
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
FP7/2007-2013 under grant agreement n° 215483 (S-Cube).

Title: QoS and SLA Aware Service Runtime Environment

Authors: TUW, UOC, INRIA, SZTAKI

Editors: Philipp Leitner , Harald Psaier (TUW)

Reviewers: Pierluigi Plebani (POLIMI), Annapaola Marconi (FBK)

Identifier: CD-JRA-2.3.9

Type: Contractual Deliverable

Version: 1.0

Date: 28 Feb 2011

Status: Final

Class: External

Management Summary

This deliverable contains the final research outcomes of work package WP-JRA-2.3 (Self-* Service
Infrastructure and Service Discovery Support). Hence, most focus is set on research in the area of
service registries, autonomic service runtime environments and non-functional aspects of service-based
systems. The deliverable is a paper-based document, integrating results from 7 individual research
papers, authored by various members of WP-JRA-2.3. This deliverable outlines the individual research,
and puts the conducted work in the broader context of the S-Cube framework, outlining clearly how the
individual partner research relates to other work conducted in the work package, as well as to results
produced in different parts of the S-Cube project. Additionally, we also given an outlook on open issues
and future research directives, which have been opened up by the work presented here.

Ref. Ares(2012)319394 - 19/03/2012

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/results/deliverables/

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,
vibrant research community which will enable Europe to lead the software-services revolution,
helping shape the software-service based Internet which is the backbone of our future interactive
society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific
excellence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by
meeting the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from
diverse research areas and by synthesizing and integrating diversified knowledge, thereby
establishing a long-lasting foundation for steering research and for achieving innovation at the
highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and
industry thereby creating a common culture that will have a profound impact on the future of
the field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the
integration of research communities and the establishment of a common software services
research culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial
competitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based
Internet of the future and will accelerate economic growth and improve the living conditions
of European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European
competitiveness. S-Cube will provide service engineering methodologies which facilitate the
development, deployment and adjustment of sophisticated hybrid service-based systems that cannot be
addressed with today’s limited software engineering approaches. S-Cube will further introduce an
advanced training program for researchers and practitioners. Finally, S-Cube intends to bring strategic
added value to European industry by using industry best-practice models and by implementing
research results into pilot business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Contents

1 Deliverable Overview 6
1.1 Introduction . 6
1.2 Deliverable Structure . 6
1.3 The WP-JRA-2.3 Research Architecture . 7
1.4 Background . 8

1.4.1 Non-Functional Properties and Quality-of-Service 8
1.4.2 Service Discovery Based on Non-Functional Properties 9
1.4.3 Service Level Agreements . 10

1.5 Overview of the Contributions . 10
1.5.1 Stimulating Skill Evolution in Market-based Crowdsourcing [64] 10
1.5.2 End-to-End Support for QoS-Aware Service Selection, Binding and Mediation

in VRESCo [50] . 11
1.5.3 Cost-Based Optimization of Service Compositions [40] 11
1.5.4 Towards Optimizing the Non-Functional Service Matchmaking Time 12
1.5.5 Cost Reduction Through SLA-driven Self-Management [37] 12
1.5.6 Autonomic SLA-aware Service Virtualization for Distributed Systems [30] . . . 13

2 Contributions to QoS and SLA aware service runtime environment 15
2.1 Stimulating Skill Evolution in Market-based Crowdsourcing 15

2.1.1 Background . 15
2.1.2 Problem Statement . 15
2.1.3 Contribution Relevance . 16
2.1.4 Contribution Summary . 16
2.1.5 Contribution Evaluation . 16
2.1.6 Conclusions . 17

2.2 End-to-End Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo 17
2.2.1 Background . 17
2.2.2 Problem Statement . 18
2.2.3 Contribution Relevance . 18
2.2.4 Contribution Summary . 18
2.2.5 Contribution Evaluation . 19
2.2.6 Conclusions . 19

2.3 Cost-Based Optimization of Service Compositions . 19
2.3.1 Background . 20
2.3.2 Problem Statement . 20
2.3.3 Contribution Relevance . 20
2.3.4 Contribution Summary . 20
2.3.5 Contribution Evaluation . 21
2.3.6 Conclusions . 21

2.4 Towards Optimizing the Non-Functional Service Matchmaking Time 21

Internal Draft Version 1.0, Dated 29 February 2011 4

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

2.4.1 Background . 21
2.4.2 Problem Statement . 22
2.4.3 Contribution Relevance . 22
2.4.4 Contribution Summary . 22
2.4.5 Contribution Evaluation . 23
2.4.6 Conclusions . 23

2.5 Cost Reduction Through SLA-driven Self-Management 24
2.5.1 Background . 24
2.5.2 Problem Statement . 24
2.5.3 Contribution Relevance . 24
2.5.4 Contribution Summary . 25
2.5.5 Contribution Evaluation . 25
2.5.6 Conclusions . 25

2.6 Autonomic SLA-aware Service Virtualization for Distributed Systems 26
2.6.1 Background . 26
2.6.2 Problem Statement . 26
2.6.3 Contribution Relevance . 26
2.6.4 Contribution Summary . 27
2.6.5 Contribution Evaluation . 27
2.6.6 Conclusions . 27

3 Conclusions 28
3.1 Outlook and Future Research Challenges . 28

Bibliography 29

A Attached Papers 35
A.1 Stimulating Skill Evolution in Market-based Crowdsourcing 36
A.2 End-to-End Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo 52
A.3 Cost-Based Optimization of Service Compositions . 66
A.4 Towards Optimizing the Non-Functional Service Matchmaking Time 80
A.5 Cost Reduction Through SLA-driven Self-Management 82
A.6 Autonomic SLA-aware Service Virtualization for Distributed Systems 90

Internal Draft Version 1.0, Dated 29 February 2011 5

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Chapter 1

Deliverable Overview

1.1 Introduction

This deliverable presents the final S-CUBE research outcomes in work package WP-JRA-2.3 (Self-*
Service Infrastructure and Service Discovery Support). More concretely, this document presents final
results of task T-JRA-2.3.2 (Service Registration and Search), which deals mainly with service infras-
tructures and service discovery. The goals of the deliverable, as stated in the most recent version of the
S-CUBE Description of Work, are as follows:

CD-JRA-2.3.9: QoS and SLA aware service runtime environment [Month 48]: The main goal of
this work is to propose a description of a novel service runtime infrastructure, which will incorpo-
rate an active and QoS-aware registry and client components. This infrastructure will ensure SLA
compliance and suggest services as well as ad hoc processes.

Hence, this deliverable will be a research- and paper-oriented document, focusing mainly on the
topics of Quality-of-Service (QoS) management and service discovery based on non-functional proper-
ties in the context of service registries and runtime environments. To this end, this deliverable builds
on CD-JRA-2.3.3 [38], which presented some groundwork requirements and research challenges. The
current deliverable is meant as a continuation and implementation of this more vision-oriented earlier
document. Additionally, the current deliverable has to be seen as complementary to PO-JRA-2.3.7 [66],
which considered ad hoc process detection based on events. Finally, as the scope of this deliverable is
very closely related to non-functional properties, QoS and Service Level Agreement (SLA) management,
this deliverable in particular has strong links to S-CUBE work package WP-JRA-1.3 (End-to-End Qual-
ity Provision and SLA Conformance). More concretely, the notion of end-to-end SLAs, as incorporated
here, is discussed in more detail in CD-JRA-1.3.3 [33], CD-JRA-1.3.4 [55] and CD-JRA-1.3.5 [63].

1.2 Deliverable Structure

The remainder of this document is structured as follows. In Section 1.3, we will revisit the research
architecture of WP-JRA-2.3. This section gives a coarse-grained overview over the general research
work carried out in the work package in total, and concisely summarizes what parts of the work package
vision have been covered in this document. In Section 1.4, we will introduce the problem area of this
deliverable. Most importantly, we will revisit the notions of Non-Functional Properties (NFP), Quality-
of-Service (QoS), QoS-based service discovery, and Service Level Agreements (SLAs). The following
Section 1.5 gives a brief introduction to the collected contributions, their relation to other deliverables,
and other Workpackages, and future directions opened by the work . Afterwards, Chapter 2 will contain
individual discussions and overviews over the contributed papers. These sections give a quick glance
over the relevant research and integration between research results. Section 3.1 will conclude the main

Internal Draft Version 1.0, Dated 29 February 2011 6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

part of the deliverable with a short summary, and an outlook on future research directions and remaining
open issues. Finally, Appendix A contains the original papers in verbatim. This allows the interested
reader to dig into the contributed research in all details.

1.3 The WP-JRA-2.3 Research Architecture

Research work in WP-JRA-2.3 is driven by the Work Package vision that structures the research work
internally. Figure 1.1 illustrates the overall research architecture of WP-JRA-2.3: research on service in-
frastructures is comprised in three threads, Service Discovery, Service Registries and Service Execution.
Orthogonally different approaches are separated in three layers.

Figure 1.1: WP-JRA-2.3 Research Architecture

• Service Discovery Thread (A) - Service discovery is a fundamental element of service-oriented ar-
chitectures, services heavily rely on it to enable the execution of service-based applications. Novel
discovery mechanisms must be able to deal with millions of services. Additionally, these discovery
mechanisms need to consider new constraints, which are not prevalent today, such as Quality of Expe-
rience requirements and expectations of users, geographical constraints, pricing and contractual issues,
or invocability.

• Service Registry Research Thread (B) - Service registries are tools for the implementation of loosely-
coupled service-based systems. The next generation of registries for Internet-scale service ecosystems
are emerging, where fault tolerance and scalability of registries is of eminent importance. Autonomic
registries need to be able to form loose federations, which are able to work in spite of heavy load
or faults. Additionally, a richer set of metadata is needed in order to capture novel aspects such as
self-adaptation, user feedback evaluation, or Internet-scale process discovery. Another research topic
is the dissemination of metadata: the distributed and heterogeneous nature of these ecosystems asks
for new dissemination methods between physically and logically disjoint registry entities, which work
in spite of missing, untrusted, inconsistent and wrong metadata.

• Runtime Environment Research Thread (C) - There is an obvious need for automatic, autonomic ap-
proaches at run-time. As opposed to current approaches we envision an infrastructure that is able to
adapt autonomously and dynamically to changing conditions. Such adaptation should be supported by
past experience, should be able to take into consideration a complex set of conditions and their cor-
relations, act proactively to avoid problems before they can occur and have a long lasting, stabilizing
effect.

Internal Draft Version 1.0, Dated 29 February 2011 7

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

The current deliverable can be considered a cross-cutting, final discussion across all three research
threads of the work package (service discovery, service registry and runtime environment). More con-
cretely, the following aspects are covered by papers in this deliverable:

• We present some important contributions on research aspect A3 (feedback-based service discovery),
related to skill-based discovery of human-provided services in marketplaces.

• In reserach thread B (service registry), we present important results on all three aspects (self-*, meta-
data and metadata dissemination). However, most focus is set on aspect B2 (service metadata).

• Finally, we also present results with regard to self-* in service execution (C1) and multi-level adapta-
tion (C3), for instance within the scope of the PREvent framework.

However, please note that, as this is the final deliverable in this work package, the overal focus of
the work presented was of an integrative nature, i.e., less focus was put on covering single aspects from
the WP-JRA-2.3 research agenda, and more on cross-cutting research, spanning more than one aspect.
Additionally, most research discussed in this deliverable also relates to other work packages of S-CUBE
(most importantly, WP-JRA-1.2, WP-JRA-1.3 and WP-JRA-2.2).

1.4 Background

In the following section, we briefly summarize the most important background ideas used in the deliver-
able. This includes the idea of service metadata, non-functional service properties, Quality-of-Service,
service discovery and Service Level Agreements (SLAs).

1.4.1 Non-Functional Properties and Quality-of-Service

Service descriptions include metadata about services. At least three different groups of metadata can be
differentiated:

• Functional descriptions are the most common metadata, and define the functionality that a service
provides. Simple functional descriptions can be published using WSDL [75]. More complex service
descriptions are often specified using semantic Web service [47] technology, for instance WSMO [58]
or SAWSDL [32]. However, there are also approaches which do not rely on semantics to provide more
powerful functional descriptions [60].

• Protocol descriptions cover the dynamic aspects of service description. These are only relevant for
stateful Web services, where service invocations have to be issued following a defined protocol or
Message Exchange Patterns. These “usage protocols” for stateful services can be specified using
languages such as BPEL Light [43] or the SEPL [20].

• Finally, QoS [48] aspects denote the non-functional properties of services. Hence, QoS is often seen
as a discriminator between functionally equivalent services.

The abstract concept of QoS can be measured in virtually infinite different dimensions. Often-used
dimensions to measure QoS are availability, response time, failure rate (reliability) and security. How-
ever, other research papers have identified a plethora of additional metrics. For instance, in [61] the
dimensions wrapping time (time to unwrap the request XML structure), execution time (time necessary
for the actual service invocation, excluding networking and message serialization issues) and network
latency are proposed. Others consider trust and reputation as qualities that a service can exhibit [73, 68],
and that can be used to differentiate between services.

Internal Draft Version 1.0, Dated 29 February 2011 8

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

1.4.2 Service Discovery Based on Non-Functional Properties

Service discovery is a process in which a service request is matched with the service descrip-
tions/advertisements stored in a service registry. The result of this process is a set of service advertise-
ments that match the request which may be grouped into a set of categories depending on their degree
of match with this request. Based on the service aspect considered, this process can separated into two
main sub-processes: a) functional service discovery, and b) non-functional service discovery. In the for-
mer process, the requester’s functional requirements are matched with the functional capabilities of the
registered services so as to infer those services that functionally match the request.

The non-functional service discovery process is usually called after the functional one. It is usually
separated into two sequential sub-processes: a) non-functional service matchmaking, and b) service se-
lection. The non-functional service matchmaking process filters the functional matching services based
on their non-functional capabilities with respect to the non-functional requirements of the requester. It
may also group the matching results based on their matching degree with the non-functional part of the
service request. It must be noted here that both non-functional service capabilities and requirements
are usually expressed as a set of constraints on non-functional properties and metrics. The service se-
lection process then orders the matchmaking results according to their rank, which is usually produced
through the Simple Additive Weighting [21] technique by considering requester-provided weights on
non-functional terms (i.e., properties and metrics) as well as non-functional term-specific utility func-
tions.

Research work in non-functional service matchmaking can be categorized into three main categories:
ontology-based, constraint-based, and mixed. Ontology-based approaches [78] rely on semantic non-
functional service specifications and use reasoners to infer the matching between non-functional service
requests and advertisements. The main drawback of these approaches is that they are able to handle
only n-ary constrained non-functional service specifications, i.e., specifications containing constraints
on only one non-functional term. This drawback is solved by the constraint-based approaches [13, 11]
which combine a non-functional service request and advertisement into one or more constraint models
and use constraint solvers to solve these models and infer if there is a match between the non-functional
request and advertisement. Depending on the linearity of the constraints involved in the specifications,
different constraint solving techniques can be used [36]: a) Mixed-Integer Programming [65] for spec-
ifications containing only linear constraints and Constraint Programming [62] for specifications also
containing non-linear constraints. However, such approaches assume that the non-functional service
specifications reference specific non-functional models (i.e., descriptions of non-functional terms) that
have been produced by one or more experts. The mixed-approach [36] relies on semantic non-functional
service specifications and uses a specific algorithm [34] to align them based on their quality terms. It
then follows the constraint-based approach to infer the matching of the specifications.

Apart from the previously described main approach in service selection, other sophisticated ap-
proaches [45] perform normalizations and grouping of non-functional metrics (in domains or functional
groups). Normalizations are performed for three main reasons: a) to allow for a uniform measurement
of service qualities independent of units, b) to provide a uniform index to represent service qualities for
each provider, and c) to allow setting a threshold regarding the qualities. The number of performed nor-
malizations depends on the nesting degree of the non-functional metric groups. All previous approaches
rely on non-functional service advertisements that specify equality constraints on non-functional metrics
(e.g. that the average response time is equal to 5 seconds). However, as in reality the non-functional ser-
vice advertisements specify a range of values for each metric (i.e., two constraints defining the upper and
lower value of a metric), approaches [11, 34] that solve Constraint Satisfaction Optimization Problems
(SCOP) have been proposed to produce the rank for a non-functional service advertisement based on the
worst (or even best) allowed value for the involved metrics.

Internal Draft Version 1.0, Dated 29 February 2011 9

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

1.4.3 Service Level Agreements

In a way, Web service SLAs [28] are a formalization and contractual arrangement of the concept of QoS.
Instead of assuming that services provide the highest quality they can on a best-effort basis, SLAs fix the
minimally promised quality in various dimensions. SLAs are often seen as legally binding contracts be-
tween one or more service clients and a service provider. SLAs are mainly a collection of SLOs. An SLO
is an observable quality dimension of a service. Evidently, there is a strong relationship between SLOs
and QoS, and, indeed, frequently SLOs are defined on top of QoS characteristics. For instance, often-
used SLOs are the response time and availability of the service. Additionally, SLAs define penalties for
non-achievement (violation) of SLOs. Penalties are often monetary consequences, which are expected to
press service providers to achieve their target values. Both, penalties and target values, can be different
for every SLA in which a an SLO is used. At runtime, concrete values for SLOs can be monitored. Based
on the type of SLO (see below), this measured value can be generated either per composition instance or
per aggregation interval.

Some different languages have been proposed to model SLA, including WSLA [12, 28], WS-
Agreement [3] and SLAng [67]. These models do not differ so much in their expressiveness, but more in
the environment they live in. For instance, WSLA specifies a monitoring and accounting infrastructure
along with the basic language [12]. It is important to note that the work in this deliverable is agnostic
with regard to the used SLA language, as long as it fits the basic model described above.

Types of SLOs

Just like QoS dimensions, SLOs come in different flavors. In this deliverable, two distinctions are of
relevance.

• Firstly, one can differentiate between nominal and continuous SLOs. For nominal SLOs, the measured
value of an objective can be one of a finite number of potential values. For these SLOs, the target value
is a subset of the set of potential values. Metric SLOs, which are more prevalent, can take an infinite
number of values. Target values are defined as thresholds on the metric.

• Secondly, one can distinguish SLOs on composition instance level and aggregated SLOs. For com-
position instance level SLOs, a decision of whether an SLA violation has happened can be made for
every single composition instance individually. Aggregated SLOs are defined over an aggregation
period, for instance a number of composition instances or a time interval. Decisions can be made
only looking at the whole aggregation period, i.e., usually numerous composition instances. Unless
stated otherwise, all work in this deliverable is applicable for composition instance level SLOs only.
A generalization of the presented approach to aggregated SLOs is part of ongoing work.

1.5 Overview of the Contributions

In the following, we briefly introduce the contributions of the deliverable. More detailled summaries can
be found in Chapter 2.

1.5.1 Stimulating Skill Evolution in Market-based Crowdsourcing [64]

Content Overview. This work presented at the 9th International Conference on Business Process Man-
agement (2011) presents Crowdsourcing on top of a SOA related infrastructure A major challenge in
crowdsourcing is to guarantee high-quality processing of tasks. The work presents a novel approach
that matches tasks to suitable workers based on auctions. This way QoS constraints can be better met
and agreements settled with customers.

Internal Draft Version 1.0, Dated 29 February 2011 10

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Relations to 2.3. The work is related to platform, thus, infrastructure management (JRA-2.3). In partic-
ular, the content can be seen as an extension to the ranking approaches in CD-JRA-2.3.5. Instead of
discussing ideas of local approaches such as in CD-JRA-2.3.4 and CD-JRA-2.3.6 here a more global
approach is taken when adapting the environment’s resource selection. The adaptation strategies pre-
sented do not consider direct interference with the infrastructure but instead choose an offline approach
that feeds its decision information from interaction observations, e.g., skill evolution.

Relations to other workpackages. While the current version of the paper has little relations to other
work packages, future workcould go in the direction of compositions as studied by JRA-2.2. In partic-
ular, coordinated service compositions as researched in CD-JRA-2.2.2 and algorithms and techniques
for splitting and merging compositions as presented in CD-JRA-2.2.3 would then be in the focus of
the studies.

Future Directions. As part of the ongoing research the plan is to investigate the difficulties to introduce
complex tasks and in the crowd collaboration. Sub-tasks need to be decompose and reassembled. The
responsibility for a certain QoS would also transfer partially to the crowd members.

1.5.2 End-to-End Support for QoS-Aware Service Selection, Binding and Mediation in
VRESCo [50]

Content Overview. Published in IEEE Transactions on Services Computing, this work copes with the
challenge of dynamic and adaptable service-oriented solutions with special emphasis on service meta-
data, Quality of Service, service querying, dynamic binding and service mediation. The Vienna Run-
time Environment for Service-oriented Computing (VRESCo) is presented in the light of a service
infrastructure with details on service querying and service mediation.

Relations to 2.3. This work is integral to to research agenda of JRA-2.3 (service registries), as it presents
a novel service registry model, which is particularly suitable to support adaptive SOAs. Service query-
ing in VRESCo builds on the ranking approaches discussed in CD-JRA-2.3.5.

Relations to other workpackages. As VRESCo is, by design, QoS-aware, this contribution also
strongly relates to JRA-1.3, most importantly to the QoS evaluation methods discussed in CD-JRA-
1.3.4, CD-JRA-1.3.5 and CD-JRA-1.3.6.

Future Directions. Future work within VRESCo will see us focus more on support and integration of
service compositions and business processes. Hence, this line of research will mostly continue within
the topics covered by JRA-2.2.

1.5.3 Cost-Based Optimization of Service Compositions [40]

Content Overview. This work, accepted for publication in IEEE Transactions on Services Computing,
tackles the challenge of preventing cases of SLA violations for providers of composite services. In
order to get a realistic and complete view of the decision process of service providers, the costs of
adaptation need to be taken into account. The solution presented offers possible algorithms to solve
this complex optimization problem, and details an end-to-end system based on the PREvent (prediction
and prevention based on event monitoring) framework, which clearly indicates the usefulness of the
model.

Relations to 2.3. At its core, this contribution is discussing an autonomic service-based system for man-
aging customer SLAs. To this end, we use the VRESCo QoS-aware service registry (see previous con-
tribution) as foundation. Hence, this contribution relates to the self-* service registry and infrastucture
part of JRA-2.3.

Internal Draft Version 1.0, Dated 29 February 2011 11

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Relations to other workpackages. Evidently, this paper also has strong relationships to JRA-1.2, es-
pecially CD-JRA-1.2.4, CD-JRA-1.2.5 and CD-JRA-1.2.6. Furthermore, the contribution relates
strongly to the SLA topics discussed in JRA-1.3 (CD-JRA-1.3.6). Finally, as the main subject of
adaptation in this paper are service compositions, the paper also relates to JRA-2.2 (CD-JRA-2.2.6).

Future Directions. There is still potential for plenty of further research in the direction of cost-based
optimization. For instance, in its current form, the formalization used in the paper does not take into
account indirect costs, such as customer satisfaction or potential loss of future customers. Furthermore,
the current version of the paper suffers from the limitation that it considers only SLAs on instance-
level. Future work can extend and improve on those aspects.

1.5.4 Towards Optimizing the Non-Functional Service Matchmaking Time

Content Overview. Published as a poster contribution at the The World Wide Web Conference, the ap-
proach concentrates on exploiting constraint solving techniques in service discovery for inferring if the
user non-functional requirements are satisfied by the service non-functional capabilities. This paper
proposes two alternative techniques for improving the non-functional service matchmaking time. The
first one is generic as it can handle non-functional service specifications containing n-ary constraints,
while the second is only applicable to unary-constrained specifications.

Relations to 2.3. The research work addresses the JRA-2.3’s research challenge that concerns scalable
and fault tolerant techniques for service discovery as it proposes two QoS-based service matchmaking
techniques which not only optimize the matchmaking time without sacrificing accuracy but they can
also be distributed through assigning part of the matchmaking functionality to different nodes.

Relations to other workpackages. The research work is highly connected to the JRA-1.3 WP as it ex-
ploits non-functional service descriptions (requests as well as advertisements), which could be de-
scribed through the non-functional service meta-model proposed in the deliverable CD-JRA-1.3.3 and
could reference the non-functional properties of the S-Cube’s end-to-end quality reference model pro-
posed in the deliverable CD-JRA-1.3.2, so as to perform the matchmaking.

Future Directions. The research work can be exploited by scalable service registries which are able to
matchmake millions of services, paving the way for the move towards the Internet of Services.

1.5.5 Cost Reduction Through SLA-driven Self-Management [37]

Content Overview. Presented at the 9th IEEE European Conference on Web Services, the presented
approach considers a SLAs management which satisfies the customers requirements and also their
own business objectives, such as maximizing profits. Most current systems fail to consider business
objectives and thus to provide a complete SLA management solution. Specifically, this work proposes
a framework that comprises multiple, configurable control loops and supports automatically adjusting
service configurations and resource usage in order to maintain SLAs in the most cost-effective way.
The framework targets services implemented on top of large-scale distributed infrastructures, such as
clouds.

Relations to 2.3. The work is placed in the context of Self-* in Service Execution. Qu4DS provides
an automatic support for executing services by using self-adaptive techniques (dynamic adaptation).
With regard to Deployment and Management, the Qu4DS framework automatically deploys service
instances on top of distributed infrastructures by managing them according to quality properties.

Relations to other workpackages. The work is complementary to adaptable service compositions
(i.e., WP-JRA-2.2) as it prevents SLA violations thus avoiding triggering adaptation actions in the

Internal Draft Version 1.0, Dated 29 February 2011 12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

composition-level. Moreover, composition-level adaptable techniques can be aware about further de-
tails about Qu4DS adaptive behavior which enables to conceive multilevel adaptation. With respect
to the deliverable CD-JRA-2.3.2, the work can be considered as a self-healing support for atomic
services. With respect to the deliverable CD-JRA-2.3.6, Qu4DS specifies and employs adaptation
policies but not limit to them, the framework can be extended to support further adaptation policies.

Future Directions. The work leaves place for several research directions. First, the QoS translation
can be improved based on advanced application profiling techniques. This may require estimating
application performance based on profiled data at runtime for instance. Second, Qu4DS could rely on
dynamic pricing where the price of the service take into account further aspects, for example, related
to competitor service prices. Third, other service providers can be supported, not only those which
rely on distributed tasks. This requires further dynamic metrics which are able to analyze if the request
treatment is in time or delayed for example. Finally, further adaptation policies can be developed not
only in the sense of the current addressed events (request arrivals and job faults and delays), but also in
the context of other events such as contract proposals, resource failures, infrastructure price changes,
contract rescission and so forth.

1.5.6 Autonomic SLA-aware Service Virtualization for Distributed Systems [30]

Content Overview. Presented at the 19th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing, the focus in this work is on Cloud Computing. Managing such het-
erogeneous environments requires sophisticated interoperation of adaptive coordinating components.
The work introduces an SLA-aware Service Virtualization architecture that provides non-functional
guarantees in the form of SLAs and consists of a three-layered infrastructure including agreement
negotiation, service brokering and on demand deployment. In order to avoid costly SLA violations,
flexible and adaptive SLA attainment strategies are used with a failure propagation approach.

Relations to 2.3. The work introduced in this paper is a result of a SZTAKI-TUW collaboration in the
Runtime Environment research thread of JRA-2.3. It targets the management and deployment aspects
of interoperating distributed systems, and proposes autonomic SLA management strategies to deal
with the highly dynamic and error-prone nature of these systems. In the S-Cube deliverable CD-JRA-
2.3.2, a conceptual architecture incorporating three closely related areas was introduced: agreement
negotiation, service brokering and service deployment. The examinations of this architecture revealed
the basic requirements for a future self-* realization of these core components. These basic require-
ments implied that there must be a negotiation phase when it is specified, what service is to be invoked
and what are the conditions and constraints (temporal availability, reliability, performance, cost, etc.)
of its use. The contribution to Deliverable CD-JRA-2.3.4 refines this vision, and presents a unified
service virtualization environment representing the first attempt to combine SLA-based resource ne-
gotiations with virtualized resources in terms of on-demand service provision resulting in a holistic
virtualization approach. The contributino to Deliverable CD-JRA-2.3.6 introduces the autonomic be-
haviour of this service virtualization architecture by summarizing the same contribution. The focus is
on the SLA-awareness of the architecture.

Relations to other workpackages. The topic of this contribution is also closely related to research car-
ried out in WP-JRA-1.2 and WP-JRA-1.3. Detailed adaptation-related capabilities of the architecture
including cross-layer adaptation were reported in deliverable CD-JRA-1.2.5.

Future Directions. In this current contribution a refined architecture was introduced considering re-
source provision using a virtualization approach combined with the business-oriented utilization. This
solution utilizes a heterogeneous SLA-coupled infrastructure for on-demand service provision based
on SLAs with a MAPE-based autonomic behaviour, in order to cope with changing user requirements
and on demand failure handling. Since newly emerged technologies such as Cloud Computing become

Internal Draft Version 1.0, Dated 29 February 2011 13

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

more and more utilized in business service solutions, the extension of the proposed SSV solution for
additional Cloud infrastructures and platforms will require further research.

The volume of works collected in this deliverable present different approaches to the subject of the
deliverable. The particular challenges studied in the partners’ contributions describe approaches taken
from different perspectives and taking into account various relevant aspects of the Service-Oriented Ar-
chitecture (SOA). In the next section, all partners present their contribution in the scope of this deliver-
ables description.

Internal Draft Version 1.0, Dated 29 February 2011 14

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Chapter 2

Contributions to QoS and SLA aware
service runtime environment

2.1 Stimulating Skill Evolution in Market-based Crowdsourcing

Contributing partners: Vienna University of Technology (TUW)

Status: Submitted to the 9th International Conference on Business Process Management (BPM) , 28th
August - 2nd September, 2011, Clermont-Ferrand, France.

Keywords: Human-centric BPM, Crowdsourcing, Online communities, Task markets, Auctions, Skill
evolution

2.1.1 Background

Today, ever changing requirements force in-house business processes to rapidly adapt to changing sit-
uations in order to stay competitive. Changes involve not only the need for process adaptation, but
also, require an additional inclusion of new capabilities and knowledge, previously unavailable to the
company. Thus, outsourcing of parts of business processes became an attractive model. This work, in
particular, focuses on a distinguished recent type of outsourcing called crowdsourcing. The term crowd-
sourcing describes a new web-based business model that harnesses the creative solutions of a distributed
network of individuals [8], [72]. This network of humans is typically an open Internet-based platform
that follows the open world assumption and tries to attract members with different knowledge and inter-
ests. Large IT companies such as Amazon, Google, or Yahoo! have recognized the opportunities behind
such mass collaboration systems [14] for both improving their own services and as business case. In
particular, Amazon focuses on a task-based marketplace that requires explicit collaboration. The most
prominent platform they currently offer is Amazon Mechanical Turk (AMT) [2]. Requesters are invited
to issue human-intelligence tasks (HITs) requiring a certain qualification to the AMT. The registered cus-
tomers post mostly tasks with minor effort that, however, require human capabilities (e.g., transcription,
classification, or categorization tasks [22]).

2.1.2 Problem Statement

In this work we assume that crowdsourcing can be build on top of a SOA environment. The main
challenges addressed in this work relate to building and managing an automated crowd platform. There
is only a few approaches towards integrating SLAs into crowdsourcing. In one of our previous works at
TUW [57] we introduced an approach to include human tasks as available on the current crowd platforms
into Web Service Level Agreements (WSLA). The interested reader is referred to the results of that

Internal Draft Version 1.0, Dated 29 February 2011 15

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

work for a more elaborated study of the idea. This present work relates more to QoS related issues.
In crowdsourcing it is not only of importance to find suitable workers for a task and to provide the
customer with satisfying quality, but also, to maintain a motivated base of crowd members and provide
stimulus for learning required skills. Only a recurring, satisfied crowd staff is able to ensure high QoS
and high output. As any crowd, fluctuations must be compensated and a skill evolution model must
support new and existing crowd workers in developing their capabilities and knowledge. Finally, the
standard processes on such a platform should be automated and free from intervention to handle the vast
amount of tasks and to make it compatible with a SOA approach. Atop, the model should increase the
benefit of all participants to support QoS.

2.1.3 Contribution Relevance

As outlined previously, a further major challenge hampering the establishment of a new service-oriented
computing paradigm spanning enterprise and open crowdsourcing environments are quality issues. In
our scenario this is strongly connected to correctly estimating the skills of workers. Thus, the presented
skill evolution approach helps to increase the confidence in worker skills with qualification tasks. This
would imply a huge overhead for the testing requester; s/he is also the only one who benefits from the
gathered insights. Here, we take a different approach by integrating the capability of confidence man-
agement into the crowdsourcing platform itself. Instead of having point-to-point tests, we propose the
automated assessment of workers to unburden requesters in inspecting workers’ skills. The approach is
(semi-)automatic and offers great potential for inclusion of crowd capabilities in business environments.
Knowing crowd capabilities by skill evolution is one of the major steps towards better QoS in an open
crowdsourcing environment.

2.1.4 Contribution Summary

Our idea of skill evolution contains the following steps. We propose the automatic assessment of workers
where confidence values are low. For example, newcomers who recently signed up to the platform may be
high or low performers. To unveil the tendency of a worker, we create a hidden ‘tandem’ task assignment
comprising a worker whose skills are known (high performer) with a high confidence and a worker where
the crowdsourcing platform has limited knowledge about its skills (i.e., low confidence). The next step
is that both workers process the same task in the context of a requester’s (real) task. However, only the
result of the high confidence worker is returned to the requester, whereas the result of the low confidence
worker is compared against the delivered reference.

This approach has advantages and drawbacks. First, skill evolution through tandem assignments
provides an elegant solution to avoid training tasks (assessments are created automatically and managed
by the platform) and also implicitly stimulates a learning effect. Of course, the crowdsourcing platform
cannot charge the requester for tandem task assignments since it mainly helps the platform to better
understand the true skill (confidence) of a worker. Thus, the platform must pay for worker assessments.
As the evaluations show, performing assessments provides the positive effect that the overall quality of
provided results and thus requester satisfaction increases due to a better understanding of worker skills.

2.1.5 Contribution Evaluation

To evaluate the ideas of the work we have implemented a Java-based simulation framework that supports
all introduced concepts. An evaluation scenario consists of a set of workers and a set of requesters. In
every round of the simulation each requester usually announces a task. An auction is conducted for
each announced task which contains among other properties the expected quality. High quality require-
ments indicate highly sophisticated and demanding tasks. We applied different scenarios and tested those
with and without skill evolution. Detailed description of the setup is available in the work’s section on
implementation an evaluation.

Internal Draft Version 1.0, Dated 29 February 2011 16

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

The results show that the additional assessments provide remarkable good results for reducing mis-
judgements. As a summary, skill evolution generally performs better, however, is not antagonistic to
overload scenarios. While with moderate task offering frequencies the model performs much better in all
measurements, the differences become even when load increases and assessment task further overload
the platform. The results show that it is the responsibility of the platform to balance the task load and
trade only with a fair amount of requesters.

2.1.6 Conclusions

In the contribution we present a novel crowdsourcing marketplace based on auctions. The design em-
phasizes automation and low overhead for users and members of the crowdsourcing system. In oder
to increase the QoS in SOA-based crowdsourcing we introduce an approach with two novel auctioning
variants and show by experiments that it may be beneficial to employ assessment task in order to estimate
members’ capabilities and to train skills. Stimulating the demand for certain skills in such a way leads
to skill evolution. From such an evolution can benefit all participants. New workers can be motivated by
helping them to develop their skills with training. This way the platform provider can harvest a regular
group of returning workers. The customers are also satisfied because the quality of the service because
the auctioning mechanism guarantees that the best fitting worker gets their tasks.

2.2 End-to-End Support for QoS-Aware Service Selection, Binding and
Mediation in VRESCo

Contributing partners: Vienna University of Technology (TUW)

Status: Published in IEEE Transactions on Services Computing (2010)

Keywords: Web Services Publishing and Discovery, Metadata of Services Interfaces, Advanced Ser-
vices Invocation Framework

2.2.1 Background

During the last years, Service-oriented Architecture (SOA) and Service-oriented Computing (SOC) have
gained acceptance as a paradigm for addressing the complexity that distributed computing generally in-
volves. In theory, the basic SOA model consists of three actors that communicate in a loosely coupled
way as shown in Figure 2.1a. However, practice has shown that SOA solutions are often not as flexible
and adaptable as claimed. We argue that there are some issues in current implementations of the SOA
model. First and foremost, service registries such as UDDI did not succeed. We think this is partly due
to their limited querying support that only provides keyword-based matching of registry content, and
insufficient support for metadata and non-functional properties of services. This is also highlighted by
the fact that Microsoft, SAP, and IBM have finally shut down their public UDDI registries in 2005. As
a result, service registries are often missing in service-centric systems (i.e., no publish and find primi-
tives). This leads to point-to-point solutions where service endpoints are exchanged at design-time (e.g.,
using E-mail) and service consumers statically bind to them (see Figure 2.1b). Besides that, support
for dynamic binding and invocation of services is often restricted to services having the same technical
interface. In this regard, the lack of service metadata makes it difficult for service consumers to know
if two services actually perform the same task. Furthermore, support for Quality of Service (QoS) is
necessary to enable service selection based on non-functional QoS attributes such as response time (in
addition to functional attributes).

Internal Draft Version 1.0, Dated 29 February 2011 17

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Service
Contract

Service
Registry

Service
Provider

Service
Consumer Bind/Execute

PublishFind

(a) SOA Model

Service
Contract

Service
Provider

Service
Consumer Bind/Execute

(b) SOA Practice

Figure 2.1: SOA Theory vs. Practice (adapted from [51])

2.2.2 Problem Statement

Adaptive service-oriented systems bring along several distinct requirements, leading to a number of
challenges that have to be addressed. In this section, we summarize the current challenges we see most
important, and which are addressed in the paper summarized here. (1) Firstly, service interface descrip-
tion languages such as WSDL focus on the interface needed to invoke a service. However, from this
interface it is often not clear what a service actually does, and if it performs the same task as another ser-
vice. Service metadata [7] can give additional information about the purpose of a service and its interface
(e.g., pre- and post-conditions). (2) Once services and associated metadata are defined, this information
should be discovered and queried by service consumers. This is the focus of service registry standards
such as UDDI. In practice, the service registry is often missing. (3) In enterprise scenarios, QoS plays a
crucial role [77] in discriminating between services. This includes both network-level attributes (e.g., la-
tency and availability), and application-level attributes (e.g., response time and throughput). (4) Finally,
in order to technically enable actual dynamicity and runtime service binding, mechanisms that mediate
between alternative services, possibly having different interfaces, need to be provided.

2.2.3 Contribution Relevance

In order to tackle the four challenges outlined above, we have devised and implemented a service run-
time environment called VRESCo, which aimed at providing a practical, integrative solution to adaptive
enterprise services computing. To be more specific, the present paper focuses on service metadata, QoS
and service querying, plus dynamic binding, invocation, and mediation of services. Additionally, we
provide an extensive performance evaluation of the different components and an end-to-end evaluation
of the overall runtime, that shows the applicability of our approach.

2.2.4 Contribution Summary

The architectural overview of VRESCo is shown in Figure 2.2, which is adapted from [49]. The VRESCo
core services are provided as Web services that can be accessed either directly using SOAP or by using the
Client Library that provides a simple API. Furthermore, the DAIOS framework [41] has been integrated
into the Client Library, and provides stubless, protocol-independent, and message-driven invocation of
services. The Access Control Layer guarantees that only authorized clients can access the core services,
which is handled using claim-based access control and certificates [49]. Services and associated metadata
are stored in the Registry Database which is accessed using the Object-Relational Mapping (ORM) Layer.
Finally, the QoS Monitor is responsible for regularly measuring the current QoS values. The overall
system is implemented in C# using the Windows Communication Foundation [46]. Due to the platform-
independent architecture, the Client Library can be provided for different platforms (e.g., C# and Java).

There are several core services. The Publishing/Metadata Service is used to publish services and
metadata into the Registry Database. Furthermore, the Management Service is responsible for managing

Internal Draft Version 1.0, Dated 29 February 2011 18

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Service
Client

SOAP

Services

measure

QoS
Monitor

VRESCo Client Library

Daios Client
Factory

invoke

SOAP

VRESCo Runtime Environment

Registry
Database

Notification
Engine

Query
Engine

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
Service

O
R

M

La
ye

r

Ac
ce

ss

C
on

tro
l

Certificate
Store

Event
Database

Figure 2.2: VRESCo Overview Architecture

user information (e.g., name, password, etc.) whereas the Query Engine is used to query the Registry
Database. The Notification Engine informs users when certain events of interest occur inside the runtime,
while the Composition Engine [59] provides mechanisms to compose services by specifying hard and
soft constraints on QoS attributes. In this paper, we focus on the main requirements for our client-side
mediation approach which are the Metadata Service (including the models for metadata, services and
QoS), the Query Engine, and the dynamic binding, invocation and mediation mechanisms.

2.2.5 Contribution Evaluation

We give an evaluation of the VRESCo runtime focusing on the topics covered in this paper. The pur-
pose of this evaluation is twofold: firstly, we show the runtime performance regarding service querying,
rebinding, and mediation by using synthetic data. The main goal of this evaluation is to analyze the
performance impact of each aspect in isolation. Secondly, we combine these aspects into a coherent
end-to-end evaluation using an order processing workflow. The main goal is to understand the influence
of each aspect with regard to the overall process duration in a realistic setting. Additionally, we show
how the individual results of the first part interrelate in an end-to-end setting. For mediation, rebinding
and end-to-end evaluation we have created different sets of test services and QoS configurations (with
varying response times) using the Web service generation tool GENESIS [26].

2.2.6 Conclusions

One of the main promises of SOC is the provisioning of loosely-coupled applications based on the
publish-find-bind-execute cycle. In practice, however, these promises can often not be kept due to the
lack of expressive service metadata and type-safe querying facilities, explicit support for QoS, as well as
support for dynamic binding and mediation. In this paper, we have proposed the QoS-aware VRESCo
runtime environment which has been designed with these requirements in mind.

2.3 Cost-Based Optimization of Service Compositions

Contributing partners: Vienna University of Technology (TUW)

Internal Draft Version 1.0, Dated 29 February 2011 19

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Status: Accepted for publication in IEEE Transactions on Services Computing (2012)

Keywords: Service Composition, Service Level Agreements, Adaptation, Optimization

2.3.1 Background

Service-based applications have seen tremendous research activity in the last years, with many important
results being generated around the world. However, to fully realize its potential, research and industry
alike need to focus more strongly on non-functional properties and quality issue of services. In the
business world, QoS promises are typically defined within legally binding Service Level Agreements
(SLAs) between clients and service providers, represented, e.g., using WSLA. SLAs contain Service
Level Objectives (SLOs), i.e., concrete numerical QoS objectives, which the service needs to fulfill.
If SLOs are violated, agreed upon monetary consequences go into effect. For this reason, providers
generally have a strong interest in monitoring SLAs and preventing violations, either by using post
mortem analysis and optimization [74], or by runtime prediction of performance problems [39]. We
argue that the latter is more powerful, allowing to prevent violations before they have happened by
timely application of runtime adaptation actions.

2.3.2 Problem Statement

However, preventing SLA violations is, in general, not for free. For instance, some alternative services
usable in a composition may provide faster response times (thereby improving the end-to-end runtime
of the composite service, and reducing the probability of violating runtime related SLOs), but those
services are often more expensive than slower ones. Therefore, there is an apparent tradeoff between
preventing SLA violations and the inherent costs of doing so. We argue that this tradeoff is currently not
covered sufficiently in research. Instead, researchers assume that the ultimate goal of service providers is
to minimize SLA violations, completely ignoring the often significant costs of doing so (e.g., [42, 27]).

2.3.3 Contribution Relevance

In this paper, we contribute to the state of the art by formalizing this tradeoff as an optimization problem,
with the goal of minimizing the total costs (of violations and applied adaptations) for the service provider.
We argue that this formulation better captures the real goals of service providers. Additionally, we present
possible algorithms to solve this optimization problem efficiently enough to be applied at composition
runtime.

2.3.4 Contribution Summary

In the paper, we model the decision process of a service provider as in Equation 2.1. Therein, TC are the
total costs for the service provider; S contains all SLOs contained in the SLA of the provider; ei

sx is an
estimation function capturing the predicted costs for SLA violations; A∗ is the set of applied adaptation
actions (from the set A of potential adaptations); c(ax) are the costs of applying adaptation action ax;
finally, v(A∗) is a penalty term that captures whether A∗ contains any conflicting adaptation actions. For
more details, please refer to the original paper.

TC(A∗)≈ v(A∗)+ ∑
sx∈S

ei
sx + ∑

ax∈A∗
c(ax)→ min! (2.1)

In addition to the optimization problem formalization, we also discuss different approaches for find-
ing solutions to this problem. Firstly, we present a deterministic branch-and-bound approach, which is
guaranteed to find the optimal solutions. However, given the problem structure and the generally very
large solution space, for many problem instances a deterministic solution is unfeasible. For these cases,

Internal Draft Version 1.0, Dated 29 February 2011 20

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

we present two alternative heuristic approaches: a local search algorithm, which finds solutions very
efficiently, and a genetic algorithm based approach, which takes more time to find solutions but is able
to evade local optima.

2.3.5 Contribution Evaluation

In the paper, we evaluated our approach based on an illustrative example, which has been implemented
using .NET Windows Communication Foundation1 (WCF) technology and the VRESCo SOA runtime
environment on a server running Windows Server Enterprise 2007, Service Pack 2. The machine was
equipped with 2 2.99GHz Xeon X5450 processors and 32 GByte RAM. More details on the experimental
setup can be found in the accompanying experimentation web page2.

Drawing conclusions from our experiments, we note that Branch-and-Bound is applicable in situa-
tions where just a small set of actions is available. If more actions are available, Memetic Algorithms
and GRASP are interesting candidate algorithms. GRASP produces good solutions in very little time
and can generally be used even for short-running compositions where adaptation decisions need to be
taken in a short time frame (below 1 second). Memetic Algorithms are very promising in case of long-
running compositions, where the time necessary to find a solution is not critical. Memetic Algorithms
often produce slightly better solutions than GRASP, but take much more time to do so. In a second set
of experiments, we also evaluated the end-to-end effectiveness of our system. That is, we analyze if the
system fullfills its main promise, preventing SLA violations and reducing the total costs for the service
provider. As can be seen in the paper, our system fulfills its main promise: in the example case, the
total number of SLO violations decreases to about 28% of the number of predicted violations. However,
we can also see that it does not primarily prevent violations, but rather aims at minimizing the costs of
violations. Thereby, the total costs for the service provider can be reduced to 56% of the predicted costs.

2.3.6 Conclusions

For providers of composite Web services, it is essential to be able to minimize cases of SLA violations.
One possible route to achieve this is to predict at runtime, which instances are in danger of violating
SLAs, and to apply various adaptation actions to these instances only. However, it is not trivial to
identify which adaptations are the most cost-effective way to prevent any violation, or if it is at all
possible to prevent a violation in a cost-effective way. In this paper, we have modelled this problem as
a one-dimensional, discrete optimization problem. Furthermore, we have presented both, deterministic
and heuristic solution algorithms. We have evaluated these algorithms based on a manufacturing case
study, and shown which types of algorithms are better suited for which scenarios.

2.4 Towards Optimizing the Non-Functional Service Matchmaking Time

Contributing partners: University of Crete

Status: conditionally accepted (as a poster paper) at WWW’12

2.4.1 Background

One of the main drivers and mechanisms towards the Internet of Services (IoS), where millions of ser-
vices will be available to users through a converged information, communication, and service infrastruc-
ture, is service-orientation as it promises the automatic construction of novel, added-value applications
through the discovery and composition of services. However, service-orientation has not yet kept up

1http://msdn.microsoft.com/en-us/library/ms735967(VS.90).aspx
2http://www.infosys.tuwien.ac.at/prototype/VRESCo/experimentation.html

Internal Draft Version 1.0, Dated 29 February 2011 21

http://www.infosys.tuwien.ac.at/prototype/VRESCo/experimentation.html

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

to its promises as it relies on a specific architecture, in which the service broker role, associated to the
discovery of services, has not been successfully fulfilled by the current implementations. Such imple-
mentations lack the appropriate scalability that is required for matching millions of services and rely on
service discovery mechanisms that are not very efficient in terms of matchmaking time and accuracy.

Concerning the functional service discovery, the state-of-the-art research work [10, 56, 31] relies on
using semantic I/O-based service descriptions and exploits Semantic Web techniques to perform the func-
tional service matchmaking. It has been shown that such work has a very good matchmaking time but not
a perfect accuracy as it does not rely on the service goals, expressed by service pre- and post-conditions,
as such descriptions are not yet provided by the service providers. Another line of work [16, 69, 52, 35]
has focused on scalability issues and on further optimizing the matchmaking time by appropriately orga-
nizing the service advertisement and query space.

2.4.2 Problem Statement

While the research status concerning functional service discovery is satisfactory, the same cannot be
stated for non-functional service discovery. The state-of-the-art approaches [11, 36] in the latter sub-area
exhibit perfect accuracy and have mainly focused on optimizing the time required to matchmake a single
non-functional request-to-advertisement pair by exploiting appropriate constraint solving techniques.
However, they have not yet focused on optimizing the overall non-functional matchmaking time. To this
end, they can take significant time to match a set of hundreds or thousands of non-functional service
advertisements against a non-functional service request, so they are not yet appropriate for the move to
the IoS era. In addition to the above problem, there have not been approaches focusing on scalability
issues.

Thus, there is a need for scalable non-functional service discovery techniques that can appropriately
manage a vast amount of non-functional service advertisements and optimize the time needed to match
them against non-functional service requests. If such techniques were coupled with those proposed
in functional service discovery, then a better service broker implementation would have been realized,
which could enable users and automated agents to discover those services that perfectly match their
tasks both functionally and non-functionally in a timely manner and with the appropriate, if not perfect,
accuracy.

2.4.3 Contribution Relevance

By exploiting the matchmaking metric of the approach in [36], this work partially closes the above
gap by proposing two different matchmaking techniques which are able to optimize the overall non-
functional service matchmaking time without sacrificing matchmaking accuracy. This is shown both
theoretically and empirically by comparing these two novel techniques against the most prominent state-
of-the-art one proposed in [36] in terms of matchmaking time. In fact, one of these two techniques,
called ”Unary matching” technique, is shown to be far better than the other and the prominent one
not only concerning matchmaking but also insertion, deletion, and update time. Another significant
advantage of the proposed work is that both techniques can be easily distributed in order to realize
scalable matchmaking mechanisms.

2.4.4 Contribution Summary

The first proposed technique, called “Subsumes matching” technique, relies on the “subsumes” type of
matchmaking metrics and on the fact that if a non-functional service specification A subsumes another
specification B then it will also subsume all the specifications that are subsumed by B. To this end, it
organizes the non-functional service advertisement space in such a way that the number of non-functional
request-to-advertisements pairs examined is less than that of the state-of-the-art approach. In particular,
it constructs a forest of “subsumes” trees, where each node corresponds to a non-functional service

Internal Draft Version 1.0, Dated 29 February 2011 22

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

advertisement and a parent node in each tree subsumes all of its children nodes. In this way, when a
service request is issued, it is compared against the nodes of each tree from the root until the leaves.
However, if it is found that it subsumes a specific node, then there is no need to go further down to the
node’s children/descendants as the request will certainly match/subsume them.

It is obvious that this technique is quicker than the state-of-the-art one, as each one uses the same
matchmaking metric but the first technique performs less comparisons. However, the construction and
update of a forest of “subsumes” trees is more costly than the construction and the update of a list of
service advertisements (as it is the case for the prominent approach). To this end, this technique exhibits
a higher insertion, deletion, and update time with respect to the prominent approach. This technique
can be distributed by assigning the responsibility of matching a subset of the subsumes trees to different
nodes.

The second proposed technique (i.e., the ”Unary matching” one) relies on similar techniques per-
formed in functional service matchmaking [10] in order to appropriately organize the non-functional ser-
vice advertisement space. In particular, it maintains for each non-functional metric/property an ordered
set of limits, where each limit may correspond to one or more non-functional specifications containing
a respective metric bound or equality constraint on the limit’s value. To this end, when a non-functional
service request is issued, each of its unary constraints are examined based on their containing metric.
Depending on the metric bound and constraint type, a sub-part of the metric’s ordered list of limits is
examined so as to produce a list of the matching non-functional advertisements’ URIs. For instance, if
the request constraint is of the form: X ≤ a, then the limits that are equal or less to a are examined and the
URIs of the non-functional specifications that have constraints of the form X ≤ a1, or X == a1, where
a1 ≤ a, are collected. For each request constraint, its constructed URI list is concatenated with that of
the previous constraint. If the URI list concatenation is empty, then the non-functional request does not
have a matching advertisement. Otherwise, after the processing of the last request constraint, the final,
concatenated URI list contains all the URIs of the advertisements that match the request.

The second technique is quicker than the other proposed technique as well as the prominent match-
making approach not only in terms of matchmaking but also insertion, deletion, and update time. More-
over, due to the way it organizes the advertisement space, it can be easily distributed by assigning the
responsibility of matching a sub-set of all non-functional metrics to different nodes. Its sole drawback is
that it relies on exploiting only unary-constrained non-functional service specifications.

2.4.5 Contribution Evaluation

The two proposed techniques were both theoretically and empirically evaluated against the most promi-
nent non-functional service matchmaking approach [36]. The results reported validate the comparison
statements referenced in the previous subsection. In particular, the results showed that the “Unary match-
ing” technique is far better than the other two techniques and more scalable. In addition, they showed
that both proposed techniques significantly outperform the state-of-the-art technique in terms of match-
making time.

2.4.6 Conclusions

This work has proposed two novel techniques that are able to optimize the overall non-functional service
matchmaking time with respect to the state-of-the-art research work. The “Unary matching” proposed
technique scales better than the other one and exhibits significant advantages in matchmaking as well as
insertion, deletion, and update time against the state-of-the-art work and the other proposed technique.
However, it is only able to deal with unary-constrained non-functional service specifications. This dis-
advantage is solved by the “Subsumes matching” technique which optimizes the non-functional service
matchmaking time but pays the price of higher insertion, deletion, and update time. Both techniques can
be distributed and incorporated in scalable, distributed service discovery mechanisms. Future work will
concentrate on not only optimizing the insertion, deletion, and update time of the “Subsumes matching”

Internal Draft Version 1.0, Dated 29 February 2011 23

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

technique but also on developing scalable and distributed, functional and non-functional service discov-
ery mechanisms that incorporate these two novel non-functional service matchmaking techniques. In
this way, if the latter mechanisms are exploited by a service broker, then the vision of the Internet of
Services will come closer to its realization.

2.5 Cost Reduction Through SLA-driven Self-Management

Contributing partners: INRIA

Status: Presented at the 9th IEEE European Conference on Web Services (ECOWS’11), 14th–16th
September, 2011, Lugano, Switzerland.

2.5.1 Background

The Service-Oriented Computing (SOC) promotes the conception of service-based applications on top
of loosely-coupled services from distinct providers [54]. The relationship between services are defined
by means of electronic contracts which are often represented by Service-Level Agreements (SLAs). The
SLA defines the obligations of both provider and customer services which includes the quality that should
be provided by the provider [4, 6].

Because service execution environment is distributed, service providers often take advantage of dis-
tributed computing infrastructures as clouds [1, 53, 44] and grids [17, 24]. On the one hand, clouds
provide resources on-demand along with an accounting model which allows service providers to pay for
resources according to their usage. On the other hand, grids provide further programming abstractions
useful for managing service instances on distributed resources.

2.5.2 Problem Statement

Cost reduction is a common concern among service providers once it positively contributes to increase
their profit. However, it is a challenge to reduce costs while maintaining conformance to SLAs on top of
distributed infrastructures. Indeed, just assuring the quality properties described in the SLA is a complex
task owing to service load fluctuations and unpredictable faults. Moreover, it is not trivial by far to
understand and translate high-level quality metrics and map them to system configuration in order to
properly configure service instance to meet the agreed QoS (Quality of Service). In addition to these
issues, the fact of dealing with a distributed environment makes harder to build a solution for the stated
problem.

2.5.3 Contribution Relevance

Most of current work which tackles SLA management in SOC does not specify actual low-level mech-
anisms which ensure QoS properties. These approaches typically ensure QoS by replacing services by
other services which probably are more suitable for guaranteeing the QoS. Moreover, this service re-
placement solution is placed in the service composition level where composite services are composed
based on simpler services [23, 19]. However, such approaches do not address how basic, atomic ser-
vices guarantee QoS properties. Additionally, further approaches have addressed SLA management in
the context of large-scale distributed applications, such as e-science applications deployed on grids, or
multi-tier enterprise applications deployed on clusters [18, 5, 25]. Even though these latter approaches
considers SLA aspects, they do not address meeting the business objectives of service providers which
involve profit aspects.

Internal Draft Version 1.0, Dated 29 February 2011 24

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

2.5.4 Contribution Summary

This work relies on the Qu4DS (Quality Assurance for Distributed Services) framework for managing
SLA by minimizing provider costs. In this context, costs refer to infrastructure usage and fine payments
owing to SLA violations. In order to reduce costs on infrastructure usage, Qu4DS shares a pool of booked
resources among distinct SLA contracts. Regarding fine payments, Qu4DS prevents SLA violations by
providing QoS assurance mechanisms which handle dynamic events, such as resource shortages and
execution faults. The QoS assurance mechanisms are guided by configurable strategies which attempt to
minimize fine payments by choosing the most suitable request to abort in case of resource shortages.

Furthermore, Qu4DS integrates a rich set of QoS management mechanisms which address SLA life-
cycle, i.e., from SLA template creation to service termination. Qu4DS builds on a simple interface which
is compatible with modern grid and cloud IaaS interfaces. In order to map resource-level configurations
to QoS metrics, Qu4DS specifically translates QoS metrics to the right resource requirements able to
meet the agreed QoS. Based on the translate resource requirements, resources are acquired on-demand
through a common cloud IaaS interface. Then, service instances and requests are dealt with by man-
aging jobs on the booked resources through a grid interface which is based on the Simple Grid API
(SAGA) [17]. Moreover, in order to accommodate fluctuating service loads and unpredictable faults,
Qu4DS uses dynamic adaptation techniques based on multiple interacting control loops. These control
loops are configurable with distinct adaptation policies which allows to extend the applicability of the
framework.

2.5.5 Contribution Evaluation

The flac2ogg service provider was implemented by using Qu4DS in order to evaluated Qu4DS effec-
tiveness in performing SLA-driven self-management. The flac2ogg is a service provider which encodes
audio files by compressing FLAC [70] files to the OGG [71] format. It concerns a Master/Worker ap-
plication which delegates to Qu4DS the task of managing the execution of its workers during request
treatment. Additionally, Qu4DS also assists the flac2ogg provider by managing contract negotiation,
translating QoS to resource requirements, booking resources and deploying flac2ogg instances with the
right resource configuration. In addition, Qu4DS treats customer requests by reacting to resource short-
ages or job faults and delays which may compromise to satisfy the agreed QoS.

The Qu4DS framework has been evaluated through experiments on top of Grid5000 [9]. A total
of forty-three resources were used for a customer demand composed by fifteen customers with distinct
types of SLA. Qu4DS showed to be efficient by reacting to faults and thus successfully treating customer
requests. During resource shortages, Qu4DS managed to choose the more suitable request to treat by
aiming at increasing the provider profit. These actions were favorable for increasing the provider thus
approximating the general provider profit to the ideal profit. More details about this experiment can be
found in [15].

2.5.6 Conclusions

This work presented the Qu4DS framework which supports to build services on top of distributed infras-
tructures, such as IaaS clouds. The framework provides SLA management features which enables service
provider to negotiate, instantiate and deliver their service in accordance to quality properties held by the
SLA terms. More specifically, Qu4DS offer an automatic support for service execution management by
taking into account SLA prices, fines, and infrastructure costs. Therefore, the approach proposed by
this work fills the gap between higher-level service objectives and the runtime environment by providing
actual mechanisms which manage service execution on distributed infrastructures.

Finally, Qu4DS design relies on configurable and extensible control loops which allow to increase
the framework applicability to further application domains, workload characteristics and adaptation ob-
jectives. A case study was implemented and evaluates on Grid5000 which demonstrates the framework

Internal Draft Version 1.0, Dated 29 February 2011 25

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

effectiveness in increasing the provider profit while maintaining SLA compliance in dynamic and dis-
tributed environments.

2.6 Autonomic SLA-aware Service Virtualization for Distributed Systems

Contributing partners: SZTAKI, Vienna University of Technology (TUW)

Status: Presented at the 19th Euromicro International Conference on Parallel, Distributed and
Network-Based Computing (PDP’11)

Keywords: Cloud Computing, SLA-negotiation, Service Brokering, On-demand deployment

2.6.1 Background

Cloud Computing citeBuyya2009 builds on the latest achievements of diverse research areas, such as
Grid Computing, Service-oriented computing, business processes and virtualization. Both Grids and
Service Based Applications (SBAs) already provide solutions for executing complex user tasks, but they
are still lacking non-functional guarantees. The newly emerging demands of users and researchers call
for expanding service models with business-oriented utilization (agreement handling) and support for
human-provided and computation-intensive services. Providing guarantees in the form of Service Level
Agreements (SLAs) are highly studied in Grid Computing. Nevertheless in Clouds, infrastructures are
also represented as a service that are not only used but also installed, deployed or replicated with the help
of virtualization.

2.6.2 Problem Statement

In Cloud infrastructures services are not only used but also installed, deployed or replicated with the
help of virtualization. These services can also appear in complex business processes, which further com-
plicates the fulfillment of SLAs in Clouds. For example, due to changing components, workload and
external conditions, hardware and software failures, already established SLAs may be violated. Frequent
user interactions with the system during SLA negotiation and service executions (which are usually nec-
essary in case of failures), might turn out to be an obstacle for the success of Cloud Computing. Thus,
there is demand for the development of SLA-aware Cloud middleware, and application of appropriate
strategies for autonomic SLA attainment. Despite cloud computing’s business-orientation, the appli-
cability of Service-level agreements in the Cloud middleware is rarely studied, yet [76]. Most of the
existing work address provision of SLA guarantees to the consumer and not necessarily the SLA-based
management of loosely coupled Cloud infrastructure. In such systems it is hard to localize where the
failures have happen exactly, what the reason is for the failure and which reaction should be taken to
solve the problem. Such systems are implemented in a proprietary way, making it almost impossible to
exchange the components (e.g. use another version of the broker). Autonomic Computing is one of the
candidate technologies for the implementation of SLA attainment strategies. Autonomic systems require
high-level guidance from humans and decide, which steps need to be done to keep the system stable [29].
Such systems constantly adapt themselves to changing environmental conditions. Similar to biological
systems (e.g. human body) autonomic systems maintain their state and adjust operations considering
changing components, workload, external conditions, hardware and software failures.

2.6.3 Contribution Relevance

In this contribution we have introduced a novel architecture considering resource provision using a vir-
tualization approach and combining it with the business-oriented utilization used for the SLA agreement

Internal Draft Version 1.0, Dated 29 February 2011 26

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

handling. The solution can be used to autonomusly manage diverse service infrastructures for on-demand
service provision based on SLAs. We also exemplified how autonomic behaviour appears in the archi-
tecture in order to cope with changing user requirements and on demand failure handling.

2.6.4 Contribution Summary

The main contributions of this paper include: (i) the presentation of the novel loosely coupled archi-
tecture for the SLA-based Service virtualization and on-demand resource provision, (ii) description of
the architecture including meta-negotiation, meta-brokering, brokering and automatic service deploy-
ment with respect to its autonomic behaviour, and (iii) the validation of the SSV architecture with a
biochemical case study in a Cloud simulation environment.

2.6.5 Contribution Evaluation

In order to evaluate our proposed SSV solution, we use a typical biochemical application as a case
study called TINKER Conformer Generator application using molecular modeling for drug develop-
ment, which was gridified and tested on production Grids. The application generates conformers by
unconstrained molecular dynamics at high temperature to overcome conformational bias then finishes
each conformer by simulated annealing and energy minimization to obtain reliable structures. Its aim is
to obtain conformation ensembles to be evaluated by multivariate statistical modeling. This use case can
be regarded as a special, corresponding case of the S-Cube EHEALTH-BG-03 scenario called "Easier
Planning of Examinations and Treatments". For the evaluation, we have created a general simulation
environment, in which all stages of service execution in the SSV architecture can be simulated and co-
ordinated in both Cloud and Grid environments. SLA parameters have been predefined for each task
of the application, and have been evaluated resource selection at runtime. From the achieved results
we can clearly see that the simulated SSV architecture using different distributed environments overper-
forms the former solution using only Grid resources. Comparing the different deployment strategies we
can see that on demand deployment introduces some overhead, but service duplication can enhance the
performance and help to avoid SLA violations with additional virtual machine deployment costs.

2.6.6 Conclusions

The presented general, conceptual SSV architecture is built on three main components: the Meta-
Negotiator responsible for agreement negotiations, the Meta-Broker for selecting the proper execution
environment, and the Automatic Service Deployer for service virtualization and on-demand deployment.
We have also discussed how the principles of autonomic computing are incorporated to the SSV archi-
tecture to cope with the error-prone virtualization environments. The proposed service virtualization
architecture is validated in a simulation environment based on CloudSim, using a general biochemical
application as a case study. The evaluation results clearly fulfil the expected utilization gains compared
to a less heterogeneous Grid solution.

Internal Draft Version 1.0, Dated 29 February 2011 27

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Chapter 3

Conclusions

3.1 Outlook and Future Research Challenges

This deliverable introduces a novel service runtime infrastructure, which will incorporate an active and
QoS-aware registry and client components. This infrastructure ensures SLA compliance and suggests
services as well as ad-hoc processes. The presented results related to elements and aspects of infrastruc-
ture and higher level mechanisms for specifying SLAs in regard of QoS requirements. These mechanisms
are targeting the objectives of the 2.3 package.

To summarize the significant contributions: TUW studied the combination of service metadata, Qual-
ity of Service, service querying, dynamic binding and service mediation. Further, in their work the cost of
adaptation on SLA violations is discussed. A third aspect is the establishment of some QoS in a service-
based crowd environment. UoC propose two alternative techniques for improving the non-functional
service matchmaking time. INRIA’s studies consider a SLAs management which satisfies the customers
requirements and also their own business objectives, such as maximizing profits. Finally, SZTAKI in-
troduces an SLA-aware Service Virtualization architecture that provides non-functional guarantees in
the form of SLAs and consists of a three-layered infrastructure including agreement negotiation, service
brokering and on demand deployment.

The deliverable is a collection of scientific papers, either published in conference proceedings, jour-
nals, or very recent work still under review, and organized along the research directions of WP-JRA-2.3.
The papers all have been peer reviewed which ensures that the papers represent significant contributions
to service-based system research and they demonstrate a final progress in the WP. The positioning of the
papers within the adaptation framework, their relationship to the WP-JRA-2.3 research goals and vision
and to other research WPs are exposed in Section 1.5. A more in detail discussion follows in Chapter 2.
Here each contribution gives background information, states the problem statement, and the contribution
relevance. This is followed by a contribution summary, an evaluation description and a conclusion with
future ideas.

Despite the fact that the present deliverable is the last in the JRA-2.3 Workpackage series, all contrib-
utors agree, that future work will not only continue on individual tracks, but also consider collaborations
that have certainly also been promoted in the context of SCube. The work on Self-* Service Infrastruc-
tures and Service Discovery Support will continue also after the project’s end with the hot topic of Cloud
Computing rising in the service infrastructure community. The trend can also be recognized from some
of the contributions in this deliverable.

Internal Draft Version 1.0, Dated 29 February 2011 28

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Bibliography

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/, April 2011.

[2] Amazon Mechnical Turk. http://www.mturk.com, last access March 2011.

[3] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki Nakata, Jim
Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services Agreement Specification (WS-
Agreement). Technical report, Open Grid Forum (OGF), 2006. http://www.gridforum.org/

documents/GFD.107.pdf, Last Visited: 2011-07-19.

[4] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki Nakata, Jim
Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services Agreement Specification (WS-
Agreement). Technical report, Global Grid Forum, 2007.

[5] Siegfried Benkner and Gerhard Engelbrecht. A Generic QoS Infrastructure for Grid Web Services.
Advanced International Conference on Telecommunications / Internet and Web Applications and
Services, International Conference on, 0:141, 2006.

[6] Philip Bianco, Grace A. Lewis, and Paulo Merson. Service Level Agreements in Service-Oriented
Architecture Environments. Technical Report CMU/SEI-2008-TN-021, Software Engineering In-
stitute of The Carnegie Mellon University, http://www.sei.cmu.edu/reports/08tn021.pdf, 2008.

[7] David Bodoff, Mordechai Ben-Menachem, and Patrick C.K. Hung. Web Metadata Standards: Ob-
servations and Prescriptions. IEEE Software, 22(1):78–85, 2005.

[8] D.C. Brabham. Crowdsourcing as a model for problem solving: An introduction and cases. Con-
vergence, 14(1):75, 2008.

[9] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot, S. Lanteri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, B. Quetier, and O. Richard. Grid’5000: A large scale and highly
reconfigurable grid experimental testbed. In Proceedings of the 6th IEEE/ACM International Work-
shop on Grid Computing, GRID ’05, pages 99–106, Washington, DC, USA, 2005. IEEE Computer
Society.

[10] Owen Cliffe and Dimitris Andreou. Service Matchmaking Framework. Public Deliverable D5.2a,
Alive EU Project Consortium, 10 September 2009. Available at: http://www.ist-alive.eu/

index.php?option=com_docman&task=doc_download&gid=28&Itemid=49.

[11] Antonio Ruiz Cortés, Octavio Martín-Díaz, Amador Durán Toro, and Miguel Toro. Improving the
Automatic Procurement of Web Services Using Constraint Programming. Int. J. Cooperative Inf.
Syst., 14(4):439–468, 2005.

[12] Asit Dan, Doug Davis, Robert Kearney, Alexander Keller, Richard P. King, Dietmar Kuebler, Heiko
Ludwig, Mike Polan, Mike Spreitzer, and Alaa Youssef. Web Services on Demand: WSLA-Driven
Automated Management. IBM Systems Journal, 43:136–158, January 2004.

Internal Draft Version 1.0, Dated 29 February 2011 29

http://www.gridforum.org/documents/GFD.107.pdf
http://www.gridforum.org/documents/GFD.107.pdf
http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

[13] Seema Degwekar, Stanley Y. W. Su, and Herman Lam. Constraint Specification and Processing in
Web Services Publication and Discovery. In ICWS, pages 210–217, 2004.

[14] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Mass collaboration systems on the World
Wide Web. Communications of the ACM. to appear.

[15] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat. Cost Reduction Through SLA-
driven Self-Management. In In Proceedings of The 9th IEEE European Conference on Web Services
(ECOWS’11), September 2011.

[16] Andreas Friesen and Michael Altenhofen. Matching Composed Semantic Web Services at Pub-
lishing Time. In Proceedings of the IEEE International Conference on E-Commerce Technology
Workshops, pages 64–70, Munich,Germany, 2005. IEEE Computer Society.

[17] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Gregor von
Laszewski, Craig Lee, Andre Merzky, Hrabri Rajic, and John Shalf. Saga: A simple api for grid
applications - high-level application programming on the grid. Computational Methods in Science
and Technology: special issue "Grid Applications: New Challenges for Computational Methods",
SC05:8(2), November 2005.

[18] Peer Hasselmeyer, Bastian Koller, Lutz Schubert, and Philipp Wieder. Towards SLA-Supported
Resource Management. In HPCC ’06: Proceedings of the 2006 International Conference on High
Performance Computing and Communications, pages 743–752. Springer, 2006.

[19] Julia Hielscher, Andreas Metzger, and Raman Kazhamiakin. Taxonomy of Adaptation Principles
and Mechanisms. Technical Report Deliverable # CD-JRA-1.2.2, S-CUBE Consortium, 2009.

[20] Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. SEPL – A Domain-Specific Lan-
guage and Execution Environment for Protocols of Stateful Web Services. Distributed and Parallel
Databases, 29:277–307, August 2011.

[21] C. Hwang and K. Yoon. Multiple Criteria Decision Making. Lecture Notes in Economics and
Mathematical Systems, 1981.

[22] Panagiotis G. Ipeirotis. Analyzing the Amazon Mechanical Turk Marketplace. SSRN eLibrary,
17(2):16–21, 2010.

[23] Florian Irmert, Thomas Fischer, and Klaus Meyer-Wegener. Runtime adaptation in a service-
oriented component model. In SEAMS ’08: Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, pages 97–104, New York, NY, USA,
2008. ACM.

[24] Shantenu Jha, Andre Merzky, and Geoffrey Fox. Using Clouds to Provide Grids with Higher Levels
of Abstraction and Explicit Support for Usage Modes. Concurrency and Computation: Practice &
Experience, 21:1087–1108, 2009.

[25] Jose Antonio Parejo and Pablo Fernandez and Antonio Ruiz-Cortés and José María García. SLAWs:
Towards a Conceptual Architecture for SLA Enforcement. In Services, IEEE Congress on, vol-
ume 0, pages 322–328. IEEE Computer Society, 2008.

[26] Lukasz Juszczyk, Hong-Linh Truong, and Schahram Dustdar. GENESIS - A Framework for Auto-
matic Generation and Steering of Testbeds of Complex Web Services. In Proceedings of the 13th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’08). IEEE
Computer Society, 2008.

Internal Draft Version 1.0, Dated 29 February 2011 30

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

[27] Raman Kazhamiakin, Branimir Wetzstein, Dimka Karastoyanova, Marco Pistore, and Frank Ley-
mann. Adaptation of Service-Based Applications Based on Process Quality Factor Analysis. In
Proceedings of the 2nd Workshop on Monitoring, Adaptation and Beyond (MONA+), pages 395–
404, 2009.

[28] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal on Network and Systems Management, 11:57–81,
March 2003.

[29] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.

[30] A. Kertész, G. Kecskemeti, and I. Brandic. Autonomic sla-aware service virtualization for dis-
tributed systems. In In proceedings of the 19th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing, 2011.

[31] Matthias Klusch, Benedikt Fries, and Katia Sycara. OWLS-MX: A hybrid Semantic Web service
matchmaker for OWL-S services. Web Semantics: Science, Services and Agents on the World Wide
Web, 7(2):121 – 133, 2009.

[32] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Semantic Annotations
for WSDL and XML Schema. IEEE Internet Computing, 11:60–67, November 2007.

[33] K. Kritikos and B. Pernici. Initial concepts for specifying end-to-end quality characteristics and
negotiating slas. Technical report, 2009.

[34] Kyriakos Kritikos. QoS-based Web Service Description and Discovery. PhD Thesis, Computer
Science Department, University of Crete, Heraklion, Greece, December 2008.

[35] Kyriakos Kritikos, Fabio Paternò, and Dimitris Plexousakis. Towards Identifying Services to Re-
alize the Functionality of Interactive Applications based on User Task Models. ACM Transactions
on Interactive Intelligent Systems, 2011. under review.

[36] Kyriakos Kritikos and Dimitris Plexousakis. Mixed-Integer Programming for QoS-Based Web
Service Matchmaking. IEEE Trans. Serv. Comput., 2(2):122–139, 2009.

[37] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat. Cost Reduction Through SLA-
driven Self-Management. In European Conference on Web Services (ECOWS), Lugano, Switzer-
land, September 2011. The research leading to these results has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-2013] under grant greement
215483 (S-CUBE). Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr).

[38] P. Leitner. Requirements for service infrastructures in dynamic environments and evaluation of
existing service registries. Technical report, 2009.

[39] P Leitner, B Wetzstein, F Rosenberg, A Michlmayr, S Dustdar, and F Leymann. Runtime Prediction
of Service Level Agreement Violations for Composite Services. In Proceedings of the 3rd Workshop
on Non-Functional Properties and SLA Management in Service-Oriented Computing (NFPSLAM-
SOC’09), pages 176–186, Berlin, Heidelberg, 2009. Springer-Verlag.

[40] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-Based Optimization of Service
Compositions. IEEE Transactions on Services Computing (TSC), 2011. To appear.

Internal Draft Version 1.0, Dated 29 February 2011 31

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

[41] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Daios – Efficient Dynamic Web Service
Invocation. IEEE Internet Computing, 13(3):30–38, 2009.

[42] Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Waldemar Hummer, Schahram Dust-
dar, and Frank Leymann. Preventing SLA Violations in Service Compositions Using Aspect-Based
Fragment Substitution. In Proceedings of the International Conference on Service-Oriented Com-
puting (ICSOC’10). Springer, 2010.

[43] Tammo van Lessen, Jörg Nitzsche, and Frank Leymann. Formalising Message Exchange Patterns
using BPEL Light. In Proceedings of the 2008 IEEE International Conference on Services Com-
puting (SCC’08), pages 353–360, Washington, DC, USA, 2008. IEEE Computer Society.

[44] Lillard, Terrence V. and Garrison, Clint P. and Schiller, Craig A. and Steele, James. The Future of
Cloud Computing, pages 319–339. Elsevier, 2010.

[45] Yutu Liu, Anne H. H. Ngu, and Liangzhao Zeng. Qos computation and policing in dynamic web
service selection. In WWW (Alternate Track Papers & Posters), pages 66–73, 2004.

[46] Juval Löwy. Programming WCF Services. O’Reilly, 2007.

[47] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2), 2001.

[48] Daniel A. Menascé. QoS Issues in Web Services. IEEE Internet Computing, 6(6):72–75, 2002.

[49] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Service Provenance
in QoS-Aware Web Service Runtimes. In Proceedings of the 7th International Conference on Web
Services (ICWS’09). IEEE Computer Society, 2009.

[50] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. End-to-End Support
for QoS-Aware Service Selection, Binding, and Mediation in VRESCo. IEEE Transactions on
Services Computing, 3:193–205, July 2010.

[51] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and Schahram Dustdar.
Towards Recovering the Broken SOA Triangle – A Software Engineering Perspective. In Proceed-
ings of the 2nd International Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
co-located with ESEC/FSE’07. ACM, 2007.

[52] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie Issarny, and Yolande Berbers.
EASY: Efficient semAntic Service discoverY in pervasive computing environments with QoS and
context support. J. Syst. Softw., 81(5):785–808, 2008.

[53] Nurmi, Daniel and Wolski, Rich and Grzegorczyk, Chris and Obertelli, Graziano and Soman, Sunil
and Youseff, Lamia and Zagorodnov, Dmitrii. The Eucalyptus Open-Source Cloud-Computing
System. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages 124–131, 2009.

[54] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-Oriented
Computing: State of the Art and Research Challenges. Computer, 40:38–45, 2007.

[55] M. Parkin and A. Metzger. Initial set of principles, techniques and methodologies for assuring
end-to-end quality and monitoring of slas. Technical report, 2010.

[56] Pierluigi Plebani and Barbara Pernici. URBE: Web Service Retrieval Based on Similarity Evalua-
tion. IEEE Transactions on Knowledge and Data Engineering, 21(11):1629–1642, 2009.

Internal Draft Version 1.0, Dated 29 February 2011 32

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

[57] H. Psaier, L. Juszczyk, F. Skopik, D. Schall, and S. Dustdar. Runtime Behavior Monitoring and
Self-Adaptation in Service-Oriented Systems. In SASO, pages 164–174. IEEE, 2010.

[58] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael Stollberg, Axel
Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web Service Modeling Ontology.
Applied Ontology, 1(1):77–106, 2005.

[59] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and Schahram Dustdar.
An End-to-End Approach for QoS-Aware Service Composition. In Proceedings of the 13th Inter-
national Enterprise Computing Conference (EDOC’09). IEEE Computer Society, 2009.

[60] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, and Schahram Dustdar. Integrated Metadata
Support for Web Service Runtimes. In Proceedings of the Middleware for Web Services Workshop
(MWS’08), pages 361–368, Washington, DC, USA, 2008. IEEE Computer Society.

[61] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping Performance and De-
pendability Attributes of Web Services. In Proceedings of the IEEE International Conference on
Web Services (ICWS’06), pages 205–212, Washington, DC, USA, 2006. IEEE Computer Society.

[62] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[63] O. Sammodi and A. Metzger. Integrated principles, techniques and methodologies for specify-
ing end-to-end quality and negotiation slas and for assuring end –to-end quality provision and sla
conformance (incl. proactiveness). Technical report, 2011.

[64] B. Satzger, H. Psaier, D. Schall, and S. Dustdar. Stimulating skill evolution in market-based crowd-
sourcing. In 9th International Conference on Business Process Management (BPM), volume 6896
of Lecture Notes in Computer Science, pages 66–82. Springer, 2011.

[65] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley, New York, N.Y,
USA, 1986.

[66] F. Silvestri. Knowledge extraction of service usage. Technical report, 2010.

[67] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise Service Level Agreements.
In Proceedings of the 26th International Conference on Software Engineering (ICSE’04), pages
179–188, Washington, DC, USA, 2004. IEEE Computer Society.

[68] Florian Skopik, Daniel Schall, and Schahram Dustdar. Trust-Based Adaptation in Complex Service-
Oriented Systems. In Proceedings of the 2010 15th IEEE International Conference on Engineering
of Complex Computer Systems, pages 31–40, Washington, DC, USA, 2010. IEEE Computer Soci-
ety.

[69] M. Stollberg, M. Hepp, and J. Hoffmann. A Caching Mechanism for Semantic Web Service Dis-
covery. In ICWS, 2007.

[70] The FLAC project. Free Lossless Audio Codec (FLAC). http://flac.sourceforge.net/, 2011.

[71] The Xith Open Source Community. Ogg Vorbis Audio Format. http://www.vorbis.com/, October
2011.

[72] M. Vukovic. Crowdsourcing for Enterprises. In Proceedings of the 2009 Congress on Services,
pages 686–692. IEEE Computer Society, 2009.

Internal Draft Version 1.0, Dated 29 February 2011 33

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

[73] Yao Wang and Julita Vassileva. Toward Trust and Reputation Based Web Service Selection: A
Survey. International Transactions on Systems Science and Applications (ITSSA), 3(2), 2007.

[74] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Schahram Dustdar, and Frank Leymann.
Identifying Influential Factors of Business Process Performance Using Dependency Analysis. En-
terprise Information Systems, 4(3):1–8, July 2010.

[75] World Wide Web Consortium (W3C). Web Services Description Language (WSDL) Version 2.0
Part 0: Primer - W3C Candidate Recommendation 27 March 2006, 2006. http://www.w3.org/
TR/2006/CR-wsdl20-primer-20060327/, Last Visited: 2011-07-19.

[76] C. A. Yfoulis and A. Gounaris. Honoring slas on cloud computing services: a control perspective.
In Proceedings of the European Control Conference, 2009.

[77] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant Kalagnanam, and
Henry Chang. QoS-Aware Middleware for Web Services Composition. IEEE Transactions on
Software Engineering, 30(5):311–327, May 2004.

[78] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee. DAML-QoS Ontology for Web Services. In ICWS,
page 472, San Diego, CA, USA, 2004. IEEE Computer Society.

Internal Draft Version 1.0, Dated 29 February 2011 34

http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.9

Appendix A

Attached Papers

Internal Draft Version 1.0, Dated 29 February 2011 35

Stimulating Skill Evolution in Market-based
Crowdsourcing

Benjamin Satzger, Harald Psaier, Daniel Schall, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{satzger,psaier,schall,dustdar}@infosys.tuwien.ac.at,
WWW home page: http://www.infosys.tuwien.ac.at

Abstract. Crowdsourcing has emerged as an important paradigm in hu-
man problem-solving techniques on the Web. One application of crowd-
sourcing is to outsource certain tasks to the crowd that are difficult to
implement in software. Another potential benefit of crowdsourcing is
the on-demand allocation of a flexible workforce. Businesses may out-
source tasks to the crowd based on temporary workload variations. A
major challenge in crowdsourcing is to guarantee high-quality processing
of tasks. We present a novel crowdsourcing marketplace that matches
tasks to suitable workers based on auctions. The key to ensuring high
quality lies in skilled members whose capabilities can be estimated cor-
rectly. We present a novel auction mechanism for skill evolution that
helps to correctly estimate workers and to evolve skills that are needed.
Evaluations show that this leads to improved crowdsourcing.

Keywords: Human-centric BPM, Crowdsourcing, Online communities,
Task markets, Auctions, Skill evolution

1 Introduction

Today, ever changing requirements force in-house business processes to rapidly
adapt to changing situations in order to stay competitive. Changes involve not
only the need for process adaptation, but also, require an additional inclusion of
new capabilities and knowledge, previously unavailable to the company. Thus,
outsourcing of parts of business processes became an attractive model. This work,
in particular, focuses on a distinguished recent type of outsourcing called crowd-
sourcing. The term crowdsourcing describes a new web-based business model
that harnesses the creative solutions of a distributed network of individuals [4],
[18]. This network of humans is typically an open Internet-based platform that
follows the open world assumption and tries to attract members with different
knowledge and interests. Large IT companies such as Amazon, Google, or Yahoo!
have recognized the opportunities behind such mass collaboration systems [8] for
both improving their own services and as business case. In particular, Amazon fo-
cuses on a task-based marketplace that requires explicit collaboration. The most
prominent platform they currently offer is Amazon Mechanical Turk (AMT) [3].

2

Requesters are invited to issue human-intelligence tasks (HITs) requiring a cer-
tain qualification to the AMT. The registered customers post mostly tasks with
minor effort that, however, require human capabilities (e.g., transcription, clas-
sification, or categorization tasks [11]).

Reasons for companies to outsource tasks to a crowd platform are flexibility,
high availability, and low costs. Workers from all over the world and different
timezones are allowed to register with the platform. With 90% of tasks processed
at a cost of $0.10 and less, the same task is usually also offered to multiple
AMT workers. However, crowdsourcing platforms are loosely-coupled networks
with members of different interests, working style, and cultural background.
The flexible crowd structure allows workers to join and leave at any time. This
hampers to predict or guarantee the quality of a task’s result. There are crowd
providers such as CrowdFlower [6] that broker crowd resources to customers to
overcome quality and reliability issues.

However, managing and adapting the crowd’s skills and resources in an au-
tomated manner remains challenging. Crowd customers prefer fully automated
deployment of their tasks to a crowd, just as in common business process models.
In this paper, we base our solution on the service-oriented architecture (SOA)
paradigm. SOAs are an ideal grounding for distributed environments. With their
notion of the participants as services and registries, resources can be easily
and even automatically discovered for composing whole business processes. A
plethora of standards supports seamless integration and registration of new ser-
vices, and provides protocols for communication, interaction and control of the
components. Altogether, we believe SOAs provide an intuitive and convenient
technical grounding to automate large-scale crowdsourcing environments. Im-
portant to note, today SOA not only includes software-based services, but also
Human-Provided Services [16] and BPEL4People [2] for human interactions in
business processes and allow to host mass collaboration environments.

The main challenges addressed in this work relate to building and manag-
ing an automated crowd platform. It is not only of importance to find suitable
workers for a task and to provide the customer with satisfying quality, but also,
to maintain a motivated base of crowd members and provide stimulus for learn-
ing required skills. Only a recurring, satisfied crowd staff is able to ensure high
quality and high output. As any crowd, fluctuations must be compensated and
a skill evolution model must support new and existing crowd workers in devel-
oping their capabilities and knowledge. Finally, the standard processes on such
a platform should be automated and free from intervention to handle the vast
amount of tasks and to make it compatible with a SOA approach. Atop, the
model should increase the benefit of all participants. In detail, we provide the
following contributions in this paper:

– Automated matching and auctions. For providing a beneficial distribution of
the tasks to the available resources we organize auctions according to novel
mechanisms.

– Stimulating skill evolution. In order to bootstrap new skills and unexperi-
enced workers we provide skill evolution by integrating assessment tasks into
our auction model.

3

– Evaluation. Experiments quantify the advantages of a skill evolution based
approach in comparison to traditional auctions.

The remainder of this paper is structured as follows: In Section 2 related work
is discussed. Section 3 describes the design of our crowdsourcing system, includ-
ing its actors and their interaction. Then, Section 4 details our adaptive auction
mechanisms and Section 5 presents the conducted experiments and discusses
their results. Section 6 concludes the paper and points to future work.

2 Related Work

In this work we position crowdsourcing in a service-oriented business setting by
providing automation. In crowdsourcing environments, people offer their skills
and capabilities in a service-oriented manner. Major industry players have been
working towards standardized protocols and languages for interfacing with peo-
ple in SOA. Specifications such as WS-HumanTask [10] and BPEL4People [2]
have been defined to address the lack of human interactions in service-oriented
businesses [14]. These standards, however, have been designed to model inter-
actions in closed enterprise environments where people have predefined, mostly
static, roles and responsibilities. Here we address the service-oriented integration
of human capabilities situated in a much more dynamic environment where the
availability of people is under constant flux and change [5]. The recent trend
towards collective intelligence and crowdsourcing can be observed by looking at
the success of various Web-based platforms that have attracted a huge number
of users. Well known representatives of crowdsourcing platforms include Yahoo!
Answers [20] (YA) and the aforementioned AMT [3]. The difference between
these platforms lies in how the labor of the crowd is used.

YA, for instance, is mainly based on interactions between members. Ques-
tions are asked and answered by humans, thereby lacking the ability to auto-
matically control the execution of tasks. The interesting aspect of YA relevant
for our crowdsourcing approach is the role of two-sided markets [13]. In YA,
users get 100 points by signing-up to the platform [19]. For each answer being
provided, users get additional points (more points if the answer is selected as
best answer). However, users get negative points if they ask questions, thereby
encouraging members to provide answers. Based on the rewarding scheme in YA,
users tend to have either role – being answerer or asker – instead of having both
roles. In the context of YA and human-reviewed data, [17] provided an analysis
of data quality, throughput and user behavior. In contrast, AMT offers access
to the largest number of crowdsourcing workers. With their notion of HITs that
can be created using a Web service-based interface they are closely related to our
aim of mediating the capabilities of crowds to service-oriented business environ-
ments. According to one of the latest analysis of AMT [11], HIT topics include,
first of all, transcription, classification, and categorizations tasks for documents
and images. Furthermore, there is also tasks for collecting data, image tagging,
and feedback or advice on different subjects. The major challenges are to find

4

on request skilled workers that are able to provide high quality results for a par-
ticular topic (e.g., see [1]), to avoid spamming, and to recognize low-performers.
To the best of our knowledge, these problems are still not faced by AMT. In this
work we focus on those issues. The shortcoming of most existing real platforms
is the lack of detailed skill information. Most platforms have a simple measure to
prevent workers (in AMT, a threshold of task success rate can be defined) from
claiming tasks. In [15], the automated calculation of expertise profiles and skills
based on interactions in collaborative networks was discussed. In this work, we
introduce a novel auction mechanism to promote skill evolution in crowdsourcing
environments. Compared to open bidding systems used by popular online auc-
tion markets such as eBay [9], our auction mechanism is a closed bidding system
similar to public procurement. In [7], a model of crowdsourcing is analyzed in
which strategic players select among, and subsequently compete in, contests. In
contrast, the presented approach in this paper supports the evolution of worker
skills through auction mechanisms.

3 Design of Marketplaces in Crowdsourcing

The core activity in task-based crowd environments is members providing their
labor by processing tasks. In this section, we explain our idea of task-based
crowdsourcing on a market-oriented platform. The aim is to organize and manage
the platform to the satisfaction and benefit of all participants; crowd members
and platform provider. We will now introduce the basic design of the proposed
crowdsourcing environment.

3.1 Skill-based Task Markets

In task markets different stakeholders can be identified. Generally, there is the
requesters and workers representing the registered members of a crowd market-
place. The task of the third stakeholder, the crowd operator in between, is to
manage the crowd task auctions. To satisfy any of the stakeholders the operator
must assure that the requesters obtain a result of high quality in a timely man-
ner. On the other hand, the workers would like to have tasks available whenever
they are motivated to work and are interested in a high reward for process-
ing a task. The operator itself works towards a long-term profit. To bootstrap
the skill-based system, each member interested in offering of processing tasks is
required to create a profile containing information about her/his interests and
skills. The basic interactions and an external view on the proposed crowdsourc-
ing environment are depicted in Fig. 1. The crowdsourcing environment consists
of members who can participate in transactions (see Fig. 1(a)). Within a par-
ticular transaction a member can either adopt the role of a requester R, who
initiates a transaction by announcing tasks (see Fig. 1(b)), or the role of a worker
W, who processes a task. We propose a crowdsourcing marketplace that handles
transactions transparently for its members; requesters and workers do not com-
municate directly, but only with the crowdsourcing marketplace in between. We

5

R W

Crowd

Platform

Transaction

(a) Crowd.

... ht1

... ht2

... ht3

(b) Tasks.

R

announce

Quality

Reward $

(c) Requester.

W

work

P

(d) Worker.

Fig. 1. Crowd environment building blocks and interaction of stakeholders.

argue that this standardized style of interaction is less prone for misconceptions
and more efficient because it allows members getting used to the system. Tasks
(Fig. 1(b)) are created by requesters based on their current needs. Requesters
initiate a transaction by submitting a task to the marketplace, with additional
information about the amount of money he is willing to pay for the processing
of the task and additional requirements (Fig. 1(c)). It is the responsibility of the
marketplace operator to find a suitable worker, to submit the task to the worker,
to collect the result, and to transmit it to the requester.

The interaction of a worker with the market platform is initiated by the
latter by asking a member whether s/he is interested in processing a task (Fig.
1(d)). This interest can be expressed by bidding for the task. Workers have skill
profiles denoted by the symbol P. These profiles are not statically defined, but
are updated based on the level of delivered task quality. This procedure ensures
an up-to-date view on workers’ capabilities and skills. Based on the bids and
background information about the bidders, the system selects one or multiple
workers, who are then asked to process the task.

3.2 Towards Auction-based Crowdsourcing

Auctions are a very old idea already used by the Babylonians but still an active
area of research. The rise of e-commerce has drastically increased the number
and diversity of goods traded via auctions. Many recently installed markets,
such as energy or pollution permit markets, are based on auctions [12]. There
are many different flavors of auctions differing in the number of items considered
(single/multi item), the number of buyers and sellers (demand/supply/double
auction), the bidding procedure (open/closed bids and ascending/descending),
and how the price is determined (e.g., first/second price); however, four standard
types are widely used [12]. They all assume a single seller and multiple buyers
(demand auction) and, in their simplest forms, a single item to sell (single-item
auction). The so-called English auction is an ascending open-bid auction, the
Dutch auction is a descending open-bid auction. The other two standard auc-
tion types are closed-bid auctions, i.e., each bidder submits a single bid which
is hidden for other buyers. We use an adapted version of a closed-bid auction; a
single auction deals with the matching of one task to one or many crowd work-
ers (single-item demand auction). We will introduce our crowdsourcing auction
mechanisms in the following sections.

6

4 Auction-based Task Assignment

In the following we discuss the steps involved in transaction processing and
outline the novel idea of skill evolution.

4.1 Processing of Transactions

Figure 2 illustrates the steps involved in the internal processing of a transac-
tion. In the qualification step the marketplace identifies all members capable of
processing the task (Fig. 2(a)), based on the task description and the members’
profiles. The preselection chooses a limited number of the most suitable workers
(Fig. 2(b)) to have a reasonable amount of participants for the auction. The
preselection step helps to avoid a flooding of auction announcements. In this
way members are only exposed to tasks/auctions for which they actually have a
realistic chance of being accepted as worker. Due to the voluntary, open nature
of crowdsourcing environments, not all preselected workers may decide to follow
the invitation to compete in an auction.

Auction

o Reward $
o Quality
o Skills

(a) Auction.

W1 P

W4 P

W2 P

W3 P

(b) Preselection.

Auction

W2 P W3 P

(c) Biddings.

R W

Rating

points

(d) Feedback.

Fig. 2. Internal processing of a transaction.

This fact is depicted by the transition phase between Fig. 2(b) and Fig. 2(c)
where only a subset of preselected workers decides to participate. The auction
phase (Fig. 2(c)) allows each participant to submit an offer and finally, a winner
is determined who is supposed to process the task. In the case of a successful
processing the marketplace returns the final result to the requester, handles the
payment, and allows the requester to give feedback about the transaction in the
form of a rating (Fig. 2(d)).

As mentioned before, tasks come with a description, a maximum amount
of money the requester is willing to pay and further requirements, i.e., time
requirements and quality requirements. The former is typically given in the form
of a deadline, the latter could range from a simple categorization (e.g., low, high)
to sophisticated quality requirement models. Each worker has a self-provided
profile describing her/his skills and, additionally, the marketplace operator is
keeping track of the actual performance. We propose to maintain a performance
value per user and skill, encoded as tuple consisting of the observed performance
and the confidence in that value. The input used to generate these performance
values comes from the ratings of the requesters and a check whether the deadline
was met, which can be performed by the system without feedback from the

7

requester. The qualification phase is based on a matching of the task description
to the skills of the members considering their performance and confidence values.
Higher requirements impose higher standards on the performance of the member.
The result of this matching is a boolean value indicating whether a member
is meeting the minimum requirements. In the next step, the preselection, the
qualified members are ranked based on skill, performance, and the confidence
in the performance; only the top-k members are chosen to participate in the
auction. This helps to reduce the number of auction requests to members in
order to avoid spamming members and to spare members the frustration caused
by not winning the auction. The marketplace operator as the auctioneer hides
parts of the task’s data. Workers only see the task description and the time and
quality requirements, but not the associated price determined by the requester.
The auction is performed as a closed bid auction, whereas each participant is
only allowed one bid. At the end of the auction a winner is determined based
on the amounts of the bids and the performance-confidence combination of the
bidders’ skills. If all bids are higher than the amount the requester is willing
to pay the auctioneer would typically reject all bids and inform the requester
that the task cannot be assigned under the current conditions. In this case the
requester could change the task by increasing the earnings, lowering the quality
requirements or extending the deadline and resubmit the task. With a selection
strategy outlined in more detail in the next section the marketplace assigns the
task to the worker for processing. After the processing of the task by the worker
and the receipt of rating information, the performance of the worker is adjusted
and the confidence value is increased.

Technically, an aptitude function estimates how well workers are suited for
handling a task. It is used as basis for qualification and preselection and can be
formally defined as

aptitude : W × T → [0, 1], (1)

where W is the set of workers and T represents tasks. aptitude(w, t) = 1 would
mean that worker w ∈ W is perfectly qualified for handling task t ∈ T . A
mapping to zero would represent a total inaptness. Similarly, a ranking function
is used to rank workers’ bids:

rank : W × T ×B → [0, 1], (2)

where B is the set of bids. In addition to the aptitude, the rank function also
takes monetary aspects, contained in bid b ∈ B, into account. A property of a
sound ranking function is that if two workers have the same aptitude for a task
then the one with the lower bid will have a higher rank. The aptitude function
is used for performing qualification and preselection. As auction admittance
strategy you can either admit all workers with an aptitude higher than a certain
threshold, the top-k workers according to aptitude, or a combination of the two
strategies. The ranking function is used to determine the winner of an auction:
the highest ranked worker.

8

4.2 Skill Evolution

The concepts discussed so far provide the fundamentals for automated matching
of tasks to workers. As outlined previously, a further major challenge hampering
the establishment of a new service-oriented computing paradigm spanning en-
terprise and open crowdsourcing environments are quality issues. In our scenario
this is strongly connected to correctly estimating the skills of workers. One ap-
proach for increasing the confidence in worker skills are qualification tasks, with
the shortcoming that these tasks would need to be created (manually) by the
requesters who have the necessary knowledge. This implies a huge overhead for
the testing requester; s/he is also the only one who benefits from the gathered
insights. Here, we take a different approach by integrating the capability of con-
fidence management into the crowdsourcing platform itself. Instead of having
point-to-point tests, we propose the automated assessment of workers to un-
burden requesters in inspecting workers’ skills. We believe that this approach
offers great potential for the (semi-)automatic inclusion of crowd capabilities in
business environments. The first challenge one needs to address is to cope with
the “hostile” environment in which computing is performed. Workers may cheat
on results (e.g., copy and paste of existing results available in the platform),
spam the platform with unusable task results, or even provide false information.
A well-known principle in open, Web-based communities is the notion of au-
thoritative sources that act as points of references. For example, this principle
has been applied on the Web to propagate trust based on good seeds. Our idea
of skill evolution is in a manner similar. We propose the automatic assessment
of workers where confidence values are low. For example, newcomers who re-
cently signed up to the platform may be high or low performers. To unveil the
tendency of a worker, we create a hidden ‘tandem’ task assignment compris-
ing a worker whose skills are known (high performer) with a high confidence
and a worker where the crowdsourcing platform has limited knowledge about
its skills (i.e., low confidence). The next step is that both workers process the
same task in the context of a requester’s (real) task. However, only the result
of the high confidence worker is returned to the requester, whereas the result
of the low confidence worker is compared against the delivered reference. This
approach has advantages and drawbacks. First, skill evolution through tandem
assignments provides an elegant solution to avoid training tasks (assessments are
created automatically and managed by the platform) and also implicitly stimu-
lates a learning effect. Of course, the crowdsourcing platform cannot charge the
requester for tandem task assignments since it mainly helps the platform to bet-
ter understand the true skill (confidence) of a worker. Thus, the platform must
pay for worker assessments. As we shall show later in our evaluation, performing
assessments provides the positive effect that the overall quality of provided re-
sults and thus requester satisfaction increases due to a better understanding of
worker skills. We embed skill evolution in our crowdsourcing platform as follows.
After the winner of an auction has been determined it is evaluated whether an
assessment task is issued to further workers. The function assess outputs 1 if
an assessment task is to be assigned to a worker and 0 otherwise.

9

assess : W × T ×B ×W → {0, 1} (3)

An input tuple (w, t, b, wr) checks whether tasks t ∈ T is to be assigned to
w ∈ W who offered bid b ∈ B. Worker wr ∈ W is the reference worker, in
our case the worker who has won the corresponding auction and who will thus
process the same task.

5 Implementation and Evaluation

In this section we discuss implementation aspects, introduce the detailed design
of our experiments and present results.

5.1 Simulation Environment
We have implemented a Java-based simulation framework that supports all pre-
viously introduced concepts and interactions between requesters, the platform,
and workers. All of the above introduced functions (1)-(3) have been imple-
mented in our framework. Due to space limitations, we do not present a detailed
discussion on implementation aspects. The interested reader can find details
regarding the prototype as well as a Web-based demo online1.

5.2 Experiment Design and Results
An evaluation scenario consists of a set of workers W and a set of requesters R.
In every round of the simulation each requester usually announces a task. An
auction is conducted for each announced task t, which consists of a description
of the skills needed for its processing, an expected duration, a deadline, and
the expected quality. High quality requirements indicate highly sophisticated
and demanding tasks. For each worker w and skill s the platform maintains a
performance value pfmc(w, s) and a confidence in that value cnfd(w, s). This
observed performance value is derived from requester ratings; if it is based on
many ratings the confidence is close to one, if there are only a few ratings avail-
able the confidence is close to zero. Based on task t’s skill requirements and a
worker w’s performance/confidence values for these skills it is possible to cal-
culate the expected performance pfmc(w, t) and confidence cnfd(w, t) for that
task. For the evaluation we assume that each worker w has a certain performance
pfmcreal(w, s) for a skill s which is hidden but affects the quality of the results.
Requesters rate the workers based on the results which in turn is the basis for
the observed performance and confidence values. We assume that the process-
ing of tasks demanding a certain skill causes a training effect of that skill, i.e.,
pfmcreal(w, s) increases. For the sake of simplicity in the evaluation we assume
that there is only one skill. This does not change fundamental system properties
and one skill allows to extrapolate the behavior of multiple skills. Whether a
single or multiple skills are considered indeed affects qualification, preselection,
bidding, and rating but all the mechanisms are naturally extensible from one to
1 http://www.infosys.tuwien.ac.at/prototyp/Crowds/Markets_index.html

10

multiple skills by performing the same computations for each skill and a final
combination step. Hence, pfmc : W × S → [0, 1] and pfmc : W × T → [0, 1] are
reduced to pfmc : W → [0, 1]. The same holds for cnfd and pfmcreal.

For the simulation we have created 500 workers with random values for
pfmcreal(w) and cnfd(w) according to a normal distribution N (µ, σ2). The ini-
tial performance value pfmc(w) is set according to the formula pfmcreal(w) +
N (0, 1−cnfd(w)) which ensures that for high confidence the expected deviation
of pfmc(w) from pfmcreal(w) is small and for low confidence values it is high,
respectively. All values are restricted to the range of [0, 1]. The following figures
illustrate the simulation setup in detail.

Scenario 1 assumes that there are three requesters (i.e., typically three tasks
are issued in every round). It is an environment in which skilled workers are rare
and the confidence in the workers’ performance is relatively low, i.e., there are
many workers who have few ratings. The real performance pfmcreal(w) for a
worker w is drawn according to N (0.3, 0.25), the confidence value cnfd(w) is
randomly generated byN (0.2, 0.25). Given the two generated values pfmcreal(w)
and cnfd(w) the observed performance is randomly drawn according to
N (pfmcreal(w), 1−cnfd(w)). Hence, a low confidence in the performance leads
to highly distorted values for pfmc(w), higher confidence values decrease the
variance. Figure 3 gives a detailed view on the statistical distributions of the
workers’ performance and confidence in our experiments.

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

(a) real pfmc

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

(b) obs pfmc

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

250

(c) diff real/obs

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

(d) cnfd

Fig. 3. Generated worker population according to Scenario 1.

The histrograms count the number of workers in the buckets [0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8), and [0.8, 1] according to real performance pfmcreal in Fig.
3(a) and according to the observed performance pfmc in Fig. 3(b). Fig. 3(c)
represents the difference of real to observed performance; the confidence confd
values is shown in Fig. 3(d).

Scenario 2 contains 20 requesters which results in a much more “loaded”
system. The workers are relatively skilled; their real performance pfmcreal(w)
is generated according to N (0.7, 0.25), i.e., the mean performance value is 0.7
compared to 0.3 as in the previous scenario. We further assume that there is a
higher amount of ratings already available and cnfd(w) is generated according
to N (0.8, 0.25). Performance values are again generated as N (pfmcreal(w), 1−
cnfd(w)). The figures of Fig. 4 illustrate the generated worker population for
Scenario 2 in the same way as for the previous one. In both scenarios tasks are
issued in the first 500 rounds and the simulation ends when all workers have
finished all accepted tasks.

11

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

(a) real pfmc

1.0 0.8 0.6 0.4 0.2
0

50

100

150

(b) obs pfmc

1.0 0.8 0.6 0.4 0.2
0

100

200

300

(c) diff obs/real

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

250

(d) cnfd

Fig. 4. Generated worker population according to Scenario 2.

Tasks are generated randomly with the following methodology. The real
hidden result of a task is set to a uniformly distributed random value U(0, 1)
from the range [0, 1]. An expected duration is randomly drawn from the set
{1, 2, . . . , 24}. A randomly assigned quality requirement U(0.4, 1) states whether
the task poses high requirements to its processing. This means that requesters
never state that the quality of their tasks’ results is allowed to be lower than
0.4. Last but not least a random deadline is generated for which is guaranteed
that it is after the expected duration.

Requester Behavior. In every round of the simulation each requester is
asked to submit a task. After processing requesters receive the result for the
task. If they receive the result after the deadline they rate the transaction with
a value of zero and suspend for 20 rounds, i.e., they would refuse to issue a
new task due to the negative experience. If the result is transmitted on time
requesters rate the quality of the received result. Computationally this is done
by comparing the task’s real result with the received result. It is assumed that
task requesters are able to estimate whether the received result is close to what
was expected. The best possible rating is one, zero is the worst result, all values in
between are possible. Ratings for a worker w, be it negative or positive, increase
the confidence cnfd(w) and update the observed performance pfmc(w). If the
rating is below a threshold of 0.3 the worker suspends for ten rounds, similar
to a deadline violation. Hence, requesters with negative experiences tend to
make less usage of the crowdsourcing marketplace. In addition to the pure task
description requesters announce the maximum price they are willing to pay for
the processing of the task. Prices are also represented by random values within
the range [0, 1]. Tasks with high quality and high expected duration are more
likely to have costs close to the maximum value.

Worker Behavior. When asked for a bid during an auction a worker first
checks whether it is realistic to finish the task before the deadline considering all
tasks the worker is working on. Each task has an expected duration t and each
worker would only submit a bid if s/he has at least 1.5 · t of time to work on
the task before the end of the deadline considering already accepted tasks. The
actual processing time is set to a random value within [t, 2t]. For workers with
high real performance the processing time is more likely to be close to t. This
value is set by the simulation environment and the workers do not know about
the exact processing time in advance. For the evaluation we consider workers
with two different bidding behaviors: conservative and aggressive. Conservative
workers determine the price according to a linear combination of a tasks effort
(i.e., a normalized value of the expected duration), the workers real performance,

12

and her/his workload. The rationale is that workers want more money for work-
intensive tasks; workers with a high real performance are aware of their capa-
bilities which influences the price as well. Finally, the higher a worker’s current
workload the more payment is conceived.

bid(w, t)conservative = 0.4 · effort(t) + 0.4 · pfmcreal(w) + 0.2 · load(w)

Aggressive workers, in contrast to conservative workers, do not increase the bid’s
price based on the workload but are more strongly driven by their own real
performance.

bid(w, t)aggressive = 0.4 · effort(t) + 0.6 · pfmcreal(w)

Whether a worker is conservative or aggressive is chosen randomly with the
same probability. The processing of a task has a positive influence on the real
performance of the worker w, i.e, pfmc(w)real,new = pfmcreal(w) + 0.1 · (1 −
pfmcreal(w)). This modeling of a training effect results in a high learning rate
for workers with low real performance and a slowed down learning effect for
workers who are already very good.

Auction Processing. Auctions are conducted for the purpose of matching
a task to a worker. As described in Section 4 there is a qualification and preselec-
tion stage before the actual auction in order to avoid spamming a huge worker
base with auction request for which many workers may not have the necessary
skills. Since we only consider one skill and have a limited number of 500 workers
it is reasonable to admit all of them to the auctions. To achieve that the aptitude
function, see Eq. 1, is set as follows:

aptitude : w 7→ 1

After receiving the workers’ bids they are ranked by a ranking function as defined
in Eq. 2. Since there is only one skill the function is slightly adjusted:

rank : (w, b) 7→ 0.6 · pfmc(w) + 0.3 · cnfd(w) + 0.1 · (1− price(b)).

Workers may either return a bid or refuse to submit a bid. From the received
bids all values are removed whose price is higher than the price the requester is
willing to pay. The remaining valid bids are ranked such that a high observed
performance, high confidence, and a low price of the bid positively influence the
rank. The emphasis at that stage clearly is on the performance and not on the
price. It may happen that there is no valid bid; in that case the requester is
informed that the task could not be processed.

Skill Evolution. In this work we want to investigate how crowdsourcing
can benefit from skill evolution, which is achieved by assigning assessment tasks
to workers. This is especially useful for workers with a low confidence value. For
these workers only few or no ratings are available. An assessment task is a task
that is assigned to a worker although another worker has won the auction and
was assigned to the task as well. The workers are not aware of the fact that
there are other workers processing the very same task; requesters are not either.

13

The crowdsourcing provider is responsible for paying for the training tasks. As
usual, the result of the highest ranked worker is returned to the requester but
it is additionally used as a reference for the training task. This enables the
marketplace to generate a rating for the assessed worker by comparing her/his
result to the reference. A further positive effect is the training of the assessed
worker. The assignment of training tasks is based on the received list of valid
bids. For controlling the skill evolution Equation 3 needs to be set accordingly.

The following definition of the assessment function, which results in disabling
skill evolution and leads to purely profit driven auction decisions, maps each
combination of workers, bids, and reference workers to 0.

assessprofit : (w, b, wr) 7→ 0.

In the evaluation we have used the following setting for the skill evolution enabled
auctions.

assessskill : (w, b, wr) 7→


0, if working queue not empty

or pfmc(wr) < 0.8
or cnfd(wr) < 0.8

select(w, b), otherwise

The function assessskill guarantees that only workers with empty working queue
are assessed and that reference workers have high performance and high confi-
dence. This is crucial because the worker w is rated according to the result of
the reference worker wr. If workers with a performance lower than 0.8 or con-
fidence lower than 0.8 win an auction a training task assignment is prohibited.
If all prerequisites are met the select function determines the workers who are
assigned a training task. It is possible that multiple training tasks are assigned.

select : (w, b) 7→
{

1, with probability (1− cnfd(w)) · urg

0, otherwise

The select function assigns a training task based on the confidence of the con-
sidered worker. A low confidence increases the likelihood for a training task. The
constant urg can be used to finetune the training task assignment procedure. In
our experiments it is set to a value of 0.01. A high value raises the probability
of assessment tasks.

Discussions. Based on the introduced scenarios and simulation parameters,
we test the benefit of skill evolution (skill) compared to regular auction pro-
cessing (no skill). In the simulations, requesters issue a number of tasks to be
processed by the crowd. However, requesters suspend their activity if the task
quality is low (observed by low ratings) or task deadlines are violated. We hy-
pothesize that a higher quality of task processing, and thus received ratings, also
has positive effects on the profit of workers and the crowdsourcing platform. Ta-
ble 1 gives an overview of the task statistics in each scenario. The number of
issued tasks is influenced by the requesters’ satisfaction. No bid means that a
task could not be assigned to any matching worker.

14

The column timeout counts the number of tasks that were not delivered on
time. Finally, the number of training tasks is depicted in the last column. All
entries have the form skill/no skill.

Tasks Issued No bid Timeout Training

Scenario 1 527/315 2/5 57/73 757/-
Scenario 2 1687/1641 19/26 556/579 1310/-

Table 1. Tasks in Scenario 1 and Scenario 2.

In Fig. 5, we compare the results of Scenario 1 and 2 on the basis of total
rating scores given by requesters and the average difference between the evolved
real performance of the workers and the observed performance.

Scenario 1 Scenario 2
0

0.2

0.4

0.6

0.8

1

skill
no skill

(a) Rating.

Scenario 1 Scenario 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

skill
no skill

(b) Misjudgement.

Fig. 5. Rating and skill misjudgement.

For the rating (Fig. 5(a)) results in Scenario 1, the difference is more signif-
icant than in Scenario 2; 19% difference compared to 2%. In Scenario 1, whilst
with no skill evolution support only an average rating score of slightly above
60% is given by the requesters, the advantage of skill evolution support is most
apparent. In this scenario with low load, the system can optimally exploit the
better accuracy of worker skill estimation, resulting in an average rating of 80%.
Interestingly, the ratings are far lower in Scenario 2, although the average true
performance of the workers is higher. The reason is that the high number of re-
questers causes a heavily loaded system and increases the probability of deadline
violations. Also, low performing workers are more likely to win an auction. The
reaction of requesters to deadline violation and low quality is to give bad ratings,
in this case an average rating of 60%. Due to the heavy load the benefit of skill
evolution is small because for determining an auction’s winning bid, performance
and confidence become less decisive but free working capacity is more important.
For the misjudgement of the workers in Fig. 5(b) (lower values are better), the
results indicate clear benefits of skill evolution. Misjudgement is based on the
average difference between the real and the observed performance. With more
tasks, and in particular assessment-tasks being issued, worker capabilities can be
estimated more correctly. For Scenario 1, the difference is below 20% with and
below 30% without skill evolution support. For Scenario 2 with more load, the
results considering misjudgement are evidently better. With more transactions,
the average performance values’ difference in the skill evolution support model
is around 7% and around 19% otherwise. Thus, assessments provide remarkable
good results for reducing misjudgements.

15

Platform Requester Worker
0

50

100

150

200

250

300

350

skill
no skill

(a) Scenario 1.

Platform Requester Worker
0

100

200

300

400

500

600

700

800

skill
no skill

(b) Scenario 2.

Fig. 6. Payments from requesters to workers and crowdsourcing platform.

In our simulation requester try to minimize expenses; workers and crowd-
sourcing marketplace try to maximize earnings. Currently, we use a simple model
in which the marketplace collects for each transaction the difference between the
maximum expenses, as specified by the requester, and the minimum salary, as
specified by the worker bid. In a real setting, the crowdsourcing platform could
decide to charge less for its service. The quality of the results, and thus, their sat-
isfaction directly influences the task offering tendency of the requesters. Again,
with skill evolution applied, more tasks are processed since good ratings encour-
age requesters in offering tasks at a constant rate (see Fig. 6(a)). Altogether, the
requesters spend almost twice as much money with skill evolution. This is only
true for Scenario 1 and similar to the previous results, the difference is far smaller
considering overload situations. With more than six times as many requesters,
their expenses remain way below the sixfold amount as spent in Scenario 1 with
skill evolution support. In total, the expenses in Scenario 2 are almost the same
with and without skill evolution. The ratios are similar for the benefits of the
workers and the platform. As a summary, skill evolution generally performs bet-
ter, however, is not antagonistic to overload scenarios. While with moderate task
offering frequencies the model performs much better in all measurements, the
differences become even when load increases and assessment-task further over-
load the platform. The results show that it is the responsibility of the platform
to balance the task load and trade only with a fair amount of requesters.

6 Conclusions and Future Work

In this paper we present a novel crowdsourcing marketplace based on auctions.
The design emphasizes automation and low overhead for users and members of
the crowdsourcing system. We introduce two novel auctioning variants and show
by experiments that it may be beneficial to employ assessment task in order to
estimate members’ capabilities and to train skills. Stimulating the demand for
certain skills in such a way leads to skill evolution. As part of our ongoing research
we plan to investigate how to allow for complex tasks and collaboration. Workers
may, for instance, decompose tasks into subtasks, “crowdsource” the subtasks,
and finally assemble the partial results into the final one. In such a setting the
crowd would contribute the knowledge how to compose and assemble complex
tasks. Furthermore, crowd members could provide higher level services such as

16

quality control and insurance. Apart from auction-based mechanisms, specifica-
tions such as WS-HumanTask [10] and BPEL4People [2] for modeling human
interactions in service-oriented business environments need to be extended to
cope with the dynamics inherent to open crowdsourcing platforms. For exam-
ple, providing skill and quality models based on prior negotiated service-level
agreements (SLAs) that augment WS-HumanTask’s people assignment model.

Acknowledgement This work received funding from the EU FP7 program
under the agreements 215483 (SCube) and 257483 (Indenica).

References

1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality
content in social media. In: WSDM ’08. pp. 183–194. ACM (2008)

2. Agrawal, A., et al.: WS-BPEL Extension for People (BPEL4People). (2007)
3. Amazon Mechnical Turk: http://www.mturk.com (last access March 2011)
4. Brabham, D.: Crowdsourcing as a model for problem solving: An introduction and

cases. Convergence 14(1), 75 (2008)
5. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics.

Reviews of Modern Physics 81(2), 591–646 (May 2009)
6. CrowdFlower: http://crowdflower.com/ (last access March 2011)
7. DiPalantino, D., Vojnovic, M.: Crowdsourcing and all-pay auctions. In: EC ’09.

pp. 119–128. ACM (2009)
8. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Mass collaboration systems on the

World Wide Web. Communications of the ACM To appear
9. eBay: http://tinyurl.com/5w6zgfg (last access March 2011)

10. Ford, M., et al.: Web Services Human Task (WS-HumanTask), Version 1.0. (2007)
11. Ipeirotis, P.G.: Analyzing the Amazon Mechanical Turk Marketplace. SSRN eLi-

brary 17(2), 16–21 (2010)
12. Klemperer, P.: Auctions: Theory and Practice. Princeton University Press (March

2004)
13. Kumar, R., Lifshits, Y., Tomkins, A.: Evolution of two-sided markets. In: WSDM

’10. pp. 311–320. ACM (2010)
14. Leymann, F.: Workflow-based coordination and cooperation in a service world. In:

CoopIS ’06. pp. 2–16 (2006)
15. Schall, D., Dustdar, S.: Dynamic context-sensitive pagerank for expertise mining.

In: SocInfo ’10. pp. 160–175. Springer-Verlag (2010)
16. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in

web-scale collaborations. IEEE Internet Computing 12(3), 62–68 (2008)
17. Su, Q., Pavlov, D., Chow, J.H., Baker, W.C.: Internet-scale collection of human-

reviewed data. pp. 231–240. WWW ’07, ACM (2007)
18. Vukovic, M.: Crowdsourcing for Enterprises. In: Proceedings of the 2009 Congress

on Services. pp. 686–692. IEEE Computer Society (2009)
19. Yahoo: Answers scoring system. http://answers.yahoo.com/info/scoring system

(last access March 2011)
20. Yahoo! Answers: http://answers.yahoo.com/ (last access March 2011)

1

End-to-End Support for QoS-Aware Service
Selection, Binding and Mediation in VRESCo

Anton Michlmayr, Member, IEEE, Florian Rosenberg, Member, IEEE,
Philipp Leitner, Member, IEEE, and Schahram Dustdar, Member, IEEE

Abstract—Service-oriented Computing has recently received a lot of attention from both academia and industry. However, current
service-oriented solutions are often not as dynamic and adaptable as intended because the publish-find-bind-execute cycle of the SOA
triangle is not entirely realized. In this paper, we highlight some issues of current Web service technologies, with a special emphasis
on service metadata, Quality of Service, service querying, dynamic binding and service mediation. Then, we present the Vienna
Runtime Environment for Service-oriented Computing (VRESCo) that addresses these issues. We give a detailed description of the
different aspects by focusing on service querying and service mediation. Finally, we present a performance evaluation of the different
components, together with an end-to-end evaluation to show the applicability and usefulness of our system.

Index Terms—Web Services Publishing and Discovery, Metadata of Services Interfaces, Advanced Services Invocation Framework

F

1 INTRODUCTION

During the last few years, Service-oriented Architec-
ture (SOA) and Service-oriented Computing (SOC) [1]
has gained acceptance as a paradigm for addressing
the complexity that distributed computing generally in-
volves. In theory, the basic SOA model consists of three
actors that communicate in a loosely coupled way as
shown in Figure 1a. Service providers implement services
and make them available in service registries. Service
consumers (also called service requesters) query service
information from the registry, bind to the corresponding
service provider, and finally execute the service. Due
to platform-independent service descriptions, one can
implement flexible applications with respect to manage-
ability and adaptivity. For instance, services can easily
be exchanged at runtime and service consumers can
switch to alternative services seamlessly, which increases
organizational agility. Web services [2] represent the
most common realization of SOA, building on the stan-
dards SOAP [3] for communication, WSDL [4] for service
interface descriptions, and UDDI [5] for registries.

However, practice has shown that SOA solutions are
often not as flexible and adaptable as claimed. We argue
that there are some issues in current implementations
of the SOA model. First and foremost, service registries
such as UDDI and ebXML [6] did not succeed. We
think this is partly due to their limited querying support
that only provides keyword-based matching of registry
content, and insufficient support for metadata and non-
functional properties of services. This is also highlighted
by the fact that Microsoft, SAP, and IBM have finally

• Anton Michlmayr, Philipp Leitner and Schahram Dustdar are with the
Distributed Systems Group, Vienna Univ. of Technology, Argentinier-
strasse 8, 1040 Vienna, Austria. E-mail: {lastname}@infosys.tuwien.ac.at

• Florian Rosenberg is with CSIRO ICT Centre, GPO Box 664, Canberra
ACT 2601, Australia. E-mail: florian.rosenberg@csiro.au

shut down their public UDDI registries in 2005. As a
result, service registries are often missing in service-
centric systems (i.e., no publish and find primitives). This
leads to point-to-point solutions where service endpoints
are exchanged at design-time (e.g., using E-mail) and
service consumers statically bind to them (see Figure 1b).

Service
Contract

Service
Registry

Service
Provider

Service
Consumer Bind/Execute

PublishFind

(a) SOA Model

Service
Contract

Service
Provider

Service
Consumer Bind/Execute

(b) SOA Practice

Fig. 1: SOA Theory vs. Practice (adapted from [7])

Besides that, support for dynamic binding and invo-
cation of services is often restricted to services having
the same technical interface. In this regard, the lack
of service metadata makes it difficult for service con-
sumers to know if two services actually perform the
same task. Furthermore, support for Quality of Service
(QoS) is necessary to enable service selection based on
non-functional QoS attributes such as response time (in
addition to functional attributes).

In this paper, we discuss the issues we see in current
SOC research and practice by describing the problems
that arise when building SOC applications with current
tools and frameworks. The main contribution is the pre-
sentation of the VRESCO service runtime environment
that aims at solving some of these issues. To be more
specific, the present paper focuses on service metadata,
QoS and service querying, plus dynamic binding, invo-
cation, and mediation of services. Additionally, we pro-
vide an extensive performance evaluation of the different
components and an end-to-end evaluation of the overall

2

runtime, that shows the applicability of our approach.
The remainder of this paper is organized as follows:

Section 2 presents an illustrative example and summa-
rizes some issues of SOC research and practice. Section 3
describes the details of the VRESCO runtime environ-
ment, while Section 4 gives a thorough evaluation of
our work. Section 5 introduces related approaches and
Section 6 finally concludes the paper.

2 MOTIVATION AND PROBLEM STATEMENT

This section first introduces a motivating example which
is used throughout the paper. Then, we derive the prob-
lems developers face when engineering service-centric
systems with current tools and frameworks.

2.1 Motivating Example
Figure 2 shows a typical enterprise application scenario
from the telecommunications domain. The overview of
this case study is depicted in Figure 2a.

Shippers

Suppliers

Manufacturers

Banks

CPO1
Public Services

Order Service

Roaming/Rate
Information Service

Customer Services

Customer Service

Messaging Services

Inhouse Services

CRM Services

Mobile Operation
Services

Number Porting
Service

Billing Service

CPO3

Number Porting
Service

CPO2

Number Porting
Service

1

(a) Case Study Overview

Mail Service

Partner CPO ServicesProcessInternal Services

Check
Portability

Status

Activate
Number

Notify
Customer

Lookup
Customer

Lookup
Partner

Port
Number

E-Mail Service

SMS Service

CRM Service

CPO Service

Number Porting
Service

Mobile Operation
Service

Internal External

(b) Number Porting Process

Fig. 2: CPO Case Study

Cell phone operator CPO1 provides different kinds of
services: Public Services (e.g., Rate Information Service)
can be used by everyone. Customer Services (e.g., SMS
Service) are used by customers of CPO1, whereas Inhouse
Services (e.g., CRM Services) represent internal services
which should only be accessed by the different depart-
ments of CPO1. Besides that, CPO1 consumes services
from its partners (e.g., cell phone manufacturers and
suppliers) and competitors (e.g., CPO2 and CPO3). As
discussed later, this scenario bears several challenges
that are typical in service-centric software engineering.

According to European law, consumers can keep their
mobile phone number when switching to another CPO.
Figure 2b shows a simplified number porting process
(depicted as oval boxes). This process is interesting
because it contains both internal and external services
(depicted as rectangles), and multiple service candidates.
After the customer has been looked up using the CRM

Service, the external Number Porting Service of the old
CPO has to be invoked. If the number is portable the
porting is executed by the old CPO. If this step was
successful the new CPO is informed, which activates the
new number using the Mobile Operation Service. Finally,
a notification is sent to the customer using the preferred
notification mechanism (e.g., SMS, E-mail, etc.).

2.2 SOC Challenges

Adaptive service-oriented systems bring along several
distinct requirements, leading to a number of challenges
that have to be addressed. In this section, we summa-
rize the current challenges we see most important. The
contribution of VRESCO is to address these challenges
in a comprehensive service runtime environment.
• Service Metadata. Service interface description lan-

guages such as WSDL focus on the interface needed
to invoke a service. However, from this interface it
is often not clear what a service actually does, and if
it performs the same task as another service. Service
metadata [8] can give additional information about
the purpose of a service and its interface (e.g., pre-
and post-conditions). For instance, in the CPO case
study without service metadata it is not clear if the
number porting services of CPO2 and CPO3 actually
perform the same task.

• Service Querying. Once services and associated meta-
data are defined, this information should be dis-
covered and queried by service consumers. This
is the focus of service registry standards such as
UDDI [5] and ebXML [6]. In practice, the service
registry is often missing since there are no public
registries and service providers often do not want
to maintain their own registry [7]. Besides service
discovery, another issue is how to select a service
from a pool of service candidates [9] by means of a
querying language. For instance, CPO1 may want to
select the SMS Service with the highest availability.

• Quality of Service (QoS). In enterprise scenarios QoS
plays a crucial role [10]. This includes both network-
level attributes (e.g., latency and availability), and
application-level attributes (e.g., response time and
throughput). The QoS model should be extensible to
allow service providers to adapt it for their needs.
Furthermore, QoS must be monitored accordingly
so that users can be notified when the measured
values violate Service Level Agreements (SLA).

• Dynamic Binding and Invocation. One of the main ad-
vantages of service-centric systems has always been
the claim that service consumers can dynamically
bind and invoke services from a pool of candidate
services. However, in practice this requires identical
service interfaces, which is often not the case. There-
fore, we argue that the bind and execute primitives
of SOA are not solved sufficiently. This raises the
need for mechanisms that mediate between alter-
native services possibly having different interfaces.

3

Considering the CPO case study, the interfaces of
CPO2’s and CPO3’s number porting service might
differ, but the number porting process of CPO1
should still be able to seamlessly switch between
them at runtime.

Besides these core challenges, other aspects such as
service versioning [11] or event processing [12] are of crucial
importance for SOC. However, a detailed description is
out of scope of this paper, and the interested reader is
referred to our previous work.

3 SYSTEM DESCRIPTION

This section describes in detail the VRESCO runtime
which was first sketched in [7]. Besides an architectural
overview, we discuss service metadata and querying,
as well as dynamic binding together with our service
mediation approach.

3.1 Overview

The architectural overview of VRESCO is shown in Fig-
ure 3, which is adapted from [13]. The VRESCO core ser-
vices are provided as Web services that can be accessed
either directly using SOAP or by using the Client Library
that provides a simple API. Furthermore, the DAIOS
framework [14] has been integrated into the Client Li-
brary, and provides stubless, protocol-independent, and
message-driven invocation of services. The Access Con-
trol Layer guarantees that only authorized clients can
access the core services, which is handled using claim-
based access control and certificates [13]. Services and
associated metadata are stored in the Registry Database
which is accessed using the Object-Relational Mapping
(ORM) Layer. Finally, the QoS Monitor is responsible
for regularly measuring the current QoS values. The
overall system is implemented in C# using the Windows
Communication Foundation [15]. Due to the platform-
independent architecture, the Client Library can be pro-
vided for different platforms (e.g., C# and Java).

There are several core services. The Publishing/Meta-
data Service is used to publish services and metadata
into the Registry Database. Furthermore, the Manage-
ment Service is responsible for managing user infor-
mation (e.g., name, password, etc.) whereas the Query
Engine is used to query the Registry Database. The
Notification Engine informs users when certain events of
interest occur inside the runtime, while the Composition
Engine [16] provides mechanisms to compose services by
specifying hard and soft constraints on QoS attributes.
In this paper, we focus on the main requirements for our
client-side mediation approach which are the Metadata
Service (including the models for metadata, services
and QoS), the Query Engine, and the dynamic binding,
invocation and mediation mechanisms.

Service
Client

SOAP

Services

measure

QoS
Monitor

VRESCo Client Library

Daios Client
Factory

invoke

SOAP

VRESCo Runtime Environment

Registry
Database

Notification
Engine

Query
Engine

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
Service

O
R

M

La
ye

r

Ac
ce

ss

C
on

tro
l

Certificate
Store

Event
Database

Fig. 3: VRESCo Overview Architecture

3.2 Service Metadata
The VRESCO runtime provides a service metadata
model capable of storing information about services.
This is needed to capture the purpose of services, which
enables mediation between services that perform the
same task. In this section, we describe service metadata
and give examples from the CPO case study.

3.2.1 Metadata Model
The VRESCO metadata model introduced in [17] is
depicted in Figure 4. The main building blocks of this
model are concepts, which represent the definition of
entities in the domain model. We distinguish between
three different types of concepts:
• Features represent concrete actions in the do-

main that implement the same functionality (e.g.,
Check_Status and Port_Number). Features are
associated with categories which express the purpose
of services (e.g., PhoneNumberPorting).

• Data concepts represent concrete entities in the do-
main (e.g., customer or phone_number) which
are defined using other data concepts and atomic
elements such as strings or numbers.

• Predicates represent domain-specific statements that
are either true or false. Each predicate can have a num-
ber of arguments (e.g., for feature Port_Number a
predicate Portability_Status_Ok(Number) ex-
presses the portability status of a given argument
Number).

Furthermore, features can have pre- and postconditions
expressing logical statements that have to hold before
and after the execution of the feature. Both types of
conditions are composed of multiple predicates, each
having a number of optional arguments. These arguments
refer to a concept in the domain model. There are two
different types of predicates:
• Flow predicates describe the data flow required or

produced by a feature. For instance, the feature
Check_Status from our CPO case study could
have the flow predicate requires(Customer)
as precondition and produces(Portability-
Status) as postcondition.

4

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

1
1

11 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Fig. 4: Service Metadata Model [17]

• State predicates express global states that are valid
before or after invoking a feature. For instance, state
predicate notified(Customer) can be added as
postcondition to feature Notify_Customer.

3.2.2 Service Model

The VRESCO service model constitutes the basic in-
formation of concrete services that are managed by
VRESCO. The service model depicted on the lower half
of Figure 5 basically follows the Web service notation as
introduced by WSDL with extensions to enable service
versioning and represent QoS on a service runtime level.

Service Operation

Category Feature

Parameter

*

1

*1

Data Concept

*

1

**

1..*
Mapping Function

*

Service Model

Service Metadata Model

Revision

1

1..*

1

*

QoS

QoS

1

1

*

*

Fig. 5: Service Model to Metadata Model Mapping

A concrete service (e.g., Number Porting Service of
CPO1) defines the basic information of a service (e.g.,
name, description, owner, etc.) and consists of a least
one service revision. A service revision (e.g., the most
recent version, or a stable one) contains all technical
information that is necessary to invoke the service (e.g.,
a reference to the WSDL file) and represents a collection
of operations (e.g, Check_Status). Every operation may
have a number of input parameters (e.g., Customer),
and may return one or more output parameters (e.g.,
PortabilityStatus). Revisions can have parent and
child revisions that represent a complete versioning

graph of a concrete service [11]. Both revisions and oper-
ations can have a number of QoS attributes (e.g., response
time is 1200 ms) representing all service-level attributes
as described below. The distinction in revision- and
operation-specific QoS is necessary, because attributes
such as response time depend on the execution duration
of an operation, whereas availability is typically given
for the revision (if a service is not available, all opera-
tions are generally also unavailable). In Section 3.5, we
show how concrete services are mapped to the metadata
and service model in order to perform service mediation.

3.2.3 QoS Model

Besides functional attributes described in the metadata
model, non-functional attributes are also important. For
instance, in our case study CPO1 may want to always
bind to the Notification Service having the lowest re-
sponse time. Therefore, QoS attributes can be associated
with each service revision and operation in VRESCO.
These QoS attributes can be either specified manually
using the Management Service, or measured automati-
cally (e.g., using the QoS Monitor introduced in [18]).

Attribute Formula Unit

Price n/a per invocation

Reliable Messaging n/a {true, false}
Security n/a {None,

X.509,. . .}

Latency qla(n) = 1
n

n∑
i=0

qlai
ms

Response Time qrt(n) = 1
n

n∑
i=0

qrti ms

Availability qav(t0, t1, td) = 1− td
t1−t0

percent

Accuracy qac(rf , rt) = 1− rf

rt
percent

Throughput qtp(t0, t1, r) = r
t1−t0

invocations/s

TABLE 1: QoS Attributes

Table 1 briefly summarizes the QoS attributes that
are currently considered in VRESCO. Latency represents
the time a request needs on the wire. It is calculated
as the average value of n individual measuring points.
Response time consists of the latency for request and re-
sponse plus the execution time of the service. Availability
represents the probability a service is up and running
(t0, t1 are timestamps, td is the total time the service
was down). Accuracy is the probability of a service to
produce correct results where rf denotes the number
of failed requests and rt denotes the total number of
requests. Finally, throughput represents the maximum
number of requests a service can process within a certain
period of time (denoted as t1 − t0) where r is the total
number of requests during that time. In addition to these
pre-defined QoS attributes, users can define additional
QoS properties for service revisions or operations.

5

3.3 Querying Approach

The VRESCO Query Language (VQL) provides a means
to query all information stored in the registry (i.e.,
services and service metadata including QoS). In this
section, we discuss the architecture of VQL followed by
query specification and query processing.

3.3.1 Architecture

The VQL architecture was driven by the following re-
quirements. First of all, declarative query languages such
as SQL refer to database tables and columns, which
makes queries invalid as soon as the database schema
changes. Following the Query Object Pattern [19],
queries can be built programmatically using query crite-
ria that refer to classes and fields instead. These queries
are finally translated into SQL statements, which makes
them independent of the database schema. In this regard,
VQL should provide such object-oriented querying inter-
face and corresponding query expression library (similar
to the Hibernate Criteria API [20]).

Moreover, it should be possible to define both manda-
tory and optional criteria by introducing different query-
ing strategies that enable fuzzy or priority-based query-
ing (e.g., services must have a response time below
500 ms and should be provided by company X). Fi-
nally, VQL queries should be type-safe (i.e., the query
requester specifies the expected type of the query re-
sults) and secure (i.e., queries are protected against well-
known security issues such as SQL injection).

Client Library VRESCo Runtime

Service
Proxies

...

Querier

VQL Library

Expressions

Strategies

Service Layer

Metadata

Registry
Database

Core
Model

Database
Model

ORM
Layer

User
Model

Data
Access
Layer

VQL Engine

Publishing

VQL

Strategies
Exact

Relaxed

Priority

Preprocessor

ResultBuilder

VQL
Query

1. 2.

6.

3.

4.

5.

...

Fig. 6: VQL Architecture

The architecture of the VQL framework is shown in
Figure 6. In general, the Client Library is used to invoke
VRESCO core services (e.g., Publishing Service). Since
these invocations represent remote method invocations,
the Data Transfer Object pattern [19] is used to reduce
the information sent from clients to the core services.
Therefore, the VRESCO runtime operates on the core
model (which represents the service metadata model
introduced in Section 3.2), while clients operate on the
user model. The task of the Data Access Layer (DAL)
is to convert core objects to user objects and vice versa.
The corresponding mapping between the two models is
defined at design time using .NET attributes [21].

The advantage of this architecture is that clients oper-
ate on the user model, which represents a restricted view
of the core model. Therefore, some information can be
hidden from the clients (e.g., database IDs or versioning
information for optimistic locking). Consequently, the
VQL framework has to provide view-based querying, to
be able to query on both models (depending on whether
the query is issued client- or server-side). The task of the
ORM Layer is then to map the entities of the core model
to the database model (i.e., concrete database tables and
columns), which is realized by NHibernate [20] using
dedicated data access objects (DAOs).

According to this architecture, user queries are formu-
lated using the Client Library, that provides an object-
oriented querying interface to define query criteria,
which is discussed in the next section. The query is then
sent to the VRESCO runtime (step 1) and forwarded to
the VQL Engine (step 2). The details of query processing
(steps 3–5) are described in Section 3.3.3. Finally, the
results are sent back to the query requester (step 6).

3.3.2 Query Specification

After describing requirements and architecture of the
querying framework, we present how queries are spec-
ified. In general, VQL queries consist of six elements:
• Return Type R defines the expected data type of

the query results. The return type needs to be an
element of the VRESCO metadata model (e.g., a list
of Feature objects).

• Mandatory Criteria Cm describe constraints which
have to be fulfilled by the query (e.g., response time
must be less than 500 ms).

• Optional Criteria Co add constraints which should
optimally be fulfilled but are not required (e.g.,
service provider should be company X).

• Ordering O can be used to specify the ordering of
the query results (e.g., sort ascending by ID).

• Querying Strategy S finally defines how the query
should be executed (e.g., exact or fuzzy matches).

• Result Limit L can be used to restrict the number of
results (e.g., 10 or 0, which represents no limit).

The most important elements are criteria since they
actually represent the constraints of the query. Moreover,
criteria have different execution semantics depending on
the querying strategy, which is discussed in Section 3.3.4.
However, the main motivation is to allow the specifica-
tion of mandatory and optional criteria.

In general, criteria consist of a set of expressions E
that are used to define common constraints such as
comparison (e.g., smaller, greater, equal, etc.) and logical
operators (e.g., AND, OR, NOT, etc.). Table 2 shows
criteria (C), expressions (E) and orderings (O) which
are currently provided by VQL. Furthermore, the table
indicates how each of these elements is translated to
SQL, which is described in more detail later. It should be
noted that VQL is extensible in that further expressions
can be added easily.

6

Type VQL SQL Description
Cm Add WHERE Mandatory criteria
Co Match IN/JOIN Optional criteria

E

And AND Conjunction of two expressions
Or OR Disjunction of two expressions
Not NOT Negation of an expression
Eq = Equal operator
Lt < Less operator
Le <= Less or equal operator
Gt > Greater operator
Ge >= Greater or equal operator
Like LIKE Similarity operator for strings

IsNull IS NULL Property is null
IsNotNull NOT NULL Property is not null

In IN Property is in a given collection
Between BETWEEN Property is between two values

O
Order ORDER BY Ordering of query results
Asc ASC Ascending ordering
Desc DESC Descending ordering

TABLE 2: VQL/SQL Translation

Listing 1 shows an example query for finding services
that implement the Notify_Customer feature in our
CPO case study. As described above, queries are pa-
rameterized using the expected return type. In this case,
the type ServiceRevision (line 2) expresses that the
result of the query is a list of service revisions. In our
example, two Add criteria (lines 5–7) are used to state
that services have to be active and that each service has
to implement the Notify_Customer feature (by using
the Eq expression). The first parameter of expressions
is usually a string representing a path in the user or
core model (e.g., Service.Owner.Company describes
the company property of the service owner). These
strings are central to VQL, and are referred to as property
paths. Additionally, three Match criteria are added in
the example (lines 8–14). The first criterion expresses
that services provided by CompanyX are preferred, while
the second criterion defines that revisions should have
tags starting with ’STABLE’ (Like expression). The third
criterion specifies an optional QoS constraint on response
time, which should be less than 1000 ms. The operator
’&’ in line 13 represents a shortcut for an And expression.
All three Match criteria use priority values as third
parameter to define the importance of a criterion.

� �
1 // create query object
2 var query = new VQuery(typeof(ServiceRevision));
3
4 // add query criteria
5 query.Add(Expression.Eq("IsActive", true));
6 query.Add(Expression.Eq("Service.Category.Features.Name",
7 "NotifyCustomer"));
8 query.Match(Expression.Eq("Service.Owner.Company",
9 "CompanyX"), 1);

10 query.Match(Expression.Like("Tags.Property.Name",
11 "STABLE", LikeMatchMode.Start), 3);
12 query.Match(
13 Expression.Eq("QoS.Property.Name", "ResponseTime") &
14 Expression.Lt("QoS.DoubleValue", 1000.0), 5);
15
16 // execute query
17 var querier = VRESCoClientFactory.CreateQuerier(
18 "username", "password");
19 var results = querier.FindByQuery(query, 10,
20 QueryMode.Priority) as IList<ServiceRevision>;� �

Listing 1: VQL Sample Query

The query is finally executed (lines 17–20) by instan-
tiating a querier object using the Client Factory, and
invoking the FindByQuery method using the desired
querying strategy (e.g., QueryMode.Priority). Fur-
thermore, the result limit of the query is set in order
to return only 10 results.

3.3.3 Query Processing

Query processing is illustrated in Figure 6. When the
query is sent to the VQL Engine, the specified querying
strategy is executed, which is implemented using the
strategy design pattern [22]. The query is forwarded to
the Preprocessor component (step 3), which is responsible
for analyzing the VQL query and generating the corre-
sponding SQL query. Next, a NHibernate session is cre-
ated to execute the generated SQL query on the database
(step 4). After execution, the ResultBuilder component
takes the results from the NHibernate session context.
Since these results represent core objects, they may have
to be converted back into the corresponding user objects
(i.e., if the return type refers to the user model). This
is done dynamically by invoking the constructor of the
corresponding object using reflection. For both models,
however, the ResultBuilder guarantees type-safety of the
results, which are finally sent back to the client (step 5).

Algorithm 1 processQuery(R,C, S, O)
1: if (isUserObject(R)) then
2: R←MapUserToCoreObject(R)
3: end if
4: assocInfo ← R
5: for all (crit ∈ C) do
6: for all (expr ∈ GetExpressions(crit)) do
7: assocInfo←assocInfo ∪ ResolveAssoc(expr)
8: propInfo← params ∪ ResolveProp(expr)
9: end for

10: end for
11: query ← BuildFrom(assocInfo, propInfo, S)
12: query ← BuildWhere(query, assocInfo, propInfo, S)
13: query ← BuildOrder(query, O)
14: return query

Algorithm 1 depicts the pseudo-code of the Prepro-
cessor. If the query refers to the user model, it is first
transformed to the core model (lines 1–3). The Preprocessor
then iterates over all criteria and expressions (lines 5–
10). The ResolveAssoc function recursively analyzes the
property paths of each expression to determine the
necessary table joins. Similarly, the ResolveProp function
extracts the property values of each expression. To give
an example, reconsider line 8 of Listing 1: The property
path Service.Owner.Company represents two associ-
ations Service and Owner that will be resolved using
joins, and one property Company that will be compared
with the expression’s property value CompanyX. The
concrete association/table and property/column names
are retrieved using the ORM Layer. The collected infor-
mation is finally used to build FROM, WHERE and ORDER
clauses of the SQL query (lines 11–13), according to the
VQL/SQL translation shown in Table 2.

7

3.3.4 Querying Strategies

The querying strategy influences how queries are ex-
ecuted. More precisely, it defines the Preprocessor’s be-
havior during SQL generation. The basic transformation
process can be summarized as follows: Add criteria are
transformed to predicates within the SQL WHERE clause,
whereas Match criteria are handled as SQL sub-selects
(IN or JOIN, see Table 2).

The exact querying strategy forces all criteria to be
fulfilled, irrespective whether this is Add or Match.
However, there are scenarios where Match has to be
used instead of Add in order to get the desired results
(i.e., by enforcing sub-selects using IN instead of WHERE
predicates). In particular, when mapping N:1 and N:M
associations (i.e., collection mappings in Hibernate ter-
minology), a query cannot have the same collection more
than once in the WHERE predicate. The use of sub-selects
eliminates this effect in VQL, otherwise such queries
would result in null since the associated tables are
joined more than once. As an example reconsider the
query in Listing 1 using the exact strategy. When having
only one criterion with respect to QoS, Add can be used.
However, if there would be a second QoS criterion,
Match is required.

The priority querying strategy uses priority values for
each criterion in order to accomplish a weighted match-
ing of results. Therefore, each Match criterion allows
to append a weight to specify its priority, which is
internally added if the criterion is fulfilled. The query
finally returns the results sorted by the sum of priority
values. To give an example, the query in Listing 1 uses
the priority values “1”, “3” and “5”. This means that
the constraint on response time is more important than
the constraint on revision tags. More precisely, queries
that fulfill only the third Match criterion are preferred
over queries that fulfill the first and the second Match
criterion (since 5 > 3 + 1).

The relaxed querying strategy represents a special vari-
ant of priority querying where each Match criterion has
priority 1. Thus, this strategy simply distinguishes be-
tween optional and mandatory criteria. Results are then
sorted based on the number of fulfilled Match criteria.
This allows to define fuzzy queries by relaxing the
criteria, which can be useful when no exact match can be
found for a query. To achieve the necessary behavior, re-
laxed and priority querying both translate Match criteria
into sub-selects using JOIN predicates.

3.4 Dynamic Binding

Dynamic binding is claimed to be one of the main
advantages of SOA. In practice, however, services are
often bound using pre-generated stubs that do not pro-
vide support for dynamic binding. Similar to querying
strategies, we use the strategy pattern to implement a
number of different rebinding strategies. We summarize
all available strategies in Table 3.

Strategy Proxy reconsiders binding. . .
Fixed never

Periodic periodically
OnDemand on client requests

OnInvocation prior to service invocations
OnEvent on event notifications

TABLE 3: Rebinding Strategies

All rebinding strategies have their advantages and
disadvantages. Fixed proxies are used in scenarios where
rebinding is not needed (e.g., because of existing contrac-
tual obligations). Periodic rebinding causes background
queries on a regular basis, which is inefficient if invoca-
tions happen infrequently. OnDemand rebinding results
in low overhead but has the drawback that the binding
is not always up-to-date. In contrast to this, OnInvocation
rebinding guarantees accurate bindings but seriously de-
grades the service invocation time since service bindings
are checked before every invocation. Finally, OnEvent re-
binding uses the VRESCO Event Notification Engine [12]
to combine the advantages of all strategies. Therefore,
clients use subscriptions for defining in which situations
to rebind, which is then triggered by events.

3.5 Service Mediation
Dynamic binding as described above naturally brings
up the problem of how differences in service interfaces
can be resolved at runtime. In this section, we introduce
the VRESCO Mapping Framework (VMF) that handles
the mapping from abstract features to concrete service
operations (as described in Section 3.2), and perform
mediation between different services that implement the
same feature. The elements of the service model are
mapped to our service metadata model as follows (see
Figure 5): services are grouped into categories, where
every service may belong to several categories at the
same time. Services within the same category provide
at least one feature of this category. Service operations
are mapped to features, where every operation imple-
ments exactly one feature. However, we plan to provide
support for more complex mappings using the VRESCO
Composition Engine [16] (i.e., features will be repre-
sented as compositions of several service operations).
The input and output parameters of service operations
map to data concepts. Every parameter is represented
by one or more concepts in the domain model. This
means that all data that a service accepts as input or
passes as output is well-defined using data concepts and
annotated with the flow predicates requires (for input)
and produces (for output). The concrete mapping of
service parameters to concepts is described using map-
ping scripts, which will be discussed extensively below.

In general, the mediation approach follows the
“feature-driven” metadata model. Therefore, a client that
wants to invoke a service does not provide the input of
the concrete service directly but in the conceptual high-
level representation (i.e., the feature input in VRESCO
terminology). The runtime takes care of lowering and

8

lifting the feature input and output, respectively. Low-
ering represents the transformation from high-level con-
cepts into a low-level format (i.e., feature input to SOAP
input) whereas lifting is the inverse operation (i.e., SOAP
output to feature output).

VRESCo Client Library VRESCo Runtime

Registry
Database

Metadata ServiceClient Mapping Library

Mapper

Mapping Mediator

Output

Input

M
ap

pi
ng

 T
im

e
E

xe
cu

tio
n

Ti
m

e

Web Services

Fig. 7: VMF Architecture

Figure 7 shows an overview of the VMF architecture.
Generally, VMF comprises two main components. Firstly,
at mapping time, the Mapper component is used to
create lifting and lowering scripts for each service. This
information is stored in the VRESCO Registry Database
using the Metadata Service. Secondly, at execution time,
DAIOS is used as a dynamic service invocation frame-
work. The Mediator component is used as an interceptor
in DAIOS following the ideas presented in [23]. This
mediator retrieves the lifting and lowering scripts from
the VRESCO Metadata Service at runtime, and executes
the corresponding mapping. This is done by applying
all mapping functions sequentially, in the order they
have been specified. In that sense, VMF implements an
imperative, interpreted domain-specific language. In its
current form, VMF does not optimize mapping scripts
in any way.

Functions Description
Assign Link one parameter to another (source and destination must

have the same data type)
Constants Define simple data type constants

Conversion Convert simple data types to other simple data types
Array Create arrays and access array items
String String manipulation operations (e.g., substring, concat)
Math Basic mathematical and logical operations (e.g., addition,

round, and, or)
CSScript Define complex mappings directly in C#

TABLE 4: VMF Mapping Functions

Mapping scripts are defined using the Mapping Library,
which includes a number of Mapping Functions. Mapping
functions are the atomic building blocks from which all
mapping scripts are constructed. We have summarized
the provided mapping functions in Table 4 (grouped into
7 categories). Probably the most important function is
Assign, which is used to map one input parameter
or intermediary result to an output parameter (i.e., a
Web service operation parameter in case of a lowering
script, a feature output parameter in case of a lifting
script). Functions from the Constants group are used to
create new data directly in the mapping. All remaining
mapping functions are used to transform parameters in

various ways, e.g., from one data type to another, using
string manipulation, or using mathematical and logical
operations. Furthermore, more complex mappings can
be defined in the CS-Script language [24]. Essentially, this
allows to deploy custom mapping functions by using
the full power of the C# programming language. For
instance, this can be used to invoke external Web services
at mediation time.

<<Feature>>
Notify_Customer

<<InParameter>>

<<DataConcept>>
Message : string

<<InParameter>>

<<DataConcept>>
SenderNr : string

<<InParameter>>

<<DataConcept>>
ReceiverNr : string

<<OutParameter>>

<<DataConcept>>
sendStatus : bool

<<Operation>>
SendSMS1

<<InParameter>>
message : string

<<InParameter>>
areaCodeSender : int

<<InParameter>>
sender : int

<<InParameter>>
areaCodeReceiver : int

<<InParameter>>
receiver : int

Assign

Assign

Assign

Assign

AssignConvertToInt

ConvertToInt

ConvertToInt

SubString(0,4)

SubString(4,8)

SubString(0,4)

AssignConvertToIntSubString(4,8)

<<OutParameter>>
status : string

ConvertToBoolean

Fig. 8: VMF Mapping Example

We give a concrete mapping example in Figure 8. In
this example, the abstract feature Notify_Customer
from the CPO case study (see Section 2) is mapped to
the concrete operation SendSMS1. The feature provides
three input parameters and produces one output param-
eter. The parameter Message is identical in both inter-
faces, and can therefore be mapped directly (using only
Assign). Note that for the Assign function to work
both sides need to be represented using the same data
concept (in this case string). The parameter SenderNr
is split into the area code and the actual number. This
is done using the string operation SubString, which
takes the start index of the string and the length of the
substring as parameters. Afterwards, both substrings are
converted to integers using the ConvertToInt func-
tion. This is necessary since assigning a string to an
integer is not possible. The ReceiverNr is handled sim-
ilarly. So far, only input parameters have been mapped
(i.e., all information given so far forms the lowering
script for this service). The lifting script, which defines
how the service output is mapped to the feature output,
consists only of a ConvertToBoolean and another
Assign function.

Listing 2 illustrates the first two mappings (Message
and SenderNr) in C# code. Lines 4–5 show how the
Mapper is created for feature Notify_Customer and
operation SendSMS1. Both objects have to be queried
beforehand (not shown in Listing 2 for brevity). The
Assign function is again used as a connector to link
the Message from the feature to the Message of the
operation, whereas mapper.AddMappingFunction()
adds the function to the mapping. Lines 14–21 get the
area code from the feature’s SenderNr as substring and
convert it with the ConvertToInt function to an integer

9

� �
1 // query NotifyCustomer and SendSMS1 instances using VQL
2
3 // create mapper from feature and operation
4 Mapper mapper = metadataService.CreateMapper(
5 NotifyCustomer, SendSMS1);
6
7 // map feature message to operation message
8 Assign messageAssign = new Assign(
9 mapper.FeatInParams[0],

10 mapper.OpInParams[0]);
11 mapper.AddMappingFunction(messageAssign);
12
13 // get AreaCode, convert to int and map it to operation
14 Substring acSenderStr = new Substring(
15 mapper.FeatInParams[1], 0, 4);
16 acSenderStr = mapper.AddMappingFunction(acSenderStr);
17 ConvertToInt acSenderInt = new ConvertToInt(
18 acSenderStr.Result);
19 acSenderInt = mapper.AddMappingFunction(acSenderInt);
20 mapper.AddMappingFunction(new Assign(acSenderInt.Result,
21 mapper.OpInParams[1]));� �

Listing 2: VMF Mapping Example Code

which is finally assigned to operation’s input parameter
AreaCodeSender. All further mappings from Figure 8
are implemented analogously.

4 EVALUATION

In this section, we give an evaluation of the VRESCO
runtime focusing on the topics covered in this paper. The
purpose of this evaluation is twofold: Firstly, we show
the runtime performance regarding service querying,
rebinding, and mediation by using synthetic data. The
main goal of this evaluation is to analyze the perfor-
mance impact of each aspect in isolation. Secondly, we
combine these aspects into a coherent end-to-end evalu-
ation using an order processing workflow. The main goal
is to understand the influence of each aspect with regard
to the overall process duration in a realistic setting.
Additionally, we show how the individual results of
the first part interrelate in an end-to-end setting. All
experiments have been executed on an Intel Xeon Dual
CPU X5450 with 3.0 GHz and 32GB RAM running under
Windows Server 2007 SP1. Moreover, we use .NET v3.5
and MySQL Server v5.1.

For mediation, rebinding and end-to-end evaluation
we have created different sets of test services and QoS
configurations (with varying response times) using the
Web service generation tool GENESIS [25]. These testbeds
are described in detail in the corresponding subsections.

4.1 Querying Performance

First of all, we show the performance of the VQL Engine,
which has been measured using the query shown in List-
ing 1. The test data are generated automatically: In every
step, 5 categories are inserted, each having 5 alternative
services with 10 revisions, while every revision has 1 tag
and 11 QoS attributes with random values. It should be
noted that in every step 20% of all services match the
queried feature Notify_Customer and service owner
CompanyX, while only 2% of all service revisions match

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000

E
xe

cu
tio

n
T

im
e

(in
 m

s)

Service Revisions

 SQL
 HQL
 VQL

Fig. 9: Query Performance (NL)

all query criteria. To eliminate outliers, the results rep-
resent the median of 10 runs, while the database and
Hibernate session cache are cleared after each run.

Figure 9 compares the performance of the queries
generated by SQL, HQL and VQL. Therefore, the query
from Listing 1 was manually translated into HQL and
SQL, while the VQL query is executed on core objects
using the exact strategy without result limit (NL). The
queries return only the ID of the matching revisions.
Therefore, this table shows the performance of the native
queries and does not include the time needed for con-
verting the results back into ServiceRevision objects.
The results indicate that the queries generated by all
three approaches perform equally. In this regard, all
approaches exhibit the same peaks, which are due to
internal processing of the database.

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
T

im
e

(in
 m

s)

Service Revisions

 EXACT
 RELAXED
 PRIORITY

Fig. 10: Querying Strategies (User, L10)

Figure 10 compares the querying strategies using the
same query on user objects and limited to 10 results (L10).
The limit was chosen since relaxed and priority return
more revisions than exact (which influences the results).
It can be seen that exact is much faster than relaxed, while
relaxed and priority have similar performance. The reason
for the significant difference is that relaxed and priority
use different table joins, and need to sum up and order
by the total sum of priority values, while the query in
exact mode can be optimized by the database.

10

Finally, Table 5 depicts the duration of the individ-
ual steps during VQL query processing. Therefore, the
previous query is executed on both core and user objects
using the exact strategy. Generation (G) indicates how
long the Preprocessor needs to analyze and generate the
query. Execution (E) depicts the actual query execution
time, while Conversion (C) represents the time needed
by the ResultBuilder to convert the query results.

Revisions User Core
G E C G E C

1000 4,8 3,8 84,7 3,1 3,6 7,1
2000 4,8 14,6 87,5 3,2 14,4 6,8
3000 4,8 7,7 87,0 3,2 7,6 6,5
4000 4,8 9,8 77,5 3,2 9,7 6,5
5000 4,8 12,0 81,4 3,2 11,7 6,4
6000 4,8 13,5 83,7 3,1 13,5 7,0
7000 4,8 15,9 86,9 3,2 15,5 6,8
8000 4,8 17,9 86,3 3,2 17,6 7,3
9000 4,8 19,8 82,4 3,2 19,8 7,2
10000 4,8 22,2 86,6 3,1 20,5 6,8

TABLE 5: VQL Query Processing (in ms, User/Core, L10)

The results show that G is almost constant for core/user
objects, while the latter is slightly slower since queries
have to be translated to refer to core objects. Obviously,
E is almost equal for both approaches. Finally, the table
indicates that C is fast for core objects, while it takes some
time for user objects. The main reason is that queries
actually return IDs, while the corresponding entities
are loaded from the NHibernate session context. Fur-
thermore, revision objects have a number of collections
(e.g., tags, QoS, etc.) that have to be converted by the
ResultBuilder using reflection, which internally leads to
a number of additional queries (since most collections
are lazy-loaded [19]). In this setting, the time for C is
constant for all revisions due to the result limit of 10.

4.2 Rebinding Performance

In the following subsection, we give an evaluation of the
different rebinding strategies introduced in Section 3.4.
For measuring the rebinding performance, we used
GENESIS to simulate 10 services that implement the same
feature. Then, we leveraged the QoS plug-in to contin-
uously modify the response time of all services using
a Gaussian distribution, and we additionally increased
the variance after each step in order to simulate an
environment where the QoS of services is subject to
significant change. Finally, we implemented one client
for each rebinding strategy and measured the average
response time when invoking the service. As a result, we
can see the impact of the different rebinding strategies
for each client.

The results of this experiment are depicted in Fig-
ure 11. It should be noted that the response time of the
best service is decreasing since we increase the variance.
All services start with a (server-side) execution time of
2000 ms. The (client-side) response time differs about 400
ms which is caused by the network latency and the time
needed for wrapping SOAP messages.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(in
 m

s)

Execution Time Variation

Fixed Binding
Periodic Rebinding

On Invocation Rebinding
On Event Rebinding

Fig. 11: Rebinding Strategies Performance

Obviously, clients with fixed binding usually perceive
the worst response time because they are always bound
to the same service. Clients using periodic rebinding
mostly use services with good response time. However,
since rebinding is done in pre-defined intervals the
bindings are not always up-to-date (e.g., steps 17–18, 24–
25, and 27–28 represent such situations). In contrast to
that, clients with OnInvocation rebinding always invoke
the best service since the rebinding is re-considered just
before the service is invoked. However, this leads to
a constant overhead of about 400 ms which is needed
to check the binding and update if necessary. Finally,
clients with OnEvent rebinding always bind to the best
service without invocation overhead because the clients
are notified asynchronously when the QoS changes and
better services get available. However, the (optional)
VRESCO eventing support must be turned on and the
client needs a listener Web service. It should be noted
that the performance of the Event Engine is sufficient
which is detailed in [12]. Thus, all rebinding strategies
have their strengths and weaknesses, and it depends on
the specific situation which strategy to use.

4.3 Mediation Performance

Besides rebinding, we have also evaluated the overhead
introduced by the VRESCO mediation facilities. We have
again used the GENESIS tool for these tests.

Figure 12 depicts the response time of a single Web
service invocation depending on the size of the message
sent to the service. We have evaluated five different sce-
narios: (1) no mediation, (2) mediation using only con-
stant mapping functions (replacing an input parameter
with a constant string), (3) using mathematical functions
(replacing a parameter with a calculated value), (4) using
string modification functions (adding a constant string
to a string parameter), and finally (5) using CS-Script
(a simple script which exchanges the order of two pa-
rameters). Unsurprisingly, unmediated invocations are
generally faster than any type of mediation. The perfor-
mance of mediated invocations is similar no matter what
type of mapping functions have been applied. However,

11

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

R
es

po
ns

e
T

im
e

(in
 m

s)

Payload Size (in KB)

Unmediated
Constants

Math Functions
String Operations

CS-Script

Fig. 12: Mediation Performance (Message Size)

in our experiments mediation using string operations
introduces slightly more overhead than the other types.
This is due to the fact that string operations naturally
become more expensive when the strings become bigger.

 190

 200

 210

 220

 230

 240

 0 20 40 60 80 100

R
es

po
ns

e
T

im
e

(in
 m

s)

Mapping Functions

Constants
Math Functions

String Operations
CS-Script

Fig. 13: Mediation Performance (Mediation Steps)

In Figure 13 we have studied the overhead introduced
by different mapping functions in more detail. We have
evaluated how the overhead introduced by mediation
depends on the amount of mediation necessary (mea-
sured in the number of mapping functions applied). We
have evaluated the same scenarios as before, but omitted
the tests using unmediated invocations. Generally, the
additional overhead introduced by a larger number of
mapping functions is rather small: the difference be-
tween 1 and 100 mapping functions varies between 5 and
20 ms, which seems acceptable. As before, the overhead
introduced by string operations heavily depends on
the size of the strings to modify. Our experimentation
string was rather sizable at 73 kByte, which explains
the comparatively big overhead incurred by this type of
mapping function. Note that the overhead of CS-Script
mappings is constantly around 10 ms since the main
overhead is the initialization of the scripting engine,
while the execution of the actual script is negligible (as
long as the script does not do any heavy computation,
which would not be typical for mapping scenarios).

4.4 End-to-End Evaluation and Discussion
The end-to-end scenario combines all aforementioned
aspects (i.e., querying, rebinding, mediation and invo-
cation) into a larger order processing case study with
the goal of ordering new cell phone contracts online
(including mobile phone and SIM card). We imple-
mented this workflow in C#. It consists of 19 overall
activities split into 4 subprocesses. Basically, the process
starts upon receiving an order via the company Web
site. Afterwards the internal stock is checked for the
availability of the phone and the SIM card. If one of
those components is missing, it is ordered by using one
of the internal or external suppliers, which is followed by
a contracting subprocess. This subprocess creates a new
contract and, if necessary, it adds a new customer to the
CRM system. If the customer wants to transfer her old
number, the number porting subprocess as depicted in
Figure 2b is executed. Finally, the payment and shipping
subprocesses are enacted and the cell phone number is
activated in the GSM network.

The services used in the case study have been de-
ployed on a different machine using GENESIS [25]. For
each internal service (e.g., CRM, contracting) we have
deployed only one alternative, whereas for each external
service (e.g., Credit Card Service) multiple alternatives
are available (between 60 and 250). For the internal
notification service which is used to notify customers
of their order status (using SMS, E-mail, mail, etc.) 30
alternatives are provided. This service is the only one
that requires significant mediation. We use GENESIS to
simulate a response time of 30–100 ms for each service.

 0

 5000

 10000

 15000

 20000

 25000

 30000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

T
im

e
(m

s)

Experiment Runtime

Sum of Service Response Times
Sum of Mediation

Sum of Queries
Other

Fig. 14: End-to-End Performance

In Figure 14, we show the average process duration in
this case study based on 40 concurrent clients running on
one host that is also hosting the VRESCO environment.
Each client continuously executes the process over an
experiment time of 16 min. We have chosen the Periodic
rebinding strategy for this scenario, to accommodate for
our highly dynamic scenario with many alternatives for
each external service. In order to get a big number of
rebindings during our experiment time we have chosen
a rebinding interval of 5 sec. The x-axis of the figure
shows the experiment time (in minutes) and the y-axis

12

depicts the averaged process durations of the currently
executing process instances. Right after bootstrapping
the system, there is a steep incline in the overall duration
because each client performs some initialization. This in-
cludes querying the available services (red part), as well
as creating proxies and binding to one service candidate
(blue part). Additionally, the services are invoked (green
part) and a certain amount of mediation occurs (black
part). After the initialization phase, the system stabilizes
and the response times and mediation time are constant.
The mediation overhead reflects our detailed media-
tion results from Figure 12. Together, service response
times and mediation accounts for about 92% of the
average process duration after the initialization phase.
The remaining 8% (blue part) represent other factors
such as thread handling or the workflow business logics.
Please note that querying and an occasional rebinding
still happens after the initialization phase, but it is no
longer part of the average process execution times (on
the y-axis). This is because the rebinding clients perform
querying and rebinding asynchronously in a separate
thread. Therefore, it solely depends on the rebinding
strategy whether querying and rebinding is part of the
process execution time or just part of the initialization
phase (as shown in Figure 14). In case of the OnInvo-
cation rebinding strategy, there would be querying and
rebinding overhead in the overall process execution time,
whereas for OnDemand and OnEvent the behavior would
be similar as shown above.

Generally, the decision which rebinding strategy to
use depends on the particular domain and the require-
ments. For example, for the Number Porting Service
fixed binding is not a reasonable choice because even
simple changes of the partner CPO’s services (e.g., a
different endpoint) would break the process. OnDemand
is only reasonable if changes happen infrequently, and
adaptation to changes is not time-critical. Periodic rebind-
ing, on the other hand, is only adequate when services
change frequently enough to warrant permanent polling
for updates. Since number porting is not time-critical, we
could have also used the OnInvocation rebinding strategy,
which has a constant invocation overhead but always
finds the best available service, or even better OnEvent
which also eliminates this invocation overhead.

5 RELATED WORK

In this section, we review related work concerning ser-
vice repositories and service metadata, as well as service
selection, invocation, and mediation.

Currently, several approaches and standards for ser-
vice registries exist. We have compared some exist-
ing solutions with the VRESCO runtime, considering
a carefully selected range of established standards, ma-
ture open-source frameworks and commercial tools. We
consider the standards UDDI [5] and ebXML [6] (with
special emphasis on the registry), Mule ESB and Galaxy
repository [26], WSO2 ESB and registry [27], and IBM

WebSphere [28] (including ESB, service registry and
repository). Our comparison in Table 6 is structured
according to the challenges introduced in Section 2.

Generally, all systems allow to store service metadata.
Mostly, this is done in an unstructured way (e.g., us-
ing tModels in UDDI). There is only limited support
for structured metadata in most approaches, whereas
WebSphere provides an extensive structured metadata
model (e.g., supporting OWL). To access data and meta-
data within the registry a query language or API is
needed, which is provided by all approaches (WSO2
supports querying only based on Atom [29]). In contrast
to VRESCO, type-safe queries are not supported by
most approaches since querying is usually done on the
unstructured service metadata model using languages
such as SQL. Only WebSphere provides partial sup-
port by using XPath expressions for querying. Cur-
rently, explicit support for QoS attributes is not widely
available – it is to some extent possible in WSO2 and
WebSphere, and fully supported by VRESCO. WSO2
supports QoS only in terms of WS-Security and WS-
ReliableMessaging. However, none of these frameworks
except VRESCO provide QoS monitoring. Integration of
dynamic binding, invocation and mediation of services
is obviously not supported by pure registries such as
UDDI or the ebXML registry. The other systems provide
support in this respect due to their integrated ESBs. All
systems except UDDI and VRESCO allow to store multi-
ple versions of service metadata in the registry. However,
only VRESCO provides end-to-end versioning support,
which enables to seamlessly rebind and invoke different
service revisions at runtime [11]. Finally, all approaches
provide basic event notifications (e.g., if services are
published) using E-mail, Web service notifications or
Atom. Only WebSphere and VRESCO allow clients to
subscribe to more complex events and event patterns
using a rich subscription language.

Besides UDDI and ebXML, there are other standards
for describing service metadata [8]. Some of them are
used by semantic Web service approaches [30] (such as
OWL-S [31], WSML [32] and SAWSDL [33]). It should
be noted, however, that the VRESCO service metadata
model introduced in Section 3.2 is not intended to
compete with these approaches. We aim at enterprise
development where metadata is an important business
asset which should not be accessible for everyone, as
opposed to the semantic Web service community where
domain ontologies should be public to facilitate integra-
tion among different providers and consumers.

In general, several standards and research approaches
have emerged that address the complexities of managing
and deploying Web services [34]. In these approaches,
service querying and selection play a crucial role, espe-
cially regarding service composition (e.g., [10], [35], [16]).
However, the query models of current registries and Web
service search engines [36] mainly focus on keyword-
based matching of service properties which often do not
cover the rich semantics of service metadata.

13

Challenge UDDI ebXML Mule WSO2 WebSphere VRESCO

Service Metadata Unstructured + + + + + ∼
Structured ∼ ∼ ∼ ∼ + +

Service Querying Query Language/API + + + ∼ + +
Type-safe Query – – – – ∼ +

Quality of Service Explicit QoS Support – – – ∼ ∼ +
QoS Monitoring – – – – – +

Dynamic Service Invocation Binding & Invocation – – + – ∼ +
Service Mediation – – + + + +

Service Versioning Metadata Versioning – + + ∼ ∼ –
End-to-End Support – – – – – +

Event Processing Basic Notifications + + + ∼ + +
Complex Event Processing – – – – ∼ +

TABLE 6: Related Enterprise Registry Approaches

Yu and Bouguettaya [37] introduce a Web service
query algebra and optimization framework. This frame-
work is based on a formal model using service and oper-
ation graphs that define a high-level abstraction of Web
services, and also includes a QoS model. Service queries
are specified as algebraic operators on functionality,
quality and composition of services, and finally result
in service execution plans. Optimization techniques are
then applied to select the best service execution plan
according to user-defined QoS properties. This work
is complementary to ours: while the authors focus on
their formal service model and introduce a query alge-
bra for this model, we present a service runtime that
provides end-to-end support for service management
and querying functionality. Furthermore, we address
dynamic binding and service mediation since service
interfaces of different service providers are not always
identical in practice. Dynamic binding of services has
been addressed by other approaches (e.g., [38], [39]).

Pautasso and Alonso [38] discuss various binding
models for services, together with different points in
time when bindings are evaluated. They present a flexi-
ble binding model in the JOpera system where binding
is done using reflection and does not require a specific
language construct. Di Penta et al. [39] present the WS-
Binder framework for enabling dynamic binding within
WS-BPEL processes. Their approach uses proxies to sep-
arate abstract services from concrete service instances.
Both approaches have in common that they rather focus
on dynamic binding with respect to composition envi-
ronments whereas VRESCO addresses binding at the
core SOA level.

6 CONCLUSION

One of the main promises of SOC is the provisioning of
loosely-coupled applications based on the publish-find-
bind-execute cycle. In practice, however, these promises
can often not be kept due to the lack of expressive ser-
vice metadata and type-safe querying facilities, explicit
support for QoS, as well as support for dynamic binding
and mediation. In this paper, we have proposed the QoS-
aware VRESCO runtime environment which has been
designed with these requirements in mind. VRESCO
offers an extensive structured metadata model and VQL
as type-safe query language. Furthermore, we provide

dynamic binding and mediation mechanisms that use
pre-defined service mappings. We have evaluated our
work regarding performance and discussed the results
together with the experience gained in the CPO case
study. The results show that the VRESCO runtime is ap-
plicable to large-scale adaptive service-centric systems.

As part of our ongoing and future work we want to
link the VRESCO eventing [12] and composition [16]
mechanisms. Furthermore, we envision to integrate SLA
enforcement capabilities on top of VRESCO.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agree-
ment 215483 (S-Cube). Additionally, we would like to
thank Lukasz Juszczyk for providing the Web service
testbed GENESIS, and our master students Andreas Hu-
ber and Thomas Laner for their contribution to VRESCO.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38–45, 2007.

[2] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson, Web Services Platform Architecture : SOAP, WSDL, WS-
Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Prentice Hall PTR, 2005.

[3] SOAP Version 1.2, World Wide Web Consortium (W3C), 2003, http:
//www.w3.org/TR/soap/.

[4] Web Services Description Language (WSDL) 1.1, World Wide Web
Consortium (W3C), 2001, http://www.w3.org/TR/wsdl.

[5] Universal Description, Discovery and Integration (UDDI), Organiza-
tion for the Advancement of Structured Information Standards
(OASIS), 2005, http://oasis-open.org/committees/uddi-spec/.

[6] ebXML Registry Services and Protocols, Organization for the Ad-
vancement of Structured Information Standards (OASIS), 2005,
http://oasis-open.org/committees/regrep.

[7] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards Recovering the Broken SOA Triangle – A Software
Engineering Perspective,” in Proceedings of the 2nd International
Workshop on Service Oriented Software Engineering (IW-SOSWE’07),
co-located with ESEC/FSE’07. ACM, 2007.

[8] D. Bodoff, M. Ben-Menachem, and P. C. Hung, “Web Meta-
data Standards: Observations and Prescriptions,” IEEE Software,
vol. 22, no. 1, pp. 78–85, 2005.

[9] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans-
actions on the Web, vol. 1, no. 6, p. 6, 2007.

[10] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-Aware Middleware for Web Services Composi-
tion,” IEEE Transactions on Software Engineering, vol. 30, no. 5, pp.
311–327, May 2004.

14

[11] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
End Versioning Support for Web Services,” in Proceedings of the
International Conference on Services Computing (SCC 2008). IEEE
Computer Society, 2008.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Ad-
vanced Event Processing and Notifications in Service Runtime
Environments,” in Proceedings of the 2nd International Conference
on Distributed Event-Based Systems (DEBS’08). ACM, 2008.

[13] ——, “Service Provenance in QoS-Aware Web Service Runtimes,”
in Proceedings of the 7th International Conference on Web Services
(ICWS’09). IEEE Computer Society, 2009.

[14] P. Leitner, F. Rosenberg, and S. Dustdar, “Daios – Efficient Dy-
namic Web Service Invocation,” IEEE Internet Computing, vol. 13,
no. 3, pp. 30–38, 2009.

[15] J. Löwy, Programming WCF Services. O’Reilly, 2007.
[16] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dust-

dar, “An End-to-End Approach for QoS-Aware Service Composi-
tion,” in Proceedings of the 13th International Enterprise Computing
Conference (EDOC’09). IEEE Computer Society, 2009.

[17] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar, “Inte-
grated Metadata Support for Web Service Runtimes,” in Proceed-
ings of the Middleware for Web Services Workshop (MWS’08), co-
located with EDOC’08. IEEE Computer Society, 2008.

[18] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Perfor-
mance and Dependability Attributes of Web Services,” in Proceed-
ings of the IEEE International Conference on Web Services (ICWS’06).
IEEE Computer Society, 2006.

[19] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[20] Hibernate Reference Documentation v3.3.1, Red Hat, Inc., 2008, http:
//www.hibernate.org/.

[21] J. Liberty and D. Xie, Programming C# 3.0. O’Reilly Media, Inc.,
2007.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[23] P. Leitner, A. Michlmayr, and S. Dustdar, “Towards Flexible Inter-
face Mediation for Dynamic Service Invocations,” in Proceedings of
the 3rd Workshop on Emerging Web Services Technology (WEWST’08),
co-located with ECOWS’08, 2008.

[24] O. Shilo, “CS-Script – The C# Script Engine,” 2009, http://www.
csscript.net/.

[25] L. Juszczyk, H.-L. Truong, and S. Dustdar, “GENESIS - A Frame-
work for Automatic Generation and Steering of Testbeds of
Complex Web Services,” in Proceedings of the 13th IEEE Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS’08). IEEE Computer Society, 2008.

[26] Mule Galaxy, v1.5.1, MuleSoft, Inc., Nov. 2009, http://www.
mulesoft.org/display/GALAXY/Home.

[27] WSO2 Registry, v2.0, WSO2, Inc., Feb. 2009, http://wso2.org/
projects/registry.

[28] WebSphere Service Registry and Repository, v6.2, IBM, Inc., Jul. 2008,
http://www.ibm.com/software/integration/wsrr.

[29] R. Sayre, “Atom: The Standard in Syndication,” IEEE Internet
Computing, vol. 9, no. 4, pp. 71–78, 2005.

[30] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, 2001.

[31] OWL-S: Semantic Markup for Web Services, World Wide Web Con-
sortium (W3C), 2004, http://www.w3.org/Submission/OWL-S/.

[32] Web Service Modeling Language (WSML), ESSI WSMO Working
Group, 2008, http://www.wsmo.org/wsml/wsml-syntax.

[33] Semantic Annotations for WSDL and XML Schema, World Wide Web
Consortium (W3C), 2007, http://www.w3.org/TR/sawsdl/.

[34] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
Managing Web Services: Issues, Solutions, and Directions,” The
VLDB Journal, vol. 17, no. 3, pp. 537–572, 2008.

[35] J. Harney and P. Doshi, “Selective Querying for Adapting Web
Service Compositions Using the Value of Changed Information,”
IEEE Transactions on Services Computing, vol. 1, no. 3, pp. 169–185,
2008.

[36] C. Platzer and S. Dustdar, “A Vector Space Search Engine for Web
Services,” in Proceedings of the 3rd European IEEE Conference on Web
Services (ECOWS’05). IEEE Computer Society, 2005.

[37] Q. Yu and A. Bouguettaya, “Framework for Web Service Query
Algebra and Optimization,” ACM Transactions on the Web (TWEB),
vol. 2, no. 1, pp. 1–35, 2008.

[38] C. Pautasso and G. Alonso, “Flexible Binding for Reusable Com-
position of Web Services,” in Proceedings of the 4th International
Workshop on Software Composition (SC’2005). Springer, 2005.

[39] M. D. Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo,
and E. D. Nitto, “WS Binder: A Framework to Enable Dynamic
Binding of Composite Web Services,” in Proceedings of the Interna-
tional Workshop on Service-oriented Software Engineering (SOSE’06).
ACM, 2006.

Anton Michlmayr received the MSc degree
in computer science from Vienna University
of Technology in 2005. He is currently a
PhD candidate and university assistant in the
Distributed Systems Group at Vienna Univer-
sity of Technology. His research interests in-
clude software architectures for distributed sys-
tems with an emphasis on distributed event-
based systems and service-oriented com-
puting. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/michlmayr.

Florian Rosenberg is currently a research sci-
entist at the CSIRO ICT Centre in Australia. He
received his PhD in June 2009 with a thesis on
”QoS-Aware Composition of Adaptive Service-
Oriented Systems” while working as a research
assistant at the Distributed Systems Group, Vi-
enna University of Technology. His general re-
search interests include service-oriented com-
puting and software engineering. He is partic-
ularly interested in all aspects related to QoS-
aware service composition and adaptation. More

information can be found at http://www.florianrosenberg.com.

Philipp Leitner has a BSc and MSc in busi-
ness informatics from Vienna University of Tech-
nology. He is currently a PhD candidate and
university assistant at the Distributed Systems
Group at the same university. Philipp’s research
is focused on middleware for distributed sys-
tems, especially for SOAP-based and RESTful
Web services. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/leitner.

Schahram Dustdar is Full Professor of Com-
puter Science with a focus on Internet Technolo-
gies heading the Distributed Systems Group,
Vienna University of Technology (TU Wien). He
is also Honorary Professor of Information Sys-
tems at the Department of Computing Science at
the University of Groningen (RuG), The Nether-
lands. Since 2009 he is an ACM Distinguished
Scientist. More information can be found at
http://www.infosys.tuwien.ac.at/Staff/sd.

1

Cost-Based Optimization of Service
Compositions

Philipp Leitner Member, IEEE, and Waldemar Hummer Member, IEEE, and Schahram Dustdar Senior
Member, IEEE

Abstract—For providers of composite services, preventing cases of SLA violations is crucial. Previous work has established runtime
adaptation of compositions as a promising tool to achieve SLA conformance. However, in order to get a realistic and complete view of
the decision process of service providers, the costs of adaptation need to be taken into account. In this paper, we formalize the problem
of finding the optimal set of adaptations, which minimizes the total costs arising from SLA violations and the adaptations to prevent
them. We present possible algorithms to solve this complex optimization problem, and detail an end-to-end system based on our earlier
work on the PREvent (prediction and prevention based on event monitoring) framework, which clearly indicates the usefulness of our
model. We discuss experimental results that show how the application of our approach leads to reduced costs for the service provider,
and explain the circumstances in which different algorithms lead to more or less satisfactory results.

Index Terms—Service Composition, Service Level Agreements, Adaptation, Optimization

F

1 INTRODUCTION
Service-based applications have seen tremendous re-
search activity in the last years, with many important
results being generated around the world [1]. This global
interest is justified by the ever increasing services indus-
try, which is still only starting to explore the potential
that new paradigms like Everything-as-a-Service (XaaS)
or Cloud Computing provide [2]. However, to fully
realize this potential, research and industry alike need
to focus more strongly on non-functional properties and
quality issue of services (generally referred to as QoS). In
the business world, QoS promises are typically defined
within legally binding Service Level Agreements (SLAs)
between clients and service providers, represented, e.g.,
using WSLA [3]. SLAs contain Service Level Objectives
(SLOs), i.e., concrete numerical QoS objectives, which
the service needs to fulfill. If SLOs are violated, agreed
upon monetary consequences go into effect. For this
reason, providers generally have a strong interest in
monitoring SLAs and preventing violations, either by
using post mortem analysis and optimization [4], [5], or
by runtime prediction of performance problems [6], [7].
We argue that the latter is more powerful, allowing to
prevent violations before they have happened by timely
application of runtime adaptation actions [8]–[10].

However, preventing SLA violations is, in general,
not for free. For instance, some alternative services
usable in a composition may provide faster response
times (thereby improving the end-to-end runtime of
the composite service, and reducing the probability of
violating runtime related SLOs), but those services are
often more expensive than slower ones. Therefore, there

• Philipp Leitner, Waldemar Hummer and Schahram Dustdar are with the
Distributed Systems Group, Vienna Univ. of Technology, Argentinier-
strasse 8, 1040 Vienna, Austria. E-mail: {lastname}@infosys.tuwien.ac.at

is an apparent tradeoff between preventing SLA vio-
lations and the inherent costs of doing so. We argue
that this tradeoff is currently not covered sufficiently in
research. Instead, researchers assume that the ultimate
goal of service providers is to minimize SLA violations,
completely ignoring the often significant costs of doing
so (e.g., [9], [10]).

In this paper, we contribute to the state of the art by
formalizing this tradeoff as an optimization problem,
with the goal of minimizing the total costs (of viola-
tions and applied adaptations) for the service provider.
We argue that this formulation better captures the real
goals of service providers. Additionally, we present
possible algorithms to solve this optimization problem
efficiently enough to be applied at composition run-
time. We evaluate these algorithms within our PREVENT
(prediction and prevention based on event monitoring)
framework [8].

The remainder of this paper is structured as follows.
In Section 2, we motivate our work and present an
illustrative example, which will guide us through the
rest of the paper. Following in Section 3, we present
our earlier work on prevention of SLA violations. In
Section 4, we formalize the problem of cost-based op-
timization of service compositions. We explain possible
algorithms to solve this problem efficiently in Section 5,
which are experimentally evaluated in Section 6. Finally,
we compare our work with the most important related
scientific approaches in Section 7, and conclude the
paper in Section 8.

2 MOTIVATION

In this paper, we use the scenario depicted in Figure 1
(in BPMN [11] notation) to motivate and explain our
approach.

2

A
ss

em
bl

in
g

Sc
en

ar
io

As
se

m
bl

y
Se

rv
ic

e
C

us
to

m
er

Place
RFQ

Receive
RFQ

Plan
Assembling

Check
Availability of

Parts

Send
Offer

Receive
Offer

Order
Unavailable Parts

Schedule
Assembling

Ship

Create
Final Bill

Charge
Customer
Account

Send
Invoice

Generate
Offer

Receive Product Receive Invoice
Decide
on Offer

Place
Order

Receive
Order

Product
Assembled

Wait for
Finished

Assembling

Wait for
Parts

Cancel
Order

Cancel
Order

Quality
Control

Fig. 1: Motivating Scenario

This scenario considers the case of a manufacturer of
industry products. These products are constructed on-
demand by assembling various parts, some of which
can be produced in-house by the manufacturer, while
others need to be ordered from external suppliers. The
manufacturing process depicted in Figure 1 consists of
two segments: firstly, the customer sends a request for
quotation (RFQ), which the manufacturer responds to
with an offer (consisting of estimated price and delivery
time for the finished product), secondly, the customer
can then order this product to the offered conditions.
For reasons of brevity we concentrate on the two roles
“Customer” and “Assembly Service” in the figure, even
though the manufacturer interacts with many different
external partners (e.g., suppliers of parts, shippers, credit
card companies) to implement the described functional-
ity. Since the manufacturer’s business is based entirely
on a service-based notion, the manufacturing process is
implemented as a service composition, i.e., activities in
the process are mapped to one or more invocations of
(Web) services.

SLO Name Description

1 Time to Offer Time between receiving the RFQ and
responding with an offer (in working
days).

2 Order Fulfillment Time Time between receiving the order and
finishing the process (in working days).

3 Process Lead Time Time between initializing the process and
finishing it (excluding activities at cus-
tomer side) in working days.

4 Cost Compliance Cost overrun with regard to the offer in
% of the offer.

5 Product as Specified Product is exactly as specified.

TABLE 1: Service Level Objectives

With its key customers, the manufacturer has some
established service level agreements. We provide a list
of typical SLOs in Table 1. Note that these objectives can
be of quantitative (SLOs #1 to #4) or of qualitative (SLO
#5) nature.

All SLOs have some target values and penalties for

Target Value Costs of Violation

1 <= 2 Implicit costs - customer will choose a different
manufacturer if offer is not received in time.

2 <= 5 Manufacturer grants 5% discount per 1 day delay,
20% max discount, not additive with SLO#3.

3 <= 6 Manufacturer grants 5% discount per 1 day delay,
20% max discount, not additive with SLO#2.

4 <= 5 Manufacturer cannot charge more than the offer
plus 5%.

5 n/a If wrong product is delivered, manufacturer needs
to produce and ship the specified product within
7 working days and grant a 5% discount.

TABLE 2: Target Values and Penalties

violating these targets associated (see Table 2). Therefore,
the manufacturer has a strong interest in complying to
these SLOs, as long as the costs of doing so do not exceed
the benefit. The manufacturer may apply a number of
runtime adaptations to the process. We sketch some ex-
ample adaptation actions in Table 3. The columns + and
- refer to SLOs in Table 1, and indicate that the respective
action has a positive (+) or negative (-) impact on this
SLO. Note that these actions and impacts are just of ex-
amplatory nature, that is, while for some business cases
outsourcing may reduce costs and increase the process
duration (and error rate), this does not necessarily hold
for all processes. Additionally, applying these actions
generally also has some associated costs, which need to
be taken into account (for instance, express shipping is
more expensive than regular shipping). As we can see,
for the manufacturer there is a tradeoff between the three
dimensions duration, costs and quality, which is well-
known in many fields of engineering.

Since the manufacturer business process is imple-
mented as a service composition, applying these adap-
tations essentially boils down to adapting the service
compositon. This can be done by either adapting the
data flow of the composition (e.g., to use a different
shipping option), by invoking different base services, or
by changing the structure of the composition itself. In

3

Adaptation Action + -

1 Use faster shipper or faster shipping option,
e.g., express shipping.

#2, #3 #4

2 Order more parts instead of producing them
in-house.

#2, #3 #4

3 Generate offer with higher priority. #1, #3 -

4 Outsource assembling and quality control. #4 #2, #3, #5

5 Skip quality assurance or do it less thor-
oughly.

#2, #3, #4 #5

6 Add an additional quality assurance step. #5 #2, #3, #4

TABLE 3: Possible Adaptation Actions

our previous work we have already shown how such
adaptations can technically be applied [8], [9]. However,
in these previous papers, the question of how the service
provider can actually select these actions has not been
discussed. Selecting the cost-optimal set of adaptations
to prevent predicted violations results in an optimization
problem, i.e., minimizing the total costs of all SLA
violations plus all costs arising from the adaptation.
This problem needs to be solved very efficiently, as the
optimization has to be repeated at runtime for every
composition instance that is predicted to violate one or
more SLOs. Discussing this optimization problem is the
main contribution of this paper.

3 BACKGROUND

In order to provide some background information for
this paper, we now present the PREVENT framework,
which forms the basis for the research discussed here.
Generally, PREVENT is a closed loop system [12] for self-
optimizing service compositions. PREVENT is based on
the existing SOA runtime environment VRESCO [13].
As we have sketched in Figure 2, the PREVENT frame-
work consists of the seminal steps “monitor”, “analyze”,
“plan” and “execute”, as defined in the vision of au-
tonomic computing [14]. We have previously presented
our initial version of the PREVENT framework in [8].

Monitor

Service
Composition

Generate
Predictions

Cost-Based
Optimizer

SLA
Database

Adaptation
Executor

Violation
Predictor

Composition
Monitor

Trigger
Optimization

Trigger
Adaptation

Apply
Adaptation

Adaptation
Actions

Database

SLO Prediction
Database

Monitoring
Database

Fig. 2: Overall Framework

Generally, the idea of PREVENT is to use event-based
monitoring of composition data to generate runtime pre-

dictions of SLA violations before they have happened.
Based on these predicted violations, adaptation actions
are triggered with the goal of preventing the violation.
In this paper we focus on the implementation of the
Cost-Based Optimizer component in Figure 2, which we
have not discussed so far in our earlier work. For every
composition instance, this component receives estima-
tions of concrete SLO values from the Violation Predictor
component, and decides (based on these estimations as
well as on knowledge of standing SLAs and available
adaptation actions), which adaptations should be ap-
plied to a composition instance. In the following, we
refer to this decision procedure as cost-based optimization.
We use the term optimization time as the point in time
during a composition instance’s execution at which cost-
based optimization happens. The interested reader may
download our current version of the PREVENT proto-
type1.

3.1 Prediction of SLOs
Generally, the PREVENT approach to prediction of SLA
violations is based on the idea of predicting concrete
SLO values based on monitoring data. We distinguish
three different types of information. Facts represent data
which can already be measured at optimization time.
Unknowns are the opposites of facts. They represent data
which is entirely unknown at optimization time. Evi-
dently, unknown data cannot be used in the prediction.
Estimates are a kind of middle ground between facts and
unknowns, in that they represent data which is not yet
available, but can in some way be estimated. This is
often the case for QoS data, since techniques such as QoS
monitoring [15] can be used to get an idea of e.g., the
response time of a service before it is actually invoked.
The Violation Predictor uses both facts and estimates
from previously monitored historical service executions
to train a machine learning function (we use multi-layer
artificial neural networks [16] for quantitative SLOs and
C4.5 decision trees [17] for qualitative SLOs), which
can then be used to produce a numerical estimation
of the SLO values at runtime. More details about our
approach to prediction of SLOs can be found in our
earlier work [6].

We have sketched this machine learning based imple-
mentation of the SLO Predictor in Figure 3. One model
is trained per SLO that needs to be predicted (even
though the same model can be used if this SLO is used
in multiple customer SLAs), and every model is trained
from different data. Please see below for a discussion
of how to identify which data to use for each SLO.
Apparently, some historical executions of the service
composition are necessary to bootstrap the training. The
concrete amount of instances that are necessary depend
both on the expected quality of prediction (more his-
torical information in tendency improves the prediction
quality) and on the size and complexity of the service

1. http://sourceforge.net/projects/vresco/

4

23 ACME
S43 1 923 26

Number
Of_Parts

Product
To_Asse Quantity QoS_

Warehouse
QoS_

Supplier

27953

Predicted Process
Lead Time

Process Lead Time
Network

Violation Predictor

23 ACME
S43 1 Miami,

Florida

Number
Of_Parts

Product
To_Asse Quantity Customer

Address

142368

Predicted Costs

Cost Compliance
Network

Facts and Estimates Predicted SLO Values

Product Quality
Decision Tree

ACME
S43 1

Product
To_Asse QA Steps

False

Predicted Quality
Problem?

Fig. 3: Predicting SLOs Using Machine Learning

composition. This prediction approach cannot be used
while no historical information is available. If this is
the case, one could still use an alternative prediction
approach, which is not data-based, e.g., [18]. However,
a detailed discussion of this remains part of our future
work.

For understanding the remainder of the paper, it is im-
portant to keep in mind that the SLO Predictor essentially
implements a set of estimator functions, which can be
used for any partially known instance of the composition
(i.e., an instance, whose facts and estimates are partially
known, for instance a half-finished instance) to generate
an estimation of the SLO value when the instance is
finished. We will use these estimator functions in our
modelling in Section 4.

3.2 Identification of Factors of Influence
As input to the machine learning based SLO Predictor ap-
proach, we need to identify the most significant metrics
that influence the SLO compliance of the composition.
We refer to these metrics as the factors of influence of
the service composition. Factors of influence are rarely
obvious, even to domain experts. Hence, we have de-
vised a process called dependency analysis, which can be
used by business analysts to identify factors of influence.
We summarize this process here, to the extent that is
necessary for understanding the core contribution of the
current paper.

Generate List
of Metrics Monitor Metrics

Create
Dependency

Tree

Evaluate
Predictor

Performance

Additional
Metrics

Necessary?

Define
Additional

Metrics

[Yes] [No]

Fig. 4: Schematic Dependency Analysis Process

Dependency analysis is a semi-automated process. We
rely on the domain knownledge of a human business
analyst, but support her with automation and knowl-
edge discovery tools to ease repetetive tasks. The high-
level process is sketched in Figure 4. As a first step, the

business analyst needs to define an (initial) list of po-
tential factors of influence. These include both domain-
specific metrics, which need to be defined manually,
and typical QoS metrics, which can be automatically
generated (e.g., for every used service we generate re-
sponse time and availability metrics). For every potential
factor of influence, a monitor is defined or generated,
which specifies how this metric can be measured from
a running instance. Secondly, a data set containing these
factors needs to be generated, either by simulating the
composition in a Web service test environment (e.g.,
Genesis2 [19]) or by monitoring real executions with
monitoring of all potential factors of influence enabled.
Using this data set, a dependency tree can be generated,
as discussed in [5]. The dependency tree is essentially
a decision tree, containing the factors that best explain
SLO violations in the composition. The third step is then
to use these factors to try and train a prediction model
from the identified factors of influence. If this prediction
model has a sufficiently high training data correlation
against the measured data set (i.e., if the predictions gen-
erated with the predictor are highly correlated with the
actual measured values), we can accept these factors and
influence and use them in the SLO Predictor for the SLO.
If the correlation is not sufficient, the business analyst
needs to identify the reason for the lacking performance.
Generally, the analyst will define additional potential
factors of influence, and repeat from the second step.

3.3 Adaptation Actions

The PREVENT Adaptation Executor can execute a range of
different adaptations of service composition instances.
Generally, we distinguish three types of adaptations:
data manipulation, service rebinding and structural
adaptation. Data manipulation actions represent the
most simple type of adaptation, where the composition
is in fact not changed. Instead, the data flow of the
composition instance is intercepted and some datum
is changed (e.g., the priority parameter of the service
invoked as part of the “ship” activity is changed to
“high priority”). Service rebinding represents the com-
mon case where a different service is used to implement
an activity in the composition, e.g., a faster shipping
service is used in the activity “ship”. For this type of
adaptation, we differentiate between three types, one-to-
one service rebinding without interface mediation (the
original and the new service have identical interfaces),
one-to-one service rebinding with interface mediation
(the services have different interfaces, but the same
number of service invocations is needed to achieve the
required functionality), and substitution with subflow
(the original service invocation is not only replaced with
another single service invocation, but with a whole sub-
composition). This adaptation is similar to the another
type of adaptation, structural adaptation. In this case
not only the data or service bindings of a composition
change, but the logical structure of the composition itself.

5

This includes simpler cases like removing activities in
an instance (e.g., skip the “quality control” activity) and
more complex adaptations, where an entire subtree of
the composition definition is replaced (e.g., outsource
the assembling process to an external provider). Please
refer to our earlier publications [8], [9] for details on
how these actions are implemented. Most important for
the remainder of this paper is to know how adaptation
actions are defined in the PREVENT framework. We have
sketched this in Figure 5.

ACTION use_faster_shipper

IMPACT MODEL

Estimated
Shipping Time

Time
[2 Days]

ACTIONS

ACTION DEFINITION

CONSTRAINTS AND ORDERING

CONFLICTS_WITH use_fastest_shipper
REQUIRES_BEFORE assign_fast_shipper

.........

ADAPTATION COSTS

1567

REBINDING
WITHOUT MEDIATION

Ship [Faster Shipping
Service]

Fig. 5: Definition of Adaptation Actions

We can define any number of adaptation actions,
which can be applied to an instance of the composi-
tion. Each of those definitions contains the description
of the actual action, which can be any of the action
types discussed above. In addition, the action definition
also contains the impact model of the action, a list
of constraints and ordering clauses, and the costs of
applying this action. We assume that every adaptation
action has a constant, non-negative cost. For example,
the cost of using a faster shipping service is the cost
of using the new service minus the costs of using the
original shipping service. The impact model contains a
set of impact clauses. Every impact clause represents the
concrete impact that applying this adaptation action has
on one concrete monitorable fact or estimate. Essentially,
therefore, the clauses model updates to the data used to
generate predictions (see Figure 3). Every adaptation ac-
tion can have any number of positive as well as negative
impacts on any fact or estimate. This impact value can
be determined in several ways: (1) based on measured
history data if the corresponding advice has already been
used before, for example, using data mining; (2) based
on SLAs with external providers, if such SLAs exist;
or (3) by using QoS aggregation techniques [20]. We
assume that the impact model specifies impact clauses
for all metrics which the advice affects. Of course, impact
clauses do not need to be exact (very often it will
realistically be impossible to statically define an exact
impact model before execution), however, more exact
impact models lead to better predictions of SLOs after
adaptation, which in turn leads to a better end-to-end
performance of the PREVENT system.

4 OPTIMIZATION PROBLEM FORMULATION

In this section we formalize the problem of selecting
the most cost-effective adaptation actions to prevent
one or more predicted SLA violations. We consider an
interaction of the service composition with a given client,
who has a given SLA with the composition provider.
Let I be the set of all possible composition instances of
this client, and let i ∈ I be concrete instances that we
can monitor using the PREVENT tooling. Furthermore,
let S = {s1, s2, . . . sk} be the set of SLOs defined in the
relevant SLA. As part of the SLO definition, a penalty
function is associated with all SLOs in S. Collectively, we
refer to these functions as P = {ps1, ps2, . . . psk}. Penalty
functions define the costs for the provider based on a
measured SLO value, i.e., they are functions defined as
ps : R → R, s ∈ S. Similarly, the measured value of an
SLO ms is a function ms : I → [0 : 1]. We normalize
SLO values to the interval [0 : 1] in order to make
them comparable. Putting it all together, we define the
penalty function for a given SLO s and instance i as
pis

def= ps(ms(i)). Penalty functions for SLOs can take
many different shapes. The most important ones are (1)
constant penalty (a constant payment needs to be made
if a certain SLO threshold value is surpassed), (2) staged
penalty (similar to a constant penalty, but with different
levels of penalty), (3) linear penalty (the penalty is lin-
early increasing with the degree of violation), and (4) lin-
ear penalty with cap (the penalty is linearly increasing up
to a maximum value). Even though these functions span
many different types of mathematical functions, they
share two essential characteristics. Firstly, SLA penalty
functions are always monotonically increasing, i.e., ∀ps ∈
P : ∀x1, x2 ∈ R : (x1 < x2) =⇒ (ps(x1) ≤ ps(x2)).
This is evident, since the penalty for a higher degree
of violation should never be smaller than the penalty
for a lesser violation. Secondly, SLO penalty functions
always have a point discontinuity in a special violation
threshold point (t1). Before (and including) t1 the penalty
is generally 0 (no violation has occured), and beyond this
point a positive penalty needs to be paid (∀s ∈ S : ∀x ∈
R : (x ≤ t1 ⇐⇒ ps(x) = 0) ∧ (x > t1 ⇐⇒ ps(x) > 0)).
This also means that penalty functions are generally
discontinuous. Furthermore, this property signifies that
there is no incentive for the service provider to apply
further adaptation and improve an SLO value below t1,
since all further improvements do not further reduce his
costs (they are already 0 for this SLO).

To prevent violations, we are able to apply a num-
ber of possible adaptations to an instance i. We define
A = {a1, a2, . . . al} as the set of all possible adaptation
actions, and A∗ ∈ P(A) (P(A) denotes the powerset of
A) as the subset of adaptation actions that are selected
to be applied. We assume that all adaptations have some
costs associated, defined as a cost function c : A→ R. We
assume that cost functions are constant, that is, we do not
consider cross-pricing models for services [21], which
would lead to non-constant costs of adaptation. Further-

6

more, adaptation actions, if applied, have some defined
impact on the composition instance i. Hence, we define
the transformation of i to a modified instance i′ using
the ◦ operator, defined as a function ◦ : I × P(A) → I .
This is captured by the impact model, which has to be
specified as part of the action definition (see Section 3).

Selecting the most cost-effective adaptation actions
means finding the adaptation actions (A∗) that minimize
the total costs for the service provider. The total costs
TC are defined in Equation 1 as the sum of the costs
of SLA violations after adaptation (V C) and the costs of
adaptation (AC).

TC : P(A)→ R, TC(A∗) = V C(i ◦A∗) +AC(A∗) (1)

AC is the sum of the costs of all applied adaptation
actions (Equation 2).

AC : P(A)→ R, AC(A∗) =
∑
ax∈A∗

c(ax) (2)

V C is defined as the sum of all penalty functions
applied to an instance (Equation 3).

V C : I → R, V C(i) =
∑
sx∈S

pisx (3)

Obviously, the goal of the service provider is to min-
imize TC. Hence, the optimization objective becomes
finding the A∗ that minimizes TC for a given instance i
(Equation 4).

TC(A∗) =
∑
sx∈S

pisx +
∑
ax∈A∗

c(ax)→ min! (4)

Note that we can easily calculate AC for any given
A∗, but at optimization time V C is unknown (we do
not know for sure which SLOs will be violated, with
or without adaptation). However, the SLO Predictor
provides estimations for SLOs based on instance data
(see Section 3). Hence, we assume that we have es-
timation functions es : I → R, s ∈ S available for
each SLO, which estimate the concrete penalty values
in advance with a reasonably small prediction error ε
(∀s ∈ S, i ∈ I : |es(i)− ps(i)| < ε). Replacing V C with its
prediction using es leads to Equation 5, which we can
solve.

TC(A∗) ≈
∑
sx∈S

eisx +
∑
ax∈A∗

c(ax)→ min! (5)

However, not all combinations of adaptation actions
are legal. Some adaptation actions are mutually ex-
clusive (e.g., use Shipping Service DHL and use
Shipping Service UPS), while others depend on
each other (see our earlier work [9] for details on de-
pendencies between adaptation actions). For simplicity,
we capture these additional constraints using a penalty
term v : P(A) → N. The definition of v is shown in
Equation 6.

v(A∗) =
{ ∞ A∗ contains constraint violation

0 otherwise (6)

By incorporating this penalty term we arrive at our
final target function (Equation 7).

TC(A∗) ≈ v(A∗) +
∑
sx∈S

eisx +
∑
ax∈A∗

c(ax)→ min! (7)

We have all necessary information to evaluate Equa-
tion 7 at optimization time for any set of actions A∗.
However, finding the A∗ that minimizes TC(A∗) is still
far from trivial, since Equation 7 is discrete and cannot
be optimized analytically. We present algorithms to find
a (near-)optimal solution in Section 5.

5 ALGORITHMS

We will now discuss different approaches for finding
solutions to this problem. These algorithms are imple-
mented in the Cost-Based Optimizer component. Opti-
mization is always triggered by a predicted violation of
at least one SLO, and receives as input a list of monitored
facts and estimates of the current instance.

5.1 Branch-and-Bound
Branch-and-Bound is a very general deterministic algo-
rithm for solving optimization problems. The high-level
idea of this approach is to enumerate the solution space
in a “smart” way, so that at least some sub-optimal so-
lutions can be identified and discarded prematurely, i.e.,
before they have been fully constructed and evaluated.
We use a binary encoding to represent solutions, i.e.,
every solution is represented as a binary vector, and an
adaptation action with index j is applied iff the solution
vector is 1 at index j. For example, the solution vector
00110100 encodes that the third, fourth and sixth adap-
tation action should be applied. Evidently, 2|A| different
solutions exist for each optimization problem, where |A|
is the number of possible adaptation actions (but not all
combinations need to be legal). For solutions that are
still being constructed we allow a third symbol, “∗”,
representing an action which is still undecided (alive).
We refer to solutions, which contain at least one alive
action, as partial, and solutions, which do not contain
any alive actions, as complete. Therefore, the vector
001101 ∗ 0 is a partial solution, where the last-but-one
action is alive.

We describe our general branch-and-bound algorithm
in Figure 6. The algorithm is easy to understand. What
is most important is the implementation of Line 13,
the rules for pruning the search tree (i.e., for prema-
turely discarding solutions). In our branch-and-bound
approach, we prune a partial solution in two cases:
(1) if the partial solution already contains at least one
conflict, or (2) if the partial solution already prevents
all SLA violations (the penalty function ps is 0 for all

7

� �
1 # name: bab
2 # i n p u t : p a r t i a l s o l u t i o n p ,
3 # next a l i v e a c t i o n index i ,
4 # t a r g e t funct ion v
5 # output : optimal complete s o l u t i o n
6

7 bab (p , i) :
8 # recurs ion break condi t ion
9 i f (p i s complete s o l u t i o n)

10 re turn p
11

12 # check i f t h i s sub−t r e e can be pruned
13 i f (p i s pruneable)
14 f o r a l l a l i v e a c t i o n s (p) as j
15 s e t p (j) = 0
16 re turn p
17

18 # i n v e s t i g a t e s o l u t i o n sub−t r e e with p (i) =0
19 s e t p (i) = 0
20 s1 = bab (p , i +1)
21

22 # i n v e s t i g a t e s o l u t i o n sub−t r e e with p (i) =1
23 s e t p (i) = 1
24 s2 = bab (p , i +1)
25

26 # return b e t t e r s o l u t i o n from both subtrees
27 i f (v (s1) <= v (s2))
28 re turn s1
29 e l s e
30 re turn s2� �

Fig. 6: Branch-and-Bound Algorithm

s ∈ S) without applying any more actions. Case (1) is
trivial, since the target function value for all solutions
in such a sub-tree will always be ∞. Case (2) lends
itself to more discussion. Remember the assumption that
every action has non-negative costs, and that we de-
scribed SLA penalty functions as non-negative functions.
Therefore, we can assure that for any solution where
all penalty functions are 0, the additional application
of more actions can never improve the target function
value. Hence these partial solutions cannot be improved
by applying more actions, and the remaining solution
sub-tree can be pruned.

In Listing 6, we simply iterated over all actions in
the order they appeared in the solution vector (in every
step, we always just investigate the next action, see
Lines 18 and 22). In general, this approach is subop-
timal. Even though the order in which we investigate
actions has no impact on the quality of our solution
(the algorithm is deterministic, i.e., we will always find
the global optimum eventually), the order may have
an impact on the number of solutions we are able
to prune. This is illustrated in Figure 7. Assume the
following simple scenario: there is only one SLO, and
3 possible adaptations. Only adaptation 3 is able to
prevent the violation of the SLO. Actions 1 and 2 have
costs but no relevant influence. There are no conflicts
between actions. Hence, the optimal solution vector is
001. In Figure 7(a), we strictly followed the algorithm in
Listing 6 and investigated the actions in the order they
appear in the solution vector. Since the only “useful”
action is investigated last, we extend the whole solution
tree without any pruning (the worst case, equivalent to
full enumeration). Now, in Figure 7(b), we investigate

the actions in reverse order (from back to front). Now,
the “useful” action is investigated first, and a large part
of this solution tree can be pruned according to pruning
case (2).

* * *
0 * *

0 0 * 0 1 *

0 0 0 0 0 1 0 1 0 0 1 1

1 * *

1 0 * 1 1 *

1 0 0 1 0 1 1 1 0 1 1 1

(a)

* * *
* * 0

* 0 0 * 1 0

0 0 0 1 0 0 0 1 0 1 1 0

* * 1

(b)

0 0 1

X

Fig. 7: Pruning of Solution Trees

Therefore, we can conclude that it is beneficial to
investigate actions in a specific order that maximizes the
number of solutions that can be pruned. We specify two
possible criteria for this ordering: (1) the impact of an
action on the SLOs (actions with higher total impact
should be investigated first), and (2) the utility of an
action (actions with higher utility should be investigated
first). We will now define those two orderings.

Based on the set of historical process instances that
we have already used to train the Violation Predictors,
we can calculate an estimation of impact and utility of
each action as follows. We define the set of available
historical process instances as H = {h1, h2, . . . hq}, with
H ⊆ I . We refer to the number of historical instances as
q = |H|. Now, we are able to calculate an estimation
of the overall impact of an adaptation action a on a
SLO s as ∆a,s (Equation 8). Simply put, the impact
is the arithmetic mean of the difference between SLO
value with and without applying the adaptation to each
historical instance.

∆a,s =
∑
h∈H

ms(h)−ms(h ◦ {a})
q

(8)

Note that we have already defined in Section 4 that
SLA penalty functions are monotonically increasing.
Hence, higher impact values are generally good. How-
ever, the impact value may also be negative (i.e., ms(h) <
ms(h◦{a})). In this case this action has a negative impact
on one of the SLOs, which is reasonble and realistic. For
instance, an adaptation which reduces the process lead
time can very well have a negative impact on the SLO
cost compliance. Based on ∆a,s, we can now define the
total impact of each action as the sum of its impact on all
SLOs. Furthermore, we can define the utility of an action
as its total impact devided by its costs. Now, we are able
to improve the branch-and-bound algorithm trivially:
instead of investigating the actions in the order they
are specified in the solution vector, we now investigate
them either in the order of their impact ∆a (impact-
based sorting), or in order of their utility ua (utility-based
sorting). We will evaluate and discuss both alternatives
in Section 6, and compare them to Branch-and-Bound
with randomly ordered actions.

8

5.2 Local Search

While the Branch-and-Bound algorithm discussed above
has the advantage of always finding the optimal set
of actions for any composition instance, the execution
time of the algorithm increases exponentially with the
number of available actions. Even though we can reduce
the runtime using impact- or utility-based sorting of
actions, the complexity still remains exponential. Hence,
there is an evident need to find strong heuristics, i.e.,
non-deterministic algorithms that find “good” (even if
not necessarily optimal) solutions in polynomial time.

A simple heuristic that is often used to very good
ends is Local Search. Local Search is a metaheuristic,
i.e., final solutions are constructed by iteratively improv-
ing a start solution. The general idea is that in each
iteration the algorithm searches a specified neighborhood
for better solutions than the current one. If at least
one such solution is found, the algorithm progresses
to the next iteration with one of the better solutions
(typically the best one in the neighborhood, equivalent
to steepest descent). If no better solution can be found in
the neighborhood, the algorithm has converged to a local
optimum and is terminated. Usually, this algorithm is
repeated multiple times with different starting solutions
(since different starting solutions can lead to different
local optima). This kind of algorithm typically depends
on the definition of (1) a suitable neighborhood and (2)
a senseful selection of starting solutions. We use the
following neighborhood definition: a complete solution
vector is in the neighborhood of an original solution if
the two solutions represented as binary vectors have a
Hamming distance of 1, i.e., if they differ in exactly one
bit.� �

1 # name: g r a s p i n i t
2 # i n p u t : number of s t a r t s o l u t i o n s n ,
3 RCS max s i z e r
4 # output : s e t of s t a r t s o l u t i o n s
5

6 g r a s p i n i t (n , r) :
7 G = {} // empty s e t of s t a r t s o l u t i o n s
8 repeat n t i m e s :
9 pa = empty par t ia l so lu t ion

10 while (VC(pa) > 0) :
11 r c s = c o n s t r u c t r c s (pa , r)
12 i f (empty (r c s))
13 break
14 a = random (r c s)
15 pa (a) = 1
16 add (G, pa)
17 re turn G� �

Fig. 8: GRASP Construction Heuristic

For selecting the start solutions, we use two different
approaches. The first and primitive one is to select n start
solutions with m bits set to 1 at random. Alternatively,
we propose to use an algorithm commonly referred
to as GRASP [22] (greedy randomized adaptive search
procedure). GRASP is essentially a variation of local
search, in which the start solutions are constructed using
a greedy heuristic. The idea is that GRASP can converge

to a better solution than a simple local search because
the start solutions are already better than random start
solutions. However, some attention needs to be paid
to using a greedy construction heuristic that actually
generates start solutions, which are both of reasonable
quality and at the same time widely spread over the
search space.

We have sketched the construction heuristic that we
have used in our implementation of GRASP in Figure 8.
Summarizing, the algorithm constructs n solutions by
stepwise addition of actions selected randomly from a
restricted candidate set (RCS). The heuristic is based
on similar concepts that we have already used in our
discussion of Branch-and-Bound: the idea is to stop
adding actions if either no more SLOs are violated or
no senseful actions are available anymore (the RCS is
empty), and to prefer adding actions which have a high
utility value (ua). Hence, in every step the RCS consists
of the r (maximum size of the RCS) actions with highest
non-negative ua, which have not yet been added and
which do not lead to a conflict.

5.3 Genetic Algorithm

As an alternative to locality-based heuristics (local
search, GRASP) we also present a solution based on the
concept of evolutionary computation. More precisely, we
use genetic algorithms [23] (GA) as a more complex,
but potentially also more powerful heuristic to generate
good solutions to the cost-based optimization problem.
The overall idea of GA is to mimic the processes of
evolution in biology, specifically natural selection of the
fittest individuals, crossover, and mutation. Therefore,
in GA, we rather work on a population of solutions
instead of a single one. We use the term “fit” to describe
solutions with a good (low) target function value. Firstly,
we generate a random start population. For this, we use
the same primitive construction scheme as discusssed
above for local search: we randomly apply m actions in
every solution. Every following iteration of the algorithm
(referred to as generations) essentially follows a three-
step pattern.

Firstly, we select a set of solutions from the population
to “survive” into the next generation. In our genetic
algorithm implementation, the fittest solution (i.e., the
one with the lowest target function value) is selected de-
terministically (elitism), while all remaining slots in the
next generation population are selected using a process
called tournament selection. In tournament selection, t
random solutions from the last generation are put into
a tournament. The fittest solution of the tournament
is selected into the next generation. The parameter t
steers the selection pressure: low t increases the time that
the population takes to converge against a solution, but
high t increases the danger of converging against a local
optimum instead of the global one.

Secondly, crossover is used to produce new solutions
based on the selected ones from the last generation.

9

The main challenge of implementing a strong crossover
mechanism is to ensure that the crossover product of
two fit solutions is also likely to be fit. Given the binary
vector representation we use to encode solutions, we can
make use of a simple one-point crossover scheme. We
choose a random crossover point cp from [1 : |A|−1]. To
construct a new child, we copy the binary vector of the
first solution from the start until cp, and the vector of
the second solution from cp+ 1 to the end of the vector.

This simple procedure ensures that characteristics of
both original solutions are preserved. However, because
of the random selection of cp, it is possible that the child
solution has a conflict, even if this was not the case for
any of the parents. In this case, we remove one of the
conflicting actions at random.

Thirdly, we use mutation to introduce entirely new
features into the population. The need for mutation can
be illustrated easily: assume that a given action a is not
applied in any solution in the population. Using one-
point crossover as discussed above it is not possible to
create any solution that uses a. Hence, we introduce
some additional randomization. After crossover, we may
randomly flip every bit in every solution in the pop-
ulation with a very small probability. This means that
most solutions in the population are not mutated, but
sometimes new actions are applied, which are not the
product of crossover.

Name Description Default
Population Size Number of solutions in

every generation
150

Selection Pressure Number of solutions to se-
lect for tournament selec-
tion

2

Crossover Probability Probability per solution
that crossover is applied

0.8

Mutation Probability Probability per bit that
mutation is applied

0.02

Break Condition Condition for stopping the
algorithm

No impr. in 20
iterations

TABLE 4: GA Configuration Parameters

GAs are notorious for having many parameters to fine-
tune the performance of the optimization. For illustra-
tive purposes, we have summarized the parametrization
options available in our implementation of GA in Ta-
ble 4, including some values that we found to provide
useful default parameters if applied to the cost-based
optimization problem. Evidently, further customization
would also be possible, for instance by using a different
selection or crossover scheme. Unless stated otherwise,
we will use the configuration described in Table 4 for
experimentation in Section 6.

Unfortunately, this “canonical” GA implementation
takes a significant amount of time to converge against
a solution, since the solution space is searched solely
through the (rather unguided and strongly randomized)
means of crossover and mutation. One possibility to
improve this aspect is to combine the canonical GA with
local optimization as presented above. This leads us to an
adapted algorithm, which we have sketched in Figure 9.

In literature, such combinations of GA and local search
are often referred to as Memetic Algorithms [24] (MA).

Selection

Crossover

Mutation

While break
condition

not fulfilled

Generate
Start

Population

Canonical GA

Selection

Crossover

Local
Optimization

While break
condition

not fulfilled

Generate
Start

Population

Memetic Algorithm

For each solution
in population

Fig. 9: Memetic Algorithm

The main changes of MA (as compared to GA) are
as follows. Firstly, a new Local Optimization operator is
introduced after crossover. Local optimization applies
the local search algorithm as discussed above to each
solution in the generation, basically reducing the pop-
ulation to a set of locally optimal solutions. Secondly,
we remove the mutation operator from the algorithm
(technically speaking, we set the mutation probability
parameter to 0). The main reason is that given that all
solutions in the population are already locally optimal,
randomly mutating one bit in a solution can only lead to
a worse solution. In theory it is possible that multiple bits
in a single solution are mutated at the same time, and
that these mutations lead to an improvement, but this
corner case is very unlikely in practice. Furthermore, the
main motivation for having mutation in the first place
was that it is the only way of introducing new actions in
the canonical GA. This is no longer the case, since local
search can do the same thing.

Generally, MA is slower than GA, since more solutions
are evaluated in each generation (evidently, MA executes
one local search for every solution in each generation).
However, the algorithm potentially converges against
a very good solution in a low number of generations.
Hence, we argue that in practice MA improves on the
canonical form most of the time for our problem. This
will be substantiated further in Section 6.

6 EXPERIMENTATION

In the following section, we will numerically validate the
algorithms discussed in Section 5 based on an implemen-
tation of the scenario presented in Section 2. For reasons
of brevity, we only summarize the experiment setup
here. More details can be found in the accompanying
experimentation web page2. In addition, we do not
explicitly evaluate the prediction quality (i.e., the SLO
Predictor component) here. The interested reader may
find a numerical evaluation of the prediction in [6], as
well as in [8].

2. http://www.infosys.tuwien.ac.at/prototype/VRESCo/
experimentation.html

10

We have implemented the scenario from Section 2 us-
ing .NET Windows Communication Foundation3 (WCF)
technology and the VRESCO SOA runtime environment
on a server running Windows Server Enterprise 2007,
Service Pack 2. The machine is equipped with 2 2.99GHz
Xeon X5450 processors and 32 GByte RAM. In order to
train PREVENT, we have initialized the system with a set
of 9796 historical composition instances. These instances
were created by executing the service composition re-
peatedly. In this historical data set, 3660 instances have
not been adapted, while one or more adaptation actions
have been applied in the remaining 6136 instances. In
our experiments, we consider the case of an SLA con-
taining up to five SLOs, similar to the previous example.
Note that we have used an integer value in [0 : 15]
to represent product quality in this example, in order
to allow for more fine-grained distinctions of different
levels of product faults. In Table 5 we have sketched
these SLOs and their basic statistics. µ is the mean value
of the SLO without adaptation. µ∗ is the mean among
instances to which some adaptation has been applied. σ
and σ∗ are the respective standard deviations. As before,
t1 is the violation threshold. Furthermore, SLO 1 is asso-
ciated with a staged penalty function with 9 stages, SLO
2 and 3 are both associated with fixed penalty functions,
SLO 4 is associated with a linear penalty function with
cap, and SLO 5 with a linear penalty function without
cap. Additionally, we have defined 49 adaptation actions
that have positive and negative influences on some or all
of these SLOs. Every action has been associated with a
positive cost value.

As a first experiment, we analyse the suitability of
different variants of the Branch-and-Bound algorithm.
As all of these algorithms are deterministic, we are
guaranteed to find the optimal solution to any opti-
mization problem eventually. However, the three differ-
ent versions of the algorithm (Branch-and-Bound with
random action sorting, with impact-based sorting, and
with utility-based sorting) may differ significantly with
regard to their runtime. As an independent measure of
algorithm runtime, we use the number of solutions that
have to be evaluated. All results concerning algorithms
with randomized elements are arithmetic means of 5
repeated runs.

SLO Name µ µ* σ σ∗ t1

1 Order Fulfillment Time 38811 35560 4708 6004 37000
2 Payment Time 4187 2202 28 1124 4150
3 Shipping Time 1285 864 144 347 1300
4 Product Quality 2.6 3 1.9 2.5 3
5 Cost Compliance 851 1149 212 521 1400

TABLE 5: Case Study SLOs

Figure 10 plots the number of solutions depending on
the number of adaptation actions that are available (up
to a maximum of 17 actions, note the logarithmic scale on
the y-axis). For reasons of comparison we also plot local

3. http://msdn.microsoft.com/en-us/library/ms735967(VS.90).aspx

search in the figure, whose runtime grows linearly with
the number of actions. It was not feasible to evaluate
Branch-and-Bound for more than 17 actions.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 11 12 13 14 15 16 17

S
o

lu
ti
o

n
s
 E

v
a

lu
a

te
d

Nr. of Actions

Full Enumeration
Branch and Bound (Unsorted)

Branch and Bound (Impact Sorting)
Branch and Bound (Utility Sorting)

Local Optimization

Fig. 10: Solutions Evaluated For Branch-and-Bound

As we can see, there is little difference between the
three variants of Branch-and-Bound, and none is able to
reduce the number of solutions that have to be evaluated
significantly below full enumeration. The reason for this
unsatisfying result is that, in this concrete optimization
instance, very little combinations of actions can prevent
the violation of all SLOs (the SLOs are conflicting), i.e.,
bounding condition 2 cannot be applied very often. We
can see that, by relaxing the problem and disabling
SLOs 4 and 5, a significant performance boost can be
achieved (Figure 11) by both impact-based and utility-
based sorting. The difference between impact-based and
utility-based sorting is not significant.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 11 12 13 14 15 16 17

S
o

lu
ti
o

n
s
 E

v
a

lu
a

te
d

Nr. of Actions

Full Enumeration
Branch and Bound (Unsorted)

Branch and Bound (Impact Sorting)
Branch and Bound (Utility Sorting)

Local Optimization

Fig. 11: Solutions Evaluated Without Conflicting SLOs

However, even though smart action sorting can reduce
the solution space if there are no conflicting SLOs, the
number of solutions that need to be evaluated still
grows exponentially with the number of available ac-
tions. Hence, solving the cost-based optimization prob-
lem deterministically is only possible for very small
problems. If the set of possible adaptations grows, we
need to fall back to heuristic optimization. For these
algorithms, there are no guarantees about the quality of
the solution. That means that we need to compare them

11

in two dimensions. Firstly, and similar to before, we need
to look at the number of solutions that are evaluated
before the algorithm produces the final result (Figure 12),
as a measure of the runtime of the algorithm. Secondly,
we also need to take into account the quality of the best
found solution (Figure 13).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 25 30 35 40 45

S
o

lu
ti
o

n
s
 E

v
a

lu
a

te
d

Nr. of Actions

Local Search
GRASP

Genetic Algorithm
Memetic Algorithm

Fig. 12: Solutions Evaluated Per Heuristic Algorithm

In Figure 12 we can see that, not surprisingly, all
algorithms scale much better than Branch-and-Bound
(note the linear scale on the y-axis and compare with Fig-
ure 11). GRASP is very efficient, and the fastest algorithm
in this experiment with an almost constant runtime. The
computation of local search is also reasonably efficient,
but the number of solutions that have to be evaluated
increases more strongly as compared to GRASP. This
is because for GRASP the start solutions are already
better, hence less local search steps are necessary before
a solution is reached. Note that the number of solutions
evaluated for local search is directly proportional to the
number of start solutions used. In this experiment we
used 25 start solutions. If we had used 50 start solutions
instead, the runtime of local search would have been
almost on the level of MA. GA also has a relatively
constant runtime, but on much higher level than GRASP.
The slowest algorithm in this experiment is MA, which
is due to its unique combination of local optimization
and genetic algorithm.

 3000

 3500

 4000

 4500

 5000

 5500

 25 30 35 40 45

T
C

 o
f

B
e

s
t

S
o

lu
ti
o

n

Nr. of Actions

Local Search
GRASP

Genetic Algorithm
Memetic Algorithm

Fig. 13: Quality of Solution Per Heuristic Algorithm

In Figure 13, the algorithms are compared with regard
to solution quality, measured as predicted total costs
(TC, as defined in Section 4) for the service provider.
We observe a quite clear ordering of algorithms in this
experiment. GRASP and MA generally perform best.
For most instances, MA is slightly better, even though
this is not true for all cases. GA comes in third, and
local optimization with random start solutions usually
produces solutions vastly inferior to all competitors.

Drawing conclusions from these experiments, we note
that Branch-and-Bound is applicable in situations where
just a small set of actions is available. In general, impact-
based or utility-based sorting should be used instead of
random sorting, since there is no evident disadvantage
to these approaches and they may be helpful if there are
no conflicting SLOs. We did not discover a significant
difference in the performance of these two variants. If
more actions are available, MA and specifically GRASP
are interesting candidate algorithms. GRASP produces
good solutions in very little time and can generally be
used even for short-running compositions where adap-
tation decisions need to be taken in a short time frame
(below 1 second). MA is very promising in case of long-
running compositions, where the time necessary to find a
solution is not critical. MA often produces slightly better
solutions than GRASP, but takes much more time to do
so.

In a second set of experiments, we now evaluate
the end-to-end effectiveness of PREVENT. That is, we
analyze if the system fullfills its main promise, prevent-
ing SLA violations and reducing the total costs for the
service provider. Hence, we execute 500 instances of
the scenario composition and monitor the actual total
costs and violations (after adaptation). We compare these
numbers with the number of violations and the total
costs that the PREVENT SLO Predictor can predict after
roughly half of the service composition is finished. We
assume that these predictions reflect the violations and
costs that we would end up with if we did nothing at
all. Since our case study is rather short-running, but uses
a relatively large set of adaptations, we use GRASP for
cost-based optimization. The results of this experiments
are depicted in Table 6.

Evidently, the usage of PREVENT fulfills its main
promise. Using PREVENT the total number of SLO viola-
tions decreases to about 28% of the number of predicted
violations. However, we can also see that PREVENT
does not primarily prevent violations, but rather aims at
minimizing the costs of violations. For instance, for SLO
4 and 5 the total number of violations even increases.
This is because these SLOs are conflicting with the first
SLOs, and SLO 1 is in general the most expensive one
to violate. Hence, PREVENT happily trades violations of
SLO 4 and 5 for preventing violations of SLO 1. Thereby,
the total costs for the service provider can be reduced to
56% of the predicted costs. The lower part of the table
validates the claim of the paper that it makes sense to
incorporate the costs of adaptation into the decision pro-

12

SLO 1 SLO 2 SLO 3 SLO 4 SLO 5 Total
Considering Costs

Violations Predicted/Actual 209/129 442/1 390/42 75/104 0/41 1116/317 (28.4%)
Avg. Costs Predicted/Actual 5207/2904 884/2 6264/558 840/1068 0/9 14923/8415 (56.4%)

Ignoring Costs
Violations Predicted/Actual 223/40 449/0 245/17 66/218 0/115 983/390 (39.7%)

Avg. Costs Predicted/Actual 5521/756 898/0 4086/216 756/2364 0/29 12632/22241 (176.1%)

TABLE 6: End-to-End Results

cess. To that end, we have modified the target function of
the optimization in such a way that the costs of adaption
are ignored. In this configuration, the total costs after
adaptation are 176% of the predicted costs. That means
that in this experiment it is in fact much more expensive
for the provider to prevent adaptations (in the way that
optimization ignoring costs suggests) than doing nothing
at all.

7 RELATED WORK

To the best of our knowledge, no approaches with the
exact focus of this paper (cost-based optimization of ser-
vice compositions) have been published so far. However,
there are some areas relevant or related to this problem,
which we discuss in the following.

On a fundamental level, our work is based on the
notion that both atomic and composite services exhibit
some measurable quality (QoS). Monitoring QoS has
been an active research area for some time. Different
techniques proposed in this direction include monitor-
ing based on client feedback [25], monitoring of TCP-
level metrics using network analysis techniques [15]
or event-based monitoring based on event-condition-
action rules [26]. We use the VRESCO event engine and
event-based monitoring in a manner very similar to the
approach presented in [26].

The PREVENT approach aims at autonomous op-
timization of service compositions with regards to
SLA violations and costs of adaptation. This bears
a natural resemblance to the idea of QoS optimiza-
tion for service compositions, as prominently described
in [27]. Later approaches tried to improve on this con-
cept by using more efficient heuristic algorithms, e.g.,
H1 RELAX IP [28] (a heuristic relaxation of integer
programming), WFlow [29] (based on stochastic work-
flow reduction) or the immune algorithm [30]. Different
authors approached the problem by combining global
optimization and local selection (which can be done
much more efficient than global optimization). This ap-
proach can also be considered a heuristic, since the
combination with local selection does not guarantee
a globally optimal solution [31]. Most comparably to
our work, the authors of [32] use a genetic algorithm
combined with local search to efficiently solve the QoS
optimization problem. The main difference of our work
to all these approaches is that we do not optimize the
composition with regard to global QoS goals. Instead,
our optimization goal is to minimize the costs resulting
from SLA violations and adaptations. Therefore, in our

work, some SLAs are allowed to be violated if it is
financially desirable for the provider to do so. Hence,
the optimization problem we have to solve is different.

To our work, even more important than the measure-
ment of past quality is the prediction of future QoS.
One well-known approach to establishing predictable
QoS levels in a composite service is QoS aggregation,
i.e., the process of calculating the quality dimensions of
a composite service based on the QoS of the utilized
services and aggregation functions. QoS aggregation has
for instance been discussed in [20]. The concept of QoS
aggregation has been extended to SLA aggregation by
several authors [33], [34]. As an alternative to QoS
and SLA aggregation, different authors have proposed
to use various machine learning techniques to predict
composition QoS from monitored runtime data [6], [7].
This approach is also the one that we use in PREVENT,
as explained in Section 3. The main advantage that we
see in using machine learning is that it is very easy to in-
corporate non-QoS data (composition instance data, such
as customer identifiers or ordered products) without the
need to explicitly specify aggregation rules describing
how this data influences the composition performance.
However, note that the contribution discussed in this
paper is in principle agnostic of the actual approach used
for prediction of violations.

Generally, PREVENT is a system to monitor and pre-
vent SLA violations. In this area, some works exist,
which discuss the runtime monitoring of composition
quality, such as [35]. This paper is of particular interest
to us, since it discusses an integrated approach towards
monitoring based on events. As stated above, this is
quite related to monitoring in PREVENT. These works
do not attempt to explain the reasons for SLA violations,
and neither do they try to prevent them. The MoDe4SLA
approach [4] is a top-down approach towards identifying
these influential factors of SLA violations. Research in
a similar direction, but using data mining techniques
instead of top-down analysis, has also been presented
in [5]. Our work is different in that we do not only try
to identify which parts of a service composition cause
SLA violations, but actively prevent them by applying
targeted adaptation actions. Therefore, our system essen-
tially implements the paradigm of self-adapting service
compositions. This is related to the area of flexible ser-
vice composition, as introduced in [36]. Flexible service
compositions reoptimize their composition at runtime, in
order to deal with unanticipated problems. Similar ideas
(self-healing processes) have also been presented as part

13

of the DISC framework [37], which implements dynamic
and only partially defined processes. A different kind
of self-healing processes have been discussed in [38]. In
this paper, the authors present the VieDAME framework,
which autonomously monitors the QoS of services used
in the composition, and triggers service re-selection if
the monitored QoS falls below a given threshold. This is
similar to the PREVENT approach, but our system sup-
ports a wider range of adaptation actions (as discussed in
our earlier work [8]). Additionally, [38] does not take the
costs of adaptation into account. Another middleware for
self-adapting compositions is MASC [39]. However, the
authors of this paper focus more on adaptation for func-
tional reasons, while our main goal is the optimization of
non-functional aspects. Furthermore, the MASC system
also does not explicitly incorporate costs of adaptation.

The core contribution of this paper is the notion that
there generally is a tradeoff to consider between prevent-
ing SLA violations and the costs of doing so. Hence,
a composite service provider is maximizing his own
revenue by minimizing his total costs. Similar models
have been investigated in many related areas before. For
instance, [40] describes a model for revenue maximizing
in Web services hosting using dynamic admission poli-
cies. Similarly, techniques to optimize application servers
in a way to maximize the provider profit in distributed
systems have been proposed in [41]. Other tradeoffs
that have been discussed in the literature include the
performance-security tradeoff [42] or the tradeoff be-
tween composition QoS and the costs of monitoring [43].

8 CONCLUSION AND FUTURE WORK

For providers of composite Web services, it is essential to
be able to minimize cases of SLA violations. One possible
route to achieve this is to predict at runtime, which
instances are in danger of violating SLAs, and to apply
various adaptation actions to these instances only. How-
ever, it is not trivial to identify which adaptations are the
most cost-effective way to prevent any violation, or if it
is at all possible to prevent a violation in a cost-effective
way. In this paper, we have modelled this problem
as a one-dimensional, discrete optimization problem.
Furthermore, we have presented both, deterministic and
heuristic solution algorithms. We have evaluated these
algorithms based on a manufacturing case study, and
shown which types of algorithms are better suited for
which scenarios.

The main current limitation is that adaptation is only
considered on instance level, that is, for each compo-
sition instance separately. Aggregate SLOs, which are
defined over a number of instances, are out of scope.
Similarly, at the moment we do not consider ’permanent’
adaptations, i.e., adaptations which are done for all fu-
ture instances. We believe that the PREVENT adaptation
model can be extended to this kind of SLOs and actions,
but new approaches to predict violations and impact
models are needed to this end.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agree-
ment 215483 (S-Cube) and 257483 (Indenica).

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38–45, November
2007.

[2] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
Inside the Cloud? An Architectural Map of the Cloud Landscape,”
in Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing (CLOUD’09). Washington, DC,
USA: IEEE Computer Society, 2009, pp. 23–31.

[3] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web Ser-
vices on Demand: WSLA-Driven Automated Management,” IBM
Systems Journal, vol. 43, no. 1, pp. 136–158, January 2004.

[4] L. Bodenstaff, A. Wombacher, M. Reichert, and M. C. Jaeger,
“Analyzing Impact Factors on Composite Services,” in Proceedings
of the 2009 IEEE International Conference on Services Computing (SCC
’09). Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp.
218–226.

[5] B. Wetzstein, P. Leitner, F. Rosenberg, S. Dustdar, and F. Ley-
mann, “Identifying Influential Factors of Business Process Per-
formance Using Dependency Analysis,” Enterprise Information
Systems, vol. 4, no. 3, pp. 1–8, July 2010.

[6] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime Prediction of Service Level Agreement
Violations for Composite Services,” in Proceedings of the 3rd Work-
shop on Non-Functional Properties and SLA Management in Service-
Oriented Computing (NFPSLAM-SOC’09), 2009, pp. 176–186.

[7] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang, “Event-Driven
Quality of Service Prediction,” in Proceedings of the 6th International
Conference on Service-Oriented Computing (ICSOC’08). Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 147–161.

[8] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitor-
ing, Prediction and Prevention of SLA Violations in Composite
Services,” in Proceedings of the IEEE International Conference on
Web Services (ICWS’10). Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 369–376.

[9] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer, S. Dust-
dar, and F. Leymann, “Preventing SLA Violations in Service Com-
positions Using Aspect-Based Fragment Substitution,” in Proceed-
ings of the International Conference on Service-Oriented Computing
(ICSOC’10), 2010.

[10] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and
F. Leymann, “Adaptation of Service-Based Applications Based
on Process Quality Factor Analysis,” in Proceedings of the 2nd
Workshop on Monitoring, Adaptation and Beyond (MONA+), 2009,
pp. 395–404.

[11] “Business Process Modeling Notation Specification,” Object Man-
agement Group (OMG), Tech. Rep., 2006.

[12] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape
and Research Challenges,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 4, no. 2, pp. 1–42, May 2009.

[13] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-
to-End Support for QoS-Aware Service Selection, Binding, and
Mediation in VRESCo,” IEEE Transactions on Services Computing,
vol. 3, pp. 193–205, July 2010.

[14] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[15] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Perfor-
mance and Dependability Attributes of Web Services,” in Proceed-
ings of the IEEE International Conference on Web Services (ICWS’06).
Washington, DC, USA: IEEE Computer Society, 2006, pp. 205–212.

[16] S. Haykin, Neural Networks and Learning Machines: A Comprehensive
Foundation, 3rd ed. Prentice Hall, 2008.

[17] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, pp. 81–106, March 1986.

14

[18] D. Ivanovic, M. Carro, and M. Hermenegildo, “Towards Data-
Aware QoS-driven Adaptation for Service Orchestrations,” in
Proceedings of the 2010 IEEE International Conference on Web
Services (ICWS’10). Washington, DC, USA: IEEE Computer
Society, 2010, pp. 107–114. [Online]. Available: http://dx.doi.
org/10.1109/ICWS.2010.73

[19] L. Juszczyk and S. Dustdar, “Script-Based Generation of Dynamic
Testbeds for SOA,” in Proceedings of the 2010 IEEE International
Conference on Web Services (ICWS’10). Washington, DC, USA:
IEEE Computer Society, 2010, pp. 195–202. [Online]. Available:
http://dx.doi.org/10.1109/ICWS.2010.75

[20] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “QoS Aggre-
gation for Web Service Composition using Workflow Patterns,”
in Proceedings of the 8th International Enterprise Distributed Object
Computing Conference (EDOC’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 149–159.

[21] L. Xu and B. Jennings, “A Cost-Minimizing Service Composition
Selection Algorithm Supporting Time-Sensitive Discounts,” in
Proceedings of the 2010 IEEE International Conference on Services
Computing (SCC’10). Washington, DC, USA: IEEE Computer
Society, 2010, pp. 402–408.

[22] T. Feo and M. Resende, “Greedy Randomized Adaptive Search
Procedures,” Journal of Global Optimization, vol. 6, pp. 109–133,
1995.

[23] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[24] N. Radcliffe and P. Surry, “Formal Memetic Algorithms,” Evolu-
tionary Computing, vol. 865, pp. 1–16, 1994.

[25] R. Jurca, B. Faltings, and W. Binder, “Reliable QoS Monitoring
Based on Client Feedback,” in Proceedings of the 16th International
Conference on World Wide Web (WWW’07). New York, NY, USA:
ACM, 2007, pp. 1003–1012.

[26] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for Web Ser-
vices,” in Proceedings of the 5th International Conference on Service-
Oriented Computing (ICSOC’07). Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 132–144.

[27] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-Aware Middleware for Web Services Com-
position,” IEEE Transactions on Software Engineering, vol. 30, no. 5,
pp. 311–327, 2004.

[28] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Stein-
metz, “Heuristics for QoS-aware Web Service Composition,” in
Proceedings of the 2006 IEEE International Conference on Web Services
(ICWS’06). Los Alamitos, CA, USA: IEEE Computer Society, 2006,
pp. 72–82.

[29] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans-
actions on the Web, vol. 1, May 2007.

[30] J. Xu and S. Reiff-Marganiec, “Towards Heuristic Web Services
Composition Using Immune Algorithm,” in Proceedings of the 2008
IEEE International Conference on Web Services (ICWS’08). Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 238–245.

[31] M. Alrifai and T. Risse, “Combining Global Optimization With
Local Selection for Efficient QoS-Aware Service Composition,” in
Proceedings of the 18th International Conference on World Wide Web
(WWW’09). New York, NY, USA: ACM, 2009, pp. 881–890.

[32] F. Rosenberg, M. B. Müller, P. Leitner, A. Michlmayr, A. Bouguet-
taya, and S. Dustdar, “Metaheuristic Optimization of Large-Scale
QoS-aware Service Compositions,” in Proceedings of the 2010 IEEE
International Conference on Services Computing (SCC’10).

[33] T. Unger, F. Leymann, S. Mauchart, and T. Scheibler, “Aggregation
of Service Level Agreements in the Context of Business Pro-
cesses,” in Proceedings of the 12th International Enterprise Distributed
Object Computing Conference (EDOC’08). Washington, DC, USA:
IEEE Computer Society, 2008, pp. 43–52.

[34] I. Haq, A. Huqqani, and E. Schikuta, “Aggregating Hierarchi-
cal Service Level Agreements in Business Value Networks,” in
Proceedings of the 7th International Conference on Business Process
Management (BPM’09). Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 176–192.

[35] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo + As-
tro: An Integrated Approach for BPEL Monitoring,” in Proceedings
of the 2009 IEEE International Conference on Web Services (ICWS’09).
Washington, DC, USA: IEEE Computer Society, 2009, pp. 230–237.

[36] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: A Framework for Executing Adaptive Web-Service Pro-
cesses,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

[37] E. Zahoor, O. Perrin, and C. Godart, “DISC: A Declarative Frame-
work for Self-Healing Web Services Composition,” in Proceedings
of the 2010 IEEE International Conference on Web Services (ICWS’10).
Washington, DC, USA: IEEE Computer Society, 2010, pp. 25–33.

[38] O. Moser, F. Rosenberg, and S. Dustdar, “Non-Intrusive Monitor-
ing and Service Adaptation for WS-BPEL,” in Proceedings of the
17th International Conference on World Wide Web (WWW’08). New
York, NY, USA: ACM, 2008, pp. 815–824.

[39] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-Driven Mid-
dleware for Self-Adaptation of Web Services Compositions,” in
Proceedings of the ACM/IFIP/USENIX 2006 International Conference
on Middleware (Middleware’06). New York, NY, USA: Springer-
Verlag New York, Inc., 2006, pp. 62–80.

[40] M. Mazzucco, I. Mitrani, J. Palmer, M. Fisher, and P. McKee, “Web
Service Hosting and Revenue Maximization,” in Proceedings of the
Fifth European Conference on Web Services (ECOWS’07). Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 45–54.

[41] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning Servers in
the Application Tier for E-Commerce Systems,” ACM Transactions
on Internet Technology, vol. 7, no. 1, p. 7, 2007.

[42] S. S. Yau, Y. Yin, and H. G. An, “An Adaptive Tradeoff Model for
Service Performance and Security in Service-Based Systems,” in
Proceedings of the 2009 IEEE International Conference on Web Services
(ICWS’09). Washington, DC, USA: IEEE Computer Society, 2009,
pp. 287–294.

[43] Y. Zhang, M. Panahi, and K.-J. Lin, “Service Process Composition
with QoS and Monitoring Agent Cost Parameters,” in Proceedings
of the 2008 10th IEEE Conference on E-Commerce Technology and the
Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-
Services. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 311–316.

Philipp Leitner has a BSc and MSc in business
informatics from Vienna University of Technol-
ogy. He is currently a PhD candidate and univer-
sity assistant at the Distributed Systems Group
at the same university. Philipp’s research is fo-
cused on middleware for distributed systems,
especially for SOAP-based and RESTful Web
services.

Waldemar Hummer holds a BSc (Univ. of Inns-
bruck) and MSc (Vienna Univ. of Technology) in
Computer Science, and a BSc in Business Ad-
ministration (WU Vienna). Currently he is a uni-
versity assistant and PhD candidate at the Dis-
tributed Systems Group, Vienna Univ. of Tech-
nology. His main topics of interest are in the area
of self-optimizing service-based systems, Web
service composition and Web data aggregation.

Schahram Dustdar is Full Professor of Com-
puter Science with a focus on Internet Technolo-
gies heading the Distributed Systems Group,
Vienna University of Technology (TU Wien). He
is also Honorary Professor of Information Sys-
tems at the Department of Computing Science at
the University of Groningen (RuG), The Nether-
lands.

Towards Optimizing the Non-Functional Service
Matchmaking Time

Kyriakos Kritikos
ICS-FORTH

Heraklion, Crete, Greece
kritikos@ics.forth.gr

Dimitris Plexousakis
ICS-FORTH

Heraklion, Crete, Greece
dp@ics.forth.gr

ABSTRACT
The Internet is moving fast to a new era where million of
services and things will be available. In this way, as there
will be many functionally-equivalent services for a specific
user task, the service non-functional aspect should be con-
sidered for filtering and choosing the appropriate services.
The related approaches in service discovery mainly concen-
trate on exploiting constraint solving techniques for inferring
if the user non-functional requirements are satisfied by the
service nonfunctional capabilities. However, as the match-
making time is proportional to the number of non-functional
service descriptions, these approaches fail to fulfill the user
request in a timely manner. To this end, two alternative
techniques for improving the non-functional service match-
making time have been developed. The first one is generic as
it can handle non-functional service specifications contain-
ing n-ary constraints, while the second is only applicable to
unary-constrained specifications. Both techniques were ex-
perimentally evaluated. The preliminary evaluation results
show that the service matchmaking time is significantly im-
proved without compromising matchmaking accuracy.

Keywords
service, discovery, matchmaking, non-functional, QoS, opti-
mization, performance, constraint programming

1. INTRODUCTION
The Web is now moving to a new era, called the Web of

Services (WoS), where millions of services and things will
be available to users through a converged information, com-
munication, and service infrastructure. Service-orientation
enables such a change, as it is one of the main mechanisms
exploited by application developers to build added-value ap-
plications through the discovery and composition of services.

However, service-orientation has not yet delivered its promise
as it relies on the role of the service broker, which is not suc-
cessfully fulfilled by current realizations. Such realizations
have failed due to the following factors. First, they are not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WWW ’12 Lyon, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

scalable to handle thousands or millions of service requests
and advertisements. Second, they exhibit low matchmak-
ing performance and accuracy. Third, they have mainly
concentrated on the functional aspect and have neglected
the non-functional one. However, as there will be many
functionally-equivalent services for a specific user task, the
non-functional aspect should be considered for filtering and
selecting the best among these services.

Concerning the functional aspect, many matchmaking ap-
proaches have been developed [1, 4], mainly exploiting Se-
mantic Web techniques and focusing solely on the service
I/O. Such approaches exhibit good performance but their
accuracy is not perfect. This is justified by the fact that the
service functionality in terms of its pre- and post-conditions
is not considered, partly because the service specifications
(advertisements and requests) do not include the description
of such an aspect. Due to the move to the WoS, specific ap-
proaches [5, 3] have concentrated on scalability issues and
on further optimizing the service matchmaking time by ap-
propriately organizing the service advertisement and request
space. Such approaches move to the right direction but still
face the challenge of imperfect accuracy.

While the research status concerning functional service
discovery is satisfactory, the same cannot be stated for non-
functional service discovery. The state-of-the-art approaches [2]
in the latter sub-area exhibit perfect accuracy and mainly fo-
cus on optimizing the time required to matchmake a single
non-functional request-to-advertisement pair by exploiting
appropriate constraint solving techniques. However, they
have not yet focused on optimizing the overall non-functional
matchmaking time. As such, they can take significant time
to match a set of hundreds or thousands of non-functional
service advertisements against a non-functional service re-
quest, so they are not yet appropriate for the move to the
IoS era. In addition to the above problem, there have not
been approaches focusing on scalability issues.

Thus, there is a need for scalable techniques that are able
to appropriately manage a vast amount of non-functional
service offers and optimize their matchmaking time. If such
techniques were coupled with those exploited for functional
service discovery, then a better service broker realization
would be offered, enabling users to discover those services
matching their tasks both functionally and non-functionally
in a timely manner and with the appropriate accuracy.

Two novel techniques were developed to close this research
gap that significantly optimize the non-functional service
matching time with respect to the techniques already pro-
posed.

2. PROPOSED NON-FUNCTIONAL SERVICE
MATCHING TECHNIQUES & EVALUA-
TION

The first proposed technique, called “Subsumes matching”
technique, relies on the “subsumes” type of matchmaking
metrics and on the fact that if a non-functional service spec-
ification A subsumes another specification B then it will also
subsume all the specifications subsumed by B. To this end,
it organizes the non-functional service advertisement space
in such a way that the number of non-functional request-to-
advertisements pairs examined is less than that the state-of-
the-art approach in [2]. In particular, it constructs a forest
of “subsumes” trees, where each node corresponds to a non-
functional service advertisement and a parent node in each
tree subsumes all of its children nodes. In this way, when
a service request is issued, it is compared against the nodes
of each tree from the root until the leaves. However, if it
is found that it subsumes a specific node, then there is no
need to go further down to the node’s children/descendants
as the request will certainly match/subsume them.

This technique is obviously quicker than the state-of-the-
art one, as each one uses the same matchmaking metric but
the first technique performs less comparisons. However, the
construction and update of a forest of “subsumes” trees is
more costly than the construction and the update of a list
of service advertisements (as it is the case for the state-
of-the-art approach). To this end, this technique exhibits
a higher insertion, deletion, and update time with respect
to the state-of-the-art approach. This technique can be dis-
tributed by assigning the responsibility of matching a subset
of the subsumes trees to different nodes.

The second proposed technique (i.e., the ”Unary match-
ing”one) relies on similar techniques performed in functional
service matchmaking [1] in order to appropriately organize
the non-functional service advertisement space. In partic-
ular, it maintains for each non-functional metric/property
an ordered set of limits, where each limit may correspond
to one or more non-functional specifications containing a re-
spective metric bound or equality constraint on the limit’s
value. To this end, when a non-functional service request
is issued, each of its unary constraints are examined based
on their containing metric. Depending on the metric bound
and constraint type, a sub-part of the metric’s ordered list
of limits is examined so as to produce a list of the matching
non-functional advertisements’ URIs. For instance, if the re-
quest constraint is of the form: X ≤ a, then the limits that
are equal or less to a are examined and the URIs of the non-
functional specifications that have constraints of the form
X ≤ a1, or X == a1, where a1 ≤ a, are collected. For each
request constraint, its constructed URI list is concatenated
with that of the previous constraint. If the URI list con-
catenation is empty, then the non-functional request does
not have a matching advertisement. Otherwise, after the
processing of the last request constraint, the final, concate-
nated URI list contains all the URIs of the advertisements
that match the request.

The second technique is quicker than the other proposed
technique as well as the prominent matchmaking approach
not only in terms of matchmaking but also insertion, dele-
tion, and update time. Moreover, due to the way it orga-
nizes the advertisement space, it can be easily distributed
by assigning the responsibility of matching a sub-set of all

non-functional metrics to different nodes. Its sole drawback
is that it relies on exploiting only unary-constrained non-
functional service specifications.

Both techniques were experimentally evaluated against
one state-of-the-art technique. The preliminary results show
that both techniques exhibit a better matchmaking time
than that of the state-of-the-art one and that the second
technique is significantly better and more scalable than the
others.

3. CONCLUSION
This paper has proposed two novel techniques for optimiz-

ing the non-functional service matchmaking time. Moreover,
it has reported some initial preliminary evaluation results
which indicate that both techniques are significantly better
than the state-of-the-art one and that the second proposed
technique is more scalable.

Concerning future work, as there is a trade-off in optimiz-
ing both matchmaking and offer registration performance,
research must concentrate on discovering the exact point
where the performance in both aspects is satisfactory. In
addition, future research should concentrate on further ex-
perimenting with the proposed techniques and appropriately
integrating such techniques in functional service brokers.
Moreover, additional techniques can be considered which in-
telligently organize also the service demand space. Finally,
scalable and distributed, functional and non-functional ser-
vice discovery mechanisms must be developed incorporat-
ing the two novel non-functional service matchmaking tech-
niques. In this way, if the latter mechanisms are exploited by
a service broker, then the vision of the Internet of Services
will come closer to its realization.

4. ACKNOWLEDGMENTS
The research leading to these results has received fund-

ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

5. REFERENCES
[1] O. Cliffe and D. Andreou. Service Matchmaking

Framework. Public Deliverable D5.2a, Alive EU Project
Consortium, 10 September 2009. Available at:
http://www.ist-alive.eu/index.php?option=com_

docman&task=doc_download&gid=28&Itemid=49.

[2] K. Kritikos and D. Plexousakis. Mixed-Integer
Programming for QoS-Based Web Service
Matchmaking. IEEE Trans. Serv. Comput.,
2(2):122–139, 2009.

[3] S. B. Mokhtar, D. Preuveneers, N. Georgantas,
V. Issarny, and Y. Berbers. EASY: Efficient semAntic
Service discoverY in pervasive computing environments
with QoS and context support. J. Syst. Softw.,
81(5):785–808, 2008.

[4] P. Plebani and B. Pernici. URBE: Web Service
Retrieval Based on Similarity Evaluation. IEEE
Transactions on Knowledge and Data Engineering,
21(11):1629–1642, 2009.

[5] M. Stollberg, M. Hepp, and J. Hoffmann. A Caching
Mechanism for Semantic Web Service Discovery. In
ICWS, 2007.

Cost Reduction Through

SLA-driven Self-Management

André Lage Freitas, Nikos Parlavantzas, Jean-Louis Pazat

Université Européenne de Bretagne

INSA, INRIA, IRISA, UMR 6074

F-35708 Rennes, France

Emails: {Andre.Lage,Nikos.Parlavantzas,Jean-Louis.Pazat}@irisa.fr

Abstract—A main challenge for service providers is manag-
ing service-level agreements (SLAs) with their customers while
satisfying their business objectives, such as maximizing profits.
Most current systems fail to consider business objectives and
thus to provide a complete SLA management solution. This
work proposes an SLA-driven management solution that aims to
maximize the provider’s profit by reducing resource costs as well
as fines owning to SLA violations. Specifically, this work proposes
a framework that comprises multiple, configurable control loops
and supports automatically adjusting service configurations and
resource usage in order to maintain SLAs in the most cost-
effective way. The framework targets services implemented on
top of large-scale distributed infrastructures, such as clouds.
Experimental results demonstrate its effectiveness in maintaining
SLAs while reducing provider costs.

I. INTRODUCTION

Service-based systems are built by integrating loosely-

coupled services from a range of providers. To handle varying

service loads, providers are increasingly taking advantage

of large-scale distributed infrastructures, such as clouds and

grids, which deliver remote resources in a flexible, on-demand

fashion. A major challenge for service providers is managing

such infrastructures in order to meet their business objectives

while maintaining conformance to Service-Level Agreements

(SLAs) with customers.

A large part of the research on SLA management in service-

oriented architectures (SOAs) targets composite services; that

is, services composed of simpler services, and thus shielded

from the details of the underlying infrastructure. SLA manage-

ment in this context typically involves replacing services by

more suitable ones [10], [22]. Such work does not address

how basic, atomic services guarantee Quality of Services

(QoS) properties, which invariably requires managing the

underlying distributed infrastructure, and is the focus of this

paper. A significant amount of work has focused on SLA

management for large-scale distributed applications, such as e-

science applications deployed on grids, or multi-tier enterprise

applications deployed on clusters [9], [4], [12]. However, such

work does not address meeting the business objectives of

service providers, such as maximizing profit.

This paper proposes a generic framework to assist service

providers in honoring SLAs while reducing the costs of infras-

tructure usage. The proposed framework integrates a rich set of

QoS management mechanisms supporting the complete SLA

life-cycle, from SLA template creation to service termination.

To manage infrastructure usage, the framework builds on

a simple interface, compatible with modern grid and IaaS

cloud APIs. To accommodate fluctuating service loads and

unpredictable faults, the framework includes flexible support

for self-adaptation in the form of multiple interacting control

loops. Importantly, the control loops build on replaceable

adaptation strategies, which can be combined in multiple ways,

thus extending the applicability of the framework.

The rest of the paper is structured as follows. Section II

introduces the Qu4DS (Quality Assurance for Distributed Ser-

vices) framework while its adaptation strategies are exposed

in Section III. Section IV discusses some aspects of service

provisioning, how Qu4DS profiles service providers and the

assumptions on which it relies. Next, Section V presents im-

plementation details along with the flac2ogg service provider.

Section VI discusses the evaluation, its environment and the

results. Finally, related work is commented in Section VII,

followed by the conclusion in Section VIII.

II. QU4DS

A. Architecture

The main goal of Qu4DS is to provide SLA management

that minimizes the service provider’s costs. Costs include the

price of using the underlying infrastructure and the payment

of fines due to SLA violations. Specifically, Qu4DS divides

a pool of booked resources among distinct SLA contracts

and uses these resources to execute service requests based on

agreed QoS properties. In order to handle dynamic events,

such as resource shortages and faults, Qu4DS performs man-

agement actions guided by configurable strategies, which

attempt to minimize costs. For example, to deal with resource

shortages, Qu4DS chooses the most suitable request to abort

in order to minimize fine payment.

The Qu4DS architecture is described by Figure 1. It is

located at the PaaS layer and uses resources from an IaaS

provider in order to provide support to the upper SaaS layer. In

the SaaS layer, customers contact the Web Service (WS) in or-

der to establish a contract. The contract proposal is forwarded

to the SLA Negotiator that asks the QoS Translator to translate

its QoS to the resource configuration able to ensure such QoS.

The SLA Negotiator then checks through the infrastructure

management interface whether the resource requirements can

be met. If so, the SLA Negotiator configures and deploys

the service instance on the infrastructure through the job

management interface and confirms the contract agreement to

the right customer which is now able to send requests.

When a customer sends a request, the SLA Negotiator asks

the request arrival control loop whether it can be treated. If so,

the SLA Negotiator forwards the request to the right service

instance deployed on the infrastructure. The service instance

prepares the distributed tasks necessary to treat the request and

asks Qu4DS to execute the tasks. These tasks are also deployed

by Qu4DS on the infrastructure through the job management

interface and monitored by the job failure and job delay control

loops. If any of the control loops informs the SLA Negotiator

that the request could not be treated, the SLA Negotiator aborts

the request, informs the customer of the SLA violation and

computes the penalties.

Fig. 1. Qu4DS Architecture.

B. Interfaces

To define the interactions between Qu4DS and underlying

infrastructures, we have investigated several distributed infras-

tructure interfaces [11], [6], [7], [8]. Grid interfaces, such

as the SAGA [8] interface, define a complex but complete

set of functionalities based on the job abstraction. The main

limitation of such interfaces is that they mix together two

distinct concerns, job management and resource acquisition.

On the other hand, current IaaS cloud providers provide de-

coupled, simple resource provisioning interfaces [1], [20], [3],

[16]. However, these interfaces are limited to the provisioning

of low-level resources, typically virtual machines, with no

support for high-level abstractions, such as jobs.

Therefore, we have structured the interaction among

Qu4DS, underlying infrastructures and customers around the

Infrastructure Management

getResourceTypes()

getNumberOfAvailableResources(resourceClass)

reserve(nOfResources, resourceClass, startTime, endTime)

resize(resourceClass, newNumberOfResources, endTime, resourcesId)

getReservedResources(reservationId)

Job Management

createJob(jobDescription)

runJob(job, resourceAddress)

cancelJob(job)

cancelAllJobsOnResource(resource)

checkpointJob(job)

suspendJob(job)

resumeJob(job)

resumeJob(job,checkpointVersion)

migrateJob(job, resourceAddress)

getAllJobs(reservationId)

getJobs(jobState)

getJobsOnResource(resourceAddress)

registerCallback(job, metric, activate, observer)

Web Service

getListOfContractTemplates()

contractEstablishment(contractTemplate)

request(args)

TABLE I
DESCRIPTION OF THE INTERFACES USED BY QU4DS ENTITIES.

three interfaces depicted in Table I. First, the infrastructure

management interface exposes a set of operations to reserve

resources of specific types. This interface can be implemented

on top of existing IaaS cloud APIs, which provide operations

to create and manage virtual machine (VM) instances. Second,

since we believe that jobs are a useful, high-level abstraction

for managing service instances, we defined a job management

interface based on SAGA. This interface extends the SAGA

job life-cycle (cf. Figure 2) and enables creating, canceling,

suspending as well as migrating jobs between resources. Fi-

nally, we defined the Web Service interface at the highest level

through which contracts are negotiated and customers send

requests. The idea here is to enable the provider to negotiate

contracts rather than to define a complete protocol for SLA

negotiation, such as [17], [2]. The negotiation process requires

that the customer obtains contract templates from the provider

which is in charge of auditing the provision and monitoring

penalties. Further methods for service provisioning may be

added to this interface according to provider requirements.

Fig. 2. The job life-cycle extended from the SAGA Task life-cycle.

III. SELF-ADAPTATION

The application of adaptation mechanisms depends on the

Qu4DS request life-cycle, which is described by Figure 3.

When a customer demands the service, a request is created

containing information about its SLA specifications and the

request state is set to NEW. If the request cannot be treated,

the state is set to ABORTED. Otherwise, the state is set to

TREATING until the end of the treatment. If the request is

successfully treated, it is then considered as TREATED, oth-

erwise it is ABORTED. In addition, during request treatment,

Qu4DS registers information about aborted requests in order

to subsequently compute the penalties.

Fig. 3. Qu4DS request life-cycle.

Qu4DS applies the Autonomic Computing [13] concept by

implementing three MAPE (Monitor, Analyze, Plan, Execute)

control loops as shown in Figure 1. The first control loop, the

request arrival loop, is driven by request arrival events and is

in charge of checking whether just-arrived, NEW requests can

be treated. Specifically, the loop asks the QoS Translator to

translate the QoS to resource requirements and then checks

resource availability with the infrastructure. If the resource

requirements cannot be met, the control loop decides if it will

abort this request or another request that is currently being

treated. Furthermore, the loop aborts a request to let another

be executed only if the resource requirements of the former

satisfy the resource requirements of the latter.

The other control loops ensure the proper execution of

requests and operate over TREATING requests. Indeed, these

control loops act as self-healing mechanisms in order to pre-

vent SLA violations. While the job failure control loop reacts

to job failure events by providing reliable request treatment,

the job delay control loop reacts to job delays and ensures

performance aspects of the request treatment.

Furthermore, all control loops take decisions based on the

adaptation strategies with which each loop is configured. We

have currenltly designed the adaptation strategies described

in Table II. These strategies are driven by the high-level

goal of minimizing the provider costs of fine payments, thus

maximizing the provider’s profit.

IV. COST-REDUCING SERVICE PROVISIONING

A. Service-Level Agreement

We compiled a basic SLA template based on common

aspects of current SLA specifications [2], [17], as exposed

in the following.

Request Arrival Strategies

Name Description

VFC (Violation based
on Fine Cost)

Aborts the request whose fine is the cheap-
est.

VBP (Violation Based
on Priority)

Aborts the request with lowest priority.

RVC (Random Viola-
tion Criterion)

Random choice of request to be aborted.

Job Failure Strategies

Name Description

FJV (Failed Job im-
plies Violation)

Aborts the request immediately.

SRFJ (Single Re-
Submission of Failed
Jobs)

Replaces the failed job once. If the same job
is failed again, it aborts the request.

Job Delay Strategies

Name Description

LJV (Late Job implies
Violation)

Aborts the request immediately.

SRLJ (Single
Replacement of
Late Jobs)

Replaces the delayed job once. If the same
job gets late again, it aborts the request.

TABLE II
QU4DS ADAPTATION STRATEGIES ARE TRIGGERED BY THE ARRIVAL OF

NEW REQUESTS, THE OCCURRENCE OF JOB FAILURES AND DELAYS.

• Parties

– Service Customer

– Service Provider

• Terms

– Description: the service functional requirements

– Duration: t seconds

– Customer’s obligations: should not exceed the max-

imum request frequency φmax, i.e., the maximum

number of requests per t.
– Provider’s obligations: should provide the agreed

service according to its QoS.

– SLA type: varies among platinum, gold, silver

– Priority: varies among low, normal, high

– Price model: pay-per-use (usage-dependent)

– Price: pi

• QoS

– Throughput (MB/sec): th

The SLA types (platinum, gold, silver) are differentiated by

the throughput that they allow. The SLA template includes the

contract priority, which means that higher-priority customers

are preferred against lower-priority customers in case of de-

mand overload. Regarding the pricing model, customers pay

depending on the duration of using the service in a usage-

dependent fashion [14], [15]. This pricing model was chosen

because infrastructure costs are typically based on the same

model. The provider can thus adjust the price of the service

based on infrastructure costs. Specifically, the total price of a

contract is given by pi = ptype(t) + ppriority where ptype(t)
is the price per time for each SLA type and ppriority is the

price of the chosen priority. Both prices are defined by the

provider, which fills the SLA templates. These templates are

then selected by customers according to the suitable SLA type

and priority.

B. Profiling

Qu4DS relies on profiling the service provider by executing

requests with different resource configurations. During profil-

ing, the QoS Translator collects the response time threshold

(rpthreshold) to process a given amount of data d and the job

execution time threshold (jthreshold). This data is then used

to calculate QoS values and further information for checking

adaptation strategies conditions. First, the QoS Translator

calculates the standard deviations for both thresholds rpst dv

and jst dv respectively. Then it calculates the job execution

time threshold jthreshold using the following equation, where

e1 and e2 are adjusting coefficients:

jthreshold = e1 × jmean + e2 × jst dv (1)

Following that, the QoS Translator calculates the request

response time threshold rpthreshold which defines the maxi-

mum amount of time that request treatment can take. If the

request elapsed time retime is greater than rpthreshold, then the

request is aborted implying an SLA violation. In Equation 2,

rpthreshold is defined, where adoverhead is a fixed time that

represents the overhead of employing adaptation actions.

rpthreshold = rpmean+rpst dv +adoverhead+jthreshold (2)

Subsequently, the adaptation threshold adthreshold is calcu-

lated, which is used to decide whether there is enough time

to trigger an adaptation action:

adthreshold = rpmean + rpst dv (3)

Finally, the QoS Translator calculates the QoS throughput

th based on the following equation, where d is the size of the

profiling data:

th =
d

rpthreshold
(4)

C. Assumptions

To make the service provisioning model more concrete, let

us rely on the following assumptions and equations.

Assumption 1: The service provider’s profit is given by the

difference between its total revenue and total costs of fine

payments and infrastructure utilization.

Based on Assumption 1, the Equation 5 defines the service

provider’s profit Pt given an operational time t. The
∑nt

i=0 pi

is the sum of the provider’s revenue from all agreed contracts,

where nt is the total number of contracts and pi is the total

revenue of a contract (cf. Section IV-A). Let us define the

set Ft as the set of all fines during t where fk ∈ F ; hence∑|Ft|
k=1 fk is the sum of all the fines the service provider has

to pay during t. Finally, ct × at is the total cost for all

booked resources during t where ct is the price for using a

single resource during t and at is the total amount of booked

resources.

Pt =
nt∑

i=0

pi −
|Ft|∑
k=1

fk − ct × at (5)

Assumption 2: If all requests are violated, the service

provider will make zero profit.

The Equation 6 calculates the maximum frequency a cus-

tomer can reach in terms of number of requests during the

contract duration t for contract i :

φmaxi
=

t

rpithreshold

(6)

Based on Assumption 2 and supposing that customers

perform the maximum feasible number of requests (φmaxi
)

per t, we deduce from Equation 5 the fine value of the contract

i where ri is the number of resources required by i:

fi =
pi − ct × ri

φmaxi

(7)

Assumption 3: The service provider wants to share the

resources among distinct contracts in order to reduce the costs

of resource acquisition.

Thus, let us assume that service instances are deployed

on dedicated resources and their associated distributed tasks

are deployed on shared resources in order to save costs. In

particular, we assume that this sharing leads to a g% decrease

in the amount of needed resources. The following equation

defines a as the total number of acquired resources by the

service provider, where n is the total number of contracts,

type is the SLA type index (0 means silver, 1 gold and 2

platinum), utype is the number of contracts of type, and wtype

is the number of distributed tasks that type requires:

a = n +
(100− g)

100
×

2∑
type=0

utype × wtype (8)

V. IMPLEMENTATION AND CASE STUDY

A. Qu4DS Components

We have implemented the infrastructure management in-

terface (cf. Section II-B) using Grid’5000 [5] as the IaaS

layer. A customized Grid’5000 image was created 1 that

contains all programs and libraries required to execute Qu4DS,

including an implementation of the job management interface.

A similar image would be used in an Amazon EC2-based

implementation.

The implementation of the job management interface (cf.

Section II-B) follows a layered design. The higher layer

deals with job life-cycle state management (cf. Figure 2)

and keeps Qu4DS informed about job metrics following the

publish/subscribe pattern. In this layer, raw job metrics (e.g.,

UNIX process metrics) are mapped to high-level job metrics

and job states. The middle layer abstracts over the use of

different backend batch systems, implemented at the lower

1The details of this image can be accessed here:
https://www.grid5000.fr/mediawiki/index.php/Lenny-x64-quads

layer. Currently, two backend implementations are available:

one that supports the XtreemOS grid [6] and another on top

of SSH (Secure Shell). In addition, the job management im-

plementation is able to simulate job misbehavior by randomly

choosing jobs that will present failures or delays.

Concerning the implementation of the control loops, they

rely on an event-condition-action decision engine. The adap-

tation strategies that will guide them are loaded from the

Qu4DS configuration file and applied at runtime. When events

are received, the control loops check the strategy conditions

and decide whether to trigger adaptations. While the request

arrivals control loop always reacts to the arrival of new re-

quests, the other control loops check more specific conditions.

For instance, if the SRFJ adaptation strategy is enabled (cf.

Table II), the job failure control loop checks if there is enough

time to adapt (retime < adthreshold, cf. Equation 3) and

whether the misbehaving job is already a job replacement

(since replacements should not be replaced).

B. Case Study: flac2ogg Service Provider

The current Qu4DS implementation targets distributed ser-

vice providers based on the Master/Worker paradigm. In this

context, the service instance represents the master, and the

distributed tasks represent the workers. As a case study, we

have implemented the flac2ogg service provider that converts

FLAC [23] audio files to OGG [24] files, as illustrated by Fig-

ure 4. Based on SLA templates, customers establish contracts

with the service provider by choosing the desired throughput

th QoS (MB/secs) and the priority. The QoS translation gives

the amount of resources necessary to satisfy a given throughput

by mens of number of workers (w). Next, the SLA Negotiator

configures the master with the right number of workers that

can provide the required throughput and deploys the master on

the infrastructure. When a request sent by a customer reaches

the master through the SLA Negotiator, the master splits the

FLAC file in w parts, prepares w workers for encoding each

part, and asks Qu4DS to execute and manage the workers.

Qu4DS wraps the workers as jobs and submits them to be

executed in parallel through the job management interface.

During worker execution, the control loops may react to job

metric-related events triggering adaptation actions. When the

workers finish encoding the FLAC parts, Qu4DS provides the

results to the master, which merges them and calls the SLA

Negotiator. The SLA Negotiator finally forwards the OGG file

to the right customer.

VI. EVALUATION

An evaluation was performed in order to study the effective-

ness of Qu4DS in performing SLA-driven self-management.

The following paragraphs discuss how Qu4DS was calibrated,

the scenarios, the testbed and the obtained results.

A. Calibrating Qu4DS to flac2ogg

We profiled the flac2ogg service provider based on a 194MB

FLAC file which means approximatively thirty minutes of

recorded audio. Table III shows the QoS table together with

Fig. 4. The flac2ogg service provider encodes FLAC audio files to OGG
based on the Master/Worker pattern. In this example, the number of worker
w is set to two.

rpithreshold
and φmaxi

(cf. Equations 2 and 6) where e1 = 1.5
and e2 = 3 (cf. Equation 1).

SLA

Type i
Throughput

(MB/sec)

Resource

Configura-

tion

rpithreshold
(secs)

φmaxi
(#req/t)

Silver 1.49 2 workers 130 11

Gold 1.90 3 workers 102 15

Platinum 2.34 6 workers 83 19

TABLE III
QU4DS QOS TABLE CALIBRATED BASED ON A 194MB FLAC FILE. THE

THROUGHPUT WAS CALCULATED BASED ON rpithreshold
.

Figure 5 represents the customers’ demand by means of a

request schedule for contract duration t = 1800 seconds. The

beginning of the bars represents the start time of each request

and the end represents rpithreshold
. The Y-axis represents the

IDs of customers’ contracts, whose total number is fifteen.

Their priorities were chosen randomly; the bolder the line is,

the higher priority it has. With respect to SLA types, the first

five contracts hold silver SLA type, the next five gold, and

the last five platinum. Note that even though the end of some

requests may overlap the beginning of others, this does not

necessarily mean that they will be running at the same time.

For instance, if a request is executed normally with no need to

adapt, it will probably finish in time rpmean + rpstdv and not

in time rpithreshold
. Moreover, although the mean of requests

per hour was set to 75% of φmax, the actual request frequency

φi for each customer i was obtained from a Poisson number

generator, which explains why the total request numbers of

contracts of the same SLA type are not the same. Additionally,

we decreased by two the value of φmax (cf. Equation 6)

to introduce some spare time, which was convenient for our

practical scenarios.

B. Scenarios and Testbed

The evaluation scenarios were defined based on the combi-

nations of adaptation strategies shown in Table IV. The amount

of jobs that were configured to be failed was 10% and 10%

for delayed jobs. Further, we assume that a job could not be

failed and late simultaneously which means that eighteen jobs

were failed as well as other eighteen were delayed. Regarding

the delayed jobs, they never stopped processing which led

the request elapsed time reach rpthreshold thus triggering

adaptation actions in A scenarios. With respect to job failures,

job crash times were randomly chosen during their execution.

Additionally, all the contracts were established before starting

the request scheduling to ensure that the time to establish

the contracts would not compromise the request scheduling

punctuality.

Strategy VFC VBP RVC

SRFJ and SRLJ A1 A2 A3

FJV and LJV B1 B2 B3

TABLE IV
THE EVALUATION SCENARIOS WERE DEFINED BY COMBINING THE

ADAPTATION STRATEGIES.

Regarding the testbed, the experiments were performed on

Grid’5000 resources which have the same characteristics: 8-

core 2.5 GHz CPU, 32GB RAM computers interconnected

through a Gigabit network connection. In order to set the

number of booked resources, Qu4DS relied on Equation 8

setting g = 50 resulting in a = 43 booked resources.

Moreover, we assumed that the cost of using a resource was

c1800 = 0.05 e.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800

C
u

s
to

m
e

rs
 (

C
o

n
tr

a
c
t

ID
)

Time (seconds)

Request Scheduling (mean of requests per hour = 75%)

Fig. 5. The request scheduling took into account a mean of φ = 75% of
φmax. Contract priorities were chosen randomly.

C. Results

Figures 6, 7 and 8 show the results of the aforementioned

evaluation scenarios. In Figures 6 and 7, each cluster rep-

resents a sub-scenario on which is plotted the mean of the

percentage of TREATED and ABORTED requests for each

contract ID. In these figures, the mean of the profit is also

plotted for each sub-scenario. Figure 8 shows a box-and-

whisker diagram for the profit values; note that the maximum

profit a scenario could reach (i.e., with no SLA violations) is

P1800 = 15.225. Furthermore, each experiment was repeated

five times.

When analyzing the results, the first important aspect to

observe is the effectiveness of the SRFJ and SRLJ strategies

in reducing the number of SLA violations. This is evident in

the greater percentage of aborted requests on Scenario B (cf.

Fig. 6. Results of Scenario A: SRFJ and SRLJ activated.

Fig. 7. Results of Scenario B: FJV and LJV activated.

Fig. 8. Box-and-whisker diagram of profit values.

Figs. 6 and 7) as well as their lower profit values if compared

to Scenario A (cf. Fig. 8). This was an expected behavior since

FJV and LJV automatically abort requests when either a job

failure or delay occurs in order to free the resources before

reaching the request response time threshold.

Interestingly, the results show an unexpected behavior in

Scenario B: the RVC strategy was more efficient than antic-

ipated. It guaranteed greater profit than VFC and practically

the same profit as VBP (cf. Fig. 8). This occurred because no

adaptation strategy considers future consequences on request

scheduling when taking decisions. Indeed, the strategies do not

rely on predicting customers’ demand. Thus, random choices

of which request should be aborted might fit better the request

scheduling, as observed in Scenario B. This unexpected be-

havior leads to the observation that VFC and VBP adaptation

strategies are efficient if combined to others that handle job

failures and delays such as the configuration of Scenario A.

Finally, there was no significant difference among the profit

values of the same scenario even though different percentages

of requests were aborted. This is because fine values (cf. Equa-

tion 7) varied weakly among 0.05 and 0.09 e approximatively.

Moreover, the amount of requests (φ = 75% of φmax) was

relatively low for the reduced amount of shared resources

(g = 50); besides, the requests were well dispersed and thus

there were no rush moments on the request scheduling.

VII. RELATED WORK

Service-oriented computing has widely investigated how

services can be discovered, composed, monitored and managed

in order to guarantee the proper execution of service-based

applications. With regards to SLA management, specifications

such as WS-Agreements [2] and WSLA [17] specify how

agreements can be negotiated and provide guidelines for

monitoring and auditing service behaviors. Much research

work addresses specific aspects of SLA management, such

as application on resource management [9], SLA enforce-

ment [12] and integrated SLA management [25]. In [21], the

author proposes hierarchical SLA management that enforces

SLA on top of distinct adaptation policies; the policies adjust

network traffic based on current QoS values, guided by high-

level objectives.

While all aforementioned approaches address QoS assur-

ance, they do not provide techniques aiming specifically at

reducing costs. In this context, in [18], [19] the authors propose

to maximize the profit of cloud IaaS providers by means of

resource over-provisioning and dynamically setting the price

according to the supply and demand. Some virtual machines

(VMs) are chosen to be shut down to enable resource over-

provisioning. Although this approach targets profit maximiza-

tion, it relies on the availability QoS which is measured as

VM up-time and SLA violation means the time VMs had been

shut down. Moreover, the solution is placed on the IaaS layer

thus not directly supporting the development of SaaS service

providers as Qu4DS supports.

The SLA@SOI project [25] addresses a similar problem

with this work, but in a different way. Specifically, SLA@SOI

proposes an integrated architecture for SLA management that

associates SLAs with multiple elements of the software stack

at multiple layers. On the other hand, Qu4DS addresses

SLA management at a single (PaaS) layer. Furthermore, the

SLA@SOI project provides a set of highly generic building

blocks, intended to be applicable to arbitrary deployment

contexts. Qu4DS provides a complete management solution

for web-service providers that build on utility infrastructures,

while allowing extensibility with respect to adaptation strate-

gies and infrastructure technologies.

VIII. CONCLUSIONS

This paper has presented a framework, Qu4DS, that fa-

cilitates SLA management for services built on distributed

infrastructures, such as IaaS clouds. The framework con-

tributes to increasing the provider profit by dynamically man-

aging services and resources, taking into account SLA prices,

fines, and infrastructure costs. The framework is modularly

structured as a set of control loops configured with replace-

able adaptation strategies, thus increasing its applicability to

different application domains, workload characteristics, and

adaptation objectives. The framework includes mechanisms

for SLA negotiation and QoS translation, thus supporting in

an integrated way the full SLA life-cycle, from contract ne-

gotiation to service termination. The paper has also presented

detailed experimental results demonstrating that the framework

can effectively increase provider profits and maintain SLA

compliance in dynamic environments.

We intend to continue this work in several ways. First, we

intend to add support for dynamically adjusting the number of

booked resources to match current demand and to avoid over-

provisioning, taking full advantage of the elastic capabilities of

cloud infrastructures. Second, we intend to develop additional

adaptation strategies and to evaluate them in the context of

various workload and infrastructure conditions. Supporting

the automated selection of suitable adaptation strategies is a

longer-term goal of this work.

IX. ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme [FP7/2007-2013] under grant agreement 215483 (S-

CUBE). Experiments presented in this paper were carried out

using the Grid’5000 experimental testbed, being developed

under the INRIA ALADDIN development action with support

from CNRS, RENATER and several Universities as well as

other funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/, April 2011.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement
Specification (WS-Agreement). Technical report, Global Grid Forum,
2007.

[3] M.-E. Bégin. An EGEE Comparative Study: Grids and Clouds -
Evolution or Revolution. Technical report, CERN - Engeneering and
Equipment Data Management Service, June 2008.

[4] S. Benkner and G. Engelbrecht. A Generic QoS Infrastructure for
Grid Web Services. Advanced International Conference on Telecommu-

nications / Internet and Web Applications and Services, International

Conference on, 0:141, 2006.

[5] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
B. Quetier, and O. Richard. Grid’5000: A large scale and highly
reconfigurable grid experimental testbed. In Proceedings of the 6th

IEEE/ACM International Workshop on Grid Computing, GRID ’05,
pages 99–106, Washington, DC, USA, 2005. IEEE Computer Society.

[6] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews,
C. Morin, L. P. Prieto, and A. Reinefeld. XtreemOS: a Vision for a Grid
Operating System. Technical report, XtreemOS Consortium, May 2008.

[7] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented
Systems. Journal of Computer Science and Technology, 21:513–520,
2006.

[8] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. Saga: A simple api for
grid applications - high-level application programming on the grid.
Computational Methods in Science and Technology: special issue ”Grid

Applications: New Challenges for Computational Methods”, SC05:8(2),
Nov. 2005.

[9] P. Hasselmeyer, B. Koller, L. Schubert, and P. Wieder. Towards SLA-
Supported Resource Management. In HPCC ’06: Proceedings of the

2006 International Conference on High Performance Computing and

Communications, pages 743–752. Springer, 2006.

[10] F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in
a service-oriented component model. In SEAMS ’08: Proceedings of

the 2008 international workshop on Software engineering for adaptive

and self-managing systems, pages 97–104, New York, NY, USA, 2008.
ACM.

[11] S. Jha, A. Merzky, and G. Fox. Using Clouds to Provide Grids with
Higher Levels of Abstraction and Explicit Support for Usage Modes.
Concurrency and Computation: Practice & Experience, 21:1087–1108,
2009.

[12] Jose Antonio Parejo and Pablo Fernandez and Antonio Ruiz-Cortés and
José Marı́a Garcı́a. SLAWs: Towards a Conceptual Architecture for SLA
Enforcement. In Services, IEEE Congress on, volume 0, pages 322–328.
IEEE Computer Society, 2008.

[13] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, January 2003.

[14] S. Lehmann and P. Buxmann. Pricing Strategies of Software Vendors.
Business & Information Systems Engineering, 1(6):452–462, 2009.

[15] S. Lehmann, T. Draisbach, P. Buxmann, and C. Koll. Pricing Models
of Software as a Service Providers: Usage-Dependent Versus Usage-
Independent Pricing Models. In G. Dhillon, editor, Proceedings of

the 8th Annual Conference on Information Science, Technology &

Management (CISTM’10), August 2010.

[16] Lillard, Terrence V. and Garrison, Clint P. and Schiller, Craig A. and
Steele, James. The Future of Cloud Computing, pages 319–339. Elsevier,
2010.

[17] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web Service
Level Agreement (WSLA) Language Specification. Technical report,
IBM, 2003.

[18] M. Macı́andas, J. Fitó and, and J. Guitart. Rule-based SLA management
for revenue maximisation in Cloud Computing Markets. In CNSM’10:

Proceedings of the 6th IEEE/IFIP International Conference on Network

and Service Management, pages 354 –357, oct. 2010.

[19] M. Macı́andas and J. Guitart. Maximising Revenue in Cloud Comput-
ing Markets by means of Economically Enhanced SLA Management.
Technical Report UPC-DAC-RR-2010-32, Universitat Politècnica de
Catalunya. Departament d’Arquitectura de Computadors, 2010.

[20] Nurmi, Daniel and Wolski, Rich and Grzegorczyk, Chris and Obertelli,
Graziano and Soman, Sunil and Youseff, Lamia and Zagorodnov,
Dmitrii. The Eucalyptus Open-Source Cloud-Computing System. In
Proceedings of the 2009 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, pages 124–131, 2009.

[21] P. R. Pereira. Service Level Agreement Enforcement for Differentiated
Services. In Second International Workshop of the EURO-NGI Network

of Excellence, Villa Vigoni, Italy, July 13-15 2005.

[22] S-CUBE Consortium. Taxonomy of Adaptation Principles and Mecha-
nisms. Deliverable 1.2.2, May 2009.

[23] The FLAC project. Free Lossless Audio Codec (FLAC).
http://flac.sourceforge.net/, 2011.

[24] The Xith Open Source Community. The Ogg container format.
http://xiph.org/ogg/, July 2010.

[25] W. Theilmann, J. Happe, C. Kotsokalis, A. Edmonds, K. Kearney, J.

Lambea. A Reference Architecture for Multi-Level SLA Management.
Journal of Internet Engineering, 4, 2010.

Autonomic SLA-aware Service
Virtualization for Distributed Systems

Attila Kertész, Gábor Kecskeméti
Computer and Automation Research Institute

MTA SZTAKI
H-1518 Budapest, P.O. Box 63, Hungary

attila.kertesz, kecskemeti@sztaki.hu

Ivona Brandic
Distributed Systems Group

Vienna University of Technology
1040 Vienna, Argentinierstr. 8/181-1, Austria

ivona@infosys.tuwien.ac.at

Abstract—Cloud Computing builds on the latest achieve-
ments of diverse research areas, such as Grid Computing,
Service-oriented computing, business processes and virtual-
ization. Managing such heterogeneous environments requires
sophisticated interoperation of adaptive coordinating compo-
nents. In this paper we introduce an SLA-aware Service Virtu-
alization architecture that provides non-functional guarantees
in the form of Service Level Agreements and consists of a three-
layered infrastructure including agreement negotiation, service
brokering and on demand deployment. In order to avoid costly
SLA violations, flexible and adaptive SLA attainment strategies
are used with a failure propagation approach. We demonstrate
the advantages of our proposed solution with a biochemical
case study in a Cloud simulation environment.

Keywords-Cloud Computing; SLA-negotiation; Service Bro-
kering; On-demand deployment;

I. INTRODUCTION

Cloud Computing [6] builds on the latest achievements
of diverse research areas, such as Grid Computing, Service-
oriented computing, business processes and virtualization.
Both Grids and Service Based Applications (SBAs) al-
ready provide solutions for executing complex user tasks,
but they are still lacking non-functional guarantees. The
newly emerging demands of users and researchers call for
expanding service models with business-oriented utilization
(agreement handling) and support for human-provided and
computation-intensive services [6]. Providing guarantees in
the form of Service Level Agreements (SLAs) are highly
studied in Grid Computing [18]. Nevertheless in Clouds,
infrastructures are also represented as a service that are not
only used but also installed, deployed or replicated with the
help of virtualization. These services can appear in complex
business processes, which further complicates the fulfillment
of SLAs in Clouds. For example, due to changing com-
ponents, workload and external conditions, hardware and
software failures, already established SLAs may be violated.
Frequent user interactions with the system during SLA nego-
tiation and service executions (which are usually necessary
in case of failures), might turn out to be an obstacle for
the success of Cloud Computing. Thus, there is demand
for the development of SLA-aware Cloud middleware, and

application of appropriate strategies for autonomic SLA
attainment. Despite cloud computing’s business-orientation,
the applicability of Service-level agreements in the Cloud
middleware is rarely studied, yet [23]. Most of the existing
work address provision of SLA guarantees to the consumer
and not necessarily the SLA-based management of loosely
coupled Cloud infrastructure. In such systems it is hard to
localize where the failures have happen exactly, what the
reason is for the failure and which reaction should be taken
to solve the problem. Such systems are implemented in a
proprietary way, making it almost impossible to exchange
the components (e.g. use another version of the broker).

Autonomic Computing is one of the candidate technolo-
gies for the implementation of SLA attainment strategies.
Autonomic systems require high-level guidance from hu-
mans and decide, which steps need to be done to keep the
system stable [10]. Such systems constantly adapt them-
selves to changing environmental conditions. Similar to
biological systems (e.g. human body) autonomic systems
maintain their state and adjust operations considering chang-
ing components, workload, external conditions, hardware
and software failures. An important characteristic of an
autonomic system is an intelligent closed loop of control.
The Autonomic Manager (AM) manages the element’s state
and behaviour. It is able to sense state changes of the
managed resources and to invoke appropriate set of actions
to maintain some desired system state. Typically control
loops are implemented as MAPE (monitoring, analysis,
planning, and execution) functions [10]. The monitor col-
lects state information and prepares it for the analysis.
If deviations to the desired state are discovered during
the analysis, the planner elaborates change plans, which
are passed to the executor. However, for the successful
implementation of the autonomic principles loosely coupled
SLA-based Cloud middleware is required. In such system
failure source should be identified based on violated SLAs
and located exactly considering different components of
a Cloud middleware (virtualization, brokering, negotiation,
etc. components). Thus, once the failure is identified Service
Level Objectives (SLOs) can be used as a guideline for the

autonomic reactions.
In this paper we introduce a novel architecture consid-

ering resource provision using a virtualization approach
and combining it with the business-oriented utilization used
for the SLA agreement handling. Thus, we provide an
SLA-coupled infrastructure for on-demand service provision
based on SLAs (called SLA-based Service Virtualization –
SSV). We also exemplify how autonomic behaviour appears
in the architecture in order to cope with changing user
requirements and on demand failure handling. The main
contributions of this paper include: (i) the presentation of
the novel loosely coupled architecture for the SLA-based
Service virtualization and on-demand resource provision, (ii)
description of the architecture including meta-negotiation,
meta-brokering, brokering and automatic service deployment
with respect to its autonomic behaviour, and (iii) the valida-
tion of the SSV architecture with a biochemical case study
in a Cloud simulation environment.

II. RELATED WORK

Though Cloud Computing is highly studied and a large
body of work has been done trying to define and envision
the boundaries of this new area, despite business-orientation,
the applicability of Service-level agreements in the Cloud
middleware is rarely studied, yet [23]. The envisioned frame-
work in [7] proposes a solution to extend the web service
model by introducing and using semantic web services.
The need for SLA handling, brokering and deployment also
appears in this vision, but they focus on using ontology
and knowledge-based approaches. Most of related works
consider either virtualization approaches [8] without taking
care of agreements or concentrate on SLA management
neglecting the appropriate resource virtualizations [21]. The
work by Van et. al. [22] studied the applicability of the
autonomic computing to Cloud-like systems, but they al-
most exclusively focus on virtualization issues like Virtual
Machine (VM) packing and placement.

Comparing the currently available solutions, autonomic
principles are not implemented in a adequate way because
of they are lacking an SLA-coupled Cloud infrastructure,
where failures and malfunctions can be identified using
well defined SLA contracts. Work presented in this paper
is the first attempt to develop an SLA-coupled autonomic
Cloud infrastructure in an adequate way. Works presented
in [19], [17] discuss incorporation of SLA-based resource
brokering into existing Grid systems, but they do not deal
with virtualization. The Rudder framework [15] facilitates
automatic Grid service composition based on semantic ser-
vice discovery and space based computing. Venugopal et
al. propose a negotiation mechanism for advance resource
reservation using the alternate offers protocol [26], however,
it is assumed that both partners understand the alternate
offers protocol.

Current deployment solutions do not leverage their ben-
efits on higher level. For example the Workspace Service
(WS) [8] as a Globus incubator project supports wide range
of scenarios involving virtual workspaces, virtual clusters
and service deployment from installing a large service stack
to deploy a single WSRF service if the Virtual Machine
image of the service is available. It is designed to support
several virtual machines. The XenoServer open platform
[20] is an open distributed architecture based on the XEN
virtualization technique aiming at global public computing.
The platform provides services for server lookup, registry,
distributed storage and a widely available virtualization
server. Also the VMPlants [14] project proposes an auto-
mated virtual machine configuration and creation service
which is heavily dependent on software dependency graphs,
but this project stays within cluster boundaries.

Figure 1. The SSV architecture.

III. THE AUTONOMIC, SLA-BASED SERVICE
VIRTUALIZATION (SSV) ARCHITECTURE

In this section we present a unified service architecture
that builds on three main areas: agreement negotiation,
brokering and service deployment using virtualization (more
detailed descriptions on the architecture can be read in
[11]). We suppose that service providers and service con-
sumers meet on demand and usually do not know about
the negotiation protocols, document languages or required
infrastructure of the potential partners. Figure 1 shows our

Meta
negotiatior

(MN)
Meta broker

(MB)
Automatic

Service
Deployer (ASD)

Autonomic
Service

Instance (S)

Autonomic
Manager (AM)

Sensor

Job Management
Negotiation

Self
Management

Sensor

Sensor

Actuator:
VieSLAF

framework

Figure 2. Autonomic components in the SSV.

proposed, general architecture. The main components of the
architecture and their roles are gathered in Table I, while the
sequence diagram in Figure 3 reveals the interactions of the
components and the utilization steps of the architecture:

Agreement negotiation. First the user starts a negotiation
for executing a service with certain QoS requirements (spec-
ified in a Service Description (SD) with an SLA). Then
the Meta-Negotiator (MN) asks the Meta-Broker (MB), if
it could execute the service with the specified requirements.
Later on MB matches the requirements to the properties of
the available brokers and replies with an acceptance or a
different offer for renegotiation. After this phase the MN
replies with the answer of MB. These initial steps may
continue for renegotiations, until both sides agree on the
terms.

Service request. After the agreement has been established
the user calls the service with the SD and SLA. Then the
MN passes SD and the transformed SLA (to the protocol
the selected broker (B) understands) to the MB. In the next
phase the MB calls the selected Broker with SLA and a
possibly translated SD (to the language of the Broker). Then
the broker executes the service with respect to the terms of
the SLA (if needed deploys the service before execution).
Finally the result of the execution is reported to the Broker,
the MB, the MN, finally to the User (or workflow engine).

Information collection. While serving requests the archi-
tecture also processes background tasks that are not in the
ideal execution path, these are also presented on Figure
3. The following background tasks are information collect-
ing procedures that provide accurate information about the
current state of the infrastructure up to the meta-broker

level. In “step a” the Automatic Service Deployer (ASD)
monitors the states of the virtual resources and deployed
services. Then in “step b” ASD reports service availability
and properties to its Broker. Finally at “step c” all Brokers
report available service properties to the MB.

A. Autonomic behaviour in the SSV architecture

The sequence diagram of Figure 3 represents the ideal
execution flow of the SSV architecture, therefore it does not
reflect cases when unexpected events occur during the oper-
ation of each component. The SSV architecture targets these
events with the autonomic management interfaces introduced
on Figure 2. We distinguish three types of interfaces in our
architecture: the job management interface, the negotiation
interface and the self-management interface. Negotiation
interfaces are typically used by the monitoring processes of
brokers and meta-broker during the negotiation phases of the
service deployment process. Self-management is needed to
re-negotiate established SLAs during service execution. Job
management interfaces are necessary for the manipulation
of services during execution, for example for the upload
of input data, or for the download of output data, and for
starting or canceling service executions.

The Autonomic manager in the SSV architecture is an
abstract component that specifies how self-management is
carried out. The manager can be implemented in the different
layers of the architecture in order to handle the different
unexpected situations. For the identification of failures we
use case-based reasoning with a knowledge database, since
the identification of failure sources (done by sensors) and
mapping failures to appropriate reactions (done by actuators)

Meta Negotiator Meta Broker Broker Automatic
Service Deployer

Service Instance
A

Service Instance
B

User

loop (renegotiation needed)

QoS Reqs

QoS Reqs
Check
broker
props

Renegotiation

Target broker

alt
[QoS reqs can't be met]

[else]

Translate
Reqs

Service Req

Service Req

Service Req
Service response

Deploy req

Completed
Service Req

Service response

alt
[available service]

[else]

Resource

step a)
step b)step c)

Information
System

Dataflows

Figure 3. Component interactions in the SSV architecture.

are trivial tasks, and they are part of our ongoing work
[1]. However the discussion of the knowledge database
and layered notifications is out of scope of this paper,
therefore here we mention three typical reactive actions
we support in our SSV: namely negotiation bootstrapping,
broker breakdown and self-initiated deployment. Negotiation
bootstrapping occurs when the architecture needs to select a
new negotiation strategy. Broker breakdowns are handled by
the Meta-Broker component by initiating renegotiation on an
already executed service call. Finally a service instance can
guarantee the negotiated SLAs by deploying another service
instance and redirecting the calls causing the unexpected
service behaviour (more details on these failures and reactive
actions can be read in [12]). An example software actuator
used for the meta-negotiations is the VieSLAF framework
[3], which bridges between the incompatible SLA templates
by executing the predefined SLA mappings.

B. Dependencies between the SSV components

During the negotiation process the MB interacts with MN:
it receives a service request with the service description and
SLA terms, and looks for a deployed service reachable by
some broker that is able to fulfil the specified terms. If a
service is found, the SLA will be accepted and the and

MN notified, otherwise the SLA will be rejected. If the
service requirements are matched and only the terms cannot
be fulfilled, it could continue the negotiation by modifying
the terms and wait for user approval or further modifications.

The Information Collector (IC) component of MB stores
the data of the reachable brokers and historical data of the
previous submissions. It also communicates with the ASDs,
and receives up-to-date data about the available services and
predicted invocation times (that might also include service
deployment before the actual invocation). This information
shows whether the chosen broker is available, or how reliable
its services are.

Finally service brokers could instruct ASDs to deploy
a new service instance. However, deployments could also
occur independently from the brokers as explained in the
following. After these deployments the ASD has to notify
the corresponding service brokers about the infrastructure
changes. This notification is required, because the IC caches
the state of the SBA for scalability. Thus even though a
service has just been deployed on a new site, the broker will
not direct service requests there. This is especially needed
when the deployment was initiated to avoid an SLA violation
(e.g. self-initiated deployment).

Table I
ROLES IN SSV ARCHITECTURE

Acronym Role Description
U User A person, who wants to use a

service
MN Meta-Negotiator A component that manages

Service-level agreements. It
mediates between the user
and the Meta-Broker, se-
lects appropriate protocols for
agreements; negotiates SLA
creation, handles fulfilment
and violation ([2]).

MB Meta-Broker Its role is to select a bro-
ker that is capable of ex-
ecuting/deploying a service
with the specified user re-
quirements ([13]).

B Broker It interacts with virtual or
physical resources, and in
case the required service
needs to be deployed it inter-
acts directly with the ASD.

ASD Automatic It installs the required service
Service on the selected resource

Deployment on demand ([9]).
S Service The service that users want to

deploy and/or execute
R Resource Physical machines, on which

virtual machines can be de-
ployed/installed.

IV. EVALUATION OF THE SSV ARCHITECTURE WITH
CLOUDSIM

In order to evaluate our proposed SSV solution, we use
a typical biochemical application as a case study called
TINKER Conformer Generator application [24], gridified
and tested on production Grids. The application generates
conformers by unconstrained molecular dynamics at high
temperature to overcome conformational bias then finishes
each conformer by simulated annealing and energy mini-
mization to obtain reliable structures. Its aim is to obtain
conformation ensembles to be evaluated by multivariate
statistical modeling.

The execution of the application consists of three phases:
The first one is performed by a generator service responsible
for the generation of input data for parameter studies (PS)
in the next phase. The second phase consist of a PS sub-
workflow, in which three PS services are defined for ex-
ecuting three different algorithms (dynamics, minimization
and simulated annealing – we refer to these services and
the generator service as TINKERALG), and an additional
PS task that collects the outputs of the three threads and
compresses them (COLL). Finally in the third phase, a
collector service gathers the output files of the PS sub-
workflows and uploads them in a single compressed file
to the remote storage (UPLOAD). These phases contain 6

services, out of which four are parameter study tasks that
are executed 50 times. Therefore the execution of the whole
workflow means 202 service calls. We set up the simulation
environment for executing a similar workflow.

For the evaluation, we have created a general simulation
environment, in which all stages of service execution in
the SSV architecture can be simulated and coordinated. We
have created the simulation environment with the help of the
CloudSim toolkit [4] (that includes and extends GridSim).
It supports modeling and simulation of large scale Cloud
computing infrastructure, including data centers, service
brokers and provide scheduling and allocations policies. Our
general simulation architecture that builds both on GridSim
and on CloudSim, can be seen in Figure 4. On the left-
bottom part we can see the GridSim components used for
the simulated Grid infrastructures, and on the right-bottom
part we can find CloudSim components. Grid resources
can be defined with different Grid types, they consist of
more machines, to which workloads can be set, while Cloud
resources are organized into Datacenters, on which Virtual
machines can be deployed. Here service requests are called
as cloudlets, which can be executed on virtual machines.
On top of this simulated Grid and Cloud infrastructures
we can set up brokers. Grid brokers can be connected to
one or more resources, on which they can execute so-called
gridlets (ie. service requests). Different properties can be set
to these brokers and various scheduling policies can also
be defined. A Cloud broker can be connected to a data
center with one or more virtual machines, and it is able to
create and destroy virtual machines during simulation, and
execute cloudlets on these virtual machines. The Simulator
class is a CloudSim entity that can generate a requested
number of service requests with different properties, start
and run time. It is connected to the created brokers and able
to submit these requests to them (so is acts as a user or
workflow engine). It is also connected to the Grid Meta-
Broker Service through its web service interface and able to
call its matchmaking service for broker selection.

We submitted the simulated workflow in three phases:
in the first round 61 service requests for input generation,
then 90 for executing various TINKER algorithms, finally
in the third round 51 calls for output preparation. The
simulation environment was set up similarly to the real Grid
environment we used for testing the TINKER workflow
application. Estimating the real sizes of these distributed
environments, we set up four simulated Grids (GILDA,
VOCE, SEEGRID and BIOMED [5]) with 2, 4, 6 and 8
resources (each of them had 4 machines). Out of the 202
jobs 151 had special requirements: they use the TINKER
library available in the last three Grids, which means these
calls need to be submitted to these environments, or to Cloud
resources (with pre-deployed TINKER environments). The
simulated execution time of the 150 parameter study services
were set to 30 minutes, the first generator service to 90

Figure 4. Simulation architecture with CloudSim.

minutes, and the other 51 were set to 10 minutes. All of the
four brokers (set to each simulated Grid one-by-one) used
random resource selection policy, and all the resources had
background workload, for which the traces were taken from
the Grid Workloads Archive (GWA) [25] (we used the GWA-
T-11 LCG Grid log file). In our simulation architecture we
used 20 nodes (called resources in the simulation), therefore
we partitioned the logs and created 20 workload files (out
of the possible 170 according to the number of nodes in the
log). The sorting of the job data to files from the original log
file were done continuously, and their arrival times have not
been modified, and the run time of the jobs also remained
the same. According to these workload files the load of the
simulated environments are shown in Figure 5 (which are
also similar to the load experienced on the real Grids). One
Cloud broker has also been set up. It managed four virtual
machines deployed on a data center with four hosts of dual-
core CPUs. In each simulation all the jobs were sent to the
Meta-Broker to select an available broker for submission.
It takes into account the actual background load and the
previous performance results of the brokers for selection.
If the selected Grid broker had a background load that
exceeded a predefined threshold value, it selected the Cloud
broker instead.

Out of the 202 workflow services 150 use TINKER bina-
ries (three different algorithms are executed 50 times). These
requirements can be formulated in SLA terms, therefore each
service of the workflow has an SLA request. If one of these
requests are sent to the Cloud broker, it has to check if a
virtual machine (VM) has already been created that is able

to fulfil this request. If there is no such VM, it deploys one
on-the-fly. For the evaluation we used three different Cloud
broker configurations: in the first one four pre-deployed VMs
are used – one for each TINKER algorithm (TINKERALG)
and one for data collecting (capable for both COLL and
UPLOAD, used by the last 51 jobs). In the second case we
used only one pre-deployed VM, and deployed the rest on-
the-fly, when the first call arrived with an SLA. Finally in the
third case, when a VM received more then 15 requests the
Cloud broker duplicated it (in order to minimize the overall
execution time).

Figure 5. Workload of simulated Grids.

Regarding on-demand deployment, we have created 4
virtual appliances encapsulating the four different services

our TINKER workflow is based on (namely TINKERALG,
COLL and UPLOAD – we defined them in the beginning of
this section). Then we have reduced the size of the created
appliances with ASD’s virtual appliance optimization facil-
ity. Finally we have deployed each service 50 times on an
8 node (32 CPU) Eucalyptus [16] cluster, and measured the
interval between the deployment request and the service’s
first availability. Table II shows the measurement results
for the TINKERALG, COLL and UPLOAD images. These
latencies were also applied in the simulation environment
within the Cloud broker.

Table II
DEPLOYMENT TIMES OF THE DIFFERENT SERVICES IN THE TINKER

APPLICATION.

Service Average deployment time Standard deviation
GEN 8.2 sec 1.34 sec

TINKERALG 8.3 sec 1.48 sec
COLL 6.9 sec 0.84 sec

UPLOAD 6.9 sec 1.21 sec

In order to evaluate the performance of our proposed
SSV solution we compare it to a general meta-brokering
architecture used in Grid environments. Using this approach
we created four simulations: in the first one we use only grid
brokers by the Meta-Broker (denoted by MB in the figures)
to reach grid resources of the simulated Grids. In the second,
third and fourth case we extend the matchmaking of the
Meta-Broker (in order to simulate the whole SSV): when the
background load of the selected grid broker exceeds 113%,
it selects the Cloud broker instead. In the second case the
Cloud broker has four pre-deployed VMs (4VMs), while
in the third case only one, and later creates three more as
described before (1+3VMs), and in the fourth it has one pre-
deployed and creates 7 more on demand (1+3+4VMs). In
Figure 6 and 7 we can see the evaluation results denoting the
average and detailed execution times of the service requests
respectively.

Figure 6. Average request run times.

From these results we can clearly see that the simulated
SSV architecture overperforms the former (purely) Grid

meta-brokering solution. Comparing the different deploy-
ment strategies we can see that on demand deployment
introduces some overhead (4VMs was faster then 1+3VMs),
but service duplication (1+3+4VMs) can enhance the perfor-
mance and help to avoid SLA violations with additional VM
deployment costs.

Figure 7. Detailed run times of requests.

V. CONCLUSION

In heterogeneous, distributed service-based environments
such as Grids and Clouds, there is an emerging need for
transparent, business-oriented autonomic service execution.
In the future more and more companies will face the problem
of unforeseen, occasional demand for a high number of
computing resources. In this paper we have investigated how
such problems could arise, and proposed a novel approach
called Service-level agreement-based Service Virtualization
(SSV). The presented general, conceptual architecture is
built on three main components: the Meta-Negotiator re-
sponsible for agreement negotiations, the Meta-Broker for
selecting the proper execution environment, and the Auto-
matic Service Deployer for service virtualization and on-
demand deployment. We have also discussed how the prin-
ciples of autonomic computing are incorporated to the SSV
architecture to cope with the error-prone virtualization envi-
ronments. The proposed service virtualization architecture is
validated in a simulation environment based on CloudSim,
using a general biochemical application as a case study. The
evaluation results clearly fulfill the expected utilization gains
compared to a less heterogeneous Grid solution.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube), and from EGI-InSPIRE project (contract number
RI-261323) and the Vienna Science and Technology Fund

(WWTF) under agreement ICT08-018, FoSII – Foundations
of Self-governing ICT Infrastructures.

REFERENCES

[1] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Acs, A. Kertesz,
G. Kecskemeti, S. Dustdar. LAYSI: A Layered Approach for
SLA-Violation Propagation in Self-manageable Cloud Infras-
tructures. In Proc. of the First IEEE International Workshop
on Emerging Applications for Cloud Computing, Seoul, Korea,
2010.

[2] I. Brandic, D. Music, S. Dustdar. Service Mediation and Ne-
gotiation Bootstrapping as First Achievements Towards Self-
adaptable Grid and Cloud Services. In Proceedings of Grids
meet Autonomic Computing Workshop. ACM. 2009.

[3] I. Brandic, D. Music, P. Leitner, S. Dustdar. VieSLAF Frame-
work: Enabling Adaptive and Versatile SLA-Management.
In the 6th International Workshop on Grid Economics and
Business Models 2009 (Gecon09), 2009.

[4] R. Buyya, R. Ranjan and R. N. Calheiros, Modeling and
Simulation of Scalable Cloud Computing Environments and
the CloudSim Toolkit: Challenges and Opportunities, in proc.
of the 7th High Performance Computing and Simulation Con-
ference, 2009.

[5] Enabling Grids for E-sciencE (EGEE) project website:
http://public.eu-egee.org/

[6] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic.
Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 2009.

[7] R. Howard and L. Kerschberg. A knowledge-based framework
for dynamic semantic web services brokering and management.
In DEXA ’04: Proceedings of the Database and Expert Systems
Applications, 15th International Workshop, pp. 174–178, IEEE
Computer Society, 2004.

[8] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of life
in the grid. Sci. Program., 13(4):265–275, 2005.

[9] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, T. De-
laitre. Automatic service deployment using virtualisation. In
Proc. of 16th Euromicro International Conference on Parallel,
Distributed and network-based Processing. IEEE Computer
Society. 2008.

[10] J.O. Kephart, D.M. Chess. The vision of autonomic comput-
ing. Computer . 36:(1) pp. 41-50, Jan 2003.

[11] A. Kertesz, G. Kecskemeti, and I. Brandic. An SLA-based
resource virtualization approach for on-demand service provi-
sion. In Proceedings of the 3rd international Workshop on Vir-
tualization Technologies in Distributed Computing (Barcelona,
Spain, June 15 - 15, 2009). ACM, New York, pp. 27-34, 2009.

[12] A. Kertesz, G. Kecskemeti, and I. Brandic. Autonomic Re-
source Virtualization in Cloud-like Environments. In Technical
Report, TUV-1841-2009-04. Distributed Systems Group, Insti-
tute for Information Systems, Vienna University of Technology,
2009.

[13] A. Kertesz and P. Kacsuk. GMBS: A New Middleware
Service for Making Grids Interoperable. Future Generation
Computer Systems, Volume 26, Issue 4, pp. 542–553, 2010.

[14] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual ma-
chine execution environments for grid computing. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, Washington, DC, USA, 2004. IEEE Computer Society.

[15] Z. Li and M. Parashar. An infrastructure for dynamic
composition of grid services. In GRID ’06: Proceedings of the
7th IEEE/ACM International Conference on Grid Computing,
pages 315–316, Washington, DC, USA, 2006. IEEE Computer
Society.

[16] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In CCGRID, pages 124–131. IEEE
Computer Society, 2009.

[17] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and
K. Krishnakumar. A multi-agent infrastructure and a service
level agreement negotiation protocol for robust scheduling in
grid computing. In Proceedings of the 2005 European Grid
Computing Conference (EGC 2005), February 2005.

[18] M. Parkin, D. Kuo, J. Brooke, and A. MacCulloch. Chal-
lenges in eu grid contracts. In Proceedings of the 4th eChal-
lenges Conference, pp. 67–75, 2006.

[19] D. M. Quan and J. Altmann. Mapping a group of jobs
in the error recovery of the grid-based workflow within sla
context. Advanced Information Networking and Applications,
International Conference on, 0:986–993, 2007.

[20] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: Accountable execution of untrusted programs. In
In Workshop on Hot Topics in Operating Systems, pages 136–
141, 1999.

[21] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska. Experi-
ences with gria – industrial applications on a web services grid.
In E-SCIENCE ’05: Proc. of the First International Conference
on e-Science and Grid Computing, pp. 98–105, 2005. IEEE
Computer Society.

[22] H. N. Van, F. D. Tran, and J. Menaud. Autonomic vir-
tual resource management for service hosting platforms. In
Proceedings of the ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pages 1–8, 2009.

[23] C. A. Yfoulis, and A. Gounaris. Honoring SLAs on cloud
computing services: a control perspective. In Proceedings of
the European Control Conference, 2009.

[24] TINKER Conformer Generator workflow:
http://www.lpds.sztaki.hu/gasuc/index.php?m=6&r=12

[25] The Grid Workloads Archive website:
http://gwa.ewi.tudelft.nl

[26] S. Venugopal, R. Buyya, and L. Winton. A grid service
broker for scheduling e-science applications on global data
grids. Concurrency and Computation: Practice and Experi-
ence, 18(6):685–699, 2006.

	Deliverable Overview
	Introduction
	Deliverable Structure
	The WP-JRA-2.3 Research Architecture
	Background
	Non-Functional Properties and Quality-of-Service
	Service Discovery Based on Non-Functional Properties
	Service Level Agreements

	Overview of the Contributions
	Stimulating Skill Evolution in Market-based Crowdsourcing Satzgeretal2011
	End-to-End Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo michlmayr:10
	Cost-Based Optimization of Service Compositions leitner:11
	Towards Optimizing the Non-Functional Service Matchmaking Time
	Cost Reduction Through SLA-driven Self-Management LAGEFREITAS:2011:INRIA-00600289:1
	Autonomic SLA-aware Service Virtualization for Distributed Systems Kerteszetal2011

	Contributions to QoS and SLA aware service runtime environment
	Stimulating Skill Evolution in Market-based Crowdsourcing
	Background
	Problem Statement
	Contribution Relevance
	Contribution Summary
	Contribution Evaluation
	Conclusions

	End-to-End Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo
	Background
	Problem Statement
	Contribution Relevance
	Contribution Summary
	Contribution Evaluation
	Conclusions

	Cost-Based Optimization of Service Compositions
	Background
	Problem Statement
	Contribution Relevance
	Contribution Summary
	Contribution Evaluation
	Conclusions

	Towards Optimizing the Non-Functional Service Matchmaking Time
	Background
	Problem Statement
	Contribution Relevance
	Contribution Summary
	Contribution Evaluation
	Conclusions

	Cost Reduction Through SLA-driven Self-Management
	Background
	Problem Statement
	Contribution Relevance
	Contribution Summary
	Contribution Evaluation
	Conclusions

	Autonomic SLA-aware Service Virtualization for Distributed Systems
	Background
	Problem Statement
	Contribution Relevance
	Contribution Summary
	Contribution Evaluation
	Conclusions

	Conclusions
	Outlook and Future Research Challenges

	Bibliography
	Attached Papers
	Stimulating Skill Evolution in Market-based Crowdsourcing
	End-to-End Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo
	Cost-Based Optimization of Service Compositions
	Towards Optimizing the Non-Functional Service Matchmaking Time
	Cost Reduction Through SLA-driven Self-Management
	Autonomic SLA-aware Service Virtualization for Distributed Systems

