
Grant Agreement N° 215483

Copyright © 2009 by the S-Cube consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
FP7/2007-2013 under grant agreement n° 215483 (S-Cube).

Title: Taxonomy of Adaptation Principles and Mechanisms

Authors: CITY, FBK, INRIA, Polimi, SZTAKI, Tilburg, UCBL, UniDue

Editors: Julia Hielscher (UniDue), Andreas Metzger (UniDue),
Raman Kazhamiakin (FBK)

Reviewers: Vasilios Andrikopoulos (Tilburg)

 Branimir Wetzstein (USTUTT)

Identifier: Deliverable # CD-JRA-1.2.2

Type: Contractual Deliverable

Version: 1.0

Date: 16 March 2009

Status: Final

Class: External

Management Summary

The deliverable presents the vision on the adaptation and monitoring research highlighting the research
challenges, objectives, and an integrated adaptation and monitoring framework adopted within this
workpackage. Starting from this framework, the refined conceptual models and taxonomies of SBA
monitoring and adaptation are provided. The deliverable also demonstrates how the presented
taxonomies are instantiated across functional SBA layers and involved research disciplines.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

 External Final Version 1.0, Dated March 16, 2009 ii

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) Germany
Tilburg University Netherlands
City University London U.K.
Consiglio Nazionale delle Ricerche Italy
Center for Scientific and Technological Research Italy
The French National Institute for Research in Computer Science and Control France
Lero - The Irish Software Engineering Research Centre Ireland
Politecnico di Milano Italy
MTA SZTAKI – Computer and Automation Research Institute Hungary
Vienna University of Technology Austria
Université Claude Bernard Lyon France
University of Crete Greece
Universidad Politécnica de Madrid Spain
University of Stuttgart Germany
University of Hamburg Germany
Vrije Universiteit Amsterdam Netherlands

Published S-Cube documents

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/results/deliverables/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

 External Final Version 1.0, Dated March 16, 2009 iii

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,
vibrant research community which will enable Europe to lead the software-services revolution,
helping shape the software-service based Internet which is the backbone of our future interactive
society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific
excellence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by
meeting the following objectives:

• Re-aligning, re-shaping and integrating research agendas of key European players from
diverse research areas and by synthesizing and integrating diversified knowledge, thereby
establishing a long-lasting foundation for steering research and for achieving innovation at the
highest level.

• Inaugurating a Europe-wide common program of education and training for researchers and
industry thereby creating a common culture that will have a profound impact on the future of
the field.

• Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the
integration of research communities and the establishment of a common software services
research culture.

• Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial
competitiveness and addressing main societal challenges.

• Defining a broader research vision and perspective that will shape the software-service based
Internet of the future and will accelerate economic growth and improve the living conditions
of European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European
competitiveness. S-Cube will provide service engineering methodologies which facilitate the
development, deployment and adjustment of sophisticated hybrid service-based systems that cannot be
addressed with today’s limited software engineering approaches. S-Cube will further introduce an
advanced training program for researchers and practitioners. Finally, S-Cube intends to bring strategic
added value to European industry by using industry best-practice models and by implementing
research results into pilot business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

http://www.s-cube-network.eu/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Contents

1 Introduction 3
1.1 Aims and Focus of the Deliverable . 3
1.2 Relationships with other S-Cube Deliverables . 4
1.3 Methodology . 5

2 Vision 6
2.1 Conceptual Adaptation and Monitoring Framework . 7

2.1.1 Elements of the Framework . 7
2.1.2 Usages of the Framework . 9
2.1.3 User Perspective . 10

3 Taxonomy of Monitoring Principles and Mechanisms 12
3.1 Conceptual Model . 12
3.2 Monitoring Taxonomy . 13

3.2.1 Taxonomy Dimension: Why? . 14
3.2.2 Taxonomy Dimension: Who? . 14
3.2.3 Taxonomy Dimension: What? . 16
3.2.4 Taxonomy Dimension: How? . 17

3.3 Monitoring in Relevant Areas and Domains . 18
3.3.1 Monitoring in Business Process Management 18
3.3.2 Monitoring in Service-Oriented Architectures 22
3.3.3 User and HCI Aspects in Monitoring . 25
3.3.4 Monitoring in Grid Computing . 28
3.3.5 Monitoring in Component-Based Systems . 32

3.4 From Monitoring to Adaptation . 36
3.4.1 Lack of conformance . 37
3.4.2 Requirements changing . 38

4 Taxonomy of Adaptation Principles and Mechanisms 39
4.1 Conceptual Model . 39
4.2 Adaptation Taxonomy . 40

4.2.1 Taxonomy Dimension: Why? . 40
4.2.2 Taxonomy Dimension: Who? . 42
4.2.3 Taxonomy Dimension: What? . 42
4.2.4 Taxonomy Dimension: How? . 42

4.3 Adaptation in Relevant Areas and Domains . 45
4.3.1 Adaptation at Business Process Management 45
4.3.2 Adaptation in Service-Oriented Architectures 48
4.3.3 User and HCI Aspects in Adaptation . 53
4.3.4 Adaptation in Grid computing . 54

External Final Version 1.0, Dated March 16, 2009 1

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

4.3.5 Adaptation in Component-Based Systems . 56

5 Conclusion 59

External Final Version 1.0, Dated March 16, 2009 2

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Chapter 1

Introduction

1.1 Aims and Focus of the Deliverable

This document is part of the deliverable series of S-Cube, the Software Services and Systems Network.
The goal of this deliverable is twofold. First, it aims to provide the research vision on the research
problems and challenges to be addressed by the S-Cube consortium with respect to SBA adaptation and
monitoring. Second, it aims to resolve the diversity in terminology and interpretation of related terms be-
tween different communities identified in the previous deliverable [21], and to provide a comprehensive
and holistic overview of the knowledge and concepts in the field of adaptation and monitoring.

In order to achieve these goals, the deliverable first presents the research problems and challenges
for SBA adaptation and monitoring and a first version of the integrated adaptation and monitoring frame-
work (Chapter 2). This integrated framework (depicted by the abstract conceptual model in Figure 2.1)
provides a high level view of the key logical elements needed for adaptation and monitoring of SBAs
and shows the basic dependencies between them. The framework not only provides a basis for the align-
ment of different research communities and their terminology, but also shows a way to resolve one of
the key research challenges of this workpackages – to provide an integrated, holistic, and comprehensive
adaptation and monitoring principles, techniques, and methodologies.

Starting from this general framework the subsequent parts (Chapter 3 and 4 for monitoring and
adaptation respectively) present separate conceptual models that provide a refinement of the key logical
elements of the framework by introducing important (however, generic) concepts and their relationships.
The refinement from the A&M framework is depicted in these conceptual models by introducing pack-
ages which are named according to the logical elements in the A&M framework. The adaptation- and
monitoring-specific conceptual models are further specialized and classified in the form of the corre-
sponding adaptation and monitoring taxonomies. The classification within taxonomies is structured such
as to answer the following questions about the corresponding concepts: “Why?”, “Who?”, “What?” and
“How?”. In particular,

• the “Why?” dimension provides a description of the motivation for monitoring respectively adap-
tation;

• the “Who?” dimension characterizes the monitoring problem respectively adaptation problem
from the user point of view;

• the “What?” dimension is used to classify the subject of monitoring respectively adaptation and
the way it is described;

• the “How?” dimension describes the way the monitoring approach respectively adaptation ap-
proach is delivered.

External Final Version 1.0, Dated March 16, 2009 3

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

These generic concepts and taxonomies are then related to individual domains and research chal-
lenges to show how those domains and research areas fit within these refined models. The representation
of domains is given in a form of tables, which follow the taxonomy structure (i.e., the “Why?”, “Who?”,
“What?”, and “How?” dimensions) and include the key elements of that taxonomy. In this way, the
tables are able to capture all the relevant aspects of the problem and its solution in a particular domain,
without, however, going too much in details. In particular, the taxonomies aim to take into account the
following research disciplines:

• Software Engineering (and, in particular, component-based software engineering),

• Business Process Management,

• Service-oriented Computing,

• Human Computer Interaction, and

• Grid Computing.

Based on those domain instantiations, the differing or similar usage of terms can be identified. In fact,
key definitions for concepts (both domain-specific and generic) are provided and will be contributed to
the S-Cube knowledge model.

The following figure illustrates the dependencies between the various model using the concepts from
the SBA monitoring:

A&M Framework

Monitoring
Mechanisms

Monitored
Events

Conceptual Model

Monitoring Mechanisms

Monitored
Property

<<trace>>

Monitor

Taxonomy

Monitored
Property

Property
type

Specification

Domain
Description

BAM:
KPIs, run-time
exceptions and
faults of BP
instances.
Low-level events…

detect

observes

Finally, in Chapter 5 we conclude the deliverable with final remarks.

1.2 Relationships with other S-Cube Deliverables

Several of the topics addressed in this deliverable are closely related to the topics addressed in other
workpackages of S-Cube, or are addressed – with a different focus – in those workpackages. The rela-
tionships of this deliverable with other S-Cube deliverables include:

• PO-JRA-1.1.3 (‘Codified HCI Knowledge and Context Factors’): In PO-JRA-1.1.3 HCI knowl-
edge and context factors are documented in an explicit form. HCI knowledge and context factors
are also relevant for monitoring and adaptation concerns.

• CD-JRA-1.3.2 (‘Quality reference model for SBA’): In that deliverable quality attributes that could
be monitored are further described.

• CD-IA-1.1.2 (‘Separate knowledge models for functional layers’): The objective of CD-IA-1.1.1
is to build separate knowledge models for the three functional layers of service based applica-
tions. The taxonomies and definitions of terms made in this deliverable will be integrated, with
the aim of supporting a common understanding and consistent use of terminology throughout the
workpackages of S-Cube.

External Final Version 1.0, Dated March 16, 2009 4

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

• PO-JRA-1.2.1 (‘State of the art report, gap analysis of knowledge on principles, techniques and
methodologies for monitoring and adaptation of SBAs’): The analysis performed in PO-JRA-1.2.1
has identified a diversity in terminology and interpretation of terms between different communities
addressing service-based applications. To address this diversity and consolidate and align the
terminology on monitoring and adaptation of service-based applications, this deliverable provides
a comprehensive taxonomy.

1.3 Methodology

In order to identify, consolidate, and evaluate the adaptation and monitoring framework, the conceptual
models, and the corresponding taxonomies, we performed the following research activities:

1. Starting from the state-of-the-art overview of the research results on SBA adaptation and monitor-
ing and using the initial classification of those results presented in Deliverable PO-JRA-1.2.1, we
have been incrementally building the generalized representation of the most important A&M con-
cepts and their relationships. This activity aimed to come up with a general and holistic conceptual
model and its classification that is equally applicable to literally any adaptation- and monitoring-
related problem within the research disciplines and areas the S-Cube project focuses on. As a
result of this activity, we obtained the following models:

• a general integrated adaptation and monitoring framework (Section 2.1). On the one hand, the
framework is general enough to equally represent various domains and disciplines, and on the
other hand, reflects the key concepts, the architecture and the process of the SBA adaptation
and monitoring. The concepts of the framework are further refined into the models specific
to adaptation and monitoring.

• a refinement of the general A&M framework by means of individual conceptual models
for monitoring (Section 3.1), adaptation (Section 4.1) and potential dependencies between
monitoring and adaptation (Section 3.4).

• a classification of the SBA monitoring and adaptation concepts in the form of corresponding
monitoring (Section 3.2) and adaptation taxonomies (Section 4.2). This classification rep-
resent the evolution of the classification represented in the state-of-the-art deliverable PO-
JRA-1.2.1. The elements of the taxonomies are sill generic and may be applied to various
disciplines and domains. Having in mind that the presented taxonomies will be used within
the project to derive novel holistic and integrated A&M solutions, the classification aims
to define requirements for such solutions, and therefore is defined to answer the “Why?”,
“Who?”, “What?”, a “How?” questions.

2. In order to evaluate the presented models and classifications, we then demonstrated how various
monitoring (Section 3.3) and adaptation problems (Section 4.3) identified in the literature can be
captured with those models. For these purposes, we considered various problems and different
research disciplines and interpreted those problems in terms of the presented concepts. The ob-
tained instantiations not only show the usability of the defined taxonomies, but also provide a basis
for the future integration of various state-of-the-art solutions as they uniformly represent different
terminology and techniques.

External Final Version 1.0, Dated March 16, 2009 5

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Chapter 2

Vision

Service-Based Applications (SBA) run in dynamic business environments and address constantly evolv-
ing requirements. These applications should hence become drastically more flexible, as they should be
able to adequately identify and react to various changes in the business requirements and application
context. These challenges make monitoring and adaptation the key elements of modern SBA functional-
ity.

The problem of monitoring and adaptation of various types of software system has gained a lot of
interest both in the research community and in industry. In the recent years, these aspects have attracted
more and more interest in the area of SBA and in Service-Oriented Computing (SOC). However, the
results and directions are still insufficient. First, the proposed approaches are very fragmented; they
address only specific problems, particular application domains, and particular types of applications and
systems; the monitoring solutions are often isolated from the adaptation needs and approaches. Second,
most of the approaches dealing with adaptation address the problem reactively: the solutions aim to
define a way to recovery from the problem when it is already happened rather than to prevent it to
happen. This is, indeed, insufficient in certain applications and domains. Third, as the applications, their
users, and the settings where they operate become more and more dynamic, open, and unpredictable, the
role of the application context (being a physical, business, or user-specific) becomes much more critical.
These issues are often omitted by the state-of-the-art solutions both for monitoring and adaptation. Very
relevant to this is also the role and participation of various types of users in the monitoring and adaptation
process. The service-based applications are often designed to target final users, and, therefore, should be
able to collect and properly exploit the information about the user in order to customize and personalize
those applications as well as to let the users participate to the corresponding activities.

In this workpackage the work is devoted to the development of the novel principles, techniques,
and mechanisms for SBA adaptation and monitoring focused on the following key research aspects and
questions:

• Comprehensive adaptation and monitoring framework. The workpackage will concentrate on
providing holistic framework for adaptation and monitoring principles, techniques, and methods,
which will enable the integration of different, isolated, and fragmented solutions. In particular, the
framework will allow for:

– Integrating solutions for monitoring with the solutions for adaptation bridging the gap be-
tween their models, architectures, and realizations to achieve more efficient and focused
support for SBA implementation and management.

– Cross layer integration of monitoring approaches. This form of integration is crucial for
modern SBA provisioning, as it provides a way to properly locate and evaluate the source of
the problem and its impact.

– Cross layer integration of adaptation approaches. This form of integration is complementary
to the previous one and will allow us to properly identify and propagate the necessary adapta-

External Final Version 1.0, Dated March 16, 2009 6

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

tion activities in different elements of the SBA architecture. As well as in case of monitoring,
new solutions will integrate isolated adaptation mechanisms available at different functional
layers (and investigated in the corresponding workpackages of JRA-2) into the holistic cross
layer approaches.

– Cross boundary integration of monitoring and adaptation techniques. Here the focus on
identifying the role and the impact of various monitored events and adaptation actions on
the different participants of the system and its environment, as well as on distributing the
information and the actions across those participants accordingly.

– Cross life-cycle integration of monitoring and adaptation techniques. Here the goal is to
exploit the knowledge and mechanisms available at different phases of the life-cycle (e.g.,
design-time or post-operational information) in order to devise, e.g., new monitoring ap-
proaches (e.g., exploiting post-mortem process analysis for prediction) or adaptation deci-
sion mechanisms (e.g., explore previous decisions and adaptation effects to select proper
adaptation strategy).

• Predictive SBA monitoring and proactive SBA adaptation. This workpackage will concentrate
on the problem of predicting the critical changes in SBA functioning (in collaboration with the
workpackage JRA-1.3, end-to-end quality) in order to proactively prevent undesired situations. In
particular, the workpackage will focus on new techniques and solutions for adapting the system
based on the predicted quality values.

• Exploiting contextual information and user aspects for SBA monitoring and adaptation. The
information about different types of the SBA context, as well as about the user and its settings,
is crucial for the application logic. Novel approaches are necessary for being able to specify and
observe this information and for driving the selection, realization, and enactment of the corre-
sponding adaptation actions.

In this chapter we illustrate the novel vision on the SBA adaptation and monitoring that we have de-
fined in S-Cube; this vision will provide a comprehensive, coherent framework for the existing challenges
and for the different research lines undertaken by S-Cube and by the broader SOC research community.
The vision will also place the adaptation and monitoring research within the global picture and objectives
of the S-Cube project; will drive the identification of the competences – and gaps – of the consortium,
and to define the research roadmap, which will be addressed by the WP participant and by the project as
a whole.

2.1 Conceptual Adaptation and Monitoring Framework

At the high level of abstraction, the adaptation and monitoring framework can be described by the
concepts represented in Figure 2.1. This figure identifies Monitoring Mechanisms, Monitored Events,
Adaptation Requirements, Adaptation Strategies, Adaptation Mechanisms, and the relations between
these concepts, as the key elements of the S-Cube A&M framework. It is important to remark that
the significance of this conceptual framework is not in the figure itself – it describes a standard sens-
ing/planning/actuating control chain. The significance is in the very broad meaning that we give to the
different concepts, and to the capability of the chain to allow for a very general integration of a wide
range of mechanisms, techniques and methodologies for monitoring and adaptation, as discussed in the
following.

2.1.1 Elements of the Framework

A generic adaptation and monitoring framework consists of the following elements:

External Final Version 1.0, Dated March 16, 2009 7

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Monitoring
mechanisms

Adaptation
mechanisms

Monitored
events

Adaptation
requirements

Adaptation
strategies

detect

trigger

achieve

realize

Figure 2.1: Conceptual A&M framework

• With Monitoring Mechanism we mean any mechanism that can be used to check whether the actual
situation corresponds to the expected one. The meaning we give to the monitoring mechanisms
is very broad; in this way, we refer not only to “classical” run-time monitoring facilities, but also
to techniques such as post-mortem log analysis techniques, data mining, online and offline testing
and even verification/validation, etc. Realization of monitoring mechanisms is provided by the
corresponding monitoring engines built on top of the monitoring infrastructures.

• Monitoring mechanisms are used to detect Monitored Events, i.e., the events that deliver the rel-
evant information about the application execution, evolution, and context. These events represent
the fact that there is critical difference with respect to the expected SBA state, functionality, and
environment. The monitored events result from observing monitoring properties, derived from the
adaptation requirements as a specification of the expected state and functionality of the SBA and
its environment. The notion of monitored events may be very broad ranging from basic failures,
deviation of QoS parameters, to complex properties over many executions of SBA, certain trends
in the SBA environment, changes in business rules, etc.

• Monitored events in turn trigger Adaptation Requirements, which represent the necessity to change
the underlying SBA in order to remove the difference between the actual (or predicted) situation
and the expected one. They may include dependability and functional correctness requirements,
optimality, interoperability, usability, etc.

• In order to satisfy adaptation requirements, it is necessary to define Adaptation Strategies, which
define the possible ways to achieve those requirements given the current situation. Note that it is
possible to have a set of different adaptation strategies applicable in the same situation. In this case
the process requires certain decision mechanisms that operate autonomously or involve humans.

• Finally, the adaptation strategies are realized by the Adaptation Mechanisms – the techniques and
facilities provided by the underlying SBA or by the operation and management platform in differ-
ent functional SBA layers that enable corresponding strategies. The adaptation may be also done
“manually”, i.e., by re-designing/re-engineering the application. In this case we should speak
about application evolution as the permanent SBA changes are required that should be done via
SBA re-design.

An important aspect of these conceptual elements is the necessity to define and implement the cor-
responding decision mechanisms, which correspond to the four arrows in the picture in Figure 2.1 and
coordinate the work of the framework and realize the relations among them. In particular,

External Final Version 1.0, Dated March 16, 2009 8

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

•Monitor of QoS metrics
•SC behavior monitors
•BAM/BI
•Process/data mining
•Online testing/analysis

Monitoring
mechanisms

Adaptation
mechanisms

Monitored
events

Adaptation
requirements

Adaptation
strategies

detect

trigger

achieve

realize •discovery/re-binding
•Automated service
composition
•Re-design

•Faults/failures
•unforeseen executions
•QoS degrade
•Business-level trend

•Complete failed actions
•Avoid unavailable service
•Optimize QoS
•Correct behavior
•React to prospective loss

•Replace services
•Change providers
•Re-compose workflow
•Involve analysts for
decisions

Figure 2.2: Realization of conceptual elements

• Monitoring properties allow us to analyze the variety of SBA information observed during its
execution and evolution, and to extract and report those events and situations that are critical from
the point of view of the monitoring.

• Adaptation decision mechanisms relate the monitoring activities with the adaptation activities: they
regulate when a particular monitored event corresponds to a situation in which the system should
be changed.

• Strategy decision mechanisms define the way a particular adaptation strategy is chosen based on the
adaptation needs, SBA state, history of previous adaptations, etc. In particular, these mechanisms
will provide a way to resolve conflicts among different adaptation requirements.

• Realization mechanisms define how a particular strategy is realized, when there is a wide range of
available options (e.g., many services to bind in place of failed one).

Note that the realization of these decision mechanisms may be done automatically or may require user
involvement. In the latter case we speak about the human-in-the-loop adaptation: the users (with different
roles) may decide whether the adaptation is needed, which strategy to choose, and even participate to its
realization (e.g., manual ad-hoc SBA adaptation through re-design).

2.1.2 Usages of the Framework

The role of the picture in Figure 2.2 is threefold: to provide an integrated model of the A&M framework,
to define a conceptual architecture of such a framework, and to identify an overall adaptation process.

As an integrated model for the A&M framework it defines key concepts for monitoring and adap-
tation which are by design very general. This allows us to capture any adaptation approach in a uniform
way, independently from the problem or application domain, discipline, functional layer, or type of the
problem addressed. This also provides a basis for the integration of different solutions within a single
approach, and re-use of existing solutions for various purposes.

Each conceptual element may be instantiated in a variety of ways (see Figure 2.2):

• different mechanisms and techniques may be exploited for the SBA monitoring such as run-time
monitoring tools, online testing, process log analysis.

• a variety of different events may be observed for the same application such as various faults, QoS
degrade and violation of SLAs, deviation from the expected behavior. These event may refer to a

External Final Version 1.0, Dated March 16, 2009 9

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

particular instance (or execution) of an application or to all the instances; they may also correspond
to different functional SBA layers.

• the list of adaptation requirements, strategies, and their implementations may be also very broad
(e.g., re-execution of a particular service or changing a provider, modifying the composition or
even re-design of the application) and may also refer to a particular instance or to the whole
application model.

Furthermore, these instances may be further combined in a variety of ways within different approaches,
and then applied to the same SBA.

Almost all the existing approaches covered in the state of the art can be mapped into this model by
suitable instantiations of the conceptual elements. For instance,

• Approaches with dynamic re-binding: the service composition is monitored, service faults are de-
tected, a re-execution strategy is realized through discovering, re-binding, and invoking alternative
service.

• Provider reputation-based adaptation: QoS metrics statistics is collected, SLA violations are de-
tected, a reputation management strategy is applied, the provider is added to the black list and
replaced.

• SBA evolution: the composition is monitored, an undesired execution is recorded, a behavior
correction is triggered which is achieved through the evolution of the SBA and the design of a new
composition workflow.

More important, novel approaches are being defined as part of the S-Cube research activities by new
instantiations of this model.

Second, this picture defines a conceptual architecture of a comprehensive adaptation framework.
The modularization of these concepts allows us to define key components of the A&M tools, to identify
the interfaces between these components and to abstract from any specific realization of these compo-
nents. On the contrary, within the same component different mechanisms and techniques may be applied
in combination. In this way, one can obtain more flexible, customizable, and powerful adaptation and
monitoring solutions.

Third, the picture identifies an overall adaptation process, where: (i) the relevant information
is collected through the monitoring mechanisms; (ii) critical events are recognized; (iii) the need for
adaptation is identified; (iv) an appropriate way to perform the adaptation is identified, i.e., an adaptation
strategy is selected; and (v) the adaptation is realized by exploiting the available adaptation mechanisms.
This adaptation approach is aligned with the SBA life-cycle investigated in workpackage JRA-1.1 and is
represented in Figure 2.3.

2.1.3 User Perspective

An important perspective of the introduced vision concerns the involvement of different user roles in the
adaptation- and monitoring-related activities across the overall A&M process and across the activities
of the SBA life-cycle (Figure 2.3). This perspective introduces an additional dimension of the problem,
which makes the corresponding approaches range from completely autonomous (self-* approaches) to
interactive and manual (human-in-the-loop approaches). We can distinguish the involvement of the users
according to the participation to the life-cycle of the adaptable SBA and to the adaptation and monitoring
process.

In case of participation to the life-cycle activities one can identify the roles of requirements engineers,
designers, and adaptation engineers. A Requirements Engineer defines the application requirements and,
therefore, identifies and derives the adaptation and monitoring requirements. A Designer (besides de-
signing the SBA itself) may perform manual or semi-automatic design-time adaptation of the application

External Final Version 1.0, Dated March 16, 2009 10

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Identify
adaptation

needs

Identify
adaptation
strategy

Enact
adaptation

Early Requirements
Engineering

Requirements
Engineering &

Design

Construction

Deployment &
provisioning

Operation &
management

Requirements
Engineer

Designer
End User

SBA
Manager

Adaptation
Engineer

Figure 2.3: User perspective on the Adaptation and Monitoring across SBA life-cycle

based on the information and requests for changes triggered at the operation and management phase of
the SBA life-cycle. An Adaptation Engineer performs specific activities that target design for monitoring
and adaptation, i.e., definition and specification of monitored properties and adaptation strategies, and
possibly engineering of novel A&M techniques and mechanisms.

In case of participation to the adaptation process, specific roles may also be identified. Given the
conceptual model, these roles correspond to the participation of the user in the realization of various
decision mechanisms (to define whether adaptation is needed, which strategy to use and how to realize
it). This includes SBA Manager (or Integrator), who observes how the application is executed and evolves
in order to make critical decisions (e.g., triggering requests for SBA re-design/re-engineering), and End
Users. The latter may be involved into the A&M process as follows: in case of user-centric SBAs,
the adaptation aims to address the needs, preferences, and expectations of a particular user; the system
adapts to the context of the user and to the way the user interacts with the application. Therefore, end-
users directly or indirectly influence the way the adaptation and monitoring is performed, i.e., affect
adaptation and monitoring mechanisms.

External Final Version 1.0, Dated March 16, 2009 11

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Chapter 3

Taxonomy of Monitoring Principles and
Mechanisms

The problem of monitoring has been widely studied and exploited in different research areas and appli-
cation domains, ranging from classical software engineering to service-oriented architectures and grid
computing. The term “monitoring”, as well as the definition and conceptualization of the monitoring
approach, is strongly related with the particular application area and the kind of problems envisioned in
that area and domain.

Having in mind the goal of providing a holistic, comprehensive, and integrated vision on the moni-
toring and adaptation across various research disciplines, in the following we will try to present a gen-
eralized and universal yet practical definition of the monitoring problem. We will present a generic
conceptual model for the monitoring, which refines an overall adaptation and monitoring vision adopted
within S-Cube research project. Based on the conceptual model, this chapter will provide a classification
of the monitoring concepts, and instantiate this classification across relevant research disciplines.

3.1 Conceptual Model

In a broad sense monitoring may be defined as a process of collecting relevant information in order to
evaluate properties of interest over analyzed system and report corresponding events. That is, monitoring
may not only to detect certain facts, but also aggregate, analyze, and reaason over those facts, parameters,
and values. High-level conceptual model of the monitoring concepts is represented in Fig. 3.1. We
remark that this model refines the generic adaptation and monitoring conceptual model represented in
the Vision section of this document with the purpose of providing the relations among the key concepts
of the monitoring framework.

As it follows from the diagram, Monitoring is performed with the help of Monitoring Mechanisms,
and in particular by the Monitors, which are implemented by a variety of specific Realization Mecha-
nisms (tools and techniques). Monitoring Mechanisms include also Monitoring Properties, which allow
one to identify and focus only on the important events and information. In order to observe those proper-
ties, Monitors continuously collect data from various Information Sources and detect Monitored Events
corresponding to these properties. Note that this model of monitoring may have recursive implementa-
tion, in a sense that one monitor may serve as a source of information for other monitors. Depending on
the purpose and the problem in hand the monitors may range from rather basic components that observe
very simple properties, to rather complex monitoring frameworks capable of observing very complex
properties defined with high-level specification languages.

Monitoring properties are used to characterize the Monitoring Subject under consideration. Depend-
ing on the approach, the Monitoring Subject may refer to the SBA itself or to its environment, to its
particular elements or particular aspects of the functionality, to a particular run or to the histories of

External Final Version 1.0, Dated March 16, 2009 12

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Monitored Event

Monitoring

Information Source

Monitoring Actor

DesignerRequestor Provider Consumer

requires

consumes

Monitoring Mechanism

Realization Mechanism

detects

Monitor

implemented by

Monitored Property
observes

Monitoring Subject

characterizes

defines

performed by

collects data from

provides

Figure 3.1: High-level monitoring model

executions.
The monitoring process involves various Monitoring Actors that characterize different roles, with

which the users are involved in the process. One can identify the following types of actors:

• Requestor characterizes the stakeholders, who define the requirements to the system, or more
precisely, to the monitoring subject.

• Designer is responsible for defining the monitoring properties corresponding to the requirements
of the requesters, and, if necessary, to design the corresponding monitoring approaches.

• Provider represents a role in the ecosystem that owns or provides the monitoring functionalities.

• Consumer is interested in results of monitoring, i.e., aims to discover important monitoring events
and react to them triggering requirements for adaptation.

Note that these roles may correspond to the software components or require human involvement. In
particular, the result of the monitoring procedure (i.e., Monitored Events) may be consumed either by
the SBA Manager, who will make important decisions on the necessity, e.g., to re-design the application,
or by a software component that incorporates the logic to decide whether the run-time SBA adaptation is
needed.

Below we will provide a classification of the monitoring problem and identified monitoring concepts.

3.2 Monitoring Taxonomy

Relevant monitoring concepts are classified accordingly. The taxonomy aims to provide a classification
for and refine the key elements of the conceptual model of SBA monitoring. We will group the elements

External Final Version 1.0, Dated March 16, 2009 13

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

of the monitoring taxonomy in a way to answer the following four important questions: why to monitor?,
who monitors?, what to monitor?, and how to monitor?. Graphical representation of the monitoring
taxonomy is given in Fig. 3.2.

3.2.1 Taxonomy Dimension: Why?

The “Why?” dimension provides a description of the motivation for the monitoring. More precisely,
the monitoring may be characterized by a particular Usage of the monitored information. In general
sense, monitoring is used to reveal critical changes in the application or its environment, which require
its adaptation. This generic purpose may have different forms depending on a particular application,
domain or requirements. In particular, the following purposes of the SBA monitoring may be identified:

• Run-time Correctness Analysis, to check whether the execution of SBA is correct with respect
certain expected specification. This may further include Fault Monitoring, which is used to identify
different application failures, and SLA Compliance necessary to check whether the parameters of
run-time execution correspond to the service-level agreement.

• Diagnosis, where monitoring is used to reveal and even predict various faults in the application
behavior.

• Optimization problem, where monitoring is used to identify a possibility for a system to work more
efficiently. For this purpose, different characteristics of the SBA performance are continuously
monitored.

• Context-awareness, where the monitored information reflects the changes in the application envi-
ronment and provides necessary drivers in order to accommodate to those changes.

• Evolution, where the monitoring aims to observe the histories of application execution and changes
in order to devise better SBA model, better adaptation mechanisms and strategies.

3.2.2 Taxonomy Dimension: Who?

The “Who?” dimension characterizes the monitoring problem from the following points of view. First,
we can characterize it from the point of view of the roles, or Actors, involved into monitoring process. We
remark here also that the same physical entity may have different logical roles. Indeed, the monitoring
results may be consumed by the same stakeholder who defines the monitoring requirements.

Second, the monitoring may be seen from different Perspectives. One can distinguish

• client perspective sees the system from “outside”, aiming to check whether it delivers what is
expected by the customers.

• provider perspective helps to understand whether it is appropriate “inside”, i.e., satisfy the expec-
tations of the system owner.

• third-party perspective takes an independent view on the subject of monitoring.

Note that these two aspects are rather orthogonal: the monitoring requirements may come from either
client- or provider-site; the monitoring mechanisms may be provided together with the system (provider
perspective), installed by the consumers (client perspective), or provided by third parties.

External Final Version 1.0, Dated March 16, 2009 14

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Monitoring

taxonomy

Usage of

monitoring

Monitoring

actors

Monitoring

perspective

Monitoring

subject

Monitoring

aspect

Monitored

property

Monitoring

methodology

Monitoring

architecture

Monitoring

implementation

Requestor

Designer

Provider

Consumer

Client

Provider

Third-party

Functional

Non-functional

Internal

External

Instant

Aggregated

Property type

Specification

Primitives

Notation/formalism

Interleaving

Information

gathering

Timeliness

Execution

Techniques

Simulation

Push mode

Polling mode

Pro-active

Reactive

Post-mortem

Blocking

Non-blocking

Distribution

Functional layer

Invasiveness

Centralized

Distributed

BPM

SC

SI

Cross-layer

With subject

With platform

Separated

Information Source

Mechanisms

Infrastructure

Why?

Who?

What?

How?

SBA Instance

SBA Context

SBA Mechanisms

SBA Class

Run-time

Correctness

Diagnosis

Optimization

Context-awareness

Evolution

Basic

Derived

Fault Monitoring

SLA Compliance

Figure 3.2: Monitoring taxonomy

External Final Version 1.0, Dated March 16, 2009 15

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

3.2.3 Taxonomy Dimension: What?

The “What?” dimension is used to classify the subject of monitoring and the way it is described. In this
way, we consider the following elements of the taxonomy: Monitoring Subject, Monitoring Aspect, and
Monitored Property.

For the Monitoring Subject at the highest level we distinguish

• SBA Instance, corresponding for instance to a particular BPEL process run, an application cus-
tomized to a particular user according to her user profile, a particular configuration of a service
composition, etc;

• SBA Class that define the whole application model, including its business process model, business
requirements and KPIs;

• SBA Context, or that describe the operational and information environment of the application;

• Adaptation and Monitoring Mechanisms themselves, providing a feedback over the way the system
is observed, changed, and managed in order to improve them.

These elements may be further decomposed into the elements with finer granularity, e.g., services, com-
positions, infrastructural elements, traces, locations, etc.

Monitoring Aspect refers to a particular concern of the monitored system relevant for the monitoring
requester. Such aspects may refer, to different dimensions of the SBA quality model (e.g., security,
dependability, usability), to the functional correctness of the system, to Service-Level Agreements, user-
related information and HCI aspects, business-level metrics, KPIs, and requirements.

Monitored Property provides a way to represent these aspects of the monitored system. We further
classify monitored properties according to the type of the properties and to their specification. Property
Types define various characteristics of monitored properties. We distinguish:

• basic or derived;

• functional or non-functional properties;

• internal or external properties;

• instant or aggregated properties.

Basic properties refer to the elementary primitives and events, while derived properties are recursively
defined on top of other properties. Functional properties characterize the function (or behavior) that a
given system is expected to provide. Typical examples of the functional properties are failures, assertions
or behavioral properties, invariants. Non-functional properties define quality characteristics that often
can be measured in a quantitative way. Typical non-functional properties refer to availability, latency,
reliability. Internal properties refer to the characteristics internal to the application. On the contrary,
external properties describe the environment of the application or its context, whatever notion of the
context is exploited. Instant properties refers to the observations performed in a particular moment
of time, while the aggregated properties characterize the whole execution, sets of executions or event
evolution of the system collecting and aggregating historical data.

Specification of Monitored Properties characterizes the languages means used to define the proper-
ties of interest. The relevant elements of such a classification are

• monitoring primitives, i.e., basic building blocks used to define more complex derived proper-
ties. A typical example is the event property, which refers to elementary events mentioned in the
monitored specification.

• notation and formalism used to unambiguously express the required properties.

External Final Version 1.0, Dated March 16, 2009 16

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

• level of abstraction from the implementation and domain-specific details.

• degree of interleaving with the application specification that characterize how tight the relation
between the monitoring specification and application specification is. This may range from cases,
where the monitoring specification is a part of application logic, to the cases, where it is defined
and changed completely separately from the application logic.

3.2.4 Taxonomy Dimension: How?

The way the monitoring approach is delivered may be further classified according to how it is defined
and is supposed to work (Monitoring Methodology), how it is structured (Monitoring Architecture), and
how it is realized (Monitoring Implementation).

Monitoring Methodology defines a set of characteristics of the monitoring process itself. It de-
scribes, in particular,

• Information gathering, i.e., the approach used to collect and if necessary to aggregate data from
various information sources. One can distinguish between polling mode of information gather-
ing, when, e.g., the sources are periodically queried, push mode, when the information gathering
is event-driven, or more sophisticated simulation mode: a certain model of the monitored prop-
erty continuously evolve on the basis of the information and events collected in either of the two
previous modes.

• Timeliness, i.e., the characteristic of the time difference between the moment, when the event
actually takes place, and the moment it is reported by the monitor. In these regards, one can
distinguish reactive monitoring approaches, which aim to reports events as soon as it is possible,
post-mortem approaches, which report information considerably after the events (or even series of
events) take place, and pro-active approaches that try to predict the occurrence of events.

• Execution, i.e., the characteristics of the monitoring process with respect to the system execution
process. One can distinguish between blocking (or synchronous) approaches, where the execution
of the monitoring subject is blocked until all the monitoring measurements are done, and non-
blocking (or asynchronous) approaches, where the monitoring process is performed in parallel
with the execution / evolution of the monitoring subject.

• Monitoring Techniques, i.e., particular solutions exploited in order to provide the above character-
istics of the monitoring process. Data or process mining, database monitoring, automata-theoretic
approaches to define the logics of the monitor model are the examples of such techniques.

Monitoring Architecture defines the way the monitoring framework is structured and decomposed.
The relevant characteristics of this architecture are

• Distribution, i.e., “horizontal” structuring of the monitoring framework. It defines how the com-
ponents of the framework are logically and physically located. We distinguish between centralized
architectures, where the monitoring components are concentrated in a single node, and distributed
architectures, where the monitoring components are distributed across the network, according,
e.g., to the distribution of SBA components.

• Functional SBA Layers involved in the monitoring, i.e., “vertical” structuring of the monitoring
framework. The monitoring framework may be built on top of the single components and el-
ements provided in business process management layer, service composition layer, and service
infrastructure layer, or may involve sets of those components across functional layers (cross-layer
monitoring).

External Final Version 1.0, Dated March 16, 2009 17

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

• Invasiveness, i.e., characteristic of the monitoring framework from the perspective of how tightly it
is integrated with the monitoring subject. We distinguish between the cases, when the monitoring
facilities are integrated with the subject, the cases, when the monitoring facilities are integrated
with the platform, where the subject operates, and the cases, when the monitoring facilities are
completely separated and independent from the subject of monitoring.

Monitoring Implementation defines the way the monitoring methodology and architecture are re-
alized. It is characterized by the Information Sources, the Realization Mechanisms, and the Monitoring
Infrastructure.

• Information Sources represent various components and entities that provide all the data, which is
used by the monitor in order to evaluate the monitored properties. These sources may range from
rather basic elements (such as messages, log files, or timers), to more complex monitors based
on top of them (sensors, probes), to hierarchically complex monitoring systems, thus providing
recursive and reusable monitoring solutions. In other words, one monitor may re-use another
monitor as a source if information, where the information are the events reported by the latter.

• Realization Mechanisms define the tools and facilities, necessary to enable a given monitoring
methodology, to implement the monitoring techniques, and to build the corresponding monitoring
architecture. As it follows from this generic definition, realization mechanisms strongly depend
on a given monitoring problem and on the approach used for that. Typical examples include,
in particular, aspect-oriented programming techniques that enable “injection” of monitors into
the application or to the platform code; automatic generators of monitoring programs that are
used to device executable monitors from high-level monitoring specifications; dynamic monitoring
solutions, which enable on-the-fly modifications of the way the monitoring of a given subject is
performed, e.g., by changing the set of monitored properties or their priorities.

• Monitoring Infrastructure refers to the tools and facilities that provides a basis for the monitoring
framework. It includes services and APIs for relating to specific information sources, for accessing
and managing other monitors, containers and execution platforms to deploy and execute monitor-
ing code, etc. As in the case of realization mechanisms, these functionalities may be very specific
for various monitoring approaches.

3.3 Monitoring in Relevant Areas and Domains

The presented conceptual model and taxonomy of SBA monitoring is rather general and abstract; it also
covers different possible aspects of the monitoring problem and their arbitrary combinations. When,
however, seen from the perspective of a particular functional SBA layer (BPM, SC, SI), particular prob-
lem domain (SBA evolution, correctness, optimization), or even application area, only certain elements
of the taxonomy are covered with particular interpretation and usage of those elements. Below we will
show how the generic monitoring taxonomy is instantiated in different function SBA layer, and even
with respect to different monitoring problems. For this purpose, we present the projection of the mon-
itoring taxonomy on a particular domain in a tabular form. The table that captures the key elements of
the taxonomy, while the following text aims to clarify and explain that domain and the projection.

3.3.1 Monitoring in Business Process Management

Monitoring in Business Process Management refers to the process of collecting, aggregating, analyzing,
and presenting the information regarding the execution and evolution of business process instances. The
observed information may refer both to the functional aspects of the process execution and to its non-
functional characteristics. Depending on timing of the evaluating this information one can distinguish
Business Activity Monitoring, where near real time information is presented, and post-mortem process

External Final Version 1.0, Dated March 16, 2009 18

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

analysis (including also Business Intelligence solutions), where the collected and provided information
refers to the sets of the business process executions.

Business Activity Monitoring

Monitoring in Business Process Management (BPM) is called Business Activity Monitoring (BAM) [51].
The activities monitored by BAM are instances of business processes, realized using BPM technologies
such as BPEL, or by integrating heterogeneous information systems. The goal of BAM is to find trends
of execution (e.g., bottlenecks, recurring conditions that lead to exceptions and failures), calculate Key
Performance Indicators (KPIs), provide an overview of the overall state of the running business processes
using dashboards that (visually) aggregate the available information to support, for instance, decision
making (e.g. allocate more resources, change QoS parameters, etc), and proactively alert the business
managers for corrective actions if KPIs are not met, business rules are violated, or exceptions occur.
The output of BAM may result in the adaptation of business process instances (e.g., changes applied
to the structure of the workflow run by a particular instance) as corrective actions when the monitored
activities do not perform as expected. Unlike post-mortem process analysis (i.e. analysis of the logs of
processes that are terminated possibly with a failure), BAM technologies support reacting to changes and
violations in the business environment more promptly, and facilitate the applying of corrective actions to
the business process instances while they are still alive.

BAM is as a run-time, event-driven extension of Business Intelligence[11, 93]. The term Business
Intelligence denotes a broad category of applications and technologies for gathering, storing, analyzing,
and providing access to data to help enterprise users make better business decisions. The emphasis of
Business Intelligence is on predicting future behavior such as forecasting, scenario planning, optimiza-
tion, which are derived on the basis of analytical processing and inference. At the operational level, BAM
provides (near-) real-time monitoring by collecting and processing low-level events (e.g. system events
such as internal errors, completion of tasks, etc) generated during the execution of the instances are col-
lected from a diversity of sources such as (but not limited to) process engines, ERP systems, databases,
legacy applications. Once collected, the events are composed and correlated using Complex Event Pro-
cessing (CEP) [115] technologies. Low-level events are analyzed and aggregating into high-level events
(also known as business events such as the fulfillment and violation of KPIs, failure of sub-systems, etc).
Low- and high-level events can also be correlated with historical data and trends resulting from Business
Intelligence to achieve a holistic view of business activities [109], which supports decision-making at
operational and strategic level [116].

BAM solutions generally rely on Enterprise Service Bus facilities for the collection of low-level
events, and employ dashboards to graphically visualize high-level in (near) real-time as gauges and
graphs (pie-charts, histograms, etc) to provide an overlook of the current state of the execution of the
various activities and the measurement of the KPIs, and to allow for prompt response to undesirable
situations (e.g. processes under-performing, KPI not met).

Post-mortem process analysis

Post-mortem process analysis, also called off-line process monitoring, is a complementary way to per-
form business process monitoring. Performed after execution, the objective is not to be reactive when
exceptions occurs, but to analyse in a more deep and global way the behaviour of past instances. The
result of analysis is an implicit knowledge about the business process, useful for making diagnosis about
process implementation, behaviour or usage. In particular, the following usages are usually identified:

• to reconstruct the current model of the underlying business process as it is used in production
environment (discovery). This information may be used for evolution purposes, that is, to see how
the current business process model evolves, to obtain additional information about the process
(e.g., performance, decisions, etc), or to identify certain trends.

External Final Version 1.0, Dated March 16, 2009 19

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.1: Business Activity Monitoring
Dimension Concepts Description
Why Usage Business Activity Monitoring (BAM) collects, aggregates, analyses, and

presents near real time information about running activities inter- and intra-
organizations and involving partners and customers. BAM may trigger the
adaptation of business process instances as corrective action if the functional
and non-functional requirements for the business processes change, and those
changes must also be applied to the business processes currently running.

Who Actors BAM collects low-level events from the human- and system- actors involved
in the execution of the monitored business process instances. The information,
aggregated and refined in the shape of high-level events, is provided to the
organization’s management responsible with the supervision of the business
process, and responsible for taking corrective actions.

What Subject BAM refers to the business processes (i.e., BPEL, workflows) realized using
Business Process Management (BPM) software systems, such as BPEL en-
gines, or obtained via point-to-point integration of heterogeneous systems in
the organizations. The subject of monitoring is SBA instances (running in-
stances of business processes) or series of activities and tasks spanning mul-
tiple systems and applications, possibly requiring human involvement to be
carried out.

Aspect BAM focus on functional and non-functional aspects of the execution of busi-
ness process instances, namely the performance (in terms of fulfillment of
pre-defined KPIs) and the detection of exceptions and faults.

Property The monitoring properties that express the correct execution of business pro-
cess instances are expressed in terms of KPIs. Run-time exceptions and faults
of business process instances (e.g. a BPEL process terminates for an internal
error) are also monitored.

How Methodology Low-level events are collected in both push- and pull- manner. The human-
and system- actors responsible to carry out parts of the processes au-
tonomously push (generate and deliver) low-level events such as reporting the
completion of a task and reaching a particular state in the business process;
however, the BAM infrastructure can also pull (poll) low-level events from the
actors (e.g. inquire about the progress achieved in executing a certain task).
The aggregation and analysis of low-level events and the presentation of high-
level events is pro-active. High-level events are displayed in (near) real-time
on dashboards comprising gauges and graphs (pie-charts, histograms, etc) that
use color conventions to simplify the detection of problems (e.g. green light
if the monitored instances meet the KPIs, yellow light if the performances
border the tolerance thresholds, red light if the KPIs are violated).

Architecture BAM architectures usually rely on the facilities provided by an Enterprise
Service Bus for the collection of low-level events. High-level events are pro-
duced by Complex Event Processing (CEP) systems through the aggregation
and analysis of low-level events. The presentation of the high-level events
can occur in parallel on multiple dashboards connected to the CEP system
with client-server approaches. The enactment of adaptation of business pro-
cess instances that need corrective actions is delegated to the BPM facilities
in place.

Implementation The implementation of BAM facilities is usually loosely coupled with the
implementation of the business processes in BPM systems thanks to the ab-
straction provided by the events and the Enterprise Service Bus.

• to check the correspondence between the actual model and the expected one, which may be used
to trigger a need for the process model re-design.

External Final Version 1.0, Dated March 16, 2009 20

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.2: Post-mortem process analysis
Dimension Concepts Description
Why Usage It is a complementary way to perform BAM. It is used after the execution

of the process to analyze in details the behavior of the past instances. The
results would be useful for changing and predicting new behavior usage of
the process, its design and even its implementation.

Who Actors The analysis tool collects data and events from the system. The collected
information are refined by human and presented to an expert or responsible of
the business process in order to make the decision for the proper changes to
adopt.

What Subject It is focused on monitoring a set of SBA past business process instances. This
instances are represented by a (complex) events log, considered as low-level
events.

Aspect The data collected from logs after the execution of business process instances
can dealt with functional or non functional aspects (i.e., to fulfill the security
requirements, to improve the QoS).

Property A variant of monitoring properties are handled during the post-mortem anal-
ysis from internal to external properties of the behavior expressed for both
functional and non functional characteristics, in order to predict new correct
behaviors.

How Methodology The information is collected in both push and pull way. The human and the
system provide the event log (push mode) for reporting the past instances of
the process, where the event are persistent and are not the on-the-fly events.
The monitoring system may also provide to the analyzer low information in-
dependently of the events by reporting the past instances referring to periods
of time (pull mode). The post-mortem analysis can be pro-active to predict
the future BP behaviors, and their usage using data mining techniques.

Architecture The architecture of the framework is completely detached from the applica-
tion, it is distributed. The log information are collected from different sources,
the BPM system or SOAP messages.

Implementation The implementation of post-mortem analysis may be integrated into the cor-
responding BPM system.

Also due to these goals, the analysis can be useful both from the client and the provider perspective.
As an example of the former, one can try to find what is the BP external behaviour (also called business
protocol), i.e. what is the set of conversations really happened with consumers. As an example of the
latter, one can be used to analyse internal workflow, extract rare or frequent event sequences, abnormal
terminations or mine satisfied constraints.

The monitoring subject is a set of SBA past business process instances. This instances are represented
by a (complex) events log. In other words each log is a sequence of events, corresponding to a particular
SBA instance and produced by BPM-system or by components themselves. As it follows from the
problem, here the properties are not defined explicitly. Instead, a goal is to monitor logs in order to
report the reconstructed process model. Such a model is usually represented using Petri nets formalism.

Even if response time has to be acceptable for monitoring requester, it is not as much crucial as in
on-line monitoring context. Moreover, the events are persistent and are not the on-the-fly events. As a
consequence, more complex tasks can be performed, and advanced data-mining technics can be used.
Data mining (in this context, we talk about log mining) aims at extracting models or patterns from large
and heterogeneous data repository. As sources of information different approaches use either logs pro-
duces by the BPM system, where the process is executed, and/or the logs of SOAP messages when the
Web service-based business processes are dealt with. In this way, the architecture of the framework is
completely detached from the application, while its implementation may be integrated into the corre-
sponding BPM system. Concerning models, one can cite process mining which consist in retrieving the
workflow which may produce input logs. Other model mining examples are classification and clustering:

External Final Version 1.0, Dated March 16, 2009 21

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

the first computes classifiers able to predict future behaviours, while the second extracts natural groups
of similar logs, e.g. to detect typical classes of BP usage. For the patterns, log mining takes benefit from
sequence or graph mining techniques. Let us notice two important and hard sub-problems that must
be considered in the special context of BP log mining. The first one is the (potential) difficulty of log
retrieval, i.e. find correlations between events to decide which events are part of the same SBA instance.
The second is the need to take into account noise and uncertainty, since some instances can correspond
to failures or consumer aborts not always clearly notified in logs.

3.3.2 Monitoring in Service-Oriented Architectures

Service compositions provide a realization of the business process models defined in the BPM functional
SBA layer by integrating a set of services. Similarly to the monitoring in BPM, the composition monitor-
ing may target the analysis of the composition correctness or evaluation of its characteristics. Differently
from above, however, this forms of monitoring usually target more technical aspects of the application
realization or may refer to checking, whether the composition is compliant with regards to the business
process model.

Monitoring the correctness of service compositions

The motivation of the run-time correctness analysis is dictated by the fact that the component services
participating to the composition are not under the control of the composition designer. In these circum-
stances, the service compositions are being designed under certain composition constraints (or chore-
ographic assumptions [99]), i.e., the assumptions, under which the component services participate in
the composition. These assumptions instantiate the monitored properties that should be observed by the
monitor. Note that in this way monitoring correctness of composition may be used for the purpose of
business process monitoring: the composition execution is checked for the conformance to the business
process model; the process performance metrics are checked to comply with the corresponding KPIs.

The monitoring properties may express both the functional and non-functional characteristics. In
the former case, they may have the form of pre-/post-conditions over a particular activity within the
composition (such as a service call), temporal properties over the execution of the composition instance
or series of instances, or conformance of the composition execution to the composition specification
(e.g., domain monitors, [99]). In the latter case the properties focus on the characteristics that may
be measured in quantitative way, such as time or statistical information over the occurrence of events.
Furthermore, the properties may express the characteristics internal to the composition (i.e., state of
the instance, sending a particular message) or external (i.e., information available from auxiliary web
services and data sources [19]); they may be instant (e.g., measured in a particular execution point, such
as assertions) or aggregated (across the whole execution of an instance or a series of instances).

In order to express various monitored properties, specific monitoring specification languages are
usually provided, such as WSCoL [19, 18], RTML [15], EC-Assertion [87]. These languages rely on a
variety of formalisms including linear temporal logic, event calculus, first-order logic, algebraic speci-
fication [25]. Commonly to this kind of monitoring, the advanced monitored properties are recursively
derived from primitive properties and events. Typically such primitive properties refer to composition
states, failures and exceptions, messages and message events, predicates over special variables, times-
tamps, etc. Advanced properties are defined using language-specific predicates, operators, and functions.
Various approaches express properties at different level of abstraction, from domain-level properties to
implementation-level properties. Usually monitoring specification is separated from the composition
code in order to enable separation of concerns.

The commonly used sources of information are the process state data predicates on process states
collected through appropriate probes placed throughout the process; SOAP message data related to the
events or contents of the message that the service is sending / receiving; external data that does not belong

External Final Version 1.0, Dated March 16, 2009 22

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.3: Monitoring the correctness of service compositions
Dimension Concepts Description
Why Usage Monitoring of Web service compositions is mainly used as the means for run-

time correctness analysis: it is often refers to checking at run-time whether
certain predefined properties are satisfied when the composition is executed.
The events that are reported by the monitors in this case correspond to the vi-
olation of the monitored properties. Such violations may be further exploited
in order to trigger the requirements for the service composition adaptation, ei-
ther at the level of the composition instance or at the level of the composition
structure.

Who Actors Run-time correctness analysis addresses the monitoring from both the compo-
sition provider perspective, when the monitoring aims to analyse the proper-
ties of the composition as a whole, and the client perspective, when the goal is
to check certain properties of the constituent services. In either case, the com-
position provider plays the roles of designer (by specifying the choreographic
assumptions), of requester (by instantiating the monitoring process), provider
(by deploying and running the monitors), and consumer (making decisions
about SBA adaptation either manually or automatically).

What Subject Such monitoring concentrates on the monitoring of the single instances of ser-
vice compositions (i.e., SBA instances), as well as of the sets of instances or
classes of compositions (i.e., SBA class), and on the monitoring of constituent
services.

Aspect Normally, the monitoring approaches focus on behavioral aspects of the com-
position execution in general (both functional and non-functional, [99, 19,
87]), or on some particular aspect, such as security [22].

Property The corresponding monitoring properties that express composition correct-
ness constraints express both the functional and non-functional characteris-
tics. Various notations and tools allow for basic and derived, internal and
external, instant and aggregated properties.

How Methodology The information is usually collected in push mode, when the properties
are evaluated upon certain events; advanced properties are updated by re-
evaluation upon receiving such events. The run-time correctness analysis is
often reactive; it aims to reports the violation as soon as they occur. Few
approaches use pro-active composition monitoring where the current infor-
mation is used to predict the potential violations, using such monitoring tech-
niques as online testing [72] or verification [78].

Architecture The monitoring architecture is usually centralized around the orchestrated ser-
vice composition in order to provide a possibility to immediately react to those
violations [17]. In other cases, the monitoring architecture is integrated with
the execution platform [87, 15, 25].

Implementation The implementation of the run-time correctness monitoring approaches usu-
ally relies on the infrastructure provided by the execution platform and mid-
dleware, such as a BPEL execution engine. Typically, the monitoring ap-
proaches are realized using aspect-oriented mechanisms or application weav-
ing in order to integrate the framework into the application or platform code,
and model-driven code generation approaches that provide a way to extract
monitor code from the high-level monitoring specifications.

to the monitored system and should be collected externally, e.g., by calling auxiliary services; low-level
events specific to a particular implementation of the execution engine or infrastructure.

Diagnosis in service compositions

Diagnosis in service compositions aims to observe various failures and exceptions across the composed
services (i.e., basic monitored properties) and to report the diagnosis hypothesis describing the cause of

External Final Version 1.0, Dated March 16, 2009 23

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.4: Diagnosis in service compositions
Dimension Concepts Description
Why Usage The goal of diagnosis is to monitor various composition failures in order to

reveal the faults causing such failures [9]. In this way, effective recovery
adaptation strategies may be provided and adopted.

Who Actors In the diagnosis, the monitoring actors and perspectives are highly interleaved:
the monitoring is defined, performed, and exploited both by service providers
(local diagnosers) and by the composition provider (global diagnoser).

What Subject The subject of diagnosis is the service composition instance. The information
is, however, also gathered from the constituent services.

Aspect The focus of the diagnosis in service composition is on the various application
faults.

Property The observed properties refer to the application, composition, and infrastruc-
ture exceptions, and the causing failures.

How Methodology The monitored information is collected in push mode; the diagnosis starts im-
mediately when the event is detected blocking the execution of the application
until the hypothesis is provided.

Architecture In order to perform the diagnosis across service composition, the distributed
architecture is adopted, where the local diagnosers are associated with the
component services and the information is passed to and from the central
global diagnoser.

Implementation For the purpose of the diagnosis, the implementation of thew diagnosis frame-
work is highly integrated with the code of distributed services, as well as with
the execution platform that should provide the global diagnosis capabilities.

the problem and the affected services. Consequently, the monitored properties are expressed in terms of
exceptions specific to the service composition implementation notation. The monitored exceptions and
the reported diagnosis hypothesis remain in the boundaries of the same composition instance (monitoring
subject).

Monitoring for composition optimization

Monitoring for optimization relies on the two key elements: (i) up-to-date knowledge about quality pa-
rameters of the participating services and (ii) a measure of the sub-optimality of the composition. The
latter is measure with the help of so called utility function, which aggregates weighted measurements
of single quality properties of the involved services (e.g., cost, reliability, availability, performance,
reputation) to calculate the composition optimality. While the former properties usually refer to SLA
specifications of the involved services, the latter is usually pre-defined; when the current value of this
function is non-optimal the monitoring framework may report such a degrade as a monitoring event.

Monitoring of SLA compliance

A set of properties controlled by the monitored SLA usually refer to variety of service resource and
business metrics, such as quality of service characteristics (performance, availability, reliability) cost,
and so on. These requirements are negotiated and agreed resulting in electronic contract, usually referred
to as Service Level Agreement (SLA). SLA monitoring is, therefore, one of the main usages of the
monitoring of Web services. In case of SLA violations, various adaptation activities may be applied.
These actions range from simple termination of the service use on the requester side to renegotiation of
the SLA properties to complex management and reconfiguration activities on the provider side.

The languages for specifying service requirements may also include the instructions over the appli-
cation of requirements, e.g., duration of a contract or conditions under which the requirement should
be evaluated. There exist a wide range of standard and non-standard languages and their extensions for

External Final Version 1.0, Dated March 16, 2009 24

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.5: Monitoring for composition optimization
Dimension Concepts Description
Why Usage Monitoring for composition optimization refers to continuous monitoring of

the quality parameters of the services involved in the composition in order
to detect changes that are critical for the adaptation to make more optimal
decision over the composition configuration.

Who Actors Given the usage of this form of monitoring, it is performed from the provider
perspective, who is in charge of designing and realizing the monitoring frame-
work, as well as consuming the monitoring results.

What Subject The monitoring process aims to observe and continuously evaluate the value
of a certain utility function, which characterizes the optimality of the compo-
sition, over a series of the composition execution. In other words, the subject
of monitoring is the SBA class.

Aspect The monitoring framework may target the measurement of the composition
optimality with respect to a particular metric or with respect to a set of param-
eters.

Property Various quality characteristics of the involved services represent basic mon-
itored properties, while an utility function used to calculate the composition
optimality represents the derived monitoring property.

How Methodology composition optimization monitoring usually adopts the polling mode of the
information gathering: the queries about the quality parameters are performed
either on purpose (e.g., before making a service request) or periodically. The
execution may be both non-blocking and blocking (e.g., the service request is
not performed until the optimality is defined and the best suitable service is
chosen).

Architecture For the realization of the monitoring framework the approaches usually define
a centralized architecture that recursively relies on the QoS monitors for the
constituent services.

Implementation Various techniques are used for the defining and computing the utility func-
tions, such as Markov Decision Process [71].

specifying service contracts [5, 26, 79, 85].

3.3.3 User and HCI Aspects in Monitoring

A wide class of SBAs aims to deal with the end user, providing support for her activities, tasks, and oper-
ations. Typical examples of such systems amounts to mobile applications that are installed and operated
on top of mobile device (mobile phone, PDA, etc.). For such systems the context plays an important
role of their functionality and logic. Here the context encompasses various aspects such as computing
environment (e.g. available processors, network connectivity and capacity, input/output devices), user
environment (e.g. location, collection of nearby people) and physical environment (e.g. lighting, noise
level) [48]. Such context is very dynamic; the occurring changes may affect the way SBA is working. In
order to adjust a system with respect to the changes in the user context and in the activities the user per-
forms, it is necessary be able to detect those changes and identify where the system needs to be adapted.
This demands continuous monitoring of the system, the context, and the interaction of the users with the
system. Therefore, the usage of the monitoring may amount to context monitoring in order to support
context-based system adaptation and monitoring user-computer interactions in order to support Human
Computer Interaction (HCI) based adaptation.

HCI monitoring

Monitoring of user’s computer interaction aims to reason about the sequence of actions taken by the
user in the system and helps to better understand the future action of the user [62, 57]. This process

External Final Version 1.0, Dated March 16, 2009 25

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.6: Monitoring of SLA compliance
Dimension Concepts Description
Why Usage Monitoring of SLA compliance for Web services aims to check whether the

service functionality matches the expectations of the requester. The expec-
tations are expressed in a form of a formal contract (SLA), which regulates
the expected quality of provided service. When the agreement violation is
detected, the interested parties are reported and possible adaptation activities
may be fired.

Who Actors Given the goals of the monitoring problem, monitoring of Web services may
take all the perspectives: it is performed from the client perspective in order to
ensure that the expectations are met; from the provider perspective in order to
see whether the resources are allocated correctly and optimally with respect to
the current contracts and to ensure the contracts. The monitoring requirements
are defined by the service requester, while the monitoring functionalities are
delivered by the service provider, by the requester and/or by a third party, who
performs auditing of the contracts on behalf of all the contractual bodies.

What Subject Depending on the type of the contract, the monitoring subject may refer to a
particular service execution or to a series of executions (e.g., within a given
period).

Aspect Monitoring of SLA compliance may refer to a variety of the QoS metrics and
properties, as described in the contract.

Property The monitored properties for SLA compliance monitoring refer to various ser-
vice characteristics. They may represent basic properties or measured items,
as well as complex properties derived from measured items using specific
functions that aggregate the measurements (total amount, number of time av-
erage throughput, etc).

How Methodology A common approach to the Web service monitoring is to perform timely eval-
uation of the relevant characteristics through a series of the service invoca-
tions. The evaluation is performed on the basis of simple measurements at
the level of service infrastructure; the resulting values are aggregated and
stored by the monitoring framework. The advanced properties are evaluated
by querying the current values of these measurements (i.e., polling mode). It
is also possible that the violation events are reported to the interested parties
immediately when the evaluation occurs (push mode).

Architecture The realization of the Web service monitoring framework relies either on a
proxy architecture, which is completely external to the monitored services,
or on a instrumented service middleware platform that provides the special
monitoring facilities and APIs for performing various measurements also on
the provider side.

Implementation The implementation depends on the underlying architecture. In case of the
proxy architecture the measurements are done via intercepting the SOAP mes-
sages exchanged by the service. In case of instrumented middleware platform
the measurements are performed via the low-level operations and probes pro-
vided by the middleware itself.

can be used to (i) adapt the system that may assist the user’s future action by making inference of the
user intentions [86] and (ii) adapt the monitoring process. As an example of case (i), consider, user A
accessing a web based application that helps to compare prices of different products. If the application
monitors that A is always comparing prices of the products only from company X and Y, ignoring all
other companies, then the application may infer that A is interested only in the products of X and Y,
and thereby the application can show only product information from companies X and Y to A, and hide
product information from other companies. In the case of (ii), consider, for example, a user visiting a
web site that shows stock information of different companies and a monitor using a set of rules to monitor
that the user is only visiting the site (i.e. user is neither buying nor selling stocks). But if the user starts

External Final Version 1.0, Dated March 16, 2009 26

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

buying or selling stocks the monitor needs to use some additional rules to monitor the user’s interaction
with the site. HCI monitoring aims to observe a particular aspect of the SBA executions: interactions
between the user and the application.

HCI monitoring has been exploited to satisfy different user goals. For example, HCI monitoring
helps the system developers to design their system in such a way that the system may adapt itself based
on the interaction of the user with the system and assist the user to accomplish his task more conveniently
[57, 86, 12]. Also this technique can be applied to continuous improvement of interactive learning
environment, where continuous feedback from the learner plays an important role. In such environments
HCI monitoring may help to identify indicators that can be used to generate feedback and their meaning
in different contexts [62].

This approach analyzes the user interactions, compares them with the expected model of the user
activities and reports the corresponding feedback [12, 86, 57] (i.e., monitored events). This requires
specifying hierarchical and sequential structure of tasks that should be performed to accomplish user’s
goal. This specification is known as task model. Task models are specified either in some description
language that provides formal syntax and semantics for creating task models [12], or as a list of keywords
[86, 84]. In the later approach, keywords are derived from user interactions (e.g. keyboard input, user
email, web pages read) and then a list of keywords is produced by determining the relative frequency
of the original keywords. As an information source, HCI monitoring receives and processes user event
streams from the system being monitored. User event stream is produced by users interacting with the
system where the system may be instrumented to generate the required events [12, 86]. These events can
be low level system events (e.g. a mouse click or move) or higher level application events (e.g. selection
of a menu item) [12, 73]. It is recommended to monitor event streams from more than one event source
wherever possible to produce more accurate inference of user intentions [86].

Typically, either client server architecture or repository architecture model is applied to monitor user
computer interaction. In client server architecture model, the client provides the front end that is accessed
by the user while the client sends the events produced due to user interaction to the server. The server
works as the task monitor that receives the events and compares the events with available task models
[59, 12]. In repository model, gathered events are stored in a shared repository and then dispatched to
interested monitoring agents based on some predefined scheme [73, 86].

Context monitoring

In context-based monitoring, a set of rules defining the properties that should be monitored to detect
changes of the context are specified [111, 103, 104]. Some formal [103, 104] or semi formal [111]
languages are used to specify the properties to be monitored.

The monitoring techniques in this field facilitate a wide range of stakeholders for different purposes:
they are exploited to help the application developers to design the system that will adapt the user interface
based on the context changes [70, 63, 33, 105, 53, 16]; they may help the service provider to better
understand the user’s required quality of service and improve the delivered QoS [117, 13].

Context information can be measured at different level of abstractions, for example low-level context
information can be directly captured from the environment using sensors, input devices, and high level
context information can be inferred from low level context information and other information sources
e.g. browsing user profile [63, 110, 13, 3].

System run-time events (i.e. context information) are matched against the specified properties to
detect a change in the context. Run-time events or context information are obtained either from sensors
[94], by polling system parameters (e.g. battery level in mobile phone or available bandwidth) [23, 24]
or user input [94]. Given the distributed nature of context-aware applications, context-based monitoring
is mostly implemented as distributed architecture with middleware support [94, 23, 24, 28]. In this
setting, a component in the middleware acts as a coordinator that collects context information from
distributed sources and forwards the context information to the specific application/monitor that performs

External Final Version 1.0, Dated March 16, 2009 27

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.7: HCI Monitoring
Dimension Concepts Description
Why Usage HCI monitoring is applied to collect user interaction information in a sys-

tem at the runtime and analyze the collected information to predict the future
actions that can be taken by the user. This process enables a system to rec-
ognize users’ tasks and thereby to co-operate the user by adapting the system
according to the users’ focus of attention and workload.

Who Actors HCI monitoring is mainly performed from i) the system developers perspec-
tive, who use the observations from this process to design their system in such
a way that the system can adapt itself depending on the users’ needs, ii) the
service providers perspective, who use the observations from this process to
tune the system at runtime to improve the quality of the service.

What Subject This process monitors the tasks (i.e. actions) taken by the use in the system.
User tasks are specified in a model, known as task model, which is written in
a formal or semi-formal task descriptions language.

Aspect Task model describes the user tasks and patterns of events at multiple levels
of detail. For example tasks could be specified at much higher levels (e.g.,
typing a file) or very low levels (e.g. move the mouse) of detail.

Property Task model describes the sequence of task that the user should perform in
the system through the interfaces offered by the system. For example, a
task sequence to delete a word could be, (MOVE-CURSOR,CLICK-MOUSE-
BUTTON, DOUBLE-CLICK-MOUSE-BUTTON,SHIFT-CLICK-MOUSE-
BUTTON, and HIT-DELETE-KEY)

How Methodology User event streams are gathered at the runtime from different sources and an-
alyzed to infer user intensions. Various techniques are applied to analyze user
event streams, for example, i) user events stream is compared to the specified
task model, ii) a probability distribution over user tasks is inferred by applying
Bayesian networks.

Architecture HCI monitoring applies either i) client server architecture where the client
provides front end for user interactions and sends the events to the back end
server that analyses the task model against the events; or ii) central repository
architecture where events are stored in a shared repository and an appropriate
monitoring agent analyses the task model using the events.

Implementation Depending on the underlying architecture different implementation mecha-
nism is applied. In case of client server architecture, the front end (client)
is often implemented as plugins to the system (e.g. application software like
email client, or internet browser) for which human computer interaction is
monitored.

the reasoning using context information.

3.3.4 Monitoring in Grid Computing

The purpose of Grid monitoring is directed towards two distinct areas: infrastructure level and applica-
tion level monitoring. Infrastructure level monitoring is the main target of Grid monitoring and focuses
on observing and recording the state of shared resources. Application level monitors concentrate on
tracking the state of user-level applications being executed on various geographically-distributed Grid
sites. Grid users need the support of application level monitors for adapting the monitoring system to
the dynamic placement of those tasks which the user needs feedback from. The characteristics of each
of these levels of monitoring differs substantially and therefore are discussed separately in the following
sections.

External Final Version 1.0, Dated March 16, 2009 28

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.8: Context Monitoring
Dimension Concepts Description
Why Usage Context monitoring is the process that continuously analyzes contextual infor-

mation of a system, where contextual information includes any information
that may affect the behaviour of the system and/or the interaction of a user
with the system. In general context of a system covers a wide range of infor-
mation including user location, time of the day, nearby people and devices,
temperature, light or noise. The outcome of the context monitoring process is
used to adapt the system behaviour at different levels, such as notifying user
displays or modifying data or controlling actuators.

Who Actors Context monitoring is mainly performed from i) the system developers per-
spective, who use the observations from this process to design their system in
such a way that the system can adapt itself depending on the changes in the
system context, ii) the service providers perspective, who use the observations
from this process to tune the system at runtime to improve the quality of the
service in different context.

What Subject This monitoring process monitors the context of a system, where the context
of a system can be categorized as i) external or physical context that can be
measured by hardware sensors, i.e. location, light, sound, movement, touch,
temperature, air pressure etc. ii) internal or logical context that is mostly
identified by the user interactions with the system, e.g. the user’s goals, tasks,
work context, business processes, the user’s emotional state etc.

Aspect Context monitoring is applied to monitor a wide range of system requirements
in different context, including i) Maintainability, i.e. the system should be
able to easily modify or adapt to changing environments, ii) Portability, i.e.
the system should be easily run under different computing systems.

Property Context information is structured in a machine readable form, which is known
as context model. A context model describes a context, in terms of various
attributes e.g. context category like temperature, speed, context value i.e. the
raw data gathered by the sensor, time stamp i.e. when the context was sensed,
and context source. Context properties are logical rules, i.e. a set of conditions
defined over context attributes in context models.

How Methodology Context information is gathered either from the sensors or from the users and
this information is matched against the specified properties to detect a change
in the context

Architecture Depending on the architecture of the context aware application, context mon-
itoring process can assume three types of architecture, i) Direct sensor access:
where monitor collects context information directly from hardware sensors.
ii) Middleware based: in this approach a component acts as a middleware to
collect context information from distributed sources. This is the most dom-
inant architecture in context monitoring process. iii) Context server: this
approach extends the middleware approach where context server stores the
collected context information to allow concurrent multiple access to the infor-
mation

Implementation Collection and processing of context information can be implemented in dif-
ferent ways. For example, physical or hardware sensors can be used to capture
almost any physical data. Virtual sensors collect context data from software,
e.g. location of a user can be determined by browsing the electronic calendar
of the user. Logical sensors apply logical reasoning on physical sensor and
virtual sensor data to infer context information.

Monitoring Grid infrastructure

Grid infrastructure monitoring from its very beginning has been focused on collecting generic attributes
of its participating resources. These attributes are often captured and expressed in specific information

External Final Version 1.0, Dated March 16, 2009 29

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.9: Monitoring Grid infrastructures
Dimension Concepts Description
Why Usage Monitoring grid infrastructure offers information which helps the optimiza-

tion of the usage grid sites and the services they offer. For example the tasks
of grid workflows can be mapped to different sites based on data collected
from the infrastructure monitoring. The other main use of the grid infrastruc-
ture monitoring is the evaluation of the service quality of the different grid
sites. In this case the reliability of a grid site is calculated on historical data
collected by the monitor.

Who Actors Infrastructure monitoring in the grid uses the provider perspective because
the information offered is restricted by grid site owners and the maintainers of
the infrastructure monitoring system. The information is offered on multiple
levels. Grid sites monitor themselves, and provide the results to for higher
level grid infrastructure monitors. These monitors act as consumers while
aggregating the individual site results, but they also provide the aggregated
view for even higher level services. Infrastructure monitoring is frequently
done without any specific requester because the monitored data is necessary
at least for the archiver which supports the site evaluation.

What Subject The grid fabric is monitored during infrastructure monitoring. In an SBA
this fabric acts as the context, therefore this monitoring area mainly observes
the service environment where the SBAs services can be placed or the differ-
ent workflows can be mapped. However in certain Virtual Organization level
monitoring systems might monitor the health of specific applications resulting
the monitoring of the SBA class of that application.

Aspect Behavior, health, availability and reliability of the different services offered
by the grid sites.

Property The properties of the SBA in grid are always monitored in specific time in-
stances, therefore the monitored data is usually time-stamped. These instan-
taneous properties are aggregated later on or in case of reliability measures of
the given sites they can also be derived.

How Methodology Lower level monitors collect the information by polling, meanwhile aggregat-
ing these results usually means the lower level monitor pushes the collected
data to higher levels, as a result grid or VO level monitoring systems present
the monitored information with latencies.

Architecture The monitoring system is distributed throughout all the grid sites, and aggre-
gation is done on specialized nodes which are usually configured to host only
the monitoring data. Grid monitoring is focusing on the service infrastructure
level only.

Implementation Basic information sources are probes, however in several systems the monitor-
ing could be offered by the monitored system itself, and therefore the monitor
could receive messages on changes in the monitored properties.

model which is a formal description of the monitored entities of a Grid. Typically the information model
is expressed in UML, like the GLUE Schema v1.3 [4] (the most frequently used model in the current grid
deployments), the OGF reference model (currently in draft) or the Distributed Management Task Force’s
(DMTF’s) Common Information Model (CIM) [50]. In the actual information exchanges between mon-
itoring information producers (e.g., monitoring providers) and consumers an XML representation of the
information model is often used.

The data collected by the infrastructure level monitoring can also be archived for further use. In this
case the archives can be used to calculate the reliability of the Grid resources. This data is frequently
used by system administrators to monitor their sites compliance with the level of service offered.

Another main use of archived data from infrastructure level monitoring is in the decision support
for higher-level Grid services such as Grid brokers or meta-schedulers. In order for these higher-level
services to make the best decisions the infrastructure-level monitoring system of a Grid should allow

External Final Version 1.0, Dated March 16, 2009 30

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

access to the necessary information required to make each decision. For example in case of schedulers,
for them to make a decision about where to send a users job execution request the monitoring system
should present the state of the whole Grid as accurately as possible. Monitors supporting Grid schedulers
are often hierarchical with higher level monitors aggregating the information coming from lower levels.
This aggregation is made in a ‘pull’ fashion when the lower level monitors are queried only in cases the
higher level monitor has enough resources to handle the incoming data meanwhile still serving requests
about the current state of the grid.

Several levels of monitors are known:

Site level monitoring is the primary information source in the grid. This kind of infrastructure monitor-
ing system is usually centralised on the grid site, and provide the most up-to-date information in
the grid. In some monitoring systems these monitors cannot be accessed directly but by a higher
level monitoring component such as the Virtual Organization (VO) or Grid level monitoring sys-
tems. However in case they can be accessed, they are accessed directly by schedulers to make
more accurate decisions. This way the scheduler makes the decision on two level, first it filters
the vast amount of sites available in the VO or Grid level systems and secondly it queries the most
promising sites for the most actual monitoring data to make an informed decision between the
filtered sites.

VO level monitoring aggregates information about all resources from a given VO. In several cases VOs
offer special monitors which can for example provide availability information of the supported
software of a given site. This is useful for the members because they can decide what sites they
should favour when they have specific needs. For example in case they need to run an MPI appli-
cation they just check which sites are reported to have a working MPI installation.

Grid level monitoring is the highest, it provides the overall state of the grid, aggregates all data from
the lower level monitoring systems, usually built on top of VO level monitors, however in some
cases this monitor might aggregate data directly from site level monitors. The data cached in this
monitor, therefore the data available should be time-stamped to present its accuracy.

Monitoring applications on the Grid

From the infrastructure point-of-view the execution of an application is built up from several distinct
phases, such as transferring its input files to the target worker node or waiting in a queue of the local
resource management system. However even the most sophisticated infrastructure level monitors cannot
tell what is happening during the execution of the application after it has reached the worker node until
the execution finishes successfully (or, perhaps, unsuccessfully).

Users frequently need more information about the execution of a long running program, however.
When an application is executed interactively the user can observe directly progress reports of the exe-
cution and is capable of steering the execution according their needs.

A more demanding case for more detailed execution state reports is support for migration. If an
application can resume its execution from a checkpoint, then the monitoring system can carry out regular
checkpointing (the process of taking a checkpoint). These checkpoints can help, for example, Grid
schedulers in load balancing as they can be used to pause and then migrate applications to less loaded
resources. This class of applications can store their output on remote storage, which means even though
there were some migrations on the application, its data can be downloaded from the same logical location
from the user point of view.

Finally, application instrumentation pushes Grid monitoring systems to their limits by generating
vast amount of monitored data, which has to be delivered to a specific location (usually this final destina-
tion is the user’s computer). In this case the application is prepared to push its reports about its internal
behaviour, when it is running in instrumented mode. As it can be expected this behavioural reporting

External Final Version 1.0, Dated March 16, 2009 31

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.10: Monitoring applications on the Grid (MAG)
Dimension Concepts Description
Why Usage When applications are monitored in grid then usually the users would like to

be informed about its detailed progress. Based on this progress information
they can steer the execution in order to make sure the results of the application
will be usable and it is not just wasting the resources with unnecessary compu-
tation. Other main use of application monitoring is the diagnosis, debugging
or correctness of the application.

Who Actors Application monitoring uses the client’s perspective, thus it monitors only
those properties the user is interested in, because it would not be feasible to
provide all possible application progress information during runtime.

What Subject in MAG one instance of the SBA execution is targeted during its execution. It
is also frequent that they use grid infrastructure monitors to have the contex-
tual and instance information at the same time.

Aspect Progress, application state, behavior, adaptability of the currently executed
application.

Property Functional properties of the application can be measured according to the
definition of the user, these are usually represent internal basic properties. The
properties are measured by the user’s own ways and the monitoring system
only offers the infrastructure to deliver the necessary information.

How Methodology The application pushes its internal behavior information to the monitoring
infrastructure, which has the task to deliver it as soon as possible to those
peers who have expressed their interest in the applications execution.

Architecture The MAG is distributed on all sites of the grid and they can receive the mon-
itoring events fired by the application which needs to be instrumented on the
necessary level. The level of instrumentation defines the granularity of the in-
formation which is sent to the listeners of the application’s execution events.

Implementation MAG usually has three distinct components. First it is composed of the event-
ing libraries which can send new data to the listeners, they are the primary
data sources. Secondly they MAG systems usually accommodate a cacheing
architecture close to the sources in order to avoid sending through the network
small packets of monitored data with high latencies. Finally the listener is a
component which is connected to all used caches of the SBA and periodically
retrieves their content to present it for the users.

needs a new monitoring infrastructure which make sure the monitored data is not sent across the grid in
small packages when they occur. Instead they are usually cached on the worker node which executes the
application, and sent regularly off site to the place where the information is collected. The amount of
information available makes it possible to use the monitoring data in distributed debugging, profiling or
even post-mortem analysis, thus this kind of monitoring is used only by the developers and the shipped
application usually uses one of the previously mentioned monitoring solutions only.

As it can be seen the caching behaviour of the high level infrastructure monitors is all time required
in case of application monitoring. However the monitoring events are now buffered more closely to the
execution. Instead of the pull mode delivery used these systems use push mode delivery. The event
initiates the forwarding of the current buffer is usually related to its fullness. Usually the user’s machine
is used as a the top level monitor in order to avoid the overfilling generic top level monitors.

3.3.5 Monitoring in Component-Based Systems

In component-based system, we can find three kinds of approach system monitoring, context monitor-
ing to raise adaptations and monitoring for validation that target three main motivations. The system
monitoring consists of a monitoring of components and execution platform. It is used as an internal
mechanism to extend platforms capabilities, or adapt the system behavior. Context monitors are used for

External Final Version 1.0, Dated March 16, 2009 32

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.11: Using monitors to extend component-based frameworks
Dimension Concepts Description
Why Usage Component-based applications and platforms are monitored to allow their ex-

tention. Component properties are monitored to detect execution scenario or
component activities that can highlight a need to weave new aspects on some
components of the system to extend its behavior, or extend the capabilities of
the platform.

Who Actors In the context of platform extension, the monitoring can be made by the plat-
form itself, or by a specialized component on the platform, and aims to track
some situations specified by the application designer and then trigger some
extension mechanisms.

What Subject This kind of monitoring aims to intercept some execution flows. That is why
the components and the execution platform are monitored.

Aspect In order to extend the platform or the application behavior, the monitor-
ing have to target components internal changes and component composition
changes, to detect new needs of the system.

Property The properties monitored on components are life-cycle state, components
bindings, their contents, names and attributes. Messages exchanged by com-
ponents through the platform are also monitored to manage execution flows.

How Methodology Monitoring is passive. It just pays attention on components intenal changes,
and on binding events, and gathers information to react on some changes.

Architecture The monitoring is cross-layered, because changes can appear due to platform
behavior modifications, components composition changes or on the composi-
tion model (in a model@run-time perspective).

Implementation Monitoring mechanisms are deployed inside the execution platform or are
part of a specific component. We can also imagine that each components
implements some monitoring tools.

the development of context-aware component-based systems. Finally, the validation monitors are used
to test, diagnose and debug component based systems.

Using monitors to extend component-based frameworks

To give a more precise view of the monitoring mechanisms in a component-base system extension per-
spective, here is a description of the Fractal Component System [29].
A Fractal component is formed out of two parts: a controller (also called membrane), and a content.
The content is composed of (a finite number of) sub-components managed by the controller of the en-
closing component. The controller of a component embodies the control behavior associated with the
component. In particular, a component controller can:

• Provide an explicit and causally connected representation of the component’s sub components;

• Intercept incoming and outgoing operation invocations targeting or originating from the compo-
nent’s sub components;

• Superimpose a control behavior to the behavior of the component’s sub components, such as sus-
pending, check pointing and resuming activities of these sub-components.

The controller can be accessed through a set of so-called control interfaces which manage the non-
functional properties of a component such as its life cycle, bindings, content, name and attributes. This
set of control interfaces can be extended with new control interfaces that can be added to a component
controller. The interception mechanism reifies messages sent by and received on component interfaces.
These messages can be modified, discarded or delivered to the component.
Several works have extended the controller to monitor the component activity to be able to extend its

External Final Version 1.0, Dated March 16, 2009 33

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.12: Monitoring of Context in Component-based Systems
Dimension Concepts Description
Why Usage Context-awarness abilities are interesting to diagnose and optimize the be-

havior of a component-based application. It makes it possible for it, to adapt
its behavior to environement or execution flow changes, in order to ensure a
service level agreement.

Who Actors The application itself monitors its context.
What Subject The monitoring concerns the ressources of the platform and the running sys-

tem, and also user inputs that can lead to a context change.
Aspect The monitoring aim to reveal time and space changes of the platform or the

system, and availability of external ressources.
Property Available free space quantity, processor disponibility or external ressource

response time are examples of properties. In fact all system and platform
properties that do not diectly concerns the application behavior may be of
interest for context monitoring.

How Methodology Data gathering is made in push mode by non-blocking mechanisms. Events
from the platform, the components and the system are collected and
component-based system adaptations may be triggered if the situation fits pre-
defined conditions.

Architecture Monitoring may be centralized in a component, or in the platform implemen-
tation and is cross-layered to get all context changes.

Implementation Monitors are implanted in each components or in a specialized one.

behavior. For example, in [98, 106], Pessemier et al have shown how they can monitor the component
activity to weave new aspects that modify the system behavior. In [114], Vanderperren et al presents an
approach to monitor event in component-based system Jasco and weave aspects when a specific scenario
occurs. In the Spring framework1, a built-in interceptor mechanism through proxy generation is used to
monitor and extend the system behavior.

Monitoring of Context in Component-based Systems

The monitoring of context in a component-based system is an essential ability which makes it possible
for the system to adapt itself according to context changes. The term context-awareness was introduced
by Schilit et al. in ”Context-Aware Computing Applications” (in 1994 IEEE Workshop on Mobile Com-
puting Systems and Applications). Dey, in ”Understanding and Using Context” (in Personal Ubiquitous
Computing), defined context as ”any information that can be used to characterise the situation of en-
tities”. So, Context-Aware Applications adapt their behavior based adaptation policies, by gathering
information from their environment. Such information can be collected from system properties, user
inputs or different sensors, and renders the creation of large scale context-aware application difficult be-
cause of two things: first, the number of data sources makes it hard to maintain a proper organisation,
second, because the gigantic number of data produced makes it hard to extract meaningful information.
A recent research prototype called WildCAT [46] eases the creation of context-aware systems. WildCAT
copes with issues such as number of data sources and the gigantic amount of data monitored by providing
a user with easy access to sensors through a hierarchical organization. WildCAT provides the power of
an SQL-like language to express conditions upon which adaptation mechanisms can be triggered.
In [43], the authors introduce a three-step cycle to efficiently process the context information. They
evaluate the caching/off-loading adaptation mechanism in COSMOS framework. The adaptation mech-
anism processes the information coming from the component framework. Context monitoring is gaining
importance and will be a important subject in the next few years in proactive control and adaptation of
systems as discussed and tested in [113].

1http://www.springframework.org/

External Final Version 1.0, Dated March 16, 2009 34

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 3.13: Monitoring to Validate Component-Based Systems
Dimension Concepts Description
Why Usage Run-time correctness, diagnosis and optimization are parts of component-

based applications validation. Monitoring is essential to detect and/or prevent
application failures, and ensure the application behavior.

Who Actors Designers offten simulates workflows from clients or third party to monitor
the application behavior and improve it. At runtime, the provider places mon-
itors to detect or diagnose application falures.

What Subject Platform reactions are monitored as components and application are.
Aspect The stress is placed on dependability, performances an usability of compo-

nents and platform.
Property Interesting properties can be component response time, output correctness,

cross-dependency between components or availability.
How Methodology The application can be monitored at design time in simulation mode. This

allow a fine grained monitoring of the global behavior of the system. When
deployed, the monitoring is mainly made in push modeto prevent failures.

Architecture In order to validate applications, the monitoring have to be made at all levels :
component by component, on components composition and on the platform.

Implementation Each component can monitor its correctness, and a specialized one can mon-
itor allication behavior.

Monitoring to Validate Component-Based Systems

Validation of software components is very important for the overall Quality of Service of component-
based software systems. To validate a component-based system we test, diagnose, and debug individual
and integrations of components in the system.
Testing attempts to check the behavioral correctness of component-based system by first independently
checking the correctness of individual components, and then checking the correctness of the composed
system. If testing leads to detection of faults or abnormal behavior, the next step is to isolate the fault in
the entire system.
Diagnosis of a component-based system is the process by which we aim to find the root cause of a failure.
Generally, a set of possible suspects is postulated, analyzed and reduced, as a result of the application of
test procedures, observations or other evidence. Diagnosis also help automate the ordering of a testing
strategy to address all potential test results and evidence. Diagnosis detects components that are suspect
possible causes, and those components that are exonerated by the test outcome. The set of suspect com-
ponents contains those which have failed, and some which may or may not have failed. A subsequent
application of a different test can similarly reduce the set of suspect components until all suspects are
known to have failed, and the cause of the system failure has been diagnosed.
Once, a fault has been localized in a component-based system it is essential to debug the system.
The debugging includes the replacement of components by linking the main process to other function-
ing/available components. For instance, if a component is no longer available or operational we replace
it with a component with similar behavior.
Components that perform validation include test execution units and monitors, diagnosis and debug com-
ponents. We briefly describe each of these validation related components below:

• Test Execution Units and Monitors. A test execution unit invokes a component-based system
with a sequence of test inputs such as timed test sequences [112]. A test monitor component
validates the execution of a test sequence to a system. A test execution unit requires several test
cases for execution. Such test cases can be automatically generated[107] or specified manually
by an expert. The test monitor unit is an oracle that validates the execution of a test case. The
test monitor can compare an expected output with the output of a component-based system, it
can perform mutation analysis [92] to see how many bugs a test case is able to detect, or it can

External Final Version 1.0, Dated March 16, 2009 35

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

verify the output against a post-condition. A test monitor informs a diagnosis monitor about the
correct/incorrect execution of a component.

• Diagnosis Components. The diagnosis component attempts to find the root cause of a problem
in a component based system. The faulty execution of a test case validated by a test monitor unit
is the information used for diagnosis. The faulty execution of a component may not originate in
the component but due to propagation of a fault from an other component. A diagnosis compo-
nent creates, for example, diagnostic decision trees [10] to summarize evidence received from test
monitors. The diagnosis component also measures the reliability of a test monitor and proposes
replacement of monitors.

• Debugging Components. The management [45] or the debugging of a component based system
based on a diagnosis involves the use of optimization algorithms to reconfigure the system. The
replacement of a components is guided by QoS [45]. Several machine learning based approaches
are available to reconfigure component based systems. In [122] the authors employ reinforcement
learning, [108] presents a self-repair algorithm for managing component-based systems. In [77]
the authors represent a model-driven recovery algorithm to perform single step recoveries in a
component based system. In [49] the authors present a debugging approach to detect structural
inconsistencies in declarative description of a component-based system.

3.4 From Monitoring to Adaptation

According to the conceptual framework shown in Figure 2.1, S-Cube vision explicitly states that mon-
itoring and adaptation are related according to a cause-effect relationship. As previously introduced,
monitoring is defined as a process of collecting relevant information in order to evaluate properties
of interest over analyzed system and report corresponding events. As a consequence, these Monitored
Events (the “what” in the monitoring) are made available to SBA in order to improve the service provi-
sioning. Usually adaptation is required when the monitored event detects anomalous situations, so these
events drive the definition of the Adaptation Requirements that, in turn, drive the adaptation execution
according to one of the mechanisms introduced in the next chapter.

A formal definition of what to be monitored and how to adapt the service execution are usually
formalized in a contract. In a contract, the quality of the service provisioning is specified in terms of
SLA. Here, a set of parameters are identified to describe the quality of the service along with the values
for these parameters that are considered acceptable for the parties. According to the S-CUBE project
deliverable CD-JRA-1.3.2 a set of quality dimensions that are considered relevant in a SBA are listed.
A contract about the provisioning of a SBA should include these dimensions as a way to formalize the
agreements between users and providers.

In addition, a contract includes elements related to the monitoring and adaptation. About the mon-
itoring, the contract defines “who” is in charge of performing the monitoring actions, “what” has to be
monitored, and, in some cases, also “how” to monitor. About the adaptation, a contract can also specify
who is responsible for the adaptation in case the service provisioning is not compliant with the SLA.
In service oriented computing, WSLA [79], and WS-Agreement [64] provide some description models
to express contracts. WSLA allows providers to define quality dimensions and to describe evaluation
functions. Furthermore, it provides monitoring of the parameters during operations and invocation of
recovery actions when contract violations occur. Similarly, WS-Agreement provides constructs for ad-
vertising the capabilities of providers and for creating agreements based on creational offers, and for
monitoring agreement compliance at runtime.

According to a contract that holds between two parties, on first approximation adaptation is required
for two main reasons: (i) adaptation due to lack of conformance and (ii) adaptation due to requirements
changing. In more detail, in the first class, we include the adaptation mechanisms for optimize, recovery,
or prevent discrepancy between expected behaviour and the actual behaviour of the SBA. In the second

External Final Version 1.0, Dated March 16, 2009 36

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Fault

Failure Alarm

Adaptation

Error

Fault detection

Fault identification

Active FaultDormant Fault

reveal

produce Exception

result in

discover

identify

Diagnosis

reveal

require

Service

produce

Monitor

detect

Monitored Event

reports

Figure 3.3: Failures and faults

class, we include the adaptation for interoperability, customization, and context matching where the SBA
behaviour is fine, but the user requirements might change at run-time. As discussed in the following, the
lack of conformance implies that monitors provide information about a possible misbehaviour of SBA.
As a consequence, the adaptation takes place to proper repair the service execution. On the other hand,
the requirements changing implies the monitoring of the user context in order to identify changes that
have impact on the service execution. In this case, adaptation needs to redefine the service execution in
order to meet the new requirements.

3.4.1 Lack of conformance

According to the literature in dependable systems, the lack of conformance results in system failures
defined as “a discrepancy between the delivered service and the correct one” [75]. Following the termi-
nology introduced in [75], a failure is the visible effect of an error and it is manifested to the SBA by the
monitor that includes it in the list of events monitored.

As shown in Figure 3.3, in case of system malfunctioning, a fault occurs and it causes an error
which, in turn, is manifested as a failure. A fault can be either active or dormant. In the former case
the fault produces an error; in the latter case does not. This process is usually called the “Fault-Error-
Failure Chain” and produces data that are relevant only at monitoring time. Indeed, the adaptation needs
information about the fault and not only about the failure. As a consequence, a fault identification activity
is required to discovery of the identity of the occurred fault and the diagnosis is the process by which
this is achieved. In some sense, the diagnosis is able to pass trough the Fault-Error-Failure chain in the
reverse order.

It is important to note that – for the purpose of this deliverable – we have adopted the terminology
of [75] and [96]. In the software engineering discipline different definitions for the terms are found [69].
Here, an error is the cause for a fault (i.e., a defect in a software artifact). This defect can lead to a failure
of the running software system.

At the end of the diagnosis, the adaptation mechanisms have the required information to enact the
most suitable strategy. In some case, according to the adaptation strategy adopted, this information can
also be exploited to avoid possible future critical situations. Thus, adaptation can follow a pro-active
approach.

External Final Version 1.0, Dated March 16, 2009 37

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

3.4.2 Requirements changing

User’ requirements might change at run-time for several reasons. The user realizes that the quality of the
service the user asked before is not enough to fulfill the real goal, or the environment in which the user is
working changes. In the latter case, mobile devices are usually involved since they allow the user to move
around while consuming the services. In case the functional, or even the non-functional, characteristics
of the service depend on the environment (i.e., the context) in which the service is consumed, then the
user requirements might change at run-time and the SBA needs to react properly.

Requirements changing can be also inferred starting from the actions taken by the user in the past.
As discussed in the Section 3.3.3, the monitoring of HCI aims to reason about the sequence of actions
taken by the user in the system and helps to better understand the future action of the user. With respect
to the previous case, in which the context is analyze, and the adaptation is a reaction of a requirement
changing, in this case, the adaptation is proactive: the system aims at anticipating the user intentions.

External Final Version 1.0, Dated March 16, 2009 38

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Chapter 4

Taxonomy of Adaptation Principles and
Mechanisms

The dynamic nature of the business world highlights the continuous pressure to reduce expenses, to in-
crease revenues, to generate profits, and to remain competitive. This requires Service-Based application
to be highly reactive and adaptive. In fact, SBAs are subject to constant changes and variations: con-
stituent services can evolve due to changes in structures (attributes and operations), in behavior (when
services are interacting) and policies; agreements between the interacting parties may change; the re-
quirements and the SBA context may evolve as well. Such changes can be identified, detected, and
foreseen in the SBA during the monitoring of the application execution and its environment. In order
to accomplish this, SBAs should be equipped with the corresponding mechanisms to meet changing
requirements

As mentioned in the previous chapter concerning the monitoring part, in order to provide a holistic,
comprehensive, and integrated vision on the monitoring and adaptation across various research disci-
plines, in the following we will try to present a generalized and universal yet practical definition of the
adaptation problem. We will present a generic conceptual model for the adaptation, which refines an
overall adaptation and monitoring vision adopted within S-Cube research project. Based on the con-
ceptual model, this chapter will provide a classification of the adaptation concepts, and instantiate this
classification across relevant research disciplines.

4.1 Conceptual Model

Adaptation can be defined as a process of modifying Service-Based Application in order to satisfy new
requirements and to fit new situations dictated by the environment on the basis of Adaptation Strategies
designed by the system integrator. An Adaptable Service-Based Application is a service-based appli-
cation augmented with the corresponding control loop that monitors and modifies itself on the basis
of these strategies. Notice that adaptations can be performed either because monitoring has revealed a
problem or because the application identifies possible optimizations or because its execution context has
changed. The context here may be defined by the set of services available to compose SBAs, the compu-
tational resources available, the parameters and protocols being in place, user preferences, environment
characteristics.

High-level conceptual model of the adaptation concepts is represented in Figure 4.1.
The Adaptation Requirements identify the aspects of the SBA model that are subject to change, and

what the expected outcome of the adaptation process is. Adaptation Strategies are the ways through
which the adaptation requirements are satisfied. Examples of adaptation strategies are re-configure (i.e.,
modify the current configuration parameters of the SBA), substitute (replace one constituent service with
another), compensate (remove the negative effect of the previously executed action by performing new

External Final Version 1.0, Dated March 16, 2009 39

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Adaptation Adaptation Subject

Adaptation Actor

Adaptation Requestor

requires

Adaptation Designer Adaptation InitiatorAdaptation Executor

Adaptation
Requirements

Adaptation Strategy

performs

triggersdefines

modifiesachieves

designs

Adaptation Mechanism

Realization Mechanism

realize

Decision Mechanism

Figure 4.1: High-level adaptation model

actions), re-plan (modify the structure and the model of the application, which is more suitable for the
current situation), re-compose (modify the way the services are composed), and re-negotiate (modify the
service-level agreement with the service provider).

Adaptation Strategies are realized using the available Adaptation Mechanisms. These mechanisms
include the tools for performing actual adaptation actions, i.e., Realization Mechanisms, and the tools
for making important decisions about the adaptation, i.e., Decision Mechanisms. The latter include the
mechanisms for selecting adaptation strategies among possible alternatives given the current situations,
histories of previous adaptations, user decisions or preferences, etc.

The adaptation procedure may modify various elements of the SBA, i.e., may have different Adap-
tation Subjects. The adaptation process involves different kinds of Adaptation Actors covering various
roles with which the users may be involved in the process. When these roles are performed by the
corresponding software components, we speak about self-adaptation approaches.

Below we will provide a classification of the adaptation problem and identified adaptation concepts.

4.2 Adaptation Taxonomy

In this chapter, we describe a graphical representation of the adaptation taxonomy (depicted in Figure
4.2) that distinguishes approaches by Why, Who, What, and How software adaptation takes place.

4.2.1 Taxonomy Dimension: Why?

The first dimension of our taxonomy define the usage of the adaptation process, i.e., Why adaptation is
needed. Indeed, the Why dimension provides a description of the motivation for the adaptation.

Depending on the goal of the adaptation process, one can distinguish between

• Perfective Adaptation, which aims to improve the application even it runs correctly, e.g., to opti-
mize its quality characteristics.

• Corrective Adaptation, which aims to remove the faulty behavior of a SBA by replacing it by a
new version that provides the same functionality. Various faults can occur relatively often and
unexpectedly in distributed systems. It is therefore necessary to handle failures reported during
execution of the SBA in order to recover from undesired behavior, or to change the application
logic in order to remove the possible fault.

• Adaptive Adaptation, which modifies the application in response to changes affecting its environ-
ment. The need for this kind of adaptation in SBAs is dictated by (i) the necessity to accommodate
to the changes in the SBA context (execution context, user context, or physical context); (ii) the
need to ensure interoperability between interacting parties by providing appropriate adapters or

External Final Version 1.0, Dated March 16, 2009 40

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Figure 4.2: Adaptation taxonomy

mediators; (iii) the necessity to customize or personalize the application according to the needs
and requirements of particular user or customers.

• Preventive Adaptation, which aims to prevent future faults or extra-functional issues before they
occur.

• Extending Adaptation, which extends the application by adding new needed functionalities.

These classes may be further decomposed given particular problems in mind. For example, Adaptive
adaptation may be classified into Context-aware adaptation, mediation, and customization/personalization.

External Final Version 1.0, Dated March 16, 2009 41

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

4.2.2 Taxonomy Dimension: Who?

The Who dimension characterizes the adaptation problem from the view of the different actors (software
or human) involved in the adaptation process. One can distinguish the following actors:

1. Adaptation Requestor characterizes the stakeholders, who defines the adapttion requirements for
the SBA.

2. Adaptation Designer, who defines the adaptation strategies to achieve the adaptation requirements.

3. Adaptation Initiator, who initiate the modification of the application in reaction to the identified
changes.

4. Adaptation Executor is responsible for executing adaptation actions defined by the chosen adapta-
tion strategy.

When certain roles are performed by the SBA or the environment autonomously, we speak about self-
adaptation. Otherwise, the adaptation is referred to as human-in-the-loop adaptation. When the human
plays a role of the adaptation executor, we can speak about manual SBA adaptation, performed, e.g., at
design-time.

4.2.3 Taxonomy Dimension: What?

The What dimension is used to classify the adaptation target and the expected result. In this way,
we consider the following elements of the taxonomy: Subject of adaptation, Adaptation Aspect, and
adaptation scope.

With the Subject of Adaptation we mean an entity that should be modified by the adaptation process.
At the highest level of abstraction we distinguish

• SBA Instance, i.e., business process instance, an application customized to a particular user ac-
cording to her user profile, a particular configuration of a service;

• SBA Class that define the whole application model, including its business process model, business
requirements and KPIs;

• SBA context encompasses various aspects, i.e., user/physical/computing environment in which the
application is performed;

• Adaptation and Monitoring Mechanisms themselves, changing the way the system is changed and
managed.

Finer granularity may be thought of, such as services, compositions, rules and policies, SLAs, etc.
With the Adaptation Aspect we refer to a particular concern of the adaptation process: different

dimensions of the SBA quality model (e.g., security, dependability, usability), functionality, HCI aspects,
etc.

With the Adaptation Scope we refer to the effect of the adaptation process, i.e., whether it is ex-
pected to be temporary (i.e., hold only to a particular SBA instance or in a particular context) or perma-
nent adaptation (i.e., modify the whole application model that will be applicable to other instances and
situations).

4.2.4 Taxonomy Dimension: How?

The third dimension of our taxonomy is How adaptation can be achieved and implemented, that is, what
the specific strategies are exploited and what the specific mechanisms are used to implement the,. This
dimension includes the characteristics of the relations established between the monitoring artifacts and
the changes of SBA addressed by the approaches; e.g., models, types, granularity,etc.

External Final Version 1.0, Dated March 16, 2009 42

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Adaptation Strategies

Adaptation strategies are the means through which adaptation is accomplished. Examples of adaptation
strategies are re-configuration, re-binding, re-execution, re-planning, etc. Adaptation Strategies define
the possible ways to achieve Adaptation Requirements and Objectives given the available Adaptation
Mechanisms. They may be classified according to a set of characteristics, including the placement (lo-
cation) of changes, the used methodology, and the way the strategy is specified.

Location determines the placement of the changes in the SBA architecture and environment:

• Scope of adaptation effect (“horizontal” placement) says whether the changes are local (shallow),
i.e., the small-scale incremental changes localized to a service or are restricted to the clients of that
service, or whether they are global (deep), i.e., large-scale transformational changes cascading
beyond the clients of a service possibly to entire value-chain (end-to-end processes) - clients of
affected services e.g., outsourcers or suppliers.

• Affected functional SBA layers (“vertical” placement), where one can distinguish between Service
Infrastructure-level changes, when the changes affect service signatures, protocols, and the run-
time environment of the service execution; Service Composition-level changes, when the behav-
ioral protocols and/or operational semantics of SBA are affected; Business Process-level changes,
when the change involve business rules and requirements, organizational models, clients, and even
entire value chain; Cross-layer changes affect different functional layers.

Adaptation Methodology characterizes the timing, the distribution, and the direction of the adapta-
tion.

• Timing defines the moment of time when the adaptation is performed. Reactive adaptation refers
to the modification in reaction to the changes already occurred; proactive adaptation aims to mod-
ify SBA before a deviation will occur during the actual operation and before such a deviation can
lead to problems; post-mortem adaptation is characterized by a significant gap between the trig-
gering event is detected and the modification performed. Typically, the post-mortem adaptation is
accomplished by re-designing/re-engineering the application.

• Direction of the adaptation distinguishes between forward adaptation, where the adaptation strat-
egy that directs the system to a new state, where the adaptation requirements are met, and backward
adaptation, where the adaptation strategy reverts the system to a state, previously known to meet
the adaptation requirements.

• Distribution of the adaptation distinguishes between centralized adaptation, where the actions are
defined and executed on all the affected components in the controlled and integrated way, and
distributed adaptation performed locally and then propagated among components.

Adaptation Specification represents the notations needed to specify the strategies and the particu-
lar actions representing those strategies. It can range from procedural approach (concrete actions to be
performed), over declarative (the description of the goals to be achieve), to hybrid. The notation may be
implicit: in this case the adaptation strategies and actions are hard-coded within the system according to
some predefined schemata and can not be changed, without modification of the adaptation mechanism.
Explicit adaptation specification, on the other hand, allows the designer to guide or influence the adap-
tation process by explicitly stating the adaptation requirements or instructions. The following forms of
explicit adaptation specification may be considered:

• action-based specification consists of situation-action rules which specify exactly what to do in
certain situations;

External Final Version 1.0, Dated March 16, 2009 43

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

• goal-based specification is a higher-level form of behavioural specification that establishes per-
formance objectives, leaving the system or the middleware to determine the actions required to
achieve those objectives;

• utility function-based specification exploits utility functions to qualify and quantify the desirability
of different adaptation alternatives, and, therefore, permit, on the fly, determination of a “best”
feasible state;

• explicit variability approach associate the situations, where the adaptation should take place (adap-
tation points), with a set of alternatives (variants) that define different possible implementations of
the corresponding application part.

Adaptation action is an action performed over an adapted system with the purpose of changing it
according to the adaptation requirements. Adaptation action defines an operation semantics of the adap-
tation strategy. Different approaches define various adaptation actions. Those actions may be further
classified according to the subject of the adaptation and the scope: for example, service instance adapta-
tion actions (retry, negotiate SLA, duplicate service, substitute service), flow instance adaptation actions
(substitute flow, redo, choose alternative behavior, undo, skip / skip to, compensate), service class ac-
tions (change SLA, and suggestion for service re-design), flow class actions (re-design/re-plan, change
service selection logic, change service registry, change platform).

Decision Mechanisms

Decision Mechanisms are the means through which adaptation approach may make a decision on the
strategy to be performed in a given situation in order to better satisfy the adaptation requirements. The
mechanisms are characterized by the dynamicity and by the automation of strategy selection.

Dynamicity of decision refers to the flexibility, with which the adaptation approach may decide
on the strategy to be applied. One can distinguish: static selection, when the adaptation strategy is
predefined and explicitly associated with the given adaptation requirement, situation or event; dynamic
selection, when the adaptation strategy is selected at run-time based on a concrete situation, information,
and context properties; and evolution-based selection, when the adaptation strategy is chosen taking into
account not only the current situation, but also the history of previous decisions, adaptations, and their
results.

Automation of decision characterizes the degree of the human involvement in the decision process.
The degree can range from totally automatic (no user intervention is needed), to interactive (where the
user makes the choice).

Adaptation Implementation

Adaptation implementation defines the way the adaptation methodology and architecture are realized. It
is defined by the autonomy of the execution, invasiveness of the framework, realization mechanisms, and
by specific characteristics of the approach that allow one to “measure” the approach.

Autonomy characterizes the involvement of the human in the adaptation execution. It can be done
in a autonomous way (self-adapt), manually, or in an interactive form, where the execution of adaptation
actions requires human involvement.

Invasiveness characterizes the adaptation framework from the perspective of how tightly it is inte-
grated with the subject of adaptation and the execution framework. We distinguish between the cases,
when the adaptation facilities are integrated with the subject, the cases, when the adaptation facilities are
integrated with the platform, where the subject operates, and the cases, when the adaptation facilities are
completely separated and independent from the subject of adaptation.

External Final Version 1.0, Dated March 16, 2009 44

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Realization mechanisms define the tools and facilities, necessary to enable a given adaptation
methodology, to implement the adaptation strategies, and to build the corresponding adaptation archi-
tecture. Realization mechanisms strongly depend on a given adaptation problem and on the approach
used for that. Typical examples include, in particular, reflection wich refers to the ability of a program to
reason about, and possibly alter, its own behavior; automated composition that provides a support for the
automated service composition in order to accomplish composition (or adaptation) goals; Service discov-
ery / binding that allows to find, select, and exploit a new service as a replacement of the incorrect one;
SLA negotiation that allows to dynamically agree on the service quality, Aspect weaving techniques to
inject the adaptation facilities into the SBA code, design facilities and tools supporting manual adaptation
of SBA, etc.

Adaptation characteristics address some important challenges that adaptation process should sat-
isfy, such as safety, security, optimality, cost, performance of the adaptation process.

4.3 Adaptation in Relevant Areas and Domains

4.3.1 Adaptation at Business Process Management

Adaptation of Business Processes

Adaptation of business processes may deal with permanent modification of the whole model or only a
modification of a particular instance. In the former case, one can speak of evolution, as all the new
instances of the process will follow the new model. This type of adaptation is usually achieved by
re-designing/re-engineering the business processes.

Consequently, the term “adaptation” in the workflow and business process management systems
refers to the run-time modification and/or extension of the running process instances in order to react to
various problems and to accommodate different changes in their environment. These changes may be
dynamics of organizational models, upcoming of better services, and new business rules and regulations.

The goal is to change the process while it is running, without having to remodel and redeploy the pro-
cess, which is in general very time-consuming. Run-time modification of the business process instances
normally assumes a strategy, which is predefined at design-time and which targets the modification of
the structure of the process instance control flow or data flow.

The specification of the run-time adaptation activities may be implicit or explicit. The former case
corresponds to the modification of the process model, and the changes are extracted as a difference be-
tween the old model and the new one. In the latter case the adaptation actions are predefined, e.g., using
explicit variability techniques (possible alternatives are enumerated and associated with the correspond-
ing applicability conditions) or as concrete actions (using special adaptation grammar that may define
tasks to insert, remove, skip, change or reset value of variables, etc).

An important mechanism for the process instance adaptation refers to ensuring correctness of the
adaptation activities in order to avoid so called instance migration bug. This problem refers to the fact
that the changes performed on the partially executed process instance may lead to the situation, which
violates certain predefined correctness requirements. In order to accomplish this, special mechanisms
are introduced to validate the applicability of the adaptation actions with respect to a current instance.

Recovery actions for workflow systems

Focusing on the corrective adaptation, recovery actions have been widely used in workflow systems.
While the general concepts are shared with all workflow management systems, several differences can
be found in systems developed before the definition of SOA architecture that has deeply changed the
concept of workflow, moving it from a coordination of actual tasks to a coordination of requests to
partners to execute specific services.

External Final Version 1.0, Dated March 16, 2009 45

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.1: Adaptation of Business Processes
Dimension Concepts Description
Why Usage The adaptation in BPM may be motivated by various factors: a process

instance may be modified in order to deal with a particular customer or
a particular business context (adaptive adaptation); it may be performed
in order to react to a certain problem or to a business-level failure (cor-
rective adaptation).

Who Actors If the adaptation targets modification of the business process model as
a whole, then it is performed “manually” (i.e., by re-design), requested
and initiated internally by the business analysts. The modification of the
running instances, instead, is performed autonomously, or under a hu-
man supervision, on the basis of the predefined actions. The adaptation
of particular process instances may be also requested by the external
stakeholders, e.g., by particular customers or partners.

What Subject The business process modifications may be triggered by the events that
happened at the model level (corresponds to the SBA class; may hap-
pen, e.g., as a result of the business process re-design) or at the instance
level.

Aspect Usually, the adaptation in BPM focuses on the modification of the busi-
ness process models and on the modification of business transactions,
transaction protocols, and mechanisms.

Scope The scope of adaptation depends on whether the whole business (pro-
cess) model is changed or only a particular instance. In the former case
we refer to permanent changes, and in the latter to the temporary ones
as they affect the current process instance only.

How Strategy The modification of the business process model are usually performed
at design-time; they require significant human involvement for identi-
fication the need for adaptation, for defining adaptation activities, and
for the implementing these activities. It may have an effect on the other
involved parties (deep changes), and may require changes at different
layers (e.g., to recompose services, to configure transactional mecha-
nisms, etc). The strategies for the instance adaptation may be realized
at operation time either reactively (modification of already running in-
stance) or proactively (adapting a new instance); they usually affect
service composition realising a given process, and do not affect other
partners (shallow changes). The specification may be defined implic-
itly or explicitly. In the latter case it may define both actions both for
forward and backward adaptation.

Decision Mechanisms The adaptation decisions are normally made by the responsible ana-
lysts. In case of instance adaptation the decisions may be performed by
the workflow management system on the basis of the specification pre-
defined at design time: if there is a range of possible adaptation actions
available, the selection is predefined by the corresponding policies, or
may require user involvement.

Implementation While the realization of business process model is done manually
through re-design, the implementation of instance adaptation relies on
the specific workflow or process management systems. The latter are
extended with the corresponding adaptation functionality, and perform
the changes autonomously or with a human intervention. The mecha-
nisms to ensure the modification correctness (to avoid process migra-
tion bugs) are also considered.

The work in [35, 52, 102] presents specific workflow models that widely support recovery actions;
in [65] the authors focus on the analysis, prediction, and prevention of exceptions in order to reduce
their occurrences. The model presented in [67] focuses on the handling of expected exceptions and the

External Final Version 1.0, Dated March 16, 2009 46

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.2: Recovery actions for workflow systems
Dimension Concepts Description
Why Usage Recovery actions might be required when the workflow fails and it is

not possible to conclude the process. Focusing on the software infras-
tructure that drives the workflow, failures might happen for several rea-
sons: systems in charge of performing some activities are not reachable,
are failed, (corrective adaptation) or are not able to perform the activi-
ties ensuring a given quality level (perfective adaptation).

Who Actors Recovery actions are usually planned at design time by the designer
driven by the requirements expressed by the requester. Whenever is
possible to predict possible failures, the designer is in charge of identi-
fying, for each possible failure scenario, the candidate recovery action
or a set of alternative recovery actions. When workflow failures oc-
cur, recovery actions are performed at run-time. In case the planned
recovery actions fails too, the executor, usually manually, is in charge
of defining new recovery actions.

What Subject Recovery actions can affects both the system, the service on which the
workflow is based, or even the structure of the process that drives the
workflow.

Aspect Recovery actions affect and are affected by both functional and non-
functional aspects. System failures as well as low quality allows the
workflow engine to realize that a recovery action is required. Available
services and the related quality will drive the engine to select the best
recovery action strategy.

Scope Recovery actions can modify the behaviour only of the failed instance
of the workflow in case of transient failure. On the contrary, in case of
permanent failure, the recovery action might modify the structure of the
workflow for all the instances that will be executed in the future.

How Strategy Possible recovery actions are: re-invocation of a failed interacting sys-
tem (retry) with the same data, retry with different data, substitution,
redefinition of the workflow. Recovery actions can affect the different
layers. The enactment of a recovery action of the BPM layer can require
the enactment of recovery actions at the bottom layers.

Decision Mechanisms Recovery actions are usually defined manually and execute automati-
cally.

Implementation For simple recovery actions (as the retry) the execution can be totally
automated. About the other cases, usually a human in the loop might be
considered and specific tools can help him/her during the decision phase
and the implementation and execution of the proper recovery actions.

integration of exception handling in the execution environment, while in [1] the authors propose the use
of “worklets”, a repertoire of self-contained subprocesses and associated selection and exception han-
dling rules to support the modelling, analysis and enactment of business processes. The work in [54]
presents the requirements of a Web Service Management framework which also includes the typical
functionalities addressed in self-healing systems. The authors analyze and compare multiple alterna-
tive architectures for the implementation of Web Service Management systems proposing Web service
substitution and complex service re-compositions as repair actions. In addition, an extensive amount of
work on flexible recovery in the context of advanced transaction models has been done, e.g., in [61, 118].
They show how some of the concepts used in transaction management can be applied to workflow en-
vironments. The approach presented in [97] is mainly related to adaptivity in Information Systems, but
some solutions based on the concept of proxy, under certain conditions, enable the reaction to faults in
a way totally hidden to the process engine. Similar features, this time explicitly called recovery actions,
are presented in [58]. In [68] the authors consider a set of recovery policies both on tasks and regions of

External Final Version 1.0, Dated March 16, 2009 47

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.3: Recovery and repair in service compositions
Dimension Concepts Description
Why Usage The adaptation is a reaction to possible anomalies occurred while exe-

cuting the composition. While the adaptation of single services might
be required to tailor their interfaces to the actual needs of the context in
which services are used, in the whole composition, adaptation usually
happens at run-time as attempts to fix problems triggered by an exe-
cuting instance of the composition. The recovery is needed when the
process is not be able to perform tasks ensuring the quality of the com-
position (perfective adaptation), and to customize a particular instance
of a composition or to mediate interactions among services (adaptive
adaptation).

Who Actors The designers define the process’ business logic and adaptation and
recovery separate. The recovery capabilities depend on the services
the process interacts with (the requester). Recovering actions are per-
formed at run time by the executor.

What Subject The recovering actions may affect the services the process interacts
with, and/or the structure of the process that drives the composition.

Aspect Recovery actions are dealing with the dynamic binding. They may af-
fect and are affected by both functional and non-functional aspects in-
cluding QoS. The selection of the best recovery action is driven by the
QoS and the available services at run time.

Scope Recovery actions can modify the behaviors at the protocol level or in-
terfaces of services interacting in the composition process for the failed
instance of the composition failure. The recovery actions might also
modify the whole structure of the composition process for all instances
that will be executed in the future.

How Strategy The framework can choose among a set of recovery actions: retry the
failed interacting system, substitute the faulty service involved in the
interaction by another one, compensate the failed interaction by cancel-
ing its effects. The adaptation can be local and tend to be pro-active and
go forward.

Decision Mechanisms Some of recovery actions are defined manually and the others dynami-
cally bound, and are executed automatically to fix a given anomaly.

Implementation Some recovery actions can be triggered automatically such as retry. For
other cases, to carrying out adequate recovery actions, a human can
usually use a specific tool (i.e., planning techniques)to help for making
decision, implementing and executing the actions.

a workflow. They use an extended Petri Net approach to change the normal behavior when an expected
but unusual situation or failure occurs. As in our approach the recovery policies are set at design time.

4.3.2 Adaptation in Service-Oriented Architectures

Recovery and repair in service compositions

When we think of adaptation of web service compositions, we must think of it as reaction to possible
anomalies occurred while executing the composition. While the adaptation of single services might be
required to tailor their interfaces to the actual needs of the context in which services are used, when we
reason on the whole composition, adaptation usually happens at run-time as attempts to fix problems
triggered by an executing instance of the composition. This means that in this case adaptation must
be considered in conjunction with the monitoring infrastructure, where the latter provides the hooks for
adaptation to happen. Usually, probes highlight anomalies and the adaptation infrastructure tries to solve,
or bypass, them.

External Final Version 1.0, Dated March 16, 2009 48

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

BPEL itself would allow designers to mix defensive programming techniques, fault, event, and com-
pensation handlers with the actual business logic to embed adaptation into the process, but this solution
would be mixed-up, inefficient, and inflexible (any change would require modifying the BPEL process
and redeploying it). In contrast, we should perceive separation of concerns since it maintains the actual
business logic and adaptation directives separate. Designers define the process’ business logic, without
considering adaptation and recovery: a single comprehensive specification would result in a complex,
unmanageable, and intertwined definition.

The actual recovery capabilities heavily depend on the services the process interacts with. Stateless
partner services simplify the problem. Things become more complex when the process interacts with
stateful or conversational services. The former are services that have persistent side-effects when called
(e.g., business data are stored on a persistent database). This means that they cannot be called an indefi-
nite number of times (even twice), and that they must provide a special operation if we want to be able to
undo their effects. The latter require that a special conversation protocol be respected. In these cases, we
need a way to rollback the conversation itself. This is why the use of stateful and conversational services
can lead to situations in which only partial recovery is possible. We should also distinguish between those
solutions that only work on the running instance, the approaches that modify the composition itself, and
those that comprise both [36].

Most of the process recovery approaches, or steering solutions, present in literature limit themselves
to the more simple notion of dynamic binding. These approaches try to update the set of services with
which they do business, and provide optimized experiences. Some limit themselves to substituting ser-
vices that offer the same interface, while others provide mediation mechanisms. For example, we may
think of optimizing a BPEL process’ QoS by selecting the most appropriate partner services at run
time [8, 7]. Designers define global and local QoS constraints, and these data are used to retrieve candi-
date services from external repositories. If a QoS requirement cannot be met, the framework can choose
among a set of recovery actions: retry, substitute, and compensate.

We can also embed (re)binding rules in the composition language itself. For example, SCENE [42]
offer a composition language that allows designers to declare policy (re)binding rules; policies can be
either global or local. The framework also provides mediation capabilities through a special-purpose
mediation scripting language. Similarly to the two previous proposals, VIEDAME [91], provides a
dynamic adaptation and message mediation service for partner links. Using the data collected during the
monitoring step, the system chooses the most appropriate service, while XSLT or regular expressions are
used to transform messages accordingly.

All these approaches concentrate on local, or forward adaptation, while there are only a few proposals
that also consider backward recovery, that is, the capability of rolling the execution back to a previous
activity in the process, and restart it from there. Obviously, the actual options depend on both the process’
topology and its partners services: the simple re-execution of the faulty path could not solve the problem.
Self-Healing plug-in for a WS-BPEL engine (a.k.a. SH-BPEL, [90]), in particular, provides process-
based recovery actions of both types. Recovery actions are specified by annotating WS-BPEL processes
in a way that preserves the business logic, but enables specific recovery actions: the ability of modifying
the value of process variables by means of external messages; the ability of redoing a single task or
an entire scope; the possibility of specifying alternative paths to be followed, in the prosecution of the
execution, after the reception of an enabling message; the possibility of going back in the process to a
point defined as safe for redoing the same set of tasks or for performing an alternative path; substitution
of dynamically selected services in case they do not respond within a timeout threshold.

Transactional BPEL processes provide special purpose fault handlers used to rollback the process if a
transaction cannot be closed. For example AO4BPEL [38] proposes an AOP-based solution. In contrast,
[8] provides an ad-hoc recovery primitive to let designer move back the execution of their processes
the way they want. The gain in freedom and flexibility is clearly paid in terms of guarantees of the
correctness of resulting executions.

Adaptation can also be carried out by exploiting planning techniques as a means to automatically

External Final Version 1.0, Dated March 16, 2009 49

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.4: Adaptation for QoS-based optimization
Dimension Concepts Description
Why Usage Adaptation for QoS-based optimization aims at executing the a service-

based process with the best quality (perfective adatation). To this aim,
sometime, the composing services, as well as the process structure
might change (corrective adaptation)

Who Actors QoS level that must be ensured at run-time is defined at design time
after an agreement between the service provider and the requestor. The
agreement is usually formalized in terms of SLA. The executor is in
charge of monitoring and react to low-quality situation by means of
adaptations.

What Subject In case of temporary low-quality provisioning, a specific instance is
adapted. Otherwise, in case of more severe situation the SBA class
could be adapted.

Aspect The quality aspect drives the adaptation in terms of system performance
or even in terms of changed context aspects.

Scope QoS-based adaptation can be both temporary or permanent due to the
nature and the source of the low-quality issue.

How Strategy Usually QoS-based adaptation is planned at design time with respect to
the agreement defined in the SLA where responsibilities and penalties
are also defined. The more the automation of the SLA increases, the
more the adaption shifts from the design-time to the run-time. Possi-
ble recovery actions require the re-invocation of the service that make
the quality lower than expected. In case of permanent problems, the
substitution of such a service can be required.

Decision Mechanisms QoS-based adaptation is usually driven by the SLA. In this document
the responsibilities about the monitoring of QoS information as well as
the responsibilities about the adaptation enactment are defined.

Implementation Depending on the type of adaptation strategy required, its execution can
be totally automated or supervised by a human.

compute the aggregation of services able to fix a given anomaly. For example, if a given service does
not answer anymore, and we have no “equivalent” services readily available, we can exploit planning
techniques, based on semantically-enriched services descriptions, to compute the on-the-fly composition
that substitutes the faulty service. The same approach can easily be extended to cover the run-time
substitution of process fragments. For example, McIlraith [88] extended and adapted Golog [82] for
automatic Web service composition based on services encoded in OWL-S, while Pistore et al. [100],
exploit Planning as Model Checking to automatically compose Web services.

Adaptation for QoS-based optimization

In case of Web service based processes, the quality of the overall process strictly depends on the quality
provided by Web services tied to the task. Zeng et al. in [120] proposes an approach for deriving the
process quality starting from the Web service properties considering some of the most relevant quality
dimensions.

In this scenario, as defined in the perfective adaptation, it might happen that even if the process runs
properly an adaptation is required because of insufficient quality. As a consequence, the SBA should
react in order to improve the quality of the service process. The goal is to select the best set of services
available at run-time, taking into consideration process constraints, but also end-user preferences and the
execution context.

Web service selection results in an optimization problem that has been studied both in the research
areas of service oriented computing for business processes and of grid environments. The literature has
provided two generations of solutions. First generation solutions implemented local approaches [89,

External Final Version 1.0, Dated March 16, 2009 50

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

120, 6], which select Web services one at the time by associating the running abstract activity to the
best candidate service which supports its execution. Local approaches can guarantee only local QoS
constraints, i.e., candidate Web services are selected according to a desired characteristic, e.g., the price
of a single Web service invocation is lower than a given threshold.

Second generation solutions proposed global approaches [120, 32, 41, 76]. The set of services that
satisfy the process constraints and user preferences for the whole application are identified before exe-
cuting the process. In this way, QoS constraints can predicate at a global level, i.e., constraints posing
restrictions over the whole composed service execution can be introduced. In order to guarantee the
fulfillment of global QoS constraints, second generation optimization techniques consider the worst case
execution scenario for the composed service. For cyclic processes, loops are unfolded, i.e., unrolled ac-
cording to their maximum number of iterations [120, 32]. These approaches could be very conservative
and constitutes the main limitation of second generation techniques.

Furthermore, global approaches introduce an increased complexity with respect to local solutions.
The main issue for the fulfillment of global constraints is Web service performance variability. Indeed,
the QoS of a Web Service may evolve relatively frequently, either because of internal changes or because
of workload fluctuations [120, 37, 121]. If a business process has a long duration, the set of services
identified by the optimization may change their QoS properties during the process execution or some
services can become unavailable or others may emerge. In order to guarantee global constraints Web
service selection and execution are interleaved: Optimization is performed when the business process
is instantiated and its execution is started, and is iterated during the process execution performing re-
optimization at run-time. To reduce optimization/re-optimization complexity, a number of solution have
been proposed that guarantee global constraints only for the critical path [120] (i.e., the path which corre-
sponds to the highest execution time), or reduce loops to a single task [32], satisfying global constraints
only statistically, by applying the reduction formula proposed in [34]. Another drawback of second
generation solutions is that, if the end-user introduces severe QoS constraints for the composed service
execution, i.e., limited resources which set the problem close to infeasibility conditions (e.g., limited
budget or stringent execution time limit), no solutions can be identified and the composed service exe-
cution fails [32]. While first and second generation approaches have been applied, e.g., [27, 120], the
need for further research toward more advanced optimization techniques, in particular for cyclic pro-
cesses [56, 6] is advocated. In addition, none of the previous approaches considers in the optimization
the case of processes composed by stateful Web services, where more than one task must be performed
by the same Web service.

In [7] an alternative modeling approach to the service selection problem is introduced, where: i)
loops peeling is adopted in the optimization, which significantly improves the solutions based on loops
unfolding, ii) negotiation is exploited if a feasible solution cannot be identified, to bargain QoS parame-
ters with service providers offering services, reducing process invocation failures, and iii) a new class of
global constraints, which allows the execution of stateful Web service components, is introduced.

Service evolution

Service evolution refers to the continuous process of development of a service through a series of con-
sistent and unambiguous changes. Service evolution is motivated by the need to cope with multiple
stakeholders, fluid requirements, and external pressures that affect entire organization. A key issue for
the service evolution is the ability to support service diversification: the services should co-exist in mul-
tiple active versions.

Such changes are not performed autonomously; they require intensive human involvement to identify,
design, and management of service evolution. To control service development one needs to know why
a change was made, what are its implications and whether the change is complete. Such a change is
requested, designed, initiated, and performed by the service provider. However, as the evolutionary
changes are permanent and significant, the effect of the strategy spans the boundary of a service and

External Final Version 1.0, Dated March 16, 2009 51

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.5: Service evolution
Dimension Concepts Description
Why Usage The changes performed with service evolution originate from the need

to introduce new functionality (extending adaptation), the modification
of existing functionality to improve performance (perfective adapta-
tion), the inclusion of new regulatory constraints that require that the
behavior services be altered or to accommodate to the requirements of
new customers (adaptive adaptation).

Who Actors Changes are requested, designed, initiated, and performed by the ser-
vice provider (i.e., designer). In order to manage changes as a whole,
the Web service consumers (i.e., requester) have to be taken into con-
sideration as well, otherwise changes that are introduced at the service
provider side can create severe disruption.

What Subject Service evolution deals with the permanent modification resulting in
the new versions of the underlying service (i.e., SBA class adaptation).

Aspect Driven by a variety of requirements and factors, adaptations may affect
various aspects of the service implementation at different functional
layers. Moreover, evolution might be required to tailor their interfaces
to the actual needs of the context in which services are used.

Scope As the new version of a service is created, the scope of adaptation is
permanent for the new version: all future executions of this service
version will follow the new model.

How Strategy The adaptation requirements are addressed by re-designing of a ser-
vice leading to a new version. This requires intensive human involve-
ment at deciding, designing, and implementing new service versions.
The modifications are significant; they may affect different functional
SBA layers; the scope of effect spans across the boundary of the service
provider (deep changes).

Decision Mechanisms The decisions on what to change and on how the changes are realized in
the new version are defined by the stakeholders and designers. Theses
decisions take into account the Web service consumers as well; other-
wise changes that are introduced at the service producer side can create
severe disruption. Service evolution attempts to a priori validate and
constrain service changes and ensuing versions so that they are consis-
tent and well-behaved.

Implementation The realization of the service evolution activities is achieved by the
mechanisms of Service Evolution Management. The implementation
of those mechanisms is tailored to the understanding of all the points
of change impact, controlling service changes, tracking and auditing all
service versions, and providing status accounting.

propagates to the service customers (deep changes). In order to manage changes as a whole, the Web
service consumers have to be taken into consideration as well, otherwise changes that are introduced at
the service producer side can create severe disruption.

The evolution of the service is achieved through the creation and decommission of its different ver-
sions during its lifetime. These versions have to be aligned with each other in a way that would allow a
service designer to track the various modifications and their effects on the service. A crucial requirement
for service evolution is, therefore, a robust versioning strategy to support development of multiple ver-
sions to support their upgrades, while continuously supporting previous versions (e.g., to be able to deal
with message exchanges between a provider and a client despite service changes).

In contrast to other approaches to service adaptation that aim to a posteriori modify itself in order to
address potential functional or non-functional mismatches, service evolution attempts to a priori validate
and constrain service changes and ensuing versions so that they are consistent and well-behaved. This
is achieved by the mechanisms of Service Evolution Management, i.e., is the process of managing the

External Final Version 1.0, Dated March 16, 2009 52

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.6: User and HCI Aspects in Adaptation
Dimension Concepts Description
Why Usage The adaptation is required to adjust the system with respect to the con-

text changes (adaptive adaptation) and the user interactions of the sys-
tem (perfective adaptation).

Who Actors The adaptation is usually performed by the service provider (i.e., de-
signer) upon the user request during the interactions or while the con-
text changes.

What Subject HCI or context based adaptation can be achieved at different level of
SBA from higher granularity to instance level. The context changes
might also affects the monitoring rules and infrastructure.

Aspect The adaptation is driven by HCI and context factors and may affect
various aspects of the service implementation at different functional
layers including monitoring mechanisms. The non functional aspects
(i.e., privacy disclosure of a user) are also taking into account.

Scope The adaptation is designed to be temporary performed, because the
change is made with respect to a user (one application) or a particu-
lar context.

How Strategy In context based adaptation, the adaptation specification is actions-
based, defined at design time as a set of policies and executed statically
or dynamically. HCI and context based adaptation mechanisms can be
implemented at different level of system architecture.

Decision Mechanisms Human is in the loop for the HCI adaptation. In contrary, the context-
based adaptation is driven dynamically and is decided using policies
defined at design time.

Implementation The adaptation mechanisms are implemented at different level of the
system architecture from the application level to the underlying plat-
form of the application.

effective implementation of service evolution and co-existence of multiple active service versions, in
a way that ensures that permanent changes in structure, behavior, relationships, and associated service
versions are achieved in a sound and consistent manner. In summary, Service Evolution Management
(SEM) exhibits the following characteristics:

• mechanisms to identify all kinds of permissible changes to services and to classify them;

• propagation analysis mechanisms that record the status of services, analyze change requests and
gather information about the clients of a service version to ensure compliance with respect to
service updates and version contracts;

• version control mechanisms that ensure consistent behavior of services, by controlling the release
of a service and changes applied to it throughout its life-cycle;

• validation and resolution mechanisms that validate the completeness of a change and maintain
consistency by ensuring that a service is a well-behaved collection of service changes and versions;

• instance migration mechanisms for associating instances of running services with new versions.

4.3.3 User and HCI Aspects in Adaptation

The concept of context encompasses various aspects such as computing environment (e.g. available
processors, network connectivity and capacity, input output devices), user environment (e.g. location,
collection of nearby people) and physical environment (e.g. lighting, noise level) [48]. Context based
system adaptation is the process where a system is adjusted with respect to the change in the context

External Final Version 1.0, Dated March 16, 2009 53

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

and the tasks and actions of the user of the system [31, 103, 119]. The later case, where the system
is adapted with respect to the user interaction, is known as Human Computer Interaction (HCI) based
system adaptation. Clearly, these problems instantiate adaptive form of adaptation.

In the settings of context-based and in particular, HCI-based adaptation, it is possible that the mon-
itoring underlying process will may have to adjust itself with respect to (i) context changes, which is
termed as context based adaptation of the monitoring, and (ii) human computer interaction, which is
termed as HCI based adaptation of the monitoring. The former may include, but is not limited to, dy-
namic selection of monitoring rules based on context information [47, 111] and change of monitoring
infrastructure based on context information [111]. For example, consider a service that can be deployed
either on desk top computer, or personal digital assistants (PDA), or mobile phone and there is a set of
rules to be monitored for each of these devices. The monitor should select a set of rules to monitor based
on the device the service has been deployed to. Consequently, the subject of adaptation refers not only
the application instances, but also to the monitoring mechanisms.

In context-based adaptation, adaptation specification is action-based: it has a form of a set of policies
that define what should be done to adapt the behaviour when a change is detected are specified at design
time using formal [103, 104] or semi formal [111] languages. The adaptation strategies are applied at
run-time, when context information is matched against the specified monitored properties in order to
trigger specific actions prescribed in the adaptation policies. It should be noted that the actions specified
in policies can be (i) static in nature, i.e. given a specific change observed in the context a specific type of
actions should be taken to adapt the system to the context [70, 33, 57]. For example, in case of a PDA, if
the battery power goes below a certain level, then switch to a monochrome display from a colour display,
or (ii) dynamic in nature, i.e. given a change in the context run time solution should be computed that is
the most appropriate for the current context [23, 110]. For example, consider a video streaming service,
where the compression ratio of the video files can be determined at the runtime based on the available
bandwidth.

HCI or context based adaptation can be achieved by implementing adaptation mechanism at different
level of the system architecture [110, 95]. For example, adaptation mechanism can be implemented at
application level, as it may be feasible for the application to decide how best to exploit the available
resources [33, 110, 95]. Again adaptation mechanism can be implemented at the underlying platform of
the application where entities from the platform (e.g. file access system or middleware component) are
directly involved in the adaptation mechanism [110, 95]. The third approach lies in between these two
approaches where the implementation of the adaptation mechanism is allocated to different levels of the
system architecture [110].

4.3.4 Adaptation in Grid computing

Grid computing is defined as coordinated resource sharing. This definition already presents us the two
major participants of the Grid adaptation techniques. First of all Grid mainly offers two kind of resources:
storage and computing resources. The second major part is the coordination, which might adapt user
requests to the currently available resources. Therefore in the current grid systems the two main entities
offering adaptation is the storage broker and the (computing) resource broker. Both of these brokers are
offering perfective and corrective adaptation techniques.

The example of perfective adaptation can be understood more easily with the help of storage brokers.
These systems examine data requests and according to their context they translate these requests to use
the data which are closer to the currently executed application which plans to process it. The primary
actor who initiates the adaptation is the application itself, who requests the adaptation of the data request
from the storage broker. It is important that the application usually asks for the adaptation every time
a different data request is made, therefore this adaptation is temporary. Temporary adaptation can be
achieved because context dependency in storage brokers, which means for example that they adapt the
data requests according the requester’s execution location, and they can take into account the user’s

External Final Version 1.0, Dated March 16, 2009 54

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.7: Adaptation in Grid computing
Dimension Concepts Description
Why Usage Adaptation in grid computing is offered for perfective and corrective

purposes. The perfective behavior deals with the access optimization
of the various resources shared among the grid participants. The op-
timization can range from similar resource assignment for correlating
computing tasks to choosing an execution location in the proximity of
the input data storage. The corrective adaptation in grid has a single
purpose, that the user should not notice the non guaranteed behavior of
the underlying services of the grid system.

Who Actors The executor of the adaptation strategy is the task of the different re-
source brokers, which are including several adaptation strategies in their
design. The adaptation is usually triggered on faults (corrective sys-
tems) or on user request (perfective systems).

What Subject Adaptation in grid focuses on the SBA instance. The actual execution
of the application is adapted, however the erroneous situations can rise
again. The infrastructure is not reorganized to better fit the SBA class,
this is a manual task of adding new resources usually. However with the
rise of the virtualization the infrastructure is now capable of adapting
to the SBA class more closely, without affecting other SBAs offered by
the same grid.

Aspect The usefulness is the key moving factor in grid. Thus the adaptation
is applied usually when the users would gain processing time on its
requests based on the adapted task descriptions they gave.

Scope Adaptation is temporary in grids, they don’t change because of a single
application, the application however is usually adapted for the currently
available grid infrastructure - e.g. it is using only the available proces-
sors on a given site or it is using grid level messaging instead of plain
MPI.

How Strategy Re-configuration and re-execution is the two usually chosen strategy in
grid. Re-configuration usually occurs before execution, which means
the execution request is adapted to the current grid context instead of
using an improperly formulated one. Re-execution usually appears to-
gether with re-configuration, and it is applied when the resource broker
realizes that there is a possible SLA violation. In this case the broker re-
configures the execution request and if it is still feasible it re-executes
it accordingly.

Decision Mechanisms are automated with the help of the grid infrastructure, the user can in-
fluence the chosen strategies and the possible outcomes by specifying
extra details on its request to the resource brokers.

Implementation Grid adaptation techniques are usually integrated with the grid middle-
ware, and barely delivered with a specific application.

identity (e.g. the VO membership) who executes the application. VO membership based adaptation
however leads us to preventive adaptation, since it is unlikely that a user can access data from storage
resources in different VOs, therefore the storage broker makes sure that errors happen less frequently.

Corrective adaptation best represented by resource brokers. In Grid, resource brokers are the primary
access points to the resources. They act as a super resource, which might tackle all computing tasks of a
given virtual organization. When a user sends a task to the broker it selects a computing resource which
best fits the request. However the non guaranteed services offered by the computing resources need that
the broker adapts the request in case the previously selected resource rejects or fails to execute the user’s
task. The adaptation is usually achieved by substituting the previously selected resource with the second
best fit resource. This is a self adaptation mechanism because there is no need for human interaction
after the user sent the task to the resource broker. In some extreme cases no resources can complete the

External Final Version 1.0, Dated March 16, 2009 55

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

user’s request. This case arises when the resource broker exhausts the list of the matching resources,
which could fulfill the user’s request, because all the resources from the list fail to process the request
properly. As a result the resource broker might renegotiate the request with the user by describing the
previous trials it made to finish the requested task, and suggesting adjustments to the following request.

In case QoS is the driving factor for adaptation in Grid computing, then the adaptation system might
change the Grid information system’s entry about a resource according to the rate of resource failures
or congestion. The Grid information system (an implementation of grid level monitor) is the primary
source for high level components where the Grid level decisions are made. Changes in the information
system’s offerings mean the whole grid infrastructure acts according to this data, therefore a simple
change uniformly adapts all systems dependent on the information service. Another aspect of the QoS
awareness that by using virtualized resources in Grid it is possible to change certain properties of those
virtual machines which provide the computing resources. As an example adapting virtualized resources
might use the ballooning capability of the virtual machine monitors (they can change the system memory
in run-time).

Finally adaptation strategies can be specifically designed for parallel constructs used in Grid tech-
nologies. Like in case of process farms the number of worker processes can be adapted depending on
the number of nodes present on the computing resource selected as the execution location of the process
farm.

4.3.5 Adaptation in Component-Based Systems

Adaptation in software systems targets a self adaptation of the software. Most of time, adaptations are
designed and tested on component-based systems, because of their high modularity.

Contexts of adaptation

Correction and prevention of system failures is probably the principal context of adaptation. A cor-
rective adaptation aims to replace a faulting component by another one having the same behaviour. As
the system can be offered different components to retrieve the same information, if an action query on a
component leads to a component failure, the system will replace the component by another and try again.
Sometimes, system failures are due to modifications of the runtime environment (loss of a peripheral de-
vice for example) and the system may have to realize preventive adaptations to feet the new execution
conditions, avoid failures and ensure correct behavior. Some research in this domain is towards prevent-
ing component failures by launching preventive adaptations in order to prepare the system to a possible
context modification.

Enhancement of the QoS makes the second context of adaptation. For example, a component-based
HTTP-proxy server have to perform perfective adaptations on its behavior to find the right balance be-
tween the memory used and the latency. These adaptations can be realized by changing the request
handler component implementation.

Platform extension concerns the ability of the system to take into account new components by adapt-
ing the in-place components behavior or the platform capabilities.

Adaptation strategies

The integration of real selection strategy engines in middleware software is not yet commonplace. Some
works investigate concepts and techniques developed in the artificial intelligence field such as expert
systems, constraints satisfaction algorithms [66], neural networks or fuzzy approaches [39].

External Final Version 1.0, Dated March 16, 2009 56

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Table 4.8: Adaptation in Component-Based Systems
Dimension Concepts Description
Why Usage Component-based system adaptation can be corrective (replacement of

a non satisfying component), adaptive (to fit new needs), extending in
the way you an add or remove functionalities, perfective (replacing a
component or a composition by a one more performent) or preventive
(replacing a component or a composition that seems to lead to a system
failure).

Who Actors The main effort is made on self-adaptive systems. As a consequence,
adaptations are (most of time) initiated and executed by the application
itself, regarding monitored properties of the system or the context. The
request may also come from a human or from a non-satisfied close in a
contract (behavior specification), according to adaptation policies and
mechanisms described by the application designer.

What Subject The adaptation can target a component (in a fine grain approach) or a
composition in a higher granularity, and can also change adaptations
policies and requesters.

Aspect Driven by a variety of requirements and factors, adaptations may affect
various aspects of the components implementation at different func-
tional layers.

Scope When adaptation concerns a component, or the composition of com-
ponents, this adaptation is temporary and designed to be dynamically
triggered by either adaptation policies or QoS reasons. Adaptations are
permanent in the context of a version change for example. The last
point is the adaptation of the adaptation policies, that tend to be dy-
namic by using some learning mechanisms. In general terms, the adap-
tation is temporary if it concerns the performances and is permanent if
it targets an evolution of the system.

How Strategy In general case, adaptations are local on composition level; mostly re-
active, they tend to be pro-active and go forward.

Decision Mechanisms Most adaptations are automatic (no human-in-the-loop) and dynamic,
because adaptations are decided using policies.

Implementation Component-based systems are designed to realize self-adaptations (au-
tonomous)

Adaptation specifications are based on precise descriptions of the software architecture. These de-
scriptions are mainly made using architecture description languages (ADL) or model driven engineering
(MDE). Some architectures description languages has been classified in Barais PhD thesis [14] accord-
ing to their dynamic reconfiguration support. In [81], Lau gives an overview of components metamodels
based on the same point of view. Being graphical or textual, these solutions allow the system to be de-
scribed as a software component’s composition. As a consequence, an adaptation of the architecture is
as simple as a modification of component link’s or as a component add or remove action. The adaptation
specification can be explicited by getting the differences between the before-modification system de-
scription and the after one, and then passed to the adaptation implementation to be realized. The implicit
way to specify the adaptation is to give the modified system description to the adaptation implementation
which is in charge of expliciting the adaptation description before its realization.

Adaptation of system properties is probably the simplest adaptation mechanism in software systems.
According to some environment considerations, the values of system parameters are computed to render
the most efficient behavior. Most of execution platforms offer this ability and this may be considered as
perfective or preventive adaptation mechanism.

External Final Version 1.0, Dated March 16, 2009 57

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Component adaptation aims to replace a component or a part of its internal code by another. This
adaptation mechanism is mainly used in a corrective context. For sure, implementation of such an adap-
tation mechanism is based on platforms supporting dynamic modification of the application at run-time.
The OSGi kernel [2] is a standard container-provider to built service-oriented software. It implements a
cooperative model where applications can dynamically discover and use services provided by other ap-
plications running inside the same kernel. In this platform, applications can be installed, started, stopped,
updated and uninstalled without a system restart and at any moment. According to these specifications,
an application is then divided on several bundles (OSGi components). Each bundle is designed to reach
the highest level of independence, giving the software enough modularity to allow partial system adap-
tations such as services updates, additions or removes. Fractal (cited below) can be presented as another
platform allowing this kind of adaptation.

Structure adaptation of component-based application modifies the relations between components and
can add, remove or replace components of the system. Used in extending and adaptive adaptations, this
adaptation implementation relies on tools that support dynamic reconfiguration of deployed applications.
These adaptation facilities are to be integrated within the platform (the middleware) the subject operates
on. DynamicTAO [80], DART [101] and OpenCom [40, 44] offer introspection features and intro-
actions that allow an application to change its configuration and consequently the connections between
the various components. This reconfiguration has been made possible thanks to the accessible archi-
tectural entities and the numerous operations offered in order to change the topology of the application
(in terms of components and connectors). Fractal [30, 29] is another example of run-time platform
supporting adaptive systems. Indeed, one of the peculiarities of Fractal components is to provide control
interfaces (Controller in the Fractal terminology) allowing configuration of some extra-functional aspects
of the components such as the life cycle, the topology of internal composites, etc. Pukas [74] propose
an implementation of the J2EE platform, introducing joint actions procedures (add, delete, connection,
etc.) but is not as reflexive as Fractal.

Adaptation selection and mechanisms

The adaptation selection mechanism presented in Garlan et al. [60], is based on a principle of violation
/ reaction associated with architectural invariants. Each invariant is associated with an adaptation strat-
egy described in an imperative form on the architecture model. When the system detects a breach of an
invariant it triggers the adaptation implementation of the involved strategy.
QualProbes [83] and MADAM [55], in the other hand, use a dynamic selection. QualProbes incorpo-
rates an engine of fuzzy logic to dynamically set the quality parameters of the deployed applications.
Each application describes the rules that control its quality parameters. The middleware is responsible
for implementing these rules and for computing values of relevant parameters in accordance with avail-
able resources. The idea developed into QualProbes is quite relevant but does not take into account the
dynamic architectural adaptation term (adding and deleting components or connectors). MADAM incor-
porates a adaptation selection strategy based on a calculation of utility function that allows him to choose
the best possible configuration depending on the environment.
Batista et al. [20] provide a run-time environment called Plastik that triggers system adaptation when
measured properties of the platform evolves.

External Final Version 1.0, Dated March 16, 2009 58

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Chapter 5

Conclusion

This deliverable provided a comprehensive overview of the knowledge and concepts in the field of adap-
tation and monitoring for service-based applications, taking into account and considering the knowledge
from the S-Cube disciplines business process management, service-oriented computing, grind comput-
ing and software engineering. This knowledge has been analyzed, aligned and synthesized at various
levels of detail as follows:

• Firstly, the adaptation and monitoring framework, introduced in the workpackage vision, has pro-
vided a high level view of the key logical elements needed for adaptation and monitoring of SBAs.
In addition, it has depitced the basic dependencies between those elements.

• Secondly, more detailed conceptual models for monitoring and adaptation have been devised,
which include a refinement of those key logical elements by introducing important (general) con-
cepts and relationships between those concepts.

• Thirdly, for many of the concepts in the conceptual models, specialized concepts exist; e.g., dif-
ferent kinds of adaptation exist, including corrective, perfective or preventive adaptation. Thus,
taxonomies for monitoring and adaptation have been created which classify and list these con-
cepts.

• Finally, the concepts from above have been related to individual domains and research challenges
to show their use within those domains. Based on those domain instantiations, the differing or
similar usage of terms could be identified. In fact, the key definitions for concepts (both domain-
specific and generic) have been provided to the S-Cube Knowledge Model.

The explicit adaptation and monitoring knowledge, as documented in this deliverable, will serve as
input for the future work of this workpackage as well as for the other research workpackages. Specifi-
cally, this knowledge will be exploited in the follow-up tasks of this workpackage, which will further
investigate and refine adaptation principles, techniques, and methodologies (T-JRA-1.2.2 ’Integrated
Adaptation Principles, Techniques and Methodologies’) and which will focus, in particular, on the role
of context and human involvement in the SBA monitoring and adaptation (T-JRA-1.2.3 ’Comprehensive,
Context-Aware Monitoring’).

External Final Version 1.0, Dated March 16, 2009 59

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

Bibliography

[1] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facilitating flexibility
and dynamic exception handling in workflows through worklets. In Short Paper Proceedings at
(CAiSE), volume 161 of CEUR Workshop Proc., Porto, Portugal, 2005.

[2] The OSGi Alliance. Osgi service platform core specification, release 4, April 2007.

[3] Christos Anagnostopoulos, Athanasios Tsounis, and Stathes Hadjiefthymiades. Context aware-
ness in mobile computing environments: A survey. In Mobile eConference, 2004.

[4] Sergio Andreozzi, Stephen Burke, Flavia Donno, Laurence Field, Steve Fisher, Jens Jensen, Bal-
azs Konya, Maarten Litmaath, Marco Mambelli, Jennifer M. Schopf, Matt Viljoen, Antony Wil-
son, and Riccardo Zappi. GLUE Schema Specication, version 1.3, January 2007.

[5] A. Andrieux, C. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke,
and M. Xu. Web Services Agreement Specification (WS-Agreement). Version 1.1, June 2004.

[6] D. Ardagna and B. Pernici. Global and Local QoS Guarantee in Web Service Selection. In BPM
2005 Workshops Proc., pages 32–46, 2005. Nancy.

[7] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. Software Engi-
neering, IEEE Transactions on, 33(6):369–384, June 2007.

[8] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi Plebani. Paws: A
framework for executing adaptive web-service processes. IEEE Softw., 24(6):39–46, 2007.

[9] Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino Segnan. Fault
Tolerant Web Service Orchestration by Means of Diagnosis. In Software Architecture, Third Eu-
ropean Workshop, EWSA 2006, pages 2–16, 2006.

[10] T. Assaf and J.B. Dugan. Diagnosis based on reliability analysis using monitors and sensors.
Reliability Engineering & System Safety, 93:509–521, 2008.

[11] B. Azvine, Z. Cui, and D. D. Nauck. Towards real-time business intelligence. BT Technology
Journal, 23(3), 2005. http://dx.doi.org/10.1007/s10550-005-0043-0.

[12] B. P. Bailey, P. D. Adamczyk, T. Y. Chang, and N. A. Chilson. A framework for specifying and
monitoring user tasks. In Journal of Computers in Human Behavior, special issue on attention
aware systems, 2006.

[13] Matthias Baldauf and Schahram Dustdar anf Florian Rosenberg. A survey on context-aware sys-
tems. In International Journal of Ad Hoc and Ubiquitous Computing, pages 263–277, 2007.

[14] Olivier Barais. Construire et Matriser l’evolution d’une architecture logicielle base de com-
posants. PhD thesis, Laboratoire d’Informatique Fondamentale de Lille, Lille, France, nov 2005.

External Final Version 1.0, Dated March 16, 2009 60

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[15] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-Time Monitoring of
Instances and Classes of Web Service Compositions. In IEEE International Conference on Web
Services (ICWS 2006), pages 63–71, 2006.

[16] Jakob E. Bardram. The java context awareness framework (jcaf) - a service infrastructure and
programming framework for context-aware applications. In In Hans Gellersen, Roy Want, and Al-
brecht Schmidt, editors, Proceedings of the 3rd International Conference on Pervasive Computing,
Lecture Notes in Computer Science, Munich, Germany. Springer Verlag, 2005.

[17] L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL processes with Dynamo and the JBoss
rule engine. In ESSPE ’07: International workshop on Engineering of software services for
pervasive environments, pages 11–20, 2007.

[18] Luciano Baresi, Domenico Bianculli, Carlo Ghezzi, Sam Guinea, and Paola Spoletini. A Timed
Extension of WSCoL. In 2007 IEEE International Conference on Web Services (ICWS 2007),
pages 663–670, 2007.

[19] Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL Processes. In
Service-Oriented Computing - ICSOC 2005, Third International Conference, pages 269–282,
2005.

[20] Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic reconfiguration in
component-based systems. Software Architecture, pages 1–17, 2005.

[21] Salima Benbernou, Luca Cavallaro, Mohand Said Hacid, Raman Kazhamiakin, Gabor
Kecskemeti, Jean-Louis Pazat, Fabrizio Silvestri, Maike Uhlig, and Branimir Wetzstein. State
of the Art Report, Gap Analysis of Knowledge on Principles, Techniques and Methodologies for
Monitoring and Adaptation of SBAs. S-Cube project deliverable, July 2008. S-Cube project deliv-
erable: PO-JRA-1.2.1. http://www.s-cube-network.eu/achievements-results/s-cube-deliverables.

[22] Salima Benbernou, Hassina Meziane, and Mohand-Said Hacid. Run-Time Monitoring for Privacy-
Agreement Compliance. In Service-Oriented Computing - ICSOC 2007, Fifth International Con-
ference, pages 353–364, 2007.

[23] Claudio Bettini, Dario Maggiorini, and Daniele Riboni. Distributed context monitoring for contin-
uous mobile services. In John Krogstie, Karlheinz Kautz, David Allen (Eds.): Mobile Information
Systems II: IFIP Working Conference on Mobile Information Systems (MOBIS), pages 123–137.
Springer, 2005.

[24] Claudio Bettini, Dario Maggiorini, and Daniele Riboni. Distributed context monitoring for the
adaptation of continuous services. In World Wide Web Journal (WWWJ), Special issue on Multi-
channel Adaptive Information Systems on the World Wide Web. Springer, 2007.

[25] Domenico Bianculli and Carlo Ghezzi. Monitoring Conversational Web Services. In IW-
SOSWE’07, 2007.

[26] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, M. Not-
tingham, C. von Riegen, and J. Shewchuk. Web Services Policy Framework (WS-Policy), May
2003.

[27] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt. QoS support for time-critical gridwork-
flow applications. In e-Science 2005 Proc., pages 108–115, 2005.

[28] P. Bratskas, N. Paspallis, and G. A. Papadopoulos. An evaluation of the state of the art in context-
aware architectures. In Sixteenth International Conference on Information Systems Development
(ISD 2007). Springer Verlag, 2007.

External Final Version 1.0, Dated March 16, 2009 61

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[29] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean B. Stefani. The frac-
tal component model and its support in java: Experiences with auto-adaptive and reconfigurable
systems. Softw. Pract. Exper., 36(11-12):1257–1284, 2006.

[30] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and Jean-Bernard Stefani. An
open component model and its support in java. Component-Based Software Engineering, pages
7–22, 2004.

[31] Galle Calvary, Jolle Coutaz, and David Thevenin. Embedding plasticity in the development pro-
cess of interactive systems. In 6th ERCIM Workshop: User Interface for All, 2000.

[32] G. Canfora, M.di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning of Composite
Web Services. In ICWS 2005 Proc., 2005. Orlando.

[33] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Carisma: Context-aware reflective mid-
dleware system for mobile applications. In In IEEE Transactions of Software Engineering Journal
(TSE). November 2003, 2003.

[34] J. Cardoso. Quality of Service and Semantic Composition of Workflows. Ph. D. Thesis, Univ. of
Georgia, 2002.

[35] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data Knowl. Eng., 24(3):211–
238, 1998.

[36] Fabio Casati, Ski Ilnicki, Li jie Jin, Vasudev Krishnamoorthy, and Ming-Chien Shan. eflow: A
platform for developing and managing composite e-services. In AIWoRC, pages 341–348. IEEE
Computer Society, 2000.

[37] S. Chandrasekaran, J. A. Miller, G. Silver, I. B. Arpinar, and A. P. Sheth. Performance Analysis
and Simulation of Composite Web Services. Electronic Market: The Intl. Journal of Electronic
Commerce and Business Media, 13(2):120–132, 2003.

[38] Anis Charfi and Mira Mezini. Ao4bpel: An aspect-oriented extension to bpel. In World Wide Web,
pages 309–344, 2007.

[39] Franck Chauvel. Méthodes et outils pour la conception de systèmes logiciels auto-adaptatifs. PhD
thesis, l’Université Européenne de Bretagne, Septembre 2008.

[40] Michael Clarke, Gordon Blair, Geoff Coulson, and Nikos Parlavantzas. An efficient component
model for the construction of adaptive middleware. Middleware 2001, pages 160–178, 2001.

[41] D. B. Claro, P. Albers, and J. K. Hao. Selecting Web Services for Optimal Composition. In ICWS
2005 Workshop Proc., 2005. Orlando.

[42] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. Scene: A service composition
execution environment supporting dynamic changes disciplined through rules. In Asit Dan and
Winfried Lamersdorf, editors, ICSOC, volume 4294 of Lecture Notes in Computer Science, pages
191–202. Springer, 2006.

[43] Denis Conan, Romain Rouvoy, and Lionel Seinturier. Scalable processing of context information
with cosmos. In Jadwiga Indulska and Kerry Raymond, editors, DAIS, volume 4531 of Lecture
Notes in Computer Science, pages 210–224. Springer, 2007.

[44] Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos Parlavantzas. The design of a config-
urable and reconfigurable middleware platform. Distributed Computing, 15(2):109–126, 2002.

External Final Version 1.0, Dated March 16, 2009 62

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[45] Yi Cui and Klara Nahrstedt. Qos-aware dependency management for component-based systems.
In HPDC ’01: Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing, page 127, Washington, DC, USA, 2001. IEEE Computer Society.

[46] Pierre-Charles David and Thomas Ledoux. Wildcat: a generic framework for context-aware ap-
plications. In MPAC ’05: Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pages 1–7, New York, NY, USA, 2005. ACM.

[47] Anne-Marie Dery-Pinna, Jérémy Fierstone, and Emmanuel Picard. Component model and pro-
gramming: A first step to manage human computer interaction adaptation. In Lecture Notes in
Computer Science, pages 456–460. Springer-Verlag, 1999.

[48] Anind K Dey and Gregory D. Abowd. Towards better understanding of context and context-
awareness. In In Proceedings of the CHI 2000 Workshop on The What, Who, Where, When and
How of Context-Awareness, pages 1–6, 2000.

[49] Jian-Wan Ding, Liping Chen, and Fanli Zhou. A component-based debugging approach for de-
tecting structural inconsistencies in declarative equation based models. J. Comput. Sci. Technol.,
21(3):450–458, 2006.

[50] Distributed Management Task Force, Inc. Common Information Model (CIM) Standards. http:
//www.dmtf.org/standards/cim/.

[51] H. Dresner. Business activity monitoring: Bam architecture. In Gartner Symposium ITXPO
(Cannes, France), 2003.

[52] J. Eder and W. Liebhart. Workflow recovery. In Proc. of IFCIS Int. Conf. on Cooperative Infor-
mation Systems (CoopIS), pages 124 – 134, Brussels, Belgium, 1996. IEEE.

[53] Jacob Eisenstein, Jean V, and Angel Puerta. Adapting to mobile contexts with user-interface
modeling. In Proc. of 3 rd IEEE Workshop on Mobile Computing Systems and Applications
WMCSA, 2000.

[54] E. Esfandiari and V. Tosic. Towards a web service composition management framework. In Proc.
of Int. Conf. on Web Services, Orlando FL, USA, 2005.

[55] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli Gjorven.
Using architecture models for runtime adaptability. IEEE Software, 23(2):62–70, 2006.

[56] G. C. Fox and D. Gannon. Workflow in Grid Systems. Concurrency and Computation: Practice
and Experience, 18(10):1009–1019, 2006.

[57] David Franklin, Jay Budzik, and Kristian Hammond. Plan-based interfaces: Keeping track of user
tasks and acting to cooperate. In 7th international conference on Intelligent user interfaces, 2002.

[58] T. Friese, J.P. Müller, and B. Freisleben. Self-healing execution of business processes based on
a peer-to-peer service architecture. In Proc. of Int. Conf. on Architecture of Computing Systems
(ARCS), pages 108–123, Innsbruck, Austria, 2005. Springer.

[59] H. Gamboa and V. Ferreira. Widam - web interaction display and monitoring. In 5th International
Conference on Enterprise Information Systems ICEIS, 2003.

[60] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46–
54, 2004.

External Final Version 1.0, Dated March 16, 2009 63

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[61] D. Georgakopoulos, M.F. Hornick, and F. Manola. Customizing transaction models and mech-
anisms in a programmable environment supporting reliable workflow automation. IEEE Trans.
Knowl. Data Eng., 8(4):630–649, 1996.

[62] C. Glahn, M. Specht, and R. Koper. Towards a service-oriented architecture for giving feedback
in informal learning environments. In 2nd TenCompetence Workshop, 2007.

[63] K. Goslar, S. Buchholz, Alexander Schill, and H. Vogler. A multidimensional approach to context-
awareness. In International Institute of Informatics and Systemics; Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI2003), 2003.

[64] GRAAP Working Group. WS-Agreement Framework. https://forge.gridforum.org/
projects/graap-wg.

[65] D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving business process quality through
exception understanding, prediction, and prevention. In Proc. of Proceedings of Int. Conf. on Very
Large Data Bases (VLDB), pages 159–168, Roma, Italy, 2001. Morgan Kaufmann.

[66] Guillaume Grondin, Noury Bouraqadi, and Laurent Vercouter. Madcar : An abstract model for dy-
namic and automatic (re-)assembling of component-based applications. Component-Based Soft-
ware Engineering, pages 360–367, 2006.

[67] C. Hagen and G. Alonso. Exception handling in workflow management systems. IEEE Trans.
Software Eng., 26(10):943–958, 2000.

[68] R. Hamadi and B. Benatallah. Recovery nets: Towards self-adaptive workflow systems. In Proc.
of Int. Conf. on Web Information Systems Engineering (WISE), volume 3306 of Lecture Notes in
Computer Science, pages 439–453, Brisbane, Australia, 2004. Springer.

[69] B. Hambling, P. Morgan, A. Samaroo, G. Thompson, and P. Williams. Software Testing: An ISEB
Foundation. British Computer Society, 2007.

[70] M-A. Hariri, D. Tabary, S. Lepreux, and C. Kolski. Context aware business adaptation toward
user interface adaptation. In Communications of SIWN, pages 46–52. Springer Verlag, 2008.

[71] John Harney and Prashant Doshi. Speeding up adaptation of web service compositions using
expiration times. In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 1023–1032, 2007.

[72] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A Framework for
Proactive Self-Adaptation of Service-based Applications Based on Online Testing. In Service-
Wave 2008. to be published, 10-13 December 2008.

[73] Eric Horvitz and Johnson Apacible. Learning and reasoning about interruption. In 5th interna-
tional conference on Multimodal interfaces, 2003.

[74] Gang Huang, Hong Mei, and Fu-Qing Yang. Runtime recovery and manipulation of software ar-
chitecture of component-based systems. Automated Software Engineering, 13(2):257–281, 2006.

[75] International Federation for Information Processing. WG 10.4 on Dependable Computing and
Fault Tolerance. http://www.dependability.org/wg10.4/, 2005.

[76] M. C. Jaeger, G. Muhl, and S. Golze. QoS-aware composition of web services: An evaluation of
selection algorithms. In COOPIS 2005 Proc., 2005. Cyprus.

External Final Version 1.0, Dated March 16, 2009 64

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[77] Kaustubh R. Joshi, William H. Sanders, Matti A. Hiltunen, and Richard D. Schlichting. Auto-
matic model-driven recovery in distributed systems. In SRDS ’05: Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems, pages 25–38, Washington, DC, USA, 2005. IEEE
Computer Society.

[78] R. Kazhamiakin, M. Pistore, and M. Roveri. A Framework for Integrating Business Processes
and Business Requirements. In Proceedings of the International Enterprise Distributed Object
Computing Conference (EDOC), pages 9–20, 2004.

[79] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. J. Network Syst. Manage., 11(1), 2003.

[80] Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane, a Claudio Magalh and Roy H.
Campbell. Monitoring, security, and dynamic configuration with the dynamictao reflective orb.
In Middleware ’00: IFIP/ACM International Conference on Distributed systems platforms, pages
121–143, Secaucus, NJ, USA, 2000. Springer-Verlag New York, Inc.

[81] Kung-Kiu Lau and Zheng Wang. A taxonomy of software component models. Software Engineer-
ing and Advanced Applications, 2005. 31st EUROMICRO Conference on, pages 88–95, Aug.-3
Sept. 2005.

[82] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
Golog: A logic programming language for dynamic domains. J. Log. Program., 31(1-3):59–83,
1997.

[83] Baochun Li and Klara Nahrstedt. Qualprobes: Middleware qos profiling services for configuring
adaptive applications. Middleware 2000, pages 256–272, 2000.

[84] Henry Lieberman. An agent that assists web browsing. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, 1995.

[85] Heiko Ludwig, Asit Dan, and Robert Kearney. Cremona: An Architecture and Library for Cre-
ation and Monitoring of WS-Agreements. In Service-Oriented Computing - ICSOC 2004, Second
International Conference, pages 65–74, 2004.

[86] Paul P. Maglio, Rob Barrett, Christopher S. Campbell, and Ted Selker. Suitor: an attentive infor-
mation system. In 5th international conference on Intelligent user interfaces, 2000.

[87] Khaled Mahbub and George Spanoudakis. Monitoring WS-Agreements: An Event Calculus-
Based Approach. In Luciano Baresi and Elisabetta Di Nitto, editors, Test and Analysis of Web
Services, pages 265–306. Springer, 2007.

[88] Sheila A. McIlraith and Tran Cao Son. Adapting golog for composition of semantic web services.
In Proceedings of the Eights International Conference on Principles and Knowledge Represen-
tation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, pages 482–496. Morgan
Kaufmann, 2002.

[89] Daniel Menascé. QoS issues in Web Services. IEEE Internet Comp., 6(6):72–75, 2002.

[90] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. Sh-bpel: a self-healing plug-in for ws-bpel
engines. In Proceedings of the 1st Workshop on Middleware for Service Oriented Computing,
MW4SOC 2006, Melbourne, Australia, November 27 - December 01, 2006, pages 48–53, 2006.

[91] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive monitoring and service
adaptation for ws-bpel. In WWW, pages 815–824, 2008.

External Final Version 1.0, Dated March 16, 2009 65

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[92] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation analysis testing for model trans-
formations. In proceedings of the European Conference on Model Driven Architecture (ECMDA
06), Bilbao, Spain, July 2006.

[93] D. Nesamoney. Bam: Event-driven business intelligence for the real-time enterprise, 2004. DM
REVIEW, THOMSON MEDIA.

[94] A. Newberger and A. Dey. Designer support for context monitoring and control. In Intel Research,
2003.

[95] B.D. Noble and M. Satyanarayanan. Experience with adaptive mobile applications in odyssey. In
Mobile Networks and Applications 4, pages 245–254, 1999.

[96] Barbara Pernici and Anna Maria Rosati. Automatic learning of repair strategies for web services.
In ECOWS ’07: Proceedings of the Fifth European Conference on Web Services, pages 119–128,
Washington, DC, USA, 2007. IEEE Computer Society.

[97] B. Pernici (Ed). Mobile Information Systems Infrastructure and Design for Adaptivity and Flexi-
bility. Springer, 2006.

[98] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A model for
developing component-based and aspect-oriented systems. In Welf Löwe and Mario Südholt,
editors, Software Composition, volume 4089 of Lecture Notes in Computer Science, pages 259–
274. Springer, 2006.

[99] Marco Pistore and Paolo Traverso. Assumption-Based Composition and Monitoring of Web Ser-
vices. In Luciano Baresi and Elisabetta Di Nitto, editors, Test and Analysis of Web Services, pages
307–335. Springer, 2007.

[100] Marco Pistore, Paolo Traverso, and Piergiorgio Bertoli. Automated composition of web services
by planning in asynchronous domains. In Proceedings of the Fifteenth International Conference
on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California,
USA, pages 2–11. AAAI, 2005.

[101] Pierre-Guillaume Raverdy, Hubert Le, Van Gong, and Rodger Lea. Dart : a reflective middleware
for adaptive applications. In in OOPSLA’98 13th Workshop : Reflective programming in C++ and
Java, 1998.

[102] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management with ADEPT2.
In Proc. of Int. Conf. on Data Engineering ICDE, pages 1113–1114, Tokyo, Japan, 2005.

[103] M. Salifu, Y. Yu, and B.Nuseibeh. Analysing monitoring and switching requirements using con-
straint satisfiability. In Technical Report- ISSN 1744-1986; Department of Computing; Faculty of
Maths, Computing and Technology, UK, 2008.

[104] Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Specifying monitoring and switching prob-
lems in context. In 15th IEEE International Requirements Engineering Conference, 2007.

[105] Ahmed Seffah, Peter Forbrig, and Homa Javahery. Multi-devices ”multiple” user interfaces: de-
velopment models and research opportunities. In Journal of Systems and Software 73, pages
287–300, 2004.

[106] Lionel Seinturier, Nicolas Pessemier, Laurence Duchien, and Thierry Coupaye. A component
model engineered with components and aspects. In Ian Gorton, George T. Heineman, Ivica
Crnkovic, Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski, and Kurt C. Wallnau,
editors, CBSE, volume 4063 of Lecture Notes in Computer Science, pages 139–153. Springer,
2006.

External Final Version 1.0, Dated March 16, 2009 66

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.2.2

[107] S. Sen, B. Baudry, and J.-M. Mottu. On Combining Multi-formalism Knowledge to Select Models
for Model Transformation Testing. In ICST’08: 1st Int. Conf. on Software Testing Verification and
Validation, Lillehamer, Norway, Apr 2008.

[108] Sylvain Sicard, Fabienne Boyer, and Noel De Palma. Using components for architecture-based
management: the self-repair case. In ICSE ’08: Proceedings of the 30th international conference
on Software engineering, pages 101–110, New York, NY, USA, 2008. ACM.

[109] Savitha Srinivasan, Vikas Krishna, and Scott Holmes. Web-log-driven business activity monitor-
ing. IEEE Computer, 38(3), 2005. http://dx.doi.org/10.1109/MC.2005.109.

[110] J.-Z. Sun and J. Sauvola. Towards a conceptual model for context-aware adaptive services. In
Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies, pages 27–29, 2003.

[111] Vanish Talwar, Chetan Shankar, Sandro Rafaeli, Dejan Milojicic, Subu Iyer, Keith Farkas, and
Yuan Chen. Adaptive monitoring: Automated change management for monitoring systems. In
Proceedings of the 13th Workshop of the HP OpenView University Association (HP-OVUA 2006),
pages 21–24, 2006.

[112] Abbas Tarhini and Hacène Fouchal. Conformance testing of real-time component based systems.
In ISSADS, pages 167–181, 2005.

[113] Antti-Matti Vainio, Miika Valtonen, and Jukka Vanhala. Proactive fuzzy control and adaptation
methods for smart homes. IEEE Intelligent Systems, 23(2):42–49, 2008.

[114] Wim Vanderperren, Davy Suvée, Marı́a Agustina Cibrán, and Bruno De Fraine. Stateful aspects in
jasco. In Thomas Gschwind, Uwe Aßmann, and Oscar Nierstrasz, editors, Software Composition,
volume 3628 of Lecture Notes in Computer Science, pages 167–181. Springer, 2005.

[115] L. Verner. The power of events: An introduction to complex event processing in distributed
enterprise systems, 2002. Addison-Wesley Professional.

[116] L. Verner. Bpm: The promise and the challenge, 2004. ACM Queue.

[117] K.E. Wac. Towards qos-awareness of context-aware mobile applications and services. In In: Pro-
ceedings of the On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE
(OTM2005), 31 Oct - 4 Nov 2005, Agia Napa, Cyprus. pp. 751-760. Lecture Notes in Computer
Science 3760, pages 751–760. Springer Verlag, 2005.

[118] H. Wächter and A. Reuter. The ConTract model. In A.K. Elmagarmid, editor, Database Transac-
tion Models for Advanced Applications, pages 219–263. Morgan Kaufmann, 1992.

[119] Hao Yan and Ted Selker. Context-aware office assistant. In 5th international conference on
Intelligent user interfaces, 2000.

[120] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang. QoS-aware middleware for
web services composition. IEEE Trans. on Software Engineering, 30(5), May 2004.

[121] L. Zhang and D. Ardagna. SLA based profit optimization in autonomic computing systems. In
ICSOC 2004 Proc., pages 173–182, 2004. New York.

[122] Qijun Zhu and Chun Yuan. A reinforcement learning approach to automatic error recovery. In
DSN ’07: Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 729–738, Washington, DC, USA, 2007. IEEE Computer Society.

External Final Version 1.0, Dated March 16, 2009 67

