
Grant Agreement N° 215483

Copyright © 2008 by the S-CUBE consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 215483 (S-Cube).

File name: CD-JRA-1.1.5-annex-draft-20100310.doc

Title: Analysis on how to exploit codified HCI and codified context knowledge
for SBA engineering – Confidential Annex

Authors CITY, LERO, POLIMI, VUA

Editor: Andreas Gehlert (UniDue)

Reviewers: Branimir Wetzstein (UStutt)

 Mohand-Said Hacid (UCBL)

Identifier: Deliverable CD JRA 1.1.5

Type: Deliverable

Version: 1.0

Date: 15/03/2010

Status: Final

Class: Internal

Management Summary

Deliverable CD-JRA-1.1.5 is a paper-based deliverable comprised of seven research papers. All papers
deal with the exploitation of codified context knowledge. It can clearly be seen that on the one hand the
different research communities interpret “context” differently ranging from HCI aspects to engineering
aspects relevant for SBAs. On the other hand our analysis of the relation of the approaches to the life
cycle model shows that the approaches try to integrate different phases of the life-cycle and, thus, S-
Cube is now focussing more on integrated research, which covers more than one phase of the life-cycle
of SBAs. This part of the deliverable contains the ten papers contained in CD-JRA-1.1.5

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
VU Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/

http://www.s-cube-network.eu/

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

1 Kounkou, A.; Zachos, K.; Maiden, N.: Exploiting user error
knowledge for service discovery. – not yet submitted.

Exploiting user error knowledge for service discovery
Angela Kounkou, Konstantinos Zachos, Neil Maiden

Centre for HCI Design, City University, UK
{sbbc775, kzachos, N.A.M.Maiden}@soi.city.ac.uk

Abstract

Although the interoperability and reuse capabilities associated with services are distinct advantages for
dynamically building composed applications, these qualities can also introduce robustness issues in Service-
Based Applications (SBA) due to the challenges of integrating and appropriately executing disparate error-
handling methods. It is a well-documented fact in the field of Human Computer Interaction (HCI) that most
system faults find their roots in errors committed by the human stakeholders at the various stages of their
involvement with the system; little research however seems to consider the role of these stakeholders in SBAs’
fault-tolerance. In this paper, we investigate whether HCI knowledge about user error can inform the
engineering of SBAs - more specifically here, their discovery - and contribute to improving their robustness.

1 Introduction
Software services are increasingly being used in enterprise settings as well as in mainstream, day-to-day
computing; visions of an upcoming Internet of services (e.g. [1]) and the predictions of IT analyst firms [2] do
not show signs of this trend faltering. We believe that as services’ application ranges and end user base
augment, so will the need for robustness in Service Based Applications (SBAs) so that they continue to provide
good service in anomalous situations, hence preventing possible productivity loss, reduced user satisfaction,
and even accidents in safety-critical systems [3]. Consider for instance a journeyPlanner SBA mapping and
delivering possible routes to a user-specified destination address: the disrupted provision of such services to a
delivery company could amount to a backlog of scheduled deliveries as well as potential losses of dissatisfied
clients.

The interoperability and reuse capabilities associated with services are distinct advantages for dynamically
building heterogeneous, loosely-coupled SBAs [4]; they do however introduce robustness issues [5]. SBAs
integrate services that are often developed using differing technologies that may implement different
approaches for error-handling. For instance, some may implement a “throw and catch” approach where an
error is internally handled while others might stop at outputting runtime errors for handling by an external
human or automated component. Further, the granularity, format and content of these errors might differ from
service to service, with some error codes being specific to a particular service and others being natural
language, human-readable messages [5]. Consider for instance that the journeyPlanner SBA includes an
addressLookup service that geographically locates an address provided by the user. Assume that an erroneous
address input prevents the address location from being performed. Depending on the error handling strategy
implemented in the addressLookup service and in the SBA, the application might either display an error code
to the user, display a plain language error message, or “do nothing”. We can imagine that for a wider audience,
any other output than an understandable and actionable error message would negatively impact the fulfillment
of the route-finding task and the end user’s experience.

To the best of our knowledge, current research on fault-tolerance focuses on these interoperability issues and
on mechanisms addressing fault detection, handling and recovery at various levels of the SBAs’ technical
infrastructure (e.g [3, 6-8]). We are not however aware of research focusing more closely on the human

sources of faults occurring in SBAs. It is a well-documented fact in the field of Human Computer Interaction
(HCI) that most system faults find their roots in errors committed by the human stakeholders at the various
stages of their involvement with the system: as end users, but also as designers and programmers introducing
architectural errors and bugs in the software (e.g. [9]). As reported in [10], a study carried on large-scale
Internet services’ failure reports confirmed these findings by identifying operator errors as one of the main
causes of user-visible service failures. In this paper, we investigate whether HCI knowledge about human error
can inform the engineering of SBAs and contribute to improving their robustness. Drawing upon existing
taxonomies of user error and on models of human interaction with interactive systems, we derived heuristics
applicable to the engineering of SBAs preventing or handling common user errors, and proposed approaches
for the codification of such heuristics into tools for design time and runtime service discovery.

2 User Error for SBA engineering
Errors have been defined as terms encompassing “…all those occasions in which a planned sequence of mental
or physical activities fails to achieve its intended outcome, and when these failures cannot be attributed to the
intervention of some chance agency.” [11]. User errors are common feature of interactions between users and
computer-based systems and have been extensively studied in the field of HCI; a number of taxonomies (e.g.
[11-13]) exist to identify and classify user errors. Although they were initially considered as originating from
people's erroneous assessments and decisions, user errors are now considered as the symptoms of possible
trouble inside a system indicating a re-design need; specific guidelines and recommendations for their
consideration and handling were developed for the design of interactive systems (e.g. [14, 15]). Such
recommendations however, which often come in the form of design principles, are challenging to apply to
SBA engineering. Consider for instance one such guideline aimed at improving a user’s understanding of a
system’s operation to prevent the occurrence of errors: “Make the action more perceptible – improve the match
between actions and their outcomes” (from [15]). Considering that SBAs are composed of existing, reusable
software components using approaches that are often business-process-centric (e.g. [16, 17], it is challenging to
think of ways such a generic principle could be transformed into concrete requirements or operations usable for
services discovery and assembly. However, in view of the evidence of the utility of user error knowledge for
software engineering, we explored possible novel ways to apply this knowledge to the specific case of service-
oriented software engineering.

In order to frame our consideration of user error during user interactions with SBAs, two areas of HCI study
were drawn upon: user error taxonomies and user interaction models. First, taxonomies of human error
provided a reference to the different, broad categories of errors users make. We primarily drew on
Rasmussen’s and Norman’s error types classifications. Rasmussen described three types of user errors: skill-
based performance errors which are largely errors of execution; rule-based performance errors resulting from
a human inability to correctly assess a situation; and knowledge-based performance errors, which he identified
as the product of shortcomings in the user knowledge or in his abilities to apply existing knowledge to new
situations [18]. Norman categorised user errors into slips, errors entailing the incorrect execution of a correct
action sequence, and mistakes, correct executions of incorrect action sequences [14]. Interaction models
describing users’ interaction with a system were then examined for possible mappings between the user error
types described in the taxonomies and specific stages of a user’s interaction with an SBA. Norman’s model in
particular (Figure 1 below) broadly describes user’s interaction with systems. It defines 7 stages of interaction
starting with the user’s goal or desired state of the world to be achieved. The following 3 stages (intention to
act, formation of an action sequence, and execution of the action sequence) describe the user’s perception and
actions on the system in order to bring about the desired change in the state of the world. The last 3 interaction
stages (world state perception and its subsequent interpretation and evaluation) describe the processes the user
goes through when assessing the results of his actions on the system and the changes they brought on the
world, including whether they brought him closer to his goal – the desired world state.

Figure 1: Norman’s model of interaction

Considering user’s interactions with SBAs, errors could solely be apprehended as the erroneous actions users
perform on the system using a provided interface. The interaction model however helped to highlight the
stages anterior to physical action, where errors in how the user comprehends the system and forms an intention
to use it are formed. It also provided insight into the stages posterior to the user’s actions on the interface,
where the user’s assessment of his actions’ effects reinforce his understanding of the SBA’s “workings”, which
influences any further actions to be made.

Following assessment and as illustrated in Figure 2 below, common errors drawn from established taxonomies
were mapped to likely interaction stages for their occurrence. Possible causes for error were derived, and
coarse-grained recommendations for the prevention, mitigation or handling of these errors were proposed for
application at the service discovery phase of SBA engineering. Although external factors such as the context of
use and the user’s own characteristics can impact on user errors, they were not included in this exercise.

Figure 2: Possible user error types at various stages of interaction with SBA, inferred causes, and remedial

recommendations

While some possible causes for user error could not be expected to be fully addressed during the engineering
of the SBA (for instance, the user applying inappropriate heuristics when forming an intention to use the
system, which could likely stem from internal causes e.g. inaccurate knowledge or poor IT skills), Figure 2
revealed potential areas for the application of user error knowledge during the SBA lifecycle.

At the design stage for instance, a mismatch between the user’s goal and the functionalities offered by the SBA
could be at the root of user errors (see also Figure 3 below). This mismatch may occur for various reasons (e.g.
issuing an incorrect query discovering services that do not match the user or the SBA assembler’s
requirements), some of which could be handled at the discovery stage of the SBA lifecycle. For instance, a
cause such as an ambiguous user interface (i.e. which does not permit the user to form a correct opinion of the
SBA’s overall function) may be avoided by selecting only services implementing user interfaces that are
compliant with relevant HCI design standards.

Figure 3: user error at the Goal formation stage

During physical, actionable interaction with the service at run-time (Figure 4), the end-user may commit
mistakes triggered by a poor accessibility of the SBA controls (which may be solved by selecting services
compliant with relevant accessibility standards) or by incorrect data entry (in which case SBAs requiring data
input could also be required to perform data validation checks). Consider for instance that the journeyPlanner
application is part of an eGovernment suite of software made available by a country’s official authorities. The
SBA is expected to be used by a wide array of users encompassing various ages, nationalities, IT skills, and
abilities; it further has to be accessible from a host of computing platforms including mobile platforms. User
input errors can reasonably be foreseen to be a likely occurrence under these conditions. Generally speaking,
the improved robustness for such an SBA would among other require the use of services whose operations are
accessible to the wider audience, whose implemented interfaces are compliant with the relevant guidelines and
standards in effect, and which provide data input validation to address possible errors committed by the user
when entering start or destination addresses.

Figure 4: user error at the Action execution stage

As a last example, at runtime a user’s incorrect perception of an SBA’s state (Figure 5 below), which would
possibly cause further user errors to occur when interacting with the SBA, may result from an inappropriate
system feedback – in which case it may be recommended that the relevant services composing the SBA
provide human-readable feedback for instance.

Figure 5: user error during perception of the SBA state

Overall, the insights gained at this stage indicated that user error knowledge may inform derived, simple
heuristics (e.g. Figure 2 – discovery heuristics) for the engineering of SBAs that avoid or mitigate common
user errors. These heuristics can be envisaged to span several stages of the SBA lifecycle, for instance service
discovery for the specification of selection heuristics and rules for services implementing specific error-
handling functions (e.g. help function, input validation); or service specification for richer descriptions of
services’ error-handling capabilities. The following section reports on a proposed codification of user error
knowledge using these heuristics for design time and runtime service discovery. It refers to the service
discovery approach outlined in the SeCSE1 project, which made available development platform and tools
permitting an implementation and future empirical validations of our proposed solutions.

2.1 User error knowledge for service discovery
Design time service discovery entails finding services for the composition of an SBA matching specific
requirements. Service discovery in SeCSE calls upon a service discovery algorithm (EDDiE) which formulates
service requests from use case and requirements specifications expressed in structured natural language.
Overall the service query is divided into sentences, tokenised, tagged, and expanded with each token’s
morphological root (e.g. drive for driving). The algorithm then applies procedures to disambiguate each term
by defining its correct sense and tagging it with that sense (e.g. defining a driver to be a vehicle rather than a
type of golf club). The algorithm then expands each term with other terms that have similar meaning according
to the tagged sense to increase the likelihood of a match with a service description (e.g. since driver is

1 http://www.secse-project.eu/

http://www.secse-project.eu/

synonymous with motorist it is then included in the query). Finally the algorithm matches all expanded and
sense-tagged query terms to terms found in the service description facets in the service registry. Facets are
projections over service properties that describe these properties in Facet Specifications using Languages that
may be natural (e.g. English) or XML based (hence permitting both human and computerized interpretation of
the specification) as depicted in the conceptual model in Figure 6 below

Figure 6: Conceptual model of faceted service description

Using the initial coarse-grained selection recommendations outlined in Figure 2, we derived an initial set of
service selection heuristics (below) linking a possible error handling or mitigation action to the service
description facet encapsulating the relevant information, this for matching during discovery. For each
recommendation, suggested selection heuristics were proposed - for instance, as per “Recommendation 1”
below, an SBA such as the journeyPlanner might mitigate the impact of user input errors by: providing users
with feedback understandable to non-IT literate users; providing a spell-checker facility; providing predictive
data input; and/or suggesting similar correct addresses.

Recommendation 1: Select services validating data input

Heuristic name: Availability of spelling validation
IF End user data input is performed
THEN select all services where DescriptionFacet/DescriptionScheme/ServiceOperations/Operation = “spell
checker”

Heuristic name: Availability of predictive data entry
IF End user data input is performed
THEN select all services where DescriptionFacet/DescriptionScheme/ServiceOperations/Operation = “predictive
text”

Heuristic name: Recovery from invalid input
IF End user data input is performed
THEN select all services where TestingFacet/TestSuite/TestCase/TestName= “GUI data input test”

Heuristic name: Recovery from erroneous data entry order
IF End user data input is performed
THEN select all services where TestingFacet/TestSuite/TestCase/TestName= “informal entry order test”

Recommendation 2: Select services with a help function

Heuristic name: Availability of help function

IF the SBA is intended for end users’ use
THEN select all services where DescriptionFacet/DescriptionScheme/ServiceOperations/Operation = “Help”

Heuristic name: Availability of undo function
IF the SBA is intended for end users’ use
THEN select all services where DescriptionFacet/DescriptionScheme/ServiceOperations/Operation = “Undo”

Heuristic name: Availability of helpline
IF the SBA is intended for end users’ use
THEN select all services where CommerceFacet/BusinessEntity/Contacts = true

Recommendation 3: Select services providing feedback on action
Heuristic name: Availability of end user error recovery support
IF the SBA is intended for end users’ use
THEN select all services where
OperationalSemanticsFacet/OCLOperationalSemanticsScheme/OperationalSemantics/PostCondition = “plain
language action feedback”

Heuristic name: Adherence to HCI design standards
IF the SBA is intended for end users’ use
THEN select all services where DescriptionFacet/DescriptionScheme/Miscellaneous = “ISO 9241 compliant”

Heuristic name: Availability of user-accessible feedback
IF the SBA is intended for end users’ use
THEN select all services where
OperationalSemanticsFacet/OCLOperationalSemanticsScheme/OperationalSemantics/PostCondition = “multi-
sensory feedback”

Recommendation 4: Select services accessible to the user
Heuristic name: Accessibility of service
IF the service is intended for end users’ use
THEN select all services where DescriptionFacet/DescriptionScheme/Miscellaneous = “WCAG compliant”

Recommendation 5: Select fully specified services
Heuristic name: Availability of full service description
IF SBA assembler requires manual check of service’s match to requirements
THEN select all services where

DescriptionFacet/DescriptionScheme/ServiceOperations/Operation = true And
SignatureFacet/OperationalFootprint = true And
SignatureFacet/BindingInformation = true

Recommendation 6: Select services compliant with usability standards

Heuristic name: Usability standards compliance
IF the SBA is intended for use by end users
THEN select all services where DescriptionFacet/DescriptionScheme/Miscellaneous = “ISO 9241 compliant”

The sets of initial heuristics presented above are currently being implemented as discovery rules in the SeCSE
service discovery platform in order to empirically evaluate their impact on service discovery using the EDDiE
algorithm; it is expected that they will be refined as an outcome of the validation activities performed.

2.2 User error knowledge for SBA adaptation
As defined in the S-Cube knowledge model2, adaptation is a process of modifying SBAs in order to satisfy
new requirements and demands dictated by the environment. Adaptation can be necessary to optimise SBAs, to
react to changes in context, or as part of a recovery strategy to effect fault-recovery. We suggest that user error
knowledge can be used for the latter case, i.e. to specify rules for the handling of user error occurring at run-
time where appropriate. Adaptation can among others be realised through Run-time Service Discovery (RSD).
RSD is concerned with the discovery of alternative services to replace services already integrated in an SBA
that have become unavailable or unsuitable (e.g. they do not meet functional requirements or required QoS
anymore). As demonstrated in section 2.1., user error knowledge can be exploited for the development of
discovery rules, a principle that may be used for RSD.

An open source tool performing RSD was described in detail in [19]. As an overview, the tool’s graphical user
interface allows a human assembler to request the automatic construction of a query for discovering a service
matching the signature and behaviour of a specified service to be replaced. The assembler can then choose to
select and load pre-supplied constraint queries. Constraint queries are logical expressions used in RSD to
refine the sets of discovered services; they specify additional constraints that a candidate service’s specification
must match on top of matching the structural and behavioural behaviour of the service to be replaced. These
constraint queries are implemented in a Constraint Service Query Language (Constraint-SQL) and have the
following four attributes:

• Weight: a number between 0 and 1 for the prioritisation of the parameters in a service discovery query.
• Type: its value is either “hard” or “soft”, indicating respectively that the constraint has to be satisfied

by all the services discovered, or would preferably but not necessarily satisfied.
• Name: a description of the constraint
• Optional: either “true” or “false” to indicate respectively whether the constraint query is optional or

compulsory

As a solution idea for the application of user error knowledge to RSD, we developed a set of generic constraint
queries informed by user error knowledge to extend the RSD tool by adding this set to its repository. More
specifically, the heuristics presented in section 2.1. were operationalised and organised in sets (e.g.
accessibility, data input validation, feedback on action), with the aim to make a coherent collection of rules
available to the SBA assembler for loading pre-defined, common user error constraint queries when required
(Figure 7).

2 http://www.s-cube-network.eu/km/terms/a/adaptation/?searchterm=adaptation

Figure 7: Error handling constraint queries sets (left) and subset (right)

Empirical evaluation of the constraint queries for RSD is ongoing at the time of writing, and individual queries
(e.g. Figure 8) are iteratively being modified and refined as the testing occurs.

Figure 8: Extract of a sample, single-service discovery query with the constraint: services’ exception facet must
contain the terms “feedback” in their description, and “user-visible failure” as a precondition.

3 Summary and future work
The increasing diversity of SBAs users and services’ increasing use in mission-critical systems motivate the
research into services fault-tolerance and robustness, this to ensure that the design and execution of SBAs
strives towards minimizing the occurrence and impact of errors. This paper reported on proposed approaches
for the application of codified knowledge about user errors to SBA engineering:

• For service discovery at design time, to inform the service discovery process and specifically seek to
select services handling the common or likely errors a user is susceptible to make.

• For service discovery at runtime, to enact adaptation as a reaction to SBA faults possibly introduced by
user errors.

User error taxonomies and interaction models were drawn upon to frame the common user error types liable to
occur at various stages of a user interaction with SBAs. These were then used to derive service selection rules
for the discovery of services with functionalities addressing these error types. Constraint queries were further
derived for performing runtime adaptation via RSD, which we expect will be refined after the first round of
empirical testing is complete. Following implementation and evaluation in the UCaRE tool, the refinement of
the selection rules and possibly the creation of new rules tailored to particular domain applications is also
expected. Several research directions will further research into the application of user errors for SBA
engineering. The exploration and integration of factors affecting user errors, possibly by interlinking discovery
rules, models about the users and their context, and the tasks performed is another promising research
direction, possibly leading to the development of task models’ associated common user errors for instance.
Finally, novel ways for services to describe their error handling capabilities and the development of possible
“user error service design patterns” encapsulating HCI recommendations for user-appropriate handling of
errors are being considered.

4 Acknowledgments
The research leading to these results has received funding from the European Community's Seventh
Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

5 References
1. Lizcano, D., Jimenez, M., et. al.: Leveraging the Upcoming Internet of Services through an Open

User-Service Front-End Framework, ServiceWave, Madrid, Spain, December 2008
2. Gartner research, Gartner Inc. Hype cycle for software as a service. Accessed January 2010

http://sharepoint.microsoft.com/sharepoint/worldwide/cn/south/SaaS/Hype%20Cycle%20for%20Soft
ware%20as%20a%20Service.pdf, 2006.

3. Chan, P.P.W., M.R. Lyu, and M. Malek, Making services fault tolerant. Lecture notes in Computer
Science, 2006. 4328: p. 43.

4. Papazoglou, M.P., Web services: principles and technology. 2008: Pearson Prentice Hall.
5. Bean, J., SOA and Web Services Interface Design: Principles, Techniques, and Standards: Morgan

Kaufmann.
6. Aghdaie, N. and Y. Tamir, CoRAL: A transparent fault-tolerant web service. The Journal of Systems

& Software, 2009. 82(1): p. 131-143.
7. Pallemulle, S.L., H.D. Thorvaldsson, and K.J. Goldman. Byzantine fault-tolerant Web services for n-

tier and service oriented architectures. 2008.
8. Liu, L., et al., A Fault-Tolerant Web Services Architecture. Lecture notes in Computer Science, 2006.

3842: p. 664.
9. Gaitros, D.A., Common errors in large software development projects. The Journal of Defense

Software Engineering, 2004. 12(6): p. 21-25.
10. S-Cube CD JRA 1.1.2. Separate design knowledge models for software engineering and service based

computing, 2009.
11. Reason, J., Human error. 1998: Cambridge University Press.
12. Cacciabue, P.C., A methodology of human factors analysis for systems engineering: theory and

applications. IEEE Transactions on Systems, Man and Cybernetics, Part A, 1997. 27(3): p. 325-339.
13. Sutcliffe, A. and G. Rugg, A taxonomy of error types for failure analysis and risk assessment.

International Journal of Human-Computer Interaction, 1998. 10(4): p. 381-405.

http://sharepoint.microsoft.com/sharepoint/worldwide/cn/south/SaaS/Hype%20Cycle%20for%20Software%20as%20a%20Service.pdf
http://sharepoint.microsoft.com/sharepoint/worldwide/cn/south/SaaS/Hype%20Cycle%20for%20Software%20as%20a%20Service.pdf

14. Norman, D.A. Steps toward a cognitive engineering: Design rules based on analyses of human error.
1982: ACM New York, NY, USA.

15. Rizzo, A., D. Ferrante, and S. Bagnara, Handling human error. Expertise and technology. Cognition
and humancomputer interaction. Hillsdale, NJ, Lawrence Erlbaum, 1995.

16. Trainotti, M., et al., Astro: Supporting composition and execution of web services. Lecture Notes in
Computer Science, 2005. 3826: p. 495.

17. Arsanjani, A., Service-oriented modeling and architecture. IBM developer works, 2004.
18. Isaac, A., et al., The human error in ATM technique (HERA-JANUS). 2003, Eurocontrol, report

HRS/HSP-002-REP-03.
19. SeCSE: Platform for Runtime Service Discovery – v3.0

http://www.secse-project.eu/wp-content/uploads/2007/10/a2d13-platform-for-runtime-service-
discovery-v30.pdf

http://www.secse-project.eu/wp-content/uploads/2007/10/a2d13-platform-for-runtime-service-discovery-v30.pdf
http://www.secse-project.eu/wp-content/uploads/2007/10/a2d13-platform-for-runtime-service-discovery-v30.pdf

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

2 Kounkou, A.; Zachos, K.; Maiden, N.: Exploiting user
model information for service discovery. – not yet submitted

Exploiting user model information for service discovery
Angela Kounkou, Konstantinos Zachos, Neil Maiden

Centre for HCI Design, City University, UK
{sbbc775, kzachos, N.A.M.Maiden}@soi.city.ac.uk

Abstract
Service-based application users are shifting from a small, often technically-minded user base to a
much more inclusive, broader audience whose varied characteristics and needs must be
accommodated. Although extensive research exists on the topic of user-adaptive software
systems, the particular case of SBAs has not as widely been investigated as of yet. In this paper,
we propose to exploit user model information to develop additional criteria and filters for
selecting services based on user’s characteristics, this to permit the discovery of services whose
specifications match user requirements better.

1. Introduction
Software services are increasingly being used in diverse domains and settings that span business
and mission-critical applications, but also personal computing and entertainment mashups. Their
uptake in varied domains as well as the drive towards an Internet of Services [1] means that
Service-Based Applications’ (SBAs) end users are shifting from a relatively small, technical and
professional user base to encompass a wider audience of users whose various needs, preferences
and abilities need to be accommodated.

Consider for instance a government-provided journeyPlanner SBA that maps and displays routes
to user-specified destinations. Users of such an application, although sharing a similar core goal,
can reasonably be expected to have varied needs, requiring for instance a choice of output
modalities (e.g. audio rather than visual output in case of sight impairment), or different annex
functionalities (e.g. data validation strategies such as spell-checking for dyslexic users;
multilingual outputs for users with varying language skills).

Building software that satisfies and appropriately supports end-users in their tasks is a long-
standing challenge in software engineering, and it is widely acknowledged that user-tailored
interactive systems support users in their tasks better than more generic, “one size fits all”
systems [e.g. 2, 3]. Extensive research in the fields of personalisation and adaptation of software
systems investigates the delivery of computing services customized to the characteristics of
individual end–users, and various software engineering approaches leverage HCI knowledge to
engineer systems in a user-centric manner, notably through the integration of User-Centred
Design (UCD) techniques. SBAs’ engineering and architectural particularities however put a
different slant on this challenge.

SBAs are composed of services which are developed to be reusable rather than for exclusive use
in specific, well-scoped applications. Further, their range of operations and end users are
potentially too diverse to be foreseen: “the eventual consumers of the service may not be known to
the service provider and may demonstrate uses of the service beyond the scope originally
conceived by the provider” [4]. Consequently, individual services’ design often cannot take into

account anything but the most generic considerations about their hypothetical end user population
where appropriate. Additionally, approaches to the design and implementation of SBAs are often
business-driven and seldom leave space to the integration of knowledge about the end users in the
engineering process [5, 6]. As a result, SBAs cannot yet deliver their functionalities in a truly
user-centric way, which we argue is obstructive to a good user experience, to SBAs’ effectiveness
in performing their functions, and ultimately to their adoption by the wider audience.

Integrating knowledge about end users in the engineering of SBAs will help configuring systems
that better fit and accommodate their user needs, hence improving the efficiency and quality of
the interaction and affording such SBAs a competitive advantage compared to other services
offering similar core functionalities, but a lesser user experience.
This paper proposes User Models - knowledge structures encapsulating information about users –
as a means to integrate end user knowledge in the SBA engineering process, more specifically at
the stage of service discovery. The remainder of the paper is as follows: section 2 describes
existing HCI approaches to user modelling and reports on our choice of one such approach for
SBA engineering. Section 3 reports on the codification of a user model into a form amenable to
automated use for service discovery. Finally, section 4 concludes this paper and outlines planned
future work.

2. User Models for SBA engineering
User models can be defined as “models that systems have of users that reside inside a
computational environment” [7]; they are a system’s representation of a user’s properties such as
personal characteristics and preferences, and have also been referred to as a “knowledge structure
that represents the profile of a single (registered) user” [8]. They are classically used to impart
end user information to either human designers or to computational tools depending on their
structure and on the phase of software engineering they are used at. User models are most
commonly used during the implementation of interactive system to focus some of the engineering
considerations on the end users, and after the implementation to inform software alterations for a
better fit with the users (especially in the case of adaptive and adaptable systems).

Current approaches to SBA engineering place an emphasis on business process models and
notations to integrate information about the process-oriented context relevant to the SBA; little
information about the human actors involved in the process is weaved into the engineering
practices. Initiatives such as BPEL4People [9] attempt to address this gap by incorporating
human considerations into the specification of business processes; however they stop at defining
human tasks and describing them as activities, and do not impart information about their
characteristics. User models can contribute to integrating more information about human actors of
business processes that are end users of the SBAs.

Numerous approaches to modeling users exist in the field of Human Computer Interaction
(HCI), and depending on their intended use, user models can widely differ in their representation
and focus. In order to identify those that were amenable for use in an automated environment for
the engineering of SBAs, we investigated the user characteristics found to be informative of
system design in the HCI literature (e.g. [10, 11, 12, 7]), and retained characteristics which we
found fell in 5 broad areas of affinity:

1 Personal – basic demographic and identification data about an individual user (e.g. name,
d.o.b., address)

2 Skills – information about academic and professional skills (e.g. qualifications obtained,
employment sector and job role, languages spoken)

3 eActivity – information about users’ previous service use if any (e.g. services used,
frequency, trusted providers) and online activities (e.g. social network accounts, browsing topics).

4 Preferences – information about the user’s preferences regarding security and privacy
settings, localisation options, and interaction modes with software systems

5 Accessibility – information about the user’s abilities, including eventual mental and
physical impairments (age-related or otherwise e.g. sight impairment, dyslexia).

These were examined against existing approaches to modelling users identified from the

literature:
1 User stereotypes, descriptive enumerations of a set of traits that often occur together [13].
2 User profiles, which usually comprise a brief, mostly demographic description of users.

[14]
3 User roles, focused collections of users’ characteristic needs, interests, expectations, and

behaviours in relation to a particular system [15].
4 Cognitive user models, specifications of the cognitive processes occurring during the

execution of computer-based tasks that help designers understand how the human mind works
[16].

5 Personas, rich descriptions of fictitious individuals, their goals and behaviour that are
based on patterns of use of real users and written in natural language [17].

We identified user profiles as able to encapsulate the needed information while still being
amenable to use in automated environments, this without drastic changes in their structure (as
would be the case with personas). Unlike user roles and cognitive user models, they also avoided
a too narrow focus on specific aspects of the user. Finally, they permitted the expression of richer

haracteristics than stereotypes. nuances and evolutions in the users’ c

3. User model codification
In order to model the relevant categories of information identified (Section 2), we developed a
user model as a simple, faceted representation of aspects of the user as illustrated below.

Figure 1: faceted user profile

The broad categories identified (Personal, Skills etc) were expanded with attributes detailing user
knowledge for each fragment as shown in Figure 9. For instance, the “skills” category was
expanded to encompass information about a user’s academic or professional education and
qualifications, his employment history, and his language skills; the “other” attribute provided an
amount of flexibility to allow the specification of relevant information not already covered.

As the profile information attributes were established, sets of plain-text heuristics were developed
that reflected likely impact areas of user model information on service selection rules (Figure 2).
For instance, the “skills” facet provided information about the end-user employment including
job title and organisation, which were amenable to influencing the choice of registries to search
for relevant services for the user (e.g. use of specialised registries as appropriate depending on the
job title), or additional requirements for the services depending on available information on the
user’s organisation (industry, preferred providers, organisational values and culture).

Figure 2: user model facets' areas of relevance for service selection rule

For each attribute and user facet, these simple heuristic rules – e.g.: “If a user is above 65, then
select services with a help function, that are compliant with accessibility standards, and that have
a high learnability. Else if a user is below 18, then select services with appropriate age rating”
expressed the alterations or qualities an SBA would ideally make or have (respectively) to best
match a user’s requirements. For instance, the age-related heuristics specified that users whose
birth date indicated were over 65 years old should be suggested services that: offered a help
functionality, were compliant with relevant accessibility standards, and had a high learnability as
these were valued and helpful qualities and requirements of such users [18]. Users under 18 on
the other hand, ought to be restricted in the services available to them (no access to gambling
services for underage individuals for instance).

The profile information had to be “machine readable” to allow for use in appropriate phases of
SBA engineering. Similarly, the simple, plain-language heuristic rules developed had to be
encoded in service tools to allow for their automated use during the engineering process. The FP6
SeCSE Integrated Project produced a range of open-source service engineering tool suites, and
we opted to use its SeCSE service discovery environment for SBAs due to the availability and
accessibility of the platform, which we built upon and extended to allow for the codification and
investigation of user models in service discovery.

3.1 User model information for service discovery
This section explores applications of user models information to design-time service discovery
using the UCaRE tool, which it briefly introduces.

Service Discovery is the process of finding services that match the requirements of the service
requestor. Service discovery in the SeCSE development environment can be performed using
UCaRE, a module that generates service request queries from use cases and requirements
specifications. The tool is detailed in [19]; as an overview, EDDiE, the algorithm for service
discovery used to formulate these query requests, performs the following 4 key steps: 1) Natural
language processing; 2) Word sense disambiguation - the algorithm attempts to define the correct
meaning for each term; 3) query expansions - each term is expanded with other terms having
similar meaning; and 4) query matching for the discovery of services matching the expressed
constraints. The EDDiE algorithm was extended to permit the inclusion of user model
information in the SeCSE discovery process.

First, a set of user model facets codifying our user models using XML-based templates (e.g. see
the “personal” facet’s implementation in Figure 3 below) was developed and added to the UCaRE
repository using an implementation of an eXist XML database. During query matching (step 4),
this permitted the EDDiE discovery algorithm access to user model information in order to
perform the matching of terms in the service request to terms in the user model facets.

Figure 3: codified user model facet

User model rules - new discovery rules expressing our heuristics were then developed and added
to the repository of SeCSE service queries (Figure 4 below).

Figure 4: User model rules implemented in UCaRE

The plain text heuristics were formalised into these user model rules by: specifying the relevant
user model facet and providing the path to its relevant node; linking to the relevant service
description facet [20] by providing its path node for the verification of the rule; specifying the
type of verification to be performed (e.g. existence of a criterion, ranges the criterion had to be
within); and suggesting additional keywords for query expansion, this for each of these rules (e.g.
of one rule Figure 5 a and b below).

Figure 5a: example of a user model rule in UCaRE

Figure 5b: example of a user model rule in UCaRE (continued)

The rules specified additional constraints on selection, the required terms and their locations in
both the stored user model facets and in the service description facets for matching. In Figure 5
for instance, if the user model specified the need for a helpline to be available for the service, the
existence of such function or similar ones (e.g. assistance, helpdesk) could be ascertained in the
Commerce facet of the services under the path BusinessEntity/Contacts/Phone to verify the
existence of such contact details. The rule could further be specified to be active, i.e. executed
during the service discovery process, and its weight set between the range 0 – 1 to specify it
relative importance. Overall, the codified user model heuristics and the availability of the user
model information provide additional criteria and filters for the selection of services based on
user’s characteristics, this to permit the discovery of candidate services in the registry whose
specifications match the user model requirements.

The empirical evaluation of this approach to using user model information is currently ongoing;
a preliminary appraisal however suggests it will be proven to have a beneficial impact on service
discovery, this by permitting a better match between the user requirements and the discovered
services’ functions.

4. Summary and Future Work
This paper reported on our suggested use of user models for the discovery of services matching
better their end users requirements. Our proposed approach is being tested using the SeCSE
service discovery module UCaRE, which has been extended with user model facets encapsulating
user model information, and new user information-based rules for service discovery.

Along with empirical evaluation, further lines of research are either ongoing or being considered.
Current HCI-aware approaches for SBAs adaptation monitor users’ interactions with the
application: the actions taken by the users (“user event streams”) are the inputs for an analysis to
infer the users’ intentions, then correspondingly adapt the SBA as appropriate. We suggest that
user model information is another valuable source of requirements for SBAs’ implicit adaptation,
and could trigger adaptation or personalisation of the SBA upon changes in the user model. In
this case of figure, part of the monitoring focus would be on a user’s user model rather than on
services only. We are currently investigating mechanisms for 1) monitoring and detecting
changes in user models 2) mapping them to relevant user requirements heuristics and 3) linking
them to relevant services or service operations within an SBA for assessment of whether the
user’s needs and requirements are still being supported after the change, triggering the adaptation
if that is not the case. Another area being explored is the application of user model discovery
rules for runtime service discovery, rather than only at design time as is the case with our
suggested approach.

5. Acknowledgements
The research leading to these results has received funding from the European Community's
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

6. References
[1] Lizcano, D., Jimenez, M., et. al.: “Leveraging the Upcoming Internet of Services through an
Open User-Service Front-End Framework”, ServiceWave, Madrid, Spain, December 2008

[2] B. Mehta, “Learning from What Others Know: Privacy Preserving Cross System
Personalization,” Proceedings of the 11th international conference on User Modeling, Corfu,
Greece: Springer-Verlag, 2007, pp. 57-66.

[3] Ford, G., Gelderblom, H.: “The Effects of Culture on Performance Achieved through the use
of Human Computer Interaction”. Proceedings of SAICSIT, 2003, pp. 218-230.

[4] C. MacKenzie et al.: Reference Model for Service Oriented Architecture 1.0 – OASIS
Standard. [Online], 2006 Available at: http://docs.oasis-open.org/soa-rm/v1.0/ [Accessed
December 2009]

[5] BEA: SOA Practitioners’ Guide Part 3, Introduction to Services Lifecycle. [Online].
Available at: http://dev2dev.bea.com/2006/09/SOAPGPart3.pdf [Accessed July 2009]

[6] SOMA: Service Oriented Modelling and Architecture. [Online]. Available at:
http://www.ibm.com/developerworks/library/ws-soa-design1/ [Accessed July 2009]

[7] Fischer, G.: User Modeling in Human-Computer Interaction, Journal of User Modeling and
User-Adapted Interaction (UMUAI) 2001, Vol. 11, No.1/2, pp.65-86.

http://docs.oasis-open.org/soa-rm/v1.0/

[8] C. Stary, "User Diversity and Design Representation: Towards Increased Effectiveness in
Design for All", Universal Access in the Information Society, vol. 1, no. 1, pp. 16-30, June 2001.

[9] Adobe Developer Connection, “BPEL4People overview”. [Online]. Available at:
http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html [Accessed
December 2009]

[10] Bellekens, P.A.E., Houben, G.J.P.M., Aroyo, L.M., Schaap, K., Kaptein, A. (2009). “User
model elicitation and enrichment for context-sensitive personalization in a multiplatform TV
environment”. Proceedings of the 7th European Interactive Television Conference (EuroITV'09,
Leuven, Belgium, June 3-5, 2009). (pp. 119-128). New York NY: ACM.

[11] Abbattista, F., N. Fanizzi, S. Ferilli, P. Lops and Semeraro, G.: “User Profiling in an
Application of Electronic Commerce”. In F. Esposito (Ed.), AI*IA 2001: Advances in Artificial
Intelligence, Lecture Notes in Artificial Intelligence 2175, 87-98, Springer: Berlin, 2001.

[12] Carmagnola, F., Cena, F., Cortassa, O., Gena, C., and Torre, I.: “Towards a tag-based user
model: How can user model benefit from tags”, 11th International Conference on User Modeling,
4511/2007, (2007).

[13] Rich, E. (1999). Users are individuals:- individualizing user models. /International Journal of
Human-Computer Studies, 51, 323-338.

[14] Teixeira, C., Sousa Pinto, J., & Martins, J. A. “User profiles in organizational
environments” (2008). In Campus-Wide Information Systems, 25, pp. 128 – 144

[15] Constantine, L. (2005). “Users, roles, and personas” [Online]. Available at:
http://www.foruse.com/articles/rolespersonas.pdf [Accessed April 2009]

[16] Cairns, P. and Cox, A.L. “Research Methods for Human-Computer Interaction”. (2008).
Cambridge: Cambridge University Press

[17] Cooper, A., Reimann, R. & Cronin, D.: “About Face 3.0: The Essentials of Interaction
Design”. (2007). Indianapolis: Wiley

[18] Zaphiris,P., Kurniawan, S., and Ghiawadwala, M.: “A Systematic Approach to the
Development of Research-Based Web Design Guidelines for Older People”. (2007). In Universal
Access in the Information Society, 6(1), pp. 59–75

[19] Zachos, K., Maiden, N.A.M., Jones, S., and Zhu, X., “Discovering Web Services To Specify
More Complete System Re-quirements” Proc. 19th Conference on Advanced Information System
Engineering (CAiSE'07), 2007. pp.142-157.

[20] Walkerdine, J., Hutchinson, J., Sawyer, P., Dobson, G., and Onditi, V.: "A Faceted
Approach to Service Specification", Proc. 2nd Int’l Conf. on Internet and Web Applications and
Services (ICIW 07), Mauritius, 2007.

http://www.foruse.com/articles/rolespersonas.pdf

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

3 Zachos, K.; Kounkou, A.; Maiden, N.: Codified Knowledge
about User Task Modelling Applied to Service Discovery. –
not yet submitted.

Codified Knowledge about User Task Modelling Applied to Service Discovery

KonstantinosZachos, Angela Kounkou, Neil Maiden
Centre for HCI Design,

City University, UK
{kzachos,sbbc775,N.A.M.Maiden}soi.city.ac.uk

Abstract—Approaches to the engineering of Service-based Ap-
plications (SBAs) comprise phases for the analysis of applica-
tions functionalities and business processes in order to inform
their implementation as services. The human element however is
not specifically taken into account, and HCI task modeling tech-
niques may contribute to the output of these phases by focusing
on the tasks and the human users rather than on the system in
place and the processes to be. This paperreports the application
of user task models as part of a new requirements-based service
discovery approach to integrate human actors in the discovery
and selection of SBAs. It describes how user task models will
enhance the service discovery process based on a task knowl-
edge base that is currently being populated, then demonstrates
these enhancements with an example from web services devel-
opment in the E-Government domain.

1. Introduction
Service-Oriented Computing (SOC) has been tipped as a
major transformation to software development [1] but it
has yet to fulfil its potential.Some of the obstacles it will
have to overcome in order to reach widespread adoption
point at human and organizational issues rather than tech-
nological ones [2].As well as being accessed and used by
other services or applications, services and Service-based
Applications (SBAs) can require interaction with human
users taking part in the business process enabled by the
service, or imparting human intelligence to the relevant
services (e.g. the Amazon Mechanical Turk web service
[3]).Until now Human-Computer Interaction (HCI)
knowledge was treated in isolation from service engineer-
ing techniques for developing SBAs. Humans are present
in SOC as end users and consumers, but also as service
providers [cf. Human-provided services] and designers.
However, human specificities, diversity and tasks charac-
teristics – properties that could be powerful drivers for
SBAs configuration and personalization – are currently
not taken into account in SBA design and delivery.Thus,
new ways of thinking are needed toexplicitly relate users
with service discovery and service composition tech-
niques.

HCI task modeling techniques can contribute to the
output of these changes by focusing on the tasks and the
human users rather than on the system in place and the
processes to be. They canalso support the definition of
appropriate level of granularity, and functional service
cohesion for SBAs by helping to clearly scope and define

tasks for their later implementation as service opera-
tions.Tasks models enable designers to represent and ma-
nipulate a formal abstraction of the activities that ought to
be performed in order to reach user goals. Each task can
be decomposed into sub-tasks.Typical characteristics in-
clude their “hierarchical structure, the task decomposition
and sometimes the temporal relationships between ele-
ments” [4]. In SBAsuser tasks should be supported by
services as demonstratedin the following simple user task
example taken from an E-Government case studythat per-
tains to citizens accessing government services online [5].
An end user requeststo use a governmental journey plan-
ning service.The underlying task model describes the con-
text in which candidate solution services will be needed to
fulfil the user goal, i.e.to receive personalised suggestions
of available routes to a particular destination. The task
model decomposes the journey planning user goal into
sub-tasks and identifies the sub-tasks that solution ser-
vices might deliver, for example sending journey planning
request, receiving route suggestions, and following the
directions. For this to happen these services need to be
discovered. Service discovery is a critical challenge in
SBAs. During the use of SBAs new services need to be
discovered if these services become available or currently
invoked services need to be replaced by other services
with improved qualities such as performance and reliabil-
ity. Processes and techniques for service discovery have
been researched extensively in previous projects [e.g. 6,
7]. However, none of these processes and techniques ex-
plicitly use knowledge about user tasks to refine the dis-
covery and selection of services appropriate to the user
task.
This paper describes how user task models can further
contribute to the integration of human actors in the dis-
covery and selection of SBAs by providing richer, more
contextual descriptions and models than those currently
available. The remainder of this paper is in 4sections.
Section 2 describesexisting user task models and their use
in SBA engineering. Section 3 describes the task-based
service discovery solution and demonstrates the it with a
simple example. The paper ends with a review of progress
so far and future work.

2. User Task Models for SBA Engineering
A task model describes structured sets of activities [8] -

often in interaction with a system influenced by its con-
textual environment - that the user has to perform to attain
goals [9]. In cognitive psychology, task models are a
means for formally describing human problem solving
behavior [10].

Task models have been used in various approaches to
support different phases of the software development life
cycle, including requirement analysis and usability
evaluation [11]. Task models help understanding how
people currently work [12] so they can function as a re-
quirements elicitation device and indicate how activities
should be performed in an application being designed.
They allow for the software design to be described more
formally, analysed in terms of usability, and be better
communicated to people other than the analysts [13, 12].

Current service-oriented approaches rely primarily on
business process models and notations such as BPEL to
indicate the process-oriented context in which a service
needs to be invoked; however process models normally
lack other important information about the actor who is
performing the process and his actions.This fact has been
recognised by initiatives such as BPEL4People [14],
which attempts to incorporate human considerations into
the specification of Business Processes. It does so by de-
fining human tasks and describing them as activities, but
stops at rendering human activities as simple processes
without addressing their context. Task models have se-
mantically richer models and notations and may provide
more context-specific information to inform SBAs’ mod-
eling: their specific semantics permit different possible
uses of task models in service-centric systems; for exam-
ple tasks and operations in HTA [15] can map to specific
service capabilities, thus enabling finer-grain service dis-
covery and selection. Likewise, the distinction between
abstract, interaction, application and user tasks in CTT
[16] can be mapped to different service types, thus in-
forming more effective service composition, especially if
finer-grain services are available.

One goal of the presented research is to create task on-
tologies for modeling real world user activities. To avoid
the ontology-modeling bottleneck that often inhibits on-
tology-based solutions we are seeking to extract task
knowledge that can be reused. Our approach is to identify
task knowledge that is domain-specific, then extract the
domain-independent task knowledge that can be reused,
similar to the KADS approach to knowledge modeling.
For instance, domain-independent task knowledge that
describes how to “go to somewhere”, describes a general
process model to perform the activity of moving from a
starting point to a destination, is common knowledge
among specific task knowledge regarding going to spe-
cific places from specific places. Such domain-
independent task knowledge can be used to describe more
specific task knowledge in a new domain that decreases
the cost for expanding the coverage of task knowl-
edge.This paper describes how user task models can fur-

ther contribute to the integration of human actors in the
discovery and selection of SBAs by providing richer,
more contextual descriptions and models than those cur-
rently available.

3. Codifying User Task Models during Query
Reformulation
In this section we describe the association between

user task models, software services and service-based
applications in more detail, and demonstrate the use of the
CTT task modelling formalism to represent knowledge
about user tasks and introduce this knowledge to inform
service discovery and selection. We opted to model user
tasks using CTT due to the engineered approach to task
models, thus overcoming the limitations of other ap-
proaches, which either had no or very limieted tool sup-
port or used unsuitable notations with limited operators.
We selected the SeCSE service discovery environment for
service-based systems upon which to design and imple-
ment codified HCI knowledge. The FP6 SeCSE Inte-
grated Project [6] is one of the cornerstone research de-
velopment projects in service-centric systems funded by
the European Commission. It has produced substantial
research, development and evaluation results, as well as
tool suites available to be extended in S-CUBE. We ex-
tended SeCSE service queries specified using XQuery
and selection filters with types of knowledge about user
task knowledge.

3.1 Service Discovery in SeCSE
Before outlining the approach, we briefly describe the
current SeCSE algorithm for service discovery, called
EDDiE, which is used to develop the task-oriented service
discovery extension. EDDiE formulates service requests
from use case and requirements specifications expressed
in structured natural language [17]. This section summa-
rizes the algorithm’s description. A full description is
provided in [18]. The algorithm has 4 key components;the
Natural Language Processing, Word Sense Disambigua-
tion, Query Expansion and the Matching Engine. In the
first the service request is divided into sentences, then
tokenized and part-of-speech tagged and modified to in-
clude each term’s morphological root (e.g. driving to
drive, and drivers to driver). Secondly, the algorithm ap-
plies procedures to disambiguate each term by defining its
correct sense and tagging it with that sense (e.g. defining
a driver to be a vehicle rather than a type of golf club).
Thirdly, the algorithm expands each term with other terms
that have similar meaning according to the tagged sense,
to increase the likelihood of a match with a service de-
scription (e.g. the term driver is synonymous with the
term motorist which is also then included in the query). In
the fourth component the algorithm matches all expanded
and sense-tagged query terms to a similar set of terms that
describe each candidate service, expressed using the ser-

vice description facet, in the SeCSE service registry.
Query matching is in 2 steps: (i) XQuery text-searching
functions to discover an initial set of services descriptions
that satisfy global search constraints; (ii) traditional vec-
tor-space model information retrieval, enhanced with

WordNet, to further refine and assess the quality of the
candidate service set. This two-step approach overcomes
XQuery’s limited text-based search capabilities.

Figure 1. Request Route example expressed as a CTT Task Model

3.2 Task-based Extension to Service Discovery
In the SeCSE’s current service discovery environment,

query expansion alone cannot resolve the semantic mis-
match problem that arises because the problem request
and solution service are inevitably expressed using differ-
ent ontologies. To overcome this ontological mismatch,
we are extending the algorithm with user task model li-
braries that encapsulate knowledge about classes of
proven service solution to classes of user tasks. As such,
task-oriented service discovery supports the user in find-
ing appropriate services by querying a rich task knowl-
edge base (Task KB) that represents common sense
knowledge about typical complex tasks. Throughout the
paper we demonstrate key elements of the approach using
the request route example scenario taken from the E-
Government case study [5].The actors involved are an end
user requesting and using a governmental journey plan-
ning service, and a public body providing the service. The
user sends a journey planning request with details about
the start, end point and travel preferences for his journey.
She receives personalised suggestions of routes to follow
thatshe can query for additional details; relevant travel
alerts; and dynamic re-mapping of his route as needed.
3.2.1 Structure of a User Task Model

A user task model defines a reusable and generic task
structure that encapsulates a well-defined functionality for
a recurrent design problem in task modeling [11]. In S-
Cube we employ this definition to describe: (i) classes of
tasks that re-occur during the design of SBAs, and: (ii)
classes of candidate service solutions proven to solve
these tasks.Figure 2describes the structure of each user
task model in the Task KB that we introduced to support
task-based extensions to service discovery.

Each user task model specifies classes of service that
transform the service request and are matches to discover
instances of new software services in service registries.
User task models(1) contain descriptions for abstract as
well as concrete tasks and their interrelations as semantic
descriptions that have the potential to be compliant with

requirements that are instantiated as service queries dur-
ing early service discovery; (2) define task-specific cate-
gories that are compliant with classes of software service.

Figure 2. Outline task model schema expressed as a

UML class diagram
More specifically, each user task model is an aggrega-

tion of 2 parts – the user goal part and the service class
part. The user goalpart includes a structured natural lan-
guage description of a generic task in context and the task
structure expressed in CTT [11]. For each single task, it is
possible to directly specify a number of attributes and
related information as shown in Figure 2. Apart from the
task name, we distinguish between four different task
types: abstract tasks, which are further decomposed, user
tasks – tasks to be carried out by the user –, interaction
tasks – tasks to be carried out by the interaction of a user
with a software system – and application tasks represent-
ing those tasks, which are fully supported by software
system [16]. The sequence of different task is describedby
operators1.Finally, each task may contain one or more
resources that are needed for fulfilling the single task.
Figure 1 shows an excerpt of the CTT task model of the

1 For a full list of operators refer to [11]

request route example scenario.
The service class part of the user task model describes

the behaviour of candidate classes of software servicein-
structured natural language descriptions that might be
invoked to deliver the behaviour specified in the user goal
part. That means that the service class part contains one or
more typical classes of services that are proven solutions
to the generic task and previously associated with the
task. During request reformulation, EDDiE can reformu-
late one or many service requests for each service class
specified for a matched user task model and selected by
the analyst. Table ?describes one such class – MobileNet-
workProvider–that a SBA might invoke service instances
of to deliver the behaviour specified inthe request route
user task model.

Service MobileNetworkProvider
Service
Description

The service is able to identify/detect/discover a
wireless/mobile network provider which can
establish a mobile point-to-point connection/link.

Service
Goal

Given the requested country and preferences, the
service returns the provider which operates a
mobile network that satisfies the cost, availability
and channel type requirements for the connec-
tion.

Service
Rationale

Due to the often complex pricing of network
providers it is challenging to always select the
suitable provider, especially in terms of costs.
Furthermore, cross-border travelling requires
knowledge of cooperating roaming partners and
their technical compatibility.

Service
Consumers

- Server
- Administrator

Service
Operations

- Identify all available mobile network providers.
- Compare available network providers in terms
of price, coverage, availability and compatibility.
- Suggest alternative mobile network providers.

Table 1. Description of the MobileNetworkProvider
service class

During task matching EDDiE matches terms in the
service request’s use case attributes to terms in the user
goal part’s description attribute. The service class part
specifies 6 attributes that correspond to 6 attributes of a
service’s description facet in SeCSE registries [19]. Dur-
ing request reformulation EDDiE replaces or extends
terms in a service request with corresponding terms in a
service class. For example, service class terms for the
service goal replace or extend use case name terms in the
service request, and service consumer terms replace or
extend actor terms in the service request.The next section
describes the conceptual model of the task-based service
discovery approach.
3.2.2 Conceptual Model of the Task Model

Extension
As Figure 3shows we extend the current SeCSE’s ser-

vice discovery algorithm by adding a Task KB and two
new components – the task navigator and query reformu-

lator – to EDDiE.
The Task KB is stored using eXist, an Open Source

native XML database featuring index-based XQuery
processing, automatic indexing, and tight integration with
XML development tools. Each user task model has a
unique identifier and name that are used to reference the
user task model parts. The database was implemented to
‘mimic’ SeCSE service registries also implemented in
eXist, thus enabling the catalogue to be prototyped with-
out changing the implementation of EDDiE’s service dis-
covery algorithm.

Figure 3. SeCSE’sservice discovery algorithm en-

hanced with task knowledge

Inputs are one more expanded and disambiguated

terms in a service request, and output is one or more new
service queries that have been reformulated using re-
trieved user task models. Task-based service discovery is
in 3 stages:
1. User Task model match: EDDiE uses its existing

algorithm to match the expanded and disambiguated
service request to the description part of each user
task model. The result is an ordered set of retrieved
user task models that match the service request;

2. Reformulate service request: EDDiE uses the de-
scribed classes of service in the solution part of each
retrieved user task model to generate one or more
new service requests that are expressed in terms of
the service features rather than consumer require-
ments. The analyst can then modify these reformu-
lated requests as needed;

3. Service match: the service discovery algorithm uses
each revised service requests to discover candidate
service specifications in service registries. The result
is an ordered set of service specifications that match
to the revised service request.

In the following sections we demonstrate this task-based
extension to service discovery to reformulate service re-
quests for the enhanced route planner application.

3.2.3 The Request Reformulation Algorithm
During the reformulation of service requests, if the terms
in each query generated from the service request match
terms in the user goal part of a user task model, the ser-
vice request is extended or replaced with new text de-
scribing candidate service classes from the service class
part. As well as overcoming the ontological mismatch
problem, reformulation re-scopes each request to the
granularity of each available class of service. Service con-
sumers often express coarse-grain requirements that can
only be solved by composing multiple service instances of
multiple service classes that can only be discovered by
more than one service request. Therefore each user task
model specifies more than one possible class of solution
service for each class of requirements problem.
The basic request reformulation algorithm is specified in
Figure 4. The algorithm automatically replaces or extends
terms in the original service request depending on a deci-
sion made by the analyst and recorded through the inter-
active dialogue. Each attribute of the service request is
extended or replaced in turn, depending on the decision.
Once the analyst selects the reformulation strategy,
EDDiE implements the algorithm for the entire service
request. The current version implements a coarse-grain
version of the algorithm that we plan to refine through
future evaluation studies.

If (OptionOfReplacingServiceRequest==true) then
Foreach (Element in Original Service Request)
 If (CorrespondedElementOfServiceClass != null) then
CorrespondedElementOfRevisedServiceRequest
 =CorrespondedElementOfServiceClass
else
CorrespondedElementOfRevisedServiceReques = none
 Else if(OptionOfExtendingServiceRequest==true) then
Foreach (Element in Original Service Request)
 If (CorrespondedElementOfServiceClass != null) then
CorrespondedElementOfRevisedServiceRequest
=ElementOfOriginalServiceRequest+CorrespondedElementOfService
Class
else

CorrespondedElementOfRevisedServiceRequest
= ElementOfOriginalServiceRequest
Figure 4. The request reformulation algorithm

The algorithm extends and replaces attributes of a service
request with attributes in the service class according to
attribute type mappings. These mappings provide a one-
to-one correspondence between each attribute of a use
case specification and a service description [19]. Indeed,
during service publication in SeCSE, we propose that
service providers document new services that are pub-
lished on service registries using use cases. For example,
an actor in a use case specification corresponds to an actor
in a service request that corresponds to a service con-
sumer in a service class. Likewise a use case précis in a
specification corresponds to a use case précis in a service
request that corresponds to a short service description in a

to the analyst who can choose the classes to use to refor-
mulate the request - one new service request is generated
for each selected class.
3.2.4 Dialogue for S

service class.EDDiE presents each candidate service class

electing Task Models and

vice requestexpressed
Reformulating Requests

Consider the following example ser
in XML (Figure 5)generated using UCaRE [20] from a
use case that describes an enhanced route planning appli-
cation.

Figure 5. Part of the service request for use case en-

EDDiE can match a service request to one or more user

st

hanced route planning

task modelsin a Task KB. Interaction between the analyst
and the environment is neededto select which task is a
correct abstraction of the specified problem. To imple-
ment this interaction we extended functionality in the
original Service Explorer component of UCaRE [20] to
support user task model comprehension and selection.
EDDiE presents matched user task models to the analy
in an ordered list through the Task Navigator. The list is
ordered according the semantic similarity score for the
match between the service request terms and user goal
part. The analyst can select to view details of each listed
task in order to understand it, then select or reject it as a
correcttask behaviourof part of the fired service request.
Figure 6shows the presentation of the Request Route user
task model including the CTT task model and descriptions
of classes of service that can be invoked to undertake the
described task behaviour. If more than one service class is
specified for the task – as in this case – the analyst can
interact with the environment to select the most appropri-
ate service class.

Figure 6. Request Route user task model with user goal facet and service class facet

Interaction is also needed to direct the automated service
request reformulation algorithm. As mentioned earlier, the
Task Navigator offers the analyst two choices – replace
the current service request with terms from the selected
service class, or extend the current request by adding
terms from the selected service class to terms in the origi-
nal request. This is handled through simple radio button
controls that the analyst selects between – also shown in
Figure 6. These two simple reformulation strategies were
implemented to enable a first-cut validation of task-based
service discovery. Clearly more sophisticated and poten-
tially more effectivestrategies are possible. These are dis-
cussed at the end of the paper.
According to the selected reformulation strategy the re-
vised service request warrants comparison with the origi-
nal request shownin Figure 5. For example the original
use case précis attribute includes nouns such as chauffeur,
passengerand meetingas well as compound nouns such as
destinationco-ordinatesand paymentdetails. It also in-
cludes verbs such as deliverand display.The reformulated
service request includes nouns such as travel and naviga-
tion, and verbs such as guide. These terms can contribute
to the similarityvalue of the terms that describe relevant-
software services that populate existing service registries,
and therefore more likely to lead to successful service
discovery from queries fired by EDDiE at these registries.

4. Discussion and Future Work
This paper described the association between user task
models, software services and SBAs, and demonstrated
the use of the CTT task modelling formalism to represent
knowledge about user tasks and introduce this knowledge
to inform service discovery.
We are currently building a prototype Task KB. In the
first stage we are eliciting domain-specific knowledge
that describes service-centric solutions for known tasks in
thenavigation domain based on the S-CubeE-Government
case study scenarios. We will then extract the domain-
specific task knowledge to generate domain-independent
task knowledge that can be reused, similar to the KADS
approach to knowledge modeling. Such domain-
independent task knowledge can be used to describe more
specific task knowledge in a new domain that decreases
the cost for expanding the coverage of task knowledge.
Two important requirements on each task model are that:
(i) each task is sufficiently general to be applied across
domains and across designs within a domain, and; (ii) the
descriptive part of each task model is rich enough to
match to service requests using the SeCSE service dis-
covery algorithm.

The validation of the presented task-based service dis-
covery platform through future empirical studies is still in
its infancy anda research open question. In this regard we

plan to collaborate with all S-Cube partnersto collabora-
tively buildthe above-mentioned Task KB.

In the introduction we mentioned that not only new
ways of thinking are needed toexplicitly relate users with
service discovery but also with service composition tech-
niques.In S-CUBE we conjecture that codified HCI
knowledge can be used to inform service composition
during the architecture design for a SBA. Most existing
business process and work flow modelling techniques
model coarse-grain processes with little support for finer-
grain user tasks of different types and interactions with
the service-based applications. User task models from
HCI naturally plug this gap, and introduce new concepts
such as task goals from the user perspective not modelled
using approaches such as BPEL. We plan to explore the
proposal through extension of another SeCSE develop-
ment tool – the Composition Designer [21]. In future
work we will extend the Composition Designer to allow a
service integrator to generate a service composition with
user task models in order to inform more effective service
composition.

5. Acknowledgements
The research leading to these results hasreceived fund-

ing from the European Community's Seventh Framework
Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

6. References
1. M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,

Service-Oriented Computing Research Roadmap.
2. SOA failures traced to people, process issues. [Online].

Available at:
http://www.networkworld.com/news/2008/043008-interop-
soa.html [Accessed 18th July 2008]

3. Amazon mechanical Turk homepage,
http://www.mturk.com/mturk/welcome

4. P. Palanque and S. Basnyat, “Task Patterns for Taking into
Account in an Efficient and Systematic Way Both Standard
and Abnormal User Behavior” in IFIP 13.5 Working Con-
ference on Human Error, Safety and Systems Development,
pp. 109-130, 2004

5. S-CubeCD-IA-2.2.2
6. EU 511680 Integrated Project (SeCSE), http://secse.eng.it.
7. SODIUM, Service-Oriented Development In a Unified

fraMework, IST-FP6-004559, http://www.atc.gr/sodium.
8. J. Preece, Y. Rogers, D. Benyon, S. Holland and T. Carey,

Human-Computer Interaction,.Addison-Wesley, 1994
9. F. Paterno, C. Santoro, “Preventing user errors by system-

atic analysis of deviations from the system task model” in
International Journal of Human-Computer Studies, Vol. 56,
Issue 2, pp. 225-245, 2002

10. G.D. Abowd, “Using formal methods for the specification
of user interfaces” in Proceedings of the Second Irvine
Software Symposium, pp. 109-130, 1992

11. G. Mori, F. Paterno and C. Santoro, ‘CTTE: support for
developing and analyzing task models for interactive sys-
tem design’. IEEE Transactions on software engineering

(2002) vol. 28 (8) pp. 797-813
12. D. Sinnig, M. Wurdel, P. Forbrig, P. Chalin and F.

Khendek, “Practical Extensions for Task Models” in lecture
Notes in Computer Science, Vol. 4849/2007, pp. 42-55,
2007

13. D. Diaper and N. Stanton, The Handbook of Task Analysis
for Human-computer Interaction, Lawrence Erlbaum Asso-
ciates, 2003

14. Adobe Developer Connection,
http://www.adobe.com/devnet/livecycle/articles/bpel4peopl
e_overview.html

15. B. Kirwan and L.K. Ainsworth (eds), A Guide to Task
Analysis, Taylor and Francis, 1992

16. F. Paterno, C. Mancini, S. Meniconi, “ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models” in
Proceedings of the IFIP TC13 International Conference on
Human-Computer Interaction, pp. 362-369, 1997

17. Jones S.V., Maiden N.A.M., Zachos K. & Zhu X., 2005,
‘How Service-Centric Systems Change the Requirements
Process’, Proceedings REFSQ’2005 Workshop, in conjunc-
tion with CaiSE’2005, 13-14 2005, Porto, Portugal.

18. K. Zachos, N.A.M Maiden, S.Jones and X.Zhu, “Dis-
covering Web Services To Specify More Complete System
Requirements'” Proc. 19th Conference on Advanced Infor-
mation System Engineering (CAiSE'07), 2007. pp.142-157.

19. J. Walkerdine, J., Hutchinson, P. Sawyer, G. Dobson, V.
Onditi, "A Faceted Approach to Service Specification",
Proc. 2nd Int’l Conf. on Internet and Web Applications and
Services (ICIW 07), Mauritius, 2007.

20. Zachos K., Zhu X., Maiden N.A.M & Jones S., 2006
(b), “Seamlessly Integrating Service Discovery into UML
Requirements Processes”, The 2006 International Work-
shop on Service Oriented Software Engineering (IW-SOSE
'06), ICSE, Shanghai, China, 2006.

21. M. Colombo, E. Di Nitto, M. Mauri, “SCENE: a service
composition execution environment supporting dynamic
changes disciplined through rules”, The 4th International
Conference on Service Oriented Computing (ICSOC 2006)
Chicago, USA, December 4-7, 2006

http://secse.eng.it/
http://www.atc.gr/sodium

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

4 Dhungana, D.; Seyff, N.; Graf, F.: Using Codified Context
Knowledge to Facilitate End-user Requirements Elicitation. –
not yet submitted.

Using Codified Context Knowledge to
Facilitate End-user Requirements Elicitation

Deepak Dhungana1, Norbert Seyff2, Florian Graf2

1Lero- The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

deepak.dhungana@lero.ie

2Centre for HCI Design, City University London, London, UK
n.seyff@soi.city.ac.uk; florian.graf1@gmail.com

Abstract. End-users communicate their needs and wishes in form of natural
language. Such statements are often used to start activities such as requirements
elicitation and negotiation which result in the specification of agreed key
stakeholder requirements. Requirements analysts usually facilitate these cost
and time consuming tasks. Traditional requirements engineering does not focus
on identifying individual user needs. However, novel software engineering
paradigms such as service-oriented computing require approaches which allow
the cost-effective identification of individual end-user needs. Our research
investigates on how end-users can be empowered to document their individual
needs themselves, which allow the provision of tailored service-based
application. We propose a solution which facilitates end-users requirements
elicitation by providing contextual information codified in models of reuse-
based approaches such as software product line engineering. We present a
“smart” tool for end-users allowing them to specify their needs and to
customize a service-oriented software system based on given contextual
information.

Keywords: End-user requirements elicitation; software product lines;
automated customization of applications.

1 Introduction and Motivation

Software applications are increasingly being part of our everyday lives. Novel
software engineering paradigms such as service-oriented computing promote reusing
of available functionality and allow the cost-effective composition of tailored
software systems [1]. With such developments, it is inevitable to adapt traditional
Requirements Engineering (RE) approaches and to strengthen end-user involvement
in early software system design. We foresee that in the near future end-users will be
directly involved in customizing and tailoring applications to immediately get a
software system fulfilling their needs. Such a vision has to consider several
constraints and has significant implications for requirements engineering research and
practice.

For example, end-users are usually not familiar with requirements engineering or
software development and do not understand technical details of software
configuration. This means that technical details need to be abstracted away from end-
users and that systems’ adaptability has to be communicated in non-technical terms.
Furthermore, requirements analysts are not imminent in the daily lives of end-users
and therefore cannot support them in specifying formalized requirements descriptions
that can be automatically processed. Research is needed to explore end-user driven
requirements elicitation and software customization.

In this paper, we present a tool-supported approach combining end-user driven
requirements elicitation and end-user driven customization of service-based
applications. We propose to use (contextual) knowledge codified in software product
line variability models to inform end-user driven requirements elicitation. This
approach shows the potential to enable end-users to specify their needs using natural
language text while sophisticated product line modeling and configuration generation
tools are used to provide further input for requirements gathering. Particularly, end-
users are asked questions about missing details regarding their needs. The advantage
of this approach is the possibility to automatically evaluate given answers for further
processing and customization of service-based applications. Thereby it will be
possible to provide a service based system fulfilling individual end-users’ needs
within a short amount of time.

Several attempts have been made in the past to introduce feature modeling as a
means to involve end-users in service customization. For example, the authors in [10]
classify web services features from the users’ point of view and propose to use feature
diagrams for modeling flexibility of the Web Services. In [12], authors introduce
feature modeling and configuring techniques in domain engineering into service-
oriented computing, and correspondingly propose a business-level service model and
an end-user friendly service customization mechanism. The use of feature modeling is
a promising way of customizing applications, however not very convenient for the
end-users as they are strictly forced to think in terms of available features.
Furthermore, end-users are not used to selecting features from a complex feature tree;
it does not reflect the natural way of their thinking procedures. Hartman et al. [8] have
already introduced the concept of a “Context Variability model”, which contains the
primary drivers for variation, e.g. different geographic regions. However, the
motivation behind this research was not to support the end-users during requirements
elicitation. The context variability model constrains the feature model, which makes it
possible to model multiple product lines supporting several dimensions in the context
space.

The rest of this paper is structured as follows: In Section II, we describe our goal
and the research objectives underlying this work. Section III discusses a conceptual
solution which is structured by the research objectives and ends with a service
provider’s and end-user’s perspective on an application scenario. Section IV presents
a tool prototype enabling end-user driven requirements elicitation and service based
system configuration. In Section V we discuss an application example and Section VI
rounds out the paper by summarizing the approach, and giving an overview on
ongoing and future work; thereby underlining our vision of involving end-users in
tailoring and customizing service oriented applications covering their needs.

2 Research Goal and Objectives

The goal of our research is to explore how codified context knowledge can support
end-users in specifying individual needs and self-customizing service-oriented
solutions. We aim to build tools and techniques that enable end-users in gathering
requirements and consequently customizing a service-based application. In particular,
we focus on exploring how end-user needs and contextual information can be
discovered and automatically processed. In this paper, we aim to provide first
solutions to the following objectives, which have guided our research.

RO 1: Codify context knowledge in the service-oriented domain. The first research
objective focuses on providing a solution which allows modeling and codifying
contextual information in order to inform early system design. The codified context
knowledge should include architectural aspects of service based solutions as well as
information on when a service needs to be part or a service-based solution in order to
fulfill an end-user’s need.

RO 2: Identify relevant context knowledge based on individual user needs. Our
research is based on the idea that end-users are able to express individual needs with
natural language text descriptions. Research objective two focuses on mapping
codified context knowledge and user needs in order to present relevant context
information to the end-user and to enable the systematic acquisition of context
information.

RO 3: Use codified context knowledge to stimulate requirements elicitation. The
context-specific provision of context related information is supposed to stimulate end-
user driven requirements elicitation. Research objective three focuses on exploring
and identifying different ways of how contextual information can be beneficial for
end-users and stimulate the discovery of individual needs.

RO 4: Use codified context knowledge to customize service-based applications.
The fourth research objective focuses on providing a solution allowing end-users to
self-customize a service-oriented system with the help of codified context knowledge.
This research will particularly focus on identifying a solution which allows
representing architectural knowledge in form which is understandable for end-user.

RO 5: Use individual end-user needs to maintain and evolve codified context
knowledge. The fifth research objective highlights the need for a solution, which
allows identifying novel contextual knowledge described in end-user needs. While
new relevant information can be mined from the users’ needs the codified knowledge
needs to continuously be maintain and evolve to ensure the correctness and
completeness of the codified information.

3 Conceptual Solution

Our approach combines well-accepted methods for requirements elicitation (i.e.
natural language descriptions of end-user needs) and well-established methods for
software customization (i.e. product line models). We explore to how to use codified
contextual knowledge in form of product line models as input for requirements

gathering and as an enabler for end-user driven software customization. Therefore we
first define our notion of contextual knowledge.

3.1 Contextual Knowledge

The interpretation of user’s needs requires contextual information which, for example,
can be related to the identity of things named in the text: people, places, books, etc;
which can be related to geographical locations, dates, weather conditions, units of
measurement etc. Using the term “context” we also refer to information that is
required by system experts or developers to view the requirements in a broader
perspective. Furthermore, contextual information may be the source of data required
to ascertain whether target levels for attributes have been met, or whether there are
exceptions for particular cases. Contextual information covers profiles of participating
or related systems, environment and stakeholders, e.g., natural environment profile;
network profile; user profile; terminal device profile etc. Contextual information may
be collected by the service providers or may be extracted from documentation of the
existing services. In our work we define contextual information as any kind of
information that characterizes or provides additional information regarding any
feature or condition of the delivery and consumption environment of services.

Codifying context information is related to documenting all possible situations
and purpose of use, focusing on the different alternatives for implementation,
deployment or usage. A huge body of work exists in software product line
engineering, which could be used to model the contextual information and use it for
product customization. We have exploited this idea in our approach to create
variability models for contextual information relevant to the end-users during
requirements elicitation.

3.2 Approach Overview

An overview of the conceptual solution is presented in Figure 1. It depicts the key
activities and the flow of information among the different participants. A service
provider usually knows about the features of a service and how it can be adapted to
different contextual situations. (1) In our approach this knowledge is codified in the
form of product line variability models. (2) End-users document initial text-based
requirements descriptions which are analyzed and allow to present codified contextual
knowledge presenting form of questionnaires. To enable this, we map the entered text
to the information in models using natural language processing. (3) providing
contextual knowledge to end-users is supposed to stimulate requirements elicitation
and allows end-users to provide more detailed information about her context by
answering the questions. (4) Answers and the underlying product line model allow the
generation of a service-based prototype application.

Figure 1 Overview of different activities associated with requirements elicitation using

codified context knowledge models of service based applications.

In the following we discuss how our approach realizes the discussed research
objectives:

RO 1. Codify context knowledge in the service-oriented domain

Product line models are primarily designed to document variability of reusable
software artifacts. They contain the information on how reusable artifacts can be
combined in order to generate a running system. On the other hand such models also
document configuration options enabling the customization of software components
such as services. Therefore, they contain a lot of codified knowledge about the
envisioned work-context of future service-oriented systems. Some of this contextual
information can be directly gathered from service repositories as they contain service
descriptions documenting the purpose and the context of services. However the
information on how reusable artifacts can be combined and configured can also
provide information on the context of service centric systems.

Product line variability models are particularly useful, when it comes to
documenting a set of available options, relationships between them and the
implications of choosing an option. In that sense, contextual information is related to
placing the users’ needs and restrictions in the space of all available options. For
example, when we need to elicit information about the weather conditions, under
which the system is adopted, one can model that a variation point in a product line
model with possible weather conditions as alternative to that variation point.

Figure 2 An example of a product line model depicting the variability of weather conditions

identified to be relevant for the future system context.

RO 2. Identify relevant context knowledge based on individual user needs

To make codified context knowledge in variability models useful, it is important to
identify relevant parts of such models in order to present the right information to the
end-user at the right time. Therefore it is essential to present relevant information to
the end-user while the end user continues writing her requirements. Given the users’
input, we pick different parts of the model and present the information in the model to
her to stimulate further requirements gathering, and encourage the end-user to refine
already identified needs.

To achieve this goal, it is important to analyze, tokenize, and filter natural language
text. One has to detect and extract metadata and structured text content from the
users’ needs, thereby attempting to extract keywords that are likely to be present in
the codified context model. The mapping is established based on extracted keywords
and their synonyms. By using advanced techniques like, proximity searches (finding
related terms near a given term), one can significantly improve the mapping between
the users’ needs and codified contextual knowledge.

RO 3. Use codified context knowledge to stimulate requirements elicitation

Codified context knowledge is presented to end-users in form of questions and
possible answers to questions. Although providing answers to these questions
primarily focuses on product configuration and customization this information is also
supposed to support end-users in requirements discovery. We foresee several benefits
for end-user driven requirements elicitation by presenting context knowledge to end-
users. As discussed in the previous section relevant context knowledge is selected
based on initial end-user requirements. The presented contextual knowledge, in most
cases, includes more detailed information than the actual requirement documented by
the end-user. Reviewing this information might support the end-users in refining the
initial requirement and help end-users to more precisely and more accurately describe
a need.

Although the presented context knowledge is triggered by initial end-user needs, it
might discuss functions which are is not covered by the end-user requirements
description so far. Consequently the end-user might start to specify his individual
needs related to these discovered functions. The gathering of new requirements based
on presented contextual information might lead to more complete requirements.
Presenting contextual information in general might support the user in getting a

clearer vision of the future system and guides end-users towards a solution which can
be customized and generated based on existing service solutions. However, we
highlight that the discussed approach does not limit end-users in describing individual
needs. It is the end-user’s choice when to stop documenting initial requirements and
reviewing contextual information in order to simulate requirements election.

RO 4. Use codified context knowledge to customize service-based applications

Developing a customized system by composing reusable artifacts such as services is a
non trivial task [1]. However, we intend to use codified context knowledge in order to
enable end-users to build customized software (prototypes) without being facilitated
by software engineers. As discussed in RO1 we use contextual knowledge codified in
product line models. This contextual information enables us to ask the end-user about
the future system context of an envisioned customized software system. Furthermore
it can be used to map entered requirements to codified contextual knowledge in order
to ask the end-user questions related to entered requirements. A list of questions
regarding all possible configurations of services in a repository might contain several
hundreds of entries. Therefore we intend to reduce the number of questions presented
to the end-user to relevant ones. For example, if the end-user enters the requirement “I
would like software support regarding a travel to London!”, the codified context and
the word “travel” can be mapped to present the question: “Which kind of transport
would you like to use?”. Such questions are presented dynamically to the end-user
depending on entered natural language requirements descriptions. By answering the
questions (e.g. by selecting the bus option) the end-user selects a customized solution
without having to consider technical details or knowing about underlying services.
For example the selection of the “bus” option could select the “Bus Ticket Booking”
service. If the product line model which serves as basis for these configuration
options is correct the end-user will always be able to select a valid configuration by
answering the questions.

RO 5. Use end-user needs to maintain and evolve codified context knowledge

The discussed approach enables end-users to customize a solution to her needs by
reusing existing services. However a solution composed of standard services might
not cover all individual end-user needs. Therefore we propose to give service
providers access to end-user documented end-user needs. By analyzing gathered end-
user requirements and semi automatically mapping them to documented contextual
knowledge and variability models, service providers can be supported in discovering
requirements which could not be satisfied with standard services. Identified gaps
between end-user requirements and provided solutions can trigger the development of
new service based solutions or an update of the variability model and the codified
contextual knowledge. An update of the variability model might be necessary, if an
end-user’s requirement could not be mapped to codified contextual information for
reasons of incompleteness or incorrectness of the context knowledge model.
Therefore gathered end-user requirements can provide essential input for further
service development and to maintain and enhance the contextual knowledge codified
in variability models. As our approach relies on valid variability models and correct

and complete contextual knowledge such a feedback mechanism is essential to ensure
end-user support for service customization.

3.3 Service Provider’s Perspective

In this section, we describe our approach from the perspective of a service provider,
describing the steps required to create the infrastructure for supporting enabling end-
user requirements elicitation and product customization.

Create and publish variability models. Our approach relies on codified context
knowledge; so the first step is obviously to codify context knowledge. To do this,
service providers can analyze available services and conditions of their adoption.
Based on these conditions, service providers create decision models reflecting the
variability of available services, as discussed in [3, 4].

Categorize variability model on the basis of domains. To enable support for end-
users based on a large number of variability models these can be categorized based on
domains (e.g. travel). The categorization can support end-users to narrow down the
number of relevant services in an efficient way and therefore facilitates providing fast
feedback to end-users via exploring relevant services for information relevant for end-
users.

Present configuration options of services to end-users. Based on the natural text
descriptions provided by end-users, it might be possible to identify relevant services
and to initially configure them. However the end-user will not be aware about
possible configuration options when she documents her needs. Therefore we intend to
provide natural language questions to the end-user about his whishes regarding a
configuration option.

Generate and present prototypic solution to the end-user. With the information
that is available in a product line model of the available services, the service provider
can adopt domain-specific configuration generators to create a prototypic solution to
the users’ needs. This is done by evaluating the answers given by the users to the
presented questions related to their needs.

Discuss and negotiate requirements and system. Although the outcome of the
requirements elicitation process with our approach is a working service based system,
this system might not fulfill all requirements of the end-user. As our approach relies
on reuse there might be end-user’s requirements which cannot be covered by
composing reusable services. However, applying our approach, results in a first
functional prototype which can be used in further requirements negotiations and
discussions between end-users and system providers. These discussions can lead to
the development of new services and/or changes to the variability model.

3.4 End-users’ Perspective

The following paragraph describes the approach from the perspective of an end-user.
End-user selects domain of interest. To narrow down the relevant variability

models in an effective way the first task of the end-user is to select a domain of
interest. These domains are intended to be very general and inclusive as end-users are
familiar with selecting categories like ‘travelling’. However, this information is
highly important to identify relevant services.

End-users document their needs using natural language. End-users are familiar
with expressing their needs, ideas and requirements in natural language text
expressions. Furthermore end-users are familiar in documenting text with a text editor
such as Microsoft Word. Therefore we enable end-users to blog their needs and ideas
regarding a service oriented system via a simple to use text editor.

End-users answer questions presented to them. The text that is typed in by the end
users is analyzed and selected questions from the variability model are presented to
the end user. The end-user can then decide to answer these questions or to continue
with typing. The list of questions changes dynamically based on the user’s textual
input and answers to previous questions.

Configure and deploy system (prototype). The end-users’ natural language
requirements descriptions and their answers to the configuration questions provide the
necessary information to select one of many possible valid configurations of a system
composed of reusable artifacts such as services. At the end-of the requirements
elicitation process the chosen configuration can be processed automatically to
compose a service based system and directly deploy it to the end-user’s device.

4 Tool Support

We have implemented a tool prototype called EuReCuS, which enables end-users to
write down requirements using natural language text and presents relevant questions,
as the user writes down her needs. The tool is currently available as an Eclipse plug-
in, utilizing the product line variability modeling capabilities of the DOPLER [5, 6]
tool suite.

4.1 Tool Architecture

An overview of the EuReCuS tool architecture is presented in Fehler! Verweisquelle
konnte nicht gefunden werden.We now discuss the different aspects of the tool as
numbered in the Figure.
1. Service Variability Model: This is a formal documentation of the different

contextual options available in service based software solutions. This model is
created with the DOPLER tool suite. It consists of decisions, the users can take
and rules that need to be considered when selecting services based on the users
answers to the relevant questions.

2. Variability Model Execution Engine: DOPLER Variability models are executed
using rule engines that are capable of mapping the user’s decisions to available
services and propagating the effects of such decisions in the configuration of the
future system.

3. End-user Tool: This tool has been designed for end-users and is capable of
gathering end-users’ needs using a seemingly simple text editor. The text editor is
however sensitive to what the user is typing. It is linked to the variability model
execution engine to identify relevant questions and pass the end-users’ answers
on these questions.

4. Natural Language Processor: We are currently adopting Apache Lucene, as a
natural language analyzer and tokenizer. It is a high-performance, full-featured

text search engine library written in Java. Lucene provides advanced features like
stemming and synonym-based search.

5. Questionnaire tool: This part of the end-user tool, is linked with the text editor
for requirements input. The questionnaire tool displays the relevant questions to
the end-user and provides interactive UI elements to answer them. The answers
are then passed to the variability modeling execution engine.

6. Domain-specific service composer: This tool makes use of the knowledge in the
variability model to generate a running configuration of the selected services. The
information about which services are selected is passed through by the model
execution engine.

7. Customized Application: This is the actual prototype of the system the user
envisions. The domain-specific service composer creates and deploys this
application based on the end-users’ answers. The end-users have a chance to
review the application on the fly and decide, whether is what they wanted to
have.

Figure 3 Architecture of the EuReCuS tool suite, depicting the position of the end-

user and related tool-components.

5 Application Example

To highlight the application of our approach we prepared an example discussing how
an end-user would use the developed tools in order to document requirements and
customize a software solution.

We decided to use an example which discusses everyday needs of an end-user named
Tom. His requirements describe how a future software system should support his
daily commuting. With the help of our tool prototype Tom starts to document
individual needs in the form of natural language text (see Figure 4).

Figure 4 Screenshot of the EuReCuS tool, depicting the text editor on the left and

the set of relevant contextual questions on the right.

Using the text-editor functionality of our tool Tom is able to describe individual
needs using natural language text. However, Tom, not being an RE expert and
unfamiliar with requirements documentation, will most likely not document fully
specified requirements descriptions. We expect Tom to provide a mixture of needs,
rationale descriptions, and uncertainties documented in a kind of user story. In general
Tom’s description is supposed to include a lot of contextual information. Tom, for
example, could describe needs using statements such as: I would like to have a tool
which provides mobile support and this (travel) information should also be updated
while I am traveling. Using our tool Tom is not forced to describe his needs using a
certain notation. Furthermore, the approach is not limiting Tom’s creativity as he is
allowed to document whatever comes into his mind.

While Tom is brainstorming his vision of the future system our tool uses this
information to identify codified context knowledge which could support Tom in

refining and identifying needs. The codified context knowledge is presented in the
form of domain specific questions together with possible answers. For example,
analyzing Tom’s description and using keyword matching our tool comes up with
more detailed questions. This could include questions on the type of mobile device
Tom is envisioning to use (e.g. Please specify the devices you prefer using). The
system will provide possible answers, such as Laptop, Mobile Phone, and PDA which
allows Tom to think about alternative options. Although he did not mention support
for his Laptop in his initial description, he might discover that he wants to use the
envisioned system on his laptop as well. Furthermore, the question about how much
money Tom is willing to pay might support him to specify in more detail what kind of
metrics the envisioned system is supposed to use to identity the best route. For
example, based on this contextual trigger he could start to describe in more detail that
the future system should automatically identify the cheapest way to get to a
destination. However, regarding this example, we would assume that Tom requests
that the system should identify the fastest option instead of the cheapest.

Stimulating Tom’s brainstorming by providing recognition cues in the form of
questions in only one important aspect of our solution. The questions represent
codified context knowledge, which includes information about system variability.
Tom is therefore able to customize existing software solutions with the help of
codified context knowledge. This does not mean that Tom needs a technical
background and has to understand the system architecture. Our solution is based on
the idea that Tom is able to customize existing software solutions based on answering
the provided questions. Depending on his individual needs Tom is able to select the
answers reflecting what he expects from a future system. After answering all
necessary questions this information is used to automatically generate a first prototype
which is tailored to Tom’s needs.

6 Conclusions and Future Work

Reuse-based approaches such as service-oriented computing provide efficient ways to
compose software systems fulfilling end-users’ individual needs. In the context of
reuse-based systems, there is a change in how RE should be perceived. Instead of
being a front-end activity in the software engineering process and focusing on
defining requirements for the development of software systems, the focus shifts
towards mapping the users’ needs to already existing reusable artifacts. This implies
that knowledge about already available functionality is vital and can guide
requirements elicitation and system analysis. Furthermore, weaving this knowledge
into requirements might stimulate end-user creativity and trigger new requirements.

Requirements engineering for service centric systems has to consider individual
customer requirements and on the other hand to enable the reuse existing services.
However current methods and techniques rely on requirements analysts to identify
existing services covering end-user needs and to document services configuration; end-
users are not likely to understand technical service interface descriptions and ways to
configure existing services. Therefore, we propose to use codified context knowledge
to support the end-users during requirements elicitation.

We consider product line variability models to be suitable for modeling and
presenting contextual information to the end-users. The primary focus and contribution

of this paper lies on increasing the creativity and stimulating new requirements during
requirements elicitation. However, applying this approach has several other benefits. In
ideal cases, the end-users can construct tailored applications themselves (by utilizing
domain-specific product generators and reusable artifacts documented in the product
line model). In the normal run, the requirements elicited using our approach constitute
of textual description of users’ needs and a prototypic configuration of available
services based on the users’ interaction with the product line model.

Rigorous modeling methods, languages, and tools are needed to describe and
manage the context of service-oriented applications and to implement effective means
for configuring and tailoring them. More importantly, the involvement of end-users to
make use of these models and tools is a key to any significant breakthrough in this
area.

In the future, we aim to continue research in this area by carrying out user-studies
to measure and validate the effectiveness of the requirements elicitation approach.
Based on the feedback from users, we will work towards applying our approach in
real-service repositories, empowering users to customize service-oriented applications
themselves. This will provide us with further feedback for further improvements of the
approach and the tools.

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State-of-the-art and Research Challenges. In IEEE Computer, vol. 40 (11), November
2007.

2. Clements, P. and Northrop, L., Software Product Lines: Practices and Patterns: SEI Series
in Software Engineering, Addison-Wesley, 2005.

3. Clotet, R., Dhungana, D., Franch, X., Grünbacher, P., Lopez, L., Marco, J., and Seyff, N.,
Dealing with changes in service-oriented computing through integrated goal and
variability modeling. In Workshop on Variability Modelling of Software-intensive
Systems (VAMOS 2008), pages 43–52, Essen, Germany, 2008. ICB-Research Report No.
22.

4. Dhungana, D., Heymans, P., Rabiser, R., A Formal Semantics for Decision-oriented
Variability Modeling with DOPLER, In Workshop on Variability Modelling of Software-
intensive Systems (VAMOS 2010), pages 37-45, Linz, Austria, 2010. ICB-Research
Report. 37.

5. Dhungana, D., Rabiser, R., Grünbacher, P., Lehner, K., Federspiel, C.: DOPLER: An
Adaptable Tool Suite for Product Line Engineering. 11th International Software Product
Line Conference (SPLC 2007), Kyoto, Japan, September 10-14, 2007.

6. Dhungana, D., Grünbacher, P., and Rabiser, R., Domain-specific adaptations of product
line variability modeling. In IFIP WG 8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences, Geneva, Switzerland, 2007.

7. Froschauer, R., Zoitl, A., and Grünbacher, P., Development and adaptation of iec 61499
automation and control applications with runtime variability models. In 7th IEEE Int’l
Conference on Industrial Informatics, INDIN 2009,, Cardiff, UK, 2009.

8. Hartmann, H., Trew, T., "Using Feature Diagrams with Context Variability to Model
Multiple Product Lines for Software Supply Chains," 12th International Software Product
Line Conference, pp. 12-21, Limerick, Ireland

9. Pohl ,K., Böckle, G., and v. d. Linden, F. J., Software Product Line Engineering:
Foundations, Principles, and Techniques: Springer, 2005.

10. Robak, S., Franczyk, B., Modeling Web Services Variability with Feature Diagrams, in
Web, Web-Services, and Database Systems, Volume 2593/2009.

11. Stevens, R., Brook, P., Jackson, K. & Arnold, S. (1998). Systems Engineering: Coping
with Complexity. Prentice Hall Europe.

12. Wang, J., Yu, J., A Business-Level Service Model Supporting End-User Customization,
Service-Oriented Computing - ICSOC 2007 Workshops, pp 295-303, Vienna, Austria.

13. Wolfinger, R. Reiter, S., Dhungana, D., Grünbacher, P., and Prähofer, H. Supporting
runtime system adaptation through product line engineering and plug-in techniques. In 7th
IEEE International Conference on Composition-Based Software Systems (ICCBSS),
Madrid, Spain, 2008. IEEE Computer Society.

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

5 Lucchese, C.; Orlando, S.; Perego, R.; Silvestri, F.; Tolomei,
G.: Detecting Task-based Query Sessions using Wiktionary. –
not yet submitted.

Detecting Task-based Query Sessions using Wiktionary

Claudio Lucchese
ISTI - CNR

56124 Pisa, ITALY
c.lucchese@isti.cnr.it

Salvatore Orlando
Ca’ Foscari University
30172 Venice, ITALY

orlando@dsi.unive.it

Raffaele Perego
ISTI - CNR

56124 Pisa, ITALY
r.perego@isti.cnr.it

Fabrizio Silvestri
ISTI - CNR

56124 Pisa, ITALY
f.silvestri@isti.cnr.it

Gabriele Tolomei
ISTI - CNR

56124 Pisa, ITALY
g.tolomei@isti.cnr.it

ABSTRACT
Nowadays, people have been increasingly interested in ex-
ploiting the World Wide Web (Web) not only for having
access to simple Web pages, but mainly for accomplishing
even complex tasks in a simpler way. Our research challenge
is to provide a mechanism to split into user sessions a very
large, long-term log of queries submitted to a Web Search
Engine (WSE). Our hypothesis is that query sessions entail
the concept of user task. Hence, we present a novel query
clustering technique aimed to identify these hidden tasks.
We devise an extended K-means-like algorithm that uses a
novel distance metrics, and combines query content features,
inter-query temporal interval, and a new feature based on
the collaborative knowledge base collected by Wiktionary.
Basically, we exploit the Wiktionary data source for increas-
ing the meaningfulness of each query, whose average number
of terms is otherwise low.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Query clustering, Col-
laborative knowledge, Search process

General Terms
Algorithms, Design, Experimentation

Keywords
Query log segmentation, Session breaking, Query clustering
Web-mediated Task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
According to Tim Berners-Lee, the World Wide Web has

becoming to move from a simple “read-only” environment
(i.e., Web 1.0) to a collaborative “read-write” platform in
which end users may act both as content provider and con-
sumer from time to time (i.e., Web 2.0). More recently, peo-
ple have started to exploit the Web not only for having access
to its huge document collection but also for accomplishing
their everyday activities in a simpler way. This makes the
Web to go one step over toward a “read-write-execute” plat-
form, which is the so-called Web 3.0. This vision is also sup-
ported by authoritative people in the Web search domain.
During the DEMOFall08 Conference, there was a discussion
panel on “Where the Web is Going”1, in which Peter Norvig
from Google and Prabhakar Raghavan from Yahoo! basi-
cally agreed that, rather than supporting only one search
at a time, Web Search Engines (WSEs) will soon focus on
helping people get a bigger task done. A significative quote
extracted from Raghavan’s speech is the following: “People
intrinsically don’t want to search. People don’t come to work
every day saying “I need to search”... They want to run
their lives!”.

So far, several works investigated how real search intent
can be devised by looking at the queries users issued to
WSEs [3, 34, 16, 13]. Following this research direction, we
plan to go one step forward aiming to understand users’ be-
haviors on a task-based perspective.

From our preliminary study of historical data stored on a
very large and long-term WSE query log, we pointed out a
significative set of sample activities that many users tried to
achieve by issuing some independent query chains. Those
Web-mediated processes occurred quite frequently in our
WSE query log as the result of stream of queries issued by
different users. To some extent, this enforce the vision pro-
vided by Ricardo Baeza-Yates from Yahoo!, who claimed
that in the next so-called Web 3.0 “People want to get
tasks done” 2.

So, we can claim an interesting shift here from a model
where each search is independent, to one where Web search
support systems may expect users to do multiple searches
when trying to accomplish their activities. This novel way
of searching the Web “by tasks to be executed”, instead of
“by documents to be retrieved”, has to be enabled by new
mechanisms that we aim to investigate.

1
http://blogoscoped.com/archive/2008-11-06-n63.html

2
http://www.cwr.cl/la-web2008/slides/Wisdom-of-Crowds-long.pdf

Typically, Web users are not easily identifiable by WSEs
because IP addresses and cookies may be shared across mul-
tiple users. Recently WSEs have added login capabilities, so
that users can perform their search activities while they are
logged into the system. However, even in that case, de-
tecting precisely a user search session is not trivial because
users could stay logged in for a long time trying to perform
different tasks that are possibly unrelated.

Thus, our aim is to detect task-based query sessions, that
is user query sessions whose final goal is to perform a Web-
mediated task, from the whole stream of queries issued by
a user to a WSE and collected into a query log. For this
purpose, we propose an unsupervised learning approach that
leverages on a novel query clustering algorithm whose aim
is to group together queries related to the same task.

We devise a K-means-like query clustering algorithm, which
relies on a novel distance metrics that exploits also the col-
laborative knowledge provided by the Wiktionary3 data source
for enriching the meaning of each issued query. The obtained
results show that our approach produces better quality clus-
ters with respect to traditional solutions that take into ac-
count only similarity between query terms and/or clicked-
documents.

The rest of this document is organized as follows: Sec-
tion 2 describes related works about session identification
and real search intent discovery from the information avail-
able on WSE query logs. Furthermore, Section 3 describes
our concept of user query session and formalizes the problem
of detecting this kind of session from long-term query logs.
Section 4 outlines our proposed solution for detecting task-
based sessions describing the query clustering algorithm and
its novel distance metrics we have devised. Section 5 shows
the results obtained from the experiments done so far. Fi-
nally, Section 6 provides a summary of our work and points
out possible future research directions and challenges.

2. RELATED WORK
Analysis of query logs collected by most Web Search En-

gines (WSEs) has increasingly gained interest across Web
mining research community. Roughly, query logs record in-
formation about the search activities of users and so they
are a suitable source of information for understanding how
people search the Web.

Silverstein et al. [28] present a broad analysis of a very
large query log data set collected by the AltaVista search
engine. In particular, their analysis involves statistics about
the occurrences of single query term and the co-occurrences
of query term pairs. Moreover, they define a concept of
“session” as a 5-minutes fixed time window on user search
activities. According to this definition, they found that the
average number of queries per session are 2.02.

Jansen and Spink [13] make a comparison of nine WSE
transaction logs from the perspectives of session length, query
length, query complexity, and content viewed. Here, they
define a“session” to be the period of time occurring from the
first recorded time-stamp to the last recorded time-stamp on
the WSE server from a particular user in a particular day.

Richardson [25] shows the value of long-term WSE query
logs with respect to short-term (within-session) query infor-
mation. He claims that long-term query logs can be used
to better understand the world where we live, showing that

3
http://www.wiktionary.org

query effects are long-lasting. Basically, in his work Richard-
son does not look at term co-occurrences just within a search
session that he agreed to be a 30 minutes time-window, but
rather across entire query histories.

Silvestri et al. [29] show a number of applications, i.e.,
caching, index partitioning, and document prioritization that
can benefit from analysis performed on WSE query logs, and
that have strong high performance requirements.

Most works concerning with mining of query logs aim at
understanding the real intent behind queries issued by users.

Broder [3] claims that the “need behind the query” in Web
context is not clearly informational like in classical Informa-
tion Retrieval domain. Hence, he proposes a taxonomy of
Web searches classifying the queries according to their in-
tent into 3 classes: (i) navigational, whose intent is to reach
a specific Web site, (ii) informational, which aims to acquire
some information from one or more Web documents, and
finally (iii) transactional, whose intent is to perform some
Web-mediated tasks. Moreover, Rose and Levinson [34] pro-
pose their own user search goals classification by extending
the taxonomy devised by Broder in [3] to more hierarchi-
cal levels. Lee et al. [16] describe whether and how search
goal identification process behind a user query might be au-
tomatically performed on the basis of two features, that is
past user-click behavior and anchor-link distribution.

Ozmutlu and Çavdur [21] describe a mechanism for iden-
tifying topic changes in user search behavior and tested its
validity. The parameters for the topic identification task
are determined by a genetic algorithm using topic shift and
continuation probabilities of the dataset leveraging on query
patterns and time intervals.

Besides, many other works deal with the identification of
users’ search sessions boundaries.

He and Göker [10] propose different timeouts to segment
user sessions, and later extended their work [11] to consider
other features such as the overlap between terms in two con-
secutive queries.

Radlinski and Joachims [23] observe that users often per-
form a sequence of queries with a similar information need,
and they refer to this sequence of reformulated queries as
query chains. Their paper presents a simple method for
automatically detecting query chains in query and click-
through logs, and showed how to learn better retrieval func-
tions using evidence of query chains.

Spink et al [30] investigate multitasking behaviors while
users interacting with a WSE. Multitasking during Web
searches involves the “seek-and-switch” process among sev-
eral topics within a single user session. Here, a user session is
defined to be the entire series of queries submitted by a user
during one interaction with the WSE, so that session length
might vary from less than a minute to a few hours. The
results of this analysis performed on an AltaVista query log
show that multitasking is a growing element in Web search-
ing.

Boldi et al. [2] introduce the query-flow graph as a model
for representing data collected in WSE query logs. They
exploit information provided by this model for segmenting
the query stream into sets of related information-seeking
queries, i.e., logical sessions leveraging on an instance of the
Asymmetric Traveler Salesman Problem (ATSP).

Finally, Jones and Klinkner [15] show that timeouts, what-
ever their length, are of limited utility in identifying task
session boundaries and propose and evaluate a supervised

learning method for the automated segmentation of users’
query streams into hierarchical units.

Suitable mechanisms for identifying session boundaries,
thus for extracting search goals, are clustering algorithms
and techniques applied to the whole query session of each
user.

Query clustering is a quite recent research issue and it
is based on the assumption that if two queries belong to
the same cluster, then they are also likely to be topically-
related. Beeferman and Berger [1] introduce a technique
for mining a collection of user transactions with a WSE for
discovering clusters of similar queries and similar URLs. The
algorithm they propose makes no use of the actual content of
the queries or the URLs, but only how they co-occur within
the click-through data stored in the query log modeled as a
bipartite graph.

Wen et al. [33] describe a query clustering method that
makes use of user logs for identifying the Web documents
users have selected for a certain query. The similarity be-
tween two queries may be deduced from the common doc-
uments the users selected for them. Fu et al. [8] intro-
duces a hybrid method to cluster queries by utilizing both
the query terms and the results returned to queries, show-
ing that this combination performs better than using either
method alone.

Wai-Ting Leung et al. [17] develop online techniques that
extract concepts from the Web-snippets of the search results
returned from a query, and use these concepts to identify
related queries. Moreover, authors propose a new two-phase
personalized agglomerative clustering algorithm that is able
to generate personalized query clusters.

Finally, Yi and Maghoul [35] propose an algorithm for
extracting all maximal bipartite cliques (i.e., bicliques) from
a click-through graph and compute an equivalence set of
queries (i.e., a query cluster) from the maximal bicliques. A
cluster of queries is formed from the queries in a biclique.

3. TASK-BASED SESSION
In digital libraries environments, users’ sessions are eas-

ily detectable because the interaction pattern between users
and system is well defined. Here, in fact, a user logs into
the system, performs one or more queries for achieving a
specific task, and finally she logs out. Unfortunately, that
pattern is not applicable when user interacts with a Web
Search Engine (WSE) for having access to the Web, because
anonymous users could be logged in for a long time, by sub-
mitting independent queries and trying to perform different
tasks that are possibly unrelated.

Therefore, an important challenge dealing with the infor-
mation collected in WSE query logs is to detect meaningful
user query sessions. A few work has proposed some defini-
tions of user query sessions and different heuristics to split
query logs. However, timeout-based methods remain the
most common ones for detecting session boundaries. Silver-
stein et al. [28] define a session as the stream of consecutive
queries issued by the same user within a 5-minutes time win-
dow, while Jansen and Spink [13] simply identify a session
with the period that occurs between the first and the last
time-stamp recorded for a certain user to the WSE server.
Other approaches have been proposed in between, devising
timeout threshold values that range from 30 to 120 min-
utes [20, 11].

According to Jones et al. [15], we believe that timeout-

based approaches are not fully suitable for detecting real
user search sessions. On the basis of the shift in Web users
behaviors that we previously pointed out, we claim that a
real user session should entail the concept of task. Thus,
we define a task-based session to be a sequence of topically-
related queries aiming to reach the same search goal, i.e.,
accomplishing the same Web-mediated task. Queries within
the same task-based session might not be necessarily con-
secutive, hence splitting a query log using only a timeout-
based mechanism could identify multiple and interleaved
task-based sessions.
By referring to the terminology proposed by Jones et al. [15],
we can further subdivide user search activities in a hierar-
chical way, and distinguish between search goals and search
missions. A search goal is an atomic information need of a
certain user, represented by one or more queries, for achiev-
ing a single task, i.e., a Web-mediated task. On the other
hand, a search mission is a set of topically-related informa-
tion needs, aiming to perform a bigger task represented by
the composition of one or more eventually interleaved search
goals, i.e., Web-mediated process.

3.1 Problem Modeling and Statement
Query logs of a WSE contains a tremendous amount of

information regarding the users’ activities over time. This is
stored in terms of queries submitted, user IDs, time-stamps,
clicked results, etc.

We denote withQL the log of the queries submitted to the
WSE by a set of users U = {u1, u2, . . . , uN} during a given
observation period. Moreover, let qi ∈ QL be a generic
query issued by user ui, and qi,j ∈ QL be the j-th query
issued by user ui.

The methods that extract user sessions from QL has to
analyze all the queries issued by each user ui, i.e. the so-
called long-term sessions.

Definition 3.1 (Long-Term Session Si). Si is the se-
quence of all the queries qi ∈ QL issued by user ui ∈
U , chronologically ordered during the period of observation
recorded in the query log:

Si = 〈qi,1, qi,2, . . . , qi,K〉

Therefore,

QL =

N⋃
i=1

Si

Any partitioning of Si could be a valid sessioning of the
activity of user ui.

A simple method is timeout cutoff. Given the query qi,j ,
all the successive queries qi,j+l submitted within a given
time-threshold, i.e. 30 minutes, are added to the same par-
tition of qi,j . Such a simple approach fails in detecting
task-based sessions, as shown in [15]. First, it is not pos-
sible to predict in advance what is the duration of a session.
More importantly, user interleaves many different informa-
tion needs, and the related queries, during her long-term
session. For example, at a given time she starts looking for
something related to a given topic/task/information need,
and then repeats a related search some time later.

Definition 3.2 (Task-based Sessions Θi). Let θji ⊆
Si be a generic task-based session, i.e., a set of (not nec-
essarily consecutive) queries issued by user ui for reaching

the same search goal and performing a given Web-mediated
task.

Then, let Θi = {θ1i , θ2i , . . . , θki } be the set of all the task-
based sessions that are present in Si, where θji ∩ θ

h
i = ∅ for

any j, h.

Thus, our Task-based Session Detection Problem (TSDP)
can be formulated as the problem of detecting the query
grouping strategy that better approximates the true user
tasks based Θi, for each user ui ∈ U . Let Ci = {c1i , c2i , . . . , chi }
be the task-based sessions identified by a given grouping
strategy σ applied over Si, i.e. σ(Si) = Ci = {c1i , c2i , . . . , chi }.
The TSDP can thus be defined as follows.

Definition 3.3 (TSDP). Given a query log QL, the
TSDP requires to find the best partitioning σ(Si) of every
long-term session Si, that better approximates the true task-
based sessions Θi = {θ1i , θ2i , . . . , θki }:

argmin
σ

N∑
i=1

δ(Θi, σ(Si))

where δ is a given distance function that measures the error
in the partitioning σ(Si) = Ci with respect to Θi.

Several concepts of “distance” can be used to measure the
accuracy of a task-based sessioning, and consequently, sev-
eral δ functions can be devised. Indeed, δ can be defined in
terms of metrics like coverage, precision, recall, purity, etc.
Different applications that exploit sessioning, e.g. query sug-
gestion, results clustering, may prefer a different metric in
order to maximize their achievements.

4. TASK-BASED SESSION DETECTION
THROUGH QUERY CLUSTERING

A problem similar to the Task-based Session Detection
Problem (TSDP) has been already faced by Jones and Klin-
kner using a supervised learning approach [15]. Here, the au-
thors try to learn how to automatically detect search goals
and missions by training some classifiers from a sampling
set of manually labeled data. Conversely, we decide to ad-
dress the TSDP using an unsupervised learning approach
that does not require any manual training phase.

In particular, we claim that the concept of task is just
contained into the stream of queries issued by users of Web
Search Engines (WSEs). Thus, clustering queries according
to specific features could be a suitable mechanism for identi-
fying search goals (i.e., clusters of task-related queries) from
each user long-term session, hence detecting task-based ses-
sions.

As for any other clustering problem, research has to be
focused mainly on two aspects: (i) the clustering algorithm
to be run on data, and (ii) the distance metrics used for
computing the distance function between queries.

Regarding the first issue (i), there have been mainly two
classes of clustering algorithms: hierarchical and partitional.
Hierarchical agglomerative clustering (HAC) and K-means
algorithms are representatives of the two classes respectively [12].

In our work, we propose a K-means-like algorithm where
the number K of final clusters to be produced is not given
as the input. A parameter t, which corresponds to the max-
imum radius of a centroid-based cluster is otherwise pro-
vided.

The termination condition of the algorithm is assured be-
cause at the end of the main loop over the queries contained
in a long-term session, each query is either added to an exist-
ing cluster or it becomes the centroid of a brand new cluster.

The description of our TSDP query clustering algorithm
is given in Algorithm 1.

Algorithm 1 The TSDP query clustering algorithm.

1: Input:
• A long-term user session Si.
• The threshold t.

2: Output:
• Ci = {c1i , c2i , . . . , chi } set of clusters representing a

partitioning σ(Si).

3: Ci = ∅
4: current centroid = select centroid (Si)
5: cstarti = create new cluster(current centroid)
6: Ci = Ci ∪ cstarti

7: Si = Si \ current centroid
8: for all q ∈ Si do
9: min dist =∞ cmini = NIL

10: for all cji ∈ Ci do
11: dist [j] = compute distance

(
q, centroid(cji)

)
12: if dist [j] < min dist then
13: min dist = dist [j]
14: cmini = cji
15: end if
16: end for
17: if min dist ≤ t then
18: cmini = cmini ∪ q
19: recompute centroid(cmin)
20: else
21: cnewi = create new cluster(q)
22: Ci = Ci ∪ cnewi

23: end if
24: end for
25: return Ci

4.1 Distance Metrics
Several approaches for devising suitable distance metrics

to be used in query clustering contexts have been proposed.
Most of these approaches derive from traditional document
clustering in Information Retrieval domain and are based on
similarity between query content [27]. However, the preci-
sion of those approach results to be quite low due to the short
length of queries and the lack of the contextual information
in which queries are issued [33]. According to Silverstein et
al. [28], more than 85% of queries contain less than 3 terms
and the average number of query terms ranges between 2
and 3 words (exactly 2.35). Thus, query terms can neither
convey much information nor help to detect the semantics
behind them since the same term might represent different
semantic meanings, while on the other hand, different terms
might refer to the same semantic meaning [24]. As an ex-
ample, let us consider a query composed only by the term
“donkey”, which can refer to an animal, to a character from
the Shrek movies, to a steam engine, and even to a bad poker
player. Moreover, the query “donkey” is very dissimilar from
the query “fiona” from a content-based point of view, while
they can both refer to the same semantic concept (i.e., the

Shrek movies).
In order to overcome these drawbacks, other proposed ap-

proaches exploit cross-reference between queries and user
activities (i.e., relevance feedback) [26]. By cross-reference,
we mean any relationship created between a query and a
Web document. The intuition of using cross-references is
that similarity between Web documents can be transferred
to queries through these references, and vice versa.

Roughly, if two queries share some identical query result
documents, then it is arguable that they are similar. Cross-
references between two queries can be represented by the
overlapping number of result documents (i.e., overlapping
URLs) [9], as well as by the content similarity between re-
sulting Web pages [24]. This last solution is time-consuming
and can be relaxed by looking at the content similarity be-
tween Web-snippets that are present on the result docu-
ments, instead of considering the whole contents of the doc-
uments [17].

Anyway, all these feedback-based approaches are affected
by the fact that queries representing different information
needs might lead to the same results since one result can
contain information about several topics. Thus, recently,
hybrid solutions that combine both content- and feedback-
based approaches have shown to be more effective [8].

In addition, inter-query temporal interval must be taken
into account, especially when dealing with long-term histor-
ical data [4].

In our work, the TSDP query clustering algorithm uses a
novel distance metrics µ, which results from the convex com-
bination of 3 different kinds of metrics concerned with: (i)
query content (µcontent), (ii) inter-query temporal interval
(µtime), and (iii) the collaborative knowledge base collected
by Wiktionary (µwiktionary).

µ = α · µcontent + β · µtime + γ · µwiktionary (1)

where (α+ β + γ = 1).
So far, we have not considered any feedback-based met-

rics since they are generally expensive to compute, and also
because they are not always available on WSE query logs.

In the following, we provide a description of each metrics
by considering the distance between two queries q1 and q2.

Content-based (µcontent). We propose a distance met-
rics µcontent, which is computed by using an extended ver-
sion of the Jaccard similarity coefficient.

Given two sample sets A and B, the Jaccard index is de-
fined as the size of the intersection divided by the size of the
union of the two sample sets [31]:

Jaccard =
|A ∩ B|
|A ∪ B|

Jaccard index is widely used in Information Retrieval and
Natural Language Processing domains [14]. Typically, the
sample sets correspond to the sets of words (i.e., terms) ob-
tained from the two text strings we want to compare. Thus,
the Jaccard index between two queries corresponds to the
number of shared query terms divided by the union of query
terms. However, according to Järvelin et al. [14] we decide
to compute the Jaccard index on the basis of the n-grams
instead of considering the two strings at a term-level. Basi-
cally, the two sample sets A and B are obtained extracting
3-grams from the two strings representing the two queries.
Thus, µcontent can be written as follows:

µcontent(q1, q2) = 1− Jaccard3−grams(q1, q2)

Other term-level metrics could be used including cosine
similarity, Dice similarity, Jaro-Winkler similarity as well as
character-level functions like Levenstein distance (i.e., edit
distance) [6].

Time-based (µtime). Time interleaving between issued
queries plays a significative role, especially when dealing
with long-term user sessions [25]. In fact, let us consider
three queries qi, qj , and qk that are similar from a content-
based point of view. Suppose also that qi and qj were issued
within a short-time interval while qk was issued a long time
after, then we must consider that qi is more similar to qj
than qk.

In order to represent this behavior, we introduce an ex-
ponential time decay over the difference between the time-
stamp values of the two queries we want to compare:

e−λ(|τ(q1) − τ(q2)|)

Thus, µtime can be written as follows:

µtime(q1, q2) = 1− e−λ(|τ(q1) − τ(q2)|)

Furthermore, the exponential decay metrics is also impor-
tant to discriminate two re-submissions of the same query
relative to two different user goals [32]. For instance, a user
submitting the query “WSDM 2010” on August 13th, 2009,
likely, has in mind to check the submission deadline of the
query. The same query submitted a couple of months later
by the same user is probably aimed at looking for news about
the conference program. Even if the two queries are identi-
cal, the goal is different. The exponential decay will evaluate
these two identical queries, completely different.

Wiktionary-based (µwiktionary). Since average number
of query terms is low, there is often a lack of semantic mean-
ing associated with the queries that a WSE user issues [28].
In order to overcome this problem, we figure out that we
could expand each query with its “wiktionarization”. Basi-
cally, we exploit the Wiktionary data source for increasing
the meaningfulness of each query, trying to overcome the
lack of semantic information it usually carries on.

Wiktionary, as well as Wikipedia, is a knowledge base that
is collaboratively constructed by mainly non-professional vol-
unteers on the Web. According to [37], we call such collec-
tions Collaborative Knowledge Bases, in order to distinguish
them from classical Linguistic Knowledge Bases like Word-
Net [7].

Collaborative knowledge bases like Wiktionary and Wi-
kipedia have been recently used for increasing semantic re-
latedness between words in Natural Language Processing
domain [37, 36, 18]. However, to the best of our knowledge,
this feature has not yet been used for query clustering.

In order to wiktionarize the string associated with a query
q, we have to first wiktionarize each of its terms. Let us
suppose that q = {t1, t2, . . . , tl} where each ti is a term.
Thus, we can define a function ω as follows.

Definition 4.1 (Single-Term Wiktionarization ω).
Let ti be a single-term string over that alphabet. The func-
tion ω takes the string ti as input and produces a set Wi

whose elements are set of strings obtained from the infor-

mation collected by the Wiktionary data source:

ω(ti) =Wi = {Gi,HYPi,SYN i,DT i, CAT i}

In particular, the set Wi contains the following information
associated with ti and available on Wiktionary:

• a set Gi containing the first gloss;

• a set HYPi containing the top-K hyponyms;

• a set SYN i containing the top-K synonyms;

• a set DT i containing the top-K derived terms;

• a set CAT i containing the top-K categories.

Finally, we can define a function Ω, which is responsible of
the wiktionarization of a multi-term string as follows.

Definition 4.2 (Multi-Term Wiktionarization Ω).
Let T be a multi-term string over that alphabet such that
T = {t1, t2, . . . , tl}. The function Ω takes the string T as
input and produces a set W as follows:

Ω(T) =W =

l⋃
i=1

ω(ti) =

l⋃
i=1

Wi

where:

l⋃
i=1

Wi =

l⋃
i=1

Gi⊕
l⋃
i=1

HYPi⊕
l⋃
i=1

SYN i⊕
l⋃
i=1

DT i⊕
l⋃
i=1

CAT i

Thus, the wiktionarization of a multi-term string T is a
set W whose elements are sets obtained from the union of
the corresponding elements contained in each Wi.

Given two queries q1 and q2, we first split the two queries
in terms applying a splitting algorithm that also takes into
account missing spaces, e.g. birthdaypartyideas.com is split
into “birthday”, “party”, “ideas”, and “com”. Then, we apply
the wiktionarization process described above for obtaining
their “wiktionarized” representations Ω(q1) and Ω(q2), re-
spectively.

Therefore, we build up the corresponding term-frequency
vectors associated with Ω(q1) and Ω(q2), and we use a cosine
similarity metrics for computing the distance between those
vectors. According to the comparative analysis between dif-
ferent similarity metrics proposed by Cohen et al. [6], co-
sine similarity, on average, performs best with respect to
other term-level meterics. Moreover, here we use a term-
level distance metrics because the query strings are strongly
enriched, resulting in a less sparse term-frequency vectors.

Finally, µwiktionary can be written as follows:

µwiktionary(q1, q2) = 1− cosine similarity(Ω(q1),Ω(q2))

5. EXPERIMENTS

5.1 Experimental Setup
This Section describes the setup phases for running, test-

ing, and evaluating our TSDP query clustering algorithm.
We start choosing the 2006 AOL query log as the ini-

tial data set. This query log is a very large and long-term
collection consisting of about 20 million of Web queries is-
sued by more than 657 thousands users over 3 months (from
03/01/2006 to 05/31/2006). Moreover, the AOL query log is
still publicly available throughout several Web mirror sites,

despite the company decided to remove those data from its
own servers on August 2006 after its release incident4.

First of all, we preprocessed the query log for a data clean-
ing phase using a combination of Python and AWK scripts.
In particular, we removed query log records containing both
empty and“non-sense”query strings (i.e., query strings com-
posed of only punctuation symbols). Moreover, we removed
also all the stop-words from each query string. Then, we
sorted the query log according to the length of its long-
term user sessions in a decreasing order. Finally, we run
the Porter stemming algorithm [22] for removing the com-
moner morphological and inflexional English endings from
the terms of each query string.

We implemented the clustering algorithm presented in
Section 4 totally in Java. That choice allowed us to rely
on a suite of existing libraries for dealing with two main is-
sues: (i) distance metrics, and (ii) Wiktionary data source.

In particular, concerning the first issue (i) we used Second-
String5, while for (ii) we relied on the Java-based Wiktionary
Library (JWKTL)6.

SecondString. SecondString is an open-source Java-
based package of approximate string-matching techniques,
which has been developed at the Carnegie Mellon Univer-
sity by Cohen et al. [5]. It supports a large number of
non-adaptive distance functions like a wide range of met-
rics based on edit distance, including Levenstein distance,
which assigns a unit cost to all edit operations, and the
Monge-Elkan distance function [19]. Of course, it also im-
plements a number of term-level distance metrics like the
Jaccard similarity coefficient and the cosine similarity, as
well as novel hybrid distance functions, which combine term-
level and string-based matching schemes.

Java-based Wiktionary Library (JWKTL). JWKTL
is a Java-based API that enables efficient programmatic ac-
cess to the information contained in the English and German
language editions of Wiktionary that has been developed at
the Technische Universität of Darmstadt by Gurevych et
al. [36].

JWKTL is based on freely available Wiktionary dumps7 of
different language editions in XML format. In order to pro-
vide a fast and easy access to the lexical semantic knowledge
in Wiktionary, the output of the parser is stored using the
Berkeley DB database library8. Then, for each Wiktionary
entry, the API returns a Java object, namely a wrapper,
which contains the extracted information.

Currently, the JWKTL API provides robust parsing of the
English and the German Wiktionary editions and extracts
structured information, including glosses, etymology, exam-
ples, quotations, translations, derived terms, characteristic
word combinations, lexical relations, as well as links to other
language editions of Wiktionary, Wikipedia articles, and ex-
ternal Web pages.

Figure 1 shows the architecture of JWKTL, and JWPL
that is the analogous Java-based library for having program-
matic access to the Wikipedia data source.

For our experiments, we downloaded the English Wik-
tionary XML dump file of 2009/04/29.

4
http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

5
http://secondstring.sourceforge.net/

6
http://www.ukp.tu-darmstadt.de/software/jwktl/

7
http://dumps.wikimedia.org/backup-index.html

8
http://www.oracle.com/technology/products/berkeley-db/index.

html

Figure 1: Architecture of JWPL and JWKTL [36].

First, we collect the top-1000 long-term user sessions ex-
tracted from the whole sorted query log as initial input data.
The top-1000 long-term user sessions are the 1000 sessions
containing the maximum number of issued queries.

Actually, we decided to drop the longest user session from
that collection because it contains 198060 queries over 3
months, which means that user issued on average about
2200 queries per day. This is a huge number, especially
if we consider that the second longest user session contains
8203 queries, which means an average of about 91 queries
per day, that is a more reasonable number. Moreover, even
the subsequent long-term sessions converge toward the or-
der of thousand queries over 3 months, that is order of tens
queries per day. Thus, it is possible that the very longest
user session is the result of some automatic query-issuer,
instead of a human user.

In order to analyze the behavior of our TSDP algorithm,
we extract 2 long-term sessions from the top-1000, i.e, top-2.
Moreover, we were also interested in verifying the results of
our TSDP algorithm when running on shorter long-term ses-
sions. Thus, we extract 2 user sessions of middle length (i.e.,
middle-2), and 2 of the shorter user sessions (i.e., bottom-2),
respectively.

Therefore, we executed the following runs of our TSDP
clustering algorithm on the top-2, middle-2, and bottom-
2 long-term sessions, using different weighted-features for
computing the distance function µ:

1. µ = α · µcontent + β · µtime
where (α = β = 0.5 and γ = 0);

2. µ = β · µtime + γ · µwiktionary
where (β = γ = 0.5 and α = 0);

3. µ = α · µcontent + β · µtime + γ · µwiktionary
where (α = 0.5 β = 0.2 and γ = 0.3).

and we used two different values for the threshold t: t1 = 0.6
and t2 = 0.75.

For comparative results, we also implemented a baseline
algorithm, which simply splits a long-term session using a
timeout cutoff of 30 minutes. As for the TSDP, we run
this baseline algorithm on the top-2, middle-2, and bottom-2
long-term sessions respectively.

Finally, we also run our TSDP algorithm on the whole top-
1000 long-term sessions for the sake of completeness and for
future evaluations. The output of this run is available for
downloads at the home page of one of the authors9.

9
http://miles.isti.cnr.it/~tolomei/tsdp-AOLtop1000-dump.tgz

5.2 Results
The obtained results can be evaluated according to a qual-

itative approach, which is typically based on human efforts
due to the lack of automatic quantity-based evaluators.

In this Section, we show and compare some sample clus-
ters obtained using either the baseline algorithm and the
other three runs of our TSDP algorithm on top-2, middle-2,
and bottom-2 long-term sessions.

The results shown in Table 1 highlight that our clustering
algorithm produces less clusters than the baseline solution.
This is due, mainly, to the ability of our technique to discover
sessions corresponding to tasks on which users take more
than the half hour considered by the baseline. As it is shown
next in this section, this is actually a valid point. Note
that, due to the introduction of the exponential score decay,
TSDP is also resilient to misclassifying a re-submission with
a different user goal as part of sessions in which the previous
instances of that query were submitted.

Table 2 shows two clusters obtained with either the base-
line or the TSDP, which mainly contains navigational queries
according to [3]. Moreover, the table indicates that sev-
eral interleaving tasks might be present within a 30-minutes
search session. However, using our TSDP algorithm, we can
extract a single-task session by considering also queries that
were issued after the timeout cutoff.

Looking at Table 3, which shows two related clusters shar-
ing both informational as well transactional queries [3], we
can state something similar to what we said about Table 2
before. In addition, here it is worth to notice the real benefit
of integrating Wiktionary for computing the distance met-
rics on which our TSDP algorithm relies. In fact, the simi-
larity relatedness between terms provided by Wiktionary is
evident if we consider that TSDP algorithm puts into the
same cluster two queries such as “80th birthday party favor”
and “birthday party idea senior citizen”10.

Again, Table 4 shows that our TSDP algorithm provides
better quality clusters with respect to the baseline, identi-
fying a single-task session. However, the task-based session
here identified by our algorithm spans across a large time
window, resulting into a “broad” session. Basically, a too
long task-based session could either mean that the user has
not achieved her goal during the whole session time or that
she is simply interested in accomplishing the same task by
re-formulating the same queries periodically [32]. However,
this behavior of our TSDP algorithm might be due to the
low value we assigned to the exponential time decay fea-
ture β when computing the function µ (β = 0.2). We plan
to investigate how to modify that behavior by testing our
algorithm with different values of β.

Finally, Table 5 provides an example in which both the
baseline and our TSDP algorithm output the same cluster
of queries. Moreover, if we look carefully at the query log,
we can see that the next query is “albany ny home sale”,
which it was issued at the following time-stamp “2006-03-
12 13:43:04”. This query obviously deals with something
similar with the previous two, i.e, looking for a home to
buy. However, neither the baseline nor our TSDP algorithm
was able to group those three queries into the same cluster.
In particular, the baseline algorithm clearly did not consider

10
Wiktionary entries for “80th”and“senior” show that they are related

and this strong relationship overcomes the poor correlation in terms

of time.

Table 1: Compare resulting clusters
session class α/β/γ threshold #queries #clusters avg #queries per cluster

top-2 baseline 0.6 3473 661 5.25
top-2 0.5/0.2/0.3 0.6 3473 238 14.60
top-2 baseline 0.6 3156 750 4.21
top-2 0.5/0.2/0.3 0.6 3156 266 11.86

middle-2 baseline 0.6 1128 392 2.88
middle-2 0.5/0.2/0.3 0.6 1128 479 2.35
middle-2 baseline 0.6 980 272 3.60
middle-2 0.5/0.2/0.3 0.6 980 506 1.93

bottom-2 baseline 0.6 366 120 3.05
bottom-2 0.5/0.2/0.3 0.6 366 204 1.79
bottom-2 baseline 0.6 272 107 2.54
bottom-2 0.5/0.2/0.3 0.6 272 195 1.39

Table 2: Looking for medical supplies: Baseline vs. TSDP
Baseline Queries TSDP Queries

Query ID Query String Time-stamp Query ID Query String Time-stamp
2053 vital medic suppy.com 2006-04-21 17:01:44
2054 vital medic supply.com 2006-04-21 17:01:53

2062 imatchup.com 2006-04-21 19:03:12
2063 yahoo.com 2006-04-21 19:10:57
2064 medic supply.com 2006-04-21 19:12:06 2064 medic supply.com 2006-04-21 19:12:06
2065 medicalsupply.com 2006-04-21 19:13:16 2065 medicalsupply.com 2006-04-21 19:13:16
2066 etxgem.accpaconline.com 2006-04-21 19:19:19
2067 medic supply.com 2006-04-21 19:20:50 2067 medic supply.com 2006-04-21 19:20:50

2069 vital medic supply.com 2006-04-21 19:50:43

Table 3: Looking for organizing a birthday party: Baseline vs. TSDP
Baseline Queries TSDP Queries

Query ID Query String Time-stamp Query ID Query String Time-stamp
645 person favor 80th birth-

day
2006-04-17 19:55:11

647 80th birthday party mo-
mento

2006-04-17 20:16:35

648 80th birthday party fa-
vor

2006-04-17 20:19:04

649 party favor 80th birth-
day party

2006-04-17 20:43:51

658 80th birthday corsage 2006-04-17 21:20:07
675 80th birthday craft 2006-04-18 18:39:51

676 queen heart crown 2006-04-18 18:45:25
677 shindz 2006-04-18 18:50:55
678 shindig 2006-04-18 18:50:59
679 birthday party idea se-

nior citizen
2006-04-18 18:57:43 679 birthday party idea se-

nior citizen
2006-04-18 18:57:43

Table 4: Looking for shoes: Baseline vs. TSDP
Baseline Queries TSDP Queries

Query ID Query String Time-stamp Query ID Query String Time-stamp
789 diesel yo yo oxford 2006-03-27 10:07:15
801 diesel yo yo oxford 2006-03-27 13:30:03
802 diesel shoes 2006-03-27 13:34:07
804 diesel shoes 2006-03-27 13:59:02
814 diesel 6pm.com 2006-03-27 15:02:10
867 diesel cloth u.k. 2006-03-28 14:06:48

1140 up 2006-04-04 08:03:27
1141 up track 2006-04-04 08:04:18
1142 lowel sun 2006-04-04 08:08:21
1143 metlife 2006-04-04 08:12:28
1144 aso 2006-04-04 08:17:50
1145 lowel sun 2006-04-04 08:18:51
1146 nhra 2006-04-04 08:26:32
1147 diesel shoes 2006-04-04 08:27:49 1147 diesel shoes 2006-04-04 08:27:49

1242 diesel shoes 2006-04-05 10:11:27
1244 diesel shoes 2006-04-05 10:23:01
1246 diesel shoes 2006-04-05 10:42:19
1252 diesel shoes 2006-04-05 12:27:54
2099 diesel shoes 2006-04-23 11:57:22
2847 diesel shoes 2006-05-10 13:49:16

Table 5: Looking for home for sale: Baseline vs. TSDP
Baseline Queries TSDP Queries

Query ID Query String Time-stamp Query ID Query String Time-stamp
12 buffalo ny 2006-03-12 12:03:12 12 buffalo ny 2006-03-12 12:03:12
13 buffalo ny home sale 2006-03-12 12:03:42 13 buffalo ny home sale 2006-03-12 12:03:42

that query to be a part of the same cluster because it was
issued after the 30-minutes threshold. Instead, regarding our
TSDP algorithm, we claim that it lacks of a concept-based
semantic knowledge, although the Wiktionary collection is
a valuable source of semantic information on a term-based
level. Therefore, we plan to investigate how to enrich our
model by introducing the Wikipedia knowledge base when
computing the distance metrics µ.

6. CONCLUSIONS AND FUTURE WORK
This paper shows a technique to split into user sessions

a very large, long-term log of queries submitted to a Web
Search Engine (WSE). Despite the large amount of papers
using the concept of user session, only a few of them ad-
dressed explicitly the problem of performing a correct split
of the stream of queries into sessions. We formally introduce
the Task-based Session Detection Problem as the problem of
extracting from a stream of query submitted by a user sub-
sequences of queries all related to the same user goal. We,
then, devise a clustering-based solution leveraging three dif-
ferent aspects of queries: content, submission time, seman-
tics. In particular, we have defined a methodology we called
Wiktionarization to infer the semantics of a query through
the analysis of the wiktionary entries of its composing terms.
Eventually, we qualitatively test the technique by comparing
the results obtained by our clustering algorithm with those
obtained by adopting the commonly used algorithm of split-
ting a query stream into sessions of queries submitted within
a 30 minutes timeframe. Results show the superiority of our
approach. It is, in fact, able to capture the similarity of

queries differing a lot in terms of content, but not in terms
of meaning.

As a first immediate future step, we will evaluate the pos-
sibility of inserting more metrics in the convex combination
shown in Equation 1. We are currently experimenting with
a metrics involving Wikipedia, in addition to wiktionary, as
a way to infer the semantics of a query also for those queries
not having terms defined in wiktionary. Also relevance-
feedback will be considered, clicked results and their rela-
tive content will be used to enrich a query definition. As a
drawback, the clustering algorithm will involve more com-
plex computations during the distances evaluation phase. A
study of an efficient, and scalable, algorithm for clustering
queries to detect user-based session will be subject of an-
other research work.

Apart from picking these“low hanging fruits”, we consider
this work not as a final results but, rather, as a starting point
from which a lot of new, and challenging, problems can be
defined. This novel way of searching the Web “by tasks to be
executed” instead of “by documents to be retrieved” has to be
enabled by new mechanisms, which should be able to deal
with Web-mediated processes. Our first research challenge
is to evaluate this belief by exploiting the results of analysis
done with the techniques introduced in this paper to devise
a way to associate meaningful semantic labels with the ex-
tracted tasks, i.e., task-based sessions. This large knowledge
base will constitute a starting point for building models of
users’ behaviors. Another research challenge is to devise
a novel recommender system that goes beyond the simple
query suggestion of modern WSEs. Our system has to ex-

ploit the knowledge base of Web-mediated processes and the
learned model of users’ behaviors, to generate complex in-
sights and task-based suggestions to incoming WSE users.

7. ACKNOWLEDGMENTS
This research has been partially funded by the IST FP7

European Project S-Cube Grant Agreement no. 215483.

8. REFERENCES
[1] D. Beeferman and A. Berger. Agglomerative clustering

of a search engine query log. In KDD ’00, pages
407–416. ACM, 2000.

[2] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis,
and S. Vigna. The query-flow graph: model and
applications. In CIKM ’08, pages 609–618. ACM,
2008.

[3] A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[4] S. Chien and N. Immorlica. Semantic similarity
between search engine queries using temporal
correlation. In WWW ’05, pages 2–11. ACM, 2005.

[5] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In Proceedings of IJCAI-03
Workshop on Information Integration, pages 73–78,
August 2003.

[6] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string metrics for matching names and
records. In KDD Workshop on Data Cleaning and
Object Consolidation, 2003.

[7] Fellbaum. WordNet: An Electronic Lexical Database
(Language, Speech, and Communication). The MIT
Press, May 1998.

[8] L. Fu, D. H.-L. Goh, S. S.-B. Foo, and J.-C. Na.
Collaborative querying through a hybrid query
clustering approach. In ICADL, pages 111–122, 2003.

[9] N. S. Glance. Community search assistant. In IUI ’01:
Proceedings of the 6th international conference on
Intelligent user interfaces, pages 91–96, New York,
NY, USA, 2001. ACM.

[10] D. He and A. Göker. Detecting session boundaries
from web user logs. In In Proceedings of the
BCS-IRSG 22nd Annual Colloquium on Information
Retrieval Research, pages 57–66, 2000.

[11] D. He and D. J. Harper. Combining evidence for
automatic web session identification. In IPM, pages
727–742, 2002.

[12] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice-Hall, 1988.

[13] B. J. Jansen and A. Spink. How are we searching the
world wide web?: a comparison of nine search engine
transaction logs. IPM, 42(1):248–263, 2006.

[14] A. Järvelin, A. Järvelin, and K. Järvelin. s-grams:
Defining generalized n-grams for information retrieval.
Information Processing and Management, 43(4):1005 –
1019, 2007.

[15] R. Jones and K. L. Klinkner. Beyond the session
timeout: automatic hierarchical segmentation of
search topics in query logs. In CIKM ’08, pages
699–708. ACM, 2008.

[16] U. Lee, Z. Liu, and J. Cho. Automatic identification of
user goals in web search. In WWW ’05, pages
391–400. ACM, 2005.

[17] K. W.-T. Leung, W. Ng, and D. L. Lee. Personalized
concept-based clustering of search engine queries.
IEEE TKDE, 20(11):1505–1518, 2008.

[18] D. Milne and I. H. Witten. Learning to link with
wikipedia. In CIKM ’08, pages 509–518. ACM, 2008.

[19] A. Monge and C. Elkan. The field matching problem:
Algorithms and applications. In In Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, pages 267–270, 1996.

[20] A. L. Montgomery and C. Faloutsos. Identifying web
browsing trends and patterns. Computer, 34(7):94–95,
2001.

[21] H. C. Ozmutlu and F. Çavdur. Application of
automatic topic identification on excite web search
engine data logs. Inf. Process. Manage.,
41(5):1243–1262, 2005.

[22] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[23] F. Radlinski. Query chains: Learning to rank from
implicit feedback. In In KDD, pages 239–248, 2005.

[24] V. V. Raghavan and H. Sever. On the reuse of past
optimal queries. In SIGIR ’95: Proceedings of the 18th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 344–350, New York, NY, USA, 1995. ACM.

[25] M. Richardson. Learning about the world through
long-term query logs. ACM TWEB, 2(4):1–27, 2008.

[26] G. Salton and C. Buckley. Improving retrieval
performance by relevance feedback. pages 355–364,
1997.

[27] G. Salton and M. J. Mcgill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., 1986.

[28] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[29] F. Silvestri, R. Baraglia, C. Lucchese, S. Orlando, and
R. Perego. (query) history teaches everything,
including the future. In LA-WEB, pages 12–22, 2008.

[30] A. Spink, M. Park, B. J. Jansen, and J. Pedersen.
Multitasking during web search sessions. IPM,
42(1):264–275, 2006.

[31] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison Wesley, us ed edition, May
2005.

[32] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts.
Information re-retrieval: repeat queries in yahoo’s
logs. In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 151–158,
New York, NY, USA, 2007. ACM.

[33] J. R. Wen, J. Y. Nie, and H. Zhang. Query clustering
using user logs. ACM TOIS, 20(1):59–81, 2002.

[34] D. R. Yahoo and D. E. Rose. Understanding user goals
in web search. In WWW ’04, pages 13–19. ACM, 2004.

[35] J. Yi and F. Maghoul. Query clustering using
click-through graph. In WWW ’09, pages 1055–1056.
ACM, 2009.

[36] T. Zesch, C. Müller, and I. Gurevych. Extracting

lexical semantic knowledge from wikipedia and
wiktionary. In LREC ’08, 2008.

[37] T. Zesch, C. Müller, and I. Gurevych. Using
wiktionary for computing semantic relatedness. In
D. Fox and C. P. Gomes, editors, AAAI, pages
861–866. AAAI Press, 2008.

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

6 Dubois, D. J.; Nikolaou, C.; Voskakis, M.: A model
transformation for increasing value in service networks
through intangible value exchanges. In : International
Conference on Service Science, ICSS2010, May 13-14,
Hangzhou, China, 2010 – accepted for publication.

A Model Transformation for Increasing Value in Service Networks
through Intangible Value Exchanges

Daniel J. Dubois
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Milan, Italy

e-mail: dubois@elet.polimi.it

Christos Nikolaou, Manolis Voskakis
Transformation Services Laboratory

University of Crete
Heraklion, Greece

e-mail: {nikolau,voskakis}@tsl.gr

Abstract—One of the main goals in service science is to find
efficient ways to analyze and increment the value in a service
network. The approach we propose in this paper is to increase
the agility of the system in such a way that the network and the
underlying business processes are able to spontaneously react
to changes in the requirements or in the environment. This is
done by making extensive use of knowledge transfer and
intangible interactions among network participants. The final
outcome is a transformation and analysis methodology that
may be applied to a wide variety of service networks with the
aim of finding possible reconfigurations for increasing
customer satisfaction, reducing transaction risks, and therefore
increasing the overall value of the network.

Keywords-component; value networks, business process
management, service networks, value analysis

I. INTRODUCTION
Modern business systems are becoming more complex

over time since the cost and speed of storing and exchanging
information is becoming lower and the number of
participants is becoming higher. These systems are not only
large, but they are set in an environment that is always
changing both in requirements and in the number of
participants. Therefore we need an intelligent way to analyze
them and provide a methodology to keep or improve the
value of participation into the system even in such dynamic
conditions. The ability of the system to react to
environmental perturbations is defined as the agility of the
system. In this context we propose a methodology for
transforming a business network, known also as a service
network, to improve the value for their participants even if
their requirements change over time or some participant acts
in a way that decreases the value of the network. The two
key technologies that we are exploiting are: (1) value
estimation based on revenues and offerings from each
participant; (2) risk reduction and transparency that emerges
after making extensive use of intangible interactions and
knowledge transfers. The methodology we propose has been
applied in the context of a traditional car sharing company
[20] and its possible transformation into a more “agile”
network. The final result is that a business network designer
has now a method for taking strategic decisions whether to
modify its business network or not, basing his decisions on

the environment/participants characteristics gathered over a
certain period of time.

Related work on this type of business networks, known
also as service value networks, or simply service networks
may be found in [15, 14, 8, 16, 5, 4, 13]. In these networks
entities are either companies or different roles within a
company, connections are offerings from one entity to
another. These networks may be agile, in such a case agility
is their level of flexibility in dealing with changing
requirements [17]. In [7] we can also find a definition of
value as “benefits of an agent accrued by his participation in
the network minus any costs involved in setting up the
network links directly and indirectly”. However there is a
problem with the actual evaluation of this “amount of
benefits”. The evaluation method we will base the rest of the
paper is explained in [9]: in this work all the interactions are
expressed as offerings and payments occurred per time unit,
then the total revenues for all offerings exported by each
participants are computed and used to estimate future
revenues. However according to this work the total value is
not simply a subtraction of revenues minus costs, but there is
another value-contributing component called Satisfaction
Index: it measures the perceived preference for a
relationship.

Other metrics for evaluating service networks are
proposed in the following works: the work from Parolini [15]
describes a methodology called “Value NET” for taking
strategic decisions on the service network by doing a
qualitative analysis over it to identify bottlenecks, dominant
relationships, and to predict the effects of possible
structure/relationship modifications; in Allee works [1,2,3,4]
there are other metrics related to the structure of the network
such as stability and risk, she also points out an analysis
methodology that focuses on the intangible exchanges from
the network; additional works that try to understand and
evaluate the value of services networks may be found in
[19,5,8,18].

Our way for evaluating value takes some inspiration
from all the works above, especially [9,1] since structure is
not stable in an agile dynamic network, therefore we will
focus on the measurement on actual revenues, costs, and
satisfaction of each participant of the network.

Another concept that this work relates to is the concept
of business ecosystem coordination mechanism [12], in
which business networks are kept together by so-called

“keystone companies” (for example eBay and Amazon)
whose objective is not to remove competitors, but to
cooperate with them by establishing some value-creating
virtuous circles and obtain an emergent value [11].

The final key concept taken from literature is the concept
of trust, defined as “an attitude of positive expectation that
one’s vulnerabilities will not be exploited” [10]. In this
context trust is needed when dealing with risk, and the usual
way to reduce risk is to increase the knowledge transfers
(intangible interactions) in the system. A possible way that
we will use for evaluating trust is to define it as the
willingness to pay for not having the risk (insurance), and
representing it as a value transfer (offering) from the Trustee
to another entity that guarantees for the Trustor.

The rest of this paper is organized as follows. Section II
discusses the problem. In Section III we propose a possible
methodology for dealing with such problem. Section IV
gives an example of how the methodology may be applied in
the context of a car sharing company. Finally Section V
concludes the paper and gives an overview of possible new
research directions.

II. PROBLEM STATEMENT
In this section we define a common pattern in service

networks and provide a problem formalization.

A. Model and Assumptions
Under the same definition of service network discussed

in Section I, we will consider the following simplified
pattern in which there are only two entities: a service
provider and a user (See Figure 1). The provider offers a
service and the user buys that service, obviously there may
be many competing providers and customers. The main
assumptions in this network is that the environment is not
controllable by participants (risk), there is lack of knowledge
for matching users to the most suitable service providers (no
transparency), and lack of knowledge for allowing a user to
act as a provider (no information flow).

B. The Problem
The problem we are facing is to find a qualitative and

quantitative way to decide if a network transformation that
tries to reduce risk, that tries to increase transparency among
participants, and that allows knowledge transfer, may be
more profitable than the original one. In particular we focus
our attention to the insertion of a new entity in the network
with the role of “matchmaker” between providers and users.
Its purpose is to reduce risk and allow knowledge transfer
using a reputation management system.

Figure 1. Service Network Fragment.

Figure 2. Transformed Network Fragment.

III. MODEL TRANSFORMATION
In this section we explain how the original network

transfer discussed in the previous section may be
transformed into a new fragment.

A. General Idea
The first model represents one of the traditional ways of

creating value. Common firms tend to focus on their
products and/or their services without sharing knowledge or
having an efficient feedback mechanism from their
customers. This way of business organization makes them
unable to self-adapt to market condition and therefore to
quickly respond to new challenges. To address these issues
and provide a possible transformation we had an idea of a
second network where each participant focuses on its core
competencies and on the appropriate alliances to increase its
profitability and flexibility to changes. These participants
will still act as (more specialized) service providers and
customers, but with a third type of participants that focuses
on the transfer or knowledge, on managing feedbacks, and
on making the emergence of such “agility” possible.

B. The Transformation
In the first network we have two roles: the service

provider who offers a service and the user who receives the
service (see Figure 1).

In the second model we have one new entity: a broker
who supports and coordinates the interactions between the
provider and the user. The broker provides to the user all the
possible providers of the service he asked. Moreover the
broker cooperates with the providers who advertise their
services or products via the broker. In addition the broker
collects user feedbacks and informs future users about the
quality of available service providers using a reputation
mechanism. This is very important because it reduces the
risk for the users of being cheated. Furthermore the services
offered above increase users’ satisfaction and loyalty, which
means more value for the network. To keep the network
simple we are omitting some entities that produce some costs
and revenues (for example labor costs, depreciation, utilities,
and government incentives), however the associated value
exchanges will be considered as inner costs and revenues.

C. Value Evaluation
In this subsection we show how to estimate the value in

several situations, this information will then be used to take
decisions about the profitability of participating in the
network. The outcome of these calculations will be to find

out under which circumstances it is profitable for an entity to
participate in the network. We define first some parameters
that will be used in the final analytical definition of value.
Each of these parameters is evaluated after every specified
time interval that should be properly chosen by the business
process manager based on the situation. To distinguish
different time intervals we use the notation T1, T2, … TN. We
define also

k
ijc as the cost component k that participant i

pays to j to consume his services, k
ijIc as the inner costs

associated to the same transaction (which correspond to
payments to entities that are not represented in the network,
such as labor cost and utilities), and finally

k
jiIp

as the inner

profits that come from external entities involved in the
process such as, for example, government incentives.
Revenues are the payments that each participant receives for
the services he offers. Revenues of an entity i coming from
another participant j are defined as the amount the other
participant pays to consume services that come from entity i,
plus the inner profits associated to the same transaction:

.)()(∑ +=
κ

k
jiIpk

jicNTijR (1)

Costs are the amount of money each participant has to
pay to be able to participate in the network and offer his
services. Costs of an entity i coming from another participant
j are the payments for the services that node i consumes from
j during his participation in the network, plus the inner costs
associated to the same transaction:

.)()(∑ +=
k

k
ijIck

ijcNTijC (2)

Satisfaction index is an important factor that measures
the importance of a relationship and the willingness to repeat
it. Its analytical definition and evaluation depends on the
actual problem.

Past values of Revenues, Costs, and Satisfaction index
can be used to predict future expected values of the same
parameters using, for example, autoregressive with mobile
average models as done in [9], or simply using the last actual
evaluation of the parameters, as we have done in Section IV
since past data information is limited. To refer to the
expected values we simply put a dash on top of the
parameter name.

Finally the total value for each participant i at time TN is
the sum of the value that comes from the relationship with
any other participant j:

).()(N
j

ijNi TvTv ∑= (3)

Where the definition of the relationship value vij is
different for customers (entities that do not have direct
revenues) and other entities. For customers it is defined this
way:

).,(: k
ijCk

ijSATk
ijuijv δ= (4)

where u(…,…) represents the utility function that measures
the value of the customer who uses the service.

For all the other entities it is defined this other way:
)).()(()(NTijCNTijRijSATNTijv −= δ (5)

These definitions are different because the final purpose

of a customer is simply to obtain the service in the most
convenient way, and the convenience is expressed by the
(problem-dependent) utility function definition. For the other
entities it is measured by the expected profits (defined as
expected revenues minus costs) times the value of the
relationship (expressed by the satisfaction index). If the
expected profits are smaller than the ones of competing
networks, then the potential participants will not enter and
the service system has a questionable future. It is important
to note that the time horizon considered for deriving the
value of a service system is a parameter that has to be
properly set; it must be long enough to compensate for the
changes of the dynamic system and short enough to offer the
right incentives for updating the participants’ strategies.

IV. CASE STUDY: A CAR SHARING COMPANY
This section shows how the methodology we described in

the previous section can be applied to estimate the value of
each participant. In our example we will use the car sharing
company of Milan. The car sharing system is a system for
motorized personal mobility that is alternative to traditional
public/private transportation. The system gives the
opportunity to the customers to use a car from half a hour to
several days and the access to the service is completely
automatic.

A. Traditional Car Sharing
The traditional car sharing has two entities. The car

sharing provider, who offers car sharing services and owns
all the cars; and the user who consumes the service. In this
case the provider is unique and the customer may either
cooperate with him or leave the network.

B. Car Sharing after Transformation
In the second model we have three different roles: a

provider, who offers his car(s) for sharing and can be either a
single car owner or a company; a user, who chooses to use
car sharing service system instead of buying a car; a broker,
who collects information from both the providers and the
users and coordinates their cooperation. The broker gives to
the users information about the availability of cars, and to the
providers information about the availability of customers.
After this transformation, more participants will be able to
join because any car owner may become a provider and
therefore the network will be able to spontaneously grow and
serve more users with a more differentiated offer.

C. Model of Value
In this section we present the equations we used to

estimate the value of this service system. All the symbols are
explained in Table 1 and costs/revenues/values, which are
partly derived from publicly available data [20], are in Euros.
For the traditional model revenues of the provider depend on
the usage of the cars from the customers:

.)(NciNugPkhPhFcR provider ×+××+×+=

(6)

The costs of the provider depend on the number of customers
and the car maintenance cost:

.
)(

)(

NuOuNurOrNcOcOf
NuvpPcPNckPm

gNckmaPpPiNcC

b

provider

×+××+×++
+××+++××+

+××++++×=

(7)

The expected value of the provider is the difference between
the revenues and the costs times a satisfaction index of 1
since there is only one provider and customers are assumed
equal. The expected value of the user, defined using the
custom utility function below, depends on his satisfaction
and other parameters that have to do with the cost of using
the service:

.
)(

:v),(c NukPkhPhFc
Supk

ijCk
ijSATk

iju
××+×+

== δ (8)

In the new model we have 3 entities. So we will estimate
values and costs for each one of them. Total revenues of the
provider are the sum of all the revenues he receives from
both user and broker. Revenues of the provider coming from
the broker are Rp,b=0, revenues of the provider coming from
the user depend on the number of the users, the hours and
the kilometers that the each user will use the car:

Nc.Ph+OuNcNc+hkPkR p,u ×××××= (9)
Total costs of the provider are the sum of the costs coming
from the broker and the user. Costs due to the broker are the
annual fee paid from the provider to the broker and the
commission that the broker receives for any transaction
between the provider and the user:

.p,up,b RcFpC ×+= (10)
Costs due to the user are the costs of the depreciation of the
car due to the car sharing with the user:

Nu.v+p+Pc)(P

Pm+Nu(a+m+Pp)+kNcC

b

p,u

××+

×××=
 (11)

Consequently total costs of the provider are:
.p,bp,up + CCC = (12)

Expected revenues of the provider are:
.SpbSsu+ RR p,bp,upR ××= (13)

The expected costs of the provider are:

Ssu.Spb+CCC p,up,bp ××= (14)
Total revenues of the broker are the sum of the revenues
coming from the other 2 entities. The revenues of the broker
due to the provider are:

 RNp+cFpR p,ub,p ××= (15)

and the revenues coming from the user are:
Nu+FcRb,u = (16)

consequently:

ubpbb RRR ,, += (17)
Total cost of the broker is the sum of any costs that broker
has, to have the ability to offer his services to the other
participants:

i.i+OurOf+OrCb ×××= (18)

The expected cost of the broker is the cost due to the user
multiplied by the satisfaction of user from their relationship
plus the costs due to the provider multiplied with its
satisfaction:

.,, SbppbCSbuubCbC ×+×= (19)

TABLE I. PARAMETERS USED IN THE CAR SHARING MODELS

Name Sym.
Values
Mod. 1

Values
Mod. 2

Number of cars Nc 200 200
Insurance Pi 2000 1000
Number of customers Nu 4000 4000
Depreciation per car a 3600 900
Maintenance per car m 1500 375
Annual cost of parking per car Pp 4000 1000
Total km per car

k 5000 5000
Annual fee of the customer Fc 120 60
Annual fee of the provider Fp 0 60
Price per hour Ph 2.50 2.50
Hours per year h 300 300
Price per km Pk 0.60 0.60
Gas consumption per km per car g 0.20 0.20
Price km maintenance per car Pm 0.05 0.05
Bank fee per invoice Pb 0.10 0.10
Controvercy management per
invoice Pc 1 1
Total invoices per customer v 6 6
Fixed operational costs
(information system) Of 40000 40000
Operational costs per car Oc 200 200
Operational costs per customer Ou 50 50
Government incentives per car i 1000 1000
Operational costs per reservation Or 1 1
Reservations per customer r 50 30
Postage cost per invoice p 0.50 0.50
Number of providers Np 50 50
Commission of broker c 0.30 0.30
SAT index of broker (from
provider) Sbp 1 1
SAT index of broker (from user) Sbu 1 1
SAT index of provider (from
broker) Spb 1 1
SAT index of provider or seller
(from user) Ssu 1 1
SAT index of user (from provider
or seller) Sup 0.1 0.2
SAT index of user (from broker) Sub 0.2 0.2

Expected revenues of the broker are:

. Sub Spb+ RR b,ub,pbR ××= (20)

Finally the cost of the user is the sum of the costs that are
due to the provider and the broker. The cost of the user due
to the broker is:

.NuFcCu.b ×= (21)
The cost of the user due to the provider depends on the
kilometers and the hours he will use the car sharing service
and the gas he will consume:

.Nc Nc+PikNc+ghNc+PhPkkCu,p ×××××××=
(22)

The expected value of the user is calculated with this custom
utility function:

.
u.pu.b

c C
Sub

C
Sup:v)k

ij,Ck
ijSAT(δk

iju +== (23)

D. Value Analysis
We calculated all the values for both models using the

values of Table 1. Then we have seen that the variation of
some parameters of such table is able to change the analysis
results, and therefore the winning network.

The variation example we will show focuses on the fixed
costs (maintenance, insurance, parking, and depreciation): in
the first network all these costs are charged to the user, while
in the second network it is assumed to be lower since the car
is not shared 100% of the time (providers in the second
model can decide when to share their car and when to
reserve it for their personal use). So if it is shared for
example 25% of the time (and the rest of the time is used for
their personal use), we can assume that fixed costs are 75%
less with respect to the first model. The results of the
simulation (as can be seen in Table 2) show that if fixed
costs in the second model are 25% of the first model, then
the second model is more profitable for all the participants,
while if the fixed costs are 50%, than the first model would
be better (because some participants have negative value). In
conclusion we expect that the second network would become
better than the traditional one if users that already own a car,
start sharing their car when they are not going to use it, so
that only a relatively small amount of fixed costs is charged
to other users.

TABLE II. EXPERIMENTS ON VALUES WHEN CHANGING THE COSTS

Increase in
Expected Values
w.r.t. to the first

Fixed costs of 2nd
model are 25%
w.r.t. the first

Fixed costs of 2nd
model are 50%
w.r.t. the first

User 1st model 65 (normalized) 65 (normalized)

User 2nd model 1439 (normalized) 1258 (normalized)

Provider 2nd model 121540 (Eur) -333460 (Eur)
Broker 2nd model 168000 (Eur) 168000 (Eur)

V. CONCLUSIONS
In this paper we presented a methodology for

transforming a recurrent pattern in service networks to
increase their agility. We have seen that, by collecting
information on the actual configuration of the network and
its context at any given period of time, it is possible to guide
the service network evolution toward a more valuable
configuration. This may be done analyzing direct context
characteristics (such as the internal costs for providing some
services), and indirect ones (such as the reaction of other
participants to external changes). The study is supported by a
technique for estimating the value and therefore to support
the final decision whether to reconfigure the network or not.

Possible future research is the development of software
modules to automate such transformation in current Business
Process Management architectures. Another possible
research direction can be to find and study new

transformation patterns and to improve the value estimation
technique.

ACKNOWLEDGMENT
This research has been partially funded by the European

Community's FP7/2007-2013 Programme, grant agreement
215483 (S-Cube).

REFERENCES
[1] V. Allee. “A value network approach for modeling and measuring

intangibles,” Proceedings of Transparent Enterprise Conference,
Madrid, 2002.

[2] V. Allee. “Reconfiguring the value network,” Journal of Business
Strategy, vol. 21, num. 4, pp. 36–39, 2000.

[3] V. Allee. “A value network approach for modeling and measuring
intangibles,” Proceedings of Transparent Enterprise, Madrid, 2002.

[4] V. Allee. “The future of knowledge: Increasing prosperity through
value networks,” Butterworth-Heinemann, San Francisco, 2003.

[5] Barlow and F. Li.. “Online value network linkages: integration,
information sharing and flexibility,” Electronic Commerce Research
and Applica tions, vol. 4, pp. 100–112, 2005.

[6] R. C. Basole and W. B. Rouse. “Complexity of service value
networks: conceptualization and empirical investigation,” IBM
Systems Journal, vol. 47, num. 1, pp. 53-70, 2008.

[7] F. Bloch and M. O. Jackson. “The formation of networks with
transfers among players,” Journal of Economic Theory, vol. 133,
num. 1, pp 83–110, 2007.

[8] D. Bovet and J. Martha. “Value nets: breaking the supply chain to
unlock hidden profits,” Wiley, 2000.

[9] NS Caswell, C. Nikolaou, J. Sairamesh, M. Bitsaki, CD Koutras, and
G. Ia- covidis. “Estimating value in service systems: A case study of a
repair service system,” IBM Systems Journal, vol. 47, num. 1, pp. 87–
100, 2008.

[10] D. Gambetta. “Can we trust trust. Trust: Making and Breaking
Cooperative Relations,” University of Oxford, pages 213–237, 2000.

[11] M. Iansiti and R. Levien. “Strategy as ecology,” Harvard Business
Review, vol. 82, num. 3, pp. 68–78, 2004.

[12] M. Iansity and R. Levien. “The keystone advantage: What the New
Dynamics of Business Ecosystems Mean for Strategy, Innovation,
and Sustainability,” Harvard Business School Press, 2004.

[13] Kothandaraman and D. T. Wilson. “The future of competition value-
creating networks,” Industrial Marketing Management, vol. 30, num.
4, pp. 379–389, 2001.

[14] Normann and R. Ramirez. “From value chain to value constellation:
designing interactive strategy,” Harvard business review, vol. 71,
num. 4, pp. 65–77, August 1993.

[15] C. Parolini. “The value net: A methodology for the analysis of value-
creating systems,” Proceedings of the Strategic Management
Conference, 1996.

[16] F. K. Pil and M. Holweg. “Evolving from value chain to value grid,”
MIT Sloan Management Review, vol. 47, num. 4, p. 72, 2006.

[17] B. Rouse. “Agile information systems for agile decision making,”
Agile Information Systems: conceptualization, construction, and
management, 2006.

[18] Straub, A. Rai, and R. Klein. “Measuring firm performance at the
network level: A nomology of the business impact of digital supply
networks,” Journal of Management Information Systems, vol. 21,
num. 1, pp. 83–114, 2004.

[19] B. Wetzstein, et al. “Towards monitoring of key performance
indicators across partners in service networks,” In Workshop on
Service Monitoring, Adaptation and Beyond, 2008.

[20] Guidami s.r.l., “IoGuido: Websites of Milan Car Sharing
Companies,” (1) http://www.carsharingitalia.com (2)
http://www.guidami.net (italian language).

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

7 Cappiello, C.; Pernici, B.: QUADS: Quality-Aware Design
of dependable Service-based processes. To be submitted to
Transactions on Software Engineering.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 1

QUADS: Quality-Aware Design of dependable

Service-based processes

Cinzia Cappiello and Barbara Pernici

Abstract

Service-based processes are typically executed by composing and invoking a number of available

Web services. Such services are often not under the control of process designers since they are offered

by external providers. This introduces critical dependencies between service-based processes themselves

and the services they are exploiting. These last ones, in fact, could fail without notice or be unavailable

for undetermined time intervals. Failures may be of various nature and they can concern either the

inability to provide a given service or a loss in the service quality. Therefore, in service-oriented systems

in which applications are required to have a high level of autonomy, processes should be appositely

designed to satisfy dependability requirements even in faulty situations. The process dependability could

be improved by enriching the design of the applications with monitoring features, repair mechanisms in

order to trigger suitable corrective actions when failures occur, and/or other preventive actions able to

decrease the risk of failure. The literature proposes various corrective and preventive strategies to improve

dependability and their effectiveness depends on the application context and users’ requirements. In fact,

each strategy is characterized by different properties (e.g., complexity, execution time, architectural

constraints) and its impact on the process can be positive for some features, but also negative for other

ones. Taking into account all these elements, we advocate that in order to cover all needs that may arise

and guarantee a dependable application, the most suitable strategies should be selected and programmed

at design time. For this reason, in this paper we propose a design for dependability approach that

supports process designers in the usage of the available preventive and corrective improvement actions

that enhance dependability.

Index Terms

service-based process, dependability.

The authors are with the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano,

Italy

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 2

I. INTRODUCTION

In many software applications, users tend to require the full-time system effectiveness and

errors, faults, or systems crashes are not tolerated. The ability of a system to deliver services than

can be trusted is called dependability [1]. Dependability is an aggregate concept that considers

the following attributes: (i) Reliability: the probability that a system remains operational over

a specified period of time; (ii) Availability: the probability that a system is operational at a

specified point of time; (iii) Repairability: probability that a non-operational (failed) system can

be made operational within a specified period of active repair time [2]. The three concepts

are strictly correlated. In fact, in order to increase system reliability, it is necessary to adopt

mechanisms that guarantee system availability and/or mechanisms that minimize repair time.

The development of a dependable system should include techniques to prevent faults, to correct

errors, and to reduce the number or severity of faults. These techniques are in general more

effective in environments where an extensive knowledge about the software applications and

the running context is available. However, there are systems such as the ones based on Web

services in which the behaviour of the computing systems is often variable and unpredictable

and the realization of a dependable application cannot only rely on an extensive analysis of the

process and the related execution environment. In fact, in this context, business processes are

often executed by means of service-based applications that are able to offer complex and flexible

functionalities in widely distributed environments by composing different types of services. Such

services are often not under the control of systems developers, but they are simply invoked to

obtain a specific functionality. Therefore, while the service approach, on the one side, improves

the processes in terms of interoperability and flexibility, on the other side, it introduces some

issues related to possible unexpected service behaviors. The literature proposes a good number of

approaches that deal with self-healing or self-adaptation of service-based applications to manage

unforeseen changes. Most of the contributions address this issue by including in the service code

exceptions handlers or rules that are triggered only when some specific and known events happen.

Clearly, this approach does not cover all the needs may arise since all the available techniques

are not considered. The approach presented in this paper is based on the idea that at design

time the process designer should model the business process by introducing suitable techniques

able to guarantee the process dependability. We assume that the service-based processes will

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 3

be managed by a platform, similar to the one described in [3], that allows the adoption of

techniques to enable a flexible and adaptive execution. In such scenario, the available techniques

for the improvement of the dependability are various and include both preventive and corrective

strategies. In fact, dependability can be guaranteed by means of permanent process modifications

that aim at avoiding failures or repair actions that are able to restore the system when a failure

occurs. The selection of the most suitable strategies to adopt in a specific process is not a

trivial task. It requires a thorough analysis of the characteristics of the available strategies and

of their impact on the process. To the best of our knowledge, the literature does not provide

any design principles and gudelines to support the process designer in this task. For this reason,

this paper goes in the direction of the design for dependability approach and aims at offering

a methodology to support the selection of the preventive and/or corrective strategies to adopt

and thus to define the way in which the business process should be modified. The paper is

organized as follows. Section II presents the rationale of the approach presented in the paper.

Section III describes how processes are modeled and executed in a service-oriented environment.

Section IV describes all the most important dependability improvement strategies that can be

considered in the service-based applications field. Section V presents the overall methodology

that aims at supporting the process designer in the process design and its maintenance over time.

Finally, Section V-E discusses some examples able to show the weaknesses and strenghtness of

the proposed methodology.

II. QUALITY-AWARE DESIGN OF SERVICE-BASED PROCESSES

Service-based applications are based on processes that are the result of the composition of

different services selected at runtime. Service selection should guarantee the invocation of the best

services available, taking into consideration process constraints, but also end-user preferences

and the execution context. Web services are usually selected from a set of functionally equivalent

services, that is, services which implement the same functionality but may differ for nonfunctional

characteristics, i.e., Quality of Service (QoS) parameters [4]. Most of the time, the service

discovery is mainly driven by non-functional properties of the services. In fact, assuming that the

functional requirements are satisfied, the system should select the set of services that maximizes

the process quality and also satisfies some quality constraints specified on the basis of the users’

requirements or inferred from the characteristics of the execution context. Those constraints

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 4

usually define the minimum value that is considered acceptable for a specific quality parameter

or provide information about the relevance of each quality dimension from the users’ perspective.

The set of the suitable services to compose should be redefined each time that some changes

occur. In fact, as stated in Section I, in the service-oriented approach, it often happens that

services change without notice. Changes can be due to modifications related to both functional

and non-functional aspects. The set of services should be also redefined in case of process

redesign. In fact, the process redesign could alter the need for services or could simply affect

the control worklow and in both cases changes may impact on the overall quality. In the former

case, the insertion or elimination of services modify the values to consider in the quality

evaluation while in the latter case changes in the workflow (e.g, insertion of check points,

activities’ parallelization or sequentialization) modify the way in which the quality values should

be aggregated to calculate the overall process quality.

Since the process quality is one of the main element to consider in the selection of the services

and in the redesign choices, we want to use it as the base for the design for dependability approach

discussed in this paper. In our perspective, process quality could be one of the main drivers for

the selection of the dependability improvement strategies to adopt in a service-based process.

III. PROCESS AND SERVICE MODEL

This section we formally describe the service-based process model along with its QoS criteria.

In particular, Section III-A provides the process and service definitions and discuss how these

concepts are related in a service-based application. Section III-B specifies the set of the most

relevant quality dimensions to consider in the process quality assessment and provides a formal

model for their description and management.

A. Process and service specification

A business process BP is generally defined as a collection of related, structured activities

or tasks that produce a specific service (or product) to serve a particular goal specified by

one or more final users. Processes are usually modelled at a business level independently from

implementation technology and platforms [5]. In fact, the process designer defines the workflow

able to provide the desired output by linking simple activities through control structures (e.g.,

sequence, choice, cycle, or parallel) to form tasks ti. Therefore, a business process BP results

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 5

from the combination of a set T of tasks ti, which correspond to significant portions or stages of

the process. A task can be seen a small procedure able to produce specific outputs by elaborating

inputs received by other process activities. We can provide the formal definition of a task ti ∈ T

as follows:

ti = 〈ni, INi, OUTi, fi〉 (1)

where: ni is the task name; INi and OUTi are the sets of task inputs and outputs, respectively;

fi : INi → OUTi is the transformation associated with the task.

Considering the implementation technology, in service-oriented environments, a business pro-

cess can be executed invoking services that can also be selected at run time [4]. The definition

of service S imposes a series of constraints such as: (i) services are self-contained, that is, they

do not require context or state information of other services; (ii) services are connected to other

services and clients using standard, dependency reducing, decoupled message-based methods

such as XML document exchanges. Moreover, a service is a conceptual unit of work that takes

one or more inputs and creates an output perceived as a tangible value by clients. A process

can be composed of one or more services connected by control structures that constitute the

orchestration mechanism.

Considering the provided definitions of “service” and “task”, it is possible to establish a

correspondence between these two concepts. More formally, at design time, a task ti can be

defined as the abstract representation of corresponding service operations to be executed. At

run-time each task ti has to be bound to a selected service that we call concrete service csj

able to provide the desired functionalities. Each task ti is characterized by functional and non-

functional (e.g., quality features) requirements. The former refer to the operations that should

be performed while the latter define expectations about quality aspects. Since several service

providers may offer similar services, the binding function has to consider the set of the published

concrete services CS and extracts the set CSi ⊂ CS that includes only the concrete services csj

characterized by functional and non-functional features suitable for the execution of task ti. In

details, each concrete service csj is defined together with the set of its implemented operations

OPj . We will refer to csj,o in order to define the invocation of the operation o ∈ OPj of Web

service csj . At run-time, each task ti is then associated with a corresponding concrete service

operation csj,o and the set of couples < ti, csj,o > defines the process execution plan EP .

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 6

B. Quality model

1) Quality dimensions for processes: As described in Sections II and III-A, non-functional

requirements define preferences and constraints about quality criteria that can be associated

with the process execution. Therefore, the selection of the concrete services may depend on the

quality features that the process should guarantee in order to satisfy the users’ requirements.

In general, each quality dimension qdk ∈ QD can be described as 〈nk,Vk〉, where nk is the

quality dimension name and Vk corresponds to either categorical or interval values. In the former

case, the values V will be included in a specific admissible vector AV = (vk1...vkh) while, in

the latter case V will be defined by its extremes, i.e., V = [vkmin, vkmax]. The actual values of

the quality dimensions can be obtained at the execution time. In the service selection phase the

process designer analyzes the quality capabilities that are the estimated quality values that the

service provider publishes together with the operational description of the service. The service

is considered as a candidate concrete service csj if the quality capabilities satisfy the service

quality requirements expressed by the process designer and the other process stakeholders.

Quality dimensions are various and can be defined at different architectural levels (i.e, from

hardware to user level). For our purposes, we refer to the quality dimensions commonly used in

the current literature [4][6][7]. It is possible to identify a set QD of relevant quality dimensions

qdk that can be decomposed in a set of (i) data quality dimensions (DQ), (ii) process quality

dimensions (PQ), and (iii) provider quality dimensions (ProvQ).

Data quality dimensions aim at evaluating a data collection with regard to users’ requirements

[8]. In a process, information is used either to control the process flow or to produce values for

the users. Information is a relevant aspect in the quality evaluation and it cannot be useful if it

is incorrect, incomplete or just not updated. In fact, the basic data quality criteria to guarantee

are accuracy, completeness, and timeliness. Accuracy and completeness assess data along their

correctness and numerical extension [9][10]. More formally, accuracy accj is defined as the

proximity of a value v returned by csj to a value v’ considered as correct [9]. Completeness

compj is defined as the degree to which a given data collection output of csj includes all the

expected data values. Timeliness timej evaluates the validity of data along time [11]. It expresses

how current exchanged data are for the subsequent services of csj or users that receive them.

From this perspective, data can be useless because they are late for a specific task.

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 7

The measures of these data quality dimensions are considered as real numbers in the range of

[0,1], where 1 represents the most desirable score. By considering the introduced dimensions,

a low data quality level can be determined by value mismatch, missing data, and/or delay in

response.

Process quality dimensions are related to the environment in which the process is executed and

also evaluate the suitability of the technological infrastructure. Process quality criteria include

availability and execution time. Availability avj can be defined as the probability of the process,

and thus of the concrete services, to be operational when they are invoked. Availability is a

number in the range [0,1]. Execution time etj considers the time interval between the time

instant in which csj is invoked and the time instant in which the result is obtained. Execution

time is usually proportional to the functional complexity of the service. In order to evaluate the

suitability of temporal information, as discussed in [12] we need explicit temporal information,

which are a maximum process duration and response times of asynchronous relationships between

an invoking and a receiving node. We can apply [min, max]-intervals for all kinds of temporal

information, given in a specified basic time-unit, which will be minutes or seconds. Expected

service response times may stem from empirical knowledge (extracted from logs) or be estimated

by experts.

Data and Process quality dimensions are strictly related to services and to the infrastructure

in which they are executed. It is also necessary to consider the providers involved in the service

provisioning. In fact, we can distinguish a process owner that is responsible for providing the

whole service-based application and the different providers associated with the invoked concrete

services. In order to evaluate providers’ trustworthiness that can be the discriminant driver in

the service selection phase, it is possible to consider two provider quality dimensions, that are:

reputation and fidelity. Reputation repj provides a preliminary value of the reliability of the

service by considering an evaluation of its provider. In general, reputation is the public opinion

about the character or standing (such as honesty, capability, reliability) of a provider [13]. It is an

objective measure that can be assessed by using a reliable and efficient mechanism to get service

rankings from the execution environment [14]. in fact, the reputation of a service increases if

its execution satisfies the requirements.

Fidelity fidj considers a measure to define the degree of relationship between the process

owner and the provider of a concrete service. If the process owner contacts often the same

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 8

providers, and thus has a strong relationship with them, fidelity can be a relevant driver for the

selection of the concrete service from the service registry.

2) Quality Capabilities: Quality capabilities reflect the quality levels that can be guaranteed

by a Web service provider. We define a capability cjk as a restriction on the range of admissible

values of the quality dimension qdk for the j-th concrete service. More precisely:

cjk = 〈Offjk, pjk, P ricej〉 (2)

where Offjk ⊆ Vk represents the restriction on the range of admissible values. In this way,

the provider defines, given a quality dimension, which are the actual values that are guaranteed.

In addition, the provider also defines the price pjk function: Offjk → Pricejk that maps the

dependency between the offered values and the price per use associated with such a provisioning.

According to this model, the provider, during the publication process of a Web service, will

specify the set Cj of the supported service capabilities. Therefore, a concrete service can be

defined as:

csj = 〈nj, INj, OUTj, fj, Cj〉 (3)

where: nj is the task name, INj , OUTj and fj correspond to the same fields used in the task

description (see Equation 1) and Cj describes the non-functional properties.

At run time, the description of the concrete service will be associated with its instance csz
j .

Each instance can be described as the following:

csz
j = 〈nj, IN

z
j , OUT

z
j , C

z
j 〉 (4)

where Cz
j contains the quality values vz

jk for the k-th quality dimension and measured during

the z-th execution of the j-th concrete service.

3) Quality Requirements: At the design time the process designer should associate each task

ti with the most suitable concrete service operation csj,o considering the service capabilities

and the requirements of all the process users. Formally, regarding the specification of the non-

functional requirements, we can distinguish two classes of users: final users (FU) and process

owners (PD).

The final users specify their requirements on the DQ and PQ dimensions associated with

the whole process since they ignore the process decomposition and the availability of several

concrete services per each process task. Process owner instead specifies the requirements for all

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 9

the qdk ∈ QD = DQ∪PQ∪ProvQ associated with each task ti. Anyway, both types of users

operate a restriction on the admissible range of values but at different levels. In details, the FU

requirements related to the quality dimension qdk, associated with the whole business process,

can be specified as follows:

FURequk = R(Fuu, qdk) = (5)

where Fuu ∈ FU and FURequk ∈ V represents the restriction on the range of admissible values.

This restriction corresponds to the values required by the user for the given quality dimension.

The process designer PD defines quality requirements for each task ti as described in the

following:

Reqik = R(PO, ti, qdk) (6)

where Reqik ∈ V represents the restriction on the range of admissible values for the dimension

qdk related to the task ti. Theoretically, the service execution should satisfy the quality require-

ments and vz
jk is the actual value of the quality dimension in the z-th execution and should be

also vz
jk ∈ Reqik.

IV. STRATEGIES TO IMPROVE PROCESS DEPENDABILITY

Dependability of a computing system is the ability to deliver service that can be trusted [1]. A

service is correctly delivered when it provides the desired functionality without failures. A system

failure is an event that occurs when the delivered service deviates from correct service [15]. At

run time, the system may fail for situations that cause unexpected behaviour such as errors,

changes, and inefficiencies. In fact, the process execution may be affected by predictable and

unpredictable exceptions, which cannot be anticipated at design time or for which the additional

costs for considering them at design time would not justify their implementation. In order to

avoid the failure of the process, also for unanticipated exceptions, process designers should

consider possible actions to support the failures detection and recovery.

Thus, a systematic description of the concepts of dependability consists of three parts: the

threats to, the attributes of, and the means by which dependability is attained [15]. The threats

include all the types of failures that can occur. The attributes refer to the dimensions that are

related to the dependability concept as described in Section I. Finally, the means include all

the techniques that can be used and combined to develop a dependable computing system. The

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 10

literature presents different dependability improvement strategies that at run-time are able to

prevent failrues, react to inefficiencies by correcting errors, or providing alternative execution

paths (e.g., [16] [17] [18]). The set of strategies to improve the process dependability DIS

contains different mechanisms whose efficiency is strictly related to the execution context and

to the process functional and non-functional requirements. Therefore, for each pair < ti, csj,o >,

a set of suitable improvement strategies DISij ⊂ DIS is defined. Each element disijr ∈ DISij

identifies a possible dependability improvement strategy suitable to react at unexpected events

or changes associated with the related task ti.

It is possible to divide the set of strategies DIS in two disjunct subsets: DISp as the set of

preventive strategies able to modify the process workflow in order to prevent failures and DISc

corrective strategies able to change the process workflow in order to react at some occurred faults.

The former are adopted in order to address a weakness in a system that is not yet responsible

for causing nonconforming service. These mechanisms are very important and designers provide

them in order to enable a system to react to some exceptional situations that is possible to predict.

Each strategy can be associated with a task and invoked under some a-priory known conditions.

Actually, such strategies may be considered just as a part of the whole workflow model: a

preventive action is just a scope of activities that are invoked at a given time moment if some

conditiona are fulfilled. The main disadvantage of the prevention is that it can not cover all cases

and all exceptional situations that are related to the environment in which an activity is executed.

In fact, the condition specifying when the preventive strategy should be executed depends only

on the internal objects within the handled scope. It never depends on the environment variables

within the whole workflow or on other scopes. In this work, we consider also the case in which

the system automatically reacts to some expected and unexpected faults. To this aim, corrective

strategies are needed to generate repair plans at run time or, alternatively, to suggest manually

performed ad-hoc operations. These strategies must be able to react to changes by executing a

set of simple actions in a given order bringing the system state back into a normal mode.

Preventive and corrective strategies could be also distinguished on the basis of their cause,

i.e., the type of service change occurred: functional change and non-functional change. The

class of strategies that are associated with functional changes includes all exceptional situations

where the internal business-logic of the workflow activities is somehow corrupted and wrong

and abnormal results are provided. The class of non-functional faults includes all faults that are

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 11

instead related to process performance and QoS aspects.

Finally, corrective and preventive strategies can be also distinguished on the basis of the

level of their application and related effects: instance level, class level, and infrastructural level.

Instance level strategies correct the single instance that fails at a certain time instant. Class level

actions extend their impact on several instances of the same process. Furthermore, some faults

are caused by the environment in which activities are performed. Workflow management systems

and web services execution containers have their own parameters and requirements. When these

constraints are violated, we say that the action is at an infrastructural level. Reasons of violations

may be found in the workflow design: parameters of the activities depend often on the concrete

workflow where they are used. In the following sections, we introduce details about the main

corrective and preventive strategies.

A. Preventive dependability improvement strategies

Preventive dependability improvement strategies are used at design time in order to avoid

that failures occur. They usually imply changes in the process workflow and include: Insertion

of monitors, Exception handlers, Service redundancy, and QoS constraints. Figure 1 describes

the preventive depensability strategies on the basis of the properties discussed in the previous

section.

Strategy Type of change Impact Level

Functional monitors Functional change Instance Level

Exception handlers Functional change Instance Level

Service redundancy Functional change Class Level

QoS constraints monitors Non-functional change Instance, Class, and Infrastructure Level

Fig. 1. Preventive dependability improvement strategies

1) Insertion of functional monitors: The first preventive strategy that it is possible to use to

design service-based processes is the insertion of functional monitors. We refer to active func-

tional monitors that analyze messages exchanged between modules in order to detect anomalies

and to trigger actions to prevent faults or recover them to avoid the failure of the whole processes.

In this paper, we consider that the correctness of a process from the functional point of view

can be assessed by considering the correctness of the data that are processed to provide the final

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 12

output to the final users. For this reason, the functional monitors considered by QUADS are

also called data quality monitors [19]. They are inserted in the process flow to evaluate data

quality dimensions associated with exchanged data. The conformity of these dimensions with

respect to users expectations is checked. When data quality values are below specified thresholds,

alarms are sent to the systems manager. Repair actions for data quality at design time require the

identification of the causes of data errors and their permanent elimination through an observation

of the whole process where data are involved.

Each data quality monitor relies on a model of the system itself to interpret a set of mea-

surements, to detect the presence of faults and to identify the specific causes of the fault. It is

necessary to model the task execution and the role of the manipulated data considering both the

data flow and structure. In this scenario, for each task ti, it is not sufficient to consider only

input and output information flows, but it is also necessary to consider external data, which are

data that are used by the task but do not derive from previous activities executed in the process.

According with this model an error in the output data can be consequence of:

• an error generated by the activities that precede the analyzed one

• an error generated by the analyzed activity. This type of error can be classified as self-

generated error.

In this case the error detection and the correction can be performed using different methods:

• Data cleaning by manual identification: comparison between value stored in the database

and value in the real world;

• Data bashing (or Multiple sources identification): comparison of the values stored in different

databases;

• Cleaning using Data edits: automatic procedures that verify that the inserted data satisfies

specific requirements.

In case a self-generated error occurs, the causes can also be related to the data structure or

external processes. In fact, it is necessary to consider that the activity can be influenced not only

by the previous activities in the process but also by other external processes that for example

might use the same data sources.

2) Exception handlers: Exception handlers detect and correct faults occurring in a single

instance. Exception handling mechanisms are provided by all service comparison and workflow

environments. For instance, considering the de-facto standard for Web-Service Orchestration,

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 13

Ws-BPEL [20], it provides standard patterns for managing exceptions. In fact, at design time,

specific handlers (fault, compensation, event, and termination handlers) can be associated with

an activity included in a task ti or with a scope, that is, a set of activities. The following basic

handlers are provided:

• Fault handler: is used to explicitly catch errors and handle them by executing specified

subroutines. It terminates all the activities contained within the scope in order to undo the

partial and unsuccessful work of a scope.

• Compensation handler: while a business process is running, it might be necessary to undo

one of the steps that have already been successfully completed. The specification of these

undo steps are defined using compensation handlers that can be defined at the scope level.

Each handler contains one activity which should be exwecuted when a scope needs to be

compensated.

• Event handler: the whole process as well as each scope can be associated with a set of

event handlers that are invoked concurrently if some specific event occurs. Event handlers

correspond to any type of activity that can be triggered by events such as incoming messages

and temporal alarms.

• Termination handler: forces the termination of a scope by disabling the scope’s event

handlers and terminating its primary activity and all running event handler instances.

The main disadvantage of inserting handlers in the process workflow is the lack of flexibility.

More powerful and flexible instruments could be built, but this effort is currently fully in charge

of the designer.

3) Service redundancy: In the process design, it is possible to insert redundant elements in

order to reduce the probability of failure in the process execution and to increase the process

availability. The adoption of this strategy modifies the process flow in order to assure the

correctness of multiple instances of the same process. For this reason, this strategy is classifiable

as a class level strategy. In [21] three patterns are proposed (see Figure 2). In all the three

arrangements, actions are linked by an AND split followed by an “1 service out of n-services

join”: the join condition synchronizes only the first finishing service. For the other part of the

parallel arrangement we consider three sub-structures: (a) the best alternative candidate is put

into an redundant AND-split with an 1-out-of-n-join arrangement (b) the quickest of alternative

candidates is synchronized by an AND-split followed by an 1-out-of-join (c) an alternative

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 14

candidate is synchronized by a XOR split followed by an XOR join. The first arrangement that

suggests alternative candidates improves the execution time if the alternative candidate provides

a quicker execution time than the original candidate. The actions are linked by an AND split

followed by a 1-out-of-n join that means that from a parallel arrangement all n tasks are started,

but at least one task is required to finish for the synchronization. The cost raises by the cost

of the additionally executed task. The availability improves because every additionally invoked

service raises the probability for the successful execution of the arrangement. The reputation can

be reduced if the alternative service offers a lower reputation than the original one.

Fig. 2. Redundancy actions [21]

The second solution arranges the original service in a parallel structure containing the alter-

native candidates in a parallel AND-split with 1-out-of-n-join structure. Both joining elements

will synchronize upon the first candidate ends. This arrangement reduces the execution time if

one of the alternative candidates provides a quicker execution time than the original service.

The cost raises by the sum of all additionally executed tasks. Like before, the reputation can

be reduced if an additional candidate offers a lower reputation. And the availability improves

because every additionally invoked service raises the probability for the successful execution of

the arrangement. Finally, the third solution is different from the previous replacement structures:

this structure invokes only one of the available alternative candidates. It is assumed that the

probability of executing the individual candidates is equally partitioned. Thus, the execution

time improves if the selected candidate executes quicker. For a high number of executions, the

cost raises by the mean value of the individual costs. Again, the reputation may lower for this

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 15

arrangement if alternative candidates show a lower reputation than the original service.

4) QoS constraints monitors: In order to avoid failure, it is possible to define QoS constraints

that have to be satisfied during the service execution. QoS constraints monitors are in charge

to catch the constraints violation and trigger related recovery actions. Violations can be referred

to local and global constraints. Local constraints define quality of Web services to be invoked

for a given task in the process i.e., candidate Web services are selected according to a desired

characteristic, e.g., the price of a single Web service invocation is lower than a given threshold.

Global constraints specify requirements at process level, i.e., constraints posing restrictions over

the whole service-based process execution can be introduced, e.g. the price of the composed

service execution is lower than a fixed budget. Constraints may be specified on a set of N pre-

defined quality dimensions. They are monitored and, if they cannot be satisfied, before that a

service execution fails, suitable negotiation mechanisms are performed in order to determine

new quality values for Web service invocations. If the negotiation succeeds, an agreement on the

new price and quality parameters for a given operation invocation is achieved. If the negotiation

fails, it is necessary to relax the quality constraints in order to identify the largest set of global

constraints specified by the user which could be fulfilled. Subsequently, the quality parameters

of the operation invocations which lead to constraints violation are negotiated.

B. Corrective dependability improvement strategies

Corrective dependability improvement strategies do not modify the process flow, but they are

procedures that require additional components into the computing systems that should support

the recovery procedure when a failure occurs. For example, they need the support of a service

management infrastructure that includes the presence of a registry that collects the description

of the services with their functional and non-functional properties. Corrective dependability

improvement strategies can be also implemented as semi-automatic procedures. Figure 3 lists

the strategies considered by the QUADS methodology and describes them in terms of the criteria

discussed in Section IV. The following corrective dependability improvement strategies are

considered:

• Redo: re-execute the service with possibly new values of input parameters.

• Retry Web services invocation: this recovery action is applied when faults point out a

temporary unavailability of one or more services invoked during the process execution.

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 16

Strategy Type of change Impact Level

Redo/retry service invocation Functional change Instance Level

Service substitution Functional change Instance Level

Architectural reconfiguration Non-functional change Class and Infrastructure Level

Fig. 3. Corrective dependability improvement strategies

In this case, the process should be suspended and the invocation of the unavailable services

should be repeated until they return available. Note that this strategy is applicable for

example in case Web service wraps a human activity. This action differs from Redo activity,

because a) it uses the same input parameters of the failed execution the activity without

correcting/changing/adjusting them b) it can be repeated several times, provided that there

are no constraints on the execution time.

• Service substitution: a more complex situation is the case where one or more services are

considered as definitely unavailable and, in order to complete the process execution, it is

necessary to substitute each failed service. The service substitution strategy allows us to

change the service to invoke by finding a service that provides the same operations. Service

matching can be performed by using semantic descriptions of the links between operations,

e.g., operation o1 at partner A is equivalent to operation o5 at partner B, which means that

they have the same sets of outputs, and the same or similar set of inputs. Having such a

library of ”similar” operations we can apply the substitute action.

• Architectural reconfiguration: this type of corrective strategy is useful for the particular

subset of QoS violation faults that derive from a lack of hardware or software resources on

the service provider side. In this situation, reallocating and executing the service on different

machines or application servers can solve the problem. Reallocation is possible only if Web

services are provided with an ad-hoc management interface and the recovery manager has

free access to all the resources (e.g., the recovery manager can determine the load balancing

or the application priority in the operating system). Reallocation may be performed as

reactive actions, when QoS violations are detected, but also as proactive actions, when

optimization of service execution plans is performed using predictive techniques on future

states of the execution environment. As discussed for substitution, the mechanisms are

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 17

the same as those used for infrastructure repair, where additional constraints have to be

considered when the service is executed within a process.

V. A METHODOLOGY TO IMPROVE PROCESS DEPENDABILITY

According with the model introduced in Section III, the dependability of a process could be

improved by enriching the process with monitoring features, preventive and corrective strategies

in order to avoid or repair failures before that users perceive them. The literature presents a

good number of approaches that propose suitable strategies to improve the dependability of

service-based processes. Anyway, most of these contributions present methods to hard-code in

the functional logic and that are related to a limited number of actions that are triggered only

when some specific and known events happen. Clearly, these approaches are based on a local

perspective (i.e., service perspective) and are not able to cover all needs that may arise. In fact,

in some cases these needs are unknown and cannot be foreseen once for all. As discussed in

the previous sections, our approach is based on a global perspective in which the whole process

related to the service-based application is considered. From this perspective, the process designer

has a complete knowledge of the logic of all the tasks ti included in the process and of the control

structures that link them and s/he is able to consider all the actions that can be programmed at

design/implementation time and be associated with triggering events whenever possible, either

before the execution or during the execution itself. However, it is possible to use alternative

strategies in order to prevent or react to a failure. The identification of the most suitable strategy

is not a trivial task since each strategy is characterized by its complexity and its functional and

non functional properties. On the basis of the process context and goals, a repair strategy can be

can more suitable than another. Thus, it is necessary to adopt a systematic approach to support

the strategy selection. By using the approach proposed in this paper, the designer should be

able to define the most suitable corrective and/or preventive strategy to apply and consequently

modify the process workflow or enrich the computing systems with all the required components

and metadata.

In this paper we propose a methodology composed of four phases:

1) Process analysis: in this phase processes are analyzed in order to identify the actors

involved, their quality requirements and the tasks that should be associated with services

at run time;

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 18

2) Dependability Improvement Strategies analysis: the strategies are analyzed in order to

evaluate their impact on the process correctness;

3) Ranking of the Dependability Improvement strategies: the results of the process and

dependability improvement strategies analysis are combined in order to define, for each

process task, the ranking of the suitable strategies to adopt in the process design;

4) Selection of the final set of strategies: the process designer analyzes, from a global

perspective, the top-k strategies defined for each task in order to identify the combination

that better satisfies the quality requirements defined for the whole process.

As represented in Figure 4, the methodology supports the process designer in the service-

based applications design. At the end of the design phase, the process designer issues the

process workflow that includes the components or constructs required for the execution of

the dependability improvement strategies. At run time, the tasks ti that compose the process

are bound with the concrete services published in the available service registry. During the

process execution, dependability should be guaranteed by a Process Monitor able to detect

unexpected behaviours such as changes, errors, and failures or inefficiencies. All the events that

worsen the process dependability are communicated to the Dependability Rule Manager that is

responsible for the automatic activation of the corrective strategies (e.g., service substitution) or

for informing the process designer that a process redesign might be needed. The efficiencies and

inefficiencies of the monitoring phase are also transmitted to the Reputation Assessment Module

that respectively will increase or decrease the reputation of the executed service. In summary, the

selection of the most suitable dependable improvement strategies in the design phase supported

by the methodology proposed in this paper and the continuous monitoring in the run time phase

are the basis for an environment able to guarantee a good level of process dependability. In the

next sections the methodology will be explained by means of a running example and of the

description of the software tool that we have implemented.

A. Running example

Let us considered as example a reference scenario taken from the WS-Diamond Project1 that

concerns a company that sells and delivers food using Web service technology. The company has

1wsdiamond.di.unito.it

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 19

Fig. 4. Architecture that enables the dependability improvement

an online Shop that customers use to select and order food. The Shop does not have a physical

counterpart, as it stores and delivers food using either Warehouses or Suppliers. Warehouses

are responsible for stocking unperishable goods and physically delivering items to customers. In

case of perishable items, that cannot be stocked, or of out-of-stock items, the company interacts

with a Supplier. The business process, executed by means of several services, covers all the

order management activities from the order receipt to the parcel delivery.

Warehouse
and supplier

l ti

Split
OrderSh

op Check
order

Cost
calculation+

User
confirm

Refused Order

+Payment
selection

+

No

RefusedOrder

us
e

S calculation+
ation

+

Packing Delivery
Order
Analysis

Check
availa
bility

Yes

Prepare
goodsW

ar
eh

ou

+

Order
Analysis

Check
availab
ility

No

Su
pp

lie
r

Yes Prepare
goods

Fig. 5. Food Shop workflow

Figure 5 represents the process workflow. When a Customer places an order, the Shop first

selects the Warehouse that is closest to the customers address, and that will thus responsible of

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 20

the goods delivery. Ordered items are split into two categories: perishable (cannot be stocked,

so the warehouse cannot possibly have them in stock) and unperishable (the warehouse might

have them). The first step is to check whether the ordered items are available, either in the

warehouse or from the suppliers. If they are, they are temporarily reserved in order to avoid

conflicts between several orders. Once the Shop receives all the answers on availability, it can

decide whether to give up with the order (if there is at least one unavailable item) or to proceed.

In the former case, all item reservations are canceled and the process ends. If the order goes on,

the Shop computes the total cost related to items and with the aid of the Warehouse defines the

shipping costs. Then the Shop sends the bill to the Customer, that can decide whether to confirm

the order or not. If the Customer does not confirm the order, all item reservations are canceled

and the activities flow ends here. If the Customer confirms the order, all item reservations are

confirmed and all the Suppliers (in case of perishable or out-of-stock items) are asked to send

the goods to the Warehouse. The Warehouse will then assemble a package and send it to the

Customer.

B. Process analysis

As described in Section III, service-oriented processes are executed by means of services that

are considered units of work provided by external providers or internally developed. The first step

of the process analysis aims at identifying the possible process components, that is the composite

tasks that can be associated with web services operation. The process componentization can be

performed by consider the several guidelines that the literature proposes to support the component

(i.e., service) identification. Most of the contributions base their analysis on the task independency

that can be evaluated on the basis of cohesion and loosely coupling principles [22]. In our work,

we perform this activity by using the P2S methodology [23] that provides a comprehensive

framework to identify components from the workflow.

The identification of process components defines the set of tasks T that compose the process

and that support both the binding activities and the selection of the most suitable dependability

improvement strategy. Each task ti at run time has to be bound with one operation of the concrete

service csj in order to define the execution plan EP composed of the pairs < ti, csj,o >.

Considering the example described in Section V-A, it is possible to identify five abstract

services to link to suitable service operations (see Figure 6). Anyway, in the binding phase,

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 21

Warehouse
selection

Split
OrderSh

op Check
order

Cost
calculation+

User
confirm

Refused Order

+Payment

+

No

RefusedOrder

us
e

S calculation+
ation

+

Packing Delivery
Order
Analysis

Check
availa
bility

Yes

Prepare
goodsW

ar
eh

ou

+
t1 t3 t5

Order
Analysis

Check
availab
ility

No

Su
pp

lie
r

Yes Prepare
goods

t2 t4

Fig. 6. Services invoked in the foodshop workflow

once that the warehouse or the supplier has been selected for the analysis of the order, the same

provider must be selected for the preparation of the goods. This means that formally, considering

the pairs < t1, cj1,o1 > and < t3, cj2,o2 >, the service selection should consider the following

constraints j1 = j2 and o1 <> 02. Since the same rules are valid for the task t2 and t4 the

identified services are: (a) Service 1 is the Warehouse service that is in charge to check the order

and prepare the non-perishable goods if they are available; (b) Service 2 is the Supplier service

that is in charge to check the order and prepare the perishable goods if they are available; (c)

Service 3 that receives the goods and is responsible for their packing and delivery.

Note that the binding phase, i.e., the definition of the concrete services, is performed by

considering functional and non-functional properties. In cases in which more than one provider

offer similar services the non-functional properties may drive the selection phase. In fact, the

services characterized by a quality level able to satisfy users’ requirements will be preferred.

As stated in Section III-B, the service owner expresses quality requirements for each task while

the final users define their preferences along the whole process. It means the binding functions

should define all the pairs < ti, csj,o > able to satisfy both local and global constraints. For the

satisfaction of the local constraints, it is sufficient that at design time for each specific concrete

service csj , the capability value of each quality dimension Offjk satisfies the requirements Reqik.

If the same service csj is associated with different tasks of the process, quality capabilities should

satisfies the quality requirements of each task. As regards the satisfaction of the global constraints

FURequk, it is necessary to aggregate the requirements expressed by all the users in order to

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 22

have a unique requirement for each quality dimension FUReqk.

The aggregation of the requirements can be obtained by using one of the classical aggregation

functions, i.e., average, minimum or maximum. Also the capabilities associated by a quality

dimension value Offjk should be aggregated along all the concrete services. As described in

[4] for each dimension, a specific aggregation pattern could be applied (see Figure 7). Global

availability is given by the product of availabilities provided by executed services. All the data

quality dimensions can be instead aggregated by using the minimum function. The addition is

suitable for aggregating execution time and thus calculating the end-to-end process execution

time. The reputation of the composed service is calculated as the average reputation of selected

services. Thus, reputation of the process owner could decrease if the process fails for an internal

fault or another provider’s fault. Finally, fidelity is the unique dimension for which the definition

of a global measure has no meaning since it is a dimension that condition the selection of each

concrete services but it has a null impact on the quality of the whole process.

Quality Dimension Class Quality Dimension Aggregation function

Data Quality Accuracy Acc(BP) = Min(ti,csj,o)∈EP Accj

Completeness Comp(BP) = Min(ti,csj,o)∈EP Compj

Timeliness Time(BP) = Min(ti,csj,o)∈EP Timej

Process Quality Availability Av(BP) =
∏

(ti,csj,o)∈EP Avj

Execution Time Et(BP) =
∑

(ti,csj,o)∈EP Etj

Provider Quality Reputation Rep(BP) = 1
|EP |

∑
(ti,csj,o)∈EP Repj

Fig. 7. QoS aggregation function

In the evaluation of the requirements satisfaction, it is necessary to consider that the quality

dimensions might not be considered equally important. In the process execution a quality dimen-

sion can be considered more critical than another one and consequently can be associated with

a different degree of relevance. Therefore there could be a distinction between strong and weak

constraints. The search for the best combination of concrete services to use for the execution

of a business process can be modeled as an optimization problem. If no solution respecting all

constraints exists, the execution plan can be modified or a negotiation phase between the process

owner and the providers of the concrete services included in the current execution plan is needed

for the definition of a Service Level Agreement.

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 23

The definition of the composite task ti and the definition of the possible concrete services

provide useful information for the selection of the most suitable dependability improvement

strategy. In order to enrich the context description it should be also considered that the users

and the process owner may have a different perception about the relevance of the various quality

criteria. In order to model these aspects, we introduce an element wku that represents the weight

that identifies how much the k-th quality dimension qdk influences the overall perception of the

quality of the service from the u-th user perspective. It is worth noting that the weight assignment

activity is a crucial point of the method. The users should be able to define the importance of a

quality dimension in the service provisioning. The simplest way to collect this information could

be to let users associate with each quality dimension a value between 0 and 1 to express the

importance that the dimension has for the specific user class. In this case the only constraint is

that the sum of the weights associated with all the dimensions has to be equal to 1. This method

is difficult to apply, since the absolute relevance of a dimension on the total quality is hardly

identifiable. For this reason, we assume that a suitable method for the weight assignment could

be the Analytic Hierarchy Process (AHP) approach, a decision making technique developed by

T.L. Saaty [24]. This is a qualitative approach in which the users decompose their decision

problem into a hierarchy of more easily comprehended sub-problems, each of which can be

analyzed independently. In fact, following this method the users analyze the quality dimensions

in pairs and only state if a dimension is more influent than another one on the overall quality.

We assume to consider only quality dimensions that are independent. AHP is a decision-making

technique that assigns to each dimension a score wku that represents the overall relevance of qdk

dimension for the u-th user.

Figure 8 show the interface of the tool that we have developed in which the process described

in Section V-A through which the users can define their preferences. The quality dimensions are

compared in pairs and for each pair, users can indicate the importance of one dimension with

respect to the other one simply positioning the sliding bars.

At the end, in general, the evaluation of the total importance of the k-th quality dimension

(Ik) is calculated by using a weighted average of the weights defined by the different users.

Users and process owner defines the importance of the data quality dimension with different

granularities. In fact, the process owner can specify different preferences for each task while the

other users are limited to the whole process. In order to have quality requirements for each task,

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 24

Fig. 8. AHP interface

we consider that the preferences expressed by the users on the entire process can be considered

valid for all the tasks that compose the process. In this way theimportance of the k-th dimension

quality is calculated for each task ti as follows:

Iik =

∑U
u=1wiku · impu

U

In the formula, users feedbacks regarding the relevance of the dimension qdk are weighted

based on the role (and hence) importance of the users in the process (impu). Users can be more

or less relevant for the process designer considering their fidelity and the associated revenues.

For each task, the ranking of the total scores identifies the set of relevant quality dimensions

that have to be considered to evaluate the repair strategy to apply when a fault occurs. In fact, the

process analysis defines the list of service quality dimensions that have to be assessed, analyzed

and improved along the specified requirements.

Let us consider the Supplier Service of the example describe in Section V-A. The order

reception and check availability and goods preparation are operations that have to be performed

by the same provider. We can focus on the different perspective that different types of users may

have on the same service. Considering that the main process actors are the process users and

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 25

the process owner we may consider to model a context in which the process users requirements

are more stronger than the process owner requirements and a context in which the situation

is opposite: the process owner requirements are the most relevant ones. For instance, when

considering the process owner view, accuracy is much less important than in the users’ view.

The two contexts can be characterized by the weights presented in Figure 9.

Accuracy Availability Timeliness Execution Time Completeness Reputation Fidelity

Process Owner View 0,08 0,39 0,16 0,13 0,085 0,099 0,1

Users View 0,2 0,2 0,25 0,074 0,115 0,078 0,08

Fig. 9. Quality dimensions relevance weights

At the end of the Process Analysis phase, we have weights assigned to each task in the process

as described in Figure 10 that represents the interface through which designers can select a single

activity (e.g., received order) or the entire process and to visualize all the information about it.

Fig. 10. Process visualization and interaction

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 26

C. Dependability improvement strategies analysis

The comparison across the different dependability improvement strategies can be very difficult

due to the heterogeneity of their functionalities. For this reason, we base our analysis on the

impact of each strategy on the process execution. In particular, the influence of each strategy

disr on the quality dimensions qdk is considered. In general, such influence is positive on some

quality dimensions, and negative on other ones. However, there might be cases in which a general

trend cannot be defined in principle. On the basis of our experience and some empirical studies

we defined for each strategy the influence on each of the quality dimension (see Figure 11).

Accuracy Completeness Availability Timeliness Execution
Time

Reputation Fidelity

Functional
Monitors

+ + = or - - - + =

Exception
Handlers

+ + + - - + =

Service
Redundancy

+ + + - - = =

QoS constraints
Monitors

+ + + - - + =
Monitors

Redo/retry
service
invocation

+ + + - - = =

Service
substitution

+ or - + or - + - - + or - -
substitution

Architectural
Reconfiguration

= = + = - + =

Fig. 11. Impact of the repair actions on the quality dimensions

In the Table 11, symbol ”+” means that the quality dimension trend is improved by the

adoption of the strategy, while ”-” means that the strategy has a negative influence on the

quality dimension. For example, the insertion of the quality block increases, and then worsens

the execution time while improve the data accuracy since errors can be corrected. The symbol ”=”

means that repair strategy have null influence on the quality dimension. The values inserted in

Figure 11 are general trends that are almost valid for each context and process. This information

supports the process designer in the selection of the dependability improvement strategies to

apply. In order to allow a systematic comparison of the different strategies, it is necessary to

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 27

define a numerical value Imprk to evaluate the degree of the influence that the strategy disr

has on the quality dimension qdk. A first approach is to ask each process designer to specify a

value of the different impacts along a specific process in order to obtain a precise value Imprk.

However, since it would be difficult for a designer to associate an exact value with each strategy-

dimension pair, we propose to adopt fuzzy numbers for such evaluations. Fuzzy numbers provide

the logical-mathematical instrumentation that combines the capabilities of the natural language

with the advantages of algebraic formalization and numerical representation [25]. In this way, the

weights associated with the dimensions is established by the process designer that express their

opinion by using natural language expressions, e.g., high negatively influence, medium negative

influence, irrelevant influence, low positive influence. It is possible to use the conversion scales

similar to the one introduced in [26] to convert the linguistic expressions in fuzzy numbers. Note

that the conversion scales also consider the risk aversion and propensity of the users. Figure 12

shows the interface that the process designer can use the fuzzy number to evaluate the different

strategies.

Fig. 12. Dependability improvement strategies evaluation interface

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 28

D. Ranking of the dependability improvement strategies

Process and Dependability Improvement Strategies analysis provide all the elements for the

definition of the most suitable repair action along a specific service. In fact, the process analysis

phase provides the measures Ijk that is the evaluation of the quality dimensions by considering

their relevance for the users. The evaluation of the improvement strategies performed by the

process designer provides the values Imprk that is the assessment of the impact of the strategy

on the quality dimensions. By considering these two set of data, it is possible to define the

appropriateness Air of the r-th strategy for the i-th task as follows:

Air =
K∑

k=1

(Iik ∗ Imprk)

Considering the example and combining the process analysis with the dependability improve-

ment strategies we obtain the ranking for the most suitable strategy to use in both the Process

owner and Users contexts. The Process Owner view is characterized by weights that assign

more relevance to the architectural part of the application respect to the dimensions more related

with the functional characteristics while the Users view favours the accuracy, timeliness, and

availability dimensions.

Process Owner View Users View

Exception handler Service redundancy

Redo/retry service invocation Architectural reconfiguration

Service redundancy Redo/retry service invocation

Fig. 13. Ranking of the dependability improvement strategies for the FoodShop example

Figure 13 shows the ranking of the strategies that are considered as suitable in the FoodShop

example. The strategies proposed for the Process Owner View are the ones that both assure

availability and slightly worsen the execution time and design effort while the Users View

prefers the correctness and the availability of the service are the most relevant features. In fact

the Users View suggests the strategies that assure a correct service provision but that are more

costly and complex to realize.

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 29

E. Evaluation of the efficacy of the methodology

As described in the previous sections, the QUADS methodology supports the process designer

at design time by providing guidelines about the most suitable dependability improvement

strategy for each task ti. Once that the process designer views the list of the suggested strategies,

s/he has to analyze, for each service that is involved in the process, the first two or three options

in the ranking and define the strategy that is effectively suitable for the analyzed process. It is

not sufficient to select and adopt only the first ranked strategy since there might be some local

or global incompatibilities. Local incompatibilities are related to the selection of a strategy for

a single service and can occur if the dependability improvement strategy is not applicable for

technical reason or for the violation of quality constraints. Global incompatibilities are instead

related to the analysis of the whole process and they occur when the strategies associated with

the different tasks are acceptable from a local point of view but their combination violate global

quality constraints. In this case, new strategy selections might be necessary.

In fact, the application of a r-th strategy associated with the i-th task will affect, at run time, the

evaluation of the values associated with the different quality dimensions. Considering the pairs

< ti, csj,o > and that the final quality evaluation depends on the selected csj , it is possible to

state that the adoption of a strategy disr impacts on the values of the different quality dimensions

by increasing or decreasing their value of a quantity ∆vjkr. The analysis of the process designer

for detecting local incompatibilities should check that the new capability values of each quality

dimension Offjkr = Offjk ± ∆vjkr still satisfies the requirements Reqik. Once that for each

task, the strategy has been selected, it is possible to define the Dependability Improvement Plan

DIP as the set of pairs < ti, disr >.

In order to define the final plan, DIP should be further analyzed for the identification of

possible global incompatibilities. In fact, even if all the identified strategies satisfy the local

constraints, their union might not be satisfy the global constraints. It means that the aggregation

of the new capability values Offjkr does not satisfy the FURequk. The aggregation of the

different capability values depends on the defined process workflow PW . The evaluation of

the process workflow at design time consider the set of tasks that compose it (t1...tn) and the

control logic that links all the tasks assigning a probability of execution freqi associated with

every task. Details on the formulas that can be used to aggregate quality dimensions in different

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 30

process pattern can be found in [4].

As regards the local incompatibilities, let us consider the case in which the Service 2, that is

the Supplier service, is analyzed. Figure 15 describes the local constraints and the characteristics

of the selected Service α before the adoption of the dependability improvement strategy.

Accuracy Availability Timeliness Execution Time Completeness Reputation Fidelity

Local Constraints ≥ 0, 80 ≥ 0, 95 ≥ 0, 90 ≤ 12h ≥ 0, 90 ≥ 0, 70 ≥ 0, 70

Service 2α 0,9 0,95 0,9 ≤ 6h 0,95 0,8 0,75

Fig. 14. Local contraints and service quality dimensions

On the basis of the Provider View (see Figure 9), the process designer should use the fol-

lowing repair actions: redundancy, architectural reconfiguration, and redo/retry. The architectural

reconfiguration is, in this case, an action that is not applicable for technological reasons. In fact,

the invoked service is mostly composed of manual operations and architectural actions would

not have any effects. Redundancy can be instead suitable in critical situations in which time

constraints are tight. In this case, the order is sent to different suppliers and the shop collects the

goods from the supplier that makes them available in the shortest time. The redundancy implies

the selection of, at least, another new service β. This selection should be driven by the constraints

desctibed in Figure in order to have the guarantee that local constraints are still satisfied. The

constraints are calculated by considering that the services are executed in parallel and applying

the formulas for the aggregation of quality dimensions defined in [4]. The only contraints that

Accuracy Availability Timeliness Execution Time Completeness Reputation Fidelity

Redundant Constraints ≥ 0, 80 ≥ 0 ≥ 0, 90 ≤ 12h ≥ 0, 90 ≥ 0, 70 -

Fig. 15. Contraints for the selection of the redundant service β

change concern availability and fidelity dimensions. The former has been calculated on the basis

that the unavailability of the service occurs only if both services are unavailable. Since the

Service α satisfies the local constraints, it is sufficient that the service β is available with a

probability greater than zero. The latter has no influence on the choice of the service since

fidelity is relevant only for the preferred service (i.e., Service alpha).

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 31

The process designer should anyway consider that this approach has a negative impact on

the service price and on the fidelity. The increase of the service price is due to the increase of

the execution cost casued by the fees paid for the parallel execution of the services offered by

multiple suppliers. In fact, once that one of the suppliers finishes to prepare the goods, the other

orders have to be cancelled and penalties have to be paid. The cancellation of the order also

might affect the fidelity dimensions since if cancellation recurs with high frequency, it could

worsen the relationships between the Supplier and the Food Shop. Note that redundancy might

also not be appropriate for technical reasons since its applicability starts from the assumption

that similar services are available. Redundancy cannot be adopted if the registry does not contain

equivalent services to invoke.

The redo/retry service invocation strategy is not limited by technical constraints and it only

affects the execution time delaying the goods delivery in case of failures (see Figure 11). In this

scenario, this action is the most preferrable one, since counting the re-execution of the Service

2α only once, the local contraints are still satisfied: in the worst case the execution time is

≤< 12h.

On the basis of the Users View the suggested use of exception handlers is also extremely

feasible. It just requires the modification of the task worflow in order to include all the exceptions

needed to handle with all the failures that can be predicted. This strategy also affects the execution

time but the delay in the execution time is lower than the one cauaed by the redo/retry action.

As regards the global incompatibilities, DIP has to be analyzed in order to define if the

combination of the selected stategies for the composite services satisfies the global constraints

FUReq′uk. Let us consider the three services identified in Figure 6 will be executed by means

of corresponding concrete services characterized by the capabilities Offjk described in Figure

16. Figure 16 also contains the global contraints associated with the service-based process.

Accuracy Availability Timeliness Execution Time Completeness Reputation Fidelity

Global Constraints ≥ 0, 90 ≥ 0, 90 ≥ 0, 90 ≤ 24h ≥ 0, 90 ≥ 0, 70 ≥ 0, 70

Service 1δ 0,95 0,99 0,9 ≤ 6h 0,95 0,7 0,8

Service 2α 0,9 0,95 0,9 ≤ 6h 0,95 0,8 0,75

Service 3δ 0,95 0,99 0,95 ≤ 8h 0,95 0,7 0,8

Fig. 16. Global contraints and service quality dimensions

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 32

Data in Figure 16 suggest that it is not possible to adopt the redo/retry service invocation

strategy for both Service 2α (or Service 1δ) and Service 3δ since constraints about the execution

time could be violated. In fact, if both services fail, the sequentiality between the different

services increases the delay in goods delivery. The delay can be descreased by combining the

exception handler action with the redo/retry service invocation and thus by guaranteeing more

flexibility with respect to a process in which all the faults are managed by exception handlers.

VI. RELATED WORK

The concept of dependable computing has been largely investigated in different contexts and

under different perspective [27]. The concept of dependable computing appears in the early 60’s

when some authors developed theories for using redundancies to mask failures (e.g., [28]). These

represent the first contributions in the failure tolerance research area. In [29], [30], these studies

were extended and the literature present several approaches for the inclusion of techniques of

error detection, fault diagnosis and recovery. From there, a lot of techniques for the prevention,

removal and forecast of failures have been proposed (e.g. [31], [32]). In the last years, the

dependability concept has been considered as the basis for the development of niche research

areas such as self-healing systems and adaptive systems. The former include systems that have

some reflective capabilities [33]. In fact, the system should be designed in order to perform

introspection. That is, the system has to be able to monitor the running state of the system to

identify any anomalous behaviour during its operation. Whenever any failure is detected, some

intercession actions have to be performed, i.e., carry out a certain procedure to recover from the

failure and repair faults without interrupting any of the functional services it provides, so that it

returns back to a stable state. The latter assume that changes related to the internal state of the

system are not the only cause that determines the need for adaptation. Another cause has to do

with changes in the context in which applications are executed. For instance, this context may

include the information about the users of the applications or. Users, in fact, may have special

needs in terms of the component services to be used.

Furthermore, with the diffusion of service-based application, the literature presents a good

number of approaches that deal with self-adaptation of service-based applications. Most of these

try to predict the list of failures that can occur in the system and address this issue by managing

the exception changing the software code in a static way (e.g., [34]). Doing this, a limited number

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 33

of adaptation strategies that are triggered only when some specific and known events happen.

Some authors focus on triggering repair strategies as a consequence of a requirement violation

[35], of the need for optimizing QoS of the service-based application [36] or for satisfying some

functional requirements such as application constraints. The goal of the repair strategies usually

proposed range from service selection to rebinding and application reconfiguration. We argue

that this approach does not necessarily cover all needs that may arise. In some cases these needs

are unknown and cannot be foreseen once for all. Furthermore, all aforementioned approaches

show interesting features, but even those that enable the definition of various repair strategies

lack a coherent design approach to support designers in this complex task. The approach that

we advocate is based on the idea that dependability improvement strategies can be selected and

programmed at design/implementation time on the basis of the context in which applications

are used and of the users’ needs. The design for process dependability has been analyzed in

some contributions such as [37] and [38]. However, even in these cases the emphasis is on the

mechanisms offered to design strategies and to trigger them, more than on a design for adaptation

approach that supports developers in the usage of the available mechanisms. The methodology

we propose in Section V can be considered as a contribution in this direction. To support the

design of self-healing system, the quality of the self-healing strategies were analyzed in [39].

Authors analyze the functional aspects of the strategies and support the process designer by

providing information about the software quality of the different strategies. The impact of the

different strategies on the application is not considered. In the design phase it is important to

verify the functional suitability of the improvement strategies but it is also important to evaluate

their impact on the functional and non-functional characteristics of the composite process as

suggested in Section V-C.

VII. CONCLUSIONS AND FUTURE WORK

In this paper a methodology to support the process designer in the definition of the most

suitable dependability improvement strategy is proposed. Currently, many contributions in the

literature about service-based applications focus on dependability issues and propose several

dependability improvement actions. Anyway, there is the lack of a coherent design approach to

support designers in the evaluation and the selection of the improvement actions. As we think that

dependability works properly only in the case the application is designed to be dependable, we

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 34

focus, in particular, on the identification of a number of design principles and guidelines that can

drive the selection of the dependability improvement actions to adopt. The effectiveness of such

principles and guidelines to build an acceptable ranking of the different actions is analyzed with

reference to a running example that is the simplification of a real-world process. Future work

will focus on the extension of the algorithm able to define automatically different dependability

improvement strategies that are acceptable on the basis of the global constraints. Furthermore,

other real-word scenarios will be considered in order to test the effectiveness of the proposed

approach. Finally, The methodology can be also extended by considering issues about process

adaptability in general and providing also guidelines for the design of adaptable process. In this

case quality constraints should be analyzed together with context characteristics and the set of

techniques that can be included in the process at design time ahould be redefined.

ACKNOWLEDGMENT

The research leading to these results has received funding from the European Community 7th

Framework Programme under the Network of Excellence S-Cube Grant Agreement no. 215483

and from the Italian MIUR-FIRB TEKNE Project.

REFERENCES

[1] A. A. Ucla, A. Avizienis, J. claude Laprie, and B. Randell, “Fundamental concepts of dependability,” 2001.

[2] D. Dyer, “Unification of reliabiltiy/availability/repairability models for markov systems,” IEEE Transactions on Reliability,

vol. 38, no. 2, 1989.

[3] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani, “Paws: A framework for executing adaptive web-service

processes,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

[4] D. Ardagna and B. Pernici, “Adaptive service composition in flexible processes,” IEEE Transaction on Software

Engineering, vol. 33, no. 6, pp. 369–384, 2007.

[5] S. H. Chang and S. D. Kim, “A service-oriented analysis and design approach to dveleoping adaptable services,” in

Proceedings of the International Conference on Service Computing, 2007.

[6] M. Ouzzani and A. Bouguettaya, “Efficient access to web services,” IEEE Internet Computing, vol. 8, no. 2, pp. 34–44,

2004.

[7] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “Qos-aware middleware for web services

composition,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311–327, 2004.

[8] Y. Wand and R. Y. Wang, “Anchoring data quality dimensions in ontological foundations,” Commun. ACM, vol. 39, no. 11,

pp. 86–95, 1996.

[9] T. Redman, Data Quality for the Information Age. Artech House, 1996.

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 35

[10] R. Wang and D. Strong, “Beyond Accuracy: What Data Quality Means to Data Consumers,” Journal of Management

Information Systems, vol. 12, no. 4, 1996.

[11] D. Ballou, R. Wang, H. Pazer, and G. Tayi, “Modeling Information Manufacturing Systems to Determine Information

Product Quality,” Management Science, vol. 44, no. 4, 1998.

[12] H. Pichler, M. Wenger, and J. Eder, “Composing time-aware web service orchestrations,” in CAiSE, 2009, pp. 349–363.

[13] Y. Wang and J. Vassileva, “A review on trust and reputation for web service selection,” in ICDCS Workshops, 2007, p. 25.

[14] D. Bianculli, W. Binder, M. L. Drago, and C. Ghezzi, “Reman: A pro-active reputation management infrastructure for

composite web services,” in ICSE, 2009, pp. 623–626.

[15] A. Avižienis, J.-C. Laprie, and B. Randell, “Fundamental concpets of dependability,” in Information Survivability Workshops

(ISW), 2000.

[16] W. diamond Team, WS-DIAMOND: Web Services-DIAgnosability, MONitoring and Diagnosis. MIT press, 2009, pp.

213–239.

[17] M. Fugini and E. Mussi, “Recovery of faulty web applications through service discovery,” in International Workshop on

Semantic Matchmaking and Resource Retrieval: Issues and Perspectives (SMR 2006), 2006.

[18] B. Pernici and A. M. Rosati, “Automatic learning of repair strategies for web services,” in ECOWS, 2007, pp. 119–128.

[19] C. Cappiello and B. Pernici, “Quality-aware design of repairable processes,” in International Conference on Information

Quality (ICIQ 2008), 2008, pp. 382–296.

[20] O. W. T. Committee, “Web services business process execution language v2.0,” OASIS Standard, Tech. Rep., 2007.

[21] M. Jaeger and H. Ladner, “Improving the qos of ws compositions based on redundant services,” in Proceedings of the

Next Generation Web Services Practices (NWeSP), 2005.

[22] M. P. Papazoglou and W.-J. van den Heuvel, “Business process development life cycle methodology,” Communications of

ACM, vol. 50, no. 10, pp. 79–85, 2007.

[23] D. Bianchini, C. Cappiello, V. D. Antonellis, and B. Pernici, “P2s: a methodology to enable inter-organizational process

design through web services,” in Proceedings of the 21st International Conference in Advanced Information Systems

(CAiSE’09), 2009, pp. 334–348.

[24] T. Saaty, The Analytical Hierarchy Process. McGraw Hill, 1980.

[25] C. Chen, Fuzzy Logic and Neural Network Handbook. McGraw Hill, 1996.

[26] S. Chen and C. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applications. SpringerVerlag, 1992.

[27] D. Jackson, “A direct path to dependable software,” Commun. ACM, vol. 52, no. 4, pp. 78–88, 2009.

[28] P. W.H., Failure-Tolerant Computer Design. Academic Press, 1965.

[29] A. Avižienis, “Design of fault-tolerant computers,” in AFIPS ’67 (Fall): Proceedings of the November 14-16, 1967, fall

joint computer conference, 1967, pp. 733–743.

[30] W. G. Bouricius, W. C. Carter, and P. R. Schneider, “Reliability modeling techniques for self-repairing computer systems,”

in Proceedings of the 1969 24th national conference, 1969, pp. 295–309.

[31] J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjørven, “Using architecture models for runtime

adaptability,” IEEE Software, vol. 23, no. 2, pp. 62–70, 2006.

[32] Y. Xie and A. Aiken, “Context- and path-sensitive memory leak detection,” in ESEC/SIGSOFT FSE, 2005, pp. 115–125.

[33] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Composing adaptive software,” IEEE Computer, vol. 37,

no. 7, pp. 56–64, 2004.

December 29, 2009 DRAFT

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 36

[34] J. Walkerdine, L. Melville, and I. Sommerville, “Dependability properties of p2p architectures,” in Peer-to-Peer Computing,

2002, pp. 173–174.

[35] G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A service discovery framework for service centric systems,” in IEEE

SCC, 2005, pp. 251–259.

[36] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng, “Quality driven web services composition,” in WWW,

2003, pp. 411–421.

[37] M. Colombo, E. D. Nitto, and M. Mauri, “Scene: A service composition execution environment supporting dynamic

changes disciplined through rules,” in ICSOC, 2006, pp. 191–202.

[38] E. Rukzio, S. Siorpaes, O. Falke, and H. Hussmann, “Policy based adaptive services for mobile commerce,” in The Second

IEEE International Workshop on Mobile Commerce and Services, 2005. WMCS ’05, July 2005, pp. 183–192.

[39] S. Neti and H. Müller, “Quality criteria and an analysis framework for self-healing systems,” in International Workshop

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2007), 2007.

Cinzia Cappiello Biography text here.

Barbara Pernici Biography text here.

December 29, 2009 DRAFT

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

8 Bucchiarone, A.; Kazhamiakin, R.; Cappiello, C.; di Nitto,
E.; Mazza, V.: A Context-driven Adaptation Process for
Service-based Applications. In: Workshop on Principles of
Engineering Service-Oriented Systems (PESOS 2010). –
accepted for publication

A Context-driven Adaptation Process for
Service-based Applications∗

Antonio Bucchiarone and Raman Kazhamiakin∗

Cinzia Cappiello, Elisabetta di Nitto and Valentina Mazza
∗FBK-IRST, Trento, Italy

{bucchiarone,raman}@fbk.eu
Politecnico di Milano, Italy

{cappiell,dinitto,vmazza}@elet.polimi.it

ABSTRACT
When building service-oriented systems the evolution of re-
quirements and context is the norm rather than the excep-
tion. Therefore, it is important to make sure that the system
is able to evolve as well without necessarily starting a com-
pletely new development process, and possibly on the fly.
In this paper we specifically focus on the role of the con-
text in the adaptation activities. For us context has various
different facets as it includes information ranging from the
situation in which users exploit a service-based application
to the conditions under which the component services can
be exploited. We elaborate on how and when the context
should be defined, exploited, and evolved, and on the im-
pact it has on the various activities related to adaptation of
service-based applications. We use a case study to exemplify
our first findings on this subject.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies

Keywords
Service-oriented Systems, Context-awareness, Adaptation

1. INTRODUCTION
Traditional software systems are usually designed in or-

der to address a specific set of requirements within a spe-
cific execution context. Even though the evolution of re-
quirements and execution context is considered possible, it
is assumed that it will have an impact on the new versions
of the software system, not on the one that is currently un-
der operation. This assumption is not anymore true when

∗The research leading to these results has received fund-
ing from the European Community Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PESOS ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-963-3-6/10/05 ...$10.00.

we consider those open systems that are built by composing
existing services available on the network. In these cases
we should consider that execution can be affected by both
requirements and context defined as composed of any in-
formation that can be used to characterize persons, places
or objects that are considered relevant to the interaction
between a user and the application, including users and ap-
plications themselves [4]. The approach presented in this
paper considers the evolution of requirements and context
as the norm rather than the exception, and, as such, it is
necessary to design a system that is able to evolve as well
without necessarily starting a completely new development
process, and possibly on the fly. As we discuss in the related
work section (see Section 2), the literature offers technical
approaches to manage the on the fly adaptation of service-
based applications. However, to our knowledge, a compre-
hensive approach to design and develop adaptable Service-
Based Applications (SBAs) is still missing. Our work tries
to fill this gap. In this paper we specifically focus on the role
of the context in the adaptation activities. For us context
has various different facets as it includes information rang-
ing from the situation in which users exploit a service-based
application to the conditions under which the component
services can be exploited. In general, the identification of
the aspects that should be part of the context depends on
the specific application and should be performed very early.
In fact, starting from the requirement analysis phase where,
in parallel to the precise definition of requirements, a proper
context model has to be defined. This context model is the
basis for the definition of those situations that trigger the
adaptation or evolution of a service-based application, and,
at runtime, enables the identification and the collection of
the proper context information. Of course, as any other soft-
ware artifact, this context model is not fixed once for all but
can evolve together with the application, and therefore its
evolution has to be managed and kept under control as well.

In this paper we start studying these aspects in detail
and exemplify them through a case study. Consistently, the
paper is structured as follows. Section 2 discusses previ-
ous contributions that dealt with context-aware applications
and adaptation needs and describes the main open issues
that are addressed in this paper. Section 3 describes a sce-
nario that shows how the adaptation requirements might be
relevant in the development of a service-based application.
Section 4 identifies the additional requirements and phases
that should be considered in the design life-cycle of an adap-
tive SBA while the context elements considered as relevant

in the adaptation process are detailed and modelled in Sec-
tion 5. A context-driven adaptation process is proposed in
Section 6. Finally, Section 7 presents the instantiation of
the proposed process on a case study in the e-government
domain.

2. RELATED WORK
In many SBAs the role of the context is fundamental in

realizing the adaptation functionalities [5]. Indeed, contex-
tual changes are often the key factors that entail the SBA
adaptation and somehow drive the way the adaptation is
performed. [15] contains an analysis of the context factors in
context-aware computing and in software engineering. The
knowledge of the computing environment (network charac-
teristics,resources), of the user (profile, location, social situa-
tion), of the physical parameters (all the measurable proper-
ties of the environment such as the noise level, the pressure,
the temperature) contribute to the context knowledge. This
information is often codified in a so called context model.
The literature is rich of proposals for context models. In
[16] context representations are classified as Key-value mod-
els (key-value pairs are used to represent the features of a
system), Mark-up scheme models (a hierarchical structure
for context representation), Graphical models (general pur-
pose modeling instruments are used to represent context
information), Object Oriented Models (each context infor-
mation is represented by a different object and data can be
accessed by defined interfaces), Logic Based models (context
is expressed in terms of facts, expressions, and rules) and, fi-
nally, Ontology Based models (information about real world
is represented using data structure understandable by the
computers). In [17] a Context Dimension Tree is used to
represent the context factors with different levels of detail.
The model includes constraints and relationships among di-
mension values to eliminate meaningless context configura-
tions. Such model has been proposed for data tailoring in
the database domain, but could be easily adapted to the con-
text of SBAs (see Section 5). Context-aware applications are
able to sense their current context and adapt their behaviour
accordingly. Even if automatically enacting adaptation is
desired [8], some approaches in the literature suggest the
need to have a semi-automatic approach in which users are
able order to choose the best adaptation strategy [6]; this
would avoid the execution of undesired adaptation actions.
[10] proposes an approach for context-aware service adap-
tation based on an ontology for the context modeling and
a learning mechanism for the mapping of the context con-
figuration to the appropriate adapted service. Due to the
uncertainty behind the context of an application, Cheung et
al. [14] propose a fuzzy-based service adaptation model to
improve the effectiveness of service adaptation by means of
fuzzy theory. The formalization of the service adaptation
process is made using fuzzy linguistic variables to define the
context situations and the rules for adopting the policies for
the implementation of the services.

While the short overview we have provided does not aim
at being comprehensive, it should have given the idea that
a number of approaches to context modeling and to the de-
velopment of context-aware adaptable SBAs are being pro-
posed. However, none of them provides a method to de-
velop and execute adaptable SBAs. In [2] we have defined
some design guidelines and a life-cycle for the development
of adaptable service based applications. In this paper we

want to enrich the life-cycle adding information about the
context. Therefore, the aim of this paper is to propose a con-
text model for the service based applications and to define
how the information contained in the context model could
be exploited to enact adaptation during each phase of the
life-cycle.

3. E-GOVERNMENT SCENARIO
The motivating scenario that we use in this paper refines

the e-government case study [13] of the S-Cube Project. The
idea is to have a SBA that realizes e-government processes
able to support citizens in various activities. The appli-
cation aims at provisioning and integrating various public
services, including the health-care services, administrative
procedures towards citizens, information services, personal
assistance services, etc. These services range from Inter-
net services (e.g., for booking a visit to a doctor online,
online payment, route planning) to local services (e.g., spe-
cific medical centers and labs, monetary assistance), to per-
sonal and human-provided ones (medical assistance at home,
fiscal procedures, monetary assistance, census operations).
Moreover, public authorities own and expose to the citizens
various e-government processes and procedures, where the
single services of private bodies and public organizations are
composed. An example of an integrated process is the reser-
vation of a medical visit, where the reservation service is in-
tegrated with the local services of the medical centers, with
the route planning system and public transportation ser-
vices to drive the patient to the doctor and inform it about
the available transport means. Figure 1 presents the gen-
eral picture of the scenario, it includes all possible services,
subdivided in different categories, and different actors of the
application: Citizen, Service Providers, Public Authorities
and the Service Integrator. The Service Integrator will be
the principal actor that realizes the e-government SBA using
the principles that we define in this paper.

In the scenario introduced above different contextual di-
mensions are heavily exploited, ranging from computational
context (e.g., devices and channels used by the citizens to ac-
cess/receive information from the administrative services),
to physical context (e.g, user location), user context (its.
preferences, social status, medical card), and even to busi-
ness aspects (e.g., the emergency mode of the e-government
procedures). In the following we will see how to develop a
service-based application able to adapt in the presence of
changes within these contextual dimensions.

4. ADAPTATION IN SBA
Figure 2 shows the life-cycle for adaptable SBAs we have

presented in [2]. It highlights not only the typical design-
time iteration cycle that leads to the explicit re-design of
an application, but it also introduces a new iteration cy-
cle at run-time that is undertaken in all cases in which the
adaptation needs are addressed on-the-fly. The two cycles
coexist and support each other during the lifetime of the ap-
plication. Figure 2 also shows the various adaptation- and
monitoring-specific actions (boxes) carried out throughout
the life-cycle of the SBA, the main design artifacts that are
exploited to perform adaptation (hexagons), and the phases
where they are used (dotted lines). The initial phase of the
life-cycle is the (Early) Requirement Engineering and De-
sign; at this phase the adaptation and monitoring require-

Figure 1: General picture of the e-government scenario.

ments are used to perform the design for adaptation and
monitoring. During SBA construction, together with the
construction of the SBA, the corresponding monitors and
the adaptation mechanisms are being realized. The deploy-
ment phase also involves the activities related to adaptation
and monitoring: deployment of the adaptation and moni-
toring mechanisms and deployment time adaptation actions
(e.g., binding). During the operation and management of
the application phase, the run-time monitoring is executed,
using some designed properties, and help the SBA to detect
relevant context and system changes. Here, we can proceed
in two different directions: executing evolution or adapta-
tion of the SBA. In the first case we re-start the right-side
of the cycle with the requirements engineering and design
phase while in the second case we proceed identifing adap-
tation needs that can be triggered from monitored events
and adaptation requirements. An adaptation need formally
characterizes a specific problem-situation that demands for
adaptation. It takes into account each monitoring events
and tries to answer the following questions: What needs
to be adapted? What is the cause? What should be the
outcome/what is the aim?. For each adaptation need it
is possible to define a set of suitable strategies that define
the possible ways to achieve the adaptation requirements
and needs given the adaptation mechanisms made avail-
able. Each adaptation strategy (e.g., service substitution,
re-execution, re-negotiation, compensation, etc..[2]) can be
characterized by its complexity and its functional and non
functional properties. The identification of the most suit-
able strategy is supported by a reasoner that also bases
its decisions on multiple criteria extracted from the current
situation and from the knowledge obtained from previous
adaptations and executions. After this selection, the enact-
ment of the adaptation strategy is automatically or manually
performed. The execution of all activities and phases in all
runtime phases may be performed autonomously by SBAs
or may involve active participation of the various human
actors.

5. THE CONTEXT MODEL
The aim of our context model is the formalization of the

most relevant aspects characterizing the SBA. The model
we propose has been inspired by [17] and is a XML repre-

Figure 2: The Life-Cycle of Adaptable SBAs.

sentation of the main components of the context for service
based applications. It contains six main dimensions able
to describe the status of an application: Time, Ambient,
User, Service, Business and Computational Context. Each
dimension in the XML tree, can have sons able to refine
each factor. An example of the model is shown in Figure 3
and is discussed in Section 7). The TimeContext dimension
refers to the information about the time in which the access
to the application occurs; it could be expressed in absolute
terms (defining a precise date) or it could indicate a part
of the day (morning, afternoon, evening, night). The Am-
bientContext can be related to the space factor (expressed
in terms of an address by which the user is accessing) or to
the environmental condition of the user (the value of some
measurable physical parameter). The UserContext dimen-
sion contains the information about the privileges, the roles,
or the preferences the user has in the application. Moreover,
such dimension permits to express the goal the user wants
to achieve. Information about the services in the applica-
tion are codified under the ServiceContext dimension. This
element lists all the services together with their status (if a
previous execution reported an error, or if it is available),

the time of the last failure (if it makes sense), and the sim-
ilar services. The latter information could be exploited if
a service needs to be substituted with another one. The
BusinessContext dimension takes into account business ap-
plication factors. Finally, the ComputingContext dimension
specifies the software and/or hardware characteristics that
are available at the end user side. Such element permits to
specify, for example, the device, the operating system, or the
web browser the user is using for accessing the application
services.

6. A CONTEXT-DRIVEN ADAPTATION
PROCESS

The role of context, the influence of its factors on the
executability of the applications, and the possible mecha-
nisms for their self-adaptation or human-assisted adapta-
tion, should be properly modelled, designed, and engineered
through the whole life-cycle of the system. Referring to the
life-cycle of Figure 2, we introduce here a number of actions
and design artefacts that are needed to properly build a con-
text model and exploit it to support the adaptation of appli-
cations. The context information should be considered and
explicitly captured since the very beginning of requirements
engineering. In parallel with the elicitation and refinement
of requirements we start understanding, which context fac-
tors should be considered for the purpose of possible adapta-
tions. The identification and characterization of the context
factors of the SBA is continued through the design phase
and results in the activity that we call context modeling. In
parallel, another important aspect of the design activities is
the identification of Context-specific adaptation triggers and
requirements. This refers to the rules and criteria that de-
fine the critical context properties and configurations from
the adaptation point of view: the context properties that
entail SBA adaptation (i.e., to decide adaptation needs) and
the rules and criteria that define what should be adapted
and how (i.e., to decide adaptation strategies). These prop-
erties will be used to construct the context-driven adapta-
tion reasoners that drive the adaptation process at run-
time. During the construction phase contextual monitors
and contextual adaptation mechanisms are developed. The
first ones are needed to deliver important information about
context states and changes during SBA execution. The lat-
ter are used to realize different adaptation strategies. Even
if some adaptation mechanisms could be independent of a
specific context, some others could be dependent on it, for
instance, a user-specific service selection policy or the mech-
anism needed to adapt the result of a service invocation on
the basis of the characteristics of the specific devices used
by end users (e.g., PC, PDAs, or conventional phones). We
remark that the process of identification, modeling, and re-
finement of the contextual factors and properties is iterative.
Indeed, with the definition of new elements of the applica-
tion and monitoring/adaptation, new factors may be dis-
covered, triggering new adaptation needs and corresponding
strategies.

The artifacts and elements developed at design time, i.e.,
the context model, the contextual monitors, and the adap-
tation mechanisms are exploited at run-time to activate and
drive SBA adaptations. First, the contextual monitors are
used to evaluate the context properties. Based on them the
contextual adaptation reasoners make decisions whether the

adaptation should be triggered or not. The decision is driven
by the rules identified at design phase and encoded dur-
ing the construction of the appropriate mechanisms. As a
next step, the appropriate adaptation strategy is selected
and then enacted by the adaptation framework. As in case
of adaptation needs, the selection of the adaptation strat-
egy, as well as its activation, may rely upon and exploit the
knowledge about context, e.g., exploit information about the
user device to select services and deliver information, about
network properties (such as use of GPRS or 3G networks)
to activate SLA negotiation.

6.1 Context Modelling
During context modeling the model described in Section

5 is instantiated by identifing the list of context dimensions
that can trigger an adaptation or evolution of the function-
alities provided by the analyzed SBA. In fact, different con-
text dimensions are relevant for different applications. For
example, the ambient dimension is irrelevant for all the ap-
plications that do not require to change on the basis of the
geographical position in which they are used. Once the list
of the relevant context dimensions has been defined, the con-
text requirements should be refined by modelling the context
dimensions in terms of their reference domain. To enable
the design for adaptation aspects, it is first necessary to de-
fine if the standard context representation hierarchy is fine
for the application or new categories should be defined (e.g.,
seasons) and new representations identified (e.g., room num-
bers instead of GPS positions). Second, it is necessary to
define the granularity to be used for measuring the context
dimensions. For example, as regards our scenario and the
ambient dimension, the service for the identification of the
health-care public services should adapt its output on the
basis of the exact geographical position in which the user
accesses it while for the identification of the administrative
services, it could be sufficient to retrieve the city from which
the user accesses the platform. This first analysis allows the
designer to provide the following outcomes:

∙ The instantiation of the generic context model (Section
5) with respect to the given SBA: the relevant context
dimensions, relevant sub-elements of these dimensions,
and important set of values (ranges) these elements
may have with respect to the analyzed SBA.

∙ The description of the relationships between SBA el-
ements (services, processes and/or subprocesses, etc.)
and the context dimensions in terms of type of impact
and specific context values to monitor. This mapping
defines the starting point for the definition and mod-
eling of adaptation triggers and adaptation require-
ments.

We would like to stress the fact that the context modeling
is an iterative process: the new dimensions and elements
of the model may be added when the application is detailed
and new elements (including also monitoring and adaptation
mechanisms) are added.

6.2 Modeling Adaptation Triggers and Require-
ments

Once the context model and its relation with the applica-
tion model is defined, it is necessary to properly capture and
define the adaptation aspects. In particular, it is important
to define when the contextual changes are critical for the

SBA functioning (i.e., adaptation triggers) and what should
be done or achieved when these changes take place (adapta-
tion needs). Depending on the context dimension/element
and on the specific requirements of an SBA, the definition of
adaptation trigger may vary. As a result, the corresponding
context monitors needed to detect those trigger will have
different, sometimes application-specific, forms and realiza-
tions. Furthermore, in certain cases the adaptation trigger
does not correspond to some value of a particular single con-
text element, but is characterized by the complex combina-
tion of different context dimensions/factors. In the simplest
case, such situations may be directly encoded using the ca-
pabilities provided by the existing monitoring frameworks,
such as Dynamo [1]. In other cases, a sophisticated reason-
ers may be necessary. In particular, in [7], for instance, a
context represents the combination of users personal assets
(agenda, location, social relations, and money), and the crit-
ical context changes characterize some critical combination
of those assets. A dedicated analysis mechanisms is used
to identify those situations (asset conflicts) and to trigger
adaptation solutions.

Each adaptation trigger can be associated with the adap-
tation requirements that define what should be done in order
to align the SBA with its context. Considering the contex-
tual aspects, it is necessary to take into account that adap-
tations may be performed (i) to customize the system in or-
der to fit to the situation in which the application currently
operates, (ii) to optimize the system in order to improve
certain (usually quality-of-service) issues and characteristics
of the system, or (iii) to prevent and avoid future faults or
undesirable situations in the execution of the system. The
customization is often driven by changes in the application
context and especially by time, ambient, user, business, and
service context dimensions. Optimization is more related to
the service and computing context dimensions but can be
also triggered by changes in the users’ preferences. Finally,
prevention is mostly related to the service and computing
context since changes of the execution environment might
increase the risk of failures and the need for prevention.
The adaptation requirements are captured and realized by
a set of adaptation strategies. The selection of an adapta-
tion strategy to apply may depend on variety of factors [2],
such as scope of the change (i.e., whether the change affects
only a single running instance of the SBA or influences the
whole model), its impact (the possibility of the application
to accomplish its current task or necessity to retract), etc.
Besides, the contextual factors should also be considered:
the different strategies may be applied upon the same trig-
ger. For example, the decision to substitute a service or to
retry with the existing one may depend on the profile of the
user. Again, the selection of the adaptation strategy may
be characterized by a simple rule or a requires advanced
reasoning, based on some ontologies or ad-hoc models, or
may involve user decisions [7]. Table 1 relates some of the
common adaptation strategies with the changes in differ-
ent context dimensions. In conclusion, the outcomes of this
modeling step include the following components:

∙ Characterization of adaptation triggers as the descrip-
tion of the context configuration, in which the adapta-
tion should be applied.

∙ Relation of adaptation triggers to possible adaptation
strategies used to realize the corresponding adaptation

needs. This relation may be also equipped with the
characterization of the contextual conditions that drive
the selection of one or another strategy.

6.3 Construction of Contextual Monitors and
Adaptation Mechanisms

The results of the analyses performed in the previous
phases support the SBA designers in the realization of the
monitors and adaptation strategies that should be included
in the SBA design. The need for the analysis of the con-
text and the deployment of specific adaptation strategies
requires the construction of dedicated platforms and the in-
sertion of monitors able to detect the context changes and
trigger the correspondent action. As we already discussed
in previous subsection, the realization of such mechanisms
may rely on the existing solutions or may require their ex-
tension and even completely novel approaches. For example
in the Dynamo monitoring framework [1], the monitoring
components for context observation are realized as services,
which allow for the extension of the platform and even for
run-time addition/removal of monitors. Among the other
enabling platforms for realizing such context-based moni-
toring and adaptation solutions one can consider dynamic
aspect-oriented programming [12] that provides means for
application developers to state when and how behaviour of
an application should be adapted. These approaches have
a limited level of semantic expressiveness since they rely on
general-purpose language constructs. Hence, application de-
velopers have to express adaptations in the format of the
supporting platform which often remains difficult to be un-
derstood. Domain-specific languages offer a solution to en-
able programmers to reason at a higher semantic level. In
[11] a language that provides higher-level constructs for ex-
pressing the adaptation of application behaviour due to a
change in context is proposed. Other approaches are based
on middleware-based approaches. For example, in [3], au-
thors present a framework for self-adaptive components that
follows the Event-Condition-Action pattern and makes use
of events emitted by a context-aware service that provides
information about the execution context of the application.
Furthermore, various rule engines can be also used. In [9], a
dynamic adaptation framework that adapts service objects
in a context-aware policy-based manner, using metatypes is
proposed. The system includes in the policy document a-
priori information for adaptation in the form of default be-
haviours and known adaptations. The system is also able to
deal with adaptation requirements that were unprecedented
when the service was designed and compiled. In fact, re-
configuration intelligence can be incorporated at runtime by
modifying the policy declarations and the inclusion of new
behaviours in the form of new metatypes. The outcomes of
this construction step include the following components:

∙ Design and realization of monitors able to detect changes
in the context dimensions on the basis of the specifi-
cations defined in the previous phase.

∙ Realization of a platform that on the basis of the con-
text analysis define and trigger the corresponding adap-
tation action.

7. PROCESS EVALUATION
In this section we want to explain how the context-aware

design process described in the section 6 is applied to a case

Table 1: Suitability of adaptation strategies to react to context changes
Strategy Time Ambient User Service Computing Business

Service substitution X X X X X X
Re-execution X X

Re-composition X X X
Fail X X X X

Service concretization X X X X X X
Re-negotiation X X X
Compensation X X

Trigger Evolution X X X X X

study in the e-government domain that has been defined in
the S-Cube Project [13]. In the scenario introduced above

Figure 3: The Context Model for the e-Government
scenario.

different contextual dimensions are heavily exploited, rang-
ing from computational context (e.g., devices and channels
used by the citizens to access/receive information from the
administrative services), to physical context (e.g, user lo-
cation), user context (its. preferences, social status, medi-
cal card), and even to business aspects (e.g., the emergency
mode of the e-government procedures). In particular, let
us consider the Health-care public service that one user can
access to search for a doctor. If the request occurs dur-
ing the night, the list of the available doctors is different
with respect to the one returned during the morning. For
this reason, the TimeContext dimension will be expressed by
means of the PartOfDay element whose values will belong
to the following set: {morning, afternoon, evening, night}
(see the figure 3). In a similar way, some of the service
outputs could depend on the location of the user accessing
the system. In fact, if a citizen wants the list of the nearest
pharmacies, the sorting of the returned items depends on
the zipcode of the area from which the request comes. In a
similar way the behaviour of the application will depend on
the situation (normal life or emergency conditions) the users
are living. The study of the application and of the involved
services will guide the definition of the set of values asso-
ciated to the context dimensions. An example of a simple
context model for the proposed scenario can be found in the
Figure 3; the model reports, for each considered dimension,
all the admissible values.

After the definition of the context model, it is possible
to go through the next phase devoted to the identification
of the associations of the critical context changes (adapta-
tion triggers) to the adaptation needs. In Table 2, for each
service involved in the application the relationship with the
context factors is highlighted. It is possible to notice, for
example, that the access to the Administrative or to the
Health-care public services, could depend on the values of
the TimeContext dimension in the context model.

Changes in the context have to be managed and suitable
adaptation strategies have to be defined. Referring to the

e-government scenario, if we consider a mobile user access-
ing to the e-Health service, we can image that modifica-
tions in the location (expressed using the zipcode for the
specific context dimension) will require the re-execution or
the substitution of the specific e-Health service. Moreover
the transition from a normal to emergency situation could
require the recomposition of the application. During the
second phase of the process, all the context changes and the
corresponding adaptation strategies have to be identified.
On the basis of the analyzed scenario, the context require-
ments, and the characteristics of the adaptation strategies,
process designers in the last phase should build a table Ser-
vice/Adaptation Strategy in which for each service the se-
lected adaptation strategies are identified. Table 3 details
the Service/Adaptation Strategy table for the e-government
scenario. Since almost all the functionalities depend on the
whole set of the context dimensions, they are also suitable
for the adoption of a large set of adaptation strategies. The
public ownership of the administrative and census and regis-
tration services and thus the unavailability of a registry con-
taining similar services make instead the service substitution
and concretization not adoptable. Compensation is not suit-
able for all the Information services since the only read inter-
action with these services does not require the intervention
of compensation operations. The table Service/Adaptation
Strategy provides a comprehensive view of all the applicable
strategies and thus supports the designer in the identifica-
tion of the elements to design and develop to enable the
construction of a contextual adaptive SBA. For each service
and for each related context dimension, one or more adap-
tation strategies should be selected on the basis of technical
constraints and functional and non-functional requirements.
For example, for all the critical services in which a rapid re-
sponse is needed, the adoption of adaptation strategies that
increase the response time (e.g., re-execution, re-negotiation,
re-composition, trigger evolution) is not acceptable.

8. CONCLUSION AND FUTURE WORK
This paper focuses on the role of the context in the adap-

tation activities. It proposes a framework to support the de-
sign of SBAs that targets the adaptation requirements raised
by context changes. The approach has been described on the
basis of a novel life-cycle that emphasizes the relevance of
the context elements in the different facets of adaptation,
both during the design phase and at run-time. The paper
considers all the issues related to the design of SBAs able
to evolve together with the requirements and the execution
context. The context has been modeled by considering a set
of all the dimensions that can generally influence the system
behaviour. On the basis of this context model, the proposed
approach provides guidelines for the identification of the rel-
evant context dimensions to monitor and for the definition

Table 2: Service/Context table for the E-government scenario
Application Time Ambient User Service Computing Business

Health-care public services X X X X X X
Administrative services X X X X X X

Census and registration services X X X X X
Information services X X X X X X
Auxiliary services X X X X

Table 3: Service/Adaptation Strategy table for the e-government scenario
Adaptation Strategy Health-care

public services
Administrative
services

Census and
registration
services

Information
services

Auxiliary ser-
vices

Service substitution X X X
Re-execution X X X X X

Re-composition X X X X X
Fail X X X X X

Service concretization X X X
Re-negotiation X X X
Compensation X X X X

Trigger Evolution X X X

of the adaptation triggers able to link context changes with
suitable adaptation strategies. The effectiveness of the dis-
cussed principles and guidelines has been evaluated by con-
sidering a real case study based on an e-governement sce-
nario. Results witness the capability of the context-driven
adaptation process to capture the key aspects of adapta-
tion and support designers from the requirements elicita-
tion to the construction of proper adaptation mechanisms.
Our future roadmap includes a refinement of the adapta-
tion process presented in this paper, its formalization, and
validation. We also intend to work on the development of
mechanisms and tools supporting the methodology, building
on top of the actions and artifacts identified in the proposed
life-cycle.

9. REFERENCES
[1] L. Baresi and S. Guinea. Dynamo: Dynamic

monitoring of ws-bpel processes. In ICSOC, pages
478–483, 2005.

[2] A. Bucchiarone, C. Cappiello, E. di Nitto,
R. Kazhamiakin, V. Mazza, and M. Pistore. Design
for adaptation of Service-Based applications: Main
issues and requirements. In International Workshop
on Engineering Service-Oriented Applications (to
appear), 2009.

[3] P.-C. David and T. Ledoux. Wildcat: a generic
framework for context-aware applications. In MPAC,
pages 1–7, 2005.

[4] A. K. Dey. Understanding and using context. Personal
Ubiquitous Comput., 5(1):4–7, 2001.

[5] A. K. Dey and G. D. Abowd. Towards a Better
Understanding of Context and Context-Awareness.
CHI 2000 Workshop on the What, Who, Where,
When, and How of Context-Awareness, 2000.

[6] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday.
An architecture for the effective support of adaptive
context-aware applications. In MDM ’01: Proceedings
of the Second International Conference on Mobile
Data Management, pages 15–26, London, UK, 2001.
Springer-Verlag.

[7] R. Kazhamiakin, P. Bertoli, M. Paolucci, M. Pistore,
and M. Wagner. Having Services “YourWay!”:

Towards User-Centric Composition of Mobile Services.
In Future Internet Symposium, 2008.

[8] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework.
Policies for Distributed Systems and Networks, IEEE
International Workshop on, 0:3, 2003.

[9] J. Keeney and V. Cahill. Chisel: A policy-driven,
context-aware, dynamic adaptation framework. In
POLICY, pages 3–14, 2003.

[10] M. Moez, C. Tadj, and C. ben Amar. Context
modeling and context-aware service adaptation for
pervasive computing systems. International Journal of
Computer and Information Science and Engineering,
2008.

[11] J. Munnelly, S. Fritsch, and S. Clarke. An
aspect-oriented approach to the modularisation of
context. In PerCom, pages 114–124, 2007.

[12] A. Nicoara and G. Alonso. Dynamic aop with prose.
In International Workshop on Adaptive and
Self-Managing Enterprise Applications (ASMEA),
pages 125–138, 2005.

[13] E. D. Nitto, V. Mazza, and A. Mocci. Collection of
industrial best practices, scenarios and business cases,
2009.

[14] J. C. Ronnie Cheung, Gang Yao and A. Chan. A fuzzy
service adaptation engine for context-aware mobile
computing middleware. International Journal of
Pervasive Computing and Communications, 2008.

[15] S-Cube. Codified human-computer interaction (HCI)
knowledge and context factors, 2009.

[16] T. Strang and C. L. Popien. A context modeling
survey, September 2004.

[17] L. Tanca, A. Miele, and E. Quintarelli. A methodology
for preference-based personalization of contextual
data. In ACM EDBT 2009, 2009.

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

9 Gehlert, A.; Bucchiarona, A.; Kazhamiakin, R.; Metzger,
A.; Pistore, M.; Pohl, K.: Exploiting Assumption-Based
Verification for the Adaptation of Service-Based Applications.
In: Proceedings of the 25th Annual ACM Symposium on
Applied Computing, Track on Service Oriented
Architectures and Programming, March 21 - 26, 2010,
Sierre, Switzerland. 2010.

Exploiting Assumption-Based Verification for the
Adaptation of Service-Based Applications

Andreas Gehlert
University of Duisburg-Essen

Schützenbahn 70
45117 Essen, Germany

andreas.gehlert@sse.uni-
due.de

Antonio Bucchiarone
FBK-IRST

via Sommarive 18
38100 Trento, Italy

bucchiarone@fbk.eu

Raman Kazhamiakin
FBK-IRST

via Sommarive 18
38100 Trento, Italy
raman@fbk.eu

Andreas Metzger
University of Duisburg-Essen

Schützenbahn 70
45117 Essen, Germany

andreas.metzger@sse.uni-
due.de

Marco Pistore
FBK-IRST

via Sommarive 18
38100 Trento, Italy
pistore@fbk.eu

Klaus Pohl
University of Duisburg-Essen

Schützenbahn 70
45117 Essen, Germany
klaus.pohl@sse.uni-

due.de

ABSTRACT
Service-based applications (SBAs) need to operate in a highly
dynamic world, in which their constituent services could fail
or become unavailable. Monitoring is typically used to iden-
tify such failures and, if needed, to trigger an adaptation of
the SBA to compensate for those failures.

However, existing monitoring approaches exhibit several
limitations: (1) Monitoring individual services can uncover
failures of services. Yet, it remains open whether those indi-
vidual failures lead to a violation of the SBA’s requirements,
which would necessitate an adaptation. (2) Monitoring the
SBA can uncover requirements deviations. However, it will
not provide information about the failures leading to this
deviation, which constitutes important information needed
for the adaptation activities. Even a combination of (1) and
(2) is limited. For instance, a requirements deviation will
only be identified after it has occurred, e. g., after the exe-
cution of the whole SBA, which then in case of failures might
require costly compensation actions.

In this paper we introduce an approach that addresses
those limitations by augmenting monitoring techniques for
individual services with formal verification techniques. The
approach explicitly encodes assumptions that the constituent
services of an SBA will perform as expected. Based on those
assumptions, formal verification is used to assess whether
the SBA requirements are satisfied and whether a violation
of those assumptions during run-time leads to a violation of
the SBA requirements. Thereby, our approach allows for (a)
pro-actively deciding whether the SBA requirements will be
violated based on monitored failures, and (b) identifying the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

specific root cause for the violated requirements.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.5 [Software Engineering]:
Testing and Debugging—Monitor

Keywords
Service-oriented computing, verification, monitoring

1. INTRODUCTION

1.1 Need for Adaptation
Service Based Applications (SBAs) are composed of ser-

vices provided by service providers that are often different
from the company that is operating the SBA [28]. Such a
distribution of computational resources and software comes
with the advantage to flexibly use any service available on
the network and, therefore, to adapt the SBA to new busi-
ness situations by, for instance, exchanging one service for
another. This flexibility, however, comes at the cost of losing
tight control over the SBA, as the SBA owner cannot control
the provisioning, execution, management and evolution of
externally provided services [28]. This means that the SBA
designer must rely on the ability of the service providers to
meet the expected functionality and quality of those services
(encoded, for instance, as service-level agreements).

Once the SBA is put into operation, those expectations
may—intentionally—or unintentionally – be violated; for in-
stance, a service might fail. The operator of the SBA must
not only recognise these violations but also decide whether
those violations mean that the overall SBA requirements will
no longer be met. In such a case an adaptation of the SBA
can become necessary.

1.2 Limitations of Monitoring
Currently, monitoring is used to trigger the adaptation of

a service-based application. However, existing monitoring
techniques—as detailed below—exhibit several limitations

which impact on taking adaptation decisions. Failing to
make those decisions may lead to unnecessary or harmful
adaptations [20].

Monitoring individual services: It is possible to monitor
specific events and elements of the SBA, such as monitor-
ing the constituent services [15]. Such approaches recog-
nise whether a service delivers the expected functionality or
quality. However, it is unclear whether this violation of the
contract eventually leads to a violation of the SBA’s require-
ments. Without this information we cannot decide whether
the SBA should be adapted or not. Assume, for instance,
that a service takes 1s longer than expected. It may be the
case that the service is part of a parallel control flow in the
service composition and that such a delay does not have any
impact on the performance of the parallel control flow and
thus the overall quality of the SBA.

Monitoring service compositions / SBAs: The require-
ments to the whole service composition may be monitored
[3]. In this way it is possible to check whether the com-
position behaves as required. However, in this case, the
identification of the source of the requirements violation is
not trivial. Assume, for instance that a service composition
takes 30s longer than expected to terminate. “Debugging”
as an additional step would then be needed to determine,
which service(s) caused that delay. It is important to know
the cause of the problem to compensate for it by adapting
the system; e. g., one could replace the service that caused
the delay.

Combined efforts: Even a combination of the above two
techniques has limitations. Indeed, in case of complex SBAs,
a variety of events and violations may occur. How to debug
and identify a specific cause of the requirements violation in
order to trigger proper adaptation actions remains an open
problem in such a case. Additionally, even with the com-
bined approach we can only identify a problem of the ser-
vice composition when this is identified by monitoring. This
especially means that it is not possible to “predict” whether
a violation of a service contract (detected by monitoring in-
dividual services) may eventually lead to a violation of the
requirements of the service composition.

1.3 Contribution of the Paper
In this paper we present an approach that aims at ad-

dressing the above limitations. More specifically, our ap-
proach is able to detect run-time problems and violations
of SBA’s requirements and to identify specific root causes
for those problems in order to determine appropriate adap-
tation actions. To achieve this, our approach augments
monitoring techniques (to detect service failures) with for-
mal verification techniques (to determine requirements vi-
olations). The central idea of our approach is to observe
specific properties—assumptions—that (1) are explicitly re-
lated to the requirements and (2) characterize the constituent
services of the SBA. Thereby, our approach allows (a) veri-
fying whether a problem can lead to a violation of require-
ments, and (b) tracing the violation to its root cause, which
facilitates adaptation.

The remainder of the paper is structured as follows: In
Section 2 we introduce the notion of assumptions and how
those are exploited in our approach. This is followed by a
scenario to illustrate the approach in Section 3. We detail
the individual steps of our approach in Section 4 and discuss
related work in Section 5. Section 6 discusses the results and

possible future work.

2. ASSUMPTION-BASED VERIFICATION
The concept of “assumption” is well understood in soft-

ware and requirements engineering. While requirements can
be influenced and realised by the designer building the sys-
tem, assumptions can only be affected by agents in the sys-
tem’s environment [19, 30]. Thus, neither the designer nor
the system itself have any influence on the violation or va-
lidity of assumptions [31]. Provided that a system fulfils
its requirements under a given set of assumptions, a viola-
tion of those assumptions may lead to a situation, in which
the software system does not provide the expected quality
anymore and, therefore, deviates from its requirements[9].

In the case of service-based applications, assumptions may
characterize the constituent services (e. g., their interfaces,
QoS parameters, etc.) and/or the context (e. g., infrastruc-
ture, business, context, user, etc.). Once the assumptions
are established (e. g., expected QoS is agreed through a con-
tract such as a service-level agreement), the designer of the
SBA expects that those assumptions are valid during the
design- and run-time phases of the system (e. g., the con-
tract will not be violated by the provider).

To decide whether a violation of an assumption (e. g., lo-
cal deviation from contracts of one or more services) leads
to a violation of the SBA requirements, we need an anal-
ysis technique. For the purpose of this paper, we propose
to exploit verification techniques in two ways. First, a ver-
ification of the system at design time allows us to prove
that the design corresponds to the requirements provided
that the assumptions hold. Second, if the re-verification ex-
ecuted at run-time reports a violation of the corresponding
requirements, we conclude that the observed violation of an
assumption will lead to problems in the SBA. As the as-
sumptions characterize a specific element (e. g., a specific
service), an appropriate adaptation action may be triggered
(e. g., substitute a service).

The presented approach benefits from (1) the possibility
to identify the specific source of the problem and trace it
to the critical element of the domain that should be han-
dled by adaptation; (2) only specific assumptions need to be
monitored to identify potential problems (thus, no need to
monitor the whole requirements and compositions); and (3)
in case of long-running applications the run-time monitoring
and analysis results may be exploited to trigger adaptation
activities pro-actively, before the failure actually takes place.

3. ILLUSTRATIVE SCENARIO
We use the following example to illustrate our approach.

The company “Green Transport IT Solutions” wants to sup-
port passengers in cities to use the available public trans-
port systems and develops a service-based application, which
computes travel routes for helping users navigate from one
place in a city to another. This application is deployed on
a mobile device and uses different services for each city de-
pending on the location of the device. The system imple-
ments the following workflow (cf. Figure 1): after the user
has entered his or her destination, the system locates the
user and computes the quickest route to the next bus stop.
After this step, the system calculates the public transport
route to the destination bus stop. Lastly, the shortest foot-
path from this bus stop to the final destination is calculated.

Compute
Location

Compute Shortest
Path to Bus Stop

Compute Shortest
Bus Trip

Compute Shortest
Path to Destination

Location
Service

Bus Navigation
Service

Footpath Navi-
gation Service

Specification

Assumptions Completes in <1s Completes in <5s Completes in <2s

Requirements The navigation of the user to his or her final destination should not take longer than 15s.

Figure 1: Assumptions, Requirements and Specifications of a Mobile Navigation Scenario

Figure 1 presents a non-functional requirement of the SBA
at the bottom, the specification of the workflow in the mid-
dle and the assumptions regarding execution time at the
top. The linear workflow of four steps should be executed
within 15s. The workflow invokes a location service once, a
footpath navigation service twice and a bus navigation ser-
vice once. According to the services’ individual SLAs (i. e.,
service assumptions) their time to complete the request are
at most 1s for the location service, 5s for the footpath nav-
igation service and 2s for the bus navigation service. Fur-
thermore, it is assumed that the service interaction times
may be neglected (context assumption). Based on these as-
sumptions, the initial verification performed during run-time
proves that even in the worst case (upper bound for response
time), the process terminates in less than 13s and, therefore,
the requirement of the SBA is fulfilled.

Assume now the following two situations during run-time:

• The location service takes 3s. While, its SLA is vio-
lated, an adaptation is not needed as the process takes
now exactly 15s. Monitoring the whole requirement
or following our approach would thus have avoided an
unnecessary adaptation.

• The location service takes 3s and the the footpath nav-
igation service takes 7s. If only the SBA would be
monitored in that case, it would not be possible to un-
derstand which of the services have failed and which of
the services should be adapted. As an example, if a dif-
ferent location service was chosen, the overall time of
the service composition would be reduced to 16s and,
therefore, the requirement would still be violated. In
our approach, instead, if we re-verify the system, we
can detect that the SBA requirement is violated re-
gardless whether the assumption about the location
service is violated or not. Therefore, in this case, it is
necessary to exchange the footpath navigation service.

Besides the timed properties above, it is also possible to
consider, monitor, and analyze functional aspects of the ser-
vice composition. For example, the services may have com-
plex interaction protocols consisting of several interactions,
such as “make a navigation request” or “refine the destina-
tion”. The SBA requirement in this case may express the
deadlock freeness, while the assumption may express the ne-
cessity of all possible service implementations to follow the
same interaction protocol. Indeed, if a specific service im-
plementation does not follow the same protocol, run-time
re-verification may check whether the new protocol is still
compatible with the requirement.

Assumptions

Monitoring
Domain

Requirements

1

2

• External Services
• User
• Interaction Pattern

• Service Composition (BPEL)
• Service Protocols
• QoS Models

• functional requirements
• non-functional requirements

3

4 5

SBA

Key

Key Element Trace Link

Figure 2: High-Level View on the Proposed Ap-
proach

4. DETAILED APPROACH
Figure 2 depicts the main elements of our approach. As

explained in the introduction the approach builds on a clear
separation between requirements for the SBA and the as-
sumptions under which it is supposed to operate. Further-
more, we distinguish between the system itself and its con-
text (or domain). As the SBA’s constituent services are pro-
vided by different service providers and as these providers
control those services with regard to functionality and qual-
ity, they belong to the SBA’s domain.

Our approach involves the following five steps (cf. numbers
in Figure 2):

1. This first step addresses the design-time where the de-
signer documents assumptions and requirements sepa-
rately.

2. In the second step the designer verifies the system and
deploys the system only if the system passes the veri-
fication step.

3. At run-time the assumptions are monitored.

4. A violated assumption triggers a run-time re-
verification.

5. If the SBA does not pass the verification given the vio-
lated assumptions, an adaptation is triggered, because
this means that the SBA requirements are violated.

Those steps are described in more detail in the following
subsections. Each subsection contains two aspects. The first
aspect describes the concepts of each step in more detail.
The second aspect describes techniques that can be used
to implement the concepts of that step and thus demon-
strates how our approach can be realized based on exist-
ing techniques for monitoring and verification. The aim of
the selected techniques is to demonstrate the feasibility of
our concepts only. Thus, we do not claim that we have se-
lected the most appropriate techniques for each phase and,
therefore, do not provide a discussion of possible alternative
techniques.

4.1 Step 1: Separating Requirements & As-
sumptions

During the design step of the SBA its requirements and
assumptions are documented together with the SBA model.
Assumptions may be defined for the user behaviour, for the
device on which the SBA runs and for the services provided
by service providers. Here, we only focus on assumptions
for services.

The assumptions may be extracted in different ways.
In particular, it is possible to exploit domain knowledge
(e. g., the properties of the telecommunication infrastructure
adopted in different cities), to rely on historical information
obtained and continuously updated during the execution of
previous versions of the SBA, etc. The specific methods for
eliciting domain assumptions is outside of the scope of this
paper and will be addressed in future work.

4.1.1 Modeling Assumptions
Concepts: Assumptions may address functional (e. g.,

the interfaces and the protocol used by the service) and
quality aspects (e. g., response time or availability) of ser-
vices. As we verify the system later on (see Section 4.2) we
will need formal techniques to describe these functional and
quality aspects.

During this step, the assumptions, requirements and the
elements of the SBA’s specification are related by two types
of trace links: First, the link between assumptions and re-
quirements allows tracing a violation of this assumption back
to its requirement. This link ensures that we do not only
know the violated assumption but also the consequence for
the SBA with respect to the fulfilment of its requirements.
Second, the link between the assumption and the specifica-
tion allows us to trigger an adaptation of the relevant part
of the SBA once a violation of an assumption is detected.

Implementation: We propose to produce a set of
template-based documents, which describe assumptions ver-
bally and formally as well as their relations to the require-
ments and SBA specification. Such templates allow provid-
ing a name, a natural language description, a type, a formal
description, the related requirements and the affected SBA
element(s) (cf. Table 3 for examples). The assumption is
described by a short and unique name as well as a natural
language description. In addition, we document the assump-
tion’s type. Here, we distinguish between assumptions on
functional, behavioral and non-functional properties of ser-
vices. The formal description of the assumption is needed
for verification and to monitor it at run-time. Lastly, the
assumption is related to a requirement (related requirement
row) and to a specific SBA element, which was designed
using this assumption (affected SBA element row).

Figure 4: BPEL Protocol (left) and STS (right) of
the Footpath Navigation Service

4.1.2 Modeling the Service-based Application
Concepts: A composite SBA may be defined using a

language such as BPEL (Business Process Execution Lan-
guage). The component services are represented by their
interfaces (defined, e. g., in WSDL) that define a set of pos-
sible service operations, their parameters, data types, and
binding protocol information.

Implementation: Formally, we represent the composed
application and the protocol of the component services as
a State Transition System (STS, [21]). A STS describes a
dynamic system that can be in one of its possible states and
can evolve to new states as a result of performing some ac-
tions. Actions are distinguished in input actions, which rep-
resent the reception of messages (“receive” and “onMessage”
BPEL activities), output actions, which represent messages
sent to external services (“invoke” and “reply”), and internal
actions, modeling internal computations and decisions (“as-
sign”, “switch”, etc.). The STS formalism may be extended
to Timed Transition System [21] to capture time proper-
ties for representing assumptions on duration of activities,
BPEL timeouts, etc.

An example of the abstract BPEL protocol and the corre-
sponding STS of the Footpath Navigation Service is shown
in Fig. 4. The protocol (left) starts when the navigation
request is received. If the specified location is known the
service returns an appropriate route (sends “navigationRe-
sult” message). Otherwise, the service prepares and sends to
the requester the set of possible options with the “selection-
Request” operation. The requester may perform a selection
(i. e., send the selection message) or cancel the procedure
(sending the cancel message). In the former case the route
is returned. In the latter case the procedure terminates. The
protocol is reflected by the corresponding STS.

4.2 Step 2: Perform Design-Time Verification
Concepts: Once the system is designed, we need to for-

mally verify that it satisfies its requirements under the spec-
ified assumptions. This formal verification is a necessary ac-
tivity in our approach since this verification formally ensures
that the deployed SBA corresponds to the requirements and
assumptions documented in step 1. If this activity was not
included in our approach and we detected a violation of
an assumption at run-time (see Section 4.4), we would not
know whether this violation is the source of the problem or
whether the problem existed in the SBA in the first place.

Implementation: There are many SBA verification
techniques available, which can be used for our purposes
[25, 14, 22]. To verify for functional correctness and quality
correctness the approach takes STSs and models in linear

Assumption: Timing Assumptions
Description: a1) The location service completes in at most 1s.

a2) The footpath navigation service completes in at most 5s.
a3) The bus navigation service completes in at most 2s.

Type: Non-Functional
Formal Specification: a1) time(RECEIV ED(locationResult) Since SEND(locationRequest)) < 1

a2) time(RECEIV ED(footpathNavigationResult) Since
SEND(footpathNavigationRequest)) < 5
a3) time(RECEIV ED(busNavigationResult) Since
SEND(busNavigationRequest)) < 2

Related Requirement: The system should be able to calculate the entire route to the destination in at most 15s.
Affected SBA Element: Location service, footpath navigation service, bus navigation service.

Figure 3: Documented timed assumptions

temporal logic (LTL) as input. Together with approaches,
which translate property sequence charts into timed Büchi
automata [2], the approach allows to bridge the gap between
the design step and the analysis step.

To check whether the SBA satisfies its functional and non-
functional requirements we use model checking techniques
[14, 25, 26] that are able to check if the behavioural model
of the SBA is conform to the given functional correctness
properties representing the SBA requirements. We apply
the approach proposed in [22] to verify that the SBA of our
running example is correct. The approach takes as input the
STSs representing the SBA and the services as well as the
behavioral correctness properties defined in linear temporal
logic (LTL). The properties may express for instance, dead-
lock freeness, ordering constraints on events, starvation, etc.
It uses NuSMV [8] as a model-checker.

Instead of writing directly temporal properties, one can
use the algorithm proposed in [2] that translates Property
Sequence Charts (PSCs) into a Büchi automaton [7]. The
notation of PSC [2] is very close to UML sequence diagrams,
but has a formal underlying semantics suitable for verifica-
tion purposes. After the verification of the behavior of the
composition model at design-time, and in case a violation
is detected at run-time, a counterexample (also in PSC-like
form) that demonstrates the erroneous execution of the com-
position is provided.

In our scenario it is necessary to verify non-functional re-
quirements, such as time properties. In particular, the global
time constraint (execution time ≤ 15s) should be satisfied.
This requirement can only be satisfied if all the services par-
ticipating in the application fulfill their own local timed con-
straints. To verify such time constraints, the approach pro-
posed in [21] may be exploited. The approach extends the
verification techniques presented above to take time proper-
ties and assumptions of service compositions into account.
As input the approach takes the specification of the SBA
and service behavior enriched with temporal aspects such
as timeouts and constraints on activity durations, expressed
as Timed Transition Systems. For specifying correctness
properties that explicitly speak about time, the approach
exploits the duration calculus (DC) notation [17]. Formally,
the notation is close to the model of LTL and PSC; it en-
ables the use of similar verification algorithms (the NuSMV
model checker has been used for this purpose).

4.3 Step 3: Monitor Assumptions at Run-
Time

Concepts: Upon the completion of the second step the
system is deployed and used. To identify service faults, we

need to monitor the services—more precisely we need to
monitor the services w. r. t. the fulfilment of their service
level agreements. Therefore, the assumptions (expressing
the SLAs) should be mapped to monitoring rules, which are
in turn used by a monitoring engine to monitor the SBA.

Implementation: For the assumptions monitoring pur-
pose we adopt the integrated Astro/Dynamo framework and
the corresponding monitoring language [6].

The choice is motivated by the capabilities and expressive
power of the framework. First, the language permits spec-
ifying properties in a declarative way using the notations
similar to those used for the verification (i. e., using tempo-
ral logic constructs similar to LTL and DC). In particular,
it allows for capturing timing and statistical information
about process activities. For example the property that the
overall interaction with the Footpath Navigation Service
should not exceed 1 second may be expressed using the
following formula:

time(RECEIV ED(navigationResult)
Since SEND(navigationRequest)) < 1

Second, the Astro/Dynamo monitoring framework allows
expressing properties and measure/aggregate information
over a single execution of a process instance as well as over
a set of instances; these are important properties if assump-
tions refer to certain statistical information (e. g., certain
QoS aspects, such as performance or availability). Third,
the framework allows for measuring the properties in the
SBA’s context using external services and components as a
pluggable sources of information. This is an important ca-
pability in order to evaluate context assumptions. Details
on the realization of this capability can be found in [15].

Consequently, the timed assumptions, behavioral assump-
tions, and certain contextual assumptions may be observed
using the integrated monitoring framework. As for protocol
assumption monitoring, we rely on the approach presented
in [29]. The underlying idea is that a monitor observes an
interaction with the corresponding service and compares the
sequence of messages with the one defined in the protocol.
If wrong messages arrive, the protocol is violated, and the
violation is reported by the monitoring framework.

4.4 Step 4: Run-Time Verification
Concepts: If a violation of an assumption is detected

by monitoring, we need to determine whether this viola-
tion actually leads to a failure in the SBA. To evaluate such
failures we use the verification techniques described in Sec-
tion 4.2 at run-time. An adaptation is only necessary if

the verification fails. As we have monitored the individual
assumptions, we know the source of the problem, e. g. the
assumption that was violated. Together with our traceabil-
ity links (see again Figure 3), we can determine the affected
requirement(s). Having analysed the impact of the service
fault, the SBA operator can decide whether an adaptation
is necessary or not. It is important to note here, that the
adaptation can take effect before the SBA instance termi-
nates, as the verification has determined the violation of the
SBA requirements even before the whole workflow has been
executed.

Implementation: We can use the same techniques as
presented in Section 4.2. For example, if the protocol of
the Navigation Service has changed (e. g., an error message
is sent if the location specified by the user is unknown), it
is possible to verify whether the whole composition is still
deadlock-free. If the requirement is still satisfied, the adap-
tation is not needed.

In a similar way, from the re-verification of timed proper-
ties, it is possible to evaluate whether the time requirement
is violated, and which of the violated assumptions is respon-
sible for that.

4.5 Step 5: Triggering Adaptation
Concepts: If the requirement has found to be violated,

the next activity is to identify the source of the problem
and trigger appropriate adaptation actions. In our approach
the identification of the problem source is straightforward,
because any assumption is associated to the elements of the
application model that rely upon those assumptions. This
relation allows us to identify the component of the system
that is subject to adaptation.

Implementation: A specific element of the SBA domain,
such as constituent services and the context (e. g., connec-
tivity, or user profiles) may be further associated with the
appropriate adaptation actions. For example, the service
protocol and SLAs may be associated with such actions as
replacement of the service, re-design/re-compose the part
of the orchestrating BPEL process that interacts with that
service in order to accommodate to the new version, etc.

Note that the ability to precisely identify the critical el-
ements of the domain allows us to identify adaptation ac-
tions that are the most appropriate in a given situation and,
therefore, avoid redundant or harmful adaptations.

5. RELATED WORK
The closest relations to our approach may be found in the

requirements engineering domain under the label require-
ments monitoring. Fickas and Feather for instance, describe
in [12, 13] an approach similar to ours. In line with us, the
authors argue, that assumptions should be identified during
the requirements engineering phase of a software develop-
ment project. The authors also argue that the system only
operates correctly in case of valid assumptions. They con-
clude that assumption monitoring is beneficial to adapt the
system (called remedial action in the papers) once a vio-
lation of an assumption is detected. However, Fickas and
Feather’s work is descriptive only, e. g. concrete techniques
for monitoring assumptions and for linking them with the
system to derive adaptation triggers are missing.

More recent work of Cohen et al. and Fickas et al. concen-
trate on the monitoring aspect. In the [9, 11] the authors
describe a flexible method how to derive monitors based on

requirements and assumptions, e. g. elicited and documented
by the KAOS approach [10]. Because of the strong moni-
toring focus, the papers do not cover any aspect related to
adaptation.

The idea of requirements monitoring is also used in the
domain of Web services and service compositions, where a
wide range of approaches have been proposed for monitor-
ing services and service compositions. In particular, in [4,
5] the authors propose an approach for BPEL monitoring.
The monitoring properties (functional and non-functional)
are expressed as pre-post conditions on service invocations
within the process specification. In [24] the authors also pro-
pose a framework for BPEL composition monitoring. These
approaches, however, do not differentiate between assump-
tions and generic requirements, and therefore, cannot be di-
rectly applied for identifying the source of the problem and
for triggering appropriate adaptations.

In [29] and [23] the authors exploit assumptions for auto-
mated service composition. In the former case a composed
BPEL process is automatically built using assumptions on
the protocols of the component services. Moreover, run-
time monitoring matches the actual behaviors of the service
composition against the assumptions expressed in the com-
position requirements, and report violations. In the latter
case an OWL-S composition is constructed exploiting as-
sumptions on SBA context expressed as logical constraints
in the Semantic Web Rule Language (SWRL) [27]. The
composition obtained in such a way satisfies the require-
ments (composition goals) if the assumptions hold. These
approaches have as main goal the service composition us-
ing assumptions. While in the first case they present also
a way to monitor the composition at run-time to find pos-
sible violations, the second presents only a way to compose
services without monitoring them. Neither the first nor the
second approach, however, address the issue of debugging
the violation of the assumptions at run-time.

Regarding the approaches that aim at identifying the
causes of the occurring deviations from requirements, in [1]
authors propose a framework for Web Service orchestration,
which employs diagnostic services to support a fine grained
identification of the causes of exceptions (occurring during
the execution of a composite service) and the consequent
execution of effective exception handlers. This is achieved
by defining a special infrastructure with Local Diagnoser
services associated to each component service. These ser-
vices generate diagnostic hypotheses over exceptions from
the local point of view, while Global Diagnoser service ag-
gregates these hypotheses to provide a global diagnosis of
the occurred failure. With respect to our approach, this
work focuses only on specific types of exceptions and faults;
it does not evaluate the implication of these exceptions on
the SBA requirements, and requires heavy instrumentation
also on the side of the constituent services, which reduces
the flexibility and dynamicity of the SBAs.

In [18] the authors propose a framework that exploits as-
sumptions for the design and maintenance of software sys-
tems. At design time assumptions are defined over differ-
ent modules of the system. The verification is exploited (1)
to check that the component satisfies the assumptions and
(2) to guarantee that the whole system behaves correctly
(using “assume-guarantee” reasoning [16]). During software
system evolution, if the software code changes, the assump-
tions are re-checked and the possible violation of the system

correctness is reported or new assumptions are generated.
Differently to our approach, this framework deals only with
a very specific type of properties (e. g., program code asser-
tions) and leaves open the problem of how the changes are
monitored.

6. DISCUSSION AND PERSPECTIVES
In this paper we have demonstrated how monitoring tech-

niques can be beneficially augmented with verification tech-
niques to support the adaptation of service-based applica-
tions. The basic idea of our approach is to start from explic-
itly documented requirements and assumptions. Assump-
tions address functional and quality properties of third-party
services (e. g., as documented in service-level agreements).
A verification step at design time ensures that the SBA
fulfils its requirements under specified assumptions. Dur-
ing run-time, monitoring the assumptions allows detecting
violations (e. g., service failures). A violation of SBA’s re-
quirements can then be determined by re-verifying the SBA
given the violated set of assumptions. If that verification
fails, an adaptation, to compensate for the violation of the
assumptions, may be triggered.

It is important to note that this paper does not discuss
whether an adaptation of the SBA needs to be realised. We
only provide adaptation triggers. Each adaptation trigger
indicates that a requirement of the running SBA instance
will be violated. Wether this violation is worth to be ad-
dressed by an adpation and how this adaptation should be
realised is subject to further research.

Our approach exploits formal verification techniques. By
doing so, we limit our approach to those requirements and
assumptions, which can be formally expressed. In addition,
the verification of complex systems may take considerable
resources so that it may not be feasible to use these tech-
niques at run-time. Both issues are subject to future work.

The current discussion of our approach is limited to the
service composition layer—in particular we do not address
the infrastructure layer of the service-based application.
However, this infrastructure is important for any quality of
service attribute related to time. Especially, if the execu-
tion times for individual services are low, the time needed
for the communication between services need to be taken
into account. The design of our approach does not take this
communication time into account and is, therefore, based on
the assumption that these communication times are minimal
compared to the execution time of the SBA’s services.

Our approach foresees a verification at run-time to deter-
mine whether a service failure may lead to a violation of the
SBA’s requirements. However, even if an assumption is vi-
olated, this might not lead to a requirements violation and
thus the verification might not fail. To save computational
resources at run-time it would, thus, be desirable to define
a minimal set of assumptions such that each violation of an
assumption will lead to a failure in the SBA and, thus, elim-
inates the costly verification step at run-time. In the future
we are going to investigate whether this approach for various
types of assumptions and models would be feasible.

Furthermore, we argued that due to the identification of
the problematic part in the SBA, the adaptation could be
better tailored to the failure situation and is, thus, more ef-
ficient. Since the approach is based on the general concept
of assumptions, it should also be possible to extend it to
other types of assumptions, e. g., assumptions about users,

devices, locations and other context factors and, therefore,
to trigger an adaptation based on factors, which are outside
the SBA’s boundaries. In future work we plan to substanti-
ate both claims by investigating the interplay between our
approach and current adaptation strategies.

Lastly, we argued that assumptions are engineered dur-
ing the design step. In reality, however, assumptions may
also be derived during the verification step. If a verifica-
tion fails at design time, this failure may be due to the fact
that some assumptions were missing. Consequently, it would
be very interesting to understand the interplay between re-
quirements engineering and verification in order to derive
assumptions, which fit the need of both techniques.

Acknowledgements
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

7. REFERENCES
[1] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and

M. Segnan. Fault tolerant web service orchestration by
means of diagnosis. In V. Gruhn and F. Oquendo,
editors, EWSA, volume 4344 of Lecture Notes in
Computer Science, pages 2–16. Springer, 2006.

[2] M. Autili, P. Inverardi, and P. Pelliccione. Graphical
scenarios for specifying temporal properties: an
automated approach. Automated Software Eng.,
14(3):293–340, 2007.

[3] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-Time Monitoring of Instances and Classes of Web
Service Compositions. In IEEE International
Conference on Web Services (ICWS 2006), pages
63–71, 2006.

[4] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors
for composed services. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented
computing, pages 193–202, New York, NY, USA, 2004.
ACM.

[5] L. Baresi and S. Guinea. Towards dynamic monitoring
of ws-bpel processes. In ICSOC, pages 269–282, 2005.

[6] L. Baresi, S. Guinea, M. Trainotti, and M. Pistore.
Dynamo + ASTRO: An integrated approach for bpel
monitoring. In 7th International Conference on Web
Services (ICWS 2009), 2009.

[7] J. R. Büchi. On a decision method in restricted
second-order arithmetic. In Proc. 1960 Int. Congr. for
Logic, Methodology, and Philosophy of Science, pages
1–1. Stanford Univ. Press, 1962.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer,
2:2000, 2000.

[9] D. Cohen, M. S. Feather, K. Narayanaswamy, and
S. S. Fickas. Automatic monitoring of software
requirements. In ICSE ’97: Proceedings of the 19th
international conference on Software engineering,
pages 602–603, New York, NY, USA, 1997. ACM.

[10] A. Dardenne, A. V. Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. In Science of
Computer Programming, pages 3–50, 1993.

[11] S. Fickas, T. Beauchamp, and N. A. R. Mamy.
Monitoring requirements: A case study. In ASE ’02:
Proceedings of the 17th IEEE international conference
on Automated software engineering, page 299,
Washington, DC, USA, 2002. IEEE Computer Society.

[12] S. Fickas and M. S. Feather. Requirements monitoring
in distributed environments. In SDNE ’95: Proceedings
of the 2nd International Workshop on Services in
Distributed and Networked Environments, page 93,
Washington, DC, USA, 1995. IEEE Computer Society.

[13] S. Fickas and M. S. Feather. Requirements monitoring
in dynamic environments. In RE ’95: Proceedings of
the Second IEEE International Symposium on
Requirements Engineering, page 140, Washington, DC,
USA, 1995. IEEE Computer Society.

[14] H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Model-based verification of web service compositions.
In ASE ’03, pages 152–161. IEEE, 2003.

[15] C. Ghezzi and S. Guinea. Run-time monitoring in
service-oriented architectures. In Test and Analysis of
Web Services, pages 237–264, 2007.

[16] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Transactions on
Programming Languages and Systems, 16, 1991.

[17] M. R. Hansen and Z. Chaochen. Duration calculus:
Logical foundations. Formal Asp. Comput.,
9(3):283–330, 1997.

[18] P. Inverardi, P. Pelliccione, and M. Tivoli. Towards an
assume-guarantee theory for adaptable systems.
Software Engineering for Adaptive and Self-Managing
Systems, International Workshop on, 0:106–115, 2009.

[19] M. Jackson and P. Zave. Deriving specifications from
requirements: an example. In ICSE ’95: Proceedings
of the 17th international conference on Software
engineering, pages 15–24, New York, NY, USA, 1995.
ACM.

[20] R. Kazhamiakin, A. Metzger, and M. Pistore. Towards
correctness assurance in adaptive service-based
applications. In ServiceWave 2008, number 5377 in
LNCS. Springer, 10-13 December 2008.

[21] R. Kazhamiakin, P. Pandya, and M. Pistore.
Representation, verification, and computation of timed
properties. International Conference on Web Services,
pages 497–504, 2006.

[22] R. Kazhamiakin and M. Pistore. Static verification of
control and data in web service compositions. In
ICWS ’06: Proceedings of the IEEE International
Conference on Web Services, pages 83–90,
Washington, DC, USA, 2006. IEEE Computer Society.

[23] Z. Lu, S. Li, A. Ghose, and P. Hyland. Extending
semantic web service description by service
assumption. In WI ’06: Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web
Intelligence, pages 637–643, Washington, DC, USA,
2006. IEEE Computer Society.

[24] K. Mahbub and G. Spanoudakis. Run-time monitoring
of requirements for systems composed of web-services:
Initial implementation and evaluation experience. In
ICWS ’05: Proceedings of the IEEE International
Conference on Web Services, pages 257–265,
Washington, DC, USA, 2005. IEEE Computer Society.

[25] S. Nakajima. Model-checking verification for reliable

web service. OOPSLA Workshop on Object-Oriented
Web Services (OOWS 2002), 2002.

[26] S. Narayanan and S. A. McIlraith. Simulation,
verification and automated composition of web
services. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages
77–88, New York, NY, USA, 2002. ACM.

[27] G. Newton, J. Pollock, and D. L. McGuinness.
Semantic web rule language (SWRL), 2004.

[28] E. D. Nitto, C. Ghezzi, A. Metzger, M. Papazoglou,
and K. Pohl. A journey to highly dynamic,
self-adaptive service-based applications. Automated
Software Engineering, 15(3-4):257–402, 2008.

[29] M. Pistore and P. Traverso. Assumption-based
composition and monitoring of web services. In Test
and Analysis of Web Services, pages 307–335, 2007.

[30] A. van Lamsweerde. Requirements engineering in the
year 00: a research perspective. In ICSE ’00:
Proceedings of the 22nd international conference on
Software engineering, pages 5–19, New York, NY,
USA, 2000. ACM.

[31] A. van Lamsweerde, E. Letier, and R. Darimont.
Managing conflicts in goal-driven requirements
engineering. IEEE Trans. Softw. Eng., 24(11):908–926,
1998.

S-CUBE Deliverable # CD JRA 1.1.5
Software Services and Systems Network

Internal final version dated 15th March 2010

10 Gu, Q. ; Cuadrado, F. ; Dueñas J. C., Lago, P.: Architecture
Views illustrating the Service Automation Aspect of SOA.
In: Service Based Systems: Surveys by the S-Cube Project,
Springer-Verlag, 2010, Ch. – accepted for publication

Architecture Views illustrating the Service

Automation Aspect of SOA

Qing Gu1, Félix Cuadrado2, Patricia Lago1, and Juan C. Dueñas2

1 Dept. of Computer Science
VU University Amsterdam, The Netherlands

2 Dept. de Ingenieŕıa de Sistemas Telemáticos
Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Service-Oriented architecture (SOA) as an emerging archi-
tecture style has been widely adopted in the industry. Due to the het-
erogeneous, dynamic and open nature of services, architecting Service-
Based Applications (SBAs) poses additional concerns as compared to
traditional software applications. Hence, for SOA architects it is of great
importance that their concerns are appropriately addressed in the archi-
tecture description. However, an effective and systematic way of docu-
menting SOA design is currently missing. In this work, we focus on the
service automation aspect of SOA. We carried out two large case stud-
ies to learn the industrial needs in illustrating services deployment and
configuration automation, from now on service automation. As a result,
we broke down service automation into three important sub-aspects, and
we developed a corresponding set of architecture views (automation de-
cision view, degree of service automation view and service automation
related data view) that expresses the different concerns of stakehold-
ers who share interest in service automation. This set of views adds to
the more traditional notations like UML, the visual power of attracting
the attention of their users to the addressed concerns, and assist them
in their work. This is especially crucial in service oriented architecting
where service automation is highly demanded.

Key words: Service-oriented Architecture;Service-based Application;Architecture
view;Automation;Service management;Service deployment

1 Introduction

Service-oriented architecture (SOA) as an architectural style has drawn the at-
tention from both industry and academia. SOA-based systems (i.e., Service-
Based Applications or SBA) are constructed by integrating heterogeneous ser-
vices that are developed using various programming languages and running on
different operating systems from a range of service providers. Services are loosely
coupled entities, often designed under open-world assumptions, distributed across
organizational boundaries and executed remotely at their service providers’ en-
vironment. They require a smoother transition from development to operation
than traditional applications.

2 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

Consequently, the architecting of SBAs pose additional concerns as compared
to traditional software applications. Some examples of these concerns include
how to reason about a SOA design and how to represent the characteristics
of SOA that the design delivers, how to architect the SBA to operate in an
unknown environment, or how business processes can be supported by means of
the collaboration of multiple services.

Clearly, traditional software engineering and architecting techniques, meth-
ods and tools are no longer sufficient to deliver SBAs, as they do not take into
account specificities of services, such as the need for smooth transition from de-
velopment to operation, the need to integrate third-party components, or the
possibility to be hosted by a different organization. Therefore, it is necessary to
propose new techniques that supplement the traditional models, enabling the
capture at design time of all the relevant information about those new concerns
and improving the usefulness of the architecture description.

We have chosen as the aspect under study the degree of automation of SBAs.
The current situation is that the design decisions on whether a service can be
possibility automated, its benefits and limitations, or the degree of automation
are often left implicit in the architectural design and its description. Our goal in
this paper is to make them explicit and to find a notation useful for this purpose,
able to be understood for most stakeholders (including the user if relevant to
the domain).

We carried out two large case studies to learn the industrial needs in illus-
trating services deployment and configuration automation, from now on service
automation. As a result, we broke down service automation into three impor-
tant sub-aspects, and we developed a corresponding set of architecture views
(automation decision view, degree of service automation view and service au-
tomation related data view) that expresses the different concerns of stakeholders
who share interest in service automation.

The first one (the decision view) conveys the decisions about service automa-
tion by making explicit which architecture constraints may impact the degrees
of automation, and which services are affected by each constraint. The degree
view -second one- shows the degree of service automation that the service flow is
expected to achieve, but not the details on how to get it. Last, the automation-
related data view contains explicit information about the generation, manage-
ment and provision of additional input that are required from either human
actors or policies.

In addition to constructing these views, we highlighted the added-value of
the graphic notations we used. We argue that this set of views adds to the more
traditional notations like UML, the visual power of attracting the attention of
their users to the addressed concerns, and assist them in their work. Moreover,
we also reflected on the relationship between the degree of automation and the
granularity of services and the applicability of these views to SOA in general.

The reminder of the chapter is organized as follows. In Sec. 2, we provide
some background information on architecture views and management systems
for SBAs. In Sec. 3, we discuss the need of documenting SOA design decisions

Service automation views 3

and rationale in effective illustrations and present a set of concerns that we
elicited from the case studies, which points out what needs to be illustrated in
SOA architecture description. With these requirements in mind, we present the
three service automation views in Sec. 4, 5 and 6 respectively. We highlight the
power of visualization in Sec. 7 and we discuss our observations in Sec. 8. We
conclude the chapter in Sec. 9.

2 Background information

2.1 Architecture views

The architecture of a software system should be documented with the purpose
of capturing early design decisions, providing re-useable abstractions of software
systems and enabling communication of the software architecture among stake-
holders [1]. To produce relevant documentation for a software system, one has
to decide what information needs to be documented and which notations or di-
agrams are suitable for representing this information. These decisions heavily
depend on who is the target reader of the documentation.

A software system typically involves multiple stakeholders that have different
concerns. For instance, the architect is concerned about the structure of the
system; the project manager is concerned about the resources (e.g., cost, time,
number of developers) needed for developing the system; and the developer has
concerns about the implementation of the system. The architectural design of
the system therefore should be documented in such a way that the concerns of
each stakeholder are addressed.

Following the separation of concerns principle, software architects have al-
ready been using multiple views for years to represent the software systems of
interest from multiple perspectives. These views facilitate the management of
the complexity of software engineering artifacts. For instance, a structure view
can be used to describe the construction of a software system (including e.g.
components and connectors); while a data view can be used to describe the data
flow between the components. By representing the architecture of the system in
these two separate views, the software architect may focus on the construction
design of the system by using the structure view, while the data manager may
concentrate on the management of data by using the data view.

One of the original goals behind IEEE 1471 and ISO/IEC 42010 was to
“establish a frame of reference of terms and concepts for architectural descrip-
tion” [2]. This frame of reference provides a basis for the community to develop
a collection of views which addresses concerns that occur commonly across soft-
ware projects. Practitioners may directly benefit from the application of these
viewpoints in that they enable an effective architecture description.

However, the existing reusable views are limited in the sense that they ad-
dress concerns that often appear in traditional software architectures. With the
wide adoption of recently emerged software architecture styles (like SOA), addi-
tional concerns (often specific to the architecture styles) challenge the reusability

4 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

of the existing viewpoints. The lack of available views make practitioners face
difficulties to find an effective way to illustrate any new characteristics intro-
duced by any architecture style. As a result, views that enable the illustration of
specific concerns introduced by modern software architecture styles are needed.

2.2 Management system for SBAs

Hegering [3] described the management of networked systems as the set of mea-
sures necessary to ensure the effective and efficient operation of a system and its
resources, according to an organization’s goals. In service-based applications the
functionality is not provided by individual, monolithic elements, but is achieved
by collaboration between multiple services. In order to get this collaboration,
the management system must be aware of the participating elements, deploy
and configure them if necessary. This is a complex process, because as the num-
ber of services grows, the possible combinations that must be considered by
the management system increase exponentially. On top of that, the distribution
of the participating elements over a computing network further complicates the
process. Those are common characteristics for every SBA. However, they are not
the only relevant factors. The domain-specific characteristics of each SBA, such
as the characteristics of the services, the capabilities of the runtime resources,
or the organization’s business aspects must also be supported by the manage-
ment system. It is clear that the potential variation of all the factors complicates
defining a general solution for SBAs deployment and configuration.

In the field of systems management, there are two opposite approaches for
controlling the deployment and configuration process: traditional management
processes and autonomic management [4]. In traditional processes, a human ad-
ministrator is continuously in control of the change process. He / She diagnoses
the system, manually defines the required changes and controls every aspect of
the execution. This approach is very costly and cumbersome, because it implies
that every activity executed by the architecture must be performed or at least
validated by a human actor. On the other hand, autonomic computing promotes
to automate as much as possible the operation of the system. Ideally, completely
automated closed control loops are implemented, where the system reacts auto-
matically to a change in the environment, diagnoses its severity and implications
and applies the required corrections in order to restore the environment func-
tionality. This approach eliminates the bottleneck inherent to human operation,
consequently improving scalability and efficiency of the management system.

Although autonomic control would be the most desirable approach, it is not
always feasible to achieve it, because of either technical factors (e.g., a monitoring
interface from a managed server does not provide information about service
faults so a human administrator has to manually diagnose the incidences by
inspecting the server and system logs) or, organizational aspects (e.g., manual
control is preferred because the service update process is considered critical for
the organization, so an automated system cannot have complete control over the
process). For most cases an adequate balance between traditional and autonomic
management will be the right approach. Management systems should pursue

Service automation views 5

the autonomic approach to the greatest extent possible, while respecting the
requirements derived from the domain of application.

Supporting the diversity of managed services, operation environments and
organizational aspects with the same management architecture demands a high
level of flexibility, which is pushed forward adopting a service-oriented approach.
Service orientation can offer great flexibility and agility so that the architecture
can easily adapt to the characteristics of different environments with reduced
required configuration. The Service Deployment and Configuration Architecture
(from this point onwards SDCA) [5] is an example of such an approach, which
is further described in Sec. 3.1.

3 The requirements for illustrating the automation

aspect of SBAs

The SOA paradigm promotes creating new functionality from the dynamic com-
bination of services provided by different stakeholders. A SBA can be viewed as
a set of dynamically combined services.

While automation in a traditional software system refers to the degree to
which the execution of the software process can be automated without human
intervention, automation in SOA systems refers to the degree to which services,
comprising the system of interest, can be executed automatically without any
human intervention. While the two definitions are quite similar, due to a set
of characteristics that differentiate SBAs from traditional software systems [6],
in service-oriented development the decision on the degree of automation of
each service is heavily influenced by (and has impact on) at least two quality
attributes.

The first quality attribute is trust, i.e. confidence (especially from the users
perspective) on the truth of what delivered or promised. SBAs are typically not
fully controlled by the company: some integrated services execute in the domain
of remote, dynamically determined service providers, and can be discovered and
integrated at runtime. This means that if something goes wrong, malfunctions
might decrease the satisfaction of ones customers, and hence influence the overall
company business. Especially in traditional business domains (like banking and
services to the public) the tendency is to develop applications with service-
oriented technologies, but with the properties of old fashion software systems:
low level of automation, static integration of services, no dynamic discovery
and no dynamic composition. In the case of required interaction with third-
party services, the requirements -both functional as non functional- of these and
the penalties for failure, are governed by Business Level Agreements (BLA) or
Services Level Agreements (SLA).

The second quality attributes is reliability, i.e. the ability of a software system
to perform its required functions under stated conditions for a specified period
of time [7]. By automatically integrating services during execution, reliability of
the whole execution depends on various unpredictable factors, like the correct
specification of the requirements of the services to be dynamically integrated,

6 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

availability of such services, or their correct execution. If third-party service
discovery & composition is automated, the company does not have anymore full
control on the software products delivered to its customers.

It is often claimed that SBAs have the agility to adapt to customer needs
by automatically reacting to continuous changes in business processes. Conse-
quently, the more services in a SOA system can be automated (i.e., do not need
humans to make decisions for execution), the higher agility a SBA can achieve.

Users of highly automated SBAs clearly benefit from less human intervention
and thus less labor costs. However, automating the execution of services and
delivering agile and reliable SBAs is not always possible (as we explained above
in the examples of trust and reliability) and poses additional concerns. Some of
the concerns relate to the decisions on the degree of service automation; while
some of the concerns are related to the realization of these decisions.

However, design decisions and their associated rationale on whether a service
can be possibility automated, the benefits and limitations of automating a ser-
vice, or how to automate a service are often either ignored or left implicit in the
architectural design and its description. In spite of the evidence for the need of
documenting design decisions and rationale in effective illustrations [8, 9] little
work exists so far in the area of SOA [6]. This need has been further highlighted
in the S-Cube analysis of the state of the art in [10], where one major challenge is
in identifying and representing relevant concerns in SBA engineering, like moni-
toring, self-organization and adaptation. Viewpoints are mentioned as means to
capture multiple perspectives on a given SBA. Though, they are meant to aid
engineering of specific systems, whereas the corresponding architecture descrip-
tions have not been sufficiently addressed yet. This motivated us to investigate
what the stakeholders are concerned about with respect to service automation
and how to address these concerns in the architecture description.

To answer this question, we analyzed the service automation aspect of the
SDCA as well as two concrete industrial case studies where the SCDA has been
applied to. The first case study (BankFutura) describes the deployment and
configuration system of a banking organization. As for most enterprise systems,
in this case the non-functional requirements such as the criticality of the de-
livered services, guaranteed performance levels, and organizational aspects are
the dominating factors for driving the decisions on the degree of automation of
the service execution flow. In the second case (HomeFutura) the implementa-
tion of SDCA provides the services of multiple third-party providers, which are
presented to the end users through a service catalog, allowing them to select
the functionality they require. While the same service execution flow is adopted
in both cases, there are significant variations in the automation related aspects,
due to the impact of their domain-specific and organization-specific constraints.

In the remaining of this section, we present an overview of the SDCA and its
industrial case studies (BankFutura and HomeFutura), focusing on the concerns
related to service automation that we have elicited from the cases. These concerns
serve as the requirements for illustrating the automation aspect of SOA in the
architecture description.

Service automation views 7

3.1 The Service Deployment and Configuration Architecture

The Service Deployment and Configuration Architecture (SDCA) is a flexible,
service-oriented management architecture that can address the requirements of
distributed, heterogeneous SBAs (a.o. dynamic discovery, dynamic composition,
adaptation, runtime evolution). The management functions are provided by a set
of services, which collaborate to identify the required changes to the environment
in order to fulfill the SBA business objectives (a.o. service availability). SDCA
Services are automated, reasoning over models representing the characteristics
of the managed services and the runtime environment. Finally, in order to adapt
to the domain-specific characteristics, the specific behavior of the services can
be customized through the definition of policies that govern the decisions taken
over the process.

The objective of the SCDA is to provision new functionality (in the form of
services) by identifying and applying a set of changes to the managed environ-
ment. This function is achieved by an execution flow consisting of the combined
invocation of nine deployment services, as shown in Fig.1.

Obtain

Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate Required
Changes

Select
Unit

Resolve
Unit

Map Units
To Nodes

Validate
Plan

Schedule Plan
Execution

Fig. 1. The SDCA deployment service execution flow

A typical execution starts when an external change to the system is triggered
(e.g. an updated version of a service has been released and must be deployed,
or a hardware malfunction caused a server to stop working, and the affected
services must be redeployed at another node). After it is decided that a change
is necessary, the deployment service Get Available Units is invoked. This first step
retrieves the complete list of units and services currently available. The second
step is the deployment service Select Unit, where one of those available units is
selected, in order to be deployed to the environment. The unit selection criteria

will be provided to the service as an external input. After that, the deployment
service Resolve Unit is invoked, where the deployment unit containing the service
is analyzed, in order to find a closed set of units satisfying all their dependen-
cies. There might be multiple candidate units satisfying one dependency (e.g.
multiple units with minor, compatible versions) and for those cases a criteria

for selecting among them must be provided as external input. Once the com-
plete set of units that will participate in the operation has been identified, the
deployment service Obtain Possible Mappings evaluates the available resources

8 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

from the container, and returns for each unit the potential nodes of the envi-
ronment where those can be deployed. Starting with that input, the deployment
service Map Units To Nodes decides on the final destination for each one of the
involved units, according to external distribution criteria. After those mappings
have been established, the deployment service Evaluate Required Changes com-
pares the current environment status with the desired changes in order to obtain
the set of required changes that must be applied to it (e.g. install selected de-
ployment units if they are not currently running at the environment). Those
changes are packed and sorted into a deployment plan in the deployment ser-
vice Generate Plan, whose purpose is to ensure a correct execution of the list
of changes, by adding restrictions to their execution order. Defined plans can
either be instantly applied to change the environment, or can be temporarily
stored at a change repository. Before being applied to the environment, plans
must pass through the deployment service Validate Plan. This step checks that
the automatically obtained plan is coherent with the environment state, and will
obtain the desired result. Finally, the deployment service Schedule Plan Execution

receives the accepted plan and schedules it for execution at some point in the
future, which will be also determined by an external schedule agenda.

Some of the deployment services can be completely automated as they do not
require any external intervention, such as Get Available Service and Obtain Possi-

ble Mappings; whereas some others cannot be completely automated as external

input (i.e., additional input external to the service invocation flow)(e.g., distribu-
tion criteria, unit selection criteria) are required during the deployment process.
The architect of SDCA provided services requiring external input with certain
degree of flexibility, supporting two alternatives for their implementation. One
of the solutions is to create a user interface so that a dedicated human actor can
provide the required input to those services. Another solution is to formalize the
necessary knowledge for providing the required input in terms of policies, which
can be automatically consumed bt the deployment service. SDCA services with
the format approach are called semi-automated services whereas the latter are
called policy-driven automated services.

The stakeholders of the SDCA that are concerned about service automation
include the SOA architect, who is responsible for defining a deployment service
flow that can support the automated provisioning of services, adapting to the
hardware characteristics of each environment; the SOA manager, who governs
the design and implementation of the SDCA, and the users of the SDCA, who
are often the SOA architects that intend to apply the SDCA to specific domains.

Being the designer of the SDCA, the SOA architect is mainly concerned
about how to provide enough flexibility with the degree of automation, in order
to allow adaptation of the flow to specific domain requirements. Additionally,
the SOA architect is concerned about how to support the other stakeholders in
terms of service automation. SDCA users are mainly concerned about how to
customize the SDCA in such a way that domain specific constraints are fulfilled.

Service automation views 9

The complete list of concerns of each stakeholder is presented in Tab. 1,
where each concern is described by its associated stakeholder, a description, and
a concern ID.

Table 1. Concerns relevant to service automation in the SDCA

Stakeholder Concern ID Concern description

SOA architect

SDCACon1 Justify whether their decisions on the degree of service au-
tomation are reasonable.

SDCACon2 Provide enough flexibility with the degree of automation, in
order to allow adaptation of the deployment service flow to
specific domain requirements.

SDCACon3 Suggest policies that are required for assisting the deploy-
ment service flow.

SOA manager

SDCACon4 Trace, verify and control the decisions on the degree of ser-
vice automation.

SDCACon5 Gain an overview of the degree of service automation sup-
ported by the SDCA.

SDCACon6 Gain an overview of the re-configurability of the SDCA.
SDCA Users SDCACon7 Be aware of which deployment services are domain specific

(hence customization is needed) and which ones are domain
independent (hence no customization is necessary).

3.2 BankFutura: An application of the SDCA to an enterprise

domaina

A Spanish banking company, called from this point on BankFutura, with sev-
eral millions of clients over the world, and more than two thousand branches,
renovates its services portfolio, which includes client services (internet bank-
ing, cashiers), internal services (for company workers at the bank offices) and
B2B services for inter-bank transactions. As those services capture the company
knowledge, they are internally developed and provided, with no third party de-
pendencies. This is understandable, as they constitute the core of the company
business and consequently must be under full control of the company. The com-
pany services have been architected following the SOA / BPM paradigm, in
order to cope with the complexity.

The services runtime infrastructure that will replace the legacy systems and
mainframes is composed by artifacts such as relational databases, JEE applica-
tion servers, and BRM (Business Rule Managers) systems. Each artifact of the
system is presented as a banking service, hiding its implementation details and
providing a uniform high-level view. Banking services are published in directories
and connected through an ESB (Enterprise Service Bus). The complete runtime
infrastructure is dimensioned and defined beforehand, in order to support the
strict non-functional requirements for the service operation, as well as adequately
support the types of services that will provide the core banking functionality.

In BankFutura, every deployed banking service must be always available,
respecting the requirements defined at the SLA, while dispatching the requests

10 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

from a potentially enormous number of consumers. Neither hardware and soft-
ware malfunction, or denial of service attacks from ill-intended actors, should
be able to disrupt the service operation, as service downtime would imply huge
monetary costs. The stability of the banking system becomes one of the most
important non-functional requirements.

Another non-functional requirement for the banking system is security. The
exchanged information of banking services is very sensible, as it contains the
financial status and personal data of the clients, so it is not only critical for their
trust but also legally protected by the personal data confidentiality regulations.
Because of that, it is fundamental to safeguard the security of the underlying
systems, and provide complete logging and traceability of the performed oper-
ations. This way, change initiation, approval and execution must be registered
and supported by the change management architecture, including a responsibil-
ity chain for any identified incidences.

In order to respect all these restrictions and facilitate at the same time sys-
tem evolution, the BankFutura infrastructure is replicated into several, tiered
environments (integration, pre-production and production) which present a bal-
ance between agility of changes and criticality. The complexity and pre-defined
structure of the deployment and configuration architecture justifies that BankFu-
tura employs specialized staff, such as Environment administrators, for watching
over the runtime health, diagnosing malfunctions and controlling the execution
of planned changes to the environment, despite the costs the bank is incurring
by keeping this staff.

The stakeholders who are concerned about service automation in BankFutura
include the SOA architect, the banking deployment plan creator, the environ-
ment administrator, and the service deployment manager.

The SOA architect is responsible for applying and customizing the SDCA so
that the resulting deployment service flow can support the complete provisioning
of the released services to the several tiered environments of the infrastructure
of the company. He/She is mainly concerned about automating the deployment
services as much as possible (moving away from handcrafted scripts) while at
the same time integrating human control and responsibility over the complete
process.

The banking deployment plan creator and the environment administrator are
both deployment actors in the banking deployment service flow. The former
is responsible for creating a deployment plan which will provide the desired
functionality when applied to the environment; while the latter is responsible
for the correct configuration of the managed infrastructure and the selection of
the right physical node for each newly deployed service, taking into account the
additional resources consumption by each new service. Both of them are mainly
concerned about how to perform their roles in the banking deployment service
flow.

The deployment manager is in charge of supervising the execution of banking
deployment service flow and ensuring that the deployed banking system is aligned
with the business objectives of BankFutura.

Service automation views 11

The detailed concerns of each stakeholder are listed in Tab. 2, where each
concern is presented with its associated stakeholder, a description, and a concern
ID.

Table 2. Concerns relevant to service automation in BankFutura

Stakeholder Concern ID Concern description

SOA architect

BankCon1 Justify whether their decisions on the degree of service au-
tomation are reasonable given the specific constraints in the
BankFutura.

BankCon2 Understand what specific constraints affect each deployment
services and how each constraint influences the degree of
service automation.

BankCon3 Analyze the possible alternatives on the degree of service
automation in order to evaluate how the deployment service
flow can react to changing requirements or constraints.

The deployment

manager

BankCon4 Trace, verify and control the decisions on the degree of ser-
vice automation.

BankCon5 Gain an overview of the degree of service automation in the
BankFutura deployment service flow.

BankCon6 Ensure that the environment administrator and banking de-
ployment plan creator carry out the assigned tasks as ex-
pected and are able to trace responsibility in case an error
occurs.

BankCon7 Ensure the availability of required policies that are required
for the deployment services in time.

BankCon8 Ensure that the required policies for the deployment process
are aligned with the organizational goals and regulations.

Environment

administrator

BankCon9 Ensure the stability of the managed environment after exe-
cuting the deployment services.

BankCon10 Define the role and responsibility in preparing policies.
BankCon11 Define the role and responsibility in the deployment service

flow.
Banking deploy-

ment plan

creator

BankCon12 Select the right physical node for each newly deployed ser-
vice, taking into account the reasons that led to the initial
definition of the environment topology

BankCon13 Know which services (and what version of the service) must
be made available in each environment.

BankCon14 Define the role and responsibility in the deployment process.

3.3 HomeFutura - An application of the SDCA to a personal

domain

The service aggregator of this case study (called from this point on HomeFutura)
wants to offer subscribers a large catalog of services that can be consumed from
the devices available at the digital home. The digital home is the house of the
near future, an always connected entity, provided with network and devices to
access Internet resources. It allows users to consume a wide range of services;
multimedia entertainment services, surveillance services, e-learning services or
consumer electronics control, just to mention a few. Services are provisioned
over the Internet and accessed through multiple home devices. The specific hard-
ware elements that will be available are controlled by the end users, which can
dynamically decide to acquire additional equipment.

12 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

The ultimate goal is to create an environment that benefits end users, ser-
vice providers, and service aggregators. End users should be able to browse all
available services and subscribe to those they are interested in, automatically
accessing them without technical skills. Service providers develop and offer ser-
vices to be consumed by the end users. Service aggregators are the point of
contact with the users, managing their subscription, interacting with the service
providers, and ensuring correct and seamless service provisioning.

In this case study the deployment architecture plays a fundamental role. In
order for those services to be available, it is necessary to execute deployment and
configuration activities over the home infrastructure. The general characteristics
of the environment are similar to the previous case, with the required operations
consisting of managing services running over a distributed, heterogeneous infras-
tructure. However, the specific characteristics of this scenario lead to a different
solution. In contrast with the case study of BankFutura, environment stability is
not the dominating constraint. This is because the domain is personal, and the
services are consumed and used without warrantee of performance nor agreed
Quality of Service expressed through BLAs or SLAs. On top of that, guarantee-
ing stability is much harder, because of the high degree of uncertainty about the
specific equipment that will be available at every moment.

Instead, the fundamental goal in HomeFutura is being able to provide the end
user with a seamless experience in the process of acquiring new services. The user
is not concerned about the technical details behind the services or the installation
process. Those aspects must be correctly managed by the architecture, while
the user is only informed about the relevant information, like functionality, or
pricing.

The stakeholders who are concerned about service automation in HomeFu-
tura include the SOA architect, the service aggregator, and the end user.

The SOA architect is responsible for defining the architecture of the digital
home service deployment system by applying the SDCA. The main concern
consists of how to provide a flexible deployment system that is able to adapt to
the available infrastructure at each home while at the same time hiding all the
technical details from the end user.

The role of a service aggregator is to manage the service catalog available to
the different users and handle the signed contracts with service providers, ensur-
ing that the portfolio of services offered to the users can have all their technical
dependencies correctly satisfied. The service aggregator is also responsible for
providing selection policies which determine what providers / versions for the
services can be accessed by each different client.

The end user consumes the available services offered by HomeFutura, de-
manding as much variety in the services catalog as possible. The end user is
mainly concerned about the simplicity of the process of accessing the desired
functionality.

The detailed concerns of each stakeholder are listed in Tab. 3, where each
concern is presented with its associated stakeholder, a description, and a concern
ID.

Service automation views 13

Table 3. Concerns relevant to service automation in HomeFutura

Stakeholder Concern ID Concern description

SOA architect

HomeCon1 Justify whether the decisions on the degree of service au-
tomation are reasonable given the specific constraints in
HomeFutura.

HomeCon2 Understand what specific constraints affect each deployment
service and how each constraint influences the degree of ser-
vice automation.

HomeCon3 Analyze the possible alternatives on the degree of service
automation in order to evaluate how the deployment service
flow can react to changing requirements or constraints.

HomeCon4 Design a highly automated deployment process, with a min-
imal requirement on human intervention

The deployment

manager

HomeCon5 Trace, verify and control the decisions on the degree of ser-
vice automation

HomeCon6 Gain an overview of the degree of service automation in the
HomeFutura deployment service flow.

HomeCon7 Ensure the policies that are required in the deployment pro-
cess are ready in time

HomeCon8 Ensure the policies that are required in the deployment pro-
cess are aligned with the organizational goals and regulations

Service aggrega-

tor

HomeCon9 Define the role and responsibility in preparing policies.

End user HomeCon10 Participate in the deployment process the simplest way pos-
sible

3.4 Summary

From the analysis of the SDCA and two industrial case studies, we observed
that service automation is especially important during design and is relevant
to multiple stakeholders in that we identified a considerable number of service
automation related concerns. Being considered, designed and implemented, how-
ever, those concerns have not been explicitly addressed in the architecture de-
scription.

Instead, the current architecture description of the SDCA (as well as the two
case studies) addresses the service automation related concerns in a very abstract
way. For instance, it is stated that the SDCA provides a flexible solution that can
be easily customized in various domain applications. However, the information
about how flexible the solution is, how easy the solution can be applied, and how
to customize the SDCA in specific domains is lacking. Hence, there is a need to
find an effective way to illustrate how the concerns related to service automation
are addressed in the architecture description.

In other words, we face the questions of what information should be docu-

mented in the architecture description and how to document it in an effective way

so that the stakeholders can easily understand it. To answer the first question, we
synthesized the concerns listed in Tab. 1, Tab. 2, and Tab. 3. The reason for do-
ing so is that we noticed that a reasonable numbers of concerns are overlapping
and demanding for the same type information. For instance, the concerns with
ID SDCACon1, BankCon1 and HomeCon1 are all about justifying the decisions
on service automation but in different cases (hence overlapping); and concerns
with ID SDCACon3, BankCon7, BankCon10, BankCon13, HomeCon7, Home-

14 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

Con9 all demand for illustrating the information that is related to generate and
access policies.

After the synthesis, we identified eight main concerns that are representative
for the complete set elicited from the SDCA and its two case studies. Decision

on the degree of automation covers all the concerns that are related to the de-
cisions on service automation and their justification ; Reconfigurability in terms

of automation covers all the concerns related to alternatives on the degree of
service automation; The impact of architecture constraints on the degree of au-

tomation covers all the concerns related to domain-specific constraints; Degree

of automation covers all the concerns related to the degree of automation a SBA
can achieve; Accountability covers all the concerns related to the responsibility
of stakeholders; The preparation of policies covers all the concerns related to
the readiness of policies; The specification of policies covers all the concerns re-
lated to the content of policies; and Human participation covers all the concerns
related to human actors with regards to their involvement in the deployment
service flow.

Further, we noticed that some of these main concerns are inter-related. More
specifically, the first three main concerns are about decisions, alternatives and
constraints, which form a cause-effect-rationale relation. As such, we decided to
address all these concerns using a decision view. The next two main concerns
are about the degree of automation resulted from the design and the impact
of such a degree on the execution of the deployment service flow. As such, we
decided to address these concerns using a degree view. The last three main
concerns are about the policies and human participation for enabling different
degrees of service automation. Since policies and input from human actors can
both be considered as data, we decided to use a data view to address the
concerns. Hence the automation decision view, degree of service automation
view and service automation related data view illustrate the service automation
aspect for the architecting of SDCA.

The mapping between the elicited concerns, synthesized concerns and views
for addressing these concern is presented in Tab. 4.

4 The automation decision view

The automation decision view is designed to illustrate all the decisions that
have been made on the degree of service automation, the rationale behind them,
and the impact of domain specific constraints on the decisions. With these re-
quirements in mind, we created a set of graphic notations for constructing the
automation decision view, as no other notation in the literature fits to our pur-
poses. These graphic notations are presented in Fig. 2.

In this figure, services are represented by ovals; the three ones in the first
column represent the three different degrees of service automation that have
been decided. Moreover, they also indicate that alternative degrees of service
automation are not feasible or reasonable. The services in the second column
represent a decision has been made or left open among alternative degrees of

Service automation views 15

Table 4. Mapping between the elicited concerns, synthesized concerns and views

View Main concern Concerns in

the SDCA

Concerns in

BankFutura

Concerns in

HomeFutura

Automation

decision

view

Decision on the degree of
automation

SDCACon1,
SDCACon4

BankCon1,
BankCon4

HomeCon1,
HomeCon5

Reconfigurability in terms
of automation

SDCACon2,
SDCACon6

BankCon3 HomeCon3

Impact of architecture con-
straints on the degree of
automation

SDCACon7 BankCon2 HomeCon2

Degree of

service

automation

view

Degree of automation SDCACon5 BankCon5 HomeCon4,
HomeCon6

Accountability - BankCon6,
BankCon11,
BankCon14

HomeCon10

Service

automation

related data

view

The preparation of policies - BankCon10,
BankCon7

HomeCon7,
HomeCon9

The specification of poli-
cies

SDCACon3 BankCon8,
BankCon9,
BankCon11,
BankCon13

HomeCon8

Human participation - BankCon11,
BankCon14

HomeCon10

Rationale

Architecture
constraint

Leads to

Justifies

Domain
dependent

Domain
independent

Service that is
decided to be Policy-

driven automated

Service that is
decided to be semi-

automated

Policy-driven
automated

Semi-automated

Completely
automated

service

Decision on
automation is left

open Scope

Fig. 2. The graphic notations for the automation decision view

16 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

service automation. These services indicate that they can be re-configured to an
alternative degree of service automation if necessary. These two sets of notations
are meant to address the concerns of decision on the degree of automation and
reconfigurability in terms of automation.

The two notations in the third column indicate the dependency between a
degree of service automation and a specific domain. The notations in the last
column are used to illustrate the relation between decisions, architecture con-
straints, and associated rationale, as well as the scope of services where archi-
tecture constraints may have impact on. These two set of notations are meant
to address the concerns of the impact of architecture constraints on the degree of

automation.

4.1 The automation decision view for the SDCA

The automation decision view for the SDCA is presented in Fig. 3. This view aids
the SOA architect in taking design decisions on service automation by making
explicit which architecture constraints may impact the degrees of automation,
and which services are affected by each constraint.

Name: string
Type: ServiceType
Provided by: Service provider
Developed by: Service developer

Service

The service retrieves all
the available service
definitions from the

repository.
It needs neither a decision
nor additional inputs, thus
is completely automated

Name: String

Quality attributes

Operator:
stakeholder

Deployment
actor

This service is able to
find a closed set of units

satisfying all the
transitive dependencies

originating from the
selected service

received as input.
However, over the
execution in some

cases it needs to decide
among several

candidate units (e.g.
multiple compatible

services). Therefore,
the degree of service

automation depends on
the characteristics of
these services (e.g.

number of developers,
number of available
services or service

complexity).

This service decides which
physical node among the
candidates will host each

participating unit. Whether
such a decision can be
obtained from a certain

policy or has to be controlled
by a human actor is

influenced by the
characteristics of the

environment and the domain
quality attributes. Strictly
defined environments will
generally impose stricter
distribution requirements,

which should be provided by
a human actor, whereas on

the fly environments
generally lead towards

general distribution policies
such as round robin or even

load balancing.

This service
determines
whether the

generated plan
achieves the

desired results
and keeps

system stability.
Depending on the

pre-dominant
quality attributes,

as well as
whether the

deployment actor
can actively

participate in the
deployment
process, a

different degree
of automation

should be
decided.

Domain specific
concerns can

affect the degree
of service

automation. In
particular, the pre-
dominant quality

attributes poses a
balance between
automation and
human control;

whereas
deployment actor

technical skills
restrict their

potential
participation over

the process. These
two constraints

impact the whole
deployment
service flow.

The service decides
the exact time that

the deployment plan
will be applied to the
environment. Based
on the characteristics
of the environment,

the relative impact of
applying the changes
differs. The greater

the number of users,
or the more critical
the environment is,
the more restrictive
scheduling will be

applied. On the other
hand, on non-critical,

low-user base
environments, plans

can be instantly
executed, removing
even the need for
additional input.

Obtain
Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate
Required
Changes

This service decides
the main service to
be deployed to the

environment (and the
enclosing

deployment unit).
The decision on the

degree of automation
is mainly driven by
quality attributes of

the deployed system
and the capability of

the deployment
actor. An automated

solution results in
less human control;

whereas a non-
automated solution

requires certain skills
from a deployment

actor.

Given the elements from the logical graph
(generated from Resolve Unit) and the
runtime nodes, this service is able to

identify all the possible physical mappings
for the participating services. There is no
decision or additional parameter required,

thus it is completely automated.

Given the mappings selected by the
service Map Units To Nodes, and
comparing them with the current
environment state, this service is

able to generate a list of deployment
actions. It can be automated as no

decision is neccesary.

Given the list of deployment
actions, this service generates a
deployment plan by evaluating

dependencies among the actions
(E.g. don’t start a service before

deploying it). No decision is
neccesary so it is automated.

Topology: Topology type
Number of tiers: string
Number of users: string
Application domain: name

Environment

 Select Unit

Resolve
Unit

Validate
Plan

Schedule Plan
Execution

Map Units
To Nodes

Fig. 3. The automation decision view for the SDCA

Service automation views 17

This view differentiates the degrees of service automation that are domain-
dependent from the ones that are domain-independent. More specifically, the
four services that are completely automated are circled with a straight edge line,
indicating that they are domain-independent in terms of automation (SDCACon7).
The other five services, however, are designed being both semi-automated and
policy-automated. As such, the SDCA offers its users the flexibility to decide on
which degree of service automation to be configured for specific domains, based
on domain-specific constraints, such as quality attributes or characteristics of
the execution environment (SDCACon7).

As an example of domain-independent decision, the deployment service Gen-

erate Plan automatically sorts a list of operations, ensuring they are executed in
a correct order. The execution of this service only requires the input provided
by the previous deployment service Evaluate Required Changes. Hence, the de-
ployment service Generate Plan can be completely automated, independent with
any domain specific constraints.

As an example of domain-dependent decision, the service Map Units to Nodes

decides the physical distribution of the participating services, among a list of
potential mappings provided by the service Obtain Possible Mappings. Depending
on the specific domain characteristics, the criteria for making those decisions will
be different, as well as the relevance of this decision (ranging from any solution
is acceptable to only one distribution is correct). Because of those factors, this
service has been designed with flexibility on its degree of automation.

From these examples, we can see that the SOA architect can use this view to
explain why some of the services have been designed to be completely automated
while others have been designed for both semi-automated services and policy-
driven automated services (SDCACon1) and the SOA manager is able to use this
view to trace, verify and control these decisions (SDCACon4).

Highlighting the links between the architecture constraints and the deci-
sions, this view facilitates the SOA architect to show the flexibility of adapting
the SDCA to specific domain applications. It is obvious from the view that
the services whose decisions on service automation are left open, require fur-
ther re-configuration when architecture constraints become specific (SDCACon2,
SDCACon6). The users of the SDCA also benefit from this view by being aware of
the impact of certain architecture constraints on the degree of service automa-
tion.

For instance, the deployment service Select Unit aims at selecting the main
service to be deployed to the environment (and the enclosing deployment unit).
The decision on the degree of automation is mainly driven by quality attributes
of the deployed system and the technical capabilities of the deployment actor.
An automated solution results in less human control; whereas a non-automated
solution requires certain skills from a deployment actor.

To give another example, the deployment service Map Units To Nodes de-
cides which physical node among the candidates will host each participating
unit. Whether such a decision can be obtained from a certain policy or has to
be controlled by a human actor is influenced by the characteristics of the envi-

18 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

ronment and the domain quality attributes. Strictly defined environments will
generally impose stricter distribution requirements, which need to be provided
by a human actor, whereas the environments defined on-the-fly generally lead
towards programmatic distribution policies such as round robin or even load
balancing.

4.2 The automation decision view for BankFutura

When applying the SDCA to BankFutura, the four completely-automated ser-
vices whose automation state is domain-independent require no further decisions
and hence remain being completely-automated. On the other hand, the five ser-
vices implemented as both semi-automated and policy-driven automated in the
SDCA require further decisions on re-configuration based on the BankFutura
specific architecture constraints. The outcome of those decisions is illustrated in
the automation decision view for BankFutura, presented in Fig. 4.

Name: Credit concession
service
Type: Composite service

Service

Stability
Criticality

Quality
attributes

Topology: Pre-
defined

Environment

Banking
deployer

Deployment
Actor

Security

Quality
attributes

Name: Financial health
service: Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Name: Retrieve client
profile
Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Name: Evaluate client
financial status
Type: atomic
Developed by: internal
developer Provided by:
Internal provider

Service

Banking
services are

developed and
provided by

the internal IT
department,
according to

internal
policies.

Because of
their

homogeneity,
it is decided to

automate
through

policies this
service since

the
dependency
resolution
activity is

simpler and
predictable.

As banking
environment topology

is predefined, the
decisions taken in

this service must take
into account the

specific objectives
and guidelines

behind the definition
of the environment

topology. Because of
the criticality of these

decisions, and the
complexity to express
the underlying criteria
for the environment

definition, it is
decided that the

deployment
plan creator should
control the service

execution.

Due to the predefined
characteristics of the
environment a human
validator with profound
environment knowledge

can provide a better
verdict than an

automated analysis.
He /She can consider
additional factors (e.g.,
organizational culture).
That factor, as well as

the critical nature of this
service, have lead to

decide that the
validation should be

controlled by a human
actor other than the plan

creator for a better
control check).

The correct time to
apply the plan differs

with the type of
environment (e.g.

changes to the
integration environment

should be applied as
soon as possible,

whereas production
can only be changed
on few reserved time

slots) and the nature of
the change. The
balance between

criticality and
immediacy of the

change can be hard to
express formally.

Therefore, this service
cannot be automated
and will be controlled

by a human actor.

Stability and
criticality

requirements
impose the

environment to be
stable and operate

correctly.
Automatic

initialization implies
allowing that the

deployment system
dynamically reacts
on changes, which

may result in
unexpected errors

that lead to
unstable

configuration.
Therefore, it is

decided that the
service selection is

controlled by a
human actor.

Deployment
actors are

familiar with
the domain
knowledge
and have
technical
expertise.
Therefore,
they are

capable of
making

technical
decisions
over the

deployment
process.

Therefore,
critical

activities can
be manually
controlleD.

The system
restricts the
access for

each type of
operation. It
is required

that the
operations
that take

place at each
step can be
traced and

responsibility
can be

assigned to
staff

members.
Therefore,

critical
activities
should be
manually

controlled.

Number of tiers: Multiple, tiered
environments (integration, pre-
production, production)
Number of users: Variable number of
system users for each tier
Application domain: Business domain

Environment

 Select Unit

Resolve
Unit

Map Units to
Nodes

Validate
plan

Schedule plan
execution

Fig. 4. The automation decision view for BankFutura

The view shows how the domain non-functional requirements such as critical-
ity or reliability limit the degrees of service automation that BankFutura actually
can operate with, in spite of the advantages of a completely automated service

Service automation views 19

execution flow. As a result, the SOA architect decided to semi-automate most of
the services to guarantee a certain degree of control over the deployment process
(BankCon1, BankCon2). The only service that was decided be policy-driven au-
tomated is the deployment service Resolve Unit. An exception was made in that
case because BankFutura services are developed and provided by the internal IT
department, satisfying the business needs of the organization and are developed
according to internal policies. This suggests a simpler and predictable depen-
dency resolution activity and hence it was decided to be automatically driven
by policies rather than human actors.

As we can see the requirements of criticality or reliability as well as their im-
pact on the degree of service automation are highlighted in the view (BankCon2).
Not only the SOA architect can use this view to justify their decisions on the
degree of service automation satisfying the requirements of criticality or reliabil-
ity, but also the deployment manager can use it to trace, verify and control the
decisions that the SOA architect made (BankCon4).

Explicitly documenting the rationale for the decisions on the degrees of ser-
vice automation also enables the analysis of the possible alternatives on the
degree of service automation, allowing to evaluate how the deployment service
flow can react to changing requirements or constraints (BankCon3). If BankFu-
tura intends to reconfigure the degrees of service automation, it will be useful to
know the automation alternatives and the trade-off among them. For instance,
the services presented in Fig. 4 are marked with a shadow if they can be ei-
ther semi-automated or policy-driven. Although the services have been decided
to implemented with either of the degrees of service automation, they could be
reconfigured to another degree if the organization deemed it necessary (e.g. af-
ter a time of operation the organization increased its trust in the automation
capabilities of the BankFutura, and opted to increase the degree of automation
for a more efficient operation).

4.3 The automation decision view for HomeFutura

Specialized from the degree of automation view for SDCA (presented in Fig. 5),
this view presents the implemented degree of automation for HomeFutura ser-
vices.

Similar to BankFutura, the degree of automation view for HomeFutura (pre-
sented in Fig. 5) does not display the four completely automated services that
are domain independent and need no further decisions. This view emphasizes
the decisions on the degree of automation for the other five services that are
domain-dependent, as well as the domain specific constraints that lead to these
decisions.

Whereas in BankFutura environment stability is the dominant constraint,
HomeFutura aims at providing end users the flexibility to experience new services
available on the network. Consequently, HomeFutura opted for a deployment
solution with higher degree of automation, not only because end users are not
capable of providing technical input to the deployment process but also because

20 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

Name: Multimedia Resource Center
Type: composite service

Service

Usability
Flexibility

Quality attributes

Topology: On the fly

Environment

End user

Deployment
actor

Name: Rss news reader
Type: atomic
Provided by: multiple known
external providers

Service

Name: Multimedia player
Type: atomic
Provided by: single
external provider

Service
Name: Content
downloader
Type: atomic
Provided by: multiple
external providers

Service

HomeFutura Services
are licensed by the
service aggregator

from multiple
providers. The

aggregator knows the
terms of use and

selects compatible
services with different

SLA levels,
depending on the

user profile. As the
process must

minimize human
intervention the

aggregator captures
his/her knowledge
into well-defined

policies and
implements the

service with policy-
driven automation.

The environment is
composed by home
devices without a

predetermined role,
thus imposing no

additional
restrictions over the

component
mapping. As the end

user cannot
participate in this

service because of
its technical nature,

the service is
decided to be policy-

driven automated,
applying an even
load-balancing

policy to distribute
the units.

The end
user must
approve
the plan
before its
execution.
Instead of
technical

details, the
informatio
n relevant
to the user

will be
presented

for its
approval.
Therefore,

this
service

cannot be
automated

.

The limited number of
simultaneous system

users and the low critical
nature of personal

services greatly reduces
the impact of system

changes. On top of that,
the process should be
completed as soon as

possible in order to
provide the functionality
to the user (improving

usability). Therefore, the
plan should be instantly

applied after its
approval. Since no
additional input is

required during the
execution of this service,

it is completely
automated.

HomeFutura
services are

from
different

nature and
functionality.
Since only

the end user
knows the

functionalitie
s that the
system
should

provide, this
service

cannot be
automated
and should
be carried
out by the
end user
manually.

The end
user is only
concerned
about the

functionalit
y, and is

not aware
about the
technical
details.

Therefore,
he/she

expects the
process to

be as
automated

as
possible.

Number of tiers: 1
Number of users: low
Domain: personal

Environment

Plan
Execution Select Unit

Validate Plan:
user confirmation

Map Units to
Nodes

Resolve
Unit

Validate Plan:
Technical
Validation

As the user
does not
know the
technical

details of the
deployment,

a set of
validation

rules Can be
applied to

check
whether the
operations

contained in
the

deployment
plan are

technically
correct for the

home
environment.

Human
intervention

would
create

bottlenecks
tn the

execution
of the

deployment
service.

Therefore,
in order to
improve
Usability,

the process
should be

as
automated

as
possible.

Fig. 5. The automation decision view for HomeFutura

Service automation views 21

agility in the execution is required. The view presents this rationale and shows
its link with the architecture constraints(HomeCon2 influencing the decisions.

As a result, only two services that require input from end users are semi-
automated. The service Select Unit requires the end users to select the services
that they would like to experience; and the other service Validate Plan requires
the end users to approve the execution of the deployment plan (e.g., the cost of
news service, the changes to multimedia player device). The rest of the services
in the deployment process are all automated and do not require human inter-
vention . Similar with the decision view for BankFutura, this view enables the
SOA architect to justify the decisions and supports the deployment manager in
governing the decisions (HomeCon1, HomeCon5).

It is worth to note that three services are marked with a shadow, which indi-
cates that a choice has been made between semi-automation and policy-driven
automation for these services. Although policy-driven automation has been cho-
sen for the current deployment solution for HomeFutura, the shadow reminds
the architect that this service could be re-configured to be semi-automated if
needed (HomeCon3). For instance, after a time of operation it turns out the ser-
vice Map Units To Nodes does not provide the most optimal mapping of the
selected services to devices (due to e.g. too complicated dependency graph that
Map Units To Nodes cannot interpret correctly or incomplete policy that is not
able to provide sufficient information for the mapping), the architect could de-
cide to let a technical expert decides the mapping and hence make Map Units

To Nodes to be semi-automated. However, involving another deployment actor
(other than the end user) in the process would cause that the user cannot in-
stantly start to experience the new service, having to wait for the required input
from the technical expert. This way, usability and agility of HomeFutura would
be challenged.

5 The degree of service automation view

Whereas the automation decision view emphasises the domain-specific constraints
that lead to the decisions on the degree of service automation, the degree view
focuses on the decided degrees of service automation for the service execution
flow. As a result, only the degree of service automation that the service flow is
expected to achieve is relevant in this view, while the details of how the decisions
are made are irrelevant and should not be presented in this view.

As denoted by the graphic notations presented in Fig. 6, the degrees of au-
tomation are graphically rendered by the darkness of the color assigned to each
service: the darker is the color, the higher is the degree of automation. In addi-
tion, human actors are associated to semi-automated services with the purpose
of highlighting who are expected to provide input to which services. The se-
quence between services indicates the order in which the deployment services
are invoked. With this additional information, the period during which human
intervention is (and is not) required becomes explicit. By illustrating that ex-

22 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

ternal inputs are expected to be provided by whom and when, this view also
addresses the accountability.

Policy-driven
automated

Deployment Actor

Sequence between
services

 Semi-automated

Completely
automated service

Decision on
automation is left

open

Fig. 6. The graphic notation for constructing the degree of automation view

5.1 The degree of service automation view for the SDCA

Applying the graphic notations presented in Fig. 6, we constructed the degree
of service automation view for the SDCA shown in Fig. 7.

Obtain Possible
Mappings

Generate Plan

Get Available
Services

Evaluate Required
Changes

Select Unit

Resolve Unit

Map Units To
Nodes

Validate Plan

Schedule Plan
Execution

Fig. 7. The degree of automation view for the SDCA

Using this view, the SOA manager can gain an overview of the degree of ser-
vice automation supported by the SDCA, as a result of the decisions illustrated
in Fig. 3. More specifically, two different degrees of automation are designed for
the SDCA (SDCACon5). Deployment services that do not require additional in-
formation are completely automated, while those needing external information
are designed to retrieve the external information either from human actors or
from policies.

5.2 The degree of automation view for BankFutura

Analogous to the SDCA, we also used the described notation to construct the
degree of service automation view for BankFutura, as it can be seen in Fig. 8.

Service automation views 23

The deployment manager can see from this view the three degrees of service
automation designed for the BankFutura (BankCon5). More specifically, four
services are completely automated, one is policy-driven automated and four are
semi-automated. In other words, this view shows that nearly half of the ser-
vices require human intervention, meaning that the automation degree of the
deployment process for BankFutura is relatively low.

Obtain Possible
Mappings

Generate
Plan

Get Available
Services

Evaluate
Required
Changes

Banking deployment
plan creator

Environment administrator

 Select Unit

Resolve
Unit

Map Units To
Nodes Validate Plan

Schedule Plan
Execution

Fig. 8. The degree of automation view for BankFutura

In addition, as the semi-automated services are associated with a banking
deployment plan creator and an environment administrator, the manager may
use this view to trace the responsibility of these two human actors who are
expected to provide input during the services execution (BankCon6).

Similarly, this view points out directly for the banking deployment plan cre-
ator and environment administrator which services are expecting their input. As
shown in Fig. 8, the role of the banking deployment plan creator is associated to
the deployment services Select Unit and Map Units To Nodes, indicating that as
soon as the deployment service flow is initiated and the banking deployment cre-
ator should be prepared to first make a selection on the available units and later
on to establish mapping between selected units and physical nodes (BankCon14).
On the other hand, the environment administrator is only involved in the vali-
dation and execution of the deployment plan (BankCon11).

5.3 The degree of automation view for HomeFutura

Similar with the degree of automation view created for BankFutura, Fig. 9 shows
the designed degree of automation for each service in the deployment process of
HomeFutura.

The view visually highlights the fact that a higher degree of automation
has been designed for HomeFutura as compared to BankFutura (HomeCon4,
HomeCon6). As shown in Fig. 9, most of the services are illustrated with dark color
(indicating that the services can execute without any human intervention); while
two services are in light color (indicating that human intervention is needed).

24 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

 Select Unit

Obtain
Possible
Mappings

Generate
Plan

Validate plan: user
confirmation

Plan
Execution

Evaluate
Required
Changes

End user

Map Units to
Nodes

Resolve
Unit

Get Available
Services

Validate plan:
Technical

Correctness Check

Fig. 9. The degree of automation view for the HomeFutura

The degree of service automation view for HomeFutura can also be used to
explain to the end users how they are expected to participate in the deployment
process. End users can see hwo their participation consists of selecting the home
services that they would like to experience using service Select Units and even-
tually to agree on the corresponding costs of consuming these services by using
service Validate Plan. This way, it can be seen how the end users are presented
only the relevant information for them, while the low level, technical details are
hidden(HomeCon10).

6 The automation-related data view

While the degree of service automation view highlights the degree of service
automation designed for the deployment service flow, the automation-related

data view details the design from the data perspective. This way, the questions
related to the generation, management and provision of additional input (from
either human actors or policies) can be answered by the automation-related data
view.

The graphic notations that we created to construct the automation-related
data view is presented in Fig. 10. Besides the notations for the three degrees of
service automation, we distinguish the guidelines/rules from formalized policies.
While both guidelines/rules and formalized policies are relevant to service au-
tomation, the former are used by the deployment actors to drive the decision and
the latter are directly accessed by deployment services to achieve policy-driven
automation.

The most right hand side of Fig. 10 shows the graphic notation denoting
the relationships between elements in the automation-related data view. More
specifically, a deployment actor is responsible for providing an input; such in-
put assists the execution of semi-automated services; guidelines / rules guide the
provision of such an input; formalized policies directly assists the execution of
policy-driven automated services; and sequence between services is also denoted.
Given these details on the relationships between policies, deployment actors, and
deployment services, the deployment actors can tell which services are expecting

Service automation views 25

Guidelines
or rules

Formalized
policy

Guides

Sequence between
services

Assist the execution of

Policy-driven
automated

 Semi-automated

Completely
automated service

Human
Input

Deployment
actor

Fig. 10. The graphic notation for constructing the automation-related data view

what information from them. Moreover, it explicitly points out which organiza-
tional guidelines or rules should this information comply with. In this way, the
deployment actors can be prepared to transform this organizational knowledge
to their input to services, hence facilitating human participation.

In addition to the graphic notation, we also constructed a table template
(shown in Tab. 5) for listing the policies that are relevant to service automation
in the deployment service flow. This table aids the specification of policies in
presenting all the information relevant to the policies in a structured manner.
As such, this table also aids the preparation of the policies.

Table 5. The template for automation-related policy table

Policy
ID

Policy name Policy Description Associated ser-
vice

Controlled
by

Type of for-
mat

6.1 The automation-related data view for the SDCA

As the SDCA is a reference deployment management system, it does not define
concrete deployment actors or policies, as they will be specialized in specific
applications. However, in order to guide the application of the SDCA, the SOA
architect is concerned about identifying the required policies for providing the
additional input to the deployment service flow. For this reason, we constructed
the automation-related policy table, using the template presented in Tab. 5.

The automation-related policy table (presented in Table 6) provides detailed
information about all the policies, including the ones for guiding human actors
and the ones for policy-driven automated services. Using this table, the SOA
architects in specific domains can gain an overview on what type of policies

26 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

might be relevant and should be prepared, as well as which format should they
be expressed when applied to the SDCA (SDCACon3).

Table 6. The automation-related policy model for the SDCA

Policy
ID

Policy name Policy Description Associated ser-
vice

Controlled
by

Type of format

P01 System require-
ments

Describes the functionality
(services) that the target en-
vironment must provide

Select Unit - Formal/Text

P02 Unit selection
policy

Provides criteria for select-
ing among multiple candidate
units that satisfy the same de-
pendency

Resolve Unit - Formal/Text

P03 Unit distribu-
tion policy

Provides criteria for selecting
the physical place of the en-
vironment where each deploy-
ment unit will be installed

Map Units To
Nodes

- Formal/Text

P04 Plan Validation
Rules

Defines a set of checks that
can identify fatal errors in
the plan definition or poten-
tial risks expressed as warn-
ings

Validate Plan - Formal/Text

P05 Environment
update policy

Controls at what periods of
time plans can be applied to
the environment

Schedule Plan
Execution

- Formal/Text

6.2 The automation-related data view for BankFutura

Applying the graphic notation presented in Fig. 10, we constructed the automation-
related data view for BankFutura (shown in Fig. 11). This information is com-
plemented with the BankFutura policy table, presented in 7)

From this view the two human actors, the banking deployment plan cre-

ator and the environment administrator, can see what types of information
they are expected to provide to which services during the service execution flow
(BankCon11, BankCon14). In addition, they can see which organization policies
(or guidancerules) can be referred in order to provide the required information
(BankCon9, BankCon11, BankCon12, BankCon13).

We will use an example scenario to illustrate how BankCon10 is supported by
the data view, guiding the participation of the deployment plan creator in the
service Map Units to Nodes. In an specific environment, the environment design
document mentioned in the data view informs that only one server from the
environment infrastructure is configured in the network firewall to be remotely
accessible from the outside; the remaining elements being protected from outer
clients. In this case, by analyzing that information, the human will decide to
assign units containing final services (which must be remotely accessible) to the
visible server, whereas the remaining elements will be distributed over the other
elements, regardless of whether those servers might also be technically capable
of hosting the same types of services.

Service automation views 27

Obtain
Possible

Mappings

Generate
Plan

Get Available
Services

Evaluate
required
changes

Select Unit

 Resolve Unit

Map Units To
Nodes Validate Plan

Schedule Plan
Execution

Unit
selection

policy:
latest

version

System
Requirements

Unit distribution
policy: optimize
performance,

ensure reliability

Plan
Validation

Rules

Environment
update policy:

minimize runtime
impact

Banking deployment
plan creator

Identification
of the desired

service

Selection among
the possible

candidate units Environment
administrator

Verdict on
Plan

Correctness

Decide when to
execute the

deployment plan

Fig. 11. The automation-related data flow view for BankFutura

Fig. 11 shows that the policy-driven automated service is explicitly linked to
the corresponding policy. For instance, service Resolve Unit is linked to Unit se-

lection policy indicating that the criteria for selecting among multiple candidate
units defined by the policy directly influences the output of Resolve Unit. Ex-
plicitly visualizing the dependency between the services and their corresponding
policies, the automation-related data flow model aids the deployment manager
in obtaining an overview on when certain policies are required and which services
require them during the deployment service flow (BankCon7).

Complementary to the data view, the automation-related policy table further
details each policy presented in Fig. 11 by noting its description, the role that is
in charge of it and the type of format for documenting the policy. This table aids
the preparation of policies as it can be used as a check list for the deployment
manager to assign tasks to some specific personnel, making sure that the policies
are in place and are expressed in the right format before the execution of the
deployment process (BankCon7).

6.3 The automation-related data view for HomeFutura

Applying the graphic notation shown in Fig. 10, the automation-related data
view for HomeFutura is presented in Fig. 12. From this view, the end users can
see that they are only required to initiate the deployment process when they want
to experience new services and confirm the operation when the selected services
are ready to be deployed. More importantly, the end users will be confident in
providing this information as the data view shows that the former is based on
their own functional requirements and the latter on their own non-functional
requirements. With limited involvement in the deployment process, the end user
has full control over the selection of new home services and the acceptance of
any associated cost (HomeCon10).

As the deployment process for HomeFutura has much higher degree of au-
tomation than our previous case, it is more critical that the policies are in place
before the deployment process starts as compared to the case of BankFutura.

28 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

Table 7. The automation-related policy model for BankFutura

Policy
ID

Policy name Policy Description Associated
service

Controlled by Type of format

PB01 System require-
ments

Describes the business pro-
cesses that must be supported
by the environment

Select Unit Managers Textual Document

PB02 Unit selection
policy: Latest
version

Selects the unit with the most
recent version among the po-
tential candidates

Resolve Unit SOA Archi-
tects

Formal/SQL Sort-
ing Query

PB03 Unit distribu-
tion policy

Defines the rationale behind
the environment definition
and the quality levels to be
sustained by the deployed
services

Map Units
To Nodes

SOA Architect Textual Environ-
ment design / SLA
Document

PB04 Plan Validation
Rules

Checks whether the plan is co-
herent with the current state
of the environment

Validate
Plan

Environment
Administrator

Formal/RETE-
based rules +
Guidelines Textual
Document

PB05 Environment
update pol-
icy: Minimize
runtime impact

Controls the reserved time
slows for applying changes,
and avoids overlap in the exe-
cution of concurrent changes

Schedule
Plan Execu-
tion

Environment
Administrator

Environment Op-
eration Guidelines
Textual Document
+ Environment
Calendar

Unit selection
policy: subscription
terms, agreements

with providers.

Functional
requirements

Unit
distribution
policy: even

load balancing

Non-
functional

requirement
s

Service
selection

Confirm
operation

End user

Select Unit

Obtain
Possible

Mappings

Generate
Plan

Validate plan:
user

confirmation

Plan
Execution

Evaluate
Required
Changes

Map Units to
Nodes

Resolve Unit

Get
Available
Services

Validate plan:
Technical

Correctness Check

Plan
Validation

Rules

Fig. 12. The automation-related data flow view for HomeFutura

Service automation views 29

In BankFutura, there is only one policy-driven service requiring direct access to
its associated policy. The other semi-automated services require the associated
policies to be well documented enough so that the deployment actors are able to
provide the required input. In HomeFutura, as shown in Fig. 12, there are three
policy-driven services, which means that the three associated policies should all
be accessible before the deployment process starts (HomeCon7).

Complementary to the data view, the automation-related policy table for
HomeFutura presented in Tab. 8 provides detailed information about the policies
illustrated in the data view. From this table, the service aggregator can see that
he/she is the main role who is in charge of the formalized policies (HomeCon9).

Services available to HomeFutura come from different service providers, after
being licensed by the service aggregator. The aggregator knows about their use
licenses and selects compatible services with different SLA levels, depending on
the user profile. With the aggregator defining policies for solving dependency
conflicts based on the user profile, the technical knowledge of the aggregator
is transferred to formalized documents that the three deployment services can
directly access to. This not only enables these services to be policy-driven auto-
mated, but also ensures the alignment between them and technical requirements
that are specific to HomeFutura (HomeCon8).

Table 8. The automation-related policy model for HomeFutura

Policy
ID

Policy name Policy Description Associated
service

Controlled by Type of format

PH01 Functional Re-
quirements

Functionality that must be
provided from the HomeFu-
tura platform to the end user

Select Unit End User Undocumented
knowledge

PH02 Unit selection
policy

Selects among the candidate
units based on the agreements
with service providers and the
user subscription terms

Resolve Unit Service aggre-
gator

Subscription
Terms Document,
Agreements with
providers document

PH03 Unit distribu-
tion policy:
Even load
balancing

Distributes the affected units
over the home environment
attempting to balance the
load on the computing nodes

Map Units
To Nodes

Service aggre-
gator

Formal: Linear Pro-
gramming coding

PH04 Plan Validation
Rules

Checks whether the plan is co-
herent with the current state
of the environment and the
subscription terms of the end
user

Validate
Plan: Tech-
nical Cor-
rectness
Check

Service aggre-
gator

Subscription Terms
+ Formal/ RETE-
based rules

PH05 Non-functional
requirements

Checks whether the consump-
tion of the selected service
complies the non-functional
requirements of the end user

Validate
Plan: User
Confirma-
tion

End user Undocumented
knowledge

PH06 Environment
update pol-
icy: Instant
execution

Instantly applies the plan to
the home environment

Schedule
Plan Execu-
tion

Service aggre-
gator

Formal: code

30 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

7 The power of visualization

Visualization is a common technique to convey abstract information in intuitive
ways. Representing information in terms of (a set of) graphics often more easily
draws readers’ attention and improves understandability, as compared to pieces
of text. That is why visualization has been considered as one of the most effec-
tive ways for communication. In the same vein, effectively applying the technique
of visualization in architecture description improves the communication between
stakeholders; in our experience the range of stakeholders involved in services engi-
neering is broader than in the development of traditional applications, rendering
the usage of visualization techniques as a key to get effective communication.
On the other hand, the usage of diagrams (such as UML) well-known in the
field of software architecture, while useful for technical stakeholders, results to
be difficult to understand and reason with for non-technical ones (such as users
in HomeFutura).

When constructing the service automation views, we consciously design the
graphic notation to make the views intuitively understandable and to hold read-
ers attention steady. Some of these graphic notation have been commonly used
in architecture description, like using a symbol of person to stand for a human
actor, or using a symbol of document to stand for a policy.

In addition to these commonly used notation, we created a set of color schema
representing the different degrees of service automation. The motivation behind
this schema is that from the human perception point of view, objects with dark
color often make one feel heavy in weight (and easy to sink), whereas objects with
light color make on feel light (as easy to float). As shown in the views, the degree
of automation is graphically rendered by the darkness of the color assigned to
each service: the darker the color, the higher s the degree of automation. This
representation resembles an iceberg immersed in the sea: only the top (white is
the lightest color) is visible (i.e. the user is aware of the service and manually
participates in its execution), while the deeper the iceberg is sunk in water, the
lesser visible it becomes (i.e. accessible by users, or in other words, increasingly
automated).

In the same vein, the graphic notation for the policies inherit the same color
schema. As shown in Fig. 10, the policies for providing guidance for deploy-
ment actors are in light color; whereas the policies for assisting the execution
of policy-driven automated services are in dark color. As such, from the color
of the policies shown in Fig. 11, and 12, the reader can have the perception
of the correspondence between the degree of service automation and policies. In
addition, in both the degree of service automation view (shown in Fig. 7, 8, and
9) and automation-related data view (shown in Fig. 11, and 12, the completely-
automated services with dark color “sink” at the bottom, implying that they
are loosely coupled with human actors. Whereas the semi-automated services
with light color “float” at the top, implying that they are tightly coupled with
human actors. As such, these visualization techniques enable the views become
self-explaining.

Service automation views 31

8 Observation

By studying the SDCA, and in particular its two industrial cases, we have iden-
tified a set of concerns that are particularly relevant to service automation. By
constructing views to illustrate the service automation aspect, we gained insight
into the way in which service automation has been designed under different con-
texts. In addition, during the course of this work, we made several observations.

First, we noticed that the degree of service automation is also relevant to the
level of service granularity, which was not foreseen in this study. In the design of
SBAs, the appropriate level of granularity of services is often regarded of great
importance and challenging. The alignment between business and IT is often the
(only) main driver for service identification due to the benefits it might bring [11],
such as the ease of comprehension of the design, the increase of potential reuse,
just to name a few. Since service granularity in nature does not share common
interests with service automation, it was not identified as one of the concerns
to be addressed by the views. However, in this work we noticed that the service
granularity, to certain extent, is also influenced by service automation, which
again makes the relevance of service automation to SOA more evident.

In the case of HomeFutura, we noticed that the deployment service Validate

Plan was decomposed to two services, one is Validate plan: Technical Correctness
Check and another is Validate plan: user confirmation. The main driver for this
decomposition is that Validate Plan consists of two types of validation that can
be implemented with two different degrees of automation. The technical vali-
dation aims to check whether the operations contained in the deployment plan
are technically correct for the home environment. This can be done automati-
cally, provided that the policy Plan Validation Rules is available. Whereas the
user validation aims to get approval from the end users if they agree with the
non-functional attributes associated to the select home service. Since the end
users are the only ones that have the knowledge on their own preferences and
these preferences vary from person to person, it is not feasible to embrace this
knowledge into a policy and it has to be controlled directly by the end users.
As a result, the deployment service Validate plan: Technical Correctness Check

validates the deployment plan from a technical perspective and is designed to be
policy-driven automated; whereas the deployment service Validate plan: user con-

firmation validates the deployment plan from a user perspective and is designed
to be semi-automated.

In the case of BankFutura, the deployment service Validate Plan was not de-
composed although it also consists of the technical validation and user (system)
validation. Similar with HomeFutura, Plan Validation Rules can be formalized
as a policy that Validate Plan can directly access. The difference lies in the fact
that the non-functional requirement of the system is known by the environ-
ment administrator and hence can also be formalized as a policy. In this way,
Validate Plan can be designed as policy-driven automated, accessing Plan Val-

idation Rules that consists of both the rules for technical validation and the
non-functional requirements.

32 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

From these two examples, we can see that the identification of the deploy-
ment services or the level of service granularity is not only driven by the business
functionalities that they represent, but also influenced by the degree of service
automation. Despite the benefits that the business-IT alignment may achieve,
an architect sometime would decompose a coarse-grained service into multiple
fine-grained services due to different service automation requirements. The result
of decomposition might lead to a SBA with higher maintainability and adapt-
ability in terms of service automation but tightly-coupled services and decreased
reusabiliy. As such, in the design of SBAs, an SOA architect has to make a trade-
off between the alignment with business functionalities and the level of service
automation.

The second observation we made is on the applicability of the views to ar-
chitecture descriptions of SBA in general. As explained by Shull et. al [12], the
sources of variability may influence the result, such as the types of projects for
which a technique is effective. For this reason, we did an analysis on the vari-
ability of the domain and the type of architecture that we studied.

More specifically, the design of the SDCA aims at providing a reference archi-
tecture for service configuration and management while the same time focuses
on its applicability in industrial domains. We also studied the application of
the SDCA in an enterprise domain and a personal domain with completely dif-
ferent characteristics. The difference between these domains contributes to the
variability of this study. Although the concerns elicited from the SDCA and its
two case studies are somehow different and represent domain-specific interests,
addressing these concerns in architecture description demands for similar types
of information. When illustrating all these types of information in terms of the
same set of graphic pictures and tables (or views), we are able to show that all
the concerns identified from each case have been addressed in the corresponding
architecture design. As a result, we are confirmed that the views can be applied
to three different domains.

However, the concerns that we identified are all related to the SDCA, both
its own design and its applications in different industrial domains. The lack of
variability in terms of the type of architecture that we studied might threat the
validity of the views in illustrating the service automation aspect of SOA in
general. For this reason, we plan to replicate the study by analyzing the service
automation aspect of various types of SOA in our future work.

9 Conclusion

In this chapter we have studied the different degrees of automation suitable for
services configuration and deployment on different domains (business and home).
While the initial goal was just the development of a system able to perform these
functions -a Services Deployment and Configuration Architecture or SDCA- we
discovered that the architectural concerns were affected by the specific domain
of application it was to be used for; in fact there are several quality attributes

Service automation views 33

that must be covered, but the balance between trust and reliability for example,
is specific to the domain.

The key contribution of this paper is the identification of three views that
structure and ease elicitation and documentation of stakeholders’ concerns. The
application of these three views onto the bank and the home domain case studies
clearly reflects the differences on the degree of automation for a similar set of
basic functions (provided by the services); with a lower degree of automation at
the bank domain when compared to the home domain. The notation we have used
for the description of views and decisions is simplified with respect to available
notations. This allows for a better representation of the concepts involved in the
architectural decision making by stakeholders, while remaining intuitive even for
non-technical ones. The expression of usually implicit architectural knowledge
allowed us getting a hint on the relationship between the degree of automation
and the granularity of services. Also, the usage of the same description technique
across domains revealed commonalities between them.

The results obtained seem promising, but in order to better capture the wide
variability of service automation we plan as future work to to apply the same pro-
cess to additional Service-Based Applications, as well as applying the approach
to several more unconnected domains. This way, it would also be interesting to
validate whether different SBAs belonging to the same domain share specific
constraints, which affect their decisions on the degree of automation the same
way.

Acknowledgments

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agree-
ment 215483 (S-Cube).

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley (2003)

2. Emery, D., Hilliard, R.: Updating ieee 1471: architecture frameworks and other
topics. In: WICSA ’08: Proceedings of the Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA 2008), IEEE Computer Society (2008) 303–306

3. Heinz-Gerd Hegering, Sebastian Abeck, B.N.: Integrated management of networked
systems: concepts, architectures, and their operational application. Morgan Kauf-
mann Publishers Inc (1998)

4. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer Mag-
azine, IEEE 36(1) (January 2003) 40–49

5. Ruiz., J.L., Dueñas, J.C., Cuadrado, F.: Model-based context-aware deployment of
distributed systems. Communications Magazine, IEEE 47(6) (June 2009) 164–171

6. Gu, Q., Lago, P.: On service-oriented architectural concerns and viewpoints. In: 8th
Working IEEE/IFIP Conference on Software Architecture (WICSA), Cambridge,
UK, IEEE (2009)

34 Qing Gu, Félix Cuadrado, Patricia Lago, and Juan C. Dueñas

7. ANSI/IEEE: Standard glossary of software engineering terminology, std-729-1991.
ANSI/IEEE (1991)

8. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about archi-
tectural knowledge. In: 2nd International Conference on the Quality of Software
Architectures (QoSA). (2006)

9. Ali Babar, M., Dingsoyr, T., Lago, P., van Vliet, H., eds.: Software Architecture
Knowledge Management: Theory and Practice. Springer (jul 2009)

10. Andrikopoulos, V., Bertoli, P., Bindelli, S., Nitto, E.D., Gehlert, A., Germanovich,
L., Kazhamiakin, R., Kounkou, A., Pernici, B., Plebani, P., Weyer, T.: State of
the art report on software engineering design knowledge and survey of HCI and
contextual knowledge (2008)

11. Heuvel, W.J.v.d., Yang, J., Papazoglou, M.P.: Service representation, discovery,
and composition for e-marketplaces. In: Proceedings of the 9th International Con-
ference on Cooperative Information Systems (CoopIS 2001). Volume Lecture Notes
In Computer Science; Vol. 2172., Springer-Verlag London, UK (2001) 270284

12. Shull, F., Carver, J., Vegas, S., Juristo, N.: The role of replications in empirical
software engineering. Empirical Software Engineering 13(2) (2008) 211218

	UserError Final.pdf
	Abstract

	UserModel_Final.pdf
	Exploiting user model information for service discovery
	Abstract
	1. Introduction
	2. User Models for SBA engineering
	3. User model codification
	3.1 User model information for service discovery

	4. Summary and Future Work
	5. Acknowledgements
	6. References

	CodifiedTaskModelling_Final.pdf
	1. Introduction
	2. User Task Models for SBA Engineering
	3. Codifying User Task Models during Query Reformulation
	3.1 Service Discovery in SeCSE
	3.2 Task-based Extension to Service Discovery
	3.2.1 Structure of a User Task Model
	3.2.2 Conceptual Model of the Task Model Extension
	3.2.3 The Request Reformulation Algorithm
	3.2.4 Dialogue for Selecting Task Models and Reformulating Requests

	4. Discussion and Future Work
	5. Acknowledgements
	6. References

