
Grant Agreement No 215483

Title: Integration Framework Baseline

Authors: City, FBK, INRIA, LERO, PoliMI, UCBL, UniDue, UPM, USTUTT, Tilburg,
TUW

Editor: Marco Pistore, Raman Kazhamiakin, Antonio Bucchiarone (FBK)

Reviewers: Ita Richardson (LERO)
Barbara Pernici (PoliMI)
Jean-Louis Pazat (INRIA)

Identifier: Deliverable # CD-IA-3.1.1

Type: Deliverable

Version: 1.0

Date: 27 March 2009

Status: Final

Class: External

Management summary

This document describes the baseline of the S-Cube Integrated Research Framework. The ob-
jective of this framework, which will be constantly and incrementally refined and extended
throughout the whole life of the project, is to provide a holistic vision that integrates, aligns and
coordinates the research efforts and results of the joint research activities undertaken in JRA-1
and JRA-2. The baseline for the Integrated Research Framework described in this document
consists of a set of views which define different perspectives on the S-Cube research: concep-
tual framework, reference life-cycle, logical run-time architecture, logical design environment.
In this deliverable, we provide a description of these views and a first definition of the interfaces
between the elements of the framework. We map the research efforts undertaken in the differ-
ent joint research activities into these views. Finally, we define responsibilities for the different
research work-packages, and relationships among them, in terms of their contributions to these
views.

Copyright ©2008-2009 by the S-Cube consortium – All rights reserved.

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement no 215483 (S-Cube).

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) – UniDue Germany
Tilburg University – Tilburg Netherlands
City University London – CITY U.K.
Consiglio Nazionale delle Ricerche – CNR Italy
Center for Scientific and Technological Research – FBK Italy
The French National Institute for Research in Computer Science and Control – INRIA France
The Irish Software Engineering Research Centre – Lero Ireland
Politecnico di Milano – Polimi Italy
MTA SZTAKI – Computer and Automation Research Institute – SZTAKI Hungary
Vienna University of Technology – TUW Austria
Universitá Claude Bernard Lyon – UCBL France
University of Crete – UOC Greece
Universidad Politécnica de Madrid – UPM Spain
University of Stuttgart – USTUTT Germany
University of Hamburg Germany
VU Amsterdam Netherlands

Published S-Cube documents

These documents are all available from the S-Cube Web Portal at http://www.s-cube-network.eu/

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Contents

1 Introduction 4
1.1 Activity IA-3: Integration Framework . 4
1.2 IRF Baseline: Objectives and Approach . 5
1.3 Structure of the Deliverable . 6

2 Integrated Research Framework 7
2.1 Conceptual Research Framework . 8

2.1.1 Domain Layers: Domain-Specific Technologies and Mechanisms 9
2.1.2 Cross-Cutting Issues: Over-Arching Principles and Methods 10

2.2 Interfaces in the Conceptual Research Framework . 10
2.2.1 Interfaces Between Domain Layers and Cross-Cutting Issues 11
2.2.2 Interfaces Among Cross-Cutting Issues . 12
2.2.3 Interfaces: Concluding Remarks . 12

2.3 Reference Life-Cycle . 13
2.3.1 Description of the Phases of the Life-Cycle . 13

2.4 Logical Run-Time Architecture . 16
2.4.1 High-Level Architecture . 16
2.4.2 Detailed Architecture . 17

2.5 Logical Design Environment . 18
2.5.1 Map of the Design Environment . 18
2.5.2 Design Environment Techniques in the Life-cycle 20

2.6 Concluding remarks . 21

3 Contributions of the S-Cube Research WPs 22
3.1 Engineering Principles, Techniques and Methodologies for Hybrid, Service-based Ap-

plications (WP-JRA-1.1) . 22
3.1.1 Contribution to the Conceptual Research Framework 22
3.1.2 Contribution to the Reference Life-Cycle . 22
3.1.3 Contribution to the Logical Run-Time Architecture 23
3.1.4 Contribution to the Logical Design Environment 23
3.1.5 Relations with Other WPs . 23

3.2 Adaptation and Monitoring Principles, Techniques and Methodologies for Service-based
Applications (WP-JRA-1.2) . 23
3.2.1 Contribution to the Conceptual Research Framework 24
3.2.2 Contribution to the Reference Life-Cycle . 24
3.2.3 Contribution to the Logical Run-Time Architecture 25
3.2.4 Contribution to the Logical Design Environment 25
3.2.5 Relations with Other WPs . 26

3.3 End-to-End Quality Provision and SLA Conformance (WP-JRA-1.3) 26
3.3.1 Contribution to the Conceptual Research Framework 26

External Final Version 1.0, Dated 27 March 2009 1

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

3.3.2 Contribution to the Reference Life-Cycle . 27
3.3.3 Contribution to the Logical Run-Time Architecture 28
3.3.4 Contribution to the Logical Design Environment 29
3.3.5 Relations with Other WPs . 29

3.4 Business Process Management (WP-JRA-2.1) . 29
3.4.1 Contribution to the Conceptual Research Framework 29
3.4.2 Contribution to the Reference Life-Cycle . 30
3.4.3 Contribution to the Logical Run-Time Architecture 31
3.4.4 Contribution to the Logical Design Environment 31
3.4.5 Relations with Other WPs . 31

3.5 Adaptable Coordinated Service Compositions (WP-JRA-2.2) 32
3.5.1 Contribution to the Conceptual Research Framework 33
3.5.2 Contribution to the Reference Life-Cycle . 33
3.5.3 Contribution to the Logical Run-Time Architecture 34
3.5.4 Contribution to the Logical Design Environment 34
3.5.5 Relations with Other WPs . 34

3.6 Self-* Service Infrastructure and Service Discovery Support (WP-JRA-2.3) 35
3.6.1 Contribution to the Conceptual Research Framework 35
3.6.2 Contribution to the Reference Life-Cycle . 35
3.6.3 Contribution to the Logical Run-Time Architecture 36
3.6.4 Contribution to the Logical Design Environment 36
3.6.5 Relations with Other WPs . 36

3.7 Concluding Remarks . 36

4 Evolution of the Integrated Research Framework 38
4.1 First Complete Definition of the IRF . 38
4.2 First Validation of the IRF . 39
4.3 Analysis of User Patterns and Methodologies . 39

5 Conclusion 41

A Acronyms 43

External Final Version 1.0, Dated 27 March 2009 2

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

List of Figures

1.1 The conceptual framework used as staring point for the definition of the IRF 5

2.1 The conceptual research framework . 9
2.2 The reference life-cycle . 13
2.3 Run-time architecture: high-level view . 16
2.4 Runtime architecture: detailed view . 17
2.5 Logical design environment: matrix . 19
2.6 Design environment techniques mapped into the life-cycle 20

3.1 Reference life-cycle: contributions of JRA-WP-1.2 . 24
3.2 Reference life-cycle: contributions of JRA-WP-1.3 . 27
3.3 Reference life-cycle: contributions of JRA-WP-2.1 . 30
3.4 Reference life-cycle: contributions of JRA-WP-2.2 . 33
3.5 Reference life-cycle: contributions of JRA-WP-2.3 . 36
3.6 Contributions of the WPs to the run-time architecture 37

External Final Version 1.0, Dated 27 March 2009 3

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Chapter 1

Introduction

This deliverable describes the first, base version of the S-Cube Integrated Research Framework (IRF),
which is one of the pivotal elements for ensuring overall integration, consistency and harmonisation of
the research efforts undertaken by the network.

In this introductory chapter, we define the context of the IRF. We start by describing the objectives of
IA-3, where the definition of the IRF belongs (Section 1.1). We then discuss the objectives for the IRF
baseline described in this deliverable, and the approach that we adopted for its definition (Section 1.2).
We finally discuss the structure of the rest of the deliverable (Section 1.3).

1.1 Activity IA-3: Integration Framework

The overall goal of Integration Activity 3 (“Integration Framework for Service-based Applications”) is to
guarantee the coherency and integration of the research efforts undertaken by S-Cube. This is achieved
through the definition of a holistic framework that aligns and coordinates the results of the joint research
activities. This overall goal will be achieved through the realization of the following detailed objectives
(see also [1]):

• To define, and progressively refine, the Integrated Research Framework (IRF), i.e., a coherent,
holistic framework for S-Cube research, which allows for integrating the principles, techniques,
methods and mechanisms studied in S-Cube. In particular, the IRF should encompass those aspects
of the research that are cross-cutting.

• To guarantee the overall coherence and alignment of all the research work-packages by defining
their contributions to the IRF and by identifying boundaries and interfaces among the investiga-
tions undertaken by the different work-packages.

• To validate the IRF through suitable industrial case studies. The ultimate goal of the validation
is to revise and improve the IRF. For this reason, it will be conducted iteratively for the whole
duration of the activity.

• To identify the different classes of users that are involved with different roles in a Service Based
Application (SBA), and to define customisations and refinements of the IRF that are tailored and
personalised to these various classes of users.

• To help comparing the investigation undertaken by S-Cube with other proposals and approaches,
both from industry and from academics; to help strengthening the relations of S-Cube with the
research community; and to help identifying missing competences within the S-Cube consortium.

External Final Version 1.0, Dated 27 March 2009 4

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 1.1: The conceptual framework used as staring point for the definition of the IRF

1.2 IRF Baseline: Objectives and Approach

This deliverable reports the outcomes of the activities undertaken in Task T-IA-3.1.1 of the IA-3 activ-
ity, whose aim is to define the baseline upon which the IRF will be defined and progressively refined
throughout the whole life of the project [1].

This work has been conducted in close cooperation with the research work-packages, and is actually
based on two fundamental contributions coming from these work-packages. Firstly, the work is based on
the systematic survey and analysis of the state of the art undertaken during the first months of the project
by the research work-packages. This survey and analysis has addressed engineering, adaptation, and
quality assurance methodologies and processes [2, 3, 4] well as mechanisms and techniques for service
infrastructure, service composition, and business process management [5, 6, 7] and has taken into account
literature both from industry and from academics (see also [8]). Secondly, the work has exploited the
research visions and road-maps defined by the research work-packages. These visions complement the
analysis of the state of the art by identifying short-term and long-term research challenges for the work-
packages.

The purpose of the activities undertaken in IA-3 so far has been to provide a holistic, coherent frame-
work for the research activities of the different S-Cube work-packages. In particular, the purpose has
been to identify gaps, overlaps and synergies among the different research efforts undertaken by S-Cube,
and to identify clear responsibilities and interfaces for the efforts of the different research work-packages.
This has been performed in an iterative way, in order to build an increasing alignment of the vision of
the different research work-packages within the IRF. In particular, this integration in the vision has been
consolidated during the S-Cube meetings1, and through specific coordination activities undertaken with
the research work-package and activity leaders.

The starting point for this has been the high-level description of the conceptual framework for the
1In particular, the IRF has been discussed in detail during the Global Meeting hold in Crete in September 2008, during the

Integration Committee meeting hold in Amsterdam in February 2009, and during the Global Meeting hold in Lyon in March
2009. This deliverable reports the version of the IRF that has been discussed and approved during the Global Meeting in Lyon.

External Final Version 1.0, Dated 27 March 2009 5

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

S-Cube research activities which is reported in Figure 1.1. This conceptual architecture identifies the six
elements corresponding to the six work-packages in the two joint research activities, and defines some
interfaces among those elements, corresponding to the mutual dependencies and expectations among the
research work-packages.

The work undertaken in IA-3 for the definition of the IRF has led to the following main results:

• Firstly, the conceptual framework has been analysed, updated, and refined in order to better capture
the roles and responsibilities of the different research work-packages. In particular, this evolution
is based on a clear separation of responsibilities between the work-packages in JRA-2 and the
work-packages in JRA-1. The former which focus the research on local technologies and mecha-
nisms which are specific to one of the SOA domain layers. The latter which focus on overarching
principles and techniques for issues that are cross cutting to these layers.

• Secondly, clear interfaces have been identified and defined based on the interactions between the
elements of this conceptual framework. These interfaces are based on the capabilities that an
element of the architecture offers to the others. In particular, capabilities are used to define the
interfaces between the domain layers in JRA-2 and the cross-cutting issues in JRA-1 — namely,
the capabilities provided by the domain layers will be exploited in order to manage the cross-
cutting issues. In addition, capabilities are used to describe the interfaces and mutual dependencies
among the different cross-cutting issues.2

• Thirdly, additional views have been added to the IRF. These views complete and complement the
one given by the conceptual framework, by covering the aspects related to the life-cycle, the run-
time architecture, and the design environment of SBAs. These complementary views are necessary
to give a comprehensive overview of the research undertaken by S-Cube, and are essential to
clarify the relations among the research efforts and to better understand responsibilities and mutual
expectations of the different research work-packages.

• Fourthly, an initial mapping of the research work-packages into the IRF has been defined. This
mapping describes the research concerns of the different work-packages and their contributions to
the overall research framework in terms of their contributions to the views defining the IRF.

We note that the IRF is not a static object, but will evolve and be refined and extended throughout
the whole life of S-Cube. These revisions may involve the introduction of additional views, in case new
perspectives will become useful to describe the research framework. Moreover, the specific content of
the different views and the mapping of the research efforts and results into the IRF will also be updated
and refined in order to reflect the progress of the activities in the project.

1.3 Structure of the Deliverable

The structure for the remaining chapters in the deliverable is the following. Chapter 2 will define the
baseline version of the IRF by describing the four different views it provides. In addition to this, the
chapter will also describe the interfaces among the different elements of the conceptual framework.
Chapter 3 will provide a description of the responsibilities and scope of the research work-packages by
mapping them into the IRF. Chapter 4 discusses the next steps in the definition of the IRF, the strategies
that we foresee for its management and update, and its usage for the validation of the research undertaken
by S-Cube. Finally, Chapter 5 provides some concluding remarks. A list of acronyms used in the
document can be found in Appendix A.

2According to [1], the description of the interfaces among the elements of the conceptual framework is the content of a
different document, namely Deliverable PO-IA-3.1.2. Since the definition of such interfaces is strictly connected with the
definition of the IRF, the content of the PO-IA-3.1.2 deliverable has been merged within the current document.

External Final Version 1.0, Dated 27 March 2009 6

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Chapter 2

Integrated Research Framework

In this chapter we define the baseline for the S-Cube Integrated Research Framework (IRF). As discussed
in the Introduction, this framework, which will be constantly and incrementally refined and extended
throughout the whole life of the project, has the objective of providing a common understanding of the
research efforts undertaken by S-Cube.

The baseline of the IRF which is described in this chapter will provide a first integrated and co-
herent description of the integrated S-Cube framework which is being investigated in the joint research
activities. To this purpose, four different views of the research undertaken by S-Cube have been iden-
tified, which provide different perspectives of the integrated research efforts. The first view is given
by the conceptual research framework, which provides a high-level conceptual view of the S-Cube
research activities. This view corresponds to the refinement and consolidation of the initial conceptual
framework represented in Figure 1.1. This view clarifies the relations and complementary roles of the
research undertaken on the domain layers (service infrastructure, service composition and coordination,
and business process management) and of the research undertaken on the cross-cutting issues (engineer-
ing and design, adaptation and monitoring, and quality assurance). More in general, it defines clear
interfaces among the research efforts undertaken by the different research work-packages, and clarifies
mutual expectations and dependencies among them.

The three additional views which define the IRF have been introduced to complete the high-level,
static view of the organisation of the research within S-Cube which is provided by the conceptual re-
search framework. More precisely, these three additional views have been introduced to provide differ-
ent perspectives to the definition and integration of the research efforts of the project. These three views
define:

• A reference life-cycle, which shows how the different research activities contribute to support a
coherent design and run-time life-cycle of an SBA. The core aspect of the proposed life-cycle is
that it is composed of two main cycles, one for the classical analysis and design phase and another
for the run-time perspective, including monitoring and adaptation. In fact, one of the key aspects
of an SBA is that a strong interplay between the design and the run-time is needed in order to
meet the expectations of these applications in terms of dynamicity, pro-activeness, adaptability,
and quality assurance. As we will see, the proposed two-cycle approach allows for a smooth
transition between the runtime operation and the analysis and design phases in order to allow for
a continuous improvement and update of the SBA. As a consequence, by associating the research
efforts of S-Cube within the reference life-cycle, we guarantee that they are aligned with these
expectations.

• A logical run-time architecture, which illustrates the research efforts in terms of contributions
to a hypothetical infrastructure for the execution of SBAs. The proposed run-time architecture is
service-oriented, that is, it assumes that both the engines providing infrastructural services (e.g.,
services supporting the execution monitoring, testing, negotiation of SBAs) and the application

External Final Version 1.0, Dated 27 March 2009 7

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

specific services are exposed on the same communication back-bone. By adopting this logical run-
time architecture, we guarantee that the run-time mechanisms studied within the different work-
packages define a coherent picture. By adoption a service-oriented architecture, we guarantee that
these mechanisms can be integrated and exploited in a synergistic way, at least at the conceptual
level.

• A logical design environment for SBAs, whose purpose is similar to that of the run-time archi-
tecture, but addresses the design phase. More precisely, this view provides a context where to
place the envisioned techniques and mechanisms investigated by S-Cube to support the analysis
and design of a SBA. This is achieved by placing these techniques in a matrix that shows their
relevance for the three domain layers, as well as according to the provided modelling, generation,
deployment, verification functionalities. By adopting this logical design environment, we guaran-
tee that the efforts undertaken by the different research work-packages define a coherent picture
that supports the different aspects of the design of a SBA.

We note that the four views defining the IRF are not independent. On the contrary, they are strongly
interconnected, as they provide different perspectives for visualising and exploring the whole corpus of
research undertaken by S-Cube.

In the rest of this chapter, we define the IRF by describing in detail the four views just introduced.
More precisely, Section 2.1 describes the conceptual research framework, while Section 2.2 provides a
detailed description of the interfaces among the different blocks of this framework. The following three
sections focus on the three other views, namely, the reference life-cycle (Section 2.3), the logical run-
time architecture (Section 2.4), and the logical design environment (Section 2.5). Section 2.6 completes
the chapter with some concluding remarks.

2.1 Conceptual Research Framework

The conceptual research framework (see Figure 2.1) is the core element in the definition of the IRF.
Its aim is to organise the joint research activities within S-Cube by providing a high-level conceptual
architecture for the principles and methods for engineering service-based applications, as well as for the
technologies and mechanisms which are used to realize those applications.

The framework consists of six components, which are in 1-to-1 relation with the six research work-
packages of the network. Moreover, the framework distinguishes between the horizontal components
corresponding to the “traditional” domain layers of a SBA, i.e., “Service Infrastructure”, “Service Com-
position and Coordination”, and “Business Process Management”, and the vertical components, which
correspond to the cross-cutting issues addressed by the project, namely “Engineering and Design”,
“Adaptation and Monitoring”, and “Quality Definition, Negotiation and Assurance”.

We note that the distinction between the two kinds of components is one of the core elements of
the S-Cube approach. Indeed, an element that makes the S-Cube framework unique when compared to
the traditional “layered” approach is that the framework systematically addresses cross-cutting issues.
The framework sets out to make explicit the knowledge of the horizontal layers that is relevant for these
cross-cutting issues, and that currently is mostly hidden in languages, standards, mechanisms, and so
on that are defined and investigated in isolation at the different layers. More precisely, the approach
underlying the framework is that the domain layers offer (design, monitoring, adaptation, verification)
capabilities that are relevant for the cross-cutting issues. The research efforts in the vertical components
are responsible of defining over-arching principles and methodologies for addressing cross-cutting issues
by exploiting in suitable ways the capabilities exposed by the horizontal components.

In order to support the vision just described, the responsibilities of the components of the conceptual
research framework are defined by following a clear separation of concerns between the two kinds of
components in the conceptual research framework, as discussed in the next paragraphs.

External Final Version 1.0, Dated 27 March 2009 8

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 2.1: The conceptual research framework

2.1.1 Domain Layers: Domain-Specific Technologies and Mechanisms

Similar to the traditional SOA layers, the three domain layers of the framework are responsible for mech-
anisms and methods which are applicable locally within the layers. Also, concrete service technologies
fall under the responsibility of the domain layers. More precisely:

• The “Service Infrastructure” layer studies a high-performance execution platform supporting adap-
tation and monitoring of SBAs (e.g., self-* mechanisms). The platform provides a set of core ser-
vices, like service registries, discovery capabilities, and virtualisation services to the other layers.

• The “Service Composition and Coordination” layer focuses on novel service composition lan-
guages and techniques. In particular, it provides mechanisms to adapt and monitor service compo-
sitions.

• The “Business Process Management” layer addresses the aspects related to the modelling, de-
signing, deploying, monitoring and managing of service networks, business processes and Key
Performance Indicators (KPIs).

We note that the concern of the domain layers is primarily focused on studying and proposing tech-
nologies and mechanisms at the different layers. Their investigation also covers those principles and
methods for the engineering, adaptation, and quality assurance that are local to a specific layer.

External Final Version 1.0, Dated 27 March 2009 9

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

2.1.2 Cross-Cutting Issues: Over-Arching Principles and Methods

The concern of the vertical components of the conceptual framework is to address those over-arching
principles, techniques and methods that are cross-cutting the domain layers. More precisely:

• The “Engineering and Design” concern covers the issues related to the life-cycle of services and
SBAs. This includes principles and methods for identifying, designing, developing, deploying,
finding, applying, provisioning, evolving, and maintaining services, while exploiting novel tech-
nologies from the functional layers. In particular, this aspect focuses on the quality of the SBA
development process, on the roles and placement of the contextual properties of SBAs and human
involvement, and on exploiting future service search engines for bottom-up SBA design.

• The “Adaptation and Monitoring” concern covers the issues related to the adaptation of a SBA.
Specifically, this comprises languages and methods for defining adaptation goals and different
adaptation strategies, which are triggered by monitoring events. An example for an adaptation
technique that falls into the responsibility of this aspect is a strategy that correlates the monitoring
events across the functional layers, thereby avoiding conflicting adaptations, or the one that aims
to predict the potential SBA problems and perform adaptation activities pro-actively.

• The “Quality Definition, Negotiation and Assurance” concern involves principles and methods
for defining, negotiating and ensuring quality attributes and Service Level Agreements (SLAs).
Negotiating quality attributes requires understanding and aggregating quality attributes across the
functional layers as well as agreeing on provided levels of quality. To ensure agreed quality at-
tributes, techniques which are based on monitoring, testing or static analysis (e.g., model checking)
are employed and extended by novel techniques exploiting future technologies (e.g., Web 2.0).

We note that this concern is primarily focused on providing overarching principles and methods, and
to exploit the mechanisms and technologies studies by the domain layers. However, it also covers those
technologies and mechanisms that are not local to a specific domain layer, and that are hence outside
the scope of the concerns of the horizontal components. This is the case, for instance, of mechanisms for
cross-layer monitoring and adaptation, or for quality negotiation.

2.2 Interfaces in the Conceptual Research Framework

In this section, we describe the interfaces that have been identified among the components of the concep-
tual research framework, and that are described in Figure 2.1. These interfaces are based on the concept
of capabilities that a component of the architecture offers to the others. More precisely, for each com-
ponent of the conceptual research framework, interfaces are defined that describe the mechanisms that
the component makes available to the other components of the framework. In particular, capabilities are
used to define the interfaces between the domain layers and the cross-cutting issues. These capabilities
refer to design, adaptation and monitoring, and quality assurance mechanisms that are defined at the
level of the single domain layers, and that are suitably exploited in order to manage the design, adapta-
tion and monitoring, quality assurance of the whole SBA. In addition, capabilities are used to describe
the interfaces and mutual dependencies among the different cross-cutting issues.

We note that the interface between two components implicitly defines a relation between the com-
ponents that is inverse to the one defined in terms of the capabilities that the first component offers to
the second one. This inverse relation corresponds to the specifications and/or directives that the second
component has to provide to the first one in order to exploit the provided capabilities for enabling future,
innovative SBAs. This inverse relation appears implicitly in the detailed description of the different in-
terfaces that we are now going to provide. We will give some explicit examples of this inverse relation
at the end of this section.

External Final Version 1.0, Dated 27 March 2009 10

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

2.2.1 Interfaces Between Domain Layers and Cross-Cutting Issues

Monitoring Capabilities. These capabilities correspond to mechanisms and technologies defined at
each domain layer for collecting information about the behaviour of the application and the changes in
the environment. Indeed, monitoring capabilities at all layers are necessary to understand whether the
SBA is executed and evolves in a normal mode and whether there are some deviations or violations
of the desired or expected functionality. Each layer of Figure 2.1 provides monitoring capabilities to
“Adaptation and Monitoring”. This component is responsible of integrating these capabilities in order
to achieve an over-arching, cross-layer monitoring of the SBA. To achieve this, additional mechanisms
and technologies can be exploited that are not local to any domain layer and that are in the scope of the
“Adaptation and Monitoring” component: this is the case, for instance, of mechanisms for correlating
monitoring information coming from different layers.

In the “Business Process Management” layer, monitoring capabilities include real-time monitoring
of business activities, the measurement of KPIs, as well as mechanisms for a proactive identification
and notification of deviations. The “Service Composition and Coordination” layer provides monitoring
capabilities that address the problem of checking whether certain predefined properties are satisfied when
the service composition is executed. Monitored events at this layer are deviations of the expected model
of execution of the services and of their compositions. Finally, in the “Service Infrastructure” layer, we
have monitoring mechanisms that report data on the behaviour of the infrastructure on which the SBA is
executed.

Adaptation Capabilities. This interface is used to specify adaptation capabilities that the different
domain layers offer to the “Adaptation and Monitoring” component. This component is responsible of
the over-arching approach for SBA adaptation that, once unexpected events or deviations are detected
by the monitoring mechanisms, identifies a global, cross-layer adaptation strategy and realizes it by
exploiting in suitable ways the adaptation capabilities of the different domain layers.

Adaptation capabilities at the “Business Process Management” layer may range from temporary
modifications to specific components of the business processes to permanent reconfigurations of the
whole business model and business network — the latter case often requires human intervention and
re-design activities, on top of the adaptation capabilities offered by the domain layers. Adaptation capa-
bilities at the “Service Composition and Coordination” layer correspond to the activation of pre-codified
adaptation strategies. These strategies can be defined in various ways, ranging from procedural ap-
proaches (concrete actions to be performed are specified), over declarative approaches (the goals and
requirements to be achieve are specified), to hybrid approaches. Adaptation capabilities at the “Service
Infrastructure” layer provides mechanisms related to resource brokering, load balancing and renegoti-
ation of Quality of Service (QoS) parameters, as well as mechanisms for service re-configuration and
re-deployment.

Design Capabilities. Each layer of Figure 2.1 provides capabilities to the “Engineering and Design”
of SBAs; these capabilities correspond to languages and mechanisms for modelling and specifying those
aspects of a SBA that are specific to a domain layer. For example, the “Business Process Management”
layer offers capabilities for modelling business processes (e.g., BPMN, or UML Activity Diagrams), as
well as for specifying aspects related to the integration and execution of these business processes. The
“Service Composition and Coordination” layer provides capabilities for modelling the single services, as
well as service compositions (e.g., WSDL, BPEL). Finally, the “Service Infrastructure” layer provides
capabilities for service discovery, for accessing service registries, and for managing service execution.

Quality Assurance Capabilities. Each domain layer provides capabilities that are exploited to achieve
an end-to-end, cross-layer quality definition and assurance for the SBA. At the “Business Process Man-
agement” layer, these capabilities correspond to understanding how to express the relevant quality at-

External Final Version 1.0, Dated 27 March 2009 11

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

tributes (e.g., KPIs) and the possibility of doing a static verification of the business process models, as
well as of running simulations in order to predict and analyse the expected behaviour of these models.
At the “Service Composition and Coordination” layer, the capabilities cover understanding the relevant
quality attributes and how to do both static verification and simulation of single services and of ser-
vice compositions. At this layer, capabilities may also concern the possibility of testing the service
composition. The “Service Infrastructure” layer, finally, provides capabilities for expressing relevant in-
frastructual quality attributes, and capabilities for exploiting the infrastructures for running simulations
or to test cases on SBAs.

2.2.2 Interfaces Among Cross-Cutting Issues

Integrated Adaptation and Monitoring Capabilities. The “Adaptation and Monitoring” component
is responsible of defining overall, cross-layer monitoring and adaptation strategies that are then realized
by exploiting the capabilities offered by the domain layers. These overall monitoring and adaptation
strategies are in turn capabilities that the “Adaptation and Monitoring” component offers to the “Engi-
neering and Design” component. Indeed, the knowledge of the capabilities and mechanisms for mon-
itoring and adaptation, which will be available at run time, is crucial at design time in order to design
and construct a SBA that is able to exploit those capabilities. Indeed, by “design for monitoring” and
“design for adaptation” we refer to the possibility of designing SBAs whose behaviour relies on a full
exploitation of the monitoring and adaptation capabilities offered by the framework.

Integrated Monitoring Capabilities. The capabilities of the “Adaptation and Monitoring” component
which are related to the overall, cross-layer monitoring strategies are provided not only to the “Engineer-
ing and Design” component, but also to the “Quality Definition, Negotiation and Assurance” component.
Indeed, these monitoring capabilities are not only essential for triggering the adaptation, but they are also
a cornerstone for assessing the overall quality of the SBA.

Integrated Quality Definition, Assurance, and Negotiation Capabilities. These capabilities of the
“Quality Definition, Negotiation and Assurance” component are offered to the “Engineering and Design”
component, so that they can be exploited during the design and construction of a SBA. More precisely,
these capabilities concern languages that can be exploited for defining the expected quality of a SBA;
they concern mechanisms for negotiating quality attributes between service consumers and providers;
and mechanisms for static analysis, simulation and testing of SBAs.

These capabilities are also offered to the “Adaptation and Monitoring” component, for the purpose
of enabling pro-active adaptation on the basis of the analysis of the past, current and future quality of the
SBA. Indeed, pro-active adaptation will exploit the testing, simulation and quality prediction mechanisms
studied by the “Quality Definition, Negotiation and Assurance” component.

2.2.3 Interfaces: Concluding Remarks

In the whole section, we have based the definition of the interface between two components of the con-
ceptual research framework on the description of the capabilities that the first component offers to the
second one. We note, however, that each interface also defines implicitly an inverse relation between the
two components, which corresponds to the specifications and/or directives that the second component
has to provide to the first one in order to exploit the capabilities. So, for instance, the interfaces between
the “Adaptation and Monitoring” component and the domain layers can be described in terms of the
adaptation and monitoring directives that the component pushes to the layers in order to exploit in a suit-
able way their local monitoring and adaptation mechanisms. These directives correspond, for instance, to
instructions on the monitoring mechanisms to be activated, on the properties to be monitored, and on the
adaptation mechanisms and strategies to be instantiated. Similarly, the “Quality Definition, Negotiation

External Final Version 1.0, Dated 27 March 2009 12

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

and Assurance” component provides to the “Engineering and Design” capabilities for expressing quality
requirements. Conversely, the “Engineering and Design” component provides to “Quality Definition,
Negotiation and Assurance” specifications of the expected quality properties that need to be assured by
the SBA.

2.3 Reference Life-Cycle

In this section we describe the second view of the IRF, which corresponds to the life-cycle of SBAs which
has been adopted as a reference within S-Cube. The key purpose of this view is to complement the static
view provided by the conceptual research framework and to relate the research efforts undertaken by the
network to the different phases of the life of the SBAs.

Figure 2.2: The reference life-cycle

The reference life-cycle is depicted in Figure 2.2. It is composed of two main cycles: the one on
the right hand side corresponds to the classical application design, deployment and provisioning; the
one on the left hand side corresponds to the adaptation perspectives. In fact, one of the key aspects
of service based applications is that they need to be able to accommodate and manage various changes
at runtime. By adopting this two-cycle approach, not only must applications undergo the transition
between the runtime operation and the analysis and design phases in order to be continuously improved
and updated, but they must provide mechanisms that, during runtime, continuously and automatically a)
detect new problems, changes, and needs for adaptation, b) identify possible adaptation strategies, and
c) enact them. These three steps are shown in the left hand side of the figure and lead to the deployment
and provisioning of the modified application. The identification of the changes in the environment and
of the problems in the execution of the SBA (e.g., failures) is obtained through monitoring and run-time
quality assurance (they are part of the management activities typically performed during execution). This
monitoring activity triggers the iteration of the adaptation cycle, whose effect is to inject changes directly
into the application being operated and managed.

2.3.1 Description of the Phases of the Life-Cycle

A description of the life-cycle phases is provided below.

External Final Version 1.0, Dated 27 March 2009 13

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Early Requirements Engineering. This phase corresponds to the analysis and understanding of the
problem by studying the existing organisational and business setting. In this phase, the requirements are
expressed in terms of high-level concepts that correspond to the actors that are relevant in the setting,
and to their goals, needs, and mutual dependencies, without any reference to the system-to-be.

The peculiarities in the development of SBAs make this phase particularly relevant. This is related
to the high dynamicity of SBAs and to the necessity to guarantee the continuous adaptability and the
evolvability of these applications. Indeed, in a context where the “system” is in continuous evolution
and is characterised by very blurred boundaries, the study of those requirements that exist a priori in the
organisational and business setting, and that are hence largely independent from the solution, becomes
very important. These requirements are the most stable part in the description of a SBA1 and serve as a
basis for the engineering and the design of the whole application.

The requirements collected from the stakeholders in this phase should cover not only the functional
aspects; they should cover also the quality expectations, expressed in high-level concepts such as KPIs;
and they should cover the adaptation requirements and expectations of the actors.

Requirements Engineering and Design. This phase includes the usual requirement engineering and
design activities, which take into account both functional and quality aspects of the SBA. While the main
objectives of this phase are similar to the ones of any classical software development, there are some
peculiarities that make development of SBAs different from others.

A first difference is that in many cases SBAs are built by exploiting already existing and running
services. This means that, unlike traditional software engineering, the availability of services drives the
requirement engineering as well as the design phase in such a way that the usage of these services is
possible.

A second difference is that the requirements engineering and, even more, the design of a SBA have
to be performed taking into account the three domain layers that define such an application. The models
and languages provided by the different layers for the design of a SBA and for expressing its goals
and properties need to be taken into account in this phase. This is also the phase where static analysis
can be applied to the different models and specifications of a SBA, both locally to a specific layer and
cross-layer.

A third difference is that the SBA has to be built to be able to react to new and/or critical conditions by
triggering proper adaptation actions. At the level of requirement engineering this means that new classes
of requirements have to be elicited and understood. These include the requirements for adaptation that
define the circumstances in which the SBA should be adapted, their prioritization, and the objectives of
the adaptations to be performed. At the level of design this means that proper adaptation strategies have
to be designed together with the monitoring mechanisms that allow the adaptation needs to be identified.

Construction. After the design phase, the construction of the system can start. The peculiar element
that has to be taken into account in this phase is that SBAs are obtained by the integration of different
services. Specifically, this means that for establishing the desired end-to-end quality of those SBAs,
contracts between the service providers and the service requestors (also known as service consumers) on
quality aspects of services have to be established. Typically this requires some form of SLA negotiation
and agreement.

The service composition construction could be manual, if the service integrator defines the service
composition using appropriate specification languages (BPEL for example). Moreover the service com-
position construction could be model-driven, if service orchestration models are derived from abstract
models. Finally, the service composition could be automatically generated starting from the service
models and from higher level models of the business network and of the service choreography that are

1This fact is shown also graphically in Figure 2.2, where the Early Requirements Engineering phase is depicted outside the
loop on the right hand side of the figure.

External Final Version 1.0, Dated 27 March 2009 14

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

defined in the “Business Process Management” layer. We note that, in all cases, the service composi-
tion construction should cover not only the functional requirements, but also the QoS aspects and the
adaptability requirements for the SBA.

Finally, in addition to the service composition, the construction phase will also realize all those
mechanisms that are necessary for supporting the monitoring, adaptation, and quality assurance of the
SBA.

Deployment and Provisioning. The deployment and provisioning phase comprises all the activities
needed to make the SBA available to its users. A SBA can be itself a service: in this case, a proper
description of its interface should be provided and published on some registry. In the literature, the
early proposals of syntactic descriptions of services have been proven to be insufficient for the proper
understanding of the service functionality. Consequently, semantic service descriptions of various kinds
have been proposed. These include the description of the QoS characteristics of a service and enable for
the definition of SLAs. In the case of adaptable SBAs, we could imagine that QoS and SLA information
includes data on the adaptation characteristics of the SBA.

Operation and Management. The operation and management phase specifies all the activities needed
for operating and managing a SBA. The literature also uses the term governance to mean all activities that
govern the correct execution of SBAs (and related services) by ensuring that they respect the expected
QoS level during execution. In this context, the identification of problems in the SBA (e.g., failures)
plays a fundamental role. This identification is obtained by means of monitoring mechanism and, more
in general, of mechanisms for run-time quality assurance. These mechanisms are able to detect failures,
or critical conditions requiring the triggering of an adaptation mechanism needed to adapt SBAs.

Identify Adaptation Need. The information gathered during execution, the observation of the prop-
erties of the application, and the context of SBA constitute the elements on which the decision on the
need for the SBA to adapt is based. Such decision may be automatically taken on the basis of monitoring
requirements derived from adaptation requirements, or it may require human intervention (end user, sys-
tem integrator, application manager). Moreover, such decision may be taken in a reactive way, when the
problem has already occurred, or in a pro-active way, where the need is to prevent a potential problem.

Identify Adaptation Strategy. When the adaptation needs are understood, the corresponding adapta-
tion strategies should be identified and selected. Among the possible adaptation strategies we mention
service substitution, SLA re-negotiation, SBA re-configuration or service re-composition. The selection
of the strategy may be automatic if either the SBA or the execution platform decide the action to perform,
or it can be done by a human user.

Enact Adaptation. After the choice of the adaptation strategy, the adaptation mechanisms that imple-
ment it have to be activated. For example, service substitution, re-configuration, re-composition may
be obtained using automated service discovery and dynamic binding mechanisms, while re-composition
may be achieved using existing automated service composition techniques. As these examples show, the
enactment of an adaptation strategy usually requires the exploitation of mechanisms provided by different
layers, in particular by the “Service Composition and Coordination” and by the “Service Infrastructure”
layers.

As for the previous two phases, human users may be involved in the implementation of the adaptation
strategy, if the available adaptation mechanisms are not sufficient or not adequate to the adaptation need.

External Final Version 1.0, Dated 27 March 2009 15

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

2.4 Logical Run-Time Architecture

The delivery of an integrated software environment is not among the objectives of the S-Cube project.
However, a logical description of the envisioned run-time environment is important for aligning the joint
research activities undertaken by S-Cube. For this reason, one of the views we defined for the IRF defines
a logical run-time architecture for S-Cube. The purpose of this view is to guarantee a coherent picture
for all the run-time mechanisms studied by S-Cube, that is, for all the mechanisms that are adopted in the
operation and management phase and in all the left hand side of the reference life-cycle in Figure 2.2.

We stress that this architecture is logical — issues related to the physical realization and deployment
of such an architecture are not addressed, at least in this first version of the IRF.

Figure 2.3: Run-time architecture: high-level view

2.4.1 High-Level Architecture

A high-level view of the run-time architecture is given in Figure 2.3. This picture illustrates all the
relevant concepts of the architecture.

The proposed run-time architecture is service-oriented, that is, it assumes that all the run-time mech-
anisms and components are realized as services and are exposed on the same communication back-bone.
By adopting a service-oriented architecture, we guarantee that the run-time mechanisms realized in the
project can be integrated and exploited in a synergistic way, at least at the conceptual level.

In the picture, we distinguish between core services and application-specific services. The core
services are middleware services that the run-time architecture provides to all SBA in order to support
the different aspects of the SBA execution. Examples of such core services are a discovery service, an
engine for executing service compositions, or an engine for monitoring the behaviour of a SBA or the
performance of a business network. We note that these core services may belong to any of the domain
layers of the conceptual research framework or may also belong to the “Adaptation and Monitoring”
and “Quality Definition, Negotiation and Assurance” components. Some of these core services act as
containers for application-specific services, i.e., services that are specific of the SBA in execution, and
that encapsulate part of the application-specific logic. This is the case of the engine for executing service
compositions.

The core services that act as containers for application-specific services are also referred to as service
containers2. Other core services contain other parts of the application-specific logics, which are however
not exposed as services. This is the case, for instance, of the monitoring engine, which will contain the
application-specific properties to be monitored. For lack of a more precise name, these core services will

2We note that, in a physical realization of the proposed architecture, all services, regardless of their type, will be deployed
onto a container. This includes also the core services. Since we are discussing a logical architecture here, we want to distinguish
between core infrastructural services and application-specific services, and we use the term “service container” just for the
containers of the second type of services.

External Final Version 1.0, Dated 27 March 2009 16

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

also be referred to as engines. Finally, there are core services that have no application-specific contents.
This is the case, for instance, of discovery services. When a SBA is deployed, specific pieces of the
application logics will hence be deployed in the service containers and in the engines — depending on
whether these pieces of application logics are themselves services or not — but no application-specific
pieces are deployed in this third kind of core services.

The communication backbone supports the communication among any kind of services, regardless of
whether they are core services or application-specific services. In particular, in the case of service con-
tainers, the communication backbone allows accessing both the core service and the application-specific
services deployed within the container. The core service will offer a management interface for control-
ling the behaviour of the container and in particular the deployment and operation of application-specific
services. The application-specific services will expose application-specific interfaces which allow for ac-
cessing the specific functionalities of these services. The fact that core services and application services
are both exposed on the same communication backbone, and the possibilities offered by this solution
in terms of interactions between the two logical levels, are key elements of the proposed architecture.
Of course this is possible only for the pieces of application logics that are themselves services. In the
case of engines, only the management infrastructure corresponding to the core service is exposed on the
communication backbone. The pieces of application logics deployed within these engines are hence not
accessible as services, even if they can be managed though the service interface exposed by the engine.
So, for instance, it is possible exploit the backbone to interact with a monitoring engine to get informa-
tion on the monitored properties or to activate or deactivate the actual monitoring of a certain property.
It is however not possible to “invoke” the monitoring logics (i.e., the property that is monitored), since it
is not a service.

2.4.2 Detailed Architecture

Figure 2.4: Runtime architecture: detailed view

Figure 2.4 provides a more detailed illustration of the run-time architecture of S-Cube, which con-
tains specific instantiations of the different core services. More precisely, the figure represents explicitly
the three kinds of service containers identified so far in the project. Besides the traditional containers for
software services (web services and service compositions being two instances of this kind), we foresee
containers also for human-provided services, and for the resources. That is, the communication backbone
will have to provide access not just to the software components of an SBA. Also the resources exploited
by the application and the parts of the application logics executed by humans have to be accessible from
the backbone as services. This will be guaranteed by resource brokers and human interaction interfaces.

The figure also represents the different kinds of engines foreseen in the project, namely the engines
for monitoring, for adaptation, for negotiation, and for run time quality assurance through testing and

External Final Version 1.0, Dated 27 March 2009 17

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

simulation. All of them contain different kinds of application-specific logics. Finally, the figure contains
an additional core service that offers discovery and registry functionalities.

Other services can be added to the run-time architecture in the refinements and extensions of the
architecture that will be undertaken during the whole life of the project.

We note that the logical run-time architecture just presented will help integrating the S-Cube research
activities in two ways:

• Integration at the application-specific level. Indeed, the architecture provides a description of the
different pieces of application logics that define a SBA. That is, the (conceptual) implementation
of a SBA consists of the definition of the different (software and human-provided) services, re-
sources and other pieces of application logic to be deployed within the different elements of the
architecture.

• Integration at the infrastructural level. Indeed, the architecture identifies different kinds of ser-
vice containers, engines, and other elements. Each kind of architectural element has often more
than one instantiation: e.g., there are different software service containers, different monitoring
or negotiation engines, and so on. All the instances of a given kind of element will have to pro-
vide a similar management interface. The definition of this interface will hence correspond to the
definition of the key characteristics and functionalities offered by the architectural element. So,
for instance, the definition of the interface of software service containers or of monitoring engines
will allow for a better (conceptual) interoperability among the different implementations of these
architectural elements.

2.5 Logical Design Environment

In this section, we describe the last view of the IRF, which is complementary to the run-time architecture
of the previous section, since it aims at providing a logical description of the foreseen design environment
for SBAs. More precisely, the purpose of this view is to provide a context where to place the envisioned
techniques and mechanisms that support the analyst and designer in the design of a SBA. While the
run-time architecture covers the left hand side part of the SBA life-cycle described in Figure 2.2, the
design environment covers the phases corresponding to the right hand side of the life-cycle, from early
requirements engineering to deployment and provisioning. By adopting this logical design environment,
we guarantee that the efforts undertaken by the different research work-packages define a coherent picture
that supports the different aspects of the SBA design and engineering.

Similarly to the view in the previous section, also the design environment described in this section is
logical, as the aspects related to the realization of a concrete integrated development platform are outside
the scope of S-Cube.

The logical design environment is defined through two different pictures. The first one provides
a taxonomy, or map, of the foreseen design techniques in terms of the functionality they provide and
of their relevance for the three S-Cube domain layers. The second picture places the different design
techniques into the reference life-cycle for SBAs that has been introduced in Section 2.3. The following
two subsections describe these two pictures of the logical design environment.

2.5.1 Map of the Design Environment

In this subsection, we describe the foreseen design environment by mapping the different techniques
we expect will constitute it — see Figure 2.5. These techniques are placed in a matrix, where the
columns correspond to the different functionalities the foreseen design environment should provide, and
the rows correspond to the three domain layers for Business Process Management, Service Composition
and Coordination, and Service Infrastructure. Cross-layer techniques are represented by boxes that span
over more rows.

External Final Version 1.0, Dated 27 March 2009 18

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 2.5: Logical design environment: matrix

Modelling Techniques. This set of functionalities corresponds to the techniques for modelling a SBA
at the different domain layers, as well as for modelling the cross-cutting aspects of a SBA. More precisely,
for each layer we must be able to provide techniques for modelling our SBA, for modelling the indicators
that are used to evaluate the quality of the SBA, and for modelling the monitoring and adaptation aspects
that are used to control and adapt the application at run-time.

At the “Business Process Management” layer, we model a SBA using ASNs and choreographies
represented thorough BPMN diagrams. Quality aspects are modelled using KPI editors. Finally we use
adaptation and monitoring modellers.

At the “Service Composition and Coordination” layer we model our SBA using service-based mod-
elling techniques and languages based, e.g., on BPEL and WSDL. These techniques are able to describe
single services as well as complex services compositions. Modelling techniques are also provided for
specifying the monitoring and adaptation mechanisms that are used at run-time to check and adapt the
SBA when some deviation/fault arises. In particular, the definition of monitoring techniques based on
Process Performance Metrics (PPMs) is foreseen at this layer.

At the “Service Infrastructure” layer, the design environment must provide techniques for modelling
services and the associated QoS aspects. These techniques will be exploited to provide the descriptions
of services that will be made available in the service registries. Moreover it must provide techniques for
monitoring and adapting configurations at runtime.

The modelling techniques foreseen in Figure 2.5 also include one cross-layer aspect, which is related
to SLAs. Indeed, SLA modelling is based on different techniques that model different aspects of a SLA
which are relevant at different layers. For example, SLA modelling at business process layer corresponds
to the establishment of a business agreement, while SLA modelling at service composition layer means
defining a contract between service provider and its consumer which covers the functional and quality
aspects of the services.

External Final Version 1.0, Dated 27 March 2009 19

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Transformation and Generation Techniques. These techniques allow for transforming high-level
models of the behaviour of a SBA into lower-level executable models, and vice-versa. They include for
instance transformation techniques that generate BPEL code from BPMN, or that transform choreogra-
phies into orchestrations, and vice-versa.

Moreover, they contain techniques to transform high-level specifications of quality properties into
lower-level specifications of the same properties and vice-versa, e.g. KPI to/from PPM models.

Finally, they include techniques for generating code in automatic way from the design models, as
well as mechanisms to transform adaptation and monitoring specifications from one layer to another
one. An example are mechanisms for transforming the monitoring and adaptation strategies specified by
the designer into engine mechanisms that the service infrastructure will provide.

Deployment techniques. The third functionality corresponds to techniques for deploying the artifacts
corresponding to a SBA specification at the different layers. This corresponds to deploying service
networks, as well as the real/physical deployment of services on a service infrastructure.

This functionality also covers deployment techniques for the adaptation and monitoring mechanisms
and specifications.

Verification techniques. To validate our models with respect to functional and non functional prop-
erties, the design environment must provide techniques to verify their correctness and completeness.
Such verification techniques are available both at the Business Process Management and at the Service
Composition and Coordination layers.

2.5.2 Design Environment Techniques in the Life-cycle

Figure 2.6: Design environment techniques mapped into the life-cycle

External Final Version 1.0, Dated 27 March 2009 20

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 2.6 shows the strong relations existing between the different functionalities and techniques of
the logical design environment and the life-cycle for SBAs defined in Section 2.3.

In particular, the modelling techniques are used by SBA engineers during the early requirements
phase, where business-level models (ASNs, business metrics, KPIs) are defined, and in the requirements
engineering and design phase, where the implementing services, service compositions and configura-
tions, and the associated SLAs are defined.

The construction and deployment phases make intensive use of various transformation techniques.
Following the model-driven approach, they allow for generating more specific, executable models from
more abstract declarative models, e.g., executable orchestrations from choreography specifications or
monitor programs and adaptation rules from the corresponding properties and strategies.

The verification techniques may be exploited both during the design and the construction phases, to
check the correctness both of the specifications (e.g., validation of a BPMN specification or a choreog-
raphy) and the implementations (e.g., verification of the properties of a service composition).

At the deployment and provisioning phase, specific techniques are needed to bring the elements of the
SBA into operation. This includes techniques for deploying services and service compositions, monitor
programs, and adaptation logic.

2.6 Concluding remarks

In this chapter we have presented the baseline for the IRF by defining four different view which provide
different perspectives to this framework. The conceptual research framework identifies the different
research areas in S-Cube and defines clear competences for these different areas and clear interfaces
among them. The reference life-cycle describes the research in S-Cube by placing it within the different
phases of the life and evolution of a SBA. The run-time architecture and design environment, finally,
allow for a logical integration of the different research efforts in S-Cube by placing these efforts within
hypothetical platforms for the design and run-time of SBAs.

Before moving to the next chapter, where we map into these views the contributions of the different
S-Cube research work-packages, we stress again the strong synergy and the complementary roles played
by the different views in the definition of the IRF. Indeed, while the conceptual research framework pro-
vides a view of the IRF that is static and focuses on the organisation of the research, the other three views
concentrate on three main aspects of SBAs and of their life and evolution, namely their life-cycle, their
run-time and their design. Each research component identified in the conceptual research framework
contributes to several phases of the life-cycle and studies techniques, mechanisms and technologies that
contribute in various ways to the run-time architecture and to the design environment. Vice-versa, dif-
ferent instances of a specific elements of the run-time architecture or of the design environment can be
in the scope of different components of the conceptual framework. So, for instance, monitoring engines
correspond to mechanisms studied by each domain layer, as well as to cross-layer mechanisms studied
within the “Adaptation and Monitoring” component. A similar situation exists for the techniques that al-
low the specification of the quality properties of a SBA within the design environment. Strong relations
also exist between the life-cycle and the view corresponding to the design environment and run-time
architecture. Indeed, these two views correspond to the two loops that define the life-cycle, and refine
the definition of the phases in the life of a SBA with a description of the techniques and mechanisms that
support these phases.

External Final Version 1.0, Dated 27 March 2009 21

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Chapter 3

Contributions of the S-Cube Research
WPs

In this chapter, we provide a first description of the contributions of the different S-Cube research work-
packages to the IRF defined in the previous chapter. This description is still preliminary, as it is just the
starting point of the process, which will take place during the second year of the project, and which will
lead to the consolidation of the definition of the IRF and of the integration in the framework of results
and challenges of the S-Cube research activities1.

The chapter is organised in six sections, corresponding to the six research work-packages in JRA-1
and JRA-2. For each work-package, we define the contributions to the four different views of the IRF,
and we illustrate the dependencies with other work-packages. The chapter is concluded by a section with
final remarks.

3.1 Engineering Principles, Techniques and Methodologies for Hybrid,
Service-based Applications (WP-JRA-1.1)

The main goal of WP-JRA-1.1 is to gather a clear understanding of how we can engineer SBAs that can
live in the open world, by adapting and evolving themselves to best fit the situation in which they live.
In particular, the work-package aims at investigating all the main phases of the life-cycle of Figure 2.2
in order to understand what the main principles for building SBAs are.

3.1.1 Contribution to the Conceptual Research Framework

In the conceptual framework, the work-package will contribute to the corresponding cross-cutting con-
cern. This contribution will primarily focus on the provision to the other work-packages of the main
principles and abstractions for developing adaptable SBAs, and on the analysis of the specific techniques
and mechanisms that will be provided by the others to check if they coherently fit in the S-Cube reference
life-cycle.

3.1.2 Contribution to the Reference Life-Cycle

The work-package is the owner of the life-cycle and is responsible for maintaining and improving it.
Moreover, it mainly focuses on the identification of the specific principles and methods that can suitably
used in the right hand side of the cycle in order to build adaptable SBAs.

1The outcomes of this consolidation activity will be reported in Deliverable CD-IA-3.1.2 “First Version of the Integration
Framework”, due at Month 21.

External Final Version 1.0, Dated 27 March 2009 22

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

3.1.3 Contribution to the Logical Run-Time Architecture

This work-package has no direct influence on the run-time architecture, but it is influenced by it, as the
way a SBA is developed and operated depends also on the kinds of features and services that are available
at the level of the run-time. For instance, the presence of the monitoring and adaptation infrastructure
enables the development of applications ready to be monitored and adapted, and, in particular, the spe-
cific adaptation mechanisms that are available determine the kind of adaptation strategies that can be
defined and enacted for the system. In addition, the work-package is also responsible to investigate the
involvement of users during the run-time, e.g., to take decisions concerning the adaptation of the SBA.

3.1.4 Contribution to the Logical Design Environment

The work-package coordinates the various requirement engineering and modelling tools and techniques
that will be made available by the other work-packages by providing guidelines and, for some proof of
concept examples, glue code to use them together in a coherent way.

3.1.5 Relations with Other WPs

This work-package interacts with all others by providing design principles and methods and receiving
specific techniques and approaches. In particular, the approaches for Agile Service Networks (ASNs)
and business process definition developed by WP-JRA-2.1 will be incorporated into the requirement
engineering and high-level design phase of the life-cycle. The same work-package will also offer inputs
on the identification of the needs for adaptation that typically arise at the level of the business processes.
Vice-versa, WP-JRA-2.1 will receive from the engineering work-package hints and suggestions on how
the ASNs and business process aspects are incorporated into the comprehensive life-cycle.

The service composition metamodel and techniques provided by WP-JRA-2.2 will be incorporated
into the construction phase. Vice-versa, WP-JRA-1.1 will provide to the other work-package new re-
quirements for extending the composition metamodel and techniques to account for the design for mon-
itoring and design for adaptation principles. For instance, a way to incorporate into the composition
approach a proper model of the execution context should be identified. Other minor interactions with
WP-JRA-2.2 concern the other phases of “deployment and provision” and all the phases of the adapta-
tion life-cycle (left hand side of the figure).

The infrastructural services offered by WP-JRA-2.3 will be exploited and properly incorporated
within the life-cycle, partially, in the design phases (e.g., the discovery mechanisms) and, partially, in the
run-time phases (e.g., the low-level adaptation mechanisms and, again, the discovery mechanisms).

Finally, the relationships between WP-JRA-1.1 and the other WP-JRA-1.* are quite strict, and there-
fore, the work will be, in many cases, conducted in strict collaboration with these work-packages. More
in detail, WP-JRA-1.2 owns the left hand-side of the life-cycle and coordinates with WP-JRA-1.1 to
receive developed applications that are ready to be monitored and adapted. WP-JRA-1.3 offers all those
techniques that are needed to provide some quality guarantees on the SBAs. Such quality guarantees can
be provided at various different levels of abstraction and can concern various, if not all, phases of the
life-cycle. The task of WP-JRA-1.1 is then to incorporate these techniques within the life-cycle and to
apply those software engineering principles that lead to the design of verification-ready applications.

3.2 Adaptation and Monitoring Principles, Techniques and Methodolo-
gies for Service-based Applications (WP-JRA-1.2)

This work-package focuses on principles, techniques, and methods for adaptation and monitoring of
SBAs. More specifically, it aims at providing novel principles and approaches for the integrated, cross-
layer SBA adaptation and monitoring; it will elaborate on the solutions that exploit contextual informa-
tion within the adaptation and monitoring activities; it will target the approaches that consider different

External Final Version 1.0, Dated 27 March 2009 23

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

forms of involving the user in the monitoring process, such as user-driven monitoring, and in the adapta-
tion process, such as human-in-the-loop adaptation. Finally, the work-package will also devise prediction
models and approaches that anticipate the need for changes and thus trigger proactive adaptation.

3.2.1 Contribution to the Conceptual Research Framework

In the conceptual framework the adaptation and monitoring work-package will contribute to the corre-
sponding cross-cutting aspect. This contribution, however, will primarily focus on cross-layer adaptation
and monitoring, while the corresponding mechanisms at particular domain layers will be provided by the
technology work-packages.

3.2.2 Contribution to the Reference Life-Cycle

Figure 3.1 illustrates the contributions of this work-package to the S-Cube life-cycle. In particular,

Figure 3.1: Reference life-cycle: contributions of JRA-WP-1.2

the figure shows how various adaptation- and monitoring-specific actions (hexagons) are carried out
throughout the life-cycle of the SBA and how the corresponding artifacts (boxes) are exploited within
those activities. We remark that different adaptation and monitoring activities and artifacts are highly
interleaved through the SBA life-cycle and affect each other. Consequently, their definition, develop-
ment, and exploitation should be performed in a holistic manner motivating the need for cross life-cycle
monitoring and adaptation methods and approaches.

During early requirements engineering, the adaptation goals and monitoring requirements are de-
fined. The goals and requirements are based on the quality model of the developed SBA and may involve
various aspects, quality characteristics and attributes. In this phase, it is important not only to devise
the appropriate monitoring and adaptation facilities, but also to see how the adaptation goals should be

External Final Version 1.0, Dated 27 March 2009 24

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

achieved, that is, for instance, whether the application has to be modified pro-actively or re-actively, and
what is the role of the contextual and user-specific information.

At the requirements engineering and design phase the goals and requirements are used to perform
the design for adaptation and monitoring. In particular, the appropriate monitoring and adaptation ar-
chitecture, the decision mechanisms, and the corresponding techniques are being selected, adopted, and
instantiated. Using this model, the monitoring requirements and adaptation goals are being transformed
into the monitoring properties and the adaptation strategies respectively.

During SBA construction, together with the construction of the SBA, the corresponding monitors
and the adaptation mechanisms are being realized. It is also important in this phase to ensure that the
developed adaptation mechanisms are neither contradictory nor in conflict with the application logic,
i.e., to perform adaptation-specific quality assurance activity, such as validation and verification of the
adaptation strategies, specifications, and realizations.

The deployment phase also involves the activities related to adaptation and monitoring: deployment
of the monitors and monitoring mechanisms; deployment time adaptation actions (e.g., binding), testing
and validation of operational context (e.g., evaluation of QoS metrics). After the operation and manage-
ment phase, where the monitoring and adaptation activities interleave the application execution, specific
post-execution activities may take place. This includes, for instance, the analysis of the previous SBA
executions and adaptations, as well as the evolution of SBA and related mechanisms, bringing the latter
back to the design phase.

The adaptation and monitoring mechanisms, tools, and facilities are actively exploited during the
phases related to the modification of SBA, i.e., during the identification and realization of the adapta-
tion needs. In particular, the most critical monitored properties characterise a serious deviation of the
SBA functioning from the expected one, and therefore identify adaptation needs. Depending on the
adaptation requirements this identification may be done re-actively or pro-actively. Various adaptation
strategies developed during the design-time phase are instantiated and selected using the corresponding
decision mechanisms, based on the current situation and/or on the knowledge obtained from the previous
adaptations and executions. Finally, the enactment of the adaptation strategy is performed by the de-
veloped adaptation mechanisms. We remark that the implementation of these activities and phases may
be performed by the SBA autonomously or may involve active participation of the various human actors
(human-in-the-loop adaptation).

3.2.3 Contribution to the Logical Run-Time Architecture

The work-package will provide two main contributions to the run-time architecture (see also Figure 3.6).
First, the work-package will provide general guidelines for monitoring and adaptation instances,

in terms of the functionalities that these will have to provide and of interfaces that they will have to
expose. As a consequence, management protocols and usage patterns for monitoring and adaptation will
be defined in terms of communications and service invocations occurring through the communication
backbone. This will support the interoperability among the different (layer-specific or concern-specific)
engines that contribute to the monitoring and adaptation of an SBA, and will contribute to the definition
and management of a comprehensive, integrated monitoring and adaptation framework.

Second, the work-package will contribute with cross-layer monitoring and adaptation engines. Cross-
layer mechanisms and techniques are necessary to overcome the limitations of the local mechanisms.
Moreover, a comprehensive view of monitoring and adaptation at the level of the whole SBA is necessary
to be able to decide at run-time among conflicting adaptation requirements.

3.2.4 Contribution to the Logical Design Environment

With respect to the design environment, the work-package will provide the principles for realizing cross-
layer adaptation and monitoring mechanisms. These principles will play an important role for the defi-
nition, realization, and integration of various transformation and code generation tools. Concerning the

External Final Version 1.0, Dated 27 March 2009 25

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

modelling environment and techniques, their definition will be a part of the design for monitoring and
adaptation activity within the engineering and design work-package. Analogously, the tools for verifi-
cation and validation of adaptation specification will be provided together with the end-to-end quality
work-package.

3.2.5 Relations with Other WPs

The relationship between the monitoring and adaptation work-package with other WPs is represented
with the following elements. WPs on the realization mechanisms (WP-JRA-2.*) will provide isolated
adaptation and monitoring mechanisms at different functional domain layers (Business Activity Monitor-
ing and post-mortem process analysis at BPM layer; mechanisms for run-time composition monitoring,
and analysis, as well as automated service composition and adapter generation techniques at SC layer;
Grid monitoring, SLA-negotiation, and self-* techniques at SI layer). These techniques are used to report
relevant events and to satisfy adaptation requests at the corresponding domain layers. In order to enable
coordination and management between isolated mechanisms, adaptation and monitoring work-package
will come up with integrated cross-layer monitoring and adaptation approaches based on the mechanisms
at different domain layers.

The SBA quality model and its elements (WP-JRA-1.3) is used as the basis to define the adaptation
goals and monitoring requirements. Different quality dimensions provide a way to extract different
types and different assets of the expected functionalities of the SBA, and therefore drive the design and
definition of the corresponding properties to monitor and the adaptation strategies to be applied upon
their violations.

In order to enable adaptation and monitoring functionalities of the SBA, the design and engineer-
ing process (subject of research in WP-JRA-1.1) will accommodate their specific activities. The role
of the engineering and design includes also the need to deliver appropriate adaptation decision mech-
anisms (captured, e.g., with the appropriate monitoring properties) and strategy decision mechanisms.
Furthermore, in certain cases the problems revealed by the SBA monitoring may require re-design/re-
engineering of the whole SBA.

3.3 End-to-End Quality Provision and SLA Conformance (WP-JRA-1.3)

The general research objective of work-package WP-JRA-1.3 (’End-to-End Quality Provision and SLA
Conformance’) is to define novel principles, techniques and methods for defining, negotiating and as-
suring end-to-end quality and conformance to quality contracts (e.g., Service Level Agreements) across
the domain layers as well as across networks of service providers and consumers. With respect to these
quality activities the following research objectives will be pursued:

• Quality Definition, which concerns the establishment of a model or language for the definition of
quality contract terms, which is understood and shared by the contracting parties.

• Quality negotiation, which concerns the set of tasks required for defining an actual quality contract,
based on the model or language for the definition of contract terms.

• Quality assurance, which concentrates novel techniques for run-time quality assurance and proac-
tive assurance of quality.

3.3.1 Contribution to the Conceptual Research Framework

In the conceptual framework, this work-package will contribute to the cross-cutting issues on “Quality
Definition, Negotiation and Assurance”. This includes understanding how the mechanisms at the dif-
ferent domain layers can contribute to the techniques devised in this work-package. Also, this WP will

External Final Version 1.0, Dated 27 March 2009 26

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

contribute knowledge on the quality definition, negotiation and assurance techniques to the other cross-
cutting issues. In the case of “Engineering and Design”, this will be exploited to better understand the
SBA life-cycle and the issues related to the definition of quality requirements. In the case of “Adaptation
and Monitoring”, this will be used to understand how to pro-actively trigger adaptation.

3.3.2 Contribution to the Reference Life-Cycle

Figure 3.2 illustrates the contributions of this work-package to the S-Cube life-cycle. In particular, the

Figure 3.2: Reference life-cycle: contributions of JRA-WP-1.3

figure distinguishes the contributions related to quality definition (rounded boxes), quality negotiation
(boxes), and to quality assurance (hexagons).

During early requirements engineering, the expected quality of the SBA is expressed in terms of
high-level requirements. During this process, the quality reference model can be exploited in order to
understand the different kinds of quality attributes relevant for a service-based application. In addition,
if needed for the application domain, additional quality attributes can be introduced. These quality
attributes should be used to extend the quality definition language, which will be used throughout the
remaining stages in the life-cycle (see below).

During requirements engineering, the requirements to the SBA are detailed and quantified as far
as possible by exploiting the quality definition language. Based on these detailed requirements, the
requirements and specification for the constituent services are determined and expressed using the quality
definition language. In addition, this step requires an understanding of the dependencies between the
different quality attributes across layers and along the network of service providers and consumers. The
quality definition language is key to defining the contract terms and thus needs to be understood and
shared by the contracting parties. It should be noted that parts of these activities, especially defining a
quality reference model and quality definition language, can occur outside the life-cycle of an individual

External Final Version 1.0, Dated 27 March 2009 27

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

SBA (e.g., in the case that a quality definition language for a dedicated application domain is established
by a multitude of stakeholders).

The construction and realization of a SBA may involve the selection of the contract partners (the ser-
vice providers) among a set of potential partners, and the negotiation of the contract terms (e.g., SLAs)
between the selected partner and the service consumer. To this end, techniques that are able to auto-
matically establish contracts on quality attributes between service requestors (consumers) and providers
provide support during the construction. Again, the quality definition language supports expressing those
contracts.

More and more, service providers are selected during the deployment of the SBA or even during
the operation. Thus, automated quality negotiation becomes important during the deployment and provi-
sioning phase. In addition, already during deployment the quality of the running system (or parts thereof)
can be assessed using run-time quality assurance techniques and a different deployment strategy could be
chosen in case of problems. As an example, if the service of a chosen service provider does not respond,
a different service provider could be chosen. At this stage, techniques similar to pro-active adaptation
can thus be exploited. The quality of the running system is assessed against the expected quality, which
is expressed using the quality definition language.

As mentioned above, service selection, negotiation and binding more and more occur during run-
time, in the operation and management phase. Thus automatic negotiation and run-time quality as-
surance become key activities during operation. Run-time quality assurance includes monitoring, but
also more advanced quality assurance techniques, which check the satisfaction of the quality contracts
negotiated between a service provider and the service requestor. Again, those contracts are expressed
using the quality definition language. When the application is running, SBAs need to timely respond to
changes implied by the highly dynamic and flexible contexts of future SBAs and to promptly compensate
for deviations in functionality or quality. Thus, anticipating adaptation needs and thereby enabling the
pro-active self-adaptation of SBAs becomes important.

In the phase about the identification of the adaptation needs, once a deviation of the SBA or a change
of its context has been observed, it must be decided whether and how to change the underlying SBA in
order to remove the difference between the actual situation and the expected one. In this case, it can
be helpful to express those adaptation needs by using the concepts of the quality definition language.
In addition, and more importantly, identifying conflicting adaptation needs across the different domain
layers can be supported by exploiting the quality reference model. Finally, the identification of adaptation
needs can be faulty and thus the correctness of the adaptation needs to be assured at this stage.

In order to satisfy the adaptation needs, adaptation strategies are defined and chosen, which prescribe
the possible ways to achieve the expected situation expressed in the adaptation needs. Like in the other
stages, during which adaptation is a key concern, assuring the correctness of the adaptation becomes
relevant.

In order to enact the adaptation, the adaptation strategies might call for selecting different service
providers or might require selecting new service providers for newly introduced service invocations
(e.g., when the business processes are adapted). In such a case, pro-active negotiation can ensure that the
adaptation will be executed in a timely fashion and that the relevant contracts are established before the
adapted application is deployed.

3.3.3 Contribution to the Logical Run-Time Architecture

This work-package contributes to the run-time architecture in two ways (see also Figure 3.6). Firstly,
this WP will provide service negotiators (e.g., autonomous components provided as core services) that
perform the negotiation process on behalf of the service consumers (requestors) and providers — see
the “negotiation engine” in Figure 2.4. Secondly, this WP will contribute run-time quality assurance
techniques and tools (realized in the form of core services — see “run-time QA engine” in Figure 2.4).
Those include, besides others, techniques and tools for online testing and run-time model analysis.

External Final Version 1.0, Dated 27 March 2009 28

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

3.3.4 Contribution to the Logical Design Environment

With respect to the design environment, the work-package will provide principles for defining, negotiat-
ing and assuring quality. However, at this stage the WP does not plan to provide actual design tools (e.g.
quality modeling tools).

3.3.5 Relations with Other WPs

Several relationships between the objectives addressed in this work-package and the objectives addressed
in other S-Cube research work-packages exist.

The quality reference model and the quality definition language will serve as input for requirements
elicitation / engineering techniques and processes in WP-JRA-1.1, and monitoring techniques and mech-
anisms in WP-JRA-1.2. The quality prediction techniques will provide essential input to enable proactive
adaptation in WP-JRA-1.2. Novel quality assurance techniques (like online testing) provide requirements
for mechanisms at the Service Composition and Coordination (WP-JRA-2.2) and at the Service Infras-
tructure layers (WP-JRA-2.3). As an example, the definition of dedicated test interfaces for services
could be such a mechanism. Run-time quality assurance techniques can be exploited as ”monitoring”
techniques in WP-JRA-1.2 to trigger adaptation.

Codified user models and context knowledge from WP-JRA-1.1 will provide machine-accessible
knowledge which can be exploited by the automated (and proactive) negotiation techniques in WP-JRA-
1.3. Novel Web 2.0 technologies (e.g., reputation systems and search engines) from WP-JRA-2.3 provide
concepts and mechanisms that can serve as input for quality prediction techniques. Quality attributes
relevant fro the layers addressed by WP-JRA-2.1, WP-JRA-2.2 and WP-JRA-2.3 provide input to the
quality reference model of WP-JRA-1.3. Local quality assurance mechanisms and techniques from WP-
JRA-2.1, WP-JRA-2.3 and WP-JRA-2.3 (e.g., verification of service compositions) constitute input for
consolidated and integrated quality assurance techniques. Design models (e.g., describing the behavior
of the service-based application) from WP-JRA.1.1 provide input for model analysis techniques at run-
time.

Jointly between WP-JRA-1.2 and WP-JRA-1.3, pro-active adaptation concepts and techniques will
be addressed.

3.4 Business Process Management (WP-JRA-2.1)

The objectives of this work-package are twofold. Firstly, to develop concepts, mechanisms and tech-
niques for analysis, rationalisation and modelling (design) of end-to-end processes in ASNs. Analysis
includes not only the design-time elicitation of functional requirements and performance metrics for
end-to-end processes, but also involves mining execution trails of choreographies to recover information
about the run-time behaviour of processes and transactions.

Secondly, this work-package aims to develop monitoring, measurement and adaptation concepts,
mechanisms and techniques for evolving processes and protocols within ASNs. The second research ob-
jective addresses run-time behaviour of business processes, and is particularly oriented towards develop-
ing and validating concepts, mechanisms and techniques for monitoring the execution of choreographies,
measuring progress and performance of these processes against performance metrics, and pro-actively
adapting them before process anomalies or errors occur.

3.4.1 Contribution to the Conceptual Research Framework

The business process management work-package will contribute to modelling, analysing and rationalis-
ing, designing, realizing, monitoring and managing end-to-end processes in agile service networks.

External Final Version 1.0, Dated 27 March 2009 29

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

3.4.2 Contribution to the Reference Life-Cycle

Figure 3.3 illustrates the contributions of this work-package to the S-Cube life-cycle.

Figure 3.3: Reference life-cycle: contributions of JRA-WP-2.1

In particular, the SBA activity Early Requirements Engineering is comprised of BPM-related activ-
ities for analysing and rationalising agile service networks in terms of their functional behaviour, non-
functional characteristics and process performance. In particular, during this step early requirements
about end-to-end processes in the agile service network are elicited, correlated, and analysed.

Once initial requirements have been collected, they are further analysed and rationalised on the ba-
sis of models capturing both the structural characteristics and dynamic behaviour of the agile service
network not only in terms of operational semantics, but also of business process performance. For this
purpose, implementation-agnostic process models are derived from network models, and process perfor-
mance metrics and key performance indicators are described. Next, and on the basis of these models, the
ASN is further designed refining them into business protocols that govern interactions between network
partners, some of which in fact may be developed as business transactions.

The prototypical construction phase in the SBA life-cycle includes BPM-related activities for trans-
forming abstract process models into executable choreographies and orchestrations. It is important to
note that the transformation of abstract into executable choreographies will occur at the interface be-
tween JRA-2.1 and JRA-2.2.

During execution, the business transaction monitor will collect, log and correlate process events
emitted by transactional and non-transactional end-to-end business processes. Moreover, the transaction
monitor will measure progress of an end-to-end process.

At this point it is worthwhile to reiterate the relation between end-to-end processes, protocols and
transactions (see PO-JRA-2.1.1). An end-to-end business process behaves according to protocols (chore-
ography), capturing the information and exchange requirements between trading partners (business con-
versations), identifying the timing, sequence and purpose of each business collaboration and information
exchange. Some of the protocols can be realized as a business transaction that captures an atomic busi-
ness process describing a trading interaction between possibly multiple parties that strive to accomplish
an explicitly shared business objective as stipulated in a SLA. If a business transaction completes suc-

External Final Version 1.0, Dated 27 March 2009 30

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

cessfully then each participant will have made consistent state changes, which, in aggregate, reflect the
desired outcome of the multi-party business interaction. Process events relate to specific steps in the
business transaction such as a step creating a purchase order, or a process event signaling the completion
of a payment. In particular, the business transaction monitor will track process performance in terms of
volumes and velocity of associated business transactions, as specified in SLAs.

Aside from monitoring and measuring business transactions, the transaction monitor is endowed
with mechanisms that allow it to examine and optimise process performance, visualising potential per-
formance anomalies and errors in end-to-end processes to end-users before they actually occur. Clearly,
the business transaction monitor will draw upon process events emitted by process engines involved in
the execution of a particular end-to-end process, pointing towards another close relation with JRA-2.2
research activities.

Adaptation requirements for end-to-end processes and associated business transactions may not only
emerge from monitored execution of process instances, but also from changes in objectives of individual
network partners, strategic reorientation of the network, and from changes that are exogenous to the
network “per se”, e.g., changing legislations. A full-blown analysis of adaptation requirements is part
of the BPM variant to SBA life-cycle activity ”identify adaptation needs”. An essential component of
this analysis entails impact analysis to understand how changes in partner- or network-level KPIs, multi-
party SLAs, and/or business protocols and associated transactions propagates throughout the network,
impacting the way in which partners may interact.

There does not exist a one-size-fits-all approach to accommodate adaptation requirements. Instead
the ”identify adaptation strategy” activity in the SBA reference life-cycle model, encompasses a broad
arsenal of adaptation strategies to cater for specific adaptation needs. For example, adaptation of a
partner level KPI (e.g., delivery time) poses completely different requirements regarding an adaptation
strategy, than changing a network level KPI (e.g., end-to-end process cycle time) that may in fact involve
renegotiation of SLAs or substitution of specific network partners.

Selection and subsequent execution of adaptation in the context of BPM of agile service networks
is envisaged as a highly interactive process, involving several stakeholders, including business process
analysts, process integrators and managers.

3.4.3 Contribution to the Logical Run-Time Architecture

This work-package contributes to the run-time architecture in the following ways (see also Figure 3.6).
First, it will provide the business transaction monitor that allows to monitor and measure progress of
end-to-end processes against SLAs and KPIs. In addition, the business transaction monitor will be
endowed with facilities that accommodate continuous process optimisation of agile service networks,
as well as pro-active change management. For this purpose, it will at least draw upon the following
engines: monitoring, negotiation, adaptation and discovery engine.

3.4.4 Contribution to the Logical Design Environment

With respect to the design environment, the work-package will provide the concepts, languages and
mechanisms needed for the analysis, optimisation and design of end-to-end processes and associated
business protocols and business transactions. In addition, support for protocol verification will be do-
nated to the design environment.

3.4.5 Relations with Other WPs

This work-package converges research efforts from virtually all other research work-packages for the
purpose of defining, developing and continuously optimising end-to-end processes in agile service net-
works. In this section, we will outline the most important logical linkages, considering “vertical” con-

External Final Version 1.0, Dated 27 March 2009 31

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

nections between this WP and the other two JRA-2 work-packages first, after which we will outline how
work this WP is “horizontally” correlated with those in JRA-1.

Firstly, BPM logically sits on top of the WP-JRA-2.1 Service Composition layer. In particular, it de-
fines abstract choreographies in terms of protocols models and transaction models, and states network-
and partner-level KPIs and SLAs, that serve as the basis for PPMs and service-composition-level SLAs.
In particular, the BPM work-package will work closely together with WP-JRA-2.2 in developing onto-
logical models that cross-correlate KPIs, SLAs and PPMs, as well as transformation models for mapping
ASN models into abstract choreographies, and abstract choreographies into executable choreographies
and orchestrations. The other way around, BPM will rely on WP-JRA-2.1 for its process event model.
In order to design and execute ASNs the BPM layer will not only draw upon the service composition
layer, but also “directly” on the infrastructural layer that will provide discovery mechanisms as well as
execution concepts and containers for atomic services, which should behave according to some SLA.

Analysis, rationalisation and design of agile service networks, and its constituents will be co-devel-
oped with WP-JRA-1.1. In particular, BPM may benefit from life-cycle models, and design principles
and patterns developed in this work-package. The transaction monitor that makes up the heart-and-soul
of the BPM work-package will be developed and tested in close collaboration with WP-JRA-1.2. In
particular, the guidelines for monitoring and adaptation as well as management protocols will leverage
the business transaction monitor. Lastly, transformation tools that are developed in this work-package
may provide the baseline supporting refinement of ASN models into choreographies and orchestrations.

Lastly, WP-JRA-2.1 will draw upon the principles, methods and techniques for quality assurance. In
this way, the BPM work-package will leverage definition and redefinition of SLAs as well as network-
level KPIs, while performance optimisation will benefit from principles, methods and techniques for
quality assurance. Vice-versa, the quality attributes relevant for these SLAs and KPIs will be taken into
account in WP-JRA-1.3 for devising the end-to-end quality definition language.

3.5 Adaptable Coordinated Service Compositions (WP-JRA-2.2)

This work-package focuses on service compositions considering them with respect to different aspects.
Service compositions are the service-based realizations of the business processes that applications must
support, and, therefore, reside in the middle layer of SBAs. The main goal of this work-package is to
establish the foundation of QoS-aware adaptable service compositions. These compositions adapt as
reaction to changes in the QoS properties of SBAs. Such properties are specified on all three domain lay-
ers, which means that the service compositions and their adaptation are influenced by all these properties
in a combination. The work in this work-package hence relies on inputs and requirements from both
BPM and Service Infrastructure layers and addresses them throughout the whole life-cycle of service
compositions, including modelling and verification, execution, monitoring and adaptation.

More precisely, the work-package will focus on the following objectives. First, it will elaborate on
the formal models and languages for service compositions that are extended to explicitly model and
reflect the QoS characteristics of the composition. This will also include the mechanisms for extracting
the composition QoS information from the KPI models defined in BPM layer and from the service QoS
defined in SI layer (and vice-versa). Second, the work-package will work on providing mechanisms
for monitoring and analysis of QoS-aware service compositions (including monitoring of composition
performance metrics and the dependency analysis between KPI, PPM, and QoS properties of SBAs).
Third, the mechanisms for service composition adaptation will be investigated. The latter will include,
in particular, mechanisms for composition fragmentation/defragmentation and for proactive composition
adaptation.

External Final Version 1.0, Dated 27 March 2009 32

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 3.4: Reference life-cycle: contributions of JRA-WP-2.2

3.5.1 Contribution to the Conceptual Research Framework

As it follows from the description of the work-package objectives, the contribution of this work-package
to the conceptual framework will mainly correspond to the service composition domain layer, providing
the foundations for the realization of adaptable coordinated service compositions. As the work-package
targets also the QoS aspects of those compositions, the WP will also contribute to the cross-cutting issues
on “Quality Definition, Negotiation and Assurance” with the models of and the mechanisms for QoS
properties of compositions. By providing the mechanisms for composition adaptation and monitoring,
this work-package also contributes to the cross-cutting concern “Adaptation and Monitoring”

3.5.2 Contribution to the Reference Life-Cycle

Figure 3.4 illustrates the contributions of this work-package to the S-Cube life-cycle.
During the phases of Requirements Engineering and Design and Construction the service composi-

tions are defined and created. This is performed either automatically (e.g., using automated service com-
position approaches), generated from another representation of the composition (e.g., applying model-
driven methodologies) or developed from scratch by a service composition developer. As a result, an
executable representation of the service composition as well as its interfaces are provided (e.g., in the
form of BPEL and WSDL specifications). The actual mechanisms for creating such representations may
also correspond to the combination of existing and novel approaches for creation of executable service
compositions based on business-level modelling notations (e.g., BPMN). It may also include the trans-
formation of a business-level modelling notation to the composition specification language.

During the Deployment phase the composition is configured and is made available for execution on
an execution environment, such as BPEL engine. Depending on a particular execution platform, the
configuration, deployment and enactment steps may be different and require specific mechanisms and
tools.

During the Operation and Management phase the service composition is being executed. This phase

External Final Version 1.0, Dated 27 March 2009 33

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

include also the monitoring of the compositions to track their status and the utilisation of underlying data
and resources (services). The monitored information may be exploited for the purpose of run-time or
“post-mortem” composition analysis, also using the historical information about previous composition
executions. The analysis may involve process mining, fault patterns detection, resource consumption and
throughput analysis.

The results of the analysis of monitored data corresponds to the Identification of Adaptation Needs
phase, as it may trigger adaptation decisions towards modifications of the composition or its parts. In-
deed, the results of the analysis can be used for the purpose of improving/optimising the quality of the
service composition with respect to various criteria. Based on these results, different Adaptation Strate-
gies can be identified. In particular, recommendation for modification of service composition in general
may take place, thus requiring composition re-engineering, or the adaptation may concern only a specific
instance (e.g., a concrete customer order, a specific item processing). Based on the strategy, specific
composition Adaptation Mechanisms are identified and are enforced. The latter may range from the
composition re-design, to run-time composition modification using appropriate techniques.

3.5.3 Contribution to the Logical Run-Time Architecture

This work-package contributes to the run-time architecture in the following ways (see also Figure 3.4.
First, it provides the specific mechanisms for enactment and execution of adaptable and QoS-aware
service compositions within the corresponding composition engines. Second, it contributes the compo-
sition-specific mechanisms and facilities for the monitoring and adaptation engines of the architecture.

3.5.4 Contribution to the Logical Design Environment

With respect to the design environment, the models, languages, and mechanisms provided by this work-
package aim to support the definition, specification, and deployment of executable service compositions
and of the corresponding process performance metrics, as well as of the composition-specific monitoring
properties and the adaptation strategies and rules. In order to automate the process of derivation of such
specification, the corresponding transformation solutions will contribute to the design environment (e.g.,
BPMN to BPEL and KPI to PPM transformations and vice-versa). Indeed, such models are subject of
accurate analysis, and therefore the WP will contribute with the verification approaches that also address
the QoS-specific information of service compositions.

3.5.5 Relations with Other WPs

The research activities performed by the work-package will be carried out in a strong collaboration with
the other research WPs of the project.

With respect to the technology work-packages, the relations with the BPM work-package and the
SI work-package are motivated by the overall SBA engineering approaches, including the top-down and
bottom-up methodologies. In the former case, the abstract business process, choreography, and transac-
tion models provide the input for the definition and realization of service compositions. The correspond-
ing KPI and SLA models are necessary to derive the PPMs of service compositions. Analogously, the
QoS characteristics, the information of service registries and execution platforms, which is available and
is subject of research in SI work-package, provides an input to the bottom-up design of service compo-
sitions. With respect to the cross-cutting work-packages, the relations are described as follows. First,
the service composition WP will provide isolated the languages and supporting techniques for the de-
sign and construction of service compositions to the “Engineering and Design” work-package, including
languages for QoS-aware adaptable compositions, transformation techniques, and analysis techniques.
Second, it will provide the isolated, composition-specific adaptation and monitoring mechanisms to be
exploited in “Adaptation and Monitoring” WP for integrated, cross-layer adaptation and monitoring prin-
ciples. Third, in collaboration with other technology WPs, the composition work-package will contribute

External Final Version 1.0, Dated 27 March 2009 34

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

to the development of cross-layer orthogonal KPIs, SLAs, and QoS models based on the quality model
investigated in WP-JRA-1.3.

3.6 Self-* Service Infrastructure and Service Discovery Support (WP-
JRA-2.3)

The main goal of this work-package is to provide autonomic behaviour for services, and to maintain the
autonomic behaviour of interoperable, cooperative services in a seamless and effective way.

The research objectives of this work-package are structured in three threads:

• Service Discovery. Current discovery mechanisms are not well prepared to deal with the huge
number of Internet-scale service ecosystems. Novel discovery mechanisms must be able to deal
with millions (or even billions) of services. Additionally, these discovery mechanisms need to con-
sider new constraints, which are not prevalent today, such as Quality of Experience requirements
and expectations (feedback) of users, geographical constraints, pricing and contractual issues, or
invocability (not every service can be invoked and used by every client).

• Service Registry. With the advent of the Internet-scale service ecosystems a number of new chal-
lenges for the next generation of registries will arise. In such systems, fault tolerance and scala-
bility of registries is of prominent importance. Autonomic registries need to be able to form loose
federations, which are able to work 24/7, in spite of heavy load or faults. Additionally, a richer
set of metadata (data describing services) is needed for services in such ecosystems, in order to
capture novel aspects such as self-adaptation, user feedback evaluation, or Internet-scale process
discovery.

• Runtime Environment. We will investigate an infrastructure that is able to adapt autonomously
and dynamically to changing conditions. Such adaptation should be supported by past experience
(learning), should be able to take into consideration a complex set of conditions and their correla-
tions, to act proactively to avoid problems before they can occur, and to and have a long lasting,
stabilizing effect.

3.6.1 Contribution to the Conceptual Research Framework

In the conceptual framework, this work-package will contribute to service infrastructure in the context
of adaptation and self-adaptation of services as well as on discovery and registries.

3.6.2 Contribution to the Reference Life-Cycle

Figure 3.5 illustrates the contributions of this work-package to the S-Cube life-cycle. In particular, the
reference life-cycle is extended with artifacts and actions related to the infrastructure. In addition to the
artifacts related to adaptation, some infrastructure specific tools and actions are depicted.

Concerning adaptation, self-healing actions as well as reactive and proactive adaptations are enacted
by adaptation engines included in the run-time infrastructure (see also the infrastructure view). Run-time
monitoring has to be supported by monitors, some of which are included in the infrastructure (such as
platform specific monitors for example).

In order to support deployment, deployment tools have to be provided. These tools use brokering
and resource allocations techniques.

External Final Version 1.0, Dated 27 March 2009 35

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 3.5: Reference life-cycle: contributions of JRA-WP-2.3

3.6.3 Contribution to the Logical Run-Time Architecture

This work-package contributes to the run-time architecture (see also Figure 3.6) by providing realization
mechanisms for the adaptation engines, containers for adaptable and self-adaptable services as well as
discovery and registry infrastructure.

3.6.4 Contribution to the Logical Design Environment

With respect to the design environment, this work-package will provide research on the run-time support
for configuration, deployment and adaptation.

3.6.5 Relations with Other WPs

The WP-JRA-2.3 work-package provides discovery and registries concepts used by to WP-JRA-2.2. It
is also related to WP-JRA-2.1 because it takes into account multilevel adaptation.

It enacts adaptation defined by WP-JRA-1.1 using the guidelines of WP-JRA-1.2 in order to con-
tribute to achieving the end-to-end quality as defined, negotiated and assured by the techniques and
methods in WP-JRA-1.3

3.7 Concluding Remarks

In this chapter, we have described the integration of the S-Cube research work-packages within the IRF
by describing the contributions that these work-packages provide to the four IRF views introduced in
Chapter 2. We note that this description of the contribution is just the first step towards the integration of
the research work-packages: it has been performed to validate the consistency of the IRF with respect to
the visions and expected results of the WPs, and it is reported in this deliverable to give evidence of this
consistency.

External Final Version 1.0, Dated 27 March 2009 36

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Figure 3.6: Contributions of the WPs to the run-time architecture

A stronger, consolidated integration of the research work-packages within the IRF is the objective
of the next activities of the IA-3. In the next chapter, we will comment on the strategies that we have
defined and that we are implementing for achieving this stronger integration.

External Final Version 1.0, Dated 27 March 2009 37

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Chapter 4

Evolution of the Integrated Research
Framework

In the previous chapters, we have provided an initial definition of the S-Cube IRF, and we have shown
how the research efforts undertaken by the different work-packages contribute to this framework. The
work on the IRF is far from finished. Actually, what we provided in Chapter 2 is just the baseline for
this framework, which needs to be refined and consolidated in order to become a first complete version
of the IRF. In addition to this, we remark that the IRF cannot be a static object, as it has to evolve and
grow throughout the whole life of S-Cube.

For these reasons, in this chapter we provide a description of the next steps that we will undertake
for consolidating the definition of the IRF, as well as of the strategies that we foresee for its management
and update.

In the following we discuss the three main lines of work that will be undertaken during the next year
according to the S-Cube Description of Work [1], and we describe how we intend to achieve them.

4.1 First Complete Definition of the IRF

The purpose of this activity is to refine and consolidate the IRF baseline in order to produce a first
complete version of the IRF. The outcomes of this consolidation activity will be reported in Deliverable
CD-IA-3.1.2 “First Version of the Integration Framework”, due at Month 21.

The refinement of the IRF will be achieved by jointly refining the different views that we introduced
in this document. More precisely:

• The conceptual research framework will be extended with the research challenges identified by
the different work-packages, and with their (already achieved or foreseen) results. More precisely,
the framework will be refined into a hierarchy, where the components of the framework depicted
in Figure 2.1 constitute the higher level; the research challenges addressed by the different work-
packages define the intermediate level of the hierarchy, and the results of the work-packages define
the lower level. These results will include principles, methodologies, techniques, languages, no-
tations, mechanisms, technologies and any other contribution that the research will identify and
investigate.

• The reference life-cycle will be enriched by associating to each phase the relevant research results.
In particular, the life-cycle will be annotated with the artifacts, the activities, the users and the roles
that are relevant for the different phases in the life and evolution of a SBA. The outcome will be a
consolidation and extension of the work reported in Chapter 3, in the sections on the contributions
of the WPs to the life-cycle.

External Final Version 1.0, Dated 27 March 2009 38

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

• Also the logical run-time architecture and the logical run-time environment will be extended by
associating research results to the different elements that define these two views. In the case
of the run-time architecture, this corresponds to identifying those research results that contribute
technique, mechanisms, technologies which are relevant for the engines and containers that appear
in Figure 2.4. The case of the design environment is similar, but in this case the research results
that are relevant for the design of SBAs will be placed in the matrix represented in Figure 2.5.
In addition to this, the extension of these two views will also consist in the definition of specific
usage patters, i.e., specific ways of combining the different techniques in the run-time architecture,
or specific ways of exploiting the techniques in the design environment.

We note that the consolidation work undertaken in this activity, as well as the validation activity that
we will describe below, may possibly lead to the introduction of additional views, or to the revision of
the views identified in this document, in case different perspectives will become useful for describing
the IRF. In this case, these changes in the views will be taken into account in the definition of the IRF.
However, we expect that most of the changes will happen within the identified views, which already offer
a reasonable set of perspectives to the IRF.

In order to be able to manage the complexity associated to the definition of the IRF, and to its updates
and revisions, we plan to move the IRF to the S-Cube portal; that is, the IRF will become a live object
that can be explored, analysed, and extended on-line by the S-Cube partners.

4.2 First Validation of the IRF

During the next year, we will perform a first validation of the IRF. This activities aims at validating
the IRF using the industrial case studies collected by work-package WP-IA-2.2, and reported in [9].
More precisely, this activity will start with the collection and definition of a set of scenarios based on
these industrial case studies (Deliverable PO-IA-3.2.1 “Initial Definition of Validation Scenarios”, due
at Month 17). Then, these scenarios will be applied to the IRF, in order to validate it and to identify
possible improvements (Deliverable CD-IA-3.2.2 “Results of the First Validation”, due at Month 24).

The validation will be performed by mapping the scenarios on the different views of the IRF and by
analysing how the scenarios can be represented in terms the “elements” which define these views. We
will analyse in particular:

• Which parts of the conceptual research framework contribute to the scenarios, which research
challenges are relevant, and which research results are exploited in the scenarios.

• Which phases of the life-cycle are relevant for the scenarios, which activities and artifacts associ-
ated to these phases are useful, and how are they exploited.

• Which elements of the run-time architecture and of the design environment, and which usage
patterns of these elements are relevant for the scenarios.

The application of the IRF to the scenarios will also become part of the IRF and will become part of
the base on which the research work-packages will perform their activities.

4.3 Analysis of User Patterns and Methodologies

This activity will also start during the second year of the project, even if the first deliverable will be issued
only during the third year (Deliverable PO-IA-3.1.4 “Initial Definition of Users Patterns and Methodolo-
gies”, due at Month 27).

The activity aims at identifying the various types of users that may be involved in the engineering, in
the adaptation, as well an in the usage of SBAs; its purpose is to characterise all these different types of
users, in terms of their role and expertise, and to identify methodologies tailored to these users.

External Final Version 1.0, Dated 27 March 2009 39

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

This activity will be undertaken in close collaboration with the other two activities. In particular, the
usage patterns which will be identified for the elements in the design environment and in the run-time
architecture will take into account these various types of users. Also the scenarios used in the validation
will help identifying different types of users, and, vice-versa, the scenarios will be chosen to cover as
many as those user types as possible.

External Final Version 1.0, Dated 27 March 2009 40

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Chapter 5

Conclusion

The main objective of this deliverable is to describe the baseline definition of the IRF that has been
produced as outcome of the investigation of IA-3 during the first 6 months work1.

This baseline definition is given by providing a set of views corresponding to different perspectives
to the IRF. These perspectives have been introduced in order to be able to give a comprehensive overview
of the research undertaken by S-Cube, and are essential to clarify the relations among the research efforts
and to better understand responsibilities and mutual expectations of the different research work-packages.
In the deliverable, we report both the definition of these views and a preliminary mapping of the work-
package activities on these view.

In addition to the definition of the baseline of the IRF, this deliverable also defines clear interfaces
between the different components of the research framework. These interfaces play a fundamental role in
understanding synergies, relations and mutual expectations among the research activities in the different
work-packages, as well as to avoid or solve gaps and overlaps.

Finally, the deliverable illustrates the activities that will be undertaken on the IRF during the second
year of the project and the strategies that we intend to adopt in these activities.

1We recall that Activity IA-3 has started only at Month 7 of the S-Cube project.

External Final Version 1.0, Dated 27 March 2009 41

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Bibliography

[1] S-Cube – Description of Work, 2007. See http://www.s-cube-network.eu.

[2] S-Cube Deliverable PO-JRA-1.1.1: State of the art report on software engineering design knowledge
and Survey of HCI and contextual Knowledge, 2008.

[3] S-Cube Deliverable PO-JRA-1.2.1: State of the Art Report, Gap Analysis of Knowledge on Princi-
ples, Techniques and Methodologies for Monitoring and Adaptation of SBAs, 2008.

[4] S-Cube Deliverable PO-JRA-1.3.1: Survey of Quality Related Aspects Relevant for Service-based
Applications, 2008.

[5] S-Cube Deliverable PO-JRA-2.1.1: Survey on Business Process Management, 2008.

[6] S-Cube Deliverable PO-JRA-2.2.1: Overview of the State of the Art in Composition and Coordina-
tion of Services, 2008.

[7] S-Cube Deliverable PO-JRA-2.3.1: Use Case Description and State-of-the-Art, 2008.

[8] S-Cube Deliverable CD-IA-1.1.1: Comprehensive overview of the state of the art on service-based
systems, 2008.

[9] S-Cube Deliverable CD-IA-2.2.2: Collection of industrial best practices, scenarios and business
cases, 2009.

External Final Version 1.0, Dated 27 March 2009 42

S-Cube
Software Services and Systems Network Deliverable # CD-IA-3.1.1

Appendix A

Acronyms

Acronym Description
ASN Agile Service Network
A&M Adaptation and Monitoring
BPEL Business Process Execution Language
BPM Business Process Management
BPMN Business Process Modeling Notation
IA Integration Activity
IRF Integrated Research Framework
JRA Joint Research Activity
KPI Key Performance Indicator
PPM Process Performance Measure
QoS Quality of Service
SBA Service Based Application
SOA Service Oriented Architecture
SC&C Service Composition and Coordination
SLA Service Level Agreement
WP Work-Package
WSDL Web Service Description Language

External Final Version 1.0, Dated 27 March 2009 43

