
The Frame Problem in Web Service Specifications

George Baryannis and Dimitris Plexousakis
Department of Computer Science

University of Crete
GR 71409 Heraklion, Greece

{gmparg, dp}@csd.uoc.gr

Abstract

This work explores the frame problem and its effects

in devising Web service specifications. The frame
problem encompasses the issues raised when trying to
concisely state in a specification that nothing changes
except when explicitly mentioned otherwise. A
motivating example of a composite service
specification is presented and a solution approach is
proposed, based on knowledge gained from related
research on the frame problem in procedure
specifications. Finally, an algorithm that applies the
presented solution in order to transform existing OWL-
S service descriptions to ones that are free from the
frame problem is presented.

1. Introduction

Web services and service-oriented architecture
(SOA) in general have emerged in recent years as a
major technology for deploying automated interactions
between distributed and heterogeneous applications
and have motivated a great deal of research on many
topics such as service foundations, composition,
management and monitoring as well as service design
and development [1]. An inherent issue in all these
topics is how to devise a formal specification of a Web
service.

Formal specifications allow for a precise description
of what a Web service is supposed to do, e.g. in terms
of its inputs, outputs, preconditions and effects. A
complete formal Web service specification should
allow us to thoroughly know and, in most cases, predict
the service behavior under any circumstance,
effectively answering in the best possible way a simple
question: “What does this service do?”. This answer
should not be limited to an interface description, as
provided by current standards such as WSDL and
should not have to deal with the service’s inner

workings, e.g. its source code, which a service
consumer most probably has no access to and no
understanding of.

Preparing formal specifications, however, comes
with a great deal of issues that need to be solved. One
particular family of problems that emerge in formal
specifications expressed in the form of preconditions
and postconditions is referred to in the field of
Artificial Intelligence as the frame problem [2]. The
frame problem stems from the fact that including
clauses that state only what is changed when preparing
formal specifications is inadequate. Instead, one should
also include clauses, called frame axioms, that
explicitly state that apart from the changes declared in
the rest of the specification, nothing else changes.
Solving the frame problem essentially means finding a
way to state frame axioms concisely without resulting
in extremely lengthy, complex, possibly inconsistent,
obscure specifications and at the same time retaining
the ability of proving formal properties of the
specifications.

While the frame problem has been thoroughly
described and addressed in the AI literature, it has not
been adequately examined with regard to its existence
in Web service specifications and the effects it has in
service-oriented architecture in general. The
precondition and postcondition notation is universally
used in functional descriptions of Semantic Web
services, e.g. in the Service Profile class of OWL-S or
the Web service capability subcomponent of WSMO.
Thus, one should expect that the frame problem will
also be encountered in formal Semantic Web service
descriptions.

The rest of this document is organized as follows.
Section 2 presents a motivating example in which the
frame problem is encountered when devising a formal
specification for a composite service. Section 3
presents a solution to the frame problem in Web
service specifications inspired by an existing solution

PESOS’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3716-0/09/$25.00 © 2009 IEEE ICSE’09 Workshop9

in the AI literature. Section 4 offers a brief description
of work related to the frame problem in the area of
Web services and Section 5 concludes.

2. A Motivating Example

In this section, we present a simple yet indicative
example of the issues caused by the frame problem
when devising a complete specification for a composite
Web service.

Let’s consider the case of an online shop that
provides wish list and recommendations functionalities.
When an order is completed, the items that were
purchased must be removed from the wish list of the
buyer and, for each purchased item, the most closely
associated one must be chosen and included in the
recommendations list of the particular user. The
preconditions and postconditions for two services
performing these actions, written in First-Order
Predicate Logic, are shown in Figures 1 and 2.

PRE: completed(order, item) ∧
 included(buyersWishList, item)
POST: ¬included(buyersWishList, item)

Figure 1. Wish list service

PRE: completed(order, item) ∧
 ¬included(buyersRecoms, associatedItem)
POST: included(buyersRecoms, associatedItem)

Figure 2. Recommendations list service

The specifications presented above cannot be
considered complete, as no care has been taken
concerning the frame axioms. We need to state for
what argument values each of the predicates remain
unchanged. The specifications with the addition of the
frame axioms are shown in Figure 3. Note that primed
predicates denote that they are evaluated in the final
state, while unprimed predicates are evaluated in the
initial state.

PRE: completed(order, item) ∧
 included(buyersWishList, item)
POST: ¬included(buyersWishList, item) ∧
 ∀x, y [x ≠ buyersWishList ∨ y ≠ item ⇒
 included(x, y) = included′(x, y)] ∧
 ∀x, y [completed(x, y) ≡ completed′(x, y)]

PRE: completed(order, item) ∧
 ¬included(buyersRecoms, associatedItem)
POST: included(buyersRecoms, associatedItem) ∧
 ∀x, y [x ≠ buyersRecoms ∨ y ≠ associatedItem ⇒
 included(x, y) = included′(x, y)] ∧
 ∀x, y [completed(x, y) ≡ completed′(x, y)]

Figure 3. Service specifications with frame
axioms

In our example, after an order is completed, we need

a service that updates the wish list and
recommendations list. Attempting to compose the two
services according to the composition rules defined in
[3] for a parallel composition, results in the
specification shown in Figure 4. However, this
specification is inconsistent, since contradicting
statements are made for the circumstances under which
the predicate included remains unchanged. This is a
direct result of including frame axioms in our
specification since we are forced to explicitly state
what does not change in each separate specification,
which will eventually lead to inconsistencies when we
attempt to conjoin Web services that use the same
predicates in their specifications.

In general, the frame problem is bound to appear
and possibly cause inconsistencies in composite service
specifications due to two main reasons. First of all,
conjunctions are heavily used in almost all composition
schemas, whether it is sequential, parallel, iterational,
or conditional composition and so on, as it has been
examined in [3]. It is also worth noting that attempting
to introduce inheritance in service specifications will
also lead to the frame problem. Second, it is highly
possible that services being composed together will
deal with the same knowledge, hence having
specifications containing some common predicates,
associated however with contradicting frame axioms.

PRE: completed(order, item) ∧
 included(buyersWishList, item) ∧
 ¬included(buyersRecoms, associatedItem)
POST: ¬included(buyersWishList, item) ∧
 included(buyersRecoms, associatedItem) ∧
 ∀x, y [x ≠ buyersWishList ∨ y ≠ item ⇒
 included(x, y) = included′(x, y)] ∧
 ∀x, y [x ≠ buyersRecoms ∨ y ≠ associatedItem ⇒
 included(x, y) = included′(x, y)] ∧
 ∀x, y [completed(x, y) ≡ completed′(x, y)]

Figure 4. Composite service specification

10

3. Addressing the Frame Problem

The frame axioms, as expressed in the motivating
example, offer a procedure-oriented perspective to the
frame problem, explicitly asserting what predicates
each procedure does not change in addition to those it
changes. In [4], the authors identified this fact as the
source of the frame problem and aimed to replace the
procedure-oriented with a state-oriented one, which we
will explore in this section.

Instead of declaring what predicates don’t change in
each Web service specification, we can reverse our
viewpoint and declare, for each element of the service
specifications we are creating, which services may
result in changing them. Thus, we don’t aim to write a
set of frame axioms for each Web service specification,
but we create assertions, called explanation closure
axioms or change axioms in [4], that explain the
circumstances under which each predicate or function
might be modified from one state to another.

3.1. Expressing change axioms

To be able to express the change axioms, a simple
extension to the first-order predicate logic is proposed,
that adds a special predicate symbol, named Occur and
a special variable symbol named α. Variable α is used
to refer to services taking part in the specification.
Occur(α) is a predicate of arity 1 that is true if and only
if the service denoted by the variable α has executed
successfully. It is possible to negate Occur using ¬ in
order to express the opposite semantics.

PRE: completed(order, item) ∧
 included(buyersWishList, item) ∧
 ¬included (buyersRecoms, associatedItem)
CHANGE: ∀α ∀order, item
 (completed(order, item) ∧
 ¬completed′(order, item) ∧ Occur(α)) ⇒ false
 ∀α ∀ x, item
 (included (x, item) ∧
 ¬ included′(x, item) ∧ Occur(α))
 ⇒ α = updWishList ∨ α = updRecList
Figure 5. Composite service specification with

change axioms

The specification for the composite service of the
example, including change axioms is shown in Figure
5. It essentially states that, for the service to begin
execution, the known preconditions must be met and

any change to the predicate included signifies that a
successful execution of one of the two atomic services
of the example has taken place.

3.2. Change axioms in OWL-S

The solution proposed above is, at its basis, a
reformulation of existing first-order logic specifications
to ones that use the special predicate Occur. Most
Semantic Web service specification frameworks
support languages that include first-order logic
notations. To express first-order logic formulas in
OWL-S, an extension to SWRL, called SWRL-FOL
has been proposed. In SWRL-FOL, Occur can be
expressed as a unary predicate while the variable α can
be expressed as an individual variable. Figure 6
contains a set of SWRL-FOL rules that express the
change axioms included in the composite service
specification that was presented in this section. The
rules are written in the abstract syntax of SWRL-FOL
and it’s straightforward to transform them to an XML
concrete syntax. Similar rules can be expressed in other
Semantic Web service specification frameworks such
as WSMO and SWSO.

forall (I-variable(a) I-variable(o1) I-variable(i1)
implies
(Antecendent (completed(I-variable(o1) I-variable(i1))
and neg (completedpr((I-variable(o1) I-variable(i1))
and Occur(I-variable(a)) Consequent())
forall (I-variable(a) I-variable(x1) I-variable(i1)
implies
(Antecendent (included(I-variable(x1) I-variable(i1))
and neg (includedpr((I-variable(x1) I-variable(i1))
and Occur(I-variable(a))
Consequent(I-variable(a) = updWishList or
 I-variable(a) = updRecList)
Figure 6. Change axioms as SWRL-FOL rules

3.3. An algorithm for producing change
axioms

Having defined our proposed solution for the frame
problem, we turn our focus on sketching an algorithm
for automatically producing change axioms, given a
service description using the precondition/
postcondition notation. A complete set of change
axioms should contain one axiom for every predicate
contained in all the postconditions stated in the
description, which may contain more than one

11

participating services. For each one of these predicates,
we either add a change axiom or modify an existing
one, depending on whether the predicate remains
unchanged. The above are encoded in the algorithm in
Figure 7.

For each participating service {
 For each predicate {
 If(corresponding frame axiom exists){
 If(predicate remains unchanged)
 do nothing
 else
 add a=<service-name> in change axiom }
 else {
 If(predicate remains unchanged)
 add change with false as consequent
 else
 add c.a. with a=<service-name> as cons. }
}}

Figure 7. Algorithm for composite service
descriptions

If we consider a composition with m participating

services, with each service having n distinct predicates,
and assuming that it costs no more than O(logn) to
check if a change axiom already exists, the complexity
of the algorithm can be equal to O(m n logn). This
remains to be confirmed with suitable testing of an
implementation of the algorithm.

5. Related Work

The frame problem with regard to its effects in Web
service specifications has only been addressed in few
publications. In [5], a mapping from OWL-S to the
situation calculus is proposed, allowing the authors to
use the solution proposed by Reiter [6] for the frame
problem in the situation calculus. Successor state
axioms are also used in [7], where the authors extend
Golog to support generic programs and be more
suitable for service description and automatic Web
service composition. This, along with similar efforts,
inspired by the solution proposed by Reiter, have the
disadvantage that they use logic formalisms that are not
supported by any current Semantic Web service
frameworks, in direct contrast to first-order predicate
logic which is universally supported. Also, Golog may
not be suitable for Web services in some cases, as it is
not possible to present and reason about multiple
copies of literals in world states.

6. Conclusions

In this work, we explored the frame problem with
regard to its existence and possible solution in the field
of Web services. We argued that Web service
specifications, become problematic when trying to
explicitly express that nothing changes, except when it
is stated. We presented a solution approach that
includes axioms that state precisely which service
execution leads to what predicate changes.

An implementation of the algorithm presented is
currently at an early stage. It is a matter of future work
to complete the implementation and assure that it
covers all composition schemas and any special issues
that may be directly associated to a specific schema.

Acknowledgement

The research leading to these results has received
funding from the European Community's Seventh
Framework Programme FP7/2007-2013 under grant
agreement 215483 (S-Cube).

References

[1] M.P. Papazoglou, P. Traverso, S. Dustdar, and F.
Leymann, “Service-Oriented Computing: State of the Art and
Research Challenges”, Computer, IEEE Computer Society,
November 2007, pp. 38-45.
[2] J. McCarthy, and P. Hayes, “Some Philosophical
Problems from the Standpoint of Artificial Intelligence”,
Machine Intelligence, Edinburgh Univ. Press, Vol. 4, 1969,
pp. 463-502.
[3] V. Alevizou, and D. Plexousakis, “Enhanced
Specifications for Web Service Composition”, Proceedings
of the 4th IEEE European Conference on Web Services,
Zurich, Switzerland, 2006, pp. 223-232.
[4] A. Borgida, J. Mylopoulos, and R. Reiter, “On the Frame
Problem in Procedure Specifications”, IEEE Transactions on
Software Engineering, IEEE, Vol. 21, No. 10, pp. 785-798.
[5] S. Narayanan, and S.A. McIlraith, “Simulation,
Verification and Automated Composition of Web Services”,
Proceedings of the 11th International Conference on World
Wide Web, Honolulu, Hawaii, USA, 2002, pp. 77-88.
[6] R. Reiter, “The Frame Problem in the Situation Calculus:
A Simple Solution (Sometimes) and a Completeness Result
for Goal Regression”, Artificial Intelligence and the
Mathematical Theory of Computation: Papers in Honor of
John McCarthy, Academic Press, San Diego, California,
1991, pp. 359-380.
[7] S.A. McIlraith, and T.C. Son “Adapting Golog for
Composition of Semantic Web Services”, Proceedings of the
International Conference on the Principles of Knowledge
Representation and Reasoning (KRR’02), 2002, pp. 291-302.

12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.4

A.2 A Model-Driven Approach to Implementing Coordination Protocols in BPEL

Authors:

USTUTT: Oliver Kopp

USTUTT: Branimir Wetzstein

USTUTT: Ralph Mietzner

USTUTT: Stefan Pottinger

USTUTT: Dimka Karastoyanova

USTUTT: Frank Leymann

• Submitted to: MDE4BPM 2008

External Final Version 1.2, Dated September 17, 2010 39

1Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

2IPL Information Processing Ltd, United Kingdom
Stefan.pottinger@ipl.com

A Model-Driven Approach to
Implementing Coordination Protocols in BPEL

Oliver Kopp1, Branimir Wetzstein1, Ralph Mietzner1,
Stefan Pottinger2, Dimka Karastoyanova1, Frank Leymann1

© 2009 Springer-Verlag.
See also LNBIP-Homepage: http://www.springeronline.com/lnbip

@inproceedings{CPG,

author = {Oliver Kopp and others},

title = {A Model-Driven Approach to

Implementing Coordination Protocols in {BPEL}},

booktitle = {MDE4BPM},

year = {2008},

pages = {188-199},

doi = {10.1007/978-3-642-00328-8_19},

publisher = {Springer}

}

:

Institute of Architecture of Application Systems

A Model-Driven Approach to Implementing
Coordination Protocols in BPEL

Oliver Kopp1, Branimir Wetzstein1, Ralph Mietzner1, Stefan Pottinger2,
Dimka Karastoyanova1, and Frank Leymann1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
2 IPL Information Processing Ltd, United Kingdom

Abstract. WS-Coordination defines a framework for establishing pro-
tocols for coordinating the outcome agreement within distributed appli-
cations. The framework is extensible and allows support for multiple
coordination protocols. To facilitate the realization of new coordina-
tion protocols we present a model-driven approach for the generation
of BPEL processes used as implementation of coordination protocols.
We show how coordination protocols can be modeled in domain-specific
graph-based diagrams and how to transform such graphs into abstract
BPEL process models representing the behavior of the coordinator and
the participants in the protocol.

1 Introduction

Web services are the most recent middleware technology for application integra-
tion within and across enterprises [1]. Through the use of standards like SOAP,
WSDL, UDDI, and the Web Services Business Process Execution Language
(BPEL, [2]) the Web service technology enables interoperable service interac-
tions in heterogeneous environments. Coordination is an important mechanism
used in distributed computations with multiple participants that must jointly
agree on the outcome of the computation. A well-known example for the use of
coordination are distributed transactions using atomic commitment protocols to
agree on the success or failure of a transaction [3]. The aspect of coordination in
the domain of Web services is addressed by WS-Coordination [4]: it defines an
extensible framework for coordinating the outcome of a set of Web services con-
tributing to a distributed computation using a generalized notion of a coordina-
tor and the so-called coordination protocols. In the context of WS-Coordination,
coordination protocols describe the messages exchanged between the coordinator
and the participants of a distributed computation and thus realize a one-to-many
coordination. Two types of protocols (aka coordination types) have already been
defined to cover “traditional” atomic transactions (WS-AtomicTransaction [5])
and long-running business transactions (WS-BusinessActivity [6]). However, the
use of WS-Coordination is not restricted to transaction processing systems only.
Other types of coordination protocols have also been defined for distributed
computations such as protocols describing auctions [7], protocols for split BPEL

loops and split BPEL scopes [8] and protocols for externalizing the coordination
of BPEL scopes as a whole [9].

Coordination protocols can be quite complex. The coordinator has to deal
with a variable number of participants. Each participant is in a well-defined
state that potentially differs from the state of another participant at the same
time. The implementation of a coordination protocol is difficult and error-prone.
To simplify and accelerate the implementation, and eliminate errors, in this
paper we propose a model-driven architecture (MDA) approach: The protocol
is first modeled as a state-based graph, which we call coordination protocol
graph (CPG). A CPG captures the different states and state changes based
on the messages exchanged between coordinator and participant. The graph
diagram is the domain specific language (DSL) we use for specifying coordination
protocols. It contains only those elements which are needed for coordination
protocol modeling and is therefore well suited for protocol designers. In MDA
terms a coordination protocol graph specifies a Platform Independent Model
(PIM) [10]. The CPG is independent of any hardware or programming platform.

We have decided to represent the Platform Specific Model (PSM) in terms
of BPEL since, in general, coordination protocols define a sequence of steps and
messages to be exchanged between participants in a coordinated interaction,
timing issues, and how exceptional situations must be tackled. In that respect,
modeling coordination protocols is similar to modeling business processes. In
this work we generate abstract BPEL processes for both the coordinator and
the participant roles in coordination protocols. These BPEL process models
capture the essential parts of the message exchange between the parties and
the resulting protocol state changes. The generated code reduces the need for
tedious and error-prone programming concerning the communication between
the coordinator and participants in the protocol. Additional protocol logic, which
cannot be captured in the CPG, has to be manually added by the programmer.

The rest of the paper is organized as follows: Section 2 gives an overview of
BPEL and WS-Coordination. In Section 3 we present the syntax and semantics
of the coordination protocol graph (CPG). After depicting our model-driven
approach in Section 4, we describe the generation of the BPEL process models
in Section 5. We finalize with the discussion of related work, conclusion and
future work.

2 Background

WS-Coordination [4] defines an extensible framework for coordinating interac-
tions between Web services. Coordinated interactions are called (coordinated)
activities in the context of WS-Coordination. The framework enables partici-
pants to reach agreement on the outcome of distributed activities using a coor-
dinator and an extensible set of coordination protocols. The framework defines
three services a coordinator has to provide: activation service, registration ser-
vice, and protocol services. When an application, in the role of an initiator,
wants to start a coordinated activity, it requests a coordination context from

an activation service. The coordination context contains an activity identifier,
the coordination type (e.g. atomic transaction) as requested by the initiator,
and the endpoint reference of the registration service. When the initiator dis-
tributes work, it sends the coordination context with the application message to
the participant. Before starting work, the participant registers at the registra-
tion service of the coordinator. At some later point the protocol service, which
coordinates the outcome according to the specific protocol of the coordination
type, is started.

While the logic of the activation and registration service are fixed, the frame-
work allows the definition of arbitrary coordination types as well as their imple-
menation by means of different protocol services. In the following when referring
to “coordinator” and “participant”, we mean the protocol service implementa-
tions at the coordinator and participant, respectively.

The Web Services Business Process Execution Language (BPEL) is an or-
chestration language for Web services. A BPEL process is a composition of Web
services, which are accessed through partner links referencing their WSDL port
types. The process is itself exposed as a Web service.

The BPEL process model comprises two types of activities: basic activities
cope with invoking other Web services (invoke), providing operations to other
Web services (e.g. receive and reply), timing issues and fault handling; struc-
tured activities nest other activities and deal with parallel (flow) and sequential
execution (sequence), conditional behavior and event processing. Process data is
stored in variables, while the assign activity is used for data manipulation. Ac-
tivities can be enclosed in scopes to denote sets of activities that are to be dealt
with as a unit of work. Scopes can be modeled to ensure all-or-nothing behav-
ior, support data scoping, exception handling, compensation, and sophisticated
event handling. Instance management is done using correlation sets. Correlation
sets define which fields in incoming messages are to be used as identifiers to route
the messages to one of possibly several running instances of the same process
model.

BPEL processes can be either abstract or executable. An executable BPEL
process provides a process model definition with enough information to be inter-
preted by a BPEL process engine. An abstract BPEL process hides some of the
information needed for execution and is associated with a process profile defin-
ing restrictions and the indented usage of the abstract process. The profile used
in our approach is the abstract process profile for templates. It allows marking
sections of the process model as “opaque” using opaque tokens. It is thus explic-
itly specified which sections of the process model have to be later replaced by
concrete activities, expressions etc. to make the process executable.

3 Modeling Coordination Protocols

There is no standard notation for modeling coordination protocols. The spec-
ifications in this area use either a proprietary or a generic diagram type (e.g.
UML sequence diagram), or a combination of these. For modeling coordination

protocols we have adopted the diagram type from the WS-AtomicTransaction
(WS-AT) and WS-BusinessActivity (WS-BA) specifications. This diagram type
can be seen as a domain specific language for modeling coordination protocols.
WS-BA contains two protocols: WS-BA with Participant Completion, where the
participant signals when it has completed its work and WS-BA with Coordinator
Completion, where the coordinator notifies the participant when it has to com-
plete his work. Figure 1 shows the WS-BA with Participant Completion protocol
as an example, which we will also use in the rest of the paper for illustration of
mapping concepts.

Active

Canceling

Exiting

Completed

Compensating Ended

Closing

Failing
Cancel

Canceled

Exit

Completed Close

ClosedCompensate

Fail

Compensated

Exited

Failed

Coordinator generated Participant generated

Fail

NotCompleting

Fail

NotCompletedCannot Complete

Fig. 1. WS-BA with Participant Completion Protocol [6]

The diagram defines a state-based graph, which we name coordination pro-
tocol graph (CPG). A CPG is a directed graph with labeled edges and labeled
nodes. The nodes denote the states of the coordination protocol between a coor-
dinator and a participant. The node labels describe the semantics of the states.
The edges depict the messages exchanged by the protocol parties; the edge la-
bels describe the semantics of the message. Since messages can be sent by a
participant and by a coordinator, the set of all edges is divided into two dis-
joint sets: edges denoting coordinator messages (solid lines) and edges denoting
participant messages (dashed lines). Each CPG has exactly one node with no
incoming edges (source) and at least one node without outgoing edges (sink).
No two coordinator edges or participant edges with the same label may leave
the same node, because this would lead to non-determinism. A CPG does not
contain cycles. The conclusion section includes a discussion about cycles in a
CPG and the possibilities to support cyclic CPGs. At a certain point in time
each participant can be in a different state. For example, one participant can be
in the state “Failing” while another is in the state “Closing”. Since coordinator
usually interacts with more than one participant, the coordinator has to hold
the state of each state machine.

Outgoing edges of a CPG denote messages which may be sent and each state
denotes the possible state of a participant. The sender of the message (partici-
pant or coordinator) transitions to the next state when sending a message. The
recipient of the message transitions to the next state when receiving the mes-
sage. For the period of time when the message is transported, the coordinator
and participant thus are in different states. In addition to the obvious behavior
of state changes there are three special cases: (i) ignoring same messages which
are sent more than once, (ii) precedence of participant messages over coordinator
messages, (iii) invalid messages.

If the message leading to a new state is received more than once, it is sim-
ply ignored. For example, if the coordinator being in state “Exiting” receives
the message “Exit” again, that message is ignored. This case can arise, when
messages are resent because it is suspected that the first message hasn’t been
transmitted successfully.

If a state has both outgoing participant and coordinator messages, then it
can happen that the coordinator sends a protocol message and enters the corre-
sponding new state, but later receives a protocol message from the participant
which is consistent with the former state. This can happen when both the coor-
dinator and the participant send their messages at about the same time, which
leads to different views on the protocol state on coordinator and participant
side. In that case the participant messages have precedence over coordinator
messages. In Figure 1 the state is “Active” at the beginning of the protocol.
Let us assume the coordinator sends “Cancel” to the participant and sets the
state to “Canceling”. At the same time, however, the participant sends the mes-
sage ”Completed” and changes his state to “Completed”. When the coordinator
receives the message “Completed” while being in state “Canceling” for the par-
ticipant, he has to revert to the former state “Active”, accept the notification
“Completed” and change the state to “Completed”. The participant on the other
side just discards the coordinator message “Cancel”.

Finally, if in a state other messages than the allowed ones are received, a
fault message should be generated and sent to the sender of the invalid message.
The protocol execution is aborted.

It is important to note, that a CPG captures only the possible interactions
and state changes between the coordinator and participant. A CPG does not
capture the reason of these state changes. For example, if a participant is in the
state “Completed” it can receive either a “Close” or a “Compensate” message
from the coordinator. Which of the two messages is sent, is part of the protocol
logic. For example, if another participant has failed and all-or-noting semantics
is needed a “Compensate” message would be sent. Because not all of the protocol
logic is captured by the graph, it has to be additionally implemented after the
generation of the BPEL process.

The CPG and its semantics are derived from WS-BA and WS-AT protocols.
In summary, the CPG graph captures the exchanged messages between a coordi-
nator and a participant, and the resulting state changes, however not the cause
of the state changes.

4 Model-Driven Implementation Approach

For the implementation of coordination protocols we adopt a model-driven ap-
proach. Our goal is to model the coordination protocol using a domain-specific
language suitable for coordination protocol designers, and then generate BPEL
code which implements the coordination protocol.

The DSL, in our case the CPG, is used for creating a platform-independent
model (PIM) of the coordination protocol. The PIM can be transformed to
platform-specific models (PSM) for different kind of platforms. In this paper we
use BPEL and the Web service platform, in particular WS-Coordination as the
coordination framework.

As the CPG does not contain enough information to be executed, the ad-
ditional information has to be added to the PSM after generation. We thus do
not achieve 100% BPEL code generation, but still avoid much of tedious and
error-prone programming. The use of a model-driven approach ensures higher
productivity in development and better quality of the implemented code.

Using BPEL for implementation of coordination protocols has several benefits
when compared to a 3GL programming language such as Java. BPEL enables
programming on a higher abstraction level which makes the code generation
easier. BPEL has native WSDL support needed for interoperability and native
support for concurrency, backward and forward recovery. As BPEL supports
graph-based models, coordination protocol graphs can be more easily and nat-
urally transformed into BPEL. A BPEL engine persistently stores all events
related to process execution in an audit log and thus automatically supports
reliable recording of coordination protocol execution out of the box. The audit
log enables checking the execution of coordination for compliance with the pro-
tocol. A BPEL engine typically also provides a monitoring tool, which enables
observing the execution of coordination protocols in real-time. Finally, as the
state of a BPEL process instance is persistently saved after each state transi-
tion, the coordination protocol can be stopped and resumed at any time using
a monitoring tool.

The approach is shown in Figure 2. In the first step, the CPG is created using
a corresponding graphical CPG modeling tool. The CPG models the interaction
between the coordinator and the participant in a platform-independent way.

In the next step, the CPG is transformed into two abstract BPEL pro-
cesses, one for the coordinator and one for the participants. Therefore, the
abstract BPEL processes and corresponding WSDL definitions are generated.
If the WSDL definitions already exist, as for example in the case of the WS-
AT and WS-BA specification, then the CPG has to be correspondingly marked.
One has to specify the names of the WSDL port types for both the partici-
pant and coordinator process, the WSDL message and operation names, which
correspond to the labels of the state transitions in the CPG, etc. That ensures
that the generated BPEL processes and WSDL descriptions are compliant to
the already existing probably standardized ones. The two corresponding WSDL
interface descriptions of the processes can be completely generated. Using stan-
dardized WSDL interfaces ensures that the coordinator process can be used to

1

CPG
• Domain-specific Language
• Platform-Independent Model
• Marking: WSDL names

Abstract
Coordinator

Process Model

Abstract
Participant

Process Model

WSDL
Definitions

Executable
Coordinator

Process Model

Executable
Participant

Process Model

• Automatic generation from CPG
• Abstract BPEL processes
• WSDL interfaces for coordinator and

participant process

• Manual refinement from abstract BPEL
processes

• Replacing opaque tokens with concrete
BPEL code

Fig. 2. Model-Driven Implementation Approach

coordinate arbitrary protocol participants apart from the generated BPEL-based
participants. This is also the case for the generated participants, which can be
used with another protocol-compliant coordinator. Thus, our approach supports
heterogeneous environments.

As discussed in the previous section, the generated process models cannot
be executable, because the CPG does not capture the whole protocol logic. The
locations in the process model where missing logic has to be added are “marked”
in the generated BPEL code using opaque tokens, as defined in the abstract
process profile for templates [2]. These opaque tokens show to the developer
where additional logic has to be added to make the process executable. The
abstract BPEL process profile for observable behavior [2] cannot be used, since
it does not allow the addition of interaction activities with existing partner links
when replacing opaque activities. However, that is needed in certain cases: For
example, in the coordinator process after the interaction activity receiving a
“Fail” from one participant, one might want to add interaction activities (BPEL
invoke) which send “Cancel” notifications to other participants.

As already described in Section 2, WS-Coordination defines three services a
coordinator has to provide: activation, registration, and protocol services. While
protocol services can be additionally defined in separate specifications such as
WS-BA, the implementation of the activation and registration services stays the
same. The activation and registration service of the coordinator can thus be fully
generated. Both services in addition to the protocol service are implemented by
the coordinator process model (see Section 5).

After generation, the abstract process models are refined manually by a de-
veloper who replaces the opaque tokens by the missing coordination protocol
logic. The resulting executable BPEL process models can finally be deployed on
a BPEL engine.

5 Generating BPEL Process Models

In the following we describe in detail how CPG graphs are transformed to ab-
stract BPEL process models. We generate two abstract BPEL process models,
one for the coordinator and one for the participants.

We have chosen different approaches for the generation of the two process
models. For the participant process model, we keep the graphical structure of the
CPG in the BPEL process model by mapping the CPG graph directly to a BPEL
flow. The BPEL flow activity together with BPEL links enables graph-based
workflow modeling. The generated BPEL process structure closely resembles the
CPG structure and thus increases the readability of the process. The generated
BPEL constructs are described in detail in [11].

For the coordinator process model the participant approach is not feasible,
since the coordinator holds a different state for each participant. The coordina-
tor cannot leave the scope “Active” until all registered participants have been
handled for that scope. In the meantime, however, several participants could
have declared that they want to exit the protocol by sending the message “Exit”
to the coordinator. In that case the coordinator should immediately send the
notification “Exited” to the participant. However, this is not possible, since the
coordinator is in the scope “Active” and waits for other participants to com-
plete their work. When the coordinator finally leaves the scope “Active”, a new
participant could register for the protocol. Since the scope “Active” has already
finished, the new participant cannot be handled. Therefore, we define global
event handlers for each message that can be received by the coordinator. That
means, we implement a state-machine by specifying rules of the form: if received
message x, then perform some logic which handles that message x.

Figure 3 illustrates the pattern for the implementation of the coordinator
scope. An instance of the coordinator process model is started when a new WS-
Coordination activity is created. This is done by an application by sending a
“CreateCoordinationContext” message to the coordinator endpoint which replies
with a “CreatedCoordinationContext” message to indicate successful creation of
the context.

Having received such a message the coordinator process is now ready to
accept registration messages from participants that wish to participate in the
coordination, and to react on messages sent by participants that have already
registered. The coordinator leaves this state if the application determines that
the coordination should end and sends a corresponding message.

The abstract BPEL process template for the coordinator is generated as fol-
lows: In order to manage the participants for the activity an array is generated
that holds the status of all participants of the activity as well as the endpoint
references of the participants. The endpoint references are obtained during reg-
istration and are needed to send coordination messages to the right endpoints.

Regarding the control flow, at first a process instance creating receive activity
is added that is triggered by WS-Coordination “CreateCoordinationContext”
messages. The user can then replace the following opaque activity by inserting
arbitrary BPEL activities that handle the message. Afterwards the confirmation

isolated scope
flow

Coordination
handling Scope

Receive
CreateCoordination
Context Message

opaque activity

opaque activity

Receive
endCoordination

message

opaque activity

Variables:
participantArray
- participantId
- participantState
- participantEPR
- previousState

Event Handlers

isolated scope
opaque activity

assign new
participant to

participantArray

On Message register

opaque activity

reply with registered
message

opaque activity

reply with fault
"Invalid State"

Message valid in
participant state

Message not valid
in participant
state

opaque activity opaque activity

assign new state to
participant

send next message
in protocol

##opaque condition

opaque activity

On Coordination Message i

Reply with
CreatedCoordination

Context Message

opaque activity

Fig. 3. Pattern for the generation of coordinator scopes

for the successful creation of the coordination context is sent. The control-flow
now enters the scope that handles the coordination protocol specific messages as
well as the registration of participants for the activity. Both types of messages
are received and handled via event handlers.

We place opaque activities throughout the process template during genera-
tion to allow the actual coordination logic to be inserted as needed. We do not
explicitly mention those in the following discussion, but Figure 3 shows where
the opaque activities are placed in detail. In the following description we con-
centrate on the control flow and leave out details such as correlation of messages
to the right process instance. For now, we assume that upon reception of each
message the coordinator knows which participant has sent the message and that
messages only are received by coordinator process instances that handle the
participant that has sent the message. Means to ensure these assumptions are
presented in [11].

Registration of Participants As shown in Figure 3 registration of participants
is handled via a dedicated event handler. The event handler includes an assign
activity that adds the new participant into the participant array and sets its cur-
rent state to the first state that follows registration in the coordination protocol

the coordinator has been created for. Afterwards the event handler responds with
a “Registered” message. Both “Register” and “Registered” messages are defined
in WS-Coordination. Opaque activities allow the handling of special cases by
special coordination logic. Such a case may be the reception of registration mes-
sages after other participants have already faulted or completed. For example,
WS-BA demands that such cases are allowed.

Handling of Protocol Specific Messages For each participant generated message
a separate event handler is created that handles that type of message. Upon
receipt of a participant message, one out of two paths can be followed: The first
path is followed if the message is not allowed in the state of the participant. In
that case the “Invalid State” message is sent back. In case the message is allowed
in the current state, the state of the participant is updated via an assign activity.
The generated model contains opaque activities that can be replaced by arbitrary
BPEL activities that perform the actual coordinator logic. For example, one or
more invoke activities can be inserted that send the corresponding messages that
follow the received message in the coordination protocol. The decision whether
a and which message is sent depends on the actual coordinator logic. Thus the
transition condition is marked as opaque and needs to be completed during the
customization of the template.

The second path also handles two special cases: (i) ignoring messages which
were resent by the participant, (ii) reverting to a previous state. Both the WS-
AtomicTransaction and the WS-BusinessActivity specification demand that not
only messages that are allowed in the current state of the participant are allowed
but also messages corresponding to the previous state of the participant. In order
to comply with this demand an additional field in the array is introduced that
stores the previous state. On reception of a message a new assign activity is
introduced that reverts the state of a participant if a message corresponding to
that state is received. Then the control flow can proceed as if it had originally
received the message in the correct state.

Concurrent Reception of Messages All messages that can be received concur-
rently by the coordinator are handled by event handlers. Thus, we ensure that
the BPEL engine can deal with the concurrent message reception. However in
order to ensure that concurrent access to shared variables, such as the partici-
pant arrays, and resulting problems are avoided the logic of the event handlers
is placed in isolated scopes. An isolated scope is a BPEL means to synchronize
parallel access to variables.

6 Related Work

There are several approaches to map business processes modeled graphically to
BPEL (e.g. [12, 13]). The approaches are similar to our work, since they are also
generating BPEL processes, but the authors deal with generating a single BPEL
process: they focus on orchestrations only. Hence, these approaches do not tackle

the communication between processes as it is the case between the coordinator
and the participant process.

In contrast to orchestrations, choreographies provide a global view on the
interactions of all participants involved. In a coordination, the set of partici-
pants is unknown in advance. All choreography languages targeted to Web ser-
vice technology either do not support modeling of a-priori unknown number of
participants (WS-CDL [14, 15]) or do not support modeling the assignment of a
participant to a different set (BPMN [16] and BPEL4Chor [17], Let’s Dance [18]).

Another approach to model transactions is the UN/CEFACT’s Modeling
Methodology (UMM, [19]). While UMM can be mapped to BPEL [20], UMM
does not support modeling of sets of a-priori unknown participants.

7 Conclusions and Future Work

The main contributions of this paper are: (i) the introduction of a model-driven
approach for implementing coordination protocols, (ii) the concrete transforma-
tion of the CPG graph to abstract BPEL process models.

We have shown how a WS-Coordination-based coordination protocol can be
modeled as a CPG graph. A CPG graph captures the essence of a coordination
protocol: the states of the protocol and messages produced by both the coor-
dinator and the participant. The generated BPEL processes are abstract and
comply with the abstract process profile for templates. Opaque activities and
expressions mark the locations where the programmer can include additional
protocol logic not captured by the CPG to make the processes executable.

We demanded CPGs to be acyclic, since BPEL supports structured loops
only. While this works for the protocols described in WS-AtomicTransaction
and WS-BusinessActivity, there are coordination protocols such as the protocol
for split loops [8]. We used an event handler approach for the coordinator to deal
with the different states of each participant, which enables support for loops, too.
For the participant model, we generated a BPEL process where the structure
of the process directly reflects the structure of the CPG. Basically, when map-
ping CPGs with structured loops to BPEL, these loops can be captured using
BPEL loop constructs. The current mapping style to participant processes does
not support loops, since the BPEL flow activity only supports acyclic graphs.
When mapping unstructured loops to a BPEL process there are two general
approaches: (i) mirror the semantics using event handlers and (ii) untangle the
loop by duplication of the activities [21]. The event handler approach is simi-
lar to the presented realization of the coordinator. However, the approach has
the drawback that the control-flow is captured using event-action rules and not
the “usual” BPEL constructs to model the main path of execution. The second
approach uses the BPEL flow activity but duplicates the activities. This dupli-
cation can be avoided if sub-processes (as defined in BPEL-SPE [22]) are used:
instead of mapping each activity directly, each original activity is mapped to a
sub-process call. In addition, for each original activity, a separate sub-process is
generated. The details of the transition conditions, data passing to and from the

sub-process are open issues. Our future work is to evaluate the two possibilities
in depth and to realize the more suitable one.

Acknowledgments. The research leading to these results has received par-
tial funding from the European Community’s 7th Framework Programme under
the Network of Excellence S-Cube (Grant Agreement no. 215483) and the Ger-
man Federal Ministry of Education and Research (Tools4BPEL, project number
01ISE08B).

References

1. Curbera, F., et al.: Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR

2. OASIS: Web Services Business Process Execution Language Version 2.0
3. Gray, J., Reuter, A.: Transaction Processing: concepts and techniques. Morgan

Kaufman
4. OASIS: Web Services Coordination. Version 1.1
5. OASIS: Web Services Atomic Transaction. Version 1.1
6. OASIS: Web Services Business Activity Framework. Version 1.1
7. Leymann, F., Pottinger, S.: Rethinking the Coordination Models of WS-

Coordination and WS-CF. In: ECOWS 2005
8. Khalaf, R., Leymann, F.: Coordination Protocols for Split BPEL Loops and

Scopes. Technical Report Computer Science 2007/01, University of Stuttgart
9. Pottinger, S., et al.: Coordinate BPEL Scopes and Processes by Extending the

WS-Business Activity Framework. In: CoopIS 2007
10. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-

ing. Wiley (2003)
11. Kopp, O., et al.: A Model-Driven Approach to Implementing Coordination Proto-

cols in BPEL. Technical Report 2008/02, University of Stuttgart
12. Mendling, J., Lassen, K.B., Zdun, U.: On the Transformation of Control Flow be-

tween Block-Oriented and Graph-Oriented Process Modeling Languages. IJBPIM
3(2) (2008)

13. Ouyang, C., et al.: Translating Standard Process Models to BPEL. In: Advanced
Information Systems Engineering. (2006)

14. Kavantzas, N., et al.: Web Services Choreography Description Language Version
1.0, W3C Candidate Recommendation

15. Decker, G., et al.: On the Suitability of WS-CDL for Choreography Modeling. In:
EMISA 2006

16. Object Management Group: Business Process Modeling Notation, V1.1
17. Decker, G., et al.: BPEL4Chor: Extending BPEL for Modeling Choreographies.

In: ICWS 2007
18. Zaha, J.M., et al.: A Language for Service Behavior Modeling. In: CoopIS 2006
19. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM), UMM

Meta Model - Foundation Module. http://www.unece.org/cefact/umm/UMM_

Foundation_Module.pdf.
20. Hofreiter, B., et al.: Deriving executable BPEL from UMM Business Transactions.

In: SCC 2007
21. Zhao, W., et al.: Compiling business processes: untangling unstructured loops in

irreducible flow graphs. International Journal of Web and Grid Services 2 (2006)
22. IBM, SAP: WS-BPEL Extension for Sub-processes – BPEL-SPE. (2005)

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.4

A.3 Modeling Context-aware and Socially-enriched Mashups

Authors:

TUW: Martin Treiber

POLIMI: Kyriakos Kritikos

TUW: Daniel Schall

UOC: Dimitris Plexousakis

TUW: Schahram Dustdar

• Submitted to: Mashups 09 @ OOPSLA

External Final Version 1.2, Dated September 17, 2010 53

Modeling Context-aware and Socially-enriched Mashups

Martin Treiber1, Kyriakos Kritikos2, Daniel Schall1, Dimitris Plexousakis3, Schahram Dustdar1

1Vienna University of Technology,2Politecnico di Milano,3University of Crete

{m.treiber, schall, dustdar}@infosys.tuwien.ac.at, kritikos@elet.polimi.it, dp@csd.uoc.gr

Abstract
Mashup platforms and end-user centric composition tools
have become increasingly popular. Most tools provide Web
interfaces and visual programming languages to create com-
positions. Much of the previous work has not considered
compositions comprising human provided services (HPS)
and software-based services (SBS). We introduce a novel
HPS aware service mashup model which we call socially
oriented mashups (SOM). The inclusion of HPS in service
mashups raises many challenges such as a QoS model that
must account for human aspects and the need for flexible ex-
ecution of mashups. We propose human quality attributes,
for example delegation, and a context model capturing var-
ious information including location and time. The QoS and
context model is used at design-time and for runtime adap-
tation of mashups. In this paper, we show how to model
context-aware SOMs that include HPS and SBS and demon-
strate the first results of our working prototype.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques; H.3.5 [Online In-
formation Services]: Web-based Services

General Terms Mashups, Composition, Context, QoS

1. Introduction
The role of humans in service compositions and workflows
has gained tremendous attention. With the proliferation of
Web service mashups [21], human aspects became important
for designers and the end-users as well. The ability of non
experts to create mashup applications for their personal use
is considered to increase the productivity of employees.

Currently there is little support for the exploitation of
these dynamic aspects in workflows, where humans are in-
tegrated into service mashups. In order to tap resources for
the creation of flexible and human oriented service compo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

sitions, a framework is required that offers the required flex-
ibility and simplicity for the end-user. In particular, we pro-
pose the seamless integration of HPS into service mashups.
In this context, we refer to these human augmented service
mashups associally oriented mashups(SOM) because of
phenomena like (sub-)task delegation to other humans dur-
ing the execution of the mashup. Furthermore, if we con-
sider humans as part of service mashups, we add automat-
ically reasoning capabilities to the mashup. Thus, we make
a service mashup flexible and adaptive to unpredictable sit-
uations, where human expertise is needed to adapt to new
situations.

service mashup

user

context

model

hps

hps

service

defines

creates

uses

service with wsdl interface

references

activitiy

activity

activity

context channel

consists of

hps... human provided service

service... software service

links to

links to

links to

QoS

QoS

QoS

context

context

context

uses

QoS

model

defines

defines

1:n relation

context QoS

context instance QoS instance

Figure 1. Conceptual Architecture of SOM

However, with the additional flexibility we also face a set
of challenges which we address in our work. In particular,
we address these challenges with a service mashup model
which includes hooks forcontext informationand human re-
lated QoS attributes that can be exploited during the execu-
tion of the mashup (see Figure 1).

In the first step, we create amashup modelconsisting of
HPS and traditional SBS using a lightweight composition
language. The focus of this step lies on the functional part of
the composition. Since HPS offer the same interface as tradi-

Person

Agent

Capability

Requirement

Activity

Object Action Value

Time

Label

Connection

*
*

Service

Role

1*

History

Location

1
*

context change history (how)

where

what

when

who

context

dimensions

(a) Different Dimensions of Context

Person

AgentCapability

Connection

*
*

Service

query: find HPS that can replace SBS

Person

Agent

Requirement

Activity

Connection

*
*

Service

History

query: find only services in $Loc1 but not $Loc2

context usage
example

(b) Using the Context Model

Figure 2. Context Model for Social based Mashup Applications

tional SBS, we do not require additional considerations con-
cerning interface compatibility of HPS and SBS. Consider-
ing plain SBS, their description follows the WSDL de-facto
standard. By following the HPS concept proposed by [26]
we do not require special considerations for the creation of
HPS service descriptions. We use WSDL based descriptions
that serve as interface to HPSs. This abstraction gives us the
benefit of having standardized interfaces to humans which
make themcomposabletogether with SBS in a well defined
manner without having to cope with the inherent complexity
of human interfaces.

In the second step, we attachcontextrelated information
to the service composition. We refer to this context as design
time context in which the creator of the mashup makes
assumptions about the expected mashup execution context.
The context of the mashup provides information about the
environment and introduces global constrains that must be
met during the execution of the mashup. For instance, a
mashup might not use external services but only internal
ones.

Fine tuning of the service mashup takes place in the third
step. Within the mashup, the designer is required to define
parts which allow a certaindegree of flexibility, like delega-
tion or splitting. This activity attaches detailed contextin-
formation to parts of the service mashup which are expected
to change during the execution and the given context. For
instance, in a mashup, there might be a critical HPS which
must not be delegated to others or some services are not al-
lowed to be split among several services.

The rest of the paper is organized as follows. In Section 2
we define our context model for social-based mashup appli-
cations. Section 3 introduces our proposed QoS model with
emphasis on humans. In the following section we show how

to create social service compositions with a lightweight ser-
vice composition language. The initial results of our proto-
type are demonstrated in Section 4. We conclude the paper
with related work in Section 5 and an outlook for future work
in Section 6.

2. Context Model for SOM
We propose a context model that enables the weaving of
context related information into social service compositions
that are described in a flexible composition language. Our
proposed context model aims at satisfying the following
properties:

1. The model should be lightweight pertaining information
regarding the most relevant entities in SOM. We do not
attempt to provide a general purpose context model, but
rather focus on SOM applications.

2. Context information comes from various sources induc-
ing physical, e.g., physical location context, and logical
sources, for example, a calender containing information
regarding the user’s location in a given time interval.

Figure 2(a) depicts our context model and some examples
of its usage in SOM (see Figure 2(b)). Our model captures
the well know dimensions of context (e.g., see [2])whatde-
noting the activity of an agent,whencapturing time aspects,
who denoting a person or service, andhowa set of actions
that were executed in the course of an activity. On the other
hand (Figure 2(b)) we show examples how to use the context
model in SOM (context queries).

The context model contains aspects related to the design
of mashups and to their execution (i.e., runtime). At design
time, concepts that need to be supported by the mashup tool
areActivity, Agent, Role, andRequirement.

• Activity : Mashup applications comprise a set of activi-
ties required to model basic flows (processes). However,
the context model does not contain details regarding the
process model. Instead, context is related to information
such asAgentand theirRolesin Activities; roles may in-
clude creator of an activity or contributor.

• Agent: Both HPS and SBS can contribute to an activity
[26].

• Requirement: A requirement may restrict the set of ac-
tors, which can be invoked in an activity, the roles, and
most importantly the values of QoS attributes.

The other model entities address the dynamic nature of
context. AnActivity as well asAgent is associated with a
context change history. Context change, or more precisely,
context change events are depicted asObject, Action, and
Valuetriples.

• Events areactions taken by agentsa) in an activity that
is part of a mashup (composition) or b) independent of
an activity (person A moves to a new location X). In the
first case, an object (person or service) triggers an action
(the activity acts as the container for actions) while in
the second case, objects change their state independent
of any activity.

• Events areactions acting upon agents. Such an event
may capture invocations of SBS or HPS. In other words,
actions capturefunctionalcapabilities (e.g., interface ca-
pabilities) that could change over time. However, actions
are typically driven by the context to enable flexible exe-
cutions of SOM. Changing actions are important for the
context-based evolution of mashup-based compositions.

Label and Time provide additional metadata to context
change events. Labels provide additional information about
the action. The value gives the result of an action, whereas
labels can be regarded as ”tags” to further quantify actions.

Let us discuss two example context queries as depicted
by Figure 2(b) to explain the role of context in SOM:

• Replaceability (find HPS that can replace SBS): Attempts
to discover a set of HPS that can replace SBS that might
be, for example, unavailable due to faults or other techni-
cal problems. The HPS must satisfy functional interface
characteristics and capabilities in terms of QoS proper-
ties. For example, slower response time of a human is
acceptable in a given SOM.

• Restriction and filtering (Find only services in$Loc1 but
not $Loc4): This query selects and filters services based
on location information (e.g., exclusive combination of
input variables $Loc1 and $Loc4 expressed asRequire-
ment). TheHistory is used to determine whether an agent,
for example, a person has moved to a certain location
(changes in location context).

3. QoS Model for Service Compositions
In contrast to interface issues, quality aspects of HPS require
special considerations with regard to service compositions.
Context has strong impact on QoS properties due to chang-
ing availability of services. HPS exhibit fundamentally dif-
ferent quality than SBS. For example, SBS can handle sev-
eral hundreds requests at once while humans are limited to
a small number of parallel requests. On the other hand, hu-
mans are able to make complex decisions and to handle data
outside the original task specification while SBS can han-
dle these situations only to a very limited extent. Generally
speaking, humans maintain a more complex notion of con-
text and are able to maintain multiple contexts at a time.
They also have the ability to resolve context when required.
Thus, when combining human and software-based services,
these differences must be considered in the design of com-
positions. We propose the extension of existing QoS models
with regard to human attributes that reflect human behavior
[15].

3.1 QoS Attributes

Table 1 shows a set of quality attributes, along with their
definition, that can be applied to both human and machine-
based services or to only one of these two types of services.
The latter fact (i.e., application) is exhibited with the use of
the third and fourth columns of the table. Finally, the last col-
umn shows if it is meaningful to aggregate the same quality
attribute of both human and software-based services for the
composition. If the answer is no, then we can have only lo-
cal quality constraints on specific tasks of the composition,
depending on whether the quality attribute is meaningful to
model the quality of the human or machine-based service
that is mapped to this task.

We are going to analyze the differences between the same
quality attribute for the human and software-based services
and we are going to argue why we did not model this at-
tribute for one or the other service type in the corresponding
cases that can be drawn from the last column of Table 1.

Throughput : Defines the maximum number of requests
that can be completed in a given time interval. Again, there
is no conceptual difference between humans and software-
based services beside the scale of the respective throughput.

Availability : SBSs are usually available 99.9 percent of
their time. On the other hand, the availability of humans
varies as it also depends on their context and current load.
However, there are usual patterns inferred from users context
where availability can be approximately defined for humans
(e.g. user’s usual working schedule, days off and holidays,
health and mental situation, etc.).

Data quality: This attribute expresses the quality of the
data produced by the service. In the way we define HPS, this
attribute has the same meaning for both service types that we
consider. Moreover, this is an attribute for which we cannot
definitely say that its value is better for one service type

Attribute Description SBS Human Aggregation

Throughput The number of completed service requests over a time period yes yes yes
Availability Availability of the service provided to customers yes yes yes
Data Quality The ability of a data collection to meet user requirements, defined as

the proximity of a valuev to a valuev
′

considered as correct
yes yes yes

Trust Indicates the service’s trustworthiness yes yes no
Delegation Ability to delegate task to another service no yes no

Soft Completion Ability to end a task’s execution untimely due to time restrictions but
with a concrete result produced

no yes no

Table 1. Service Quality Attributes

Attribute Metric/Type/Unit/Monotonicity Aggregation Pattern

Throughput Maximum/Positive Integer/(Calls/Sec)/Positive thk (CEP) = minspk
m∈ epk

∑
ti∈ spk

m

(ti,sj)∈CEP

thj

Availability (Uptime/Total-Time)/Real in [0.0,1.0]/–/Positiveavk (CEP) =
∏

ti∈ epk

(ti,sj)∈CEP
avj

Data Quality MAPE [17]/Real in [0.0,1.0]/–/Negative dqk (CEP) = min ti∈ epk

(ti,sj)∈CEP
dqj

Trust –/Real in [0.0,1.0]/–/Positive trk (CEP) =
∏

ti∈ epk

(ti,sj)∈CEP
trj

Table 2. Service Quality Metric and Aggregation Pattern

than the other one. Depending on the application domain
and the context, the situation changes so there is no winning
service type. Finally, the data quality of an HPS can increase
because a human can learn from the repetition of a task or by
exploiting the knowledge acquired or derived from its social
network.

Trust : The way this quality is measured for these entities
is different because for humans it depends on both subjective
and objective criteria while for SBS it depends on only ob-
jective criteria [29]. Moreover, an SBS’s trust is usually more
constant as compared to a human’s trust. So, we believe that
it is not meaningful to aggregate this quality for a composite
service containing both human and software-based services.

Delegation: This attribute concerns the ability of a human
to delegate a part or the whole task he is running to other
humans, including this human’s coordination capability in
coordinating the splitted task’s execution. SBS can partially
support this attribute by delegating a whole task’s execution
to other instances of the same service. However, they cannot
easily delegate parts of a task and coordinate them, if the task
has already executed, as this requires special mechanisms.
So it is not meaningful to model this attribute for SBS.

Soft Completion: Soft completion refers to the incom-
plete result of a service execution which is still useable for
further activities. For example, a HPS that analyzes images
for the occurrence of objects (e.g., trees) might not qualify
all objects. However, it might be the case that only a yes/no
decision of object occurrences is necessary in the context of
the mashup/workflow. This is not true for the side of SBS, as
they have to end all their activities before they can produce
a specific and complete output.

3.2 Quality Aggregation Analysis

Several quality attributes can be associated with a service.
Each attribute would have a short definition, a metric, a value
type, a monotonicity and an aggregation pattern associated
with it. Monotonicity concerns the way the values that the
dimension takes can be compared. In this paper, we distin-
guish between positive and negative dimensions. A dimen-
sion is positive (negative) if the higher the value the higher
(lower) the quality or energy level. The aggregation pattern
of a dimension defines how the value of this dimension for a
composite service can be determined based on the value of
the component services. In this paper, we have considered
only the most significant and widely-used quality attributes
that appear in many research approaches. Table 2 summa-
rizes these attributes based on the above analysis.

CEP denotes a concrete execution plan [13] of a com-
posite service (either HPS or SBS). EachCEP can be trans-
formed [1] to many (e.g.,K) concrete execution paths sym-
bolized withepk containing a subset of the tasksti of the
CEP . In addition, each execution pathepk has a set ofsub-
paths(i.e. paths not having parallel tasks) that are indexed by
m and denoted byspk

m. Every execution pathepk is associ-
ated with a set of aggregated attributes denoted withattrk.
The set of servicesSi to be executed for a taskti are called
candidate servicesand are denoted withsj . Each servicesj

has a specific set of attributesattrj derived from its service
profile.

3.3 QoS and Context

We argue that QoS attributes are driven by the context in
which they are measured. In this regard, we refer to context

free QoS attributes and context sensitive attributes. We con-
sider QoS attributes like availability as context sensitive for
HPS, because the location context of the human (provided
service) influences the availability quality attribute. For in-
stance, if the location of a human changes, the human might
not be able to provide the service. Another example for a
context sensitive attribute is delegation. Delegation might
not be allowed in scenarios where a certain instance of a
HPS (e.g., expert that provides an expertise service) is re-
quired. In contrast, context free quality attributes are not af-
fected by context. An example is a valid security certificate
which is required to invoke a service. In the next section we
discuss the use of context and QoS in our proposed mashup
model in greater detail.

4. Architecture and Implementation
The main concepts of our approach were defined in the pre-
vious sections. This section is dedicated to analyzing the ar-
chitecture and implementation details of our approach. As
discussed earlier, our goal is to benefit from both, human
flexibility and the efficiency of SBS for tasks. Conceptually,
the composition process consists of two main steps as de-
picted in Figure 3.

Mashup Execution
Engine

Context Store

Flow Editor

2) Output of Design

Relevant
ContextDesign

1) Design of
Composition

Runtime

3) Deployment of
Composition Model

Process
Model

Service
Invocation
Handler

Invoke Activity

Context Query

Context Query
Response

HPS + SWS

Service Request

Service Response

XML Result

4) Context-aware
Execution of Mashup

Figure 3. Architecture and Deployment

1. DesignFirstly, one needs to define the structure of the
service mashup. The structure of a service mashup de-
fines from an abstract perspective how services and hu-
mans cooperate and which services are used by humans
and vice versa. We support this activity with a online tool
that enables the creation of social mashups (Flow Edi-
tor). It must be noted that the flow model contains addi-
tional information regarding therelevant contextthat is
used during execution of the process model (e.g., context
queries).

2. Runtime With the use of uniform WSDL interfaces we
lay the foundation for a later generation of BPEL work-
flows. The composition model is deployed in theMashup
Execution Engine. An activity is usually performed by
invoking a set of services. We call these invocationsac-
tions that can be performed in a context-aware manner.
Thus, theService Invocation Handlerinterprets context
associated to activities to obtain context information via
queries from theContext Store. Interactions with HPS
and SBS (service request and service response) happen
in an equivalent service oriented manner through the ex-
change of SOAP messages. Notice that our approach
is not limited to BPEL, since the abstract definition of
mashup can be transformed into other languages as well.

4.1 Flow Editor

For a proof of concept prototype implementation, and to il-
lustrate the end user support, we used ExpressFlow [31]. We
integrated concepts that are required for the creation of so-
cial service compositions in Expressflow, with regard to the
limitations imposed by HPS and SBS in service mashups.
In our approach, a service mashup structures activities and
defines context channels which encapsulate context related
information. With the help of a graphical tool (see Figure
4) we support the mashup design process. At this level, the
mashup designer defines the basic structure of the mashup
using different activities. The tool also provides basic ser-
vice registry features which supports the designer in select-
ing services that are suitable in a given context (e.g., filtering
of all services that operate at certain locations).

Figure 4. Screenshot of ExpressFlow online tool

We incorporate context related information directly into
the code of the mashup. This approach enables context un-
aware services to be fully integrated into context aware
mashups. By following the separation between context and
services we gain the needed flexibility to integrate humans,
HPS respectively, into mashups. We discuss the implemen-
tation and integration of the basic concepts and their imple-
mentation in a top down manner in the following subsections
and illustrate our approach with short XML examples that

are generated by the Expressflow tool, after having specified
the mashup graphically.

4.2 Modeling Context-aware Mashups with
Expressflow

Mashup: In service mashups, we embed context channels
to structure context information and group actions in activ-
ities. These elements can be structured with constructs like
if then elseor parallel. Listing 1 illustrates two parallel con-
text channels with different context information usingPar-
allel and ParallelBranchconstructs. Each context channel
specifies a context scope (e.g., location, time). During the
execution these branches are executed in parallel with the
context being evaluated independently.� �

1 <P r o c e s s e f i d ="5c21c032-091f-45a0-aaf4..."
2 name="OOPSLA Service Mashup Demo"
3 t ype ="Service Mashup" . . . >
4 <P a r a l l e l name="Parallel1" t ype ="Activity" . . . >
5 <P a r a l l e l B r a n c h>
6 <Con tex t name="Context Channel1"
7 t ype ="ContextChannel"
8 l o c a t i o n ="Vienna" t ime ="Today">
9 . . .

10 < / Con tex t>
11 </ P a r a l l e l B r a n c h>
12 <P a r a l l e l B r a n c h>
13 <Con tex t name="Context Channel2"
14 t ype ="ContextChannel"
15 d e l e g a t i o n ="No" a v a i l a b i l i t y ="100">
16 . . .
17 < / Con tex t>
18 </ P a r a l l e l B r a n c h>
19 < / P a r a l l e l>
20 < / P r o c e s s>� �

Listing 1. Definition of Mashup Comprising Two Parallel
Context Channels

Context Channel: Context channels act as flexible con-
tainers for service related context information which is spec-
ified during the design of the mashup. Conceptually, a con-
text channel defines the scope and the type of context (e.g.,
location, time, delegation) for nested activities. Duringthe
execution of the mashup, all activities of a context channel
access the predefined context information and perform the
context dependend actions (e.g., data transformation) which
are retrieved from a context store.� �

1 <Con tex t name="Context Channel1"
2 t ype ="ContextChannel"
3 l o c a t i o n ="Vienna" t ime ="Today">
4 <A c t i v i t y name="Activity1"
5 t ype ="Activity" p r e v i o u s ="null" . . . />
6 <A c t i v i t y name="Activity2"
7 t ype ="Activity" p r e v i o u s ="Activity1"
8 nex t ="Assignment1" . . . />
9 </ Con tex t>� �

Listing 2. Context Channel Example

Listing 2 presents an example for a context channel,
which defines the location context of all included activities

to Viennaand the time contextToday. It it worth noticing,
that, unless specified differently, all activities are per default
executed sequentially (Activity 2 follows Activity 1).

Activity: Activities structure actions which are the hooks
for the actual service invocation. The example in Listing 3
shows an activity (Activity1) which copies three different
values (appid, streetandcity) to the variableVariable7for a
sequential invocation of two SBS (SOAPInvoke3andSOAP-
Invoke4) which share the same input parameters.� �

1 <A c t i v i t y name="Activity2" t ype ="Activity" . . . />
2 <Assignment name="Assignment1" t ype ="Activity ... >
3 <Copy name="Copy1" type="A c t i v i t y "
4 copy_from="YD−9G7bey8 JXxQP6rxl . fBFGgCdNj . . ."
5 copy_to="$ V a r i a b l e 7 . app id" previous=" n u l l" ... />
6 <Copy name="Copy2" type="A c t i v i t y "
7 copy_from="A r g e n t i n i e r s t r e e t +8"
8 copy_to="$ V a r i a b l e 7 . c i t y"
9 previous=" n u l l" next=" n u l l" ... />

10 <Copy name="Copy3" type="A c t i v i t y "
11 copy_from="Vienna"
12 copy_to="$ V a r i a b l e 7 . c i t y" ... />
13 </Assignment>
14 <Invoke name="SOAPInvoke3" type="SOAPInvoke"
15 input="V a r i a b l e 7" output="V a r i a b l e 8" ... >...
16 <Invoke name="SOAPInvoke4" type="SOAPInvoke"
17 input="V a r i a b l e 7" output="V a r i a b l e 9" ... >...� �

Listing 3. Asynchronous Activity

Action: Actions represent invocations of services that
are executed in the context of an activity. Listing 4 shows
how actions are modeled in ExpressFlow. Because of hav-
ing specified the context on a higher level, we do not require
to specify context attributes on this level. Consequently,ser-
vices do not need to be aware about the context in which they
are executed. We discuss how we handle the actual service
invocation in Section 4.3.� �

1 <Invoke name="SOAPInvoke3"
2 t ype ="SOAPInvoke"
3 i n p u t ="Variable7" o u t p u t ="Variable8" . . . >
4 <Resource
5 u r i ="http://local.yahooapis.com/MapsService...
6 appid=$Variable7.appid&
7 street=$Variable7.city&
8 city=$Variable7.city" />
9 </ Invoke>� �

Listing 4. SOAP Invoke Example

4.3 Context Store and Service Invocation Handler

Our prototype stores context related information in a MYSQL
database. Our database layout is based on the SOAF data
model [30] and the context model of Figure 2(a). During
runtime, we query the context store for context related ac-
tions (e.g., service request transformations) using our service
invocation handler. The service invocation handler extracts
context information (e.g., time, location, delegation) from
SOAP message headers. In our current implementation, we
use a simple keyword based search to query for context spe-

cific transformations which are represented as XSLT trans-
formations. These transformations are retrieved as strings
(streams respectively) for the use of Apache XALAN to
transform the request according to the context. Notice that,
in our current implementation, we support the transforma-
tion of incoming SOAP requests, but do not transform the
output accordingly. This is planned for future work.

5. Related Work
Generally speaking, mashups are applications created of ex-
isting online resources. [16] categorizes mashups according
to four main dimensions: a) what is mashed up, b) where
to mashup, c) how to mash up, and d) for whom to mash
up. Based on this categorization, there are tools that of-
fer similar functionalities with our approach like “JackBe
Presto”1 , “Procession” [20], “Serena Mashup Suite”2 ,
“Swashup” [22], “JOpera” [25] and “remash!” [4]. However,
none of these tools is able to offer a context-aware and QoS-
based mashup development and execution environment.

Context is any information that can be used to charac-
terize the situation of entities [12]. Context-aware Systems
(CASs) are able to adapt their behavior to the current context
without explicit user intervention and thus aim at increas-
ing usability and effectiveness by taking environmental con-
text into account [2]. The behavior of a CAS can be adapted
through context in three levels/dimensions [10]:user inter-
face, content, andservice. Moreover, this adaptation can be
performed in a static or dynamic way by different combina-
tions of services which are independently selected on these
three dimensions.

Context has been used in discovery, composition, and
adaptation of SBSs. Concerning SBS discovery, context has
been used for request (e.g. location info) and input comple-
tion (e.g. missing input) so as to increase the quality of the
discovery result [6]. Various approaches [9, 23, 24, 28] have
been proposed for SBS composition that use local [33] and
global contextual constraints for selecting among the candi-
date SBSs for each task of the composite SBS in a static or
dynamic way.

When context changes, composite SBSs may be adapted
in three different ways: a) SBS access channel is changed [3],
b) an SBS is substituted with another one [3, 28], c) a new
concrete execution plan is executed from scratch [14]. Un-
fortunately, none of the existing SBS composition and adap-
tation approaches is able to offer simultaneously the three
different types of adaptation. Moreover, no approach is able
to substitute a single SBS with a new composite one, which
might be the case with cooperating HPSs.

Very few mashup approaches have been proposed to take
advantage of user or environmental context for adaption
purposes. In [5] a system architecture is proposed featuring a
context provisioning framework for utilizing local sensors in

1http://www.jackbe.com
2http://www.serena.com

context-aware mashups. The work described in [19] presents
a services mashup system which is able to perform context-
aware service composition in a semi- or fully-automatic way
and to adapt the results of the composition according to the
user’s context. Finally, “remash!” [4] offers a framework that
enables the flexible binding of services at runtime depending
on the changing availability of services or the situation-
specific requirement of the application.

Context and its quality can affect the QoS of a service [7].
QoS has been widely studied and researched for SBS discov-
ery, composition [13], and adaptation [1, 8, 11]. However, no
QoS-related research work has been conducted for mashups
or human-based workflows.

6. Summary and Future Work
In this paper we presented a framework for the integration
of humans in socially oriented service mashups. We illus-
trated the mechanisms to accomplish this with regard to
QoS and context. We presented our initial prototype and dis-
cussed how we addressed implementation challenges con-
cerning the interpretation of context during the runtime. In
future work, we will elaborate our approach with regard to
the adaptivity of mashups and extend our core context model
with complex actions (e.g., reordering of service invoca-
tions in context channels). We are going to extend our QoS
model with attributes like accuracy or presentation quality
and study these in the context of mashups. Furthermore, we
will extend our current prototype with ExpressFlow to BPEL
[32] transformations to generate executable BPEL code and
study alternative approaches (e.g., using scripting languages
or document based approaches [27]). And finally, we will
evaluate the performance of our proposed approach thor-
oughly and study larger examples for service mashups and
context.

Acknowledgment
The research leading to these results has received funding
from the European Community Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube) and 216256 (COIN). We thank Martin Vasko for help
on modeling SOM with ExpressFlow.

References
[1] D. Ardagna and B. Pernici. Adaptive service compositionin

flexible processes.IEEE Trans. Softw. Eng., 33(6):369–384,
2007.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on
context-aware systems.Journal on Ad Hoc and Ubiquitous
Computing, 2007.

[3] L. Baresi, D. Bianchini, V. D. Antonellis, M. G. Fugini,
B. Pernici, and P. Plebani. Context-aware composition of e-
services. InTES 2003, volume 2819 ofLNCS, pages 28–41,
Berlin,Germany, 2003. Springer.

[4] B. Blau, S. Lamparter, and S. Haak. remash! - blueprints for
restful situational web applications. InProceedings of the 2nd
Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web at WWW2009, Madrid, Spain, 2009.

[5] A. Brodt, D. Nicklas, S. Sathish, and B. Mitschang. Context-
aware mashups for mobile devices. InWeb Engineering
(WISE ’08), pages 280–291. Springer-Verlag, 2008.

[6] T. H. F. Broens, S. Pokraev, M. J. van Sinderen, J. Koolwaaij,
and P. D. Costa. Context-aware, ontology-based, service dis-
covery. InSymposium on Ambient Intelligence, volume 3295
of LNCS, pages 72–83. Springer, 2004.

[7] T. Buchholz, A. Küpper, and M. Schiffers. Applying web ser-
vices technologies to the management of context provisioning.
In 10th International Workshop of the HP OpenView Univer-
sity Association, July 2003.

[8] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. QoS-
Aware Replanning of Composite Web Services. InProceed-
ings of the IEEE International Conference on Web Services
(ICWS’05), Orlando, FL, USA, pages 121–129, 2005.

[9] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan. Proba-
bilistic, context-sensitive, and goal-oriented service selection.
In ICSOC ’04: Proceedings of the 2nd international confer-
ence on Service oriented computing, pages 316–321, New
York, NY, USA, 2004. ACM.

[10] T. Chaari, F. Laforest, and A. Celentano. Design of context-
aware application based on web services. Technical Report
CS-2004-5, Università Ca’Foscari di Venezia, Venezia, Italy,
April 2004.

[11] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Sri-
vastava. Adaptation in web service composition and execu-
tion. IEEE International Conference on Web Services (ICWS),
pages 549–557, 2006.

[12] A. K. Dey and G. D. Abowd. Towards a better understanding
of context and context-awareness. InProceedings of the Work-
shop on the What, Who, Where, When and How of Context-
Awareness, New York. ACM Press, 2000.

[13] A. M. Ferreira, K. Kritikos, and B. Pernici. Energy-aware
design of service-based applications. InICSOC, LNCS.
Springer, 2009.

[14] K. Fujii and T. Suda. Semantics-based context-aware dynamic
service composition.ACM Trans. Auton. Adapt. Syst., 4(2):1–
31, 2009.

[15] R. Kern, C. Zirpins, and S. Agarwal. Managing quality
of human-based eservices.Service-Oriented Computing –
ICSOC 2008 Workshops, pages 304–309, 2009.

[16] A. Koschmider, V. Torres, and V. Pelechano. Elucidating the
mashup hype: Definition, challenges, methodical guide and
tools for mashups. InProceedings of the 2nd Workshop on
Mashups, Enterprise Mashups and Lightweight Composition
on the Web at WWW2009, Madrid,Spain, April 2009.

[17] K. Kritikos. Qos-based web service description and discov-
ery. Phd thesis, Computer Science Department, University of
Crete, Heraklion, Greece, December 2008.

[18] K. Kritikos and D. Plexousakis. Mixed-Integer Programming
for QoS-Based Web Service Matchmaking.IEEE Transac-
tions on Services Computing, 2(2):122–139, 2009.

[19] Y. Li, J. Fang, and J. Xiong. A context-aware services mash-
up system. InSeventh International Conference on Grid and
Cooperative Computing (GCC ’08), pages 702–712, Shen-
zhen, China, 2008. IEEE.

[20] P. S. Limited. Procession process engine data sheet. Technical
report, 2008.

[21] E. M. Maximilien, A. Ranabahu, and K. Gomadam. An online
platform for web apis and service mashups.IEEE Internet
Computing, 12(5):32–43, 2008.

[22] E. M. Maximilien, A. Ranabahu, and S. Tai. Swashup: sit-
uational web applications mashups. InOOPSLA ’07: Com-
panion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion,
pages 797–798, Montreal, Quebec, Canada, 2007. ACM.

[23] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. InRISE, volume 3943 ofLNCS, pages 129–
144. Springer, 2005.

[24] S. K. Mostéfaoui and B. Hirsbrunner. Towards a context-
based service composition framework. InICWS ’03, pages
42–45, Las Vegas, Nevada, USA, June 2003. CSREA Press.

[25] C. Pautasso. Composing restful services with jopera. In
A. Bergel and J. Fabry, editors,Software Composition, volume
5634 ofLecture Notes in Computer Science, pages 142–159.
Springer, 2009.

[26] D. Schall, H.-L. Truong, and S. Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations.IEEE
Internet Computing, 12(3):62–68, 2008.

[27] N. Schuster, C. Zirpins, S. Tai, S. Battle, and N. Heuer.A
service-oriented approach to document-centric situational col-
laboration processes. InWETICE ’09: Proceedings of the
2009 18th IEEE International Workshops on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises, pages
221–226, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

[28] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. Ngu.
Configurable composition and adaptive provisioning of web
services.IEEE Transactions on Services Computing, 2(1):34–
49, 2009.

[29] F. Skopik, D. Schall, and S. Dustdar. The cycle of trust in
mixed service-oriented systems. InSEAA, 2009.

[30] M. Treiber, H.-L. Truong, and S. Dustdar. Soaf –design and
implementation of a service-enriched social network.Web
Engineering, pages 379–393, 2009.

[31] M. Vasko and S. Dustdar. Introducing Collaborative Service
Mashup Design. InLightweight Integration on the Web (Com-
posableWeb’09), pages 51–62. CEUR - Workshop Proceed-
ings, June 2009.

[32] WS-BPEL. Business Process Execution Language for Web
Services Version 2.0, April 2007.

[33] Y. Yamato and H. Sunaga. Context-aware service composi-
tion and component change-over using semantic web tech-
niques. IEEE International Conference on Web Services
(ICWS), pages 687–694, 2007.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.4

A.4 Adaptation of Service-Based Applications Based on Process Quality Factor Analysis

Authors:

FBK: Raman Kazhamiakin

USTUTT: Branimir Wetzstein

USTUTT: Dimka Karastoyanova

FBK: Marco Pistore

USTUTT: Frank Leymann

• Submitted to: MONA+ 2009

External Final Version 1.2, Dated September 17, 2010 62

Adaptation of Service-Based Applications Based on
Process Quality Factor Analysis

Raman Kazhamiakin1, Branimir Wetzstein2, Dimka Karastoyanova2, Marco Pistore1,
and Frank Leymann2

1FBK-Irst, via Sommarive 18, 38100 Trento, Italy
{raman,pistore}@fbk.eu

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
{karastoyanova, leymann, wetzstein}@iaas.uni-stuttgart.de

Abstract. When service-based applications implement business processes, it is
important to monitor their performance in terms of Key Performance Indicators
(KPIs). If monitoring results show that the KPIs do not reach target values, the
influential factors have to be analyzed and corresponding adaptation actions
have to be taken. In this paper we present a novel adaptation approach for
service-based applications (SBAs) based on a process quality factor analysis.
This approach uses decision trees for showing the dependencies of KPIs on
process quality factors from different functional levels of an SBA. We extend
the monitoring and analysis approach and show how the analysis results may be
used to come up with an adaptation strategy leading to an SBA that satisfies
KPI values. The approach includes creation of a model which associates
adaptation actions to process quality metrics, extraction of adaptation
requirements based on analysis results, and identification of an adaptation
strategy which can consist of several adaptation actions on different functional
levels of an SBA.

Keywords: Adaptation, Service-based Applications, KPI, QoS-aware SBAs

1 Introduction

In recent years extensive attention has been paid to devising and improving the
concepts and infrastructures for service-based applications (SBAs) [1]. SBAs can be
viewed in terms of three functional layers, namely (i) business processes, (ii) service
compositions that implement these business processes, and (iii) services and service
infrastructure. A major concern for enterprises is to ensure the quality of their SBA-
based business processes. Thereby, process quality goals are specified in terms of Key
Performance Indicators (e.g., order fulfillment time), i.e. key process metrics that
contain target values which are to be achieved in a certain period. KPIs of business
processes that are implemented in terms of SBAs are typically monitored using
business activity monitoring technology. If monitoring results show that KPIs do not
meet target values, further process quality factor analysis is needed to find out which
of the lower level process metrics (e.g., duration of process activities, type and

amount of ordered products etc.) or QoS metrics (e.g., availability of IT
infrastructure) mostly influence KPI target violations.

After influential factors of KPI violations are identified, the goal is to perform
process adaptation in order to prevent KPI violations for future process instances or
even for the running instances. Thereby, several challenges arise. Firstly, one has to
choose appropriate adaptation actions for each influential factor identified (e.g.,
selection of a faster delivery service in order to decrease deliver time). Secondly, one
has to take into account that an adaptation action can have positive effect on one
metric but negative effect on others (e.g., a faster delivery time normally involves
higher costs). Thus, when adapting the process one has to choose a set of adaptation
actions which improve the influential factors as shown in the analysis and take into
account their effects.

In order to deal with this adaptation problem, we extend previous work described
in [2] which uses decision trees for process quality factor analysis. Based on this
work, in this paper, we show how to extract a set of adaptation requirements from the
decision tree and find an adaptation strategy consisting of a set of adaptation actions
which takes into account both positive and negative effects of adaptation actions on
metrics. We discuss limitations of our approach so far and show several possibilities
for extending the approach in future work.

We continue the argumentation about the motivation of our work presented here in
the next section and support it with a scenario. In section 3 the overview of the
approach is given. The details on modeling and analysis of the influential factors are
given in Section 4, while the identification and selection of adaptation actions is
presented in Section 5. A discussion of the approach and possible extensions are
described in Section 6. Overview of related work, as well as conclusions and plans for
future work conclude the paper.

2 Scenario and Motivation

In this section we present the motivation for our approach and a scenario which we
use in the following sections for explaining our concepts based on examples. This
scenario has already been used in [2] for experimental evaluation of process quality
factor analysis. The scenario consists of a purchase order process implemented by a
reseller which offers products to its customers and interacts with its suppliers, a
banking service, and a shipment service for processing the order. The customer sends
a purchase order request with details about the required products and needed amounts
to the reseller. The latter checks whether all products are available in the warehouse.
If some products are not in stock, they are ordered from suppliers. The reseller waits,
if needed, for the supplier to deliver the needed products. When all products are in
place, the warehouse packages the products and hands them over to the shipment
service, which delivers the order to the customer, and finally notifies the reseller
about the shipment. In parallel to the packaging and shipment, the payment
subprocess is performed. For measuring the performance of its business process, the
reseller defines a set of Key Performance Indicators (KPIs). A typical KPI for the
reseller in our scenario is order fulfillment lead time [3], which measures the number
of days from order receipt to the delivery of the ordered products at the customer. A

KPI is a key metric (with either technical or business meaning) with target values
which are to be achieved in a certain analysis period (e.g., order fulfillment lead time
< 5 days). After specifying a set of KPIs with target values, they have to be measured
based on executed process instances. If the measurement shows an unsatisfying result,
i.e. the KPI targets are violated, the reseller wants to improve its process, for instance,
by using process adaptation.

Due to the fact that KPIs are complex characteristics that rely upon a wide range of
factors originating from different functional levels, adaptation of underlying SBAs is
not a straightforward approach. In our scenario the KPI may be influenced by many
factors (which have to be measured both on process level (process metrics) and
service infrastructure level (QoS metrics): duration of sub-processes and activities,
response time and availability of used services, ordered products and their properties
such as number of ordered items, product type and size, cost of delivery service,
availability of IT infrastructure etc. All those factors and a combination of those can
lead to late delivery. Thus, the first step needed is to perform a process quality factor
analysis and find out the influential factors for KPI violations.

In order to improve those factors, different adaptation actions may be considered,
for example, replacing a service either dynamically or using a predefined set of
services; renegotiating the Service Level Agreements (SLAs) with the corresponding
service provider; outsourcing a subprocess or replacing it with a service from an
external provider. On infrastructure level, possible adaptations are replacement of IT
components with faster ones, clustering for improving availability, upgrading
hardware components etc. For a particular situation, different adaptation actions and
their combinations may be necessary for improving the same KPI; consistency and
non-contradicting actions with respect to the KPI (and perhaps other KPIs) needs to
be ensured. This is because an adaptation action can positively affect one influential
factor but negatively others. Assume, for example, the selection of a new better
performing service which leads to a better response time but negatively affects the
cost metric. Thus, when adapting we have to take into account that the adaptation can
affect other KPIs (e.g., overall process cost or customer satisfaction, etc.). We call the
collection of the adaptation actions that, being enacted in combination, achieve the
desired outcome an adaptation strategy. It is, therefore, crucial to identify and
compose a strategy that improves KPIs in a coherent and integrated manner.

Finally, one can distinguish between the adaptation of the SBA model or a
particular SBA instance. In the first case, the KPI violation is prevented for all the
future instances. That is, if certain influential factor (e.g., service response time) is
identified, the application adaptation is permanent (e.g., service will be substituted in
all future instances of the SBA). Another scenario may concern adaptation of a
particular running instance of the SBA (i.e., a particular customer order), where the
changes are done on-the-fly in order to proactively prevent the violation of the goal
for this instance (e.g., violation of an SLA with a particular customer).

In summary, the goal of our approach is to monitor and identify the reasons leading
to the violations of KPIs, and then to find the coherent and complete adaptation
strategy that would improve the KPI according to the desired value.

Quality modeling
for analysis and
adaptation

Identification of
Adaptation
Strategies

Process
adaptation

Analysis of
influencing quality

factors

Metrics
Model

Adaptation
Requirements

Adaptation
Actions
Model

Adaptation
Actions

Fig. 1. Quality factor analysis and adaptation

3 Overview of the Approach

In this work we present an approach that allows for adapting service-based
applications in order to prevent the violation of KPIs. The overall process is
represented in Fig. 1. This approach consists of the following four phases:

─ Quality modeling for analysis and adaptation. At design time the metrics model
and the adaptation actions model are created (presented in detail in Sections 4.1
and 5.1). In the metrics model, the user specifies the application KPIs, and the
quality metrics representing the potential influential factors of KPIs. Obviously,
the user does not yet know the influential factors (but might suspect them),
however he has to model potential metrics so that they are monitored in the first
place and thus can be used during analysis. In the adaptation actions model, the
user specifies the available adaptation actions per metric and the effect of those
actions on application metrics specified in the metrics model. In particular, this
model allows for defining whether an action contributes positively or negatively
to a certain quality factor, i.e., whether it improves the value of a metric. Same
as for metrics, the user just specifies the potential adaptation actions in isolation
at this phase, without knowing yet which of those will be needed at adaptation
time and in which combination.

─ Analysis of influential quality factors. In the second phase, based on the metrics
model, the monitoring of KPIs and potential influential quality metrics is
performed across the instances of the application; the information is
continuously aggregated and updated. Then the metrics related to previous
executions of a given application are analyzed in order to identify the reasons,
i.e., the influential factors, which lead to the undesired values of the specified
KPIs. More precisely, we use machine learning techniques to construct a
decision tree which shows for which value ranges of influential application
metrics a KPI is satisfied or violated (see also Section 4.2, and [2]). As a result,

one identifies those tree paths of application metrics (and their value ranges)
that correspond to the “bad” values of the KPI and thus fail the underlying
business goal. (Note that in case of an adaptation of a process instance, the
results of the analysis, i.e., the set of influential factors and their values, are
compared with the values of the metrics already observed for the instance. In
this way one restricts only to those metrics that are critical for that specific
instance. For example, if the duration of the delivery sub-process is a critical
factor only in combination with the products of large size and in the instance
small product size is managed, then this factor may be excluded from the
consideration.) From the identified tree paths we extract a set of (alternative)
adaptation requirements each consisting of a conjunction of predicates over
metric values (e.g., delivery time shipment < 2 days AND delivery time supplier
< 3 days) which lead to KPI satisfaction. The result of the analysis characterizes
thus those factors of the application that should be improved, i.e., that are
subject of adaptation, and how they should be improved (their values).

─ Identification and selection of an adaptation strategy: In the next phase the
approach aims to combine, and enact concrete adaptation actions that address
the identified requirements as part of a coherent adaptation strategy (Section
5.2). This phase relies on the adaptation action model, where the effect of those
actions on different application metrics is described. It takes into account that an
adaptation action contributes positively or negatively to a certain quality factor,
i.e., whether it improves the value of a metric. After identification of a set of
alternative adaptation strategies, one strategy is selected based on certain
criteria.

─ Process adaptation: The selected adaptation strategy is used for adaptation of
the process model or process instance by executing all contained adaptation
actions. After adaptation, the existing KPIs and metric definitions might have to
be adapted thus closing the cycle.

In the next sections we will present the models and mechanisms exploited at
different steps of this process in details.

4 Monitoring and Analysis of Quality Factors

The first step of our approach is to analyze the dependencies of the KPI on other
quality factors. The goal of this step is to determine the main influential factors which
lead to violations of KPI targets. This information will be then exploited for the
identification of the adaptation requirements and strategies (Section 5). The basis for
this analysis is the model of quality metrics. It contains all the properties (KPIs and
potential influential factors) that should be monitored.

4.1 Model of Application Metrics

The quality properties of the application may be captured at different levels of the
application stack. As we already mentioned in Section 2, at the business level this
properties are represented as key performance indicators (KPIs). A KPI usually is a

complex metric over the executions of the application (i.e., business process
instances), which is associated with the target value that should be achieved in a
certain period.

At the level of service composition the relevant quality properties of the
application may be captured by the process performance metrics (PPM), which
express the characteristics of the execution of the service composition realizing the
business process, and by the quality of service (QoS) metrics of the underlying
services. The PPMs are defined based on the run-time process data and focus on a
specific aspect of the process model (e.g., type of the product, duration of the
shipment subprocess). The QoS properties usually express the non-functional aspects
of the services exploited by the composition (e.g., average response time of the order
processing service). Finally, at the lowest level of the application stack the critical
parameters may be captured by the infrastructure metrics, which characterize the
quality of the underlying middleware, containers, etc.

To capture these properties and to use them in our approach, we propose the model
of a quality metric that consists of the following elements:

─ Metric measurement definition. This information is used to characterize the way
the metric is monitored and evaluated at runtime. Depending on the
corresponding element of the application and on the realization of the
monitoring framework, it may include the description of the measurement
function or monitored property, correlation information needed to associate the
measurement to the business process, the basic events used in case of composite
metrics, etc. It also contains the data range of the metric, i.e., the possible
values the metric may have. We remark that the specific ways this information
is defined is out of scope of this paper; more details may be found in [2].

─ Target value (optional, only needed for KPIs). For KPIs, which express the
expectations of the business analysis about the performance of the application, it
is necessary to specify the target value range of the metric (e.g., order
fulfillment lead time < 5 days). This value is then used by the monitoring
framework to identify performance violations and to perform the analysis of
influential factors that led to those violations.

─ Potential influential factors. For the metrics, value of which may depend on the
values of other metrics (like for the KPI in the scenario presented in Section 2),
it is possible also to list those metrics as potential influential factors. This list
will be then used by the quality factor analysis to restrict the search during
analysis [2]. Note, however, that this information is necessary only to improve
the results of the analysis; in this way only a limited set of metrics is considered.

For the approach presented here the key elements of the metric model are the data
range of the metric, the target value range, and the set of potential influential factors,
while we omit for the simplicity the description of how to monitor the property.

Definition 1 (Quality Metric). A quality metric μ is defined as tuple μ = ‹r,t,Mf›
where

─ r ⊆ D is a range of metric values, and D is some data domain (e.g., real-number
domain, or a set of nominal values);

─ t ⊆ r is the target range of metric values, which lead to KPI success;

─ Mf = (μ1,…, μn) is a set of potential influential factors of the metric.
We denote as M a set of all application metrics.

Example 1. Consider the KPI “Order Fulfillment Lead Time” from our scenario. It
can be defined as follows in our model:

─ It has the duration (time) as data domain and r =[0..inf]. We define t = [0..5].
─ Mf = (Shipment delivery time, Order in Stock, Supplier Delivery Time, Supplier

Service Availability, Ordered Product Types and Amounts, Order Process
Availability, …).

4.2 Identification of Influential Factors

Our approach to quality factor analysis is based on machine learning techniques, more
specifically decision tree algorithms [4]. The approach, its assumptions and reasons
for using machine learning techniques, have been described in detail in [2]. In the
following we will give only a general overview based on an example.

Delivery Time
Shipment

Delivery Time
Supplier

Order In
Stock

Order In
Stock

Delivery Time
Supplier

< 2 > 4
2 < x <4

yes no yes no

< 3 > 3 < 1 > 1

green
20/1

green
50

red
20

red
10

red
80/2

green
30

green
5

Fig. 2. An Example Dependency Tree

The result of this analysis is a decision tree as shown in Fig. 2, called a dependency
tree as it shows the main quality factors the KPI depends on. The tree is generated
automatically for a KPI selected by the user. The leaves of the tree show the
classification of the KPI, i.e. whether it is satisfied (“green”) or violated (“red”) in
relation to its target values, and the number of process instances which led to this
path. Note that the classification (satisfied or violated) could be extended towards
more than two nominal values or even numerical value ranges (regression trees); this
is part of our future work. The other nodes of the tree are the main influential factors
(metrics) and the branches contain conditions on those metrics.

An example tree which could have been generated for our scenario process is
shown in Fig. 2. This tree shows that there are three main influential factors for the
KPI “order fulfillment lead time”, namely “delivery time shipment”, “order in stock”,
and “delivery time supplier”, and for which value ranges of those metrics the KPI has

been violated or satisfied. For example, when the delivery time of the shipper was >
4, the KPI target has been violated (“red”) in 80 process instances and was satisfied
only in two process instances in that case.

The dependency tree shows the main influential factors which lead to the violation
or fulfillment of KPI target values for different value ranges of corresponding metrics.
The goal of our approach is to use this dependency tree as basis for coming up with
strategies for adapting those influential factors in such a way that for future or running
process instances only the paths to KPI fulfillment are taken.

5 Identification of Adaptation Requirements and Strategies

Once the influential factors are highlighted, it is necessary to identify those elements
of the application that should be improved, i.e., to identify adaptation requirements.
Based on those requirements and on the model of adaptation actions associated to the
quality properties of the application, possible adaptation strategies are identified and
triggered.

5.1 Model of Adaptation Actions

In order to adapt different elements of the application at all the levels of the
application stack, i.e., to enable a holistic adaptation strategy, it is necessary to
provide a generalized model of possible adaptation actions. This model should relate
different adaptation mechanisms to the quality properties of the application, which are
subject of adaptation. In other words, the model should characterize the available
adaptation actions to the model of metrics described above. More precisely, the
definition of adaptation actions in our approach consists of the following elements:

─ Adaptation mechanism. This part of the definition characterizes the machinery
or a technique used to realize the specified adaptation action. For example, the
adaptation action “replace a service” may be realized by a composed
mechanism, which consists of service discovery and binding; while the action
“re-negotiate delivery time” may refer to the automatic or semi-automatic
negotiation mechanisms. It contains also the specific references and instructions
(adaptation parameters) for the framework in order to enact the adaptation
actions. For the above actions, the adaptation parameters may characterize the
expected service properties (e.g., expected response time) to be used through
service discovery or expected range of the quality parameter to be achieved by
the re-negotiation.

─ Adaptation effect. To relate the adaptation action to the system we characterize
the former in terms of the effects the action causes on one or another application
quality metric. We say that the action has a positive effect on the metric if the
value of the latter is improved as a result of the application of the action. We say
that the action has a negative effect on the metric if the value of the latter is
worsened as a result of the application of the action. Otherwise, we say that the
action does not affect the metric.

We remark that for the presented approach we abstract away the details on how the
adaptation actions are realized and enacted. The core part of the model of the
adaptation action is how the action relates to the application metrics.

Definition 2 (Adaptation action). Adaptation action a is defined as a pair ‹M+,M-›
where

─ M+ ⊆ M is a set of metrics, on which the action has a direct positive effect;
─ M- ⊆ M is a set of metrics, on which the action has a direct negative effect.

We denote as A the set of all available adaptation actions.

Using the above model it is possible to annotate a wide range of adaptation actions
that are available and applicable at different levels of the application functionality.
These actions may include (but are not limited to)

─ Service substitution, i.e., replacement of one of the component services with
another one in order to improve certain quality characteristics. Depending on the
application domain, this action may be accomplished by the mechanisms relying
on dynamic service discovery and dynamic binding [5], selection and
deployment of one of the services from a predefined list (e.g., from an enterprise
service registry);

─ Re-negotiation of quality parameters. The action would allow in automatic way
to re-negotiate the quality parameters of the services used in the composition.

─ Re-composition of the underlying service composition or a part of the process.
─ Replacement of a subprocess with another subprocess or with a single service

(process outsourcing, [6]).
─ Infrastructural reconfiguration.

Example 2. In our scenario, we could define an adaptation action “renegotiate
shipment delivery time” which changes the SLA with the shipment service provider
considering the expected shipment delivery time. In that case we would define:

─ M+ = {Supplier Delivery Time};M- = {Supplier Delivery Cost}

5.2 Identification of Adaptation Requirements

After the dependency tree is generated (as discussed in Section 4.2), the next step is to
identify the adaptation requirements for the application in order to improve the
performance of the application. This activity relies on the analysis of the dependency
trees of the relevant KPIs of the application. Intuitively, this analysis may be
described as follows.

─ As a first step it is necessary to understand, which of the violations of the KPI
(i.e., which of the “red” blocks) should be prevented. For example, it may be the
case that all the possible violations should be avoided. In this case it is necessary
to find an adaptation strategy (consisting of possibly several adaptation actions)
preventing all of those situations. It is also possible to prevent violations only in
selected situations, e.g., the most frequent ones. In this case, the other violation
cases are ignored and excluded from the tree. We remark that this decision may

be done by the business analysts or even automatically, based on some
predefined criteria (e.g., for the cases where number of violations exceeds 10%).

─ Second, it is necessary to associate the violations with the influential factors that
might help avoiding the violations. This is done by identifying all the metrics in
the nodes (and their sub-ranges) on the path from the “red” node to the root of
the tree. If some of these metrics is improved such that there are no violations,
then the adaptation will be successful. In the above dependency tree in order to
improve for the central “red” node, it is enough to improve the metric “Delivery
Time Supplier” to the value of < 1. On the other hand, in order to improve for
the rightmost “red” node it is not enough to improve the value of the “Delivery
Time Shipper” to the value of < 4. Indeed, the other violations are still possible
and the other metrics should be improved as well. If a running instance is to be
adapted and some of the metric values are already known for this instance, then
obviously some paths of the tree leading to “red” nodes might be irrelevant for
that instance and can be excluded from further consideration.

─ The final step takes into account the need to consider all the selected “red”
nodes together in order to merge the appropriate actions into a complete set of
adaptation requirements.

In order to realize this approach, we rely on the algorithms provide by the decision
procedure for the Satisfiability Modulo Theories (SMT [7]). In this problem, the goal
is to find solutions for a set of logical constraints (formulas) with respect to
combinations of background theories, such as the theory of real or integer numbers,
Boolean arithmetic, and even complex data structures. In other words, given a
combination of formulas, the decision procedure may find assignments of the terms in
the formula that satisfy the combination of constraints. Below we show how the
problem of finding adaptation requirements may be expressed in terms of SMT
problem, and how the adaptation requirements may be then extracted.

Our goal is to avoid all the paths in the tree that lead to the “red” leaf nodes. That
is, the combination of the “metric-range” pairs on the path should not occur. This
combination may be represented as a conjunction of expressions over those metrics,
i.e., for a path with n nodes we built an expression (μ1,r1) ∧ … ∧ (μn,rn), where (μi,ri)
represents an expression over the ith metric on the path. For instance, for the central
“red” path in the example tree the expression would be as follows:

(2<“Del. Time Shipment”<4) ∧ (“Order in Stock”=yes) ∧ (“Del.Time Supplier”>1)

If in case of running instance adaptation, some of these metrics values are known,
then the expression can be simplified. If, e.g., “Order in Stock” is false, then the
expression is already known to be false and thus this “red” path is already avoided for
this instance. If “Order in Stock” is true, then it can simply be removed from the
expression, thus simplifying later analysis.

Formula 1. In order to avoid those paths, our goal is to make all those expressions
false, i.e., for m paths, we have to find possible assignments of metric values such that
the following formula becomes true1:

1 Here the notation ¬rij stands for complement of the specified range.

((μ11,¬r11) ∨ … ∨ (μn1,¬rn1)) ∧ … ∧ ((μ1m,¬r1m) ∨ … ∨ (μnm,¬rnm))

It is easy to see that if the formula is satisfied, then neither “red” node is reachable.
The result of the analysis is represented as a set of alternatives, each of which
contains the list of metrics that should be adapted and their expected ranges. In order
to carry out the analysis task we use the MathSAT tool [8], which implements the
SMT decision procedure.

More precisely, we define the resulting adaptation requirements as R = {A1,…,An},
where Ai = { (μ1i,r1i),…,(μmi,rmi)} is a set of metric-range pairs that should be achieved
in order to address the adaptation needs.

Example 3. We present the approach using the dependency tree depicted in Fig. 2
(we assume that the goal in the example is to avoid any of possible violations). For
the metrics “Delivery Time Shipment” (Sh), “Delivery Time Supplier” (Su), and
“Order in Stock” (O), and for the three paths to “red” nodes we construct the
following three constraints:

─ Sh < 2 ∧ O=no ∧ Su > 3; Sh > 2 ∧ Sh < 4 ∧ O=no ∧ Su > 1; Sh > 4
Based on these clauses, we need to satisfy the following formula:
─ (Sh > 2 ∨ O=yes ∨ Su < 3) ∧ (Sh < 2 ∨ Sh > 4 ∨ O=yes ∨ Su < 1) ∧ (Sh < 4).

The result of the analysis provided by the tool represents the following
alternatives:

─ (2 < Sh < 4) and (Su < 1)
─ (Sh < 2) and (Su < 3)
─ (O=yes) and (Sh < 4)
That is, to avoid violations of the KPI it is necessary to improve the metric

“Delivery Time Supplier” to the value < 1 and the metric “Delivery Time Shipment”
to the value from 2 to 4, or alternatively improve the metric “Delivery Time Supplier”
to the value < 3 and the metric “Delivery Time Shipment” to the value < 2, or “Order
in Stock” to become true and the “Delivery Time Shipment” to the value in range < 4.
Note that as the “Order in Stock” metric is not adaptable, the third alternative is not
relevant for adaptation of process models (future process instances); however it could
be used for adaptation of running process instances where O=yes.

5.3 0B0B0BIdentification of Adaptation Strategies

After the adaptation requirements are identified, the next step is to associate possible
adaptation strategies which should lead to KPI fulfillment, i.e. the sets of adaptation
actions that adapt the corresponding influential factors. As described in Section 5.1,
for adaptable metrics a set of possible adaptation actions has been specified. The first
step is thus to come up with alternative adaptation strategies, and in a second step to
select one of those strategies in an optimal way.

The algorithm for identifying adaptation strategies is represented in Fig. 3. The set
of strategies contains the strategies for all the alternatives. For every alternative the
following procedure is applied (lines 4-10). For each of the metric to be adapted, we
select the set of actions that improve it without negatively affecting other metrics to
be adapted (line 9). If this set is empty for some metric, the alternative cannot be

satisfied and an empty result is returned. Otherwise, a Cartesian product of those
actions with the actions for other metrics is created (lines 11-13). The resulting set of
strategies is returned. For the sake of simplicity we omit here formal proofs of the
algorithm correctness.

It is easy to see that any of the strategies extracted in this way will satisfy the
identified adaptation requirements. However, the effect of different adaptation
strategies on the SBA is not the same. This is because adaptation strategies depending
on contained adaptation actions differ in their negative effects on certain applications
metrics.

Fig. 3. Strategy selection algorithm

Formula 2. To order the strategies we adopt a heuristic, in which the strategy with
less negative effects is more preferable. To accomplish this, each strategy s∈S is
assigned a natural number ε- that represents a number of negative effects the actions
of the strategy have:

∑
=

−− =
||

1
|)(|

s

i
iaMε

All the strategies are then order according to this number: the lower this number is the
more the adaptation strategy is preferred. Note that even if the two actions in the
strategy negatively affect the same metric, the effect is counted twice as it may have
stronger impact. However, other approaches and heuristics for the selection of an
optimal adaptation strategy may be thought of. Some of them are discussed in the
following section.

Example 4. Consider the adaptation requirements identified in Example 3. Two
metrics should be improved, namely “Delivery Time Supplier” (to the value < 1) and
the metric “Delivery Time Shipment” (to the value < 4). Assume also that for those
two metrics the following adaptation actions contribute positively:

1 let S = ∅ // set of resulting strategies
2 for each A

i
 ∈ R

3 S = S ∪ strategies(A
i
)

4 function strategies(A)
5 let S

A
 = {∅} // set of strategies for A, initially contains an empty set

6 for each (•,r) ∈ A
7 let S’ = S

A
// temporary set of partial strategies built on previous steps

8 S
A
= ∅

9 let act={a | •∈M+(a)∧ forall(•’,r’)∈A,¬(•’∈ M-(a))}
10 if act=∅ return ∅ // the whole alternative cannot be achieved
11 for each a ∈ act // built a Cartesian product of actions
12 for each s ∈ S’
13 S

A
= S

A
 ∪ {s ∪ {a}}

14 return S
A

─ For the metric “Delivery Time Shipment”: a11 re-negotiation of the existing
SLA; a12 outsource shipment process.

─ For the metric “Delivery Time Supplier”: a21 “find-bind” new supplier; a22
substitute with a predefined supplier.

It is easy to see that the possible alternative strategies in this case are:
─ a11 and a21 (i.e., re-negotiate the SLA and find new supplier);
─ a12 and a21 (i.e., outsource shipment and find new supplier);
─ a11 and a22 (i.e., re-negotiate the SLA and substitute supplier);
─ a12 and a22 (i.e., outsource shipment and substitute supplier).

6 Discussion

In the following we will discuss the limitations of our approach and identify possible
extensions which are part of our future work.

One of the main limitations of our approach so far is that we do not estimate the
effect of single adaptation actions on the overall result of the adaptation strategy. We
so far use the constraints on metrics which are given on the branches of the
dependency tree as sole adaptation requirements which can lead in some cases to a
suboptimal adaptation. This is because the dependency tree is based on historical
process instances and does not take possible adaptations and resulting effects into
account. If we for example renegotiate the delivery time with the shipper to < 1
(instead of < 2 extracted from the tree) then it is unclear whether the delivery time of
supplier has to be adapted at all or to which value. We need thus a possibility to
estimate the effect of the adaptation actions on the overall result. Therefore, one could
use QoS aggregation techniques based on process structure (e.g., similar to the ones
used in [9] or [10]) in order to calculate based on process structure the effects of such
a change. Also for estimating the effects, the use of regression trees which show
numerical value ranges of KPIs (instead of a simple “green”/”red” classification)
would be more helpful in that case.

Another problem which can arise is that the dependency tree does not display the
quality factors which can be adapted but other more influential yet unadaptable
metrics. As discussed in [2] this problem can be dealt with by either excluding some
metrics from analysis or by using drill down techniques. In our case, the problem
could be dealt with by using only adaptable potential influential factors during
analysis for generating the dependency tree; i.e. the dependency tree in that case
would only contain adaptable metrics.

Finally, the identification of adaptation strategies as well as their ordering could be
optimized in several ways. First, it is possible to define global SBA constraints as a
metric that should not be negatively affected by any of the adaptation actions. If some
action may violate such a constraint, it should be excluded. Both the simple metrics
and complex KPIs may be used for this purpose. In the latter case it is necessary to
take into account also those metrics, on which KPI depends. To accomplish this, the
strategy selection algorithm may be extended. Second, it is also possible to associate
preferences to the adaptation actions, i.e., explicitly state that one action is more
preferable than the other. The ordering of strategies should take this information into

account giving the precedence to the more preferable strategies. Third, if it is possible
to capture the effect of the adaptation action onto the metric with a higher precision
(e.g., instead of simple positive/negative contribution give a numerical value or even
specify the effect of the action on the metric value), then the analysis should give
precedence to the actions with better effect. Finally, it is possible also to exploit the
relation between the metric and the number of KPI violations. This would allow also
for ordering the requirements: the more violations are associated with the metric
value, the more important it is. The adaptation actions, therefore, should be selected
accordingly.

7 Related Work

The field of QoS-aware adaptable SBAs has only recently been given attention, which
is also reflected in the scarce amount of related literature. There are no approaches, to
the best of our knowledge, that enable adaptation of SBAs based on quality
characteristics yet in an integrated manner across all layers, based on monitoring and
analysis of KPIs and the corresponding influential factors.

There are several existing works in the context of QoS-aware service compositions
[9, 11] which describe how to create service compositions which conform to global
and local QoS constraints taking into account process structure when aggregating QoS
values of atomic services. These approaches can be used for QoS-based adaptation by
replanning the service composition during monitoring [12]. Our approach is different
in that we not only take into account QoS but also quality characteristics from other
SBA layers and perform analysis based on their dependencies. We do not (yet) exploit
information on process structure during dependency analysis, as the approach
described in [10], but use decision tree algorithms instead.

Closely related to our approach is iBOM [13] which is a platform for monitoring
and analysis of business processes based on machine learning techniques. It focuses
on similar analysis mechanisms as in our approach, but does not deal with adaptation
of SBAs by extracting adaptation requirements from the decision trees and
automatically deriving adaptation strategies, but uses simulation and what-if analysis
techniques instead.

Work on service composition adaptation is available and the existing approaches
that do not focus on QoS-awareness of SBAs have been classified. The available
approaches are mechanisms for service composition adaptation can similarly be
borrowed in the approach presented in this paper as adaptation mechanisms on the
service composition level [5, 14].

8 Conclusions and Future Work

In this paper we have presented a novel adaptation approach for SBAs based on
quality factor analysis. We have extended previous work on quality factor analysis by
showing how the resulting dependency tree can be used for adaptation purposes. In
particular we have shown how to model adaptation actions and associate them with

quality metrics, how to extract adaptation requirements from the dependency tree and
come up with an adaptation strategy.

Our future work involves extending the approach as discussed in Section 6. In
particular, the model of metrics and adaptation actions can be extended by adding
more complex descriptions of the effects on the metrics. One could also use
adaptation-specific techniques to predict and estimate those effects. We will
implement the approach by extending the existing implementation of process quality
factor analysis to support the adaptation phase as described in this paper and evaluate
the approach experimentally based on a real-world application.

Acknowledgements The research leading to these results has received funding from
the European Community’s 7th Framework Programme under the Network of
Excellence S-Cube Grant Agreement no. 215483.

References

1. Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer 11, 2007.

2. Wetzstein, B.; Leitner, P.; Rosenberg, F.; Brandic, I.; Dustdar, S.; Leymann F.: Monitoring
and Analyzing Influential Factors of Business Process Performance. In Proceedings of
EDOC 2009, Auckland, New Zealand, 2009.

3. Council, S.: Supply Chain Operations Reference Model Version 7.0. 2005.
4. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.

2nd edition. Morgan Kaufmann, 2005.
5. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.: Extending

BPEL for Run Time Adaptability. In Proceedings of EDOC 2005, Enschede, The
Netherlands, 2005.

6. Danylevych, Olha; Karastoyanova, Dimka; Leymann, Frank: Optimal Stratification of
Transactions. In Proceedings of ICIW 2009, Venice, Italy, 2009.

7. Tinelli, C.: A DPLL-based Calculus for Ground Satisfiability Modulo Theories. In
Proceedings of JELIA-02, volume 2424 of LNAI, pages 308{319. Springer, 2002.

8. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S,
Sebastiani, R.: An Incremental and Layered Procedure for the Satisfiability of Linear
Arithmetic Logic. In Proceedings of TACAS'05, volume 3440 of LNCS. Springer, 2005.

9. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware Middleware
for Web Services Composition. IEEE Trans. on Software Engineering, 30(5), May 2004.

10. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M. C.: Monitoring Dependencies for
SLAs: The MoDe4SLA Approach. In Proceedings of SCC 2008. Washington, DC, USA,
2008.

11. Jaeger, M. C., Muhl, G., Golze, S.: QoS-aware Composition of Web Services: An
evaluation of selection algorithms. In Proceedings of COOPIS 2005, Cyprus, 2005.

12. Canfora, G., di Penta, M., Esposito, R., Villani, M. L.: QoS-Aware Replanning of
Composite Web Services. In Proceedings of ICWS 2005, Orlando, USA, 2005.

13. Castellanos, M., Casati, F., Shan, M.C., Dayal, U.: iBOM: A Platform for Intelligent
Business Operation Management. In: Proceedings of the 21st International Conference on
Data Engineering (ICDE'05). (2005) 1084-1095

14. Karastoyanova, D., Leymann, F., Buchmann, A.: An Approach to Parameterizing Web
Service Flows. In Proceedings of ICSOC 2005, Amsterdam, The Netherlands, 2005.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.4

A.5 Using Soft Constraints to Make QoS-Aware Service Selections

Authors:

UCBL: Mohamed Anis Zemni

UCBL: Salima Benbernou

UPM: Manuel Carro

• Submitted to: ICSOC 2010

External Final Version 1.2, Dated September 17, 2010 78

A Soft Constraint-Based Approach
to QoS-Aware Service Selection �

Mohamed Anis Zemni1, Salima Benbernou1, Manuel Carro2

1 LIPADE, Université Paris Descartes, France
2 Facultad de Informática, Universidad Politécnica de Madrid, Spain

mohamedaniszemni@gmail.com, salima.benbenrou@paridescartes.fr,
mcarro@fi.upm.es

Abstract. Service-based systems should be able to dynamically seek replace-
ments for faulty or underperforming services, thus performing self-healing. It
may however be the case that available services do not match all requirements,
leading the system to grind to a halt. In similar situations it would be better to
choose alternative candidates which, while not fulfilling all the constraints, allow
the system to proceed. Soft constraints, instead of the traditional crisp constraints,
can help naturally model and solve replacement problems of this sort. In this work
we apply soft constraints to model SLAs and to decide how to rebuild composi-
tions which may not satisfy all the requirements, in order not to completely stop
running systems.
Keywords: Service Level Agreement, Soft Constraints.

1 Introduction
A (web) service can be defined as a remotely accessible software implementation of
a resource, identified by a URL. A set of protocols and standards, such as WSDL, fa-
cilitate invocation and information exchange in heterogeneous environments. Software
services expose not only functional characteristics, but also non-functional attributes
describing their Quality of Service (QoS) such as availability, reputation, etc. Due to
the increasing agreement on the implementation and management of the functional as-
pects of services, interest is shifting towards non-functional attributes describing the
QoS. Establishing QoS contracts, described in the Service Level Agreement (SLA),
that can be monitored at runtime, is therefore of paramount importance. Various tech-
niques [1] to select services fulfilling functional and non-functional requirements have
been explored, some of them based on expressing these requirements as a constraint
solving problem [2, 3] (CSP). Traditional CSPs can either be fully solved (when all re-
quirements are satisfied) or not solved at all (some requirements cannot be satisfied).
In real-life cases, however, over-constraining is common (e.g., because available ser-
vices offer a quality below that required by the composition), and problems are likely
not to have a classical, crisp solution. Solving techniques for soft CSPs (SCSP) [4–6]
can generate solutions for overconstrained problems by allowing some constraints to
remain unsatisfied.
� The research leading to these results has received funds from the European Community’s

Seventh Framework Programme FP7/2007-20013 under grant agreement 215483 (S-CUBE).
Manuel Carro was also partially supported by Spanish MEC project 2008-05624/TIN DOVES
and CM project P2009/TIC/1465 (PROMETIDOS).

A C-semiring is a tuple �A, +,×,0,1� s.t.

– A is a set and 0 ∈ A, 1 ∈ A.
–

�
(the additive operation)a is defined on subsets of A as follows:

• + is commutative (a + b = b + a), associative (a + (b + c) = (a + b) + c), with unit
element 0 (a + 0 = a) and absorbing element 1 (a + 1 = 1).

• � ∅ = 0 and for all a ∈ A,
�{a} = a.

• Given any set of indices S,
�

i∈S(
�

Ai) =
�

({�i∈S Ai}) (flattening).
– × (the multiplicative operation) is associative, commutative, a× 1 = a and a× 0 = 0.
– × distributes over +, i.e., a× (b + c) = (a× b) + (a× c).

a Written as infix + when applied to a two-element set.

Fig. 1. Definition of a C-Semiring for Soft Constraints.

Our framework takes into consideration the penalties agreed upon on the SLA by
building a new (Soft) Service Level Agreement (SSLA) based on preferences where
strict customer requirements are replaced by soft requirements allowing a suitable com-
position. This agreement has to include penalty terms to be applied while the contract
terms are violated.

2 Soft Constraints in a Nutshell

A CSP defines a set of variables whose ranges we assume a finite domain (FD)3 and a
set of constraints which restrict the values these variables can take. A solution for a CSP
is an assignment of a value to every variable s.t. all the constraints are simultaneously
satisfied. Soft constraints [5, 6] generalize classical CSPs by adding a preference level
to every tuple in the domain of the constraint variables. This level can be used to obtain
a suitable solution which may not fulfill all constraints, which optimizes some metrics,
and which in our case will be naturally applied to the requirements of the users.

The basic operations on soft constraints (building a constraint conjunctions and pro-
jecting on variables) need to handle preferences in a homogeneous way. This requires
the underlying mathematical structure of classical CSPs to change from a cylindrical
algebra to a semiring algebra, enriched with additional properties and termed a C-
semiring (Figure 1). In it, A provides the levels of preference of the solutions and it
can be proved that it is a lattice with partial order a � b iff a + b = b, minimum 0, and
maximum 1. When solutions are combined or compared, preferences are accordingly
managed using the operations × and +. Note that the theory makes no assumptions as
to what the preferences mean, or how they are actually handled:× and + are placehold-
ers for concrete definitions which can give rise to different constraint systems, such as
fuzzy constraints, traditional constraints, etc.

Figure 2 summarizes some basic definitions regarding soft constraints. A constraint
takes a tuple of variables and assigns it a tuple of concrete values in the domain of the

3 CSPs can be defined on infinite domains, but assume a FD here because it can accommodate
many real-life problems, as witnessed by the relevance of FD in industrial applications, and
because soft constraint theory requires finiteness.

2

Definition 1 (Constraint). Given a c-semiring �A, +,×, 0, 1�, a set of variables V , and a set
of domains D, one for every variable in V , a constraint is the pair �def, con� where con ⊆ V
and def : D|con| → A.

Definition 2 (Soft Constraint Satisfaction Problem SCSP). A SCSP is a pair �C, con� where
con ⊆ V and C is a set of constraints. C may contain variables which are not in con, i.e.,
they are not interesting for the final result. In this case the constraints in C have to be projected
onto the variables in con.

Definition 3 (Constraint combination). Two constraints c1�def1, con1� and c2 =
�def2, con2� can be combined in c1 ⊗ c2 = �def, con� by taking all the variables in the
original constraints (con = con1

�
con2) and assigning to every tuple in the new con-

straint a preference value which comes from combining the values in the original constraints:
def(t) = def1(t ↓con

con1)×def2(t ↓con
con2), with t ↓X

Y denoting the projection of tuple t , which
is defined on the set of variables X , over the set of variables Y ⊆ X .

Definition 4 (Projection). Given a soft constraint c = �def, con� and a set of variables I ⊆
V , the projection of c over I , denoted by c ⇓I is the constraint �def �, con�� where con� =
con

�
I and def �(t�) =

�
{t|t↓con

con∩I
=t�} def(t).

Definition 5 (Solution). A solution of a SCSP problem �C, con� is the constraint (⊗C) ⇓con,
i.e., the combination (conjunction) of all the constraints in C projected over all the variables
con of interest.

Fig. 2. Definitions for Soft Constraints.

variables, plus a preference value (belonging to the set A). Constraints can be com-
bined into other constraints (with ⊗, similar to conjunction) and projected (⇓X

Y) onto
a tuple of variables. The preference value of every tuple in a constraint conjunction is
worked out by applying × to the preference values of the tuples in the individual con-
straints. Projections eliminate “columns” from tuples and retain only the non-removed
tuple components. Repeated rows may then appear, but only one is retained, and its
preference is calculated applying + to the preferences of the repeated tuples. Since a
solution is a projection on some selected set of variables, the preferences of solutions
are naturally calculated using the projection operation. Usually the tuple with the high-
est preference value is selected as the “optimal” solution.

3 Soft Service Level Agreement and SCSPs
A Service Level Agreement (SLA) [7] is a contract between provider(s) and client(s)
specifying the guarantees of a service, the expected quality level, and the penalties to
be applied in case of unfulfillment of duties, and it is therefore an important quality
management artifact. The SLA can be used to identify the responsible of a malfunction
and to decide which action (if any) has to be taken. An SLA should, therefore, be
realistic, achievable, and maintainable.

An SLA has a rich structure from which we underline the properties of the services,
including those measurable aimed at expressing guarantees. This part provides a set
Υ of variables υi (whose meaning is explained in the service description) and their
domains δi ∈ ∆, which can be established by the metric attribute. A Soft SLA (SSLA)
is similar to a SLA but with the addition of a set of user preferences and of penalties

3

Definition 6 (Preference). The set Pr = {�δi, υi, ai�|δi ∈ ∆, υi ∈ Υ, ai ∈ A} where δi is
the sub-domain that the i-th preference belongs to, υi is the variable defining the preferences,
and ai is semiring value, representing the preferences in an SSLA.

Definition 7 (Penalty). The set Pn = {pni | ∃pri s.t. υi /∈ δi} represents the penalties.

Definition 8 (SSLA document). A SSLA document is a tuple ζ = �Υ, ∆, A, Pr, Pn, T �where
Υ is a set of variables vi, ∆ is a set of variable domains δi (one for each variable), Pr is a set
of preferences Pri, Pn is a set of penalties Pni to apply when the preferences are not satisfied
and T is a set of pairs �pri, pni� which associates preferences with the penalties to apply in
case of violation.

Fig. 3. Definitions related to a soft SLA.

associated to contract breaking (respectively, Pr and Pn). The preferences are used
to make a composition in the presence of unsatisfied requirements and the penalties
are used to refine found solutions and to protect each party from the violation of the
contract terms. These notions are depicted in Figure 3. The i-th penalty pni ∈ Pn is
applied when the i-th preference pri ∈ Pr is not satisfied.

3.1 Extending SCSP Using Penalties
We will adapt the SCSP framework to handle explicitly penalties for service selection
and to build a Soft Service Level Agreement including preferences and penalties. In this
framework, service selection has three phases:

1. Model the characteristics for the selection using soft constraints.
2. Assuming a pre-selection is made using functional requirements, rank candidate

services using non-functional requirements and the constraint preferences.
3. We assign penalties to unmet user preferences, and these penalties are used to rank

solutions having the same constraint preferences.

Figure 4 shows the definitions for this extended SCSP framework. We extend the
application of semiring operations to penalties. Variables are assumed to take values
over subdomains which discretize a continuous domain, and which for brevity we rep-
resent using identifiers in D{}. The constraint preference function def is also adapted
in order to apply it both to preferences and to penalties. The projection operation is kept
as in the SCSP framework.

3.2 An Example
A delivery service has an order-tracking web service. Companies wishing to hire this
service want to have in the contract non-functional criteria such as availability, reputa-
tion, response time and cost.

Phase 1 Let CS = �Sp, D{}, V � be a constraint system and P = �C, con� be the
problem to be solved, where V = con = {Availability, Reputation, response Time, coSt},
D{} = {{a1, a2}, {r1, r2}, {t1, t2, t3}, {s1, s2}}, Sp = �[0, 1], Pn, max, min, 0, 1�,
C = {c1, c2, c3, c4}. For simplicity, variables and their domains have been written
in the same order.

4

Definition 9 (CP-semiring). A CP-semiring is a tuple S = �A, Pn, +,×, 0, 1�, extending a
C-semiring. A and Pn are two sets with lattice structure stating preference values for solutions
and penalties. Operations × and + are applied when constraints are combined or projected.

Definition 10 (Constraint System). A constraint system is a tuple CS = �S, D{}, V �, where
S is c-semiring, D{} represents the set of identifiers of subdomains, and V is the ordered set
of variables.

Definition 11 (Constraint). Given a constraint system CS = �Sp, D{}, V � and a problem
P = �C, con� , a constraint is the tuple c = �defc, type�, where type represents the type of
constraint and defc is the definition function of the constraint, which returns the tuple

def : D
|con|
{} → �pr, pn�,

Definition 12 (Soft Constraint Satisfaction Problem SCSP). Given a constraint system
CS = �S, D{}, V � , an SCSP over CS is a pair P = �C, con�, where con , called set of
variables of interest for C , is a subset of V and C is a finite set of constraints, which may
contain some constraints defined on variables not in con .

Fig. 4. CP-Semiring.

A set of penalties, ranked from the most to then less important one, has been set:
pni � pnj if i ≤ j. The above shown values of the variable domains comes from a dis-
cretization such as availability ∈ {[0, 0.5[, [0.5, 1]}, reputation ∈ {[0, 0.6[, [0.6, 1]},
response time ∈ {[20,∞[, [5, 20[, [0, 5[}, cost ∈ {[1000, 1500[, [1500, 3000]}.

Let us consider the following constraints: c1 = �defc1, {availability, reputation}�,
c2 = �defc2, {response time}�, c3 = �defc3, {availability, reputation, cost}� , c4 =
�defc4, {reputation, response time}�, where the preference values and corresponding
penalties are in Table 1. For example, for the tuple �a2, r1�, attributes “availability” and
“reputation” are respectively assigned subdomains [0.5, 1] and [0, 0.6[. The function
defc1(�a2, r1�) = �0.5, pn3� shows that these attribute values have a preference 0.5
and company is ready to sign away this preference for a penalty pn3.

Phase 2 Given the model, we define constraint combination to keep the minimum value
of preferences (resp. for the penalties). For example defc1(�a2, r1�) ⊗ defc2(�t3�) =
min(�0.5, pn3�, �0.25, pn6�) = �0.25, pn3� and so on with all the tuples to obtain c1,2.
Next, we would combine c1,2 and c3 to get c1,2,3 = c1,2⊗ c3 and so on, until all con-
straints have been combined. Table 2 shows the results of combining all the constraints.

�A, R� defc1 �T � defc2 �A, R, S� defc3 �R, T � defc4
�a1, r1� �0,−� �t1� �0.25, pn6� �a1, r1, s1� �0.25, pn8� �r1, t1� �0.5, pn6�
�a1, r2� �0.25, pn1� �t2� �0.5, pn5� �a1, r1, s2� �0.25, pn1� �r1, t2� �0.5, pn5�
�a2, r1� �0.5, pn3� �t3� �1, pn7� �a1, r2, s1� �0.5, pn1� �r1, t3� �0,−�
�a2, r2� �0.75, pn3� �a1, r2, s2� �0.25, pn3� �r2, t1� �0.75, pn2�

�a2, r1, s1� �0.75, pn9� �r2, t2� �0.75, pn4�
�a2, r1, s2� �0.5, pn8� �r2, t3� �1, pn2�
�a2, r2, s1� �0.75, pn2�
�a2, r2, s2� �0.25, pn1�

Table 1. Constraint definitions.

5

�A, R, T, S� �pr, pn� �A, R, T, S� �pr, pn� �A, R, T, S� �pr, pn� �A, R, T, S� �pr, pn�
�2, 2, 3, 1� �0.75, pn2� �2, 2, 1, 2� �0.25, pn1� �1, 2, 1, 1� �0.25, pn1� �1, 1, 3, 2� �0.0,−�
�2, 2, 2, 1� �0.50, pn2� �1, 2, 3, 2� �0.25, pn1� �2, 2, 1, 1� �0.25, pn2� �1, 1, 3, 1� �0.0,−�
�2, 1, 2, 2� �0.50, pn3� �1, 2, 3, 1� �0.25, pn1� �2, 1, 1, 2� �0.25, pn3� �1, 1, 2, 2� �0.0,−�
�2, 1, 2, 1� �0.50, pn3� �1, 2, 2, 2� �0.25, pn1� �2, 1, 1, 1� �0.25, pn3� �1, 1, 2, 1� �0.0,−�
�2, 2, 2, 2� �0.25, pn1� �1, 2, 2, 1� �0.25, pn1� �2, 1, 3, 2� �0.0,−� �1, 1, 1, 2� �0.0,−�
�2, 2, 3, 2� �0.25, pn1� �1, 2, 1, 2� �0.25, pn1� �2, 1, 3, 1� �0.0,−� �1, 1, 1, 1� �0.0,−�

Table 2. Ordered constraint combinations with preferences and penalties.

Phase 3 The set of solutions is ranked by preferences and then by penalties (already in
Table 2). The solution with highest rank is chosen first. If it turns out not to be feasible,
the associated penalty is applied and the next solution is chosen, and so on.

3.3 Mapping SSLA onto SCSP Solvers
Given the our design of an SSLA, mapping it into a SCSP is very easy: variables vi in
the SSLA are mapped onto the corresponding vi in the SCSP; SSLA domains δi are dis-
cretized and every discrete identifier is a domain for a SCSP variable; and preferences
and penalties (both lattices) are handled together by the def function, so they can be
mapped to the A set in a C-semiring with an adequate definition of the def function.

4 Conclusion
We have presented a soft constraint-based framework to seamlessly express QoS prop-
erties reflecting both customer preferences and penalties applied to unfitting situations.
The application of soft constraints makes it possible to work around overconstrained
problems and offer a feasible solution. Our approach makes easier this activity thanks
to ranked choices. Introducing the concept of penalty in the Classical SCSP can also be
useful during the finding and matching process. We plan to extend this framework to
also deal with behavioral penalties.

References

1. Carlos Müller, Antonio Ruiz-Cortés, and Manuel Resinas. An Initial Approach to Explaining
SLA Inconsistencies. In Athman Bouguettaya, Ingolf Krueger, and Tiziana Margaria, editors,
Service-Oriented Computing (ICSOC 2008), volume 5364 of LNCS, pages 394–406, 2008.

2. Ugo Montanari. Networks of Constraints: Fundamental Properties and Application to Picture
Processing. Information Sciences 7, pages 95 – 132, 1974.

3. Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.
4. S. Bistarelli. Semirings for Soft Constraint Solving and Programming. Springer, 2004.
5. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-

tion and optimization. J. ACM, 44(2):201–236, 1997.
6. S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In Proc. IJCAI95,

1995.
7. Philip Bianco, Grace A.Lewis, and Paulo Merson. Service Level Agreements in Service-

Oriented Architecture Environment. Technical Report CMU/SEI-2008-TN-021, Carnegie
Mellon, September 2008.

6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.4

A.6 Ad-hoc Management Capabilities for Distributed Business Processes

Authors:

UNIHH: Sonja Zaplata

UNIHH: Dirk Bade

UNIHH: Kristof Hamann

UNIHH: Winfried Lamersdorf

CoreMedia AG: Daniel Strassenburg

Geoflags GmbH: Benjamin Wunderlich

• Submitted to: BPSC 2010

External Final Version 1.2, Dated September 17, 2010 85

Ad-hoc Management Capabilities for
Distributed Business Processes ∗

Sonja Zaplata, Dirk Bade, Kristof Hamann, Winfried Lamersdorf
Distributed Systems and Information Systems

Computer Science Department, University of Hamburg, Germany
{zaplata|bade|hamann|lamersdorf}@informatik.uni-hamburg.de

Daniel Straßenburg1, Benjamin Wunderlich2

1CoreMedia AG, 2Geoflags GmbH, Hamburg, Germany
1Daniel.Strassenburg@coremedia.com, 2benjamin@geoflags.de

Abstract: Advanced business processes are mostly distributed and require highly flex-
ible management capabilities. In such scenarios, process parts often leave their initia-
tor’s direct sphere of influence – while management requires both monitoring as well
as instant reaction capabilities anytime during the overall execution of the process.
However, realizing such functions is often difficult, e.g. due to the heterogeneity and
temporal disconnectivity of some participating execution systems.

Therefore, this contribution proposes a two-tier concept for monitoring and con-
trolling distributed processes by representing a process management system as a man-
ageable resource according to the Web Service Distributed Management (WSDM)
standard. Based on a minimal shared model of management capabilities it allows to
define customized events and processing rules for influencing business processes ex-
ecuted on a remote (and even on a temporarily disconnected) process management
system. Applicability is demonstrated by a scenario-based evaluation on distributed
WS-BPEL and XPDL processes and is also tested in the specific context of mobile
process management.

1 Motivation

Today’s competitive business collaborations highly benefit from transparency and visibil-
ity of the status of their private business process networks because these most often relate
best to the key performance indicators (KPIs) of the participating organizations. Within
a single organization, business activity monitoring (BAM) technologies support real-time
analytics about running business transactions and allow for the correlation of events for
causalities, aggregates, thresholds, and alerts based on user-defined preferences. The ana-
lyzed information is delivered in (near) real time and provides an important basis to detect
failures and non-compliances, to react to them accordingly and in sufficient time and,
thus, to optimize the execution of such intra-organizational business processes in whole or
in part.

However, to stay competitive and provide new value-added products and services, often
also cross-organizational collaborations become necessary which span business processes

∗The research leading to these results has received funding from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

Site A

Site B

BPMS 1

BPMS 2

(a) Subcontracting [vdA00]

BPMS 4

BPMS 3BPMS 2

BPMS 1

Site A

Site B

Site D

Site C

Site A Site B Site C Site D

BPMS 1 BPMS 2 BPMS 3 BPMS 4

Site A Site B

Site A

Site B

BPMS 1

BPMS 2

BPMS 1

BPMS 2

BPMS 3

Process
execution

(b) Process fragmentation [ZKML10]

Site A Site B Site C Site D

BPMS 1 BPMS 2 BPMS 3 BPMS 4

(c) Process instance migration [ZKML10]

BPMS 4

BPMS 3BPMS 2

BPMS 1

Site A

Site B

Site D

Site C

Site A Site B Site C Site D

BPMS 1 BPMS 2 BPMS 3 BPMS 4

Site A Site B

Site A

Site B

BPMS 1

BPMS 2

BPMS 1

BPMS 2

BPMS 3

Process
execution

(d) BPM-as-a-Service [ZL10]

Figure 1: Examples for the distribution of process execution

between several organizations and different process management systems. Thereby, not
only atomic resources such as employees, machines and services, but also the execution of
a process instance itself can be distributed. Figure 1 shows examples for such distribution,
realized as subcontracting of single process parts (e.g. to execute a subset of the process
in a different location), fragmentation of processes (e.g. due to non-functional aspects
such as execution time, performance, navigation cost and capacity utilization), process
instance migration from one workplace to another (e.g. if required services and resources
cannot be accessed from a centralized system because of technological differences or due
to security policies) and BPM-as-a-Service, where the execution of a business process is
fully operated by an external provider [vdA00, ZKML10, ZL10].

Resulting cross-organizational processes are often highly distributed and dynamic. How-
ever, respective process owners are still interested in monitoring and controlling the entire
process – even when it is partly executed on another system. Beyond that, it is even more
relevant to gather information about the execution on the remote system, because such par-
ticipants may be dynamically selected or exchanged on the basis of their workload, context
or QoS parameters. Cross-organizational monitoring and controlling capabilities can thus
support the controllability of active process parts and – based on the collected information
and experiences – also optimize the distribution and execution of upcoming processes.

As a current drawback, today’s BPM systems mostly consider monitoring and control-
ling of single centralized process executions, are often heterogeneous and do not provide
standardized runtime monitoring or management APIs [vLLM+08]. Therefore, an inte-
gration of runtime monitoring information from different source systems is hardly possi-
ble yet. Required possibilities to also take influence on a remote process execution and

to react to the observed behavior of the process (preferably in real time) are still chal-
lenging. This paper therefore aims at a concept and supporting infrastructure to flexibly
collect information about the execution of process parts running on a remote system, to
automatically process this information and to predefine and execute timely reactions to de-
tected complex situations where ever necessary. The approach presented here proposes a
service-based common management interface and uses complex event processing in order
to specify user-defined management rules and actions.

The rest of this paper is organized as follows: Section 2 motivates the need for a cross-
organizational management approach for distributed business processes based on existing
and related work. Section 3 presents a two-tier middleware extension for process man-
agement systems in order to support the provision and utilization of ad-hoc management
capabilities. Section 4 analyzes applicability of the proposed concepts based on a use case
and Section 5 concludes the paper.

2 Background and Related Work

Distributed and decentralized process execution becomes increasingly important and, con-
sequently, many such approaches demonstrate the relevance of this research (cp. [J+01]
for a brief overview). Research in the area of monitoring constitutes an important part of
the management of such distributed processes. Relevant previous approaches use the idea
of extending existing business process models by weaving in additional activities which
call-back to a central monitoring system (e.g. [BGG04, BG05]). Thereby, the user initiat-
ing the process is free to build up his own monitoring system according to his individual
preferences, e.g. accessing the status of the process instances, the duration of activities or
the actual navigation of control flow. As another advantage, neither agreements nor the
adaptation of the partner system are required. Nevertheless, many information interesting
for distribution, such as current system properties (e.g. the location where the process
is executed, or the current workload of the engine), the number and type of deployed
(but uninitiated) process models or the occurrence of internal process instance events (e.g.
errors) are not visible. Furthermore, for a consistent overall monitoring additional activ-
ities have to be inserted after each functional task. This may result in a huge monitoring
overhead, in the worst case expanding the original process description up to its double
size, potentially decreasing the performance of process execution considerably and mixing
business logic and technical management logic in an undesired way (cp. also [MWL08]).
Finally, appropriate actions depending on the results of the gathered information are lim-
ited, because running process activities cannot be influenced, e.g. canceled.

In order to preserve efficiency of process execution while at the same time allow quick and
adequate reactions to predefined situations, the subscription to process-related events and
their corresponding processing are attached a high importance [vA09]. Such events can
be divided into primitive and complex events. While a primitive event simply represents
some relevant change of a certain property (e.g. change of a process’s status, a workload
shift, etc.) complex events represent some arbitrarily complex inference of information
from one or more primitive or other complex events [Luc02]. This is achieved by so
called Complex Event Processing (CEP) and Event Stream Processing techniques. As an
example, the ESPER project 1 addresses business process management and automation,

1http://esper.codehaus.org/

i.e. process monitoring, BAM, reporting exceptions and operational intelligence. It uses
an SQL-based query language to express rules and provides a rule engine for complex
event processing. In order to address the heterogeneity of possible event sources, com-
mon agreements and standards for the representation of events (e.g. IBM’s Common Base
Event [IBM04]) as well as for the specification of complex event inference statements
are required. Regarding the latter aspect, several Event Query Languages have already
been proposed (cp. [Bui08]) and most of them are based on proprietary extensions of
SQL. But events and query languages are only one part of standardization requirements.
The specification of reactions to (complex) events is equally important. Rule-based ap-
proaches, especially Event-Condition-Action rules, are widely used but due to manifold
application domains neither the event, nor the condition or action representations are com-
monly agreed on. Wetzstein et al. [WKK+10] therefore present an approach to support
monitoring in service choreographies based on agreements about events to be shared with
other partners and using complex event processing to derive key performance indicators
for the overall process execution. However, this approach still only focuses on the sub-
scription to events, but neither offers the possibility for requesting monitoring information
on demand nor for initiating ad-hoc management actions.

As a foundation for such interoperability of heterogeneous workflow management sys-
tems, the Workflow Management Coalition (WfMC) has issued the Workflow Reference
Model. Accordingly, the reference model also contains administration and monitoring
tools for the management of users, resources and processes [WfM98]. A short overview
of management operations is proposed here, especially for user and role management (e.g.
changing privileges of users), audit management (e.g. querying logs and audit trails), re-
source control (e.g. concurrency levels, thresholds), process supervisory functions (e.g.
termination of process instances) and process status functions (e.g. fetching information
about process instances). Associated specifications for achieving workflow interoperabil-
ity (e.g. Wf-XML [SPG04]) are more detailed, but still focus on sending, installing and
retrieving process definitions to/from a remote process engine. However, the Wf-XML
idea of exchanging process management related information based on a common model
by using standard web services is, in general, very interesting.

The Web Services Distributed Management (WSDM) standard develops this idea a bit fur-
ther. It allows to specify an arbitrary resource (e.g. a printer) as a so-called manage-
able resource which offers a set of resource-dependent properties accessible by a self-
describing service interface [OAS06b]. Providing such resource properties requires to
specify a model as a mutual understanding of the resource to be managed. However, only
a model supporting the management of web services (MOWS) [OAS06a] themselves has
been developed. The first part of the work presented here therefore proposes a model to
exchange basic information and control options for business process management systems
involved in cross-organizational collaborations. A similar basis has been proposed by van
Lessen et al. [vLLM+08] for WS-BPEL process instances. In this paper, however, we are
extending this idea by also including relevant process model and process engine properties
as well as related events, and, as the second part of this work, presenting a loosely coupled
management component in order to analyze and process the received information either
on-site or remotely. As collaboration already implies a common ground, a certain amount
of trust between the participating partners can be assumed. It is therefore assumed that
collaboration partners do not intentionally provide false information, as such malicious
behavior would be detected later anyhow.

3 A Two-Tier Process Management Middleware

Prerequisite of the approach presented here is to consider a business process management
system as a manageable resource according to the understanding of WSDM. Defining the
elements and properties of this manageable resource, relevant functionalities such as data
retrieval, event subscription and control options can be exposed as services and can be
integrated in a standard registry and thus in existing and future applications. Therefore,
a minimal shared understanding of business process management, especially of process
models, process instances and process engines is required. The next section (Section 3.1)
proposes such an abstract model of a business process management system in the special
context of distributed processes. Based on that, Section 3.2 presents a component using
the resulting management services and events in order to specify user-defined monitoring
and management (re-)actions. Implementation within the framework of WSDM is shown
in Section 3.3.

3.1 Tier 1: Process Management System as a Manageable Resource

In order to find an adequate basis for a common understanding of the elements and at-
tributes relevant for distributed process management, an analysis of several current practi-
cal and theoretical approaches and systems as well as abstract models and concrete prod-
ucts for traditional and distributed business process management has been carried out. The
analysis included the Workflow Reference Model [WfM98], Workflow-Petrinets [vdA98]
and general Workflow Patterns [VDATHKB03] as abstract concepts; the Business Pro-
cess Modelling Notation (BPMN) [OMG09], XML Process Definition Language (XPDL)
and Business Process Execution Language for Web Services (WS-BPEL)[OAS07] as ways
to describe a process; and ActiveBPEL 2 and Apache ODE 3 as traditional and DEMAC
[ZKL09] as mobile process execution and management systems. The analysis lead to the
identification of most relevant management entities and a resulting basic model which is
shown in Figure 2. It holds the process management system as the manageable resource
which can be accessed by a service-based management interface either by pulling read-
only information about its entities (information interface), by asking for manipulation of
entity values (modification interface) or for receiving events emitted by the entities (event
interface). To provide information not only about the functional manageable resource, but
also about its management, a meta interface allows to access information about manage-
ment capabilities as well as operations for the configuration of the management interface,
e.g. to configure subscriptions for events.

In the context of distributed process management, the proposed entities of a process man-
agement system include (but are not limited to) the process models which are deployed to
the process engine, the process instances which are instantiations of these models (repre-
senting the processes which are currently running), and the process histories which contain
information about processes which have already been finished (cp. Figure 2). Furthermore,
to consider the special characteristics of distributed process management (such as mobility,
cooperation and dynamic assignment) the process management system has a relevant con-
text comprised of the intrinsic context of the process engine (e.g. system properties such
as workload or service availability), and the extrinsic context (e.g. location or weather).

2http://www.activevos.com/community-open-source.php
3http://ode.apache.org/

process instance

process management system

information modification events
meta services

management interface

process model

instantiate

event

process history

terminate

context

intrinsic
context

extrinsic
context

deploy/undeploy

status
change

context change

process model

activity

transition

predefined
performer

data type

from to

1

1

1

*

*

*

* use

use

10..1

1 1

* *

1

**

*

process instance

activity

transition

actual performer

from to

1

1

1

**

use

1

1

1 1

* *

**

*

instance id

model id
1

1

1

1

status

history

1

1

1

data value

1
1

data type

data field

1

*

1

*

1

*data field

status
1

1

condition
*

0..1
1

* use
condition

*

0..1

1

evaluation result

1
0..1

1

Figure 2: Process management system as manageable resource

Following existing research works in the area of context models (e.g. [SP04, HA08]), both
types of context can either be static (e.g. the identity of the owner of the system) or dy-
namic (e.g. the current workload). Generic context models which can be customized for
such application are e.g. proposed by [KZTL08].

Figures 3 and 4 show the refinement of the entities process model and process instance as
manageable resources. In particular based on the Workflow Reference Model [WfM98]
and XPDL [NM02], a process consists of activities which are connected by transitions to
define a control flow (potentially restricted by a condition), and a set of data fields using
a certain data type also defined within the process model. Furthermore, participants can
be predefined as required performers for specific activities (such as the swimlane concept
in BPMN [OMG09]) which is especially important in the context of distributed process
management as this construct contributes to the selection of partner systems. Although,
theoretically, all these entities can be reused in other processes (e.g. a data type), it is
important to notice that they belong to only one process here, i.e. changing them will only
affect this single process model. Besides, in order to enable a distributed execution and a
respective management, both model and instance need to have a unique identifier for the
correlation of requests.

A process instance (cp. Figure 4) extends its process model by implementing the associ-
ated runtime information. Most importantly, this involves the status of the running process
(e.g. executing, suspended, in error [SPG04]), the specific values of the data fields, the sta-
tus of the activities (e.g. running, skipped [SPG04]), the evaluation of transition conditions
(true/false) and the actual performers who are finally executing the activities. The latter is
interesting in case no performer is specified within the model, or for the case of deviances,
e.g. if the specified participant has again subcontracted a part of the assigned control flow
to another process management system. Finally, process histories reflect the entities of the
terminated process instances in a static way (not depicted).

According to existing approaches such as Wf-XML [SPG04], all entities contain a number
of sub entities and individual atomic properties, e.g. a process engine has a current work-
load expressed as the number of running process instances and CPU load, or a process
instance activity has a start time, a duration and an end time. Creation of entity instances
and changes of their properties’ values are effecting the associated events. In order to al-
low manageability, exchanging information about a resource property requires an uniform
and unambiguous representation and interpretation of values, e.g. represented as standard

process instance

process management system

information modification events
meta services

management interface

process model

instantiate

event

process history

terminate

context

intrinsic
context

extrinsic
context

deploy/undeploy

status
change

context change

process model

activity

transition

predefined
performer

data type

from to

1

1

1

*

*

*

* use

use

10..1

1 1

* *

1

**

*

process instance

activity

transition

actual performer

from to

1

1

1

**

use

1

1

1 1

* *

**

*

instance id

model id
1

1

1

1

status

history

1

1

1

data value

1
1

data type

data field

1

*

1

*

1

*data field

status
1

1

condition
*

0..1
1

* use
condition

*

0..1

1

evaluation result

1
0..1

1

Figure 3: Process model as manageable
resource

process instance

process management system

information modification events
meta services

management interface

process model

instantiate

event

process history

terminate

context

intrinsic
context

extrinsic
context

deploy/undeploy

status
change

context change

process model

activity

transition

predefined
performer

data type

from to

1

1

1

*

*

*

* use

use

10..1

1 1

* *

1

**

*

process instance

activity

transition

actual performer

from to

1

1

1

**

use

1

1

1 1

* *

**

*

instance id

model id
1

1

1

1

status

history

1

1

1

data value

1
1

data type

data field

1

*

1

*

1

*data field

status
1

1

condition
*

0..1
1

* use
condition

*

0..1

1

evaluation result

1
0..1

1

Figure 4: Process instance as manageable
resource

or complex data types, and a metric. Furthermore, the modifiability (e.g. read or read-
write), the availability of the property (e.g. before, during or after execution of the process
or the activity) and the mutability and frequency of updates should be specified. Due to
space limitations and similarity to existing meta models, the enumeration of relevant entity
properties and events should, however, not be part of this paper.

3.2 Tier 2: Management Component for Complex Event Processing

Providing informational and manipulative services and the possibility to subscribe to events
based on a common understanding such as established in Section 3.1, arbitrary manage-
ment applications can be composed in order to collect information and react to even com-
plex situations in a user-defined way. In this section, we present a loosely-coupled man-
agement component to support such operations.

The general methodology of the approach is depicted in Figure 5: The user who is initiat-
ing a controlled distributed execution of a process (in the following called the customer)
takes the original process description to be executed and creates an additional document
(management document) which holds the user’s requirements for the management of this
process (management rules). Here, the term management subsumes all objects, situations
and operations which are, from the customer’s perspective, relevant for the correct exe-
cution and administration of the distributed process and are not covered by the functional
business process description. Relevant objects are the entities of the model presented in
Section 3.1, e.g. process models, instances and data objects. Situations and operations
are described within the management document as complex situations and actions. An
example for such a situation-action pair is monitoring the duration of executing a specific
activity (object) and, in case a specified amount of time has passed and no progress be-
comes visible (situation), to restart the activity (action). However, also monitoring rules
that do not influence the execution of the process are possible (e.g. after each activity, its
performer, duration and current location should be logged) or distribution decisions and
actions can be supported (e.g. if the workload exceeds a specified threshold, the process
should be transferred to a process engine with a better capacity).

process modelsprocess instances
process
management
system

service-based
management
interface

events

...

...

management rule

execution of
individual
management
actions

event pattern
recognition
(→ CEP)

rule engine

initiation operation

management
document

rules
management
component

service-based
management
interface

management
document

rules

context

events modification information meta services

tier 1

tier 2

Figure 5: Management component to support customized management actions

Listing 1 shows the general syntax of a management rule as a part of the management doc-
ument. For administration purposes, each management rule has a name and, optionally, a
description. The rule pattern holds an event pattern to determine if a complex situation
has occurred or not. The rule action specifies the service to be executed, including param-
eters for the service call if necessary. Encapsulated as a composite service, even complex
actions can be defined. Furthermore, arbitrary system-external services, such as sending
an email, can be referenced.

1 MANAGEMENT-RULES
2 MANAGEMENT-RULE
3 NAME : <String>
4 [DESCRIPTION : <String>]
5 RULE-PATTERN : <Event-Pattern>
6 RULE-ACTION : <Service-Invocation>
7 END MANAGEMENT-RULE
8 ...
9 END MANAGEMENT-RULES

Listing 1: Structure of management rules

The management document is passed to the management component and the system re-
turns a management identifier as a reference to the management document. Thus, the cus-
tomer can adapt the management rules later if necessary, e.g. if management requirements
are changing or if a long-running process encounters unexpected problems to be solved.
Interpretation and processing of the management rules is executed by a rule engine (cp.
Section 3.3). If required, the relevant events are subscribed and event notifications are
passed to the rule engine in order to perform the pattern matching. If a specified pattern is
recognized, the rule engine initiates the execution of the corresponding actions.

Besides the management rules (line 18 of Listing 2), the management document holds ad-
ditional information required for correlation, assignment and execution of processes and

rules. Therefore, general information (lines 3-7 of Listing 2) contains a management end-
point which is the unique identifier of the process management system to be supervised,
and a management mode which defines when the management should end. As the man-
agement starts with passing the management document (i.e. the rule engine starts listening
to the specified events) it can either terminate automatically when all process instances are
finished (management mode = “system”) or it can explicitly be finished by the customer
(management mode =“user”). The latter is relevant if the management should also observe
the process engine as a candidate for further distributions, if process history data is re-
quired later (i.e. for evaluation) or if the process model can be instantiated again from the
outside (which is e.g. the case for WS-BPEL processes which deploy their own service
interface for the initiation of new process instances). In case of an automatic termination,
the customer can optionally specify a notification endpoint in order to be informed once
the management has been finished. Termination of the management plays an important
role, because here all the rule patterns have to be removed from the rule engine, and the
associated event subscriptions have to be canceled.

1 MANAGEMENT-DOCUMENT
2

3 GENERAL-INFORMATION
4 MANAGEMENT-ENDPOINT : <URL>
5 MANAGEMENT-MODE : "system"|"user"
6 [NOTIFICATION-ENDPOINT : <URL>]
7 END GENERAL-INFORMATION
8

9 INSTANTIATION-INFORMATION
10 PROCESS-MODEL-REFERENCE : <STRING>
11 LOCAL-INSTANCE-REFERENCE : <STRING>
12 [INSTANTIATION-TIME : <DATE>]
13 [INSTANTIATION-DELAY : <INTEGER>]
14 [INSTANTIATION-PARAMETERS]
15 [BLOCKING-EVENT-TYPES]
16 END INSTANTIATION-INFORMATION
17

18 MANAGEMENT-RULES
19

20 END MANAGEMENT-DOCUMENT

Listing 2: Structure of the management document

The part of the instantiation information (cp. lines 9-16 in Listing 2) contains relevant data
about the process instances. It holds the reference to the associated process model (process
model reference) and a placeholder for the process instances (local instance reference)
which do not exist at the time of deployment, but which need to be referenced within the
rule patterns and actions for instance management. In case only one instance of the process
has to be assigned and executed by the remote system, the process can optionally be started
immediately, at a specified point of time or after a specified delay. In this case, also the
parameters for process instantiation have to be passed. Finally, the management document
specifies which events should be able to block the execution of a process instance (cp. line
15 in Listing 2). Such blocking events are required to enable immediate reactions without
having the problem that the process engine continues execution of the process although a
prompt management action should be performed on the basis of the determined situation.
Blocking events are only relevant for the monitoring of process instances and are thus also
part of the instantiation information.

In order to allow customizing the location of decision-making, the processing of events
and derivation of management reactions can optionally be executed on the remote system
or at the customer’s site. In the first case, the management document has to be transferred
to the remote system, all events are caught locally and the management actions are carried
out by the partner system. Thus, in general, process management data does not have to

be transferred over the network and consequently, the delay resulting from management
is minimized. This option is well suited in case that mobile participants are involved and
network connection is temporarily unavailable. In the second case, all information and/or
events are transferred to the customer and management reactions are determined here. This
is required if e.g. management decisions are confidential or need approval by a human
operator. However, this strategy may decrease performance of process execution and has
only few advantages over the existing approach of activity weaving as presented in Section
2. Furthermore, the customer has to run and maintain the tier 2 management component
in order to make the decisions – which may not be desired e.g. in the case of BPM-as-a-
Service scenarios (cp. Figure 1(d)). An attractive alternative is, however, the combination
of both strategies, e.g. having general monitoring data collected and processed by the
remote system and calling-back to the customer only in case of infrequent severe problems
by, e.g., sending an email.

3.3 Implementation

In order to use the WSDM framework, the model of relevant characteristics and rela-
tionships of process management system, process models, instances and context has been
represented as a WSDM resource properties document which is specified in XML. An
example for the representation of the property “WorkloadInfo” is depicted in Listing 3
and 4. As stated in Section 3.1, a meta description determines each property’s name, the
modifiability, the mutability, the expected frequency of mutation and the availability of the
property. Furthermore, XML-Schema (XSD) is used to specify structure and data type of
each property. The resource properties can be accessed using the WSDM web service op-
erations GetResourceProperty and UpdateResourceProperty as well as a set of additional
operations, e.g. for cancellation of process instances, which are altogether included in the
associated web service description (WSDL). The WSDL file also contains the location
where the service can be accessed, e.g. a URL. Finally, WS-Notification (WSN) topics for
subscription of the event interface have been specified and included, and for each event it
is specified whether it should be allowed to block the process execution in order to enable
a direct reaction.

The left side of Figure 6 shows an overview of the implementation with WSDM. In order
to interact with the manageable resource, the management consumer now only requires

rules

process management system

Resource
Property

Document
(Model)

information
modification

events
meta data

WSDM
WSA WSN WSRP XSD ...

WSDL,
EPR

GetResourceProperty

GetResourcePropertyResponse

Discovery

manageable resource

rules
Esper
Rule

Engine

operation
initiation

management component

Esper query
languageco

m
m

un
ic

at
io

n

coordination +
administration

events document store

Figure 6: Prototype implementation using WSDM and Esper

the Endpoint Reference (EPR) of the process management system, i.e. the information
from the WSDL file. After that, read-only or write requests as well as subscriptions for
events can be carried out by requesting a property of the resource properties document.
The requested resource respectively replies with a GetResourcePropertyResponse resp.
UpdateResourcePropertyResponse message in case of a successful operation or with an
exception in case of an error. In case the consumer wants to subscribe for an event, besides
the topic also the type of the event can be specified, i.e. if the event should block the
execution of the process or not.

1 <Property name="tns:WorkloadInfo"
2 modifiability="read-only"
3 mutability="mutable"
4 meta:mutfreq="meta:minutes">
5 <meta:availability>meta:always</meta:availability>
6 </Property>

Listing 3: Example for the meta-description of a BPM resource property within WSDM

1 <xsd:complexType name="WorkloadInfo">
2 <xsd:sequence>
3 <xsd:element name="RunningInstances" type="xsd:int">
4 <xsd:element name="CPULoad" type="xsd:float">
5 </xsd:sequence>
6 </xsd:complexType>

Listing 4: Example for the schema definition of a BPM resource property within WSDM

On side of the management component (cp. right side of Figure 6), the management docu-
ment is interpreted and stored for the time of its validity. The coordination and administra-
tion module is now responsible for the discovery of the specified management endpoint,
to subscribe for the required events and to manage time constraints and deadlines. The
received event stream is processed and tested against the user-defined event patterns. In
the prototype implementation, the complex event processing is done by the existing Esper
rule engine (cp. Section 2). As Esper expects expressions in the SQL-based Esper query
language, the abstract event pattern part of the management rules (cp. line 5 of Listing 1)
is represented by the respective terms of this language. A simplified example for a com-
plete management rule is presented in Listing 5. In this case, the process variable named
deadline within all instances of the process model with id=’1’ is updated if the execution
of an activity with id=4 takes longer than 60 seconds.

1 <Rule>
2 <Name>ExtendDeadline</Name>
3 <Trigger>
4 SELECT * FROM PATTERN
5 [EVERY (e1=ActivityStarted(activityId="4",modelId="1")
6 -> TIMER:INTERVAL(60 SEC)
7 -> NOT e2=ActivityFinished(activityId="4",modelId="1"))]
8 WHERE e1.instanceId=e2.instanceId
9 </Trigger>

10 <Action>
11 <Service epr="http://vsis.informatik.uni-hamburg.de/bpms.wsdl"
12 operation="UpdateResourceProperty">
13 <Param type="PropertyName"><Value>DataField</Value></Param>
14 <Param type="ProcessInstanceID"><Value>%{e1.instanceId}</Value></Param>
15 <Param type="DataFieldName"><Value>deadline</Value></Param>
16 <Param type="DataValue"><Value>60</Value></Param>
17 </Service>
18 </Action>
19 </Rule>

Listing 5: Example for a management rule with Esper event pattern and WSDM service invocation

4 Evaluation

So far, the prototype implementation as sketched above has been applied to two existing
distributed process management systems: first to the DEMAC [ZKL09] process engine
which uses XPDL processes and supports the runtime migration of process instances (cp.
Figure 1(c)) and, second, to the Sliver [HHGR06] process engine which uses a subset of
WS-BPEL processes. Both process engines can be applied for mobile process manage-
ment and had to be modified in order to implement the proposed management API. The
following example scenario is used to show the most important observations and results
also in comparison to two previous approaches.

4.1 Example Scenario

Figure 7 shows an example from the eErasmus eHigher Education (eEH) project [JL06],
which is is an international exchange program of higher education institutes among EU
countries. In order to facilitate a uniform exchange of students joining this program, allow
them to take courses at foreign universities and have the selected courses acknowledged by
the home university, a standardized process is proposed for all participating universities.
The simplified functional process used here involves subcontracting the host university for
approving the credentials necessary for taking courses there, allowing courses and exams
until a specified deadline and preparing the credentials achieved at the host university in
order to acknowledge them at the home university.

The distributed execution involves several management requirements which are expected
in advance, i.e. before execution of the process starts: (R1) The host university is paid
a certain amount of money for each student and for the associated administration effort.
Therefore, the duration of each activity executed by the host university has to be logged.
(R2) In order to handle potential errors in time, the home university wants to be sure that
the foreign university has received the subprocess and is able to execute it, and, (R3) if
duration of an activity expected as critical (here preparation of credentials) exceeds the
average time for executing a task, (R4) the activity should be skipped in order to at least
allow the control flow of the process to return to the calling system. (R5) As it sometimes
happens that the deadline for taking courses is adapted by the host university, e.g. because
the student gets ill, the home university wants to know about such events in order to avoid
automatic removal from the home register of students.

Home university

Host university

Preparation of
credentials

Select host
university

Unlock
further

courses

Acknowledge-
ment of

credentials

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

M1

M2

M3
M5

M4

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

events

monitoring service

_

_

_

status=0
starttimer(1)
variables=...

status=1
stoptimer(1)
starttimer(2)
variables=...

status=2
variables=...

status=3
stoptimer(2)
starttimer(3)
variables=...

status=4
stoptimer(3)

VariableChanged

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x_

Variable
Changed

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

meta data information modification

management component

events

getStatus

skipActivity
X

Variable(name)=...

getHistories

new rule (…) Variable Changed (d)

event listener

Figure 7: eErasmus example process

In addition, there are a number of unexpected occurrences during the runtime of this rather
long-running (i.e. several months) process: First, a financial aid program asks about the
status of the student’s overall study (R6). Second, the student has married and his/her
name has to be adapted (R7). The next section shows a comparison on how the presented
approach and previous approaches support these management requirements.

4.2 Comparison and Results

Figure 8 shows the realization of the monitored process instance with weaving of moni-
toring activities (such as in [BG05]), event-based monitoring only (such as in [vA09]) and
the ad-hoc management approach proposed here, each realized resp. simulated with the
prototype implementation presented above. Results are summarized in Table 1.

It shows that monitoring aspects which are known in advance, such as measuring of the
duration of predefined activities, the start of instance execution and the observation of vari-
able value modifications can be realized by the designtime insertion of respective moni-
toring activities (timer activities and passing of variables values to the central monitoring

Home university

Host university

Preparation of
credentials

Select host
university

Unlock
further

courses

Acknowledge-
ment of

credentials

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

M1

M2

M3
M5

M4

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

events

monitoring service

_

_

_

status=0
starttimer(1)
variables=...

status=1
stoptimer(1)
starttimer(2)
variables=...

status=2
variables=...

status=3
stoptimer(2)
starttimer(3)
variables=...

status=4
stoptimer(3)

VariableChanged

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x_

Variable
Changed

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

meta data information modification

management component

events

getStatus

skipActivity
X

Variable(name)=...

getHistories

new rule (…) Variable Changed (d)

event listener

(a) Approach using activity weaving

Home university

Host university

Preparation of
credentials

Select host
university

Unlock
further

courses

Acknowledge-
ment of

credentials

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

M1

M2

M3
M5

M4

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

events

monitoring service

_

_

_

status=0
starttimer(1)
variables=...

status=1
stoptimer(1)
starttimer(2)
variables=...

status=2
variables=...

status=3
stoptimer(2)
starttimer(3)
variables=...

status=4
stoptimer(3)

VariableChanged

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x_

Variable
Changed

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

meta data information modification

management component

events

getStatus

skipActivity
X

Variable(name)=...

getHistories

new rule (…) Variable Changed (d)

event listener

(b) Approach using event-based monitoring only

Home university

Host university

Preparation of
credentials

Select host
university

Unlock
further

courses

Acknowledge-
ment of

credentials

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

M1

M2

M3
M5

M4

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x

events

monitoring service

_

_

_

status=0
starttimer(1)
variables=...

status=1
stoptimer(1)
starttimer(2)
variables=...

status=2
variables=...

status=3
stoptimer(2)
starttimer(3)
variables=...

status=4
stoptimer(3)

VariableChanged

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Host
university

Approval Courses and
exams

Preparation of
credentialsX X

d<x

d>x_

Variable
Changed

Instantiation

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

Activity
Started

Activity
Finished

meta data information modification

management component

events

getStatus

skipActivity
X

Variable(name)=...

getHistories

new rule (…) Variable Changed (d)

event listener

(c) Approach using ad-hoc management

Figure 8: Different realizations of the scenario-based management requirements

Management requirement Ad-hoc management Event-based monitoring Activity weaving

(R1) Duration of activities + + +

(R2) Instance started + + +

(R3) Detect critical activity duration + o o

(R4) Skip critical activity if necessary + - -

(R5) Observe variable value + + +

(R6) Ad-hoc status retrieval + o o

(R7) Ad-hoc variable value modification + - -

Table 1: Applicability of management requirements during execution of the example process

service) and by the event-based monitoring and the ad-hoc management approach (by
subscription of the respective events). The detection of abnormal activity duration can be
realized by the ad-hoc management as a complex rule involving also additional informa-
tion about previous process instances executed on this system and calculating their average
time of execution. This is neither possible by a system which makes use of events only (e.g.
the events of other process instances have not been captured before) nor by activity weav-
ing (histories of other process instances are not visible in the monitored process instance).
A simple user-defined deadline could be applied for these approaches, but this would not
reach the quality of estimating whether or not the assumed duration is normal or abnormal
for a specific remote system. Skipping critical activities is also a problem for previous
approaches, because event-based monitoring does not offer control functionalities at all,
and activity weaving cannot skip crashed activities by weaving an “end activity” because
the control flow does not go on in this case and therefore will not reach this activity.

Considering the occurrence of unexpected behavior, the ad-hoc management shows its
biggest advantage: The status retrieval can be made by calling the process’s resource
property process status and interesting data values directly. Both activity weaving and
event-based monitoring can provide this data only in case a monitoring activity is inserted
after each functional activity resp. all available events have been subscribed. Therefore, it
is more or less a coincidence if such requests can be fulfilled as they cannot be determined
in advance and relevant properties have to be weaved/subscribed before runtime. The ad-
hoc variable modification is also not possible because of missing runtime modification
operations. However, even by using the ad-hoc management approach, the process man-
ager has to be careful not to violate the integrity of the process. Therefore, in case of the
modification of the student’s name, the process manager should abstain from calling the
modification interface directly, but better update the management document by inserting a
new rule. An example for such a rule would be to wait until the current activity is finished
(subscribe the activityFinished event as a blocking event), perform the modification, and
then resume execution. Furthermore, in case of ad-hoc requests and multiple instances,
the appropriate process instance has to be found by an appropriate correlation set. In this
case, for instance, the (previous) name of the student can be used within the management
rule in order to pick the right instance.

Considering the non-functional characteristics of the approaches, it shows that desired sep-
aration between business logic and management logic can be achieved by event-based and
ad-hoc management approaches (as shown in Figures 8(b) and 8(c) the original business
process does not have to be changed), but not by activity weaving (cp. Figure 8(a)). Es-
pecially in the context of mobile process management, the approach of activity weaving
furthermore proves to be very instable (i.e. if the monitoring service is not available, the

process execution is delayed or even fails). In case of the manageable resource, this can
only happen if events are defined to be blocking and the event processing and/or reaction
is performed on a remote system. For non-blocking events the management overhead is
not relevant, because the execution of the process goes on and thus it is not influenced
by the management. However, the time consumption for identifying complex situations
and thus the time consumed before emitting the complex event is dependent on the com-
plexity and the number of processing rules. Having three processing rules with basic to
intermediate complexity in this example, the processing time is still insignificant even on
resource-constraint mobile devices (i.e. less than 1 second on a netbook with Intel Atom
N270, 1,6GHz, 1GB RAM). Further benchmarks also on more complex processing rules
can be derived from official experiments with Esper [Esp10]. The time for invoking man-
agement services and thus for initiating reactions shows the behavior of ordinary service
invocation and can be described as the sum of requesting the WSDM resource property
(TR), the time for internal computation (TC) (e.g. for calculating a prognosis for activity
duration) and the time for network transfer (TN). In case of a local management com-
ponent and without calling external services, TR is again insignificant and TN = 0. Of
course, TC and TN are dependent on the complexity of computation and service availabil-
ity and respectively of the bandwidth and speed of the network connection. Finally, for
the solely event-based approach, no delays effected by the management are visible at all
– however no reactions are possible and thus events can be emitted in parallel to an ongo-
ing process execution without delay. Finally, compared with both event-based and ad-hoc
management approaches, activity weaving has the important advantage that no system
modifications, security mechanisms or agreements are necessary.

5 Conclusion

In today’s highly dynamic business networks, customized monitoring and controlling op-
tions for distributed business processes gain increasing importance. This paper advances
existing approaches for the management of such processes by presenting a concept to not
only passively observe the behavior of business processes running on a remote process
management system but also to enable quick automatic and spontaneous reactions on the
basis of a service-based management interface. Thereby, the presented approach allows for
increased flexibility during process execution – taking into account also the requirements
of modern distributed process management variants such as BPM-as-a-Service or integra-
tion of mobile (sub-) systems – and the integration of valuable functionalities of remote
process management systems which have not been exploited before. The price for such
increased flexibility is, however, the necessity to integrate and configure a corresponding
add-on infrastructure. Process managers also have to be aware of their respective new po-
tential, e.g. by influencing process execution during runtime which may lead to undesired
side effects, and in the worst case, to inconsistent process execution. Furthermore, the pre-
sented approach has to be secured so that both the provider of management functionality
as well as the consumer of distributed process management are protected in a sufficient
way, i.e. a customer should only be able to access his own process models and instances,
and information about general internal data such as engine properties or workload should
be subject to negotiation. Therefore, the conceptualization and application of relevant pro-
tective measures and specific customizable security and privacy mechanisms must be an
important part of future work.

References

[BG05] Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL
Processes. In Third International Conference of Service-Oriented Computing (IC-
SOC), volume 3826. Springer, 2005.

[BGG04] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart Monitors for Composed
Services. In ICSOC ’04: Proceedings of the 2nd international conference on Ser-
vice oriented computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

[Bui08] Hai-Lam Bui. Survey and Comparison of Event Query Languages Using Practical
Examples. Master’s thesis, Ludwig-Maximilians-Universität Munich, Nov 2008.

[Esp10] EsperTech. Esper - Performance. http://docs.codehaus.org/display/ESPER/Es-
per+performance, May 2010.

[HA08] Melanie Hartmann and Gerhard Austaller. Ubiquitous Computing Technology for
Real Time Enterprises, chapter Context Models and Context Awareness, pages
235–256. IGI Publishing, 2008.

[HHGR06] Gregory Hackmann, Mart Haitjema, Christopher D. Gill, and Gruia-Catalin Ro-
man. Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices. In
Asit Dan and Winfried Lamersdorf, editors, International Conference on Service-
Oriented Computing (ICSOC 2006), volume 4294, pages 503–508. Springer, 2006.

[IBM04] IBM. Common Base Event. http://www.ibm.com/developerworks/library/
specification/ws-cbe/, August 2004.

[J+01] Stefan Jablonski et al. A Comprehensive Investigation of Distribution in the Con-
text of Workflow Management. In ICPADS 2001, pages 187–192, 2001.

[JL06] R. Vermer Juliet Lodge. Case Study e Erasmus eHigher Education (eEH). Tech-
nical report, SIXTH FRAMEWORK PROGRAMME, Information Society Tech-
nologies, R4eGov, Deliverable WP3 D1-D4, 2006.

[KZTL08] Christian P. Kunze, Sonja Zaplata, Mirwais Turjalei, and Winfried Lamersdorf.
Enabling Context-based Cooperation: A Generic Context Model and Management
System. In Business Information Systems (BIS 2008). Springer, 5 2008.

[Luc02] David Luckham. The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Professional, May 2002.

[MWL08] Daniel Martin, Daniel Wutke, and Frank Leymann. A Novel Approach to Decen-
tralized Workflow Enactment. In Enterprise Distributed Object Computing, pages
127–136. IEEE, 2008.

[NM02] Roberta Norin and Mike Marin. Workflow Process Definition Interface – XML
Process Definition Language. Specification WFMC-TC-1025, Workflow Manage-
ment Coalition, 2002.

[OAS06a] OASIS. Web Services Distributed Management: Management of Web Services
(WSDM-MOWS) 1.1. Standard Specification, 2006.

[OAS06b] OASIS. Web Services Distributed Management: Management Using Web Services
(WSDM-MUWS) 1.1. Standard Specification, 2006.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0. Techni-
cal report, OASIS, 2007.

[OMG09] OMG. Business Process Model and Notation (BPMN), Version 1.2. Technical
report, OMG, 2009.

[SP04] Thomas Strang and Claudia L. Popien. A Context Modeling Survey. In UbiComp
1st International Workshop on Advanced Context Modelling, Reasoning and Man-
agement, pages 31–41, Nottingham, September 2004.

[SPG04] Keith D. Swenson, Sameer Pradhan, and Mike D. Gilger. Wf-XML 2.0 XML
Based Protocol for Run-Time Integration of Process Engines . Technical report,
WfMC, 2004.

[vA09] Rainer von Ammon. Event-Driven Business Process Management. In Encyclope-
dia of Database Systems, pages 1068–1071. Springer, 2009.

[vdA98] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[vdA00] Wil van der Aalst. Loosely coupled interorganizational workflows: modeling
and analyzing workflows crossing organizational boundaries. Inf. Manage., 37(2),
2000.

[VDATHKB03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[vLLM+08] Tammo van Lessen, Frank Leymann, Ralph Mietzner, Jorg Nitzsche, and Daniel
Schleicher. A Management Framework for WS-BPEL. Web Services, European
Conference on, 0:187–196, 2008.

[WfM98] WfMC. Workflow Management Coalition Audit Data Specification. Specification
WFMC-TC-1015, Workflow Management Coalition, 1998.

[WKK+10] Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, and
Daniel Zwink. Cross-Organizational Process Monitoring based on Service Chore-
ographies. In Proceedings of the 25th Annual ACM Symposium on Applied Com-
puting (SAC 2010), pages 2485–2490. ACM, 2010.

[ZKL09] Sonja Zaplata, Christian P. Kunze, and Winfried Lamersdorf. Context-based Co-
operation in Mobile Business Environments: Managing the Distributed Execu-
tion of Mobile Processes. Business and Information Systems Engineering (BISE),
2009(4):301–314, 10 2009.

[ZKML10] Sonja Zaplata, Kristian Kottke, Matthias Meiners, and Winfried Lamersdorf. To-
wards Runtime Migration of WS-BPEL Processes. In Fifth International Workshop
on Engineering Service-Oriented Applications (WESOA’09). Springer, 4 2010.

[ZL10] Sonja Zaplata and Winfried Lamersdorf. Towards Mobile Process as a Service. In
25th ACM Symposium On Applied Computing (SAC 2010), pages 372–379. ACM,
3 2010.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.4

A.7 Cross-Organizational Process Monitoring based on Service Choreographies

Authors:

USTUTT: Branimir Wetzstein

USTUTT: Dimka Karastoyanova

USTUTT: Oliver Kopp

USTUTT: Frank Leymann

USTUTT: Daniel Zwink

• Submitted to: SAC 2010

External Final Version 1.2, Dated September 17, 2010 103

Cross-Organizational Process Monitoring based on
Service Choreographies

Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, Daniel Zwink
Institute of Architecture of Application Systems

Universitaetsstr. 38
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

ABSTRACT
Business process monitoring in the area of service oriented
computing is typically performed using business activity moni-
toring technology in an intra-organizational setting. Due to
outsourcing and the increasing need for companies to work
together to meet their joint customer demands, there is a
need for monitoring of business processes across organizational
boundaries. Thereby, partners in a choreography have to
exchange monitoring data, in order to enable process tracking
and evaluation of process metrics. In this paper, we describe an
event-based monitoring approach based on BPEL4Chor service
choreography descriptions. We show how to define monitoring
agreements specifying events each partner in the choreography
has to provide. We distinguish between resource events and
complex events for calculation of process metrics using complex
event processing technology. We present our implementation
and evaluate the concepts based on a scenario.

Keywords
Business Activity Monitoring, Cross-Organizational Monitoring,
Service Choreography

1. INTRODUCTION
Business Process Management (BPM) encompasses methods,

techniques, and tools that allow organizing, executing, and
measuring the processes of an organization [12]. When BPM is
layered over a Service Oriented Architecture (SOA) [9], services
are used for implementing activities of business processes.
In the context of SOA, business processes are modeled and
executed using the (WS-)BPEL language, which is a workflow
language for orchestration of Web services. While a service
orchestration implements an executable private process model
implemented by a single participant, a service choreography
models the publicly visible processes and message exchanges
between participants from a global viewpoint [10]. BPEL4Chor
is a BPEL extension for modeling service choreographies [3].

For controlling the achievement of business goals especially in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

business processes and measuring process performance, business
activity monitoring (BAM) technology enables continuous, near
real-time event-based monitoring of business processes based on
key business metrics, also known as key performance indicators
(KPI) [11]. Business process monitoring has been traditionally
focused on intra-enterprise processes. Today, companies are
forced to collaborate in a more open manner in order to meet
joint customers’ needs. There is also more and more outsourcing
of parts of business processes to external companies. Thereby,
an intra-enterprise business process is fragmented into a cross-
organizational process and the source company is often still
interested in monitoring of the outsourced process fragment. A
well-known example is shipment tracking whereby the shipper
opens its process to some extent to the customer. Thus, there
is a need for companies to interchange monitoring data of their
business processes with other companies.

In this paper we present a solution to this problem by
describing an event-based approach to cross-organizational
monitoring based on service choreography descriptions. We
use BPEL4Chor choreographies as basis for specification of
so called monitoring agreements. A monitoring agreement
specifies which events need to be provided by each partner in the
choreography for building a monitoring solution. In particular,
we distinguish between resource events which are defined based
on the abstract processes in the choreography description and
complex events needed for calculating higher-level process
metrics using a complex event processing (CEP) language [8].
In order to support event correlation across partners in a
choreography, we show the need for a choreography instance
identifier and describe how it can be used in SOAP-based
communication. We have implemented the approach in the
Web services setting by extending an existing BPEL engine and
using a CEP framework.

The rest of the paper is organized as follows. In Section 2
we present the motivation for our work based on a scenario
which we use in the rest of the paper to present examples for
our concepts. In Section 3 we depict the overall approach.
Section 4 describes in detail how monitoring agreements are
modeled. Section 5 deals with the monitoring infrastructure
and event correlation in choreographies. In Section 6 we present
related work, and finally, in Section 7 we conclude the paper
and outline our future work.

2. SCENARIO AND MOTIVATION
For explaining the motivation and concepts of our work we

have chosen a purchase order scenario as illustrated in the
BPMN diagram shown in Figure 1. The diagram shows a
chorography between a customer, a reseller, and a shipper

Customer Reseller Shipper
<invoke>

Send PO
<receive>

Receive PO

<opaqueActivity>

Deliver Shipment

<receive>

Receive Shipment
Request

<opaqueActivity>

Process Order

<forEach>

<invoke>

Send Shipment
Request

<while>

<opaqueActivity>

Receive Shipment

<opaqueActivity>

Handle Shipment

<receive>

Receive Notification
<invoke>

Send Notification

<opaqueActivity>

Receive Shipment
Acknowledgement

Figure 1: Purchase Order Scenario

(other involved participants such as suppliers have been omitted
for space reasons). The customer sends an order request with
details about the required products and needed amounts to
the reseller. The reseller confirms the order by sending a
notification to the customer. The reseller processes the order
by ordering products from suppliers if needed, packages them
and notifies the shipper. The order can be split in several parts
if some of its parts take much longer to deliver. In that case
the order parts are shipped separately. The shipper delivers the
products to the customer.

Firstly, note that the diagram shows only public processes of
the participants and their interactions. Private parts of the pro-
cess are denoted by opaque activities and their implementation is
not exposed to other participants. Note also that for this paper
we assume that the partners have agreed on this choreography
using the BPEL4Chor language [3]. A BPEL4Chor choreog-
raphy description consists of a set of abstract BPEL process
models (in our scenario three of them), one for each participant
type (customer, reseller, and shipper), and a topology document
which specifies how these abstract processes are connected
together by message links. The choreography description also
specifies concrete participants for participant types (e.g., two
concrete shipping companies or concrete customers involved in
the choreography; BPEL4Chor also supports dynamic sets of
participants; however their monitoring is out of scope of this
paper and part of our future work). Each partner implements
its abstract business process as defined in the choreography
locally typically using WS-BPEL, but not necessarily so. A
partner could also use, for example, Java as long as it behaves
according to the specified abstract BPEL process [4].

In the following we will motivate the need for our approach
based on scenario examples. Considering the monitored objects,
i.e., what is to be monitored, we can distinguish between process
tracking and evaluation of process metrics. In process tracking,
partners want to track the state of the choreography beyond
their own process. In our scenario, for example, the customer is
interested in tracking how far the order processing is. Obviously,
this information can be provided by the reseller and shipper
when they publish events as their process is executed, such
as Order received, Order processed, Shipment request

received and so on. We assume in this paper, that partners
are willing to provide this information (or a subset of it) as
long as it is part of its “public” process as modeled in the
choreography. Note that we assume here that there is no special
Web service operation provided by the reseller and shipper for
inquiring this information; this would be a special case, and
we concentrate on event-based monitoring in this paper. For

process tracking, one has to agree for which process resource
and which state change of that resource the event is to be
published, what data (process data and IDs for correlation) is
transmitted in the event, and where the event can be retrieved
(on which messaging queue or pub/sub topic). Obviously, for
unambiguous specification of the which and what question,
an underlying choreography model is needed as basis. This
is in our case the BPEL4Chor description. Process tracking
relies only on state changes of process resources (in case of
event-based monitoring also known as resource events). Besides
process tracking it is often needed to evaluate metrics based
on complex events. These metrics are then used e.g. as basis
for definition of Service Level Agreements (SLAs) or Key
Performance Indicators (KPIs). Consider, for example, the
metric order fulfillment lead time which could be measured in
our scenario from the start of the activity Receive PO in the
reseller process until the While Loop completes in the customer
process. Therefore, corresponding events have to be gathered,
correlated and their timestamps subtracted. In general, thus
we have to be able to specify CEP-like complex events based
on events of different partners. The problem which arises here
is that of event correlation in the choreography. In particular in
this scenario we have to be able to correlate process instances
within a choreography instance execution. In Section 5 we
will explain in more detail, why in the general case, a special
technical choreography instance ID is needed which has to be
transported on protocol level, e.g., as part of SOAP headers.

In cross-organizational monitoring, obviously there are privacy
issues. Firstly, the assumption of our approach is that partners
are willing to provide only monitoring information on their
public processes, but not private processes. This is why we
have chosen to take a choreography description as basis for
monitoring specification. It should also be possible to specify
events selectively even for the public process. One could think
of different monitoring levels dependent on how much the
customer wants to pay for that information (if we assume that
monitorability is part of service levels and is sold as a feature).
Another issue is to be able to selectively restrict which partners
can see which events.

3. OVERVIEW OF THE APPROACH
Figure 2 sketches the main concepts of our approach. The

service choreography description can be seen as an agreement
between partners on their public processes and message ex-
changes. We base our approach on a BPEL4Chor service
description in which each partner exposes an abstract BPEL
process [3]. We introduce a monitoring agreement which is an
XML-based document specifying monitoring aspects between
partners based on the choreography description. A monitoring
agreement consists of a set of resource event definitions and
complex event definitions. Resource events are defined based on
abstract BPEL processes in the choreography by specifying at
which BPEL resource and for which state of that resource an
event is to published, which data it should contain, and where
it should be published (at which message queue or pub/sub
topic). Complex events are defined based on resource events and
other complex events using a Complex Event Processing (CEP)
language. They are needed for calculating process metrics.
Both resource events and complex events are exchanged between
partners over message queues or alternatively pub/sub topics.

Considering the methodology in creating corresponding
monitoring agreements, there are two possible approaches. In a
top-down approach the parties agree on what is to be monitored

and create together a monitoring agreement document, possibly
during creation of the choreography document itself. The
document is then deployed to each party’s infrastructure. The
infrastructure is configured considering which events it has to
publish to other partners and which events it retrieves from
others. A more dynamic, bottom-up approach would imply that
each partner creates the corresponding XML document (which
is not yet an “agreement”) independently of other partners and
specifies which events it provides (and optionally also which
events it requests) to partners in the choreography, possibly
exposing different monitoring levels based on e.g. service levels
and price the requester wants to pay. This monitoring document
could then be published to a service registry together with
the WSDL and choreography document. Obviously, in such a
scenario a matchmaking phase is needed which checks whether
requested and provided monitoring events match finally creating
a monitoring agreement as a result. In this paper we focus
on the top-down approach and leave the bottom-up one for
future work.

3

Event

CEP

Event

CEP

Event

Queues /
Topics

Event
Event

Partner 1 Partner 2 Partner 3

Msg Msg

Event

CEP

Monitoring
Agreement

Service
Choreography

Figure 2: Overview of the Approach

Considering the lifecycle in creation of corresponding cross-
organizational monitoring solutions we can distinguish between
three phases: creation of monitoring agreements, deployment,
and the concrete monitoring. After creation of the monitoring
agreement document, it is used by each partner to configure
its middleware for monitoring in the deployment phase. That
involves configuring its own process middleware eventing infras-
tructure for publishing events to the specified destinations and
subscribing to event queues or topics for getting events from
other partners. Note that partners have to support managing
the choreography instance identification in SOAP based message
communication (Section 5).

4. MODELING OF MONITORING AGREE-
MENTS

The monitoring agreement is an XML document consisting of
two types of definitions: resource event definitions and complex
event definitions. Resource event definitions are specified

based on the choreography descriptions and complex events are
defined based on other events. Complex events can serve as
basis for specification of SLAs and BAM solutions. One could
for example specify service level parameters and service level
objectives based on complex events which contain corresponding
metric values. That is however out of scope of this paper.

4.1 Definition of Resource Events
Resource events are defined based on the abstract BPEL

process models in the BPEL4Chor choreography. A resource
event definition specifies the following three elements:

• Monitored Resource: Firstly, we have to specify which pro-
cess resource should be monitored and for which state of
the resource the event should be published. The resource
is identified by pointing to the corresponding BPEL4Chor
elements. Monitored resources we are interested in are
the instances of the BPEL process, activity, scope, and
variable. The state models (e.g., started, completed, ter-
minated, compensated, and corresponding transitions)
for these resources are not standardized. We use the
state models defined in [5]. The resource identification
will result at process runtime in corresponding resource
identifiers which are transported in the event and are
needed for event correlation, as discussed in Section 5.

• Process Data: Optionally, one can specify which process
data (defined as BPEL variable) is to be part of the event.
The data is read at the moment of event publishing.

• Target message queue or pub/sub topic: Finally, one
has to specify a message queue or a pub/sub topic to
which the event is to be published. If the resource event
is to be published to a partner only under a certain
filtering condition, e.g., some attribute value contained in
the event or some other events, an additional complex
event has to be created which is created based on this
condition (discussed further below). The access to the
queue or topic can be restricted to certain participants by
specifying their names; the concrete realization mechanism
for access control, needed credentials etc. have to be
specified separately.

<monitoringAgreement
xmlns:chor="http:// purchaseOrder/choreography"
xmlns:reseller="http:// purchaseOrder/reseller">

<resorceEventDefinitions >
<resourceEventDefinition name="OrderReceivedEvent">
<monitoredResource

choreography="chor:orderChoreography"
process="reseller:ResellerProcess"
scope="process"
activity="reseller:ReceivePO"
state="completed"/>

<data>
<processVariable name="order"

variable="purchaseOrder"/>
</data>
<publish >
<queue name="purchaseOrder.reseller"

access="reseller"/>
</publish >

</resourceEventDefinition >
...

<resorceEventDefinitions >
...

<monitoringAgreement >

Listing 1: Resource Event Definition

Listing 1 shows a resource event definition for the Order-

Received resource event. It is specified by pointing to the
Receive PO activity in the reseller process model. The event is
to be published when the corresponding activity is completed.
In addition, the event should contain the data from the pur-

chaseOrder variable. It is published to the queue which can
only be accessed by the reseller. As there are several customers
and shippers as potential participants in this choreography,
we cannot simply give access to this queue to all participants.
Further below, in Section 4.2, we will define a complex event
which sends this event to the customer who actually requested
this order.

4.2 Definition of Complex Events
Complex events are specified by correlating and aggregating

existing events. Event correlation and aggregation is a well-
known topic in the area of complex event processing (CEP)
and there are different languages available for the specification
of complex events [8]. In our case, we have decided to use the
language of ESPER1, which is the CEP implementation we
have used in our prototype (Section 5.2). But alternatively
any other language could be used instead, the choice being
dependent on aspects such as language expressivity needed.
Note that we use the term complex event for an event which
results from using a CEP statement over one or more events; we
do not further distinguish between more fine-grained meanings
of complex, composite, and derived events as in some other
works.

<monitoringAgreement
xmlns:chor="http:// purchaseOrder/choreography"
xmlns:reseller="http:// purchaseOrder/reseller">

...
<complexEventDefinitions >
<complexEventDefinition providedBy="reseller"

name="CustomerAOrderReceivedEvent"
choreography="chor:orderChoreography">

<consume >
<queue name="purchaseOrder.reseller"/>

</consume >
<eventAggregation resultType="FILTER">
<statement ><![CDATA[
SELECT a
FROM PATTERN [
EVERY a=ResourceEvent(name=" OrderReceivedEvent"
AND variables(’order ’).customer =" customerA ")]

]]></statement >
</eventAggregation >
<publish >
<queue name="orderChoreography.customerA"

access="customerA"/>
</publish >

</complexEventDefinition >
...

</complexEventDefinitions >
<monitoringAgreement >

Listing 2: Complex Event for Event Filtering

The complex event definition consists of an event aggregation
statement and the target topic definition. In addition, we
have to specify by whom the aggregation is performed and
published on the target queue or topic (providedBy attribute).
The reason is that we have to avoid that several partners
perform this aggregation, as this would lead to a duplication
of events. The event aggregation statement uses the CEP
language to construct a new complex event out of already
defined resource events and complex events. Therefore, we
first specify from which queues or topics these existing events

1http://esper.codehaus.org

are consumed. Later, when referencing those events (correctly
speaking: event streams) in the eventAggregation statement,
we use the names from the corresponding event definitions.
Considering monitored resource identifiers needed for correlation
of events (see Section 5.1 for more details) we use the following
naming scheme: cid stands for choreography ID and ciid for
choreography instance ID, pid for process ID and piid for
process instance ID, sid for scope ID and siid for scope instance
ID, aid for activity ID and aiid for activity instance ID.

Complex events definitions are specified recursively based on
resource events to achieve two purposes: (i) event filtering and
(ii) event aggregation in order to evaluate complex process
metrics. In some cases, event filters have to be defined for
resource events in order to ensure that the events are delivered
to the right participants. Consider in our example the Order-

ReceivedEvent (Listing 1). For privacy reasons, it should only
be visible to the customer which placed the order and not to
other potential customers which are also defined as participants
in the choreography (but that do not participate in this particu-
lar choreography instance). If we assume that the customerID

is part of the purchaseOrder variable then we can define an
event filter as shown in Listing 2. Only those OrderReceivedE-

vents which contain the correct customerID are placed into
the queue orderChoreography.customerA accessible only by
customerA.

<complexEventDefinition providedBy="reseller"
name="CustomerAOrderFulfillmentTime"
choreography="chor:orderChoreography">

<consume >...</consume >
<eventAggregation resultType="COMPLEX">
<statement ><![CDATA[
SELECT
abs(b.timestamp - a.timestamp) AS metricValue ,
"ms" AS unit ,
a.resource.ciid AS ciid

FROM PATTERN [EVERY
a = ResourceEvent(

name=" CustomerAOrderReceivedEvent ")
-> b = ResourceEvent(

name=" CustomerAShipmentReceivedEvent"
AND resource.ciid = a.resource.ciid)]

]]><statement >
</eventAggregation >
<publish >
<queue name="orderChoreography.customerA"

access="customerA"/>
</publish >

</complexEventDefinition >

Listing 3: Complex Event for Metric Computation

Besides event filtering, another important use case for com-
plex events is evaluation of process metrics. In Listing 3
we define a complex event CustomerAOrderFulfillmentTime

which contains the corresponding metric value in the attribute
metricValue. In addition it contains the attribute unit and
the choreography instance identifier. The metric value is
calculated by correlating two events already defined, namely
CustomerAOrderReceivedEvent and CustomerAShipmentRe-

ceivedEvent. These events are correlated based on choreogra-
phy instance IDs and then their timestamps are subtracted.
The result event is published to the corresponding queue by
the reseller who also performs this event aggregation. Note
that obviously such a definition results in one result event per
choreography instance, i.e. an event stream.

5. MONITORING OF CHOREOGRAPHIES
After the monitoring agreement is created, it is deployed to

each partner’s infrastructure. The partner thereby extracts
from the agreement the events it has to provide and configures
its middleware, e.g., the BPEL engine using a deployment
descriptor to provide resource events, and the CEP engine
to provide complex events. It also subscribes to topics or
queues where he receives events from other partners. A possible
realization is described in Section 5.2.

5.1 Event Correlation in Choreographies
In order to be able to perform event correlation for monitored

resources, corresponding resource identifiers have to be included
in events. Consider, for example, the calculation of the order
processing duration between the activity Receive PO and
Receive Shipment Acknowledgment in our scenario. For each
of those activities an event stream is created. Obviously, we
need to correlate events belonging to the same purchase order,
i.e. the same choreography instance. Thus, events have to
contain identifiers of the corresponding monitored resource.
In this case, each event belongs to a certain activity instance
(note that in general there can be several activity instances per
activity if that activity is contained in a loop). An activity
instance belongs again to a process instance. However, in this
case those two identifiers (piid and aiid) are not enough as
those two activities are part of different process models. In our
case, in order to be able to correlate the corresponding two
events, we have to correlate on the choreography instance level.
Thus, the events have to contain an identifier which identifies
the choreography instance.

For identifying monitored resources, either technical or
business IDs are needed. In the case of process models which
are realized as executable BPEL processes, for example, the
BPEL engine assigns technical process instance IDs to process
instances, scopes and activities (however not to choreographies).
For a choreography instance, in the general case also an
identifier is needed. In some special cases, correlation could
be done based on business identifiers transported in BPEL
messages. For example, if the orderID is known to the shipper,
then it can be sent in the Order Shipped event and thus
correlated with the Order Received event. However, in the
general case this cannot be ensured. In synchronous invocations
(BPEL invoke with input and output) the correlation between
the sent and replied message is done on protocol level, e.g.,
SOAP/HTTP and not based on message payload (which does
not necessarily contain needed identifiers). Assume for example,
the synchronous invocation of the reseller process to a warehouse
process to check whether all products are in stock. In that case
the orderId is not necessarily part of that message. If now the
reseller subscribes to the events of the warehouse those events
have to contain a technical identifier.

<soap:header >
<chor:choreography

xmlns:chor="http://iaas/monitoring/choreography">
<chor:cid >

{http: //.../ choreography}orderChoreography
</chor:cid >
<chor:ciid >

{...} orderChoreography /2009 -11 -02 -12 :05:21:005
</chor:ciid >

</chor:choreography >
...

</soap:header >

Listing 4: Choreography-ID in SOAP Header

This is why we need in the general case a technical identifier
of the choreography instance which is transported on protocol

level. For SOAP-based communication this identifier can be
transported in the SOAP header. Obviously, the corresponding
middleware, e.g., BPEL engine and service bus, has to be
adapted to include and read the identifier during message
exchanges. It also has to be transported in events. Listing 4
shows an example SOAP header with the choreography instance
identifier. It is created when the first process instance of the
choreography instance is created, in our case when Send PO in
the customer process has started. It contains the choreography
ID + timestamp of creation. Note that this approach also works
in case of multiple alternative start activities; it does however
not support multiple start activities triggered in parallel at
different participants for the same choreography instance. The
semantics of the latter case is not described in the BPEL4Chor
specification and we have not found any use case for it.

5.2 Implementation
We have implemented the approach as shown in Figure 3.

It shows the implementation from the point of view of one
partner in the choreography. The prototype implementation
is based on the Apache ODE BPEL engine2 and the ESPER
event processing framework.

4

JMS
Queue /
Topic

JMS
Queue /
Topic

Implementation

BAMMonitoring
Agreement

ESPER

Apache ODE

Listener
Event

Event

Filter
List Aggregation

Statements

JMS
Queue /
Topic

Event Event

Event

Event

Figure 3: Tool Support

The monitoring agreement XML document which we create
by hand is deployed to both an event listener in the ODE
engine and the ESPER engine which is part of a BAM tool with
a GUI for displaying metrics. The resource event generation is
performed by an event listener which we have implemented
as part of the ODE engine. It is configured by reading the
monitoring agreement document and extracting the resource
event definitions relevant for this participant. As the process
instances are executed, it receives all internal ODE events
resulting from the process execution and filters them according
to the resource event definitions from the monitoring agreement.
Information from internal ODE process events is taken and
augmented with needed process data and choreography instance
identifier read from the process instance context and the
corresponding (external) resource event is created. It is sent to
a JMS queue or topic as defined in the monitoring agreement.
We have used Apache ActiveMQ as our JMS implementation3.
The complex event generation and receipt of events from
other participants is implemented by the BAM tool in our
architecture. It uses ESPER as the underlying CEP framework
and contains a GUI for displaying received events and has some
dashboards for showing calculated metrics. Event aggregation
statements from the monitoring agreements are registered as

2http://ode.apache.org
3http://activemq.apache.org

ESPER statements and produce complex events which are
published on specified queues or topics. Finally, the last part
we had to implement is dealing with the choreography instance
ID (ciid). Therefore, the ciid is read from and written into
SOAP headers in message interactions with other choreography
participants. It is saved in the process instance context and is
also propagated to the event listener which then writes the
ciid into events. A new ciid is created if there is no ciid in the
received message which is the case during instantiation of the
first process instance of the choreography.

6. RELATED WORK
As already explained in the introduction, state of the art

event-based process monitoring solutions are based on BAM
technology and focus on intra-organizational processes. There
exist several research approaches [1,2] and products [11] which
deal with evaluation of process metrics in near real time and
their presentation in dashboards. They all have in common that
events are emitted as the process is executed, collected by a
process monitor and evaluated in near real time. Some solutions
focus on monitoring of BPEL processes [1,2], while others are
more general and support an extensible architecture via event
adapters [11]. These approaches are similar to ours in that they
also use an event-based approach based on BPEL processes.
However, they focus on single BPEL orchestrations and do not
deal with monitoring of choreographies in a cross-organizational
setting. The only approach we are aware of which deals with
monitoring of BPEL processes in a cross-organizational setting
is presented in [7]. Thereby, a common audit format is presented
which allows processing and correlating events across different
BPEL engines. In our approach, we also assume that the
participants have agreed on state models of BPEL resources
and resulting resource event definitions. In addition, we deal
with complex events specification and event correlation in
choreographies using a choreography instance identifier which is
not supported in [7].

Service Level Agreements (SLA) are similar to our problem
in that they involve monitoring in a cross-organizational setting.
Thereby mostly two partners, the service consumer and the
service provider, agree on certain service QoS, typically technical
characteristics such as availability and response time [6]. The
commonalities with monitoring in our context are that in
an SLA partners also agree on metrics and how they are to
be monitored. However, in our case the focus is on event-
based monitoring of process metrics across participants in a
choreography which is not being dealt with in frameworks
such as WSLA focusing on QoS measurements. Our approach,
however, could be extended towards specification of SLAs based
on the monitoring agreement.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach to event-based

process monitoring based on service choreographies. A monitor-
ing agreement is created which defines events each partner in the
choreography has to provide. We have distinguished between
resource events which are defined based on a BPEL4Chor
choreography description and complex events using a CEP
language. We have also shown the need for a choreography
instance identifier for event correlation and how it can be
included in a SOAP based communication.

Throughout the paper we have already discussed several
possible extensions for our future work. In this paper we

focused on an event-based monitoring approach (a.k.a. push
model). We will extend this approach by enabling also partners
requesting monitoring information on demand (a.k.a. pull
model). Furthermore, we will explore dealing with a dynamic set
of unknown participants at design time. At the moment, in order
to ensure privacy, static queues and topics with corresponding
access rights are defined in the agreement; we plan to extend
this towards creating dynamic queues and topics for participants
which are not known before runtime. Finally, we will deal with
a bottom-up approach to specification of monitoring agreements
as discussed in Section 3 and we will explore the usage of Web
service Distributed Management (WSDM) set of specifications
as underlying monitoring infrastructure.

Acknowledgments The research leading to these results
has received funding from the European Community’s 7th
Framework Programme under the Network of Excellence S-Cube
- Grant Agreement no. 215483.

8. REFERENCES
[1] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.

Run-Time Monitoring of Instances and Classes of
Web Service Compositions. In Proceedings of the
IEEE International Conference on Web
Services(ICWS’06), pages 63–71, 2006.

[2] L. Baresi and S. Guinea. Towards Dynamic
Monitoring of WS-BPEL Processes. In Proceedings of
the 3rd International Conference of Service-Oriented
Computing (ICSOC’05), pages 269–282. Springer, 2005.

[3] G. Decker, O. Kopp, F. Leymann, and M. Weske.
BPEL4Chor: Extending BPEL for Modeling
Choreographies. In ICWS, Salt Lake City, USA, July
2007.

[4] G. Decker, O. Kopp, F. Leymann, and M. Weske.
Interacting Services: From Specification to Execution.
Data & Knowledge Engineering, 68(10):946 – 972, 2009.

[5] D. Karastoyanova, R. Khalaf, R. Schroth,
M. Paluszek, and F. Leymann. BPEL Event Model.
Technical Report 2006/10, University of Stuttgart,
Germany, November 2006.

[6] A. Keller and H. Ludwig. The WSLA Framework:
Specifying and Monitoring Service Level Agreements for
Web Services. J. Netw. Syst. Manage., 11(1):57–81, 2003.

[7] S. Kikuchi, H. Shimamura, and Y. Kanna. Monitoring
Method of Cross-Sites’ Processes Executed by Multiple
WS-BPEL Processors. In CEC/EEE, pages 55–64, 2007.

[8] D. Luckham. The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley Professional, May 2002.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of the
Art and Research Challenges. IEEE Computer, 11, 2007.

[10] C. Peltz. Web Services Orchestration and
Choreography. IEEE Computer, 36(10):46–52, 2003.

[11] U. Wahli, V. Avula, H. Macleod, M. Saeed, and
A. Vinther. Business Process Management: Modeling
Through Monitoring Using WebSphere V6.0.2
Products. IBM, International Technical Support
Organization, 2007.

[12] M. Weske. Business Process Management: Concepts,
Languages, Architectures. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

