Laysi.

Requirements/constraints Business layer not fully covered (lack of monitoring/adaptation capabilities to
be integrated in the framework).

Refined SBA Life Cycle
activities

Operation & Management, Identify adaptation need, Identify adaptation strat-
egy, Enact adaptation.

External Final Version 1.0, Dated February 29, 2012 12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Future research direc-
tions

We will continue to evaluate the approach through new application scenarios,
and through the addition of new adaptation capabilities and adaptation enacting
techniques. We will also integrate additional kinds of layers, such as platforms,
typically seen in cloud computing setups, and business layers. This will also
require the development of new specialized monitors and adaptations. Finally,
we will study the feasibility of managing different kinds of KPI constraints.

Extended abstract

We propose a framework that integrates software and infrastructure specific monitoring and adaptation
techniques developed within S-Cube, enabling multi-layered control loops in service-based systems. All
the steps in the control loop acknowledge the multi-faceted nature of the system, ensuring that we always
reason holistically, and adapt the system in a coordinated fashion. In our prototype we have focused on
the monitoring and adaptation of BPEL processes that are deployed onto a dynamic infrastructure.

Building upon our past experiences we have integrated process and infrastructure level monitoring
with a correlation technique that makes use of complex event processing. The correlated data, combined
with machine-learning techniques, allow us to pinpoint where the problems lie in the multi-layered sys-
tem, and where it would be more convenient to adapt. We then build a complex adaptation strategy that
may involve the software and/or the infrastructure layer, and enact it through appropriate effectors.

In the Monitoring and Correlation step, sensors deployed throughout the system capture run-time data
about its software and infrastructural elements. The collected data are then aggregated and manipulated
to produce higher-level correlated data under the form of general and domain-specific metrics. The main
goal is to reveal correlations between what is being observed at the software and at the infrastructure
layer to enable global system reasoning.

In the Analysis of Adaptation Needs step, the framework uses the correlated data to identify anoma-
lous situations, and to pinpoint and formalize where it needs to adapt. It may be sufficient to adapt at the
software or at the infrastructure layer, or we may have to adapt at both.

In the Identification of Multi-layer Adaptation Strategies step, the framework is aware of the adap-
tation capabilities that exist within the system. It uses this knowledge to define a multi-layer adaptation
strategy as a set of software and/or infrastructure adaptation actions to enact. A strategy determines both
the order of these actions and the data they need to exchange to accomplish their goals.

In the Adaptation Enactment step, different adaptation engines, both at the software and the infras-
tructure layer, enact their corresponding parts of the multi-layer strategy. Each engine typically contains
a number of specific modules targeting different atomic adaptation capabilities.

The proposed approach is evaluated on a medical imaging procedure for Computed Tomography
(CT) Scans, an e-Health scenario characterized by strong dependencies between the software layer and
infrastructural resources.

2.2.5 Facilitating self-adaptable Inter-Cloud management

Title Facilitating self-adaptable Inter-Cloud management [8]
Authors Gabor Kecskemeti (SZTAKI), Michael Maurer (TUW), Ivona Brandic (TUW),

Attila Kertesz (SZTAKI), Zsolt Nemeth (SZTAKI), Schahram Dustdar (TUW)
Type Methodology
Short description This contribution introduces a methodology to autonomously operate cloud fed-

erations by controlling their behavior with the help of knowledge management
systems. Such systems do not only suggest reactive actions to comply with es-
tablished Service Level Agreements (SLA) between provider and consumer, but
they also find a balance between the fulfillment of established SLAs and efficient
energy consumption.

External Final Version 1.0, Dated February 29, 2012 13

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Targeted integration sce-
nario

Quality-driven Multilayer SBA Monitoring and Adaptation

Contribution to the adap-
tation problem

This contribution offers three options to incorporate the concepts of knowledge
management systems into the Federated Cloud Management architecture to per-
form adaptation: (i) local integration is applied on a per deployed component
basis, e.g. every CloudBroker utilizes a separate KM system for its internal
purposes; (ii) global integration is based on a single KM system that controls
the autonomous behavior of the architectural components considering the avail-
able information from the entire cloud federation; and (iii) a hybrid KM system
combining both global and local integration options.

Contribution to the mon-
itoring problem

Within analyzing the various autonomous actions that the KM system can ex-
ercise, the authors investigated the monitoring system of the FCM architecture
and the possible metrics it can collect to allow the identification of those cases
when the architecture encounters unsatisfactory behavior. In the current system,
they monitor and analyze the behavior of CloudBrokers, the FCM repository and
individual service instances.

Integrated SBA Layers
for Monitoring

SI.

Integrated SBA layers for
adaptation

SI.

Cross-layer mechanisms –
Unexpected situations
handled

The proposed approach for Inter-Cloud management by FCM is capable of han-
dling various unexpected situations based on its knowledge management solu-
tion with extendible adaptation rules. In this contribution, the following ac-
tions can be triggered for unexpected situations: Reschedule of service calls,
Rearrange VM queues, Extend/Shrink VM Queue, Rearrange VA storage , Self-
Instantiated Deployment.

Architecture elements Monitors: Various metrics have been defined in the KM system that are used
in the rules for triggering actions.

Adaptation strategy engine: The actions of the KM represent the strategies in
this contribution.

Adaptation enactment engine: the Global Autonomous Manager incorporat-
ing the Knowledge Management System is responsible for executing the
actions.

Adaptation capabilities: These capabilities are predefined in the extensible set
of rules within the KM system.

Requirements/constraints The proposed Self-adaptable Inter-Cloud management solution adopting rule-
based techniques for its knowledge management to federate clouds of multiple
infrastructures. In the future additional rules will be defined to cover a wider
range of system failures or malfunctions.

Refined SBA Life Cycle
activities

Construction: Developers may provide additional adaptation actions to the
Knowledge Management System of the Global Autonomous Manager

Operation, management and QA: The Global Autonomous Manager contin-
uously execute the predefined rules to perform autonomous control

Identify adaptation requirements: The rules of the KM system specify this
process.

Identify adaptation strategy: The actions to be triggered according to the
monitored events are predefined in the rules of the KM system

Deployment and provisioning: Service deployments of the Self-adaptable
Inter-Cloud management architecture are managed by the FCM compo-
nents following the predefined rules of the KM system. The paper de-
scribes its operation by detailing the rule for removing VA from native
repository of a specific Cloud due to high global costs.

External Final Version 1.0, Dated February 29, 2012 14

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Future research direc-
tions

In this contribution various metrics have been defined to indicate possible SLA
violations in federations, and rules have been developed to trigger adaptation
actions in the case of predicted violations. Regarding future works, the authors
plan to investigate more the green aspects in the autonomous behavior of cloud
federations. They will also aim at defining new rules for advanced action triggers
and evaluate the applicability of case based reasoning. An experimental system
will also be set up to investigate the effects of the autonomous behavior on the
overall performance of the cloud federation.

Extended abstract

Cloud Computing represent a novel computing paradigm where computing resources are provided on de-
mand following the rules established in form of Service Level Agreements (SLAs). SLAs represent the
popular formats for the establishment of electronic contract between consumer and provider stating the
terms of use, objectives and penalties to be paid in case objectives are violated. Thus, appropriate man-
agement of Cloud Computing infrastructures (such as Amazon, Rackspace, Eucalyptus, Opennebula) is
the key issue for the success of Cloud Computing as the next generation ICT infrastructure. Thereby, the
interaction of the system with humans should be minimized while established SLAs with the customers
should not be violated. Since Cloud Computing infrastructures represent mega scale infrastructures com-
prising up to thousands of physical hosts, there is a high potential of energy waste by overprovisioning
resources in order to keep the violation level of SLAs as low as possible. Federated cloud management
systems offer a simplified use of these infrastructures by hiding their proprietary solutions. As the infras-
tructure becomes more complex underneath these systems, the situations (like system failures, handling
of load peaks and slopes) that users cannot easily handle, occur more and more frequently. Therefore,
federations need to manage these situations autonomously without user interactions.

This paper introduces a methodology to autonomously operate cloud federations by controlling their
behavior with the help of knowledge management systems. Such systems do not only suggest reactive
actions to comply with established Service Level Agreements (SLA) between provider and consumer,
but they also find a balance between the fulfillment of established SLAs and efficient energy consump-
tion. The paper adopts rule-based techniques as its knowledge management solution and provides an
implementation of federated clouds on top of multiple simulated infrastructures. Using the FCM ar-
chitecture as the basis of the investigations, the authors analyzed different approaches to integrate the
knowledge management system within this architecture, and found a hybrid approach that incorporates
fine-grained local adaptation operations with options for high-level override. This research carried out
has pinpointed the adaptation actions and their possible effects on cloud federations. Finally, metrics
have been developed that could indicate possible SLA violations in federations, and defined rules that
could trigger adaptation actions in the case of predicted violations.

2.2.6 Web Service Interaction Adaptation using Complex Event Processing Patterns

Title Web Service Interaction Adaptation using Complex Event Processing Patterns
[9]

Authors Yehia Taher (TILBURG), Michael Parkin (TILBURG), Mike P. Papazoglou
(TILBURG), Willem-Jan van den Heuvel (TILBURG)

Type Technique

External Final Version 1.0, Dated February 29, 2012 15

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Short description Differences in Web Service interfaces can be classified into two types, signa-
ture and protocol incompatibilities, and techniques exist to resolve one or the
other of these issues but rarely both. This paper describes an approach based on
complex event processing to resolve both signature and protocol incompatibility
problems that may exist between Web Service protocols. Our approach uses a
small set of operators that can be applied to incoming messages individually or
in combination to modify the structure, type and number of messages sent to the
destination. The paper describes how CEP-based adapters, which are deployable
in CEP engines, can be automatically generated from automata representations
of the operators through a standard process and presents a proof-of-concept im-
plementation.

Targeted integration sce-
nario

Assumption-based Proactive Monitoring and Adaptation

Contribution to the adap-
tation problem

Resolution of both signature and protocol incompatibility problems that may
exist between Web Service protocols.

Contribution to the mon-
itoring problem

–

Integrated SBA Layers
for Monitoring

–

Integrated SBA layers for
adaptation

–

Cross-layer mechanisms –
Unexpected situations
handled

Situations regarding the structural and behavioural incompatibilities between
web services.

Architecture elements The architecture is composed of two integrated environments. (i) The Design
Time Environment is used to instantiate the template operators. This phase mod-
els the adapter using operator automata through the use of an incompatibility
detection process to produce a platform independent model. (ii) The run-time
environment, on the other hand, contains a CEP platform, in which the transfor-
mation phase takes the platform independent model to produce the adapter as a
CCQ (continuous computation query) for a CEP engine, i.e, a platform specific
model. It consists of a continuous query engine and a set of SOAP message in-
tegration layers that allow the environment to send and receive messages to and
from Web Services.

Requirements/constraints The approach assumes services to be modeled using Automata and it does not
involve incompatibilities regarding semantics or deadlocks, but handles those
related only to structural and behavioral properties.

Refined SBA Life Cycle
activities

The design-time activities relates to the construction, and deployment & provi-
sioning phases of the SBA life-cycle; and the run-time activities defined in this
study relates to all adaptation phases including the identification of adaptation
needs and strategies, and their enactment as well as operation & management.

Future research direc-
tions

Ongoing work aims at extending the proposed solution toward two directions:
(i) comparing our similarity measures to others and testing detection algorithm
on real services; and (ii) assisting business process designers in determining
how to address incompatibilities.

Extended abstract

Web services provide a solution to the integration of distributed software through the standardization of
data format, interface definition language, transport mechanism and other interoperability aspects such
as security and quality of service. The Web Service Description Language (WSDL) defines a Web Ser-
vice interface as a document in XML format and a service as a set of endpoints that operate on messages
containing either document-oriented or procedure-oriented information. The interface document pro-
vides a contract between the provider of a service and its users and allows some flexibility for the service
provider as it hides the details of the implementation of the service from those using it.

External Final Version 1.0, Dated February 29, 2012 16

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Web Service interfaces (i.e., WSDL, BPEL, etc.) define the messages and protocol that should be
used to communicate with the service. However, if two services wish to interact successfully, they
must both support the same messages and protocol through the implementation of compatible WSDL
and BPEL documents. Unfortunately, this is difficult to achieve in practice; Web Services are often
developed independently and follow different standards or approaches in constructing their interfaces
and Web Service compositions will often use of services in ways that were not foreseen in their original
design and construction. Therefore, it is likely that most Web Services will be incompatible since many
services will not support the same interface.

To solve this problem, one needs to generate adapters that can make two Web services collaborate
even if they were not designed in that a way. The generation of adapters requires the elicitation of mis-
matches between services. The study describes an approach that makes use of complex event processing
(CEP) to resolve both signature and protocol incompatibility problems that may exist between Web Ser-
vice interfaces. The approach is oriented towards the use of a set of operators that can be applied to
incoming messages individually or in combination to modify the structure, type and number of messages
sent to the destination. By using a continuous query engine running within a CEP platform, we demon-
strate how adapters can be automatically generated for a CEP engine and how signature and protocol
adaptation between Web Services can be achieved practically in a proof-of-concept implementation. The
adapters are capable of intercepting messages sent between services and can adapt the structure, type and
number of incoming messages into the desired output message or messages.

2.2.7 Design for Self-adaptation in Service-oriented Systems in the Cloud

Title Design for Self-adaptation in Service-oriented Systems in the Cloud [10]
Authors A. Bucchiarone (FBK), C. Cappiello (POLIMI), E. Di Nitto (POLIMI), S. Gor-

latch (MUENSTER), D. Meilander (MUENSTER), A. Metzger(UNIDUE)
Type Methodology
Short description In this work we focus on two main aspects, that is, the kinds of changes that

trigger self-adaptation in a service-oriented system and the strategies that can be
adopted to deal with adaptation. We provide a preliminary contribution to the
systematic understanding of adaptation across layers (Infrastructure and service
composition layers).

Targeted integration sce-
nario

(i) Quality-driven Multilayer SBA Monitoring and Adaptation (ii) Context-
based Adaptation and Monitoring.

Contribution to the adap-
tation problem

Distribution handling for the dynamic adaptation of running application ses-
sions by adding/removing Cloud resources on demand using particular adap-
tation strategies

Contribution to the mon-
itoring problem

Monitoring of application-specific data, e.g., update rate, number of entities, etc.

Integrated SBA Layers
for Monitoring

SCC, SI

Integrated SBA layers for
adaptation

SCC, SI

Cross-layer mechanisms This work will not scrutinizes the aspect of cross-layer adaptation
Unexpected situations
handled

• Change in QoS, e.g., caused by unreliable hoster resources;
• Change in the machine, e.g., caused by increasing user interactions, mak-

ing computation of state updates more expensive;
• Change in the business context, e.g., more users connect to the application

due to changing user preferences.

External Final Version 1.0, Dated February 29, 2012 17

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Architecture elements In order to support Real-Time Online Interactive Applications (ROIA) develop-
ment and adaptation on Clouds, we develop the RTF-RMS resource manage-
ment system [2] on top of the Real-Time Framework (RTF – [1]). RTF-RMS
implements the following mechanisms for ROIA development on Clouds: (i)
Monitoring of application-specific data, e.g., update rate, number of entities,
etc. (ii) Distribution handling for the dynamic adaptation of running applica-
tion sessions by adding/removing Cloud resources on demand using particular
adaptation strategies. (iii) Application profiles that allow developers to specify
application-specific adaptation triggers. (iv) High-level development support
for communication handling and application state distribution.

Requirements/constraints • In its current implementation, RTF-RMS only supports the Amazon Elas-
tic Compute Cloud (EC2) interface.

• For the definition of application profiles, the application developer has to
manually find concrete values and suitable thresholds for his application
by conducting experiments in a Cloud environment.

• Continuous adaptation during runtime eventually leads to an inefficient
application architecture.

Refined SBA Life Cycle
activities

All core life-cycle activities

Future research direc-
tions

Our work on ROIA development along the S-Cube Lifecycle Model identified
the demand for balancing run-time adaptation and application re-design. Par-
ticularly, the continuous adaptation on Cloud resources may lead to an ineffi-
cient application structure which requires application redesign. In our future
research, we will address this task with particular regard to the adaptation on
Cloud resources that implies additional challenges, like unknown resource loca-
tions, heterogeneous resource performance, etc. We will study how to incorpo-
rate new design-for-adaptation activities into the software development process
using RTF-RMS and the S-Cube Lifecycle Model, e.g., how to define suitable
adaptation triggers and strategies.

Extended abstract

Service-oriented systems are able to offer complex and flexible functionalities in widely distributed en-
vironments by composing different types of services. These systems have to be adaptable to unforeseen
changes in the functionality offered by component services and to their unavailability or decreasing per-
formances. Furthermore, when systems are made available to a high number of potential users, they
should also be able to dynamically adapt to the current context of use as well as to specific requirements
and needs of the specific users. In order to address these issues, mechanisms that enable adaptation
should be introduced in the life-cycle of systems, both in the design and in the runtime phases.

In this work we will go through the life-cycle of a service-oriented system highlighting those activ-
ities that are needed to support adaptation. The adaptation activities can be performed at various layers
of the service-oriented system. In particular, they can concern the layer where services are composed
together or the layer of the executing infrastructure, typically, a cloud system. To exemplify the various
steps and activities we use an example from the domain of real-time online interactive applications.

2.2.8 A Classification of BPEL Extensions

Title A Classification of BPEL Extensions [11]
Authors Oliver Kopp (USTUTT), Katharina Grlach (USTUTT), Dimka Karastoyanova

(USTUTT), Frank Leymann (USTUTT), Michael Reiter (USTUTT), David
Schumm (USTUTT), Mirko Sonntag (USTUTT), Steve Strauch (USTUTT), To-
bias Unger (USTUTT), Matthias Wieland (USTUTT)

External Final Version 1.0, Dated February 29, 2012 18

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Type Classification
Short description In this paper, we provide (i) a classification of existing BPEL extensions and

(ii) guidelines to develop extensions.
Targeted integration sce-
nario

–

Contribution to the adap-
tation problem

Some of the classified BPEL extensions aim at improving the adaptability of
BPEL by means e.g. of aspect-oriented programming and run-time injection of
additional behaviour.

Contribution to the mon-
itoring problem

Some of the classified BPEL extensions aim at enabling monitoring of BPEL
process, e.g. by representing the state of activities as resources that can be ac-
cessed at run-time, and by exposing hooks that trigger the evaluation of business
rules.

Integrated SBA Layers
for Monitoring

SCC

Integrated SBA layers for
adaptation

SCC

Cross-layer mechanisms –
Unexpected situations
handled

Several of the classified BPEL extensions aim at enabling recovery of activity
failures and increased reliability of BPEL processes.

Architecture elements Service composition, Monitoring engine, Adaptation engine
Requirements/constraints Depends on the particular BPEL extension
Refined SBA Life Cycle
activities

Depends on the particular BPEL extension

Future research direc-
tions

The findings presented in this work on the design and implementation of BPEL
extensions remains valid in the context of the Business Process Model and No-
tation (BPMN) language. As part of our future work, we will classify BPMN
extensions according to the presented classification framework.

Extended abstract

The Business Process Execution Language (BPEL) has been designed for the implementation of business
processes using Web service technology. Nowadays, BPEL is used for implementing business processes
in numerous different scenarios such as the automation of scientific simulations, the provisioning Soft-
ware as a Service (SaaS) applications and as exchange format for business processes. With the growth
over time of the adoption of BPEL, it has been applied to scenarios and use-cases that were not originally
envisoned, and for which its constructs are not sufficient. For instance, the modelling of sub-processes is
a functionality that the BPEL specification and, as a consequence, standard-conforming implementations
do not cover.

As a result, BPEL is frequently extended for supporting desired functionality that is not available
in standard BPEL. Depending on the particular purpose, an extension may improve efficiency, increase
flexibility, ensure better performance, or add more functionality. However, extensions have also disad-
vantages. The whole toolset that is used for business process management (BPM) needs to support the
extension. Common components of this toolset are applications for modeling, adapting, executing, mon-
itoring, and analyzing the processes. Moreover, if business partners exchange (parts of) their processes,
their toolsets need to understand and support the extensions as well.

In this paper, we provide (i) a classification of existing BPEL extensions and (ii) guidelines to
develop extensions. An interesting finding of this work is that only around half of the sixty-two classified
extensions conform to the definition of BPEL extension set by the BPEL specification. In some cases,
this is because the design of the extension has not carefully taken into account the limitations it had to
conform to. However, it is also a symptom that the ways of extending BPEL allowed by the specification
are limited, and, in retrospective, perhaps too limited.

External Final Version 1.0, Dated February 29, 2012 19

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

2.2.9 A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules

Title A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules [12]
Authors Barbara Pernici (POLIMI), Seyed Hossein Siadat (POLIMI), Salima Benbernou

(UPD/UCBL), Mourad Ouziri (UPD/UCBL)
Type Model/Methodoly/Experimental Evaluation.
Short description Quality of Service (QoS) guarantees are commonly defined in Service Level

Agreements (SLAs) between provider and consumer of services. Such guaran-
tees are often violated due to various reasons. QoS violation requires a service
adaptation and penalties have to be associated when promises are not met. How-
ever, there is a lack of research in defining and assessing penalties according to
the degree of violation. In this paper, we provide an approach based on fuzzy
logic for modeling and measuring penalties with respect to the extent of QoS
violation. Penalties are assigned by means of fuzzy rules.

Targeted integration sce-
nario

Quality-driven Multilayer SBA Monitoring and Adaptation & Assumption-
based Proactive Monitoring and Adaptation

Contribution to the adap-
tation problem

We are interested in changes of service quality and the associated penalties in
case of non exact fulfilments of QoS stipulated in the SLA. We are aware of
degree of penalties. For that, we take advantage of the fuzzy logic for measuring
the overall penalties based on the QoS and selecting service adaptation strategies

Contribution to the mon-
itoring problem

–

Integrated SBA Layers
for Monitoring

In order to compose services, we need services fulfilling the best QoS.

Integrated SBA layers for
adaptation

In order to compose services, we need services fulfilling the best QoS.

Cross-layer mechanisms –
Unexpected situations
handled

–

Architecture elements –
Requirements/constraints We assume that the relevant QoS and their associated penalties are collected

from the monitoring phase. Our system requires human expertise to define the
membership function for each parameters and determine the number of rules.

Refined SBA Life Cycle
activities

Requirements Engineering: Penalties definition according to the QoS, fuzzy
parameters.

Construction: definition of if-then-else-fuzzy rules.
Identify adaptation needs: quality factor analysis, importance of penalties.
Identify adaptation strategy: Selection of adaptation strategies based on an

inference approach and adaptation priority.

Future research direc-
tions

(i) Identify more varieties of penalties. (ii) Penalties on multi SLAs.

Extended abstract

QoS guarantees defined in contracts may be violated due to various reasons. This situation needs to
be handled through applying adaptation techniques not to bring dissatisfaction. The concept of penalty
has been used in SLAs to compensate the conditions under which guarantee terms are not met. Despite
some works have been done on the description, negotiation and monitoring of SLAs, however there
is not much work on the definition of penalty clauses. WS-Agreement specification has been studied
to define penalties based on different types of violation. However, penalties are assigned to violation
of a single property instead of assigning penalties to violation of overall QoS. Moreover, the approach
introduces a method for measuring penalties which is for fixed predefined number of violations, instead
of measuring the extent of violation and assigning penalties accordingly. One main issue is how to
determine the appropriate amount of penalties as compensations from providers to satisfy customers. As

External Final Version 1.0, Dated February 29, 2012 20

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

quality parameters can be satisfied partially, the assessment of penalties can be based on the degree of
quality violation. Understanding the violation degree is a prerequisite for assessing penalties. However,
measuring such violation is yet an open research challenge. In addition, the influencing factors in defining
penalties need to be identified. A static amount of penalty (manual approaches) does not reflect the
extent of violation at runtime. The amount and level of penalties are related to the degree of quality
violation provided from the provider side. On the other side, the customers characteristics may also
affect the amount of penalties. For example a penalty to satisfy a gold/loyal customer is different with
the one for an occasional customer. To the best of our knowledge, there is no formal relation between the
assigned penalty and its influencing factors. Moreover, the extent and type of penalties are not clearly
expressed in related work. However, understanding such relation and providing a mapping between them
are complicated issues. We argue what is missing is a suitable mechanism for modelling penalties that
takes into account both provider and consumer sides. Apart from the degree of violation, we also consider
the state of customer and service provider with respect to their past history (e.g. whether the service
has been penalised previously) in determining the right amount of penalties. However, as the relation
between a given penalty and its infuencing factors is not linear, conventional mathematical techniques
are not applicable for modelling penalties. The goal of this paper is to apply an inference technique
using fuzzy logic as a solution to propose a penalty-based approach for compensating conditions in
which quality guarantees are not respected. Fuzzy logic is well suited for describing QoS and measuring
quality parameters. We demonstrate a penalty inference model with a rule based mechanism applying
fuzzy set theory. Measuring an appropriate value for penalties with respect to the amount of violation is
described in this work.

External Final Version 1.0, Dated February 29, 2012 21

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

Chapter 3

Future Research challenges and
Conclusions

3.1 Future Research Challenges

In this section, we present the research challenges on monitoring and adaptation identified during the S-
Cube Research Roadmap Workshop (Barcelona, November 22, 2011), attended by 40 project members
and associate members.

The overall objective was to identify research challenges that may become relevant after and beyond
S-Cube (in 510 years) and which have the potential to radically challenge existing thinking (i.e., beyond
incremental). The Research Roadmap Workshop was organized along four topical sessions:

• S1: “Service life-cycle and software engineering”,
• S2: “Service technology foundations”,
• S3: “Multi-layer and mixed-initiative monitoring and ?adaptation for service-oriented systems”,
• S4: “Online service quality prediction for proactive ?adaptation”.

In the following we briefly introduce the challenges emerged for S3, which are going to be presented in
a paper to the 2012 ICSE workshop on “European Software Services and Systems Research – Results
and Challenges”.

3.1.1 Challenge 1. Approaches for retrieving and analyzing context information to sup-
port individuals in performing the right adaptation decisions in user-centric sys-
tems.

(i) User-driven monitoring: when the user context changes, the way the SBA is monitored should reflect
the changes, (ii) User-driven adaptation: react to changes in the user context and generate a flexible
interaction protocol that allows the user to control and coordinate the execution, (iii) users as spectators:
at the same time service consumers, service inventors, and data donors, (iv) provision of ways that
encourage and incentivize users to create and share contents and data with the system and the other peers
in the network.

3.1.2 Challenge 2. Decentralized models and techniques to monitor and predict service
quality issues.

(i) Techniques to combine information from SOA layers with the one coming from the network infras-
tructure, (ii) definition of cross-layer quality metrics considering the whole service delivery chain, in-
cluding communication networks, (iii) use of decentralized strategies for the monitoring and predicting
models.

External Final Version 1.0, Dated February 29, 2012 22

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

3.1.3 Challenge 3: Techniques for combining and cross-correlating observations, predic-
tions and events from different sources and provided by different techniques.

(i) Flexible and dynamic correlation of useful information (observations, predictions, and events) from
different sources, across the functional layers, and provided by different analysis, decision and adap-
tation mechanisms, (ii) learning correlation rules automatically to allow SBAs to adapt to unforeseen
situations.

3.1.4 Challenge 4: Assurances for adaptation.

(i) Quality assurance techniques to prevent run-time design decisions/adaptations to lead to inconsis-
tent situations, (ii) assurances of service-oriented systems in order to architect resilience against un-
known situations and for dealing with rare events, (iii) concepts and techniques to avoid unwanted
co-adaptation, malicious adaptations, as well as races and other anomalies in order to ensure trustwor-
thy self-adaptation and evolution of open, service-oriented systems, (iv) concepts and techniques for
formally guaranteeing the correctness of adaptations.

3.2 Conclusions

This deliverable summarized the research carried out by the members of the S-Cube project while in-
vestigating and solving problems in relation to the main challenges of the work package JRA-1.2. In
this deliverable, we have presented the ways of consolidating our joint research on the validated set of
adaptation and monitoring principles, techniques and methodologies with special focus in context and
HCI awareness. This work has been presented through several jointly written scientific papers that were
systematically analyzed in the context of the deliverable’s main aims.

The future work and research directions of the sustainable research and collaboration are as diverse
as the research results presented in this deliverable. The diversity of the future work is inherited from
the three previously identified research scenarios of the deliverable titled CD-JRA-1.2.5. The research
directions are detailed in the summary tables for each contributed paper, here we only provide a short
overview on the future approaches S-Cube members identified for handling unexpected situations in con-
text and HCI aware service-based applications. We provide the summaries along the research scenarios
they are going to enhance:

Quality-driven Multilayer SBA Monitoring and Adaptation. Future research should comprise the en-
hancement and evaluation of the new layers incorporated into the SBA (such as platforms, typically
seen in cloud computing setups) through the trial of various case studies from different applica-
tion scenarios. These scenarios should consider situations such as unknown resource locations or
heterogeneous resource performance. For the evaluation of the SBA novel analyzer hierarchies,
specialized monitoring, tailor-made adaptation strategies and their selection criteria have to be de-
fined to enable flexible selection of the enacted adaptation strategies on the system. Finally, new
studies have to be initiated to target the feasibility of managing different kinds of KPI constraints.

Assumption-based Proactive Monitoring and Adaptation. The scenario should be extended towards
two directions: (i) comparing the currently competing similarity measures and testing detection
algorithms on services deployed in lifelike environments; and (ii) assisting business process de-
signers in determining how to address incompatibilities upon service substitutions. Researchers
need to identify new ways to penalize improper proactive changes in the SBA while considering
multiple SLA constraints and violations.

Context- based Adaptation and Monitoring. Investigate new techniques dealing with the (semi-) au-
tomatic adaptation of the monitor as a reaction to context changes/adaptation in the application.
The adaptation history should be used to bring corresponding changes to the process model (pro-
cess evolution).

External Final Version 1.0, Dated February 29, 2012 23

Bibliography

[1] The Real-Time Framework – www.real-time-framework.com, 2011.

[2] Meilaender, Dominik; Bucchiarone, Antonio; Cappiello, Cinzia, Di Nitto, Elisabetta; Gorlatch,
Sergei. Using a Lifecycle Model for Developing and Executing Real-Time Online Applications
on Clouds, In Proc. of 7th International Workshop on Engineering Service-Oriented Architectures
(WESOA), 2011.

[3] Elisabetta di Nitto, editor. State of the art report on software engineering design knowledge and
Survey of HCI and contextual Knowledge, July 2008. S-Cube project deliverable: PO-JRA-1.1.1.
http://www.s- cube-network.eu/achievements-results/s-cube-deliverables.

[4] Ricardo Contreras and Andrea Zisman. 2011. Identifying, modifying, creating, and removing
monitor rules for service oriented computing. In Proceedings of the 3rd International Workshop on
Principles of Engineering Service-Oriented Systems (PESOS ’11). ACM, New York, NY, USA,
43-49.

[5] Zengin, A., Marconi, A., & Pistore, M. (2011). CLAM: Cross-layer Adaptation Manager for
Service-Based Applications. In Proceedings of the International Workshop on Quality Assurance
for Service-Based Applications, Qasba 11 (pp. 2127). Acm.

[6] Bucchiarone, A., Pistore, M., Raik, H., & Kazhamiakin, R. (2011). Adaptation of Service-based
Business Processes by Context-Aware Replanning. In Proc. SOCA 2011.

[7] S. Guinea, G. Kecskemeti, A. Marconi and B. Wetzstein. ”Multi-layered Monitoring and Adap-
tation”, in Service-Oriented Computing: 9th International Conference, ICSOC 2011, Paphos,
Cyprus, December 5-8, 2011 Proceedings. ISBN: 978-3-642-25535-9.

[8] G. Kecskemeti, M. Maurer, I. Brandic, A. Kertesz, Zs. Nemeth and S. Dustdar: ”Facilitating
self-adaptable Inter-Cloud management”, in Proceedings of the Cloud Computing for Compute
and Data Intensive Applications special session of the 20th Euromicro conference on parallel,
distributed and network-based processing. Leipniz Supercomputing Centre, Garching, February
15-17th 2012.

[9] Taher, Yehia; Parkin, Michael; Papazoglou, Mike P.; van den Heuvel, Willem-Jan. ”Adaptation of
Web Service Interactions using Complex Event Processing Patterns”, in Service-Oriented Com-
puting: 9th International Conference, ICSOC 2011, Paphos, Cyprus, December 5-8, 2011 Pro-
ceedings. ISBN: 978-3-642-25535-9.

[10] Bucchiarone, A., Cappiello, C., Nitto, E. D., Gorlatch, S., Mailander, D., & Metzger, A. (2011).
Design for Self-adaptation in Service-oriented Systems in the Cloud. In D. Petcu, & J. L. V. Poletti
(Eds.), European Research Activities in Cloud Computing. Cambridge Scholars Publishing.

24

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.7

[11] Kopp, Oliver; Grlach, Katharina; Karastoyanova, Dimka; Leymann, Frank; Reiter, Michael;
Schumm, David; Sonntag, Mirko; Strauch, Steve; Unger, Tobias; Wieland, Matthias; Khalaf, Ra-
nia: A Classification of BPEL Extensions. In: Journal of Systems Integration. Vol. 2(4), Online,
2011

[12] Barbara Pernici, Seyed Hossein Siadat, Salima Benbernou, Mourad Ouziri: A Penalty-Based Ap-
proach for QoS Dissatisfaction Using Fuzzy Rules. ICSOC 2011: 574-581

External Final Version 1.0, Dated February 29, 2012 25

Appendix A

Identifying, Modifying, Creating, and
Removing Monitor Rules for Service
Oriented Computing

26

Identifying, Modifying, Creating, and Removing Monitor
Rules for Service Oriented Computing

Ricardo Contreras
Department of Computing

City University, London, Northampton Square
London EC1V 0HB, UK

+44 20 7040 8552

Ricardo.Contreras.1@soi.city.ac.uk

Andrea Zisman
Department of Computing

City University, London, Northampton Square
London EC1V 0HB, UK

+44 20 7040 8346

a.zisman@soi.city.ac.uk

ABSTRACT

Monitoring of service-based systems is considered an important

activity to support service-oriented computing. Monitoring can be

used to verify the behavior of a service-based system, and the

quality and contextual aspects of the services participating in the

system. Existing approaches for monitoring service-based systems

assume that monitor rules are pre-defined and known in advance,

which is not always the case. We present a pattern-based HCI-

aware monitor adaptation framework to support identification,

modification, creation, and removal of monitor rules based on

user‟s interaction with a service-based system and different types

of user context. A prototype tool has been implemented to

demonstrate the framework.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – corrections, enhancement, extensibility.

General Terms

Algorithms, Management, Verification.

Keywords

Service monitoring, rules, patterns, adaptation, HCI context

1. INTRODUCTION
Service-oriented computing (SOC) has been recognized as an

important paradigm for software development. Various

approaches and techniques have been proposed to support

different areas and activities related to SOC. One of these

activities is concerned with monitoring of service-based systems;

i.e., the activity of collecting information about the execution of a

service-based system and verifying if the system is operating

correctly by comparing the collected information with the

properties of the system. These properties are known as monitor

properties or monitor rules and can be used to verify the behavior

of a service-based system [3][4][25][30], the quality of the

services participating in a system [17], and the contextual

information of the services participating in the system and the

system itself [6][8].

Existing approaches for monitoring service-based systems assume

that monitor rules are pre-defined and known in advance.

However, this is not always the case given that during execution

time of a service-based system it is possible to have changes in the

(i) system or set of services used by the system (due to

unavailability or malfunctioning of a service), (ii) types of

interaction of the users with the system, and (iii) context

characteristics of the user interacting with the system. Therefore,

it is necessary to have ways of identifying monitor rules,

modifying existing rules, removing existing rules that are

obsolete, or creating new rules to support the needs of the

monitor. We call this process monitor adaptation.

As an example, consider a Cultural Event service-based system

(CE_SBS) that provides general information about cultural events

in a certain city, allows ticket acquisition by different types of

users, supports scheduling of different cultural programs in a year,

provides catering services for certain special performances (e.g.,

premier performances, group performances), and allows both

customers and professional critics to review cultural events.

Suppose that the CE_SBS is used by managers and employees of

several venues in a City (e.g., theaters, show houses, concert halls,

opera houses), and by customers interested in cultural events that

may or not be members of one or several of the venues. For

example, managers of different venues (role) use this application

to schedule and organize the different programs in a year for

his/her venue taking into consideration other performances for

that year in different venues; while a member of a venue (role)

uses the system to periodically receive information about the

different events in the venue based on the member‟s interest

(preferences) and has priority on purchasing tickets before

customers that are not members (case (iii) above). In these cases,

it is necessary to have monitor rules for the different services used

in the system depending on the user context. In addition,

customers can book special events that include or not catering

services (case (ii) above). In this case, new monitor rules relevant

to booking and paying for catering services are required (needs).

Moreover, general customers are able to provide simple reviews

about a performance that they have seen (skills), while

professional critics are supposed to provide reviews of a

performance considering several detailed characteristics (skills).

Furthermore, suppose the situation that after a while, the service

in the system that verifies conflicts and constraints about various

events in a City that is used to support the scheduling of events,

becomes unavailable. Assume that a new service that provides

these functionalities, but also allows searching and allocating

necessary physical and personnel resources for the various events

is used to replace the initial service. In this case, the monitor

system needs to verify the new functionality provided by the

service (i.e., resource allocation) (case (i) above).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PESOS’11, May 23-24, 2011, Waikiki, Honolulu, HI, USA

Copyright 2010 ACM 978-1-4503-0589-1/11/05…$10.00.

In this paper we present the MADap (Monitor ADaptation)

framework for monitor adaptation as defined above. The work

presented in this paper has been carried out as part of the European

funded Network of Excellence S-Cube [26]. Our framework

concentrates on HCI-aware monitor adaptation in which changes

in the monitor rules are based on user‟s interaction with a service-

based system and different types of user context. The user context

information of our concern includes cognition, role, skill, need,

and preferences of a user, represented in user models based on an

ontology that we have created. The framework is based on the use

of patterns for the monitor rules representing different context

types. The monitor rules are concerned with the execution parts of

a service-based system specification for the user context types.

The patterns are used to support the (a) identification, (b)

modification, (c) creation, and (d) removal of monitor rules.

The remainder of this paper is structured as follows. Section 2

describes an overview of our framework. Section 3 presents the

monitor adaptation process used by the framework, including the

processes to identify, modify, create, and remove monitor rules.

Section 4 presents implementation aspects and initial evaluation

of the framework. Section 5 discusses existing related work.

Section 6 summarizes the work and describes future work.

2. FRAMEWORK OVERVIEW
The MADap framework assumes two different types of user

context, following the classification proposed in [10][12][19],

namely (a) direct user context types and (b) related user context

types. The direct user context types represent information of the

characteristics of the users and include role, skill, need,

preferences, and cognition context types. The related user context

types represent information that may influence user information

and include time, location, and environment context types. We

have developed an ontology to represent the different user context

types. A brief description of the various user context types is

presented in Table 1.

Table 1. Description of user context types

Context Type Description

Direct Role
Social behavior of an individual within

the domain of a service-based system

 Skill
The level of expertise of an individual

with respect to a service-based system

 Need
An individual’s requirement or desire

from a service-based system

 Preferences

An individual’s choice over pre-

established alternatives of computational

resources of a service-based system

 Cognition

Individual’s characteristics associated

with the process of thought (the ways that

individuals think, feel or react)

Related Time
The moment an individual interacts with

a service-based system

 Location
The place where an individual interacts

with a service-based system

Environ-

ment

Information related to the environment

where a service-based system is used

A graphical representation of the ontology we have developed is

shown in Figure 1. In the figure the different context types are

represented as classes, with subclasses in some cases, and are

associated with a central class representing the user. These

associations indicate relationships between the different attributes

of a context type (e.g., occupation for context class role) and a

user class. For each class their attributes and respective data types

are presented inside the class. Please note that at this stage we do

not consider associations between the different context types

given that the focus of the work is on relationships between users

and contexts and not between context and context.

As described in Section 1, the framework is based on the use of

rule patterns for the different user context types. It is possible to

have different patterns for the same context type. Both the

patterns and the monitor rules are described in Event-Calculus

(EC) [27]. The use of Event Calculus (EC) to describe monitor

rules has been advocated in [30] and has shown to be appropriate

to support the representation of several types of rules. Event

Calculus allows (i) rules to be represented as first order logic,

which provides sufficient expressiveness for a large range of

applications; (ii) specification of quantitative temporal constraints

and relationships that are necessary to be taken into consideration

when monitoring service-based systems; (iii) distinction between

events and states that are necessary to describe the behavior of a

system and interaction of users with the system; and (iv)

definition of the influences between events and states.

EC uses events and fluents to represent the behavior of a system.

An event occurs at a specific instance of time and may change the

state of a system. A fluent is a condition of a system state and may

be affected by the occurrences of events. Both events and fluents

are represented in EC by predicates.

Figure 1: User context ontology

The occurrence of an event, at some time t, is represented by the

predicate Happens(event,t,R(t1,t2)), which means an event occurs

at a time t, where t is within an interval between t1 and t2. The

time boundaries, represented by t1 and t2, can be specified using

time variables or arithmetic expressions over time variables, and

represent the lower and upper time boundaries. The initialization

of a fluent, is represented by the predicate Initiates(event,fluent,t),

which means a fluent starts to holds after an event occurs at a time

t. The predicate HoldsAt(fluent,t), means a fluent holds (is valid)

at a time t. The termination of a fluent, is represented by the

predicate Terminates(event,fluent,t), which means a fluent ceases

to hold after an event occurs at a time t. A detailed description of

Event Calculus can be found in [27].

A rule pattern is composed of two parts, namely (a) monitor rule

part and (b) assumptions part. The monitor rules represent

properties of a service-based system that need to be monitored.

The assumptions represent event calculus formulae that need to be

used to identify state information of the system. An example of a

rule pattern for role context type and the instantiation of this

pattern for the CE_SBS described in Section 1 for role “Manager”

are shown in Figures 2.a and 2.b, respectively.

Rule

Happens (ic_Initial-Event, t1, R(t1,t1) =>

Happens (ic_Event, t2, R(t1,tn))

Assumption

Happens(ic_Event,t, R(t,t)) => Initiates(ic_Event,fluent, t)

Figure 2.a: Rule pattern for role context type

Rule

Happens (ic_start_CES, t1, R(t1,t1)) =>

Happens (ic_performance_schedule, t2, R(t1,t1+2500))

Assumption

Happens (ic_performance_schedule, t1, R(t1,t1)) =>

Initiates (ic_performance_schedule, per-schedule, t1)

Figure 2.b: Instantiation of rule pattern in Figure 2.a

The monitor rule part in Figures 2.a and 2.b state that after the

initial event of the service-based system specification (ic_Initial-

Event and its instantiation ic_Start_CES) is executed, a system

event concerned with a user context role (ic_Event and its

instantiation ic_performance_schedule) should be executed in

time t2, where t1 ≤ t2 ≤ tn (t1 ≤ t2 ≤ t1+2500). The assumption

part states that when different system events occur, different

fluents are initiated. In this case, when event

ic_performance_schedule occurs, fluent per-schedule is

instantiated. The patterns used by the framework are general in

order to be employed in different types of service-based systems.

Events in a pattern can represent either requests for an operation

(when specified with ic prefix) or responses from an operation

(when specified with ir prefix).

A rule pattern may have invariant parts, which depend on the

context type associated with the pattern. An invariant part does

not change for distinct instantiations of the pattern. The invariant

parts for the role context type pattern in Figure 2.a is shown in

Figure 3 (variant parts are represented by ____). Other patterns

have been created to represent the other context types and can be

found in [20]. They are not shown here due to space limitations.

Rule

Happens (ic_Initial-Event, t1, R(t1,t1) =>

 Happens (____, t2, R(t1,tn))

Assumption

Happens (____, t, R(t, t)) => Initiates (____, ____ , t)

Figure 3: Example of invariant part for role type pattern

Figure 4 presents the architectural overview of the MADap

framework. As shown in the figure, the main components of the

framework are Rule Adaptor, Path Identifier, Rule Verifier, and

Monitor. The framework also uses Rule Patterns, Semi-

instantiated Patterns, Monitor Rules, User Models, Service-based

System (SBS) Specification, and Service Level Agreements (SLAs).

It assumes rule patterns and monitor rules in a repository.

The Rule Adaptor is responsible for the identification,

modification, creation, and removal of monitor rules. More

specifically, it receives events about changes in the context

characteristics of the user or interaction of the users with the

system, and invokes the Path Identifier to identify paths in the

specification of the service-based system that are relevant to the

event. The Path Identifier retrieves the parts in the specification

that are related to the context type represented in the event and its

instance (e.g., context role, instance manager).

Figure 4. Architecture overview of MADap framework

The Rule Adaptor also uses the context type to identify relevant

Rule Patterns for this context type and instantiates these patterns

with the identified information from the service-based system

specification and User Models. These are called semi-instantiated

rule patterns since they do not have instantiated values for time

variables or time gaps in the rule patterns. The User Models

represent the characteristics of the users.

The Rule Verifier is used to verify if an existing monitor rule in

the repository is still a valid rule for a service-based system. It is

possible to have rules that become obsolete due to changes in the

service-based system (e.g., certain functionalities are not executed

anymore, new functionalities are added to the system).

We assume specifications of service-based systems in BPEL [7]

due to its wide acceptance, and that the BPEL processes have

conditions on the various user context types and their instances.

These conditions match the syntax of a context type in a received

event. This assumption is not unrealistic since different behavior

of a service-based system due to different user characteristics

needs to be represented in the service-based system specification.

The Rule Adaptor uses the semi-instantiated rule patterns to

identify monitor rules. In the case where monitor rules that totally

match the semi-instantiated rule patterns are identified, these rules

are either used as they stand by the Monitor component or have

their time values modified, when necessary, and subsequently

used by the Monitor component. In the situation in which no rules

that match the semi-instantiated rule patterns are identified, new

monitor rules are created based on the semi-instantiated patterns.

In the case in which there are monitor rules that match the

invariant parts of the semi-instantiated rule patterns, the Rule

Verifier checks if these rules are still valid for the service-based

system. In positive case, these rules have their time values

modified, if necessary. Otherwise, these rules are removed from

the repository and a new rule based on the semi-instantiated

pattern is created. The newly created rules are added into the

repository and used by the Monitor component to verify the

service-based system.

In the framework, we use the Monitor tool described in [30].

However, our approach can be used with any monitor tool that

makes use of monitor rules represented in Event Calculus. The

Monitor tool receives requests from a service requestor to verify,

at regular intervals, the satisfiability of properties (represented as

monitor rules) of a service-based system. It intercepts run-time

messages exchanged between a service-based system and its

services and verifies the satisfiability of the properties against

these messages. It contains (a) a service client that is responsible

to invoke a service in a service-based system; (b) and event

collector that is responsible to gather information during the

execution of a service-based system and the services deployed by

the service based system, or information exchanged between the

service client and its respective services; and (c) an analyzer that

is responsible to check the satisfiability of the properties.

3. MONITOR ADAPTATION PROCESS
In the framework, the monitor adaptation process is triggered by

an event representing a context type Ci. Based on the context

type, the Rule Adaptor identifies the patterns concerned with

context Ci, invokes the Path Identifier to identify the parts of the

BPEL specification that are related to Ci (i.e., the parts of BPEL

specification with conditions that match Ci), and uses this

information to semi-instantiate the identified patterns. The semi-

instantiated patterns are compared to existing rules in the

repository in order to identify if a relevant rule (a) already exists

in the repository and (a.1) can be used as it stands, (a.2) needs to

be modified, (a.3) needs to be removed, or (b) needs to be created.

The need to use information from the service-based system

specification to semi-instantiate the relevant pattern is due to the

fact that in some situations the pattern itself is not sufficient to

support the identification of the correct monitor rule in the

repository. For example, suppose an event for customer role

context type. Assume the pattern for context type role shown in

Figure 2.a and the monitor rules in Figure 5 below in the rule

repository (without the assumptions for simplicity). In this case,

all the three rules in Figure 5 match the rule pattern in Figure 2.a.

However, rules R1 and R2 are concerned with role customer

while rule R3 is concerned with role manager. If the pattern is

used to identify rules in the repository, all three rules will be

returned. But, following the part of the BPEL specification for the

CE_SBS shown in Figure 6, the events representing the

operations shows and timetables are relevant to role customer.

Using these events, the two semi-instantiated patterns shown in

Figure 7 will be specified and rules R1 and R2 will be correctly

matched with the semi-instantiated patterns. It should be noted

that information about these events could not be part of the initial

patterns since the patterns are general for a certain context type

and the events and the monitor rules are specific to a service-

based system and instances of the various context types.

R1 Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_shows, t2, R(t1,t1+2000))

R2 Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_timetables, t2, R(t1,t1+4000))

R3 Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_performanceSchedule, t2, R(t1,t1+2500))

Figure 5. Examples of monitor rules for role context type

As shown in Figure 7, the semi-instantiated patterns do not have

instantiated values for time variables or time gaps. In order to

specify the boundary of the time values, the framework assumes

these values to be identified from the response time information of

a service, or operations of a service, that are normally defined in

Service Level Agreements (SLAs) between the services

participating in the service-based system and the system itself.

Another option is to use historical execution time data for a

service, when available. The assumption that SLAs will be

available for participating services is not unrealistic, since SLAs

are currently used to establish business agreements between

service providers and consumers. Moreover, the response times of

a service or operations are attributes that appear in SLAs.

…<bpel:condition>

<![CDATA[$input.payload/tns:role_occupation="Custome

r"]]>

</bpel:condition>

<bpel:invoke name="Shows" partnerLink="Shows"

operation="shows" portType="ns:Shows"

inputVariable="ShowsRequest"

 outputVariable="ShowsResponse"> </bpel:invoke>

<bpel:invoke name="TimeTables"

partnerLink="TimeTables"

 operation="timeTables" portType="ns:TimeTables"

 inputVariable="TimeTablesRequest"

 outputVariable="TimeTablesResponse">

</bpel:invoke> …

Figure 6. Part of the BPEL process for CE_SBS

SI_RP1

:

Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_shows, t2, R(t1,tn))

SI_RP2

:

Happens (ic_start CES, t1, R(t1,t1)) =>

Happens (ic_timetables, t2, R(t1,tn))

Figure 7. Examples of semi-instantiated role patterns

Monitor_Adaptation (SI_Rule, SBS_Spec, SLAs, RRep) {

//SI_Rule: semi-instantiated pattern

//FI_Rule: fully-instantiated pattern

//SBS_Spec: service-based system specification

//SLAs: SLAs for the services and operations in the SI_Rule

//RRep: Rule Repository

//R: Rules in RRep

Search SI_Rule in RRep;

If (RRep has Rules that fully match SI_Rule) {

 For Every R in Rules {

 If (time in SLAs is within time values in R) {

 Do-nothing;}

 Else {Adjust time in R based on SLAs;}

 End If

 } End For

Else {

 Create FI_Rule by instantiating SI_Rule time with times in SLAs;

 If (RRep has Rules that only match invariant parts of SI_Rule) {

 For Every R in Rules {

 If (there is a path in SBS_Spec that uses R) {

 // Rule R is not obsolete

 If (time in SLAs is within time values in R) {

 Do-nothing; }

 Else {Adjust time in R based on SLAs; }

 End If

 Else {Remove R from RRep; }

 End If

 } End For

 Add FI_Rule to RRep; }

 Else {

 //There are no rules that match the semi-instantiated rule

 Create FI_Rule by instantiating SI_Rule time with times in

SLAs;

 Add FI_Rule to RRep; }

 End If

} End Monitor_Adaptation

Figure 8. Algorithm for the monitor adaptation process

Figure 8 presents an algorithm in pseudo-code for the monitor

adaptation process used in the framework. As shown in Figure 8,

the process consists of searching in the repository for monitor

rules that match semi-instantiated patterns. In the case that there

are rules that fully match the semi-instantiated patterns, the

process verifies if the time values in the rules are consistent with

the response times of the SLAs for the respective operations and

services. In positive case, the rules are maintained in the

repository. Otherwise, the rules are modified with new time values

according to the information in the SLAs.

Rule Happens (ic_Initial-Event, t1, R(t1,t1) and

 Happens (ir_Event-User-Op, t2, R(t1,tn_1)) =>

 Happens (ic_LEvent, tn, R(t1,tn_3)) tn > t2

Assumption Happens (ic_LEvent, t1, R(t1, t1)) =>

 Initiates (ic_LEvent, fluent, t1)

Figure 9: Example of skill context pattern

Rule Happens (ic_start_CES, t1, R(t1,t1)) and

 Happens (ir_artistsPerformance, t2, R(t1,tn_1)) and

 Happens (ir_direction, t3, R(t1,tn_2)) =>

 Happens (ic_professionalReview, t4, R(t1,tn_3)

 t4>t2, t4>t3

Assumption Happens (ic_professionalReview, t1, R(t1,t1))

=> Initiates(ic_professionalReview,professionalReview,t1)

Figure 10: Example of semi-instantiated skill pattern

Rule Happens (ic_start_CES, t1, R(t1,t1)) and

 Happens (ir_artistsPerformance,t2,R(t1,t1+3001)) and

 Happens (ir_sceneryAdaptation,t3,R(t1,t1+4002)) and

 Happens (ir_direction, t4, R(t1,t1+5003)) =>

 Happens (ic_profesionalReview, t5, R(t1,6004)

 t5>t2, t5>t3, t5>t4

Assumption Happens (ic_profesionalReview, t,R(t,t)) =>

 Initiates (ic_profesionalReview,profesionalReview,t)

Figure 11: Example of rule R4

Rule Happens (ic_start_CES, t1, R(t1,t1)) and

 Happens (ir_artistsPerformance, t2, R(t1,t1+3001)) and

 Happens (ir_direction, t3, R(t1,t1+4503)) =>

 Happens (ic_profesionalReview, t4, R(t1,6004)

 t4>t2, t4>t3

Assumption Happens (ic_profesionalReview, t,R(t,t)) =>

 Initiates(ic_profesionalReview, profesionalReview, t)

Figure 12: Example of rule R5

In the case in which there are rules in the repository that only

match the invariant parts of the semi-instantiated patterns, the

time values of the patterns are instantiated based on information

from SLAs and new rules are created (fully-instantiated patterns).

The process verifies for every identified rule in the repository that

matches the semi-instantiated patterns, if the rule is a valid rule.

This is done by traversing the service-based system specification

and verifying if the information in the rule is still a valid path in

the specification. In positive case, the time values for the rule are

checked against related SLAs and adjusted if necessary. In

negative case, the rule is removed from the repository. The new

created rules are added in the repository.

In the case in which there are no monitor rules in the repository

that match the semi-instantiated patterns, new rules are created by

instantiating the time values of the semi-instantiated patterrns

based on information from SLAs (fully-instantiated patterns).

These new rules are added to the repository.

As an example, consider the CE_SBS described in Section 1.

Suppose that an opera critic accesses the system to input a review

for the performance of Carmen that is currently being presented at

the London Royal Opera House. In this case, the skill pattern

shown in Figure 9 is identified by the Rule Adaptor after

receiving an event for context skill referring to professional critic

(skillful), and the semi-instantiated pattern in Figure 10 is created

based on information from the BPEL process. In Figure 9, the

variant part of the pattern is shown in grey. Suppose rule R4

shown in Figure 11 in the repository that matches the invariant

parts of the semi-instantiated pattern in Figure 10. Assume, that

rule R4 is not a valid rule for the current version of the service-

based system (operation sceneryAdaptation is not in the BPEL

process anymore due to changes in the system). R4 is removed

from the repository and rule R5 shown in Figure 12, with the time

values identified from respective SLAs, is added to the repository.

4. IMPLEMENTATION ASPECTS AND

EVALUATION
A prototype tool of the MADap framework has been implemented

in Java to demonstrate and evaluate the framework. The tool can

be used to adapt monitor rules specified in Event Calculus [27].

The prototype is designed to take as input an event representing

one of the direct user context types (see Table 1) and deciding if a

monitor rule could be identified, modified, created, or removed.

Initial evaluation of the framework was executed to demonstrate

that the framework could be used to identify, modify, create, and

remove monitor rules based on user context types.

We evaluated the framework in an extension of the CE_SBS

described in Section 1 with seven services, namely: S1:Ticket

Purchase Service, S2:Payment Service, S3:Performance

Information Service, S4:Performance Scheduling Service,

S5:Resource Search and Allocation Service, S6:Reviewing

Services, and S7:Catering Services. The evaluation was conducted

for each direct user context type (role, skill, need, preferences,

cognition) in five different cases, as described below.

Case 1: Empty rule repository

This case was considered to demonstrate the creation of new

monitor rules and assumptions for each different context type. A

total of 29 monitor rules and assumptions were created in the

repository, broken down as follows:

 8 rules/assumptions due to context type role,

6 rules/assumptions due to context type need,

4 rules/assumptions due to context type skill,

8 rules/assumptions due to context type cognition, and

3 rules/assumptions due to context type preferences.

The number of rules (and assumptions) for each context type is

directly related to the different roles, needs, skills, cognition, and

preference characteristics of the users of the service-based system,

and the relevant functionalities of the system for the context types.

Case 2: Rule repository with 100 rules not related to CE_SBS

This case was also considered to demonstrate the creation of new

monitor rules for each different context type given that all the 100

unrelated rules did not match fully or partially (matching of the

invariant parts) the semi-instantiated patterns. As in Case 1 above,

29 monitor rules were created in the repository with the same

number of rules for each context type.

Case 3: Rule repository with all 29 relevant rules for CE_SBS

This case was considered to verify if monitor rules that can be

used for monitoring a service-based system at different stages of

its execution could be identified. For each of the different context

types, the relevant rules where identified.

Case 4: Rule repository with all 29 relevant rules for CE_SBS

and with 100 rules not related to the system

This case was also considered to verify if monitor rules that can

be used for monitoring a service-based system at different stages

of its execution could be identified. Despite the extra not related

rules in the repository, as in Case 3 above, the relevant rules for

each different context type were identified from the 29 relevant

monitor rules in the repository.

Case 5: Rule repository with 100 rules not related to the system,

27 rules relevant to the system, and 5 rules that match the

invariant pattern parts for each context type

In this case, the set of 27 relevant rules and 5 rules that match the

invariant pattern parts are different for each context type. More

specifically, for each context type, the 27 rules were selected from

the set of 29 relevant rules by removing two rules for the specific

context type. Given the mixture of the rules in the repository, in

this case, the framework was able to identify the remaining rules

for a certain context from the set of 27 relevant rules, to create the

two rules that were initially removed from the set of relevant

rules, and to identify 5 rules that match the invariant parts and

verify if these rules were supposed to be removed from the

repository or maintained.

This initial evaluation has demonstrated that the framework can

adapt monitor rules for different user context types in the four

proposed ways. It also shows that there is a direct correlation in

the number of monitor rules and the different instances of the

various context types for a service-based system. In addition, the

approach supports the removal of monitor rules for those rules

that become obsolete due to changes in the service-based system

and the verification of this situation when trying to identify rules

or create new rules in the repository.

5. RELATED WORK
In [9], an ontology for context-aware pervasive computing

environments is proposed. This ontology is centered on general

concepts including people and places. However, in this proposal

all the elements are defined according to a specific scenario and

most of the identified user context types are related to physical

attributes. Contrary, in [16][23] ontologies have been formulated

considering the user as the main element. Similar to our approach,

in these ontologies a central class represents the user models and

is associated to other classes concerned with other user

characteristics such as skills or abilities. Our framework considers

more specific types of user context, though

Different approaches have been proposed for monitoring service-

based systems. In [25] monitoring is performed by checking

assumptions and conditions, which specify how services

participate in a composition and the conditions the composition

must satisfy. Assumptions and conditions are specified as

behavior properties in an expressive monitoring language. These

behavior properties are used by a monitor to check the system

operation, based on intercepted messages from the processes. A

similar approach is taken in [30] where behavior is monitored by

rules specified in EC. In this approach the rules are composed of

assumptions and properties of a service-based system. In [4]

monitoring is concerned with timeouts, runtime, and violation of

functional contracts, which are described as monitoring rules.

These monitoring rules are specified as comments in a BPEL

process. When a service is invoked, its content is serialized, as an

XML fragment, and sent together with the associated rules to

another specially designed web service that acts as a monitor. In

[15][24], the authors propose policy-based approaches to monitor

web service compositions and management systems, respectively.

In [15], the use of declarative policies provides flexibility and

reusability when specifying a property. The work in [24] uses

extracted information from policies to identify, configure, and

instantiate management agents that will be used to monitor

management systems. All the above approaches use rules or

policies for monitoring the correct behavior of a system. The rules

or policies are formulated to monitor particular behaviors and do

not consider changes in a service-based system and user context

characteristics.

Some work to support dynamic selection of monitoring rules

based on context information has been proposed in [13][31]. The

approach in [31] uses monitor manager on top of existing

monitoring tools to provide a policy driven interface for these

tools. The policies describe how the monitoring infrastructure

should react in the presence of changes. The rules used by the

monitoring tools are not modified.

In [29] patterns for monitoring security properties such as

confidentiality, integrity and availability have been proposed.

Similar to our work, these patterns are expressed in EC language.

Another approach that uses EC to represent patterns to support

verification of physical interaction is proposed in [17]. In this

work, patterns are prerequisites for an effective physical

interaction. In [13] the authors propose the use of a pattern-based

approach to support presentation, codification, and reuse of

property specification for finite-state verification. This work is

used in [28] where temporal logic patterns for runtime monitoring

of web service conversations are used.

Recently, a few approaches that support adaptation of service-

based systems have started to appear [1][2][5][21][22][24]. The

work in [5] proposes an approach towards self-healing for

services compositions based on monitoring rules and reaction

strategies. Another approach for self-healing is found in the

PAWS framework [1] in which monitor and recovery actions are

used. In [2] the authors present a context-aware adaptive service

approach. The VieDAME framework [22] uses an aspect-oriented

approach to allow adaptation of service-based systems for certain

QoS criteria based on various alternative services. The work in

[21] is based on augmenting service monitoring with online

testing to identify possible failures in the system.

Although several approaches have been proposed for monitoring

and adaptation of service-based systems, none of these approaches

consider the need for adaptation of the monitor rules.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a monitor adaptation framework

(MADap) that supports the identification, modification, creation,

and removal of monitor rules due to changes in the (i) service-

based system or set of services used in the system, (ii) types of

user interaction with the system, and (iii) context characteristics of

the user interacting with the system. The framework considers

different types of user context such as role, skill, need,

preferences, and cognition. MADap is based on the use of monitor

rule patterns for each different user context type. A prototype tool

has been developed to illustrate and evaluate the framework. We

are currently extending the set of patterns for the different types of

user context. We are also conducting other evaluation of the

framework for more complex service-based systems. Moreover,

we are analyzing the performance of the framework and how a

monitor component could use the created, identified, and

modified rules during run-time.

7. ACKNOWLEDGMENTS
The work reported in this paper has been funded by the European

Community‟s 7th Framework Programme under the Network of

Excellence S-Cube – Grant Agreement no. 215483.

8. REFERENCES
[1] Ardagna, D., Comuzzi M., Mussi, E., Pernici, B., Plebani,

P. 2007. PAWS: A Framework for Executing Adaptive

Web-Service Processes. IEEE Softw. 24, 6, 39-46.

[2] Autili, M., Di Benedetto, P. and Iverardi. P. 2009. Context-

aware Adaptive Services: The PLASTIC Approach. In Proc.

of the 12th International Conference on Fundamental

Approaches to Software Engineering, FASE‟09, York, UK.

[3] Barbon, F., Traverso, P., Pistore, M. and Trainotti, M. 2006.

Run-Time Monitoring of Instances and Classes of Web

Service Compositions, in IEEE International Conference on

Web Services, ICWS„06, Chicago, USA.

[4] Baresi, L. and Guinea, S. 2005. Towards Dynamic

Monitoring of WS-BPEL Processes. Third International

Conference on Service Oriented Computing, ICSOC„05,

Amsterdam, The Netherlands.

[5] Baresi, L., Ghezzi, C., Guinea, S. 2007. Towards Self-

Healing Compositions of Services. Studies in

Computational Intelligence, v. 42, Springer, Heidelberg.

[6] Betini, C., Maggiorini, D. and Riboni, D., 2007. Distributed

Context Monitoring for the Adaptation of Continuous

Services, In WWW Journal, Special Issue on Multichannel

Adaptive Information Systems on WWW. Springer.

[7] BPEL4WS.http://www128.ibm.com/developerworks/

library/specification/ws-bpel/

[8] Brown A. and Ryan, M., 2009. Context-aware Monitoring

of Untrusted Mobile Applications, Security and Privacy in

Mobile Information and Communication Systems, First

International ICST Conference, MobiSec „09, Turin, Italy.

[9] Chen, H., Finin, T., Joshi, A. 2003. An Ontology for

Context-Aware Pervasive Computing Environments. The

Knowledge Engineering Review, v. 18 n. 3.

[10] Chen G. and Kotz, D., 2000. A Survey of Context-Aware

Mobile Computing Research. Technical Report. Dartmouth

College, Hanover, NH, USA.

[11] Dery-Pinna, A-M., Fierstone, J. and Picard, E. 2003.

Component model and programming: A first step to manage

human computer interaction adaptation. In Proc. of 5th Int.

Symposium on Human-Computer Interaction with Mobile

Devices and Services, MobileHCI'03, Udine, Italy.

[12] Dey A.K. and Abowd, G.D. 2000. The Context Toolkit:

Aiding the Development of Context-Aware Applications.

Workshop on Software Engineering for Wearable and

Pervasive Computing, Limerick, Ireland.

[13] Dwyer, M.B., Avrunin, G.S. and Corbett, J.C. 1999.

Patterns in Property Specifications for Finite-state

Verification. 21st International Conference on Software

Engineering, Los Angeles, California, USA.

[14] Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G. 2009.

Model evolution by run-time parameter adaptation. Proc on

the 31st International Conference on Software Engineering,

Vancouver, Canada.

[15] Erradi, A., Maheshwari, P., Tosic, V. 2007. WS-Policy

based Monitoring of Composite Web Services. Fifth

European Conference on Web Services, ECOWS'07, Halle,

(Saale), Germany.

[16] Golemati, M., Katifori, A., Vassilakis, C., Lepouras, G.,

Halatsis, C. 2007. Creating an Ontology for the User

Profile: Method and Applications. In Proc. of the First IEEE

International Conference on Research Challenges in

Information Science, RCIS‟07, Ouarzazate, Morocco.

[17] Ishikawa, F., Suleiman, B., Yamamoto, K. and Honiden, S.

2009. Physical interaction in pervasive computing: formal

modeling, analysis and verification. International

Conference on Pervasive Services, ICPS‟09, London, UK.

[18] Ludwig, H., Dan, A. and Kearney, R. 2004 Cremona: An

Architecture and Library for Creation and Monitoring of

WS-Agreements. In Second International Conference

Service-Oriented Computing, ICSOC‟04, New York, USA.

[19] Maiden N., editor. Codified Human-Computer Interaction

(HCI) Knowledge and Context Factors. S-Cube project

deliverable: PO-JRA-1.1.3 www.s-cube-

network.eu/achievements-results/s-cube-deliverables.

[20] MADap: Monitor Adaptation Project.

http://vega.soi.city.ac.uk/~abdw747/MADap

[21] Metzger, A., Pohl, K., Sammodi, O., Rzepka, M. 2010.

Towards Proactive Adaptation with Confidence:

Augmenting Service Monitoring with Online Testing.

Workshop on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS‟10, Cape Town, South Africa.

[22] Moser, O., Rosenberg, F. and Dustdar, S. 2008. Non-

intrusive monitoring and service adaptation for WS-BPEL.

In Proc. of WWW 2008, Beijin, China.

[23] Nébel, I., Smith, B., Paschke, R. 2003. A user profiling

component with the aid of user ontologies. Proc. of

workshop learning teaching knowledge adaptivity,

Karlsruhe, Germany.

[24] Ouda, A., Lutfiyya, H., Bauer, M. 2010. Automatic Policy

Mapping to Management System Configurations. IEEE

International Symposium on Policies for Distributed

Systems and Networks, POLICY‟10, Washington, USA.

[25] Pistore M. and Traverso P. 2007 Assumption-Based

Composition and Monitoring of Web Services. In Test and

Analysis of Web Services, Springer 2007.

[26] SCube. Software Services and Systems Network of

Excellence. http://www.s-cube-network.eu/

[27] Shanahan, M. 1999. The event calculus explained. In

Artificial Intelligence Today: recent trends and

developments, Springer-Verlag, Berlin, Heidelberg, 1999.

[28] Simmonds, J., Chechik, M., Nejati, S., Litani, E., O‟Farrel,

B. 2008. Property Patterns for Runtime Monitoring of Web

Service Conversations. In Runtime Verification, Springer-

Verlag, Berlin, Heidelberg, 2008.

[29] Spanoudakis, G., Kloukinas, C. and Androutsopoulos, K.,

2007. Towards security monitoring patterns. In Proc. of the

ACM Symposium on Applied Computing, SAC‟07, New

York, NY.

[30] Spanoudakis, G., Mahbub, K., 2006. Non Intrusive

Monitoring of Service Based Systems, In International

Journal of Cooperative Information Systems, IJCIS‟06.

[31] Talwar, V., Shankar, C., Rafaeli, S., Milojicic, D., Iyer, S.,

Farkas, K. and Chen, Y. 2006. Adaptive monitoring:

Automated change management for monitoring systems. In

13th Workshop of the HP OpenView University

Association, HP-OVUA, Cote d‟Azur, France.

Appendix B

CLAM (Cross-layer Adaptation manager)

34

CLAM: Managing Cross-layer Adaptation in Service-Based Systems

Asli Zengin∗, Annapaola Marconi∗, Luciano Baresi†∗ and Marco Pistore∗
∗Fondazione Bruno Kessler – IRST, Trento, Italy
[zengin,marconi,baresi,pistore]@fbk.eu

†Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
baresi@elet.polimi.it

Abstract—Service-based systems (SBS) have a complex lay-
ered structure where the service-based application (SBA) is
implemented through a composition of services, which run on
top of service oriented infrastructures. Taking into account
the heterogeneous and dynamic execution context of such
complex systems, adaptation is not straightforward. While
several state-of-the-art adaptation approaches, unaware of each
other, target different problems at specific parts of the system,
the isolated enactment of those adaptations results in ignoring
the overall impact of the adaptation on the whole SBS. In this
work, we propose an approach that introduces a cross-layer
adaptation manager (CLAM) to tackle this issue. The approach
relies on a cross-layer meta model of the SBS and a set of
predefined domain specific rules to integrate and coordinate
existing analysis and adaptation tools. It assesses the impact
of an initial adaptation trigger at different system levels, and
if needed, proposes additional adaptations, consistent with the
overall system. The paper introduces the proposed approach
and presents preliminary results on its first implementation
with concrete analysis and adaptation tools.

I. INTRODUCTION

The operation of service-based applications is a complex
task. These distributed systems must provide their function-
ality with the required/agreed qualities of services, cope with
the unreliable network on which they operate, and also deal
with the changes in the context in which they are executed,
or in the partner services with which they interact. This
means that all the problems must be discovered as soon as
they materialize, and the applications must be able to adapt
their behavior to cope with them.

Adapting the behavior may mean changing the actual
composition of services, or selecting different partner ser-
vices. Moreover, the satisfaction of service level agreements
in place may also impose changes in the way services
are offered. For example the supervision system may re-
negotiate some quality parameters with the providers of the
partner services, change the configuration of the engine that
runs the composition (BPEL process), tune the platforms
that provide some partner services, and even adjust the
infrastructure (resources) used by the application and its
partners.

This is to say that a problem (adaptation need), which
usually materializes at application level, may trigger adap-
tations at any level of the “usual” service stack [1]: software
(application), platform, and infrastructure. Moreover, some
adaptations may trigger others, or they may influence some

quality parameters, or even the operation, of parts of the
system. For example, the selection of a new cheaper service
could help decrease provisioning costs, but if the new
service were slower than the previous one, it would have a
negative impact on the performance of the new application.
Similarly, to keep the performance agreed with clients, the
same application, or some partner services, may require the
provision of additional infrastructural resources to allocate
all the different instances of the application and run them
efficiently. Again, additional resources may increase the
price of the application, and thus a viable solution must find
a compromise between the two extremes.

Adaptation is thus a cross- and multi-layer problem,
and at each layer it could also target different, possibly
conflicting, system aspects. For example, when reorganizing
the composition, one could privilege the application’s price,
its speed, or the compliance with some external regulations.

Many existing solutions [2]–[10] have addressed adapta-
tion in a “local” way by only considering one system aspect
at one layer; in contrast this paper fosters a comprehen-
sive approach able to address different layers and aspects
concurrently, reason on the dependencies and consequences
among them, and identify global solutions. These solutions
must harmonize layers and system aspects, and provide an
integrated adaptation plan based on local activities.

The paper proposes a consistent and coherent solution for
comprehensive adaptations based on CLAM (Cross-Layer
Adaptation Manager). CLAM relies on a comprehensive
high-level model of the application and of the layers behind
it. Each model element is associated with a set of analyzers
to understand the problem, solvers, to identify possible
solutions, and enactors, to apply them on the element. The
coordinated operation of analyzers, solvers, and enactors is
governed by predefined rules that identify the dependencies,
and consequences, between the elements of the model and
run the different tools. For each adaptation need, CLAM
produces a tree of alternative adaptations, identifies the most
convenient one, and applies it. The paper exemplifies all
main concepts through a simple application for the smart
management of taxi reservations.

The rest of the paper is organized as follows. Section II
motivates and explains the need for holistic, cross-layer
adaptations. Section III introduces the approach, Section IV
presents the system modeling, followed by the descrip-

taxi
request
from user

receive user
loc reserve taxi

send user
taxi

information

send taxi
driver user
information

receive
user at

destination
ACK

process
payment

is payment OK?

send user
payment

ACK

send taxi
driver

payment
ACK

yes

send user
payment

NACK

send taxi
driver

payment
NACK

no receive
payment
in cash

ACK

TS SMS

CPTS

LS PS

Process

Services

Figure 1. Call & Pay Taxi Application

tion of CLAM in Section V. Next, Section VI presents a
first implementation of the concepts, and an assessment of
proposed solution. Section VII surveys related approaches,
while Section VIII concludes the paper.

II. PROBLEM STATEMENT

In this section we present a scenario to illustrate the cross-
layer adaptation problem addressed in this paper. Later it will
be used also to explain our approach.

Our scenario, “Call & Pay Taxi”, is a service-based system
(Figure 1) and composed of the following three layers:
application layer where the application is run and monitored
with respect to the key performance indicators (KPI) of
interest, service layer, which corresponds to the partner
services of the process provided by different platforms, and
finally the underlying infrastructure layer for the composite
service (application) and the partner services.

The layers of our running scenario comprise the following
factors:

• Application layer: “Call & Pay Taxi” composite service
(CPTS), implemented as a BPEL process.

• Service layer: a short messaging service (SMS), a loca-
tion service (LS) and a payment service (PS) provided
by the telecom company, and the taxi service (TS)
provided by the taxi company.

• Infrastructure layer: The underlying platforms on top
of which CPTS, SMS, LS, PS and TS run. E.g.,
workflow engines, the application servers, hardware
resources.

In CPTS, the client requests a taxi by sending a text
message (SMS) to the application. Then, her location is
identified and the taxi company is contacted to organize the
actual taxi service. After transporting the user to destination,
the process terminates with a successful payment.

On this scenario we show an adaptation case to motivate
our problem: The CPTS provider decides to reduce the
overall cost and consults a business analyst. Given that
technologically it is possible to replace services in the
process, the business analyst decides to switch to a cheaper
telecom infrastructure. This means replacing SMS, LS and
PS in the BPEL process. However, there is a problem with
the new LS service’s output message format. It provides

the client’s location in geographical coordinates instead
of the full address while in our application design we
use full address as the input message to the taxi service.
To address this new data mismatch problem, the service
composition is adapted by adding a mediator service in the
workflow. Basically it converts geographical coordinates into
full addresses. Yet it triggers a new problem: We notice that
the new service we introduce for data mediation is too costly
and in fact increases the overall cost of the process in an
unforeseen way.

The new workflow is consistent but the actual goal that
led to the substitution of the telecom provider, that is cost
reduction, is not met. The updated version of CPTS is more
expensive than the original one.

Problem. With the existing approaches when an adaptation
is performed, it targets a particular problem occurring at a
specific SBS layer. Thus, they tend to propose local solutions
to local problems in a way that is isolated from the overall
application context. As we can see in our example, this
practice may result in (i) new adaptation triggers that are not
easy to anticipate, and (ii) undesirable consequences that the
eventual adaptation gets useless with respect to our initial
intention. To avoid such problems, we must understand the
impact of a change across different layers, which have their
own characteristics and constraints. In our example while we
are trying to improve the cost, one of the application KPIs,
we do not know the consequences of replacing the services
of telecom provider at all the layers. Consequently, we need
an approach to meet the following requirements [11]:

R1. identify the problems that might occur at all the SBS
layers due to an adaptation.

R2. if there exist problems, tackle them by proposing new
adaptations that are consistent with the overall system.

We believe that addressing this problem is not trivial
since we must consider the complex, layered structure of the
service-based systems for which we have numerous existing
analysis and adaptation approaches proposed and practised
independently of each other.

III. THE APPROACH

In service-based systems the usual way to adapt is first to
analyze the problem, then to identify a solution (adaptation),
and finally to enact it in the system. For each of them,
there are already several approaches proposed in the state-
of-the-art. However, as we discussed in the previous section,
this traditional way to adapt is not always a good practice.
Therefore, in our solution we would like to change this
conventional order of the adaptation process and orchestrate
these existing mechanisms in the CLAM platform to enable
cross-layer adaptation. The main idea is to reuse them in
order to analyze the impact of an adaptation trigger and to
propagate it if required. In this way we can prevent con-
flicting adaptations and produce a final, validated adaptation
strategy aligned with the overall SBS.

Adaptation paths

CLAM

Cross-layer
Rule Engine

Cross-layer Tree
Constructor

Adaptation Paths
Ranker

Analyzers

Pl
ug

ge
r 1

Initial Adaptation

Selected Adaptation
Strategy

- DataNet analyzer
- Time analyzer
- Cost analyzer
...

New tree node

Check adaptation, adaptation need

Pl
ug

ge
r 2

P
lu

gg
er

 3

...
...

...

Triggered adaptation
Triggered adaptation need

Cross-layer
SBS Meta

Model

Initial Adaptation Need

Model
Updater

Infrastructure
ModelsService

ModelsInstant
Process
Models

Instant System
Configuration

Solvers

- Data mismatch solver
- Process optimizer
...

Can you solve new
adaptation need?

Is new adaptation
harmless?

Enactors

Report
back

Figure 2. CLAM: Cross-layer Adaptation Manager

Our solution is based on three pillars: (i) an integrated
platform where we plug existing adaptation and analysis
tools, (ii) a cross-layer meta model of the SBS, which is
a fundamental input of the overall impact analysis, (iii) a
rule-based analysis methodology for cross-layer adaptation.

We call each of the external mechanisms, which we in-
tegrate to the CLAM platform through pluggers, a “compo-
nent”. They can be analyzers, solvers, or enactors. Analyzers
check the compatibility of an SBS configuration with respect
to some local constraints of the system. Solvers propose
adaptations to the specific problems (adaptation needs) iden-
tified by the analyzers. Enactors apply and implement the
proposed adaptations in the system.

Figure 2 presents the architecture of CLAM to help the
reader understand how the whole proposal works. When a
new adaptation/adaptation need is triggered by one of the
solvers/analyzers, CLAM gets activated to initiate the impact
analysis. In order to figure out which parts of the system
are affected due to a new trigger, CLAM needs a Cross-
layer SBS Meta Model where the SBS layer dependencies
are explicitly presented. Then for the affected system parts it
looks up in its predefined rules that are stored in the cross-
layer rule engine, and it identifies the relevant components
to invoke.

In case of receiving an adaptation trigger, CLAM identi-
fies a set of analyzers to validate the new system configura-
tion regarding the affected system parts. Since analyzers are
associated with a specific part of the system, they perform
their own local analysis based on local constraints. Later
they produce a report for CLAM whether the proposed new
configuration is OK or not.

When an analyzer reports back a problem with the new
configuration, it means it is a new adaptation need that must
be addressed by a solver. In this case, similarly the rule

engine identifies a proper solver and invokes it. If the solver
reports back an adaptation to solve the problem, it indicates
that the problem, which is arisen from the previous analyzer
invocation, is addressed and we can continue our process
until all the identified components are invoked and all the
problems arisen on the path are tackled iteratively. Instead,
if at some point no adaptation is proposed by a solver, we
have to stop the process at that point, and it implies that the
initial trigger that CLAM received could not be validated,
thus cannot be enacted in the SBS.

During the whole process, each time the rule engine
receives a report it contacts cross-layer tree constructor
to enable the incremental construction of the cross-layer
adaptation tree where branches keep alternative adaptation
paths that can address the negative impacts of an initial
adaptation.

In the final step, the constructed tree is passed to the adap-
tation paths ranker so that one of the validated alternative
paths can be selected as a complete adaptation plan and
deployed in the SBS through enactors.

IV. SYSTEM META MODEL

SBS’s layered structure already contains implicitly the
dependencies among the elements of the different layers,
while those dependencies are not trivial among adaptations
coming from different layers. We would like to benefit from
the layer dependencies and create the meta model of the
SBS in a cross-layer manner so that they get explicit to be
easily used by CLAM.

The meta model is not hard-coded in the tool, but it must
be provided by the user. In this paper, we use the usual
hierarchical representation of an SBS, along with the meta
model of Figure 3.

The meta model is created at design time as follows:
• System layers. In this case, we have layers: applica-

tion, service, and infrastructure, each of them with its
characteristics. CLAM can also consider different lay-
ers, elements and characteristics for other application
domains. E.g., for a security critical SOA application,
security might be considered as a separate, new layer.

• Layer elements. For our scenario, at each layer we can
talk about stakeholders, structure, internals and quality
aspects. The stakeholders might be service or infras-
tructure providers at different layers. The structures are
the process, partner services and the infrastructure that
is composed of an application server and the underlying
resources. The layer internals are process activities for
the process, service operations for the services and the
infrastructural ingredients for the infrastructure. Con-
sidering quality, we can talk about KPIs at application
level, and QoSs at service and infrastructure levels.

• Relations among elements. The graph edges display the
dependency between the different system elements. We
distinguish two types of dependency relations: has and
consumes. While has can only be a relation between

Process activity

Process

KPI

consumes

has

consumes

Service
infrastructure

Infrastructure
provider

Infrastructure QoS

consumes

has

has

consumes

Service provider Service

Service
operation

Service QoS

has

has

has

has

Element

Analyzers Enactors

Solvers

Application Layer Service Layer Infrastructure LayerElement 1 Element 2 Element 3

... ...

.....

Layer 1 Layer 2 Layer 2

Infrastructure
constituents

hasStructure

Quality

Internals

Stakeholder Stakeholder

Quality Quality

Structure Structure

Internals Internals

Cross-layer System Representation
(System Meta Model) A Sample Meta Model for the Case Study

(also used in the implementation with the following components: DataNet Analyzer,
DataMismatch Solver, Process Optimizer, Time and Cost Analyzers)

DataNet
Analyzer

Time
Analyzer

Cost
Analyzer

Data
Mismatch

Solver

Process
Optimizer Service

Quality Re-
negotiator

Service
Replacer

Load
Balancer

Resource
Analyzer

Figure 3. System Modeling for CLAM

two elements of the same layer; consumes defines the
inter-layer relations where an element from a layer
relies on another element from a different layer. For
example, at infrastructure level, the provider has the
infrastructure and the infrastructure has QoS attributes.
On the other hand, since services are running on top of
infrastructures, naturally the structure element from the
service layer has a consumes relation with the structure
element from the infrastructure layer. Similarly, the
availability of a service depends on the availability
of the infrastructure on top of which it is run. Then,
naturally there is a consumes relation between service
QoS and infrastructure QoS.

• Components associated with system elements. For each
system element we have analyzers, solvers and enac-
tors. An analyzer gets an adaptation proposal from a
solver and validates it for the local constraints related
to the system element that it is associated with, and
produces an output to state whether the constraints hold
or they are violated by the given proposal. For example,
a time analyzer associated with a KPI node in the model
can check the compatibility of a modified process
with respect to the execution time to see whether it
is still in the desired range. A constraint violation
that is detected by an analyzer is a newly triggered
adaptation need that must be addressed by a proper
solver. Thus, a solver gets an adaptation need and
produces an adaptation action or a set of alternative
actions to handle the need. For instance, if we had a
problem with process execution time, we might try to
parallelize some process activities by using a process
optimizer as a solver, or we might try to re-negotiate
the response time of partner services at QoS level. On
the other hand, enactors are invoked only in the end
when the overall CLAM analysis is carried out and a
selected adaptation path is to be deployed. For example,
a process migrator is an enactor that can migrate the
running process instances to a new process model.

The system meta model serves us in two ways: (i)

navigating the graph to reason on the overall analysis (ii)
instantiating the model with concrete value assignments to
the elements (we call them system configurations, e.g. M0,
M1...) to keep track of alternative adaptation actions during
the analysis. E.g., for our reference scenario, CPTS, we can
instantiate a system configuration with the current BPEL
file in use for the execution, partner services SMS, LS,
PS that are provided by the current telecom provider X,
and the TS that is provided by RadioTaxi Trento. Similarly
we can instantiate each graph node with concrete elements
and overall graph instantiation will correspond to a system
configuration (i.e., an Mi).

V. CLAM PLATFORM

Our solution proposes a comprehensive impact analysis of
an adaptation/adaptation need triggered in the SBS. In this
section we introduce CLAM rules and present a comprehen-
sive description of this impact analysis, which we also call
“CLAM analysis”.

First, we would like to elaborate the concepts related to
the adaptation:

Adaptation need, produced by an analyzer, is a com-
patibility problem of an SBS instance considering a local
constraint imposed by a system element. Adaptation needs
are predefined and associated with system elements at design
time. For example, if the current system configuration is
violating cost KPI, a cost analyzer would report the incom-
patibility that cost should be reduced.

Adaptation action is produced by a solver as a set of
changes on system elements in the current system configura-
tion. A change could be “modifying”, “replacing”, “adding”
or “removing” a concrete element in the cross-layer SBS
model. If we introduced a data mediator service sID to the
composition pID, a data mismatch solver would produce
the action: “add service sID; modify process pID” to solve
the mismatch problem caused by the new LS. In general, a
solver can produce a set of alternative adaptation actions to
the given adaptation need.

Adaptation strategy is a sequence of adaptation actions
validated by CLAM. Validation is either through the ap-

proval of the new configuration obtained through the pro-
posed adaptation, or if it is not the case, through identifying
the new problem (i.e., adaptation need) and proposing an
additional adaptation action that solves this problem.

CLAM Rules. Analyzers, solvers, and enactors share a
common language to deal with adaptation. An analyzer gets
a local constraint and the relevant elements of the current
configuration as input and produces an adaptation need as
output, a solver gets an adaptation need and similarly the
relevant elements of the current configuration as input and
proposes a set of alternative adaptation actions as output,
while an enactor gets an adaptation action to be applied to
the system. These relations are governed by the following
rules:

1. Analyzer Rules help decide which analyzers to invoke
when there is a change in a system element due to an
adaptation. These rules associate analyzers with system
elements.

E.g., process → cost analyzer, time analyzer

2. Solver Rules help decide which solvers to invoke when
an adaptation need is produced by an analyzer. These rules
associate a set of solvers with each adaptation need defined
in the system.

E.g., reduce process time → process optimizer, service
quality re-negotiator, service replacer

3. Enactor Rules help decide which enactors to invoke when
an adaptation action is to be deployed in SBS. Similarly
these rules associate a set of enactors with each adaptation
action included in the system.

E.g., add service → dynamic service binder

Whenever we add a new component in CLAM, we need
to (i) define a new set of rules and update the existing ones
if necessary, (ii) enable its integration to the platform by
adapting its interface through the CLAM plugger, and (iii)
assign a priority to it. This is both to organize the invocation
order when there is more than one component and to have
preferences over the components with the same functionality.

When analyzers/solvers return some results, CLAM needs
to keep track of new adaptation needs/adaptation actions
both to iteratively continue its analysis and to incrementally
build the adaptation strategies. The analysis is accomplished
based on the rules, and the adaptation strategies are built and
kept through the construction of a cross-layer adaptation
tree, T . Each time an adaptation need/adaptation action
triggers CLAM, it creates a new tree T . The results produced
by a component motivates a new edge E, which contains the
status of the report, and a new node N, which contains the
newly obtained configuration of the system and the queue
of remaining components to invoke (Figure 4).

CLAM Algorithm. Let us see how CLAM performs
the impact analysis. We distinguish three main parts in the
algorithm:

1. Components Queue This part manages the dynamic queue
that keeps an up-to-date set of components to be utilized

during the whole analysis.

• Adding components. When there exists a set of new
components to be invoked, we get the priorities of
components and we update the queue by adding the
new components.

• Deleting components. When a component invocation is
completed (report is received), the component is deleted
from the queue.

• Empty queue. When there is no component left in the
queue to invoke, we terminate the analysis.

2. Components Discovery Through the execution of CLAM
rules, this part clarifies when we need to find an analyzer
(or analyzers) and how to do it, and similarly when we need
to find a solver and how to do it.

• Analyzer discovery. When we receive a set of al-
ternative adaptation actions from a solver, for each
alternative, we identify the system elements it would
modify, and mark them as “changed”. Next, we identify
the elements that have a “consumes” relation with the
changed ones, and mark them as “affected”. Finally, we
search rules and get the analyzers associated with all
the changed and affected elements.

• Solver discovery. When we receive an adaptation need
from an analyzer, we search rules and get the set of
solvers connected to this adaptation need.

3. Tree Construction This part describes how we gradually
construct the tree upon receiving component reports.

• Positive analyzer report. When CLAM receives a pos-
itive report from an analyzer, which means for a given
system configuration the relevant constraint is satisfied,
we update the queue, get the current node of the tree,
and append the new edge, which contains the report
status and then the new node, which contains the same
system configuration and the updated queue. If the
updated queue is empty, we mark this newly created
node as a green leaf and terminate the analysis. If the
queue is not empty, we set the newly created node as
the current node, and call the next component in the
queue and wait for a new report.

• Negative analyzer report with a new adaptation need.
When CLAM receives a new adaptation need from an
analyzer, we update the queue, and identify the solvers
that may allow us to satisfy the adaptation requirement.
If no solver is found, we mark the current node as a
red leaf and terminate the analysis for that path. If more
than one solvers are found, we select the one with the
highest priority, and add it to the queue. Next, we get
the current node, and similarly create and append the
new edge and new node, and continue the analysis by
invoking the next component in the queue.

• Negative analyzer report. When CLAM receives a
negative report from an analyzer and no adaptation need
is proposed, we mark the current tree node as a red leaf
and terminate the analysis for that path.

• Positive solver report. When CLAM receives a new set
of alternative adaptation actions from a solver, for each
adaptation, we update the queue and the configuration
by including the elements that would be changed by the
adaptation. Then, we identify the analyzers needed for
validation. Next, we add the identified analyzers to the
queue, update the tree with the new node, and continue
the analysis with the next component.

• Negative solver report. When CLAM receives a nega-
tive report from a solver, i.e., no adaptation is proposed,
we terminate the analysis.

After constructing the tree, CLAM extracts the paths
from the root to the green leaves, each of which is an
alternative adaptation strategy. It selects one strategy based
on quality criteria and invokes the relevant enactors to apply
its adaptation actions to the running system.

VI. IMPLEMENTATION

We implemented the first version of CLAM platform in
Java where we defined the rules using JBoss Drools - The
Business Logic integration Platform1. In order to use the
platform, we need to provide as input (i) the system meta
model which is created at design time by the user, (ii) the
components to be used during the CLAM analysis. Once
components are decided, we need to integrate them with the
platform as described in the previous section.

The current implementation uses the following state-
of-the-art analyzers and solvers: time and cost analyzers
associated with the element quality, dataNet analyzer asso-
ciated with the element process activity at the application
layer, process optimizer associated with the adaptation need
“reduce time” and data mismatch solver associated with the
need “remove data mismatch”. Currently, CLAM integrates
and coordinates all these tools, but other could be easily
plugged as well.

In this paper we focused on how to perform the CLAM
impact analysis rather than the deployment of adaptation
results in the SBS. Thus, current implementation does not
have enactors integrated with CLAM.

The tools used in the implementation are:
QoS4BPEL is used for both time and cost analyses in

our platform [12]. It gets as input the BPEL file of the
application and the execution times and costs of each process
activity in the BPEL, then it produces an aggregate value
for them. Then the aggregate values can easily be compared
with KPI target values to detect if a KPI is violated or not
regarding a new process model.

Mismatch Patterns and Adaptation Aspects is used
as both dataNet analyzer and data mismatch solver [10].
In dataNet analysis, whenever a new service is introduced
to the composition, the compatibility of its interface is
checked against the data flow requirements of the process.
The tool gets as input the BPEL file and the WSDL file

1http://www.jboss.org/drools

adaptation = replace provider X by Y

mismatchSolver = OK
adaptation = add service

A

(costAnalyzer = NOK)
timeAnalyzer = NOK

adaptation need = decrease process time by 3
sec

{human }
M0

{dataNet, time, cost}

M1

mismatchSolver = OK
adaptation = add service B

mismatchSolver = OK
adaptation = add service C

{cost, time }
M2'’

{cost, time }
M2'’’

{cost, time }

M2'

{time }
M2'’

{time }
M2'’’

{ }
M2'’

{processOptimizer }

M2'’’

costAnalyzer = OK

costAnalyzer = OK

timeAnalyzer = OK

{dataMismatchSolver, time, cost}
M1

dataNetAnalyzer = NOK
adaptation need = remove datamismatch

{ }
M3

processOptimizer = OK
adaptation = parallelize PAs “receive

user@destination ACK” and “process payment”

Figure 4. CLAM Tree for Alternative Adaptation Paths

of the new service and then performs the analysis based on
some predefined mismatch patterns for the application. If a
mismatch is identified, it is also capable of producing an
adaptor, i.e., a data mediator, which can be introduced to
the composition as a service.

Structural Adjustment of BPEL is used as process
optimizer to reduce the execution time of a process [13].
While in the case study we used it for time optimization,
the tool is capable of optimizing the memory usage of the
process as well. It gets as input the BPEL file and produces
an optimized BPEL if any task parallelization is possible.

A. CLAM at Work

The resultant tree that CLAM produces for our case study
is given in Figure 4. When we receive the new adaptation
action “replace telecom provider X by Y”, first we update
the system configuration from M0 to M1 since we now have
the SMS, LS and PS of the new telecom provider together
with their new QoS attributes. Then, we identify the changed
and affected system elements. Changed elements are: service
provider, service, service operation and service QoS (due
to has relation) and those affected are: process activity
and KPI (due to consumes relation). Then, we check the
analyzers connected to these elements and identify dataNet,
time and cost analyzers. Next, these new analyzers to be
invoked are put in the queue and ordered according to their
invocation priorities. Since now we have the updated system
configuration and the updated queue, we can add the new
node to the tree and invoke the next component from the
queue, in this case the dataNet analyzer. It reports that the
analysis is not OK, there is a data mismatch problem for the
LS of the new telecom provider. We find the matching solver
for the new adaptation need and in this way we continue to
construct the tree gradually. A tree path is terminated when
we end up with either an empty queue (green leaf) or a
negative analyzer/solver report (red leaf).

B. Evaluation and Discussion

This section provides a first attempt to assess CLAM and
to discuss the preliminary results obtained on the case study.

This is not a complete and thorough empirical assessment
of the work done, but it provides some interesting indicators
to the reader:

• Time performance: The construction of the tree of
Figure 4 took around 3 seconds on a laptop with a
2 GHz Intel Pentium M Processor, Windows XP, and 1
GB RAM. In the future we would like to observe the
change in the execution time by including both more
adaptation cases where several trees of different lengths
are produced, and more components integrated. Even
though the current version of CLAM works offline,
these figures provide a preliminary idea of how CLAM
would perform at runtime. However, both overall exe-
cution time and run-time usability also depends on the
performance of the tools plugged in CLAM.

• Loop problem: In the computation of the adaptation tree
we had to deal with the problem of infinite paths. First,
different sequences of adaptations, i.e., different tree
paths, might bring the SBS to the same configuration
(Mi). In the current implementation, we track the
Mis that we keep in the nodes. If after a sequence
of iterations, we reach the same configuration, we
stop there. Second, we might have infinite number of
adaptations, each of which brings the SBS to a new
Mi. We address this problem by setting as a system
parameter the maximum number of adaptation triggers
on a tree path.

• Integrity and extensibility: CLAM provides a coordi-
nated platform for tools, designed in isolation from
each other and that they do not know each other,
they do not care about other system elements, which
might be affected due to a modification that they make
on the system. In such cases an adaptation can harm
a system element while it is improving another one.
Moreover, plugging-in a new tool in CLAM is not
expensive. Upon learning the input and output data of
the new component, the CLAM designer should define
and update the relevant rules, assign a priority to the
tool, and instantiate a new plugger for the integration
with the platform. This will make the tool visible to
the rule engine such that it can be taken into account
during the analyses.

• Correctness and completeness: For the time being we
can state the following: If we assume that (i) the
existing state-of-the-art tools that are in use by our
platform run correctly and (ii) that CLAM is fed with
the complete system model and with a complete set
of analyzers and solvers; our approach is correct in
the sense that it searches for and, if possible, finds a
complete adaptation strategy, which is consistent with
the whole set of local constraints in the SBS.

VII. RELATED WORK

Existing work for SBS adaptation mostly focuses on
specific aspects of the application where the adaptation

problem is solved in a narrow scope, without taking into
account its consequences for the whole SBS stack. BPM
adaptation [2], [3], dynamic service binding [4], [5], self
adaptation and self healing systems [6], [7], QoS-awareness
[8], [9], mediator design for service interactions [10] and
finally context-awareness [14] are relevant aspects. In prin-
ciple, those approaches can serve our platform as solver
components and in this way they can be aligned with all
the SBS elements and be more effective.

Yet, there are few approaches in literature that propose
the use of cross-relations for adaptation. In [15] coordinated
adaptation is introduced for multiple applications interacting
with each other in the same environment. These applications
are not composed, but rather single entities which are
affected by the same contextual attributes such as sharing
common resources. The authors claim that a coordinated
platform is important before adapting these applications to
the context changes, since they have interactions in the same
environment. This problem is addressed in a narrow scope,
only in terms of management of shared resources. Another
problem they mention is conflict resolution for two adapta-
tion mechanisms. However, they expect the user to perceive
the conflict, and modify the mechanisms accordingly.

[16] analyzes the dependencies of KPIs on process
quality factors from different functional levels of an SBA
such as QoS parameters, and then an adaptation strategy is
decided to improve all the negatively affected quality metrics
in the SBA. This work proposes a set of adaptations for KPI
violations through the consideration of the non-functional
layer dependencies. However, the work is at preliminary
stage and the rules how to tackle violations are unclear.

Another approach is [17], which presents a framework
for cross-layer adaptation of service oriented applications
that comprise organization, coordination and service layers.
The application stack is similar to the SBS stack, which
we introduce in this paper. They propose a technique where
the cross-layer adaptation designer prepares the taxonomies
of adaptation mismatches, and later designs the adaptation
templates, also known as patterns, that define generic solu-
tions to tackle mismatches. Their technique directly models
cross-layer adaptation templates, i.e., their dependencies are
known from design time. These are like fixed patterns for
cross-layer adaptation cases. Instead, we model the appli-
cation in a cross-layer fashion and then discover the cross-
layer adaptation paths on the fly through the coordination of
available tools and mechanisms.

Like our approach, [18]–[20] have a cross-layer represen-
tation of the application model. While [19], [20] target a lim-
ited number of adaptation cases such as service replacement,
[18] makes use of the cross-layer model for monitoring and
analysis rather than adaptation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented CLAM, a holistic SBS man-
agement framework that can deal with cross- and multi-

layer adaptation problems. This is achieved in two ways:
on the one hand CLAM identifies the system elements
affected by the adaptation actions, and on the other hand
it identifies an adaptation strategy that solves the adaptation
problem by properly coordinating a set of components, i.e.,
analyzers and solvers integrated in the system. The proposed
solution relies on a comprehensive high level system model
that allows to easily extend the framework by plugging-in
new components. We implemented the proposed framework
and evaluated it on a service-based application for taxi
reservation.

In the future we will enhance the criteria for the selection
of the best adaptation strategy with costs for adaptation
enactments. Moreover, we plan to address the issue of
analyzing multiple adaptations simultaneously instead of
analyzing a single adaptation case. In the meanwhile, we will
continue to evaluate the framework on application scenarios
entailing higher level of complexity and requiring to deal
with different system layers and concerns (e.g. Cloud-based
applications).

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

REFERENCES

[1] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, no. 11, pp. 38–45, 2007.

[2] L. T. Ly, S. Rinderle, and P. Dadam, “Integration and verifica-
tion of semantic constraints in adaptive process management
systems,” Data Knowl. Eng., vol. 64, no. 1, pp. 3–23, 2008.

[3] A. Brogi and R. Popescu, “Automated Generation of BPEL
Adapters,” in ICSOC 2006:Service-Oriented Computing,
pp. 27–39, 2006.

[4] K. Verma, K. Gomadam, A. Sheth, J. Miller, and Z. Wu, “The
meteor-s approach for configuring and executing dynamic
web processes,” LSDIS METEOR-S project. http://lsdis. cs.
uga. edu/projects/meteor-s/techRep6-24-05. pdf. Technical re-
port, 2005.

[5] M. Colombo, E. D. Nitto, and M. Mauri, “SCENE: A
Service Composition Execution Environment Supporting Dy-
namic Changes Disciplined Through Rules,” in In ICSOC06,
pp. 191–202, 2006.

[6] M. F. L. Console, “Ws-diamond: An approach to web services
- diagnosibility, monitoring and diagnosis,” 2007.

[7] A. Charfi, T. Dinkelaker, and M. Mezini, “A plug-in archi-
tecture for self-adaptive web service compositions,” in ICWS
’09: Proceedings of the 2009 IEEE International Conference
on Web Services, (Washington, DC, USA), pp. 35–42, IEEE
Computer Society, 2009.

[8] E. Nitto, M. Penta, A. Gambi, G. Ripa, and M. L. Villani,
“Negotiation of service level agreements: An architecture and
a search-based approach,” in ICSOC ’07: Proceedings of the
5th international conference on Service-Oriented Computing,
(Berlin, Heidelberg), pp. 295–306, Springer-Verlag, 2007.

[9] K. Christos, C. Vassilakis, E. Rouvas, and P. Georgiadis,
“Qos-driven adaptation of bpel scenario execution,” in ICWS
’09: Proceedings of the 2009 IEEE International Conference
on Web Services, (Washington, DC, USA), pp. 271–278, IEEE
Computer Society, 2009.

[10] W. Kongdenfha, H. Motahari-Nezhad, B. Benatallah,
F. Casati, and R. Saint-Paul, “Mismatch patterns and adap-
tation aspects: A foundation for rapid development of web
service adapters,” IEEE Transactions on Services Computing,
pp. 94–107, 2009.

[11] A. Zengin, R. Kazhamiakin, and M. Pistore, “Clam: Cross-
layer management of adaptation decisions for service-based
applications,” in 2011 IEEE International Conference on Web
Services, pp. 698–699, IEEE, 2011.

[12] M. Dumas, L. Garcı́a-Bañuelos, A. Polyvyanyy, Y. Yang,
and L. Zhang, “Aggregate quality of service computation for
composite services,” Service-Oriented Computing, pp. 213–
227, 2010.

[13] N. Rasadka and A. Marconi, “Optimizing bpel compositions
via automatic process re-writing,” Technical Report, 2011.

[14] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Ple-
bani, “Paws: A framework for executing adaptive web-service
processes,” IEEE Softw., vol. 24, no. 6, pp. 39–46, 2007.

[15] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday, “An ar-
chitecture for the effective support of adaptive context-aware
applications,” in Proceedings of Mobile Data Management
(MDM’01), (Berlin), pp. 15–26, Springer, January 2001.

[16] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore,
and F. Leymann, “Adaptation of service-based applications
based on process quality factor analysis,” in Service-Oriented
Computing. ICSOC/ServiceWave 2009 Workshops, pp. 395–
404, Springer, 2010.

[17] R. Popescu, A. Staikopoulos, P. Liu, A. Brogi, and S. Clarke,
“Taxonomy-driven adaptation of multi-layer applications us-
ing templates,” in SASO’10, pp. 213 –222, 2010.

[18] L. Baresi, M. Caporuscio, C. Ghezzi, and S. Guinea, “Model-
Driven Management of Services,” in ECOWS’10, pp. 147–
154, 2010.

[19] U. Tripathi, K. Hinkelmann, and D. Feldkamp, “Life cycle
for change management in business processes using semantic
technologies,” Journal of Computers, vol. 3, no. 1, p. 24,
2008.

[20] B. Burgstaller, D. Dhungana, X. Franch, P. Grunbacher,
L. López, J. Marco, M. Oriol, R. Stockhammer, J. Universitat,
and J. Universitat, “Monitoring and Adaptation of Service-
oriented Systems with Goal and Variability Models,” tech.
rep., Universitat Politècnica de Catalunya, 2008.

Appendix C

Adaptation of Service-based Business
Processes by Context-Aware Replanning

43

Adaptation of Service-based Business Processes by
Context-Aware Replanning

Antonio Bucchiarone, Marco Pistore and Heorhi Raik
Fondazione Bruno Kessler

Via Sommarive, 18, Trento TN 38100, Italy
{bucchiarone,pistore,raik}@fbk.eu

Raman Kazhamiakin
SayService srl

Via alla Cascata, 56C, Trento TN 38100, Italy
raman@sayservice.it

Abstract—Service-based business processes are typically used
by organizations to achieve business goals through the coordi-
nated execution of a set of activities implemented as services
and service compositions. Since they are executed in dynamic,
open and non-deterministic environments, business processes
often need to be adapted to exogenous context changes and
execution problems. In this paper we provide an adaptation
approach that can automatically adapt business processes to
run-time context changes that impede achievement of a busi-
ness goal. We define a formal framework that adopts planning
techniques to automatically derive necessary adaptation activi-
ties on demand. The adaptation consists in identifying recovery
activities that guarantee that the execution of a business process
can be successfully resumed and, as a consequence, the business
goals are achieved. The solution proposed is evaluated on a
real-world scenario from the logistics domain.

Keywords-service-based applications; adaptation; service
composition; context;

I. INTRODUCTION

In recent years, service-oriented architectures have been
widely used for the realization of complex business pro-
cesses. In such processes, activities are realized through
the invocation of a set of available services (both software
services and human-based services).

Modern business processes often operate in dynamic,
open and non-deterministic environments. This means that
the execution context is volatile, and the outcome of some
activities is not completely controllable. In addition to this,
the set of available services and the set of business policies
is also changing dynamically. Dynamic context changes or
undesirable outcome of some activities may often cause
abnormal termination of the process and prevent the achieve-
ment of the business goals. The solution might be the run
time modification (or adaptation) of the basic process so
that it can properly react to such extraordinary situations.

The most trivial approach to achieve adaptation consists in
analyzing at design time all the extraordinary situations, de-
veloping corresponding recovery activities, and embedding
them into a reference process, using standard mechanisms
such as exception handling [7] or dedicated mechanisms for
encoding adaptation into business process languages [13],
[16]. Still, such built-in adaptation can hardly be used for
complex processes, where adaptation cases may be too many
and require too complex recovery activities to be “manually”

implemented at design-time. It also provides very poor scala-
bility since even minor changes in the execution environment
(e.g., business policies are changed, or new services and
capabilities are offered by service providers) may require
a substantial re-design and re-implementation of recovery
activities.

In order to address these limitations of built-in adaptation,
many approaches perform the adaptation at run time, when
a specific problem and a specific context for adaptation
are defined. The vast majority of these approaches can be
characterized as rule-based, since they predefine rules on
how to transform a basic process in extraordinary situations.
Some approaches introduce transformation rules explicitly
[5], [15], [19], others define process variants [10], [12], [11]
or use aspect-oriented methodologies [14], [1], [11]. Rules
are more general than built-in adaptation since, while being
written at design time, they are applied to a targeted process
at run time, when more information on the extraordinary
situation and execution context is available. This also results
in much better scalability.

Rule-based approaches, however, still share a major draw-
back with built-in approaches. Since the rules are specified
at design time, the designer has to choose a particular
adaptation tactic for a certain extraordinary situation. At run
time, it may happen that the tactic chosen is not applicable
(e.g., if it requires the usage of a service that became
unavailable), or a better tactic could be available (e.g., newly
appeared services may allow for better recovery approaches).
Maintaining an updated and consistent set of adaptation rules
is a very time-consuming and error-prone task that requires
profound knowledge of the execution environment, as well
as advanced supporting tools. Moreover, sophisticated adap-
tation tactics usually require considerable amount of rules
to be specified.

In this work, we propose a goal-based approach to busi-
ness process adaptation in service-based applications. In our
approach, adaptation activities are not explicitly represented.
Instead, we build a formal framework that enables dynamic
derivation of adaptation activities considering all aspects of
the environment (current context, business policies, available
services etc.) To support this, we 1) define a formal model
for services and for service-based applications that enables
adaptation. The formal model is based on the notion of

goals, and on service annotations that describe how services
contribute to goal achievement; and 2) propose an execution
engine that observes process execution and triggers adapta-
tion on demand. In other words, the execution engine detects
extraordinary situations that require adaptation and figures
out adaptation goals. The actual adaptation of the business
process is based on service composition via automated
planning technique [2], [6]: when triggered by the execution
engine, the planning algorithm [6] generates a composition
of available services that achieves the adaptation goals in
compliance with business policies.

Unlike rule-based approaches, our goal-based approach
guarantees that if solutions exist they will be found au-
tomatically, without involving design activities by process
analysts. In this regard, it overcomes the limitations of
the rule-based approaches discussed above. Compared to
other existing solutions, we also expect it to provide better
flexibility, scalability and designer’s productivity when ap-
plied to the business processes acting in extremely dynamic
environments.

The rest of the paper is structured in the following way.
In Section II we present our motivating example and discuss
the main challenges we face. While Section III provides
an overall picture of our approach, Section IV gives its
formalization details. Section V is devoted to the evaluation
of the algorithm performance and adaptation modelling
overhead. In Section VI we provide profound comparison
with other dynamic approaches and discuss a few open
issues we plan to address in the future.

II. MOTIVATING EXAMPLE

In order to illustrate the problems addressed in the paper
and to evaluate our approach we use a case study from the
logistics domain. The case study is inspired by the operation
of the sea port of Bremen, Germany [3]. The port receives
ships loaded with cars and has to organize the delivery of
the cars to retailers. Before delivered, each car goes through
a number of steps such as unloading, registration, storing,
different types of treatment ordered by a retailer etc.

In order to handle cars, a service-based application is
introduced. It includes a number of services implementing
different car-related activities 1, and a service-based business
process that orchestrates the services and implements the
workflow. Some of the services do not appear in the busi-
ness process but are used for the adaptation purposes. The
context, in which the car handling process operates, exposes
some important features: it is open for changes and situations
that are not controlled by the process (e.g., car damage or
storage overbooking), dynamic (a set of available services
are changing) and non-deterministic (service operations may
have various outcomes).

In this paper, we use two versions of the logistics case
study: the simple version will be exploited to exemplify

1We remark that in this domain certain services are not fully-fledged
electronic services (e.g., a service for unloading a car), but rather the
wrappers for human-based activities.

formal definitions and to illustrate the motivating problems,
while the complex, extended, version will provide more
comprehensive evaluation of the approach and demonstrate
its feasibility in real-world settings.

A. Simple scenario

Upon its arrival to the port, a car has to be 1) unloaded
from the ship to the terminal and 2) moved to the storage
area. Services Unload and Move implement these two
activities. The reference process looks like this:

During the process execution, an extraordinary situation
may happen. In particular, the car may be damaged (while
moving to the storage area, being unloaded, or even before).
To deal with that, the application provides two additional
services: Pull service is used to pull the car to the repair
area and SlowRepair service is used to repair the car. Finally
the application defines the following policies: 1) a car can
be driven only if it is completely operable; 2) pulling is
applicable only to broken cars and is not applicable on the
ship; 3) slow repair requires that the car is brought to the
dedicated repair area. This example allows us to demonstrate
two important problems.
Context-aware adaptation. If the car gets damaged, a
corresponding adaptation depends on the current process
context (here, the current location of the car). If the car
is on the ship, it still has to be unloaded, and only then
pulled to the repair area and finally repaired, while if the car
is damaged again immediately after the repair, the Repair
Service can be applied to it immediately (since the car is
already at the repair area). Even this very simple example
shows that the same failure may require significantly differ-
ent adaptation activities depending on the current context.
Analyzing and defining these adaptations “manually” using
exception handling or through the rules becomes time-
demanding and error-prone in real-world scenarios. Indeed,
the designer should have a global vision of the application
and its context to define appropriate actions, which becomes
complicated when the number of relevant context features
and their interleaving increases.
Scalability in dynamic environment. Assume that the
operation of the repair area is temporarily suspended and
mobile repair teams are organized instead. They repair
broken cars on the spot, without pulling them to the repair
area. Consequently, a new service called FastRepair is
introduced, while the SlowRepair is temporarily removed
from the list of available services. As one can see, the
FastRepair is not just another implementation of car repair
procedure, but also has different usage policies (e.g., pulling
is not needed anymore).

Such a service replacement has a dramatic impact on the
adaptability of the application. Indeed, the adaptation logic
should take the new service and the associated policies into

account. While the service replacement can be done at run-
time (i.e., service is created and added to the repository
without necessarily redeploying the whole application), the
changes in the adaptation specification – for the built-in
and rule-based approaches – cannot. In built-in approaches
predefined adaptation activities affected by the change must
be manually redesigned, in rule-based approaches some rules
have to be manually re-specified and the whole rule system
has to be revalidated. This restricts the applicability of such
adaptations in highly dynamic environments.

B. Complex scenario
The above problems become much more prominent in the

complex version of our logistics scenario 2. In this version
the business process contains 5 basic milestones (related to
the car registration, complex post-transportation treatment
and delivery) built on top of 25 services with complex
stateful behavior. Furthermore, the range of context features
that the scenario takes into account and that are relevant for
the adaptation is much wider and includes, for example, the
different grades of car damage (important not only for car
moving but also for the treatment, diagnosis, and delivery),
availability of facilities, car characteristics, etc.

Consequently, the size of the adaptation specification sig-
nificantly increases: much more new rules should be added;
the built-in adaptation activities become more sophisticated.

To overcome these problems the adaptation framework
should enable dynamic adaptation, where the need for the
adaptation and the solution is automatically derived from
the current context and application state, without explicit
encoding of all possible situations and solutions for all
possible services. To accomplish this, we need:
• a model to characterize the relevant context properties

of the application and its adaptation logic. Such a model
should decouple the application context, the adaptation
requirements, and the constituent services so that their
changes (e.g., changed business policies or new services
dynamically introduced) would not affect the whole
model, thus enabling reuse in dynamic settings.

• a technique to construct the adaptation activities on-
the-fly, using the current context, available services,
and the application policies and goals, rather than using
predefined solutions.

• a context-aware execution and adaptation environment,
where the processes are continuously observed and
adapted according to the specified model when required
by the context changes.

More details about the motivating examples are provided
through the paper.

III. OVERALL APPROACH

In this section we present a goal-based adaptation ap-
proach that addresses the problems outlined in Section I. In
this approach, the execution of the service-based business

2http://soa.fbk.eu/Logistics.zip

process and the evolution of its context are continuously
verified against the desired model of the application. This
model encodes the business policies over the elements of the
domain. Whenever a deviation is detected (due to occurrence
of some exogenous event or situation), our framework trig-
gers adaptation, by automatically composing and executing
available services taking into account the current state of
the process and its context. Specifically, the adaptation aims
to bring the process to the expected context configuration,
such that no business policies are violated and the process
can safely resume its execution.

As such, the approach relies on the following key ele-
ments:
• Modular context-aware representation of the applica-

tion;
• Context-aware execution framework;
• Run-time adaptation based on automated service com-

position;
1) Context-aware application model: In our model we

represent the relevant aspects of the context, the application,
and the constituent services.

The important characteristics of the business context are
represented with context properties. The evolution of these
properties may be caused by the application (i.e., as a
result of service execution) or by exogenous events in the
environment. For example, the property “car status” defines
whether the car is damaged or not; the “Repair” service
makes it evolve from “damaged” state to “ok”, while the car
can get damaged (changing state from “ok” to “damaged”)
as a result of an exogenous event. From this perspective, the
state of the application context is captured by the states of
all the context properties.

On top of the context properties and services it is possible
to define application-specific policies. Such policies define
the “desired” context configurations, in which the applica-
tion should be executed. The policies relate different context
properties and constrain the applicability of the process
activities. For example, the policy “car can be driven only if
operable” requires that the “Move” activity is possible only
if the value of the context property “car status” is “ok”. The
goal of execution framework is, therefore, to guarantee that
such policies are not violated by the process execution.

Finally, in order to construct an appropriate adaptation as
a composition of services that would achieve the desired
context configuration, we annotate the service operations
with context effects. The effects encode impact of the service
operation on the context, i.e., the changes in the context
property diagrams. As such, effects relate execution of
services to context evolution by indicating at which step of
service execution the context is affected. This information
is then used during the construction of the adaptation; the
resulting composition is organized in a way that the effects
corresponding to the execution of the constituent services
result in the desired context configuration.

Note the flexibility and the reusability of the proposed

Figure 1. Context-aware Adaptation Architecture.

model: the changes in the application policies do not require
modification of the domain model and of the business
process; different services may be related (via annotations)
to the same context properties; introducing a new service
or modifying the existing one affects only the annotation
part without any implications on the application and the
adaptation logics.

2) Execution framework: The reference architecture of
our execution framework is depicted in Figure 1. The
execution and adaptation of reference process M is managed
by the Execution Engine. The activities of the process are
executed by the Process Engine that exchanges messages
with the component services S. While executing a process,
the Execution Engine sends the activity i to be executed,
receives the execution outcome o (if any), and accordingly
updates its internal context model C consisting of context
property diagrams. On the other side the Context Manager
continuously monitors3 the environment in order to detect
exogenous context changes.

Before executing the next activity the Execution Engine
checks if the process needs to be adapted: if the observed
context configuration violates the policies associated to the
current state of the process, the execution is suspended and
the adaptation is initiated. Based on the current configura-
tion of the context and the policies, the Execution Engine
derives the adaptation problem ξ and sends a corresponding
adaptation request to the Adaptor. In response, the Adaptor
generates adaptation process Madapt that changes context so
that the policies are satisfied and the process is “unblocked”.
The Execution Engine executes process Madapt and then
comes back to the execution of the main process.

As one can see, the adaptation is completely run-time
and automated; it takes into account the current context
and the available services dynamically, without hard-coding
them in the adaptation logic. Another important aspect is
that the approach constantly observes the context and can
immediately react to the critical changes. In particular, even

3We remark that the specific context monitoring technique is out of the
scope of the paper; approaches like [4] may be exploited for this purpose;

if during the execution of the adaptation process some other
problem is detected, the process is immediately terminated
and a new adaptation is requested.

3) Adaptation: An adaptation problem sent to the Adap-
tor comprises the current status of the system (values of the
context properties), a set of available services to be used
for the adaptation, and adaptation goals (i.e., the policies
to be satisfied). Given this problem, the Adaptor generates
a service composition Madapt using automated planning
techniques [6]: the service specifications, the model of
the context (i.e., context property diagrams), and the goal
specifications are transformed into a planning problem and
the resulting plan is then transformed back into a composite
service.

We remark that in certain cases the Adaptor may fail
to find an appropriate composition. Indeed, in the presence
of many exogenous context changes and non-deterministic
services it is not possible to guarantee that the desired
configurations can be reached. To overcome this prob-
lem, we adopt the following approach. First, we consider
some exogenous context changes and the service outcomes
(usually negative, e.g., service errors) as “improbable”4.
These changes will not be considered by the planner, which
increases the chances to find the solution and boosts the
performance of the planning algorithm. Second, if during the
execution of the adaptation process one of these improbable
situations occurs, the execution terminates and another round
of adaptation is initiated.

IV. FORMAL FRAMEWORK AND IMPLEMENTATION

In this section we present formal definition of the elements
of our adaptation framework, namely 1) process context,
2) process and component services, 3) policies, and 4)
adaptation problem. We also provide examples related to the
motivating case study exploited in the paper. After that, we
formally describe the way our adaptation approach operates.

A. Formal Framework

1) Context Property: Every context property is modelled
with a context property diagram, which is a state transition
system capturing all possible property values and value
changes. Each transition is labeled with the corresponding
context event. As we mentioned in Section III, a context
property may evolve as an effect of service invocations,
which corresponds to the “normal” behavior of the do-
main, but also as a result of volatile – “exogenous” –
changes. In this regard, we distinguish controllable (i.e., trig-
gered through services) and uncontrollable (i.e., exogenous)
events. Some of the exogenous events may be marked as
“improbable”.
Definition (Context Property Diagram): Context property
diagram c is a tuple 〈L,L0, E, T 〉, where:

4Improbable changes or outcomes can be determined by dedicated data
mining techniques like the ones used for process analysis [18]

• L is a set of configurations and L0 ⊆ L is a set of
initial configurations;

• E = EU ∪ EC is a set of context events, where EU is
a set of uncontrollable and EC is a set of controllable
events, such that EU ∩ EC = ∅;

• E′U ⊂ EU is a set of improbable uncontrollable events;
• T ⊆ L× E × L is a transition relation;

We denote with L(c) and E(c) the corresponding elements
of context property diagram c.

Consequently, the overall context is a set of context
property diagrams C. The state of the context is a product
of states of its property diagrams.
Example. Context property diagrams for the simplified car
logistics case study may be specified as follows:

The Car Location diagram captures how the car location
can change over time. Initially, the car is on the ship. The
reference process aims to unload the car to the terminal and
move it to the storage. The repair location is where the car
can be repaired. Similarly, the Car Status diagram represents
car operability status. An example of an improbable and
uncontrollable change could be where the car status changes
from ok to nok by the exogenous event damaged.

2) Services and Processes: In order to model service-
based processes and services with complex protocols
(e.g., specified in BPEL) we use state transition systems,
where transitions correspond to service actions (i.e., send-
ing/receiving messages to/from services or performing inter-
nal assignments and decisions).

Each transition can be additionally annotated with context
effects. An effect of a service action is a set of context events
that fire when the action is executed.

Finally, it is possible to denote some of the non-
deterministic outcomes as improbable.
Definition (Annotated Service): Annotated service s
defined over context property diagrams C is a tuple
〈L,L0, I, O, T 〉, where:
• L is a set of states and L0 ⊆ L is a set of initial states;
• I is a set of input actions (receiving a message);
• O is a set of output actions (sending a message) and
O′ ⊂ O are improbable outcomes in non-deterministic
operations;

• T ⊆ L×A×E∗×L is a transition relation, where A =
I ∪O∪{τ} is a set of actions; E =

⋃
EC(ci), ci ∈ C,

thus E∗ stands for an effect;

We denote with T (s) a set of transitions of s.
Example. Annotated service protocols for the simplified car
logistics case study are the following:

The service actions are annotated with effects over context
properties presented before. For example, one of the (non-
deterministic) outcomes of the Move service is annotated
with the effects CarLocation.arrStor representing the suc-
cessful movement. The other outcome is labeled as improb-
able. We remark that in our framework non-deterministic
services with multiple “probable” outcomes are also allowed.

3) Policies: We allow for two types of policies. Service-
based policies constrain the execution of a service action
to certain context configurations. They allow for flexible
service-specific policies. Event-based policies constrain the
occurrence of a context event to certain context configura-
tions. They allow for more general domain-specific policies.
Definition (Policy): Event- or service-based policy r de-
fined over services S and context C are tuples 〈e, P 〉 or
〈t, P 〉 respectively, where e ∈ ⋃

c∈C E(c) is a context event,
t ∈ ⋃

s∈S T (s) is a service transition and P ⊆ ∏
c∈CL(c)

is a set of allowed context configurations
Example. To declare that the the car can move to stor-
age only when it is operable, we define an event-based
policy 〈CarLocation.arrStor, CarStatus ∈ {ok}〉 (i.e.,
event CarLocation.arrStor corresponding to the arrival
at the storage area is possible only in case the value of
the CarStatus context property is “ok”). Analogously, for
two services with similar functionality (SlowRepair and
FastRepair) the usage policies may differ (SlowRepair
can only be used at location Repair, while there are no
restrictions on the other): thus we use service-specific policy
〈?slowRepairRequest, CarLocation ∈ {repair}〉.

4) Adaptation Problem: When the next service action in
a process cannot be executed due to violation of some policy
(e.g., the next action !moveRequest cannot be executed
because the car is damaged, which violates the policy), the

adaptation is required. The adaptation problem includes the
context model (i.e., a set of context property diagrams),
annotated specifications of all available services, the current
context configuration, and a set of goal configurations of the
context. Adaptation problem can be formalized as follows:
Definition (Adaptation Problem):

Adaptation problem ξ is a tuple 〈C, S, I,G〉, where:
• C is a set of context property diagrams;
• S is a set of services defined over C;
• I ∈ L(c1)× . . .×L(cn), , cj ∈ C is the current config-

uration of context property diagrams C and annotated
services S;

• G ⊆ L(c1) × . . . × L(cn), cj ∈ C is a set of goal
configurations;

We denote with C(ξ), S(ξ), I(ξ), G(ξ) the corresponding
elements of the horizontal adaptation problem ξ.

The solution to the adaptation problem ξ is a process
Madapt that orchestrates the services S(ξ). When executed
from the current configuration I(ξ), in the absence of
improbable context changes and service outcomes Madapt

guarantees that context property diagrams C finish in one
of the goal configurations G(ξ).

B. Adaptation Strategy and Derivation of an Adaptation
Process

In order to automatically solve adaptation problems, we
adopt and adjust the service composition approach presented
in [2]. According to it, a composition problem is trans-
formed into a planning problem and planning techniques
are used to resolve it. Similarly, we transform an adaptation
problem into a planning problem. A planning domain is
derived from adaptive problem ξ. In particular, a set of n
services (s1, . . . , sn ∈ S(ξ)), m context property diagrams
(c1, . . . , cm ∈ C(ξ)) and business policies are transformed
into state transition systems (STS) using transformation rules
similar to those presented in [2]. While encoding services
as STSs, we also prohibit all “improbable” events and
outcomes.

In this way, we obtain a set of STSs Σs1 . . . Σsn and Σc1

. . . Σcm . The planning domain Σ is a product of all STSs
of the annotated services and context property diagrams
synchronized on effects and policies:

Σ = Σs1‖ . . . ‖Σsn ‖ Σc1‖ . . . ‖Σcm

Initial state r of the planning domain is derived from the
current configuration I(ξ) of the context I(Σ) = r.

Finally, set of goal configurations G(ξ) is transformed into
set of configurations of a planning domain GΣ. We denote
the planning goal as a reachability goal ρ = GΣ.

Finally, we apply the approach of [6] to domain Σ and
planning goal ρ and generate a controller Σc (plan), such
that Σc .Σ |= ρ (domain Σ reaches goal ρ when controlled
by Σc). State transition system Σc is further translated into
executable process Madapt, which implements the adapta-
tion strategy chosen. The back translation from an STS

into an executable specification is simple: input actions in
Σc model an incoming message from a component service,
while output actions in Σc model an outcoming message to
a component service.
Correctness of the approach. The proof of the correctness
of the approach consists in showing that, under the afore-
mentioned assumptions, all the executions of the adaptation
process Madapt (translation of controller Σc) implement the
adaptation strategy. Here we outline the key points of the
proof. It is easy to see that each execution θ of the adaptation
process is also a run of the domain, i. e., if θ ∈ Π(Σc)
then θ ∈ Π(Σ). Under the planning requirement that all the
executions of the domain terminate in goal states, we get
that all executions of the domain implement the adaptation
strategy. As a consequence, the following theorem holds.
Theorem (Correctness of the approach): Let:
• Σs1 , . . . ,Σsn be the STS encoding of services s1, . . . sn

and
• Σc1 , . . . ,Σcm be the STS encoding of context property

diagrams c1, . . . cm.
Let Σc be the controller for a particular composition prob-
lem

Σ = Σs1‖ . . . ‖Σsn ‖ Σc1‖ . . . ‖Σcm

I(Σ) = r, ρ = GΣ

i.e., Σc . Σ |= ρ. Then execution Π(Σc) implements the
adaptation strategy.

From the planning perspective, the assumptions that no
improbable context changes and service outcomes happen
during the execution of Madapt has two important conse-
quences for our approach. First, it increases the probability
the plan exists (and, therefore, is found by the algorithm).
Second, it significantly reduces the amount of reachable
states in the planning domain and consequently increase the
algorithm performance.

For the same adaptation problem, more than one solution
may exist, especially if several services have similar or
identical functionality. In this case, the planner returns the
plan that is shortest with respect to the number of execution
steps.

V. EVALUATION

In order to evaluate the effectiveness of the proposed
approach, we have implemented the architecture that realizes
the adaptation framework described in Section III. The goal
of the evaluation was to study the complexity and overhead
of the adaptation modelling, efficiency of the adaptation at
run-time, and the scalability of the approach in a dynamic
environment.

1) Experimental setup: Using our prototype implemen-
tation, we have conducted a series of experiments with the
complex version of the logistics scenario. We have modelled
and tested two variants of reference scenario: one to evaluate
modelling overhead and the performance, and another to
evaluate the scalability of the approach. The performance

of the planning-based run-time adaptation has been tested
on a 2GHz, 3Gb Dual Core machine running Windows.
Variant 1. The reference business process is composed
of 5 basic milestones (Ship Unloading, Storage, Technical
Treatment, Consignment and Delivery) realized as an or-
chestration of 20 services. Besides that, 5 other services are
also available for the adaptation activities. The adaptation
logic of the application is based on 16 context aspects
(e.g., car location, car status, storage ticket, etc.) and is
governed by a set of 12 business policies over the process
and involved services. In this scenario, 24 situations that
require adaptation have been identified (e.g.,light and severe
car damages, occupied treatment stations, etc.).
Variant 2. This version extends Variant 1 with a new service
for in-place repairing of the cars (FastRepair). On the
contrary, another repair service (SlowRepair) is dynamically
removed from the repository. Note that in the scenario the
process and the adaptation cases remain the same, while the
way the process adapts to the same problem will change.

2) Modeling Effort and Complexity: Following our ap-
proach, adaptation modelling involved explicit represen-
tation of 16 relevant context properties (including their
values, changes, and events), annotation of 25 services with
corresponding context effects, and encoding of 12 business
policies. Note, however, that the explicit modelling of 24
adaptation cases is not required by our framework.

While, in general, such modelling effort may seem sig-
nificant, in practice it is comparable to the effort needed to
encode the adaptation logic using alternative methodologies
like, for example, rule-based approaches. To verify this, we
have analyzed the implementation of a very similar scenario
following the approach presented in [9]. The adaptation
was encoded as ECA (event-condition-action) rules defined
using AGG tool5. While the approach was different and the
context properties and service annotations were not modelled
explicitly, the effort necessary for the encoding of the rules
and policies was comparable.

It is important to notice that our modelling approach
enables modularization and re-use of different specification
elements. Indeed, the work on annotating services can be
entrusted to service providers. If necessary, each service
annotation can be reviewed and adjusted by its provider
separately from other services of the application. On the
contrary, in rule-based approaches any change in services
and/or application policies may imply revision of the whole
set of rules. Similarly, some elements of our model can be
reused by other applications in a given domain: the context
model and service annotations, once defined, may be adopted
by different business processes.

Finally, the solution provided by our approach is correct
with respect to the specified policies by construction. In the
approaches, where the adaptation logic is encoded manually,
one has to perform non-trivial analysis activities that may

5AGG (Attributed Graph Grammars): http://tfs.cs.tu-berlin.de/agg.

require additional efforts. In the rule-based implementation6

we spent more then 2 hours to tune and evaluate the overall
model.

3) Performance of Runtime Adaptation: To evaluate the
performance and the outcomes of our adaptation at run-
time, we experimented with different adaptation cases of the
above scenario. The results of the experiments unveil that,
even though the vast majority of service protocols are fairly
simple and have 2 to 4 BPEL-like activities, the constructed
adaptation processes typically have more than 8 actions (in
several cases, due to non-determinism, up to 60 actions)
and quite complex structure. Nontheless, the construction
of the adaptation process never exceeded 4 seconds, which
was much less than the normal execution time of the main
process. This shows the high applicability of our algorithm
to complex scenarios in different domains.

4) Scalability: To obtain an idea on the scalability of
our modelling approach, we considered a second variant of
the scenario, where the FastRepair service is introduced
to replace the SlowRepair service. In our approach, this
extension required only proper annotation of a new service.
Moreover, such annotation can be completed by the service
provider independently from the application, where the
service is exploited. In the same situation, the rule-based
implementation required modifying the set of adaptation
rules related to the car damage and reverifying the whole
rule system to avoid inconsistencies, which is much more
complex and time consuming procedure.

VI. RELATED WORK AND CONCLUSIONS

In this section we focus on the research on dynamic
process adaptation, where the adaptation activities are auto-
matically derived at run time taking into account the actual
state of the execution environment.

In most cases, dynamic adaptation approaches are reduced
to monitoring services utilized by a process (availability or
QoS properties) and replacing them if violation is detected
(e.g., [20], [17]). In this case, the “dynamism” mainly
consists in 1) discovering a replacing service at run time and
2) preforming service replacement in a running process in-
stance. Although in this paper we presented a context-based
adaptation, which is very different from service rebinding,
we presume that our framework can be easily extended
to perform complex service replacements (e.g., automatic
replacement of a failed services composition with another
one that performs the same task). The ability to deal with
QoS-indicators is in our future work list.

An adaptation approach similar to ours is presented in [8].
SmartPM is a formal framework based on situation calculus
and IndiGolog language that provides run-time adaptation
of a process to unplanned exceptions. The problem of adap-
tation is eventually reduced to a classical planning problem.
However, SmartPM is currently a theoretical framework
and the efficiency and overhead of adaptation modelling

6http://soa.fbk.eu/Logistics-AGG.zip/

cannot be evaluated so far. Moreover, classical planning
cannot deal with non-deterministic services, which are a
natural property of modern SOA systems. As opposed to
SmartPM, our approach is able to deal with stateful and
non-deterministic services. Our formal framework intuitively
represents the relevant business concepts (context, policies,
processes) and, in combination with tools translating BPEL
to state transition systems 7, allows for efficient modelling
tools that minimize the adaptation modelling effort.

The main extension that we plan is the ability to use
abstract activities (e.g., “to unload a car”) in the business
process. In this case, the refinement of an abstract activity
with executable service composition is done automatically
and at run time taking into account the current status of
the execution environment. Our preliminary study suggests
that our approach can be easily modified to enable abstract
activity refinement.

Currently, the adaptation strategy chosen simply tries to
“unblock” the next action in the process, which might be
not enough in some scenarios. We plan to consider other
strategies, e.g., to roll the execution back to a branching
point in an attempt to follow another branch.

Our adaptation mechanism is currently applied to in-
stances of a business process. It is possible to use the
execution history of adapted instances as a training set to
progressively improve the process model (process evolution).

We also consider planning adaptation activities using
optimality criteria different from simple execution steps
count (e.g., minimal side effects, minimal execution cost of
the process and other QoS indicators).

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community‘s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(Network of Excellence S-Cube).

REFERENCES

[1] V. Agarwal and P. Jalote. From Specification to Adaptation:
An Integrated QoS-driven Approach for Dynamic Adaptation
of Web Service Compositions. In Proc. ICWS, pages 275–
282, 2010.

[2] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore, H. Raik,
and M. Wagner. Control Flow Requirements for Automated
Service Composition. In Proc. ICWS’09, pages 17–24, 2009.

[3] F. Böse and J. Piotrowski. Autonomously controlled storage
management in vehicle logistics applications of RFID and
mobile computing systems. International Journal of RT
Technologies: Research an Application, 1(1):57–76, 2009.

[4] D. Maggiorini C. Bettini and D. Riboni. Distributed Context
Monitoring for the Adaptation of Continuous Services. World
Wide Web, 10:503–528, 2007.

7http://astroproject.org/

[5] M. Colombo, E. di Nitto, and M. Mauri. SCENE: A Service
Composition Execution Environment Supporting Dynamic
Changes Disciplined Through Rules. In Proc. ICSOC’06,
pages 191–202, 2006.

[6] M. Pistore D. Shaparau and P. Traverso. Contingent planning
with goal preference. In Proc. AAAI’06, pages 927–934, 2006.

[7] R. de Lemos and A. B. Romanovsky. Exception handling in
the software lifecycle. Comput. Syst. Sci. Eng., 16(2):119–
133, 2001.

[8] M. de Leoni. Adaptive Process Management in Highly
Dynamic and Pervasive Scenarios. In Proc. YR-SOC, pages
83–97, 2009.

[9] H. Ehrig, C. Ermel, O. Runge, A. Bucchiarone, and P. Pel-
liccione. Formal analysis and verification of self-healing
systems. In FASE, pages 139–153, 2010.

[10] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variabil-
ity in business process models: the Provop approach. Journal
of Software Maintenance, 22(6-7):519–546, 2010.

[11] G. Hermosillo, L. Seinturier, and L. Duchien. Using Complex
Event Processing for Dynamic Business Process Adaptation.
In Proc. IEEE SCC, pages 466–473, 2010.

[12] Z. Jaroucheh, X. Liu, and S. Smith. Apto: A MDD-
Based Generic Framework for Context-Aware Deeply Adap-
tive Service-Based Processes. In Proc. ICWS, pages 219–226,
2010.

[13] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann,
and A. P. Buchmann. Extending BPEL for Run Time
Adaptability. In Proc. EDOC’05, pages 15–26, 2005.

[14] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati.
An Aspect-Oriented Framework for Service Adaptation. In
Proc. ICSOC’06, pages 15–26, 2006.

[15] I. Lanese, A. Bucchiarone, and F. Montesi. A Framework for
Rule-based Dynamic Adaptation. In Proc. TGC 2010, pages
284–300, 2010.

[16] A. Marconi, M. Pistore, A. Sirbu, H. Eberle, F. Leymann, and
T. Unger. Enabling Adaptation of Pervasive Flows: Built-in
Contextual Adaptation. In Proc. ICSOC/ServiceWave, pages
445–454, 2009.

[17] George Spanoudakis, Andrea Zisman, and Alexander Ko-
zlenkov. A service discovery framework for service centric
systems. In IEEE SCC, pages 251–259, 2005.

[18] Wil M. P. van der Aalst. Process discovery: Capturing the
invisible. IEEE Comp. Int. Mag., 5(1):28–41, 2010.

[19] X. YongLin and W. Jun. Context-Driven Business Process
Adaptation for Ad Hoc Changes. In Proc. IEEE ICEBE’08,
pages 53–60, 2008.

[20] Yanlong Zhai, Jing Zhang, and Kwei-Jay Lin. Soa middle-
ware support for service process reconfiguration with end-to-
end qos constraints. In ICWS, pages 815–822, 2009.

Appendix D

Multi-layered Monitoring and Adaptation

52

Multi-layered Monitoring and Adaptation?

Sam Guinea1, Gabor Kecskemeti2, Annapaola Marconi3, and Branimir
Wetzstein4

1 Politecnico di Milano
Deep-SE Group - Dipartimento di Elettronica e Informazione

Piazza L. da Vinci, 32 - 20133 Milano, Italy
guinea@elet.polimi.it

2 MTA-SZTAKI
Laboratory of Parallel and Distributed Systems

Kende u. 13-17, 1111 Budapest, Hungary
kecskemeti@sztaki.hu

3 Fondazione Bruno Kessler
via Sommarive 18, 38123 Trento, Italy

marconi@fbk.eu
4 University of Stuttgart

Institute of Architecture of Application Systems
Universitaetsstr. 38, 70569 Stuttgart, Germany

wetzstein@iaas.uni-stuttgart.de

Abstract. Service-based applications have become more and more multi-
layered in nature, as we tend to build software as a service on top of in-
frastructure as a service. Most existing SOA monitoring and adaptation
techniques address layer-specific issues. These techniques, if used in iso-
lation, cannot deal with real-world domains, where changes in one layer
often a↵ect other layers, and information from multiple layers is essen-
tial in truly understanding problems and in developing comprehensive
solutions.
In this paper we propose a framework that integrates layer specific moni-
toring and adaptation techniques, and enables multi-layered control loops
in service-based systems. The proposed approach is evaluated on a med-
ical imaging procedure for Computed Tomography (CT) Scans, an e-
Health scenario characterized by strong dependencies between the soft-
ware layer and infrastructural resources.

1 Introduction

Service-based systems are built under an open-world assumption. Their func-
tionality and quality of service depend on the services they interact with, yet
these services can evolve in many ways, for better or for worse. To be sure these
evolutions do not lead to systems that behave inadequately or fail, service-based

? The research leading to these results has received funding from the European Com-
munity‘s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (Network of Excellence S-Cube – http://www.s-cube-network.eu/)

2 Authors Suppressed Due to Excessive Length

systems must be able to re-arrange themselves to cope with change. A typical
way of dealing with these issues is to introduce some variant of the well-known
monitor-analyze-plan-execute (MAPE) loop into the system [6], e↵ectively mak-
ing the system self-adaptive.

The service abstraction has become so pervasive that we are now building
systems that are multi-layered in nature. Cloud-computing allows us to build
software as a service on top of a dynamic infrastructure that is also provided
as a service (IaaS). This complicates the development of self-adaptive systems
because the layers are intrinsically dependent one of the other. Most existing
SOA monitoring and adaptation techniques address one specific functional layer
at a time. This makes them inadequate in real-world domains, where changes in
one layer will often a↵ect others. If we do not consider the system as a whole
we can run into di↵erent kinds of misjudgments. For example, if we witness an
unexpected behavior at the software layer we may be inclined to adapt at that
same layer, even though a more cost-e↵ective solution might be found either at
the infrastructure layer, or by combining adaptations at both layers. Even worse,
a purely software adaptation might turn out to be useless due to infrastructural
constraints we fail to consider. Similar considerations are made in case of the
unexpected behavior at the infrastructure layer, or at both.

In this paper we propose a framework that integrates software and infras-
tructure specific monitoring and adaptation techniques, enabling multi-layered
control loops in service-based systems. All the steps in the control loop acknowl-
edge the multi-faceted nature of the system, ensuring that we always reason
holistically, and adapt the system in a coordinated fashion. In our prototype
we have focused on the monitoring and adaptation of BPEL processes that are
deployed onto a dynamic infrastructure.

Building upon our past experiences we have integrated process and infrastruc-
ture level monitoring [2,8] with a correlation technique that makes use of complex
event processing [1]. The correlated data, combined with machine-learning tech-
niques, allow us to pinpoint where the problems lie in the multi-layered system,
and where it would be more convenient to adapt [7,12]. We then build a com-
plex adaptation strategy that may involve the software and/or the infrastructure
layer [13], and enact it through appropriate e↵ectors.

The proposed approach is evaluated on a medical imaging procedure for Com-
puted Tomography (CT) Scans, an e-Health scenario characterized by strong
dependencies between the software layer and infrastructural resources.

The rest of this paper is organized as follows. Section 2 gives a high-level
overview of the integrated monitoring and adaptation framework used to enable
the multi-layered control loops. Section 3 details the software and infrastructure
monitoring tools and how they are correlated using complex event processing.
Section 4 explains how decision trees are used to identify which parts in the
system are responsible for the anomalous behaviors and what adaptations are
needed. Section 5 explains how we coordinate single-layer adaptation capabili-
ties to define a multi-layered adaptation strategy, while Section 6 presents the
tools used to actually enact the adaptations. Section 7 evaluates the integrated

Multi-layered Monitoring and Adaptation 3

approach on a medical imaging procedure. Section 8 presents related work, and
Section 9 concludes the paper.

2 The Integrated Monitoring and Adaptation Framework

We propose an integrated framework that allows for the installation of multi-
layered control loops in service-based systems. We will start with a conceptual
overview, and then provide more details on the single techniques we have inte-
grated in our prototype.

Dynamo/
Astro

Laysi

EcoWare

Laysi

DyBPEL

CLAM

Adaptation
Needs

Analyzer

monitoring
events

probes

probes

adapts

adapts

Monitoring & Correlation Analysis of
Adaptation

Needs

Adaptation
Enactment

Identification of
Multi-layer Adaptation

Strategies

In
fra

st
ru

ct
ur

e

So
ftw

ar
e

software and
infrastructure

KPIs

adaptation action
request

adaptation
needs

Fig. 1. The Monitoring and Adaptation Framework.

Figure 1 gives a high-level view of our integrated monitoring and adaptation
framework, as used in a multi-layered software and infrastructure system. To
establish self-adaptation, the framework applies a slight variation of the well-
known MAPE control loop. Dashed vertical lines separate the four main steps
in the loop, while oval shapes represent the concrete techniques that we have
integrated – detailed later in Sections 3–6.

In the Monitoring and Correlation step, sensors deployed throughout the
system capture run-time data about its software and infrastructural elements.
The collected data are then aggregated and manipulated to produce higher-level
correlated data under the form of general and domain-specific metrics. The main

4 Authors Suppressed Due to Excessive Length

Data Source

Interrupt
Sampler

Polling
Sampler

Aggregate

Reliability

Avg Response
Time

Rate

Domain Specific
Aggregate

System
Polling Sampler

reads

1..*

Context
Polling Sampler

name
namespace

Context
Property

samples 1..*

System Interrupt
Sampler

Context
Interrupt
Sampler

1..* samples

Dynamo
Sampler

Laysi

Invocation
Monitor

Information
Collector

Dynamo/Laysi
Correlator

Fig. 2. The Monitoring and Correlation Model.

goal is to reveal correlations between what is being observed at the software and
at the infrastructure layer to enable global system reasoning.

In the Analysis of Adaptation Needs step, the framework uses the correlated
data to identify anomalous situations, and to pinpoint and formalize where it
needs to adapt. It may be su�cient to adapt at the software or at the infras-
tructure layer, or we may have to adapt at both.

In the Identification of Multi-layer Adaptation Strategies step, the framework
is aware of the adaptation capabilities that exist within the system. It uses this
knowledge to define a multi-layer adaptation strategy as a set of software and/or
infrastructure adaptation actions to enact. A strategy determines both the order
of these actions and the data they need to exchange to accomplish their goals.

In the Adaptation Enactment step, di↵erent adaptation engines, both at the
software and the infrastructure layer, enact their corresponding parts of the
multi-layer strategy. Each engine typically contains a number of specific modules
targeting di↵erent atomic adaptation capabilities.

3 Monitoring and Correlation

Monitoring consists in collecting data from a running application so that they
can be analyzed to discover runtime anomalies; event correlation is used to ag-
gregate runtime data coming from di↵erent sources to produce information at a
higher level of abstraction. In our integrated framework we can obtain low-level
data/events from the process or from the context of execution using Dynamo [2],
or from the infrastructure using Laysi [8]. We can then manipulate the data to

Multi-layered Monitoring and Adaptation 5

obtain higher-level information using the event correlation capabilities provided
by EcoWare [1]. Figure 2 gives an overview of the kind of data sources available
through Dynamo, Laysi, and EcoWare.

Dynamo provides means for gathering events regarding either (i) a process’
internal state, or (ii) context data5. Interrupt Samplers interrupt a process
at a specific point in its execution to gather the information, while Polling

Samplers do not block the process but gather their data through polling.

The Invocation Monitor is responsible for producing low-level infrastruc-
ture events through the observation of the various IaaS systems managed by
Laysi. These events signal a service invocation’s failure or success, where fail-
ures are due to infrastructure errors. The infrastructure, however, can also be
queried through the Information Collector to better understand how services
are assigned to hosts. The di↵erences between the utilized infrastructures and
the represented information are hidden by the information collector component
of the MetaBroker service in Laysi.

Siena

Esper Processor

SienaInputAdapter

Dynamo

Esper Processor

SienaInputAdapter

ActiveBPEL
+

AOP Sensors

SienaOutputAdapter

SienaOutputAdapter

SienaOutputAdapter

Laysi Managed
Infrastructure

SienaOutputAdapter

EcoW
are

Fig. 3. The Dynamo and EcoWare Architecture.

The events collected through Dynamo and Laysi can be further aggregated
or manipulated by EcoWare. We can use a predefined aggregate metric such
as Reliability, Average Response Time, or Rate, or we can use a domain-
specific aggregate whose semantics is expressed using the Esper event processing
language. Aggregates process events coming from one or more data sources and
produce new ones that can be even further manipulated in a pipe-and-filter style.

For our integrated approach we developed a domain-specific aggregate called
the Dynamo/Laysi Correlator to correlate events produced at the software and
the infrastructure layers. This component exploits a correlation data set that is

5 We intend as context any data source, external to the system, that o↵ers a service
interface.

6 Authors Suppressed Due to Excessive Length

artificially introduced by Dynamo in every service call it makes to the Laysi
infrastructure. The correlation data contains the name of the process making
the call to Laysi, the invocation descriptor in the form of a unique JSDL (Job
Submission Description Language) document, and a unique ID for the process
instance that is actually making the request. These data are also placed within
the events that are generated by the Invocation Monitor, allowing EcoWare to
easily understand which software- and infrastructure-level events are related.
Figure 3 gives an overview of the technical integration of Dynamo, Laysi, and
EcoWare, which is achieved using a Siena publish and subscribe event bus. Input
and output adapters are used to align Dynamo, Laysi, and the event processors
with a normalized message format.

4 Analysis of Adaptation Needs

Monitoring and correlation produce simple and complex metrics that need to be
evaluated. A Key Performance Indicator consists of one of these metrics (e.g.,
overall process duration) and a target value function which maps values of that
metric to two or more categories on a nominal scale (e.g., “process duration < 3
days is good, otherwise bad” defines two KPI categories). These KPI categories
allow us to interpret whether, and how, KPI metric values conform to business
goals. If monitoring shows that many process instances have bad KPI perfor-
mance, we need to (i) analyze the influential factors that lead to these bad KPI
values, and (ii) find adaptation actions that can improve those factors and thus
the KPI. Figure 4 shows an overview of the KPI-based Adaptation Needs An-
alyzer Framework [7,12] and its relation to the overall approach. It consists of
two main components: an Influential Factor Analysis component and an
Adaptation Needs Analysis component.

Monitoring/
Correlation
Framework

Metric
values

Influential
Factor

Analysis

Adaptation
Needs

Analaysis

KPI
Model

Adaptation
Actions Model

Adaptation
actions CLAM

Decision Tree

Adaptation Needs
Analyzer

Fig. 4. Adaptation Needs Analysis Framework.

The Influential Factor Analysis receives the metric values for a set of process
instances within a certain time period. In this context, interesting metrics are
measured both on the process level and the service infrastructure level. At the

Multi-layered Monitoring and Adaptation 7

process level, metrics include the durations of external service calls, the duration
of the overall business process, the process paths taken, the number of iterations
in loops, and the process’ data values. Service infrastructure metrics describe the
service invocation properties which include the status of the service invocation
(successful, failed), and properties such as the infrastructure node on which the
service execution has been performed.

It uses machine learning techniques (decision trees) to find out the relations
between a set of metrics (potential influential factors) and the KPI category
based on historical process instances [12]. The algorithm is fed with a data
set, whereby each data item in this set represents one process instance and the
values of all the metrics that were measured for that instance and the KPI
category that has been evaluated. The algorithm creates a decision tree in which
nodes represent metrics (e.g., the duration of a particular activity), outgoing
edges represent conditions on the values of the metric, and leaves represent KPI
categories. By following the paths from the root of the tree to its leaves, we can
see for which combinations of metrics and values particular KPI categories have
been reached (e.g., if duration of activity A was above 3 hours and activity B
was executed on node 2 the KPI value was bad).

Based on this analysis the next step is to use the Adaptation Needs Analysis
component to identify the adaptation needs, i.e., what is to be adapted in order
to improve the KPI [7]. The inputs to this step are the decision tree and an
adaptation actions model which has to be manually created by the user. The
model contains di↵erent adaptation actions, whereby each specifies an adapta-
tion mechanism (e.g., service substitution, process structure change) and how
it a↵ects one or more of the metrics used in the Influential Factor Analysis.
For example, an adaptation action could be to substitute service A in the pro-
cess with service B, and its e↵ect could be “service response time < 2 h”. The
Adaptation Needs Analysis extracts the paths which lead to bad KPI categories
from the tree and combines them with available adaptation actions which can
improve the corresponding metrics on the path. As a result, we obtain di↵erent
sets of potential adaptation actions. However, each of these sets does not yet
take cross-layer dependencies between adaptation actions into account. This is
performed in the next step by the CLAM framework.

5 Identification of Multi-layer Adaptation Strategies

The main aim of the Cross Layer Adaptation Manager (CLAM) [13] is to man-
age the impact of adaptation actions across the system’s multiple layers. This is
achieved in two ways: on the one hand CLAM identifies the application compo-
nents that are a↵ected by the adaptation actions, and on the other hand, it iden-
tifies an adaptation strategy that properly coordinates the layer-specific adap-
tation capabilities. CLAM relies on a model of the multi-layer application that
contains the current configuration of the application’s components (e.g. business
processes with KPIs, available services with stated QoS and general information,
available infrastructure resources) and their dependencies (e.g. business activity

8 Authors Suppressed Due to Excessive Length

A is performed by service S). When the CLAM identifies the components that
are a↵ected by the adaptation actions, it uses a set of checkers, each associ-
ated with a specific application concern (e.g. service composition, service perfor-
mances, infrastructure resources), to analyze whether the updated application
model is compatible with the concern’s requirements. The goal is to produce a
strategy that is modeled as an Adaptation Tree. The tree’s root represents the
model’s initial configuration; its other nodes contain the configurations of the
model, as updated by the adaptation actions, and the checkers that need to be
invoked at each step; its edges represent the outcome of the invoked checkers.

Adaptation
Needs

Analyzer

Adaptation
Actions

SBA Model
Updater

Cross-Layer
Rule Engine

Adaptation
Strategy
Selector

Laysi

DyBPEL

SBA
Model

Adapted
SBA Model

Adaptation
Actions

Adaptation
Tree

Adaptation
Strategy Adaptation

Action

Adaptation
Action

Request/
Result

Request/
Result

Process
Re-writing Laysi

Checker
Service

Composition

Checker
Infrastructure
Resources

Pluggable Adaptation
Capabilities

Cross Layer Adaptation Manager (CLAM)

Fig. 5. CLAM: Cross-layer Adaptation Manager

Figure 5 presents an overview of CLAM’s architecture. Whenever a new set
of adaptation actions is received from the Adaptation Needs Analyzer, the SBA

Model Updater module updates the current application model by applying the
received adaptation actions. CLAM requires that all the adaptation actions be
applicable with respect to the current model. However, this is guaranteed in the
proposed multi-layer framework by the Adaptation Needs Analyzer.

The adapted model is then used by the Cross-layer Rule Engine to detect
the components in the layers a↵ected by the adaptation and to identify, through
the set of predefined rules, the associated adaptation checkers. If some constraints
are violated, the checker is responsible for searching for a local solution to the
problem. This analysis may result in a new adaptation action to be triggered.
This is determined through the interaction with a set of pluggable application-
specific adaptation capabilities.

The Cross-layer Rule Engine uses each checker’s outcome to progressively
update the strategy tree. If the checker triggers a new adaptation action, the
Cross-layer Rule Engine obtains a new adapted model from the Model Updater,
and adds it as a new node to the strategy tree, together with the new checkers
to be invoked. If the checker reports that the adaptation is not compatible and

Multi-layered Monitoring and Adaptation 9

that no solution can be found, the node is marked as a red leaf; the path in the
tree that leads from the root to that specific node represents an unsuccessful
strategy. On the contrary, if all checks complete successfully, the node is a green
leaf that can be considered a stable configuration of the application, and the
corresponding path in the tree represents an adaptation strategy that can be
enacted.

If multiple adaptation strategies are identified, the Adaptation Strategy

Selector is responsible of choosing the best strategy by evaluating and ranking
the di↵erent strategies according to a set of predefined metrics. The selected
strategy is then enacted passing the adaptation actions to the adaptation enact-
ment tools.

Due to our scenario’s requirements we have currently integrated two specific
adaptation capabilities into our framework: the Process Re-Writing planner,
responsible of optimizing service compositions by properly parallelizing sequen-
tial activities, and Laysi, whose aim is to guarantee a correct and optimized
usage of infrastructure resources.

The Process Re-writing Planner is an adaptation mechanism that, given a
BPEL process and a set of optimization requirements, automatically computes
a new version of the process that maximizes the parallel execution of activities.
This is done taking into account a set of data and control flow requirements that
characterize the process’ correct behavior (e.g. activity A cannot be executed in
parallel with B, activity A must follow activity B, etc.), as well as any interaction
protocols the partner services may require (e.g. if service S expects activity A to
be executed before activity B, than this protocol requirement will be satisfied).

Laysi o↵ers self-management capabilities for service infrastructures and al-
lows new infrastructure level requirements to be evaluated before the actual
service invocations take place. Hence, upon receiving the possible parallel execu-
tion options from Process Re-writing Planner, the CLAM architecture presents
these options as requirements (including the required parallelism and time con-
straints) to Laysi for all the not-yet executed service calls. In response, Laysi
determines the feasibility of the proposed requirements taking into account that
a rearrangement of the service infrastructure may be needed. If the system de-
cides to enact the adaptation and the infrastructure needs to be rearranged,
Laysi will ensure the next invocation can meet its agreed constraints according
to the adaptation enactment tasks specified in the following section.

6 Adaptation Enactment

In our integrated approach we enact software adaptations through DyBPEL, and
infrastructure adaptations through Laysi. CLAM issues specific actions of the
chosen adaptation strategy to each tool in a coordinated fashion.

In the proposed integration, DyBPEL is responsible of enacting the process
restructuring adaptations identified by the Process Re-writing Planner.

DyBPEL extends an open-source BPEL execution engine (ActiveBPEL) with
the capability to modify a process’ structure at run time. The change can be

10 Authors Suppressed Due to Excessive Length

applied to a single process instance or to an entire class of processes. DyBPEL
consists of two main components: a Process Runtime Modifier, and a Static

BPEL Modifier. The runtime modifier makes use of AOP techniques to intercept
a running process and modify it in one of three ways: by intervening on its
BPEL activities, on its set of partnerlinks, or on its internal state. The runtime
modifier takes three parameters. The first is an XPath expression that uniquely
identifies the point in the process execution in which the restructuring has to
be activated. The second is an XPath expression that uniquely identifies the
point in the process in which restructuring needs to be achieved (it can be
di↵erent than the point in which the restructuring is activated). The third is a
list of restructuring actions. Supported actions consist of the addition, removal,
or modification of BPEL activities, partnerlinks, and data values. When dealing
with BPEL activities we must provide the BPEL snippet that needs to be added
to the process, or used to modify one of the process’ existing activities. When
dealing with partnerlinks we must provide the new partnerlink that needs to be
added to the process, or used to modify an existing one. When dealing with the
process’ state we must uniquely identify a BPEL variable within the process to
be added or modified, and the XML snippet that will consist of its new value.

When the process restructuring needs to be more extensive, we can use the
static BPEL modifier. It supports the same kinds of modifications to the process’
activities, partnerlinks, and internal variables, except that the modifications are
performed on the process’ XML definition. This operation is completely trans-
parent to users. First of all, already running instances are not modified and
changes are only applied to new instances. Second, using the same endpoint, all
new process requests are forwarded to the newly deployed version of the process.

Regarding infrastructure adaptation, Laysi always performs service requests
on a best-e↵ort basis. Each service invocation is handled individually and the
various calls are assumed to be independent. Consequently, the performance of
the service requests might not be aligned with the higher layers of the service-
based system. To provide better alignment with the service composition layer we
can specify special constraints about service placement (e.g. service instance A
should be hosted within the same provider as service instance B) and availability
within the infrastructure (e.g. a service instance should be available before the
invocation request is placed in the call queue of Laysi). These constraints are de-
rived directly from the business process and the future interactions between the
available service instances hosted by the infrastructure. Laysi constructs the ser-
vice infrastructure on five layers: meta negotiators, meta brokers, service brokers,
automatic service deployers, and the physical infrastructures (grid resources or
cloud based virtual machines). These infrastructure layers autonomously adapt
themselves to the placed constraints (e.g. placement, availability, CPU, memory,
pricing). The autonomous behavior of the infrastructure may involve (i) new
service instance deployment in high demand situations, (ii) service broker re-
placement in case of broken or low performing physical infrastructures, and/or
(iii) negotiation bootstrapping if a new negotiation technique is required.

Multi-layered Monitoring and Adaptation 11

7 The CT Scan Scenario

The application domain considered in this paper concerns the medical imaging
procedure for Computed Tomography (CT) Scans. A CT Scan is an X-ray based
medical test that, exploiting sophisticated image processing algorithms, produces
cross-sectional images of the inside of the body. These images can be further
processed to obtain three dimensional views.

CSDA

FTR

3D

PACS

CSDA

ATR

STR

FTR 3D PACSATRSTR

CSDA

FTR 3D PACS

ATR

STR

CSDA

FTR

3D
(PACS3D)

PACS
(PACS3D)

ATR

STR

(a) (b) (c) (d)

N1

N2

N3

N4

N1

N2 N3 N4

N1

N2

N3 N4

N1

N2
N3

Fig. 6. Evolution of the CT scan scenario.

Figure 6(a) describes the typical CT Scan process. White ovals represent
software services, while gray rectangles tell us the infrastructure nodes hosting
them. During the Cross Sectional Data Acquisition phase (service CSDA) the CT
scanner acquires X-ray data for individual body cross sections depending on
which parts of the body need to be scanned. These data are then used by com-
plex image processing services (o↵ered by various hosts in the infrastructure)
to obtain a set of cross-sectional images from di↵erent perspectives as well as
3D volumetric information. The services are the Frontal Tomographic Recon-
struction service (FTR), the Sagittal Tomographic Reconstruction service (STR),
the Axial Tomographic Reconstruction service (ATR), and the 3D volumetric in-
formation service (3D). Finally, the data is stored to a picture archiving and
communication system using the PACS service.

These activities require enormous processing power. To keep costs down, the
hospital only maintains the resources needed for emergency CT scans. During
burst periods, such as during the public opening hours of the CT laboratory,
it relies on an infrastructure dynamically extensible with virtual machines from
IaaS cloud infrastructures managed by Laysi.

In the following we show how our approach can be used to automatically
adapt this multi-layered system. The CT Scan process is initially designed by
a domain expert on the basis of the common medical procedure. The obtained
process is a simple sequence of actions that does not embed any optimization with

12 Authors Suppressed Due to Excessive Length

respect to its performance (Figure 6 (a)). The domain expert also specifies his
goals for the quality of the medical procedure using a set of KPIs. For instance,
an important goal is to ensure that the processing time of a CT scan does
not rise above 60 minutes. An advanced user, such as a hospital IT technician,
defines a set of adaptation actions that can be used to improve the process’
performance: (i) the parallelization of process activities; (ii) the substitution of
some services (for example, the use of a more costly PACS3D service capable of
substituting both services PACS and 3D); (iii) the deployment of a service onto
a new infrastructural node with specific characteristics.

At run time we collect monitoring events both at the software and the infras-
tructure level and correlate them using EcoWare. After a certain period of time,
we notice that the CT process’ performance is degrading: in the last 400 scans
about 25% have not achieved their desired overall CT scan processing time. In
order to identify the reasons for this behavior, the Influential Factor Analysis is
fed the following process and infrastructure level metrics: (i) the duration of each
process activity; (ii) the duration of the whole process with respect to the the
type of the CT scan (whole body, head, kidney etc.) as it determines the amount
of work to be done; (iii) the particular infrastructure node a service execution
has been executed on; (iv) the status of a service execution (successful, faulted);
and (v) the type of infrastructure the services have been executed on (internal
or external – available through Laysi).

The Influential Factor Analysis shows that from the 100 scans which violated
the KPI target, 90 scans have been “whole body CT scans” executed on an
external infrastructure. It also shows that the infrastructure has caused service
execution faults only in 12 cases (out of 400). Finally, all scans performed on the
internal infrastructure were successful. Based on this analysis, the Adaptation
Needs Analysis selects predefined adaptation actions which can improve the
“overall process duration in case of whole body CT scans”. It selects process
activity parallelization as it is the only adaptation which has been specified to
have a direct positive e↵ect on this metric.

This adaptation action is passed to the CLAM which updates the process
model so that all activities are executed in parallel. The Cross-Layer Rule Engine
detects the change in the process model and understands that these changes
have to be checked by the composition checker and by the infrastructure checker
(as the parallel execution of services has to be supported by the underlying
infrastructure). The composition checker invokes the Process Re-Writing Planner
which considers the original data- and control-flows of the process. It notices
that the activities cannot all be executed in parallel since five of them depend
on CSDA’s results; thus the planner returns a new adaptation action which
ensures that CSDA is executed first, while all the other activities are conducted
in parallel. The model is updated in CLAM as shown in Figure 6 (b) and a
new node is added to the adaptation tree. In the next step, the Cross-Layer
Rule Engine invokes the infrastructure checker component which, through Laysi,
discovers that the activities for tomographic reconstruction (i.e. FTR, STR, and
ATR) can only be executed on the node N2. The Rule Engine handles this

Multi-layered Monitoring and Adaptation 13

new adaptation need by invoking again the Process Re-Writing Planner with a
new set of control-flow constraints (i.e. FTR, STR, and ATR must be executed
sequentially). The resulting process structure is shown in Figure 6 (c), in which,
after CSDA, there are three parallel branches. In one of these branches FTR,
STR, and ATR are executed sequentially, while, in the other two, the process
executes the 3D and PACS services. The model is updated and the infrastructure
checker component is invoked again. This new version of the process passes the
infrastructure validation and, since there are no more checkers to be invoked, the
corresponding strategy is enacted. In particular, the adapted process is handed
over to DyBPEL, which manages the transition to the new process definition.

The adapted process is executed and after a certain period of time we notice
that the number of KPI violations has been reduced to 10%, and that most KPI
violations happen when the PACS service’s execution time is too high. Therefore,
two alternative adaptation actions are found: either (i) move the PACS service
instance to another (better performing) node, or (ii) replace PACS with the new
service PACS3D. Both alternatives are passed to CLAM.

The CLAM Rule Manager invokes the infrastructure checker with the con-
straint to the Laysi infrastructure stating that the PACS service should never
be executed on node N4. Unfortunately, Laysi responds that, due to constraints,
this is not possible and that PACS must always be executed on N4. The CLAM
Rule Manager drops the first adaptation action alternative as it is not realizable,
and repeats the procedure with the second adaptation action, the substitution of
the PACS service with a service called PACS3D, capable of providing both stor-
age and 3D reconstruction at a higher cost. This alternative has to be checked
both by the composition checker and by the infrastructure checker. The Process
Re-writing Planner detects that a new process restructuring is necessary: a new
control-flow requirement is introduced by the protocol of the PACS3D service
which requires to receive and store all the X-Ray data information (PACS) before
computing the 3D Scan (3D). The SBA Model resulting from this new adapta-
tion action is depicted in Figure 6 (d). The parallel branches are now only two,
one for FTR, STR, and ATR, and one for PACS3D which is called twice, once
to perform 3D reconstruction, and once to perform storage. The infrastructure
checker validates the new model and the corresponding strategy is enacted.

8 Related Work

There are not many approaches in literature that integrate multi-layered moni-
toring and adaptation of service-based systems. There are however many that fo-
cus on layer-specific problems. For example, Moser et al. [10] present VieDAME,
a non-intrusive approach to the monitoring of BPEL processes. The approach ac-
cumulates runtime data to calculate QoS values such as response time, accuracy,
or availability. It also provides a dynamic adaptation and message mediation ser-
vice for partnerlinks, using XSLT or regular expressions to transform messages
accordingly. Colombo et al. [3] extend the BPEL composition language with pol-
icy (re)binding rules written in the Drools language. These rules take the form

14 Authors Suppressed Due to Excessive Length

of if-then-else statements, allowing service bindings to depend on process data
collected at run time. The approach also provides mediation capabilities through
a special-purpose mediation scripting language.

Researchers that do consider multi-layered applications, on the other hand,
tend to concentrate either on monitoring them or on adapting them. We present
the most prominent research being done in both these fields. Foster et al. [5]
have proposed an extensible framework for monitoring business, software, and
infrastructure services. The framework allows di↵erent kinds of reasoners, tai-
lored to di↵erent kinds of services, to be integrated and to collaborate to monitor
decomposable service level agreement terms and expressions. The framework au-
tomatically assigns the decomposed atomic terms to specific reasoners, yet the
approach does not support the correlation of terms monitored at di↵erent layers.
Mos et al. [9] propose a multi-layered monitoring approach that considers service
and infrastructure level events produced by services deployed to a distributed
enterprise service bus. Basic computations can be performed on the events to
produce aggregate information (e.g., averages) or complex event processing can
be used for more complex correlations and verifications. The resulting data are
analyzed by comparing them to thresholds, and the knowledge collected at the
various levels are presented through appropriately di↵erentiated user interfaces
and visualization techniques. The approach does not correlate knowledge col-
lected at the di↵erent levels.

Regarding multi-level adaptation, Efstratiou et al. [4] present an approach
for adapting multiple applications that share common resources. These applica-
tions are not composed, but rather single entities a↵ected by the same contextual
attributes. Since these applications live in the same space they need to coordi-
nate how they manage the shared resources to avoid conflicts. However, they
expect the users to perceive and model the conflicts manually. Finally, Popescu
et al. [11] propose a framework for multi-layer adaptation of service-based sys-
tems comprised of organization, coordination and service layers. In this approach
a designer needs to prepare a taxonomy of the adaptation mismatches, and then
a set of adaptation templates, known as patterns, that define generic solutions
for these mismatches. This di↵ers from our proposed approach since we do not
require on design-time knowledge but discover our strategies on-the-fly.

9 Conclusion and Future Work

In this paper we have presented an integrated approach for monitoring and
adapting multi-layered service-based systems. The approach is based on a variant
of the well-known MAPE control loops that are typical in autonomic systems.
All the steps in the control loop acknowledge the multi-faceted nature of the
system, ensuring that we always reason holistically, and adapt the system in a
cross-layered and coordinated fashion. We have also presented initial validation
of the approach on a dynamic CT scan scenario.

In our future work we will continue to evaluate the approach through new
application scenarios, and through the addition of new adaptation capabilities

Multi-layered Monitoring and Adaptation 15

and adaptation enacting techniques. We will also integrate additional kinds of
layers, such as a platforms, typically seen in cloud computing setups, and busi-
ness layers. This will also require the development of new specialized monitors
and adaptations. Finally, we will study the feasibility of managing di↵erent kinds
of KPI constraints.

References

1. L. Baresi, M. Caporuscio, C. Ghezzi, and S. Guinea. Model-Driven Management
of Services. In Proceedings of the Eighth European Conference on Web Services,
ECOWS, pages 147–154. IEEE Computer Society, 2010.

2. L. Baresi and S. Guinea. Self-Supervising BPEL Processes. IEEE Trans. Software
Engineering, 37(2):247–263, 2011.

3. M. Colombo, E. D. Nitto, and M. Mauri. SCENE: A Service Composition Exe-
cution Environment Supporting Dynamic Changes Disciplined Through Rules. In
Proceedings of the Fourth International Conference on Service Oriented Comput-
ing, ICSOC, pages 191–202, 2006.

4. C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An architecture for the
e↵ective support of adaptive context-aware applications. In Proceedings of the
Second International Conference on Mobile Data Management, MDM, pages 15–
26. Springer, 2001.

5. H. Foster and G. Spanoudakis. SMaRT: a Workbench for Reporting the Monitora-
bility of Services from SLAs. In Proceedings of the 3rd International Workshop on
Principles of Engineering Service-oriented Systems, PESOS, pages 36–42. ACM,
2011.

6. P. Horn. Autonomic Computing: IBM’s Perspective on the State of Information
Technology. IBM TJ Watson Labs., October 2001.

7. R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and F. Leymann.
Adaptation of Service-Based Applications Based on Process Quality Factor Anal-
ysis. In ICSOC/ServiceWave Workshops, pages 395–404, 2010.

8. A. Kertész, G. Kecskemeti, and I. Brandic. Autonomic SLA-Aware Service Vir-
tualization for Distributed Systems. In Proceedings of the 19th International Eu-
romicro Conference on Parallel, Distributed and Network-based Processing, PDP,
pages 503–510, 2011.

9. A. Mos, C. Pedrinaci, G. A. Rey, J. M. Gomez, D. Liu, G. Vaudaux-Ruth, and
S. Quaireau. Multi-level Monitoring and Analysis of Web-Scale Service based
Applications. In ICSOC/ServiceWave Workshops, pages 269–282, 2009.

10. O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive Monitoring and Service
Adaptation for WS-BPEL. In Proceeding of the 17th international conference on
World Wide Web, WWW, pages 815–824. ACM, 2008.

11. R. Popescu, A. Staikopoulos, P. Liu, A. Brogi, and S. Clarke. Taxonomy-Driven
Adaptation of Multi-layer Applications Using Templates. In Proceedings of the
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO, pages 213–222, 2010.

12. B. Wetzstein, P. Leitner, F. Rosenberg, S. Dustdar, and F. Leymann. Identifying
Influential Factors of Business Process Performance using Dependency Analysis.
Enterprise IS, 5(1):79–98, 2011.

13. A. Zengin, R. Kazhamiakin, and M. Pistore. CLAM: Cross-layer Management of
Adaptation Decisions for Service-Based Applications. In Proceedings of the 9th
International Conference on Web Services, ICWS, 2011.

Appendix E

Facilitating self-adaptable Inter-Cloud
management

68

Facilitating self-adaptable Inter-Cloud management

G. Kecskemeti∗, M. Maurer†, I. Brandic†, A. Kertesz∗, Zs. Nemeth∗, and S. Dustdar†
∗MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P.O. Box 63, Hungary
{kecskemeti, keratt, zsnemeth}@sztaki.hu

†Distributed Systems Group
1040 Vienna, Argentinierstr. 8/181-1, Austria
{ivona, maurer, dustdar}@infosys.tuwien.ac.at

Abstract—Cloud Computing infrastructures have been devel-
oped as individual islands, and mostly proprietary solutions so
far. However, as more and more infrastructure providers apply
the technology, users face the inevitable question of using mul-
tiple infrastructures in parallel. Federated cloud management
systems offer a simplified use of these infrastructures by hiding
their proprietary solutions. As the infrastructure becomes more
complex underneath these systems, the situations (like system
failures, handling of load peaks and slopes) that users cannot
easily handle, occur more and more frequently. Therefore,
federations need to manage these situations autonomously
without user interactions. This paper introduces a methodology
to autonomously operate cloud federations by controlling their
behavior with the help of knowledge management systems.
Such systems do not only suggest reactive actions to comply
with established Service Level Agreements (SLA) between
provider and consumer, but they also find a balance between
the fulfillment of established SLAs and resource consumption.
The paper adopts rule-based techniques as its knowledge
management solution and provides an extensible rule set for
federated clouds built on top of multiple infrastructures.

Keywords-Cloud Computing; Knowledge Management; Au-
tonomous; Federations; Infrastructure as a Service

I. INTRODUCTION

Cloud Computing represents a novel computing paradigm
where computing resources are provided on demand follow-
ing the rules established in form of Service Level Agree-
ments (SLAs). SLAs represent the popular format for the
establishment of electronic contracts between consumers and
providers stating the terms of use, objectives and penalties
to be paid in case objectives are violated. Thus, appropriate
management of Cloud Computing infrastructures [7], [8],
[10], [11] is the key issue for the success of Cloud Com-
puting as the next generation ICT infrastructure [1], [2], [3].
Thereby, the interaction of the system with humans should
be minimized while established SLAs with the customers
should not be violated. Since Cloud Computing infrastruc-
tures represent mega scale infrastructures comprising up to
thousands of physical hosts, there is a high potential of
energy waste by overprovisioning resources to keep SLA
violation levels as low as possible.

Recent related work presents several concepts for the
management of competing priorities of both, prevention

of violation of established SLAs while reducing energy
consumption of the system. As presented in [4], knowledge
management techniques have been used to implement an
autonomic control loop, where Cloud infrastructures are
autonomously managed in order to keep the balance between
SLA violations and resource consumption. Thus, the knowl-
edge management (KM) system suggests reactive actions for
preventing possible SLA violations and optimizing resource
usage, which results in lower energy consumption. However,
reactive actions of the system (as presented in [4], [5])
consider only intra-Cloud management, e.g., application or
virtual machine (VM) reconfiguration.

On the other hand, there is considerable work in
Cloud federation mechanisms without dealing with self-
management issues of the system. A Federated Cloud Man-
agement (FCM) architecture proposed in [6] acts as an entry
point to cloud federations and incorporates the concepts
of meta-brokering, cloud brokering and on-demand service
deployment. In this paper, we extend FCM by introducing an
integrated system for reactive knowledge management and
federation mechanisms suitable for on-demand generation
and autonomous management of hybrid clouds. Besides
intra-Cloud level (i.e., application and intra-VM manage-
ment), we also target inter-Cloud management, where VMs
are instantiated and destroyed on demand to prevent SLA
violations and to minimize resource wastage.

This paper is organized as follows: first, we gather re-
lated approaches in Section II. In Section III we introduce
the architecture for Cloud federations and provide a short
overview on its main components. In Section IV, we present
the changes and extensions applied to the architecture to
accomplish autonomous behavior. Finally, we conclude our
research in Section V.

II. RELATED WORK

Bernstein et al. [15] defines two use case scenarios that ex-
emplify the problems faced by users of multi-cloud systems.
They define the case of VM Mobility where they identify
networking, specific cloud VM management interfaces and
the lack of mobility interfaces as the three major obstacles.
They also discuss a storage interoperability and federation

scenario, in which storage provider replication policies are
subject to change when a cloud provider initiates subcon-
tracting. However, they offer interoperability solutions only
for low-level functionality of clouds that are not focused
on recent user demands, but on solutions for IaaS system
operators.

Buyya et al. in [16] suggests a cloud federation ori-
ented, just-in-time, opportunistic and scalable application
services provisioning environment called InterCloud. They
envision utility-oriented federated IaaS systems that are
able to predict application service behavior for intelligent
down- and up-scaling infrastructures. They also present
a market-oriented approach to offer InterClouds including
cloud exchanges and brokers that bring together produc-
ers and consumers. Producers are offering domain specific
enterprise Clouds that are connected and managed within
the federation with their Cloud Coordinator component.
Finally, they have implemented a CloudSim-based simu-
lation that evaluates the performance of the federations
created using InterCloud technologies. Unfortunately, users
face most federation-related issues before the execution of
their services, therefore the concept of InterClouds cannot
be applied in user scenarios this paper is targeting.

RightScale [9] offers a multi-cloud management platform
that enables users to exploit the unique capabilities of differ-
ent clouds, which has a similar view on Cloud federations
to our approach. It is able to manage complete deployments
of multiple servers across more clouds, using an automation
engine that adapts resource allocation as required by system
demand or system failures. They provide server templates
to automatically install software on other supported cloud
infrastructures. They also advertize disaster recovery plans,
low-latency access to data, and support for security and
SLA requirements. RightScale users can select, migrate and
monitor their chosen clouds from a single management
environment. They support Amazon Web Services, Eucalyp-
tus Systems, Flexiscale, GoGrid, and VMware. The direct
access to IaaS systmes is performed by the so-called Multi-
Cloud Engine, which is supposed to perform brokering
capabilities related to VM placement. Unfortunately we
are not aware of any publications that detail the brokering
operations of these components, therefore we cannot provide
any deeper comparisons to our approach.

There has been considerable work on energy efficiency
in ICT systems. Their common goal is to attain certain
performance criteria for reducing energy consumption. Liu
et al. [18] show how to save energy by optimizing VM
placement via live migration. Meng et al. [19] try to increase
efficient resource by provisioning multiple specific VMs to-
gether on a physical machine. Some authors as Kalyvianaki
[20] focus on optimizing specific resource type as CPU
usage, or only deal with homogeneous resources [21]. While
most authors assume a theoretical energy model behind
their approaches, Yu [22] targets the more basic question

Generic Meta Brokering Service

Cloud
Broker

FCM
repository

Cloud
Broker

VMx

Native
repository

VMy

Native
repository

Submit Submit
Lookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Figure 1. The original Federated Cloud Management architecture

of how to effectively measure energy consumption in Cloud
computing environments in a scalable way. Besides, none
investigated energy efficiency in Cloud federations.

Considering the use of Knowledge Management Sys-
tems (KM) and SLAs, Paschke et al. [23] look into a
rule based approach in combination with a logical formal-
ism called ContractLog. It specifies rules to trigger after
a violation has occurred, e.g., it obliges the provider to
pay some penalty, but it does not deal with avoidance of
SLA violations. Others inspected the use of ontologies as
knowledge bases (KBs), but only at a conceptual level.
Koumoutsos et al. [24] view the system in four layers
(i.e., business, system, network and device) and break down
the SLA into relevant information for each layer, but they
give no implementation details. Bahati et al. [25] also use
policies, i.e., rules, to achieve autonomic management. They
provide a system architecture including a KB and a learning
component, and divide all possible states of the system into
so called regions, which they assign a certain benefits for
being in this region. However, the actions are not structured
and lack a coherent approach. They are mixed together into
a single rule, which makes them very hard to manage. On
the contrary, we provide a well-structured and extendable
approach that also investigates how actions are defined to
avoid counteracting recommendations of the KM system.

III. FEDERATED CLOUD MANAGEMENT ARCHITECTURE

Figure 1 shows the Federated Cloud Management (FCM)
architecture (first introduced in [6]), and its connections to
the corresponding components that together represent an
interoperable solution for establishing a federated cloud en-
vironment. Using this architecture, users are able to execute

services deployed on cloud infrastructures transparently, in
an automated way. Virtual appliances for all services should
be stored in a generic repository called FCM Repository,
from which they are automatically replicated to the native
repositories of the different Infrastructure as a Service cloud
providers.

Users are in direct contact with the Generic Meta Bro-
kering Service (GMBS – [13]) that allows requesting a
service by describing the call with a WSDL, the operation
to be called, and its possible input parameters. The GMBS
is responsible of selecting a suitable cloud infrastructure
for the call, and submitting to a Cloud-Broker (CB) in
contact with the selected infrastructure. Selection is based on
static data gathered from the FCM Repository (e.g., service
operations, WSDL, appliance availability), and on dynamic
information of special deployment metrics gathered by the
Cloud-Brokers (see Section IV-B2). The role of GMBS is to
manage autonomously the interconnected cloud infrastruc-
tures with the help of the Cloud-Brokers by forming a cloud
federation.

Cloud-Brokers are set up externally for each IaaS provider
to process service calls and manage VMs in the particular
cloud. Each Cloud-Broker [14] has its own queue for storing
the incoming service calls, and it manages one virtual
machine queue for each virtual appliance (VA). Virtual
machine queues represent the resources that can currently
serve a virtual appliance specific service call. The main
goal of the Cloud-Broker is to manage the virtual machine
queues according to their respective service demand. The
default virtual machine scheduling is based on the currently
available requests in the queue, their historical execution
times, and the number of running VMs.

Virtual Machine Handlers are assigned to each virtual
machine queue and process the VM creation and destruc-
tion requests in the queue. Requests are translated and
forwarded to the underlying IaaS system. VM Handlers
are infrastructure-specific and built on top of the public
interfaces of the underlying IaaS. Finally, the Cloud-Broker
manages the incoming service call queue by associating and
dispatching calls to VMs created by the VM Handler.

As a background process, the architecture organizes vir-
tual appliance distribution with the automatic service de-
ployment component [17]. This component minimizes pre-
execution service delivery time to reduce the apparent ser-
vice execution time in highly dynamic service environments.
Service delivery is minimized by decomposing virtual ap-
pliances and replicating them according to demand patterns,
then rebuilding them on the IaaS system that will host the
future virtual machine. This paper does not aim to further
discuss the behavior of the ASD, however it relies on its
features that reduce virtual appliance replication time and
transfer time between the FCM and the native repositories.

IV. SELF-ADAPTABLE INTER-CLOUD MANAGEMENT
ARCHITECTURE

This paper offers two options to incorporate the concepts
of knowledge management (KM) systems into the Federated
Cloud Management architecture: local and global. Local
integration is applied on a per deployed component basis,
e.g., every Cloud-Broker utilizes a separate KM system
for its internal purposes. In contrast, global integration is
based on a single KM system that controls the autonomous
behavior of the architectural components considering the
available information from the entire cloud federation. In
this section, first, we discuss which integration option is best
to follow, then we introduce the extensions made to a KM
system in order to perform the integration.

A. Knowledge management integration options

When local integration is applied, each knowledge man-
ager can make fine-grained changes – e.g., involving actions
on non-public interfaces – on its controlled subsystem. First,
the meta-broker can select a different scheduling algorithm if
necessitated by SLA violation predictions. Next, the Cloud-
Broker can apply a more aggressive VM termination strat-
egy, if the greenness of the architecture is more prioritized.
Finally, if the storage requirements of the user are not
valid any more, the FCM repository removes unnecessarily
decomposed packages (e.g., when the used storage space
approaches its SLA boundaries, the repository automatically
reduces the occupied storage). However, the locally made
reactions to predicted SLA violations might conflict with
other system components not aware of the applied changes.
These conflicts could cause new SLA violation predictions
in other subsystems, where new actions are required to
maintain the stability of the system. Consequently, local
reactions could cause an autonomic chain reaction, where
a single SLA violation prediction might lead to an unstable
system.

To avoid these chain reactions, we investigated global
integration (presented in Figure 2) that makes architecture-
wide decisions from an external viewpoint. High-level inte-
gration is supported by a monitoring solution – deployed
next to each subcomponent in the system (GMBS, the
various Cloud-Brokers and repositories) – that determines
system behavior in relation to the settled SLA terms. Global
KM integration aggregates the metrics received from the
different monitoring solutions, thus operates on the overall
architecture and makes decisions considering the state of
the entire system before changing one of its subsystems.
However, adaptation actions are restricted to use the public
operations of the FCM architecture (e.g., new cloud selection
requests, new VM and call associations or repository rear-
rangements). Consequently, the global integration exhausts
adaptation actions earlier than the local one, because of
metrics aggregation and restricted interface use. For in-
stance, if aggregated data hides the cause of a possible

Global Autonomous
ManagerGeneric Meta-Broker Service

Cloud
Broker

FCM
repository

Cloud
Broker

VMx

Native
repository

VMy

Native
repository

Submit SubmitLookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Knowledge
Management

System

Monitor Analyze

PlanExecute

Figure 2. Global integration of the knowledge management system

Global Autonomous
ManagerGeneric Meta-Broker Service

VMx

Native
repository

VMy

Native
repository

Submit SubmitLookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Knowledge
Management

System

Monitor Analyze

PlanExecute

KM

KM

KM
Cloud
Broker

KM
Cloud
Broker

FC
M

repository

Figure 3. Hybrid integration of the knowledge management system

future SLA violation, then global KM cannot act without
user involvement.

In this paper, we propose to use a hybrid KM sys-
tem (revealed in Figure 3) combining both global and
local integration options. The hybrid system avoids the
disadvantages of the previous solutions by enabling global
control over local decisions. In our system, local actions
can be preempted by the global KM system by propagating
predicted changes in aggregated metrics. Based on predicted
changes, the global KM could stop the application of a
locally optimal action and prevent the autonomic chain
reaction that would follow the local action. On the other

Action Involved component Integration
Reschedule calls Meta-Broker Global

Rearrange VM queues Cloud-Broker Global
Extend/Shrink VM Queue Cloud-Broker Local

Rearrange VA storage FCM repository Global
Self-Instantiated Deployment Service instances Local

Table I
SUMMARY OF AUTONOMOUS ACTIONS

hand, if the global system does not stop the locally optimal
action, then it enables the execution of more fine-grained
actions postponing adaptation action exhaustion.

B. Knowledge management system extensions

This subsection first lists the possible autonomic actions
in our KM system, then it analyzes the collected monitoring
data that can indicate the need for autonomous behavior.
Finally, based on these indicators, we conclude with the rules
triggering the adaptation in our FCM components.

1) Actions: Based on the affected components, the archi-
tecture applies four basic types of actions on unacceptable
behavior. First, at the meta-brokering level, the system can
organize a rescheduling of several service calls. E.g., the
autonomous manager could decide to reschedule a specific
amount of queued calls – c ∈ Qx, where c refers to the
call, and Qx specifies the queue of the Cloud-Broker for
IaaS provider x. Consequently, to initiate rescheduling, the
knowledge manager specifies the amount of calls (Ncr) to be
rescheduled and the source cloud (Cs) from which the calls
need to be removed. Afterwards, the meta-broker evaluates
the new situation for the removed calls, and schedules them
to a different cloud, if possible.

Second, at the level of cloud brokering, the system could
decide either to rearrange the VM queues of different
Cloud-Brokers, or alternatively to extend or shrink the VM
queue of a specific Cloud-Broker. VM queue rearrangement
requires global KM integration in the system so it can
determine the effects of the queue rearrangement on multi-
ple infrastructures. The autonomous manager accomplishes
rearrangement by destructing VMs of a particular virtual
appliance in a specific cloud and requesting new VMs in
another one. Consequently, the autonomous manager selects
the virtual appliance (V Aarr – appliance to rearrange) that
has the most affected VMs. Then it identifies the amount
of virtual machines (Nvmtr) to be removed from the source
cloud (Cs) and instantiated in a more suitable one (Cd).

The queue rearrangement operations have their counter-
parts also in case of local KM integration. The VM queue
extension and shrinking operations are local decisions that
are supported by energy efficiency related decisions. In case
of queue shrinking, some of the virtual machines controlled
by the local Cloud-Broker are destructed. However, under
bigger loads, virtual machines could be in the process of

performing service calls. Therefore, the autonomous man-
ager can choose between the three VM destruction behaviors
embedded into the Cloud-Brokers: (i) destroy after call
completed, (ii) destroy right after request and put the call
back to the local service call queue and finally, (iii) destroy
right after request and notify the user about call abortion.
As a result, the autonomous manager specifies the number
of VMs to extend (Nex) or shrink (Nshr) the queue with
and the destruction strategy (Sdest) to be used.

Third, on the level of the FCM repository, the autonomous
manager can make the decision to rearrange virtual ap-
pliance storage between native repositories. This decision
requires the FCM repository either to remove appliances
from the native repositories, or to replicate its contents to a
new repository. Appliance removal is only feasible, if one
of the following cases are met: (i) the hosting cloud will
no longer execute the VA, (ii) the hosting cloud can down-
load the VA from third party repositories or finally, (iii)
the appliance itself was based on an extensible appliance
that is still present in the native repository of the hosting
cloud. The objective of the rearrangement is to reduce the
storage costs in the federation at the expense of increased
virtual machine instantiation time for VMs of the removed
appliances. Conclusively, the rearrangement decision should
involve the decision on the percentage (Nrepr) of the re-
duced or replicated appliances that should participate in the
rearrangement process.

Finally, when virtual appliances are built with embedded
autonomous capabilities (internal monitoring, KM system
etc.), then virtual machines based on them are capable of
self-initiated deployment. If a service instance gets either
overloaded or dysfunctional according to its internal mon-
itoring metrics, then the instance contacts the local Cloud-
Broker to instantiate a new virtual machine just like the in-
stance is running in. In case of overloading, the new instance
will also be considered for new Call→VM associations. In
case of dysfunctional instances, the system creates a proxy
service inside the original VM replacing the original service
instance. This proxy is then used to forward the requests
towards the newly created instance until the current VM is
destructed.

2) Monitored metrics: After analyzing the various au-
tonomous actions that the KM system can exercise, we
investigated the monitoring system and the possible metrics
to be collected for the identification of those cases when the
architecture encounters unsatisfactory behavior. Currently,
we monitor and analyze the behavior of Cloud-Brokers, the
FCM repository and individual service instances.

Since Cloud-Brokers represent the behavior of specific
IaaS systems, most of the measurements and decisions
are made based on their behavior. All measurements are
related to the queues of the Cloud-Broker; therefore we
summarize their queuing behavior. Cloud-Brokers offer two
types of queues: the call queue (Qx, where x identifies the

specific Cloud-Broker that handles the queue) and the VM
queues (VMQx,y , where y identifies the specific service
– or appliance V Ay – the queued VMs are offering). The
members of the call queue represent the service calls that
a Cloud-Broker needs to handle in the future (the queue
is filled by the meta-broker and emptied by the Cloud-
Broker through associating a call with a specific VM). On
the other hand, VM queues are handled on a more complex
way: they list the currently handled VMs offering a specific
service instance. Consequently, the Cloud-Brokers maintain
VM queues for all service instances separately. Entries in
the VM queues are used to determine the state of the VMs:

State : VM →

WAITING
INIT
RUNNING.AV AILABLE
RUNNING.ACQUIRED
CANCEL

(1)

• Waiting: the underlying cloud infrastructure does not
have resources to fulfill this VM request yet.

• Init: the VM handler started to create the VM but it
has not started up completely yet.

• Running and available: the VM is available for use,
the Cloud-Broker can associate calls to these VMs only.

• Running and acquired: the VM is associated with a
call and is processing it currently.

• For cancellation: the Cloud-Broker decided to remove
the VM and stop hosting it in the underlying infras-
tructure.

Based on these two queues the monitor collects the
metrics listed in the following paragraphs.

To support decisions for service call rescheduling, the
system monitors the call queue for all available Cloud-
Brokers for a specific service call s:

q(x, s) := {c ∈ Qx : (type(c) = s)}, (2)

where type(c) defines the kind of the service call c is
targeting.

Call throughput measurement of available Cloud-Brokers
is also designed to assist call rescheduling:

throughput(x) :=
1

maxc∈Qx
(waitingtime(c))

, (3)

where waitingtime(c) expresses the time in sec a service
call has been waiting in the specific Q.

We define the average waiting time of a service s by

awt(s,Qx) :=

∑
c∈q(x,s) waitingtime(c)

|q(x, s)| , (4)

and the average waiting time of a queue by

awt(Qx) :=

∑
c∈Qx

waitingtime(c)

|Qx|
. (5)

To distinguish the Cloud-Brokers, where VM queue rear-
rangements could occur, we measure the number of service
instances that are offered by a particular infrastructure:

vms(x, s) :=
{
vm ∈ VMQx,s :

State(vm) = RUNNING.AV AILABLE

∨ State(vm) = RUNNING.ACQUIRED
}

(6)

The call/VM ratio for a specific service managed by a
specific Cloud-Broker:

cvmratio(x, s) :=
|q(x, s)|
|vms(x, s)| (7)

This ratio allows the global autonomous manager to plan
VM queue rearrangements and equalize the service call
workload on the federated infrastructures. When applied
with the local KM system, this ratio allows the system to
decide on extending and shrinking the VM queues of partic-
ular services and balance the service instances managed by
the local Cloud-Broker.

The load of the infrastructure managed by a specific
Cloud-Broker:

load(x) :=

∑
∀s |vms(x, s)|∑
∀s |VMQx,s|

(8)

The load analysis is used for VM queue rearrangements in
order to reduce the number of waiting VMs in the federation.
When applied locally, along with the call/vm ratio the load
analysis is utilized to determine when to extend or shrink the
VM queues of various services. As a result, Cloud-Brokers
could locally reorganize their VM structures that better fit
the current call patterns.

To support the remaining autonomous actions, the FCM
repository and individual service instances are also moni-
tored. First, the system monitors the accumulated storage
costs of a virtual appliance in all the repositories (r ∈ R) in
the system (expressed in US dollars/day):

stcost(V As) :=
∑

∀r
locstcost(r, V As), (9)

where locstcost(r, V As) signifies the local storage cost
at repository r for appliance V As. To better identify
the possible appliance storage rearrangements the sys-
tem also analyzes the usage rate of appliances in the
different repositories expressed in the number of times
the VMs based on the appliance have changed status
from INIT to RUNNING.AV AILABLE in a single
day (deployfreq(r, V As)).

Finally, individual services are monitored to support self-
instantiated deployment. Here we analyze the service avail-
ability (expressed as the % of time that the instance is
available for external service calls) of the specific service

instance deployed in the same VM where the monitoring
system is running.

3) Basic rules for applying actions: We decided to for-
mulate the knowledge base (KB) as a rule-based system.
Rules are of the form ”WHEN condition THEN action”
and can be implemented e.g., using the Java rule engine
Drools [26]. We define several rules based on the previously
defined measurements and actions, and present them in
Drools-related pseudo code. The working memory of the
KM system, which is the main class for using the rule engine
at runtime, does not only consist of the specified rules, but
also of the objects whose knowledge has to be modeled,
and that are currently active in the Cloud federation (like a
Cloud-Broker, the native repository, different queues, etc.).
These objects are typically modeled as Java classes, and thus
referred to as Cloud-Broker(), NativeRepository(), etc.

Figure 4 shows the rule for rescheduling service calls.
Line 1 states the unique name the rule can be identified
with in the KB. This way, rules can be dynamically altered
or replaced if different global behavior due to changing high-
level policies (i.e., changing from energy efficient to SLA
performant) is required. Lines 3-4 state the conditions that
have to be fulfilled to trigger the actions in lines 6-9. At first,
we look for a Cloud-Broker Cs (line 3), whose throughput
falls below the average of all the queues’ throughputs
(mean()) plus a multiple of their standard deviation (std(),
line 4). If such Cs is found, the rule is executed. We have
to decide to which Cloud Cd (line 6) to move Ncr service
calls (line 7), and finally invoke the appropriate public
interface methods of the Cloud brokers at stake (lines 8-9).
As Cd we choose the Cloud with maximum throughput. The
equalizeQs() method (line 7) tries to equal out the average
waiting times of the queues of Cs and Cd. It takes the last
service call ŝ out of Qs, retrieves its average waiting time
awt(ŝ, Qs) and calculates the new estimated average waiting
time for Qs and Qd by awt(Qs) := awt(Qs)− awt(ŝ, Qs)
and awt(Qd) := awt(Qd) + awt(ŝ, Qd), respectively. Then
it adds ŝ to Qd. It continues this procedure as long as
awt(Qs) ≥ awt(Qd), and returns the number of service
calls that have been hypothetically added to Qd. The rule
could then either really add the chosen calls to Cd as
presented in line 9, or return them to the meta-broker

Figures 5 and 6 show possible rules for removing VAs
from a Cloud’s native repository due to high local or global
costs, respectively. Both rules try to find a repository r and a
VA V Ax that have been inserted into the working memory
of the rules engine (lines 3-4), and remove the specified
VA from the repository (line 8), when certain conditions
hold. In Figure 5 the removal action is executed when two
conditions hold: First, the local storage cost of the VA
at the specified resource exceeds a certain threshold. The
threshold is calculated as the average local storage costs
at all repositories for the same VA plus a multiple of its
standard deviation. Second, the deploy frequency of the VA

1 rule ”Reschedule calls”
2 WHEN
3 Cs : Cloudbroker()
4 throughput(x) < mean(throughput(.)) + δ ·
std(throughput(.))
5 THEN
6 Cd := argmax throughput(.)
7 Ncr := equalizeQs(Cs, Cd)
8 calls := remove(Ncr, Cs); //removes last Ncr entries
in QCs

.
9 add(calls, Cd);

Figure 4. Rule for rescheduling calls

1 rule “Remove VA from native repository due to high
local costs”
2 WHEN
3 r : NativeRepository()
4 V Ax : VirtualAppliance()
5 locstcost(r, V Ax) > mean(locstcost(., V Ax)) + δ ·
std(locstcost(., V Ax))
6 deployfreq(r, V Ax) < mean(deployfreq(., V Ax))
7 THEN
8 remove(V Ax, r) //removes V Ax from native repository
r

Figure 5. Rule for removing VA from native repository of a specific Cloud
due to high local costs

at this repository falls below a certain threshold, which is
the mean deploy frequency of the VA at all repositories.
In short, the VA is instantiated less often than other VAs,
but its cost is higher than for other VAs, so the VA should
be removed. Figure 6 takes a global perspective and checks
whether the overall storage cost for the VA exceeds a certain
threshold (defined similarly as with Figure 5, line 5). Then,
the VA is removed from the repository that has the lowest
deployment frequency (line 6).

The remaining rules can be specified according to the

1 rule “Remove VA from native repository due to high
global costs”
2 WHEN
3 r : NativeRepository()
4 V Ax : VirtualAppliance()
5 stcost(V Ax) > mean(stcost(.)) + δ · std(stcost(.))
6 rmin : argmin deployfreq(., V Ax)
7 THEN
8 remove(V Ax, rmin) //removes V Ax from native
repository rmin

Figure 6. Rule for removing VA from native repository of a specific Cloud
due to high global costs

actions and measurements as explained before. However,
their specific parameters may have heavy impact on the
overall performance of the system. These parameters are to
be learned by the KM system. In our future work, we plan
to evaluate the system performance with the extension of the
simulation engine presented in [4].

V. CONCLUSION

This paper presented an approach to extend federated
cloud management architectures with autonomous behavior.
Our research uses knowledge management systems to facili-
tate the decision making process of the classical monitoring-
analysis-planning-execution loop. Using the FCM architec-
ture as the basis of our further investigations, we analyzed
different approaches to integrate the knowledge management
system within this architecture, and found a hybrid approach
that incorporates fine-grained local adaptation operations
with options for high-level override. Then this research
pinpointed the adaptation actions and their possible effects
on cloud federations. Finally, we established metrics that
could indicate possible SLA violations in federations, and
defined rules that could trigger adaptation actions in the case
of predicted violations.

Regarding future works, we plan to investigate more the
green aspects in the autonomous behavior of cloud federa-
tions. We also aim at defining new rules for advanced action
triggers and evaluate the applicability of another knowledge
management approaches like case based reasoning. Finally,
we also plan to investigate the effects of the autonomous
behavior on the overall performance of the cloud federation
on an experimental system.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube) and under grant agreement No RI-283481 (SCI-
BUS), also from the Vienna Science and Technology Fund
(WWTF) under grant agreement ICT08-018 – Foundations
of Self-Governing ICT Infrastructures (FoSII).

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems, 2009, vol.
25, issue. 6, pp. 599–616.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner. A break in the clouds: towards a cloud definition.
SIGCOMM Computer Communication Review. vol 39, 1, pp.
50–55, 2008.

[3] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K.
Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Automated Software Engineering, vol.
15, pp. 313–341, December 2008.

[4] M. Maurer, I. Brandic and R. Sakellariou. Simulating
Autonomic SLA Enactment in Clouds using Case Based
Reasoning. In Towards a Service-Based Internet, Third
European Conference, ServiceWave 2010, Ghent, Belgium,
December, 2010 pp. 25-37

[5] M. Maurer, I. Brandic and R. Sakellariou. Enacting SLAs
in Clouds Using Rules. In Proceedings of the 17th Inter-
national Euro-Par Conference on Parallel and Distributed
Computing, Bordeaux, France, September, 2011

[6] A. Cs. Marosi, G. Kecskemeti, A. Kertesz and P. Kacsuk.
FCM: an Architecture for Integrating IaaS Cloud Systems.
In Proceedings of The Second International Conference on
Cloud Computing, GRIDs, and Virtualization. Rome, Italy.
September, 2011.

[7] Amazon Web Services LLC. Amazon elastic compute cloud.
http://aws.amazon.com/ec2/, 2009.

[8] Rackspace Cloud. http://www.rackspace.com/cloud/, 2011.

[9] RightScale website. http://www.rightscale.com/, 2011.

[10] Eucalyptus cloud. http://www.eucalyptus.com/, 2011.

[11] OpenNebula cloud. http://opennebula.org/, 2011.

[12] The World Wide Web Consortium.
http://www.w3.org/TR/wsdl, 2009.

[13] A. Kertesz and P. Kacsuk. GMBS: A new middleware
service for making grids interoperable. Future Generation
Computer Systems, 2010, vol. 26, issue 4, pp. 542–553.

[14] A. Cs. Marosi and P. Kacsuk. Workers in the clouds. In
Proceedings of the 19th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2011),
Ayia Napa, Cyprus, February 9-11, 2011. pp. 519–526

[15] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and M.
Morrow. Blueprint for the Intercloud Protocols and Formats
for Cloud Computing Interoperability. In Proceedings of
The Fourth International Conference on Internet and Web
Applications and Services (2008, pp. 328-336)

[16] R. Buyya, R. Ranjan and R. N. Calheiros. InterCloud:
Utility-Oriented Federation of Cloud Computing Environ-
ments for Scaling of Application Services. Lecture Notes in
Computer Science: Algorithms and Architectures for Parallel
Processing. Volume 6081, 20 pages, 2010.

[17] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Zs. Nemeth.
An Approach for Virtual Appliance Distribution for Service
Deployment. Future Generation Computer Systems, 2011,
vol. 27, issue 3, pp 280–289.

[18] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang,
and Y. Chen. Greencloud: a new architecture for green data
center. In Proceedings of the 6th international conference
industry session on Autonomic computing and communica-
tions industry session, ICAC-INDST ’09, pages 29–38, New
York, NY, USA, 2009. ACM.

[19] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and
D. Pendarakis. Efficient resource provisioning in compute
clouds via vm multiplexing. In Proceeding of the 7th
international conference on Autonomic computing, ICAC
’10, pages 11–20, New York, NY, USA, 2010. ACM.

[20] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-
adaptive and self-configured cpu resource provisioning for
virtualized servers using kalman filters. In Proceedings of
the 6th international conference on Autonomic computing,
ICAC ’09, pages 117–126, New York, NY, USA, 2009.
ACM.

[21] B. Khargharia, S. Hariri, and M. S. Yousif. Autonomic
power and performance management for computing systems.
Cluster Computing, 11(2):167–181, 2008.

[22] Y. Yu and S. Bhatti. Energy measurement for the cloud.
Parallel and Distributed Processing with Applications, In-
ternational Symposium on, 0:619–624, 2010.

[23] A. Paschke and M. Bichler. Knowledge representation
concepts for automated SLA management. Decision Support
Systems, 46(1):187–205, 2008.

[24] G. Koumoutsos, S. Denazis, and K. Thramboulidis. SLA e-
negotiations, enforcement and management in an autonomic
environment. Modelling Autonomic Communications Envi-
ronments, pages 120–125, 2008.

[25] R. M. Bahati and M. A. Bauer. Adapting to run-time
changes in policies driving autonomic management. In ICAS
’08: Proceedings of the 4th Int. Conf. on Autonomic and
Autonomous Systems, Washington, DC, USA, 2008. IEEE
Computer Society.

[26] Drools, The Business Logic integration Platform.
www.drools.org, 2011.

Appendix F

Adaptation of Web Service Interactions
using Complex Event Processing Patternst

77

Adaptation of Web Service Interactions using
Complex Event Processing Patterns

Yéhia Taher, Michael Parkin, Mike P. Papazoglou, Willem-Jan van den Heuvel

European Research Institute for Service Science, Tilburg University, The Netherlands
{y.taher|m.s.parkin|mikep|wjheuvel}@uvt.nl

Abstract. Di↵erences in Web Service interfaces can be classified as sig-
nature or protocol incompatibilities, and techniques exist to resolve one
or the other of these issues but rarely both. This paper describes com-
plex event processing approach to resolving both signature and protocol
incompatibilities existing between Web Service interfaces. The solution
uses a small set of operators that can be applied to incoming messages
individually or in combination to modify the structure, type and number
of messages sent to the destination. The paper describes how CEP-based
adapters, deployable in CEP engines, can be generated from automata
representations of the operators through a standard process and presents
a proof-of-concept implementation.

1 Introduction

Web services allow the integration of distributed software through standard in-
terface definition languages, transport mechanisms and aspects such as security
and quality of service. Web Service interfaces (i.e., WSDL, BPEL, etc.) define
the messages and protocol that should be used to communicate with the ser-
vice [7]. However, if two services wish to interact successfully, they must both
support the same messages and protocol through the implementation of compat-
ible WSDL and/or BPEL documents. Unfortunately, this is di�cult to achieve
in practice; Web Services are often developed independently and follow di↵erent
standards or approaches in constructing their interfaces and Web Service com-
positions will often use them in ways that were not foreseen in their original
design and construction [2,3]. Therefore, it is likely that most Web Services will
be incompatible as services will not support the same interface.

This is a short paper describing a general approach to resolving di↵erences
between Web Services protocols through the use of Complex Event Processing
(CEP [4]) technology. Specifically, we extend our previous work [10,11] to show
how a small set of general operators can be used to match the messages from one
service with those of another. By using a continuous query engine running within
a CEP platform, we demonstrate signature and protocol adaptation between
Web Services in a proof-of-concept implementation.

This paper is structured as follows: Section 2 describes our CEP-based ap-
proach to signature and protocol adaptation; Section 3 introduces the opera-
tors used to resolve di↵erences in Web Service protocols; Section 4 presents the

CEP solution and a proof-of-concept implementation; Section 5 compares related
work; Section 6 contains conclusions and our plans for future work.

2 Approach

Incompatibilities between Web Service protocols can be classified as either [2,3]:

1. Signature Incompatibilities arise due to the di↵erences between services
in expected message structure, content and semantics. In Web Services, XML
schema provides defines a set of ‘built-in’ types to allow the construction of
complex input and output message types from these primitives. This flexibility
in constructing message types in XML often means that a message from one Web
Service will not be recognized by another and, therefore, there is a requirement
to provide some function that maps the schema of one message to another [6].

2. Protocol Incompatibilities are found when Web Services wish to inter-
act but are incompatible because they support of di↵erent message exchange
sequences. For example, if two services perform the same function, e.g., accept
purchase orders, but Service A requires a single order containing one or more
items while Service B expects an order message for each item, there is a mis-
match in their communication protocols that must be resolved in order for them
to interoperate. To solve these incompatibilities, there are two approaches: a) to
force one of the parties to support the other’s interface, or b) to build an adapter
that receives messages, converts them to the correct sequence and/or maps them
into a desired format and sends them to their destination. However, both of these
solutions are unsatisfactory; imposing the development of an interface for each
target service can lead to an organization having to maintain a di↵erent client
for each service it uses, and the implementation of bespoke ad-hoc point-to-point
adapters is costly and not-scalable.

Our solution is to automate the generation of adapters so the process is re-
peatable and scalable and remove the necessity to build costly bespoke adapters.
Our approach for generating adapters is described in [9], which presents an al-
gorithm for detecting signature and protocol incompatibilities between two Web
Service protocol descriptions (i.e., interfaces) and a CEP-based mediation frame-
work to perform protocol adaptation practically. This paper completes the me-
diation framework by showing how the incompatibilities found between two Web
Service protocols, classified according to a set of basic transformation patterns
by the algorithm in [9], can be transformed into configurable automata opera-
tors which are used to generate adapters.1 In Section 3 we describe the operators
required for each transformation pattern then in Section 4 show how they are
used to generate CEP adapters and deployed to a CEP engine.

Complex Event Processing technology can discover relationships between
events through the analysis and correlation of multiple events and triggers and
take actions (e.g., generate new events) from these observations. CEP does this

1 Adapters are therefore the components that resolve sets of incompatibilities found
between two services and are aggregations of predefined operators who’s purpose is
to resolve individual, specific incompatibilities.

by, for example, modeling event hierarchies, detecting causality, membership
and/or timing relationships between events and abstracting event-driven pro-
cesses into higher-level concepts [4]. CEP platforms allow streams of data to
run through them to detect conditions that match the continuous computational
queries (CCQs, written in a Continuous Computation language, or CCL) as they
occur. As a result, CEP has an advantage in performance and capacity compared
to traditional approaches: CEP platforms typically handle many more events
than databases and can process throughputs of between 1,000 to 100k messages
per second with low latency. These features make a CEP platform an excellent
foundation for situations that have real-time business implications.

In the context of Web Services, events occur when SOAP messages are sent
and received. Therefore, CEP adaptation requires the platform to consume in-
coming messages, process them and send the result to its destination. However,
a CCQ written for a particular adaptation problem is similar to the bespoke
adapter solution described earlier. To o↵er a universal solution and a scalable
method for Web Service protocol adaptation, we automate the generation and
deployment of CCQs to transform incoming message(s) into the required output
message format(s) using the predefined set of transformation operators.

3 Operators

[3] describes five basic transformation patterns that can reconcile protocol mis-
matches. We have developed an operator for each of these patterns that can
be applied individually or in combination to incoming messages to achieve a
transformation in both the structure, type and number of messages sent to the
destination — i.e., to resolve both signature and protocol incompatibilities.

The operators developed for each of the transformation patterns are: Match-
make, which translates one message type to another, solving the one-to-one
transformation; Split, a solution for the one-to-many pattern, which separates
one message sent by the source into two or more messages to be received sepa-
rately; the Merge operator is the opposite of the Split operator (i.e., it performs
a many-to-one transformation) and combines two or more messages into a single
message; the Aggregate operator is used when two or more of the same message
from the source service interface correspond to one message at the target ser-
vice and is a solution for the one+-to-one transformation; finally, Disaggregate
performs the opposite function to Aggregate operator.

Following [9], the operators are represented as configurable automata. Tran-
sitions between states represent both observable and non-observable actions.
Observable actions describe the behavior of the operator vis-à-vis the service
consumer and provider, i.e., an action is observable if it is a message consump-
tion or transmission event. Unobservable actions describe the internal transitions
of the operator, such as the transformation of a messages contents, and are per-
formed transparently to the source and target services.

Transitions caused by observable actions are denoted as <a,?/!m,a’>, where
a is the starting state and a’ the end state following the consumption (?) or

!(CheckOut)
?(Item List)

One Item One+-to-One

e1

e2

e’1

e’2

Aggregate
Operator

?(One Item)

a0

a1

?(CheckOut)

Item List :=
Aggregation (OneItem[n])

a2

a3

!(Item List)

Source Service Target Service

Fig. 1. The Aggregate Operator

transmission (!) of message m. An unobservable action is denoted as <a, ,
a’>, where a and a’ are the start and end states following internal action .

For reasons of space it is not possible to describe all five operators in de-
tail and we have chosen the Aggregate operator to illustrate how they work.
Figure 1 shows the operator to resolve one+-to-one incompatibilities between
services, e.g., when a customer submits a purchase order for each item but the
retailer expects a list of all items together. To resolve this incompatibility the
aggregate operator consumes and stores ?OneItem messages until it receives
the message (?CheckOut) indicating all messages have been sent. The oper-
ator aggregates the stored messages into a list of items message using Item-
List=Aggregation(OneItem[n]) and forwards the new message using !(ItemList).

4 CEP-Based Adaptation

4.1 General Principles

The adaptation of interactions between source and target services is specified
using automata, therefore deploying them as CEP adapters requires their trans-
lation into continuous queries. To do this, we modeled message consumption and
transmission actions as events. For each message type consumed or transmitted
we create an input or output stream. A continuous query subscribes to the input
stream of messages it wants to adapt and publishes the adapted message(s) to
the corresponding output stream(s). For convenience, we name the input/output
stream the same name as the message it consumes or transmits. This method
allows a CEP engine to intercept messages exchanged between two services, to
detect patterns of incompatibilities and implement corresponding adaptation
solution, i.e., combinations of the operators encoded as continuous queries.

4.2 Conceptual Architecture

Figure 2 illustrates the conceptual architecture of the CEP implementation that
translates the adapter specified in automata into continuous queries, i.e., via
Automata ! Continuous Queries. This includes the creation of input and out-
put streams for the continuously running queries in the CEP engine, waiting for
messages arriving through input streams.

In the second step, the SOAP Message Interceptor’s role is to control the
exchange of messages between the two services. Upon receipt of a message, the

Service A

SOAP/HTTP

Service B

SOAP/HTTP

Automata of the
Adapter

Automata → Continuous Query

Continuous
Query

SOAP Message
Interceptor

CEP EngineSOAP → Event Event → SOAP

Deployed In

Fig. 2. Conceptual CEP Adaptation Archi-
tecture

CEP Engine

Input
Wrapper

Output
Wrapper

Input
Wrapper

Output
Wrapper

SOAP Interceptor

Runtime Environment

CCL Generator

Adaptor Generator

Incompatibility
Detector

Resolution
Operator

Templates

Provider
Service

Automaton

Incompatibility
Patterns

Customer
Service

Automaton

Automaton Adapter

Incompatibilities

Design-time
Envrionment

Service A Service B

SOAP/HTTP SOAP/HTTP

Fig. 3. Architectural Framework for the
CEP Solution

Interceptor sends it to the input stream with the same name (through SOAP !
Event). The message received is published as an event and is consumed by the
query that subscribes to the input stream. The message(s) produced as a result
of applying the operators is published to the corresponding output stream. Once
on the output stream, the message is consumed by the SOAP message interceptor
(through Event ! SOAP) and sent to the target.

Figure 4 shows the transformation of the Aggregation automata to a contin-
uous query. First, an input stream and a window to store messages arriving on
the input stream are created for action ?(m1) and an input stream is created
for action ?(m2). The aggregation query is then specified: it subscribes to the
window where messages from action ?(m1) are stored and to the input stream
for action !(m2) actions. After an !(m2) action, messages in the window with the
same correlation criteria as new message are aggregated into a single message,
the input messages are removed and the result is published to the output stream.

Figure 5 shows a concrete example where messages arriving through the input
stream Order In are stored in the window Order Win. When the message arrives
through CheckOut In indicating order number #03203 is complete, messages in
Order Win with the same order number (#03203, the correlation criteria) are
aggregated into a single message. The final message, containing Item1 and Item2,
is published to Order Out.

4.3 Proof of Concept

This section illustrates the practical generation and deployment of CEP-based
adapters using model transformation. It has two stages: the design phase mod-
els the adapter using operator automata through the use of an incompatibility
detection process to produce a platform independent model, whilst the transfor-
mation phase takes the platform independent model to produce the adapter as
a CCQ for a CEP engine, i.e, a platform specific model.

Figure 3 shows the framework for the automatic generation of adapters. If two
incompatible services, A and B, wish to communicate, at design-time an adaptor

a0 a1 a2 a3

Aggregation
Query

Source 2

Source 1 M1 M1

M2

Window

m Target

Subscribe

Subscribe

Publish

OutputStream: m
Schema: Type(m)

InputStream: M2
Schema: Type(M2)

InputStream: M1
Schema: Type(M1)

?(m2) m = F(m[n]) !(m)

Create Specify Create
?(m1):C

Fig. 4. Aggregate Translation

 INSERT INTO OutputStream PayAdrs_Out
 SELECT XMLTRANSFORM(SOAPBody, XMLPARSE($FAgregation))
 From Window Order_Win, InputStream Validation_In
 Where Order_Win.Order_ID=Validation_In.Order_ID

TimeStamp

Order_ID

Order_Items

TimeStamp

Order_ID

Order_Items

07:32:01

#03203

item1

 INSERT INTO Window Order_Win
 SELECT * From InputStream Order_In;
 Order_Out

07:45:21

#03203

item1, item2

TimeStamp

Order_ID
07:45:21

#03203

CheckOut_In

Order_In

07:32:06

#03203

item2

ItemX#0124307:32:09
Item2
Item1

Order_Item
#03203

Order_ID

#0320307:32:06
07:32:01

TimeStamp07:32:09

#1243

itemX

Window: Order_Win

Fig. 5. Aggregate Flow

can be generated for the runtime CEP engine by classifying the incompatibili-
ties between two service interfaces (using the method described in [9]) and using
them to construct the adapter using resolution operator templates (described in
Section 3). The resulting adapter is converted into the CEP engine’s continu-
ous computation language (CCL) that is deployed at run-time within a SOAP
message interceptor to provide a message serialization/deserialization capability.

The Design Time Environment is used to instantiate the template operators
described in Section 3 so they can be used in a specific Web Service protocol
adaptation. The design-time tools can be used to develop strategies for dealing
with complex adaptation situations by allowing the composition of the template
operators. In these cases, the designers of the adaptation must identify what
adaptations are required between two services and use a graphical user interface
(the Design Tool shown) to wrap the corresponding composition of operators
in a map. Maps are exported to the CCQ code generation tool that includes a
compiler to produce a CEP execution-time module (i.e., the CCQ) which is then
loaded into the CEP execution engine.

The Run Time Environment contains a CEP platform with a continuous
query engine and a set of SOAP message integration layers to allow it to send
and receive messages to and from Web Services. The continuous query engine

provides the capability for the system to receive, process, correlate and ana-
lyze SOAP messages against a CCQ. However, since Web services communicate
through the use of SOAP messages, intermediate adapters are required to pro-
vide entry and exit points to the engine. These intermediate adapters are of two
types: input and output wrappers. An input wrapper receives SOAP messages
from the source’s service interface and transforms it to the representation appro-
priate for the CEP engine and then sends it to the engine. Similarly, an output
wrapper receives events produced by the engine and transforms it to a SOAP
message before forwarding the message to the target service.

4.4 Demonstration & Experimentation

A demonstration of our prototype can be seen at: http://www.youtube.com/

watch?v=g05ciEPZ_Zc.

5 Related Work

As [3] describes, there are many commercial tools to achieve Web Service sig-
nature mediation and solve signature incompatibilities, including: Microsoft’s
Biztalk mapper2, Stylus Studio’s XML Mapping tools3, SAP’s Exchange Infras-
tructure (XI) Mapping Editor4 and Altova’s MapForce5. Academic research also
exists in resolving signature incompatibilities through the use of semantic web
technology (i.e., OWL), such as that described in [5] that presents a “context-
based mediation approach to [. . .] the semantic heterogeneities between com-
posed Web services”, and the Web Service Modeling Ontology (WSMO) speci-
fication [8] that provides a foundation for common descriptions of Web Service
behavior and operations. This research does not attempt to resolve the associ-
ated problem of protocol incompatibility, however.

Active research is also being performed into the adaptation of web service
protocols, although all work we have surveyed does not tackle both problems
of signature and protocol incompatibility and all use di↵erent approaches to
the CEP-based technique presented. For example, although [3] presents medi-
ation patterns together with corresponding BPEL templates, a technique and
engineering approach for semi-automatically identifying and resolving identify-
ing protocol mismatches and a prototype implementation (the Service Mediation
Toolkit), it does not solve the signature adaptation problem. Similarly, [2] “dis-
cusses the notion of protocol compatibility between Web Services” and [1] again
only “focusses on the protocol mismatches, leaving data mismatches apart” —
i.e., they present solutions to protocol mismatches and do not tackle the asso-
ciated problem of signature incompatibility. Our chosen approach solves both
signature and protocol incompatibilities.

2 http://www.microsoft.com/biztalk/en/us/default.aspx
3 http://www.stylusstudio.com/xml_mapper.html
4 http://www.sdn.sap.com/irj/sdn/nw-xi
5 http://www.altova.com/mapforce/web-services-mapping.html

6 Conclusion

Web service incompatibilities are found in either their message signatures or
protocols. This paper presents an CEP approach to adapt Web Service inter-
actions and resolve these conflicts. Using predefined operators represented as
configurable automata allows us to automatically CEP generate adapters capa-
ble of intercepting incoming messages sent between services and adapting their
structure, type and number into the desired output message(s). Our future work
will be in two areas: (i) performing extensive testing on real services, and (ii)
developing tools to assist service designers to generate adapters.

Acknowledgment: The research leading to these results has received funding from

the European Community’s Seventh Framework Program [FP7/2007–2013] under grant

agreement 215482 (S-CUBE). We thank Marie-Christine Fauvet, Djamal Benslimane

and Marlon Dumas for their comments and contributions on earlier stages of this work.

References
1. Ardissono, L., Furnari, R., Petrone, G., Segnan, M.: Interaction Protocol Media-

tion in Web Service Composition. International Journal of Web Engineering and
Technology 6(1), 4–32 (2010)

2. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web Service Protocols: Compatibility
and Adaptation. IEEE Data Engineering Bulletin 31, 40–44 (2008)

3. Li, X., Fan, Y., Madnick, S., Sheng, Q.Z.: A Pattern-Based Approach to Proto-
col Mediation for Web Services Composition. Information & Software Technology
52(3), 304–323 (2010)

4. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman (2001)

5. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.:
A Context-Based Mediation Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology (TOIT) 8(1), 1–23 (2008)

6. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F.: Semi-Automated Adap-
tation of Service Interactions. In: Proceedings of the 16th international conference
on World Wide Web. pp. 993–1002 (2007)

7. Papazoglou, M.: Web Services: Principles & Technology. Pearson Education (2008)
8. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,

A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

9. Taher, Y., Aı̈t-Bachir, A., Fauvet, M.C., Benslimane, D.: Diagnosing Incompat-
ibilities in Web Service Interactions for Automatic Generation of Adapters. In:
Proceedings of the 23rd International Conference on Advanced Information Net-
working and Applications (AINA-09). pp. 652–659 (2009)

10. Taher, Y., Marie-Christine, F., Dumas, M., Benslimane, D.: Using CEP TEchnol-
ogy to Adapt Messages Exchanged by Web Services. In: Proceedings of the 17th
International Conference on the World Wide Web (WWW 2008). pp. 1231–1232.
Beijing, China (April 2008)

11. Taher, Y., Nguyen, D.K., van den Heuvel, W.J., Ait-Bachir, A.: Enabling Inter-
operability for SOA-Based SaaS Applications Using Continuous Computational
Language. In: Proceedings of the 3rd European ServiceWave Conference. pp. 222–
224. Ghent, Belgium (December 2010)

Appendix G

A Classification of BPEL Extensions

86

JOURNAL OF SYSTEMS INTEGRATION 2011/4 3

A Classification of BPEL Extensions

Oliver Kopp, Katharina Görlach, Dimka Karastoyanova, Frank Leymann, Michael Reiter,
David Schumm, Mirko Sonntag, Steve Strauch, Tobias Unger, Matthias Wieland

Institute of Architecture of Application Systems, University of Stuttgart

{lastname}@iaas.uni-stuttgart.de

Rania Khalaf
IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

rkhalaf@us.ibm.com

Abstract: The Business Process Execution Language (BPEL) has emerged as de-facto standard for
business processes implementation. This language is designed to be extensible for including
additional valuable features in a standardized manner. There are a number of BPEL extensions
available. They are, however, neither classified nor evaluated with respect to their compliance to the
BPEL standard. This article fills this gap by providing a framework for classifying BPEL extensions,
a classification of existing extensions, and a guideline for designing BPEL extensions.

Key words: BPEL Extension, Classification of Extensions, Extension Guidelines

1. Introduction

Originally, the Business Process Execution Language (BPEL) has been designed for the
implementation of business processes using Web service technology. The Web service technology is
the de-facto standard used to implement a service-oriented architecture [77]. Nowadays, BPEL is
used for implementing business processes in numerous different scenarios: for automating scientific
simulations, for provisioning software as a service (SaaS) applications and as exchange format for
business processes (i.e., BPEL as description language for business protocols). The requirements of
the usage scenarios differ and the desired functionality is not always shipped out of the box, i.e., it is
not supported using standard language constructs. For instance, sub-processes are a demand that
the BPEL specification [59] and consequently standard-conform implementations do not cover. As a
result, BPEL is frequently extended for supporting desired functionality that is not available in standard
BPEL. Depending on the particular purpose, an extension may improve efficiency, increase flexibility,
ensure better performance, or add more functionality. However, an extension also has disadvantages.
Firstly, the whole toolset that is used for business process management (BPM) needs to support the
extension. Common components of this toolset are applications for modeling, adapting, executing,
monitoring, and analyzing the processes. Secondly, if business partners exchange (parts of) their
processes, their toolsets need to understand and support the extensions as well.

In this paper, we provide a classification of existing BPEL extensions and provide guidelines to
develop extensions. This might support a developer to search for existing extensions and to develop
a new extension in case a new one is necessary. Consequently, the paper is structured as follows:
Sect. 2 provides the technical background that describes the typical environment for BPEL processes
as well as the associated components and technologies. Sect. 3 introduces a classification framework
for extensions including standard-conformity, distinction between modeling and runtime extensions, as
well as different purposes. Building on this, Sect. 4 presents requirements on extensions to be
standard-conformant to BPEL. Sect. 5 presents approaches to realize a BPEL extension and the
related BPEL environment. Sect. 6 introduces an extension development guideline that helps in the
course of implementing an extension. The classification is applied to 62 existing BPEL extensions in
Sect. 7. The paper finishes with a conclusion in Sect. 6.

2. Background

In the following we describe the environment that is common for using workflows (cf. Fig. 1).
Workflows are the implementation of business processes [51]. The environment also applies to
environments for BPEL processes.

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 4

The components in the upper part of the figure represent the modeling part of the environment. It
consists of three components. The process modeling tool is used for the (typically graphical)
specification of process models. The process analysis tool refers to static verification, deadlock
analysis and other checks that can be performed at design time. It is often already integrated in the
process modeling tool. Finally, the process repository serves as a means for efficient storage and
retrieval of process models.

The components in the lower part of Fig. 1 represent the runtime environment. The central component
for runtime is the process engine. At process deployment time, a process model is passed to this
component, which compiles the process model into an internal format and offers the deployed process
as a service to the outside. A so-called navigator, a subcomponent of the process engine, manages
the status of process instances, traverses workflow graphs, triggers activity implementation execution,
and takes care of directing incoming messages to the intended recipients, i.e., to particular process
instances using correlation [8]. The process engine communicates with services via the enterprise
service bus [12]. The ESB allows for abstracting from communication details, such as the used
transport protocol and message format. Note that an ESB is an abstract concept which may be
implemented using a specific component (which is generally referred to as ESB, too) or in other ways,
such as embedded into the process engine (cf.[49]). The services represent the actual functions that
are orchestrated in the workflow. The monitoring component registers, receives, and analyses
execution events that are emitted by the process engine and the orchestrated services. For example,
this component allows tracking the status of a particular instance of a process.

Process Modeling Workspace

Process
Deployment

Process
Modeling

Tool

Process
Engine

Enterprise Service Bus

Communication

Process
Analysis

Tool

Process
Repository

MonitoringServices

Design Time

Runtime

Fig. 1: Common Environment for Workflows

BPEL is a workflow language for specifying business process behavior based on Web Services [59]. It
provides activities to exchange messages with Web Services and provides control-flow constructs to
order these activities. BPEL requires the interfaces to be specified in WSDL 1.1 [15]. It is important
that WSDL does not require the messages being exchanged using SOAP/http. Other bindings, such
as SOAP over Java Messaging Service are available, too [2]. In BPEL, the connection to partner
services is formed by a partner link, which specifies the port type required, offered, or both. An

invoke activity is used to send a message to a specific operation of a Web Service. In its two-way

form, it awaits a reply message back. A receive activity is used to receive a message by a given

operation. A pick activity realizes a one-out-of-many choice of mutual exclusive incoming messages.

A wait activity waits for a specified time or until a given date is reached. An empty activity does

nothing. The scope activity enables fault-correcting behavior and event-handling. Faults are catched

by fault handlers. A completed scope may be compensated. The compensation behavior is specified
by a compensation handler. Event-handlers run in parallel to the activities in the scope and handle
additional incoming messages and timeouts. The control-flow itself may be specified using block-
structured and graph-based construct, which makes BPEL a hybrid workflow language [43]. The

block-based constructs are sequence, if, while, repeatUntil, forEach, and flow without links.

A flow with links enables modeling of a graph, where control-flow follows the specified links.

A detailed summary is provided .by [51].

The first version of BPEL has been proposed in 2002 as ―Business Process Execution Language for
Web Services 1.0‖ (BPEL4WS). Subsequently, version 1.1 has been released in 2003. Here, minor

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 5

corrections and clarifications have been made. This version has been submitted to the Organization
for the Advancement of Structured Information Standards (OASIS). In 2007, OASIS has completed the
standardization process and has published the revised version as WS-BPEL 2.0. Important changes
have been made with respect to the extensibility of the language. For example, designated concepts

such as an extensionActivity element or extensionAttributes have been added (cf. Sect.

4). A detailed comparison of the BPEL versions 1.1 and 2.0 is provided by [66]. The work we present
in the following focuses on the current language specification WS-BPEL 2.0 (BPEL), and the
extensibility mechanisms specified therein. Where appropriate, we point out properties of BPEL 1.1.

In order to refer to the components affected by an extension, we present an exemplary architecture of
a BPEL engine. We implemented a prototype of a BPEL engine (called Stuttgart‘s Workflow Machine,
SWoM) at our institute

1
. The architecture of SWoM distinguishes all major components existing in a

BPEL engine and thus can be used to illustrate them. The internal architecture of the SWoM is
illustrated in Fig. 2. It consists of four main modules namely Gateway, Process Execution,
Persistence, and Administration. The Gateway deals with Web Service invocations and handles
incoming messages. The Process Execution is responsible for process instance creation and
execution. The Persistence consists of databases for storing auditing events (Audit Database), data
about deployed BPEL process models with appropriate WSDLs and deployment descriptors (Buildtime
Database), and information about process instances (Runtime Database). The Administration contains
an interface and functionality for human users to supervise process execution. The arrows in the figure
indicate communication dependencies. Message queues and topics are used to decouple modules.
Components with a black box at the top expose their functionality as Web service. After giving a short
overview regarding the main modules in the following, we describe their inner structure.

The Administration Interface enables human access to core functionality of the engine. The Import
Export Handler is used to import process models into the engine, to statically validate process models,
and to delete and export uploaded process models. The Process Deployment Manager is responsible
for deployment and undeployment of imported process models. With the help of the Supervision an
administrator can activate or deactivate the auditing of process models. Furthermore, audited events
of process models can be inspected. The Systems Management allows viewing and deleting errors
occurred in the SWoM, forced termination of running process instances and their deletion from the
SWoM as well as user management. The Administration Infrastructure Provider is an interface to
access the databases and to put messages into the Manager topic (indicated by an ―MT‖).

The Service Provider component exposes deployed process models as Web services. Web service
clients can invoke processes by sending a SOAP message to the engine. In case of a synchronous
request/response operation the Service Provider additionally sends the reply back to the client. The
Invocation Handler is responsible for the invocation of Web services following the blocking
request/response pattern or the unblocking one-way pattern.

The Navigator interprets process model logic, supervises control and data flow, and executes activity
implementations. It makes use of the navigation queue (indicated by an ―N‖) to send and receive

navigation events. For each invoke activity it puts a Web service invocation message into the

invocation queue (indicated by an ―I‖) to be performed by the Invocation Handler. In case of a reply
activity it inserts a reply message into the reply queue (indicated by an ―R‖) to be sent back to the
invoking client by the Service Provider. The Data Manager provides Runtime database access to the
Navigator and caches process models to prevent from extensive Buildtime database accesses during
process execution. Steering of Data Managers can be done over the Manager topic, e.g., to force
process model state changes. The Auditing persistently stores information about the life of a process
for analysis or legal reasons. The Process Instance Creator is used by the Navigator to build new
process model instances in the Runtime database. The Correlation Manager correlates incoming and
outgoing messages to corresponding process instances.

1
 Institute of Architecture of Application Systems (IAAS), http://www.iaas.uni-stuttgart.de/institut/

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 6

Invocation Handler

A
u

d
it

in
g

Correlation
Manager

Process Instance
Creator

Administrator Interface

P
ro

ce
ss

D

ep
lo

ym
en

t M
gr

.

Im
p

o
rt

 E
xp

o
rt

H

an
d

le
r

Sy
st

em
s

M
an

ag
em

en
t

Su
p

er
vi

si
o

n

Audit Database Runtime Database Buildtime Database

MT

R IN

NavigatorNavigatorNavigator

Administration
Infrastructure Provider

Web Service Clients Web Services Administrators

G
at

ew
ay

M

o
d

u
le

P
ro

ce
ss

 E
xe

cu
ti

o
n

M

o
d

u
le

A
d

m
in

is
tr

at
io

n
M

o
d

ul
e

Pe
rs

is
te

n
ce

La

ye
r

Service Provider

Data ManagerData ManagerData Manager

Fig. 2: Architecture of the BPEL Engine SWoM

Extending a process language has profound impact on all components of its supporting infrastructure,
most important on the modeling tool and the process engine. Furthermore, the other components
involved, such as tools for process analysis and monitoring, have to be adapted accordingly. Our
evaluation of current approaches for extending BPEL in Sect. 7 shows that most extensions cover
modeling tool and runtime extensions only.

3. Classification Framework

The follwoing definition defines the term ―BPEL extension‖ and is referred to throughout the paper.
The definition follows the definition of a software extension in the field of computer science [44].

Definition 1: A standard-conform BPEL extension is an enhancement of functionality of the
Web Services Business Process Execution Language specified in the OASIS WSBPEL 2.0
standard by following the extension proceedings defined in the standard. On its own, the
BPEL extension is not useful or functional.

To be standard-conformant, extensions must not contradict the semantics of any element or attribute
defined by the WS-BPEL specification. The concrete guidelines defined in the WS-BPEL 2.0 standard
[59] are summarized in Sect. 4. The essence of these guidelines is presented in Tab. 1. In this table
we provide a checklist for classifying a given extension with respect to its standard conformity. The
table shows a characteristic, its standard conformity, and an identifier as a shortcut. The shortcut is
used in Sect. 7 as reference for a classification. BPEL 1.1 does not explicitly define an extension
mechanism, but allows for adding elements of other namespaces into the process model. BPEL 2.0
explicitly specifies the extension mechanism of BPEL. This has impact on the standard-conformity of
an extension. As a consequence, we show the BPEL version in the column ―Standard-conform
Language Extension‖. In case several characteristics are applicable to an extension, an extension has
to be standard-conformant regarding all characteristics. Tab. 2 provides a classification into design
time and runtime extensions. The runtime components listed in Tab. 2 are components illustrated in
Fig. 2 which were extended by the extensions presented in Sect. 4. Note that an extension can be
both a design time extension and a runtime extension. ―n/a‖ denotes ―not applicable‖. This is the case
if an extension is not a BPEL extension the sense of Definition 1. For instance, in case an extension
changes the behavior of an invocation handler only, it is not an extension in the sense of Definition 1.
For a standard-conform runtime extension at least the navigator has to be extended.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 7

Tab. 1: Standard Conformity

Characteristic
Standard-conformant

Language Extension
Shortcut

New activity without nesting in an extension activity No (2.0) / Yes (1.1) s 1

New construct/element in BPEL namespace No (1.1/2.0) s 2

New attribute in BPEL namespace No (1.1/2.0) s 3

Contradiction with BPEL semantics No (1.1/2.0) s 4

Defining something out of scope of the BPEL specification
(not using <process> as root element, …)

No (1.1/2.0) s 5

No extension declaration specified No (2.0) / Yes (1.1) s 6

New extension activity Yes (2.0) s7

New extension attribute Yes (1.1/2.0) s8

New extension construct/element Yes (2.0) s9

New extension assign operation Yes (2.0) s10

Tab. 2: Extension Type

Extension Type Shortcut

Modeling tool extension

BPEL Extension can be transformed to standard BPEL Modeling M

BPEL Extension cannot be transformed to standard BPEL Modeling M

Modeling tool offers different rendering n/a

Process engine extension

Deployment mechanism extension n/a

Invocation handler extension n/a

Correlation manager extension n/a

Navigator extension Runtime R

Auditing extension n/a

Extensions can be further characterized, independent of their standard-conformity and particular type.
We use the extension purpose, the extension subject, the workflow dimension, and the placement in
the business process management (BPM) life cycle as additional characterizations. The extension
purpose criterion lists different intentions of an extension, such as the improvement of reusability of
processes. The extension subject addresses the language constructs and mechanisms which are
affected by an extension. According to [50] a workflow has three independent dimensions (IT
infrastructure, process logic, and organization). We use these workflow dimensions as one criterion to
characterize an extension. Finally, we use the placement in the BPM life cycle as criterion. The life
cycle starts with modeling a business process. This business process has then to be refined to an
executable process model (IT refinement). Static analysis and verification makes sure that the process
model conforms to given constraints (e.g., freeness of deadlocks). Subsequently, the process model is
deployed on a process engine, where the process is executed. In the monitoring phase the execution
of single processes or process groups is observed. The results of monitoring are analyzed and may
lead to redesign and optimization, which is again conducted in the modeling phase closing the loop.

These extension characteristics are listed in Tab. 3. We have derived the criteria and appropriate
characteristics from the evaluated extensions (see Sect. 4). This list may be further extended when
discussing novel extensions. The characteristics are sorted alphabetically, except the life cycle
characteristics, which are sorted according to the order in the life cycle. ―Occurrence‖ shows the total
number of extensions matching the respective characteristic.

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 8

Tab. 3: Extension characteristics

Criterion Characteristic Shortcut Occurrence

Purpose Ability to outsource C1.1 3

 Flexibility C1.2 13

 Functionality C1.3 28

 Maintainability C1.4 13

 Performance C1.5 6

 Reusability C1.6 9

 Robustness C1.7 11

 Usability C1.8 12

Subject Control flow C2.1 25

 Data integration C2.2 10

 Expressions/assign statements C2.3 3

 Handling of large data C2.4 2

 Other C2.5 9

 Service binding C2.6 5

 Service invocation C2.7 22

 Variable access C2.8 3

Workflow dimension IT infrastructure C3.1 29

 Process logic C3.2 36

 Organization C3.3 2

Placement in the BPM life cycle Modeling C4.1 47

 IT refinement C4.2 2

 Static analysis/verification C4.3 0

 Deployment C4.4 10

 Execution C4.5 45

 Monitoring C4.6 3

Based on Definition 1, we can exclude particular changes on the BPEL language and give a list of
approaches, which are not a BPEL extension. BPEL offers the possibility to model abstract processes,
which need not to be executable but address different use cases. An abstract process profile specifies
the semantics of an abstract process. It furthermore describes how to get an executable process
starting from the abstract one, called ―executable completion‖. The BPEL specification itself provides
two profiles: A profile for observable behavior and a profile for process templates. Abstract processes
following the abstract process profile for observable behavior describe the public visible behavior of a
process. Abstract processes following the template profile serve as process templates, where
activities required for execution have to be put in at fixed places.[41] introduce the Abstract Process
Profile for Globally Observable Behavior, which enhances the profile for observable behavior by
providing more flexibility for the executable completion. Describing a new Abstract BPEL process
profile is not an extension as it is just a restriction that defines, which constructs are allowed in a
process model.

Approaches that redefine the semantics of existing BPEL constructs are not standard-conform and
thus not an extension in the meaning of Definition 1. The specification does not provide information
about the event model a process engine should support. Hence, a modification or extension of an
existing event model, such as defined by Karastoyanova et al. [31], is out of scope of the specification
and thus not a BPEL extension.

BPEL itself does not specify any rendering of the process model. Since the rendering is not
standardized, any specific rendering is not a BPEL extension. This includes graphical renderings in
BPMN [66];[76]) or a script syntax such as BPELscript [9].

4. Requirements for Standard-conform Extensions

In BPEL 2.0, the extensibility of BPEL is standardized. Extensions are declared in the extensions

element. Each extension is associated with a namespace and takes a Boolean attribute

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 9

mustUnderstand [59], Sect. 14. In case the value is set to ―yes‖, a process engine has to reject the

process model if it does not support the extension. The specification does not state anything about the

modeling tool. A value of ―no‖ denotes that the extension is optional. In case an engine is not aware of

the extension, the each respective extensionActivity is replaced by an empty activity, extension

assignments are ignored, and all other XML attributes and XML elements are ignored.

The BPEL standard offers following possibilities to extend the language:

 Introduce new activity types, called extensionActivity ([59], Sect. 10.9

 Include new data manipulation operations ([59], Sect. 8.4)

 Specify individual query and expression languages ([59], Sect. 8.2)

 Allow namespace-qualified attributes and elements from other namespaces ([59], Sect. 5.3)
and apply extension semantics for all BPEL constructs in the syntax sub-tree ([59], Chapter 14)

The standard requires that an extension does not cause any change to the semantics of a BPEL

process ([59], Sect. 5.3). If an extensionActivity is a start activity or contains a start activity, the

namespace of the extensionActivity child element must be declared as

mustUnderstand="yes" ([59], Sect. 10.4). In the old version of BPEL, namely BPEL 1.1, an

extension is simply made by adding XML attributes and XML elements in another namespace into the
BPEL process. In case a workflow engine is not aware of the namespace, the behavior is not specified
by the BPEL 1.1 specification. This version of the specification does not impose any restrictions on
extensions. The fact that the execution semantics of the extension has to be described is implicitly
required by all versions of the specification.

5. Possibilities to Realize an Extension

We distinguish between two different options for the realization of an extension in terms of Definition 1:
(A1) Extended modeling tool and extended engine and (A2) extended modeling tool and model
transformation.

Extended
Process

Modeling Tool

Extended
Process
Engine

prepare

deploy

BPEL Language Transformation

BPEL Run-time Extension

Additional
Functionality

BPEL Language
Extension

Extended BPEL

Process
Transformation

Tool

Standard
Process
Engine Externalized

Additional
Functionality

deploy invoke

Standard BPEL

A1

A2

A3

Fig. 3: Runtime Extension versus Model Transformation

The first option A1 ―BPEL Runtime Extension‖ is represented by the upper branch in Fig. 3. Extended
BPEL code is created in a modeling tool which supports this kind of extension. The BPEL code and its
extension are deployed onto a process engine that supports the additional functionality. That means,
the process engine has to be modified for this option.

The second option A2 ―BPEL Language Transformation‖ is represented by the lower branch in Fig. 3.
Extended BPEL code is created in an extended modeling tool as well. The significant difference to A1
is the employment of model transformations [69]. This technique translates the extension constructs
into standard BPEL language constructs. Standard BPEL code is thereby generated that can be
deployed on a process engine that is not aware of any extension. Note that this paper does not
discuss transformations of other business process modeling languages to BPEL. A discussion of that
aspect is given by [70].

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 10

In addition to these two options, there is the possibility to separate the desired functionality in an
external service. In case an extension uses this approach, it is not a valid extension according to
Definition 1. This option A3 ―Dedicated Service‖ is shown in the lower right corner in Fig. 3. The
external service can be invoked from the process engine with standard language constructs. That
means, a language extension is not required per se, but typically provides more comfort. In this
setting, the modeling tool may be extended to support different renderings of the dedicated services or
may be kept as is.

The runtime extension approach (A1) envisages extending both the language (including the modeling
tool) and the execution engine that supports the execution of the new constructs. This may also
require an adaption of the monitoring components, as they may need to distinguish standard and
extended activities and monitor them differently. The consequential changes may reach up to the
dashboard. A prominent example for the runtime approach is the extension BPELJ [10], which extends
BPEL with the possibility to use Java code snippets as an activity. The BPEL language is extended

with an according extensionActivity, the modeling tool is extended for support of entering Java

code, and also the process engine is extended for actually executing the Java code.

In the model transformation approach (A2) basically higher level constructs are introduced. This is,
however, only possible if an extension is expressible with a set of standard constructs. For illustrating
this approach we take a fictive BPEL extension, which we call ―Delayed Execution‖. Listing 1 shows

the code for an invoke activity that uses the ―Delayed Execution‖, which delays the execution for 3

days and 10 hours counted from the point of the activation of the invoke.

<invoke name="refreshValue" ext:delay="P3DT10H" .../>

Listing 1: Invoke Activity Extended for Delayed Execution

A model transformation tool has to processes all constructs that carry an extension attribute for the

delay. Each identified construct is split up into a wait activity and the actual activity (here: an invoke

activity) that should be executed (cf. Listing 2).

<sequence …>

 <wait name="refreshValueDelay" for="P3DT10H" />

 <invoke name="refreshValue" …/>

</sequence>

Listing 2: Extended Invoke Activity Transformed to Standard Constructs

For some cases, functionality can be externalized as a service (A3). This approach is easy to
implement, offers high reusability (even outside of BPEL processes), and does not hamper portability
of the processes. A major issue is that the require functionality may need the current state of a
process instance such as the state of activities and variable content, which is difficult to pass to the
externalized service. This limits the applicability of this approach. The approach may, for instance, be
applied for extending BPEL with business rules, discussed in Sect. 7.2.1.

When comparing the different extension options A1 and A2, the model transformation approach (A2)
has one significant advantage: Compatibility and thus portability of the process models to another
toolset is preserved. It also has a significant disadvantage: The original activity is replaced by a set of
new activities, variable definitions, and other constructs that do not represent the work that was
actually intended. This circumstance impacts monitoring and debugging instruments that will register
the execution of activities that are not contained in the original process model. To ease monitoring, an
additional transformation step of monitoring information into the former process model format is
required. The transformation approach is, however, not applicable in all cases. If an extension cannot
be expressed with standard constructs, an extension of the engine is inevitable. The advantage of the
runtime extension approach is the holistic and consistent integration of the extension in the modeling
tool and workflow engine. The user gets what he modeled. Moreover, this solution promises the
highest engine performance due to an optimized workflow model (as no additional elements are
generated) and a reduced communication overhead. The disadvantage of the runtime extension
approach is that it requires a huge development effort. Note that the approaches can be combined: In
case a process engine supports the extension, it can be executed natively. If it does not support the
extension, then a model transformation step needs to take place in advance. The option to externalize

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 11

the new functionality into a distinct service that offers the functionality is only possible if the new
functionality does not affect actual engine components, such as the navigator.

6. Extension Development Guideline

If new functionality is required for the development of business processes, one has to balance how
and where to integrate this functionality. This section provides the reader a means at hand to decide
whether a BPEL extension is an adequate solution. For supporting the decision making, we present in
Sect. 6.1 different aspects that should be considered when planning BPEL extensions and give
recommendations how to achieve the planned goal. Due to its high development effort, the runtime
extension approach (A1) should be avoided if possible. If no reason is found for an A1 extension, the
enhanced functionality should be implemented in other ways as described in Sect. 5. For instance, the
enhanced functionality may be realized as Web service called by a workflow, as functionality in the
ESB-infrastructure, as design time extension in the modeling tool, or as transformation. If it turns out
that the A1 approach is needed, there are different possibilities how to implement it. Sect. 6.2
discusses three possibilities: As a commercial solution, as a self-implemented solution based on open
source software, or as a hosted solution.

6.1 Recommendations for the Choice of Extensions

When deciding about the need for an extension, different aspects of the extension have to be thought
of, which we present in the following. We discuss the aspects and give recommendations for design
and implementation of extensions. Note that the considered aspects are arranged in an unordered list.

Implementation of the functionality in other components of the infrastructure. The infrastructure
offers components such as an enterprise service bus or application server (cf. Sect. 2). It may be
possible to implement the needed functionality in a component other than the engine. For example,
retrying service invocation or replacing a service with an equivalent service is a typical task for an ESB
[12]; [49]. Thus, this functionality is not implemented in the BPEL engine but in the integration layer. If
the functionality can be realized by modifying infrastructure components other than the engine (e.g.,
the ESB), we recommend this approach. In case the planned extension needs to be reflected in the
workflow logic, it should be implemented in the workflow engine.

Visibility of the extension in the workflow model required. A BPEL extension is visible in the

workflow model if it is explicitly declared as extension and either embedded in an

extensionActivity/extensionAssignOperation element or implemented as an extension

attribute or extension element. This allows identifying usage of the extension easily. In case visibility of
the extension is necessary for process users and/or developers, the extension should be designed
according to the standard mechanism (cf. Sect. 5) using the A1 or A2 approach. If visibility can be
neglected, we recommend the dedicated service solution (A3), which is easier to implement.

Visibility of the extension in the audit trail required. Typically, a BPEL engine logs state changes
of activities in the audit trail. The planned extension may need to be accounted for in the audit trail.
When realizing the extension with approach A2, the process model is transformed into a standard
BPEL process model where the extension is not visible anymore. We recommend solving this problem
with a two-directional mapping between the modeling tool extension and the representing standard
BPEL elements. The mapping can be used to conciliate the displayed auditing information and the
process model. It may happen that the backward mapping (transformed model to extended design
time model) is complex or even ambiguous, e.g., in the case a service is used by multiple extensions.
In this case we recommend realizing the extension in the workflow engine (A1).

Detailed internal execution information of the extension in the audit trail required. It may be
required to add information beyond standard state changes of an extension activity to the audit trail,
which may be the progress of execution or the selected user for instance. In this case an engine
extension is inevitable (A1). Furthermore, the audit trail has to be capable of storing this additional
information and may also need to be extended.

Execution performance importance. If the runtime of the extended functionality is a major issue, we
recommend implementing the extension directly in the workflow engine (A1). This solution is
characterized by the possibility of optimized code (compared to A2) and by a reduced communication
overhead (compared to A3).

Based on the decision taken at each aspect, it can be decided whether a BPEL extension is needed.
The decision depends on the concrete problem statement. Thus, a general answer cannot be given
and has to be made on a per-case basis. The different alternatives, their advantages and

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 12

shortcomings are presented in Sect. 5. In case the decision is to create a BPEL extension, the next
step is to decide how to realize the extension.

6.2 Solution Possibilities for Implementing a BPEL Extension in a BPEL Engine

After deciding for realizing an extension in the modeling tool and the engine (approach A1 from Sect.5,
the extension has to be implemented both in the modeling tool and in the engine. In case the
approaches A2 or A3, the modeling tool has to be changed to support the extension. The BPEL
engine stays unchanged.

In this section, we describe how extensions can be added to existing systems by providing concrete
examples. The discussion is structured around several key considerations: The level of extension
support in the system and the ability to modify the system itself. Subsequently, we address the
additional issues arising from implementing extensions in hosted BPM systems, e.g., ―BPM as
a service‖, which is an emerging trend.

The first consideration is whether the system (modeling tool and engine) has some or full support for
extensibility. In the case that it does have support, the developer simply uses the extension support –
provided that it can handle the requirements of the target extension. Examples for this case are the
Eclipse BPEL designer

2
 and the Apache ODE engine, where plug points for extensions are available.

The ―Pluggable Framework for Enabling the Execution of Extended BPEL Behavior‖ (described in
Sect. 7.3.2) also allows for changing the behavior of BPEL and thus offers an alternative way to
extend BPEL engines.

In the case that the system does not have adequate support, one must first enable it. This can only be
done if the source code is accessible and can be modified, which is the case with the Eclipse BPEL
designer and the Apache ODE engine, for instance. Consider a developer having an extension that
introduces data references in BPEL during runtime execution [79]. The Eclipse BPEL Designer nor the
Apache ODE engine supports this out of the box. Thus, the support has to be added to them by
a programmer.

In all cases, commercial products are always a solution. Thus, the first decision to make is a make-or-
buy decision [27].

Commercial Solution: With most commercial workflow systems it is not possible to implement BPEL
extensions, because their source code is not available and they do not provide an extension interface.
Thus, only the usage of extensions provided by the vendor is possible. Nevertheless, a custom
development of an extension by the vendor may be triggered.

Open Source Solution: The alternative is to implement a BPEL extension using an open source
workflow engine. Compared to the hosted solution, this approach has the advantage that the
developer has the full control over the development of the extension. Extensions are not restricted to
defined extension points. If the system is running on a private server, execution of the extension can
be observed and the data that is used in the workflow is secure (as long as critical data is not sent to
external services). There are open source workflow engines available that can be used as
development basis. As described in Sections 2 and 5, a modeling tool is also an essential part of the
system and therefore has to be extended accordingly.

One of the goals of the standardization of BPEL has been the removal of all dependencies between
process definition files, their process modeling tool, and the engines running those workflows. The
modeling tool and the engine can be regarded as loosely coupled as they are replaceable by other
systems that are implementing the BPEL 2.0 standard. This interchangeability breaks when a new
extension activity is introduced. An extension activity typically enhances the set of BPEL activities and
adds dependencies between the process engine and process modeling tool, as both have to
understand how to handle these extension activities. Both systems (engine and modeling tool) have to
care about the syntax of the extensions and the developer has to ensure that both systems rely on the
same version of the extension activity. The engine needs to know what to do when it reaches the
extension activity within a workflow model (semantics) and the modeling tool needs to know how to
visualize, serialize and deserialize the activity to and from XML. Thus, both systems are not loosely
coupled anymore. When creating a new extension activity, the workflow engine has to be extended via
its extension API (if available). In addition, the modeling tool with its (mostly different) extension API
has to be extended independently which leads to two extension implementations: one for the engine
and one for the modeling tool. The developers have to take care that both versions do not differ in
syntax and semantics.

2
 http://www.eclipse.org/bpel/

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 13

For avoiding double implementation we developed a system design that allows using the same data
model for the Eclipse BPEL Designer and Apache ODE [20]. This approach allows for implementing
an extension by using a single shared Java class. The modeling tool and the engine use the
corresponding parts of this class relevant for them: the modeling tool uses the layouting and XML
serialization parts; the engine uses the execution code and the serialization code. This has the
advantage that less inconsistencies, e.g., in the serialization or naming of the developed extensions,
occur.

Hosted Solution: There is a current trend towards hosted ―BPM as a service‖ systems, which are
―Software as a Service‖ solutions targeting Business Process Management. As such, they provide a
hosted system (accessible simply with a Web browser) for the end-to-end BPM lifecycle including
design, execution, and monitoring. Additionally, such systems can enable collaboration between
developers and designers. With nothing to install, this lowers the barrier to entry but does require a
continuous connection to the Internet while working. In such systems, additional concerns arise for
providing extensions. Referring back to the previous concerns, a developer has no access to modify
the source and thus one must rely on supported extensibility. Thus, we focus on a concrete BPM as a
service system presented by Curbera et al.[16]. It consists of a visual modeling tool backed by the Bite
workflow runtime [37] and an extension catalog [68]. This system supports extensions and also
enables collaboration around extension activities: Developers and designers can use the catalog to
download, use, comment on, and rate extensions. The extension considerations highlighted in this
section are the same for Bite and BPEL, because Bite‘s control flow semantics are a subset of
BPEL‘s.

First, consider how the Bite runtime identifies and executes an extension activity: An extension is
recognized upon encountering an unknown XML element in the process. The engine looks up a
corresponding extension implementation module in an extension registry and associates it with the
parsed activity. An extension implementation module may be written either in Java or in any of a set of
supported scripting languages. When the extension activity is reached and activated in a process
instance, the implementation module is called and handed the XML definition of the activity and
required process instance data. The extension activity may only write data to the activity‘s output
variable. It does not have the ability to read or modify process navigational state. Once the
implementation module completes, its output is stored in the output variable of the extension activity
and the activity completes.

The extension enablement considerations for a hosted system include ensuring that the
implementation artifact can reach the runtime, be registered in a catalog for use and looked up by the
runtime and by other designers, and be able to be rendered by the design tool. In the system,
a developer wanting to create an extension must provide basic activity metadata along with code
implementing the extension. The meta-data is used by (a) the modeling tool, in order to provide the
user with a meaningful display of the desired inputs for the extension and (b) the catalog, in order to
provide a description and tags for users browsing the catalog. The implementation module is placed in
a shared repository.

Developers upload the extensions either via a plug-in to their development environment or via
a simple Web form. The extensions become immediately available to logged-in users. Once a user
selects to use an extension activity in a workflow, its implementation module is pulled from the
repository, the extension is registered with the engine and the module is bundled with the workflow
application.

One key concern around extensions in a BPM as a service system is that it requires strong policing of
the quality and integrity of the extension implementation code due to the fact that the environment is
shared among many users and that the hosting entity may be liable for malicious extension code and
potentially missed Service Level Agreements. This concern may be addressed by applying trust and
reputation systems such as rating and ranking, third-party certification, and the ability to upload only
by those with explicitly granted privileges.

7. Extensions in Practice

This section lists 62 commercially available extensions and scientifically published extensions. We

apply the classification provided in Sect. 3. An extension may cover only the design time, the design

time and the runtime, or only the runtime environment. The following is structured accordingly and

additionally subdivided into vendor and research extensions.

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 14

7.1 Design Time only Extensions

This section presents approaches that make use of the transformation approach (A2) or that invoke

dedicated services in order to integrate additional features (A3). It is also possible to combine both

ways, as shown by Oracle‘s extensions presented in the following section.

7.1.1. Design Time only Extensions by Vendors

Oracle’s Human Task [61] activity is used to integrate human behavior into business processes (C1.8,
C2.7). There are several configuration options, for example to route a task to a second approver or to
execute a number of human tasks in parallel. Tasks can be assigned to humans by specifying
concrete users or user groups. Depending on the chosen configuration human task activities are

realized by scope, assign, invoke, receive, and switch activities. Oracle‘s Process Manager

provides a dedicated human task Web service that is called by the invoke activity (C3.1, A3). A GUI

enables the assigned user to handle the task (C4.1). The outcome of the task is sent back to the
process. The extension mechanism used is an extension element that annotates the activities
realizing the human task (s9).

Oracle’s notification service [61] is a collective term for five different notification mechanisms, namely
email, fax, pager, SMS, and voice messages (C1.8, C2.7). Each is reflected by a single activity on a
component palette in the process modeling tool (C4.1). Configuration of the activities is type-
dependent. For example, the email activity provides parameters for target email addresses, a subject,
and email body. The code underlying a notification activity is BPEL compliant: the activity is

transformed into a scope with input, output, and fault variables, an assign to copy the user‘s

parameter values to the input variable, an invoke activity to call a dedicated notification service, and

a fault handler to deal with possibly occurring failures. An extension element annotates the scope to

mark it as notification activity (s9). The appropriate notification service is provided by Oracle‘s Process
Manager (C3.1, A3) that routes notifications to particular servers (email server, SMS server, etc.).

7.1.2. Design Time only Extensions by Research

BPEL4Chor is extending BPEL with a unique ID which is used for identifying message activities and

onMessage branches. Decker et al. [17] present BPEL4Chor as an extension of BPEL for modeling

choreographies. A choreography describes the message exchange between multiple participants
([64]; C1.1, C4.1). BPEL4Chor uses BPEL to describe the behavior of each participant in
a choreography (C2.1, C3.2). The BPEL4Chor topology lists the participants and the connection
between them in the form of message links. A unique ID is used to identify the activities and

onMessage branches, which are referenced in a message link. The ID is stored in the attribute

wsu:id (s8). The name attribute is not used since it is not possible to put a name attribute on an

onMessage construct. Each participant behavior description is transformed to an abstract BPEL

process following the abstract process profile for observable behavior. This model does not contain
any extensions any more. The model is then manually refined to an executable BPEL process without
addition of any BPEL4Chor related extensions (C4.2). This makes BPEL4Chor a design time only
extension.

The ID attribute is a general extension where a unique identifier may be put to each element in the
BPEL processes (s8). The identifier is mainly used in modeling, such as for referencing particular
constructs (C1.4, C2.5, C3.2, C4.1). The modeling extension does not need to be understood by the

engine (mustUnderstand="no") since there is no runtime behavior of the identifiers.

BPEL process templates [30] are abstract, reusable units of BPEL code stored in a separate XML file

(*.template). Usually, a template solves a general, recurring problem that can be used to avoid

process modeling from scratch and reinventing the wheel (C1.2, C1.6). Templates are abstracted with
the help of parameters that hide certain details (e.g., variables, partner links, port types). At buildtime,
parameters can be mapped on concrete values provided by the process modeler. Templates can be

referenced from within BPEL processes by a tRef element in BPEL namespace (C2.5, s 2). Using

such references in templates allows recursive template definition (C3.2, C4.1). Since processes
pointing to templates are not executable, transformation steps need to be performed in order to make
them executable. Template parameters are thereby substituted by concrete values, template
references by the actual template code (A2, C4.4).

“SWRL for BPEL” [81] defines how constraints between BPEL activities can be encoded in the BPEL
process using the Semantic Web Rule Language (SWRL). This enables another way of modeling
process models (C1.4, C2.1, C3.2, C4.1). The extended BPEL process is transformed to a standard-

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 15

conform process following the given constraints (A2). The extension declares new extensions
elements (s9).

BPEL fragments [53] are introduced as modeling construct to enable reuse of process parts across
different processes (C1.6, C2.1, C3.2, C4.1). The approach does not use BPEL‘s extension

mechanisms, but declares a new namespace and uses fragment instead of process as root

element (s 5).

BPEL-D [36] replaces variables by explicit data links in BPEL 1.1 (C2.8, C3.2, C4.1). In general, there
are two ways to propagate data between activities in business processes: the blackboard approach
and explicit data flow [5], p. 266. In the case of the blackboard approach, variables are used to share
data. BPEL implements the blackboard approach, whereas BPEL-D realizes explicit data flow. Thus,

BPEL-D contradicts with the BPEL semantics (s 4). The motivation of BPEL-D is enabling business

process outsourcing (C1.1): A BPEL-D process is used as input for an algorithm splitting the process
into several standards-conform BPEL processes, which maintain the operational semantics of the
intended BPEL-D process [34]. Thus, BPEL-D is only used at design time. It is possible to transform
one BPEL-D process into one standard BPEL process reassembling BPEL-D semantics by standard
BPEL constructs.

BPEL data transitions (BPEL-DT) extend the BPEL language with data transitions for handling large
amounts of data [21]. This is, for instance, required in ETL (extract, transform, load data) flows that are
based on Web service orchestrations which are realized with BPEL. Such data intensive service
applications can make only limited use of the ―by value‖ semantics in BPEL, as otherwise massive
data sets have to be transferred forth and back to the process engine. Other ways of specifying data
flow are therefore necessary. In standard BPEL, data flow is implicitly contained by the access of
activities to variables and their values, respectively. BPEL-DT seeks to make data flow explicit by
extending the BPEL metamodel with data transitions (i.e.,data links; C1.3, C1.5, C1.8, C4.1). These
links are transformed into an XML mapping specification (A2; MSL, [24]), which needs to be manually
refined (C4.2). The engine then calls additional services to realize the given mapping specification
(A3, C3.1, C4.5). This extension is not implemented in a standard-conform manner and contradicts the

BPEL semantics, since a new kind of links is added (s 4). In BPEL-D, data-flow is still internal to the

process, whereas BPEL-DT externalizes the data flow.

References in BPEL [79] also address handling large amounts of data by extending BPEL‘s data

handling mechanism with pointers on data (C1.8, C2.2, C2.4). A BPEL referenceVariable

element in BPEL namespace (s 2) is introduced that specifies variables containing a reference to

externally stored data (C3.2). The attribute referenceType indicates whether a reference is resolved

at scope activation, before each usage, periodically, or on behalf of an external partner (C2.8). Actual

reference resolution is made by an external Reference Resolution Service (RRS) (C3.1, A3). Since
―References in BPEL‖ is proposed as build time extension, a pre-deployment step needs to transform
extended BPEL files into standard BPEL by replacing reference variables with BPEL variables,
inserting partner links and interaction activities (depending on the reference type) (C4.1, C4.4, A2).

―Activity failure and recovery‖ is a BPEL extension proposed by Liu [52] which is intended to increase
the reliability of processes and to relieve process modelers from the complexity of defining BPEL fault
handlers. They therefore introduce four fault tolerance patterns (ignore fault, skip scope, retry scope,
and alternative scope) that can be exploited during modeling of processes to express reactions on
faults (C4.1). The specified patterns are not included in the designed process but are mapped on

scopes by name. Each pattern consists of rules to transform a given process definition into a process

that implements the particular fault tolerance mechanism (e.g., retry a scope a specified number of
times) (C1.7, C2.1, C3.2).

“Activity failure and recovery” is also proposed by Modafferi and Conforti. [54]. Here, an annotated
BPEL process is used as starting point. The annotations include setting variables by external
messages (C1.2, C2.2, C3.2), specifying timeouts for service invocations (C1.7, C2.7, C3.2) and
enabling redoing of an activity (C1.2, C1.3, C3.2). The annotated process is then transformed to a

standard BPEL process (C4.1, A2). The extensions are put in the BPEL namespace (s 2).

xBPEL [11] is a BPEL extension for modeling mobile participants in workflows (C1.2, C1.3).
Chakraborty et al. introduce the PerCollab system which executes xBPEL and allows mobile
integration of people into BPEL workflows without constraining the users to their desktop PC. xBPEL
allows modeling communication between people and between a process and people (C2.1, C3.3,

C4.1, C4.5). The extensions are put into the BPEL namespace (s 2). An xBPEL process is

transformed to standard BPEL process (A2) and services of the PerCollab environment (A3).

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 16

7.2 Design Time and Runtime Extensions

This section lists extensions, where the BPEL modeling tool and the BPEL runtime are extended.

7.2.1. Design Time and Runtime Extensions by Vendors

WS-BPEL Extension for People (BPEL4People) enables integration of human-based activities in
BPEL [3]. This includes the possibility to define people‘s activities, people groups, tasks and
notifications (C1.3, C2.1, C3.1, C3.2, C3.3, C4.1, C4.5). BPEL4People is building on WS-HumanTask
(cf. Agrawal, 2007b). WS-HumanTask is used in BPEL4People for the actual implementation of

a people activity. BPEL4People defines the peopleActivity as a basic activity type which uses

human tasks as an implementation (C2.7, s7). The peopleActivity allows specifying tasks local to

a process or use tasks defined outside of the process definition. To use BPEL4People the modelling
tool and the process engine must be extended (A1, A3).

BPEL for Java (BPELJ) combines the programming languages BPEL and Java [10]. The intention is to
provide a way for integrating pieces of Java code into a BPEL process definition. The main effect of
this extension is a higher convenience when programming a BPEL process (C1.3, C1.5, C1.8). BPELJ
allows using Java code to be included in BPEL process definitions. The according activity in BPELJ is

named snippet. In a snippet, BPEL variables can be manipulated and those snippets can be used

for instance in loop conditions, branching conditions (C2.1) and for variable initialization as well as
variable manipulation (C2.2, C2.3, C2.8). To use BPELJ extended modeling tools and process
engines must be implemented (A1). Since BPELJ allows the modification of variables in a transition

condition, it is not conform to the BPEL execution semantics (s 4).

BPEL-SPE [39] is a BPEL 2.0 extension for sub-processes that aims at increasing legibility and
reusability of processes (C1.4, C1.6, C1.8). Sub-processes are BPEL processes implementing

a single request-response operation and are called using a call activity in BPEL namespace from

within the parent process (C2.5, C2.7, C4.1, s 2). The life cycle of sub-processes is tied to the

respective parent process (C1.3, C3.2). For instance, a fault in a sub-process needs to be propagated
to the parent process. This is enforced by coordination messages employed BPEL engines need to
understand (A1, C4.4, C4.5, C4.6). Sub-processes can be defined as standalone process (C1.1) and
inline within a parent process (C3.2). An inline sub-process can access visible data (i.e.,data of the
scope it is defined in) of its parent process and thus omit implementation details.

The Execution as Subprocess extension [25] is a variant of BPEL-SPE. The goal is to enable an

execution as a subprocess in a declarative way instead of a call activity (C1.3, C2.1, C2.7, C3.1,

C3.2, C4.1, C4.5). The partner link declaration is extended by the attribute processTemplate (s8).

Here, the name of a BPEL process may be specified. If the execution engine finds that process at the
runtime, the process is directly called by the BPEL engine and the life cycle of the process is tied to
the caller (A1). That means, for example, that a fault on process level of the called process is
communicated to the calling process.

The Collaborative Scopes approach [25] adds support for case handling [1] to BPEL processes (C1.3,

C2.1, C3.1, C3.2, C4.5). A new collaborativeScope activity is introduced (C4.1, s7). Each activity

in a collaborative scope may have an exit condition. It is possible to evaluate the exit condition on start
or on completion of an activity, or both. In case the condition is evaluated at the start, the activity is
skipped if the exit condition is met. In case the exit condition is evaluated at the completion of an
activity and the exit condition evaluates to false, the activity is started again. The extension is included
in the modeling tool and realized in the engine (A1).

The Generalized Flo [25] enables control links to connect activities arbitrarily (C1.3, C1.8, C2.1, C3.2,

C4.1, C4.5, s 4). Standard BPEL allows links to form an acyclic graph only. In addition to arbitrary

connections, fault links between two activities are introduced. If the source activity faults, the target
activity is executed. The generalized flow has to consist of one start activity only and only one control
link may be followed at each execution step. The approach requires an engine extension (A1).

ii4BPEL [23] integrates SQL statements into BPEL, connects processes directly to relational
databases, and supports advanced ways of data exchange (C1.3, C1.5, C2.2). IBM implements
ii4BPEL in the WebSphere Integration Developer as a Plugin. Based on BPEL 2.0 IBM extended the
BPEL language and the tooling, e.g., the process engine, the deployment mechanism, the modeling
tool (A1, A2, C3.1, C3.2, C4.1, C4.4, C4.5). Furthermore, a special data middleware is required (A3).

ii4BPEL defines four new activities for data management (s7): SQLSnippet runs an SQL statement

against database tables. retrieveSet load referenced data sets into BPEL-variables.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 17

atomicSQLSequence join SQL snippets and retrieve sets in one activity. informationServer

interacts with the IBM InfoSphere Information Server.

Non-compensatable scopes [25] introduces the attribute compensatable to a scope. In case the

attribute is set to yes, a compensation of the scope leads to a fault (A1, s 4). The feature is used to

improve performance of process execution: In case a scope is marked as non-compensateble, no
snapshots of variables after the completion of the scope are needed (A1, C1.3, C2.5, C3.1, C4.1,
C4.5).

Dedicated Administrator [25] enables the assignment of an administrator to a scope at the beginning
of its life cycle. The administrator may do corrective changes to variables and has full control over the
life cycle of the scope to ensure proper process execution (A1, C1.7, C2.5, C3.1, C4.1, C4.5, s8).

A microflow [25] is a new execution mode for business processes indicated by

wpc:executionMode="microflow". A microflow is a micro script which is executed in one

transaction to speed up processing ([50] C1.5, C2.5). Due to the single transaction, the starting
receive is the only receive allowed. Asynchronous invokes are always allowed, whereas synchronous
invokes only in the case of synchronous bindings (C3.1, C4.1, C4.5).

Transaction boundaries[25] enable configuration of the internal behavior of the BPEL engine with

respect to its internal atomic transactions (A1, s 4). The navigator of a BPEL engine usually starts

a new transaction at the beginning of an activity and commits it at the end of the activity. This
execution causes an overhead at the transaction manager. By configuring the transactions to span
multiple activities, this overhead and hence the process execution time can be reduced (C1.5, C2.5,
C3.1, C4.1, C4.5).

The Apache ODE group [6] proposes eight extensions to facilitate execution of BPEL processes. The
specification of these extensions does not require declaration of the extensions. Besides adding new
activities and attributes, the Apache ODE engine

3
 offers support for XPath 2.0 as query language and

adds new XPath functions reducing the coding effort. For instance, the function insert-before

inserts a node as a sibling before a given node (C1.3, C2.5, C3.2, C4.1, C4.5).

Implicit correlations remove the need to add correlation sets in the case the BPEL process starts the
interaction with a service [6]. By using implicit correlation, a unique session identifier is generated and

put into the message (C1.3, C2.7, C3.1, C4.1, C4.5, s 4). The response of the service contains the

same session identifier. The message router of the engine uses this identifier to route the message to
the correct process instance. A concrete implementation is available for the SOAP/HTTP binding (A1).

Activity failure and recovery enables configuration of failure handling in the case of an invoke
activity[6]. An example for a failure is an HTTP timeout. Default failure handling shows faults in the
process instance management of Apache ODE and requires manual intervention. This behavior can

be changed by a failureHandling element (s 4). It can be configured as follows: retryFor

specifies the number of retries; retryDelay denotes the time between each retry;

faultOnFailure causes the invoke activity to throw an activityFailure fault as BPEL

standard fault in the case of a failure (A1, C1.7, C2.7, C3.1, C4.1, C4.5).

Headers handling enables the access to header fields in SOAP messages ([6] A1). For that purpose,

the attribute header is introduced into the BPEL namespace at the from and to elements of a copy

statement in an assign activity (s 3). In case the attribute is present, the context node of the XPath

statement is set to the specified header element (C1.8, C2.1, C3.2, C4.1, C4.5). There is no explicit
possibility to check for presence or absence of header fields.

The iterable forEach adds the element sequenceValue to the BPEL namespace below a BPEL

forEach ([6]; A1, s 3). If the element is present, the forEach iterates on all elements contained in

the given xsd:sequence element instead of using start and final counter value (C1.3, C2.1, C3.2,

C4.1, C4.5, s 4).

The auto complete copy destination enables the attribute insertMissingToData in a to statement

copy statement in an assign activity ([6]; s 3). If set to yes, the path to the element given in to

element of a copy statement is automatically generated (C1.3, C1.4, C2.1, C3.2, C4.1, C4.5). For

example, if New York is assigned to $customer/address/city, but the variable $customer is

empty, the parent elements address and city are automatically generated.

3
 http://ode.apache.org/

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 18

To enable ignoring unavailable data the two attributes ignoreMissingFromData and

ignoreUninitializedFromVariable are introduced to the copy statement of the assign activity ([6]; s 3).

In the case of ignoreMissingFromData and a from-spec returning no XML information items, the

selectionFailure fault is suppressed and no assignment done. In case of

ignoreUninitializedFromVariable and the usage of an uninitialized variable in the from-spec,

the uninitializedVariable fault is suppressed and no assignment is done (A1, C1.3, C1.4, C2.1,

C3.2, C4.1, C4.5).

Process contexts are key value pairs allowing metadata in sent and received messages to be stored
and accessed in processes (C1.3, C1.4, C2.1, C2.2, C3.2, C4.1). The contexts can be used in assign

activities and in invoke activities (A1, s 4). Developers have to provide Java code to copy SOAP

header information from and to context objects in Apache ODE. The Java code compiled and stored in

the engine. The functionality is activated using properties-files and deploy.xml.

Resource-oriented BPEL is an approach to add support for providing and using REST services in
BPEL. The Apache ODE group and Overdick[62] propose to add special REST attributes to the

invoke activity, the receive activity and the event handler (C1.3, C1.4, C1.8, C2.1). That way,

RESTful services are directly supported by BPEL instead of using a special HTTP binding in WSDL.

BPEL for REST is an approach shown in Pautasso[63]. Four activities (get, put, post, and delete)

are used to invoke REST services (s 2, s 4). RESTful resources can be offered via onGet, onPut,

onPost, and onDelete handler (A1, C1.3, C2.1, C2.6, C3.1, C4.1, C4.5).

Continue on error [25] offers a similar behavior as activity failure and recovery. Each invoke activity

gets the attribute continueOnError (s8). A human task for an administrator is generated in the case

the invoke activity encounters a communication failure and the value of the attribute is yes. The

assigned administrator is then privileged to do corrective actions. In the case of a no, the failure is

converted into a fault and thrown into the BPEL process (C1.7, C2.7, C3.1, C4.1, C4.5).

7.2.2. Design Time and Runtime Extensions by Research

Retry scopes [19] extend BPEL with scope retrying behavior (C1.3, C1.7, C2.1, C3.2, C4.1, C4.5). The
idea is similar to the idea presented by[52]. In [19], the issue of retrying is solved with an explicit

restart activity and without an à priori rewriting step (A1, s 4). The restart activity may only be

used in a fault handler and restarts the respective scope. By using an explicit activity, explicit repair
behavior may be executed before restarting the scope.

BPEL/SQL [74] is a generic term for approaches to integrate SQL statements into BPEL with the aim
to connect workflow engines directly to relational databases. [75] have presented an overview of
BPEL/SQL implementations, which all share the properties of ii4BPEL described in Sect. 4.2.1: A1,
A2, A3, C1.3, C1.5, C2.2, C3.1, C3.2, C4.1, C4.4, C4.5, s7.

Parameterized processes [30] is an extension that decouples BPEL‘s interaction activities from
concrete port types and operations to improve reusability of (parts of) workflows (C1.6) and flexibility

of selecting arbitrary services at runtime (C1.2). The new element evaluate is inserted under BPEL

namespace into message sending activities to override the specified port type/operation pairs (C3.2,

C4.1, s 2). The ―evaluate‖ concept enables several strategies to provide an activity with a concrete

port type/operation (static, prompt the user, query, and from variable) (C4.5, C4.6). The approach
allows determining the interface of the service to invoke at runtime, taking different interfaces for
different process instances, or handling faulty Web service invocations by default port type/operation

pairs (C1.7, C2.7). In conjunction with the ―evaluate‖ extension the find_bind element is introduced

(in BPEL namespace) which can be used in message sending activities (C3.2, C4.1 s 2). It enables

a deployment-independent specification of service selection policies even at runtime (C4.4), the
runtime modification of such policies even for single process instances (C132) as well as a process
instance repair if the service selection fails (C2.6). The parameterized processes approach extends
both design time and runtime environments (A1).

Cross-process fault handling and transaction handling [43] enables grouping arbitrary activities of
different participating processes together to form a logical transaction unit called choreography sphere
(C1.3, C1.7, C2.1, C4.1). The grouping and additional handlers are specified outside the BPEL
processes in the choreography. To execute the choreography sphere, an additional coordination

infrastructure is needed (C3.1). Thus, the runtime semantics of BPEL is changed (C3.2, C4.5, s 4).

The E4X extension for BPEL [48] enables the usage of ECMAScript for XML [26] instead of XSLT and
XPath in the case of variable manipulation. E4X extends JavaScript with support for XML-based data

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 19

manipulation (C1.4, C2.3, C3.2, C4.1, C4.5). The extension defines an

extensionAssignOperation and an extensionActivity, where JavaScript code may be used

(s7, s10).

Context4BPEL [80] allows the definition of context-aware workflows (C1.3). Such workflows may be
used to create context-aware applications or to apply workflow technology in manufacturing production

processes, for example (C4.6). Context4BPEL provides several extensions in a c4b namespace to

implement three concepts for explicitly making use of context information from within workflows. First,
the workflow can handle context events by particular activities that register

(c4b:registerSpatialEvent), deregister (c4b:deregisterSpatialEvent) and update

(c4b:updateSpatialEvent) events (C2.1, C2.7, C3.2, s9). Context events can be received by any

incoming message activity with certain message types. Second, context data can be queried by

a c4b:queryContext activity that stores the result of the request in a variable with well-defined type.

Third, transition conditions can be evaluated based on workflow internal or external context data
(C2.2, C2.3). New XPath functions are specified that facilitate dealing with context information, e.g.,

the c4b:within(area, location) function. Context4BPEL extends both design and runtime

environment (C4.1, C4.5, A1).

BPEL4Grid [18] combines workflow and grid technology. The extensions help to invoke stateful Grid
services (C1.3, C1.4, C2.2, C2.7, C3.1, C3.2, C4.1, C4.5). BPEL4Grid defines three new activities:

GridInvoke, GridCreateResourceInvoke, GridDestroyResourceInvoke. Since BPEL4Grid

introduces an additional way to communicate with services, it is not standards compliant (s 2).

BPEL4Grid includes an extended modeling tool and an extended process engine (A1). A similar

approach is presented by Zhang [82] where a GrsService activity is used to call a stateful Grid

service.

BPEL
light

 [57] is an extension of BPEL 2.0 that decouples process logic from WSDL 1.1 interface
definitions to improve reusability of process models and to enable workflow modeling without WSDL
knowledge (C1.2, C1.6, C1.8, C4.1). BPEL

light
 introduces a novel interaction model with the help of

BPEL‘s extension activity mechanism (C1.3, C3.2, C4.5): The WSDL-less

bl:interactionActivity emulates the behavior of receive, reply, and invoke activities

(C2.7). WSDL-less bl:pick and bl:eventHandlers replace their BPEL counterparts. BPEL‘s

partner link concept is split to BPEL
light

 bl:partners, containers for partner endpoint references

(EPRs), and bl:conversations, message exchanges that can involve several messages and

partners (s 4 – contradicts BPEL‘s communication paradigm). Interaction activities can be arbitrarily

bound to synchronous or asynchronous services (C1.2, C2.6, C4.4). BPEL
light

 results in an extension
of design time and runtime environment (A1).

BPEL for Semantic Web Services (BPEL4SWS) by [57] proposes WSDL-less BPEL by removing
these artifacts and thereby increasing the flexibility of business processes. In contrast to BPEL

light
,

BPEL4SWS uses semantic web technology, whereas BPEL
light

 uses straight-forward communication
paradigms. BPEL4SWS uses a set of composable standards and specifications and is independent of
any Semantic Web Service framework. It can be used to compose Semantic Web Services, traditional

Web Services and a mix of them (A1, s 4, C1.2, C1.3, C1.6, C1.8, C2.6, C2.7, C3.2, C4.1, C4.4,

C4.5).

OWL for BPEL integrates semantics in the form of OWL to BPEL [46]. Messaging activities are

replaced by generic ontcaf:service element, which directly specifies its input and output data

formats (s 4). The integrated OWL information is used to find a matching service for each specified

service (A1, C1.2, C2.1, C3.1, C4.1, C4.5).

WS-BPEL Extensions for Versioning [29] addresses the problem of versioning BPEL processes and

partner links (C1.4, C2.5, C3.1). The extension introduces new activities such as versionHandlers

and adds attributes to existing activities such as invoke, receive, import, or onMessage in the

BPEL namespace (s 2). It also extends the partner links concept at different levels of versioning. To

use BPEL for Versioning the modeling tool, the process engine and the deployment mechanism must
be upgraded (A1, C4.4).

―BPEL for pervasive computing‖ [22] introduces a multicast and publish/subscribe mechanism in BPEL
1.1 (C1.3). The aim is to make BPEL usable in pervasive and mobile computing scenarios where
peers can enter or leave the network at any time and hence the number of message recipients is

unknown at design time (C1.8). A new ext:partnerGroup construct works as list of endpoint

references (EPRs). Management of this list is realized by ext:add and ext:remove activities to

insert or delete EPRs, respectively. The ext:reply activity can exploit a partner group to send

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 20

messages to all contained partners, eventually realizing a multicast (C2.7, C3.2, C4.1, C4.5). Since
several partners communicate with the process over one and the same partner link, there is a need to

explicitly unbind a partner link (ext:unbind activity) and close its connection (ext:close activity)

(s 4 – contradicts BPEL‘s communication paradigm). The approach requires a design time and

runtime extension (A1).

T-BPEL [71] stands for ―Transactional BPEL‖ and allows for attaching transaction requirements to
a BPEL process and transaction capabilities to Web services. This enables a BPEL process to initiate
distributed atomic transactions as well as compensation based transactions (C1.3, C2.7, C3.1, C4.1,
C4.5). The extension is fully BPEL 1.1 compliant as it uses a separate namespace for its attributes
(s8) and does not change the behavior of the BPEL engine.

7.3 Runtime only Extensions

In the case of a runtime only extension, the process model itself stays unchanged but other artifacts
are touched, e.g., the deployment descriptor is modified. Runtime only approaches are not an
extension in terms of Definition 1. We show them to emphasize the difference between a language
extension and other forms of modifications and use the term ―extension‖ for consistency with the
terminology of the workflow community.

Runtime only extensions involve particular new components, but they have no impact on the modeling
tool. It is possible, however, that such an extension offers other modeling tools for their particular
purpose, different from BPEL modeling tools.

7.3.1. Runtime only Extensions by Vendors

“Business rules integration” is presented in Oracle [60]. Here, a business rule engine can be used

within a BPEL process by using the invoke activity which calls a dedicated service (A3) for

processing business rules (C1.2, C1.4, C1.6, C2.1, C3.2, C4.1, C4.5). This service interacts with
a rules engine, which again is integrated with a rule authoring tool and a rules repository. For
evaluation of a rule all required parameters are passed in the actual service call. The result of the
business rule service invocation can then be used in further processing, e.g., as

transitionCondition on a control link.

7.3.2. Runtime only Extensions by Research

BPEL’n’Aspects [32] is an approach of applying the aspect-oriented programming (AOP) paradigm
[38] to BPEL processes to facilitate adaptations of running service compositions (C1.2). It enables to
insert (or weave) aspects into processes without touching these processes themselves. Aspects are
described by WS-Policy[72]. They contain a pointcut (i.e.,the place in the process to weave the aspect
in) and an advice (i.e.,the functionality to weave in). Possible pointcuts are described by joinpoints that
can currently be activities and transition conditions. In BPEL‘n‘Aspects, an advice is always a Web
service invocation (C2.7). There are three advice types that denote whether the invocation ought to be
carried out before, instead, or after a BPEL construct. Aspects are weaved into processes with the
help of the WS-Policy Attachment mechanism [73]. BPEL‘n‘Aspects enables to insert aspects into
single process instances, process instance groups, or all process instances of a process model (C1.4,
C1.6, C3.2). The actual weaving can be done at runtime by the BPEL engine itself or by an external
component (i.e.,the weaver) on basis of appropriate events created during workflow execution (C4.5).
Since the engine itself is not aware of the executed aspects, the auditing needs to be extended in
order to provide compensation capabilities.

AO4BPEL [13] is an approach similar to BPEL‘n‘Aspects, but enables BPEL snippets to be weaved
into (running) processes (C1.2, C1.4, C1.6). Aspects are expressed as BPEL extension in BPEL

namespace with an aspect element (s 2, s 4). Pointcuts are XPath expressions contained in

a pointcut element. Each BPEL activity is thereby a possible joinpoint (C3.2). Advices are BPEL

snippets nested in an advice element (C2.1, C2.7). An AO4BPEL implementation foresees an

extended aspect-aware BPEL process engine and an aspect manager which execute activated
aspects (C4.5).

A variant of activity failure and recovery is presented in [28] and [78]. They propose to change the way
of service invocation to support handling of unavailable services by retrying invocation or replacing the
called service (C1.7, C2.7, C3.1, C4.5). Both assume that the service is idempotent and that each
operation implements an in/out operation. Both add a new deployment artifact which specifies a policy
for handling a network fault.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 21

A second variant of activity and failure recovery is presented in [33]. There, a transformation of

a BPEL process is proposed. Each invoke in the input BPEL process is surrounded by a fault

handler. In the case of a transportation fault, a service registry is invoked. The registry returns
compatible services (C1.7, C2.7, C3.1, C4.5). Each service of the list is tried to be invoked
subsequently until an invocation succeeds. The original BPEL process does not need to be modified.
The generated BPEL process requires a service registry. Thus, we treat the extension as a runtime
only extension, although the behavior of the transformed BPEL process does not rely on an extended
BPEL engine.

SH-BPEL is a variant of ―activity failure and recovery‖ [55] shows an enhancement of the invocation
handler of a BPEL engine to support failure handling in the engine. Such failure handling includes
replacing a service or to trigger human involvement. This extension is not an extension in our sense,
since the runtime of BPEL is changed without any change of the BPEL process (C1.7, C2.7, C3.1,
C4.5).

―Extended WS-RM‖ [13] also deals with reliability. In their case, they extend WS-Reliable Messaging
[54] to support multi-party conversations specified in BPEL (C1.3, C2.7, C3.1, C4.5). WS-RM is
a standard used to realize reliable messaging requirements on a SOAP level [77]. The extension is
implemented in the invocation handler. The behavior of the invocation handler is configured by the
deployment descriptor.

The “Pluggable Framework for Enabling the Execution of Extended BPEL Behavior” [34] offers
a systematic mechanism to instrument BPEL engines so that behavior can be injected into a process
(C1.2, C2.1, C2.2). The framework is based on a generic event model which can be mapped to
lifecycle events of particular BPEL engine. These events are forwarded to a custom controller (C3.1),
which can execute arbitrary behavior (e.g., require by an extension). The event may be a ‗blocking
event‘, in which case navigation is suspended on the respective path in the process until it receives an
unblocking notification from the controller. Data in this notification may potentially affect how the
navigation in the process proceeds. The additional behavior is effective during the execution of
a process (C4.5).

“A Management Framework for WS-BPEL” [47] has the same aim as the pluggable framework (C1.2,
C2.1, C2.2, C3.1, C4.5). In contrast to rely on events, it renders the activities of the BPEL process as
resources and thus offers a uniform access scheme.

―Business Rules Integration in BPEL‖ [65] makes use of interceptors to trigger business rule checks.
Interceptors can be attached before or after message sending/receiving activities. This mapping of
interceptors on BPEL activities is provided by the person who models the process. That way, business
rule definitions are separated from process logic (C1.2, C1.4, C1.8). An extended enterprise service
bus (ESB) interprets the mapping and executes the business rules (C4.5). Negative evaluated rules
cause the respective activity to be skipped (C2.1, C3.2). A transformation engine for message
mediation and a rule broker allow the integration of different rule engines.

7.4 Summary

We discussed a huge variety of extensions addressing different aspects of the BPEL environment
(Figures 1 and 2). Tab. 4 presents an overview of the extensions discussed including
a characterization in terms of the criteria introduced in Sect. 3. The table has six columns: The column
extension lists the name of the extension; Extd (Language Extended) states whether the BPEL
language has been extended with any new construct; Conform states whether the extension is
conform to Definition 1 using the standard conformity shortcuts of Tab. 1; A (Approach) lists the
approaches that were applied (cf. Sect. 5); Type lists D or R denoting the type of the extension: D
stands for a design time extension, R stands for a runtime extension; Characteristics lists the
characteristics of the extension (referring to Tab. 3).

Our classification is based on a literature study. We did not interview the extensions authors to find out
the thoughts behind their extension design. We assume that all the authors fulfilled their goals as their
extensions are available. When the authors followed our extension development guidelines presented
in Sect. 6, they would have possible chosen another way. For instance, for enabling a retry of failed
calls, the invocation handler could be modified.

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 22

Tab. 4: Extension Overview

Extension Extd Conform A Type Characteristics

A Management Framework for WS-
BPEL [47]

No n/a n/a R C1.2, C2.1, C2.2, C3.1,
C4.5

Activity failure and recovery [6] Yes No (s 4) A1 D, R C1.7, C2.7, C3.1, C4.1,
C4.5

―Activity failure and recovery‖
[28],[78]

No n/a n/a R C1.7, C2.7, C3.1, C4.5

―Activity failure and recovery‖ [33] No n/a n/a R C1.7, C2.7, C3.1, C4.5

―Activity failure and recovery‖ [52] No n/a n/a D C1.7, C2.1, C3.2, C4.1

―Activity failure and recovery‖ [54] Yes No (s 2) A2 D C1.2, C1.3, C2.2, C3.2,
C4.1

AO4BPEL
[13]

Yes No (s 2,

s 4)

n/a R C1.2, C1.4, C1.6, C2.1,
C2.7, C3.2, C4.5

Auto complete copy destination [6] Yes No (s 3,

s 4)

A1 D, R C1.3, C1.4, C2.1, C3.2,
C4.1, C4.5

―BPEL for Pervasive Computing‖
[22]

Yes No (s 4) D, R C1.3, C1.8, C2.7, C3.2,
C4.1, C4.5

BPEL for REST [63] Yes No (s 2,

s 4)

A1 D, R C1.3, C2.1, C2.6, C3.1,
C4.1, C4.5

BPEL fragments
[53]

Yes No (s 5) D C1.6, C2.1, C3.2, C4.1

BPEL process templates
[30]

Yes No (s 2) n/a D C1.2, C1.6, C2.5, C3.2,
C4.1, C4.4

BPEL/SQL [74] Yes Yes (s7) A1,
A2, A3

D, R C1.3, C1.5, C2.2, C3.1,
C3.2, C4.1, C4.4, C4.5

BPEL‘n‘Aspects
[32]

No n/a n/a R C1.2, C1.4, C1.6, C2.7,
C3.2, C4.5

BPEL4Chor [17] Yes Yes (s8) A2 D C1.1, C2.1, C3.2, C4.1,
C4.2

BPEL4Grid [18], [82] Yes No (s 2) A1 D, R C1.3, C1.4, C2.2, C2.7,
C3.1, C3.2, C4.1, C4.5

BPEL4People [3] Yes Yes (s7) A1, A3 D, R C1.3, C2.1, C2.7, C3.1,
C3.2, C3.3, C4.1, C4.5

BPEL4SWS [57] Yes No (s 4) A1 D, R C1.2, C1.3, C1.6, C1.8,
C2.6, C2.7, C3.2, C4.1,
C4.4, C4.5

BPEL-D [36] Yes No (s 4) n/a D C1.1, C2.8, C3.2, C4.1

BPEL data transitions [21] Yes No (s 4) A2, A3 D, R C1.3, C1.5, C1.8, C2.4,
C3.1, C4.1, C4.2, C4.5

BPELJ [10] Yes No (s 4) A1 D, R C1.3, C1.5, C1.8, C2.1,
C2.2, C2.3, C2.8, C3.2,
C4.1, C4.5

BPEL
light

[56]
Yes No (s 4) A1 D, R C1.2, C1.3, C1.6, C1.8,

C2.6, C2.7, C3.2, C4.1,
C4.4, C4.5

BPEL-SPE
[40]

Yes No (s 2) A1 D, R C1.1, C1.3, C1.4, C1.6,
C1.8, C2.5, C2.7, C3.2,
C4.1, C4.4, C4.5, C4.6

Business Rules Integration in BPEL
[65]

No n/a n/a R C1.2, C1.4, C1.8, C2.1,
C3.2, C4.4, C4.5

Business Rules Integration [60] No n/a A3 R C1.2, C1.4, C1.6, C2.1,
C3.2, C4.1, C4.5

Collaborative Scopes [25] Yes Yes A1 D, R C1.3, C2.1, C3.1, C3.2,
C4.1, C4.5

Continue on error [25] Yes Yes (s8) A1 D,R C1.7, C2.7, C3.1, C4.1,
C4.5

Context4BPEL
[80]

Yes Yes (s9) A1 D, R C1.3, C2.1, C2.2, C2.3,
C2.7, C3.2, C4.1, C4.5,
C4.6

Cross-process fault handling [42] No No (s 4) n/a D, R C1.3, C1.7, C2.1, C3.1,
C3.2, C4.1, C4.5

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 23

Extension Extd Conform A Type Characteristics

Dedicated Administrator [25] Yes Yes (s8) A1 D, R C1.7, C2.5, C3.1, C4.1,
C4.5

E4X extension for BPEL [48] Yes Yes (s7,
s10)

A1 D, R C1.4, C2.3, C3.2, C4.1,
C4.5

Execution as Subprocess [25] Yes Yes (s8) A1 D, R C1.3, C2.1, C2.7, C3.1,
C3.2, C4.1, C4.5

Extended WS-RM‖ [14] No n/a n/a n/a C1.3, C2.7, C3.1, C4.5

Generalized Flow [25] Yes No (s 4) A1 D, R C1.3, C1.8, C2.1, C3.2,
C4.1, C4.5

Headers handling [6] Yes No (s 3) A1 D, R C1.8, C2.1, C3.2, C4.1,
C4.5

id attribute Yes Yes n/a D C1.4, C2.5, C3.2, C4.1

Ignore unavailable data [6] Yes No (s 3,

s 4)

A1 D, R C1.3, C1.4, C2.1, C3.2,
C4.1, C4.5

ii4BPEL [23] Yes Yes (s7) A1,
A2, A3

D, R C1.3, C1.5, C2.2, C3.1,
C3.2, C4.1, C4.4, C4.5

Implicit correlations [6] Yes No (s 4) A1 D, R C1.3, C2.7, C3.1, C4.1,
C4.5

Iterable forEach [6]) Yes No (s 3,

s 4)

A1 D, R C1.3, C2.1, C3.2, C4.1,
C4.5

Java Snippets [25] Yes Yes A1 D, R

 ―Retry or alternative service‖
[28],[78]

No n/a R C1.7, C2.6, C2.7, C3.1,
C4.4, C4.5

Microflows [25] Yes Yes A1 D, R C1.5, C2.5, C3.1, C4.1,
C4.5

New XPath functions, e.g. [6] No Yes D, R C1.3, C2.5, C3.2, C4.1,
C4.5

Non-compensatable scopes [25]) Yes No (s 4) A1 D, R C1.3, C2.5, C3.1, C4.1,
C4.5

Oracle Human Task
[61]

Yes Yes (s9) A3 D C1.8, C2.7, C3.1, C4.1

Oracle Notification Service
[61]

Yes Yes (s9) A3 D C1.8, C2.7, C3.1, C4.1

―OWL for BPEL‖
[46]

Yes No (s 4) A1 D, R C1.2, C2.1, C3.1, C4.1,
C4.5

Parameterized Processes
[30]

Yes No (s 2) A1 D, R C1.2, C1.6, C1.7, C2.6,
C2.7, C3.2, C4.1, C4.4,
C4.5, C4.6

Pluggable Framwork for Enabling
the Execution of Extended BPEL
Behavior [35]

No n/a n/a R C1.2, C2.1, C2.2, C3.1,
C4.5

Process context [6] Yes No (s 4) A1 D, R C1.3, C1.4, C2.1, C2.2,
C3.2, C4.1

References in BPEL
[79]

Yes No (s 2) A2, A3 D C1.8, C2.2, C2.8, C2.4,
C3.1, C3.2, C4.1, C4.4

Resource-oriented BPEL [6];[62] Yes No (s 4) A1 D,R

Retry Scopes [19] Yes No (s 4) A1 D, R C1.3, C1.7, C2.1, C3.2,
C4.1, C4.5

SH-BPEL [55] No n/a n/a R C1.7, C2.7, C3.1, C4.5

SWRL for BPEL [81] Yes Yes (s9) A2 D C1.4, C2.1, C3.2, C4.1

T-BPEL [71] Yes Yes (s8) A2 D, R C1.3,C2.7,C3.1,C4.1,C4.
5

Transaction boundaries [25] Yes No (s 4) A1 D, R C1.5, C2.5, C3.1, C4.1,
C4.5

WS-BPEL extension for versioning
[29]

Yes No (s 2) A1 D, R C1.4, C2.5, C3.1

xBPEL [11]

Yes No (s 2) A2, A3 D C1.2, C1.3, C2.1, C3.3,
C4.1, C4.5

8. Conclusions

BPEL extensions are omnipresent in research and industry, but no comparison or classification was
available, neither there are best practices and recommendations for design and implementation of

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 24

extensions. The only related research is a solution for architectural decision points [83], but there are
no decision points defined specially for BPEL extensions, yet. Balko [7] regard extensibility as a
property of a process model to be adaptable. This is in contrast to our definition, which regards the
extensibility of the modeling language itself.

The main contribution of this paper is a comprehensive framework for understanding and classifying
BPEL extensions, and a recommendation for developing BPEL extensions properly. For providing that
knowledge, first the classification for BPEL extensions is given and based on that an overview of the
state of the art of BPEL extensions is given. Furthermore as practical advice we give a design
guideline that raises different questions for deciding wether a BPEL extension has to be implemented
or the functionality can be realized in another way.

Interesting to note is that only around half of the discussed extensions are standard-conform BPEL
extensions in terms of Definition 1. Standard-conform extensions have their advantage in being
portable and re-usable across different BPEL environments. Needless to say, non-conforming
extensions also have their justification. Thus, if an extension is not conforming to the BPEL standard, it
does not imply that it is of no use or that it is realized in a wrong way. As we have shown, valid
extensions to BPEL can include anything ranging from new attributes to new elements, to extended
assign operations up to completely new activities. We have also shown that missing functionality can
be implemented in different ways, for instance using standard language constructs or introducing
extension attributes or extension activities. However, when talking about extensions, one has to be
aware that the ways of extending BPEL foreseen in the specification are limited.

The presented discussion on possibilities to realize an extension remains valid in context of the
Business Process Model and Notation (BPMN) language. As part of our future work, we will classify
BPMN extensions according to the presented classification framework.

9. Acknowledgements

The work published in this paper was partially funded by the COMPAS project (contract no. FP7-
215175) and the ALLOW project (contract no. FP7-213339) under the EU 7

th
 Framework Programme

Information and Communication Technologies Objective, the DFG Cluster of Excellence Simulation
Technology (EXC310), the DFG project Nexus (SFB627), and the S-Cube project under the Network
of Excellence (contract no. FP7-215483).

10. References

[1] van der AALST, W.M.P., WESKE, M. & GRÜNBAUER, D. (2004), Case handling: a new
paradigm for business process support, Data & Knowledge Engineering, 53(2), pp. 129-162.

[2] ADAMS, P., EASTON, P., JOHNSON, ERIC, MERRICK, R. & PHILLIPS, M. (2010). SOAP over
Java Message Service 1.0, W3C Working Draft 26 October 2010.

[3] AGRAWAL, A., AMEND, M., DAS, M., FORD, M., KELLER, C., KLOPPMANN, M., KÖNIG, D.,
LEYMANN, F., MÜLLER, R., PFAU, G., PLÖSSER, K., RANGASWAMY, R., RICKAYZEN, A.,
ROWLEY, M., SCHMIDT, P., TRICKOVIC, I., YIU, A. & ZELLER M. (2007a). WS-BPEL
Extension for People (BPEL4People), Version 1.0, White Paper.

[4] AGRAWAL, A., AMEND, M., DAS, M., FORD, M., KELLER, C., KLOPPMANN, M., KÖNIG, D.,
LEYMANN, F., MÜLLER, R., PFAU, G., PLÖSSER, K., RANGASWAMY, R., RICKAYZEN, A.,
ROWLEY, M., SCHMIDT, P., TRICKOVIC, I., YIU, A. & ZELLER M. (2007b). Web Services
Human Task (WS-HumanTask), Version 1.0, White Paper.

[5] ALONSO, G., CASATI F., KUNO, H. & MACHIRAJU, V. (2004), Web Services, Springer. 354 p.

[6] Apache ODE group (2009). BPEL Extensions. URL: http://ode.apache.org/bpel-extensions.html.

[7] BALKO, S., TER HOFSTEDE, A. H. M., BARROS, A. P. & ROSA, M. (2009). Controlled
Flexibility and Lifecycle Management of Business Processes through Extensibility. 3rd
International Workshop on Enterprise Modelling and Information Systems Architectures, GI.

[8] BARROS, A., DECKER, G., DUMAS, M. & WEBER, F. (2007). Correlation Patterns in Service-
Oriented Architectures. Proceedings of the 9th International Conference on Fundamental
Approaches to Software Engineering (FASE), Springer Verlag.

[9] BISCHOF, M, KOPP, O., VAN LESSEN, T. & LEYMANN, F. (2009). BPELscript: A Simplified
Script Syntax for WS-BPEL 2.0. 35th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2009).

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 25

[10] BLOW, M., GOLAND, Y., KLOPPMANN, M., LEYMANN, F., PFAU, G., ROLLER, D. &
ROWLEY, M. (2004). BPELJ: BPEL for Java, White Paper, BEA.

[11] CHAKRABORTY, D. & LEI, H. (2004) Pervasive Enablement of Business Processes, Proc. of
the Second IEEE Intl. Conf. on Pervasive Computing and Communications (PerCom 2004).

[12] CHAPPELL, D. (2004). Enterprise Service Bus: Theory in Practice, O‘Reilly Media.

[13] CHARFI, A. & MEZINI, M. (2004). Aspect-Oriented Web Service Composition with AO4BPEL.
In: European Conference on Web Services (ECOWS).

[14] CHARFI, A., SCHMELING, B. & MEZINI, M. (2006). Reliable Messaging for BPEL Processes.
IEEE International Conference on Web Services (ICWS), pp. 59-66.

[15] CHRISTENSEN, E., CURBERA, F., MEREDITH, G. & WEERAWARANA, S. (2001). Web
Services Description Language (WSDL) 1.1. World Wide Web Consortium W3C (March 2001)

[16] CURBERA, F., DUFTLER, M., KHALAF, R. & LOVELL, D. Bite: Workflow Composition for the
Web. International Conference on Service Oriented Computing LNCS, vol. 4749, pp.94-106,
Springer Heidelberg (2007).

[17] DECKER, G., KOPP, O., LEYMANN, F. & WESKE, M. (2009). Interacting services: from
specification to execution, Data & Knowledge Engineering, doi:10.1016/j.datak.2009.04.003.

[18] DÖRNEMANN, T., FRIESE, T., HERDT, S., JUHNKE, E. & FREISLEBEN B. (2007). Grid
Workflow Modelling Using Grid-Specific BPEL Extensions, Proceedings of German e-Science
Conference 2007, pp. 1-9.

[19] EBERLE, H., KOPP, O., UNGER, T. & LEYMANN. (2009). F. Retry Scopes to Enable Robust
Workflow Execution in Pervasive Environments, 2nd Workshop on Monitoring, Adaptation and
Beyond (MONA+).

[20] FONDEN, C. (2009): Konzeption und Entwicklung von Kontexterweiterungen für Workflows,
Diploma Thesis 2901, Institute of Architecture of Application Systems, University of Stuttgart.

[21] HABICH, D., RICHLY, S., PREISSLER, S., GRASSELT, M., LEHNER, W., MAIER, A. (2007)
BPEL-DT - Data-aware Extension of BPEL to Support Data-Intensive Service Applications. In C.
Pautasso and T. Gschwind, editors, WEWST, volume 313 of CEUR Workshop Proceedings.
CEUR-WS.org.

[22] HACKMANN, G., GILL, C. & ROMAN, G.-C. (2007). Extending BPEL for Interoperable
Pervasive Computing. IEEE International Conference on Pervasive Computing, pp. 204-213.

[23] IBM (2006). Adding an information service activity to a business process, URL:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.is.bpel.hel
p.doc/topics/accessdata.htm.

[24] IBM (2007). Mapping Specification Language.
http://www.research.ibm.com/journal/sj/452/roth.html.

[25] IBM (2009). Working with BPEL extensions, URL:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.wbit.620.h
elp.bpel.ui.doc/concepts/cextent.html.

[26] International Organization for Standardization (2006). Information Technology — ECMAScript
for XML (E4X) Specification. ISO/IEC 22537:2006.

[27] JÄGER, C. & WOLKE, C. (2008) Make-or-Buy Decisions - A Transaction Cost Theoretical
Approach to the Assessment of Outsourcing Activities, Books on Demand GmbH.

[28] JUHNKE, E., DÖRNEMANN, T. & FREISLEBEN, B. (2009). Fault-Tolerant BPEL Workflow
Execution via Cloud-Aware Recovery Policies. Proceedings of the 35

th
 EUROMICRO

Conference on Software Engineering and Advanced Applications.

[29] JURIC, M., SASA, A. & ROZMAN I. (2009). WS-BPEL Extensions for Versioning, Information
and Software Technology 51, pp. 1261–1274.

[30] KARASTOYANOVA, D. (2006). Enhancing Flexibility and Reusability of Web Service Flows
through Parameterization, PhD thesis, TU Darmstadt and Universität Stuttgart.

[31] KARASTOYANOVA, D., KHALAF, R. , SCHROTH, R., PALUSZEK, M. & LEYMANN, F. (2006).
BPEL Event Model. University of Stuttgart, Technical Report Computer Science No. 2006/10.

[32] KARASTOYANOVA, D. & LEYMANN, F. (2009). BPEL'n'Aspects: Adapting Service
Orchestration Logic, Proceedings of 7th IEEE International Conference on Web Services
(ICWS).

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 26

[33] KARELIOTIS, C., VASSILAKIS, C. & GEORGIADIS, P. (2007). Enhancing BPEL scenarios with
Dynamic Relevance-Based Exception Handling. In: Proceedings of IEEE International
Conference on Web Services (ICWS)., 2007, pp.751-758

[34] KHALAF, R. (2008). Supporting business process fragmentation while maintaining operational
semantics: a BPEL perspective, Dissertation, University of Stuttgart, Germany.

[35] KHALAF, R., KARASTOYANOVA, D. & LEYMANN, F. (2007). Pluggable Framework for
Enabling the Execution of Extended BPEL Behavior. Proceedings of the 3rd International
Workshop on Engineering Service-Oriented Application (WESOA'2007).

[36] KHALAF, R. & LEYMANN, F. (2006). Role-based Decomposition of Business Processes using
BPEL. International Conference on Web Services (ICWS) pp. 770-780.

[37] KHALAF, R., SUBRAMANIAN, R., MIKALSEN, T., DUFTLER, M., DIAMENT, J. & SILVA-LEPE,
I. Enabling Community Participation for Workflows through Extensibility and Sharing, Workshop
on Business Process Management and Social Software (BPMS2’09), Springer.

[38] KICZALES, G. (1997). Aspect-Oriented Programming, Proceedings of ECOOP’97.

[39] KLOPPMANN, M., KOENIG, D., LEYMANN, F., PFAU, G., RICKAYZEN, A., RIEGEN, C.,
SCHMIDT, P. & TRICKOVIC, I. (2005). WS-BPEL Extension for Sub-processes - BPEL-SPE,
White Paper.

[40] KLOPPMANN, M., KÖNIG, D., LEYMANN, F., PFAU, G., RICKAYZEN, A., VON RIEGEN, C.,
SCHMIDT, P. & TRICKOVIC, I. (2005). WS-BPEL Extension for People – BPEL4People, White
Paper.

[41] KÖNIG, D., LOHMANN, N., MOSER, S., STAHL, C. & WOLF, K. (2008): Extending the
compatibility notion for abstract WS-BPEL processes. WWW 2008, 785-794.

[42] KOPP, O., MARTIN, D., WUTKE, D. & LEYMANN, F. (2009). The Difference Between Graph-
Based and Block-Structured Business Process Modelling Languages. Enterprise Modelling and
Information Systems. Vol. 4(1), pp.3-13.

[43] KOPP, O., WIELAND, M. & LEYMANN, F. (2009). Towards Choreography Transactions. 1
st

Central-European Workshop on Services and their Composition (ZEUS).

[44] LAEMMEL, R. & OSTERMANN, K. (2006). Software Extension and Integration with Type
Classes, Proceedings of the 5th international conference on Generative Programming and
Component Engineering (GPCE '06).

[45] LAU, C., BEATON, M. (2004) Architecting on demand solutions, Part 3: Use BPEL to create
business processes, IBM developerWorks. URL: http://www.ibm.com/developerworks/library/i-
odoebp3/.

[46] DUY NGAN LE, NGOC SON NGUYEN, MOUS, K., KO, R.K.L., GOH, A.E.S., (2009).
Generating Request Web Services from Annotated BPEL. RIVF´09 International Conference on
Computing and Communication Technologies, Da Nang 2009, Print ISBN: 978-1-4244-4566-0

[47] van LESSEN, T., LEYMANN, F., MIETZNER, R., NITZSCHE, J. & SCHLEICHER, D. (2009). A
Management Framework for WS-BPEL. Proceedings of the 6th IEEE European Conference on
Web Services. IEEE Pervasive Computing, 8, 66–74, 2009.

[48] van LESSEN, T., NITZSCHE, J. & KARASTOYANOVA, D. (2009). Facilitating Rich Data
Manipulation in BPEL using E4X. . 1

st
 Central-European Workshop on Services and their

Composition (ZEUS). http://CEUR-WS.org/Vol-438/paper16.pdf.

[49] LEYMANN, F. (2005). The (Service) Bus: Services Penetrate Everyday Life. Boualem
Benatallah, Fabio Casati, Paolo Traverso (Eds.): Service-Oriented Computing - ICSOC 2005,
Third International Conference, Amsterdam, Proceedings. Lecture Notes in Computer Science
3826 Springer 2005, ISBN 3-540-30817-2.

[50] LEYMANN, F. & ROLLER, D. (2000). Production workflow: concepts and techniques, Prentice
Hall PTR.

[51] LEYMANN, F. & ROLLER, D. (2006). Modeling business processes with BPEL4WS.
Information Systems and e-Business Management (ISeB), Springer. 265-284.

[52] LIU, A., LI, Q., HUANG, L. & XIAO, M. (2007). A Declarative Approach to Enhancing the
Reliability of BPEL Processes, IEEE International Conference on Web Services (ICWS),

pp. 272- 279.

[53] MA, Z. & LEYMANN, F. (2009), BPEL Fragments for Modularized Reuse in Modeling BPEL
Process. 5

th
 International Conference on Networking and Services (ICNS).

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 27

[54] MODAFFERI, S. & CONFORTI, E. (2006). Methods for enabling recovery actions in ws-bpel. In
Proc. of Int. Conf. on Cooperative Information Systems (CoopIS).

[55] MODAFFERI, S., MUSSI, E. & PERNICI, B. (2006). SH-BPEL: a self-healing plug-in for Ws-
BPEL engines. Proceedings of the 1

st
 Workshop on Middleware for Service Oriented

Computing, MW4SOC, ACM New York, 2006, ISBN:1-59593-425-1.

[56] NITZSCHE, J., van LESSEN, T., KARASTOYANOVA, D. & LEYMANN, F. (2007a). BPEL light.
In: Proceedings of the 5th International Conference on Business Process Management (BPM
2007). Lecture Notes in Computer Science; 4714, pp. 214-229, Springer.

[57] NITZSCHE, J., VAN LESSEN, T., KARASTOYANOVA, D. & LEYMANN, F. (2007b). BPEL for
Semantic Web Services (BPEL4SWS). In: Proceedings of the 3

rd
 International Workshop on

Agents and Web Services in Distributed Environments (AWeSome'07) - On the Move to
Meaningful Internet Systems 2007: OTM 2007 Workshops. Lecture Notes in Computer Science;
4805, pp. 179-188.

[58] OASIS (2004). Web Services Reliable Messaging TC: WS-Reliability 1.1, OASIS Standard.
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1.

[59] OASIS (2007). Web Services Business Process Execution Language Version 2.0, OASIS
Standard. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[60] Oracle (2006). BPEL Process Manager: BPEL + Business Rules. URL:
http://www.oracle.com/technology/products/ias/bpel/pdf/bpelandbusinessrules.pdf.

[61] Oracle (2007). BPEL Process Manager Developer‘s Guide. Version 10g (10.1.3.1.0) B28981-
03. URL: http://download.oracle.com/docs/cd/B31017_01/integrate.1013/b28981.pdf.

[62] OVERDICK, H. (2003). Towards resource-oriented BPEL. In 2nd ECOWS Workshop on
Emerging Web Services Technology. http://ceur-ws.org/Vol-313/paper8.pdf.

[63] PAUTASSO, C. (2008). BPEL for REST. 7
th
 International Conference on Business Process

Management.

[64] PELTZ, C. (2003). Web Services Orchestration and Choreography, IEEE Computer, 36,
pp.46-52.

[65] ROSENBERG, F. & DUSTDAR, S. (2005). Business Rule Integration in BPEL – A Service-
Oriented Approach, Proceedings of the 7th International IEEE Conference on E-Commerce
Technology.

[66] SCHUMM, D. (2007) A Graphical Tool for Modeling BPEL 2.0 Processes, Universität Stuttgart,
Fakultät Informatik, Studienarbeit Nr. 2124.

[67] SCHUMM, D., KARASTOYANOVA, D., LEYMANN, F. & NITZSCHE, J. (2009). On Visualizing
and Modelling BPEL with BPMN, Proceedings of the 4th International Workshop on Workflow
Management (ICWM).

[68] SILVA-LEPE, I., SUBRAMANIAN, R., ROUVELLOU, I., MIKALSEN, T., DIAMENT, J. & IYEN-
GAR, A. (2008). SOAlive Service Catalog:ASimplied Approach to Describing, Discovering and
Composing Situational Enterprise Services. Proceedings of the International Conference on
Service-Oriented Computing (ICSOC).

[69] STAHL, T., VÖLTER, M. & CZARNECKI, K. (2006). Model-driven Software Development:
technology, engineering, management. John Wiley & Sons.

[70] STEIN, S., KÜHNE, S. & IVANOV, K. (2009). Business to IT Transformations Revisited. In:
Business Process Management Workshop : BPM 2008 Internation Workshops, Milano, 2008,
Revised Papers, Nr. 17 Berlin: Springer (2009), pp. 176--187.

 [71] TAI, S., MIKALSEN, T. A., WOHLSTADTER, E., DESAI, N. & ROUVELLOU, I. (2004).
Transaction policies for service-oriented computing, Data Knowl. Eng, 51, pp. 59-79.

[72] VEDAMUTHU, A.S. et. al (2007a). Web Services Policy 1.5 – Framework, W3C
Recommendation 04 September 2007, URL: http://www.w3.org/TR/ws-policy/.

[73] VEDAMUTHU, A.S. et al. (2007b). Web Services Policy 1.5 – Attachment, W3C
Recommendation 04 September 2007, URL: http://www.w3.org/TR/ws-policy-attach/.

[74] VRHOVNIK, M., SCHWARZ, H., SUHRE, O., MITSCHANG, B., MARKL, V., MAIER, A. &
KRAFT T. (2007). An approach to optimize data processing in business processes,
Proceedings of the 33rd international conference on Very large data bases 2007, pp. 615-626.

OLIVER KOPP, KATHARINA GÖRLACH, DIMKA KARASTOYANOVA, FRANK LEYMANN, MICHAEL REITER,

DAVID SCHUMM, MIRKO SONNTAG, STEVE STRAUCH, TOBIAS UNGER, MATTHIAS WIELAND, RANIA KHALAF

 JOURNAL OF SYSTEMS INTEGRATION 2011/4 28

[75] VRHOVNIK, M., SCHWARZ, H., RADESCHIITZ, S. & MITSCHANG, B. (2008). An Overview of
SQL Support in Workflow Products, Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference, pp.: 1287 - 1296 , ISBN: 978-1-4244-1836-7.

[76] WEIDLICH, M., DECKER, G., GROSSKOPF, A. & WESKE, M. (2008). BPEL to BPMN: The
Myth of a Straight-Forward Mapping. International Conference on Cooperative Information
Systems (CoopIS).

[77] WEERAWARANA, S., CURBERA, F., LEYMANN, F., STOREY, T. & FERGUSON, D.F. (2005).
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More, Prentice Hall PTR.

[78] WEN, JIAJIA, CHEN, JUNLINAG, PENG, YONG & XU, MENG. (2006). A Multi-Policy Exception
Handling System for BPEL Processes. First International Conference on Communications and
Networking in China.

[79] WIELAND, M., GÖRLACH, K., SCHUMM, D. & LEYMANN, F. (2009). Towards Reference
Passing in Web Service and Workflow-based Applications, Proceedings of the 13th IEEE
Enterprise Distributed Object Conference (EDOC 2009).

[80] WIELAND, M., KOPP, O., NICKLAS, D. & LEYMANN, F. (2007). Towards Context-aware
Workflows, CAiSE’07 Proceedings of the Workshops and Doctoral Consortium Vol 2.

[81] WU, YUNZHOU & DOHSI, PRASHANT. (2008). Making BPEL Flexible – Adapting in the
Context of Coordination Constraints Using WS-BPEL, International Conference on Services
Computing (SCC 2008).

[82] ZHANG, HUAJIAN, FAN, XIAOLIANG, ZHANG, RUISHENG, LIN, JIAZAO, ZHAO, ZHILI & LI,
LIAN (2008). Extending BPEL2.0 for Grid-Based Scientific Workflow Systems, Asia-Pacific
Services Computing Conference (APSCC '08).

[83] ZIMMERMANN, O., KOEHLER, J., LEYMANN, F., POLLEY, R. & SCHUSTER N. (2009).
Managing Architectural Decision Models with Dependency Relations, Integrity Constraints, and
Production Rules. Journal of Systems and Software, Elsevier. 82(8), pages 1249-1267.

Appendix H

A Penalty-based Approach for QoS
Dissatisfaction using Fuzzy Rules

113

A Penalty-based Approach for QoS
Dissatisfaction using Fuzzy Rules

Barbara Pernici1, S. Hossein Siadat1, Salima Benbernou2, and Mourad Ouziri2

1 Politecnico di Milano, Italy
2 LIPADE, Université Paris Descartes, France

Abstract. Quality of Service (QoS) guarantees are commonly defined
in Service Level Agreements (SLAs) between provider and consumer of
services. Such guarantees are often violated due to various reasons. QoS
violation requires a service adaptation and penalties have to be associ-
ated when promises are not met. However, there is a lack of research in
defining and assessing penalties according to the degree of violation. In
this paper, we provide an approach based on fuzzy logic for modelling
and measuring penalties with respect to the extent of QoS violation.
Penalties are assigned by means of fuzzy rules.

Key words: QoS, service level agreement, penalty, fuzzy logic

1 Introduction

QoS guarantees defined in contracts may be violated due to various reasons.
This situation needs to be handled through applying adaptation techniques not
to bring dissatisfaction. The concept of penalty has been used in SLAs to com-
pensate the conditions under which guarantee terms are not met [1]. Despite
some research have been done on the description, negotiation and monitoring
of SLAs, however there is not much work on the definition of penalty clauses.
[4] studied on WS-Agreement specification to define penalties based on different
types of violation. However, penalties are assigned to violation of a single prop-
erty instead of assigning penalties to violation of overall QoS. Moreover, the
approach introduces a method for measuring penalties which is for fixed pre-
defined number of violations, instead of measuring the extent of violation and
assigning penalties accordingly.

One main issue is how to determine the appropriate amount of penalties
as compensations from providers to satisfy customers. As quality parameters
can be satisfied partially, the assessment of penalties can be based on the de-
gree of quality violation. Understanding the violation degree is a prerequisite for
assessing penalties. However, measuring such violation is yet an open research
challenge. In addition, the influencing factors in defining penalties need to be
identified. A static amount of penalty (manual approaches) does not reflect the
extent of violation at runtime. The amount and level of penalties are related to
the degree of quality violation provided from the provider side. On the other

2 Barbara Pernici, S. Hossein Siadat, Salima Benbernou, and Mourad Ouziri

side, the customers characteristics may also affect the amount of penalties. For
example a penalty to satisfy a gold/loyal customer is different with the one for
an occasional customer. To the best of our knowledge, there is no formal relation
between the assigned penalty and its influencing factors. Moreover, the extent
and type of penalties are not clearly expressed in related work. However, under-
standing such relation and providing a mapping between them are complicated
issues. We argue what is missing is a suitable mechanism for modelling penalties
that takes into account both provider and consumer sides. Apart from the de-
gree of violation, we also consider the state of customer and service provider with
respect to their past history (e.g. whether the service has been penalised pre-
viously) in determining the right amount of penalties. However, as the relation
between a given penalty and its influencing factors is not linear, conventional
mathematical techniques are not applicable for modelling penalties.

Recent approaches are dealing with the issue of partial satisfaction for qual-
ity commitments and different techniques were used such as applying soft con-
straint [6], fuzzy sets [3] and semantic policies [2]. Among them, [6] introduced
the concept of penalties for unmet requirements. However, defining penalties
and finding a relation between the assigned penalties and the violated guaran-
tees are remained challenges in similar approaches. The goal of this paper is
to apply an inference technique using fuzzy logic as a solution [5] to propose a
penalty-based approach for compensating conditions in which quality guarantees
are not respected. Fuzzy logic is well suited for describing QoS and measuring
quality parameters [3]. We demonstrate a penalty inference model with a rule-
based mechanism applying fuzzy set theory. Measuring an appropriate value for
penalties with respect to the amount of violation is the main contribution of the
paper.

In the following, we start by a motivating example in Section 2. In Section 3
we show the descriptions of penalties and in Section 4 we provide a rule-based
system using fuzzy set theory for modelling and reasoning penalties. Section 5
shows some experiments in applying penalty for the problem of QoS dissatisfac-
tion and we conclude the paper in Section 6.

2 Motivating Example

Let’s assume that a user is wishing to use a food delivery service. Therefore, a
contract is established between the user and the service provider. The contract
defines non functional criteria such as delivery time, quality of the perceived
service (the quality of food during the delivery service, for example the food is
maintained at the ideal temperature), and availability of the delivery service.
Therefore we define a list of parameters for our example as follows: time to
delivery (td), quality of delivered food (qd), availability of delivery service (ad).
These quality parameters together with a list of penalty terms are defined in a
contract and illustrated in Table 1.

The delivery service will be penalized if it is not able to provide the quality
ranges defined in the contract. An overall QoS violation will be calculated first

A Penalty-based Approach for QoS Dissatisfaction using Fuzzy Rules 3
Quality Parameters time to delivery between 10 to 15 min

quality of delivered food between 0.8 to 1
availability between 90 to 100% of the time

Penalties: Minor or Null penalties
Penalties on quality parameters
Extra Service penalties
Termination penalty

Table 1: motivating example

and afterwards a penalty is assigned with respect to the extent of the violation.
We also take into account customer and provider perspectives by considering
parameters from both parties. Parameters such as history of a delivery service
and state of a customer can be involved. The history of a service shows whether
the service is penalized previously. This can influence the amount of given penal-
ties for future. The current state of a customer presents the importance of the
customer for service provider. For example, minor violation of service delivery
can cause a major penalty for provider in case the customer is gold (with good
history). In contrast, a normal customer (with ordinary history) will not be given
any extra service if the quality of delivered food is not good.

3 Definition of Penalties

In order to provide a formal model of penalties and build a reasoning mechanism
to handle the penalties in the contract, in the following we try to summarize the
different types of penalties that can be applied. We categorize the penalties into
two main classes:

1. Numerical penalties: They are related to measurable qualities of service.
In other words, we have to handle and work with variables of the service (e.g
the availability > 0.9, the responsetime < 0.2ms).

2. Behavioural penalties: They are related to the behaviour of either the
customer or the service provider. Consider the following case: a merchant
wishes to obtain a service for online payment by bank card. The financial
institution offered a 25% off if the settlement proceeds within two days of
the request. Beyond these two days, the penalty is such as the trader does
not have the discount and will therefore be required to pay all fees.

A penalty clause in an SLA may be of the following types:

– Penalty Null and denoted by P0: no penalty is triggered because all agreed
QoS are satisfied or minor violation has occurred.

– Penalty on the QoS: a penalty should be triggered on one of the QoS param-
eters Qj in the contract if Qi is not fulfilled.

– Penalty on the penalty: a new penalty Pj should be triggered if the previous
one Pi is unfulfilled. Such penalty will be handled through the long term
contract validation. The reasoning on the time aspect of the contract is out
of the scope of the paper.

4 Barbara Pernici, S. Hossein Siadat, Salima Benbernou, and Mourad Ouziri

– Extra service penalty: if a QoS is not fulfilled by the service provider, to
penalize him, an extra service might be offered to the customer.

– Cancellation penalty: this is a dead penalty for the service provider. A service
substitution occurs.

4 Modelling Penalties

We present a fuzzy model to express penalties in a rule-base system. Our fuzzy
penalty model is defined by the couple FP =< S,R >, where S is a fuzzy set
on penalties and R is a set of inference rules.

4.1 Fuzzy sets for penalties

Our knowledge system includes linguistic variables defined by tuple (Q, C,H,P),
where Q is a set of QoS parameters defined by fuzzy parameters as Q =
{td, qd, ad} where td is the time to delivery, qd is the quality of the delivered
service and ad is the availability of the delivery service. C is the current state
of the customer, H is the history of the service to show whether the service is
penalized previously and P is the set of penalties. We define these linguistic
variables by fuzzy sets in the following.

The linguistic parameter of customer is defined by three fuzzy sets as in C =
{Normal, Silver,Gold}. We define two fuzzy sets to represent the state of service
with respect to previous penalties as in H = {Penalized,Not − penalized}.
Finally penalties are described by five fuzzy sets to show the diverse range of
penalties as in P = {Null,Minor,Average,Major, Termination}, where null is
no penalty, and termination is the situation in which the customer will terminate
his contract with the delivery service. A fuzzy set represents the degree to which
an element belongs to a set and it is characterized by membership function
µÃ(x) : X 7→ [0, 1]. A fuzzy set Ã in X is defined as a set of ordered pairs

Ã = {(x, µÃ(x)) | x ∈ X,µÃ(x) ∈ [0, 1]} (1)

where µÃ(x) is the membership function of x in Ã. Therefore, a membership
function shows the degree of affiliation of each parameter by mapping its values
to a membership value between 0 and 1.

We associate membership functions to a given fuzzy set to define the appro-
priate membership value of linguistic variables. We start by providing member-
ship functions for quality parameters from the motivating example. We take an
approach that calculate an overall degree of violation with respect to the viola-
tion of each quality parameters. This way, we perform a trade-off mechanism and
quality parameters are not treated independently. For each quality parameter a
membership function is provided to show the degree of their satisfaction. We
define three linguistic variables for each parameters such that td belongs to the
set {Slow,Normal, Perfect} and qd is in the set {Unacceptable,Bad,Good}
and ad is in the set {Low,Medium,High}. Figure 1 depicts the membership

A Penalty-based Approach for QoS Dissatisfaction using Fuzzy Rules 5

(a) Time-to-Delivery membership function (b) Availability membership function

Fig. 1: Membership function for quality parameters

functions of time to delivery (a) and service availability (b). The functions are
defined according to the contract and by an expert of the system. For example,
the time to delivery between 10 to 15 min is perfect, between 15 to 20 min is good
and more than 20 min is slow. Membership functions of penalty and customer
state are shown in Figure 2 in (2a) and (2b) respectively.

(a) Penalty mf (b) Customer-state mf (c) QoS-violation mf

Fig. 2: Membership function for penalty ,state of the customer and QoS violation

4.2 Inference rules on penalties

The inference rules to trigger penalties are expressed as follows:

– RQ : QoS-based penalty rules. These are rules that reflect the violation of qual-
ity parameters. Penalties will be applied to a service if QoS guarantees stipu-
lated in SLA are not fulfilled. It will be presented formally by RQ : Q → P.
For instance, in the SLA, the delivery service agreed with the customer:
10mns ≤ delivery time ≤ 15mns and good quality of delivered food. If the
QoS delivery time is not fulfilled (partially), then penalty pe1 (e.g. 10% dis-
count) will be applied. Depending on the severity of the violation a harder
penalty might be applied. For example, if both QoS are not fulfilled then
penalty pe2 (e.g. 20% discount) will be applied. The fuzzy inference system
gives us such degrees for penalties. Both cases are presented respectively below
by rules:

6 Barbara Pernici, S. Hossein Siadat, Salima Benbernou, and Mourad Ouziri

– R1 (td = Slow) ∧ (qd = Good)→ pe1
– R2 (td = Slow) ∧ (qd = Bad)→ pe2

– RP : penalty on penalty rules. These rules reflect whether the service was given
a penalty. If a service was penalized previously and again does not fulfil a QoS,
then a penalty will be harder. It will be presented formally by RP : Q×P → P
such that RP(q, p1) = p2 ⇒ p1 ≺ p2.
For instance, let us consider a service having a penalty pe1 w.r.t rule R1 and
again provides a slow delivery time, then the penalty pe3 (e.g. 10% discount
plus free delivery) will be applied. The rule can be presented as below:

– R3 (td = Slow) ∧ pe1 → pe3
– RC : customer-related penalty rules. The rules defined here will be adapted

according to a customer qualification. Such rules will be presented formally
by RC : Q×P × C → P.
For instance, if the provided QoS is not fulfilled knowing that a penalty is
assigned to the service, and if a customer is gold (has a good history), then
extra service penalty pe4 (giving some extra service to the gold customer e.g.
one movie ticket) will be harder than the one applied for normal customer pe3.
The rules can be presented as below:

– R4 (td = Slow) ∧ pe1 ∧ (C = Normal)→ pe3
– R5 (td = Slow) ∧ pe1 ∧ (C = Gold)→ pe4

5 Experiments and Implementation

We have simulated our approach in a simulator based on fuzzy inference system.
Initial membership functions were designed based on the contract in the moti-
vating example and fuzzy rules are defined by the expert of the system. Figure
2c illustrates membership function for QoS violation (see [3] for further details).
Having defined the QoS violation, we measure the extent of penalties taken into
account the state of customers and previously applied penalties for the same
service. For this, fuzzy rules are defined considering all three influencing factors.
Figure 3 depicts fuzzy rules for penalty based on QoS violations, customer’s state
and service status with respect to previous penalties which are defined by the
service-state parameter represented by fuzzy set {Penalized,Not− penalized}.

For example rule no. 8 shows that a major penalty will be given to a silver
customer if major violation occurs from defined QoS, while rule no. 7 will give a
normal penalty (has lesser effect than major penalties) to the normal customer
when the same amount of violation happens. The role of service-state can be
seen in the rule, e.g. by comparing the rule no. 5 with the rule no. 14. In general,
a harder penalty will be given to the service which is already penalized from the
provider side.

The inference system calculates the degree of penalty by applying all the
rules in a parallel approach for given input values of influencing factors. For
example assume a QoS violation of 0.7 which has a membership degree of 0.5
for both normal and major fuzzy sets (according to their membership functions

A Penalty-based Approach for QoS Dissatisfaction using Fuzzy Rules 7

Fig. 3: Fuzzy rules for penalty based on QoS violations, customer’s state and
previous penalties on the service

Fig. 4: A view of the inference system for applying penalties

presented in the figure 2c). Such a violation, can trigger all the rules that include
normal and major QoS violations. Note that the result of each rule depends on
the membership degrees of other linguistic variable. For this example, rules with
minor QoS-violation are not triggered at all. This situation is demonstrated in
Figure 4. The result of each rule is integrated with an aggregation method to
include the effect of all the rules. Figure 5 depicts a plot showing the penal-
ties regarding QoS violation and customer’s state. The figure represents possible
values for penalties after defuzzification for all values of QoS violation and cus-
tomer’s state. For example, for the QoS violation of 0.7 and customer-state of
0.4 the penalty degree is 0.66 which is shown in the figure. The relation between
QoS violation and customer’s state can also be seen in the figure.

6 Conclusions and Future Work

Applying penalties is a complex research issue in service oriented computing
which has not been paid enough attention in the literature. In this work, we

8 Barbara Pernici, S. Hossein Siadat, Salima Benbernou, and Mourad Ouziri

Fig. 5: The plot showing the penalties regarding QoS violation and customer’s
state

elaborated the concept of penalty and propose a mechanism for modelling and
measuring penalties. Penalties are modelled using a fuzzy approach and applying
fuzzy set theory. The relation between penalties and their influencing factor are
defined by fuzzy rules through an inference method. We have demonstrated the
proposed penalty model through a motivating example and performed some
initial result in measuring penalties.

Acknowledgements

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

References

1. A. Andrieux et al. Web Services Agreement Specification (WS-Agreement). Rec-
ommended standard, Open Grid Forum, March 2007.

2. Pei Li, Marco Comerio, Andrea Maurino, and Flavio De Paoli. Advanced non-
functional property evaluation of web services.

3. Barbara Pernici and Seyed Hossein Siadat. A fuzzy service adaptation based on
QoS satisfaction. In CAiSE’11, pages 48–61, 2011.

4. Omer Rana, Martijn Warnier, Thomas B. Quillinan, Frances Brazier, and Dana
Cojocarasu. Managing violations in service level agreements, 2008.

5. Lotfali Askar Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
6. Mohamed Anis Zemni, Salima Benbernou, and Manuel Carro. A soft constraint-

based approach to qos-aware service selection. In ICSOC, pages 596–602, 2010.

Appendix I

Design for Self-adaptation in
Service-oriented Systems in the Cloud

122

CHAPTER EIGHT

DESIGN FOR SELF-ADAPTATION
IN SERVICE-ORIENTED SYSTEMS

IN THE CLOUD

ANTONIO BUCCHIARONE,
CINZIA CAPPIELLO, ELISABETTA DI NITTO,

SERGEI GORLATCH, DOMINIQUE MEILÄNDER,
ANDREAS METZGER

Service-oriented systems are able to offer complex and flexible
functionalities in widely distributed environments by composing different
types of services. These systems have to be adaptable to unforeseen
changes in the functionality offered by component services and to their
unavailability or decreasing performances. Furthermore, when systems are
made available to a high number of potential users, they should also be
able to dynamically adapt to the current context of use as well as to
specific requirements and needs of the specific users. In order to address
these issues, mechanisms that enable adaptation should be introduced in
the life-cycle of systems, both in the design and in the runtime phases.

In this chapter we will go through the life-cycle of a service-oriented
system highlighting those activities that are needed to support adaptation.
The adaptation activities can be performed at various layers of the service-
oriented system. In particular, they can concern the layer where services
are composed together or the layer of the executing infrastructure,
typically, a cloud system. To exemplify the various steps and activities we
use an example from the domain of real-time online interactive
applications.

Design for Self-adaptation in Service-oriented Systems in the Cloud 215

1. Introduction

Modern software technology has enabled us to build software systems

with a high degree of flexibility. The most important development in this
direction is the concept of service and the Service-oriented Architecture
(SOA) (Josuttis 2007). A service-oriented system is built by composing
software services (and is thus also called service composition or composed
service in the literature).

Software services achieve a high degree of flexibility by separating
ownership, maintenance and operation from the use of the software.
Service users do not need to acquire, deploy and run the individual piece
of software, because they can access the functionality of that software
from remote through the service's interface. Ownership, maintenance and
operation of the software remain with the service provider (Di Nitto et al.
2008).

One key principle of SOA is loose coupling, which means that a
service only makes weak assumptions about its interactions with other
services; e.g., instead of services being tightly coupled by means of a
common data model, only simple data types are used. This principle
allows a service to be (re-)used in many different service compositions.
Another key principle of SOA is late binding. This implies that many
services will be discovered and composed into a service-oriented system
only at run-time. Service-oriented systems thus provide their functionality
rather dynamically and in a loose fashion.

As recent studies reveal (Zheng et al. 2010), such distributed
applications are extremely fragile, due to the execution of uncontrollable
third-party services. Unexpected changes of third-party services or
unpredicted network latencies, for example, can cause failures which
negatively impact on the timely execution of the applications. To prevent
such failures, self-adaptation capabilities are needed.

Self-adaptation is usually referred to as the ability of a system to
autonomously address changes during its operation. The activities
performed during adaptation typically follow the steps of the MAPE loop,
which stands for Monitor-Analyze-Plan-Execute (Salehie et al. 2009).

Service-oriented systems operate on different layers to implement their
functionality and to provide the expected quality. In a simplified view, we
can identify two main layers, the one of the computational and storage
resources used for executing the system (this is often called the
infrastructure layer) and the composition layer, in which the services
offered by the system are made available and composed together. The
infrastructure layer can be organized in various ways and encompasses the

216 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

boundaries of various organizations. In the case when services are offered
by various third parties we can have different cloud systems, either private
or public, making available their resources to the system.

In this two-layers setting, self-adaptation can happen both at the
infrastructure and at the service composition layer, depending on the
nature of the situation to be accommodated. If, for instance, a failure of a
computational resource occurs at the infrastructure layer it is quite natural
to design such layer so that it is able to replace the failing resource with
another. Similarly, if the failure concerns a specific service operating as
part of the system, at the service composition layer, it is possible to replace
the failing service with another without making the infrastructure layer
aware of this change.

While in many cases it is possible to isolate self-adaptation in a single
layer, there are cases in which this is not possible. In particular,
adaptations on different layers might impact on each other and may even
be conflicting. As an example, if an adaptation on the infrastructure layer
leads to the migration of a service from one cloud to another, this could be
conflicting with the decision on the service composition layer to choose a
third-party service instead of the “own” service implementation deployed
in the Cloud. In addition, there may be cases in which the joint adaptation
on both layers provides opportunities to address problems, which isolated
applications on single layers will not be able to remedy.

The need for scrutinizing such cross-layer adaptations has been
elaborated in S-Cube, the EU Network of Excellence on Software Services
and Systems (Papazoglou et al. 2010). Additionally, a recent survey
amongst professionals from the Future Internet community, which has
been performed during the Future Internet Assembly (FIA 2011) in
Budapest, has confirmed the importance of such cross-layer adaptations
(Metzger et al. 2011).

In this chapter we focus on two main aspects, that is, the kinds of
changes that trigger self-adaptation in a service-oriented system and the
strategies that can be adopted to deal with adaptation. We do so by
highlighting the fact that some adaptation can be performed at the
infrastructure layer while others have to be handled at the composition
layer, and we will scrutinize design activities and decisions for
applications that will be deployed in the cloud as the infrastructural target.
We also provide a preliminary contribution to the systematic
understanding of adaptation across layers.

To exemplify the approach presented in the chapter we refer to a
specific system example focusing on the domain of Real-Time Online
Interactive Applications (ROIA). This system has been developed by

Design for Self-adaptation in Service-oriented Systems in the Cloud 217

exploiting a service-oriented approach and has been featured with a
software component that deploys and manages it on the cloud. Among the
other things, this component is particularly interesting for us as it is able to
execute some cross-layer adaptations.

2. Kinds of self-adaptation needs

Self-adaptation of a service-oriented system is triggered by changes

that may occur in three major areas: (1) the expectations that its users (or
other stakeholders) have concerning some quality that the system should
provide, (2) the world in which the system is executed, (3) the system
itself.

The first area is the realm of non-functional requirements, the second
one is traditionally called context, and the third one is often referred to as
the machine (Jackson 2001).

The reader can notice that there is another important area where
changes occur frequently and that demands for changes in software
systems. This is the area of functional requirements. We do not consider it
in this chapter as this concern cannot be addressed with self-adaptation,
but, instead, requires software systems to undergo through a re-
development cycle (often called evolution).

In general, all changes that can be addressed by performing some
simple reasoning (e.g., “since the user is in downtown Milano, he/she is
certainly interested in knowing about free parking spaces in that area”), or
by modifying the bindings to services, can be addressed by a service-
oriented system if it incorporates self-adaptation facilities (de Lemos et al.
2011). Vice versa, the changes that require redesign or reimplementation
of the system typically have to be addressed by the intervention of human
beings and are not considered in this chapter.

The area of non-functional requirements refers to Qualities of Service
(QoS) such as the service response time or its availability. During the
execution of a service it can happen that the expectation of users for a
certain non-functional requirement, e.g., response time, changes. This
change may be due to various reasons, for instance, to a new regulation
that requires users to perform some operation in a shorter time. The
change can be, to a certain extent, accommodated through the self-
adaptation capabilities of the system, taking into account also its execution
conditions and its ability to cope with an increase of the response speed for
a certain user.

218 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

The term context derives from the Latin cum (with or together) and
texere (to weave). It has been defined by Dey and Abowd (Dey and
Abowd 2000) as “'any information that can be used to characterize the
situation of entities (persons, places, objects) that are relevant to the
interaction between a user and an application, including the user and the
application themselves”. According to Hofer et al. (Hofer et al. 2002),
context can be physical, i.e., measured by some hardware sensor or
logical, i.e., captured by monitoring user interaction. When it is physical it
refers to location, movement, and any environmental information. When it
is logical it refers to users' goals, emotional state, business processes, etc.
In both cases, the context evolves during the execution of the service-
oriented system. For instance, the user may change location, or the
business processes in which he/she is involved can change. Self-adaptation
capabilities of the system need, therefore, to be able to sense and to reason
about these changes.

Areas for
Changes

Requirements QoS
e.g., the system
should be more
user‐friendly

Context

User

Location
e.g., moving from
open air to the
meeting room

Preferences
e.g., today I do

not feel I can take
phone calls

Business

Contracts /
SLAs

e.g., we need
quicker response
from service

e.g., the 3rd party
service I’m using
is not working

Services
e.g., better service

from other
provider

Machine

Infrastructure Computational
Resources

e.g., I’ve run out
of storage

Composition‐level
Faults /
Failures

e.g., the workflow
enters an

inconsistent state

Fig. 8-1. Areas for changes and examples

Both changes in the non-functional requirements and in the context

happen in the external environment that, therefore, has to be continuously
monitored by the system. Some changes happen also internally to the
system, both in its hardware and software resources. An example concerns
the increase/decrease of the computational power available for the
software system.

Other examples of changes that may occur and trigger the need for
adapting the service-oriented system are shown in Figure 8-1.

Design for Self-adaptation in Service-oriented Systems in the Cloud 219

Clearly, the examples of changes shown in the figure require different
levels of intervention on the corresponding software system and its
resources.

For instance, the lack of computational resources may be addressed at
the infrastructure layer, without modifying the structure of the service-
oriented system, e.g., by exploiting the flexibility offered by Cloud
computing (Armbrust et al. 2010). The failure of a service is addressed at
the service-composition layer through dynamic binding of alternative and
compatible services. In this case, in fact, the substitution of one service for
another service can occur at runtime without performing any
reprogramming activity of the software (Moser et al. 2008).

A classification of various kinds of adaptation needs can be found in
(Metzger et al. 2011). Among others, the authors identify reactive
adaptation, that is, the ability of the system to react to changes when they
occur, and proactive adaptation, that is, the ability of the system to
anticipate the need for adaptation. Orthogonally to this classification, the
authors also comment on the importance of managing adaptation across all
layers of a software system. We also highlight that self-adaptation that
copes with problems within the machine can be classified as self-healing,
i.e., the ability to repair the system or self-optimization, i.e., the ability of
improving the performances of the system.

To enable adaptation needs to trigger self-adaptation, the service-
oriented system has to be properly built and deployed. At design time the
mechanisms that enable self-adaptation have to be prepared. At runtime a
monitoring infrastructure has to ensure that the adaptation needs are
captured and that proper adaptation strategies are executed. The life cycle
presented in the following section focuses on both the design time and the
runtime aspects and highlights the main activities and artifacts to be
produced in each phase.

3. The S-Cube lifecycle and self-adaptation

As discussed before, at design time, functional and non-functional

requirements, context and machine characteristics have to be analyzed in
order to identify the types of changes that trigger self-adaptation and
consequently define the needed mechanisms to monitor the environment
and the system behavior. In this phase, the strategies for self-adaptation
have to be also developed. The life cycle proposed in the S-Cube project
(see Figure 8-2) addresses all these aspects (Bucchiarone et al., 2009) and
(Bucchiarone et al., 2010). Such life cycle is composed of two cycles: (i)

220 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

the evolution cycle that leads to the explicit re-design of an application, (ii)
the adaptation cycle that is performed at run time when the application
needs to be adapted on-the-fly. The two cycles coexist and support each
other during the lifetime of the application.

Fig. 8-2. Life-cycle for adaptable service-oriented systems

The initial phase of the life cycle is the (Early) Requirement

Engineering and Design in which the adaptation and monitoring
requirements are elicited on the basis of the context dimensions and the
application and system characteristics that are considered relevant for the
adaptation and the evolution of the considered system. Thus, this phase is
responsible for the definition of the types of changes that trigger self-
adaptation. Successively, during the System Construction phase, the
corresponding monitors and the adaptation mechanisms are designed,
developed and then refined until the Deployment phase. When the system
is running (Operation and Management phase), continuous monitoring is
executed supporting the detection of the relevant context and system
changes. If changes occur, it is possible to proceed in two different
directions: executing evolution or adaptation of the system. Evolution is
performed if the system needs to be redesigned and thus it requires the
reiteration of the described cycle starting from the requirements
engineering and design phase.

Design for Self-adaptation in Service-oriented Systems in the Cloud 221

If changes require adaptation, the Adaptation Needs that can be
triggered from monitored events and adaptation requirements have to be
identified. An adaptation need can be defined as a specific problem-
situation that demands for adaptation. Each adaptation need has to be
associated with the different Adaptation Strategies able to satisfy the
corresponding adaptation requirements. Finally, on the basis of the current
situation, the knowledge obtained from previous executions, and the
available adaptation mechanisms, a reasoner selects the most suitable
adaptation strategy that will be automatically or manually performed in the
Enactment phase.

Figure 8-2 highlights the various adaptation- and monitoring-specific
actions (boxes) carried out throughout the life cycle of a service-oriented
system, the main design artifacts that are exploited to perform adaptation
(hexagons), and the phases where they are used (dotted lines).

While the life cycle can be applied when reasoning at different layers
of a service-oriented system, self-adaptation triggers and strategies
relevant for each layer are different. In the following two sections we
discuss about those that are relevant to the composition layer and to the
infrastructure layer. Moreover, we discuss about the interplay of
adaptation actions performed at these two layers.

4. Possible adaptation triggers and actions at the
composition layer

In order to offer efficient and reliable service-oriented systems, it is

necessary to guarantee that the service components are always aligned
with the changing world around them. As we have seen in the previous
section, at design time we identify the possible needs that trigger
adaptation, and that from now on we call triggers. Also, we define the
possible alternative strategies to support adaptation.

To do this, we need to have a concrete model of the service
composition context and of those aspects of the requirements and of the
machine that are relevant for triggering the adaptation or evolution of a
service composition, and that enable the identification and the collection
of the proper context information. As we have seen in Figure 8-2, starting
from the requirements analysis phase where, in parallel to the precise
definition of requirements, a proper context model has to be defined.

Once the context model and its relation with the application model are
defined, it is necessary to properly capture and define the adaptation
aspects. In particular, it is important to define when the contextual changes

222 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

are critical for the service composition functioning (i.e., adaptation
triggers) and what should be done or achieved when these changes take
place (adaptation strategies).

Depending on the context dimension/element and on the specific
requirements of a service composition, the definition of adaptation trigger
may vary. As a result, the corresponding context monitors needed to detect
those trigger will have different, sometimes application-specific, forms
and realizations.

Furthermore, in certain cases the adaptation trigger does not
correspond to some value of a particular single context element, but is
characterized by the complex combination of different context
dimensions/factors. In the simplest case, such situations may be directly
encoded using the capabilities provided by existing monitoring
frameworks as Dynamo (Baresi et al. 2005). In other cases, a sophisticated
reasoner may be necessary. For instance, in (Kazhamiakin et al 2008), a
context represents the combination of users personal assets (agenda,
location, social relations, and money), and the critical context changes
characterize some critical combination of those assets. A dedicated
analysis mechanism is used to identify those situations (asset conflicts)
and to trigger adaptation solutions.

As for triggers associated to the component services, considering the
context, we can define adaptation actions to align the service composition
with its context changes. Considering the contextual aspects, it is
necessary to take into account that adaptations may be performed (i) to
customize the composition in order to fit to the situation in which it
currently operates, (ii) to optimize the composition in order to improve
certain (usually QoS) issues and characteristics of the composition, or (iii)
to prevent and avoid future faults or undesirable situations in the execution
of the system. The customization is often driven by changes in the
composition context and especially by time, ambient, user, business, and
service context dimensions. Optimization is more related to the service
and computing context dimensions but can be also triggered by changes in
the users’ preferences. Finally prevention is mostly related to the service
and computing context since changes of the execution environment might
increase the risk of failures and the need for prevention. Some of these
aspects may be also interleaved. For example, if a user moves to a new
location (i.e., change in the user context), new set of services may be
available (i.e., change in the business context) with different bandwidth
(i.e., change in the machine).

As represented in Table 8-1, examples of triggers relevant for the
composition layer include changes in the time in which the system

Design for Self-adaptation in Service-oriented Systems in the Cloud 223

operates, in the ambient of the user, in the user preferences (indicated in
the table simply as “User”), in the services being exploited, in the business
processes and in the machine. Possible adaptation strategies include the
possibility to replace one or more services with some others, the re-
execution of some services, the transformation of the composition itself,
e.g., by introducing new paths of service calls, the complete failure of the
composition, the possibility to keep the service bindings abstract till
runtime, the possibility to renegotiate some Service Level Agreement
(SLA), the possibility to compensate failing transactions, and the
possibility to leave the adaptation loop to enter into the evolution loop.

Table 8-1. Suitability of adaptation strategies to react to context changes

Adaptation
Strategy

Adaptation Triggers

 Time Ambient

User

Service

Machine

Business

Service
substitution

X X X X X X

Re-execution X X
Re-composition X X X
Fail X X X X
Service
concretization

X X X X X X

Re-negotiation X X X
Compensation X X
Trigger Evolution X X X X X

As shown in Table 8-1, each trigger can be associated with a set of

adaptation strategies that are suitable to re-align the application within the
system and/or context requirements. In order to select the adaptation
strategy to apply, it is necessary to consider that adaptation triggers may
be associated with other requirements that are important for designing and
performing adaptation, in particular: the scope of the change, i.e., whether
the change affects only a single running instance of the service
composition or influences the whole model and, the impact of the change,
i.e., the possibility of the application to accomplish its current task.
Depending on these parameters different strategies may apply. For
example, when the scope of the change concerns the whole application
model “trigger evolution” strategy applies. As for the impact, such
strategies as “re-execution” or “substitution” may apply when the service
composition state did not change and the task still can be accomplished.

224 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

On the other hand, “compensation”, “fail”, or “trigger evolution” apply
when there is no way to complete the current task.

While the life cycle we have introduced so far can be applicable to both
the composition and the infrastructure layer, the kinds of adaptation
triggers as well as the corresponding strategies offered by the
infrastructure layer are mainly focused on what is happening within the
machine.

5. Possible adaptation triggers and actions at the
infrastructure layer

More in detail, adaptation at the infrastructure layer is often triggered

by variations in the load of the system (either measured in terms of
number of requests per time unit or in terms of CPU cycles needed to
complete the jobs in the system queues). In these cases, the infrastructure
layer may decide to replicate the system on new machines, for instance, by
creating clones of the currently used virtual machines (VMs from now on)
or to balance the load among the existing virtual machines.

Another relevant trigger for adaptation concerns the availability of new
resources that were not accessible before. In this case, the infrastructure
layer may decide to use them for replacing the available ones, if they are
more convenient, or to use them together with the existing ones.

Some triggers can also be external to the machine. An example is a
change in the QoS users require. Such a change can be accommodated
directly by the infrastructure layer in case it enables an elastic use of
resources.

Table 8-2 shows some possible triggers and strategies. The ‘X’
symbols highlight the suitability of a certain strategy for a specific trigger.
In many cases different strategies have to be combined together. For
instance, when the load is too high for the system, new machines can be
started, but this action alone does not solve the problem. We have also to
move or clone some VMs on the newly started machines in order to
exploit their capabilities.

Design for Self-adaptation in Service-oriented Systems in the Cloud 225

Table 8-2. Adaptation triggers and strategies at the infrastructure layer

Adaptation
strategy

Adaptation trigger

 Load
is too
low /
too
high

New
computing
resources
are
available

One or more
computing
resources
become
unavailable

A new
cloud
becomes
more
convenient

QoS
requirements
change

Clone a
VM

X X

Move a
VM

 X X X

Balance
load among
VMs

X

Switch
machines
on/off

X X

Move data
storage

 X X

Migrate
from a
cloud to
the other

X X X X

6. Coordinating cross-layer adaptation

As introduced above, service-oriented systems operate on different
layers to implement their functionality and to provide their expected
quality. We have identified and discussed two main layers: (1) the
infrastructure layer, on which computational and storage resources used
for executing the system reside (see the Section on possible adaptation
triggers and actions at the infrastructure layer); (2) the composition layer,
in which the services offered by the system are made available and
composed (see the Section on possible adaptation triggers and actions at
the composition layer). In this two-layers setting, self-adaptation can
happen both at the infrastructure and at the service composition layer.

However, if adaptations on those layers are not coordinated, this can
lead to the following two important issues: First, conflicting adaptations
can arise, e.g., in case where the individual adaptations cancel each other
or interact in an undesired way. Secondly, there may be cases in which
isolated applications on single layers will not be enough to resolve the

226 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

problem; e.g., a problem can only be resolved if the composition of the
system is changed while at the same time more computing resources are
made available in the cloud.

We elaborate on both of these issues in the following sub-sections.

6.1 Avoiding Conflicting Adaptations

In (Bucchiarone et al 2010b) a general framework has been proposed to

address the harmful side-effects resulting from independently acting
adaptations. In (Kazhamiakin et al 2008b) general, adaptation-specific
failures and possible quality assurance techniques to uncover those failures
have been introduced. Finally, in (Guinea et al 2011), a more concrete
framework that integrates layer specific monitoring and adaptation
techniques, and enables multi-layered control loops has been proposed for
service-based systems. All these contributions lend themselves naturally to
discuss the problems that may arise when considering adaptations which
are independently performed on different layers.

The following important classes of problems can arise in the presence
of independently acting adaptations:

• Conflicts: A conflict arises if each layer reacts to a relevant change
by issuing contradictory adaptations concurrently. Contradictory
adaptations are adaptations that cannot be applied in combination
since they would violate the requirements of the system or would not
be able to solve the observed deviation from requirements. In certain
situations the timing of events may be the source of another such kind
of conflict. For example, it might happen that changes occurring on
the infrastructure layer are so fast, that although they can be addressed
efficiently on that layer, the impact they have on the composition
layer leads to severe problems, as the execution of adaptation
activities on the composition layer is not quick enough to follow. This
may mean that new events continuously trigger new adaptations,
leading to an “adaptation stack overflow”, possibly delaying other
important adaptations or bringing the application to a halt completely.

• Oscillations: An oscillation can occur if conflicting adaptations are
issued in sequence. For example, the composition layer may receive
an event that triggers an adaptation which in turn leads to a critical
change that leads to an adaptation on the infrastructure layer. It might
happen that the adaptation of the infrastructure layer in turn leads to

Design for Self-adaptation in Service-oriented Systems in the Cloud 227

critical event on the composition layer, necessitating yet another
adaptation. Obviously, if this undesired behaviour is not observed and
controlled, this can lead to a long series of mutual adaptations without
ever reaching a stable system configuration, i.e., this can lead to an
“adaptation livelock”.

• Race conditions: Race conditions occur if the two layers apply
adaptations and the final outcome depends on the order in which these
adaptations are performed and completed. As an example, an
adaptation on the composition layer may require the deployment of a
new service on the cloud. Yet, if the adaptation of the cloud needed to
provide additional resources for that new service is executed after the
deployment of the new service, it might happen that the deployment
will not succeed due to limited computational resources. Yet, if the
resources would have been reserved before deployment, this
adaptation would have been successful.

There are basically two complementary ways of avoiding the above
problems: (1) one can check whether those problems may actually occur
by using targeted quality assurance techniques as proposed by (Cheng et
al. 2009, Kazhamiakin et al 2008b); (2) one can restrict the freedom of
each individual adaptation by coordinating their adaptation actions as
proposed by (Guinea et al. 2011, Zengin et al. 2011, Bucchiarone et al
2010b, Popescu et al. 2010, Cheng et al. 2009, Vidackovic et al. 2009).

In the remainder of this chapter, we will follow the approach number 2
and will provide a concrete example for how such a coordination of
adaptation actions can be realized.

6.2 Exploiting Synergy of Adaptations

Of course, the problems that can arise due to uncoordinated adaptations

are numerous. Thus, one might be tempted to restrict adaptation to one
single layer only in order to avoid these problems. However, there may be
situations in which only the execution of concurrent adaptations on more
than one layer can address the problems faced.

In an example pointed out by (Schmieders et al. 2011) the coordination
of adaptations on the infrastructure and the composition layer can increase
the chance that performance violations of the application can be avoided.
For instance, a slow service on the composition layer may be replaced by a
faster alternative service. However, this might not be enough to achieve
the expected response time of the application. Thus, additionally an

228 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

adaptation on the infrastructure layer may be used to reserve more
computing resources, thereby increasing the responsiveness of services. As
this example shows, there may be situations in which a coordinated
combination of adaptations can lead to more situations in which
requirements violations can be avoided.

This chapter will not further scrutinize this specific aspect of cross-
layer adaptation. However, we acknowledge the fact that understanding
how to perform such kinds of adaptation should certainly be part of future
research.

7. Use case

In this section, we describe how self-adaptation can be implemented in

the life-cycle of challenging Real-Time Online Interactive Applications
(ROIA) in Cloud environments. Examples of ROIA are multi-player
online computer games, interactive e-learning and training applications
and high-performance simulations in virtual environments. We illustrate
the specific features of ROIA and express their major design and
execution aspects in the context of the S-Cube Lifecycle model. Our use
case focuses on the execution of ROIA on computational resources and,
thus, illustrates adaptation scenarios applied mostly at the infrastructure
layer, as described in the previous sections.

In ROIA, there are typically multiple users who access a common
application state and interact with each other concurrently within one
virtual environment. The users connect to the application from different
client machines and interact with other users: e.g., in online games users
move their avatars through a virtual environment and interact with other
users' avatars or computer-controlled characters (entities). Since ROIA
usually have very high performance requirements, the application
processing is performed on multiple servers. Hence, ROIA are highly
distributed applications with challenging QoS demands, such as: short
response time to user actions (about 0.1-1.5 s), high update rate of the
application (up to 50 Hz), large and frequently changing number of users
in a single application instance (up to 104 simultaneously). To address
these demands, application developers need to implement suitable
adaptation mechanisms. In our previous work we study how the Lifecycle
model and self-adaptation are applied to the challenging domain of ROIA
(Meiländer et al. 2010).

A major problem for an efficient ROIA execution is the economical
utilization of server resources, which is difficult due to a variable and
continuously changing number of users. This leads to expensive up-front

Design for Self-adaptation in Service-oriented Systems in the Cloud 229

investments to build a suitable server pool which is able to handle peak
user numbers but will be underutilized most of the time when the load is
below the peak.

Cloud Computing offers new opportunities for ROIA execution and
promises a potentially unlimited scalability by distributing application
processing on an arbitrary number of resources given suitable adaptation
mechanisms. Clouds allow for adding/removing resources on demand.
This opens for ROIA an opportunity to serve very high numbers of users
and still comply with QoS demands. Despite a variable number of users,
Cloud resources can be used efficiently if the application supports
adding/removing resources during run-time. Hence, using Cloud
Computing for resource provision and the Lifecycle model for
implementing adaptable ROIA complement each other.

In order to support ROIA development and adaptation on Clouds, we
develop the RTF-RMS resource management system (Meiländer et al.
2011) on top of the Real-Time Framework (RTF) (RTF 2011). RTF-RMS
implements the following mechanisms for ROIA development on Clouds:
• Monitoring of application-specific data, e.g., update rate, number

of entities, etc.
• Distribution handling for the dynamic adaptation of running

application sessions by adding/removing Cloud resources on
demand using particular adaptation strategies (described below).

• Application profiles that allow developers to specify application-
specific adaptation triggers.

• High-level development support for communication handling and
application state distribution.

In Figure 8-3, we illustrate how RTF-RMS supports the developer in
designing adaptable ROIA according to the different phases of the
Lifecycle model; the phases are numbered in the figure.

In the “Requirement Engineering” phase of the Lifecycle model, the
application developer must identify suitable adaptation requirements for
his application. In the case of ROIA, the mechanisms for monitoring and
adaptation should be non-intrusive, i.e., take place in parallel with the
application execution, such that users are not aware of changes inside the
application.

230 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

Fig. 8-3. Mechanisms of RTF-RMS for ROIA development according to
the Lifecycle model

For the “Construction” phase, RTF-RMS provides the developer with a

C++ library of high-level functions for optimized communication handling
(client-server and inter-server) and efficient application state distribution
in a multi-server environment. By using RTF-RMS for communication
and distribution handling, monitoring is automatically integrated in the
application processing. Monitoring data is used in the next phase of the
Lifecycle to implement adaptation triggers, as described in the previous
sections. For ROIA, we distinguish between the following adaptation
triggers:
• Change in QoS, e.g., caused by unreliable hoster resources;
• Change in the machine, e.g., caused by increasing user

interactions, making computation of state updates more expensive;
• Change in the business context, e.g., more users connect to the

application due to changing user preferences.
In the “Deployment and provisioning” phase, trigger rules are defined

in the RTF-RMS application profile for each adaptation trigger, see Figure
8-4 for an example. In the application profile, the developer specifies
thresholds for the monitoring data provided by RTF-RMS. Adaptation is
triggered if corresponding monitoring values pass these thresholds. In the
example, adaptation is triggered if the update rate drops below 25 Hz or
exceeds 50 Hz. The application developer can find suitable values for all
parameters in the application profile by considering the runtime behaviour
of the application on physical resources and calculating the virtualization
overhead, or by conducting benchmark experiments in a Cloud
environment.

Design for Self-adaptation in Service-oriented Systems in the Cloud 231

Fig. 8-4: Example application profile for a fast-paced action game.

In the “Operation and management” phase, the application is running

and monitoring data are checked continuously against the trigger rules to
detect changes in the context or in the system that could require
adaptation.

In the “Identify adaptation need” phase, RTF-RMS detects a violation
of trigger rules which indicates, e.g., an overload of the application
session: the update rate drops below 25 Hz.

In the “Identify adaptation strategy” phase, RTF-RMS analyzes the
number of application servers and their current workload to choose an
adaptation strategy (Meiländer et al., 2011; the cited paper refers to
adaptation strategies as load-balancing actions). The adaptation strategies
are based on the partitioning of the virtual environment among servers. In
particular, the processing of entities inside a particular area (zone) is
assigned to different servers. RTF-RMS implements currently the
following three adaptation strategies:
• User migration: Users are migrated from the overloaded server to

an underutilized server that is processing the same zone. For this
purpose, user connections are switched from one server to another.
RTF-RMS distributes users by default equally between the
application server for a particular zone. User migration is the
preferred action if the load of an overloaded server can be
compensated by currently running resources.

• Replication enactment: New application servers are added in order
to provide more computation power to the highly frequented zone.
This strategy is called replication: each application server keeps a
complete copy of the application state, but each server is
responsible for computing a disjoint subset of entities. After
enacting replication, RTF-RMS migrates a number of users to the
new replica in order to balance the load. Replication implies an
additional inter-server communication, so its scalability is limited.

<appProfileData>
 <metric>
 <name>UpdateRate</name>
 <addResourceThreshold>25</addResourceThreshold>
 <removeResourceThreshold>50</removeResourceThreshold>
 </metric>
</appProfileData>

232 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

If the number of active replicas for a particular zone is below the
maximum number of replicas specified by the application profile,
replication is used to add new resources; otherwise the resource
substitution strategy (described next) is preferred.

• Resource substitution: an existing resource in the application
processing is substituted by a more powerful resource in order to
increase the computation power for highly frequented zones. For
this purpose, RTF-RMS replicates the targeted zone on the new
resource and migrates all clients from the substituted server to the
new server. The substituted server is then shut down.

In the “Enact adaptation” phase, RTF-RMS enacts the chosen
adaptation strategy and changes the distribution of the application
processing accordingly.

An important factor that may limit the performance of applications on
Clouds is the long startup time of Cloud resources which may take up to
several minutes. Since ROIA are highly responsive applications, finding a
compensation for long startup times is an important task. For this purpose,
RTF-RMS implements a resource buffer to which a predefined number of
Cloud resources are moved in advance, i.e. before they are demanded by
the application. The number of buffered resources is configured in the
application profile and has to be chosen carefully since resource buffering
generates additional costs. A more detailed discussion on how to choose
the size of the resource buffer can be found in (Meiländer et al. 2011).

Another critical issue for the cost-efficient ROIA provision on Clouds
is the consideration of leasing periods. In commercial Cloud systems,
resources are typically leased and paid per hour or some longer leasing
period. Since ROIA have dynamically changing user numbers, the time
after which Cloud resources become dispensable is very variable.
However, resources will not be used cost-efficiently if they are shut down
before the end of their leasing period. Hence, RTF-RMS removes the
resources that have become dispensable from the application processing
and moves them to the resource buffer. Cloud resources in the buffer are
shut down at the end of their leasing period or they are integrated in the
application processing again if required.

In order to demonstrate the influence of adaptation using RTF-RMS on
the application performance, we present experimental results of the user
migration adaptation strategy using an example of a multi-player action
game called RTFDemo (RTF, 2011). In order to provide a seamless
gaming experience, users should not receive less than 25 updates per
second over a longer time period. Hence, we defined an adaptation trigger
rule with 25 updates per second as the lower threshold.

Design for Self-adaptation in Service-oriented Systems in the Cloud 233

Fig.8-5. Adaptation using user migration.

For our experiments, we use a private Cloud environment with the

Eucalyptus framework (version 2.0.2) (Nurmi et al., 2009). We have
started two application servers on Cloud resources for replication of a
single zone. All clients are initially connected to server 1, which implies
an imbalanced load on application servers. We apply adaptation at the
infrastructure level by balancing load among virtual machines using user
migration. The load is balanced by assigning the processing of half of the
users that are connected to server 1 to server 2. The corresponding user
connections are switched between these Cloud resources accordingly.
Figure 8-5 shows that the update rate of server 1 initially drops with the
growing number of connected clients. When the update rate reaches the
threshold of 25 Hz for 240 users, RTF-RMS migrates half of the users
(i.e., 120 users) from server 1 to server 2. This adaptation strategy
increases the update rate of server 1 from 25 Hz to about 100 Hz.

234 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

8. Related work

The literature contains several approaches for the definition of a life

cycle for the design and management of service-based applications. Earlier
approaches such as ASTRO (Trainotti et al. 2005), focused on the
possibility to monitor and intervene on SBAs in order to recovery from
unwanted and unexpected behavior, assume human interventions. More
recent work tried to handle this issue proposing methods for developing
self-adaptive applications. As suggested in (Ardagna and Pernici 2007),
adaptation mechanisms can either be embedded in the description of the
adaptable SBAs or implicit in its structure. Various frameworks can be
found in the literature with the objective to support adaptation of SBAs. In
(Linner et al. 2008), authors propose a life-cycle supporting self-
adaptation of the service-based applications even if they lack of explicit
guidelines for their design. Anyway, most of the literature contributions
concern built-in adaptation, i.e., the adaptation logic is completely
specified at design time. They focus on the specification of adaptation
mechanisms and adaptable applications, exploiting different tools. For
instance, the specification may be performed by extending standard
notations (i.e., BPEL) with adaptation specific tools (Karastoyanova et al.,
2005), event conditions actions rules (Baresi et al., 2007), variability
modeling (Hallerbach et al, 2008) or aspect-oriented approaches
(Kongdenfha et al., 2006).

In the literature there are, however, proposals of frameworks for
dynamic adaptation, all featuring an adaptation manager separated from
the application. Notably, all these approaches are in the service-oriented
field. In (Spanoudakis et al., 2005) the authors consider the problem of
adapting the application by replacing malfunctioning services at runtime.
In this approach, adaptation strategies are triggered as a consequence of a
requirement violation. In fact, the adaptation rule is fixed at design time,
but it is dynamically applied by a manager component that monitors
functional and non-functional properties, creates queries for discovering
malfunctioning services and replaces them with dynamically discovered
replacements. In other approaches, adaptation is triggered by application
constraints. For example, Narendra et al. (Narendra et al., 2007) propose
an aspect-oriented approach for runtime optimization of non-functional
QoS measures. QoS constraints are also the basis for dynamic
reconfiguration of processes in the METEOR-S framework (Verma et al.,
2005). Reconfiguration is performed essentially at deployment-time. Some
more general frameworks are also available. An example is SCENE
(Colombo et al, 2006) where event-condition-action rules are used for

Design for Self-adaptation in Service-oriented Systems in the Cloud 235

defining different kinds of self-adaptation rules dealing with runtime
replacement of services, service re-execution, renegotiation of SLAs,
replacement of parts of a service composition, etc. As in other cases, in
this approach rules are triggered during the execution as a result of a
monitoring activity and they can trigger various dynamic actions that
change the service composition depending on many variables, including
the status of the context. While a set of basic rules is defined at design
time, new rules can also be added during the execution of the system as a
result of a learning activity.

PAWS (Ardagna et al., 2007) is a framework for flexible and adaptive
execution of web service based applications. At design-time, flexibility is
achieved through a number of mechanisms, i.e., identifying a set of
candidate services for each process task, negotiating QoS, specifying
quality constraints, and identifying mapping rules for invoking services
with different interfaces. The runtime engine exploits the design-time
mechanisms to support adaptation during process execution, in terms of
selecting the best set of services to execute the process, reacting to a
service failure, or preserving the execution when a context change occurs.
Finally the Vienna Runtime Environment for Service-oriented Computing
(VRESCo) (Hummer et al., 2011) is a framework implemented to address
issues like dynamic selection, binding and invocation of services.

In general, adaptable systems change their behavior, reconfigure their
structure and evolve over time reacting to changes in the operating
conditions, so to always meet users’ expectations.

Nowadays, recent literature contributions started to address adaptation
issues in the contexts of Grid or Cloud Computing. All the existing
contributions focus on specific aspects. In (Brandic et al. 2009) authors
considers cloud computing stating that such environment require adaptable
services that can cope with system failures and environmental change
minimizing human intervention. In particular, this chapter mainly proposes
model for service negotiation and SLA mapping. (Lim et al. 2009) instead
considers “Elastic cloud computing APIs” as the natural opportunity for
designing controllers able to automate an adaptive service and resource
provisioning, and many recent works have explored feedback control
policies for a variety of network services under various assumptions. The
approach presented in this chapter aims at providing a wider support in the
design and adaptation of service based applications executed in cloud
computing contexts.

236 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

9. Conclusion

In this chapter we have discussed about the needs that trigger self-

adaptation in service-oriented systems and we have seen that adaptation
can occur at different layers of the system architecture, and, in some cases,
it can also encompass different layers. The life cycle offered by the S-
Cube project can be a helpful tool to guide developers in the identification
of those self-adaptation triggers and strategies that are relevant for the
specific system under development and to allow providers to offer the
proper runtime monitoring and reasoning mechanisms needed to execute
the defined adaptation strategies.

Acknowledgements

Research leading to these results has received funding from the

European Community's 7th Framework Programme FP7/2007-2013 under
grant agreement 215483 (S-Cube).

References

Ardagna D. and Pernici B. 2007. “Adaptive Service Composition in
Flexible Processes”. IEEE Trans. Software Eng. 33(6), (pp. 369-384).

Ardagna D., Comuzzi M., Mussi E., Pernici B., and Plebani P. 2007.
"PAWS: a framework for processes with adaptive web services", IEEE
Software 24(6), pp. 39-46.

Armbrust, M., Fox A., Griffith R., Joseph A. D., Katz R., Konwinski A.,
Lee G., Patterson D., Rabkin A., Stoica I., and Zaharia M. 2010. “A
view of cloud computing”. Communication ACM, 53:50-58.

Baresi Luciano and Guinea Sam. 2005. “Dynamo: Dynamic Monitoring of
WS-BPEL Processes”. ICSOC 2005: 478-483

Baresi L., Guinea S., and Pasquale L. 2007. „Self-healing BPEL
processes with Dynamo and the JBoss rule engine“. In: Proc. of
ESSPE 2007, pp. 11–20. ACM Press, New York

Brandic I., Music D., and Dustdar S. 2009. „Service mediation and
negotiation bootstrapping as first achievements towards self-adaptable
grid and cloud services“. In Proceedings of the 6th international
conference industry session on Grids meets autonomic computing
(GMAC '09).

Design for Self-adaptation in Service-oriented Systems in the Cloud 237

Bucchiarone A., Cappiello C., Di Nitto E., Kazhamiakin R., Mazza V.,
Pistore M.2009.„Design for Adaptation of Service-Based Applications:
Main Issues and Requirements“. Proc. of ICSOC/ServiceWave
Workshops, pp. 467-476.

Bucchiarone A., Kazhamiakin R., Cappiello C., Di Nitto E., and Mazza V.
2010. „A context-driven adaptation process for service-based
applications“. In Proc. of PESOS 2010.

Bucchiarone A., Marconi A., Pistore M., Föll S., Herrmann K., Hiesinger
C., Marinovic S. 2010b. “An Overall Process for Self-Adaptive
Pervasive Systems”, in Proceedings of the Second International
Conference on Adaptive and Self-adaptive Systems and Applications
(ADAPTIVE 2010), Elsevier.

Cheng B. et al. 2009. “Software engineering for self-adaptive systems: A
research roadmap”. In B. Cheng, R. de Lemos, H. Giese, P. Inverardi,
and J. Magee, editors, Software Engineering for Self-Adaptive
Systems, ser. LNCS, no. 5525. Springer.

Colombo M., Di Nitto E. and Mauri M. 2006. „SCENE: A service
composition execution environment supporting dynamic changes
disciplined through rules“. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg.

De Lemos R. et al. 2011. “Software Engineering for Self-Adpaptive
Systems: A second Research Roadmap”. In R. de Lemos, H. Giese, H.
Müller, and M. Shaw, editors, Software Engineering for Self-Adaptive
Systems, number 10431 in Dagstuhl Seminar Proceedings, Dagstuhl,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

Dey A. K. and Abowd G. D. 2000. “Towards a Better Understanding of
Context and Context-Awareness”. In Workshop on The What, Who,
Where, When, and How of Context-Awareness.

Di Nitto E., Ghezzi C., Metzger A., Papazoglou M., and Pohl V. 2008.„A
journey to highly dynamic, self-adaptive service-based applications”.
Automated Software Engineering.

Guinea S., Kecskemeti, G., Marconi A., and Wetzstein B. 2011. “Multi-
layered Monitoring and Adaptation”. In ICSOC 2011, LNCS. Springer.

Hallerbach A., Bauer T. and Reichert M. 2008. „Managing process
variants in the process life cycle“. In: Proc.ICEIS, vol. 3-2,pp.154–161.

Hofer T., Schwinger W., Pichler M., Leonhartsberger G., and Altmann J.
2002. “Context-awareness on mobile devices: the Hydrogen approach.”
In 36th Annual Hawaii International Conference on System Sciences,
pages 292-302.

Hummer W., Leitner Ph., Michlmayr A., Rosenberg F., and Dustdar S.
2011. "VRESCo - Vienna Runtime Environment for Service-oriented

238 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

Computing" (invited) in: "Service Engineering: European Research
Results", S. Dustdar, F. Li (ed.); Springer, 299 - 324.

Jackson M. 2001. “Problem Frames: Analysing and Structuring Software
Development Problems”. Addison-Wesley, New York.

Josuttis N. 2007. “SOA in Practice: The Art of Distributed System
Design”. O'Reilly Media, 2007.

Karastoyanova D., Houspanossian A., Cilia M., Leymann F., Buchmann,
A.P. 2005. „Extending BPEL for run time adaptability“. In: Proc. of
EDOC 2005, pp. 15–26. IEEE Press, Los Alamitos.

Kazhamiakin R., Bertoli P., Paolucci M., Pistore M., and Wagner M..
2008. “Having Services "YourWay!": Towards User-Centric
Composition of Mobile Services”. FIS 2008: 94-106.

Kazhamiakin R., Metzger A. and Pistore M. 2008b, “Towards correctness
assurance in adaptive service-based applications,” in ServiceWave
2008, ser. LNCS, no. 5377. Springer, 2008.

Kongdenfha W., Saint-Paul R., Benatallah B., and Casati F. 2006. “An
aspect-oriented framework for service adaptation”. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 15–26.
Springer, Heidelberg.

Lim H. C., Babu S., Chase J. S., and Parekh S. S. 2009. „Automated
control in cloud computing: challenges and opportunities“. In
Proceedings of the 1st workshop on Automated control for datacenters
and clouds (ACDC '09). ACM, New York, NY, USA, 13-18.

Linner D., Pfeffer H. Radusch I., and Steglich S.. 2007. “Biology as
Inspiration Towards a Novel Service Life-Cycle”. In ATC, pp. 94–102.

Meiländer D., Gorlatch S., Cappiello C., Mazza V., Kazhamiakin R., and
Bucchiarone A. 2010. „Using a Lifecycle Model for Developing and
Executing Adaptable Interactive Distributed Applications“. In Towards
a Service-Based Internet. pp. 175-186, Springer.

Meiländer D., Ploss A., Glinka F., and Gorlatch S. 2011. „A Dynamic
Resource Management System for Real-Time Online Applications on
Clouds“. Lecture Notes in Computer Science, Springer.

Metzger A. and Cassales Marquezan C., “Future Internet Apps: The next
wave of adaptive service-oriented systems?” in ServiceWave 2011, ser.
LNCS. Springer, 2011.

Moser O., Rosenberg F., and Dustdar S. 2008. “Non-intrusive monitoring
and service adaptation for ws-bpel”. In Proceeding of the 17th
international conference on World Wide Web, WWW '08, pages 815-
824, New York, ACM.

Narendra N., Ponnalagu K. Krishnamurthy J., and Ramkumar R. 2007.
„Run-Time Adaptation of Non-functional Properties of Composite

Design for Self-adaptation in Service-oriented Systems in the Cloud 239

Web Services Using Aspect-Oriented Programming“ in the
Proceedings of International Conference on Service-Oriented
Computing – ICSOC 2007, Krämer, B., Lin, K., Narasimhan, P. eds.,
Lecture Notes in Computer Science, vol. 4749, pp. 546 - 557, Springer
Berlin / Heidelberg.

Nurmi D., Wolski R., Grzegorczyk C., Obertelli G., Soman S., Youseff
L., Zagorodnov D. 2009. „The Eucalyptus Open-Source Cloud-
Computing System“. In 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, pp. 124-131. IEEE Computer Society.

Papazoglou M., Pohl K., Parkin M., and Metzger A., Eds. 2010. “Service
Research Challenges and Solutions for the Future Internet: S-Cube –
Towards Mechanisms and Methods for Engineering, Managing, and
Adapting Service-Based Systems”. Heidelberg, Germany: Springer.

Popescu R., Staikopoulos A., Liu P., Brogi A., and Clarke S. 2010.
“Taxonomy-driven adaptation of multi-layer applications using
templates”. In: SASO.

Real-Time-Framework. 2011, http://www.real-time-framework.com
Salehie M. and Tahvildari L. 2009. “Self-adaptive software: Landscape

and research challenges”. ACM Transactions on Autonomous and
Adaptive Systems, 4(2).

Schmieders E., Micsik A., Oriol M., Mahbub K., and Kazhamiakin R.
2011. “Combining SLA Prediction and Cross Layer Adaptation for
Preventing SLA Violations”. 2nd WOSS Workshop. 2011, to appear in
Scalable Computing: Practice and Experience, December 2011.

Spanoudakis G., Zisman A., and Kozlenkov A. 2005. „A Service
Discovery Framework for Service Centric Systems“. Services
Computing, IEEE International Conference on, 1:251–259.

Trainotti M., Pistore M., Calabrese G., Zacco G., Lucchese G., Barbon F.,
Bertoli P., and Traverso P. 2005. “ASTRO: Supporting Composition
and Execution of Web Services”. In ICSOC 2005.

Verma K., Gomadam K., Sheth A. P., Miller J. A., and Wu Z.. 2005. „The
METEOR-S Approach for Configuring and Executing Dynamic Web
Processes“. Technical report, University of Georgia, Athens.

Vidackovic K., Weiner N., Kett H. and Renner T. 2009. “Towards
business-oriented monitoring and adaptation of distributed service-
based applications from a process owner's viewpoint”. In:
ICSOC/ServiceWave Workshops, Springer.

Zengin A., Marconi A. and Pistore M. 2011. “CLAM: Cross-layer
Adaptation Manager for Service-Based Applications”. In: QASBA
Workshop @ ECOWS 2011, Lugano, CH.

240 Bucchiarone, Cappiello, Di Nitto, Gorlatch, Meiländer, Metzger

Zheng, Z., Zhang, Y., and Lyu, M.R. 2010. “Distributed QoS evaluation
for real-world web services”. In: Proceedings of the 2010 IEEE
International Conference on Web Services. pp. 83--90. ICWS '10,
IEEE Computer Society, Washington

