
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
FP7/2007-2013 under grant agreement n° 215483 (S-Cube).

Title: Knowledge extraction of service usage

Authors: CNR, TUW, SZTAKI

Editor: Fabrizio Silvestri (CNR)

Reviewers: Osama Sammodi (UniDuE)

 Elisabetta di Nitto (PoliMi)

Identifier: Deliverable #PO-JRA-2.3.7

Type: Deliverable

Version: 1.0

Date: 30 June 2011

Status: Final

Class: External

Management Summary

This deliverable is aimed at summarizing the joint research in WP-JRA-2.3. related to knowledge extrac-
tion from service usage. The work is focused on methodologies to extract knowledge from service/Web
logs and possible applications of them in order to enhance service/Web applications. Results are pre-
sented in four published papers and one technical report that constitute the core contribution of this de-
liverable. The work is positioned within the Integrated Research Framework (IRF, WP-IA-3.1), internal
WP-JRA-2.3 research architecture and overall WP-JRA-2.3 goals and visions.

Members of the S-Cube consortium
University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Universit Claude Bernard Lyon France
University of Crete Greece
Universidad Politcnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL: http:
//www.s-cube-network.eu/results/deliverables/

The S-Cube Deliverable Series

Vision and Objectives of S-Cube
The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary, vi-

brant research community which will enable Europe to lead the software-services revolution, helping
shape the software-service based Internet which is the backbone of our future interactive society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific excel-
lence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by meeting
the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from diverse
research areas and by synthesizing and integrating diversified knowledge, thereby establishing a
long-lasting foundation for steering research and for achieving innovation at the highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and in-
dustry thereby creating a common culture that will have a profound impact on the future of the
field.

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the in-
tegration of research communities and the establishment of a common software services research
culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial com-
petitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based In-
ternet of the future and will accelerate economic growth and improve the living conditions of
European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European com-
petitiveness. S-Cube will provide service engineering methodologies which facilitate the development,
deployment and adjustment of sophisticated hybrid service-based systems that cannot be addressed with
todays limited software engineering approaches. S-Cube will further introduce an advanced training
program for researchers and practitioners. Finally, S-Cube intends to bring strategic added value to Eu-
ropean industry by using industry best-practice models and by implementing research results into pilot
business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

External Final Version 1.0, Dated June 30, 2011 3

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Contents

1 Foreword 6

2 Introduction 7
2.1 Connections to the Integrated Research Framework . 7
2.2 Connections to the JRA-WP-2.3 research architecture 8

3 Description of Data Analyzed 10
3.1 SOA Event Logs . 10
3.2 Web Search Engine Query Logs . 12

4 Different Types of Knowledge Extracted and Possible Applications 15

5 Conclusions 20

A Semantic Resource Allocation with Historical Data Based Predictions 24

B Mining Lifecycle Event Logs for Enhancing Service-based Applications 31

C Towards Efficient Measuring of Web Services API Coverage 40

D Identifying Task-based Sessions in Search Engine Query Logs 48

E Resource and Agreement Management in Dynamic Crowdcomputing Environments 59

External Final Version 1.0, Dated June 30, 2011 4

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

List of Figures

2.1 WP-JRA-2.3 Research Architecture. 8

3.1 VRESCO Event Type Hierarchy . 11
3.2 An example of the AOL query log [15]. 14
3.3 A tag cloud of the 250 most frequent words in the AOL query log [15]. Picture has been

generated using wordle.net. From [20]. 14

External Final Version 1.0, Dated June 30, 2011 5

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Chapter 1

Foreword

According to the Description of Work (Grant Agreement for: Network of Excellence Annex I Descrip-
tion of Work) this deliverable is aimed at documenting the ways a service/web log can be mined in order
to derive useful knowledge. In particular, this deliverable presents different ways of using knowledge
extracted from Service Oriented Architectures (SOAs) event logs and Web search engines log and dif-
ferent applications of such knowledge. The rationale of focusing our interest on these techniques within
the SOA context is motivated by the fact that they have proven to be effective in other domains (e.g. Web
search engines).

The joint research work in WP-JRA-2.3 is composed of two tasks: T-JRA-2.3.1: Infrastructure Mech-
anisms for the Run-Time Adaptation of Services and T-JRA-2.3.2 Service Registration and Search. The
current deliverable is related to T-JRA-2.3.2. As stated in the Description of Work, this deliverable “will
report on studies about the knowledge extracted from the activities in online services. The deliverable
will also report on the techniques studied and used to perform the knowledge extraction task. As one of
the case studies we will use logs from search engines activities to extract knowledge regarding users ac-
tivity”. Therefore, it aims at summarizing the investigations related to extracting knowledge from event
logs collected by complex software systems.

The joint work is focused on applying several state-of-the-art data mining algorithms to event logs
provided by S-Cube partners. In order to fully present the possible outcomes resulting from the applica-
tion of these techniques in the SOA domain we describe, as our running case study, how log mining has
proven to be effective in enhancing the overall performances of complex software systems such as Web
search engines. Results of the research work are presented in four published papers and one technical
report and constitute the core contribution of this deliverable. The work is positioned within the Inte-
grated Research Framework (IRF, WP-IA-3.1), internal WP-JRA-2.3 research architecture and overall
WP-JRA-2.3 goals and visions.

External Final Version 1.0, Dated June 30, 2011 6

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Chapter 2

Introduction

Data is everywhere. Computer systems keep track of activities of users in the form of log files. Ranging
from system logs on Web servers to logs collected by large-scale service based applications, this type of
data represents a goldmine of knowledge that, once extracted, can help the stakeholders of the whole sys-
tem to understand better if, and how, the application can be improved. To this aim, data mining consist of
a set of techniques aiming at extracting patterns from large data sets by combining methods from statis-
tics and artificial intelligence with database management. With recent tremendous technical advances in
processing power, storage capacity, and inter-connectivity of computer technology, data mining is seen
as an increasingly important tool by modern business to transform unprecedented quantities of digital
data into business intelligence giving an informational advantage.

Service-centric systems are said to be flexible and dynamic. To support this flexibility, event process-
ing mechanisms can be used to record which events occur within the system. This includes both basic
“service events” (e.g., service is created) and complex events regarding QoS (e.g., average response time
of service X has changed) and invocations (e.g., service X has been invoked), supporting complex event
processing. Users can subscribe to various events of interest, and get notified either via email or Web ser-
vice notifications (e.g., WS-Eventing). Such notifications may trigger adaptive behavior (e.g., rebinding
to other services). Service Oriented Architectures (SOAs) are thus complex infrastructures consisting of
thousands or millions of service interacting together in order to achieve complex operations (tasks). Ser-
vice invocation logs are file tracing the interactions between services. As in other contexts, data mining
techniques can be thus applied in order to derive useful knowledge. Such knowledge can be spent in
order to enhance both effectiveness and efficiency of the overall infrastructure.

The same approach within other fields like, for example, the Web domain is proven to be effective.
The knowledge extracted by means of data mining techniques from query logs (files containing the
interactions of the users with the search engine) is the first way a search engine improve its performances
in terms of effectiveness and efficiency. In this deliverable we thus investigate how useful knowledge
can be extracted from service logs and possible ways of applications within the SOA context. In order
to do that as one of the case studies we will use logs from search engines activities to extract knowledge
regarding users activity.

2.1 Connections to the Integrated Research Framework

The Integrated Research Framework (IRF) [1] defines four views (other aspects of the IRF, like research
challenges, questions and results are being developed simultaneously with this deliverable and omitted.)

The Conceptual Research Framework organizes the joint research activities by providing a high-
level conceptual architecture for the principles and methods for engineering service based applications,
as well as for the technologies and mechanisms which are used to realize those applications. The work
presented in this deliverable is clearly related to the “Service Composition and Coordination” and “Ser-
vice Infrastructure” domains in the horizontal classification whereas addresses issues of “Adaptation”,

External Final Version 1.0, Dated June 30, 2011 7

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

“Monitoring” and “Quality Definition, Negotiation and Assurance” of the cross-cutting vertical catego-
rization.

The Reference life-cycle complements the static view of the conceptual research framework. It is
composed of two main cycles: one corresponds to the classical application design, deployment and
provisioning while the second one corresponds to the run-time perspective, including monitoring and
adaptation. The work presented in this deliverable corresponds to both of the two cycles. The classical
analysis and design could benefit of the techniques proposed here for adaptation cycle by investigating
techniques aiming at enhancing the analysis and design phase. Furthermore, the run-time perspective ex-
ploits these techniques for detecting problems and changes. The techniques presented in this deliverable
could also be used for identifying possible adaptation/monitoring strategies and enacting them.

The Logical Run-Time Architecture unifies all runtime mechanisms into a coherent framework. The
work reported in this deliverable is related to nearly all components of the logical architecture: Monitor-
ing Engine, Adaptation Engine, Negotiation Engine, Runtime QA Engine and Resource Broker.

The Logical Design Environment is complementary to the run-time architecture and its purpose is to
provide a context where to place the envisioned techniques and mechanisms that support the analyst and
designer during the whole SBA’s lifecycle. Our work is related to modeling and verification. The tech-
niques presented in this work could help SBA designers as they could reveal possible frequent patterns
contained in historical data that could be exploited within new activities.

2.2 Connections to the JRA-WP-2.3 research architecture

Research work in WP-JRA-2.3 is driven by the Work Package vision that structures the research work
internally. Figure 2.1 illustrates the overall research architecture of WP-JRA-2.3: research on service in-
frastructures is comprised in three threads, Service Discovery, Service Registries and Service Execution.
Orthogonally different approaches are separated in three layers.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

Figure 1: WP-JRA-2.3 Research Architecture

Event Strategy

Decider Planner Executor

Policy Guide

Plan

cr
ea

te

tri
gg

er

re
qu

es
t

Monitor

Action

Measure

ex
ec

ut
e

tri
gg

er

cr
ea

te

cr
ea

te

tri
gg

er

Figure 2: Structural decomposition of the general adaptation framework.

The contextual information is gathered by probes through events and measures. Events
can trigger adaptation while measures are done on demand by the analyzing part when com-
plementary information is needed. The monitoring is not only platform specific, it can also be
application or domain specific when adaptation is not due to resources. The application itself
can be monitored, for self-healing purpose for example, by a machine learning software, the user
or by using ad-hoc metrics.

The analyzing part is done by the decider. When receiving an event, the decider chooses if
an adaptation is needed by following a specific decision policy. This structure enables to choose
the decider the best suited to each decision problem without imposing one way to write every
algorithm. Furthermore, this structure enables to use the same decider for different services;
only the policy is specific to each service adaptation.

Once an adaptation is chosen, the decider sends a strategy to the planning part, implemented
by the planner. The planner has to work out how to apply the strategy to the service to adapt;
the implementation of the planner refers to a guide. Which means that the decider has to
decompose the received strategy into elementary tasks to be executed. In order to better know
the current state of the service to adapt, the decider can request contextual measures to the
monitoring part.

External Final Version 1.0, Dated December 15, 2009 5

Figure 2.1: WP-JRA-2.3 Research Architecture.

• Service Discovery Thread (A) - Service discovery is a fundamental element of service oriented
architectures, services heavily rely on it to enable the execution of service-based applications.
Novel discovery mechanisms must be able to deal with millions of services. Additionally, these
discovery mechanisms need to consider new constraints, which are not prevalent today, such as

External Final Version 1.0, Dated June 30, 2011 8

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Quality of Experience requirements and expectations of users, geographical constraints, pricing
and contractual issues, or invocability.

• Service Registry Research Thread (B) - Service registries are tools for the implementation of
loosely-coupled service-based systems. The next generation of registries for Internet-scale service
ecosystems are emerging, where fault tolerance and scalability of registries is of eminent impor-
tance. Autonomic registries need to be able to form loose federations, which are able to work in
spite of heavy load or faults. Additionally, a richer set of metadata is needed in order to capture
novel aspects such as self-adaptation, user feedback evaluation, or Internet-scale process discovery.
Another research topic is the dissemination of metadata: the distributed and heterogeneous nature
of these ecosystems asks for new dissemination methods between physically and logically disjoint
registry entities, which work in spite of missing, untrusted, inconsistent and wrong metadata.

• Runtime Environment Research Thread (C) - There is an obvious need for automatic, autonomic
approaches at run-time. As opposed to current approaches we envision an infrastructure that is
able to adapt autonomously and dynamically to changing conditions. Such adaptation should be
supported by past experience, should be able to take into consideration a complex set of conditions
and their correlations, act proactively to avoid problems before they can occur and have a long
lasting, stabilizing effect.

In alignment with the lifecycle aspect of the Integrated Research Framework, the presented work –
due to its nature -, is related mostly to runtime activities hence, to research topics in thread A in Figure
1. While topic A2 is directly covered topic C1 also presented progress. Service registries and runtime
environments could be enhanced by the techniques presented in the following. In particular, some aspects
of B2 and C2 are covered.

External Final Version 1.0, Dated June 30, 2011 9

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Chapter 3

Description of Data Analyzed

Modern complex software systems save traces of their activities to proper files called “logs”. Such files
could store “events” regarding the whole infrastructure (like in Service Oriented environments) or real
“activities” performed by users interacting with the infrastructure. A possible example of the latter case
could be represented by logs of queries coming from Web search engines.

In this deliverable we focus on these two different types of logs: “event logs” coming from Service
Oriented Architectures and “query logs” coming from Web search engines. We now describe in more
details the main characteristics of an “event log” and a “query log”.

3.1 SOA Event Logs

Events and complex event processing [11] (CEP) are frequently used tools to document and track the
lifecycle of applications in various domains. For instance, in the business domain the idea of business
activity monitoring [9] (BAM) uses events to monitor business process performance. Analogously, tech-
nical implementations of business processes on top of SOAs (service compositions) are often monitored
using CEP. To this end, many service composition engines can be configured to track their current state in
event logs. For instance, the Apache ODE WS-BPEL engine triggers a rich model of execution events1.
Similarly, service compositions implemented using Windows Workflow Foundation can use the .NET
tracking service2 to persist event logs. However, tracking system state via event logs in SOA is not
confined to composition engines. For instance, The Vienna Runtime Environment for Service-Oriented
Computing (VRESCO) [12] uses events to track not only service compositions, but all entities and in-
teractions in a SOA (services, users, compositions, metadata and interactions).

In its most general form, an event log E consists of a sequence of n recorded events, i.e., E =
〈e1, e2, . . . , en〉. Each event ei ∈ E usually contains at least an unique identifier, an event timestamp, the
publisher of the event (e.g., the BPEL engine), the subject of the event (e.g., the composition instance that
triggered the event), and the event type. Depending on the concrete event type, more detailed information
is available. This type-specific information cannot be described generally, i.e., it is different from event
type to event type as well as from system to system. In the following we describe the event types triggered
by the VRESCO system as an example of the possibilities provided by event logs. The VRESCO event
log will also constitute our running data set all along with this deliverable.

VRESCO is an experimental runtime environment developed at Vienna University of Technology.
VRESCO is being developed under an open source license, and can be accessed via the project Web
page3. The project aims at solving some of the research problems identified in [14], e.g., dynamic
selection of services based on Quality-of-Service (QoS), dynamic rebinding and service composition,
service metadata and event-based services computing.

1http://ode.apache.org/ode-execution-events.html
2http://msdn.microsoft.com/en-us/library/ms735887(v=vs.85).aspx
3http://www.infosys.tuwien.ac.at/prototypes/VRESCo/

External Final Version 1.0, Dated June 30, 2011 10

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

In the following we focus on the latter aspect. The foundations of event-based service-oriented
computing have been discussed in [2, 3]. In a nutshell, the goals of this earlier work were to track what
is going on in a service-based application by constantly triggering events and using CEP to construct
meaningful information from those events.

VRESCoEvent

Service
ManagementEvent

QoSEvent

Versioning
Event

Metadata
Event

UserManagement
Event

Server-Side Event Type Classes

QueryingEvent BindingInvocation
Event

Client-Side Event Type Classes

Composition Event

Figure 3.1: VRESCO Event Type Hierarchy

In a VRESCO system, events of various types are triggered. A simplified taxonomy of event type
classes is depicted in Figure 3.1. As can be seen, events are triggered when services are queried, bound
and invoked. Additionally, events indicate if the data or metadata about services changes (e.g., the QoS
is changed, new operations are available). Each of the concrete event type classes (those with non-italic
name) in turn contains a number of concrete event types that can be triggered. For full details on all
events refer to [2].

Events in VRESCO can be triggered either on client- or server-side. While events concerning meta-
data are triggered by the VRESCO server, all querying and invocation events are triggered by clients and
only processed throughout the VRESCO event engine. These client-triggered events are listed in more
detail in Table 3.1. In the table, we provide the condition that triggers each event along with the event
type and event type class of the event. All of these events provide the basic information discussed above
(sequence number, timestamp, . . .). In addition, events generally provide some type-specific additional
information, which we also summarize in the table. For reasons of brevity, we have omitted composition
events. Composition events in VRESCO are of comparable expressiveness as the events triggered by
Apache ODE.

Event Type: BindingInvocationEvent

Event Name Event Condition Event Payload
ServiceInvokedEvent Specific service is invoked Message sent to service
ServiceInvocationFailedEvent Service invocation failed Message sent to service, fault
ProxyRebindingEvent Service proxy is (re-)bound to a specific service Selected service

Event Type: QueryingEvent

Event Name Event Condition Event Payload
RegistryQueriedEvent Registry is queried Query string
ServiceFoundEvent Specific service is found by a query Query string, query results
NoServiceFoundEvent No services are found by a query Query string

Table 3.1: Client-Triggered VRESCO Events.

External Final Version 1.0, Dated June 30, 2011 11

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

The VRESCO event engine stores triggered events in an event log. Therein, events are serialized as
XML and can be accessed and analyzed via a RESTful service interface. In Listing 3.1 we provide an
example event serialized to XML. Evidently, the event reflects a service invocation with a very simple
input message (<order>) as payload.

Listing 3.1: Serialized Invocation Event
<S e r v i c e I n v o k e d E v e n t xmlns=” h t t p : / /www. v i t a l a b . t uwi en . ac . a t / v r e s c o / u s e r t y p e s ”>

<P r i o r i t y>0< / P r i o r i t y>
<P u b l i s h e r>g u e s t< / P u b l i s h e r>
<P u b l i s h e r G r o u p>GuestGroup< / P u b l i s h e r G r o u p>
<UserName>a007b09b−8c23−4fac−af30 −0142 a61f3795< / UserName>
<SeqNum>74006756−64 f1−40cb−858e−565 d4bc6a94c :24< / SeqNum>
<Timestamp>2010−11−09 T09 :58 :49< / Timestamp>
<C u r r e n t R e v i s i o n I d>180< / C u r r e n t R e v i s i o n I d>
<C u r r e n t R e v i s i o n W s d l>

h t t p : / / l o c a l h o s t : 6 0 0 0 0 / AssemblyAtomicSe rv i ce s / I A s s e m b l i n g P l a n n i n g S e r v i c e ? wsdl
< / C u r r e n t R e v i s i o n W s d l>
<FeatureName>G e t P a r t F e a t u r e< / FeatureName>
<I n v o c a t i o n I n f o>

<s e r v i c e i n p u t>
<o r d e r><p a r t 1> t e x t< / p a r t 1>< / o r d e r>

< / s e r v i c e i n p u t>
< / I n v o c a t i o n I n f o>

< / S e r v i c e I n v o k e d E v e n t>

3.2 Web Search Engine Query Logs

Query logs keep track of information regarding interaction between users and the Web search engine.
They record the queries issued to a search engine and also a lot of additional information such as the user
submitting the query, the pages viewed and clicked in the result set, the ranking of each result, the exact
time at which a particular action was done, etc. In general, a query log is comprised by a large number
of records 〈qi, ui, ti, Vi, Ci〉 where for each submitted query qi, the following information is recorded: i)
the anonymized identifier of the user ui, ii) the timestamp ti, iii) the set Vi of documents returned by the
WSE, and iv) the set Ci of documents clicked by ui.

From query log information it is possible to derive Search Sessions, sets of user actions recorded in
a limited period of time. The concept can be further refined into: (i) Physical Sessions, (ii) Logical
Sessions, and (iii) Supersessions.

Physical Sessions: a physical session is defined as the sequence of queries issued by the same user
before a predefined period of inactivity. A typical timeout threshold used in web log analysis is t0 = 30
minutes. [16, 21].

Logical Sessions: a logical session [5] or chain [18] is a topically coherent sequence of queries. A
logical session is not strictly related to timeout constraints but collects all the queries that are motivated
by the same information need (i.e., planning an holiday in a foreign country, gathering information about
a car to buy and so on). A physical session can contain one or more logical session. Jones et al. [8]
introduced the concepts of mission and goal to consider coherent information needs at different level of
granularity, being a goal a sub-task of a mission (i.e., booking the flight is one of the goal in the more
general mission of organizing an holiday).

Supersessions: we refer to the sequence of all queries of a user in the query log, ordered by timestamp,
as a supersession. Thus, a supersession is a concatenation of sessions.

External Final Version 1.0, Dated June 30, 2011 12

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Sessions are, thus, sequences of queries submitted by the same user in the same period of time. This
data can be used to devise typical query patterns, used to enable advanced query processing techniques.
Click-through data (representing a sort of implicit relevance feedback information) is another piece of
information that is generally mined by search engines. In particular, every single kind of user action (also,
for instance, the action of not clicking on a query result) can be exploited to derive aggregate statistics
which are very useful for the optimization of search engine effectiveness. How query logs interact with
search engines has been studied in many papers. Good starting point references are [20, 4, 19].

Query Log Name Public Period # Queries # Sessions # Users
Excite (1997) Y Sep 1997 1,025,908 211,063 ∼410,360
Excite Small (1997) Y Sep 1997 51,473 – ∼18,113

Altavista N Aug 2, 1998 993,208,159 285,474,117 –Sep 13, 1998
Excite (1999) Y Dec 1999 1,025,910 325,711 ∼540,000
Excite (2001) Y May 2001 1,025,910 262,025 ∼446,000
Altavista (public) Y Sep 2001 7,175,648 – –
Tiscali N Apr 2002 3,278,211 – –

TodoBR Y Jan 2003 22,589,568 – –Oct 2003

TodoCL N May 2003 – – –Nov 2003

AOL (big) N Dec 26, 2003 ∼100,000,000 – ∼50,000,000Jan 01, 2004

Yahoo! N Nov 2005 – – –Nov 2006

AOL (small) Y Mar 1, 2006 ∼20,000,000 – ∼650,000May 31, 2006

Microsoft RFP 2006 Y Spring 2006 ∼15,000,000 – –(one month)

Table 3.2: Features of the most important query logs that have been studied in the latest years. The dash
sign (–) means that the feature in the relative column was non-disclosed.

An important key issue in query log mining is the pre-processing of logs in order to produce a good
basis of data to be mined. An important step in usage analysis is thus the data preparation. This step
includes: data cleaning, session identification, merging logs from several applications and removing
requests for robots. This techniques aims to remove irrelevant items, so that the resulting associations
and statistics reflects accurately the interactions of users with the search engine.

Very few query logs have been released to the public community in the last years due to their com-
mercial importance and to privacy issues. Starting from 1997 the query logs that have been released to
the public are: Excite (1997), AltaVista (1998–1999), AOL (2003–2004), AOL (2006), MSN (2006).
Table 3.2 resumes the most important features of the query logs that have been examined in the latest
years.

The most famous query log is undoubtedly AOL and it is also the data set we will refer to in the
following of this document. The AOL data set contains about 20 million queries issued by about 650, 000
different users, submitted to the AOL search portal over a period of three months from 1st March, 2006 to
31st May, 2006. After the controversial discussion related to users’ privacy issues followed to its initial
public delivery, AOL has withdrawn the query log from their servers and is not offering it for download
anymore.

Figure 3.2 shows a fragment of the AOL query log. Each row of this query log consist of records
collecting five fields: i) the ID referring to the user issuing the query, ii) the issued query, iii) the time the

External Final Version 1.0, Dated June 30, 2011 13

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

1.1 Web Search Engines 5

Fig. 1.1 A fragment of the AOL query log [160].

How query logs interact with search engines has been studied in

many papers. For a general overview, [12, 20] are good starting point

references.

In this paper, we review some of the most recent techniques deal-

ing with query logs and how they can be used to enhance web search

engine operations. We are going to summarize the basic results con-

cerning query logs: analyses, techniques used to extract knowledge,

most remarkable results, most useful applications, and open issues and

possibilities that remain to be studied.

The purpose is, thus, to present ideas and results in the most

comprehensive way. We review fundamental, and state-of-the-art tech-

niques. In each section, even if not directly specified, we review and ana-

lyze the algorithms used, not only their results. This paper is intended

for an audience of people with basic knowledge of computer science. We

also expect readers to have a basic knowledge of Information Retrieval.

Everything not at a basic level is analyzed and detailed.

Before going on, it is important to make clear that all the analyses

and results reported were not reproduced by the author. We only report

Figure 3.2: An example of the AOL query log [15].

query was issued to the search engine, iii) the position of the clicked result in the results page, and iv)
the host of the clicked document.

Topics covered by queries contained in search engines are the most disparate. Figure 3.3 highlights
the 250 most frequent terms in the AOL query log by means of a tag cloud. The dimension of each term
in the tag cloud is directly related to its frequency in the log. The larger the term in the tag cloud, the
more frequent it is in the log. As an example,“google” and “free” are the two most frequent terms in the
log. Other very frequent words are: “yahoo”, “new”, “county”, “pictures”, “http”.1.3 Fun Facts about Queries 11

Fig. 1.5 A cloud of the 250 most frequent queried terms in the AOL query log [160]. Picture

has been generated using http://www.wordle.net.

and independently from a partition of the whole collection. The sec-

ond phase collects global statistics computed over the whole inverted

index. One of the most valuable advantages of document partitioning

is the possibility of easily performing updates. In fact, new documents

may simply be inserted into a new partition to independently index

separately from the others [169].

Since the advent of web search engines, a large number of papers

have been published describing different architectures for search

engines, and search engine components [10, 25, 47, 33, 96, 97, 147,

150, 153, 204]. Many other papers [13, 14, 100, 101] enumerate the

major challenges search engine developers must address in order to

improve their ability to help users in finding information they need.

Interested readers shall find in the above referenced papers many inter-

esting insights. Needless to say, you shall not find any particular details,

in this survey, about the real structure of a search engine. Usually, this

kind of information is highly confidential and it is very unlikely that

search companies will ever disclose them.

1.3 Fun Facts about Queries

Due to their “commercial importance”, finding query logs has always

been a difficult task. The very first publicly available query log dates

Figure 3.3: A tag cloud of the 250 most frequent words in the AOL query log [15]. Picture has been
generated using wordle.net. From [20].

Furthemore, the queries submitted by users to search engines and thus contained in query logs are
sometimes incredible. Just to give an idea, from the AOL query log user #2386968 submitted the query
“why is my husband so talkative with my female friends”. Another funny example is the query submitted
by the user #427326 looking for “where is my computer?”.

External Final Version 1.0, Dated June 30, 2011 14

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Chapter 4

Different Types of Knowledge Extracted
and Possible Applications

The knowledge extracted from service logs can be fruitfully applied for different purposes within SOAs
or Web domains. While the use of this type of knowledge within Web domains is useful for enhancing
both the effectiveness (i.e., quality of results returned to the users) and the efficiency (i.e., response time)
of the overall search infrastructure, SOAs could exploit this knowledge during different steps of the
life-cycle of their compliant applications. In particular, at design-time it is possible to provide service
designers with tools aiming at simplifying/suggesting possible (and actually used) interactions between
groups of services. These tools could thus simplify the whole design phase, by giving service designers
hints on possible associations between services, or possible workflows of activities (tasks) carried on by
groups of services. Furthermore, at run-time phase it is also possible to study adaptation strategies that
exploit this historical knowledge. In this deliverable we present five applications of different types of
knowledge derived from logs coming from SOA or Web domains.

The first contribution (see Appendix A) refers to the use of knowledge extracted from service logs in
order to perform a semantic resource allocation within Cloud Computing environments [6].
In this work authors introduce a generic framework for prediction and adaptation, and describe its appli-
cation in a concrete scenario (Cloud resource scheduling). The basic requirements for such an environ-
ment are:

– to provide generic capability of collecting log data about internal events;

– to unify the collected data so that global coherences can be revealed;

– to provide customizable methods for getting predictions based on the collected data;

– to feed back predictions into the realization of adaptation mechanisms.

This framework combines the prediction techniques with the semantic technologies which introduces se-
mantic knowledge to the data evaluated by predictors. Furthermore, it also exploits a multi-agent system
to introduce proactiveness and distributed problem solving for increasing the scalability, adaptability and
self management of the system. The predictions extracted from the semantic data are taken into account
by a group of agents for allocating the different costumer jobs in the most reliable resources for each
case.
Authors emphasize on the importance of using historical data by service and cloud providers. They
present a generic approach and a re-usable solution for the collection and exploitation of historical log
data produced by services and demonstrate its usability and usefulness in a concrete resource schedul-
ing scenario. The heterogeneity of log data arriving from various resources calls for a semantic data
representation, which can facilitate the unification of these data and a query mechanism supported by

External Final Version 1.0, Dated June 30, 2011 15

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

inferencing. The paper belongs to work package JRA-2.3 as the presented solution is mostly effective on
the infrastructure layer, however the methodology and the semantic approach addresses work package
JRA-1.3 as well. Regarding WP-JRA-2.3 research challenges the paper is related to “Supporting adap-
tation of service-based applications” and “Runtime SLA Violation Prevention”. The presented solution
provides a generic technique to predict the quality attributes of services and resources, which serves as
an enabler to various self-adaptation techniques. The paper is more focused on the resource scheduling
task, and provides a semantic model for the representation of QoS measurements and requirements used
in the scheduling process.
As the decision making is distributed in the suggested generic framework, there is a possibility to ex-
tend standard decision making with additional behaviors representing strategies and policies on different
levels; on the level of resource providers and on the level of service providers.

The second contribution (App. B) consists of an application of process mining techniques on a real-
world service log coming from the VRESCO runtime environment [13].
The vast majority of nowadays software-based systems, ranging from the simplest, i.e., small-scale, to
the most complex, i.e., large-scale, record massive amounts of data in the form of logs. Such logs could
either refer to the functioning of the system as well as keep trace of any possible software or human
interaction with the system itself. For this reason, logs represent a valuable source of hidden knowledge
that can be exploited in order to enhance the overall performances of any software-based system.
Well-known examples of systems that have started trying to improve their performances by analyzing
event logs are surely Web Search Engines (SEs). Roughly, SEs are increasingly exploiting past user
behaviors recorded in query logs in order to better understand people search intents, thus, for providing
users with better search experiences. Indeed, by accurately recognizing and predicting actual user in-
formation needs, SEs are now able to offer more sophisticated functionalities (e.g., query suggestion) as
well as better relevant result sets in response to a specific query (e.g., query diversification).
Moreover, there are plenty of modern enterprise software systems that need to operate in highly dynamic
and distributed environments in a standardized way. Such systems implement their business logic ac-
cording to the Service-oriented Architecture (SOA) principles, thus, assembling their business processes
as the composition and orchestration of autonomous, protocol-independent, and distributed logic units,
i.e., software services.
Service-based systems and applications (SBAs) require proper run-time environments where their com-
posing services can be searched, bound, invoked, monitored and managed. Therefore, SBA’s run-time
support might keep track of what is going on during the whole application lifecycle by roughly recording
all such events to log files, i.e., service event logs.
Analysis of such service event logs could reveal interesting patterns, which in turn might be exploited for
improving the overall performances of SOA’s run-time frameworks as well as supporting SBA designers
during the whole application lifecycle.
The main contribution of this work concerns the application of data mining techniques to a real-life ser-
vice event log collected by the VRESCO SOA run-time framework. Our aim is to analyze the historical
events stored on VRESCO in order to discover software services that are frequently invoked and com-
posed together, i.e., process mining.
Although traditional process mining refers to a set of techniques and methodologies whose aim is to
distill a structured process description from a set of actual traces of executions recorded in event logs,
here we treat it as an instance of the sequential pattern mining problem.
Finally, authors apply two sequential pattern mining algorithms to a real event log provided by the Vi-
enna Runtime Environment for Service-oriented Computing, i.e., VRESCO. The obtained results show
that they are able to find services that are frequently invoked together within the same sequence. Such
knowledge could be useful at design-time, when service-based application developers could be provided
with service recommendation tools that are able to predict and thus to suggest next services that should
be included in the current service composition.

The third work (App. C) addresses the problem of interface-based test coverage for Web services [7].

External Final Version 1.0, Dated June 30, 2011 16

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

In recent years, the Service-Oriented Architecture (SOA) has become a widely adopted paradigm to
create loosely coupled distributed systems, and Web services are the most commonly used technology
to build SOA. One of the defining characteristics of SOA is that the API (Application Programming
Interface) of the available services is published to service consumers using standard, machine-readable
description languages. In the case of Web services, this is achieved using the Web Services Description
Language (WSDL), paired with XML Schema Definitions (XSD) of the service operations’ input and
output messages.
Now that the WS-* stack builds a solid technological foundation, traditional software engineering disci-
plines are being applied to Web services. Among these disciplines is software testing in terms of Veri-
fication and Validation (V & V). An important field in software testing is concerned with test coverage,
i.e., the extent to which an implemented system has been tested or used. Classical code-based coverage
metrics such as function, statement or branch coverage require access to the source code, which is not
always possible for Web services. Therefore, testing methods for Web services can usually only rely
on the service’s API definition, and hence focus on black-box testing of single services or testing the
composition of services.
API coverage is commonly expressed as the ratio of previously performed, distinct invocations to the
number of (theoretically) possible invocations as defined by the API. In the simplest case, single param-
eter values are varied and tested, e.g., with extreme values, to verify functionality and detect failures.
Since an isolated analysis of parameters is often not sufficient, input combinations need also be con-
sidered. Achieving an API coverage of (near) 100% in this case is generally subject to the problem of
combinatorial explosion, because all input parameter combinations need to be considered. Hence, it is
desirable to restrict the value domain of each parameter to its smallest possible size, in order to minimize
the total number of possible combinations. The authors of this work see two possibilities to achieve
that. Firstly, Web service developers need to provide a more precise specification of the valid operation
parameters, e.g., in terms of string patterns or allowed numeric ranges. Secondly, service testers may an-
alyze these parameters to identify similarities or combinations that seem less important to be tested. XSD
already provides a solution for the first point in the form of facets, but expressing such schema-based re-
strictions is surprisingly hard to achieve in major Web service frameworks such as JAX-WS (Java API for
XML Web Services) or Microsoft’s .NET platform. Essentially, developers cannot rely on the automated
XSD generation, but have to manually define the XML Schema that uses facet restrictions. Concerning
the second point, there is still an evident lack for API coverage frameworks with customizable coverage
metrics that can be easily plugged into (existing) service-based systems.
In a previous work, authors developed coverage metrics for data-centric dynamic service compositions.
Under the same umbrella project named TeCoS (Test Coverage for Service-based systems) they now
investigate coverage of service APIs. In this paper, authors apply software testing concepts to Web ser-
vices and present a solution for measuring API coverage based on historical invocations. Overall, their
contribution is threefold: 1) they define API coverage metrics and their instantiation for Web services,
2) they suggest the implementation of XSD facets in the JAX-WS framework, and 3) they present and
evaluate our prototype in an experimental evaluation.
The proposed approach is based on domain partitioning, a technique used to narrow down the domain
space of invocation parameters, and hence to reduce the number of possible invocations to obtain more
meaningful coverage metrics. The prototype implementation of TeCoS intercepts Web service invoca-
tion messages and converts the XML tree representation to a relational schema for storage in a relational
database management system (DBMS). The domain partitions are defined by the user in a tailor-made
expression language. To compute a certain coverage metric of some Web service operation o, the user
defines which partitions should be applied to which part of the elements in the schema of the input mes-
sage of o. The actual computation of the coverage value is performed on the underlying DBMS. In an
ongoing work, authors plan also to extend the scope of API coverage to invocation sequences and se-
mantic input description. Moreover, they will further enhance TeCoS with support for distributed storage
and coverage computation.

External Final Version 1.0, Dated June 30, 2011 17

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

The fourth contribution (App. D) aims at devising effective techniques for identifying task-based ses-
sions, i.e. sets of possibly non contiguous queries issued by the user of a Web Search Engine for carrying
out a given task [10].
The World Wide Web (Web) was born as a platform to connect academic and research people, which ex-
ploit the Internet as the communication medium infrastructure. Rapidly, an increasing number of users,
which were not directly involved in academia or research activities, have started to have access to the
Web as well.
Nevertheless, in the first Web era there was still a clear separation of roles between few content providers,
i.e., typically skilled workers and professionals, and many content consumers, i.e., common end users.
During the last years, a new trend has gained momentum: new applications that allow easy authoring
and content creation have lead to an increased democratization and collaborative involvement in the Web.
Somehow, this process caused the end of the first Web era, by bringing down the wall between content
providers and consumers, which now can play both roles interchangeably from time to time. Therefore,
information made available on the Web have started raising at a tremendous speed rate, reaching nowa-
days a huge and still growing number of contents, which spread over several media types (e.g., text,
images, audio/video, etc.).
This great repository of data makes the Web the place of choice where people look at whenever they
come up with any sort of information need. Indeed, there is a common belief that the Web is increasingly
used not only for consulting documents but also for trying to simplify the accomplishment of various
everyday activities, i.e., tasks.
Moreover, most of the interactions between users and the Web are often mediated by Web search engines,
which are amongst the most important and used Web-based tools. This trend is confirmed by a rising
“addiction to Web search”: no matter what an information need is, user will ask it to a Web search engine
that will hopefully give her the answer she expects.
Although the huge number of features which now the most popular Web search engines come with, in
essence they still belongs to the category of Web documents retrieval tools. The results they provide in
response to a user query are given according to the traditional “ten blue links” paradigm, i.e., links to
Web pages that are considered relevant to the given user query. If results are not satisfactory, decision
taken by looking at some of them, users may decide to “re-phrase” the query to try to refine the retrieved
results. However, when the need behind a certain query is a task to be accomplished, this “query-look-
refine” paradigm could not be effective. In other words, for certain (quite popular) tasks, Web search
engines as we know can be considered obsolete tools.
Therefore, authors believe next-generation Web search engines should turn from mere Web documents
retrieval tools to multifaceted systems, which fully support users while they are interacting with the Web.
Of course, this opens up novel and exciting research challenges, in particular the ability to recognize
implicit user tasks from the issued queries. Thus, authors focus on identifying task-oriented sessions
from past issued queries, i.e., sets of possibly non-contiguous queries phrased by users for carrying out
various tasks.
First, they built, by means of a manual labeling process, a ground-truth where the queries of a real query
log have been grouped in tasks. The analysis conducted by authors on this ground-truth shows that users
tend to perform more than one task at the same time, since about 75% of the submitted queries involve a
multi-tasking activity.
Moreover, authors define the Task-oriented Session Discovery Problem (TSDP) as the problem of best
approximating the above ground-truth. The TSDP deals with two aspects: (i) a robust measure of the
task relatedness between any two queries, i.e., task-based query similarity, and (ii) an effective method
for actually discovering task-oriented sessions by using the above measure of task relatedness. Con-
cerning (i), we propose and compare both unsupervised and supervised approaches for devising several
task-based query similarity functions.
These functions also exploit the collaborative knowledge collected by Wiktionary and Wikipedia for de-
tecting query pairs that are not similar from a lexical content point of view, but actually semantically

External Final Version 1.0, Dated June 30, 2011 18

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

related. Therefore, authors tackle (ii) by introducing a set of query clustering methods that exploit the
above similarity functions for detecting user tasks.
All the proposed solutions have been evaluated on the ground-truth, and two of them have been shown
to perform better than state-of-the-art approaches.

The fifth contribution (App. E) outlines the requirements for a reliable management in crowd-computing
environments.
Open Web-based and social platforms dramatically influence models of work. Today, there is an in-
creasing interest in outsourcing tasks to crowdsourcing environments that guarantee professional pro-
cessing [17].
Crowdsourcing follows the “open world” assumption allowing humans to provide their capabilities
through the platform by registering themselves as members. While conventional enterprise systems
rely on well-defined in-house knowledge of their processes and services, i.e., on established policies,
crowdsourcing has a more loosely-coupled, dynamic, and flexible structure and depends especially on
the preferences and behavior of the individual crowd members. Hence, it is necessary to monitor, log,
and extract knowledge on the behavior of the crowd members to derive an adaptive, optimized usage.
Crowd behavior can lead to an incomplete and unsatisfactory task state at deadline. As a consequence,
meeting promised service contracts is challenging and demands for sophisticated management tech-
niques of a crowd platform.
The challenge is to gain the crowd customer’s confidence by organizing the crowd’s mixture of capa-
bilities and structure to become reliable. The prerequisite is a monitoring infrastructure that updates a
crowd-based resource model. Authors focus on an agreement model derived from the collected knowl-
edge and combined with an adaptation approach for reliable service usage and task execution.
This model integrates crowdsourcing with the well-known concept of SLAs. For SLAs, independent
from the agreed parameters of quality, the two common categories are hard- and soft-constraints. In this
work, for crowdsourcing authors will distinguish between criteria that must be met, e.g., expertise area of
crowd members and their principal participation interest and soft constraints that are used for ranking po-
tential crowd members, including their capacity, reputation, and costs. These categories combined with
on-line feedback data from behavior monitoring will allow to adapt and optimize assignments accord-
ing to the agreements and the current crowd status. Eventually, authors show an integration of observed
crowdsourcing in a SOA environment and the related enforcement of agreements by the WSLA standard.

External Final Version 1.0, Dated June 30, 2011 19

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Chapter 5

Conclusions

In this deliverable we presented five different contributions regarding the exploitation of usage data
coming from Service Oriented Architectures or real world Web search engines. Such knowledge is
mostly derived by using data mining techniques. Five possible applications of this derived knowledge is
presented here.

First, we introduced a resource allocation mechanism that uses semantic annotated historical data
to enable adaptation mechanisms of the run-time environment. The contribution shows the importance
of using historical data for service and cloud providers. Furthermore, the approach demonstrates the
coupling of semantic data processing with data mining as a promising novel combination.

Secondly, two well-known data mining techniques have been applied to real event logs coming from
a event-based service-oriented architecture. The contribution focuses on process mining as a specific
instance of the more general sequential pattern mining problem. The aim of this contribution is to
detect frequent sequential patterns that might be present in actual traces of service executions recorded
in event logs. To this end, two sequential pattern mining algorithms have been applied to a real event
log provided by the Vienna Runtime Environment for Service-oriented Computing, (i.e., VRESCo).
The results obtained show that it is possible to find services that are frequently invoked together within
the same sequence. Such knowledge could be useful at design-time, when service-based application
developers could be provided with service recommendation tools that are able to predict and thus to
suggest next services that should be included in the current service composition.

In the third contribution we presented an efficient, novel solution to measure API coverage of service-
based systems implemented with Web services. User-specified domain partitioning allows for the defini-
tion of customizable and reusable API coverage metrics. The proposed end-to-end framework TeCoS can
be easily plugged into existing service execution engines to log service invocations, calculate coverage
data and render the results in a Web UI. This user-friendly extension remarkably reduces the required
development effort and is a step towards meaningful coverage data and schema-based validation of invo-
cation parameters. The performance and scalability of the proposed approach are successfully evaluated
within the experimentation.

The fourth contribution discussed a technique for splitting into meaningful user sessions a very large,
long-term log of queries submitted to a Web Search Engine (WSE). The contribution formally introduced
the Task-based Session Discovery Problem as the problem of extracting from a stream of users queries
several subsequences of queries which are all related to the same search goal, i.e., a Web-mediated task.
The contribution also proposed a clustering-based solution, leveraging distance measures based on query
content and semantics, while query timestamps were used for a first pre-processing breaking phase. In
particular, the proposed technique exploited both Wikipedia and Wiktionary to infer the semantics of
a query. The novel graph-based heuristic, namely QC-htc, which is a simplification of the weighted
connected components QC-wcc, significantly outperforms other heuristics in terms of F-measure, Rand
and Jaccard index.

In the last contribution a framework for successfully managing task assignment in a crowd-computing

External Final Version 1.0, Dated June 30, 2011 20

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

environment is presented. The framework solves the problem of managing the task assignment with an
adaptive and multi-objective task scheduling. The environment is based on a large-scale SOA infrastruc-
ture. The extension to one of the existing standards for agreements (WSLA and WS-Agreement) which
includes assignment identifying information and relation to different objectives, fits the requirements of
our crowd-computing scenario. When deploying the assignment as independent and dependent tasks to
capable members, these objectives can than be used as soft- or hard-constraints for a weighted scheduling
strategy. The results highlight the advantages of an objective-aware metric ordered strategy in contrast
to plain random scheduling while task loads remain in between the boundaries. Nevertheless, the results
show that the effort for ordering the assignment lists induces a higher effort in scheduling.

External Final Version 1.0, Dated June 30, 2011 21

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

Bibliography

[1] Integration framework baseline, s-cube deliverable cd-ia-3.1.1, 2009.

[2] Anton Michlmayr and Florian Rosenberg and Philipp Leitner and Schahram Dustdar. Advanced
Event Processing and Notifications in Service Runtime Environments. In Proceedings of the 2nd
International Conference on Distributed Event-Based Systems (DEBS’08), 2008.

[3] Anton Michlmayr and Philipp Leitner and Florian Rosenberg and Schahram Dustdar. Publish/-
Subscribe in the VRESCo SOA Runtime. In Proceedings of the 2nd International Conference on
Distributed Event-Based Systems (DEBS’08), 2008. invited demo paper.

[4] R. Baeza-Yates. Applications of web query mining. Advances in Information Retrieval, pages
7–22, 2005.

[5] R. Baeza-Yates and A. Tiberi. Extracting semantic relations from query logs. In Proc. KDD’07.
ACM, 2007.

[6] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs, and R. M. Badia. Semantic resource
allocation with historical data based predictions. In The First International Conference on Cloud
Computing, GRIDs, and Virtualization, CLOUD COMPUTING 2010, 2010.

[7] W. Hummer, O. Raz, and S. Dustdar. Towards efficient measuring of web services api coverage.
In 3rd International Workshop on Principles of Engineering Service-Oriented Systems (PESOS),
co-located with ICSE 2011, 2011.

[8] R. Jones and K. L. Klinkner. Beyond the session timeout: automatic hierarchical segmentation of
search topics in query logs. In CIKM ’08, pages 699–708. ACM, 2008.

[9] H. Kochar. Business activity monitoring and business intelligence, 2005.

[10] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. Identifying task-based sessions in
search engine query logs. In Proceedings of the 4th ACM International Conference on Web Search
and Data Mining, WSDM ’11, pages 277–286, New York City, NY, USA, 2011. ACM Press.

[11] D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[12] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-End Support for QoS-Aware Ser-
vice Selection, Binding, and Mediation in VRESCo. IEEE Transactions on Services Computing,
3:193–205, July 2010.

[13] F. M. Nardini, G. Tolomei, P. Leitner, F. Silvestri, and S. Dustdar. Mining lifecycle event logs for
enhancing service-based applications. Technical Report N. /cnr.isti/2010-TR-017, CNR ISTI Pisa
Italy, 2011.

[14] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. IEEE Computer, 40(11):38–45, November 2007.

External Final Version 1.0, Dated June 30, 2011 22

S-Cube
Software Services and Systems Network Deliverable # PO-JRA-2.3.7

[15] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings of the 1st inter-
national conference on Scalable information systems, InfoScale ’06, New York, NY, USA, 2006.
ACM.

[16] B. Piwowarski and H. Zaragoza. Predictive user click models based on click-through history. In
Proc. CIKM’07. ACM, 2007.

[17] H. Psaier, F. Skopik, D. Schall, and S. Dustdar. Resource and agreement management in dynamic
crowdcomputing environments. In 2011 15th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2011). IEEE Computer Society, 2011.

[18] F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feedback. In Proc.
KDD’05. ACM Press, 2005.

[19] A. Scime. Web Mining: Applications and Techniques. IGI Publishing Hershey, PA, USA, 2004.

[20] F. Silvestri. Mining query logs: Turning search usage data into knowledge. Foundations and Trends
in Information Retrieval, 1(1-2):1–174, 2010.

[21] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information re-retrieval: repeat queries in yahoo’s
logs. In Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’07, pages 151–158, New York, NY, USA, 2007.
ACM.

External Final Version 1.0, Dated June 30, 2011 23

