
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

File name: CD-IA-1.1.1

Title: Comprehensive overview of the state of the art on service-based systems

Authors: Vasilios Andrikopoulos (Tilburg), Alea Fairchild (Tilburg), Willem-Jan
van den Heuvel (Tilburg), Raman Kazhamiakin (FBK), Philipp Leitner
(TUW), Andreas Metzger (UniDue), Zsolt Nemeth (SZTAKI), Elisabetta
di Nitto (POLIMI), Mike P. Papazoglou (Tilburg), Barbara Pernici
(POLIMI), Branimir Wetzstein (USTUTT)

Editors: Vasilios Andrikopoulos, Willem-Jan van den Heuvel, and Mike P.
Papazoglou (Tilburg)

Reviewers: Marina Bitsaki (UOC), Manuel Carro (UPM), Schahram Dustdar
(TUW)

Identifier: Deliverable # CD-IA-1.1.1

Type: Deliverable

Version: 1

Date: 25 September 2008

Status: Final

Class: External

Management Summary
This deliverable describes the state-of-the-art in service-based systems in the form of a Knowledge
Model (KM) for S-Cube, explaining its purpose and its individual components. It also identifies
previous approaches from related EU projects and international activities that have resulted in the
definition of a large body of concepts relating to software services research. These approaches are
scrutinized, adapted and reused to the extend possible as part of the S-Cube KM. In addition, it
summarizes and cross-correlates the major research findings of the state-of-the-art deliverables in S-
Cube, and shows how they contribute towards building an initial version of the KM. Finally, it describes
the connection of the S-Cube KM to a number of knowledge sources and knowledge-intensive activities
within S-Cube and its usage by both internal and external users.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 2

Members of the S-CUBE consortium:

University of Duisburg-Essen Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany

Published S-CUBE documents
These documents are all available from the project website located at http://www.s-cube-network.eu/

PO-JRA-1.1.1: State of the art report on software engineering design knowledge and Survey of HCI and
contextual Knowledge

PO-JRA-1.2.1: State-of-the-Art report, gap analysis of knowledge on principles, techniques and methodologies
for monitoring and adaptation of SBAs

PO-JRA-1.3.1: Survey of quality related aspects relevant for SBAs

PO-JRA-2.1.1: State-of-the-art survey on Business Process Modelling and Management

PO-JRA-2.2.1: Overview of the state of the art in composition and coordination of services

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 3

Table of Contents

1 Introduction ... 6

2 Purpose of the Deliverable .. 7

3 Summary of the State of the Art JRA deliverables .. 7
3.1 JRA-1: Objective and Coverage...8
3.1.1 WP-JRA-1.1: Engineering and Design .. 8
3.1.2 WP-JRA-1.2: Adaptation and Monitoring ... 10
3.1.3 WP-JRA-1.3: Quality Definition, Negotiation and Assurance.. 11
3.2 JRA-2: Objective and Coverage...13
3.2.1 WP-JRA-2.1: Business Process Management ... 13
3.2.2 WP-JRA-2.2: Service Composition ... 15
3.2.3 WP-JRA-2.3: Service Infrastructure .. 16

4 Relation of S-Cube’s Knowledge Model to other EU Projects and Initiatives....................18
4.1 NESSI and NEXOF-RA...18
4.2 BEinGRID and Gridipedia ..19
4.3 SeCSE and it’s conceptual model..20
4.4 INTEROP and KMap...20
4.5 OASIS and SOA-RM..21

5 Evolution of the Knowledge Model ...22
5.1 Initial Knowledge Model and Competencies ..24
5.2 Consolidation and Exploitation of the Knowledge Model ...24
5.3 Mapping Competencies to Knowledge Model Terms ...25

6 Summary and future work ..25

Appendix A Initial Knowledge Model terms ...27
A.1 WP-JRA-1.1: Engineering & Design..27
A.2 WP-JRA-1.2: Adaptation and Monitoring..30
A.3 WP-JRA-1.3: Quality Definition, Negotiation, and Assurance ..32
A.4 WP-JRA-2.1: Business Process Management..36
A.5 WP-JRA-2.2: Service Composition ...39
A.6 WP-JRA-2.3: Service Infrastructure...41

Appendix B Initial list of Competencies...43

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 4

Table of illustrations
Figure 1: Integration of KM and other activities ... 6
Figure 2: S-Cube Research Framework... 8
Figure 3: Overview of Relation of S-Cube to NESSI ..19
Figure 5: Knowledge Intergration with INTEROP ..20
Figure 6: OASIS SOA-RM ..22
Figure 7: The KM and other knowledge sources and knowledge-intensive activities22

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 5

List of acronyms

BPEL Business Process Execution Language
BPM Business Process Management
BPMS Business Process Management Suite
INTEROP Interoperability Research for Networked Enterprises Applications and Software
KM Knowledge Model
KPI Key Performance Indicators
NESSI Networked European Software & Services Initiative
NEXOF-RA NEXOF Reference Architecture
QoS Quality of Service
SBA Service-Based Application
SeCSE Service Centric System Engineering
SLA Service Level Agreement
SOA Service-Oriented Architecture
SSAI&E Software Services Application Integration and Engineering
UML Unified Modelling Language

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 6

1 Introduction
The Knowledge Model (KM), which is part of Obj-1 of S-Cube’s key objectives, is developed within
work package WP-IA-1.1. The purpose of the knowledge model is “to synthesize and integrate
diversified knowledge”, thereby fulfilling the mission of innovation and integration of research
agendas of disparate research groups in software services.

This work package will produce several deliverables during the project life span. The first deliverable
(CD-IA-1.1.1) aims to develop an initial knowledge base of key terms used in the S-Cube research
areas. It is a first attempt to cross-correlate terminology from different domains and to synthesize
terms into an initial cohesive KM.

It combines research output from the first internal deliverables of the Joint Research Activities (JRAs),
with industry knowledge and existing EU project outcomes. Figure 1 illustrates the positioning of the
KM activity in relation to the other activities of the project. More specifically:

• The KM interacts with the functional SBA layers of S-Cube (business process management,
service composition and coordination, and service infrastructure) by using the JRA-1 and -2
activities as input for its development. More importantly, it furthermore allows for a common
understanding and positioning of these activities into a holistic and consistent framework that is
required for achieving integration and coordination within the project. This framework also
permeates the other activities of the project, by acting as a foundation on which they can
develop and interact with each other.

• The analysis and construction of the KM is performed in coordination with the integration
framework for SBAs that is developed in IA-3 and which integrates, aligns, and coordinates the
results of the JRAs.

• By providing links to knowledge models from other EU projects it facilitates the synthesizing
and harmonization of research on SBAs across communities and initiatives.

WP-JRA-1.1:
ED

WP-JRA-1.2:
AM

WP-JRA-1.3:
QA

WP-JRA-2.1: BPM

WP-JRA-2.2: SC

WP-JRA-2.3: SI

KMs from
other Projects

Interacts

Li
nk

ed
 to

WP-IA-3: Integration
Framework for SBAs

Coordinated with

Other S-Cube
Activities

Other S-Cube
Activities

Foundatio
n fo

r

WP-IA-1.1:
KM

WP-JRA-1.1:
ED

WP-JRA-1.2:
AM

WP-JRA-1.3:
QA

WP-JRA-1.1:
ED

WP-JRA-1.2:
AM

WP-JRA-1.3:
QA

WP-JRA-2.1: BPM

WP-JRA-2.2: SC

WP-JRA-2.3: SI

KMs from
other Projects

Interacts

Li
nk

ed
 to

WP-IA-3: Integration
Framework for SBAs

Coordinated with

Other S-Cube
Activities

Other S-Cube
Activities

Foundatio
n fo

r

WP-IA-1.1:
KM

WP-JRA-2.1: BPM

WP-JRA-2.2: SC

WP-JRA-2.3: SI

WP-JRA-2.1: BPM

WP-JRA-2.2: SC

WP-JRA-2.3: SI

KMs from
other Projects

KMs from
other Projects

Interacts

Li
nk

ed
 to

WP-IA-3: Integration
Framework for SBAs

Coordinated with

Other S-Cube
Activities

Other S-Cube
Activities

Foundatio
n fo

r

WP-IA-1.1:
KM

Figure 1: Integration of KM and other activities

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 7

This document contains a brief description of the purpose of this deliverable, a description of state-of-
the-art JRA deliverables and of the terms extracted from these deliverables that have been incorporated
in the initial version of the KM, its association with related EU and other activities (within the project),
and further reports on the initial version and evolution of the KM. Additionally, in Appendix A we list
all the initial key terms and their respective definitions and their interrelationships. Appendix B
describes the initial list of expertise and competences found among partners and external experts.

2 Purpose of the Deliverable
The purpose of this deliverable is to provide a comprehensive overview of the state of the art on
service-based systems (in the form of Service-Based Applications – SBAs), including an overview of
the associations of the related research domains. In particular, the results from S-Cube’s JRA-1 and
JRA-2 activities are integrated and consolidated in this report. An additional objective of this report is
to highlight the current and future structure of the S-Cube KM.

The S-Cube Knowledge Model will strive to have the form of a free, open-content “living”
encyclopedia that will collect, cross-correlate and summarize services-related terminology and
knowledge. This will help users navigate through a large body of knowledge related to all aspects of
service-oriented research, associated methodologies, and support environments.

The initial Knowledge Model that is captured in this deliverable will be evaluated against KPIs, e.g.,
that each research area (e.g., BPM) is appropriately typified in terms of a limited number of key
knowledge items (10 to 20).

3 Summary of the State of the Art JRA deliverables
In the following we summarize the first round of deliverables of the S-Cube research work packages
(WP-JRA-*) that constitute the JRA activities and interrelate key terms and concepts from domains
corresponding to the WP-JRA-* work packages and to each other. Figure 2 illustrates the relationships
between the JRA work packages.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 8

En
gi

ne
er

in
g

&
 D

es
ig

n
(W

P-
JR

A
-1

.1
)

A
da

pt
at

io
n

&
 M

on
ito

rin
g

(W
P-

JR
A

-1
.2

)

Business
Process

Management
(WP-JRA-2.1)

Service
Composition
(WP-JRA-2.2)

Service
Infrastructure
(WP-JRA-2.3)

Design
Specifications

Capabilities

Design
Specifications

Capabilities

Design
Specifications

Capabilities

Events

Events

Events

Adaptation
Requests

Adaptation
Requests

Adaptation
Requests

Specifications

Capabilities

En
gi

ne
er

in
g

&
 D

es
ig

n
(W

P-
JR

A
-1

.1
)

A
da

pt
at

io
n

&
 M

on
ito

rin
g

(W
P-

JR
A

-1
.2

)

Business
Process

Management
(WP-JRA-2.1)

Service
Composition
(WP-JRA-2.2)

Service
Infrastructure
(WP-JRA-2.3)

Design
Specifications

Capabilities

Design
Specifications

Capabilities

Design
Specifications

Capabilities

Events

Events

Events

Adaptation
Requests

Adaptation
Requests

Adaptation
Requests

Specifications

Capabilities

Figure 2: S-Cube Research Framework

Italicized and bold-typed words (e.g. term) in the context of the JRA descriptions that follow in this
section denote concepts that have been incorporated in the initial version of the KM (see section 5)
which can be found in Appendix A.

3.1 JRA-1: Objective and Coverage
The objective of JRA-1 is to jointly develop the next generation of engineering and adaptation
methodologies which, by combining different competences, take a holistic view and empower service
composers, services providers as well as the European Citizens to compose and adjust service-based
systems.

3.1.1 WP-JRA-1.1: Engineering and Design

Engineering Service-Based Applications (SBAs) is quite different from any other software
engineering activity. These applications are built by gluing together some possibly already existing
services that can be built and operated by third parties with which we may decide to establish a Service
Level Agreement.

The possibility to reuse in SBAs existing services without even caring about the details needed to
operate them is very attractive in principle. However, it changes the way applications are built and are
operated. All services used to compose an application are not anymore under the direct control of the
application developer and provider. This means that they could be modified or even temporarily or
permanently dismissed without notice. Even what a service provider could perceive as an
improvement of the service functionality could result in the impossibility for an SBA of using this
service anymore. Think for instance at a service that is offering images at a certain resolution.
Increasing the resolution is not necessarily a plus if the application that is using this service has to
display the images on a PDA. This fact leads to the need for being able to replace a service with

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 9

another at runtime in order to make the application resilient to any change happening on the side of the
service.

Another interesting and promising aspect of Service-Based Applications is their ability to adapt to
different execution contexts (we call these Adaptable Service-Based Applications). Again, this
requires the selection and possibly (re)placement of services at runtime.

While a number of specific techniques have been developed to support dynamic service discovery,
selection, and service binding, a set of engineering methods aiming at developing service-based
applications ready to perform self-adaptation at runtime is still missing. A method of this kind should
support the designer in the definition of the application-dependent logic of a service composition as
well as of the policies that are actuated when runtime changes are needed. Such policies aim at
supporting the evolution of Service-Based Applications still keeping them under control. More in
detail, a design for adaptation approach should address the following problems:

• How to identify and represent relevant changes or situations that the target system should adapt
to. This amounts to the classification and description of the dynamic aspects of the target
system (such as context-related aspects, available services and their metrics, classes and
parameters of failures), and the relevant values and ranges (e.g., acceptable bounds of QoS
parameters, values of context parameters, etc).

• How to drive the modification of the application when the necessity to adapt is detected. In this
case the specification of adaptation requirements and objectives and adaptation strategies
should be addressed. The corresponding notations and languages should enable the integrator to
describe the desired situations (e.g., “good” state of the system in case of self-healing systems)
or even adaptation actions (e.g., re-execution or re-binding command) at high level of
abstraction.

Services and SBAs can require interaction with human users taking part in the business process
enabled by the service, or imparting human intelligence to the relevant services (e.g. the Amazon
Mechanical Turk Web service). This interaction is currently supported in initiatives such as
BPEL4People, an extension to the BPEL language that defines human tasks through Web Service
Human Task (WS-Human Task) and describes them as activities with WS-BPEL Extension for
People. We explore whether the Human-Computer Interaction (HCI) literature can further contribute
to the integration of human actors in SBAs by providing richer, more contextual descriptions and
models than those currently available. We further examine whether an explicit integration of current
HCI knowledge into approaches to the engineering of SBAs would support their development.

WP-JRA-1.1 shows many relationships with the other S-Cube work packages since it gathers
techniques and approaches from them and tries to harmonize them into an engineering method. More
specifically:

• WP-JRA-1.2 offers the adaptation approaches that will be incorporated as part of the
engineering method.

• WP-JRA-1.3 offers support for the quality assurance aspects. These are of paramount
importance for any software engineering method and are particularly critical when we consider
the development of SBAs where component services are out of our control and therefore
require the definition of SLAs as well as of mechanisms that support both their pre-execution
evaluation and their runtime monitoring.

• JRA-2 activities offer features and approaches at the various layers of the SBA stack, ranging
from BPM to the execution infrastructure. All of these will have to be considered in the
definition of the engineering method for adaptable SBAs. Moreover, the HCI findings, as well
as the methodological aspects that will be identified in WP-JRA-1.1 will provide hints and
suggestions to the other work packages for the selection of the approaches that best suit the S-
Cube engineering vision.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 10

3.1.2 WP-JRA-1.2: Adaptation and Monitoring

Modern Service-Based Applications are required to operate and evolve in highly dynamic
environments, being able to adequately react to various changes in these environments. This makes
adaptation, i.e., the process of modifying an SBA in order to satisfy new requirements and to fit new
situations dictated by the environment on the basis of adaptation strategies designed by the system
integrator, one of the key aspects of SBAs functionality. The range of possible changes that require
application of adaptation includes changes in the infrastructural layer of the application, where the
quality of service changes or the service becomes unavailable; changes of the (hybrid) application
context and location, where the SBA should be able to replace one service by another possibly having
other properties and parameters; changes of the user types, preferences, and constraints that require
application customization and personalization as a means to adapt the application behavior to a
particular user; changes in the functionalities provided by the component services that require
modifying the way in which services are composed and coordinated; changes in the ways the SBA is
being used and managed by its consumers, which should lead to changes in the application
requirements and the business processes implementing them.

Depending on the type of the changes in SBA and its environment, adaptation may have different
forms. In particular,

• optimization is the modification of an application to make some aspects of it work more
efficient or use fewer resources;

• recovery (repair) is restoring an application after failing to perform one or more of its functions
to fully satisfactory execution by any means other than replacement of the entire application;

• QoS-based adaptation refers to changes in quality-of-service parameters of an SBA;

• evolution is a long-term history of continuous modification of SBA after its deployment;

• mediation is an activity in which a neutral third party, the mediator, assists two or more parties
in order to help them achieve an agreement on a matter of common interest.

In order to detect critical changes, adaptation strongly relies on the presence of monitoring
mechanisms and facilities. With monitoring we mean a process of collecting and reporting relevant
information about the execution and evolution of SBA. Such information, namely monitoring events,
represents evolution of SBA and changes in the environment. These events define the “What?”
dimension of the monitoring process: they are used to indicate whether the SBA is executed and
evolves in a normal mode, whether there are some deviations or even violations of the desired or
expected functionality. Monitoring mechanisms are the tools and facilities for continuous observing
and detecting relevant monitoring events; they identify the “How?” dimension of the monitoring
process.

As monitoring events occur at different functional layers of SBAs, different monitoring types exist:

• For the BPM domain (WP-JRA-2.1), Business Activity Monitoring provides near real-time
monitoring of business activities, measurement of Key Performance Indicators (KPIs), their
presentation in dashboards, and automatic and proactive notification in case of deviations.

• For the service composition domain (WP-JRA-2.2), Monitoring in Service Compositions
refers to checking whether certain predefined properties over the composition model are
satisfied when the composition is executed.

• For the Service Infrastructure domain (WP-JRA-2.3), Monitoring in Grid refers to scalable
high performance monitoring on a large distributed computational Grid. It aims to tackle
monitoring of generic middleware services and application-specific information and data
transfer. There is also a need for the cross-cutting monitoring techniques and methodologies for
SBAs.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 11

The events identified during the monitoring process carry the information about potential changes that
the system and / or the underlying platform should perform in order to adapt to a new situation. The
relation between the monitoring events and the changes of SBA are defined by the adaptation
requirements and objectives: requirements and needs that SBA should achieve in reaction to critical
changes and events. This may include the need for the fault recovery, QoS properties optimization,
requirement to mediate service interfaces, etc.

The adaptation requirements are realized through adaptation strategies. Adaptation strategies describe
the ways to achieve the requirements given the adaptation mechanisms, i.e., tools provided by the
underlying platform (independently) in different functional layers of SBA.

The adaptation and monitoring research domain is strongly related with other research areas.
Engineering and Design domain (WP-JRA-1.1) and provides approaches and notations for defining:

• monitoring specifications (monitoring languages), which describe SBA execution properties,
context, events, and changes;

• engineering principles for monitoring (design for monitoring), where monitoring architectures
and realization patterns are identified;

• adaptation specifications (adaptation languages), which describe the adaptation strategies,
application variability models;

• engineering principles for adaptation (design for adaptation) with the corresponding
architectures and patters.

Domains of realization mechanisms from different functional SBA layers, in turn, provide the
corresponding infrastructures, tools and techniques. This include, in particular,

• Monitoring infrastructure, such as various logging mechanisms;

• Monitoring tools and techniques, such as process/data mining approaches;

• Adaptation infrastructure, e.g., automated service discovery and binding frameworks;

• Adaptation tools and techniques, e.g., automated service composition approaches.

3.1.3 WP-JRA-1.3: Quality Definition, Negotiation and Assurance

Quality dimensions (a.k.a. quality attributes, quality parameters, or quality characteristics) express
“non-functional” capabilities or requirements of SBAs. By grouping a set of relevant quality
dimensions, a service can be defined in terms of its quality characteristics, which state how “well” the
service works.

Quality related aspects relevant for SBAs cover a broad field of research, including work on Quality of
Service (QoS) description and modeling, QoS negotiation, as well as quality assurance:

QoS description and modeling: We argue that obtaining a holistic taxonomy of QoS aspects in service-
based applications represents a very challenging task. Relevant quality aspects may differ (i) according
to the services’ application domain, e.g., domain specific quality for B2B applications is different than
quality of services intended for retail customers, and (ii) on the basis of the type of services involved
in the system, e.g., specifying quality for grid services in a scientific computing application is different
than describing quality for application level (or business level) services in a virtual travel agency
scenario. Therefore, we first introduced a high level taxonomy of QoS dimensions, built on the basis
of previous work on the quality of service components, and we then focused on the review of meta-
models that can be used to describe service QoS in different scenarios and on the languages proposed,
both in academia and industry, to describe instances of such meta-models.

For what concerns QoS modeling, our survey has uncovered the lack of a well established and
standard QoS model for services. In addition, most of the research approaches do not offer a rich,

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 12

extensible, and semantic QoS model. The differences between these formalisms limit the fulfillment of
the vision of automated and precise QoS-based service matchmaking and selection and QoS-aware
service composition. Hence, we argue that a first research direction concerns the development of a
standard QoS model, attempting to describe every relevant aspect of QoS for services, including
metrics, units, measurement functions and directives, constraints, value types, etc. In addition, this
QoS model should encompass a rich set of domain-dependent and global quality dimensions and
should be extensible so as to allow the addition of new quality dimensions when it is needed (e.g., for
a new application domain). Last but not least, this standard QoS model should be semantically
enriched in order to be machine-processable and machine interpretable.

QoS negotiation: QoS contracts are parts of Service Level Agreements (SLAs), which deal with
statements about the QoS levels on which the service requestor and the providers reach an agreement.
This survey does not focus on other aspects of the contracts, i.e., parties’ identification, legal
obligations, or contract non-fulfillment penalties, which are also aspects covered in SLAs or general
contracts. For what concerns contract establishment, we focus on QoS negotiation as the primarily
means to automatically establish contracts on QoS between service requestors and providers. The
review of relevant literature in the field of QoS negotiation in service-based applications shows high
dependability on the classification of QoS aspects (see discussion above). In particular, we discern
between three main different approaches to QoS negotiation in service-based applications. First, we
review relevant work in the field of application level QoS dimensions negotiation. In this case, QoS
negotiation is usually performed adopting state of the art techniques mostly drawn from the agent-
based computing literature. Besides the need to establish QoS contracts that can be monitored at
runtime, QoS negotiation often becomes a means to efficiently select services on the basis of non-
functional requirements. Secondly, trust and security of service access and usage – which are among
QoS aspects that could be negotiated at application level – show peculiar characteristics. While, in
fact, performance related or domain specific QoS negotiation represents a classical multi-attribute
negotiation problem, trust and privacy negotiation requires a different paradigm, oriented toward the
managed and secure disclosing of credentials among parties that provide and use a service. Third, QoS
negotiation and resource allocation represents a fundamental issue in grid services management. While
the description of QoS aspects in grid services is not critical, the focus, in this last case, is on
negotiation protocols to achieve efficient and manageable resource allocation.

We identify two main streams for research on service QoS negotiation. First, we underline the issue of
automated SLA establishment in service compositions. The review shows that most of the current
work in this field concerns the negotiation between a service consumer and a service provider or the
set of providers of functionally equivalent services. Proposals for managing complex 1-to-N
negotiation with services involved in the same service composition are still at their infancy and need
further development. Second, research efforts should be devoted to the analysis of innovative
negotiation strategies explicitly tailored to the requirements of service-based applications.

Quality assurance: To assure the desired quality of a service-based application, two complementary
strategies can be employed: constructive and analytical quality assurance. Where the goal of
constructive quality assurance is to prevent the introduction of faults (or defects) while the artifacts
are created (in the sense of ‘correctness by construction’), the goal of analytical quality assurance is
to uncover faults in the artifacts after they have been created. Three major classes of approaches for
analytical quality assurance in service-based applications exist: (i) Testing, the goal of which is to
(systematically) execute services or service-based applications with predefined inputs in order to
uncover failures, (ii) Monitoring, which observes services or service-based applications as well as
their context during their current execution, (iii) Static Analysis, the aim of which is to systematically
examine (without execution) an artifact (e.g., a service specification) in order to determine certain
properties or to ascertain that some predefined properties are met.

Due to the fact that many development decisions can only be taken during run-time (e.g., deciding on
which of the services to actually bind to the application), in future research there will be a strong need
for quality assurance techniques that can be applied while the service-based application is in operation.
Currently, typically monitoring techniques are employed for assuring the quality of an application
during its operation. The problem with monitoring is that it only checks the current execution. It does

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 13

not allow to pro-actively uncover faults which are introduced, e.g. due to a change in the application, if
they are not leading to a failure in the current execution. One important requirement of those “on-line”
techniques, however, is that their overhead and costs should not become so high that they become
unpractical for this reason. Finally, as (self-)adaptation of service-based applications becomes an
essential characteristic, there is a strong need to assure that the adaptation of a service-based
application behaves as expected. This requires specific testing and analysis techniques to verify the
adaptation behaviour.

In a dynamic business scenario, the contract life-cycle should be automated as much as possible, in
order to allow organizations to dynamically change service providers (business partners) or to re-
negotiate SLAs. That requires that QoS aspects need to be checked during the operation, e.g., by
monitoring the QoS characteristics, in order to determine whether the new service provider meets the
desired QoS or whether there is a need for re-negotiating the SLAs. As the survey in PO-JRA-1.3.1
has revealed, there are only few and isolated research contributions on assuring QoS aspects. There is
thus a strong need for novel techniques and methods that address QoS characteristics in a
comprehensive and end-to-end fashion across all layers of a service-based application. In addition,
approaches that consider the context of a service-based application and its impact on QoS are needed
in order to pave the way towards context-aware service-based application.

The relationships of quality aspects for service-based applications with other S-Cube JRA areas are the
following:

• WP-JRA-1.1: While WP-JRA-1.3 focuses on analytical quality assurance techniques and
methods, constructive quality assurance approaches are covered in WP-JRA-1.1 (specifically,
process models and design methods).

• WP-JRA-1.2: Monitoring (which is one aspect in WP-JRA-1.2) is one important means of
quality assurance. One goal of WP-JRA-1.3 is to understand the dependencies and synergies
between monitoring and other analytical quality assurance techniques and methods. Thus, WP-
JRA-1.3 also considers monitoring but with this specific goal in mind.

• WP-JRA-2.1 and WP-JRA-2.2: For what concerns the verification of service compositions, in
WP-JRA-1.3 work which is more related with non-functional properties (QoS) is relevant,
while other approaches which lean more towards checking correctness of service compositions
are examined in WP-JRA-2.1 and WP-JRA-2.2.

• WP-JRA-2.3: WP-JRA-1.3 will provide a formal framework and a taxonomy as a basis for
developing quality monitoring, negotiation, and assurance mechanisms on the infrastructural
level in WP-JRA-2.3.

3.2 JRA-2: Objective and Coverage
The objective of JRA-2 is to jointly design and develop realisation mechanism for the next generation
of service-based systems which support the engineering and adaptation at the business process, the
service composition and the infrastructure layers.

3.2.1 WP-JRA-2.1: Business Process Management

Business Process Management (BPM) has recently emerged as both a management principle and a
suite of software technologies focusing on management of the lifecycle of a business process ranging
from business goals reflected in the definition of business processes, to the deployment, execution,
measurement, analysis, change, and redeployment of these business processes. A prime constituent of
BPM entails a business process that is defined as a process used to achieve a well-defined business
outcome and is completed according to a set of procedures. A business process may span organizations
and may typically involve both people and systems.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 14

A workflow is a technology for realizing of inter- and intra-enterprise (business) process. Workflow
constructs make it possible to implement business process aspects like logical decision points,
sequential as wells as parallel work routs, as well as managing of exceptional situations.

Business processes are governed and constrained by business rules that define the business terms and
facts (structural assertions) as well as the constraints underlying the business behavior (action
assertions). Business rules represent core business policies. Business policies capture the nature of an
enterprise’s business model and define the conditions that must be met in order to move to the next
stage of the process.

A value chain is the largest possible business process in an organization. The value chain is
decomposed into a set of core business processes and support processes necessary to produce a
service, product or product line. These core business processes are subdivided into activities. The near
real-time monitoring of business activities, the measurement of Key Performance Indicators (KPIs),
their presentation in dashboards, and the automatic and proactive notification in case of deviations
constitutes the notion of Business Activity Monitoring (BAM).

In environments involving business collaborations, business processes are increasingly complex and
integrated both within internal corporate business functions and across the external supply chain. In
such environments there is a clear need for advanced business applications to coordinate multiple
services into a multi-step business transaction. This requires that several Web service operations or
processes attain transactional properties reflecting business semantics, which are to be treated as a
single logical (atomic) unit of work that can be performed as part of a business transaction.

Business processes and business transactions communicate by employing business protocols. A
business protocol specifies the possible message exchange sequences (conversations) that are
supported by the service to achieve a business goal. Business protocols are not executable, but
protocols can be specified using BPEL (or any of the many other formalisms developed for this
purpose) defining in a reusable manner the way to process the workflow specific data.

Business Process Management Suites (BPMS), which provide an integrated set of tools to model,
design, simulate and deploy business processes and process- or transaction based applications,
delivering greater degrees of process management delivery, include the following building blocks:

1. Business Process Modeling: Process models are needed to help business managers and
analysts understand actual processes and enable them, by visualization and simulation, to
propose improvements. In particular, business process modeling relates to design
methodologies (WP-JRA-1.1).

2. Business Process Integration: Connecting the process elements so that they can seamlessly
exchange information to achieve business goals. For applications this means using APIs and
messaging. For people this means creating a workspace on the desktop or fulfilling their part of
the process. Business process integration relates to service and process segments synthesized
from distributed geographic locations as described in WP-JRA-2.2 (Service Composition).

3. Business Process Execution: Once the design and modeling exercise is accomplished, the
process is deployed and executed within a BPM execution engine. The BPM execution engine
executes process instances by delegating work to humans and automated applications as
specified in the process model. The execution environment employs composition languages
such as BPEL (WP-JRA-2.2) and relies on an appropriate service infrastructure (WP-JRA-2.3).

4. Business Process Analysis, Monitoring and Auditing: This involves providing graphical
administrative tools that illustrate processes that are in progress, processes that are completed,
and integrate business metrics and key performance indicators with process descriptions. Audit
trails and process history/reporting information is automatically maintained and available for
further use. Business process activities are logged and monitored as described in WP-JRA-1.2.

5. Business Process Measurement: Managing processes first requires aggregating process data in
business-oriented metrics such as key performance indicators and balanced scorecards. If the
process is “out of bounds” or SLAs are not being met, the next step is to recalibrate it by

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 15

reconfiguring resources or modifying business rules – dynamically and “on the fly.” Business
process activities are measured according to KPI as described in WP-JRA-1.2 and WP-JRA-
1.3.

6. Business Process Optimization: Optimization means process improvement, which should be an
ongoing activity. This item involves optimizing process flows of all sizes, crossing any
application, company boundary and connects process design and process maintenance.

The next-generation of service-enabled BPM will serve as a means of developing mission-critical
applications based on strategic technology capable of creating and executing cross-enterprise
collaborative business processes and business-aware transactions, so that organizations can deploy,
monitor, and continuously update cross-enterprise functions within a mixed environment of people,
content, and systems. Such collaborative, complex end-to-end service interactions give raise to the
concept of Agile Service Networks.

3.2.2 WP-JRA-2.2: Service Composition

WP-JRA-2.2 covers the service composition domain. In Service Oriented Computing, services are
often described as autonomous software components that can be described, published, and discovered
in a platform-neutral and interoperable way. They perform functions ranging from simple atomic
requests to executing complex business processes. An important property of service orientation is the
possibility to combine existing services to create service compositions.

Service composition allows defining more complex applications by reusing existing services at
increasing levels of abstraction. One can distinguish between several service composition models.
Service orchestration creates a composite service by describing how it interacts with existing services,
including the business logic and execution semantics of these interactions. The so created service
orchestration is again exposed as a service and can be orchestrated by other services in a recursive
manner. In the context of Web services, WS-BPEL is the standard language for representing Web
service orchestrations. While a service orchestration specifies the interactions with services and the
business logic from the point of view of a single partner, service choreography focuses on describing
the publicly visible message exchanges between several partner Web services. In addition to
orchestration and choreography, service coordination, and service wiring, can also be considered as
types of service compositions. All of these composition model types have different purposes, but can
often be combined together.

For supporting the lifecycle of service compositions several aspects have to be addressed. Synthesis of
service compositions deals with creation of service compositions which can happen both at design-
time and run-time. In this context, model-driven, QoS-aware, and automated service composition are
three relevant research subdomains. After the creation of a service composition, verification
techniques are needed for verifying the composition against certain properties, such as whether it is
deadlock-free. After deployment of a service composition to the corresponding middleware, which for
service orchestrations is typically a process engine in combination with a service bus, the composition
is executed. At runtime, the composition can be adapted by for example rebinding other services, if a
predefined service fails. Finally, monitoring of service compositions is performed either for run-time
verification or to measure performance metrics of service compositions.

The S-Cube deliverable PO-JRA-2.2.1 “Overview of the State of the Art in Composition and
Coordination of Services” presents the state-of-the-art in the service composition domain. It is
structured as follows:

• Service composition models: The first part of the report deals with service composition models.
It presents and compares approaches to service orchestration, choreography, coordination and
wiring. In addition, semantic WS composition approaches are discussed.

• Service composition approaches focusing on synthesis: In the second part of the report, three
service composition synthesis approaches are presented: (i) Model-driven service composition
copes with generating service composition models from more abstract models. The approaches

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 16

deal predominantly with the transformation of abstract business process models to executable
orchestration models, such as executable BPEL processes. (ii) Automated service composition
aims at selecting services and creating a service composition based on an abstract goal without
human intervention. In this context, existing approaches based on workflow techniques and AI
planning are presented and compared. (iii) Finally, QoS-based service composition attempts to
create a service composition that adheres to local and global QoS constraints.

• Verification of service compositions: The third chapter presents verification techniques for
service composition. Most techniques are based on model checking, many of them focusing on
BPEL processes checking properties such as safety and liveness.

In the final part of the report research challenges in the service composition domain are identified.

The relevance of the research domain to the other five JRA areas:

• Service composition focuses mechanisms supporting the lifecycle of service composition
which are related to techniques from WP-JRA-1.1 and which will be integrated into the overall
methodology.

• WP-JRA-2.2 provides techniques and mechanisms for the service composition layer, which are
supported by principles, techniques and methodologies for monitoring and adaptation of SBAs
on all three layers (WP-JRA-1.2).

• Concerning the QoS aspect, JRA-2.2 focuses on QoS-aware service composition, which is
based on guaranteeing local and global quality constraints in service compositions and builds
on WP-JRA-1.3. This work package focuses on specification, verification and negotiation of
QoS and SLAs, and quality assurance for SBAs.

• WP-JRA-2.2 provides the groundwork for WP-JRA-2.1 to deal with the transformation of
service networks and business process models to service compositions.

• Service composition relies on a service infrastructure (WP-JRA-2.3), which is situated in the
layer below service compositions, and relates to such issues as service discovery, dynamic
binding and invocation. This layer provides middleware and functionalities used by service
compositions.

3.2.3 WP-JRA-2.3: Service Infrastructure

The property commonly referred as self-* is a collection of one or more reflexive properties
expressing the ability of changing some aspects of the working behaviour of a computing entity. In
most cases self-* can be translated to some of self-configuration, self-optimization, self-healing, self-
protection but there are various further self-* properties. The aim of autonomic computing is to
incorporate most of the self-* properties into computing systems.

The driving force behind developing self-* functionalities is identified as the complexity of integrating
large-scale heterogeneous computing systems into a single one. The most notable trends nowadays in
this direction are Grid and mobile computing. Accordingly, the self-* chapter is organised around
these two computing platforms. The design space of self-* services is extensive, hence, instead of a
taxonomy-like presentation, some representative cases are chosen to introduce and demonstrate
various aspects of self-* issues, their use cases and the best practices. More specifically:

• Some high-level models that are governing self-management are introduced. They are usually
based on some analogy to emulate self-* behavior found in nature.

• Issues related to self-optimisation and self-healing is introduced in a numerical simulation
example in grid computing.

• Autonomic brokering plays a crucial role in establishing self-* behavior in Grid computing.
Grids must be instrumented with flexible, decentralized decision making capabilities, whereas

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 17

clients need a robust distributed computing platform that allows them to discover, acquire,
federate and manage the capabilities necessary to execute their decisions.

• Dynamic self-deployment of services that is a novel and unique technique. It is an example for
supporting different phases of service lifecycles by self-* capabilities, bootstrapping in the
certain example.

• Dynamic adaptation, further self-optimisation, self-healing and self-configuration issues are
introduced in a mobile environment via multimedia and transactional examples.

Software systems built on top of Service-Oriented Architectures (SOA) use a triangle of the three
operations "publish", "find" and "bind" in order to decouple the participants in the system.

The problem of "finding" services is usually referred to as Service Discovery. Service Discovery is
defined as the act of locating a machine-understandable description of a Web Service that may have
been previously unknown and that meets certain criteria. Traditionally, SOA-based systems rely on
centralized discovery mechanisms, such as centralized service registry standards (e.g., UDDI or the
ebXML registry, ebXMLRR) or centralized indices. By contrast, there are many research approaches
that rely on decentralized storage, mainly to get away from the single point of failure problem that
centralized registries pose, and to increase scalability. Such approaches include distributed UDDI
clouds, P2P-based service registries (e.g., PWSD or the P2P registry proposed by Schmidt and
Parashar). Distributed approaches also include agent-based solutions, such as DASD (DAML Agents
for Service Discovery). Another interesting research question in Service Discovery is how queries can
be formulated, i.e., what retrieval mechanisms are used. The usual approach here is to use keyword
matching, using results from the Information Retrieval community. A variant of keyword-based
searching is the Vector Space Search Engine presented by Platzer and Dustdar. More advanced than
these approaches is signature-based matching. These approaches use the (WSDL) interfaces of Web
services to inform the search. Prominent examples include Woogle, SPRanker, WSQBE and the
Service Discovery Framework presented by Zisman et al. Semantics-based approaches use Semantic
Web Services technologies for Service Discovery, such as OWL-S (or its predecessor DAML-S),
SAWSDL or WSMO. Context-based approaches, which include the query context (such as location or
user preferences) in the discovery process can be seen as an extension to the other matchmaking
approaches (rather than a replacement). Much work in this area has been carried out by Zisman,
Spanoudakis et al. Another orthogonal topic is QoS-based service discovery, i.e., finding services that
comply to certain non-functional constraints. Lately, languages are being proposed to enhance
registries with QoS data, or to model QoS (QML). Work in the area of QoS-based WS matchmaking
has been carried out by Kritikos and Plexousakis (OWL-Q).

The scope of Dynamic Binding is somewhat different to Service Binding: Dynamic Binding assumes
that a service has already been discovered, and now has to be connected to. An early approach to
dynamic binding has been developed within the SeCSE project (WS-Binder). Similarly scoped was the
JOpera framework, that also incorporated some dynamic binding ideas. Recently, the VRESCo project
proposed a new infrastructure for service-oriented computing, that also assumes that dynamic binding
is the foundation on which loosely-coupled service-based systems are built. A topic closely related to
Dynamic Binding is Dynamic Invocation. Dynamic Invocation considers that it is not so easy to
dynamically invoke recently discovered, previously unknown Web services. Apache WSIF is the well-
established service framework used for Dynamic Invocation. However, recent toolkits such as DAIOS
advance the concepts of Dynamic Invocation to include topics such as RESTful Web services and
service mediation between incompatible services.

Seemingly, self-* services and service registry, discovery and binding are very loosely coupled but in
an operational service based infrastructure they are related and may rely on each other. Most self-*
functionalities, like self-healing and self-optimization for instance, obviously need information about
the available services that can be obtained by service discovery. Self-deployment is both relying on the
information of service registries and maintaining them. Also, version management is essential in the
presence of self-deployment, from a practical point of view they are belonging to the same scope of
problems. Self-* brokering in grids, that can be a potential solution for optimisation, fault tolerance
and adaptation, is strongly related to service discovery mechanisms. On the other hand, in certain cases

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 18

service registry and discovery techniques may require some degree of self-* behavior to ensure fault
tolerance or context awareness.

Service infrastructures are the technical foundation on which research within the other JRAs is based:

• Adaptation and monitoring of services (WP-JRA-1.2) demands for a strong infrastructural
background (e.g., service monitoring is only feasible in a well-defined end-to-end service
environment). Additionally, service adaptation has some clear requirements towards discovery
of alternative services.

• The same is also true for adaptable service compositions as developed within WP-JRA-2.2.
Adapting compositions demands for a well-defined service infrastructure and mature service
discovery mechanisms. Furthermore, WP-JRA-1.1 develops methodologies and techniques
which are used to implement service infrastructures themselves.

• Monitoring is also an essential functionality for establishing self-* services. Also, self-* and
adaptability has much in common. Monitoring and adaptability are covered in depth in depth in
WP-JRA-1.2.

• The life-cycle of services (that is also relevant for autonomic services) is introduced in more
details in WP-JRA-1.1.

4 Relation of S-Cube’s Knowledge Model to other EU
Projects and Initiatives

In the following we shall describe the relationship of S-Cube’s Knowledge Model in connection to
several European projects and initiatives, including NESSI’s NEXOF-RA, BEinGRID, SeCSE, and
INTEROP. This section also briefly relates S-Cube’s KM to the OASIS Reference Model for SOAs. It
must be noted that several related terms from these models have been reused and adapted for the
purposes of S-Cube’s Knowledge Model. They have also influenced the structure of the S-Cube KM
development approach.

4.1 NESSI and NEXOF-RA
One of the primary means for S-Cube to establish an intense and long-lasting collaboration with
industry (cf. Obj-5) will be through participating in the European Technology Platform NESSI
(Networked European Software & Services Initiative). NESSI (www.nessi-europe.eu) aims at
providing a unified view for European research in Services Architectures and Software Infrastructures.
NESSI currently has 22 partners and over 200 members from major European ICT companies and
research institutions.

S-Cube’s relation to NESSI is two-fold:

• The research agenda of S-Cube and the strategic research agenda (SRA) of NESSI (see Figure
3) will be coordinated in order to maximise synergy effects between long-term research
challenges and shorter term research challenges.

• Key individuals of NESSI serve on S-Cube’s Industrial Advisory Board (IAB) and thereby
support the relationship with NESSI, e.g., the NESSI standardisation committee.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 19

NESSI
Strategic
Project 1

NESSI
Strategic
Project 2

NESSI
Strategic
Project N

2 4 6

Reference Architecture & NESSI Research Road Maps

Basic Research Activities

Guide the development of next version of the
NESSI Research Road Map (SRA)

S-Cube NoE

NESSI SRA Aligned Research Activities

Guide the development of the current version
of the NESSI Research Road Map (SRA)

Figure 3: Overview of Relation of S-Cube to NESSI

The NEXOF-RA (NEXOF Reference Architecture) project, funded under objective 1.2 in FP7, is
NESSI’s first step in the process of building a generic open platform for creating and delivering
applications enabling the creation of service based ecosystems where service providers and third
parties can easily collaborate. NEXOF-RA main results will be the Reference Architecture for
NEXOF, a proof of concept to validate this architecture and a roadmap for the adoption of NEXOF as
a whole.

The following differences between the NEXOF-RA Glossary and the S-Cube Knowledge Model have
been identified:

• The NEXOF-RA Glossary has more restricted focus regarding terms, focusing on architectural
and infrastructural issues (e.g. platforms), while the S-Cube Knowledge Model is broader in
focus, encompassing for example BPM and HCI concepts;

• The NEXOF-RA follows a dictionary (glossary) approach whereas the S-Cube Knowledge
Model is based on an encyclopaedic (knowledge model) approach, which provides users with
mental cues to navigate through a vast space of knowledge and terms from different domains,
e.g., software engineering, business process management, grid computing and so on.

NEXOF-RA Glossary contains key definitions with respect to the NEXOF-RA reference model
(conceptual model of the architecture) and the NEXOF-RA reference architecture (concrete
specification). Thus, aligning the work on the NEXOF-RA Glossary and the S-Cube Knowledge
Model will also foster progress for what concerns architectural issues.

4.2 BEinGRID and Gridipedia
The repository of Gridipedia, a part of the BEinGRID (Business Experiments in Grid) IST project, is
populated with Grid software components and solutions that are designed to meet common business
requirements. Information on these components can be found in the Technical Solutions section of
their Web portal (www.gridipedia.eu). Released components can be downloaded via the Component
Access page on their portal.

Other contents include:

• Information on how the components relate to business needs.

• Design patterns providing solutions to common Grid problems.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 20

• An explanation of what the Grid is, including a classification of Grids and a glossary.

• Information on how Grid technology is being applied to business today, including:

• Details of companies that are investing in or developing Grid technology.

• The emerging business models.

• Case studies investigating the applicability of Grid technology to business.

• Legal issues related to Grid computing.

• Information about the leading Grid middleware.

In comparison, the S-Cube approach will have a more dynamic, web- and encyclopedia-based
approach that is broader in content coverage, focusing on semantic associations between concepts,
approaches and methodologies.

4.3 SeCSE and it’s conceptual model
The Service Centric Systems Engineering (SeCSE) conceptual model was defined in order to
encourage the usage of a common terminology and promote a common understanding on the concepts,
entities, processes and facts involved in the various activities of the SeCSE project.

Since its first version released at the end of the first year of the project (2007), the model has
represented a reference for all partners collaborating to the activities of the project. In addition to that,
the model has shown to be suitable for a number of purposes and contexts beyond those of the SeCSE
project. As an example, the model is being used to classify and compare different languages and
technologies available for the composition of services. The model has also been adopted by the
European Commission for classifying the different research initiatives funded by EC in the area of the
Service Oriented Systems and as conceptual model in a number of other research projects on SOA,
such as the Plastic research project (Providing dependabLe and Adaptive Service Technology for
pervasive Information and Communication), a project funded under grant number 026955 by the IST
Program of the European Commission as a STREP.

A key difference is that SeCSE has a limited scope and its conceptual model is of static nature based
on UML diagrams, while S-Cube aims for dynamic cross-correlation of service-related knowledge.

4.4 INTEROP and KMap
The INTEROP Knowledge Map (KMap) aimed at drawing a picture of the status of research in
interoperability and to maintain this picture for future (see Figure 4).

Figure 4: Knowledge Intergration with INTEROP1

1 Presentation Sept 2006 - INTEROP: an original approach to solve Enterprise Interoperability problems by
combining Ontology, Enterprise Modelling and IT”, from Guy DOUMEINGTS, University Bordeaux 1

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 21

The first main objective of the KMap, as of the S-Cube KM as well, was to support a periodic
diagnostic of the extent of research collaboration and coordination among INTEROP partners. Their
work went further to include a repository for papers that were used to index terms for KMap. A similar
approach will be exercised by the S-Cube KM.

Several artifacts were produced by the INTEROP project that are of interest with respect to KM
development for the S-Cube project. More specifically it contains the following components:

• Terms, relationships and definitions extraction process from texts: This process is supported by
tooling that aims to analyze textual data (research papers, web pages, and other documents) for
extracting glossary data. The extraction itself identifies potential interoperability terms,
definitions of these terms and existing relationships among terms (mainly kind-of
relationships), based on statistical and lexical analysis of these texts. This would be very
interesting for S-Cube documentation, if the right parameters can be programmed in, and it can
search multiple formats of data, including flat files.

• Glossary (terms) voting system: This system aims to allow interoperability experts to
collaboratively select terms to be included in an interoperability glossary by voting on their
relevance.

• Definition validation tool: This tool aims to allow interoperability experts to collaboratively
select, define and refine terms definitions extracted from reference interoperability texts (see
extraction process described above) in order to be included in an interoperability glossary. This
appears to be too exclusive, not inclusive, for use in S-Cube.

• Taxonomy edition and visualization tool: This tool aims to graphically display and edit a
taxonomy (or glossary). This includes, for instance, functionalities for taxonomy reorganization
by moving sub-parts of the taxonomy to more appropriate places. Interesting for S-Cube, but it
depends going forward on what tool the repository sits in, as the current repository may not be
able to include this kind of tool.

• Interoperability Explicit Knowledge Repository: The objective of this repository is to allow the
storage of relevant knowledge about interoperability. This knowledge will take the form of
papers, publications and journals, research methodologies, literature reviews, tutorials, etc.
These elements must be classified with some taxonomy of interoperability and be searchable.
This is the intention of S-Cube’s KM within its own software services research area as it
matures.

• KMap system: This system aims at describing the competencies, results and collaboration of
INTEROP researchers in the domain of interoperability. All data of the KMap are classified
according to an interoperability “classification framework” derived from the INTEROP
Glossary. The tool will allow performing a diagnostic of the current and past research on
interoperability by providing support for queries (such as “identify research domains in which
insufficient research effort is devoted or in which there is insufficient collaboration”).

• Protégé KMap prototype (WP1): This prototype was developed in order to start collecting
KMap data while the KMap system is being developed. The data collected through this tool
will be imported in the KMap system when it will be put in operation. This is a must-have
going forward for S-Cube.

S-Cube plans to study the different components of INTEROP and reuse a similar tooling approach
wherever possible.

4.5 OASIS and SOA-RM
The goal of the OASIS Reference Model (SOA-RM) was to define the essence of Service Oriented
Architecture (SOA) and emerge with a vocabulary and a common understanding of SOA.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 22

Figure 5: OASIS SOA-RM

The purpose of their reference model (see Figure 5) is to provide a common conceptual framework
that can be used consistently across and between different implementations and is of particular use in
modeling specific solutions.

In summary, the OASIS model is not as complex and interactive as the S-Cube KM, but it contains
several concepts which could be beneficial for inclusion.

5 Evolution of the Knowledge Model
S-Cube’s Knowledge Model aims at mapping and synthesizing diverse concepts and knowledge from
partners in different research domains in the network. It identifies research gaps, determines the
research issues that are of importance for the next generation services technologies, harmonizes
research results and, in general, enables the streamlining of the research activities of the six joint
research areas and their respective domains.

Figure 6: The KM and other knowledge sources and knowledge-intensive activities

Conceptual
Taxonomy

Use
Cases

Virtual
Lab

Paper
Repository

Competencies

Events /
Activities
Via Portal

Educational
Platform

KM

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 23

The purpose of the KM is to synthesize and integrate diversified knowledge in the form of a free,
open-content “living” encyclopedia accessed through the web. This will help users to negotiate a large
body of knowledge by providing them with mental cues to navigate through a vast space of knowledge
and terms from different domains related to all aspects of service-oriented research and associated
methodologies and support environments. The S-Cube KM is a dynamic, interactive encyclopedia-
based approach focusing on semantic associations between concepts, approaches and methodologies.
Two critical components of the KM can be identified (see Figure 6):

• Conceptual taxonomy: containing (possibly overlapping) key terms for each research domain
(as identified for example by section 3), together with their definitions and relationships with
other terms.

• Competencies: representing key contributors and experts relating to research domains in terms
of research output (volume and relevance) from both inside and outside the S-Cube consortium.

Figure 6 also describes the relationship of the S-Cube Knowledge Model with other knowledge
sources and knowledge-intensive activities. In particular, the S-Cube KM relates to the following
knowledge sources in S-Cube:

• Use Cases: representative use case scenarios that are useful for the wider community to
appreciate the S-Cube approach. For instance, scenarios could be drawn from WP-JRA-2.3 to
describe situations where run-time service adaptation is required and illustrate how it is
handled.

• Paper Repository: a centralized database of software services related research papers that were
produced within the context of S-Cube and assembled as part of the community outreach
activity (WP-SoE-1.2).

In addition to these sources, the knowledge models produced by the other EU projects discussed in
section 4, and especially the ones that are part of the SSAI FP7 collaboration activity (i.e., NEXOF-
RA and Gridipedia) can also be valuable sources of knowledge. An investigatory effort in linking
terms from the initial version of the KM presented below with these knowledge models has been
performed, but due to the scope and time limitations involved, the results of this exercise have been
deemed too premature to be discussed here.

Furthermore, the S-Cube KM relates to the following knowledge intensive activities in S-Cube

• Educational Platform (the Virtual Campus and Joint PhD programs activities in WP-SoE-1.1):
it is expected that students and professionals will use the KM as a source for course material,
its unambiguous definitions, the offered cross-correlation of terms from different disciplines,
and have access to case studies and publications relating to specific domains or terms.

• Virtual Lab (WP-IA-1.2 output): apart from used as a source of knowledge for the virtual lab,
the KM will serve as a basis of integrating different tools and implementations by
experimenting with the different use cases and applying the methodologies stipulated in the
KM.

Focus in this deliverable is in the establishing of an initial content for the conceptual taxonomy and the
competencies, and provide a mapping between them as the stepping stone for establishing the S-Cube
KM.

The following chart illustrates the phases of development of the knowledge in S-Cube.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 24

 123 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

WP-IA-1.1 Convergence Knowledge Model
 1 2 3 4 5 6 7 8

T-IA-1.1.1 State of the Art in Research on SBAs

T-IA-1.1.2 Initial Definition and Incremental Evolution of the
Convergence Knowledge Model

T-IA-1.1.3 Harmonisation and Integration of Research Activities

IA
-1

.1
: I

nt
eg

ra
tin

g
K

M

T-IA-1.1.4 Research Roadmap Sustainability

5.1 Initial Knowledge Model and Competencies
So far in the early phases of the KM development for the S-Cube project, the emphasis has been on
establishing the initial scope and requirements for the KM (e.g. with regards to collecting the initial
terms and definitions, and competencies for each domain). This process is supported by a Content
Management System (CMS), which is linked to the project’s Web portal. In this way, external users as
well as project participants will have access to a large body of knowledge relating to services research.

In the first phases of the KM development, an initial set of terms and competencies was established for
each of the relevant research domains, represented by respective JRA activities within the S-Cube
project. These have been added to the KM section of the S-Cube Web Portal. Research domain terms
constitute important concepts within a research domain. Competencies represent key contributors to a
research domain in terms of research output (volume and relevance) from both inside and outside the
S-Cube consortium.

In line with the goal of this deliverable to establish an initial set of terms and competencies for the
different S-Cube research domains, the scope of each domain and the identification of relevant terms
and competencies were determined through consultation of the domain experts within the S-Cube
consortium. In future development of the KM the possibility of the usage of quantitative metrics will
be explored in order to facilitate further elaboration and refinement of the KM.

The methodology adopted for the selection and definition of initial terms and competencies was
iterative in nature comprising the following steps:

1. A definition of the research domain was established based on the State of the Art document
(SoTA) developed for the corresponding JRA.

2. An initial set of terms to be inserted in the KM was selected by isolating the important concepts
within the research domain definition and their relationships.

3. An initial set of Competencies was established for each research domain.

Through iteration of these steps the initial sets of terms and competencies was then further elaborated
and refined by contrasting them against the research domain definition. Also, where needed, the
research domain definition was adjusted to better reflect the content of the research domain in terms of
the identified terms and competencies.

See Appendix A for the actual terms and Appendix B for the competencies list.

5.2 Consolidation and Exploitation of the Knowledge Model
The consolidation and exploitation of the KM concerns the identification of overlaps and gaps within
and among the research domain terms. Overlaps constitute terms that are encountered across two or
more research domains (including synonyms and homonyms). Gaps represent the lack of common
concepts across domains that are interrelated. By identifying such overlaps and gaps the conceptual

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 25

map will be geared toward more accurately reflecting the relationships between the research domains.
This will result in a concise and integrated lexicon for the different research domains, which will
promote interoperability among researchers from these domains.

The consolidation of the conceptual map in terms of overlaps will be conducted by identifying the
following cases2:

1. Enumerating terms that belong to more than one research domain, and have similar definitions.

2. Enumerating terms that belong to more than one research domain, but have incompatible
definitions.

3. Enumerating pairs of terms that belong to different research domains with similar definitions.

This procedure requires the manual processing of existing terms from each research domain in relation
to each other and will be facilitated through utilization of the current or future infrastructure. The
assistance provided by the infrastructure will enable experts from different research domains to
effectively communicate with each other in order to address the identified overlaps.

The overlap analysis will also reveal overlapping trends among research domains. Based on these
trends, gap analysis will then be applied to pairs of research domain. Such analysis will focus on
locating existing terms within a domain to assess whether it is feasible to add a corresponding term to
the paired domain in order to resolve the gap.

5.3 Mapping Competencies to Knowledge Model Terms
The mapping between the Competencies to the Knowledge Model constitutes of cross-correlating
concepts and terms contained within the KM with available expertise and contributions. The benefit
of establishing such mapping is that it provides a connection of key concepts, terms, methodologies
and research outputs to experts from the different research domains. Using the KM, distinct expertise
and competencies can be linked both within and across the S-Cube domains. The will give a yellow-
pages like approach to identify and locate experts and specific knowledge and expertise along with
their contributions.

6 Summary and future work
In the previous we have described the Knowledge Model of S-Cube, its purpose and its individual
components. We also identified previous approaches from related EU projects and international
activities that have resulted in the definition of a large body of terms relating to software services
research. These have been scrutinized, adapted and reused to the extend possible as part of the S-Cube
KM. In addition, we have summarized and cross-correlated major research findings of the state-of-the-
art deliverables in S-Cube, and showed how they contribute towards building the initial version of the
KM. Finally, we describe the connection of the KM to a number of knowledge sources and
knowledge-intensive activities within S-Cube and its usage by both internal and external users.

It must be noted that although in the DoW is mentioned that we should provide around 10 terms per
research domain in the JRAs, the first version of the knowledge model actually contains far more
entries than originally envisioned.

The next iteration of the KM will focus on developing separate knowledge models for the functional
SBA layers, i.e., business process management, service composition and coordination, and service
infrastructure. The three separated knowledge maps will contain siloed knowledge that has been
assessed, tuned and coordinated for each of the three individual functional SBA layers, and common
terminology within each functional layer will have been agreed-upon and defined. The separated
knowledge model for the functional layers will be measured against KPIs. The KM produced will be

2 Notice that this is an ongoing activity that has already commenced in this deliverable.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 26

assessed by ensuring that the knowledge items (concepts) for each functional layer (e.g., service
composition) that are elaborated into finer grained knowledge items, are actually based on the key
knowledge items that were described in this deliverable.

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 27

Appendix A Initial Knowledge Model terms

A.1 WP-JRA-1.1: Engineering & Design
Contributors: Vasilios Andrikopoulos (Tilburg), Andreas Gehlert (UniDue), Angela Kounkou (CITY), Elisabetta di Nitto (POLIMI)

Term Definition Relationships Associated Terms
Adaptable Service-Based Application An Adaptable Service-Based Application is a service-based application

augmented with a run time control loop that monitors and modifies itself
on the basis of adaptation strategies designed by the system integrators.
Notice that adaptations can be performed either because monitoring has
revealed a problem or because the application identifies possible
optimizations or because its execution context has changed. The context
here may be defined by the set of services available to compose the
service-based applications, the parameters and protocols being in place,
user preferences, environment characteristics (location, time).

SYN: Adaptable SBA Service-Based Application

Service Discovery Service Discovery is the process of locating the services providing the
required functionalities. Runtime service discovery is an important
ingredient for self-adaptation.

 Service, Self-Adaptation

Self-Healing Self-Healing is the ability of a system or a SBA to repair itself without
any external intervention.

 Self-*, Service-Based
Application

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 28

Term Definition Relationships Associated Terms
Service A Service is the non-material equivalent of a good. A service provision is

an economic activity that does not result in ownership, and this is what
differentiates it from providing physical goods. Services are explicitly
described in a Service Description. This Service Description allows the
users to access a service regardless of where and by whom it is actually
offered. It specifies the way the service can be accessed together with any
behavioral model, constraint, and policy according to which the service
must be provided. A service is opaque in that its implementation is
typically hidden from the service consumer except for (1) the information
and behavioral models exposed through the Service Descriptions and (2)
the information required by service consumers to determine whether a
given service is appropriate for their needs.

Web Service A Web Service is a service provided by a software system that
implements a predefined set of standards. It is designed to support
interoperable machine-to-machine interaction over a network. It has a
service description (called interface) described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.

 Service

Context Context refers to the physical and social situation in which a service-
based application or a service is embedded. It is defined by any
information that can be used to characterize the situation of an entity - be
it a person, a place or a physical or computational object - this is because
of the way this information is used in interpretation rather than because
of its intrinsic properties.

Human Computer Interaction (HCI) Human Computer Interaction (HCI) is the study of the interaction
between humans and computers (in their broadest sense, including
computerized devices and large scale computer systems as well as stand-
alone computers). It is concerned with the design, evaluation and
implementation of interactive computing systems which it aims to make
more usable and useful for human use. [J. Preece, Y. Rogers, D. Benyon,
S. Holland, and T. Carey, Human-Computer Interaction,
Wokingham:Addison-Wesley, 1994.]

SYN: HCI, Computer
Human Interaction
(CHI), Human Machine
Interaction (HMI)

Adaptation Requirements and
Objectives

The Adaptation Requirements and Objectives identify the aspects of the
SBA model that are subject to change, and what the expected outcome of
the adaptation process is.

 Adaptation, Service-Based
Application

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 29

Term Definition Relationships Associated Terms
Service Binding Service Binding is the process of associating a service request to a

service offer. Binding can happen at design time, deployment time, and
runtime.

 Service

Service-Based Application (SBA) A Service-Based Application is composed by a number of possibly
independent services, available in a network, which perform the desired
functionalities of the architecture. Such services could be provided by
third parties, not necessarily by the owner of the service-based
application. Note that a service-based application shows a profound
difference with respect to a component-based application: while the
owner of the component-based application also owns and controls its
components, the owner of a service-based application does not own, in
general, the component services, nor it can control their execution.

SYN: SBA Adaptable Service-Based
Application

Adaptation Strategies Adaptation Strategies are the means through which adaptation is
accomplished. Examples of adaptation strategies are re-configuration, re-
binding, re-execution, re-planning, etc.

 Adaptation, Service-Based
Application, Adaptation
Mechanisms, Adaptation
Requirements and Objectives

Design for Adaptation Design for Adaptation is a design process specifically defined to take
adaptation into account. It should incorporate into the system under
development all those facilities that enable the possibility to meet the
adaptation requirements from very early phases to the application
execution.

 Adaptation

Self-Adaptation Self-Adaptation is the ability of a system or a SBA to adapt itself without
any external intervention.

 Adaptation, Service-Based
Application

Rebinding Rebinding implies the replacement of a binding with another one.
Rebinding can happen at design time, deployment time, and runtime.

 Service, Binding

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 30

A.2 WP-JRA-1.2: Adaptation and Monitoring
Contributors: Raman Kazhamiakin (FBK)

Term Definition Relationships Associated Terms
Business Activity Business Activity is a part of a business process consisting of a series of activities

implemented across workflow systems, ERP systems and legacy applications, possibly
across organizational boundaries.

 Business Process

Evolution Evolution of Service-Based Application is a long-term history of continuous modification
of SBA after its deployment in order to correct faults, to improve performance or other
attributes, or to adapt the product to a modified environment.

 Service-Based
Application, Adaptation

Key Performance
Indicator (KPI)

Key Performance Indicators (KPIs) are financial and non-financial metrics used to help an
organization define and measure progress toward organizational goals.

SYN: KPI Business Activity
Monitoring

Mediation Mediation refers to an activity in which a neutral third party, the mediator, assists two or
more parties in order to help them achieve an agreement on a matter of common interest.

 Adaptation

Optimization Optimization of Service-Based Application is the process of modifying an application to
make some aspect of it work more efficiently or use fewer resources.

 Service-Based
Application, Adaptation

Recovery Recovery is a process of restoring the application after failing to perform one or more of its
functions to fully satisfactory execution by any means other than replacement of the entire
application.

SYN: Repair Adaptation

Monitoring in
Service
Compositions

Monitoring in Service Compositions refers to checking whether certain predefined
properties over the composition model are satisfied when the composition is executed.

 Monitoring, Service
Composition

Adaptation
Requirements and
Objectives

Adaptation Requirements and Objectives are the requirements and needs that the Service-
Based Application should achieve in reaction of critical changes and events.

 Adaptation, Service-
Based Application

Adaptation
Mechanisms

Adaptation Mechanisms are the tools and mechanisms provided by the underlying platform
in different Functional Layers of Service-Based Application that allow for implementation
of various Adaptation Strategies.

 Adaptation, Service-
Based Application,
Adaptation Strategies

Quality of Service-
Based Adaptation

Quality of Service-Based Adaptation refers to the adaptation that is performed in order to
react to the changes in QoS parameters of a Service-Based Application.

SYN: QoS-Based Adaptation Adaptation

Monitoring in Grid Monitoring in Grid refers to scalable high performance monitoring on a large distributed
computational Grid. It aims to tackle monitoring of generic middleware services and
application-specific information and data transfer.

 Monitoring, Grid

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 31

Term Definition Relationships Associated Terms
Monitoring Monitoring is a process of collecting and reporting relevant information about the

execution and evolution of the Service-Based Application.
 Testing, Static Analysis,

Service-Based
Application

Adaptation Adaptation is a process of modifying Service-Based Application in order to satisfy new
requirements and to fit new situations dictated by the environment on the basis of
Adaptation Strategies designed by the system integrator.

 Service-Based
Application, Adaptable
Service-Based
Application, Adaptation
Strategies

Adaptation
Strategies

Adaptation Strategies define the possible ways to achieve Adaptation Requirements and
Objectives given the available Adaptation Mechanisms.

 Adaptation, Service-
Based Application,
Adaptation Mechanisms,
Adaptation Requirements
and Objectives

Business Activity
Monitoring (BAM)

Business Activity Monitoring (BAM) provides near real-time monitoring of Business
Activities, measurement of Key Performance Indicators, their presentation in dashboards,
and automatic and proactive notification in case of deviations.

SYN: BAM Business Activity,
Monitoring, Key
Performance Indicator,
BPM Software Suite,
Business Process,
Activity, Workflow

Monitoring Events Monitoring Events are the events that deliver the relevant information about the application
evolution and changes in the environment.

 Monitoring

Monitoring
Mechanisms

Monitoring Mechanisms are the tools and facilities for continuous observing and detecting
relevant Monitoring Events.

 Monitoring, Monitoring
Events

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 32

A.3 WP-JRA-1.3: Quality Definition, Negotiation, and Assurance
Contributors: Julia Hielscher (UniDue), Irena Trajkovska (UPM)

Term Definition Relationships Associated Terms
Testing The goal of Testing is to (systematically) execute services or service-based applications in

order to uncover failures. During testing, the service or service-based application which is
tested is fed with concrete inputs and the produced outputs are observed. The observed
outputs can deviate from the expected outputs with respect to functionality as well as
quality of service (e.g., performance or availability). When the observed outputs deviate
from the expected outputs, a failure of the service or the service-based application is
uncovered. Failures can be caused by faults (or defects) of the test object. Examples for
faults are a wrong exit condition for a loop in the software code that implements a service,
or a wrong order of the service invocations in a BPEL specification. Finding such faults
typically is not part of the testing activities but is the aim of debugging. A special case of
testing is profiling. During profiling, a service or a service-based application can be
systematically executed in order to determine specific properties. As an example, during
profiling the execution times of individual services in a service composition could be
measured for ’typical’ or ’extreme’ inputs in order to identify optimization potentials.
Testing cannot guarantee the absence of faults, because it is infeasible (except for trivial
cases) to test all potential concrete inputs of a service or service-based application. As a
consequence, a sub-set of all potential inputs has to be determined for testing. The quality
of the tests strongly depends on how well this sub-set has been chosen. Ideally this sub-set
should include concrete inputs that are representative for all potential inputs (even those
which are not tested) and it should include inputs that – with high probability – uncover
failures. However, in cases where choosing such an ideal sub-set typically is infeasible, it
is important to employ other quality assurance techniques and methods which complement
testing.

 Monitoring, Static
Analysis

Quality of Service
Level

Quality of Service (QoS) Level defines the different modes in which a system can be.
Depending on, e.g., available resources, a different execution level can be jumped to if
continuing the execution in the current one is not possible. The submetamodel defines the
abstract classes to represent levels, transitions between them, and when those transitions
have to take place.

SYN: QoS Level Quality of Service
Characteristics, Quality
of Service Constraints

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 33

Term Definition Relationships Associated Terms
Quality of Service
Dimensions

Quality of Service (QoS) Dimensions is a tool for improving the management aspects of
Web service-based architectures. In particular, typical issues in loosely coupled
environments management, such as service discovery and selection, composition, and
monitoring, raise different issues concerned with negotiation of QoS. Finally, QoS
negotiation can be implemented according to different paradigms, such as broker-based
architectures and multi-agent systems. Each implementation paradigm introduces specific
issues that must be dealt with while tackling the Web service QoS negotiation problem.

SYN: QoS Dimensions Quality of Service
Negotiation, Declarative
Quality of Service
Models, Ontological
Quality of Service Models

Constructive Quality
Assurance

The goal of Constructive Quality Assurance techniques and methods is to prevent the
introduction of faults (or defects) while the artifacts are created. Examples for such
techniques include code generation (model-driven development), development guidelines,
as well as templates.

 Analytical Quality
Assurance

Analytical Quality
Assurance

The goal of Analytical Quality Assurance techniques and methods is to uncover faults in
the artifacts after they have been created. Examples for analytical quality assurance
techniques are reviews and inspections, formal correctness proofs, testing, as well as
monitoring.

 Constructive Quality
Assurance, Static
Analysis, Testing,
Monitoring

Monitoring Monitoring observes services or service-based applications during their current execution,
i.e. during their actual use or operation. In addition, the context of a service or a service-
based application can be monitored. This context can include other systems, the execution
platform (hardware, operating systems, etc.) and the physical environment (e.g., sensors or
actuators). Monitoring can address different goals. Further, monitoring can be used to
enable the context-driven run-time adaptation of a service-based application. Also,
monitoring may be used to uncover failures during the current execution of a service or
service-based application. In contrast to testing and static analysis, which aim at providing
more or less general statements about services or service-based applications, monitoring
always provides statements about their current execution (i.e., about current execution
traces). Thereby, monitoring can uncover failures which have escaped testing, because the
concrete input that lead to the current execution trace might have never been tested. Also,
monitoring can uncover faults which have escaped static analysis, because static analysis
might have abstracted from a concrete aspect which was relevant during the current
execution.

 Testing, Static Analysis,
Service-Based
Application

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 34

Term Definition Relationships Associated Terms
Static Analysis The aim of Static Analysis is to systematically examine an artifact in order to determine

certain properties (synthesis) or to ascertain whether some predefined properties are met
(verification). Analysis can be applied at several stages in the development cycle, and
therefore examples for artifacts which can be subject to analysis include requirement
documents, design specifications, interface descriptions, and code. Examples of static
analysis include formal techniques and methods, such as data flow analysis, model
checking, execution in abstract domains, symbolic execution, type checking, and
correctness proofs, which are all usually characterized because they compute properties
that are in many cases approximations of the more concrete properties, but which, in this
case, are safe, in the sense that the lack of accuracy must not lead to an error for the
intended use of the analysis. Informal approaches, such as reviews, walkthroughs, and
inspections, are as well examples of static analysis. In contrast to testing (or monitoring),
where individual executions of the services or service-based applications are examined,
analysis can examine classes of executions. Thus, analysis can lead to more universal
statements about the properties of the artifacts than testing (or monitoring). In order to
achieve these more universal statements, static analysis – unlike testing or monitoring –
does not execute the artifacts which are being examined, since termination (which is
theoretically ensured when the system has a finite state space) is usually a necessary
condition for a successful analysis. However, systems may have a state space so large (or
infinite) as to make traversing it unfeasible. In those cases static analysis resorts to working
with safe approximations of the actual system semantics, which makes the system actually
under analysis effectively finite, but different from the initial one. Those approximations
can be very sophisticated and take the form of, e.g., relations between inputs and outputs
which approximate the system behavior in the domain of the analysis. When these
approximations capture the properties of interest faithfully enough, then the results, even if
not as accurate as they could be, are useful – and correct. Yet, as approximations might
abstract away from some relevant concrete details, aspects might be overlooked or simply
not be captured faithfully enough. Thus static analysis can complement the other classes of
quality assurance techniques and methods but typically will not be enough, if used in
isolation, in order to give a complete picture of the whereabouts of the execution of a
computational system.

 Testing, Monitoring

Quality Dimensions Quality Dimensions express capabilities or requirements. By grouping a set of relevant
quality dimensions a service can be defined by its quality that states how the service work

SYN: Quality Attributes,
Quality Parameters

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 35

Term Definition Relationships Associated Terms
Quality of Service
Characteristics

Quality of Service (QoS) Characteristics is a submetamodel that includes the names
(constructors) of the nonfunctional characteristics in the QoS model (e.g., latency,
throughput); the dimensions in which each characteristics is measured (e.g.: reliability can
be measured in MTBF, time to repair, etc), as well as the direction of order in the domain,
its units, associated statistics, etc.; the possibility of grouping several characteristics (e.g.,
the performance category); the description of the values that quantifiable QoS
characteristics can take, and others.

SYN: QoS Characteristics Quality of Service
Constraints, Quality of
Service Level

Quality of Service
Negotiation

Quality of Service (QoS) Negotiation is a tool for improving the management aspects of
Web service-Based architectures. In particular, typical issues in loosely coupled
environments management, such as service discovery and selection, composition, and
monitoring, raise different issues concerned with negotiation of QoS. Finally, QoS
negotiation can be implemented according to different paradigms, such as broker-Based
architectures and multi-agent systems. Each implementation paradigm introduces specific
issues that must be dealt with while tackling the Web service QoS negotiation problem.

SYN: QoS Negotiation Quality of Service
Dimensions, Declarative
Quality of Service
Models, Ontological
Quality of Service Models

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 36

A.4 WP-JRA-2.1: Business Process Management
Contributors: Vasilios Andrikopoulos (Tilburg), Willem-Jan van den Heuvel (Tilburg)

Term Definition Relationships Associated Terms
Workflow A Workflow is a technology for realizing inter- and intra-enterprise (business) process.

Workflow constructs make it possible to implement business process aspects like logical
decision points, sequential as wells as parallel work routs, as well as managing of
exceptional situations. This is realized by the means of control flow constructs of a
workflow language. The business rules (complex transition conditions) specify in reusable
manner the way to process the workflow specific data.

 Process, Business
Process, Business Rules

Business Process A Business Process is a process used to achieve a well-defined business outcome and is
completed according to a set of procedures. The key elements in this definition are that a
business process may span organizations and may typically involve both people and
systems. A business process includes both automated and manual tasks.

 Process

Key Performance
Indicator (KPI)

A Key Performance Indicator (KPI) is a quantifiable metric that a firm uses to measure
performance in terms of meeting its strategic and operational objectives. KPIs provide
critical information to the organization for monitoring and predicting business performance
in accordance with strategic objectives in a way that compliments financial performance.
By measuring and monitoring operational efficiency, employee performance and
innovation, customer satisfaction, as well as financial performance, long term strategies
can be linked to short term actions. [A. Neely, M Gregory, and K. Platts, “Performance
measurement system design: A literature review and research agenda,” International
Journal of Operations & Production Management, vol. 25, no. 12, pp. 1228—1263, 2005.]

SYN: KPI Business Activity
Monitoring

Activity An Activity is an element that performs a specific function within a process. Activities can
be as simple as sending or receiving a message, or as complex as coordinating the
execution of other processes and activities.

SYN: Task, Business Activity Process

Business Protocol A Business Protocol specifies the possible message exchange sequences (conversations)
that are supported by the service to achieve a business goal. Business protocols are not
executable, but protocols can be specified using BPEL or any of the many other
formalisms developed for this purpose.

 Business Process

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 37

Term Definition Relationships Associated Terms
Business Activity
Monitoring (BAM)

Business Activity Monitoring (BAM) refers to near real-time monitoring of business
activities, measurement of key performance indicators (KPIs), their presentation in
dashboards, and automatic and proactive notification in case of deviations. A “business
activity” thereby can be implemented as a service orchestration in a BPMS, or, more
general, as part of a business process consisting of a series of activities implemented across
workflow systems, ERP systems and legacy applications, possibly across organizational
boundaries. BAM software gathers information from these applications in form of events,
aggregates and analyzes these events to compute KPIs, and reacts to deviations by
notifying business users.

SYN: BAM Business Activity,
Monitoring, Key
Performance Indicator,
BPM Software Suite,
Business Process,
Activity, Workflow

Business Transaction A Business Transaction is driven by well-defined business tasks and events that directly or
indirectly contribute to generating economic value, such as processing and paying an
insurance claim, and has also an associated number of parameters that represent security
and timing requirements. A business transaction always either succeeds or fails with
respect to the business task (function) that initiated it and governs it throughout its
execution. If a business transaction completes successfully then each participant will have
made consistent state changes, which, in aggregate, reflect the desired outcome of the
multi-party business interaction.

 Business Process

Business Process
Integration (BPI)

Business Process Integration (BPI) refers to the ability to define a commonly acceptable
business process model that specifies the sequence, hierarchy, events, execution logic and
information movement between systems residing in the same enterprise (viz. EAI) or
systems residing in multiple interconnected enterprises.

SYN: BPI Business Process,
Enterprise Application
Integration

Business Policies Business Policies capture the nature of an enterprise’s business model and define the
conditions that must be met in order to move to the next stage of the process.

Business Rules Business Rules define the business terms and facts (structural assertions) as well as the
constraints underlying the business behavior (action assertions). Business rules represent
core business policies. Business rules are represented as compact (declarative) statements
about an aspect of the business that can be expressed within an application in unambiguous
terms that can be directly related to the business and its collaborators and as such they
determine the route of action to be followed [B. von Halle, "Business Rules Applied", J.
Wiley & Sons, 2001. R. G. Ross, "Principles of the Business Rule Approach", Addison-
Wesley Information Technology Series. Addison-Wesley, 2003.]

 Business Policies

Value Chain A Value Chain is the largest possible process in an organization. The value chain is
decomposed into a set of core business processes and support processes necessary to
produce a service, product or product line. These core business processes are subdivided
into activities.

 Process, Activity

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 38

Term Definition Relationships Associated Terms
BPM Software Suite A BPM Software Suite (BPMS) provides an integrated set of tools to model, design,

simulate and deploy business processes and process-based applications, delivering greater
degrees of process management delivery. BPMS present a “closed loop” system for
achieving business performance improvement, offering a set of integrated tools that
support designing, measuring, monitoring, analyzing, optimizing, and continuously
improving business processes.

SYN: BPMS, BPM Suite Business Process

Agile Service
Network (ASN)

An Agile Service Network (ASN) comprises large numbers of long-running, highly
dynamic complex end-to-end service interactions reflecting asynchronous message flows
that typically transcend several organizations and span geographical locations. The term
complex end-to-end service interaction signifies a succession of automated business
processes, which are involved in joint inter-company business conversations and
transactions across a federation of cooperating organizations.

SYN: ASN Business Process,
Business Transaction

Business Process
Modeling

Business Process Modeling provides a shared environment for the capture, design and
simulation of business processes by business analysts, managers, architects and other IT
professionals. Modern business process modeling tools include business process analysis
functionality of capturing, designing, and modifying business processes and their
properties, resource requirements, such as definition and selective enforcement of process
standards. They also facilitate the expression of business process views at different levels
of abstraction depending on authorization, functional responsibility and the level of detail
desired.

 Business Process

Business Process
Execution

Business Process Execution refers to the deployment and execution of a business process
within a BPM execution engine (usually a part of BPM Software Suite). The BPM
execution engine executes process instances by delegating work to humans and automated
applications as specified in the process model.

 Business Process, BPMS

Business Process
Analysis, Monitoring
and Auditing

Business Process Analysis, Monitoring and Auditing involves providing graphical
administrative tools that illustrate processes that are in progress, processes that are
completed, and integrate business metrics and key performance indicators with process
descriptions. Audit trails and process history/reporting information is automatically
maintained and available for further use.

 Business Process

Business Process
Measurement

Business Process Measurement refers to the activity of aggregating process data in
business-oriented metrics such as key performance indicators and balanced scorecards, and
the optimization of the process by reconfiguring resources or modifying business rules –
dynamically and “on the fly.”

 Business Process, Key
Performance Indicator

Business Process
Optimization

Business Process Optimization involves optimizing process flows of all sizes, crossing any
application, company boundary and connects process design and process maintenance.

 Business Process

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 39

A.5 WP-JRA-2.2: Service Composition
Contributors: Olha Danylevych (USTUTT), Dragan Ivanovic (UPM), Branimir Wetzstein (USTUTT)

Term Definition Relationships Associated Terms
Service
Orchestration

Service Orchestration is a form of service composition in which a new service is created by
orchestrating several services in a process flow. Orchestrated services can be atomic
services, i.e. self-contained entities which do not use other services, or again service
orchestrations. The standard language for orchestrating Web services is WS-BPEL.

 Service Composition

Service
Choreography

Service Choreography is a form of service composition in which the interaction protocol
between several partner services is defined. The goal is to define the so called public
processes of the interacting partners and how they communicate together. For the
specification of service choreographies, visual notations can be used such as BPMN and
Let’s Dance. Other approaches are defined based on an XML-based language such as WS-
CDL, or adapt a language for service orchestrations such as BPEL4Chor.

 Service Composition

Service Composition Service Composition is a combination of a set of services for achieving a certain purpose.
Different service composition types can be distinguished, in particular: service
orchestration, service choreography, service wiring, and service coordination.

SYN: Service Aggregation Service Orchestration,
Service Choreography,
Service Wiring, Service
Coordination, Semantic
Web Service Composition

Service Coordination Service Coordination is a form of service composition in which a distributed activity is
created by temporarily grouping a set of service instances following a coordination
protocol. At the end of the activity a coordinator decides on the outcome of the protocol
and disseminates the result to the participating services. WS-Coordination is an example of
a specification which supports coordination of Web services.

 Service Composition

Model-Driven
Service Composition

Model-Driven Service Composition is a service composition that generates service
orchestrations from a more general or abstract model.

 Service Composition,
Service Orchestration

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 40

Term Definition Relationships Associated Terms
Service Wiring Service Wiring is a composition type in which a set of interacting services is assembled

into a package. Such package, called service assembly, can be deployed in a run-time
environment, ready to be invoked as a service itself.Services specify provided and
requested interfaces in form of operations with inputs and outputs. In order to create
executable service assemblies, the requested interfaces of one service are wired to provided
interfaces of other services. The services assembled in this way can again be recursively
exposed as a service which can be wired and invoked. A service assembly is a deployable
artifact, which is deployed to an enterprise service bus. Service Component Architecture is
a service wiring technology.

SYN: Service Assembly Service Composition,
Service Component
Architecture

Automated Service
Composition

Automated Service Composition is a family of approaches to service composition that aim
at full or partial automation of the composition process, in order to enable handling of
higher levels of complexity.

 Service Composition

Quality of Service-
Aware Service
Composition

Quality of Service-Aware Service Composition is a form of service composition that is
based on and attempts to improve overall Quality of Service (QoS) attributes of service
composition,such as execution time, reliability, availability, or cost.

SYN: QoS-Aware Service
Composition

Service Composition

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 41

A.6 WP-JRA-2.3: Service Infrastructure
Contributors: Attila Kertesz (SZTAKI), Zsolt Nemeth (SZTAKI), Martin Treiber (TUW)

Term Definition Relationships Associated Terms
Service Registry A Service Registry is a repository that contains Web service related meta information (e.g.

Web service descriptions).

Service Discovery Service Discovery is the process of finding services that match the requirements of the
service requestor.

 Service, Self-Adaptation

Service Mediation Service Mediation is the process of intercepting and modification of messages that are
exchanged between services.

Dynamic Invocation Dynamic Invocation is the execution of a service whose interface is first known at run
time.

Grid A Grid is a fully distributed, dynamically reconfigurable, scalable and autonomous
infrastructure to provide location independent, pervasive, reliable, secure and efficient
access to a coordinated set of services encapsulating and virtualizing resources (computing
power, storage, instruments, data, etc.) in order to generate knowledge.

Self-* Self-* is called one or more properties of the computing system that represent reflexive
actions, e.g. self-healing, self-optimising, etc. (Currently there are over 20 various self-*
terms)

SYN: Selfware Adaptive, Autonomic

Self-Healing Self-Healing is called the ability of a computing component to detect, diagnose and repair
localized problems resulting from bugs or failures in software and hardware.

 Self-*, Service-Based
Application

Self-Optimization Self-Optimization is called the ability of a computing component to seek ways to improve
its operation, identifying and seizing opportunities to make itself more efficient in
performance or cost.

SYN: Self-Optimising Self-*, Optimization

Dynamic Binding Dynamic Binding refers to the selection of the actual service at run time.
Autonomic Autonomic is called an entity of a computing system capable to manage its own operation

without human intervention.
SYN: Self-Managing, Self-
Governing

Self-Configuration Self-Configuration is called the ability of a computing component to configure itself in
accordance with high-level policies that specify what is desired not how it is to be
accomplished.

 Self-*

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 42

Term Definition Relationships Associated Terms
Self-Protection Self-Protection is called the ability of a computing component to defend the system as a

whole against large-scale, correlated problems arising from malicious attacks or cascading
failures that remain uncorrected by self-healing measures; to anticipate problems form
early reports and take steps to avoid or mitigate them.

SYN: Self-Protective Self-*, Service-Based
Application

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 43

Appendix B Initial list of Competencies

Domain Expertise Individual/Contact Person Institution Contact info
Engineering and
Design

HCI, Requirements Engineering, Service-Centric
Systems Engineering Angela Kounkou CITY

HCI, Requirements Engineering, Service Discovery,
Service-Centric Systems Engineering Neil Maiden CITY

Requirements Engineering, Service Discovery,
Service-Centric Systems Engineering Kos Zachos CITY

 Service Oriented Architectures Mike P. Papazoglou Tilburg
 Service Oriented Architectures Marco Pistore FBK
 Service Oriented Architectures Paolo Traverso FBK
 Service Oriented Architectures Carlo Ghezzi POLIMI
 Service Adaptation Barbara Pernici POLIMI
 Service Adaptation Luciano Baresi POLIMI
 Service Adaptation Elisabetta di Nitto POLIMI

Goal-Based Requirement Engineering Approaches
(especially i* and Tropos) Klaus Pohl UniDue

Scenario-Based Requirement Engineering
Approaches Andreas Gehlert UniDue

 Context Modeling & Analysis UniDue
 Service Modeling Ali Arsanjani IBM Global Services arsanjan@us.ibm.com
 Service Modeling Olaf Zimmermann IBM Zurich Research Lab olz@zurich.ibm.com
 Service Oriented Architectures Boualem Benatallah University of New South Wales boualem@cse.unsw.edu.au
 Service Oriented Architectures Thomas Erl SOA Systems Inc.
 Service Oriented Architectures Fabio Casati University of Trento casati@disi.unitn.it
 Service Planning Marco Aiello Rijksuniversiteit Groningen aiellom@cs.rug.nl
Adaptation and
Monitoring Diagnosis Elisabetta di Nitto POLIMI
 Self-healing systems Luciano Baresi POLIMI
 Repair Luciano Baresi POLIMI
 Adaptation Jean-Louis Pazat INRIA

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 44

Domain Expertise Individual/Contact Person Institution Contact info
 Adaptation Maria Grazia Fugini POLIMI
 QoS-Based Adaptation Elisabetta di Nitto POLIMI
 Grid Computing Jean-Louis Pazat INRIA
 Monitoring in WS Compositions Luciano Baresi POLIMI
 Monitoring in WS Compositions Marco Pistore FBK
 Monitoring in WS Compositions George Spanoudakis CITY
 Monitoring in WS Compositions Luciano Baresi POLIMI
 Monitoring in WS Compositions Salima Benbernou UCBL
 Process Mining Mohand-Said Hacid UCBL
 Business Activity Monitoring Branimir Wetzstein USTUTT
 Monitoring in Grid Gabor Kecskemeti SZTAKI
 Process Mining Fabrizio Silvestri CNR
 Adaptation Luca Cavallaro POLIMI

 Business Activity Monitoring Josef Schiefer
Inst. for Software Technol. &
Interactive Syst., Vienna

 Process Mining W.M.P. van der Aalst
DTM, Eindhoven University of
Technology, Eindhoven

 Monitoring, SLA Heiko Ludwig IBM T.J. Watson
 Monitoring in Grid Sergio Andreozzi INFN-CNAF, Bologna
 Optimization Amit P. Sheth University of Georgia

 Mediation Boualem Benatallah
CSE, University of New South
Wales

Quality
Definition,
Negotiation and
Assurance Marco Pistore FBK
 Luciano Baresi POLIMI
 Raman Kazhamiakin FBK
 Carlo Ghezzi POLIMI
 Mike P. Papazoglou Tilburg
 Klaus Pohl UniDue
 Andreas Metzger UniDue
 Wei-Tek Tsai Arizona State University wei-tek.tsai@asu.edu
 Raymond Paul Arizona State University

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 45

Domain Expertise Individual/Contact Person Institution Contact info
 Marianne Winslett University of Illinois winslett@uiuc.edu

 Wil M.P. van der Aalst
Eindhoven University of
Technology w.m.p.v.d.aalst@tue.nl

 Xiaoying Bai Tsinghua University baixy@tsinghua.edu.cn
 Elisa Bertino Purdue University bertino@cs.purdue.edu
Business Process
Management BPM Frank Leymann USTUTT

 Business Processes, Business Process Reusability Dimka Karastoyanova USTUTT

Business Activity Monitoring, Business Process
Execution Branimir Wetzstein USTUTT

 Workflows Olha Danylevych USTUTT
 BPM Mike P. Papazoglou Tilburg
 Business Protocols, Business Processes Willem-Jan van den Heuvel Tilburg
 Business Protocols Michele Mancioppi Tilburg
 Business Protocols Mohand-Said Hacid UCBL
 Value Networks Christos N. Nikolaou UOC
 Value Networks Marina Bitsaki UOC
 Business Protocols Boualem Benatallah University of New South Wales boualem@cse.unsw.edu.au
 Business Protocols Fabio Casati University of Trento casati@disi.unitn.it
 Business Protocols Farouk Toumani Blaise Pascale University ftoumani@isima.fr

 Business Processes Wil M. P. van der Aalst
Eindhoven University of
Technology w.m.p.v.d.aalst@tue.nl

 Business Processes Manfred Reichert University of Twente m.u.reichert@cs.utwente.nl

 Business Processes Arthur H. M. ter Hofstede
Queensland University of
Technology a.terhofstede@qut.edu.au

 Value Networks Verna Allee Verna Allee Associates verna@vernaallee.com
 Value Networks Jaap Gordijn Vrije Universiteit Amsterdam gordijn@cs.vu.nl
 Value Networks Hans Akkermans Vrije Universiteit Amsterdam elly@cs.vu.nl
 Business Rules Shazia Sadiq University of Queensland shazia@itee.uq.edu.au
 Business Processes Heiko Ludwig IBM's TJ Watson Research Center hludwig@us.ibm.com
 Business Processes Thomas H. Davenport Babson College tdavenport@babson.edu
 Business Processes August-Wilhelm Scheer Institut für Wirtschaftsinformatik

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 46

Domain Expertise Individual/Contact Person Institution Contact info

Service
Composition

Service Orchestration, Service Choreography,
Service Wiring, Service Coordination, Semantic WS
Composition, Model-Driven Service Composition Frank Leymann USTUTT

Service Orchestration, Service Choreography,
Service Wiring, Service Coordination Dimka Karastoyanova USTUTT

Service Orchestration, Service Choreography,
Service Wiring, Service Coordination Branimir Wetzstein USTUTT

Service Orchestration, Service Choreography,
Service Wiring, Service Coordination, Model-
Driven Service Composition Mike P. Papazoglou Tilburg

 Semantic WS Composition Kyriakos Kritikos UOC
 Automated Service Composition George Baryannis UOC
 Automated Service Composition Paolo Traverso FBK

Automated Service Composition, Verification of
Service Compositions Marco Pistore FBK

Automated Service Composition, Verification of
Service Compositions Raman Kazhamiakin FBK

Service Orchestration, Service Choreography,
Service Wiring, Service Coordination, Model-
Driven Service Composition, QoS Aware Service
Composition Schahram Dustdar TUW

 Model-Driven Service Composition Philipp Leitner TUW
 QoS Aware Service Composition Florian Rosenberg TUW
 QoS Aware Service Composition Ivona Brandic TUW
 QoS Aware Service Composition Barbara Pernici POLIMI
 Verification of Service Compositions Manuel Carro UPM
 Verification of Service Compositions Carlo Ghezzi POLIMI

 Service Orchestration Gustavo Alonso
Department of Computer Science
ETH Zentrum, Zürich alonso@inf.ethz.ch

 Service Choreography Alistair Barros SAP, Brisbane Research Centre alistair.barros@sap.com
 Service Coordination Eric Newcomer IONA eric.newcomer@iona.com
 Semantic WS Composition Dieter Fensel STI Innsbruck dieter.fensel@sti2.at
 QoS Aware Service Composition Michael C. Jaeger Technische Universität Berlin, mcj@cs.tu-berlin.de

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 47

Domain Expertise Individual/Contact Person Institution Contact info
Germany

 QoS Aware Service Composition Liangzhao Zeng
 IBM Thomas J. Watson Research
Center lzeng@us.ibm.com

Service
Infrastructure SOA Registry and Discovery Philipp Leitner TUW
 SOA Registry and Discovery Florian Rosenberg TUW
 SOA Registry and Discovery Ivona Brandic TUW
 SOA Registry and Discovery Schahram Dustdar TUW
 Web Services Registry and Discovery Franco Maria Nardini CNR
 Web Services Registry and Discovery Gabriele Tolomei CNR
 Web Services Registry and Discovery Fabrizio Silvestri CNR
 Web Services Registry and Discovery Kyriakos Kritikos UOC
 Web Services Registry and Discovery Pierluigi Plebani POLIMI

Dynamic adaptation in grid and mobile
environments Jean-Louis Pazat INRIA

Dynamic adaptation in grid and mobile
environments Francoise Andre INRIA

 Self-healing brokering Attila Kertesz SZTAKI
 Self-deployment Gabor Kecskemeti SZTAKI
 Self-*, nature inspired adaptation models Zsolt Nemeth SZTAKI
 IR, web IR Ricardo Baeza-Yates Yahoo! research BCN

 Peer-to-peer Ophir Frieder
IIT, Chicago and Georgetown
University

 Service discovery, SOA Boualem Benatallah University of New South Wales boualem@cse.unsw.edu.au
 Service discovery, SOA Fabio Casati University of Trento casati@disi.unitn.it
 Service discovery, SOA Gustavo Alonso
 Service discovery, SOA
 Paco Curbera

 Grid Ian Foster
Argonne National Laboratory,
University of Chicago

 Grid Carl Kesselman
USC, Information Sciences
Institute

 Autonomic computing, self-* Jeffrey O. Kephart IBM T.J. Watson Lab

 Grid Scheduling Uwe Schwiegelshohn
Dortmund University of
Technology

uwe.schwiegelshohn@udo.ed
u

S-CUBE Deliverable # CD-IA-1.1.1
Software Services and Systems Network

External Final version 1, dated 25 September 2008 48

Domain Expertise Individual/Contact Person Institution Contact info

 Grid Brokering Ramin Yahyapour
Dortmund University of
Technology ramin.yahyapour@udo.edu

 Grid Workflows Andreas Hoheisel Fraunhofer FIRST
andreas.hoheisel@first.fraunh
ofer.de

