
Grant Agreement No 215483

Title: Initial Set of Principles, Techniques and Methodologies for Assuring End-to-

end Quality and Monitoring of SLAs

Authors: UniDue, Tilburg, FBK, INRIA, Lero-UL, POLIMI, TUW, UPM, USTUTT

Editor: Michael Parkin (Tilburg)

Reviewers: Andreas Metzger (UniDue)

Identifier: CD-JRA-1.3.4

Type:

Version: 1.0

Date: March 17, 2010

Status: Final

Class: Internal

Management summary
This document is the compilation of the set of papers used to produce the ‘paper-based’ deliver-
able CD-JRA-1.3.4, which describes an initial set of principles, techniques and methodologies
for assuring the end-to-end quality and monitoring of SLAs.

Copyright 2010 by the S-Cube consortium – All rights reserved.

The research leading to these results has received funding from the European Community’s Seventh

Framework Programme FP7/2007-2013 under grant agreement n 215483 (S-Cube).

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator) – UniDue Germany
Tilburg University – Tilburg Netherlands
City University London – CITY U.K.
Consiglio Nazionale delle Ricerche – CNR Italy
Center for Scientific and Technological Research – FBK Italy
French Natl Institute for Research in Computer Science and Control – INRIA France
The Irish Software Engineering Research Centre – Lero Ireland
Politecnico di Milano – Polimi Italy
MTA SZTAKI – Computer and Automation Research Institute – SZTAKI Hungary
Vienna University of Technology – TUW Austria
Universit Claude Bernard Lyon – UCBL France
University of Crete – UOC Greece
Technical University of Madrid – UPM Spain
University of Stuttgart – USTUTT Germany
University of Amsterdam – VUA Netherlands
University of Hamburg – UniHH Germany

Published S-Cube documents

These documents are all available from the S-Cube Web Portal at http://www.s-cube-network.eu/

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-1.3.4

Contents

1 Embedding Continuous Life-long Verification in Service Life-cycles 4

2 A Guided Tour Through SAVVY-WS: A Methodology for Specifying and Validating Web
Service Compositions 8

3 Exploiting Assumption-Based Verification for the Adaptation of Service-Based Applica-
tions 38

4 Formal Analysis and Verification of Self-Healing Systems 46

5 Towards Data-Aware Cost-Driven Adaptation for Service Orchestrations 67

6 Taming Dynamically Adaptive Systems with Models and Aspects 84

7 A Framework for Proactive Self-Adaptation of Service-Based Applications Based on Online
Testing 95

8 Online Testing for Proactive Adaptation with High Confidence 107

9 Runtime Prediction of Service Level Agreement Violations for Composite Services 116

10 Adaptation of Service-Based Systems based on Requirements Engineering and Online Test-
ing 131

11 An Initial Proposal for Data-Aware Resource Analysis of Orchestrations with Applications
to Predictive Monitoring 140

12 Configuring End-to-End Business Processes using Multidimensional QoS Criteria 158

13 A CMMI Based Configuration Management Framework to Manage the Quality of Service-
Based Applications 173

Internal Final Version 1.0, Dated March 17, 2010 3

Embedding Continuous Lifelong Verification in Service Life Cycles∗

Domenico Bianculli
University of Lugano

Faculty of Informatics

Lugano, Switzerland

domenico.bianculli@lu.unisi.ch

Carlo Ghezzi
Politecnico di Milano

DEEP-SE group - DEI

Milano, Italy

carlo.ghezzi@polimi.it

Cesare Pautasso
University of Lugano

Faculty of Informatics

Lugano, Switzerland

cesare.pautasso@unisi.ch

Abstract

Service-oriented systems are an instantiation of open

world software, which is characterized by high dynamism

and decentralization. These properties strongly impact on

how service-oriented systems are engineered, built, and op-

erated, as well as verified. To address the challenges of ap-

plying verification to open service-oriented systems, in this

position paper we propose to apply verification across the

entire life cycle of a service and introduce a verification-

oriented service life cycle.

1. Introduction

One of the defining properties of Software Service Engi-
neering, as opposed to traditional Software Engineering, is
the open world assumption [3]. The implications of this as-
sumption affect all aspects of this emerging discipline, e.g.,
from how to design a service-oriented architecture to the no-
tion of correctness and quality that can be applied to define
and check the integrity and the validity of a system design.
In this position paper we focus on the consequences of this
assumption on the way verification is carried out in the ser-
vice life cycle.

In particular, we argue for the need for embedding con-
tinuous lifelong verification across the entire service life cy-
cle. Thus, it is no longer sufficient to apply verification dur-
ing a particular phase or using a specific technique, such
as proving properties based on a service contract at design
time, or testing a service at deployment time to ensure and
guarantee that it will continue to work as it has been spec-
ified or tested during the remainder of its lifetime. Since
services live in an open world, where change is frequent,
unexpected, and welcome [13], it becomes important to be
able to assert properties that have a lifelong validity: both at

∗This work has been partially supported by the EU-FP7-215483 project
“S-Cube” and by the ERC grant 227977 “SMScom”.

design time, deployment time, and at run time. Continuous

verification is about checking services as they are put into
production, but also advocates that they are monitored (and
checked) during their entire productive life.

This paper shows how different verification tech-
niques [2] can be applied at different stages of the service
life cycle, by proposing to enhance conventional life cycle
models with a verification-oriented life cycle layer. This
verification-oriented life cycle iteratively integrates and cor-
relates different techniques, and makes possible to guaran-
tee that the same properties verified based on services con-
tract specifications, will still be checked once the service be-
comes an executable artifact and it is embedded into a larger
service-oriented architecture. This way, continuous lifelong
verification can provide a fundamental building block for
delivering self-adaptive systems [8].

The rest of this paper is organized as follows. Section 2
briefly surveys the existing proposals for service life cy-
cles and discusses to which extent they support verification,
leading to Section 3, which motivates the need for continu-
ous lifelong verification of service-based applications. Sec-
tion 4 presents our verification-oriented model of service
life cycle, which shows how to achieve continuous lifelong
verification. Section 5 discusses related work and Section 6
concludes the paper with an outlook on possible future re-
search directions.

2. Life cycle models

In this section we discuss how service verification is em-
bedded in the software service life cycle models proposed
by several leading SOA vendors and SOC researchers.

Some authors (e.g., [10]) suggest to comply with a tra-
ditional life cycle, following a sequence of phases such as
analysis, design, development, testing, deployment and ad-

ministration. This model has a dedicated phase for (func-
tional) testing, which strictly follows the development phase
and precedes deployment. Hints are also given about the

possibility to monitor the service usage during the adminis-
tration phase, even though the topic is not further discussed.

In other cases, the life cycle model is adapted to the spe-
cific characteristics of service-centric software systems, as
proposed by [7]. This is the case for life cycle models pro-
posed by industrial vendors. IBM, for example, proposes
a model, assembly, deploy and manage cycle, in which the
last phase is also devoted to monitoring the performance
of a service and detecting the failure of system compo-
nents. Sun presents the SOA Repeatable Quality method-
ology, which includes the conception, inception, elabora-

tion, construction and transition phases in an iterative way.
However, verification activities are not explicitly mentioned
in the documentation. Oracle/BEA proposes a life cy-
cle model that clearly separates design-time activities (i.e.,
identify business process, service modeling, build and com-

pose) from those carried out at run time (i.e., publish and

provision, integrate and deploy, secure and manage, evalu-

ate). In this model, verification activities belong to the se-

cure and manage phase, and are mainly focused on SLA
management, performance optimization and dealing with
error events.

As for academic contributions, [14] illustrates a (Web)
service life cycle model and a service-oriented design
methodology. The life cycle starts with an initial planning

phase, followed by a set of phases to be iteratively repeated:
analysis and design, construction and testing, provision-

ing, deployment, execution and monitoring. Verification is
performed before services are put into operation, by means
of functional, performance, interface and assembly testing,
and when services becomes operational, by means of QoS
monitoring techniques. [11] proposes a stakeholder-driven
life cycle, with much emphasis on the assignment of ac-
tivities to stakeholders and on the interaction between and
across them. The service provider is responsible for service
functional testing at design time and service monitoring at
run time. From the point of view of service consumers, veri-
fication activities include application testing at design time,
in case the service consumer plays also the role of an ap-
plication provider/service integrator, and — at run time —
monitoring of the services that are consumed.

3. Motivation

As shown above, existing proposals of service life cycles
advocate to perform verification either at a specific stage of
the life cycle, e.g., at design time, before putting a service
into operation, or at execution time, while the service is be-
ing provisioned. In some cases, verification is performed at
both stages, but usually the properties verified at one stage
are different from and not related to the ones verified at the
other stage, e.g., by following the classical dichotomy be-
tween functional and non-functional properties.

Such narrow scope of verification does not entirely ad-
dress the implications of the open world assumption on how
verification activities are performed. Indeed, the key issue
of continuous lifelong verification consists of spanning ver-
ification activities across the service life cycle, which can
be iterated multiple times. We motivate the need for apply-
ing continuous verification during the entire life span of a
service by means of the following three statements.

Design-time verification only gives limited guarantees.

This kind of verification is carried out by assuming some
properties about and using some models of the environment
with which the service will interact. The environment is
represented mostly by 3rd-party services and the distributed
network infrastructure. As for the former, there is no guar-
antee that a service provider will eventually fulfill the obli-
gations promised in a service agreement. For example, dur-
ing a standard maintenance activity, a provider could inad-
vertently modify an existing service into an upgraded but
incorrect and/or incompatible version, which could break
the compatibility with service clients. Additionally, a mali-
cious provider could modify the exported service, by offer-
ing a lower-quality service than the one promised through
the agreement. Regarding the latter, the parameters esti-
mations used to model the network infrastructure are often
inaccurate, since they must be provided a-priori by domain
experts and are related to quantities that may change over
time. Thus a service that before deployment was proved
to satisfy the requested quality of service requirements may
turn out in practice to violate them, because of the mismatch
between the abstract models that were used for verification
before the deployment and the actual state of the environ-
ment at run time.

A service lives also between design and execution. A
service life cycle contains other stages besides design and
execution. Thus a coherent lifelong verification methodol-
ogy should indicate the use of specific techniques at every
stage of the life cycle. For example, when a service is about
to be deployed, it should be “auditioned”’ [5], i.e., it should
be tested during the interaction with the actual services that
will be provided by business partners, before exposing the
service to public usage.

Execution-time verification can close the loop of itera-

tive service life cycles. Some verification activities may
operate on live data acquired by means of run-time moni-
toring, but it may not always be practical to perform them
on-the-fly. Therefore such data can be used to fuel the next
iterations of the service life cycle, by providing valuable
feedback to the service architects, modelers, and develop-
ers. Live data can be exploited for a thorough audit, an
accurate analysis and model calibration before deploying a
new version of the service.

4. Verification-oriented life cycle

Since many of the life cycle models reviewed in Sec-
tion 2 have a coarse-grained modularity in terms of activi-
ties [11], we ground our verification-oriented life cycle on
a slightly modified version of the model described in [14].
This model has an intrinsic iterative structure of the life cy-
cle, which is a prerequisite to achieve continuous lifelong
verification. As we are going to show, it is thanks to the
feedback provided by the verification activities that the loop
in the iterative life cycle can be closed. With respect to the
original formulation of the model, we shifted the testing and
monitoring phases into the verification-oriented layer of the
model.

The complete model is shown in Figure 1: non
verification-related phases of the life cycle are depicted with
a white-filled shape, while the corresponding verification
activities are highlighted using a grey-filled shape.

The analysis and design phase identifies the require-
ments of the service-based application, builds the models of
the business processes defining the applications and speci-
fies the required services. We envision that at this stage,
the requirements are captured and automatically formal-
ized, such that their formal models will be made available
across the entire lifespan of the service. This is a crucial
step, since the formalized requirements represent the prop-
erties for which we want to assert their lifelong validity. A
relevant contribution to this step is embodied by a model-
ing/specification language that should be able to capture all
facets of the behavior and of the QoS related to services ex-
ecution and interaction. The first step of continuous lifelong
verification is to ascertain that the properties (both func-
tional and non-functional) corresponding to requirements
are met by abstract design models of the service, evalu-
ated in a given context. To achieve this, we suggest the use
of static analysis techniques such as model checking. The

Static

analysis

Testing

Static

analysis

Monitoring

Run-time

Verification

Execution Construction

Analysis

and

Design

Live

testing

Provisioning

and

Deployment

Planning

Figure 1. Verification-oriented life cycle

goal is to check if a formal description of a certain property
holds in the service model by transforming it to a suitable
representation that can be efficiently verified.

The construction phase is about developing the actual
implementation of the service-based application. In this
phase, we recommend to use static analysis techniques to
verify the correctness of the application, as well as test-

ing techniques that operate directly on the implementation.
With respect to the previous phase, the main difference
lies in the system under verification: in this phase, veri-
fication is performed against the concrete implementation
of the service. Therefore, the verification techniques re-
quire more tuning; e.g., source-level analysis tools should
be used. However, many of the verification artifacts used in
the previous phase (e.g., temporal logic formulae or queue-
ing network models) can still be used in this phase. To do
so, the previously mentioned verification techniques can be
used in combination: e.g., the counter-examples obtained
from the execution of model checking can be used to de-
rive dedicated test cases. Moreover, the properties captured
during the analysis phase can be converted, using specific
model-transformation techniques, into proper artifacts suit-
able for source-level verification and testing.

The provisioning phase is about making strategic de-
cisions on service governance, certification, metering and
billing, while the deployment phase is concerned about
making the service publicly available. During these phases
we claim that pre-deployment live testing, i.e., testing the
interactions of a service with other actual services, can be
a supporting tool for ensuring the validity of governance
decisions, such as the choice of business partners to inter-
act with, or the kind of service level agreement to be signed.
Moreover, testing (both functional and non-functional) with
the actual services may also reveal some problems that were
not detected in the previous phase because of the abstract
models that were used. Also in this phase, the original
verification artifacts corresponding to requirements can be
transformed into properties that can checked and/or mea-
sured during the live testing.

Finally, the execution phase is about the productive part
of the cycle, when the service is kept in operation. In this
phase, the main verification activities are monitoring and
run-time verification. The former collects and analyzes data
about the quality of the provisioned service and the 3rd-
party services it interacts with, while the latter analyzes the
execution trace to detect possible violations of the initial
requirements. Indeed, the models corresponding to these
requirements, are transformed, during the deployment, into
data collectors (e.g., to monitor QoS properties such as re-
sponse time and throughput) and failure detectors (e.g., to
detect a violation of a functional or temporal assertion).
One of the key aspects of continuous lifelong verification
is that run-time verification activities may support model

calibration, by using the collected data to provide a better
estimation of the parameters that define the external oper-
ating environment [9], and post-mortem analysis, which is
usually performed off-line by means of a static analysis tool.
The information collected by these verification activities is
also fed into the next iteration of the cycle providing valu-
able input to the analysis and design phase.

5. Related work

Section 2 has already described the different service life
cycle models and how they deal with the issue of verifica-
tion. However, there have been some other proposals about
the verification of service-based applications, which do not
strictly fall under the umbrella of service life cycles. For ex-
ample, in previous work [6] some of the authors addressed
the issue of lifelong verification of service compositions
and proposed a methodology to deal with this issue. How-
ever, this proposal considered a simplified model of a very
generic service life cycle, which only distinguished between
a design-time phase and a run-time phase. Agile methods
like Test-driven development [4] (TDD) emphasize the role
of continuous testing during the development process. In
principle, this is similar to our approach towards continuous
verification; however they focus only on the specific imple-
mentation/development phase of the life cycle. ASOP [15]
is a proposal for an agile service-oriented (development)
process; however, as far as verification is concerned, it only
considers TDD-like verification techniques.

The methodology followed by this work to create a ser-
vice life cycle tailored to specific viewpoints has been intro-
duced by [13], where a change-oriented service life cycle
has been proposed in the context of service evolution fea-
turing support for: (re-)configuration, alignment, and con-
trol of services upon changes. A similar approach — even
though not specific to service-oriented systems engineering
— can be found in [12], where a waterfall software devel-
opment life cycle has been extended to include security into
every phase of the life cycle.

6. Conclusion and future work

Service-oriented systems live in an open world that re-
quires new engineering methodologies to deal with the in-
trinsic dynamic and decentralized nature of these systems.
This paper has focused on verification, by showing how ex-
isting service life cycle models are inadequate to support
continuous lifelong verification of service-based applica-
tions — which we believe to be a key aspect of this kind of
applications — and it has proposed a verification-oriented
life cycle to achieve this goal.

Although in this paper we have grounded our
verification-oriented life cycle on a specific life cycle

model, in the future we will consider other existing life
cycle models and try to overlay the proposed verification-
oriented life cycle on them. In particular, we will investi-
gate the challenges to adapt the verification-oriented life cy-
cle layer to agile development processes, since our proposal
augments an iterative model. In all cases, we will evalu-
ate its adoption in the context of real service-based applica-
tions development, by measuring the impact on the project
quality, duration and cost. Moreover, we will investigate the
role and the use of models [1] in the context of the proposed
life cycle, to define a model-driven methodology to achieve
continuous lifelong verification.

References

[1] D. Ardagna, C. Ghezzi, and R. Mirandola. Rethinking the
use of models in software architecture. In Proc. of QoSA

2008, volume 5281 of LNCS, pages 1–27. Springer, 2008.
[2] L. Baresi and E. Di Nitto, editors. Test and Analysis of Web

Services. Springer, 2007.
[3] L. Baresi, E. D. Nitto, and C. Ghezzi. Toward open-world

software: Issue and challenges. IEEE Computer, 39(10):36–
43, 2006.

[4] K. Beck. Test Driven Development by Example. Addison-
Wesley Professional, November 2002.

[5] A. Bertolino, L. Frantzen, and A. Polini. Audition of web
services for testing conformance to open specified protocols.
In Architecting Systems with Trustworthy Components, vol-
ume 3938 of LNCS, pages 1–25. Springer, 2006.

[6] D. Bianculli and C. Ghezzi. Towards a methodology for life-
long validation of service compositions. In Proc. of SDSOA

2008, pages 7–12. ACM, 2008.
[7] M. B. Blake. Decomposing composition: Service-oriented

software engineers. IEEE Software, 24(6):68–67, June 2007.
[8] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and

K. Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Autom. Softw. Eng., 15(3):313–341,
2008.

[9] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburelli.
Model evolution by run-time adaptation. In Proc. of

ICSE’09. IEEE Computer Society, 2009. to appear.
[10] T. Erl. Service-Oriented Architecture: Concepts, Technol-

ogy, and Design. Prentice Hall, August 2005.
[11] Q. Gu and P. Lago. A stakeholder-driven service life cycle

model for SOA. In Proc. of IW-SOSWE’07, pages 1–7, 2007.
[12] A. M. Hoole, I. Simplot-Ryl, and I. Traore. Integrating

contract-based security monitors in the software develop-
ment life cycle. In Proc. of FLACOS’08, pages 25–30, 2008.

[13] M. P. Papazoglou. The challenges of service evolution. In
Proc. of CAiSE 2008, volume 5074 of LNCS, pages 1–15.
Springer, 2008.

[14] M. P. Papazoglou and W. V. D. Heuvel. Service-oriented de-
sign and development methodology. Int. J. Web Eng. Tech-

nol., 2(4):412–442, year 2006.
[15] A. Qumer and B. Henderson-Seller. ASOP: An ag-

ile service-oriented process. In New Trends in Software

Methodologies, Tools and Techniques, pages 83–92. IOS
Press, 2007.

A Guided Tour through SAVVY-WS:
a Methodology for Specifying and Validating

Web Service Compositions

Domenico Bianculli1, Carlo Ghezzi2, Paola Spoletini3,
Luciano Baresi2, and Sam Guinea2

1 University of Lugano
Faculty of Informatics

via G. Buffi 13, CH-6900, Lugano, Switzerland
domenico.bianculli@lu.unisi.ch

2 Politecnico di Milano
DEEP-SE Group - Dipartimento di Elettronica e Informazione

piazza L. da Vinci, I-20133, Milano, Italy
{carlo.ghezzi, sam.guinea, luciano.baresi}@polimi.it

3 Università dell’Insubria
Dipartimento di Scienze della Cultura, Politiche e dell’Informazione

via Carloni 78, I-22100, Como, Italy
paola.spoletini@uninsubria.it

Abstract. Service-Oriented Architectures are emerging as a promising
solution to the problem of developing distributed and evolvable applica-
tions that live in an open world. We contend that developing these ap-
plications not only requires adopting a new architectural style, but more
generally requires re-thinking the whole life-cycle of an application, from
development time through deployment to run time. In particular, the
traditional boundary between development time and run time is blur-
ring. Validation, which traditionally pertains to development time, must
now extend to run time. In this paper, we provide a tutorial introduction
to SAVVY-WS, a methodology that aims at providing a novel integrated
approach for design-time and run-time validation. SAVVY-WS has been
developed in the context of Web service-based applications, composed
via the BPEL workflow language.

1 Introduction

Software systems have been evolving from having static, closed, and centralized
architectures to dynamically evolving distributed and decentralized architectures
where components and their connections may change dynamically [1]. In these
architectures, services represent software components that provide specific func-
tionality, exposed for possible use by many clients. Clients can dynamically dis-
cover services and access them through network infrastructures. As opposed to
the conventional components in a component-based system, services are devel-
oped, deployed, and run by independent parties. Furthermore, additional services

2 D. Bianculli et al.

can be offered by service aggregators composing third-party services to provide
new added-value services.

This emerging scenario is open, because new services can appear and disap-
pear, dynamic, because compositions may change dynamically, and decentralized,
because no single authority coordinates all developments and their evolution.

Service-Oriented Architectures (SOAs) have been proposed to support appli-
cation development for these new settings. An active research community is in-
vestigating the various aspects for service-oriented computing; research progress
is documented, for example, by the International Conference on Service-Oriented
Computing [2]. Several large research projects have also been funded in this area
by the European Union, such as, amongst many others, SeCSE [3], PLASTIC
[4], and the S-Cube [5] network of excellence, in which the authors are involved.
The European Union has also promoted many initiatives to foster services-based
software development and research, such as NESSI [6].

We strongly believe that a holistic approach is necessary to develop modern
dynamic service-based applications. A coherent and well-grounded methodol-
ogy must guide an application’s life cycle: from development time to run time.
SAVVY-WS (Service Analysis, Verification, and Validation methodologY for
Web Services) is intended to be a first attempt to contribute to such a method-
ology, by focusing on lifelong verification of service compositions, which encom-
passes both design-time and run-time verification. SAVVY-WS is tailored to
Web service technologies [7, 8]. The reason of this choice is that although SOAs
are in principle technology-agnostic and can be realized with different technolo-
gies —such as OSGi, Jini and message-oriented middleware— Web services are
the most used technology to implement SOAs, as corroborated by the many
on-going standardization efforts devoted to support them. SAVVY-WS has been
distilled by research performed in the context of several projects, most notably
the EU IST SeCSE [3, 9] and PLASTIC [4] projects, and the Italian Ministry
of Research projects ART DECO [10] and DISCoRSO [11]. A preliminary eval-
uation of the use of SAVVY-WS has been reported in [12–14]. SAVVY-WS is
supported by several prototype tools that are currently being integrated in a
comprehensive design and execution environment.

This paper provides a tutorial introduction to SAVVY-WS. Section 2 briefly
summarizes the main features of the BPEL language, which is used for service
compositions, and the ALBERT language, which is used to formally specify prop-
erties. Section 3 gives an overview of SAVVY-WS, which is based on ALBERT,
a design-time verification environment based on model checking, and a run-time
monitoring environment. Section 4 introduces two running examples that will be
used throughout the rest of the paper. Section 5 discusses how ALBERT can be
used as a specification language for BPEL processes. Section 6 shows how verifi-
cation is performed at design time via model checking, while Sect. 7 shows how
continuous verification of the service composition can be achieved at run time.
Section 8 discusses the related work. Section 9 provides some final conclusions.

A Guided Tour through SAVVY-WS 3

2 Background Material

2.1 BPEL

BPEL —Business Process Execution Language (for Web Services)— is a high-
level XML-based language for the definition and execution of business processes
[15]. It supports the definition of workflows that provide new services, by com-
posing external Web services in an orchestrated manner. The definition of a
workflow contains a set of global variables and the workflow logic is expressed
as a composition of activities; variables and activities can be defined at different
visibility levels within the process using the scope construct.

Activities include primitives for communicating with other services (receive,
invoke, reply), for executing assignments (assign) to variables, for signaling faults
(throw), for pausing (wait), and for stopping the execution of a process (termi-
nate). Moreover, conventional constructs like sequence, while, and switch provide
standard control structures to order activities and to define loops and branches.
The pick construct makes the process wait for the arrival of one of several possi-
ble incoming messages or for the occurrence of a time-out, after which it executes
the activities associated with the event.

The language also supports the concurrent execution of activities by means
of the flow construct. Synchronization among the activities of a flow may be
expressed using the link construct; a link can have a guard, which is called
transitionCondition. Since an activity can be the target of more than one link,
it may define a joinCondition for evaluating the transitionCondition of each
incoming link. By default, if the joinCondition of an activity evaluates to false,
a fault is generated. Alternatively, BPEL supports Dead Path Elimination, to
propagate a false condition rather than a fault over a path, thus disabling the
activities along that path.

Each scope (including the top-level one) may contain the definition of the
following handlers:

– An event handler reacts to an event by executing —concurrently with the
main activity of the scope— the activity specified in its body. In BPEL there
are two types of events: message events, associated with incoming messages,
and alarms based on a timer.

– A fault handler catches faults in the local scope. If a suitable fault handler
is not defined, the fault is propagated to the enclosing scope.

– A compensation handler restores the effects of a previously completed trans-
action. The compensation handler for a scope is invoked by using the com-
pensate activity, from a fault handler or compensation handler associated
with the parent scope.

The graphical notation for BPEL activities used in the rest of the paper is
shown in Fig. 1; it has been devised by the authors and it is freely inspired by
BPMN [16].

4 D. Bianculli et al.

Activity Shape Activity Shape Activity Shape

receive wait pick

invoke terminate flow

reply sequence fault handler

!

assign switch event handler

throw

!

while compensation handler

Fig. 1. Graphical notation for BPEL

2.2 ALBERT

ALBERT [12] is an assertion language for BPEL processes, designed to support
both design-time and run-time validation.

ALBERT formulae predicate over internal and external variables. The former
consist of data pertaining to the internal state of the BPEL process in execution.
The latter are data that are considered necessary to the verification, but are not
part of the process’ business logic and must be obtained by querying external
data sources (e.g., by invoking other Web services, or by accessing some global,
persistent data representing historical information).
ALBERT is defined by the following syntax:

φ ::= χ | ¬φ | φ ∧ φ | (op id in var ; φ) |
Becomes(χ) | Until(φ,φ) | Between(φ,φ,K) | Within(φ,K)
χ ::= ψ relop ψ | ¬χ | χ ∧ χ | onEvent(µ)
ψ ::= var | ψ arop ψ | const | past(ψ, onEvent(µ), n) |
count(χ, K) | count(χ, onEvent(µ), K) | fun(ψ, K) |
fun(ψ, onEvent(µ), K) | elapsed(onEvent(µ))
op ::= forall | exists

relop ::= < | ≤ | = | ≥ | >

arop ::= + | − | × | ÷
fun ::= sum | avg | min | max

where id is an identifier, var is an internal or external variable, onEvent is an
event predicate, Becomes, Until , Between and Within are temporal predicates,
count , elapsed , past , and all the functions derivable from the non-terminal fun
are temporal functions of the language. Parameter µ identifies an event: the start
or the end of an invoke or receive activity, the receipt of a message by a pick or

A Guided Tour through SAVVY-WS 5

an event handler, or the execution of any other BPEL activity. K is a positive
real number, n is a natural number and const is a constant.

The above syntax only defines the language’s core constructs. The usual
logical derivations are used to define other connectives and temporal operators
(e.g., ∨, Always , Eventually , . . .). Moreover, the strings derived from the non-
terminal φ are called formulae; the strings derived from the non-terminal ψ are
called expressions.

The formal semantics of ALBERT is provided in Appendix A.

3 A Bird-eye View of SAVVY-WS

This section illustrates the principles and the main design choices of SAVVY-
WS. Its use is then illustrated in depth in the rest of this paper, which shows
SAVVY-WS in action through two case studies.

SAVVY-WS’s goal is to support the designers of composite services during
the validation phase, which extends from design time to run time. SAVVY-WS
assumes that service composition is achieved by means of the BPEL workflow
language, which orchestrates the execution of external Web services.

Figure 2 summarizes the use of SAVVY-WS within the development process
of BPEL service compositions. When a service composition is designed (step 1),
SAVVY-WS assumes that the external services orchestrated by the workflow are
only known through their specifications. The actual services that will be invoked
at run time, and hence their implementation, may not be known at design time.
The specification describes not only the syntactic contract of the service (i.e.,
the operations provided by the service, and the type of their input and output
parameters), but also their expected effects, which include both functional and
non-functional properties. Functional properties describe the behavioral contract
of the service; non-functional properties describe its expected quality, such as its
response time.

Specifying functional and non-functional properties only at the level of inter-
faces is required to support lifelong validation of dynamically evolvable compo-
sitions, which massively use late-binding mechanisms. Indeed, at design time a
service refers to externally invoked services through their required interface. At
run time, the service will resolve its bindings with external services that provide
a matching interface, i.e., their provided interface conforms to the one used at
design time.

The SAVVY-WS methodology supports the ALBERT language to specify re-
quired service interfaces. The language specifies the required interface in terms
of logical formulae, called assumed assertions (AAs). Based on the AAs of all
services invoked by the workflow, in turn, the composition may offer a service
whose properties can also be specified via ALBERT formulae, called guaranteed
assertions (GAs). Therefore, the second step of the SAVVY-WS-aware devel-
opment process is to annotate the BPEL process with assumed and guaranteed
assertions written in ALBERT (step 2 in Fig. 2).

6 D. Bianculli et al.

ALBERT

assumed

assertions

ALBERT

guaranteed

assertions

BPEL

process

bpel PR

BPEL

process

+

BPEL process +

assumed and

guaranteed assertions

BPEL2BIR

+

Bogor

YES

service 1

service ...

service n

 BPEL process design1 Annotation of the BPEL process with ALBERT assertions

Design-time validation

NO

Deployment

BPEL

process

+

ALBERT

assertions

Run-time

monitoring

architecture

Run-time validation
service 1

service ...

service n
BPEL engine + Dynamo

2

34

5

Fig. 2. SAVVY-WS-aware development process

The SAVVY-WS methodology is supported at design time by a formal verifi-
cation tool (Bpel2Bir) that is used to check (step 3 in Fig. 2) that a composite
service delivers its expected functionality and meets the required quality of ser-
vice (both specified in ALBERT as GAs), under the assumption that the external
services used in the composition fulfill their required interfaces (specified in AL-
BERT as AAs). The SAVVY-WS verification tool is based on the Bogor model
checker [17].

Design-time verification does not prevent errors from occurring at run time.
In fact, there is no guarantee that a service implementation eventually fulfills the
contract promised through its provided interface. The service provider may either
be malicious, by offering a service with an inferior experienced quality of service
and/or a wrong functionality to increase its revenue on the service provision, or
it might change the service implementation as part of its standard maintenance
process: in this case, a service that worked properly might be changed in a new
version that violates its previous contract.

A Guided Tour through SAVVY-WS 7

Furthermore, during design-time verification, it is not possible to model the
behavior of the underlying distributed infrastructure, which plays an important
role in the provision of networked services. Although service providers’ spec-
ifications could take into account, to some extent, the role of the distributed
infrastructure, it is virtually impossible to foresee all possible conditions of the
infrastructure components (e.g., network links) at design time.

To solve these problems, SAVVY-WS supports continuous verification by
transforming —when a BPEL process is deployed on a BPEL execution engine
(step 4 in Fig. 2)— ALBERT formulae into run-time assertions that are mon-
itored (step 5 in Fig. 2) by Dynamo —our monitoring framework embedded
within the BPEL engine— to check for possible deviations from the correct be-
havior verified at design time. If a deviation is caught, suitable compensation
policies and recovery actions should be activated.

4 Running Examples

In this section, we describe the two running examples used in the rest of this
paper to illustrate our lifelong validation methodology.

The first example is inspired by one of the scenarios developed in the context
of the EU IST project SENSORIA [18]. We considered the On Road Assistance
scenario, which takes place in an automotive domain, where a SOA interconnects
(the devices running on) a car, service centers providing facilities like car repair,
towing and car rental, and other actors. As will be described in Sect. 5.1, this
example is used to show how to express (and validate) in ALBERT properties
related to the timeliness of events.

The second example is inspired by a similar one described in [19, 20] and it
illustrates a BPEL process realizing a Car Rental Agency service. It interacts
with a Car Broker Service, which controls the operations of the branch; with a
User Interaction Service, through which customers can make car rental requests;
with a Car Information Service, which maintains a database of cars availability
and allocates cars to customers; with a Car Parking Sensor Service, which ex-
poses as a Web service the sensor that senses cars as they are driven in or out
of the car parking of the branch. As will be illustrated in Sect. 5.2, this example
will be used to show how to express ALBERT properties about sequences of
events.

4.1 Example 1: On Road Assistance

The On Road Assistance process (depicted in Fig. 3), is supposed to run on an
embedded module in the car and is executed after a breakdown, when the car
becomes not driveable.

The Diagnostic System sends a message with diagnostic data and the driver’s
profile (which contains credit card data, the allowed amount for a security deposit
payment, and preferences for selecting assistance services) to the workflow, which

8 D. Bianculli et al.

startAssistance

requestCardCharge

selectServices

requestCCCallBack

Diagnostic system

Bank

GPS

Registry

Reasoner

orderGarage

Garage

Tow Truck

Dispatching Center

Car Rental Agency

assignPLs

orderRentalCar

flow1

flow2

requestLocation

findLocalServices

towTruck

ProgressNotice

orderTowTruck

Fig. 3. The On Road Assistance BPEL process

A Guided Tour through SAVVY-WS 9

starts by executing the startAssistance receive activity. Then, it starts a flow
(named flow1) containing two parallel sequences of activities.

In one sequence, the process first requests the Bank service to charge the
driver’s credit card with a security deposit payment, by invoking the operation
requestCardCharge and passing the credit card data and the amount of the
payment. Then, it waits for the asynchronous reply of the Bank, modeled by the
requestCCCallBack receive activity.

In the other parallel sequence, the process first asks the GPS service —which
represents a Web service interface for the GPS device installed on the car— to
provide the position of the car (requestLocation invoke activity). The returned
location is then used to query (findLocalServices invoke activity) a Registry
to discover appropriate services close to the area where the car pulled out. The
Registry service will return a sequence of triples —each of which contains a
suitable combination of locally available services providing car repair shops, car
rental, and tow trucking— stored in the foundServices process variable.

Subsequently, this variable is used as an input parameter in the selectServ-
ices operation of the Reasoner service, which is supposed to select the best
available service triple matching the driver’s preferences, and to store the se-
lected services’ endpoint references in the bestServices process variable. After
assigning (assignPLs assign activity) the endpoint references to partner links
corresponding to the Garage, Car Rental Agency and Tow Truck Dispatching
Center services, the process first sets an appointment with the garage, by send-
ing to it the car diagnostic data (orderGarage invoke activity). The garage
acknowledges the appointment by sending back the actual location of the repair
shop.

Afterwards, the process starts a flow (named flow2) with three activities.
Two activities are grouped in a sequence, where the process first contacts the
towing service dispatching center (orderTowTruck invoke activity), and then
it waits for an acknowledgment message ack confirming that a tow truck is in
proximity of the car; this message is consumed by the towTruckProgressNotice
receive activity.

The other activity is executed in parallel to the sequence mentioned above,
and is used to contact the car rental agency (orderRentalCar invoke activity). In
both invoke activities of flow2, the garage location is sent as an input parameter,
representing the coordinates where the car is to be towed to and where the rental
car is to be delivered.

To keep the example simple, we assume that at least one service triple is
retrieved after invoking the Registry, and that the selected garage, towing service,
and car rental agency can cope with the received requests.

4.2 Example 2: Car Rental Agency

The Car Rental Agency process (sketched in Fig. 4) is supposed to run on the
information system of a local branch of a car rental company.

The process starts as soon as it receives a message from the Car Broker
Service (startRental receive activity). Then, the process enters an infinite loop:

10 D. Bianculli et al.

startRental

findCar

onMessage

stopRental

onMessage

carEnterX

onMessage

carExitX

onMessage

markCarX

Unavailable

markCarX

Available
stopRental

findCarCB

Car Information Service

Car Parking

Sensor Service

Car Broker Service

User Interaction Service

lookupCar

Fig. 4. Car Rental Agency BPEL process

every iteration is a pick activity that suspends the execution and waits for one
of the following four messages:

– findCar. A customer asks to rent a car and provides her preferences (e.g., the
car model). Then, the process checks the availability of a car that matches
customer’s preferences by invoking the lookupCar operation on the Car
Information Service. The result of this operation, which can be either a
negative answer or an identifier corresponding to the digital key to access
the car, is returned to the customer with the findCarCB reply activity.

– carEnterX and carExitX. These two messages are sent out by the Car Park-
ing Sensor Service when a car enters (respectively, exits) the car parking.
The process reacts to this information by updating the cars database, invok-
ing, respectively, the markCarAvailableX and markCarUnavailableX oper-
ations on the Car Information Service. Actually, the X in the name of each
message or operation is a placeholder for a unique id associated with a car;
therefore, if A is a car id, the actual messages associated with it have the
form carEnterA and carExitA, and the corresponding operations are named
markCarAvailableA and markCarUnAvailableA.

– stopRental. The Car Broker Service stops the operations of the local branch,
making the process terminate.

To keep the example simple, we assume that the local branch where the Car
Rental Agency process is run is the only one accessing the Car Information
Service and that cars in the car parking can be only rented through the local
car rental branch.

A Guided Tour through SAVVY-WS 11

5 Specifying Services with ALBERT

The ALBERT language defines formulae that specify invariant assertions for a
BPEL process. Two kinds of assertions can be specified using ALBERT:

– assumed assertions (AAs), which define the properties that partner services
are required to fulfill when interacting with the BPEL process;

– guaranteed assertions (GAs), which define the properties that the composite
service should satisfy, assuming that external services operate as specified.

Both kinds of assertions allow for stating functional and non-functional prop-
erties of services. As an example, an AA that should hold after the execution
(as a post-condition) of an invoke activity Act on an external service S can be
written in the following form:

onEvent(end Act) → $myVar=EDS::getData()/var

The antecedent of the formula contains the onEvent predicate, which is used to
identify a specific point in the execution of the workflow. This point is represented
by its argument: in this case, the keyword end denotes the point right after the
end of the execution of activity Act. The consequent of the formula states that
the value of the internal variable myVar of the process (the variable returned
after invoking service S) must be equal to the value obtained by accessing an
external data source (the EDS Web service endpoint), invoking the getData

operation on it and retrieving the var part from the return message.
It is also possible to express non-functional AAs, such as latency in a service

response. The following ALBERT formula specifies that the duration of an invoke
activity Act should not exceed 5 time units:

onEvent(start Act) → Within(onEvent(end Act), 5)

As in the previous formula, the antecedent identifies a certain point in the ex-
ecution of the process where the consequent should then hold to make the as-
sertion evaluate to true. This point is represented by the event corresponding
to the start of activity Act. The consequent contains the Within operator,
which evaluates to true if its first argument evaluates to true within the tem-
poral bound expressed by the second argument; otherwise it evaluates to false.
In other words, the consequent states that the event corresponding to the end

of activity Act should occur within 5 time units from the current instant, which
is the time instant in which the antecedent of the formula is true. We leave the
choice of the most suitable timing granularity to the verification engineer, who
can then properly convert the informal system requirements to formal, real-time
specifications [21].

ALBERT can also be used to express GAs. For example, one may state an
upper bound to the duration of a certain sequence of activities, which includes
external service invocations, performed by a composite BPEL workflow in re-
sponse to a user’s input request.

12 D. Bianculli et al.

As said above, ALBERT can be used to specify both AAs and GAs for BPEL
processes. However, when defining AAs, formulae should only refer to the BPEL
activities that are responsible for interacting with external services. Typically,
AAs express properties that must hold after the workflow has completed an in-
teraction with an external service. Hereafter we list a few specification templates
which proved to be useful to express AAs in practical cases. In the templates, µ
is an event identifying the start or the end of an invoke or receive activity, the
reception of a message by a pick, or an event handler ; φ and χ are ALBERT
formulae; ψ and ψ

� are ALBERT expressions; n is a natural number which is
used to retrieve a certain value upon the nth-last occurrence of event µ in the
past; K is a positive real number denoting time distances; fun is a placeholder
for any function (e.g., average, sum, minimum, maximum) that can be applied
to sets of numerical values.

– onEvent(µ) → φ: it allows for checking property φ only in the states preced-
ing or following an interaction with an external service;

– past(ψ�
, onEvent(µ), n) = ψ → φ: it allows for checking property φ on the

basis of past interactions of the workflow with the external world;
– Becomes(count(χ, onEvent(µ), K) = ψ) → φ: it allows for checking prop-

erty φ only if past interactions with the external world have led to a certain
number of specific events;

– Becomes(fun(ψ�
, onEvent(µ), K) = ψ) → φ: it allows for checking property

φ only if past interactions with the external world have led to a certain value
of an aggregate function.

5.1 Specifying the On Road Assistance Process

Hereafter we provide some properties of the On Road Assistance process: each
property is first stated informally and then in ALBERT, followed by an addi-
tional clarifying comment, when necessary.

– BankResponseTime

After requesting to charge the credit card, the Bank will reply within 4
minutes when a low-cost communication channel is used, and it will reply
within 2 minutes if a high-cost communication channel is used. In ALBERT
this AA can be expressed as follows:

onEvent(end requestCardCharge) →
(VCG::getConnection()/cost=‘low’∧
Within(onEvent(start requestCCCallBack), 4) ∨
(VCG::getConnection()/cost=‘high’∧
Within(onEvent(start requestCCCallBack), 2))

where VCG is the Web service interface for the local vehicle communication
gateway, providing contextual information on the communications channels
currently in use within the car. VCG::getConnection()/cost represents an

A Guided Tour through SAVVY-WS 13

external variable retrieved by invoking the getConnection operation on the
VCG service and accessing the cost part of the returned message.

– AllButBankServicesResponseTime

The interactions with all external services but the Bank, namely GPS, Reg-
istry, Reasoner, Garage, Tow Truck Dispatching Center and Car Rental
Agency will last at most 2 minutes. This AA is expressed as a conjunction
of formulae, each of which follows the pattern:

onEvent(start Act) → Within(onEvent(end Act), 2)

where Act ranges over the names of the invoke activities interacting with
the external services listed above.

– AvailableServicesDistance

The Registry will return services whose distance from the place where the
car pulled out is less than 50 miles. This AA can be expressed as follows:

onEvent(end findLocalServices) →
(forall t in $foundServices/[*] ;

(forall s in $foundServices/t/[*] ;

s/distance < 50))

where foundServices contains a sequence of triples, where elements contain
a distance message part.

– TowTruckServiceTimeliness

The Tow Truck Dispatching Center service selected by the Reasoner will
provide assistance within 50 minutes from the service request. This AA can
be expressed as follows:

onEvent(end selectServices) → ($bestServices/towing/ETA ≤ 50)

where the ETA message part represents the maximum time bound guaranteed
by a service to provide assistance.

– TowTruckArrival

The time interval between the end of the order of a tow truck and the arrival
of the ack message (notifying that the tow truck is in proximity of the car)
is bounded by the ETA of the Tow Truck Dispatching Center service, that
is 50 minutes. This AA can be expressed as follows:

onEvent(end OrderTowTruck) →
Within(onEvent(start TowTruckProgressNotice), 50)

– AssistanceTimeliness

The tow truck that will be requested will be in proximity of the car within 60
minutes after the credit card is charged. This property must be guaranteed
to the user by the On Road Assistance process. It is a GA, whose validity is

14 D. Bianculli et al.

(rather trivially) assured at design time by the AllButBankServicesResponse-

Time, the TowTruckServiceTimeliness and the TowTruckArrival AAs, and by
the structure of the process. The property can be expressed as follows:

onEvent(end requestCCCallBack) →
Within(onEvent(start TowTruckProgressNotice), 60)

5.2 Specifying the Car Rental Agency Process

Hereafter we provide some properties of the Car Rental Agency process. As we
did in the previous section, each property is first stated informally and then in
ALBERT, followed by an additional clarifying comment, when necessary.

– ParkingInOut

Between two events signaling that a car exits the car parking, an event sig-
naling the entrance for the same car must occur. This AA can be expressed4

as a conjunction of formulae, each of which follows the pattern:

onEvent(carExitX) → Until(¬onEvent(carExitX), onEvent(carEnterX))

where X ranges over the identifiers of the cars available in the local rental
branch. Moreover, this formula can be combined, using a logical AND, with
a similar constraint that refers to the carEnterX message.

– CISUpdate

If a car is marked as available in the Car Information Service, and the same
car is not marked as unavailable until a lookupCar operation for that car is
invoked, then the lookupCar operation should not return a negative answer.
This AA on the behavior of the Car Information Service can be expressed5

as a conjunction of formulae, each of which follows the pattern:

(onEvent(end markAvailableX) ∧
Until(¬ onEvent(end markUnavailableX),

onEvent(start lookupCar) ∧ $carInfo/id=X))

→ Eventually(onEvent(start lookupCar) ∧ $carInfo/id=X ∧
Eventually((onEvent(end lookupCar) ∧ $queryResult/res!="no")))

where X ranges over the identifiers of the cars available in the local rental
branch, carInfo is the input variable of the lookupCar operation, whose
output variable is queryResult.

4 The semantics of the Until operator described in Appendix A guarantees that its
first argument will not be evaluated in the current state.

5 A more complete specification should also include that two lookupCar operations
for the same car could not happen at the same time. However, this is guaranteed by
the structure of the workflow.

A Guided Tour through SAVVY-WS 15

– RentCar

If a car enters in the car parking, and the same car does not exit until
a customer requests it for renting, then this request should not return a
negative answer. This is a GA, whose validity is (rather trivially) assured at
design time by the ParkingInOut and CISUpdate AAs, and by the structure
of the process. The property can be expressed as a conjunction of formulae,
each of which follows the pattern:

(onEvent(carEnterX) ∧
Until(¬ onEvent(carExitX),

onEvent(start findCar) ∧ $carInfo/id=X))

→ Eventually(onEvent(start findCar) ∧ $carInfo/id=X ∧
Eventually((onEvent(start findCarCB) ∧ $queryResult/res!="no")))

where X ranges over the identifiers of the cars available in the local rental
branch, carInfo is the input variable of the findCar message, queryResult
is the variable returned to the User Interaction Service by the findCarCB

reply activity.

6 Design-time Verification

Our design-time verification phase is based on model checking. We developed
Bpel2Bir, a tool that translates a BPEL process and its ALBERT properties
into a model suitable for the verification with the Bogor model checker [17]. In
the rest of this section, we illustrate, with the help of some code snippets, how
the two running examples and their ALBERT properties are translated into BIR
(Bogor’s input language).

6.1 Example 1: Model Checking the On Road Assistance Process

A BPEL process is mapped onto a BIR system composed of threads that model
the main control flow of the process and its flow activities.

Data types are defined by using an intuitive mapping between WSDL mes-
sages/XML Schema types and BIR primitive/record types. In this mapping,
XML schema simple types (e.g., xsd:int, xsd:boolean) correspond to their
equivalent ones in BIR (e.g., int and boolean). Moreover, the mapping also sup-
ports some XML schema facets, such as restrictions on values over integer do-
mains (e.g., minInclusive) and enumeration, which is translated into an enu-
meration type. For example, the message that is sent by the Diagnostic System
to the process, contains diagnostic data and the driver’s profile (which includes
credit card data, the allowed amount for the security deposit payment and pref-
erences for selecting assistance services). This complex type can be modeled as
follows, using a combination of record types in BIR:

16 D. Bianculli et al.

enum TDiagnost i cData {dd1 , dd2}
enum TCustomerPre fe rence {cp1 , cp2}
enum TCred i tCard { cc c1 , c c c2 }

record TStartMsg {
TDiagnost i cData d iagData ;
TCred i tCard ccData ;
i n t (1 , 10) d e p o s i t ;
TCustomerPre fe rence cpData ;

}

where we assume, based on the WSDL specification associated with the BPEL
process, that the amount for the security deposit payment is an integer value
between 1 and 10 and that dd1, dd2, cp1, cp2, cc c1 and cc c2 are enumeration
values.

The input variables of receive activities and the output variables of invoke ac-
tivities, whose values result from interactions with external services, can be mod-
eled using non-deterministic assignments. For example, the startAssistance

receive activity can be modeled as follows:

TStartMsg s ta r tMsg ;
// o th e r code
s ta r tMsg := new TStartMsg ;
choose

when <true> do s ta r tMsg . d iagData :=TDiagnost i cData . dd1 ;
when <true> do s ta r tMsg . d iagData :=TDiagnost i cData . dd2 ;

end
// same pa t t e r n f o r g e n e r a t i n g c r e d i t ca rd data
// and customer ’ s p r e f e r e n c e s
choose

when <true> do s ta r tMsg . d e p o s i t :=1;
when <true> do s ta r tMsg . d e p o s i t :=2;

. . .
when <true> do s ta r tMsg . d e p o s i t :=9;
when <true> do s ta r tMsg . d e p o s i t :=10;

end

Activities nested within a flow are translated into separated threads. In our
example (see Fig. 3), flow1 contains two sequence activities; flow2 contains
a sequence and an invoke activity. For each of these activities, we declare a
corresponding global tid (thread id) variable:

t i d f l ow 1 s e q u e n c e 1 t i d ;
t i d f l ow 1 s e q u e n c e 2 t i d ;
t i d f l ow 2 s e q u e n c e 1 t i d ;
t i d f l o w 2 i n v o k e 1 t i d ;

For each activity in the flow we declare a thread, named after the corresponding
tid variable. This thread contains the code that models the execution of the
corresponding activity. For example, the thread corresponding to the sequence

A Guided Tour through SAVVY-WS 17

that includes requestCardCharge and requestCCCallBack activities, has the
following structure:

thread f l ow1 s equenc e1 () {
// code mode l ing r eques tCa rdCha rge
// code mode l ing reques tCCCa l lBack
e x i t ;
}

Finally, the actual execution of a flow is translated into the invocation of a
helper function launchAndWaitFlowi, which creates and starts a thread for each
activity in the flow, and returns to the caller only when all the launched threads
terminate. This function has the following form (in the case of flow1):

f unc t i on launchAndWaitFlow1 () {
boolean temp0 ;
l o c l o c 0 : do {

f l ow 1 s e q u e n c e 1 t i d := s t a r t f l ow1 s equenc e1 () ;
f l ow 1 s e q u e n c e 2 t i d := s t a r t f l ow1 s equenc e2 () ;

} goto l o c 1 ;

l o c l o c 1 : do {
temp0 := threadTerminated (f l ow1 s e q u e n c e 1 t i d)

&& threadTerminated (f l ow 1 s e q u e n c e 2 t i d) ;
} goto l o c 2 ;

l o c l o c 2 : when temp0 do{} r e t u r n ;
when ! temp0 do{} goto l o c 1 ;

}

The assignPL activity is not translated since it only updates the partner link
references of the process and thus it does not change the state of the process.

Once the basic model of the BPEL process has been created, it can be then
enriched by exploiting assumed assertions. AAs can provide a better abstraction
of the values deriving from the interaction with external services and they can
also express constraints on the timeliness of the activities involving external
services.

For example, property TowTruckServiceTimeliness represents a constraint on
the value of variable bestServices. This means that we can restrict the range
of the values that can be non-deterministically assigned to that variable, when
modeling the output variable of the selectServices activity. This is shown in
the following code snippet:

choose
when <true> do b e s t S e r v i c e s . towing .ETA :=1;
when <true> do b e s t S e r v i c e s . towing .ETA :=2;

. . .
when <true> do b e s t S e r v i c e s . towing .ETA :=49;
when <true> do b e s t S e r v i c e s . towing .ETA :=50;

end

18 D. Bianculli et al.

The next example shows how AAs can be used to define time constraints
for modeling either the execution time of, or the time elapsed between BPEL
activities. The adopted technique is based on previous work on model checking
temporal metric specifications [22]. We insert a code block that randomly gener-
ates the duration of the activity within a certain interval, bounded by the value
specified in an AA. For flow activities, the time consumed by the flow is the
maximum time spent along all paths. By focusing on flow2 (see Fig. 3) of our
example and using properties AllButBankServiceResponseTime and TowTruckAr-

rival, we get the following code:

i n t (0 , 52) f l ow2 s e q u e n c e 1 c l o c k ;
i n t (0 , 2) f l ow 2 i n v o k e 1 c l o c k ;
// o th e r code
thread f l ow2 s equenc e1 () {

// code mode l ing orderTowTruck
choose

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 1 ;

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 2 ;
end

// code mode l ing TowTruckProgressNot ice
choose

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 1 ;

when <true> do f l ow2 s e q u e n c e 1 c l o c k :=
f l ow2 s e q u e n c e 1 c l o c k + 2 ;

. . .
when <true> do f l ow2 s e q u e n c e 1 c l o c k :=

f l ow2 s e q u e n c e 1 c l o c k + 49 ;
when <true> do f l ow2 s e q u e n c e 1 c l o c k :=

f l ow2 s e q u e n c e 1 c l o c k + 50 ;
end

}

thread f l ow2 i n v o k e 1 () {
// code mode l ing o r d e rRen t a lCa r
choose

when <true> do f l ow 2 i n v o k e 1 c l o c k :=
f l ow 2 i n v o k e 1 c l o c k + 1 ;

when <true> do f l ow 2 i n v o k e 1 c l o c k :=
f l ow 2 i n v o k e 1 c l o c k + 2 ;

end
}
// o th e r code
ac t i v e thread MAIN {

// o th e r code
launchAndWaitFlow2 () ;
i f f l ow2 s e q u e n c e 1 c l o c k >= f l ow 2 i n v o k e 1 c l o c k do

A Guided Tour through SAVVY-WS 19

a s s i s t a n c e T im e l i n e s s c l o c k :=
a s s i s t a n c e T im e l i n e s s c l o c k + f l ow2 s e q u e n c e 1 c l o c k ;

e l s e do
a s s i s t a n c e T im e l i n e s s c l o c k :=

a s s i s t a n c e T im e l i n e s s c l o c k + f l ow 2 i n v o k e 1 c l o c k ;
end
// o th e r code

}

The first two lines of the previous code snippet represent the declarations of
local counters associated with the activities included in the flow (in this case
a sequence and an invoke). The domain of these variables is bounded by the
duration of each activity, as expressed in an AA; for structured activities (e.g.,
a sequence), we take as upper-bound the sum of the durations of all nested
activities.

Each of these counters is then non-deterministically incremented in the body
of the thread that simulates the execution of an activity. After the end of the
execution of the flow, we take the maximum time spent along all paths and assign
it to a global counter, associated with the process (starTowTruckProgress-
Notice clock in our example).

The last step before performing the verification of the model is represented by
translating into BIR the GA we want to verify. In our example, we want to prove
that the time elapsed between the end of activity requestCCCallBack and the
start of activity TowTruckProgressNotice is less than 60 time units (minutes).
To achieve this, we declare a (global) clock that keeps track of the elapsed
time; this is the global variable assistanceTimeliness clock introduced above.
Moreover, we need a boolean flag that will be set to true right after the end
of activity requestCCCallBack, to enable access to the global counter. The
AssistanceTimeliness property can then be translated into a simple BIR assertion:

a s s e r t (a s s i s t a n c e T im e l i n e s s c l o c k <= 60) ;

Before emitting the actual BIR code, Bpel2Bir performs a static analysis
on the flow graph of the BIR program to detect data variables (i.e., the ones
associated with inbound messages activities like receive and invoke) that are not
used in the computation of the process. If such variables exist, we perform an
optimization that removes them and the corresponding generative code blocks
from the BIR model, to reduce the size of the model itself.

The verification of the (optimized) model of the process has been performed
on a Intel Core 2 Duo 2.1 GHz processor running Apple Mac OS X 10.5.3 and
Bogor ver. 1.2. The verification of property AssistanceTimeliness took 175s; the
model had 708002 states and 2178206 transitions.

6.2 Example 2: model checking the Car Rental Agency Process

The basic structure of the Car Rental Agency process contains a while loop, with
a pick activity that waits, at each iteration, for one of the messages described in
Sect. 4.2. This structure is modeled in the following BIR code snippet:

20 D. Bianculli et al.

ac t i v e thread MAIN() {
boolean op e r a t i n g ; o p e r a t i n g := t rue ;
whi le op e r a t i n g do choose

when <true> do // code mode l ing f i n dCa r
// code mode l ing lookupCar

when <true> do // code mode l ing ca rEnte rX
// code mode l ing markCarAva i l ab l eX

when <true> do // code mode l ing ca rEx i tX
// code mode l ing markCarUnava i l ab l eX

when <true> do // code mode l ing s t opRen t a l
op e r a t i n g := f a l s e ;

end
end

}

We translated the pick activity into a choose statement, which models the oc-
currence of one of the events waited for by the pick activity. In this way, we
automatically model the mutual exclusion for the occurrence of the events and
the non-determinism in selecting among events that occurred simultaneously.
Variable operating is a boolean flag that keeps the process receiving messages
from external services; it is set to false when a stopRental message arrives, mak-
ing the while activity and then the process terminate. We do not translate the
findCarCB reply activity, since it represents an outgoing communication with
an external service, which does not modify the state of the process.

To model the carInfo variable, which is associated with the arrival of mes-
sage findCar and the lookupCar operation, we declare the TCarInfoID enum
type6 and the corresponding variable in the BIR model, as shown in the following
code snippet:

enum TCar In fo ID {c1 , c2 , c3}
TCar In fo ID c a r I n f o ;

This variable is assigned a value by means of a choose statement, when the
findCar message is selected by the outer choose statement, which models the
enclosing pick activity. Since there are two nested choose statements, it is possi-
ble to optimize the generated code by flattening and producing only one choose
statement, with a number of alternatives equal to the combination of the incom-
ing messages and their input variables. The resulting code follows this structure:

choose
when <...> do

c a r I n f o := TCar In fo ID . c1 ;
// o th e r code mode l ing f i n dCa r C1

when <...> do
c a r I n f o := TCar In fo ID . c2 ;
// o th e r code mode l ing f i n dCa r C2
// o th e r code mode l ing the o th e r a l t e r n a t i v e s

6 To keep the example simple, we assume that there are only three cars available for
renting, to which the three identifiers declared in the enumeration correspond.

A Guided Tour through SAVVY-WS 21

when <...> do
// o th e r code mode l ing c a r E x i t C3

end

The AAs defined for this process can help improve and enrich the BIR model. For
example, property ParkingInOut adds some constraints on when the arrival of a
carExitX (or a carEnterX) message can be “simulated” by the choose statement.
The intuitive meaning of property ParkingInOut (a carExitX message cannot be
received if the last message received was another carExitX) is translated into a
guard for the when statement. The guard consist of a boolean variable named af-
ter the message name (e.g., carEnter c1, carExit c1). The boolean flag is then
assigned a proper value when the corresponding event occurs: e.g., carExit c1 is
assigned the true value when the alternative of the choose statement equivalent
to the corresponding event is selected. The following code snippet clarifies how
these boolean variables are dealt with:

boolean c a rEn t e r c 1 ;
boolean c a r E x i t c 1 ;
. . .
when <! c a rEn t e r c1> do // code mode l ing ca rEnte rC1

c a rEn t e r c 1 := t rue ;
c a r E x i t c 1 := f a l s e ;
// o th e r code

As the reader may notice, variable carEnter_c1 is true whenever carExit_c1
is false, and vice versa. However, they are kept distinct as the translator cannot
deduce this relation by simply analyzing the logical predicates of a formula.
A further optimization step includes additional input from the user, when the
relation between two variables/predicates is provided to the translator.

Property CISUpdatemakes the translator emit the definition of similar boolean
flags corresponding to the execution of activities markAvailableX, markUnavail-
ableX and lookupCar. Moreover, it also defines how to generate the return value
corresponding to the invocation of the lookupCar operation. The following code
snippet exemplifies this behavior:

when <true> do // code mode l ing f i n dCa r c3
c a r I n f o := TCar In fo ID . c3 ;
// code mode l ing lookupCar c3
i f markAva i l a b l e c 3 && ! ma rkUnava i l a b l e c 3 do

q u e r yR e s u l t r e s D i f f N o := t rue ;
e l s e do

q u e r yR e s u l t r e s D i f f N o := f a l s e ;
end

where queryResult res DiffNo is the boolean variable corresponding to the
predicate $queryResult/res!="no".

Last, the RentCar GA can be translated into an assert expression, guarded
by a logical predicate corresponding to the antecedent of the formula, as shown
in the following code snippet:

22 D. Bianculli et al.

i f c a rEn t e r c 3 && ! c a r E x i t c 3 do
a s s e r t (q u e r yR e s u l t r e s D i f f N o == t rue) ;

end

Since the findCarCB, as said before, is not modeled, this assertion is placed right
after the code modeling the arrival of the findCar message.

The verification of the model of the process in Figure 4 has been performed
using the same configuration detailed in the previous section. It took 24ms to
verify property RentCar; the model had 85 states and 106 transitions. By com-
paring the order of magnitude of the experimental data of the two examples,
the reader will observe how the use of explicit time bounds, as in the On Road
Assistance example, may increase the complexity of a model.

7 Run-time Monitoring

In SAVVY-WS, service compositions are validated at run time by monitoring
AAs and GAs via Dynamo, our dynamic monitoring framework.

Monitoring rules specify the directives for the monitoring framework; each of
them comprises two main parts: a set of Monitoring Parameters and a Monitor-
ing Property expressed in ALBERT. Monitoring Parameters allow our approach
to be flexible and adjustable with respect to the context of execution. They
are meta-level information used at run time to decide whether a rule should be
monitored or not. We provide three parameters:

– priority, which defines a simple “notion” of importance among rules, rang-
ing over five levels of priority. When a rule is about to be evaluated, its pri-
ority is compared with a threshold value, set by the owner of the process; the
rule is taken into account if its priority is less than or equal to the threshold
value. By dynamically changing the threshold value we can dynamically set
the intensity of probing.

– validity, which defines time constraints on when a rule should be consid-
ered. Constraints can be specified in the form of either a time window or
a periodicity. The former defines time-frames within which monitoring is
performed; when outside of this frame, any new monitoring activities are
ignored. The latter specify how often a rule should be monitored; accepted
values are durations and dates, e.g., “3D”, meaning every 3 days, or “10/05”
meaning every May 10th.

– trusted providers, which defines a list of service providers who do not
need to be monitored.

Figure 5 presents the technologies we used in the implementation, as well
as how the various components interact among themselves. We have chosen to
adopt ActiveBPEL [23], an open-source BPEL server implementation, as our
Execution Engine, and to extend it with monitoring capabilities by using aspect-
oriented programming (AOP) [24]. The Data Manager represents the advice code
that is weaved into the engine. When the engine initiates a new process instance,
the Data Manager loads all that process’ ALBERT formulae from the Formulae

A Guided Tour through SAVVY-WS 23

Execution

Engine

ActiveBPEL

Data

Manager

AspectJ

Formulae

Repository

persistent

EJB

Data

Collector

Jax-WS

Active Pool

Java

Data

Analyzer

Java

1

3

4

2.1

2.2

6
5

Fig. 5. Monitoring framework

Repository (step 1), and uses them to configure and activate both the Active

Pool and the Data Analyzer (steps 2.1 and 2.2). The former is responsible for
maintaining (bounded) historical sequences of process states, while the latter is
the actual component responsible for the analysis.

The Data Manager’s main task stops the process every time a new state needs
to be collected for monitoring. This is facilitated by the fact that it has free access
to the internals of the executing process. Once all the needed ALBERT internal
variables are collected (step 3), the process is allowed to continue its execution.
Notice that ALBERT formulae may also refer to external data, which do not
belong to the business logic itself. In this case the data collected from the process
need to be completed with data retrieved from external sources (e.g., context
information), and this is achieved through special-purpose Data Collectors (step
4). Once collected, the internal and the external data make up a single process
state. At this point the state is time-stamped, labeled with the location in the
process from which the data were collected, and sent to the Active Pool (step
5), which stores it. Every time the Active Pool receives a new state it updates
its sequences to only include the minimum amount of states required to verify
all the formulae. The sequences are then used by the Data Analyzer to check the
formulae (step 6).

The evaluation of ALBERT formulae that contain only references to the
present state and/or to the past history (i.e., formulae that do not contain

24 D. Bianculli et al.

Until , Between, or Within operators) is straightforward. On the other hand,
the evaluation of formulae that contain Until , Between, or Within operators
depends on the values the variables will assume in future states. From a the-
oretical point of view, this could be expressed by referring to the well-known
correspondence between Linear Temporal Logic and Alternating Automata [25].
From an implementation point of view, the Data Analyzer relies on additional
evaluation threads for evaluating each subformula containing one of the three
aforementioned temporal operators.

Run-time monitoring inevitably introduces a performance overhead. Indeed
we need to temporarily stop the executing process at each BPEL activity to
collect the internal variables that constitute a new state. Meanwhile, if any
external variables are needed they are collected after the process resumes its
execution. Therefore, the overhead is due to two main factors: the time it takes
the AOP advice to stop the process and activate internal data collection, and
the collection time itself. Exhaustive tests have allowed us to quantify the former
in less than 30 milliseconds. This is the time it takes the advice code to obtain
the list of internal variables it needs to collect. The actual collection time, on
the other hand, depends on the number of internal variables we need to collect.
Once again our tests have shown that, on average, it takes 2 milliseconds per
internal variable. This is due to the fact that the AOP advice code has direct
access to the process’ state in memory, and that ActiveBPEL provides an API
method for doing just that.

More details on how the different components of this architecture work for
monitoring ALBERT properties are given in [12]. Instead, in the next two sec-
tions, we will focus on the Data Analyzer, by describing how it evaluates the
properties of our running examples.

7.1 Example 1: Monitoring the On Road Assistance Process

The first property we consider is BankResponseTime. When the requestCard-

Charge activity is executed, the Data Manager detects, by accessing the Formulae

Repository, that a property is associated with the end of the execution of the
activity. Right after the activity completes, the Data Analyzer starts evaluating
the consequent of the formula.

Since the root operator of the consequent is a logical OR, the Data Analyzer

evaluates the left operand first, i.e., the first conjunction. The left conjunct is
a reference to an external variable: the Data Analyzer asks the Data Collector to
invoke the operation getConnection on the Web service VCG and then it checks
the value of the cost part of the return message. If the value is equal to ‘low’,
the Data Analyzer evaluates the other operand of the logical AND, that is the
Within subformula.

The evaluation of such a formula cannot be completed in the current state,
thus the Data Analyzer spawns a new thread to evaluate the formula in future
states of the process execution. This thread checks for the truth value of its
formula argument, i.e., for the occurrence of the event (notified by the Active

Pool) corresponding to the start of the execution of activity requestCCCallBack,

A Guided Tour through SAVVY-WS 25

while keeping track of the progress of a timer, bounded by the second argument of
the Within formula. If the formula associated with the Within operator becomes
true before the timer reaches its upper bound, the thread returns true, otherwise
it returns false.

Since the evaluation of logical AND and OR operators is short-circuited, if
the evaluation of the external variable returned by the Data Collector returns
false, the second operand (i.e., the Within formula) is not evaluated, making the
Data Analyzer start evaluating the other operand of the logical OR, following a
similar pattern (accessing the external variable, spawning a thread for checking
the Within formula, checking the value returned by this thread). Similarly, if
the first operand of the logical OR evaluates to true, the second operand is not
evaluated.

Property AllButBankServiceResponseTime can be monitored in a similar way,
but without the need for accessing external variables through the Data Collector.
When one of the activities bounded to the Act placeholder is started, the Data

Analyzer spawns a new thread, waiting for the end of the corresponding activity,
within the time bound.

AvailableServicesDistance and TowTruckServiceTimeliness are two examples of
properties that can be evaluated immediately. As a matter of fact, as soon as
the execution of the activity listed in the antecedent of the formula finishes, the
Data Analyzer retrieves the current state of the process from the Active Pool, and
it evaluates the variables referenced in the formula.

Finally, the monitoring of properties TowTruckArrival and AssistanceTimeli-

ness, follows the evaluation patterns seen above. Both formulae include a Within
subformula, which requires an additional thread for the evaluation.

7.2 Example 2: Monitoring the Car Rental Agency Process

Monitoring of property ParkingInOut is triggered by the arrival of a carExitX

message, intercepted during the execution of a pick activity. Right after the ar-
rival of the message, the Data Analyzer evaluates the consequent of the formula,
whose operator is an Until . Such a formula cannot be evaluated in the current
state, thus the Data Analyzer spawns a new evaluation thread. This thread re-
ceives notifications from the Active Pool about new process states being available.
When a notification arrives, the thread evaluates the second subformula of the
Until operator, i.e., it waits for the occurrence of the event carEnterX. If this
subformula evaluates to false, the thread evaluates (in a similar way) the first
subformula of the Until operator. If this subformula is also false, the evaluation
thread terminates by returning false. Otherwise, the thread continues to evaluate
the Until formula in future states.

In property CISUpdate, the evaluation of the antecedent of the formula re-
quires to spawn a new thread, since it contains an Until subformula. First, the
Data Analyzer checks for the end of the execution of activity markAvailableX

and then waits for the thread evaluating the Until subformula to terminate. This
thread evaluates the formula in a similar way as described above, in the case of
the ParkingInOut formula. Once the evaluating thread terminates, the overall

26 D. Bianculli et al.

antecedent of the formula, i.e., the logical AND, is evaluated. The consequent
of the formula is thus evaluated only when the logical AND in the antecedent
is true; since it contains the Eventually operator, its evaluation requires a new
thread to be spawned. This thread checks for the occurrence of the event cor-
responding to the start of activity lookupCar; then, it spawns a new thread
—since there is a second, nested, Eventually operator— that then waits for the
end of the execution of activity lookupCar and checks for the value of variable
queryResult.

Property RentCar is evaluated in a similar way, since the formula follows the
same pattern of the previous one.

8 Related Work

The work presented in [19] is similar to SAVVY-WS, since it also proposes a
lifelong validation framework for service compositions. The approach is based
on the Event Calculus of Kowalski and Sergot [26], which is used to model
and reason about the set of events generated by the execution of a business
process. At design time the control flow of a process is checked for livelocks and
deadlocks, while at run time it is checked if the sequence of generated events
matches a certain desired behavior. The main difference with SAVVY-WS is the
lack of support for data-aware properties.

Many other approaches investigated by current research tackle isolated as-
pects related to the main issue of engineering dependable service compositions.
Design-time validation is addressed, for example, in [27], where the interaction
between BPEL processes is modeled as a conversation and then verified using
the SPIN model checker. In [28], design specifications (in the form of Message
Sequence Charts) and implementations (in the form of BPEL processes) are
translated into the Finite State Process notation and checked with the Labelled
Transition System Analyzer. Besides finite state automata and process alge-
bras, Petri Nets represent another computational model for static verification
of service compositions. They are used to model both BPEL [29] and BPMN
[30] processes; in both cases, the verification focuses on detecting unreachable
activities and deadlocks.

Other approaches focus on run-time validation of service compositions, con-
sidering either the behavior, as in [31, 20], or the non-functional aspects [32–34],
or both [35].

Design- and run-time validation activities are related to the language that is
used to specify the properties that are to be validated. Besides more traditional
approaches based on assertion languages like WSCoL [36], or languages for defin-
ing service-level agreements (SLAs), such as WSLA [37], WS-Agreement [38] and
SLAng [39], a third trend is based on languages for defining policies, such as WS-
Policy [40]. An extension of WS-Policy, called WS-Policy4MASC, is defined in
[35] to support monitor and adaptation of composite web services. Even though
it is not specifically bound to a validation framework, the StPowla approach
[41] aims at supporting policy-driven business modeling for SOAs. StPowla is a

A Guided Tour through SAVVY-WS 27

workflow-based approach that attaches to each task of a workflow modeling a
business process, a policy that expresses functional and non-functional require-
ments and business constraints on the execution of the task.

9 Conclusion

The paper provided a tutorial introduction to the SAVVY-WS methodology,
which supports the development and operation of Web service compositions
by means of a lifelong validation process. SAVVY-WS’s goal is to enable the
development of flexible SOAs, where the bindings to external services may change
dynamically, but still control that the composition fulfills the expected functional
and non-functional properties. This allows the flexibility of dynamic change to
be constrained by correctness properties that are checked during design of the
architecture and then monitored at run time to ensure their continuous validity.

SAVVY-WS has been implemented and validated in the case of Web ser-
vices compositions implemented in the BPEL workflow language. The approach,
however, has a more general scope.

It can be generalized to different composition languages and to other im-
plementations of SOAs, which do not use Web service technologies. We have
described our long-term research vision in [42]: leveraging the experience gained
while working on SAVVY-WS, we want to develop SAVVY, a complete method-
ology for lifelong validation of dynamically evolvable software service compo-
sitions. The ultimate goal of SAVVY is to integrate specification, analysis and
verification techniques, in a technology-independent manner, supported by a rich
set of tools.

Acknowledgements. Part of this work has been supported by the EU project
“PLASTIC” (contract number IST 026995) and by the EU project “S-Cube”,
funded within FP7/2007-2013 under Objective 1.2 “Services and Software Ar-
chitectures, Infrastructures and Engineering”.

References

1. Baresi, L., Di Nitto, E., Ghezzi, C.: Towards Open-World Software. IEEE Com-
puter 39 (2006) 36–43

2. ICSOC: International Conference on Service-Oriented Computing series. http:
//www.icsoc.org (2003–2008)

3. SeCSE Project: Description of Work. http://secse.eng.it/ (2004)
4. PLASTIC Project: Description of Work. http://www.ist-plastic.org (2005)
5. S-CUBE: S-CUBE network. http://www.s-cube-network.eu/ (2008)
6. NESSI: Networked European Software and Services Initiative. http://www.

nessi-europe.com (2005)
7. Papazoglou, M.: Web Services: Principles and Technology. Prentice Hall (2008)
8. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services: Concepts, Archi-

tectures, and Applications . Springer (2003)

28 D. Bianculli et al.

9. The SeCSE Team: Designing and deploying service-centric systems: The SeCSE
way. In: Proceedings of Service-Oriented Computing: a look at the Inside
(SOC@Inside’07), workshop co-located with ICSOC 2007. (2007)

10. ART DECO Project: Description of Work. http://artdeco.elet.polimi.it/
Artdeco (2005)

11. DISCoRSO project: Project vision. http://www.discorso.eng.it (2006)
12. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web

service compositions. IET Softw. 1(6) (2007) 219–232
13. Ghezzi, C., Inverardi, P., Montangero, C.: Dynamically evolvable dependable soft-

ware: from oxymoron to reality. In Degano, P., De Nicola, R., Meseguer, J., eds.:
Concurrency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Oc-
casion of His 65th Birthday. Volume 5065 of Lecture Notes in Computer Science.
Springer (2008) 330–353

14. Bianculli, D., Ghezzi, C.: SAVVY-WS at a glance: supporting verifiable dynamic
service compositions. In: Proceedings of the 1st International Workshop on Au-
tomated engineeRing of Autonomous and run-tiMe evolvIng Systems (ARAMIS
2008), IEEE Computer Society Press (2008) to appear.

15. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1 (2003)

16. OMG: Business process modeling notation, v.1.1. http://www.omg.org/spec/
BPMN/1.1/PDF (2008) OMG Available Specification.

17. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby: Building your own software model
checker using the Bogor extensible model checking framework. In: Proceedings of
the 17th International Conference on Computer Aided Verification (CAV 2005).
Volume 3576 of Lecture Notes in Computer Science., Springer (2005) 148–152

18. Wirsing, M., Carizzoni, G., Gilmore, S., Gonczy, L., Koch, N., Mayer, P., Palas-
ciano, C.: SENSORIA: Software engineering for service-oriented overlay computers.
http://www.sensoria-ist.eu/files/whitePaper.pdf (2007)

19. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service
composition. In: Proceedings of the 4th International Conference on Business
Process Management (BPM 2006). Volume 4102 of Lecture Notes in Computer
Science., Springer (2006) 257–273

20. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service
based systems. In: Proceedings of the 2nd international conference on Service-
Oriented computing (ICSOC ’04), ACM Press (2004) 84–93

21. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of
the 27th International Conference on Software engineering (ICSE ’05), New York,
NY, USA, ACM (2005) 372–381

22. Bianculli, D., Spoletini, P., Morzenti, A., Pradella, M., San Pietro, P.: Model
checking temporal metric specification with Trio2Promela. In: Proceedings of In-
ternational Symposium on Fundamentals of Software Engineering (FSEN 2007),
Teheran, Iran. Volume 4767 of Lecture Notes in Computer Science., Springer (2007)
388–395

23. Active Endpoints: ActiveBPEL Engine Architecture. http://www.activebpel.
org/docs/architecture.html (2006)

24. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP’97). Volume 1241 of Lec-
ture Notes in Computer Science., Springer (1997) 220–242

A Guided Tour through SAVVY-WS 29

25. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Proceed-
ings of the VIII Banff Higher order workshop conference on Logics for concurrency:
structure versus automata. Volume 1043 of Lecture Notes in Computer Science.,
Springer (1996) 238–266

26. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput.
4(1) (1986) 67–95

27. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Pro-
ceedings of the 13th International Conference on World Wide Web (WWW ’04),
ACM Press (2004) 621–630

28. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web
Service Compositions. In: Proceedings of the 18th IEEE International Conference
on Automated Software Engineering (ASE 2003) , IEEE Computer Society (2003)
152–163

29. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2-3) (2007) 162–198

30. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of
BPMN process models using Petri Nets. http://eprints.qut.edu.au/archive/
00007115/ (2007)

31. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: Proceedings of the International
Conference on Web Services (ICWS ’06), Washington, DC, USA, IEEE Computer
Society (2006) 63–71

32. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for WS-BPEL. In: Proceedings of the 17th International Conference on
World Wide Web (WWW’08), ACM (2008) 815–824

33. Raimondi, F., Skene, J., , Emmerich, W.: Efficient monitoring of web service
SLAs. In: Proceedings of the 16th International Symposium on the Foundations
of Software Engineering (SIGSOFT 2008 - FSE 16), ACM (2008) to appear.

34. Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA monitor-
ing for web services. In: Proceedings of the 13th IFIP/IEEE International Work-
shop on Distributed Systems: Operations and Management (DSOM ’02). Volume
2506 of Lecture Notes in Computer Science., Springer (2002) 28–41

35. Erradi, A., Maheshwari, P., Tosic, V.: WS-Policy based monitoring of composite
web services. In: Proceedings of the 5th European Conference on Web Services
(ECOWS ’07), IEEE Computer Society (2007) 99–108

36. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In:
Proceedings of the 3rd International Conference on Service-Oriented Computing
(ICSOC ’05). Volume 3826 of Lecture Notes in Computer Science., Springer (2005)
269–282

37. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreement for web services. Journal of Network and System Management
11(1) (2003)

38. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification
(WS-Agreement). http://www.ogf.org/documents/GFD.107.pdf (2007)

39. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE
’04), IEEE Computer Society (2004) 179–188

40. W3C Web Services Policy Working Group: WS-Policy 1.5. http://www.w3.org/
2002/ws/policy/ (2007)

30 D. Bianculli et al.

41. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: StPowla: SOA, Policies
and Workflows. In: Proceedings of the 3rd International Workshop on Engineering
Service-Oriented Applications: Analysis, Design, and Composition (WESOA 2007).
(2007)

42. Bianculli, D., Ghezzi, C.: Towards a methodology for lifelong validation of service
compositions. In: Proceedings of the 2nd International Workshop on Systems
Development in SOA Environments (SDSOA 2008), co-located with ICSE 2008,
Leipzig, Germany, ACM (2008) 7–12

A ALBERT Formal Semantics

The formal semantics of the ALBERT language [12] is defined over a timed state
word, an infinite sequence of states s = s1, s2, . . . , where a state si is a triple
(Vi, Ii, ti). Vi is a set of �ψ, value� pairs with ψ being an expression that appears
in a formula, Ii is a location of the process7 and ti is a time-stamp. States can
therefore be considered snapshots of the process.
The arithmetic (arop) and mathematical (fun) expressions behave as expected.
Function past(ψ, onEvent(µ), n) returns the value of ψ, calculated in the nth
state in the past in which onEvent(µ) was true. Function count(χ, K) returns
the number of states, in the last K time instances, in which χ was true, while its
overloaded version count(χ, onEvent(µ), K) behaves similarly but only considers
states in which onEvent(µ) was also true. Finally, function elapsed(onEvent(µ))
returns the time elapsed from the last state in which onEvent(µ) was true.
For all timed words s, for all i ∈ N, the satisfaction relation |= is defined as
follows:

– s, i |= ψ relop ψ
� iff eval(ψ, si) relop eval(ψ�

, si)
– s, i |= ¬φ iff s, i �|= φ

– s, i |= φ ∧ ξ iff s, i |= φ and s, i |= ξ

– s, i |= onEvent(µ) i ff
- if µ is a start event, µ ∈ Ii+1,
- otherwise, µ ∈ Ii

– s, i |= Becomes(χ) i ffi > 0 and s, i |= χ and s, i− 1 �|= χ

– s, i |= Until(φ,ξ) i ff∃j > i | s, j |= ξ and ∀k, if i < k < j then s, k |= φ

– s, i |= Between(φ, ξ,K) i ff∃j ≥ i | s, j |= φ and ∀l if i ≤ l < j then
s, l �|= φ and ∃h | th ≤ tj +K, th+1 > tj +K and s, h |= ξ

– s, i |= Within(φ,K) i ff∃j ≥ i | tj − ti ≤ K and s, j |= φ

where function eval takes an ALBERT expression ψ and a state in the timed
state word si and returns the value of ψ in si.

7 A location is defined as a set of labels of BPEL activities; in the case of a flow
activity, it contains, for each parallel branch of the flow, the last activity executed
in that branch.

Exploiting Assumption-Based Verification for the

Adaptation of Service-Based Applications

Andreas Gehlert
University of Duisburg-Essen

Schützenbahn 70

45117 Essen, Germany

andreas.gehlert@sse.uni-

due.de

Antonio Bucchiarone
FBK-IRST

via Sommarive 18

38100 Trento, Italy

bucchiarone@fbk.eu

Raman Kazhamiakin
FBK-IRST

via Sommarive 18

38100 Trento, Italy

raman@fbk.eu

Andreas Metzger
University of Duisburg-Essen

Schützenbahn 70

45117 Essen, Germany

andreas.metzger@sse.uni-

due.de

Marco Pistore
FBK-IRST

via Sommarive 18

38100 Trento, Italy

pistore@fbk.eu

Klaus Pohl
University of Duisburg-Essen

Schützenbahn 70

45117 Essen, Germany

klaus.pohl@sse.uni-

due.de

ABSTRACT
Service-based applications (SBAs) need to operate in a highly
dynamic world, in which their constituent services could fail
or become unavailable. Monitoring is typically used to iden-
tify such failures and, if needed, to trigger an adaptation of
the SBA to compensate for those failures.
However, existing monitoring approaches exhibit several

limitations: (1) Monitoring individual services can uncover
failures of services. Yet, it remains open whether those indi-
vidual failures lead to a violation of the SBA’s requirements,
which would necessitate an adaptation. (2) Monitoring the
SBA can uncover requirements deviations. However, it will
not provide information about the failures leading to this
deviation, which constitutes important information needed
for the adaptation activities. Even a combination of (1) and
(2) is limited. For instance, a requirements deviation will
only be identified after it has occurred, e. g., after the exe-
cution of the whole SBA, which then in case of failures might
require costly compensation actions.
In this paper we introduce an approach that addresses

those limitations by augmenting monitoring techniques for
individual services with formal verification techniques. The
approach explicitly encodes assumptions that the constituent
services of an SBA will perform as expected. Based on those
assumptions, formal verification is used to assess whether
the SBA requirements are satisfied and whether a violation
of those assumptions during run-time leads to a violation of
the SBA requirements. Thereby, our approach allows for (a)
pro-actively deciding whether the SBA requirements will be
violated based on monitored failures, and (b) identifying the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

specific root cause for the violated requirements.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.5 [Software Engineering]:
Testing and Debugging—Monitor

Keywords
Service-oriented computing, verification, monitoring

1. INTRODUCTION

1.1 Need for Adaptation
Service Based Applications (SBAs) are composed of ser-

vices provided by service providers that are often different
from the company that is operating the SBA [28]. Such a
distribution of computational resources and software comes
with the advantage to flexibly use any service available on
the network and, therefore, to adapt the SBA to new busi-
ness situations by, for instance, exchanging one service for
another. This flexibility, however, comes at the cost of losing
tight control over the SBA, as the SBA owner cannot control
the provisioning, execution, management and evolution of
externally provided services [28]. This means that the SBA
designer must rely on the ability of the service providers to
meet the expected functionality and quality of those services
(encoded, for instance, as service-level agreements).
Once the SBA is put into operation, those expectations

may—intentionally—or unintentionally – be violated; for in-
stance, a service might fail. The operator of the SBA must
not only recognise these violations but also decide whether
those violations mean that the overall SBA requirements will
no longer be met. In such a case an adaptation of the SBA
can become necessary.

1.2 Limitations of Monitoring
Currently, monitoring is used to trigger the adaptation of

a service-based application. However, existing monitoring
techniques—as detailed below—exhibit several limitations

which impact on taking adaptation decisions. Failing to
make those decisions may lead to unnecessary or harmful
adaptations [20].
Monitoring individual services: It is possible to monitor

specific events and elements of the SBA, such as monitor-
ing the constituent services [15]. Such approaches recog-
nise whether a service delivers the expected functionality or
quality. However, it is unclear whether this violation of the
contract eventually leads to a violation of the SBA’s require-
ments. Without this information we cannot decide whether
the SBA should be adapted or not. Assume, for instance,
that a service takes 1s longer than expected. It may be the
case that the service is part of a parallel control flow in the
service composition and that such a delay does not have any
impact on the performance of the parallel control flow and
thus the overall quality of the SBA.
Monitoring service compositions / SBAs: The require-

ments to the whole service composition may be monitored
[3]. In this way it is possible to check whether the com-
position behaves as required. However, in this case, the
identification of the source of the requirements violation is
not trivial. Assume, for instance that a service composition
takes 30s longer than expected to terminate. “Debugging”
as an additional step would then be needed to determine,
which service(s) caused that delay. It is important to know
the cause of the problem to compensate for it by adapting
the system; e. g., one could replace the service that caused
the delay.
Combined efforts: Even a combination of the above two

techniques has limitations. Indeed, in case of complex SBAs,
a variety of events and violations may occur. How to debug
and identify a specific cause of the requirements violation in
order to trigger proper adaptation actions remains an open
problem in such a case. Additionally, even with the com-
bined approach we can only identify a problem of the ser-
vice composition when this is identified by monitoring. This
especially means that it is not possible to “predict” whether
a violation of a service contract (detected by monitoring in-
dividual services) may eventually lead to a violation of the
requirements of the service composition.

1.3 Contribution of the Paper
In this paper we present an approach that aims at ad-

dressing the above limitations. More specifically, our ap-
proach is able to detect run-time problems and violations
of SBA’s requirements and to identify specific root causes
for those problems in order to determine appropriate adap-
tation actions. To achieve this, our approach augments
monitoring techniques (to detect service failures) with for-
mal verification techniques (to determine requirements vi-
olations). The central idea of our approach is to observe
specific properties—assumptions—that (1) are explicitly re-
lated to the requirements and (2) characterize the constituent
services of the SBA. Thereby, our approach allows (a) veri-
fying whether a problem can lead to a violation of require-
ments, and (b) tracing the violation to its root cause, which
facilitates adaptation.
The remainder of the paper is structured as follows: In

Section 2 we introduce the notion of assumptions and how
those are exploited in our approach. This is followed by a
scenario to illustrate the approach in Section 3. We detail
the individual steps of our approach in Section 4 and discuss
related work in Section 5. Section 6 discusses the results and

possible future work.

2. ASSUMPTION-BASED VERIFICATION
The concept of “assumption” is well understood in soft-

ware and requirements engineering. While requirements can
be influenced and realised by the designer building the sys-
tem, assumptions can only be affected by agents in the sys-
tem’s environment [19, 30]. Thus, neither the designer nor
the system itself have any influence on the violation or va-
lidity of assumptions [31]. Provided that a system fulfils
its requirements under a given set of assumptions, a viola-
tion of those assumptions may lead to a situation, in which
the software system does not provide the expected quality
anymore and, therefore, deviates from its requirements[9].
In the case of service-based applications, assumptions may

characterize the constituent services (e. g., their interfaces,
QoS parameters, etc.) and/or the context (e. g., infrastruc-
ture, business, context, user, etc.). Once the assumptions
are established (e. g., expected QoS is agreed through a con-
tract such as a service-level agreement), the designer of the
SBA expects that those assumptions are valid during the
design- and run-time phases of the system (e. g., the con-
tract will not be violated by the provider).
To decide whether a violation of an assumption (e. g., lo-

cal deviation from contracts of one or more services) leads
to a violation of the SBA requirements, we need an anal-
ysis technique. For the purpose of this paper, we propose
to exploit verification techniques in two ways. First, a ver-
ification of the system at design time allows us to prove
that the design corresponds to the requirements provided
that the assumptions hold. Second, if the re-verification ex-
ecuted at run-time reports a violation of the corresponding
requirements, we conclude that the observed violation of an
assumption will lead to problems in the SBA. As the as-
sumptions characterize a specific element (e. g., a specific
service), an appropriate adaptation action may be triggered
(e. g., substitute a service).
The presented approach benefits from (1) the possibility

to identify the specific source of the problem and trace it
to the critical element of the domain that should be han-
dled by adaptation; (2) only specific assumptions need to be
monitored to identify potential problems (thus, no need to
monitor the whole requirements and compositions); and (3)
in case of long-running applications the run-time monitoring
and analysis results may be exploited to trigger adaptation
activities pro-actively, before the failure actually takes place.

3. ILLUSTRATIVE SCENARIO
We use the following example to illustrate our approach.

The company “Green Transport IT Solutions”wants to sup-
port passengers in cities to use the available public trans-
port systems and develops a service-based application, which
computes travel routes for helping users navigate from one
place in a city to another. This application is deployed on
a mobile device and uses different services for each city de-
pending on the location of the device. The system imple-
ments the following workflow (cf. Figure 1): after the user
has entered his or her destination, the system locates the
user and computes the quickest route to the next bus stop.
After this step, the system calculates the public transport
route to the destination bus stop. Lastly, the shortest foot-
path from this bus stop to the final destination is calculated.

Compute
Location

Compute Shortest
Path to Bus Stop

Compute Shortest
Bus Trip

Compute Shortest
Path to Destination

Location
Service

Bus Navigation
Service

Footpath Navi-
gation Service

Specification

Assumptions Completes in <1s Completes in <5s Completes in <2s

Requirements The navigation of the user to his or her final destination should not take longer than 15s.

Figure 1: Assumptions, Requirements and Specifications of a Mobile Navigation Scenario

Figure 1 presents a non-functional requirement of the SBA
at the bottom, the specification of the workflow in the mid-
dle and the assumptions regarding execution time at the
top. The linear workflow of four steps should be executed
within 15s. The workflow invokes a location service once, a
footpath navigation service twice and a bus navigation ser-
vice once. According to the services’ individual SLAs (i. e.,
service assumptions) their time to complete the request are
at most 1s for the location service, 5s for the footpath nav-
igation service and 2s for the bus navigation service. Fur-
thermore, it is assumed that the service interaction times
may be neglected (context assumption). Based on these as-
sumptions, the initial verification performed during run-time
proves that even in the worst case (upper bound for response
time), the process terminates in less than 13s and, therefore,
the requirement of the SBA is fulfilled.
Assume now the following two situations during run-time:

• The location service takes 3s. While, its SLA is vio-
lated, an adaptation is not needed as the process takes
now exactly 15s. Monitoring the whole requirement
or following our approach would thus have avoided an
unnecessary adaptation.

• The location service takes 3s and the the footpath nav-
igation service takes 7s. If only the SBA would be
monitored in that case, it would not be possible to un-
derstand which of the services have failed and which of
the services should be adapted. As an example, if a dif-
ferent location service was chosen, the overall time of
the service composition would be reduced to 16s and,
therefore, the requirement would still be violated. In
our approach, instead, if we re-verify the system, we
can detect that the SBA requirement is violated re-
gardless whether the assumption about the location
service is violated or not. Therefore, in this case, it is
necessary to exchange the footpath navigation service.

Besides the timed properties above, it is also possible to
consider, monitor, and analyze functional aspects of the ser-
vice composition. For example, the services may have com-
plex interaction protocols consisting of several interactions,
such as “make a navigation request” or “refine the destina-
tion”. The SBA requirement in this case may express the
deadlock freeness, while the assumption may express the ne-
cessity of all possible service implementations to follow the
same interaction protocol. Indeed, if a specific service im-
plementation does not follow the same protocol, run-time
re-verification may check whether the new protocol is still
compatible with the requirement.

Assumptions

Monitoring
Domain

Requirements

1

2

• External Services
• User
• Interaction Pattern

• Service Composition (BPEL)
• Service Protocols
• QoS Models

• functional requirements
• non-functional requirements

3

4 5

SBA

Key

Key Element Trace Link

Figure 2: High-Level View on the Proposed Ap-

proach

4. DETAILED APPROACH
Figure 2 depicts the main elements of our approach. As

explained in the introduction the approach builds on a clear
separation between requirements for the SBA and the as-
sumptions under which it is supposed to operate. Further-
more, we distinguish between the system itself and its con-
text (or domain). As the SBA’s constituent services are pro-
vided by different service providers and as these providers
control those services with regard to functionality and qual-
ity, they belong to the SBA’s domain.
Our approach involves the following five steps (cf. numbers

in Figure 2):

1. This first step addresses the design-time where the de-
signer documents assumptions and requirements sepa-
rately.

2. In the second step the designer verifies the system and
deploys the system only if the system passes the veri-
fication step.

3. At run-time the assumptions are monitored.

4. A violated assumption triggers a run-time re-
verification.

5. If the SBA does not pass the verification given the vio-
lated assumptions, an adaptation is triggered, because
this means that the SBA requirements are violated.

Those steps are described in more detail in the following
subsections. Each subsection contains two aspects. The first
aspect describes the concepts of each step in more detail.
The second aspect describes techniques that can be used
to implement the concepts of that step and thus demon-
strates how our approach can be realized based on exist-
ing techniques for monitoring and verification. The aim of
the selected techniques is to demonstrate the feasibility of
our concepts only. Thus, we do not claim that we have se-
lected the most appropriate techniques for each phase and,
therefore, do not provide a discussion of possible alternative
techniques.

4.1 Step 1: Separating Requirements & As-
sumptions

During the design step of the SBA its requirements and
assumptions are documented together with the SBA model.
Assumptions may be defined for the user behaviour, for the
device on which the SBA runs and for the services provided
by service providers. Here, we only focus on assumptions
for services.

The assumptions may be extracted in different ways.
In particular, it is possible to exploit domain knowledge
(e. g., the properties of the telecommunication infrastructure
adopted in different cities), to rely on historical information
obtained and continuously updated during the execution of
previous versions of the SBA, etc. The specific methods for
eliciting domain assumptions is outside of the scope of this
paper and will be addressed in future work.

4.1.1 Modeling Assumptions

Concepts: Assumptions may address functional (e. g.,
the interfaces and the protocol used by the service) and
quality aspects (e. g., response time or availability) of ser-
vices. As we verify the system later on (see Section 4.2) we
will need formal techniques to describe these functional and
quality aspects.

During this step, the assumptions, requirements and the
elements of the SBA’s specification are related by two types
of trace links: First, the link between assumptions and re-
quirements allows tracing a violation of this assumption back
to its requirement. This link ensures that we do not only
know the violated assumption but also the consequence for
the SBA with respect to the fulfilment of its requirements.
Second, the link between the assumption and the specifica-
tion allows us to trigger an adaptation of the relevant part
of the SBA once a violation of an assumption is detected.

Implementation: We propose to produce a set of
template-based documents, which describe assumptions ver-
bally and formally as well as their relations to the require-
ments and SBA specification. Such templates allow provid-
ing a name, a natural language description, a type, a formal
description, the related requirements and the affected SBA
element(s) (cf. Table 3 for examples). The assumption is
described by a short and unique name as well as a natural
language description. In addition, we document the assump-
tion’s type. Here, we distinguish between assumptions on
functional, behavioral and non-functional properties of ser-
vices. The formal description of the assumption is needed
for verification and to monitor it at run-time. Lastly, the
assumption is related to a requirement (related requirement
row) and to a specific SBA element, which was designed
using this assumption (affected SBA element row).

Figure 4: BPEL Protocol (left) and STS (right) of

the Footpath Navigation Service

4.1.2 Modeling the Service-based Application

Concepts: A composite SBA may be defined using a
language such as BPEL (Business Process Execution Lan-
guage). The component services are represented by their
interfaces (defined, e. g., in WSDL) that define a set of pos-
sible service operations, their parameters, data types, and
binding protocol information.

Implementation: Formally, we represent the composed
application and the protocol of the component services as
a State Transition System (STS, [21]). A STS describes a
dynamic system that can be in one of its possible states and
can evolve to new states as a result of performing some ac-
tions. Actions are distinguished in input actions, which rep-
resent the reception of messages (“receive” and “onMessage”
BPEL activities), output actions, which represent messages
sent to external services (“invoke” and “reply”), and internal
actions, modeling internal computations and decisions (“as-
sign”, “switch”, etc.). The STS formalism may be extended
to Timed Transition System [21] to capture time proper-
ties for representing assumptions on duration of activities,
BPEL timeouts, etc.

An example of the abstract BPEL protocol and the corre-
sponding STS of the Footpath Navigation Service is shown
in Fig. 4. The protocol (left) starts when the navigation
request is received. If the specified location is known the
service returns an appropriate route (sends “navigationRe-
sult”message). Otherwise, the service prepares and sends to
the requester the set of possible options with the “selection-
Request” operation. The requester may perform a selection
(i. e., send the selection message) or cancel the procedure
(sending the cancel message). In the former case the route
is returned. In the latter case the procedure terminates. The
protocol is reflected by the corresponding STS.

4.2 Step 2: Perform Design-Time Verification
Concepts: Once the system is designed, we need to for-

mally verify that it satisfies its requirements under the spec-
ified assumptions. This formal verification is a necessary ac-
tivity in our approach since this verification formally ensures
that the deployed SBA corresponds to the requirements and
assumptions documented in step 1. If this activity was not
included in our approach and we detected a violation of
an assumption at run-time (see Section 4.4), we would not
know whether this violation is the source of the problem or
whether the problem existed in the SBA in the first place.

Implementation: There are many SBA verification
techniques available, which can be used for our purposes
[25, 14, 22]. To verify for functional correctness and quality
correctness the approach takes STSs and models in linear

Assumption: Timing Assumptions

Description: a1) The location service completes in at most 1s.

a2) The footpath navigation service completes in at most 5s.

a3) The bus navigation service completes in at most 2s.

Type: Non-Functional

Formal Specification: a1) time(RECEIV ED(locationResult) Since SEND(locationRequest)) < 1

a2) time(RECEIV ED(footpathNavigationResult) Since
SEND(footpathNavigationRequest)) < 5

a3) time(RECEIV ED(busNavigationResult) Since
SEND(busNavigationRequest)) < 2

Related Requirement: The system should be able to calculate the entire route to the destination in at most 15s.
Affected SBA Element: Location service, footpath navigation service, bus navigation service.

Figure 3: Documented timed assumptions

temporal logic (LTL) as input. Together with approaches,
which translate property sequence charts into timed Büchi
automata [2], the approach allows to bridge the gap between
the design step and the analysis step.
To check whether the SBA satisfies its functional and non-

functional requirements we use model checking techniques
[14, 25, 26] that are able to check if the behavioural model
of the SBA is conform to the given functional correctness
properties representing the SBA requirements. We apply
the approach proposed in [22] to verify that the SBA of our
running example is correct. The approach takes as input the
STSs representing the SBA and the services as well as the
behavioral correctness properties defined in linear temporal
logic (LTL). The properties may express for instance, dead-
lock freeness, ordering constraints on events, starvation, etc.
It uses NuSMV [8] as a model-checker.
Instead of writing directly temporal properties, one can

use the algorithm proposed in [2] that translates Property
Sequence Charts (PSCs) into a Büchi automaton [7]. The
notation of PSC [2] is very close to UML sequence diagrams,
but has a formal underlying semantics suitable for verifica-
tion purposes. After the verification of the behavior of the
composition model at design-time, and in case a violation
is detected at run-time, a counterexample (also in PSC-like
form) that demonstrates the erroneous execution of the com-
position is provided.
In our scenario it is necessary to verify non-functional re-

quirements, such as time properties. In particular, the global
time constraint (execution time ≤ 15s) should be satisfied.
This requirement can only be satisfied if all the services par-
ticipating in the application fulfill their own local timed con-
straints. To verify such time constraints, the approach pro-
posed in [21] may be exploited. The approach extends the
verification techniques presented above to take time proper-
ties and assumptions of service compositions into account.
As input the approach takes the specification of the SBA
and service behavior enriched with temporal aspects such
as timeouts and constraints on activity durations, expressed
as Timed Transition Systems. For specifying correctness
properties that explicitly speak about time, the approach
exploits the duration calculus (DC) notation [17]. Formally,
the notation is close to the model of LTL and PSC; it en-
ables the use of similar verification algorithms (the NuSMV
model checker has been used for this purpose).

4.3 Step 3: Monitor Assumptions at Run-
Time

Concepts: Upon the completion of the second step the
system is deployed and used. To identify service faults, we

need to monitor the services—more precisely we need to
monitor the services w. r. t. the fulfilment of their service
level agreements. Therefore, the assumptions (expressing
the SLAs) should be mapped to monitoring rules, which are
in turn used by a monitoring engine to monitor the SBA.
Implementation: For the assumptions monitoring pur-

pose we adopt the integrated Astro/Dynamo framework and
the corresponding monitoring language [6].
The choice is motivated by the capabilities and expressive

power of the framework. First, the language permits spec-
ifying properties in a declarative way using the notations
similar to those used for the verification (i. e., using tempo-
ral logic constructs similar to LTL and DC). In particular,
it allows for capturing timing and statistical information
about process activities. For example the property that the
overall interaction with the Footpath Navigation Service
should not exceed 1 second may be expressed using the
following formula:

time(RECEIV ED(navigationResult)
Since SEND(navigationRequest)) < 1

Second, the Astro/Dynamo monitoring framework allows
expressing properties and measure/aggregate information
over a single execution of a process instance as well as over
a set of instances; these are important properties if assump-
tions refer to certain statistical information (e. g., certain
QoS aspects, such as performance or availability). Third,
the framework allows for measuring the properties in the
SBA’s context using external services and components as a
pluggable sources of information. This is an important ca-
pability in order to evaluate context assumptions. Details
on the realization of this capability can be found in [15].
Consequently, the timed assumptions, behavioral assump-

tions, and certain contextual assumptions may be observed
using the integrated monitoring framework. As for protocol
assumption monitoring, we rely on the approach presented
in [29]. The underlying idea is that a monitor observes an
interaction with the corresponding service and compares the
sequence of messages with the one defined in the protocol.
If wrong messages arrive, the protocol is violated, and the
violation is reported by the monitoring framework.

4.4 Step 4: Run-Time Verification
Concepts: If a violation of an assumption is detected

by monitoring, we need to determine whether this viola-
tion actually leads to a failure in the SBA. To evaluate such
failures we use the verification techniques described in Sec-
tion 4.2 at run-time. An adaptation is only necessary if

the verification fails. As we have monitored the individual
assumptions, we know the source of the problem, e. g. the
assumption that was violated. Together with our traceabil-
ity links (see again Figure 3), we can determine the affected
requirement(s). Having analysed the impact of the service
fault, the SBA operator can decide whether an adaptation
is necessary or not. It is important to note here, that the
adaptation can take effect before the SBA instance termi-
nates, as the verification has determined the violation of the
SBA requirements even before the whole workflow has been
executed.
Implementation: We can use the same techniques as

presented in Section 4.2. For example, if the protocol of
the Navigation Service has changed (e. g., an error message
is sent if the location specified by the user is unknown), it
is possible to verify whether the whole composition is still
deadlock-free. If the requirement is still satisfied, the adap-
tation is not needed.
In a similar way, from the re-verification of timed proper-

ties, it is possible to evaluate whether the time requirement
is violated, and which of the violated assumptions is respon-
sible for that.

4.5 Step 5: Triggering Adaptation
Concepts: If the requirement has found to be violated,

the next activity is to identify the source of the problem
and trigger appropriate adaptation actions. In our approach
the identification of the problem source is straightforward,
because any assumption is associated to the elements of the
application model that rely upon those assumptions. This
relation allows us to identify the component of the system
that is subject to adaptation.
Implementation: A specific element of the SBA domain,

such as constituent services and the context (e. g., connec-
tivity, or user profiles) may be further associated with the
appropriate adaptation actions. For example, the service
protocol and SLAs may be associated with such actions as
replacement of the service, re-design/re-compose the part
of the orchestrating BPEL process that interacts with that
service in order to accommodate to the new version, etc.
Note that the ability to precisely identify the critical el-

ements of the domain allows us to identify adaptation ac-
tions that are the most appropriate in a given situation and,
therefore, avoid redundant or harmful adaptations.

5. RELATED WORK
The closest relations to our approach may be found in the

requirements engineering domain under the label require-
ments monitoring. Fickas and Feather for instance, describe
in [12, 13] an approach similar to ours. In line with us, the
authors argue, that assumptions should be identified during
the requirements engineering phase of a software develop-
ment project. The authors also argue that the system only
operates correctly in case of valid assumptions. They con-
clude that assumption monitoring is beneficial to adapt the
system (called remedial action in the papers) once a vio-
lation of an assumption is detected. However, Fickas and
Feather’s work is descriptive only, e. g. concrete techniques
for monitoring assumptions and for linking them with the
system to derive adaptation triggers are missing.
More recent work of Cohen et al. and Fickas et al. concen-

trate on the monitoring aspect. In the [9, 11] the authors
describe a flexible method how to derive monitors based on

requirements and assumptions, e. g. elicited and documented
by the KAOS approach [10]. Because of the strong moni-
toring focus, the papers do not cover any aspect related to
adaptation.
The idea of requirements monitoring is also used in the

domain of Web services and service compositions, where a
wide range of approaches have been proposed for monitor-
ing services and service compositions. In particular, in [4,
5] the authors propose an approach for BPEL monitoring.
The monitoring properties (functional and non-functional)
are expressed as pre-post conditions on service invocations
within the process specification. In [24] the authors also pro-
pose a framework for BPEL composition monitoring. These
approaches, however, do not differentiate between assump-
tions and generic requirements, and therefore, cannot be di-
rectly applied for identifying the source of the problem and
for triggering appropriate adaptations.
In [29] and [23] the authors exploit assumptions for auto-

mated service composition. In the former case a composed
BPEL process is automatically built using assumptions on
the protocols of the component services. Moreover, run-
time monitoring matches the actual behaviors of the service
composition against the assumptions expressed in the com-
position requirements, and report violations. In the latter
case an OWL-S composition is constructed exploiting as-
sumptions on SBA context expressed as logical constraints
in the Semantic Web Rule Language (SWRL) [27]. The
composition obtained in such a way satisfies the require-
ments (composition goals) if the assumptions hold. These
approaches have as main goal the service composition us-
ing assumptions. While in the first case they present also
a way to monitor the composition at run-time to find pos-
sible violations, the second presents only a way to compose
services without monitoring them. Neither the first nor the
second approach, however, address the issue of debugging
the violation of the assumptions at run-time.
Regarding the approaches that aim at identifying the

causes of the occurring deviations from requirements, in [1]
authors propose a framework for Web Service orchestration,
which employs diagnostic services to support a fine grained
identification of the causes of exceptions (occurring during
the execution of a composite service) and the consequent
execution of effective exception handlers. This is achieved
by defining a special infrastructure with Local Diagnoser
services associated to each component service. These ser-
vices generate diagnostic hypotheses over exceptions from
the local point of view, while Global Diagnoser service ag-
gregates these hypotheses to provide a global diagnosis of
the occurred failure. With respect to our approach, this
work focuses only on specific types of exceptions and faults;
it does not evaluate the implication of these exceptions on
the SBA requirements, and requires heavy instrumentation
also on the side of the constituent services, which reduces
the flexibility and dynamicity of the SBAs.
In [18] the authors propose a framework that exploits as-

sumptions for the design and maintenance of software sys-
tems. At design time assumptions are defined over differ-
ent modules of the system. The verification is exploited (1)
to check that the component satisfies the assumptions and
(2) to guarantee that the whole system behaves correctly
(using “assume-guarantee” reasoning [16]). During software
system evolution, if the software code changes, the assump-
tions are re-checked and the possible violation of the system

correctness is reported or new assumptions are generated.
Differently to our approach, this framework deals only with
a very specific type of properties (e. g., program code asser-
tions) and leaves open the problem of how the changes are
monitored.

6. DISCUSSION AND PERSPECTIVES
In this paper we have demonstrated how monitoring tech-

niques can be beneficially augmented with verification tech-
niques to support the adaptation of service-based applica-
tions. The basic idea of our approach is to start from explic-
itly documented requirements and assumptions. Assump-
tions address functional and quality properties of third-party
services (e. g., as documented in service-level agreements).
A verification step at design time ensures that the SBA
fulfils its requirements under specified assumptions. Dur-
ing run-time, monitoring the assumptions allows detecting
violations (e. g., service failures). A violation of SBA’s re-
quirements can then be determined by re-verifying the SBA
given the violated set of assumptions. If that verification
fails, an adaptation, to compensate for the violation of the
assumptions, may be triggered.
It is important to note that this paper does not discuss

whether an adaptation of the SBA needs to be realised. We
only provide adaptation triggers. Each adaptation trigger
indicates that a requirement of the running SBA instance
will be violated. Wether this violation is worth to be ad-
dressed by an adpation and how this adaptation should be
realised is subject to further research.
Our approach exploits formal verification techniques. By

doing so, we limit our approach to those requirements and
assumptions, which can be formally expressed. In addition,
the verification of complex systems may take considerable
resources so that it may not be feasible to use these tech-
niques at run-time. Both issues are subject to future work.
The current discussion of our approach is limited to the

service composition layer—in particular we do not address
the infrastructure layer of the service-based application.
However, this infrastructure is important for any quality of
service attribute related to time. Especially, if the execu-
tion times for individual services are low, the time needed
for the communication between services need to be taken
into account. The design of our approach does not take this
communication time into account and is, therefore, based on
the assumption that these communication times are minimal
compared to the execution time of the SBA’s services.
Our approach foresees a verification at run-time to deter-

mine whether a service failure may lead to a violation of the
SBA’s requirements. However, even if an assumption is vi-
olated, this might not lead to a requirements violation and
thus the verification might not fail. To save computational
resources at run-time it would, thus, be desirable to define
a minimal set of assumptions such that each violation of an
assumption will lead to a failure in the SBA and, thus, elim-
inates the costly verification step at run-time. In the future
we are going to investigate whether this approach for various
types of assumptions and models would be feasible.
Furthermore, we argued that due to the identification of

the problematic part in the SBA, the adaptation could be
better tailored to the failure situation and is, thus, more ef-
ficient. Since the approach is based on the general concept
of assumptions, it should also be possible to extend it to
other types of assumptions, e. g., assumptions about users,

devices, locations and other context factors and, therefore,
to trigger an adaptation based on factors, which are outside
the SBA’s boundaries. In future work we plan to substanti-
ate both claims by investigating the interplay between our
approach and current adaptation strategies.
Lastly, we argued that assumptions are engineered dur-

ing the design step. In reality, however, assumptions may
also be derived during the verification step. If a verifica-
tion fails at design time, this failure may be due to the fact
that some assumptions were missing. Consequently, it would
be very interesting to understand the interplay between re-
quirements engineering and verification in order to derive
assumptions, which fit the need of both techniques.

Acknowledgements
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

7. REFERENCES
[1] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and

M. Segnan. Fault tolerant web service orchestration by
means of diagnosis. In V. Gruhn and F. Oquendo,
editors, EWSA, volume 4344 of Lecture Notes in
Computer Science, pages 2–16. Springer, 2006.

[2] M. Autili, P. Inverardi, and P. Pelliccione. Graphical
scenarios for specifying temporal properties: an
automated approach. Automated Software Eng.,
14(3):293–340, 2007.

[3] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-Time Monitoring of Instances and Classes of Web
Service Compositions. In IEEE International
Conference on Web Services (ICWS 2006), pages
63–71, 2006.

[4] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors
for composed services. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented
computing, pages 193–202, New York, NY, USA, 2004.
ACM.

[5] L. Baresi and S. Guinea. Towards dynamic monitoring
of ws-bpel processes. In ICSOC, pages 269–282, 2005.

[6] L. Baresi, S. Guinea, M. Trainotti, and M. Pistore.
Dynamo + ASTRO: An integrated approach for bpel
monitoring. In 7th International Conference on Web
Services (ICWS 2009), 2009.

[7] J. R. Büchi. On a decision method in restricted
second-order arithmetic. In Proc. 1960 Int. Congr. for
Logic, Methodology, and Philosophy of Science, pages
1–1. Stanford Univ. Press, 1962.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer,
2:2000, 2000.

[9] D. Cohen, M. S. Feather, K. Narayanaswamy, and
S. S. Fickas. Automatic monitoring of software
requirements. In ICSE ’97: Proceedings of the 19th
international conference on Software engineering,
pages 602–603, New York, NY, USA, 1997. ACM.

[10] A. Dardenne, A. V. Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. In Science of
Computer Programming, pages 3–50, 1993.

[11] S. Fickas, T. Beauchamp, and N. A. R. Mamy.
Monitoring requirements: A case study. In ASE ’02:
Proceedings of the 17th IEEE international conference
on Automated software engineering, page 299,
Washington, DC, USA, 2002. IEEE Computer Society.

[12] S. Fickas and M. S. Feather. Requirements monitoring
in distributed environments. In SDNE ’95: Proceedings
of the 2nd International Workshop on Services in
Distributed and Networked Environments, page 93,
Washington, DC, USA, 1995. IEEE Computer Society.

[13] S. Fickas and M. S. Feather. Requirements monitoring
in dynamic environments. In RE ’95: Proceedings of
the Second IEEE International Symposium on
Requirements Engineering, page 140, Washington, DC,
USA, 1995. IEEE Computer Society.

[14] H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Model-based verification of web service compositions.
In ASE ’03, pages 152–161. IEEE, 2003.

[15] C. Ghezzi and S. Guinea. Run-time monitoring in
service-oriented architectures. In Test and Analysis of
Web Services, pages 237–264, 2007.

[16] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Transactions on
Programming Languages and Systems, 16, 1991.

[17] M. R. Hansen and Z. Chaochen. Duration calculus:
Logical foundations. Formal Asp. Comput.,
9(3):283–330, 1997.

[18] P. Inverardi, P. Pelliccione, and M. Tivoli. Towards an
assume-guarantee theory for adaptable systems.
Software Engineering for Adaptive and Self-Managing
Systems, International Workshop on, 0:106–115, 2009.

[19] M. Jackson and P. Zave. Deriving specifications from
requirements: an example. In ICSE ’95: Proceedings
of the 17th international conference on Software
engineering, pages 15–24, New York, NY, USA, 1995.
ACM.

[20] R. Kazhamiakin, A. Metzger, and M. Pistore. Towards
correctness assurance in adaptive service-based
applications. In ServiceWave 2008, number 5377 in
LNCS. Springer, 10-13 December 2008.

[21] R. Kazhamiakin, P. Pandya, and M. Pistore.
Representation, verification, and computation of timed
properties. International Conference on Web Services,
pages 497–504, 2006.

[22] R. Kazhamiakin and M. Pistore. Static verification of
control and data in web service compositions. In
ICWS ’06: Proceedings of the IEEE International
Conference on Web Services, pages 83–90,
Washington, DC, USA, 2006. IEEE Computer Society.

[23] Z. Lu, S. Li, A. Ghose, and P. Hyland. Extending
semantic web service description by service
assumption. In WI ’06: Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web
Intelligence, pages 637–643, Washington, DC, USA,
2006. IEEE Computer Society.

[24] K. Mahbub and G. Spanoudakis. Run-time monitoring
of requirements for systems composed of web-services:
Initial implementation and evaluation experience. In
ICWS ’05: Proceedings of the IEEE International
Conference on Web Services, pages 257–265,
Washington, DC, USA, 2005. IEEE Computer Society.

[25] S. Nakajima. Model-checking verification for reliable

web service. OOPSLA Workshop on Object-Oriented
Web Services (OOWS 2002), 2002.

[26] S. Narayanan and S. A. McIlraith. Simulation,
verification and automated composition of web
services. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages
77–88, New York, NY, USA, 2002. ACM.

[27] G. Newton, J. Pollock, and D. L. McGuinness.
Semantic web rule language (SWRL), 2004.

[28] E. D. Nitto, C. Ghezzi, A. Metzger, M. Papazoglou,
and K. Pohl. A journey to highly dynamic,
self-adaptive service-based applications. Automated
Software Engineering, 15(3-4):257–402, 2008.

[29] M. Pistore and P. Traverso. Assumption-based
composition and monitoring of web services. In Test
and Analysis of Web Services, pages 307–335, 2007.

[30] A. van Lamsweerde. Requirements engineering in the
year 00: a research perspective. In ICSE ’00:
Proceedings of the 22nd international conference on
Software engineering, pages 5–19, New York, NY,
USA, 2000. ACM.

[31] A. van Lamsweerde, E. Letier, and R. Darimont.
Managing conflicts in goal-driven requirements
engineering. IEEE Trans. Softw. Eng., 24(11):908–926,
1998.

������ �������� ��� ����������� ��
������������ ��������

������� ������� ������� ������� ���� �������
������� ������������ ��� �������� ������������

� �������� ���� ��������������� ��� ������������ ����������
���������� ������������ ������� �������

������� ������� ���������������������
� ��������� ������� �����

������������������
� ������������ �� ����������� ����������� ������������ �����

���������������������������������

��������� ������������ ���� ������� ��� ������������� �� �� ���������
��������� �� ������ ��������� ��� ���������� ��� �� ������� ���� ����� ����
�������� �� ���� ������ �� ���� ��� �� ����� �� ������� ����� ���������
����� ��������������� ����� ������� ��� ������� �� ����� ����� �����
���� �������� ���� ����� ������������ ���� ������ ��� ���� ��� ������
��������� �� ����������� ��� ����������� ����������� ��� ���� ��� �����
������ �������� ��� ����������� ����� ��� ���� ���� �� ���� �������� ��
������� �������� ������ ���������� ��� ������������ ����������� ���������
�������� ��� �������� �� ����������� ��� ������� �������� �� ������� ��
� ����� ����� ������ ���� ������ ����� ��� ������������� ���������� ���
��������

� ������������

��� ���� ������ �� ����������� ���� ������������� ������ ������� �������� �� ���
���� ���� ���� ������� ��������� �� ����� ������������� ������� ��� ������� ����
������������ ������ ��� �� ����� ��� ������ �� ������� �� ��� �������� ��������
������� ��� ������������ ������������ �� �� ����������� ������� ��� ������� ����
�� ����� ��� ���������� ��� ������� �� ��������� ��������� ���� ����� ��� ��
���� ���� ��������������� �� �������� ����������� ��� ������� ���� ������ �����
������ �� ������������� ������� ��� ������������������ ������������ ���������� ���
�� �������� ������������ ��� ����������� �� ������������ ������������������ ���
��������������� ���� ����������������� ��������� ���������� ������������ ��� ����
��������� ����� �� ���� ���������� ��������� ������������ ����� ���� ���������
��������� �� ������ ��������� ��� ���� ���������� �� ������� ���� ����� ���������
��� ������� �������� �� ��� ������ �� ��������� �� ��������� ������� � ������

� ���� �� ��� ������� ��� ������ ��������� �� ��� �������� ����������� �������
��������� ��������� ������������� ����� ����� ��������� ������ �������� ���
��� ������� ���� ������ ��������

�� ������� ����������������� �������� ��� ������ ������ ��� ������� ����������
�� �������� ����������� ���� ��������� �������� ��������������� ���� �� ������
��� �������� �������� ������� ����

�� ���� ����������� �� ��� ������� ��� ������� ������� �������� ���������
����� ��� ������������ ������� ������� �������������� ������� �� ����� �� ����� ��
����������� ��� ����� ��������� ����� �� ���� ����� �� ���� �� ���� �����
��� �� �������� ����� ������������ ������� �� ����� ��������� ����� ���������
������� ��� ��� �� ����� ����������� ��� ����������� ����������� ��� ���� ����
�� �� ����� ���������� ���� ����� ����� �������� ����� ��� ������ ����� ���
������� ���� ����� �������� ������ ������ ������� ������������ ��� ������ ������
������ ����� ����� ��� ������ ��� ����� �������� �� ��� ������� �����������
����� ����� ��� �������� ����������� ��������� �������� ��� ���� ������� � ������
���� �� ������� ���� ������������� ������� ��� ������������� �������� ��� ������
������ �� ����������� ��� ����������� ���������� �� ����������� ���� ����������
�� ������� �������� ������ ���������� ��� ��� ����������� ������������ �����������
����������������� ��� �������� �� ����������� ��� ������������� �� ����������
�������� �� ���� ����� ������� ��� ������ �������� ��� ����������� �� �������
���������� �� ����� �������� ����� �� ���������� �������� �� ��� ���� ����� ���
�� � ���� ����������� ����� �������������� ����������� ��������� �� �� ������
���� ������ �� ����� ��� ������ ����� ����� �������� ������ ��� ���� �����
�������� ��� ������� ������ �� ��������� �� ��� �� � ������� �������� ������
�� ��������� ����� ����� ������ ���������� �� ����� �� ��������������� ������
���� ��� ������ ���� ����������� ���������� ��� ������� �� ��� ������

������������ ��� ������������ �� ���� ����� �� �������� ��� �� ������� � ���
�� ����� ��� ��������� ������������ �������� ���� �� ������� ���� ��������� ������
����������� ���������� ��� ������������ ������ �������

��� ����� �� ��������� �� �������� ������� � �������� ������� ���� ��� �����
����� ��� ������ ������� � �������� ��� ������� �� ��� ������� �������� ������� �
���������� ����� ���������� ����� �������������� �� ������ ����� �� ������� ���
������� ������������ �������� �� ������� � �� ����� ����������� ��� �����������
������ ����������� ������ ���������� ��� ����� ����������� ��� ����� �� ������� �
��� ��� ���� �� ������� ��� ��������� ��� ������� ���������� �� ��� ����� �����
������� �� �������� ��� ����� �� ������� � ���� �� ������� �� ������ ����� ��
�������� � �� ������� ���� ������� �� ��� ������� ������� ��� �������� �
�������� ��� ������ �� ��� ���������

� ������� ����

�� ����������� ������������� �� �������� ���������� ��� ������������� ������� ���
�� ����� �� ���� ��� ���� �� ��� �������� � ����������� ���������������� ������
���� �� ��������� ����� ����� ����� ���������� ���������� ��� �� ���������
�� ����� ���������� ��� ������� ���������� ���������� �� ��� ��������� ���� ���
�� ���� ���� ��������� ������������

� ���� �������������������������������

�������� �� ���������� �������� �� ����� ������������ �������� ���� �����
��� ��������� �� ��� ����� �� �������� ���� ������� ������� ��������� � ����������
����� ���� �� ������ ������ �� �������� ����� ��� ������ ���� ������ ��� ��������
����� �� ���� ���� �������� ������������ ���� ���� ��� ���� ���� �� � ����������
���� �� ��� ���������� ������������ �� ��� ������ �������� ����� � ������������ ����
��� ���� �� ���� �� ������ �� �������� ������� �������� ������������� ������
��� ���� ������ �� ��������� ���� ��� �� ������� ������ ������� ����������� ����
�������� ����� ��� �������� �� ��� ������ ��� �������� �� ����� �������� ������
������� ���� �� ������ ���������������� ������ ���� ��� ������� �������� �����

����� ���������� �� ����� ������������ ������� ���� ������ ������� ����
������ �� ������� ���������� �������������� �������� ����� ���� �� �������
��������� �������� ���������� ��� ����� ������������� ���� ���� ���� ����
����� ���� ��� ��������� �� ������������������ ������� ������������

�� ��� ��������� �� ������� �������� ��������� ����� ������� ����������
���������� ������������ ���� ���� ������� ���������� ��������� ���������� �� �
����������� �� � ����������� ��������� ����� ��� ���������� ��� �� �������������
������������ �������� ��������� ���������� ����� �� �������� �� ����� �� ��������
�� ������ ��� �������� �� ��� ��������� ����������� ������� �� �� ��� �������
�� ������ ������������� ������������ �����

��� �������� ��������� ������ ������ ��� ����� �� ���������� ��������� ���
������� ��� �������� ������� �� ����� �� ������������� ��� ���� ������� ������
���� ��������� �� ����������� ���� ���� ���������� ��������� ��� ���������� ��
��� �� ������� � ������� ������ �������������� ���� �� �������� ������ �� �����
���� �� ����� ��������� ��������� �� ������� ������ ����������� ���������� ���
������������ ������ �������

� ������� �������� �� ��������� ����� ����� ������

��� �� ��������� ��� ������� �������� �� ��������� ����� ����� ������ ������
��� ����� ����� ���������� �� ����� ���� ��������������� ������ ������ ����
����������� ���������� ��� ������� �� ��� ������ ��� ������ �������� ����� ����
��� ���� ���� �� ����� ������ ����������� ��� ���������� ����� ��� ����������
������ �� ������ �� �������������� �� ����� ��� ��� �� ��������� �� �������
����� ������ ������ �� ��� ���������� ��� ������������� ���� ���� �� ��� ������
�� ����������� �� �������� �� ��� ������ ��������� �� ��� ���� �������� ������
�� � ���� �� ������� ������� ����� ����� �� ������ ��� ����������� ��� ���� �� ���
�������� ����� ��� ������������� ������ �������� ����� ��� �� ������� ����� �����
������ ��� �������� ������ ��������� ��� ���� ������ ���������� ��� �������������
�� ��� ���� �� ����� �� �������� ��

��� ��� �� ��� ��� ������ ����� �� ����� ������ ��� ����� ��������� �� ��
������ �������� ������������ ���������� �� �������� ������ ������� ���� ������ ����
������ ����� �� ������ ������ ������������� �� ��� ������������� �������� ��
��� ����� ���� ���� ���� �� ������ ������� ��� ������ ��� ���� �� ����������
������ ������ ������� ��������� ���� ���� �� ������ ��� �������� ���������� ���
�� ����������� �� ���� ������ ����� ��������� �� ��� ���� �������� �� ��������� �

������ ��������� ��� �������� ��������� ����� �� ��������� ����� ��������������
��� �������� ��� ������� ������� �� �������� � � � ������

� ������ ��������� �� ������������ ������� �� ���������
����� ���������������

�� ���� �������� �� ���� ��� �� ����� ���������� �� ��� ������ ��������� ��
��������� ����� �������������� ���� ��� ���� �������� �� ���� ��������� �����
��� �������� ��� ��� �������� ��� ����� ������� ����� ��������� ���������������
��� ������������ ������������� �� �� ��������� ��� ������� �� ����� �������

��������� � ������ �������� � ����� � � ����� �� �� �������� �� � ��� ��
����� � � � ��� �� ����� � ��� ��������� �� � � � � � ��������� �� ���� ����
� � � ��� ������ ���� � � ��� ������ ���� � � �

� ����� �������� � � � � �� �� ����� �� � ���� �� ��������� � � ��� �
� � � �� �� � � � ��� ����� �� ���������� ���� ������ ��� ������ ����������

� ���� ����� �� �� � ������������� ����� ����� ����� ��� ����� ��� ����
������� �� ���� ��� ���� ������ ������������� � ��������� �� ����� ����� �����
� � ��� �� �������� �� � ����� � ��� � ����� �������� � � � � ��� ������
������ �������� �� �� ��������� � � � � �� �� ����� ������ ��� ����� ����
������ � � � � �� ����� ��� ���������� ���� ��� ������ ��������� �� � ���
��� ���� �� � � � ��

��� ����������� �� ���������� � � ��� �� �� � �� ��� ���������� ��������� ���
�������� �� ���� ����� ��� ���������� ��� ����� ���������� ������ ����� ����� ���
����� ��� ���� ���� ���� ����������� �� ����� �� ��� ������� ������� ���� ���
��� ���� ���������

������� � ������ ����� �������� ��� ���� ����� �� �� ��� ����� ����� ������
��� �� ����� �� ���� �� ��� ������� ����� �� ��� ������������ ����� �� ���� � �����
�� � �������� ����� ����� ��� ������ �� ��������� �� ������������� ������ ���
��� ���������� ��� �������� �� ����� ��� ������ ��� ������� ����� ����� ��� �����
������ ����� ��� �������� � ����������� ��� � ������ �� ����������� ��� �� �����
�� �� ����

���� �� ��� ���� ����� ��

��� ������� ��������� �� ���������� �� ������� �� ����� ��� �����������
����� �� � ����� ����� ������� �� ��� ����� �� ��������� ����� �������������� ����

���� �� ��� ������� ����� �����

��������� � ������ ����� ���������

� ����� ����� ������� �� � ���������������� �������� �� � ���� �����
��� � �������� ����� ������ ������ ������� ������ ��� � ��� ����� �� ����� ������
��������� ������ ���� ���� � � ����� �� ����� �� � ���� �� � � � ��� ����� �� �
��� � ��� �������� ������� ������ ��������� ����� ���������� ���� ��� ����������
������������� ��������� � � �� � � � ��� ��������� ����� ����� ��������� �����
�� ���� ����� � ��� �� ���������� �� ������������ �� � ��� �� � ���� � � �����
�� ������� �� � �������� ����� � �� � ����� �������� � � � � � ������� ��
� ������ �������������� �

���
�� � ��� ����� �� ��� ������ �� ����� �� ������ ���

����� ���� ������� ���� ���� � �� ������ � ������� ����� �� ��� ���������
�� ���� �������� � ���� � ����� � ������� �� � �������� ����� ��
���� ��������� ��� ������ ��������������
�

���
�� � �� ����� �� ��� ������� ��������

��� ��� ��� �� ��� �������� �������� �� ���
����� ������� ����� ������� ��� ������ ����
����������� �� ������ � �� � ��� � ����� �
������ �� ������ � �� � ��� � ����� ���

�

�
�

��
��

���
��

�

�

����

��

����� �

���

��� � ��

��

�

��

��
� ��� �� �

���� ���� ������� ������� ��� �� ���� � ���� ������ �� ��� ����� � �������� �
������ ��������� ������ ���� � ����� ����� ���� ���� ��� �������� �� ���� � ����� ��
� ����������� �������� ����� �� ��������� ����� ��� ������� �� ���� ��������
����������� ���������� ������ ����� �� � ����� ����� �������� ��� � � � � �
�� ���� ����� ���� � ��� ���� �� ������� �� ����� � � � � � �� ����� �� ��
��������� �������� � � � � � ���� � � ��� � �� ���� ����� ����������� ���� �
������ �� ������� �� � �� ����� � ������ �� �� � �������������� ��

�
�� �� ���

����� �� �� �������� �� � � � ������ ��������������� �� �� �� � ��� � ��

��� ����� � � ������ ��� � � � �� ����� ��
�
�� ���

������� � ������ �� ����� � ���� � � �� � � � �� �� ��� ���� ��� ��� �
� � � �� ����� �� ���� � ����� ��� ������ ��� ��� � ��� ����� ���� ���� ��
����� ���� ��������� � �� ��� ����� ��� �������� �� ��� ����� ��� ����� �����
��� ������� �� ���� � ��� �� �� ��������� �� ����� ��������� ��� �����������
�� ���� ���� ��� ���������� ���� ��� �� � �� ��� ���� ����� ������� �� ���
����� ��������� ��� ����������� ���� � ��� �� ������� �� ����� � �� ���� �
����� ��� ���� �� � ��� �� � �� ������ �� � �� ��� ����� ���� �� �� ������
���� ����� �� � ����� � ����� ��� ���������� �� ���� ���� ��� ������� ���
��� �������������� �� � �� �������� �� ���� ����� ����������� �� ���� � ������
�������������� �

���
�� ��

���� �� ��� ���� ��������������

�� ����� �� ����� ����������� ��� ������� ����������� �� � ���������� �� ���
����� ������������ � �������� ����� ���������� �� ����� �� � �������� ����� �
����� �� �������� �� � �������� ����� �� ������� � �� �� �� ����� �� �� ���������
����� �������� � � � � �� ����� ����������� ��� �� ������� �� ��������
�� ������� ���������� ����� ���� ��� �� ��� ���� �� ����� ���������� �� �
����� ����� ������� ����� ���� ����� �� ����� ��� �������������� ������ �������
������� ����������� ��� ������ ������ ��������� �� ���� ��� ����� �� ��������
����� ������������ ������ ����������� ��� ������� ������������

��������� � ������������� ������ �� ��������������
� ������������ ������ ����������� �� ����� �� ��� � ���� ������ ������

� �� � ���� ������ ����� �� � ����� ����� ������� ���� ���� ����� ���
� �������� ����� ������ ������ ������� ������ � ��� �� �������� ����� ����

���� ����� ������ ������ ������ ������ �� ���� � ����� � ���� � �����
����� ����� ������� ������ ������� ���� ������� ����������� ������ ���
���� ������� ������ ������ ��� �������� ���������

� ���� �� � ��� �� �������� ����� ������������ ������ ������ ������������ ����
���� � ��������������� ����� �������� ��� ������ ����������� ����������� ���
����� ������� ������������

��� �� ���������� �� ����������� ��� ��������� ����� �� ���������� �����������
������� ��� ������ ������� ����� ��������� ������ ����� ���� ������ ��� �������
�������

��������� � �������������� �� ��������� ��������
����� �� ��������� ��� � ��������� �� ������ ������ �� ����

�� ��������� � � �� � �����
�

�� � ��� ���� �� ��� ��������� ������ ����������
�� ��� ������ ��������� ��� ������ ������

�� ����������� � � �� � � � ��������� � � �� � �������� � � � ��� ���
���������� ������� ���������� �� ��� ��������� ������ ���������� ��� �����������
������������

�� �������� � � �� � � � ��������� � � �� � ����� � � � ��� ��� �������
������� ���������� �� ��� ��������� ������ ���������� ���� ������� �����������

�� �������� � � �� � � � ��������� ���� � ����� � � � ������� ��� ������
������� ���������� �� ��� ��������� ������ ��� ���������� ��� ������� �����������

������� � ������ ����� ������ �� ����������� �� ����� ��� ����� ����� ���
������ ��� � ��������� �� ��� ���� ����� �� �� ���� �� ��� ������� ����� �����

�� ���� �� ��� ��� ��������� ���� �� ����� ��� ������������

� ����� � ���������������� ��������������� �������������� �������
�������� ������������� ������������ ��

� ���� � �����������������������
� ���� � ���������������������
� �������� � ����������� ���������
� ����� � �����������������������������

��� ������ ���� �������������� �� �������� �� ���� � ��� ������ ���� ���
�� ���� ���� ������ �� ��� ��������� ��� �� ���� ������ �� ��� ����� ���������
����� �� ���������� �� ��� ��� �� ���� �� ��������� ��� ����� ����� ��������
�� ����� �� ��� ��������� �� ��� �������� ����� ���� �������������� ���� ���� ��
������ ��� ������� �� ��� �� ���� ���� �� � ��� ����� ����� ����� �� ���� ���
���� ������� ����� ����� ��� ������� ���� �� ��� ����� ���������� ���� ���� ������
���� � ������ �� ��� ����� ����� �� ���� ���������� �� ���� ����� �������������
����� ������������� ��� �� ������� �� ����� ���� ��� �� ���� ���� ���� ���
����� ����� �� ��� ����� �����������

����� ������������� ��� ������������� ��� ��� ������� ����� � ��� �
���������� �� ��� ������� ����� �� ���� � ��� �� ��� ����� ��� ��������� �� �����
�� � ����� ������ ���� ������������ �� ����� �� ���� � ��� ������ ��� ���������
���� � ��� �� ������� ��� ��������� �� � ��� ������ ��� ������ ���������� �� ����
��� ���������� ��� ��� ������ �� ���������� �� ��� �� ���� ��� ��� �������������
������ �� �������� �� �������� ��� ���� ������� ���� ��� ������������� ������
�� ���������� ����� ��� ���� ��������� ������ � ���� ��� ���� ���������� ����

���� �� ��� ���� ��������������

���� �� ������ ���� ������������ �� ���

������������ ������ ��� ������� ������ ���� ���������� ��������� �� ��� ���� ��
������ ��� ��� ������ ����� ���������

��� ����������� ����� ��� ����� �� ���� �� ���� ����� ��� ������ �������
������� �� � ����� ����� ��� � ������� ������������� ��� ������ ������ ������
�� ������� ����� �� ��� ����������� ������ ����� ��� ������� ������� ��� ��� ���
������ ���������� ���� �� �����

���� �� ����������� ����� ��������� ��� ���������� �� ���

��� ����������� ����������� ����� ��� ������� ���������� ���� �� ������ ����
�� ���� ���������� ���� �� ����� ��� ��������� ������� ��� ������ �� ��������� ���

�������� ��� ����� ������ ��� ���� ����� �� ����� �� �������� ��� �������������
���������� ������ �������� ��������� ��� ����� �� ���� ��

���� �� ����������� ���������� ������ �� ���

��� ������� ����������� ������������ ��� ������������� ������� ���� ������
� ����� ����� �� � ������ �� ������������ ���� ���������� ������ ���������� ��
��� ���������� ����� �� ��� ����������� ����� �� ���� ���

� ����������� ��� ����������� ���������� �� ����������

�� ���� �������� �� ����� ��������� ����������� ��� ����������� ���������� ��
����������� �� ����������� ������ ������������ ����� ��� ��������� ������ ���
����������� ��� ������ ����� ������������ ����� ��� ������� ����� ����� ��� ���
������ ��������� �� ������ ����� ��� ������ ������� ����������� ������ ��������
��� ���� �� ������� ������� ����� ������ �� �������� �� ������ ������ �� �����
���� ����������� �����������

��������� � ������������ ������������ �� ��������� ��� �� ������

�� ������ ����������� �� ��� ��������� ������ ��� ����������� ����
���������� � �������������

�� ������ ����� ����������� �� ��� ������� ����� �� ������ ��� ��� ������ �����
�������� ������ ������� ����
����� � ��������� ��� ���

�
�� �� ��� � � �����

� �� � ��������� � �� � ��������� �

������� � ������������ ���������� �� ����� ��� ��������� ��� �� ������ ����

�������� ������� ��� ��� � � �������� ����� �� � ��� ��� ��� ��
�

�� �� ��� � � ����

��� �� � ������������ �� ���� ���� �� � ������������� ���������� ��� ��

������ ����� ����������� ������� ����� � ��������� ��� ��� ��� ��
�

�� ��

��� � � ����� ��� ��� � � ����� � �� ��� � � �� ��� � �� �� ���� ����� ���� ���
�� ��������� �� ���������� �� ��� ������������� ������ ����������� ��� ���������
������� ��������� ����� ��� ���� ������� ����������� ����� ������ ��� ������������
�� ����� ����������� �� ������ ��� ���� ���������� �� ��� �� ����� ��� ���� ������

��� �� �������� ��� ����������� ����������� ��� �� ��� ���� ����� �� ���
������� �� ���� ���� ��� ��������� �� ������� ���� ��������� �� ��������� �������
��� ������� ������ ����� �� � ������� ������ �� ���� ���� ��� �� ���� �������� ����
�������� �� ��� ���� ���� ��������� ����� ��� ������ �� ������� ������ ��������
���� �� ���� ������ ����� ������������ ���� ��� ������������ �������� ����� ��
������� ���� ���� ������� ����� ��� �� �������� ������� ����� �� � ������ ������
��������� �������� ������������ ����� ���� ��� ������ ����� ����� ��������� ��
��� ���� �� �� �� ������� ��� ��������� ����� ���� ���� ���������

��������� � ������������� ������������ �� ��������� ��� �� ������

�� ������������� �� ���� ������� ����� ��� �� ��������� ����
������ �� � ��� ������ ������ ���� � � ���������
� � �� �� ��� ���� ���� �� � ���������

�� �������� ������������� �� ���� ������� ����� ��� �� �������� ��������� ����
������ �� � ��� ��� � � � ��� � ������ ������� ���� � � ���������
� � �� �� ��� ���� ���� �� � ��������� ���
� ����� �� �� ��� ��� � � � ��� � ��

�����
����� ��� � � � ��� �� ����������� �� ��� ������ ����� �� ��� � � � ����

������ �� �� ���������� ���� �������� ������������ ��� �� ���� ������������� ���
��� ���� ������ ��� ���������� ����������� ��� �������� ������������ ������ ����
��� ������ ����� �� �������� ����� ��������� �� ��� ���� ������� ��� ��� ���� ��
��������� �� ��� ������ ����� �� ��� ����� ����� �������� ��� � � � ��� �� ������
��� ����������� ������ �� �� �� ����������� ���� ����� ���� ���� �������� ��
���� ��� ���� ��� ��������� ��� �� �������� ������������� ��� � �����������
�� ���� ����� ������ ��������� ���� �� ���� ��� �������� ������ ����� ���� ��
������������� ��� ��� �������� �������������

������� ��������� �������� �� ���������� �� ������������������ �������
���� �� ��������� ����� �� � ��������� � �������� �������� �������� �� ������
���������� ������� ���� ���� ���� �� ��������� ������ ��� �� ������� ���� ����
������ ���� ���� ���� �� �������� ���� ��������� ������� ���� ����� ��� ������
�� ��� ������������ ������ ������ ���������� �������� ������� ���� ���� ���������
����� ��� �� ������� ����������� ������ ���� �� ���� ��� ��� ��� ������� ���
��� �� ����� ��� ����� ���������� ����������� ����� ��� �� ���� ��������������
��������� �� �������� ������� ������������������ ��� ������� ������ �����������
����� �� ���� �������� ������ �������� ������ �� ������ ������

��������� � ������������������ ��� ������ ��������� ������������ ��
��������� ��� �� ������

�� �������������� �� �� ��������� ����� �� � ��������� ����
��� � ���������� � ��

�
�� �� ��� � � ����

�� ������ �������������� �� �� ����� ��������� ��� ������ ����� �� � ��������

��������� ���� ������ �� �� ��� ����� � ��
�

�� �� ��� � � �����

�� �������� ������� �� ���� ���� �� ��������� ������ ��� �� ������� ���� ���� ������
���� ���� �� � ���������� � �� �� �� ��� ����

�� �������� ������� �� ���� ���� �� ������ ��������� �� ������ ����� ��� �� �������
���� ���� ����� �� ������ ������ ����
������ �� �� ��� ����� ��� ����� �� �� ��� ����� �� ���� � �� �� ��

��� �����

������ �� �� �� ���� �� ����� ��� �������� ��������� ������ ����� ��������� ��
������ ������� ���� ��������� ������� ����� ��������� �������� ������� ����������
����� ����� ������� ���������������� �� ������� ���������� � ��� � �� ���� �� �
��� � ��� ����������� ���� ���� ������ ��� �� ���� � �� ���� ���� ��������
���������� ���� ������� �������������� ������� ��������������� ����� ���������
������� ������� ��������� ������� �� ���� ���

� �������� ��� ����������� �� ����������� ����������

�� ���� �������� �� ������� ��� ����������� ���������� ���������� �� ������� � ���
���� ������ �������� ���������� ��� ����� ������������ ��� ������ �� ��� ��������
��� ����� �� �������� ��

������ �� ����� ������ ��� ������ ������� ����������� ����� ����� ��� ������
������������ �������� ����� �������� ���������� �� ���� �� �� � ������ ���� ��
���� ������ ���������� ��� ��� ������ ��� ������ ������� ���������� �� ���� ��
����� �� ���� � ��� ���� �������� ���������� ��� ��� ������������ ����������� ��
������� �� ���� �� ������� ���� ��� ���� ����������� ����� ����� ��� ����� �
������� ����� ��� ��� �� ���� ������ ����� ������� ����� �� � ����� ������� ����
�������� �� ���� ��� ������� ����������� ����� ��� ����������� ��� �� ������� ��
������ ����� ��� ������ ����� �������� ����� ��� �������� ������� ����� ������ ���
����������� ����� ��� ���� ���� ������� �������� ������ ��� ������� �� ����������
��� ���� ������ �� ������� �� ���� � ���� ���� ���� ��� �� �� ����������� �����
� ��� ������ ����� � �� ������������ ������������ �� ��� ����� �������������
������� ��� ��������� ����� �������������� ������� ����� ���������� ��������
����� �� ��� �� ������ �� ������ ��� ������������� ������ ����������� �� ����� ��
����� ���� �� ��� ��� ���� ���� ������ ����������� ���������� ��������� ����
�� ����� �� ����� ��������� ��� ��� ���� ��� ��������� ��� ����� �� ����������
����������� ����� ���� ���� ������ ��������

��������� � ������� ��� ������ ������� ������������ �� ���������
��� ��� ���

�� ������ ������� ��������� �� ��� ����� �� ���� ����������� ���� ��� �� ��������

��������� ���� ���
�

�� �� ��� � � ���� � ��
��

�� �� ��� �� � ����

�� ������ ������� ��������� �� ��� ����� �� ���� ����������� ���� ��� �� ��������
�� �� ������ ���������������� ���� ���

�
�� �� ��� � � ���� � �� �� ��

��� ���� ���� � �� �� �� ��� �����

������ �� ��� ������ ������� �������� ������ ��� �� ������ ���� ������� ������
�� �� ����������� ���� �������� �� �������������� ��� ��� ����� ��� ���� �� ���
�������� ��� ��� ������ ������� ��������� ��� �� �� �������� ���� ���� ��� ��������

����� �� �� ������� �� ��� ��� ����� �� �� � ������ ��������������� �� �������
��� ������ ������� �������� ������� ��� ������ ��� ����� �� � ���

������� � ��������� �� ������������ ������������ �� ��������� ��� ��

�� �������� ������������� �� �� ���� ���������� �� �� ��� � �����
��� ������������� �� �� ���� ���������� �� � ��� � �����

�� ��� �� ������ ����� ����������
�� ���� ���� ��� �� � ���� � ����� �� ������������ �����������
�� ��� ��� ��� ������ ������� ��������
�� ��� ��� ��� ������ ������� ��������

�� ��� ��������� ���� � �� ���� ������ ���������� ��� ������ ��� ������ �������
����������� �� ���� � �� ���� � �� ������� ���� ��� ���� ����������� ���� � ���
������� ���� ��� �� ���������� �� � ������ ���� ��� ��� ����� ��� ����������
�� ���� ��� ������������� ����������� ��� � � �� � � � �� ���� ��������
����������� ��������� ��� � � � � �� �� �������� ���� ��� ������ ����� ��
��������� ��� � �� � � � �� ���� ���������� ���� � � � � � � �� ���� �
�� ���� � �� ������� �� ������ ��������� ���� ���� ����������� ���� � ��� �
������������� ������ ���� ��� ����� �� ��� ����������� ������� �� �� �� �� ��������
�� ������� ���� �� ��� ��������� � ���������� ���� � �� �� ����� �� ���������� ��
� ������ ���� ���� ��� ��� ������������ ��� ������������� ���������� �� �������
��� ���������� ������ ����� ��� ������ �� ��� ����� �� ���� � �� ����� �� ���
��� ����� �����

������� � ������� ���������� ��� ������������� ������� ������������

�� �� ��������� ��� ��� ��� ������ ������� ��������� �� ��� ���� �����������
���� ����� �� �� ������� ������ ����� ���� �� � ���� � �� � ���� ���� �� �� ���

�� �� ��������� ��� ��� ��� ������ ������� �������� �� ��� ���� �����������
����� �� � ������������� ������ ���� �� ��� ��������� ������
�� � �� � � � �� � ���� �� ����

�� ������ ���� �� � ��� ��� � � ��� ��� ���� �� ��������� �� ������ ���
�� �� �������������� �������� � � �� � � ������� �� ���������� ����

� �� ��� ���
�� ������ ���� ��� � ����� ���� � �� �� �� ���

������ �� �� ��������� ���� � ��� ���� � �� ������ ������ ���������� ������
��� ���� �� ��������� ��� �� �������� ������������ ��� ������������� �������������

������� � ������� ������� �������� �� ����� ��� ��� ������ ������� ��������
������� ���������� ���� ����������� ��� ������� �� ����������� ����� ���������
���� ��� ���� ���� ��� �� � ���������� �� ������������ ����������� ���������
�� ��� ���������� ������ �� ��� �� ���� ��

���� �� ���������� ������ �� ��� �� ���

�� ��� ��������� ���� � ��� ���� � �� ���� �������� ���������� ��� ���������
�������� ��� ������ ��������� ����� ��� ��������� �������� ����������� ���� ��
������ ��� � �������� ��������� �� ������ �� ���� ���� ���������� ��� ����
��� ����� ��� ���� ���������� ������ ���������� �� �������� ��� �������� ��� ���
������ ������ ��� ���������� ���������� ��� ������������ ��� �������� ��������
����� ��� � ������ �������������� ������� ����������� ��� ������ ������ �����
������ �� ������� �� ���� ������ ������� �� ���������� ������������� ���� ��������
������������ �� ����� ��� �� ��� �� ���������� �� ��� ��� ���� ������ ��������

������� � �������������������� �� ��������� ��� �� �������������� ��

�� ��� �� �������� �������������� ���
�� ���� ���� ��� �� � ����� � ����� � ����� �� ������������ ��� �������� �����

��������

������� � ������� ����������� �� ��������� ��� �� �������� ������� �����
�� ���������� � ��� �� ��
��� ���������� �� � ��� � ������

�� ��� ���� ����������� ���� ����� �� �� ������� ������ ���� ��� ���� ������
�� ��� ���� ������ ���� ����� �� �� ������� ������ �����
�� ��� �� �������� �������
�� ���� ���� ��� �� � ����� ������ � ����� �� ������������ ������������

������ �� �� ���� � �� ���� �� �� ����� ��� �������� �������� ��� ��� ����
�� ���������� ��� �������� ������������ �� ��� ���������� ���� ���� ��� ������
����� ���� ��������� ����� �� �������� ��� ��� ����

������� � ������� ��������� ��� ����������������� �� �����
�� ��� ���� � �� ���� � �� ���� ������ ���������� �������� � �� �������� ���

����� ����������� ��� ���������� �� ���� �� ������������ ��� �����������
��� ������� �� ���� ������ �������� � �� �������� ������� ���������������������
��� �������������������� �� ���� �� �������������� ��� �������������� ���

������� �� ���� ������ ��������� ����������������� �� ��� ������� ���� ������
��������� �� ������ �� ���� ���� �� ������ ��� ���� �� �� ���� � ��� ��� ���
����� ���� ������� ���� ������������ ����������������� �� ��� ������������
������������

� ����������

�� ���� ������ �� ���� ������� ��� �������� ������������ ������� ����� ���������
����� �������������� ��� ����� ������������ �� ���� ������������� ������� ����
�������� ����������� ��������� ������ ����������� ��� ������ ����� ������������
��� ����������� ����������� ��������� ������������� �������� ������������� ���������
��������� ��� ������ ���������� ��� ���� ������� ���������� ����������� ����������
��� ���������� �� ���� �� ����� ���� �� ��� ������ ���������� �� ����� �� � ���
�� ������������� ������� �� ��� ��� �����

���� �� ����������� ���������� �� ������������ �������

��� ���������� ��� ������� ��� ��� ����� ����� ������� ���� ���� �� ���� ������
��� ����������� ���������� ��� ������� �� ���������� �� ������������� ������ �����
��� ����������� ���������� ��� ������� ����� ��� ���� �������� �� ������ ����
�� ���� ���� ������� �� �������� ��� ����������� �� ��� ����������� ����������
����� ��� ������ �� ����� ����������� ��� ��������������� ����������� ����������
�� �������� ��������� �� ���� ����������� ��� ��� ��� ���������� �� ���� ����� ���
������������ ������� ��� �� ���� ��� �������� ��� ���� ������� �������������
��������

����������

�� ����� ��� ����� ���������� ��� ������ ��� ������ ��� ������� ��� ������� ��� ��������
��� ������� ��� ����� ��� ����������� ������������� ������� ������� �������� ������
������ �����

�� ����� ��� ��������� ���������� ����� ����������� �� ��� ����� �� �����������
���������� ������

�� �������� ����� ������ ��� �������� ��� ��������� ��� ������������ �������� �����
������� ��� ����������� ��� ������������ ��� ������������� �������� ������ �����
�� �������� ������� ������������ ������� ������

�� �������� ����� ������ ����� ��� ������ �� ��������� ���������� �������� �����
������ �����

�� ������ ����� ������� ����� �������� ��� ������ ����� ������ ��� �������� �����
��������� ���������� ������������� �������� ��� ���������� ������� ��������
����� ���� ����� ������ �������

�� ������������ ��� ������������ ��� �������� ��� ������ ��� �������������� �������
�������� ��� ����������� ����� ���� ��� ��������� ������

�� ������ ��� ������ ��� ������� ��� ��������� ��� ������������ �� ��������� �����
��������������� ����� ���������� �� ������ ����� �������� �������� ������

�� ���������� ��� ������ ��� ������ ��� ������ ��� �������� ���������� �� �����
�������� �������� �������� ��� �������� ����������� ��� ������������� ��������
��������������� ������ �����

�� ���������� ��� ������������ ��� ������� ��� ������� �� ���������������� ������ ���
��������� �������� ��� ������ ���� �������� ������� ������ �������

��� ������ ��� ����� ��� ����������� ��� ��� ����� �� �������� ������������� �������
������ ���� ����� ����� ������ �����

��� ������� ��� ������ ��� ������������ �������� �� ������������� ���������� ��� �����
������ �������

��� ������� ����� ��� ��� ����� ��� �������� ������ ��� ������������ ��� ���� ���
������ ����� �� �������� ������������ ��� ����� ������ �������

��� ������ ��� �������� ��� ������� ��� ���������� ��� ��������� ������� ��������
�������������� ��� �������� ������

��� ������� ��� �������� ��� ����������� ���������� ��� ������������ �������� ���
���� ���� ��� ������ �����

��� ������ ��� ������������� ��� ����� ��� ��������� ��� ����� ��� �������� ��� �����
������������ ������ ��� ������� ������������� ���� �������� ����� ������ �����

��� ��������� ����� ���������� �������� ������������ ������ ����� ����� ���������
���� ������ �������� ���� ����� ������ �������

��� ������� ��� ���������� ��� ���������� ��� �������� �������� ������������ ��� ������
���� ����� �������� ��� ���������� �������� ��� ������ ������ �������

��� ������� ��� ������� ��� ������ ��� ������ ��� ����������� ��������� �� �������
�������� �������������� ��� ��������� ���� �������� ������� ������

��� ������������ ��� ������� �������� ������������� ��� ������ ��������� ��������
��� ������� ��� ��������� ��� �������� �������� ������ ����� ������

��� �������� ��� �������� ������� ������������ �������� ������������� �� �����������
������������� ��������� ����� �������� ����� ��� ������ �����

��� �������� ��� ������ ����� ����� ������������ ������ �� ������� ��� ����������
��� ��������� �� ��������������� �������� �������� ��� �������� ����������� ���
������������� �������� ������ �������

��� ������������ ��� ������� ��� ���������� ��� � ������� ��������� ��������� ���
������� ������� �������� ��� ���� ���� ������ �������

��� �������� ��� ������ ����� ��������� ��� �������� ����� �� �������� ��� ���������
������� ����������� ����� �� ������� ����������� ��� ������ ������ ���������

��� ����� ��� ����������� ��� ������ ��� ����������� ��� ������ ����� ������� ������
��� �������� ������������ ��� ���� ������ �������

��� ������� ��� ������� ��� ��������� ��� ������������ ���� ��������� ���� ������
��� ��� ����� ���� ������� ��� ��������� ��� ������ �����

��� �������� ��� ������ ����� ������ ��� ������ � ������� ����������� ���������
����������� ���������� ������� ������� ����������� ������� ������ ��� ������
������ �������

��� ������� ��� ��������� ��� ������ ��� ��������� ��� ������ ����� �������� ��������
��� ������ ��������� ��� �������� ���� �������� ������� ������

��� ������ ��� ������ ��� �������� ��� ����������� ��� ����������� �������� ���
����� ���� ������ ����������� ����������� �� ������� ��� ������ ��� �������� ���
������ ��� ����� ������������ �� ������� �������� ��� ��������� ������ ���������
�� ���������� �������� �� ��� �������� �� ��� ���� ��������� ������

��� ���������� ����� ����������� �� ������� ����� �������������� �������� ���
������� ������������ ��������� ������

� ������� �� ������� �������� �� ��������� �����
����� ������

��� ��� �� ����������� ��� ���������� ��� ����� ������ �� � ������� ���� ��
����������� �� �������� ��� ��������� ����������������
��������� ��� ����� ����� ������ � ��� ������ ���� ������� ������� �� ���
������� �������� �� �� ���������� ������� ���� ����� ����� ��������� ��� ������
����� �� ��� ����� ����� ��� ��������� �� ������ ��� ��� ��������� ����� ���
���� �� � ��������� ������ ����������� ��� ���������� ������� � ������� �� ���
����� ��� ��� ��� ������ �� ������� ����� ������ �� ��� ���� ������� ��� ������
����� � �������� �� ���� ���� ��� �� ���� �� ��� ���� ����������
���������� �� ����������� � ���� ������ �� ��������� �� ��� �����������
����� ���������� �������� ��� ����� ����� ������ ��� ��� ���� �� � ������� ��������
���� ��� ������ ����� ��� ������ ����� �� ���� ��� ���������� �������� ��� �������
����� ������ ���������� ���� ��� ����� �� ������ �� ������� ��� ������ ��� ���� ���
������� ��� �������� ������������ ���� ��� ���������� ������ ��� ������ �����
��� ������� �� ��� ����� �������� �� ��� ������������������� ����� ������ �����
���� ��� ���������� �� �� ����� �� ����� ����� �����������
����� ���������� � �� ������� ���� ���������� ��� ������ �� ��������� ���
������ �� �������� ����� ��� ���� �� ��� ������������������� ������ ��� �� ���
����� ���� �� ��� ���������� �� ���� �� ��� ���� �� ���������� ���� ��� ��
��� ���������� �� ��� ��� �� ��� ���� �� ��� ������� ��� ������������������
�������� � ��������� ��������� �� ������� ���� ������ �������

�� ���� �������� ��� �������� �� ����� �� ��� ����� ���� ���� ���� ��� �����
��� ������ ������������ ��� ����� �� �� ��� �� ������� ��� �� �� ������ �������
��� ����� ����� ��������� �� ��� ��������� �� ���� ��� ��� �������������

� ����� ���� �� ��� ���� ��� �� ��� ����� ����� ��� ����� ��� �� ������ �� ���
����� ��������� ��� ���� �� ��� ��� ���������� ����� ��� ��� ����
������ �������� ��� ���� �� ��� ���������� ��������� ����� ���� ������
���

� ������ ��� ���� ������ ������������� ���� ��������� ��� �� ���� ��� �����
����� ������ ���

� ������ ������� ��� ���������� ��������� ������ �� ������� ���� ���������
�� ����� �� �� ����� ������ ������ �� ��� ������ ���������� ��� ��� �������
������������ ��������� ����� ���� �� ������ ���

� ������ ����� ������ �� ����� �� � ���� �� � ����� ����� ������� ��� ������
������� �� �� ����� �� ������ ���

� �� ����� ���� ���� ����� �� �� ����� ��� ���� ����� ����� ����� ���� ��
������ �� ����

� �� ����� ��������� ���� ����� �� ����� ���� �� ���� �� ������� ���� ���
����� ������ ��� ����

� ������

������� � ��������� �� ������������ ����������� �� ��������� ��� ��

�� �������� ������������� �� �� ���� ���������� �� �� ��� � �����
��� ������������� �� �� ���� ���������� �� � ��� � �����

�� ��� �� ������ ����� ����������
�� ���� ���� ��� �� � ���� � ����� �� ������������ �����������
�� ��� ��� ��� ������ ������� ��������
�� ��� ��� ��� ������ ������� ��������

������ �� ���������� �� � ��� ���� � � � ��� � ������������� ����� � ���������
�� ���� � � �� ������� ����� � ��������� �� �� �� ���������� ������������
�� �� �� ��� ������ ��� ����� �� ���� � � � ���� ���� ���� ��� ������ ����� �� � �����

��� ���� ��� ����������� ����� �� � ���� ��� ��������
�� ������� ��� �� �������� ����� �� � ��� ���� ��� ��� ��� ��� ���� �� � �����

��� �� � ����� ���� ���������� ������������ ����� �� ��� ����� �������������
������� �� ���������� ��������� �� ���������� ���� ���� ��� �������������

�����
�� �� ��

�� ��
��

��
�

��
��

�

�� �� ��
�� ��

���

��

�� ��
��

��
��

�

��
��

��
�

�� �� ��
�� ��

���

�

��
�

����
�

��

���������

�������

�� ��
��

��
��

��
��

��
��� ��

�

��

�������
�����

��
�

����
� � ��

��

��������
������

�� ��� ������ ������� �������� �� �� �� ���� ���� �
�
� � ���� ���� ��

�
��
��� ��

�

��� �
��
��� ��

�� ���� �� � ��
� �� ���� � �� �� ��� ����� �

�
�� � ��

��� ���
����� �� �� ��� ���� ��� ��� � ��

���� ����� ���� ��� ��� �� ��� ����������� ��
���� ��� ��� ��� ��� �� ��� ������ ����� ��� ������ ����� ����������� �� �� �������
������ �� � ����������
���� ���� �� ��� ������ �������� ����� �

�
�� ��� ���������� �������� ������ �� ��� �� �

���� ��� �������� �� �������� ������ �� ������� ��� �������� ���� � � � ��� �� � ��
�������� �� ����� ��� ���� �� ����� ������� ��������� � �� ��������� �� �� ����
������� ���� �� ���� � ������ �������� � �� �� ��� ���� �� ������ � � �� �����
��� �� �������� �������������
��� �� ��� ������� �� ����� �� �� ��� ����� ���� ���� ��� ������ ��� ���� ���
����������� ����� ��� �������� �� ����� �� ��� ������� ��� ������ �������
�������� � ����� ���� �� � ������ �������������� � �� �� ��� ���� ���� ��

� ��

�� ��� ������ ���� �� ��� ������ ����� �� ��� ��������� �� �� ������� ��� ������
������� �������� ����� �� �� �� �� ��� ���� ���� ��

� �� �� ��� ������

�����
�� �� ��

�� ��
��

��
�

��
��

�

�� �� ��
�� ��

���

��

�� ��
��

��
�

��
��

�

�� �� ��
�� ��

���

�
���� � �� ��

���� ��� �� � ��

��
�

��

�������
�����

�� ��
��

��
�

��
��

�
��� ��

�

��

�������
�����

���

�����

� ��

��
�

��

�������
�����

�����

��� ��
�

�����

�
��

��

��
�����������

�����������

����������� �� ������ ��� �� � �� � ������ �������������� � �� �� �� �� �
�� ��� � ������ ���� �������������� ����� �� ��

� �� ��
� �� �� � ��� �����

������� �� � ��������� �� �� �� ������� � � ��������� ������� ���� ��
���� �� ����� ��� ����������� ���� �� ��� ����� �������� ��� ����� � ������
�������������� � �� �� �� ������ � � �� ����� ��� �� ������������� �
������� � ������� ���������� ��� ������ � ������ ������� �����������

�� �� ��������� ��� ��� ��� ������ ������� ��������� �� ��� ���� �����������
���� ����� �� �� ������� ������ ����� ���� �� � ���� � �� � ���� ���� �� �� ���

�� �� ��������� ��� ��� ��� ������ ������� �������� �� ��� ���� �����������
����� �� � ������������� ������ ���� �� ��� ��������� ������
�� � �� � � � �� � ���� �� ����
�� ������ ���� �� � ��� ��� � � ��� ��� ���� �� ��������� �� ������ ���
�� �� �������������� �������� � � �� � � ������� �� ���������� ����

� �� ��� ���
�� ������ ���� ��� � ����� ���� � �� �� �� ���

������ �� ����� � � ��
��� �

��� �� ���� ���� ������ � � � ������ � ��

��� ������� ���� �� ����� �� ��� � ��
��� �

��� �� ���� ������������� ����

������ � � � ����� ��� ����� � � ���� ���� ��
�

�� ��� �� ���� �� ����������

�� � ���� ���� �� �� ��� ��� �� ������������ �� ��� ���� ��
���

�� �� ��� �����

���� ��
��

�� ���
�� ��� ���������� ���� �� � � �� �� �� ����� ��

�
�� �� ���

�
��� � ��

���� ���

�
��
����

��
��

�

����
�� ���

� ����� �� ��

�� ���

��

��
�� � � ��� �� �

���

� ���� �� ��

��

����������

�����������

����� ���� ��� ��� ������� ��� ����� ���� �������������� � �� ������ �� ���
������� � �� �������������� ��� �� ��������� �� ����� ���� ����� ��� ���� ��� ������
��������� �� ��������� �������� ��� �� ����������� �� �� ��� ��� �� ��������
�����

����� ��
���
�� �� ���� � ��������� ���� ������ �� ��� � � ���� �� ����

�
� �� ���

�
��� � ��

�� ���

�
�
���

��
� �����

��

����
�� ���

� ����� �� ��

�� ���

��

��
�� ��

�� �� �� ��
�� �� ��

����� ��� ���� ��� ��� ������ ������� �� ��������� ������� �� �� ������ ��
�� � � � � �� �������������� �� �������� ��� ������������� �� �� ��� �������
������� ��� ������ ��������� �� ��������� ��� ��� �� ����������� �� ���

����� �� ���� �� ��������� �������������� �������� ��
���
�� ��

�����

�� ��� �����
��� ����������� ������� ���� ��� ��� ����� �� ���� � ������������� ������

��������� ��
����
�� �� ��� ��� ���������� ���� ��� ��������� �� �������� �� ��

���� �
�� � ����� ���� �� �� �

��
��� ����� ���� ��

�
��

�� �� ��� ������ ��������

��
��

�� �� ��� �� � ���� �� ��� �������� �������������� �� �� �� ��� �����

��� �������� ��
���
�� ��

�����

�� �� �� ��������� ������� �� ���� ��� ���������
������� ����� �� ��� ������ ����

�
�� �� ���

�
��� � ��

���� ���

�
��
���

��
� ��

�
����

�� ���

� ����� �� ��

�� ���

��

��

��

��

�� � �
� ��

��� ��

��

�
���

� ���� ��

��

��

��
��

���

��
�� ��

���

��

���

��
�� ��

����

��

��� ��� ��� ��� ����� ��� ����� ������������� �������� ���� ���� ���� � ���
�������� ������� ��� ������ ���� ��� ��� ��� ����� �

������ �� �� ���� � �� ��� ������� �� ������� ���� � � ���� �� ������� ����
��������� ����� �� �� ��� ����� �� ���� ��� �������� �� �� ������� ���� ���������
�������� ���� �� ���� �� ������� ���� � �� ��������� � �� �� ���������� �� � ���
�� ���� ���� �� ���� �� ������� ���� � �� ������ ������� �� �� ��������

����� �� � � � � ��� � �� ��� ������� �� ��
���
�� �� �� ����� �� ��� ������

������� � ������������������� �� ��������� ��� �� �������������� ��

�� ��� �� �������� �������������� ���
�� ���� ���� ��� �� � ����� ������ � ����� �� ���������� ��� �������� ��������

�����

������ ����� ����� �� �� ��� ���� �� ���� �� ���� ��� ��������� �� ��
�

�� ��

��� ���� � � ����� ������� �� ����� �� ���� �� ���������� ������������ ������
��� �� ��������� �� ���������� �������������� �������� ����� �� ��

� �� ��

��� ����� �� ��� ���� ��� ��� ����� � ����� �� ��� ������ ����� ��� ������
�����������������

�����
���� � ��

�����
�
��

������

������
��

� �� ��

��
� �

��
�����������

� ��������

������
��

�

�����������

� ��������

������

������� ��� ��������� �� ��
�

�
�� ��

� ��� ���� � � ������ ��� �������� ��������

����� ������ ��� �� ��������� �� ��� ����� ������������� ������� ��
�

�� ��

��� ��
� �� �� ��� ����������� ��� ���� ��� ��

�
�� �� ���� � � ����� � ����

�� ��� �������� ��������������� �

������� � ������� ���������� �� ��������� ��� �� �������� ������� �� ��
���� �� ���������� � ��� �� �� ��� ���������� �� � ��� � ������

�� ��� ���� ����������� ���� ����� �� �� ������� ������ ���� ��� ���� ������
�� ��� ���� ������ ���� ����� �� �� ������� ������ �����
�� ��� �� �������� �������
�� ���� ���� ��� �� � ����� ������ � ����� �� ������������ ������������

������ �� ����� ���������� � ��� � �� �� �������� �� ���� ���� ��� ���� ����� ��

�� ��� ���� ����� �� ���� � ������� �������� �� �� ����� ��� ����� �� ����� ���
����� �� �� ��� ���� � � � � ��� � ��

��� �� ���� �� �� ����� ��� ����
� � � � � � ���

� � �
��

����

��� ����� ���������� �� � ��� �� ��� ����� �� �� ��� ���� ��� ����� �� ��

��� ����� �� ���������� ������������ ������ �� �� ��� ����� ��� ��������� ��

����� �� ��� ��� ���� ��� ���� ������ �������������� ��
�

�� �� �� ��
� �� ��

��� ����� � ����� �� ���� �� � ����� � ����� ���� � �� ���� ������� �� � ������

�������������� ��
��

�� �� ���� �� � ����� � ������ ����� �� ������ � ������
��������� �������� �� �� ��

� ��� ����� � ������ ����� ��� �� �������� ������
������ ��� �� ������ ��

� �� ��
� ��� ����� ��� ���������� ��� �� ��� � ��� ��

��
� �� ��

� �� ��� ��� �����

�����

����

�

���

�� �����������������������

�����������������������

�����

�
�� �
��

��
��

��
��

��

��
��

��
��

��
��

�

�����
�
��

��
��

��
��

��
��

�

��
��

��
��

��
��

�

����

�

���

�������������������������

�����������������������

��

�����������

�
��
��

������������

���
�����

� �� ��
� �����������

� �� ��

���� ����� ���� ��� �� �������� ������� �

Towards Data-Aware QoS-Driven Adaptation

for Service Orchestrations

March 2010

facultad de informática

universidad politécnica de madrid

Dragan Ivanović
Manuel Carro

Manuel Hermenegildo
Pedro López-Garcia

Edison Mera

TR Number CLIP 5/2009.1

1

Technical Report Number: CLIP 5/2009.1
March,2010

Authors

Dragan Ivanović
idragan@clip.dia.fi.upm.es

Computer Science School
Universidad Politécnica de Madrid (UPM)

Manuel Carro
mcarro@fi.upm.es

Computer Science School
Universidad Politécnica de Madrid (UPM)

Manuel Hermenegildo
herme@fi.upm.es

Computer Science School
Universidad Politécnica de Madrid (UPM)
and IMDEA Software, Spain

Pedro López
pedro.lopez@imdea.org

Computer Science School
Universidad Politécnica de Madrid (UPM)
and IMDEA Software, Spain

Edison Mera
edison@fdi.ucm.es

Facultad de Informática
Universidad Complutense de Madrid (UCM)

Acknowledgements

This research has been funded by the EU 7th. FP NoE S-Cube 215483, and partially by FET
IST-231620 HATS, EUREKA 06042 ES_PASS, MICINN TIN-2008-05624 DOVES, MIN FIT-
340005-2007-14, and CM project P2009/TIC/1465 (PROMETIDOS).

ii

Abstract

Several activities in service oriented computing can benefit from knowing properties of a given
service composition ahead of time. We will focus here on properties related to computational
cost and resource usage, in a wide sense, as they can be linked to QoS characteristics. In order
to attain more accuracy, we formulate computational cost / resource usage as functions on input
data (or appropriate abstractions thereof) and show how these functions can be used to make
more informed decisions when performing composition, proactive adaptation, and predictive
monitoring. We present an approach to, on one hand, automatically synthesize these functions
from orchestrations and, on the other hand, to effectively use them to increase the quality of
non-trivial service-based systems with data-dependent behavior. We validate our approach by
means of simulations with runtime selection of services and adaptation due to service failure.

Keywords: Service Orchestrations, Resource Usage Analysis, Data Awareness, Monitoring,
Adaptation.

iii

Contents

1 Introduction 1

2 Computation Cost Analysis and Services 1
2.1 A Motivating Example . 1
2.2 Computational Cost of Service Networks . 2
2.3 Approximating Actual Behavior . 4
2.4 Upper and Lower Bounds . 4

3 Analysis of Orchestrations 5
3.1 Overview of the Translation . 5
3.2 Restrictions on Input Orchestrations . 7
3.3 Type Translation and Data Handling . 7
3.4 Basic Service and Activity Translation . 8
3.5 A Translation Example . 9

4 An Experiment in Adaptation 10

5 Conclusions 12

References 13

iv

Towards Data-Aware Cost-Driven Adaptation 1

1 Introduction

Service Oriented Computing (SOC) is a well-established paradigm which aims at expressing
and exploiting the computation possibilities of loosely coupled systems which interact remotely.
Such systems expose themselves via service interfaces whose description may include operation
signatures, descriptions of behavior, and others, while the implementation is completely hidden.
Services can be combined to accomplish more complex tasks through service compositions,
which are usually expressed using either a general-purpose programming language or languages
designed to express business processes and compositions [4, 8]. These compositions can in turn
expose themselves as full-fledged services.

One distinguishing feature of SOC systems is that they are expected to be active during long
periods of time and span across geographical and administrative boundaries. These character-
istics require having monitoring and adaptation capabilities at the heart of SOC. Monitoring
compares the actual and expected system behavior. If a too large deviation is detected, an
adaptation process (which may involve, e.g., rebinding to another provider of a service) may
be triggered. When deviations can be predicted before they actually happen, both monitoring
and adaptation can act ahead of time (being termed, respectively, predictive and proactive),
performing prevention instead of healing.

Detecting deviations requires a behavioral model, which is used to check the current behavior
or to predict a future behavior. Naturally, the more precise a model is, the better adaptation
/ monitoring results will be achieved. In this paper we will develop and evaluate models
which, based on a combination of static analysis and actual run-time data, increase accuracy
by providing upper and lower approximations of computational cost / resource usage measures
which can be related to QoS characteristics. For example, the number of service invocations
can be related to execution time when information about network speed is available.

2 Computation Cost Analysis and Services

Computational cost analysis aims at statically determining the computational cost (in terms of,
e.g., execution steps or number of instructions) of a given algorithm for some input data. Tools
to perform this kind of analysis have been developed in the field of programming languages.

However, to the best of the authors’ knowledge, no similar work exists for SOC, although
several approaches to automatically deriving QoS characteristics for compositions have been
proposed [3, 2]. While these have much in common with our proposal, they do not treat
data operations or relate QoS estimation with the characteristics of input data. Instead, some
execution characteristics (e.g., number of iterations in a loop) are often either fixed or modeled
statistically. Also, aggregating QoS characteristics of service compositions exposed as services
is often not done. Some proposals [1] aim at performing global optimization, but still ignore
data-related issues. Our proposal addresses both dimensions (global information and data-
sensitivity) while still aiming at a completely automatic analysis.

2.1 A Motivating Example

We illustrate the relevance of taking actual data into account when generating QoS expressions
for service compositions with a motivating example.

Fig. 1 shows a fragment of a (stylized) car part reservation system. A part Provider serves its

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 2

Client Provider

Maker 1

Maker K

Request Cancel
part req.

OK / not OK

Part req.
Cancel

OK / not OK

Figure 1: Simplified car part reservation system.

A

B1

B2

TA(n) = 2n+ 3 + nS(n)

TB1(n) = n+ 1

TB2(n) = 0.1n+ 7

binding to B1?

binding to B
2?

Figure 2: Invoking other services.

Client by reserving a number of part types from a pool of part Makers. The protocol only allows
the Provider to reserve one part type per service invocation to a Maker. An invoked Maker
replies ok if the part type is available and not ok otherwise; in this case the Provider goes to
another Maker. If no Maker can reserve some car part type, the Provider cancels all previously
reserved part types with a cancel message. Since every service invocation takes some time to
complete, the number of car part types impacts the total time that Provider needs to complete
a reservation for Client. Thus, a precise model of the time needed by Provider should take into
account the Request, and more accurate time estimations should be expressed as functions on
properties (e.g., number of types) of the incoming Request message.

2.2 Computational Cost of Service Networks

The function which results from the analysis of computational cost depends on the internal
logic of the service composition (the Provider, in our example), but also on the behavior of the
invoked services (the Makers), as they may, in turn, send additional messages which add to the
global count.

Fig. 2 depicts this scenario in some detail. The input message is abstracted in this example
as a parameter n (i.e., the number of car part types in our example) on which some mea-
sure of computational cost depends. The cost of service A is TA(n). As A invokes n times
another service, (represented by a generic S), for which B1 and B2 are two candidates with
different computational cost, its overall computational cost depends as well on which service
is selected to perform the composition. Using the T (n) values from Fig. 2, the computational
cost corresponding to these two options would be:

TA1(n) = 2n+ 3 + n(n+ 1) = n
2 + 3n+ 3 {AB1}

TA2(n) = 2n+ 3 + n(.1n+ 7) = 0.1n2 + 9n+ 3 {AB2}

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 3

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10

Q
o
S

 /
 C

o
m

p
u
ta

ti
o
n
a
l
C

o
s
t

Input data size (for a given metric)

QoS / Comp Cost for A+B1
QoS / Comp Cost for A+B2

Figure 3: Computational cost, services AB1 and AB2.

and to decide between B1 or B2, TA1 and TA2 have to be compared (Fig. 3). This opens up
the possibility of taking into account the size n of the data to select a configuration depending
on the expected usage, and it requires information about B1 and B2 in order to automatically
work out the resulting overall computational cost.

The computational cost-related information for B1 and B2 can be made available in much the
same way as other service-related information (e.g., interfaces or XML schemes) is published.
It needs to include, at least, the expected computational cost (preferably as a function of
input data characteristics) and (possibly) the relationship between the sizes of the input and
output data for every operation in the interface. The availability of these descriptions can
make it possible to automatically work out TA1 and TA2 to compare them. In turn, A should
publish the information it synthesizes, so that it can then be used by other compositions. In
our view, this repeated process of synthesis, comparison, and publishing, is a step towards
simultaneously achieving true dynamicity and optimal selection in the creation and adaptation
of service networks.

Note that these abstract descriptions do not compromise the privacy of the implementation
of the service being described, as they act as a high-level contract on the behavior of the service.
Besides, in an open ecosystem of services, those which publish such descriptions would have
a competitive advantage, as they make it possible for customers to make better decisions on
which services to bind to.

Given a service A, if we assume that any services it invokes have a constant computational cost
TBi(n) = 1, then the computational cost obtained for A measures how much its structure alone
contributes to the total computational cost. We have termed this the structural computational
cost of a service, and it will be used later as an approximation of the real computational cost.

Two key questions are: to which point functions expressing the cost of the computations are
applicable to determining QoS, and to which point these functions can be automatically (and
effectively) inferred for service compositions.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 4

2.3 Approximating Actual Behavior

The computational cost measures we will deal with count relevant events which are determin-
istically related to the input data: processing steps, number of service invocations, size of the
messages, etc. To infer such computational costs we follow the approach to resource analysis
of [7] which, given data on how much a few selected basic operations contribute to the usage
of some resource, tracks how many times such basic operations are performed through loops
and computes the overall consumption of the resource for a complete computation. Since the
number of loop iterations typically depends on the input, the overall consumption is given as a
function that, for each input data size, returns (possibly upper and lower bounds to) the overall
usage made of such resource for a complete computation.

Different higher-level QoS characteristics can then be derived from these functions: execution
time can be approximated by aggregating the number of basic activities executed and the num-
ber of invocations, and multiplying them by an estimation of the time every (type of) activity
and invocation takes; availability of a composed service can be expressed as the product of the
availability of the services it invokes (assuming independence between them) and, therefore, the
availability of the composition will depend on which services are invoked and how many times
they are invoked, which in turn depends on the input data.

Estimations of the time used, availability, etc. of basic components are approximate and
they thus introduce some noise which also makes the derived QoS functions approximations.
However, because they are functions on input data they are likely to predict more accurately the
behavior for a given input than a global statistical measure (we return to this later). Besides,
for cases where comparison between two different QoS functions (and not their absolute value)
is relevant, as in Fig. 2, the noise introduced can be expected to mutually cancel to some extent.

2.4 Upper and Lower Bounds

Automatically inferred computational cost functions can sometimes be exact, but in general
only safe upper and lower bounds can be generated. These are guaranteed to be smaller than
or equal to (resp. greater or equal) the function they approximate. This can be traced back to
limitations of the static analysis, to the actual function depending on more parameters than,
e.g., data size, and others. When these bound functions are combined with estimations to
determine QoS from computational cost functions, data-aware approximations of the actual
bounds are created.

While this may seem to be a disadvantage when it comes to predicting future behavior, upper
/ lower bounds of the actual computational cost are actually useful to ensure that some QoS
characteristic is met, because it falls above / below the predicted threshold. As an example,
Fig. 4 portrays upper and lower bound computational cost functions for two compositions for
some QoS characteristic which depends on input data. Depending on the QoS meaning, we
may want to make sure that we stay above or below some value. The former case needs to
consider the lower bound and, conversely, the latter requires considering the upper bound.
Note also that, in the example portrayed in the figure, which service will give better results
clearly depends on the actual data size at run-time.

Comparing data-aware approximating functions with the probabilistic approximations used
in many approaches to QoS-driven service compositions can be illustrative. Average approxi-
mations which summarize QoS characteristics in a single point clearly cannot provide behavior
guarantees, as they do not provide ranges for maximum and minimum values, and they do not

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 5

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10

Q
o
S

 /
 C

o
m

p
u
ta

ti
o
n
a
l
C

o
s
t

Input data size (for a given metric)

Upper bound QoS / Comp Cost for A+B1
Lower bound QoS / Comp Cost for A+B1
Upper bound QoS / Comp Cost for A+B2
Lower bound QoS / Comp Cost for A+B2

Figure 4: Using upper/lower bounds.

take data ranges into account. The statistical approach can be extended in two directions: an
interval can be used to represent the maximum and minimum of the QoS, measured across all
the possible input data range. But it is a coarse approximation, as it does not take into account
any correlations of the QoS with input data. The other direction corresponds to using a func-
tion which, for every possible input data, represents some average value of the characteristic.
This can be more precise than using a single point, but again it does not provide any bounds
(not even approximate) for the QoS values.

Combining these two extensions boils down to using functions over input data which repre-
sent upper and lower bounds, and which are transformed into QoS functions by appropriately
plugging in actual execution characteristics, as suggested in Section 2.3. While the results are
not strictly safe, we claim that these QoS bounds can be used to predict whether the future
history will stay within some predefined limits with better accuracy than just a static point,
static bounds, or an average. In any of the latter cases, less information than with the upper /
lower bound approximate functions is provided, so any decision will be less informed.

3 Analysis of Orchestrations

Our approach is based on translating process definitions into a language for which automatic
computational cost analysis tools are available. We will now give details on this process,
sketched in Fig. 5.

3.1 Overview of the Translation

Our input languages are a subset of BPEL 2.0 for the process definitions and WSDL for the
associated meta-information. These are translated into an intermediate language (Table 1)

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 6

BPEL

WSDL

Intermediate
language

Logic
program

Analysis
results

Translation

Translation

Tr
an

sl
at

io
n

A
na

ly
si

s

Feedback

Feedback

Figure 5: The overall process.

Declarations and definitions
Complex type definition :-struct(QName, Members).
Port type definition :-port(QName,Operations).
External service :-service(PortName,Operation,

{TrustedProperties}).
Service definition service(Port , Operation,

InMsg , OutMsg):-Activity .
Activities

Variable assignment Var <- Expr

Service invocation invoke(PortName, Operation,
OutMsg, InMsg).

Reply and exit reply(OutMsg)
Sequence Activity1,Activity2
Conditional execution if(Cond, ActThen, ActElse)
While loop while(Cond, Activity)
Repeat-until loop repeatUntil(Activity, Cond)
For-each loop forEach(Var, Start, End, Activity)
Scope scope(VarDecl, ActivityList)
Scope fault handler handler(FaultName, Activity)
Parallel flow flow(LinkDecl, Activities)
Activity in a flow float(Attributes, Activity)

Table 1: Abstract orchestration elements.
which can also be used to cover other orchestration languages.1 This intermediate representation
is then translated into the Ciao logic programming language [6], which includes assertions to
express types and input / output modes for arguments, as well as resource definitions and
functions describing resource usage bounds. The resulting logic program is then analyzed by
the CiaoPP tool [5], which is able to infer upper and lower bounds for computational costs [7],
among other analyses.

A BPEL process definition is translated into a service definition which associates a port name
and an operation with an activity that represents the orchestration body. BPEL processes
forming a service network are translated into predicates which call each other to mimic service
invocations.

The intermediate language can describe namespace prefixes, XML schema-derived data types
1
Although it currently models mainly BPEL constructs.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 7

:- regtype ’factory->resData’/1.
’factory->resData’(’factory->resData’(A, B, C)):-

num(A), num(B), list(C, ’factory->partInfo’).

:- regtype ’factory->partInfo’/1.
’factory->partInfo’(’factory->partInfo’(A, B)):-

atm(A), atm(B).
Figure 6: Translation of types.

for messages, service port types, and also known properties of external services of interest to the
analysis (when such services are not analyzed). The activities supported by the intermediate
language include generic constructs (assignment, sequences, loops. . .) and specific constructs to
model orchestration workflows: flow, float, scope/handler, and invoke. flow corresponds
to the similarly named BPEL activity, while the float construct annotates an activity within
a flow with a description of outgoing links and their values, join conditions based on incoming
links, and a specification of the behavior in case of a join failure.

A relevant observation regarding the translation is that it does not need to follow strictly the
operational semantics of the orchestration language: it has to capture enough of it to ensure
that the analyzers will infer correct information while minimizing precision loss due to the
translation. Despite this, in our case the translated program is executable, and mirrors quite
closely (but not exactly) the operational semantics of the BPEL process under analysis.

3.2 Restrictions on Input Orchestrations

Our analysis is restricted to orchestrations which follow a receive–reply pattern, where all ac-
tivities start after receiving an initial message and finish by dispatching either a reply or a
fault notification. Additionally, we currently do not support the analysis of stateful service
callbacks using correlation sets or WS-Addressing schemes. In the future we plan to relax both
restrictions by identifying orchestration fragments that correspond to the receive–reply pattern.

In our intermediate language, we support a variant of the scope construct, which introduces
local variables and fault / compensation handlers. We do not fully support compensation
handlers, which in BPEL “undo” the effects of a successfully completed scope using snapshots
of variables recorded at successful completion of the scope. Except for recording snapshots,
compensation handlers can be treated as pseudo-subroutines on a scope level, and inlined at
their invocation place.

3.3 Type Translation and Data Handling

The simple types in XML schemata are abstracted as three disjoint types: numbers, strings
(translated into atoms), and booleans. Complex XML types are translated into predicates
specifying how the type is built. Fig. 6 shows the translation corresponding to a fragment of
the reservation scenario in Section 2.1. The type named ’factory->resData’ is a structure
with three fields: two numbers and a list of elements of type ’factory->partInfo’. Each of
these elements is in turn a structure with two fields (atoms).

The accepted expression language is a subset of XPath which allows node navigation only
along the descendant and attribute axes. This ensures that navigation is statically de-
cidable and XML structures can be deforested to pass the addressed components as sepa-

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 8

A Translation of T ([A|R], η , V)

empty T (R, η, V) (Empty action)
Aj , Ak T ([Aj , Ak|R], η , V) (Sequence)
reply(v) V = reply(η(v)) (End of orchestration)
throw(f) V = fault(f) (No fault handler)

T ([H], η , V) (Insert fault handler)

Table 2: Inline translations.
A Translation of T ([A|R], η , Y)

v <-e a(η, Y) ← E(e, η,X), T (R,η [X/v], Y)
invoke(p, o, v, w) a(η, Y) ← sp:o(η(v), Z),

(Z = fault(F) → T ([throw(F)], η , Y)
; Z = result(X) → T (R,η [X/w], Y))

if(c, A�
, A

��) a(η, Y) ← C(c,η), !, T ([A�|R], η , Y)
a(η, Y) ← T ([A��|R], η , Y)

while(c, A�) a(η, Y) ← C(c,η), !, T ([A�
, A], η , Y)

a(η, Y) ← T (R, η, Y)
scope(D,A

�
H) a(η, Y) ← T ([A�

H], η[D], Z),
(var(Z) → T (R, η, Y)
; Z = fault(F) → T ([throw(F)], η , Y)
; Y = Z)

Table 3: Translation into predicates.
rate arguments when necessary to improve analyzer accuracy. For example, the expression
’$req.body/item[1]/@qty’ in the intermediate language refers to the attribute qty of the
first item element in the body part of a message stored in variable req. A set of standard
XPath operators and basic functions, such as position() and last(), are supported.

3.4 Basic Service and Activity Translation

An orchestration that implements operation o on port p is translated into a Horn clause
sp:o(X,Y) ← T ([A], η, Y).

where X and Y correspond to the initial message and the final reply and T corresponds to the
translation of a list of activities (in this case just A, the body of the orchestration). η is an
environment that maps orchestration variables to logical variables, which initially just maps the
input message to X. New orchestration variables may be introduced with the scope construct.
On exit, Y can be bound to either reply(R), where R is the contents of the reply message, or
fault(F), where F is a fault identifier.

The translation operator T accepts a list of activities and produces a Prolog goal.2 Then
T ([], η, V) = true (nothing left to translate); otherwise the case is T ([A|R], η, V) and is driven
by the structure of A (Table 2). The empty activity is skipped. A sequence of activities is
unfolded and translated one by one. A reply(v) unifies the result V with the value of the
reply v in the current environment. If throw is executed in the scope of a fault handler H, it is
executed; otherwise the result is unified with the fault identifier.

In more complex cases (Table 3), each activity is translated as a call to a predicate. A variable
assignment v <-e generates a goal that evaluates e in η and unifies its result with variable X;
the remaining activities R are translated with η updated with the new binding [X/v]. Invoke

2
Following Prolog notation an empty list is written [] and a list with head A and tail R is written [A|R].

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 9

<sequence>

<while name=’a_13’>

<condition>$i>0</condition>

<scope>

<assign name=’a_14’>

<copy><from>$i - 1</from><to variable=’i’/></copy>

</assign>

<assign name=’a_15’>

<copy><from>$resp.body/factory:part[$i]</from>

<to variable=’p’/></copy>

</assign>

<invoke name=’a_16’ portType=’factory:sales’

operation=’cancelReservation’ inputVariable=’p’

outputVariable=’r’/>

</scope>

</while>

<throw faultName=’factory:unableToCompleteRequest’/>

</sequence>

(a) A BPEL code fragment

while(’$i>0’, (% a_13
’$i’ <- ’$i�-�1’, % a_14
’$p’ <- ’$resp.body/factory:part[$i]’, % a_15
invoke(factory:sales,cancelReservation,’$p’,’$r’) % a_16

)),

throw(factory:unableToCompleteRequest)

(b) The intermediate representation.

a_13(A,B,C,D,E):- % ($i,$p,$resp.body/factory:part,$r,Y)
A>0, !, a_14(A,B,C,D,E).

a_13(A,B,C,D,E):-

E=fault(’factory->unableToCompleteRequest’).

a_14(A,B,C,D,E):-

F is A-1, a_15(F,B,C,D,E).

a_15(A,B,C,D,E):-

nth(A,C,F), a_16(A,F,C,D,E).

a_16(A,B,C,D,E):-

’service_factory->sales->cancelReservation’(B,F),

(F=fault(G) -> E=fault(G)

; F=reply(H) -> a_13(A,B,C,H,E)).

(c) Translation into logic program.

Figure 7: Translation example.

is similar, but it calls the target service predicate to obtain the result. if and while encode
their condition with a call to a predicate C and a cut.

A scope is translated by nesting the translation of the activity/fault handler A
�
H

within
updated environment η[D], followed by a check for completion or faults. Faults within the scope
are handled by H, and outgoing faults are rethrown. flow is translated similarly to scope, but
without actually parallelizing the execution, since we are interested in the computational cost
of the flow regardless of the number of threads. Links are modeled as Boolean variables, and
dependent activities are sequenced to respect conditions on incoming/outgoing links. Dead-path
elimination is supported.

3.5 A Translation Example

A translation example is presented in Fig. 7. Subfigure (a) is a BPEL fragment of an or-
chestration, (b) is the corresponding intermediate form, and (c) is the translation into a logic
program. The orchestration traverses the list of part types to reserve from the external part

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 10

Resource With fault handling Without fault handling
(n ≥ 0: input arg. value) lower bound upper bound lower bound upper bound

Basic activities 2 7× n 5× n+ 2 5× n+ 2
Single reservations 0 n n n

Cancellations 0 n− 1 0 0

Table 4: Resource analysis results for the group reservation service.

Client

P1

UB1(m)

P2

UB2(m)

PN

UBN (m)

Tier 1

...

S1 ub1(n)

S2 ub2(n)

SN ubN (n)

Tier 2

...

Figure 8: Two-tier simulation setting.

maker sales service.3 If a fault arises, a fault handler tries to cancel already made reservations
before signaling failure to the client. The figure shows just the while loop, which finishes with
a reply.

The resource analysis finds out how many times external service invocations will be performed
during process execution, from which deducing the number of messages exchanged is easy. The
results for the complete orchestration are displayed in Table 4, where the estimated upper and
lower bounds are expressed as a function of the input message.4 We differentiate two cases: one
in which fault-free execution is assumed, and another where fault handlers can be executed,
which gives more cautious estimates. These two cases were obtained by turning on or off the
generation of Prolog code for fault handling –the last part of Fig. 7 (c).

4 An Experiment in Adaptation

To validate our approach, we performed a simulation to study the effectiveness of applying data-
aware computational cost functions to matchmaking and dynamic adaptation. We simulate a
service network (Figure 8) where a client C selects among a set of providers Pi to reserve
n = 1..50 sets of car parts. Each set consists of M = 5 different part types. The external client
chooses one Pi which in turn chooses from among a set of part suppliers Si, shared between
all the providers. All Pi and Si are known to be semantically equivalent, but vary in response
time as the QoS attribute of interest. A Pi or Si may fail with some probability pf . When this
happens, adaptation is triggered by searching for another (next-best) service from the pool.

The selection policies we have simulated are: random selection from the pool of candidates,
fixed preferences, and data-dependent QoS prediction based on computational cost.

3
Unlike in the example in Section 2.1, this code does not query different factories.

4
The analyzer took 1.811 seconds to infer this information on a Intel Core Duo 2GHz machine with 2GB

RAM and Darwin Kernel v10.2.0.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 11

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

ub_1(x)
ub_2(x)
ub_3(x)
ub_4(x)
ub_5(x)
ub_6(x)
ub_7(x)
ub_8(x)
ub_9(x)

ub_10(x)
ub_11(x)
ub_12(x)

lub(x)

Figure 9: Upper bounds for computational costs.

In the last case, we select the best candidate taking into account its upper bound complexity
(worst case behavior). Every service Si, 1 ≤ i ≤ 12 = N , has a different upper bound cost
function ubi(n) (portrayed in Figure 9), where n is the number of sets of a given part type. The
bold line highlights the lowest upper bound among all the services for each n. ubi(n) measures
the maximum number of messages exchanged by Si as a function of the size of the incoming
data. The computational cost for provider Pj is computed with the expression

UB j(n) = EPj (n) +M +M × ub∗(n)

which takes into account both the structural computational cost EPj (using the same family of
curves in Figure 9) and that incurred by the services in the second layer: M times the cost ub∗
of a service S∗ selected for given n under the given selection policy.

Message exchanges are assigned a fixed time to convert them into execution time.5 In a real
scenario, this fixed amount of time can be updated as execution proceeds to reflect e.g. network
state or system load.

The fixed preferences policy ranks services using the expected response time for some rep-
resentative input; we chose n = 12. Therefore all queries whose data size is 12 are handled
equally by both the fixed preferences and the data-dependent complexity cost approaches.

For each selection policy and for each n in the range 1..50, one hundred simulations are run
and averaged. Each run performs matchmaking and simulates the execution of the selected
service. Besides failures, the simulated number of outgoing messages in the run is (uniformly)
randomly chosen between 60% and 100% of the upper bound, to model that sometimes this
upper bound may not be needed. The time associated with every message exchange is padded
with additional noise having a normal distribution to simulate the variations in the behavior of

5
We are not taking into account the time associated to executing internal activities. The same technique

used to infer the number of messages can be used to infer the number of activities of every type associated to

some invocation, and can be accounted for in similarly to messages.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s1_pf001.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s1_pf010.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s1_pf100.data

Figure 10: Simulation results for pf = 0.001,0.01,0.1 (left to right) and same noise distribu-
tion.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s2_pf001.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s2_pf010.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s2_pf100.data

Figure 11: Simulation results for pf = 0.001,0.01,0.1 (left to right) and different noise distri-
bution for each service.

the network.

Several sets of simulations with different time noise distribution parameters were performed,
of which we have chosen two representative ones. In Fig. 10 all services have the same per-
message average time (5 ms). In Fig. 11, services in both layers are assigned a different time
per message whose average is in the range 4-8 ms. The figures show plots for the three selection
policies, per each of the three failure probabilities used (left to right).

For most values of n, the data-dependent selection policy gives the best results and, notably,
they feature a homogeneous and predictable behavior w.r.t. failure rates pf ∈ {0.001, 0.01, 0.1}
and timing noise. Of course, it coincides with the selection made using the fixed preference
policy for n = 12, where the fixed preferences were calculated. In an extended set of simulations
(not appearing in this paper due to space constraints), the same behavior appears for even higher
failure rates.

5 Conclusions

We proposed using data-aware computational cost functions to predict QoS adaptations and
presented some preliminary results. We developed a translation-based scheme which, from
an orchestration (in BPEL+WSDL), generates a (logic) program that can be analyzed by
existing tools to automatically derive functions which are the upper and lower bounds of its
computational cost. These functions are used to build more precise QoS estimations taking
data characteristics into account which, in turn, can be used to, e.g., perform more precise
predictive monitoring and proactive adaptation. We have reported on the results of a series
of simulations where such data-aware QoS estimations were used to improve the efficiency of
dynamic, run-time adaptation. The results are promising in that the data-aware adaptation
always performs as well as any of the other policies studied, and in general gives better better
results, even for cases with a very large variability in service behavior.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 13

References

1. Mohammad Alrifai and Thomass Risse. Combining Global Optimization with Local Se-
lection for Efficient QoS-aware Service Composition. In International World Wide Web
Conference, pages 881–890. ACM, April 2009.

2. J. Cardoso. About the Data-Flow Complexity of Web Processes. In Int’l. WS on Business
Process Modeling, Development, and Support: Business Processes and Support Systems: De-
sign for Flexibility, pages 67–74, 2005.

3. J. Cardoso. Complexity analysis of BPEL web processes. Software Process: Improvement
and Practice, 12(1):35–49, 2007.

4. D. Jordan et al. Web Services Business Process Execution Language Version 2.0. Technical
report, IBM, Microsoft, et. al., 2007.

5. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming, 58(1–2):115–140, October 2005.

6. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, J.F. Morales, and G. Puebla. An
Overview of The Ciao Multiparadigm Language and Program Development Environment
and its Design Philosophy. In Festschrift for Ugo Montanari, number 5065 in LNCS, pages
209–237. Springer-Verlag, June 2008.

7. J. Navas, E. Mera, P. López-García, and M. Hermenegildo. User-Definable Resource Bounds
Analysis for Logic Programs. In Int’l. Conf. on Logic Programming, volume 4670 of LNCS,
pages 348–363. Springer, 2007.

8. Wil van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly Declarative Service Flow
Language. In The Role of Business Processes in Service Oriented Architectures, number
06291 in Dagstuhl Seminar Proceedings, 2006.

Report No. CLIP 5/2009.1 March,2010

Taming Dynamically Adaptive Systems Using Models and Aspects∗

Brice Morin1, Olivier Barais2, Grégory Nain1 and Jean-Marc Jézéquel1,2

1INRIA, Centre Rennes - Bretagne Atlantique
2IRISA, Université de Rennes1

Campus de Beaulieu

35042 Rennes Cedex - FRANCE

{Brice.Morin | Gregory.Nain}@inria.fr

{Olivier.Barais | Jean-Marc.Jezequel}@irisa.fr

Abstract

Since software systems need to be continuously avail-
able under varying conditions, their ability to evolve at
runtime is increasingly seen as one key issue. Mod-
ern programming frameworks already provide support
for dynamic adaptations. However the high-variability
of features in Dynamic Adaptive Systems (DAS) in-
troduces an explosion of possible runtime system con-
figurations (often called modes) and mode transitions.
Designing these configurations and their transitions is
tedious and error-prone, making the system feature
evolution difficult. While Aspect-Oriented Modeling
(AOM) was introduced to improve the modularity of
software, this paper presents how an AOM approach
can be used to tame the combinatorial explosion of DAS
modes. Using AOM techniques, we derive a wide range
of modes by weaving aspects into an explicit model re-
flecting the runtime system. We use these generated
modes to automatically adapt the system. We validate
our approach on an adaptive middleware for home-
automation currently deployed in Rennes metropolis.

1 Introduction

Society’s increasing dependence on software-
intensive systems is driving the need for dependable,
robust, continuously available adaptive systems. Such
systems often propose many variability dimensions
with many possible variants, leading to a wide number
of possible configurations that is difficult to integrally

∗This work was partially funded by the DiVA FP7 European

project (STREP) (See http://www.ict-diva.eu/) and the S-Cube

European Network Of Excellence on Software Services and Sys-

tems (See http://www.s-cube-network.eu/).

check at design-time because of time and resource
constraints. For example, associations and public
institutions of the metropolis of Rennes are working
together on a project which aims at allowing depen-
dent people to stay at home as long as possible. Due
to the large scale of the project, and the diversity of
disabilities that have to be considered, the deployment
context will be different for each equipped house.
Furthermore each deployment context is going to
continuously evolve along with the evolution of the
person’s disabilities.

This ability to evolve a system at runtime is one crit-
ical aspect of achieving continuously availability. Many
popular programming frameworks such as OSGI [33] or
Fractal [7] now provide support for dynamic adaptation
through extension mechanism such as plugins or vari-
ability mechanism through introspection and reconfig-
uration API. However the high variability of crosscut-
ting and non-crosscutting features in adaptive systems
introduces an explosion of possible runtime system con-
figurations (often called modes). When new features
are introduced at deployment time (vs. design time),
we also have to make sure that they do not lead the sys-
tem into unwanted modes. Besides, due to the fact that
features are often partially independent, the (implicit)
state-machine representing the path between modes is
highly connected, leading to a nearly quadratic explo-
sion of transitions between modes [5, 35]. The inef-
ficacy of the variability and extension mechanisms to
tame the high-number of modes transitions might lead
to several undesirable consequences related to Dynam-
ically Adaptive System maintainability, including par-
tial duplication of reconfiguration scripts or the non-
cover of all the modes transition, etc.

Aspect-Oriented Modeling (AOM) was initially in-
troduced to improve the modularity of software [11, 21],
complementary to Model Driven Engineering (MDE)

to link models to the real world [14]. In [24], we have
proposed a first approach that leverages AOM and
MDE to manage variability at runtime. It relies on
the notion of aspect models, that can be woven into an
explicit model of the runtime configuration seating on
top of the running system. Actual mode switches be-
tween runtime configurations are then triggered by re-
configuration scripts automatically generated based on
the differences between the initial model and the newly
woven one. The result of this approach is that modes
becomes somehow implicit from the point of view of
the system designer, and new modes can appear when
new aspects are introduced during the life of the sys-
tem. It is thus no longer possible to statically validate
every accessible mode and each mode transition.

In this paper, we show how aspects can help design-
ers determine interactions between dynamic variants
and how runtime models can be used to validate new
configurations on the fly, before committing them on
the running system (making it easy to roll-back when a
configuration is not valid). Indeed, once the system has
been deployed, new variability dimensions and variants
that have not been foreseen may appear while the sys-
tem is running and cannot be stopped. In this case,
it is very useful to validate configurations on the fly
before actually adapting the running system.

The reminder of this paper is organized as follows.
Section 2 describes the general process for managing
dynamic variability. Section 3 presents how we lever-
age AOM and MDE techniques and tools to determine
interactions and validate configurations on the fly. Sec-
tion 4 outlines how our approach was validated in a
home-automation context deployed in the metropolis
of Rennes. Section 5 discusses related work and sec-
tion 6 concludes by presenting a set of open research
problems based on our experience.

2 Process Overview

This Section presents our approach for managing
variability at runtime [24]. The overall process is de-
scribed in Figure 1.

2.1 Maintaining a High-Level Representa-
tion of the Running System

Maintaining a model at runtime [4] representing the
running system (Figure 1, step 1) allows us to reason
on the model and manipulate the model independently
from the running system. Using high-level abstrac-
tions, we can discard all the platform-specific runtime
information we do not need and reason more easily and
more efficiently in the next steps of the process.

Figure 1. MDE and AOM for Dynamic Adapta-
tion

Recent component-based middleware platforms like
OSGi [33] propose introspection APIs that allows dis-
covering the architecture of a running system. We use
these APIs to collect and format relevant information
in the form of a platform-independent and high-level
model. In the case of large systems, using introspection
in order to generate a reference model from scratch may
be time-consuming especially when only small changes
appear. To tackle this issue, we observe the architec-
tural reconfigurations appearing in the running sys-
tem in order to update the model. This limits the
flow of data manipulated in the system. Moreover, re-
cent middleware platforms already propose this kind of
observers or propose mechanisms to easily implement
such kind of observers [6, 7]. Note that the changes
that may affect the source model are not directly re-
flected to the running system.

2.2 On-demand Construction of Configu-
rations with Aspects

In order to manage variability and avoid the combi-
natorial explosion of artifacts needed to support this
variability, we propose to focus on variation points
and variants instead of focusing on whole configura-
tions. A variability dimension is a particular concern
that may be realized in different ways. We use as-

pects to represent the different variants of a variation
point. Using Aspect-Oriented weavers, whole config-
urations can be built on-demand by selecting a set of
aspects as illustrated in Figure 1, step 2. In practice,
we use SmartAdapters [18, 25] an Aspect-Oriented
Modeling (AOM) tool for weaving aspects at a model
level. However, the approach presented in this paper is
not dependent from SmartAdapters and other AOM
tools like MATA [13] could also be used. Components
present in all the configurations constitute a base model
where aspects are woven.

SmartAdapters has formerly been applied to Java
programs and UML class diagrams [18]. More recently,
we have generalized this approach to any domain-
specific modeling language [23]. This allows us to
leverage the notion of aspect for runtime models rep-
resenting at a high level of abstraction the architecture
of a system at runtime. SmartAdapters automati-
cally generates an extensible Aspect-Oriented Model-
ing framework specific to our metamodel.

In SmartAdapters, an aspect is composed of three
parts: i) an advice model, representing what we want
to weave, ii) a pointcut model, representing where we
want to weave the aspect and iii) weaving directives
specifying how to weave the advice model at the join
points matching the pointcut model. The advice model
is a model fragment representing a given concern. In
our case, it represents a pre-assemby of components
that may not be fully specified. The pointcut model is
also a model fragment that is parameterized by roles
(See [31]), equivalent to wildcards in AspectJ point-
cuts [15, 16]. Both the advice model and the pointcut
model are defined using the concrete syntax of the do-
main. Finally, weaving directives specify how to inte-
grate the advice model into the target model, using a
generated domain-specific action language [23].

We (optionally) extend each aspect with a context
describing when to trigger the weaving of aspects. A
context is a slice of the environment describing when
the aspect is useful and its impact on QoS properties.
For example, a buffering aspect can optimize the band-
width of the network if the system has enough free
memory (e.g. > 512 Mb) and if the bandwidth is satu-
rated (e.g. > 90%). Aspects with a context are chosen
according to the execution context and the QoS prop-
erties to optimize [12]. Aspects with no context can be
manually triggered by the user.

Figure 2 illustrates an internalization (I18N for
short) aspect. The pilot of the case study is currently
deployed in Rennes. Rennes is an international city
hosting many students from different countries where
lots of different languages are spoken. Within a single
day, people from different countries may transit in the

home. Systematically translating all the information
in all the possible languages may cause an informa-
tion overhead that could make information difficult to
catch. This is why internationalization should be han-
dled dynamically.

In order to design this aspect, we leverage the abil-
ity of SmartAdapters to integrate variability into as-
pects [18]. Indeed, each language (EN, FR, DE in Fig-
ure 2) is considered as a variant. The behavior of the
advice can be described as follows. The I18N interface
provides a set of methods responsible for translating
a pre-defined set of labels. It also provides a look-
up method get(String myString): String that re-
turns, if possible, the translation of myString for a
given language. In a component (e.g., FR), if the look-
up method cannot translate a word, the component
ask the dispatcher to find a translation for this word.
The dispatcher will ask the components according to
a predefined policy (e.g., EN first if available). If the
word exists in the local database, it is translated (e.g.,
from English to French) thanks to the translator that
sends a request to a website dedicated to translation.
Note that in the advice, all the components and bind-
ings are unique (depicted with a ‘1’ in the Figure).
This means that even if there exist multiple join points
and/or even if the aspect is applied several times, these
elements will only be woven once in the base model. In
the composition protocol, the bindings are not unique
and will be introduced for all the identified join points.
The pointcut simply identifies any component that re-
quires the I18N interface, with no more assumption.
The weaving process has 2 steps: matching (or join
point detection) [31] and composition. In our example,
the matching step detects all the components that re-
quire the I18N interface. Then, the composition step
binds the I18N server interface provided by the advice
to the client interfaces of the join points. When an
aspect is being composed, the inverse composition pro-
tocol is automatically generated. It allows us to easily
unweave an aspect when it is not longer adapted to the
context.

After some aspects have been woven into the source
model, the target model we obtain is validated, as il-
lustrated in Figure 1, step 3. We will present in more
details this validation step in Section 3.

2.3 On-the-fly Generation of Reconfigura-
tion Scripts

As mentioned by Zhang and Cheng in [35], if there
exists N possible configurations, this may lead to N(N-
1) possible transitions. If N is large, it rapidly becomes
difficult to handle these transitions by hand.

Figure 2. I18N aspect

In a traditional model-driven development, models
are refined and transformed step by step down to source
code. If some changes appears in the requirements, it is
possible to propagate these changes to the models and
regenerate the source code in order to rapidly propose
a new version of the system. In the context of adap-
tive systems, it is not possible to adopt this schema.
Indeed, such systems should offer continuous services
and cannot be stopped, regenerated and restarted. The
system should keep executing while being reconfigured
from one configuration to another.

Once a target model (representing the system we
want to reach) is created and validated, it is compared
with the source model (representing the actual archi-
tecture of the running system). In the current imple-
mentation of our tool, we use EMF Compare1 in order
to compare models. It produces a diff and a match
model that specifies the differences and the similari-
ties between the source and the target models, as illus-
trated in Figure 1, step 4. The comparison engine is
generic, so it is possible to compare any kind of mod-
els. The algorithm is quite similar to the algorithm pro-
posed by Nejati et al. in the context of statechart spec-
ifications [28]. It considers the properties of each model
element as well as its neighbors in order to compute a
similarity degree. Note that it is possible to customize
the comparison engine to consider the specificity of a
given domain metamodel. However, the generic engine
provides sensible results for our metamodel describing
runtime architecture, with no customization.

Then, we automatically analyse both diff and match
models to obtain the relevant changes between the
source model and the target model e.g., addition/re-
moval of components/bindings, changes of attribute

1See http://www.eclipse.org/modeling/emft/

values, etc. However, it is not possible to adapt the
running system during this analysis. For example, if
the model comparison detects a component removal
before a binding removal, directly adapting the sys-
tem would lead to a dangling binding that might not
be allowed by the underlying execution platform.

In order to tackle this issue, we reify each signifi-
cant modification as a reconfiguration command dur-
ing the analysis (Figure 1, step 4). Each command
implements an atomic platform-specific reconfiguration
(adding and/or removing bindings and/or components,
etc.) and declares a priority. We first stop the compo-
nents that have to be stopped and then remove bind-
ings before removing components. We add components
before adding bindings and finally restart the compo-
nents that should be restarted. When the analysis
of the model comparison is achieved, we execute the
ordered sequence of commands to actually adapt the
running system in a safe way (Figure 1, step 5). This
set of commands is the transition that transforms the
source system into the target system. Depending on
the execution platform we use (e.g., OSGi, Fractal or
OpenCOM) a factory will instantiate the correspond-
ing commands.

3 Validating Target Configurations

In Section 2, we showed how we can obtain con-
figurations by weaving some aspects into a base con-
figuration. Using aspect models, instead of directly
adapting the running system using low-level reconfigu-
ration scripts [10] allows us to reason more easily and
help designers in identifying interactions between as-
pects [13]. More details about aspect interaction de-
tection are given in Section 3.1.

Then, we showed how to generate reconfiguration
scripts to make the running system evolve from a source
configuration (the current configuration), to a target
configuration. However, in the context of adaptive sys-
tems, we should ensure that the target configuration we
want to reach makes sense. This is why we do not di-
rectly reflect the changes appearing in the source model
to the running system. When the number of configu-
rations is limited, for example in the case of critical
embedded systems, it is possible to validate at design
time all the possible configurations [35]. However, in
larger-scale adaptive systems, this systematic valida-
tion may become too time and resource consuming to
be realistic. Moreover, once the system has been de-
ployed, new variation points that have not been fore-
seen may appear while the system is running and can-
not be stopped. In this case, it is very useful to validate
configurations on the fly before actually adapting the

running system. This is detailed in Section 3.2.

3.1 Detecting Aspect Interactions

In Section 2 we introduced an internationalization
aspect. Most of the aspects of our case study (see Sec-
tion 4) and most of the components of the base system
(for example, GUI) also needed this aspect. Weaving
the I18N aspect before the other aspects may cause
some important messages not to be translated. Using
techniques like Critical Pair Analysis (CPA) allows us
to detect interaction between aspects [13]. Basically, if
the pointcut of an aspect A1 can be matched in the ad-
vice of another aspect A2 it means that A2 introduces
some join points for A1. In other words, A1 should be
woven after A2 in order to be able to consider newly
introduced join points.

For example, let us introduce a second aspect re-
sponsible for preventing devices deployed in the house
(lights, electric shutters, etc) to be damaged due to
too many successive transitional regimes. This as-
pect, called event filter, will ignore all the antago-
nist actions that appears in a too short period. All
the events sent to the unstable device controller by the
device proxy are derived into the event filter compo-
nent. These events are cached during a given period
that depends on the type of the device. Events are del-
egated to the device if no antagonist events appeared
during the cache period. These filters cannot be sys-
tematically deployed as they make devices less reactive
in standard conditions. This is why filters should be
dynamically and locally deployed and undeployed. Ev-
ery canceled actions has to be logged and displayed in a
language the user understand, using the I18N interface.
As the event filter aspect introduces a component that
requires the I18N interface, it introduces a new join
point for the internationalization aspect. Consequently
the I18N aspect should be woven after the event filter
aspect.

Figure 3. Event Filter aspect

This kind of basic analysis can help designers in
identifying interactions that cannot easily be detected

when directly working with low-level reconfiguration
scripts. However, CPA has limitations. For example,
this kind analysis is not associative. If no interaction
exists between A1 and A2 and no interaction exists be-
tween A1 and A3, nothing ensures that there exists no
interaction in the triplet {A1, A2, A3}, depending on
the weaving order. Determining the interactions that
may exist in all the possible subsets of aspects is very
complex as the number of combinations grows rapidly.

3.2 Validating Target Configurations

As explained in the introduction of this section, it
is not always possible to check all the possible config-
urations of an adaptive system a priori, for time and
resource issues. Moreover, the apparition of unforeseen
adaptation while the system is already deployed makes
it impossible to perform all the validation process at
runtime. However, in the context of high-insurance
adaptive systems [20] any configuration we wanted to
reach should be validated.

In order to validate target configurations (Figure 1,
step 3), we propose to define some invariants on the
metamodel we use to represent runtime architecture
and check these invariants for every constructed (by
aspect weaving) target configuration. These invariants
are expressed as Kermeta [26] meta-aspects that are
woven into the metamodel we are using for represent-
ing runtime architecture. Kermeta meta-aspects can be
used to refine existing meta-classes by integrating con-
tracts (pre/post-conditions, invariants), attributes and
references, operations and super-classes. The invariant
illustrated in Figure 4 specifies that all the client and
non optional ports defined in the component type of
the component should be bound. In other words, it
detects if mandatory bindings are missing. It uses an
OCL-like syntax2 which provides high-level operators
for navigating and querying models: select, exist and
forall in our example. Another invariant checks that
the server interface of a binding is a sub-type of the
client interface. Currently, six invariants are woven
into our metamodel. Note that end-user can define
more specific invariants to ensure the validity of the
configurations.

Invariant checking, as well as the steps related to
aspect weaving and aspect interaction detection, can
be performed on a tiers system, independent from the
running system itself. Indeed, all the models (meta-
model, configurations and aspects) can be serialized in
XML and transmitted to other systems.

2Kermeta now allows to define constraints using the real OCL

syntax

1 aspect class Component {

2 inv optionalClientPortBound i s do
3 self.type.ports .select {p |

4 not p.isOptional and
5 p.role == PortRole .CLIENT

6 }. forAll {p |

7 self.binding .exists {b |

8 b.client == p

9 }

10 }

11 end
12 }

Figure 4. Checking mandatory bindings

Another possible solution to validate target config-
uration before actually adapting the running system
would be to simulate models. This can be done by
describing the behavior of each configurations, for ex-
ample using state machines or Petri nets [35]. Then,
it would be possible to use Kermeta [26] to execute
these models and perform the simulation and detect
deadlocks, for example. However, in order to manage
the explosion of variants, this behavior should be as-
sociated to each aspect and should be composable in
order to obtain the behavior of whole configurations.
SmartAdapters is well adapted to compose structural
aspects, in class or component diagrams. However, to
consider the semantic of behavioral models, it has to be
customized by hand. Another solution would be to use
a specific aspect weaver dedicated to the composition
of behavioral models. Such an approach is presented
in Section 5 and its integration with our approach is
discussed in perspectives.

If the target configuration we want to reach is valid,
then the process continues, as illustrated in Figure 1,
step 4, in order to actually adapt the running system.
If the target configuration is not valid, then our roll-
back mechanism simply consists in discarding this tar-
get configuration and do not submit it to the follow-
ing steps of the process. Indeed, as the modification
on the model are not directly reflected to the running
system, we do not have to cancel platform-level recon-
figurations. An error report is automatically raised by
Kermeta [26], specifying which invariants are violated
by the target configuration. This helps the system or
the user in understanding why the configuration is not
valid. For example, if we consider that the I18N client
port is mandatory, then we are able to detect the cases
where the I18N has been woven before (or not at all)
other aspects, without using the preliminary critical
pair analysis. Indeed, the invariant illustrated in Fig-
ure 4 detects missing mandatory bindings. This case

Figure 5. Invariant violated

is illustrated in Figure 5 that shows a fragment of the
base model where the event filter has been woven and
the I18N is not woven at all.

4 Application to Home-Automation

4.1 EnTiMid to help people to stay at
home

Industrials, associations and public institutions of
the metropolis of Rennes, are working together on a
project which aims to allow dependent people to stay
at home as long as possible. Due to the large scale of
the project, and the diversity of disabilities that have to
be considered, the deployment context will be different
for each equipped house. The technologies used will
vary, in order to compensate handicaps or because a
technology is already installed, and people do not want
it to be removed. Moreover, the system installed in
these houses will have to provide a remote access to
the devices of the house, and transmit all the necessary
information from the sensors of the house to a control
center where information will be treated. Those access
and transmissions can be realized through various ways
(Internet, POTS, SMS) and the medium used will vary
according to the availabilities.

An abstraction layer over all these devices has been
developed in the form of a multi-facet middleware
called EntiMid [27]. Based on an OSGi platform [33],
EnTiMid is composed of different components (called
bundles), that can be dynamically added, removed,
started or stopped, with no need to restart the en-
tire system. Each of them can offer or require services
to/from other ones, but such services can disappear at
any time. One of those services, identified as Tech-
Provider, aims at translating the information caught
from a device network protocol, into EnTiMid stan-
dard event messages, and vice versa. By this way, high
level services can manage devices through unified mes-
sages, whatever the underlying technology is. EntiMid

allows engineers to prescribe the most adapted technol-
ogy, with no regard to the communication technology
it uses. Then high level services can be developed to
offer different kind of services to inhabitants and health
professionals. For example, automatic energy, heating,
access or light management to ease the everyday life;
remote control and alert transmissions, to allow pro-
fessionals to intervene on the house, in a short time,
according to the information collected.

A show apartment will soon be available, and En-
TiMid will be deployed in order to test its functional-
ities with devices installed by industrials. Those real
conditions will have for consequence an identification
of new needs of development and variability.

4.2 Designing Variability Dimensions

We now introduce and justify the need for dynamic
variability in our case study. Each variability dimen-
sion is represented by a set of aspects designed with
SmartAdapters.

Device Management. Physical devices are man-
aged by EnTiMid. Most of the devices are installed
when the system is deployed. However, new physical
devices may be installed after the initial deployment
and consequently, they should be managed dynamically
while maintaining the functionalities offered by already
deployed devices. In our case study, we have to manage
6 lights, 4 heaters, 3 mixing valves (controlling water
temperature) and 3 electric shutters. Moreover, de-
pending on the evolution of the patient, devices should
be managed in different ways. For example, in the case
the patient becomes visually impaired, the power of the
lights should be increased by 10%. Another focus can
be the evolution of a mobility handicap. In a first stage,
the patient can move alone in the house, allowing him
to manually close the shutters. Then the evolution of
the disease makes it difficult for the patient to get out
of his bed. A remote control will then be offered to this
person to ease his everyday life, and the control system
of the house have to adapt to this situation.

Each low-level protocol (KNX3, X10, X2D4, etc)
manages devices in an ad-hoc way. Consequently,
we would have to define a variability dimension for
each protocol. For the sake of clarity, we present one
generic variability dimension that harmonizes the con-
cepts present in each low-level protocol. It is illustrated
in Figure 6. In order to represent this variability di-
mension, we leverage the ability of SmartAdapters
to integrate variability into aspects [18]. Each type of
device controller (Light, Heater, Shutter and Mixing

3http://www.knx.org/
4http://www.english.deltadore.com

Valve) is a variant. Each type of component can be
instantiated several times. Each device also offers an
interface for loading pre-defined scenarios. All the de-
vice controllers are connected to a device proxy that
receives messages from the EnTiMid platform and dis-
patches these messages to the appropriate device.

Figure 6. Device Management aspect

Permission Management. All the physical de-
vices in the house are supposed to be potentially con-
trolled by EnTiMid. However, doctors can choose for
each device whether it is controlled by the system or
by the patient, according to the degree of autonomy of
the patient. If the device has no permission manager,
the patient can interact with the device. With a per-
mission manager, the patient cannot interact with the
device that only follows a pre-defined scenario.

The permission management aspect illustrated in
Figure 7. In order to control the access from the
user, an aspectual component [29] intercepts, using an
AspectJ-like pointcut, every call to the services of the
controller, log each attempt and does not proceed. The
device will simply execute its pre-defined scenario with-
out being interrupted.

Figure 7. Permission Management aspect

Two other aspects (internationalization and event
filter) have already been introduced in previous sec-
tions. Table 1 summarizes the number of aspects we

really need for each variability dimension to implement
our case study.

Dimensions Aspects Aspect variants
Device Mgmt 3 (KNX, X10, X2D) 4 (1 per device type)

Permission Mgmt 1 0
Event Filter 3 4
I18N 1 10
Total 8 18

Table 1. Number of aspects per variability di-
mension

4.3 Constructing a Configuration by As-
pect Weaving

We are now going to propose to illustrate the weav-
ing process with some of the aspects we have iden-
tified in the previous sub-section into our motivating
example (Figure 8). The top of the figure illustrates
a snippet of the base configuration. It allows to ac-
cess low-level devices using two high-level protocols:
UPnP5 and DPWS6, via the EnTiMid component. In
the bottom part of the figure three aspects have be wo-
ven: a filter aspect that filters the events send to Light1
; two permission managers that restrict the heater and
the shutter to their pre-defined scenarios. Finally, the
internationalization aspect is woven. The interaction
between the aspects can be observed in the example:
the event filter and the permission manager aspects
uses the internationalization aspects.

With the five variability dimensions we have defined
earlier in this section, we can obtain a wide range of
possible configurations. If we consider the three aspects
that directly impact devices (device management, per-
mission management and event filter), we obtain five
possible modes for each device, as shown in Table 2,
where 0 indicate that the aspect is not active for the
device. As the devices are managed independently, this
leads to 516 ≈ 15 · 1010 possible configurations. This
number is even greater if we consider the internation-
alization aspect.

If we consider the 15 · 1010 possible configurations,
we obtain approximately 225 · 1020 possible transitions
from one configuration to another. The configurations
are obtained on-demand: the weaving of some aspects
can be triggered by hand depending on the choices of
a human operator (doctor or technician), while some
other aspects (e.g., event filter) are triggered by the
context. Before adapting the system, all the invariants

5http://www.upnp.org/
6http://en.wikipedia.org/wiki/Devices Profile for Web Services

Figure 8. Base and woven configurations

Device Mgmt. Permission Mgmt. Event Filter
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

Table 2. Five Operating Modes per Device

defined in the metamodel are checked on the woven
target model. This allows us to determine whether the
target model is well-formed or not. If the configura-
tion is valid, the transition toward the target model is
automatically computed using model comparison. If
we consider the internationalization aspect, we should
multiply the number of configurations by 210 as we
should handle at least one language among 10. Table 3
summarizes the number of dimensions we have defined,
the total number of aspects we need, the number of
configurations we obtain on-demand by aspect weaving
and the number of transitions we generate on-demand
when moving from one configuration to another.

Dimen-
sions

Aspects Configurations Transitions

4 8 > 15 · 1013 > 225 · 1026

Table 3. Number of configurations and transi-
tions managed by aspects

5 Related Work

In [35], Zhang and Cheng propose to adopt a model-
driven approach for designing and validating dynami-
cally adaptive software systems. This approach focus
on the behavior of adaptive systems whereas we mainly
focus on the architecture of running systems. In [35],
the behavior is modeled with state-based diagrams like
Petri nets. Zhang and Cheng define an adaptive system
as a set of simple adaptive systems. A simple adaptive
system is defined by three entities: a source system,
a target system and transitions responsible for moving
the source system to the target system. All the source
systems, target systems and transitions should be ex-
plicitly modeled, leading to an explosion of artifacts
needed to manage an adaptive system. However, this
exhaustive representation allows validating intensively
the system at design time. Finally, using code genera-
tion, adaptive programs are derived from the models.
In our approach, configurations are constructed on de-
mand by selecting and weaving a set of aspects. Once
composed, it is possible to check the target configura-
tions we want to reach. Then, the transitions needed
to adapt the system is automatically generated using
model comparison.

In [10], David et al. present SAFRAN (Self-
Adaptive FRActal compoNents) an Aspect-Oriented
approach for implementing self-adaptive system on the
Fractal [7] platform. In order to adapt the system, they
define adaptation policies, separately from the busi-
ness logic, which follow this pattern: when <event>
if <condition> do <action> where actions are low-
level reconfiguration scripts. Batista et al. [3] propose
the same kind of approach for the OpenCOM [6] ex-
ecution platform. These approaches do not propose
an explicit representation of the target configurations.
Consequently, it is not possible to easily visualize the
system nor to perform validation, simulation before ac-
tual adaptation. In our approach, configurations are
obtained by weaving aspects into a model representing
the current system. Woven configurations are checked
against invariants. We then generate all the adapta-
tion logic needed to adapt the system while these ap-
proach have to specify low-level reconfiguration scripts.
Moreover, our approach is not specific to a given ex-

ecution platform. Finally, script-based approach do
no offer support for easily determining interactions be-
tween reconfiguration scripts while Aspect-Orientation
provides some mechanisms [13].

Ensuring software correctness is an important issue
and this is amplified when dealing with software vari-
ation . Correctness is even more important in Dynam-
ically adaptive System where variation is handled at
runtime. This issue has been addressed by the soft-
ware product lines community [30, 32]. One of the
main concerns for correctness in product lines is about
the methods to be used in order to limit the number of
tests to be performed for a family of products. Two is-
sues are especially considered: the increase of work for
the programmer and the time spent to perform them
[8, 19]. These contributions mainly introduce formal
methods in order to exploit the commonalities of a soft-
ware family in order to achieve these issues. They rely
on SAT solver [9] or more generally on model-checking
[17] techniques in order to verify those tests. In our
case, the main difference is the fact that verifications
can only be done at runtime. New aspect can be de-
signed and integrated, consequently unanticipated evo-
lution can occur. Using MDE techniques allows soft-
ware developer to apply his aspect on an abstraction
of its runtime system to check its correctness.

In [24], we present a first approach that combines
AOM and MDE in order to manage variability at run-
time. In this paper, we show how aspects can help
designer in determining interactions between dynamic
variants and how models allows to validate new config-
urations independently from the running system and
easily roll-back when a configuration is not valid.

In [34], Wolfinger et al. demonstrate the bene-
fits of integrating Software Product Line techniques
to manage the runtime reconfiguration and adapta-
tion mechanisms on the .NET platform. Automatic
runtime adaptations are attained by using the knowl-
edge documented in variability models. As many au-
thors [1, 2, 22] advocate that aspect-oriented software
development (AOSD) is an effective technique to sup-
port feature variability, this approach is close to ours.
Automatic runtime adaptations are attained by using
the knowledge documented in variability models. How-
ever, they do not propose to do a preview of the running
system at the model level to check its correctness.

In the domain of Aspect-Oriented Modeling, Nejati
et al. [28] propose an approach for matching and merg-
ing statechart specifications. This approach would be
useful for extending our approach with behavior, as
mentioned in Section 3.2. If we describe the behavior
of our aspects it would possible to merge this behavior
with the base model in order to obtain the complete be-

havior. Describing the behavior of our aspects mainly
consists in modeling the behavior of the interfaces of
each component and compose these behavioral mod-
els when components are assembled. Once we obtain
the global behavior, it is possible to reuse the concepts
proposed by Zhang and Cheng [35] for validating the
behavior of adaptive systems.

6 Conclusion

In this paper, we have presented our approach for
managing the complexity of dynamically adaptive sys-
tems. This approach combines aspect-oriented and
model-driven techniques in order to limit the number of
artifacts needed to realize dynamic variability. Our as-
pect model weaver allows us to construct configurations
on-demand by selecting, by hand or according to pre-
defined conditions, a set of aspects. Using the woven
configuration, it is possible to validate this configura-
tion before actually adapting the running system. Us-
ing aspects instead of low-level reconfiguration scripts
allows us to detect some interactions that can provide
assistance when selecting the set of aspects to be wo-
ven. Then, target configurations obtained after aspect
weaving are checked with respect to the invariant we
have defined into our metamodel. If a target config-
uration is not valid, the roll-back mechanism simply
consists in not submitting this target configuration to
the sub-sequent steps of the adaptation process. If the
configuration is valid, we generate the adaptation logic
using model comparison. This allows us to automat-
ically determine a safe transition to make the system
evolve from a its current configuration to the target
configuration.

In future works, we plan to extend our approach fol-
lowing different axis. Currently, we describe our sys-
tems according to their runtime architecture (compo-
nents, bindings, etc). We will also consider the be-
havior of dynamically adaptive systems. This can be
realized if we can modularize and compose the behavior
of components. Thus, it would be possible to decom-
pose the system behavior into aspects, as we do for
the architecture. We plan to reuse the approach we
have presented in the related work section to consider
the behavior. Another axis is about the validation of
target configurations. Currently, we ensure that the
target configurations ensure the invariants defined in
our metamodel. With the definition of the behavior,
we would be able to perform simulation in order to
detect some deadlocks, for example.

References

[1] V. Alves, P. Matos Jr, L. Cole, A. Vasconcelos,
P. Borba, and G. Ramalho. Extracting and Evolv-
ing Code in Product Lines with Aspect-Oriented Pro-
gramming. Transactions on Aspect-Oriented Software
Development IV, 4640/2007, 2007.

[2] S. Apel, T. Leich, and G. Saake. Aspectual mixin
layers: aspects and features in concert. In ICSE ’06:
28th International Conference on Software Engineer-
ing, pages 122–131, Shanghai, China, 2006. ACM.

[3] T. Batista, A. Joolia, and G. Coulson. Managing Dy-
namic Reconfiguration in Component-Based Systems.
In EWSA’05: 2nd European Workshop on Software
Architecture, pages 1–17, Pisa, Italy, 2005.

[4] N. Bencomo, G. Blair, and R. France.
Models@run.time (at MoDELS) workshops.
www.comp.lancs.ac.uk/ bencomo/MRT/.

[5] N. Bencomo, P. Grace, C. Flores, D. Hughes, and
G. Blair. Genie: Supporting the Model Driven De-
velopment of Reflective, Component-based Adaptive
Systems. In ICSE’08: Formal Research Demonstra-
tions Track, Leipzig, Germany, 2008.

[6] G. Blair, G. Coulson, J. Ueyama, K. Lee, and A. Joo-
lia. Opencom v2: A component model for building
systems software. In IASTED Software Engineering
and Applications, USA, 2004.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J. Stefani. The FRACTAL Component Model and its
Support in Java. Software Practice and Experience,
Special Issue on Experiences with Auto-adaptive and
Reconfigurable Systems, 36(11-12):1257–1284, 2006.

[8] M. Cohen, M. Dwyer, and J. Shi. Coverage and Ade-
quacy in Software Product Line Testing. In ROSATEA
’06: Proceedings of the ISSTA 2006 workshop on Role
of software architecture for testing and analysis, pages
53–63, Portland, Maine, 2006. ACM.

[9] K. Czarnecki and K. Pietroszek. Verifying Feature-
Based Model Templates Against Well-Formedness
OCL Constraints. In GPCE’06: 6th Int. Conf. on
Generative Programming and Component Engineering,
pages 211–220, Portland, Oregon, USA, 2006. ACM.

[10] P. David and T. Ledoux. An Aspect-Oriented Ap-
proach for Developing Self-Adaptive Fractal Compo-
nents. In SC’06: 5th Int. Symposium on Software
Composition, volume 4089 of Lecture Notes in Com-
puter Science, pages 82–97, Vienna, Austria, 2006.

[11] E. Figueiredo, N. Cacho, C. SantAnna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan,
F. Filho, and F. Dantas. Evolving software product
lines with aspects: an empirical study on design sta-
bility. In ICSE’08: 30th International Conference on
Software Engineering, pages 261–270, Leipzig, Ger-
many, may 2008. ACM.

[12] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and
J.-M. Jézéquel. Modeling and Validating Dynamic
Adaptation. In 3rd International Workshop on Mod-
els@Runtime (MODELS’08), Toulouse, France, oct
2008.

[13] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Go-
maa. Model Composition in Product Lines and Fea-
ture Interaction Detection Using Critical Pair Analy-
sis. In MoDELS’07: 10th ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems, Nashville USA, Oct 2007.

[14] J.-M. Jézéquel. Model Driven Design and Aspect
Weaving. SoSyM’08: Journal of Software and Systems
Modeling, 7(2):to appear, march 2008.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An Overview of AspectJ. In
ECOOP’01: Proceedings of the 15th European Confer-
ence on Object-Oriented Programming, pages 327–353,
London, UK, 2001. Springer-Verlag.

[16] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In ECOOP’97: Proceedings of
the 11th European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242, Berlin, Hei-
delberg, and New York, 1997. Springer-Verlag.

[17] T. Kishi, N. Noda, and T. Katayama. Design Veri-
fication for Product Line Development. In SPLC’05:
9th International Software Product Lines Conference,
volume LNCS 3714, pages 150–161. Springer, 2005.

[18] P. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard,
O. Barais, and J. M. Jézéquel. Introducing Variability
into Aspect-Oriented Modeling Approaches. In MoD-
ELS’07: 10th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems,
Nashville USA, Oct. 2007.

[19] M. Mannion and J. Cámara. Theorem Proving for
Product Line Model Verification. In Software Product-
Family Engineering, 5th International Workshop, PFE
2003, volume LNCS 3014, pages 211–224. Springer,
2003.

[20] P. McKinley, B. H. C. Cheng, C. Ofria, D. Knoester,
B. Beckmann, and H. Goldsby. Harnessing digital evo-
lution. Computer, 41(1):54–63, 2008.

[21] M. Mezini and K. Ostermann. Variability Management
with Feature-Oriented Programming and Aspects.
SIGSOFT Software Engineering Notes, 29(6):127–136,
2004.

[22] M. Mezini and K. Ostermann. Variability manage-
ment with feature-oriented programming and aspects.
In SIGSOFT’04/FSE-12: 12th ACM SIGSOFT inter-
national symposium on Foundations of Software En-
gineering, pages 127–136, Newport Beach, CA, USA,
2004. ACM.

[23] B. Morin, O. Barais, J. M. Jézéquel, and R. Ramos.
Towards a Generic Aspect-Oriented Modeling Frame-
work. In 3rd Int. ECOOP’07 Workshop on Models and
Aspects, Handling Crosscutting Concerns in MDSD,
Berlin, Germany, August 2007.

[24] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel,
A. Solberg, V. Dehlen, and G. Blair. An
Aspect-Oriented and Model-Driven Approach for
Managing Dynamic Variability. In MoDELS’08:
11th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, Toulouse,
France, October 2008.

[25] B. Morin, G. Vanwormhoudt, P. Lahire, A. Gaignard,
O. Barais, and J.-M. Jzquel. Managing Variability
Complexity in Aspect-Oriented Modeling. In MoD-
ELS’08: 11th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems,
Toulouse, France, October 2008.

[26] P. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Ex-
ecutability into Object-Oriented Meta-languages. In
MoDELS’05: 8th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Sys-
tems, Montego Bay, Jamaica, Oct 2005. Springer. Ker-
meta is available at: http://www.kermeta.org/.

[27] G. Nain, E. Daubert, O. Barais, and J. M. Jézéquel.
Using MDE to Build a Schizonfrenic Middleware
for Home/Building Automation. In ServiceWave’08:
Networked European Software & Services Initiative
(NESSI) Conference, Madrid, Spain, december 2008.

[28] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave. Matching and Merging of Statecharts
Specifications. In ICSE’07: 29th International Con-
ference on Software Engineering, pages 54–64, Min-
neapolis, MN, USA, 2007. IEEE Computer Society.

[29] N. Pessemier, L. Seinturier, T. Coupaye, and
L. Duchien. A Component-Based and Aspect-Oriented
Model for Software Evolution. In IJCAT’07: Inter-
national Journal of Computer Applications in Tech-
nology, Special Issue on Concern-Oriented Software
Evolution, volume 4089 of Lecture Notes in Computer
Science, page 259273, Vienna, Austria, mar 2006.
Springer-Verlag.

[30] K. Pohl and A. Metzger. Software Product Line Test-
ing. Commun. ACM, 49(12):78–81, 2006.

[31] R. Ramos, O. Barais, and J. M. Jézéquel. Match-
ing Model Snippets. In MoDELS’07: 10th Int. Conf.
on Model Driven Engineering Languages and Systems,
page 15, Nashville USA, Oct. 2007.

[32] M. Svahnberg and J. Bosch. Issues Concerning Vari-
ability in Software Product Lines. In International
Workshop on Software Architectures for Product Fam-
ilies, volume LNCS 1951, pages 146–157, Spain, 2001.
Springer.

[33] The OSGi Alliance. OSGi Service Platform
Core Specification, Release 4.1, May 2007.
http://www.osgi.org/Specifications/.

[34] R. Wolfinger, S. Reiter, D. Dhungana, P.Grunbacher,
and H. Prahofer. Supporting runtime system adapta-
tion through product line engineering and plug-in tech-
niques. In ICCBSS’08: 7th Int. Conf. on Composition-
Based Software Systems, pages 21 – 30, 2008.

[35] J. Zhang and B. H. C. Cheng. Model-based Develop-
ment of Dynamically Adaptive Software. In ICSE’06:
28th International Conference on Software Engineer-
ing, pages 371–380, Shanghai, China, 2006. ACM
Press.

A Framework for Proactive Self-Adaptation of
Service-based Applications Based on Online Testing�

Julia Hielscher1, Raman Kazhamiakin2, Andreas Metzger1 and Marco Pistore2

1 SSE, University of Duisburg-Essen, Schützenbahn 70, 45117 Essen, Germany
{hielscher,metzger}@sse.uni-due.de
2 FBK-Irst, via Sommarive 18, 38050, Trento, Italy

{raman,pistore}@fbk.eu

Abstract. Service-based applications have to continuously and dynamically self-
adapt in order to timely react to changes in their context, as well as to efficiently
accommodate for deviations from their expected functionality or quality of ser-
vice. Currently, self-adaptation is triggered by monitoring events. Yet, monitor-
ing only observes changes or deviations after they have occurred. Therefore,
self-adaptation based on monitoring is reactive and thus often comes too late,
e.g., when changes or deviations already have led to undesired consequences. In
this paper we present the PROSA framework, which aims to enable proactive
self-adaptation. To this end, PROSA exploits online testing techniques to detect
changes and deviations before they can lead to undesired consequences. This pa-
per introduces and illustrates the key online testing activities needed to trigger
proactive adaptation, and it discusses how those activities can be implemented by
utilizing and extending existing testing and adaptation techniques.

1 Introduction

Service-based applications operate in highly dynamic and flexible contexts of contin-
uously changing business relationships. The speed of adaptations is a key concern in
such a dynamic context and thus there is no time for manual adaptations, which can be
tedious and slow. Therefore, service-based applications need to be able to self-adapt in
order to timely respond to changes in their context or their constituent services, as well
as to compensate for deviations in functionality or quality of service. Such adaptations,
for example, include changing the workflow (business process), the service composition
or the service bindings.

In current implementations of service-based applications, monitoring events trig-
ger the adaptation of an application. Yet, monitoring only observes changes or devia-
tions after they have occurred. Such a reactive adaptation has several important draw-
backs. First, executing faulty services or process fragments may have undesirable con-
sequences, such as loss of money and unsatisfied users. Second, the execution of adapta-
tion activities on the running application instances can considerably increase execution
time, and therefore reduce the overall performance of the running application. Third,
� The research leading to these results has received funding from the European Community’s

Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

it might take some time before problems in the service-based application lead to mon-
itoring events that ultimately trigger the required adaptation. Thus, in some cases, the
events might arrive so late that an adaptation of the application is not possible anymore,
e.g., because the application has already terminated in an inconsistent state.

Proactive adaptation presents a solution to address these drawbacks, because – ide-
ally – the system will detect the need for adaptation and will self-adapt before a devia-
tion will occur during the actual operation of the service-based application and before
such a deviation can lead to the above problems.

In this paper we introduce the PROSA framework for PRO-active Self-Adaptation.
PROSA’s novel contribution is to exploit online testing solutions to proactively trigger
adaptations. Online testing means that testing activities are performed during the oper-
ation phase of service-based applications (in contrast to offline testing which is done
during the design phase). Obviously, an online test can fail; e.g., because a faulty ser-
vice instance has been invoked during the test. This points to a potential problem that
the service-based application might face in the future of its operation; e.g., when the
application invokes the faulty service instance. In such a case, PROSA will proactively
trigger an adaptation to prevent undesired consequences.

The remainder of the paper is structured as follows: In Section 2 we give an overview
of current research results on using monitoring to enable (reactive) adaptation and of
the state-of-the-art in online and regression testing. In Section 3 we present the PROSA
framework. While describing the key elements of the framework, we discuss how those
could be implemented by utilizing or extending existing testing and adaptation tech-
niques. Section 4 introduces several application scenarios to illustrate how PROSA ad-
dresses different kinds of deviations and changes. Finally, Section 5 critically reviews
the framework and highlights future research issues.

2 State-of-the-Art

2.1 Monitoring for Adaptation

Existing approaches for adaptation of service-based applications rely on the possibility
to identify and realize – at run-time – the necessity to change certain characteristics
of an application. In order to achieve this, adaptation requests are explicitly associated
to the relevant events and situations. Adaptation requests (also known as adaptation
requirements or specifications) specify how the underlying application should be mod-
ified upon the occurrence of the associated event or situation. These events and situa-
tions may correspond to various kinds of failures (like application-level exceptions and
infrastructure-level failures), changes in contextual settings (like execution environment
and usage context), changes among available services and their characteristics, as well
as variations of business-level properties (such as key performance indicators).

In order to detect these events and situations, the majority of adaptation approaches
resorts to exploiting monitoring techniques and facilities, as they provide a way to col-
lect and report relevant information about the execution and evolution of the application.
Depending on the goal of a particular adaptation approach, different kinds of events are
monitored and different techniques are used for this purpose.

In many approaches (e.g., [1–4]) the events that trigger the adaptation are failures.
These failures include typical problems such as application exceptions, network prob-
lems and service unavailability [1, 4], as well as the violation of expected properties and
requirements. In the former case fault monitoring is provided by the underlying plat-
form, while in the latter case specific facilities and tools are necessary. In [2] Baresi et al.
define the expected properties in the form of WS-CoL assertions (pre-, post-conditions,
invariants), which define constraints on the functional and quality of service (QoS) pa-
rameters of the composed process and its context. In [5] Spanoudakis et al. use proper-
ties in the form of complex behavioral requirements expressed in event calculus. In [3]
Erradi at al. express expected properties as policies on the QoS parameters in the form
of event-condition-action (ECA) rules. When a deviation from the expected QoS pa-
rameters is detected, the adaptation is initiated and the application is modified. In such
a case, adaptation actions may include re-execution of a particular activity or a fragment
of a composition, binding/replacement of a service, applying an alternative process, as
well as re-discovering and re-composing services. In [6] Siljee et al. use monitoring
to track and collect the information regarding a set of predefined QoS parameters (re-
sponse time, failure rates, availability) infrastructure characteristics (load, bandwidth)
and even context. The collected information is checked against expected values defined
as functions of the above parameters, and in case of a deviation, the reconfiguration of
the application is triggered.

Summarizing, all these works follow the reactive approach to adaptation, i.e., the
modification of the application takes place after the critical event happened or a problem
occurred.

The situation with reactive adaptation is even more critical for approaches that rely
on post-mortem analysis of the application execution. A typical monitoring tool used in
such approaches is the analysis of process logs [7–9]. Using the information about his-
tories of application executions, it is possible to identify problems and non-optimalities
of the current business process model and to find ways for improvement by adapting
the service-based application. However, once this adaptation happens, many process
instances might have already been executed in a “wrong” mode.

2.2 Online Testing and Regression Testing

The goal of testing is to systematically execute service instances or service-based appli-
cations (service compositions) in order to uncover failures, i.e., deviations of the actual
functionality or quality of service from the expected one.

Existing approaches for testing service-based applications mostly focus on testing
during design time, which is similar to testing of traditional software systems. There are
a few approaches that point to the importance of online testing of service-based applica-
tions. In [10] Wang et al. stress the importance of online testing of web-based applica-
tions. The authors, furthermore, see monitoring information as a basis for online testing.
Deussen et al. propose an online validation platform with an online testing component
[11] . In [12] metamorphic online testing is proposed by Chan et al., which uses oracles
created during offline testing for online testing. Bai et al. propose adaptive testing in
[13, 14], where tests are executed during the operation of the service-based application

and can be adapted to changes of the application’s environment or of the application it-
self. Finally, the role of monitoring and testing for validating service-based applications
is examined in [15], where the authors propose to use both strategies in combination.
However, all these approaches do not exploit testing results for (self-)adaptation.

An approach related to online testing is regression testing. Regression testing aims
at checking whether changes of (parts of) a system negatively affect the existing func-
tionality of that system. The typical process is to re-run previously executed test cases.
Ruth et al. [16, 17] as well as Di Penta et al. [18] propose regression test techniques for
Web services. However, none of the techniques addresses how to use test results for the
adaptation of service-based applications.

Summarizing, in spite of a number of approaches for online testing and regression
testing, none of these approaches targets the problem of proactive adaptation. Still, sev-
eral of the presented approaches provide baseline solutions that can be utilized and
extended to realize online testing for proactive adaptation. This will be discussed in the
following section.

3 PROSA: Online Testing for Proactive Self-Adaptation

As introduced in Section 1, the novel contribution of the PROSA framework is to exploit
online testing for proactive adaptation. Therefore, the PROSA framework prescribes the
required online testing activities and how they lead to adaptation requests. Figure 1 pro-
vides an overview of the PROSA framework and how the proactive adaptation enabled
by PROSA relates to “traditional” reactive adaptation which is enabled by monitoring.

Service-based
Application

adaptation
request

adaptation
request

monitoring data

test input

test
output

PROSA

Test Object

3. Test
Execution

2. Test Case
Generation/
Selection

1. Test
Initiation

4. Adaptation
Triggering Adaptation Monitoring

test
request

test
case adaptation

reactiveproactive

= activity

= data flow

Service Instances

= „bound to“

Fig. 1. The PROSA Framework

The PROSA framework prescribes the following four major activities:

1. Test initiation: The first activity in PROSA is to determine the need to initiate online
tests during the operation of the service-based application. The decision on when
to initiate the online tests depends on what kind of change or deviation should be
uncovered (see Section 3.1).

2. Test case generation/selection: Once online testing has been initiated by activity 1,
this second activity determines the test cases to be executed during online testing.
This can require creating new test cases or selecting from already existing ones (see
Section 3.2).

3. Test execution: The test cases from activity 2 are executed (see Section 3.3).
4. Adaptation triggering: Finally, an analysis of the test results provides information

on whether to adapt the service-based application and thus to create adaptation
requests (see Section 3.4).

It should be noted that – as depicted in Figure 1 – online testing does not interfere
with the execution of the actual application in operation, i.e. with those instances of the
application which are currently used by actual users. Rather, online testing performs
tests of the constituent parts of the service-based application (e.g., individual services
or service compositions) independent from and in parallel to the operating applications.

Details about the above activities and how those can be implemented with existing
techniques are discussed in the remainder of this section.

3.1 Test initiation

In order to initiate the actual online testing activities (PROSA’s activities 2 and 3), two
questions need to be answered: “When to test?” and “What to test?”. The answer of
these questions depends on the kinds of changes or deviations that should be proactively

addressed in addition to reactive techniques like monitoring. Those possible kinds of
changes are listed in Table 1.

Table 1. Different cases for initiating online testing

Case Why to initiate online testing? When to initiate online testing? What to

test?

1 Uncovering failures introduced due
to the adaptation of the service-based
application.

Once the respective adaptation (e.g.
binding of a new service) has been
performed.

service or
composition

2 Detecting changes in the service-
based application or its context that
could lead to failures in the “future”.

Once monitoring has detected a
change that does not reactively trig-
ger an adaptation.

service or
composition

3 Identifying failures of an application
execution.

Periodically (e.g. randomly or by
testing future service invocations
along the execution path of the appli-
cation).

composition

4 Uncovering failures (i.e., deviations
from expected functionality or qual-
ity) or unavailability of constituent
services.

Periodically (e.g., randomly or by
predicting future service invocations
along the execution path of the appli-
cation).

service

To give an answer to the question “When to test?”, Table 1 provides an explanation
when to initiate online testing depending on the kind of change or deviation. Those

kinds of changes and deviations are illustrated in more detail in Section 4, where differ-
ent application scenarios for PROSA are introduced.

To provide an answer to the question “What to test?” (i.e., to determine the test
object), we have considered the following two major strategies that can be performed
in order to uncover the different kinds of changes or deviations (Table 1 shows what
strategy could be followed depending on the kind of change or deviation):

– Testing constituent service instances: Similar to unit or module testing, the individ-
ual, constituent service instances of a service-based application can be tested (i.e.,
the service instances that are or will be bound to the service-based application).

– Testing service compositions: Similar to system and integration testing, the com-
plete service composition of a service-based application or parts thereof can be
tested.

To implement activity 1 of PROSA, one can rely on information provided by ex-
isting monitoring techniques for case 2 (see Table 1) or adaptation techniques for case
1. The other cases require new and specific techniques, which can be very simple (like
randomly triggering the tests) or more challenging (like predicting future service invo-
cations along the execution path of the application).

3.2 Test case generation/selection

In Section 3.1 two strategies for online testing were introduced. In order to implement
these two different strategies and thus to realize activity 2 of the PROSA framework,
different kinds of techniques for determining test cases have to be employed:

– Testing constituent service instances: For testing constituent service instances, ex-
isting techniques for test case generation from service descriptions, like WSDL,
can be exploited (e.g., [19–21]). Additionally, test cases from the design phase can
be re-used if such test cases exist. However, usually the test cases from the design
phase will not suffice, because typically at that time not all services are known due
to the adaptation of a service-based application that can happen during run-time.

– Testing service compositions: For testing service compositions, test cases can be
generated from composition specifications, like BPEL (e.g., [22, 23]). If a set of
test cases for testing service compositions already exists, online testing has to deter-
mine which of those test cases to execute again (i.e., test cases have to be selected).
This is similar to regression testing, which has been discussed in Section 2.2. Con-
sequently, existing techniques for regression testing of services (like [16–18]) can
be utilized.

A more detailed survey on existing test case generation and selection techniques for
service-based applications can be found in [24].

3.3 Test execution

The responsibility of activity 3 in the PROSA framework is to execute the test cases
that have been determined by activity 2. This means that the test object (which is either

a service instance or a service composition) is fed with concrete inputs (as defined in
the test cases) and the produced outputs are observed.

The test execution can be implemented by resorting to existing test execution en-
vironments, e.g., the ones presented in [19, 18]. It is important to note that invoking
services can lead to certain “side effects” which should not occur when invoking the
service for testing purposes only (this problem is also discussed in [22]). As an exam-
ple, when invoking the service of an online book seller for testing purposes, one would
not like to have the “ordered” books actually delivered. Thus, it is necessary to provide
certain services with a dedicated test mode. As an example, one could follow the ap-
proaches suggested for testing software components, where components are provided
with interfaces that allow the execution of the component in “normal mode” or in “test
mode” (see [25]).

3.4 Adaptation triggering

The final activity 4 of PROSA determines whether to issue an adaptation request, which
ultimately leads to the modification of the service-based application. Such an adaptation
request should be issued when the observed output of a test deviates from the expected
output, i.e., whenever a test case fails. This includes deviations from the expected func-
tionality as well as from the expected quality of service.

As has been discussed above, existing adaptation solutions rely on monitoring to is-
sue adaptation requests whenever a deviation is observed (see reactive loop in Figure 1).
In order to exploit those existing solutions (see Section 2.1), triggering of adaptations
based on online testing should conform to the requests from the monitoring component.
Thereby, activity 4 could be implemented within a unified adaptation framework.

To achieve such a unification, the following two issues need to be resolved: First,
specific adaptation requests should be explicitly assigned to individual test cases. In
reactive approaches such adaptation requests are assigned to certain monitoring events.
The events may represent application or network failures (e.g., service is unavailable),
violation of assertions (e.g., post-condition on data returned by service call) or even of
complex behavioral properties (e.g., if flight is found but there are no rooms available,
the trip plan can not be created). In a similar way, test cases represent dedicated exe-
cution scenarios, where specific deviations or changes can be checked (this has been
highlighted in Table 1). If the test fails, this is similar to the occurrence of a monitoring
event, and thus the adaptation assigned to the test case is triggered.

Second, it may be necessary to modify the adaptation requests from monitoring in
order to take into account the specifics of proactive adaptation. Indeed, some adaptation
requests from monitoring might specify instructions that are not applicable in proactive
adaptation (e.g., “retry” operation, or “rollback to safe point”). Therefore, the speci-
fication should be changed such that these instructions do not appear when used for
proactive adaptation. An interesting line of future work in these regards could be to
devise means to automatically derive adaptation requests for proactive adaptation from
the adaptation requests already available for monitoring.

4 Application Scenarios

In this section we illustrate how PROSA enables the proactive adaptation of a service-
based application. For this purpose we introduce an example application based on which
we describe scenarios that demonstrate how PROSA can be applied to the different
cases for online testing introduced in Table 1. The service composition of the example
and possible constituent service instances are depicted in Figure 2.

Suggest
Destination

Search Flight Search Train

Rate HotelsSearch Closest
Hotels

[distance > 100 km]

[distance <= 100 km]

Suggest
Travel Plans

Air1

Wings3

RailYW

HS45 Rate24 H-Guide PlanIt

cost: 2 €
response time: 5 ms

cost: 1 €
response time: 15 ms

cost: 1,50 €
response time: 5 ms

cost: 0,80 €
response time: 10 ms

cost: 0,20 €
response time: 5 ms

cost: 0,99 €
response time: 10 ms

cost: 1,20 €
response time: 15 ms

= service

= service instance
GuessTravel

cost: 0,20 €
response time: 10 ms

…

TrainZ
cost: 1,90 €
response time: 20 ms

Fig. 2. Example Application: “Travel Planning”

Our example application provides a travel planning service, which includes a com-
bined search for transportation and hotel accommodation. The constituent services of
this application are invoked in the following order:

1. Suggest destination: First, the user of the application is provided with a suggestion
of different travel destinations based on her/his preferences.

2. Search flight/train: Once the user has chosen a destination, the application will
determine the best way to reach that destination. Depending on the distance to the
suggested destination, either an appropriate flight or a train connection is searched.

3. Search closest hotels: After a suitable means of transportation has been found, ho-
tels in the vicinity of the airport or the railway station of the destination are located.

4. Rate hotels: Using one of the many hotel rating services available, each hotel from
the list is checked for its rating and the hotel list, sorted according to the rating, is
returned.

5. Suggest travel plans: Finally, the first hotel from the sorted list (i.e., the one with
the best overall rating) is chosen and the travel information (itineraries, information
about the hotel, etc.) is compiled to produce a comprehensive travel plan.

In Figure 2, gray boxes denote concrete service instances that can be bound to the
application in order to compute the travel plan. Some of those concrete service instances

can already be known at design time, while others are dynamically discovered or added
due to adaptations during the operation of the service-based application. The annotated
information about cost and response time denotes the negotiated quality for each of the
service instances (e.g., by means of service level agreements).

4.1 Case 1: Failure introduced due to adaptation

Let us assume that the service instance “H-Guide” was bound to our service-based
application at operation time, because the service instance “Rate24” has turned out to
be too expensive. The binding of that new service instance is reported by the adaptation
component to the PROSA framework. Consequently, PROSA’s activity 1 triggers the
online testing activities, which react to this adaptation by determining test cases to check
whether the newly bound service instance behaves as expected (see Table 1, case 1).
Let us say that the expected output of one of those test cases is “Palermo Premium
Class Hotel”, which clearly is the hotel with the best ratings for the chosen location.
Unfortunately, the observed output of “H-Guide” is “Casa Palermo”, which is the hotel
with one of the lowest ratings (the reason for this presumed failure is that – other than
expected – “H-Guide” returns the list of hotels in ascending order, starting with the
lowest ratings). Online testing reports this failure to the adaptation component, which
can – for example – switch back to the initial service instance “Rate24”, which has
already been used successfully.

4.2 Case 2: Change that could lead to failures in the future

Let us assume that a new regulation concerning the pricing of flights enters into force
during the operation of the service-based application. The regulation requires that the
overall cost of a flight (including taxes) has to be stated and that it may not anymore
be stated as the price for the flight with the note “plus taxes”. This legal change thus
represents a change in the context of the application (see Table 1, case 2). As a result,
PROSA will initiate online testing activities – when this new regulation enters into force
– in order to determine whether the constituent service instances of the service-based
application conform to this new regulation. This means that online tests will be triggered
in order to check whether the service instances for flight booking (“Air1” and “Wings3”)
conform to the new regulation. If one of those service instances does not implement the
new regulation, the service-based application will be adapted accordingly before that
service instance is invoked during the actual operation of the application.

4.3 Case 3: Failure of an application execution

The output of “search train” (resp.“search flight”) contains the name of the city close
to the airport or the railway station. This city name is passed on to “search closest ho-
tels” in order to determine the list of hotels in the vicinity of the destination. Let us
assume that the service instance “RailYW” always provides the name of the destination
in “short” form, meaning that even if there is more than one city with this name, like
“Frankfurt am Main” and “Frankfurt an der Oder”, this service instance will always re-
turn “Frankfurt”. When the hotel searching service “HS24” receives such an ambiguous

input, it will terminate with an error message. By running test cases to check deviations
in the service composition (see Table 1, case 3), PROSA can uncover such a failure and
– as a proactive corrective action – can request that a different service instance is bound
to the application (e.g., “TrainZ”).

4.4 Cases 4: Failure of a constituent service

For the booking of an appropriate flight, two service instances are available: “Air1”
and “Wings3”. “Air1” is used for premium clients, which are willing to pay more for
a shorter response time. “Wings3” is the preferred choice of clients who want to save
money. At operation time the online testing component runs several test cases per hour
(periodically testing, see Table 1, case 4). Let us assume that one of those tests uncovers
that “Wings3” does not respond. PROSA then provides the adaptation component with
this information, such that the alternative service instance “Air1” (which is working as
expected) is used for all queries.

5 Discussion and Perspectives

This paper has introduced the PROSA framework, which defines key activities for en-
abling the proactive self-adaptation of service-based applications. The novel contri-
bution of PROSA is to exploit online testing techniques in order to anticipate future
deviations or changes of a service-based application and thereby to trigger adaptation
requests. In addition to the definition of those key activities, the paper has discussed
how those activities can be implemented by building on or extending existing testing
and adaptation techniques.

In contrast to the “traditional” form of reactive adaptation (e.g., based on moni-
toring), PROSA provides the following important benefits: First, changes or deviations
from expected functionality or quality of service can be uncovered and addressed before
they lead to undesirable consequences. Second, the execution of adaptation activities –
if done proactively – does not interfere with the execution of the actual application in-
stances, i.e., the users of the application won’t be affected by the adaptation. Third,
proactive adaptation can provide adaptation requests early enough such that an adapta-
tion of the service-based application still is possible (in contrast to reactive adaptation,
where the application can have already terminated in an inconsistent state, for instance).
Due to these benefits, we are confident that the PROSA framework will enable novel
service-based applications that are able to proactively adapt and thus to better meet their
expectations.

In addition to uncovering failures, monitoring is also often used to improve (or op-
timize) a service-based application. Accordingly, online testing could be used in this
respect, for instance by determining the best possible alternative for an adaptation de-
cision before the adaptation is executed. This means whenever an adaptation decision
is imminent and different alternatives exist, those alternatives could be “pre-tested” and
the best one chosen. For example, consider an adaptation specification, where on fail-
ure of a service instance three strategies are defined: retry invoking the service instance

three times, replace the service instance with another service instance, change the ser-
vice composition to use different services. Testing can now “simulate” all those three
strategies and maybe detect that “change composition” is the only way to successfully
drive the adaptation.

Although exploiting only testing for proactive adaptation provides many benefits,
we acknowledge at this stage that further work is required in order to demonstrate the
applicability of the PROSA idea in practice. One aspect that, for example, has to be
investigated, is the possible impact of the execution of test cases on the performance of
the application. Thus, key issues that we will target in our future work are to create a
proof-of-concept prototypes based on existing techniques and tools (as discussed in the
paper) and to apply these prototypes to realistic cases.

As we have briefly pointed out in the paper, proactive and reactive adaptation may
work together in an integrated dynamic adaptation framework. In such a framework,
online testing and monitoring could mutually benefit from each other, thereby improv-
ing the overall quality and efficiency of adaptation. In further work, we thus plan to
investigate on how to best exploit the synergies between monitoring and testing. As an
example, the results of monitoring may be used to identify “better” test cases for on-
line testing. When complex behavioral properties are monitored (e.g., see [26, 5]), the
violations or successful executions are represented as traces containing information of
the composition activities. A set of such traces from previous executions may be used
to derive new test cases for online testing. Furthermore, monitoring may be used to
parametrize the test cases. As the configuration of tests may depend on the operational
context of the application, such context information can be provided by monitoring.

References
1. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-healing Service Compositions. In: First

Conference on the PRInciples of Software Engineering (PRISE’04). (2004) 11–20
2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the

JBoss rule engine. In: ESSPE ’07: International workshop on Engineering of software ser-
vices for pervasive environments. (2007) 11–20

3. Erradi, A., Maheshwari, P., Tosic, V.: Policy-Driven Middleware for Self-adaptation of Web
Services Compositions. In: ACM/IFIP/USENIX 7th International Middleware Conference.
(2006) 62–80

4. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing plug-in for Ws-BPEL engines.
In: 1st workshop on Middleware for Service Oriented Computing. (2006) 48–53

5. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A Service Discovery Framework for Service
Centric Systems. In: SCC ’05: Proceedings of the 2005 IEEE International Conference on
Services Computing. (2005) 251–259

6. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making Service Systems Self-
adaptive. In: 3rd International Conference Service-Oriented Computing - ICSOC 2005.
(2005) 255–268

7. van der Aalst, W.M.P., Pesic, M.: Specifying and Monitoring Service Flows: Making Web
Services Process-Aware. In Baresi, L., Di Nitto, E., eds.: Test and Analysis of Web Services.
Springer (2007) 11–55

8. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining - Adaptive Process Simplification
Based on Multi-perspective Metrics. In: Business Process Management, 5th International
Conference, BPM. (2007) 328–343

9. Nezhad, H.R.M., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving Protocol Models from
Imperfect Service Conversation Logs. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE) (2008) to appear.

10. Wang, Q., Quan, L., Ying, F.: Online testing of Web-based applications. In: Proceedings
of the 28th Annual International Computer Software and Applications Conference (COMP-
SAC). (2004) 166–169

11. Deussen, P., Din, G., Schieferdecker, I.: A TTCN-3 based online test and validation platform
for Internet services. In: Proceedings of the 6th International Symposium on Autonomous
Decentralized Systems (ISADS). (2003) 177–184

12. Chan, W., Cheung, S., Leung, K.: A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Services Research 4
(2007) 61–81

13. Bai, X., Chen, Y., Shao, Z.: Adaptive web services testing. In: 31st Annual International
Computer Software and Applications Conference (COMPSAC). (2007) 233–236

14. Bai, X., Xu, D., Dai, G., Tsai, W., Chen, Y.: Dynamic reconfigurable testing of service-
oriented architecture. In: Proceedings of the 31st Annual International Computer Software
and Applications Conference (COMPSAC). (2007) 368–375

15. Canfora, G., di Penta, M.: SOA: Testing and Self-checking. In: Proceedings of International
Workshop on Web Services - Modeling and Testing - WS-MaTE. (2006) 3 – 12

16. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards automatic
regression test selection for web services. In: Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC). (2007) 729–734

17. Ruth, M., Tu, S.: A safe regression test selection technique for Web services. In: Second
International Conference on Internet and Web Applications and Services (ICIW). (2007)

18. Di Penta, M., Bruno, M., Esposito, G., et al.: Web Services Regression Testing. In Baresi,
L., Di Nitto, E., eds.: Test and Analysis of Web Services. Springer (2007) 205 – 234

19. Martin, E., Basu, S., Xie, T.: Automated Testing and Response Analysis of Web Services.
In: IEEE International Conference on Web Services (ICWS). (2007) 647 – 654

20. Bai, X., Dong, W., Tsai, W.T., Chen, Y.: WSDL-Based Automatic Test Case Generation
for Web Services Testing. In: Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering (SOSE), IEEE Computer Society (2005) 215 – 220

21. Tarhini, A., Fouchal, H., Mansour, N.: A simple approach for testing Web service based
applications. In: 5th International Workshop on Innovative Internet Community Systems.
Lecture Notes in Computer Science Vol.3908 (2006) 134–146

22. Lübke, D.: Unit Testing BPEL Compositions. In Baresi, L., Di Nitto, E., eds.: Test and
Analysis of Web Services. Springer (2007) 149 – 171

23. Dong, W.L., Yu, H., Zhang, Y.B.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. In: EDOC ’06: Proceedings of the 10th IEEE International Enterprise
Distributed Object Computing Conference, IEEE Computer Society (2006) 441–444

24. Pernici, B., Metzger, A., eds.: Survey of quality related aspects relevant for SBAs. (2008)
S-Cube project deliverable: PO-JRA-1.3.1. http://www.s-cube-network.eu/achievements-
results/s-cube-deliverables.

25. Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D., Merdes, M., Malaka, R.: The
MORABIT approach to runtime component testing. In: Proceedings of the 30th Annual Int’l
Computer Software and Applications Conference (COMPSAC). (2006) 171–176

26. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and
Classes of Web Service Compositions. In: IEEE International Conference on Web Services
(ICWS 2006). (2006) 63–71

Towards Pro-active Adaptation with Confidence –

Augmenting Service Monitoring with Online Testing

Andreas Metzger
Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen

Schützenbahn 70, 45127 Essen, Germany

andreas.metzger@sse.uni-due.de

Osama Sammodi
Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen

Schützenbahn 70, 45127 Essen, Germany

osama.sammodi@sse.uni-due.de

Klaus Pohl
Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen

Schützenbahn 70, 45127 Essen, Germany

klaus.pohl@sse.uni-due.de

Mark Rzepka
Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen

Schützenbahn 70, 45127 Essen, Germany

mark.rzepka@sse.uni-due.de

ABSTRACT
Service-based applications need to operate in a highly dynamic and
distributed world. As those applications are composed of individ-
ual services, they have to react to failures of those services to en-
sure that the applications maintain their expected functionality and
quality. Self-adaptation is one solution to this problem, as it allows
applications to autonomously react to failures. Currently, moni-
toring is typically used to identify failures, thus triggering adapta-
tion. However, monitoring only observes failures after they have
occurred, which means that adaptation based on monitoring is re-
active. This can lead to shortcomings like user dissatisfaction, in-
creased execution times, and late response to critical events. Pro-
active adaptation addresses those shortcomings, because in such a
setting, the application detects the need for adaptation and thus can
adapt before a failure will occur. However, it is important to avoid
unnecessary pro-active adaptations, as they can lead to severe short-
comings, such as increased costs or follow-up failures. This means
that when taking pro-active adaptation decisions it is key that there
is confidence in the predicted future failures, i.e., pro-active adap-
tation should only be performed if there is certainty that the failure
could in fact occur. To avoid unnecessary adaptations, we introduce
an approach based on augmenting service monitoring with online
testing to produce failure predictions with confidence. We demon-
strate the applicability of our approach using a scenario from the
eGovernment domain.

1. MOTIVATION
Service-based applications (SBAs) need to operate in a highly

dynamic and distributed world. Especially, as an SBA is composed
of individual services, an SBA has to react to changes and fail-
ures of its constituent services to ensure that the SBA maintains
its expected functionality and quality. In such a setting, monitor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’10, May 2-8, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-971-8 ...$10.00.

ing is typically used to identify failures of the constituent services.
To compensate for those failures, an adaptation of the SBA can be
triggered [1, 2].

Monitoring only observes failures after they have occurred, and
thereby only allows a reactive adaptation of the failed SBA in-
stances. Such a reactive adaptation, however, has several important
drawbacks [3]. Firstly, it might take some time before problems in
an SBA instance lead to monitoring events that ultimately trigger
the required adaptation. Thus, in some cases, the events might ar-
rive so late that an adaptation of the SBA instance is not possible
anymore, e.g., because the application instance has already termi-
nated in an inconsistent state. Secondly, the execution of adaptation
activities on the running application instances can considerably in-
crease execution time, and therefore reduce the overall performance
of the running application. Thirdly, executing faulty services may
have undesirable consequences, such as loss of money and unsatis-
fied users.

In cases where more than one SBA instance is running, those
drawbacks can be mitigated through pro-active adaptation. Assume
that, as an example, a service S is used in several SBA instances. If
S fails during the execution of one SBA instance, the other running
SBA instances could be modified before they fail. This could be
done, e.g., by replacing S with an alternative service S

�, provided
that S has not yet been invoked in those SBA instances.

1.1 Problem Statement
To enable pro-active adaptation, future failures need to be pre-

dicted. However, when taking pro-active adaptation decisions it is
key that there is confidence in the predicted future failures. This
means that pro-active adaptation should only be performed if there
is a high enough certainty (e.g., such as 95%) that the failure ad-
dressed by that adaptation could in fact occur. Especially, in the
case where an SBA is built from external (third party) services and
thus those constituent services are not under the control of the ser-
vice composer, the observed quality and functionality of those con-
stituent services can vary between different service invocations. As
an example, a failure observed at one point in time can disappear at
a later point in time, as a service provider could have repaired the
service in the meantime. This means that even if a constituent ser-
vice S fails during the execution of one SBA instance, it might well
work as expected when invoked for other SBA instances. Thus,
if such failures were used as a basis for adaptation decisions, this
would lead to unnecessary adaptations of those SBA instances, i.e.,

even if those adpatations were not performed, the SBA instances
would still work as expected.

Such unnecessary adaptations can have severe shortcomings: Firstly,
unnecessary adaptations can be costly even in the pro-active case.
For instance, additional activities such as Service Level Agreement
(SLA) negotiation for the alternative services might have to be per-
formed, or the adaptation can lead to a more costly operation of the
SBA, e.g., if a seemingly unreliable but cheap service is replaced
by a more costly one. Secondly, unnecessary adaptations could be
faulty (e.g., if the new service has bugs), leading to severe prob-
lems as a consequence. Thus, unnecessary adaptations should be
avoided as best as possible.

Currently, there exist several approaches to predict the failures
of software and service systems (see Section 3). Many of them
consider statistical techniques during monitoring (e.g., log corre-
lation) or during testing (e.g., statistical testing). However, those
approaches face a significant shortcoming when applied to adap-
tive SBAs: Those techniques usually require a very high number
of data points (monitoring or test results) to produce statistically
significant data, i.e., if not enough data points are available, the ex-
pected statistical significance and thus the expected confidence in
the failure prediction might not be reached. This poses significant
problems for the applicability of those techniques in the SBA con-
text. If monitoring approaches are applied and only few users have
started to use the SBA, the collected monitoring data will usually
not suffice to predict future failures with confidence. If testing ap-
proaches are applied individually, achieving the required number
of data points can lead to significant, additional costs. This is espe-
cially true if the SBA includes external services, and thus invoking
those services will be associated with additional costs.

1.2 Contribution of Paper
In this paper, we take the position that monitoring of an SBA

should be augmented with online testing in order to produce failure
predictions with confidence, and thus, avoid unnecessary adapta-
tion. With online testing we mean that the SBA is tested (i.e, fed
with dedicated test input) in parallel to its normal use and operation.
The online test cases are determined in such a way, that the results
provide additional data points that complement the data points col-
lected by monitoring.

As we build on the monitoring data available, we expect that due
to the synergy effects between monitoring and testing, the testing
effort can be kept smaller than if the techniques were applied in-
dividually. Although the integration of monitoring and testing has
been proposed in the literature (e.g., to exploit test cases for mon-
itoring; see Section 3.4), the novel way of integrating monitoring
and testing as introduced in this paper has not been proposed so far.

The remainder of the paper is structured as follows: Section 2
introduces an example scenario based on which the problem ad-
dressed in this paper is illustrated. Although our approach is gen-
eral in nature, for illustration purposes we focus on service response
time as a quality attribute and the replacement of service as a heal-
ing technique. Section 3 discusses the shortcomings of the state of
the art and how we envision to progress from that. Section 4 out-
lines our overall approach together with its assumptions. Section 5
illustrates the applicability of our approach by using the example
scenario from Section 2 and it discusses how the assumptions un-
derlying our approach could be relaxed. Section 6 concludes the
paper and provides an outlook on future work.

2. ILLUSTRATION

2.1 Example Scenario

In this section, we illustrate the problem using a scenario that
is based on an eGovernment case study as described in [4]. The
scenario specifies the usage of a governmental SBA that allows cit-
izens to renew their vehicle registrations online, thereby sparing
them effort and time.

The service composition and workflow of the scenario are de-
picted in Figure 1 as an activity diagram. Gray boxes denote con-
crete services that can be bound to the eGovernment application.
A gray box with a dotted border represents an internal service. A
gray box with a solid border represents a third-party service (i.e., a
service provided by an external organization). In addition, the di-
agram is annotated with information about the negotiated response
times (e.g., stipulated by means of SLAs for third-party services)
and the costs involved in service invocations.

response
time

1 s

response
time

2 s

response
time

1 s

2. Pay
Renewal Fee

3. Update
Vehicle Record

4.a. E-Mail
Confirmation

1. Identify
Vehicle

[valid]

[not valid]

ePay
response time

2 s
cost: 1.50 �€

SecurePay
response time

3 s
cost: 1 �€

Yahoo
response time

1.5 s

GMail
response time

2 s

4.b. Mail
Validation Sticker

= service invocation/activity
= third-party service
= internal service
= alternative binding

RenewalHandler

Figure 1: Workflow of eGovernment Application.

The workflow consists of the following activities:

1. Identify Vehicle: In order to begin online registration renewal,
the citizen needs to provide a renewal identification num-
ber from the vehicle registration notice or, as an alternative,
she/he could provide the license plate number. This infor-
mation is needed to identify and to find the matching vehicle
record.

2. Pay Renewal Fee: Once the vehicle – for which the registra-
tion renewal will be made – has been identified, the citizen
will be asked to pay the renewal registration fee. For this pur-
pose, the citizen will have to interact with a payment service
and await the confirmation of the payment.

3. Update Vehicle Record: After the payment of the fee is com-
pleted, the application will renew the registration of the ve-
hicle and will update the vehicle record to reflect the regis-
tration renewal.

4. E-Mail Confirmation and Mail Validation Sticker: Finally, a
confirmation of the online transaction (i.e., the registration
renewal process) will be sent to the citizen by e-mail. In
parallel to that, the motor vehicle division (i.e., the devision
in charge of vehicle registration) will be notified about the
registration renewal and will mail a validation sticker to the
citizen.

2.2 Pro-active Adaptation
To illustrate the benefits of pro-active adaptation, let us assume

that the SecurePay service fails, i.e., takes longer than the allowed
maximum response time of 3 seconds, when a citizen tries to pay
the renewal fee using the eGovernment application. Let us also
assume that there are other instances of the eGovernment applica-
tion that are running in parallel but have not yet invoked SecurePay

(we call them yet-to-invoke-SecurePay instances). Those instances
could be prevented from failing by exploiting pro-active adapta-
tion. In our example, the SecurePay service could be replaced by
the ePay service in the yet-to-invoke-SecurePay instances.

Based on the previous situation, we can now illustrate the prob-
lem of unnecessary pro-active adaptation. Let us assume that the
yet-to-invoke-SecurePay instances were pro-actively adapted but
this adaptation turns out to be unnecessary. In our example, the
adaptation was triggered by the failure of the SecurePay service,
which could turn out to work well when being invoked at a later
point in time, i.e., the service would have worked as expected for
the yet-to-invoke-SecurePay instances (i.e., it would have responded
within 3 seconds). Unfortunately, this unnecessary pro-active adap-
tation has the following consequences in our example. Firstly, the
adaptation has lead to increased costs due to the replacement of
the cheaper SecurePay service (1 e) with the more costly ePay ser-
vice (1.50 e). Secondly, the situation gets even worse if the ePay

service turns out to be faulty. In such a case the unnecessary pro-
active adaptation has replaced the SecurePay service that was work-
ing well with the faulty service ePay, and this replacement would
eventually make the yet-to-invoke-SecurePay instances fail.

3. RELATED WORK
Various techniques to uncover and predict failures have been pro-

posed in the literature on assuring the quality software systems and
SBAs. This section first provides basic definitions of the different
classes of quality assurance techniques and discusses their respec-
tive benefits and shortcomings. Then, for each of those classes, this
section will discuss the most relevant techniques for addressing the
problem introduced in Section 1. To this end, first monitoring, test-
ing and (static) analysis are discussed individually, followed by a
discussion of joint efforts for monitoring and testing.

3.1 Monitoring
Monitoring in General: Monitoring observes services or service-

based applications during their current execution, i.e. during their
actual use or operation (cf., [1, 2]) with the aims of, for instance,
supporting the optimization, enabling the context-driven adapta-
tion, or uncovering failures. Many different monitoring techniques
have been presented in the literature (see [2]).

In contrast to testing and static analysis (see below), which aim
at providing more general statements about services or service-
based applications, monitoring provides statements about a service-
based application’s current execution (i.e., about current execution
traces). Thereby, monitoring can uncover failures which have es-
caped testing, because the concrete input that lead to the current
execution trace might have not been covered by any test case.1

Data correlation: In the literature several approaches have been
proposed to statistically analyze failure data (retrieved from event
logs or monitoring logs) in order to develop prediction models that
are used for predicting failure patterns. One prominent class of
approaches is to examine the spatial and/or temporal correlation
among failure events to determine such patterns. Depending on the
1As will be explained below, only a sub-set of all potential inputs
can be tested.

types of failures, failure events may display different relationships:
(1) Spatial correlations (e.g., a failure may nearly simultaneously
occur on multiple nodes in a cluster) as explored in [5, 6, 7, 8, 9],
and (2) temporal correlations (e.g., some faults cause several failure
instances occurred on multiple compute nodes in a short interval),
as explored in [2, 4, 5]. These temporal and spatial correlation
properties of failure events have been utilized for failure prediction
and proactive management in several of those approaches [2, 3, 4].

Although those approaches address the problem of failure pre-
diction, our envisioned approach differs from them in at least two
important aspects. Firstly, we don’t aim at predicting new fail-
ures from past monitoring data, but want to establish confidence

that one specific failure which has been uncovered in one SBA in-
stance could also occur in other SBA instances and thus justifies a
pro-active adaptation of those other SBA instances. Secondly, the
developed failure prediction models typically are built from event
logs that are collected over a very large period of time (e.g., more
than 100 days in [2], and a year in [1]), whereas in the SBA con-
text we cater for dynamic adaptations of the systems and thus need
to consider a possible invalidation of past monitoring data due to
those adaptations.

A related approach is presented in [10] for anomaly detection
and localization based on statistical machine learning techniques.
To this end, the authors propose building and periodically updat-
ing one or more baseline system models by observing the system’s
behavior. The models may capture either operational (time series)
or structural behaviors. This approach aims at reactive adaptation,
whereas our approach is targeted towards pro-active adaptation.

3.2 Testing
Testing in General: The goal of testing is to systematically ex-

ecute a service or a service-based application (the test object) in
order to uncover failures (cf. [11, 12, 13, 14]). During testing, the
test object is fed with concrete inputs and the produced outputs
are observed. The observed outputs can deviate from the expected
outputs with respect to functionality as well as quality (e.g., per-
formance or availability). When the observed outputs deviate from
the expected outputs, a failure of the service or the service-based
application is uncovered. Several testing techniques for services
and service-based applications have been presented in the literature
(see [15, 16]).

Testing cannot guarantee the absence of faults, because it is in-
feasible (except for trivial cases) to test all potential concrete inputs
of the test object. As a consequence, a sub-set of all potential in-
puts has to be determined for testing (e.g., cf. [13]). The quality
of the tests strongly depends on how well this sub-set covers the
test object. Ideally this sub-set should include concrete inputs that
are representative for all potential inputs (even those which are not
tested) and it should include inputs that – with high probability –
uncover failures. However, as choosing such an ideal sub-set typi-
cally is infeasible, it is important to employ other quality assurance
techniques and methods which complement testing (e.g., cf. [14])

Statistical Testing: One important technique, which addresses
the problem of determining feasible sub-sets of test cases while
still maintaining adequate test coverage is statistical testing [17,
18]. The purpose of statistical testing is to predict the reliability
of the test object. To this end, usage models are built, represent-
ing the system states and transitions between those states, together
with probabilities for those state transitions. Those models are
commonly represented in the form of Markov chains [19]. Usage
models can be built from specifications, user guides, or by observ-
ing the user interactions with existing systems [17]. Test cases are
generated from the usage models taking into account the transition

probabilities. The results of the tests are statistically analyzed to
determine the expected reliability of the system. Statistical test-
ing has been used, for example, to test embedded systems (where
usage models are derived from sequence-based requirements spec-
ification [20]), and to measure the reliability of Web applications
(where usage models are derived from Web usage logs [21]).

Although statistical testing can provide statements about the over-
all system reliability (i.e., the probability that the system won’t
fail), it is not used for establishing confidence in predicting that
a specific failure, which has been uncovered in one SBA instance,
could also occur in other SBA instances. However, this more spe-
cific statement is needed in order to justify and enact pro-active
adaptation of those SBA instances. Furthermore, statistical test-
ing usually requires a very high number of test cases to produce
statistically sound data and this poses a significant burden for the
applicability of this technique in the SBA context. It is exactly
here, where in our envisioned approach we propose to exploit fail-
ure data observed through monitoring. Finally, due to the dynamic
and adaptive nature of SBAs, some of the assumptions that under-
lie statistical testing like that the "test object does not change" and
that there are "fixed environmental conditions" [18] typically do not
hold for SBAs.

Online Testing: Given the need for adapting SBAs at run-time,
quality assurance techniques that can be applied at run-time are
essential. The major type of run-time quality assurance techniques
used today is monitoring (see Section 3.1). As monitoring observes
the SBA (or its constituent services) during their current execution
(i.e., during their actual use or operation), monitoring does not pro-
vide a systematic coverage of the ’test object’. First research activ-
ities have appeared that suggest bringing standard and consolidated
software quality assurance techniques to run-time. In [22] the gen-
eral need for run-time quality assurance techniques is motivated,
focusing on automated techniques.

One promising run-time quality assurance technique is online
testing. Online testing means that the service-based application is
tested (by feeding it with dedicated test input) in parallel to its nor-
mal use and operation. In [23], Wang et al. stress the importance of
online testing of web-based applications. The authors, furthermore,
see monitoring information as a basis for online testing. Deussen
et al. propose an online validation platform with an online testing
component [24]. In [25], metamorphic online testing is proposed
by Chan et al., which uses oracles created during offline testing for
online testing. Bai et al. propose adaptive testing in [26, 27], where
tests are executed during the operation of the service-based applica-
tion and can be adapted to changes of the application’s environment
or of the application itself.

An approach related to online testing is regression testing. Re-
gression testing aims at checking whether changes of (parts of) a
system negatively affect the existing functionality of that system.
The typical process is to re-run previously executed test cases. Ruth
et al. [28, 29] as well as Di Penta et al. [30] propose regression test
techniques for Web services.

Despite the fact that there are a number of initial approaches for
online testing and regression testing, none of these approaches tar-
gets the problem of predicting the future occurrence of a failure
with confidence, thereby avoiding unnecessary, proactive adapta-
tions.

3.3 Static Analysis
Static Analysis in General: The aim of static analysis (e.g., see

[31, 14]) is to systematically examine an artifact in order to de-
termine certain properties or to ascertain whether some predefined
properties are met. Examples of static analysis include formal tech-

niques and methods, such as data flow analysis, model checking,
and symbolic execution, as well as non-formal approaches, such as
reviews, walk-throughs, and inspections.

In contrast to testing and monitoring, where individual execu-
tions of the services or service-based applications are examined,
static analysis can examine classes of executions [14]. Thus, static
analysis can lead to more universal statements about the properties
of the artifacts than testing (or monitoring).

Static analysis is often based on a model of the system. As those
models might abstract away from some relevant concrete details,
aspects might be overlooked during static analysis [14] or simply
not be captured faithfully enough. Thus static analysis can comple-
ment the other classes of quality assurance techniques and methods
but typically will not be enough, if used in isolation, in order to give
a complete picture of the execution of a computational system.

Reliability modeling and analysis: Software reliability is one
of the most important characteristics of software quality. Software
reliability is defined as the ability of a system to perform its re-
quired functions under stated conditions for a specified period of
time. It is often reported in terms of a probability [32]. Software
reliability techniques aim at reducing or eliminating failures in soft-
ware systems. Reliability modeling is a major technique for the
estimation as well as the prediction of the reliability of a software
system.

Many reliability models have been proposed in the literature and
could be classified as black-box models or white-box models. Black-
box models consider the software system as a whole (monolithic
entity) and ignore the internal structure of the system. Only inter-
actions with the outside world are modeled [33]. White-box ap-
proaches on the other hand, consider a system’s internal structure
(e.g., architecture, states and execution paths) in reliability estima-
tion [34, 35, 36, 37]. For SBAs it is important to reason on evolving
and adapting the SBAs. To this end, Epifani et al. in [38] propose
a framework for updating reliability models during the run-time of
the SBA. They use a Bayesian estimator to produce updated model
parameters from data collected from the running system.

Reliability analysis approaches are able to predict the overall re-
liability of the system (this is a similar goal to statistical testing,
see Section 3.2). However, those techniques are not intended for
predicting the occurrence of individual failures.

3.4 Joint Monitoring and Testing Efforts
As has been discussed above, isolated monitoring and testing

techniques have certain shortcomings, which could be overcome
by joint monitoring and testing efforts. For instance, Delgado et al.
argue that monitoring provides a complementary measure to ensure
the quality of a service-based application and thus ”can be used to
provide additional defense against catastrophic failure” [1]. Sev-
eral research projects investigating the dependability and quality of
services recognize the overlap (commonalities in terms of overall
goals and problems) between monitoring and testing (such as WS-
DIAMOND2, PLASTIC3, or ProTest4). However, it is generally
argued for a separation between offline (development time) tech-
niques such as testing and online techniques such as monitoring.
Possible synergies which could be exploited if testing was being
performed during run-time to augment monitoring are at most sub-
ject for future work (e.g., see [39]).

SeCSE is one of the first projects to investigate, in more de-
tail, the combined usage of service monitoring and testing [40, 41].

2http://wsdiamond.di.unito.it
3http://www.ist-plastic.org
4http://www.protest-project.eu

Three ways of combining testing and monitoring activities are in-
troduced. Firstly, SeCSE proposes to monitor the behavior of a
service and to statistically analyze the collected monitoring data
with the aim of inferring assertions (e.g., invariants).

Secondly, search-based techniques are proposed for test data gen-
eration to produce test cases that are likely to violate the SLAs.
During test case execution, quality of service (QoS) parameters are
observed through monitoring mechanisms, and those QoS parame-
ters are used in turn to guide the search for better test cases. Com-
pared to our envisioned approach the search-based techniques are
used to derive "better" test cases and not to gain "higher" confi-
dence in the test results. However, adopting a search-based strategy
for producing test cases could promise to be a possible solution for
the challenge faced in our approach with respect to test case gener-
ation (see Section 4.2).

Thirdly, the use of monitoring data for mimicking service be-
havior is suggested to reduce the number of required service invo-
cations when executing a test suite. Mimicking the service behavior
does not aim at increasing the confidence of the test results, but at
reducing the overall effort for testing. Also, as observed in [41] the
use of monitoring data for mimicking service behavior is limited
to the situations in which the relationship between a service’s input
and output is deterministic, which, as motivated in Section 1, may
not be the case for SBAs.

4. APPROACH
To predict failures with confidence and thereby avoid unneces-

sary pro-active adaptations, our envisioned solution is based on in-
tegrating monitoring and testing techniques for services. This inte-
gration enables our approach to exploit available monitoring data,
and thus – due to the synergy effects between monitoring and test-
ing – promises to keep the testing effort smaller than if the tech-
niques were applied individually.

Below, we first discuss the assumptions that underlie our ap-
proach and then outline the envisioned steps of the approach.

4.1 Assumptions
To initially focus our research activities, we rely on the below

assumptions. In Section 5.2, we discuss how those assumptions
could be relaxed and addressed in future work.

• Assumption 1: We assume that each failure of a constituent
service of a SBA instance leads to a failure of that SBA in-
stance. This means that, if a constituent service fails, the
SBA instance will deviate from its requirements and thus the
need for an adaptation arises. Of course, not each service
failure necessarily leads to a requirements violation; e.g., in
the example from Section 2.1, an end-to-end performance
requirement could still be met if a slower response of the
GMail service is compensated by a fast response of the ePay

service. Therefore, there should be an additional step in-
volved in determining whether a failure of a constituent ser-
vice in fact leads to the need for an adaptation.

• Assumption 2: We assume that the observed (monitored or
tested) elements provide a notification in case of any change
which would invalidate the monitoring or testing data. Ex-
amples of such changes are: a new version of the service im-
plementation and a re-deployment of a service. This could
be realized, for instance, by means of dedicated service level
agreements (SLAs) that bind the service provider to notify
the service consumer of changes, or by using special service
registries that provide notification functionalities.

• Assumption 3: We assume that invoking a constituent ser-
vice of a SBA for test purposes will have no side effects;
e.g., when testing a book delivery service, no books would
actually be delivered as a result of the testing activities.

4.2 Steps of the Approach
Our approach prescribes 5 steps to be carried out for determining

failure predictions with confidence. Figure 2 depicts those steps.

2. Determine
Current Confidence

4. Predict Failure
Occurrence

[sufficient]

1. Determine
Representative Data

[not sufficient]3. Execute
Tests

5. Decide on Pro-
active Adaptation

Figure 2: Steps of our solution approach.

It should be noted that during the execution of online tests, the
service might have changed or new monitoring data might have
been collected (from the SBA instances running in parallel). This
means that some of the data will not be representative anymore
or that new, representative data should be considered. Thereupon,
we follow an incremental process to perform the online tests for
attaining the required confidence in failure prediction, i.e., tests will
be incrementally executed until the required confidence is reached.
In Figure 2 this is reflected by the loop from Step 3 to Step 1.

In the following, we explain the steps of approach and point out
some of the challenges that remain to be addressed to realize those
steps:

• Step 1: The first step determines which of the data points
collected so far are representative of the service that is being
observed. This is an important step, as in the case of adaptive
systems, many data points that have been collected before the
change of the application will not be representative of the ap-
plication after the change. Thus, those data points cannot be
considered for assessing the confidence in the failures. In
case one is notified of the change of a service (see Assump-

tion 2 from Section 4.1), one could invalidate the past data
points and aim at collecting new ones.

• Step 2: The second step determines the confidence of the fail-
ure prediction based on the representative data points (from
Step 1). As we cannot rely on the assumption that the data is
drawn from a given probability distribution, we rely on tech-
niques from non-parametric statistics (e.g., see [42]) for this
step. If, the expected confidence is achieved, the approach
continues with Step 4. Otherwise, the approach continues
with Step 3 in order to collect additional data points.

• Step 3: In step 3, test cases are generated (e.g., using [43, 44,
45, 46]) and executed (e.g., using [47, 30]) in order to gather

additional, representative data points for failure prediction.
Based on the confidence level computed in Step 2, one or
more test cases are executed. One key challenge is how to
determine adequate test cases that allow achieving the goal
of establishing confidence (see Section 3.4).

• Step 4: After the previous steps have established a set of
representative data that exhibits the required confidence for
failure prediction, Step 4 predicts the actual occurrence of
the failure. This is done – of course depending on the na-
ture of the failure – using statistical techniques to compute
the probability for that failure, or by exploiting specific tech-
niques from data mining [48]. The accuracy of the prediction
is related to the technique employed for the the prediction.

• Step 5: Step 5 decides on the actual pro-active adaptation
of the SBA instances. The decision on such an adaptation
is based on the predicted failure probability from Step 4.
For example, pro-active adaptation is triggered if the predic-
tion is above a pre-defined threshold. One challenge will be
to support more complex decision mechanisms that, for in-
stance, exploit a cost model that takes into account the prob-
ability of the failure and its associated costs versus the costs
for performing the pro-active adaptation. As an interesting
extension of this step, the use of online testing to ’pre-test’
the adaptation could be investigated (see [3]). For example,
if a service S is to be replaced by service S

�, S� could first
be tested before being bound to the SBA instance.

To initiate the above steps, various strategies can be followed.
Below two typical strategies are listed:

• Strategy A: Step 1 is triggered as soon as monitoring uncov-
ers a failure. This strategy is efficient in that it only triggers
the steps of our approach (and thus online tests) when the
potential need for a pro-active adaptation occurs. However,
this can lead to delays in adaptation, as some time can be re-
quired to run the test cases needed to gain the required confi-
dence for the failure prediction. If those delays are too long,
this might even mean that the SBA instances to be adapted
already have invoked the service which might had to be re-
placed.

• Strategy B: Step 1 is triggered after each change of a con-
stituent service of the SBA. This continuous update can pro-
vide faster reaction times, as more data might be available
once an actual failure happens. However, this can lead to
increased costs, because some of the produced test results
might never be used. As an example, if a service S has been
tested and is then modified before a failure of S has occurred,
those test results might not be representative for the modified
service anymore and thus have been collected unnecessarily.

5. DISCUSSION

5.1 Demonstration of Applicability
This section illustrates how the unnecessary pro-active adapta-

tion as depicted in Section 2.2 can be avoided. Following our
approach from above, this means that a confidence in predicting
whether the SecurePay service will fail during the execution of the
yet-to-invoke-SecurePay instances is required.

Let us say that the expected confidence is 95%, and that in or-
der to trigger pro-active adaptation, the failure should occur with a
probability of more than 10%.

Figure 3 illustrates some concrete data collected during the ex-
ecution of the SecurePay service (response time) together with the
attained confidence levels.

max.
response
time (3 s)

time

response
time

confidence

failure observed
trigger Step 1

x x x x

95%

x
x

x
x

confidence reached
trigger Step 4

monitoring data
testing data

x = confidence

Figure 3: Attaining the required confidence by augmenting
monitoring data with test data for the SecurePay service.

As can be seen from the figure, the steps of our approach are
triggered after the occurrence of the first failure, i.e., we follow
Strategy A from Section 4.2. After the failure has occurred, first,
representative historical data from past executions of the eGovern-
ment application are determined (Step 1). Based on this data, the
confidence is determined (Step 2) and it is checked whether it is
sufficient to make the prediction. As can be seen in the example in
Figure 3, the confidence computed based on the data available at
the time of the failure is not enough, and thus further data points
are collected, until the confidence level of 95% is reached.

As depicted in Figure 3, dedicated tests are incrementally exe-
cuted against the SecurePay service in such a way that test results
complement the historical data (Step 3). Please note that in paral-
lel to those tests, additional monitoring data is collected, which is
considered to compute the confidence.

Once the confidence level of 95% has been reached, the probabil-
ity for the failure is computed (Step 4). Using the relative frequency
of the ocurrence of a failure as a naive measure of the failure prob-
ability, a ’probability’ of 5% (1 out of 20) in the example can be
determined. This is below the threshold of 10%. Accordingly, no
pro-active adaptation will be triggered (Step 5).

5.2 Relaxation of Assumptions
Below, we discuss how the assumptions from Section 4.1 can be

relaxed:

• Assumption 1: ’Each failure of a constituent service of a

SBA instance leads to a failure of that SBA instance.’ As
mentioned above, a failure of a constituent services does not
necessarily imply a deviation of the SBA instance from its re-
quirements. Thus, upon discovery of a failure, an additional
step is required to determine such a requirements violation.
In [49], we have introduced a technique based on run-time
verification, which could be exploited to that end. If Strategy
A (from Section 4.2) is employed, addressing this assump-
tion provides a very good way for further reducing the effort
needed for online testing. Only if the observed failure can
lead to a requirements deviation, an adaptation of the SBA
instance needs to be performed and thus online tests might

need to be initiated to gather additional data points for the
expected confidence.

• Assumption 2: ’The observed (monitored or tested) elements

provide a notification in case of any change which would in-

validate the monitoring or testing data.’ In the case that this
assumption does not hold (e.g., because there are no SLAs
that would bind the service provider in notifying the con-
sumers about changes), techniques from data mining (e.g.,
such as [50]) could be applied to determine a change of the
observed entity.

• Assumption 3: ’Invoking the constituent services of a SBA

for test purposes will have no side effects.’ This assumption
can be relaxed by ensuring that a constituent service will ei-
ther only be queried (i.e., provide a response without any
side-effects), or will provide a dedicated test mode (e.g., as
suggested by [51]). This is not trivial for example, when con-
sidering performance issues; e.g., the high load of test cases
can have impact on the load of the service hardware.

6. CONCLUSIONS AND PERSPECTIVES
The position we took in this paper is that augmenting monitoring

data with results from dedicated online tests promises to produce
failure predictions with confidence. The failure predictions can be
taken into account during the actual adaptation decisions. This al-
lows deciding with high certainty whether to adapt service-based
applications, thereby avoiding unnecessary pro-active adaptations
of those applications. In addition, due to the synergy effects be-
tween monitoring and testing, our approach promises to keep the
testing effort smaller than if the techniques were applied in isola-
tion.

The contribution of this paper has been to motivate our approach
and support its novelty by means of a thorough discussion of the re-
lated work. We have demonstrated the application of our approach
by using an example scenario from the eGovernment domain.

In addition, we have identified challenges that need to be ad-
dressed to implement our approach. One challenge will be to sup-
port more complex pro-active adaptation decision mechanisms that,
for instance, exploit a cost model that takes into account the proba-
bility of the failure and its associated costs versus the costs for per-
forming the pro-active adaptation. Another key challenge is how to
determine and execute adequate test cases that allow achieving the
goal of establishing confidence in failure predictions while taking
into account the imapct of the tests execution on the load of the ser-
vice hardware. Those research challenges are currently addressed
in the European Network of Excellence on Software Services and
Systems (S-Cube5).

Acknowledgments
The authors are grateful to the reviewers of the paper for their fruit-
ful comments.

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube).

7. REFERENCES
[1] Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and

catalog of runtime software-fault monitoring tools. IEEE
Trans. Software Eng. 30 (2004) 859–872

5http://www.s-cube-network.eu/

[2] Benbernou, S.: State of the art report, gap analysis of
knowledge on principles, techniques and methodologies for
monitoring and adaptation of sbas. Deliverable
PO-JRA-1.2.1, S-Cube Consortium (2008)
http://www.s-cube-network.eu/.

[3] Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A
framework for proactive self-adaptation of service-based
applications based on online testing. In: ServiceWave 2008.
Number 5377 in LNCS, Springer (2008)

[4] Nitto, E.D., Mazza, V., Mocci, A.: Collection of industrial
best practices, scenarios and business cases. Deliverable
CD-IA-2.2.2, S-Cube Consortium (2009)
http://www.s-cube-network.eu/.

[5] Sahoo, R.K., Oliner, A.J., Rish, I., Gupta, M., Moreira, J.E.,
Ma, S., Vilalta, R., Sivasubramaniam, A.: Critical event
prediction for proactive management in large-scale computer
clusters. In: KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining, New York, NY, USA, ACM (2003)
426–435

[6] Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., Sahoo,
R.: Bluegene/l failure analysis and prediction models. In:
DSN ’06: Proceedings of the International Conference on
Dependable Systems and Networks, Washington, DC, USA,
IEEE Computer Society (2006) 425–434

[7] Song, H., Leangsuksun, C.b., Nassar, R.: Availability
modeling and analysis on high performance cluster
computing systems. In: ARES ’06: Proceedings of the First
International Conference on Availability, Reliability and
Security, Washington, DC, USA, IEEE Computer Society
(2006) 305–313

[8] Fu, S., Xu, C.Z.: Exploring event correlation for failure
prediction in coalitions of clusters. In: SC ’07: Proceedings
of the 2007 ACM/IEEE conference on Supercomputing,
New York, NY, USA, ACM (2007) 1–12

[9] Fu, S., Xu, C.Z.: Quantifying temporal and spatial
correlation of failure events for proactive management. In:
SRDS ’07: Proceedings of the 26th IEEE International
Symposium on Reliable Distributed Systems, Washington,
DC, USA, IEEE Computer Society (2007) 175–184

[10] Fox, A., Kiciman, E., Patterson, D.: Combining statistical
monitoring and predictable recovery for self-management.
In: WOSS ’04: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems, New York, NY, USA,
ACM (2004) 49–53

[11] Myers, G.: The Art of Software Testing. Wiley (2004)
[12] McGregor, J., Sykes, D.: A Practical Guide to Testing

Object-oriented Software. Addison-Wesley Professional
(2001)

[13] Osterweil, L.J.: Strategic directions in software quality.
ACM Comput. Surv. 28 (1996) 738–750

[14] Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of
Software Engineering. Prentice Hall (1991)

[15] Baresi, L., Nitto, E.D., eds.: Test and Analysis of Web
Services. Springer (2007)

[16] Pernici, B., Metzger, A.: Survey of quality related aspects
relevant for service-based applications. Deliverable
PO-JRA-1.3.1, S-Cube Consortium (2008)
http://www.s-cube-network.eu/.

[17] Poore, J., Trammell, C.: Engineering practices for statistical
testing. Crosstalk: The Journal of Defense Software
Engineering 11 (1998) 24–28

[18] Trammell, C.: Quantifying the reliability of software:
statistical testing based on a usage model. In: ISESS ’95:
Proceedings of the 2nd IEEE Software Engineering
Standards Symposium, Washington, DC, USA, IEEE
Computer Society (1995) 208

[19] Whittaker, J.A., Thomason, M.G.: A markov chain model for
statistical software testing. IEEE Trans. Softw. Eng. 20
(1994) 812–824

[20] Bauer, T., Bohr, F., Landmann, D., Beletski, T., Eschbach,
R., Poore, J.: From requirements to statistical testing of
embedded systems. In: SEAS ’07: Proceedings of the 4th
International Workshop on Software Engineering for
Automotive Systems, Washington, DC, USA, IEEE
Computer Society (2007) 3

[21] Kallepalli, C., Tian, J.: Measuring and modeling usage and
reliability for statistical web testing. IEEE Trans. Softw. Eng.
27 (2001) 1023–1036

[22] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl,
K.: A journey to highly dynamic, self-adaptive service-based
applications. Automated Software Engineering (2008)

[23] Wang, Q., Quan, L., Ying, F.: Online testing of Web-based
applications. In: Proceedings of the 28th Annual
International Computer Software and Applications
Conference (COMPSAC). (2004) 166–169

[24] Deussen, P., Din, G., Schieferdecker, I.: A TTCN-3 based
online test and validation platform for Internet services. In:
Proceedings of the 6th International Symposium on
Autonomous Decentralized Systems (ISADS). (2003)
177–184

[25] Chan, W., Cheung, S., Leung, K.: A metamorphic testing
approach for online testing of service-oriented software
applications. International Journal of Web Services Research
4 (2007) 61–81

[26] Bai, X., Chen, Y., Shao, Z.: Adaptive web services testing.
In: 31st Annual International Computer Software and
Applications Conference (COMPSAC). (2007) 233–236

[27] Bai, X., Xu, D., Dai, G., Tsai, W., Chen, Y.: Dynamic
reconfigurable testing of service-oriented architecture. In:
Proceedings of the 31st Annual International Computer
Software and Applications Conference (COMPSAC). (2007)
368–375

[28] Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M.,
Tu, S.: Towards automatic regression test selection for web
services. In: Proceedings of the 31st Annual International
Computer Software and Applications Conference
(COMPSAC). (2007) 729–734

[29] Ruth, M., Tu, S.: A safe regression test selection technique
for Web services. In: Second International Conference on
Internet and Web Applications and Services (ICIW). (2007)

[30] Di Penta, M., Bruno, M., Esposito, G., et al.: Web Services
Regression Testing. In Baresi, L., Di Nitto, E., eds.: Test and
Analysis of Web Services. Springer (2007) 205 – 234

[31] F. Nielson, H. R. Nielson, C.H.: Principles of Program
Analysis. Springer (2005) Second Ed.

[32] O’Connor, P., Newton, D., Bromley, R.: Practical reliability
engineering. John Wiley & Sons Inc (2002)

[33] Goel, A.L.: Software reliability models: Assumptions,
limitations, and applicability. IEEE Trans. Softw. Eng. 11
(1985) 1411–1423

[34] Zhang, F., Zhou, X., Chen, J., Dong, Y.: A novel model for
component-based software reliability analysis. In: HASE

’08: Proceedings of the 2008 11th IEEE High Assurance
Systems Engineering Symposium, Washington, DC, USA,
IEEE Computer Society (2008) 303–309

[35] Roshandel, R., Medvidovic, N., Golubchik, L.: A bayesian
model for predicting reliability of software systems at the
architectural level. In: QoSA. (2007) 108–126

[36] Roshandel, R., Banerjee, S., Cheung, L., Medvidovic, N.,
Golubchik, L.: Estimating software component reliability by
leveraging architectural models. In: ICSE. (2006) 853–856

[37] Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.:
Early prediction of software component reliability. In: ICSE
’08: Proceedings of the 30th international conference on
Software engineering, New York, NY, USA, ACM (2008)
111–120

[38] Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.:
Model evolution by run-time parameter adaptation. In: ICSE
’09: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, Washington, DC,
USA, IEEE Computer Society (2009) 111–121

[39] —: Ws-diamond: Web services - diagnosability, monitoring
and diagnosis: Publishable final activity report. Technical
report, WS-DIAMOND EU FP6 protect (2008)

[40] Canfora, G., Di Penta, M.: Testing services and
service-centric systems: challenges and opportunities. IT
Professional 8 (2006) 10–17

[41] —: Testing method definition. deliverable A1.D3.4.
Technical report, SeCSE EU FP6 Project (2008)

[42] Corder, G., Foreman, D.: Nonparametric statistics for
non-statisticians: A step-by-step approach. Wiley-Blackwell
(2009)

[43] Bai, X., Dong, W., Tsai, W.T., Chen, Y.: WSDL-Based
Automatic Test Case Generation for Web Services Testing.
In: Proceedings of the IEEE International Workshop on
Service-Oriented System Engineering (SOSE), IEEE
Computer Society (2005) 215 – 220

[44] Tarhini, A., Fouchal, H., Mansour, N.: A simple approach for
testing Web service based applications. In: 5th International
Workshop on Innovative Internet Community Systems.
Lecture Notes in Computer Science Vol.3908 (2006)
134–146

[45] Lübke, D.: Unit Testing BPEL Compositions. In Baresi, L.,
Di Nitto, E., eds.: Test and Analysis of Web Services.
Springer (2007) 149 – 171

[46] Dong, W.L., Yu, H., Zhang, Y.B.: Testing BPEL-based Web
Service Composition Using High-level Petri Nets. In: EDOC
’06: Proceedings of the 10th IEEE International Enterprise
Distributed Object Computing Conference, IEEE Computer
Society (2006) 441–444

[47] Martin, E., Basu, S., Xie, T.: Automated Testing and
Response Analysis of Web Services. In: IEEE International
Conference on Web Services (ICWS). (2007) 647 – 654

[48] Xue, Z., Dong, X., Ma, S., Dong, W.: A survey on failure
prediction of large-scale server clusters. Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, ACIS International
Conference on 2 (2007) 733–738

[49] Gehlert, A., Bucchiarone, A., Kazhamiakin, R., Metzger, A.,
Pistore, M., Pohl, K.: Exploiting assumption-based
verification for the adaptation of service-based applications.
In: Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC), NNN, 2010. (2010)

[50] Bickel, S., Brückner, M., Scheffer, T.: Discriminative
learning under covariate shift. Journal of Machine Learning
Research 10 (2009) 2137–2155

[51] Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner,
D., Merdes, M., Malaka, R.: The MORABIT approach to
runtime component testing. In: Proceedings of the 30th
Annual Int’l Computer Software and Applications
Conference (COMPSAC). (2006) 171–176

Runtime Prediction of Service Level Agreement
Violations for Composite Services

Philipp Leitner1, Branimir Wetzstein2, Florian Rosenberg3, Anton Michlmayr1,
Schahram Dustdar1, Frank Leymann2

1 Distributed Systems Group
Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040, Vienna, Austria

lastname@infosys.tuwien.ac.at

2 Institute of Architecture of Application Systems
University of Stuttgart
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

3 CSIRO ICT Centre
GPO Box 664

Canberra ACT 2601, Australia
florian.rosenberg@csiro.au

Abstract. SLAs are contractually binding agreements between service
providers and consumers, mandating concrete numerical target values
which the service needs to achieve. For service providers, it is essen-
tial to prevent SLA violations as much as possible to enhance customer
satisfaction and avoid penalty payments. Therefore, it is desirable for
providers to predict possible violations before they happen, while it is
still possible to set counteractive measures. We propose an approach
for predicting SLA violations at runtime, which uses measured and esti-
mated facts (instance data of the composition or QoS of used services)
as input for a prediction model. The prediction model is based on ma-
chine learning regression techniques, and trained using historical process
instances. We present the architecture of our approach and a prototype
implementation, and validate our ideas based on an illustrative example.

1 Introduction

In service-oriented computing [1], finer-grained basic functionality provided us-
ing Web services can be composed to more coarse-grained services. This model
is often used by Software-as-as-Service providers to implement value-added ap-
plications, which are built upon existing internal and external Web services.
Very important for providers and consumers of such services are Service Level
Agreements (SLAs), which are legally binding agreements governing the quality
that the composite service is expected to provide (Quality of Service, QoS) [2]).
SLAs contain Service Level Objectives (SLOs), which are concrete numerical

target values (e.g., “maximum response time is 45 seconds”). For the provider
it is essential to not violate these SLOs, since typically violations are coupled
with penalty payments. Additionally, violations can negatively impact service
consumer satisfaction. Therefore, it is vitally important for the service provider
to be aware of SLA violations, in order to react to them accordingly.

Typically, SLA monitoring is done ex post, i.e., violated SLOs can only be
identified after the violation happened. While this approach is useful in that it
alerts the provider to potential quality problems, it clearly cannot directly help
preventing them. In that regard an ex ante approach is preferable, which al-
lows to predict possible SLA violations before they have actually occurred. The
main contribution of this paper is the introduction of a general approach to pre-
diction of SLA violations for composite services, taking into account both QoS
and process instance data, and using estimates to approximate not yet available
data. Additionally, we present a prototype implementation of the system and an
evaluation based on an order processing example. The ideas presented here are
most applicable for long-running processes, where human intervention into prob-
lematic instances is possible. Our system introduces the notions of checkpoints
(points in the execution of the composition where prediction can be done), facts
(data which is already known in a checkpoint, such as the response times of
already used services) and estimates (data which is not yet available, but can
be estimated). Facts and estimates can refer to both typical QoS data (e.g., re-
sponse times, availability, system load) and process instance data (e.g., customer
identifiers, ordered products). Our implementation uses regression classifiers, a
technique from the area of machine learning [3], to predict concrete SLO values.

The rest of the paper is structured as follows. In Section 2 we briefly introduce
an illustrative example which we will use in the remainder of the paper. In
Section 3 we detail the general concepts of our prediction approach. In Section 4
we described the implementation of a prototype tool, which we use for evaluation
in Section 5. Finally, we provide an overview of relevant related work in Section
6 and conclude the paper in Section 7.

2 Illustrative Example

To illustrate the ideas presented in this paper we will use a simple purchase
order scenario (see Figure 2 below). In this example there are a number of roles
to consider: a reseller, who is the owner of the composite service, a customer,
who is using it, a banking service, a shipping service, and two external suppliers.
The business logic of the reseller service is defined as follows. Whenever the
reseller service receives an order from the customer, it first checks if all ordered
items are available in the internal stock. If this is not the case, it checks if the
missing item(s) can be ordered from Supplier 1, and, if this is not the case, from
Supplier 2. If both cannot deliver the order has to be cancelled, otherwise the
missing items are ordered from the respective supplier. When all ordered items
are available she will (in parallel) proceed to charge the customer using the
banking service and initialize shipment of the ordered goods (using the Shipping

Service). We have borrowed this example from [4], please refer to this work for
more information.

In this case study, the reseller has an SLA with its customers, with an SLO
specifying that the end-to-end response time of the composition cannot be more
than a certain threshold of time units. For every time the SLO is violated the
customer is contractually entitled a discount for the order. Note that even though
our explanations in this paper will be based on just one single SLO, our approach
can be generalized to multiple SLOs. Additionally, even though we present our
approach based on a numerical SLO, our ideas can be also applied to estimation
of nominal objectives. However, SLOs need to adhere to the following require-
ments: (1) they need to be non-deterministic (following the definition in [5]), and
(2) they cannot be defined as aggregations over multiple executions. Requirement
(1) is not so much functionally important, but our prediction approach is not
very useful otherwise (e.g., for SLOs concerning security requirements). Require-
ment (2) is a limitation of our current approach, which we plan on working on
as part of our future work.

3 Predicting SLA Violations

In this section we present the core ideas of our approach towards prediction
of SLA violations. Generally, the approach is based on the idea of predicting
concrete SLO values based on whatever information is already available at a
concrete point in the execution of a composite service. We distinguish three
different types of information. (1) Facts represent data which is already known
at prediction time. Typical examples of facts are the QoS of already used services,
such as the response time of a service which has already been invoked in this
execution, or instance data which has either been passed as input or which
has been generated earlier in the process execution. (2) Unknowns are the
opposites of facts, in that they represent data which is entirely unknown at
prediction time. Oftentimes, instance data which has not yet been produced
falls into this category. If important factors are unknown at prediction time the
prediction quality will be very bad, e.g., in our illustrative example a prediction
cannot be accurate before it is known whether the order can be delivered from
the reseller’s internal stock. (3) Estimates are a kind of middle ground between
facts and unknowns, in that they represent data which is not yet available, but
can be estimated. This is often the case for QoS data, since techniques such as
QoS monitoring [5] can be used to get an idea of e.g., the response time of a
service before it is actually invoked. Estimating instance data is more difficult,
and generally domain-specific.

The overall architecture of our system is depicted in Figure 1. The most
important concept used is that the user defines checkpoints in the service com-
position, which indicate points in the execution where a prediction should be
carried out. The exact point in the execution model which triggers the check-
point is called the hook. Every checkpoint is associated with one checkpoint
predictor. Essentially, the predictor uses a function taking as input all facts

Facts

Database

Checkpoint
Predictors

Checkpoint

EstimatorsQoS

Monitors

Complex

Event

Processor

Prediction GUI

1745

Composition
Engine

S
e

rv
ic

e
 C

o
m

p
o

s
itio

n
M

o
n

ito
rin

g
 &

 P
re

d
ic

tio
n

QoS Data Instance Data

Estimates

Predictor
Manager

Hook

Prediction
Model

Prediction

Database

Fig. 1: Overall System Architecture

which are already available in the checkpoint, and, if applicable, a number of es-
timates of not yet known facts, and produces a numerical estimation of the SLO
value(s). This function is generated using machine learning techniques We refer
to this function as the prediction model of a checkpoint predictor. Facts are
retrieved from a facts database, which is filled using a number of QoS mon-
itors (which provide QoS data) and a Complex Event Processing (CEP)
engine (which extracts and correlates the instance data, as emitted by the pro-
cess engine). A detailed discussion of our event-based approach to monitoring is
out of scope of this paper, but can be reviewed in related work [4, 6]. Estima-
tors are a generic framework for components which deliver estimates. Finally,
the prediction result is transferred to a graphical user interface (prediction
GUI), which visualizes the predicted value(s) for the checkpoint. A predictor
manager component is responsible for the lifecycle management of predictors,
i.e., for initializing, destroying and retraining them. Additionally, predictions are
stored in a prediction database to be available for future analysis.

3.1 Checkpoint Definition

At design-time, the main issue is the definition of checkpoints in the composi-
tion model. For every checkpoint, the following input needs to be provided: (1)
The hook, which defines the concrete point in the execution that triggers the
prediction, (2) a list of available facts, (3) a list of estimates, and the estimator
component as well as the parameters used to retrieve or calculate them, (4) the
retraining strategy, which governs at which times a rebuilding of the prediction
model should happen, and (5) as a last optional step, a parameterization of the
machine learning technique used to build the prediction model. After all these

inputs are defined the checkpoint is deployed using the predictor manager, and
an initial model is built. For this a set of historical executions of the composite
service need to be available, for which all facts (including those associated with
estimates) have been monitored. If no or too little historical data is available the
checkpoint is suspended by the predictor manager until enough training data
has been collected. The amount of data necessary is case-specific, since it vastly
depends on the complexity of the composition. We generally use the Training
Data Correlation as a metric for evaluating the quality of a freshly trained model
(see below for a definition), however, a detailed discussion of this is out of scope
of this paper. After the initial model is built the continuous optimization of
the predictor is governed by the predictor manager, according to the retraining
strategy. Finally, the checkpoint can be terminated by the user via the prediction
GUI. We will now discuss these concepts in more depth.

Receive
Order

Check
Stock

Select
Supplier

Charge
Customer

[everything
available]

Order From
Supplier 1

Order From
Supplier 2

Cancel Order

Ship Order[no supplier
available]

C1 C3

 Facts: {Customer, OrderedProducts, ...}

 Estimates: {QoS_Supplier, QoS_Warehouse, ...}

 Unknown: {InStock, PaymentPrefs, ...}

 {Customer, OrderedProducts, InStock, QoS_Supplier, QoS_Warehouse}

 {QoS_Shipping, ...}

 {PaymentPrefs, DeliveryTimeShipment}

Get Payment
Prefs

Fig. 2: Illustrative Example With Possible Checkpoints

Hooks Hooks can be inserted either before or after any WS-BPEL activity (for
instance, an Invoke activity). Generally, there is a tradeoff to take into account
here, since early predictions are usually more helpful (in that they rather al-
low for corrections if violations are predicted), but also less accurate since less
facts are available and more estimates are necessary. Figure 2 depicts the (sim-
plified) example from Section 2, and shows two possible checkpoints. In C1 the
only facts available are the ones given as input to the composition (such as a
customer identifier, or the ordered products). Some other facts (mainly QoS
metrics) can already be estimated, however, other important information, such
as whether the order can be served directly from stock, is simply unavailable in
C1, not even as an estimate. Therefore, the prediction cannot be very accurate.
In checkpoint C3, on the other hand, most of the processes important raw data
is already available as facts, allowing for good predictions. However, compared
to C1, the possibilities to react to problems are limited, since only the payment
and shipping steps are left to adapt (e.g., a user may still decide to use express
shipping instead of the regular one if a SLA violation is predicted in C3). Finding
good checkpoints at which the prediction is reasonably accurate and still timely
enough to react to problems demands for some domain knowledge about influen-
tial factors of composition performance. Dependency analysis as discussed in [6]

can help providing this crucial information. Dependency analysis is the process
of using historical business process instance data to find out about the main
factors which dictate the performance of a process. When defining checkpoints,
a user can assume that the majority of important factors of influence need to be
available as either facts or at least as good estimates in order to achieve accurate
predictions.

Facts and Estimates: Facts represent all important information which can al-
ready be measured in this checkpoint. This includes both QoS and instance data.
Note that the relationship between facts and the final SLO values does not need
to be known (e.g., a user can include instance data such as user identifiers or
ordered items, even if she is not sure if this has any relevance for the SLO).
However, dependency analysis can again be used to identify the most impor-
tant facts for a checkpoint. Additionally, the user can also define estimates. In
the example above, in C1 the response time of the warehouse service is not yet
known, however, it can e.g., be estimated using a QoS monitor. Since estimat-
ing instance data is inherently domain-specific, our system is extensible in that
more specific estimators (which are implemented as simple Java classes) can be
integrated seamlessly. Estimates are linked to facts, in the sense that they have
to represent an estimation of a fact which will be monitorable at a later point.

Retraining Strategy: Generally, the prediction model needs to be rebuilt when-
ever enough new information is available to significantly improve the model.
The retraining strategy is used to define when the system should check whether
rebuilding the prediction model is necessary. Table 1 summarizes all retraining
strategies available, and gives examples. The custom strategy is defined using
Java code, all other strategies are implemented in our prototype and can be used
and configured without any additional code.

Strategy Retrains . . . Example

periodic . . . in fixed intervals every 24 hours
instance-based . . . whenever a fixed number

of new instances have every 250 instances
been received since the
last training

on demand . . . on user demand –
on error . . . if the mean prediction

error exceeds a given if ē > T

threshold
custom . . . if a user-defined whenever more than

condition applies 10 orders from customer
12345 have been received

Table 1: Predictor Retraining Strategies

Prediction Model Parameterization: A user can also define the machine learn-
ing technique that should be used to build the prediction model. This is done

by specifying an algorithm and the respective parameterization for the WEKA
toolkit4, an open source machine learning toolkit which we internally use in our
prototype implementation. In this way the prediction quality can be tuned by
a machine learning savvy user, however, we also provide a default configuration
which can be used out of the box.

3.2 Run-Time Prediction

At runtime, the prediction process is triggered by lifecycle events from the
WS-BPEL engine. These are events emitted by some engines (such as Apache
ODE5), which contain lifecycle information about the service composition (e.g.,
ActivityExecStartEvent, VariableModificationEvent, ProcessCompletion-
Event). Our approach is based on these events, therefore, a WS-BPEL engine
which is capable of emitting these events is a preliminary of our approach. When
checkpoints are deployed we use the hook information to register respective event
listeners. For instance, for a checkpoint with the hook “After invoke CheckStock”
we generate a listener for ActivityExecEndEvents which consider the invoke ac-
tivity “CheckStock”. We show the sequence of actions which is triggered as soon
as such an event is received in Figure 3.

JMS Queue

Event
Listener

Facts

Database

BPEL Lifecycle Event

Extract

Correlation Info

foreach
Fact

Retrieve

Fact

Fact Identifier,
Correlation Info

foreach
Estimate

Get Estimator

&

Invoke

Execute

Prediction

Predictor
Manager

Notify GUI

&

Prediction Manager

Prediction

Checkpoint
Predictor

Correlation Info,
Prediction

Fact Value

Prediction GUI

Process Data

Estimators
Fact Identifier,
Parameters

Estimate

Fig. 3: Runtime View On Checkpoint Predictors

After being triggered by a lifecycle event the checkpoint predictor first ex-
tracts some necessary correlation information from the event received. This in-

4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://ode.apache.org

CREDIT
_CARD

NOKIA 1 true 923 26

Payment
Type

Product
Type

Quantity InStock
QoS_

Warehouse
QoS_

Supplier

27953

Predicted
SLO

Regression
Model

Fig. 4: Black-Box Prediction Model

cludes the process instance ID as assigned by the composition engine, the in-
stance start time (i.e., the time when the instance was created) and the time-
stamp of the event. This information is necessary to be able to retrieve the correct
facts from the facts database, which is done for every fact in the next step (e.g.,
in order to find the correct fact “CustomerNumber” for the current execution the
process instance ID needs to be known). When all facts have been gathered, the
predictor also collects the still missing estimates. For this, for every estimate the
predictor instantiates the respective estimator component (if no instance of this
estimator was available before), and invokes it (passing all necessary parameters
as specified in the checkpoint definition). The gathered facts and estimates are
then converted into the format expected by the prediction model (in the case
of our prototype, this is the WEKA Attribute-Relation File Format ARFF6),
and, if necessary, some data cleaning is done. Afterwards, the actual prediction
is carried out by passing the gathered input to the prediction model producing
a numerical estimation of the SLO value. This prediction is then passed to the
prediction GUI (for visualization) and the prediction manager.

Note that the “intelligence” that actually implements the prediction of the
SLO values is encapsulated in the prediction model. Since we (usually) want
to predict numerical SLO values the prediction model needs to be a regression
model [3]. We consider the regression model to be a black-box function which
takes a list of numeric and nominal values as input, and produces a numeric
output (Figure 4). Generally, our approach is agnostic of how this is actually
implemented. In our prototype we use multilayer perceptrons (a powerful variant
of neural networks) to implement the regression model. Multilayer perceptrons
are trained iteratively using a back-propagation technique (maximization of the
correlation between the actual outcome of training instances and the outcome
that the network would predict on those instances), and can (approximately)
represent any relationship between input data and outcome (unlike simpler neu-
ral network techniques such as the perceptron, which cannot distinguish data
which is not separable by a hyperplane [7]). If a non-numerical SLO should be
predicted, a different technique suitable for classification (as opposed to regres-
sion) needs to be used to implement the prediction model, e.g., decision trees
such as C4.5 [8].

6 http://www.cs.waikato.ac.nz/~ml/weka/arff.html

3.3 Evaluation of Predictors

Another important task of the prediction manager is quality management of pre-
dictors, i.e., continually supervising how predictions compare to the actual SLO
values once the instance is finished. Generally, we use three different quality met-
rics to measure the quality of predictions in checkpoints, which are summarized
in Table 2. The first metric, Training Data Correlation, is a standard machine
learning approach to evaluating regression models. We use it mainly to evaluate
freshly generated models, when no actual predictions have yet been carried out.
This metric is defined as the statistical correlation between all training instance
outcomes and the predictions that the model would deliver for these training
instances. The definition given in the table is the standard statistical definition
of the correlation coefficient between a set of predicted values P and a set of
measured values M . However, note that this metric is inherently overconfident in
our case, since during training all estimates are replaced for the facts that they
estimate (i.e., the training is done as if all estimates were perfect). Therefore, we
generally measure the prediction error later on, when actual estimates are being
used. However, a low training data correlation is an indication that important
facts are still unknown in the checkpoint, i.e., that the checkpoint may be too
early.

Name Definition

Training Data Correlation corr = cov(P,M)
σpσm

Mean Prediction Error ē =

Pn
i=0 |mi − pi|

n

Prediction Error Standard

Deviation

σ =

s Pn
i=0(ei − ē)2)

n

Table 2: Predictor Quality Metrics

This can be done using the Mean Prediction Error ē, which is the average
(Manhatten) difference between predicted and monitored values. In the definition
in Table 2, n is the total number of predictions, pi is a predicted value, and mi

is the measured value to prediction pi. Finally, we use the Prediction Error
Standard Deviation (denoted here simply as σ) to describe the variability of
the prediction error (i.e., high σ essentially means that the actual error for an
instance can be much lower or higher than ē). In the definition, ei is the actual
prediction error for a process instance (mi−pi). These metrics are mainly used to
give the user an estimation of how trustworthy a given prediction is. Additionally,
the on error retraining strategy triggers on ē exceeding a certain threshold.

4 Tool Implementation

In order to verify our approach we built a prototype prediction tool in the
Java programming language. Our core implementation is based on our earlier
work on event-based monitoring and analysis (as presented in [6] and [4]). Data
persistence is provided using a simple MySQL7 database and Hibernate8. We
have integrated two different approaches to QoS monitoring: firstly, QoS data
as provided by the event-based QoS monitoring approach discussed in [6], and
secondly, the QoS data provided by server- and client-side VRESCo [9] QoS
monitors [5]. In order to enable event-based monitoring we have used Apache
ActiveMQ9 as JMS middleware. Finally, as has already been discussed, we use
the open-source machine learning toolkit WEKA to build prediction models.
WEKA is integrated in our system using the WEKA Java API. In addition to the
actual prediction tool we have also prototypically implemented the illustrative
example as presented in Section 2, as a testbed to verify our ideas (this will
be discussed in more detail in Section 5). We have used the WS-BPEL engine
Apache ODE, mainly because of ODE’s strong support for BPEL lifecycle events.
We have also set up the necessary base services which are used in the example
(e.g., supplier services, banking service, stock service) using Apache CXF10.

✞ ☎
1 <cpd l : ch e ckpo in t s
2 xmlns :cpdl=” ht tp : //www. i n f o s y s . tuwien . ac . at /2009/ cpdl ”>
3

4 <checkpoint
5 name=”beforeGetPaymentPrefs ”
6 activityName=”getPaymentPrefs ” breakBefore=” true ”
7 p r ed i c t o r=”weka . c l a s s i f i e r s . f un c t i on s . Mul t i l ayerPercept ron ”>
8

9 <update type=” p e r i o d i c a l l y ” value=”5”/>
10 <c l a s s ppmRef=”ORDER FULFILLMENT LEAD TIME”/>
11 <f a c t ppmRef=”RESPONSE TIME WAREHOUSE”/>
12 <f a c t ppmRef=”ORDER INSTOCK”/>
13 < !−− more f a c t s −−>
14 <es t imate name=”getPaymentPrefsResponseTime” type=” i n t e g e r ”>
15 <e s t imato rC la s s
16 c l a s s=”at . ac . tuwien . i n f o s y s . branimon . VrescoQoSEstimator”/>
17 <argument value=”ResponseTime”/>
18 <argument value=”CustomerService ”/>
19 <e s t imatedF ie ld ppmRef=”RESPONSE TIME GETPAYMENTPREFS”/>
20 </ es t imate>
21

22 < !−− more est imates −−>
23 </ checkpoint>
24

25 <checkpo int s>✝ ✆
Fig. 5: Checkpoint Definition in XML Notion

7 http://www.mysql.com/
8 https://www.hibernate.org/
9 http://activemq.apache.org/

10 http://cxf.apache.org/

As discussed in Section 3, the main input for our approach is a list of check-
point definitions. In our current prototype, these definitions are given in a pro-
prietary XML-based language, which we refer to as CPDL (Checkpoint Defini-
tion Language). An exemplary excerpt can be seen in Figure 5. In the figure, a
checkpoint, which is hooked before the execution of the invoke activity “getPay-
mentPrefs”, is defined. A multilayer perceptron is used as prediction model. The
checkpoint will be retrained periodically every 5 hours, and will predict the SLO
ORDER FULFILLMENT LEAD TIME. Then a number of available facts and estimates
are specified. For estimates, an estimator class is given as a full qualified Java
class name, which implements the actual prediction. Additionally, a number of
arguments can be given to the estimator class. Finally, for every estimate a link
to the estimated fact needs to be specified. Note that we do not define facts
directly in CPDL. Instead, we reuse the model presented in [6], where we dis-
cussed a language for definition of facts using calculation formulae and XLink11

pointers to WS-BPEL processes (so-called PPMs, process performance metrics).
In CPDL, ppmRefs are identifiers which point to PPMs in such a model. The
complete XML Schema definition of CPDL is available online12.

5 Experimentation

In order to provide a first validation of the ideas presented we have implemented
the illustrative example as discussed in Section 2, and run some experiments
using our prototype tool. All experiments have been conducted on a single test
machine with 3.0 GHz and 32 GByte RAM, running under Windows Server 2007
SP1. We have repeated every experiment 25 times and averaged the results, to
reduce the influence of various random factors such as current CPU load or
workload of the process engine.

Instances Training [ms]

100 3545
250 8916
500 17283
1000 31806

(a) Training Overhead

Instances Prediction [ms]

100 615
250 630
500 631
1000 647

(b) Prediction Overhead

Table 3: Overhead for Training and Prediction

In Table 3 we have sketched the measured times for two essential operations
of our system. Table 3(a) depicts the amount of time in milliseconds necessary
to build or refresh a prediction model in a checkpoint. The most important
factor here is clearly the time necessary to train the machine learning model,

11 http://www.w3.org/TR/xlink/
12 http://www.infosys.tuwien.ac.at/staff/leitner/cpdl/cpdl_model.xsd

Receive
Order

Check
Stock

Select
Supplier

Charge
Customer

[everything
available]

Order From
Supplier 1

Order From
Supplier 2

Cancel Order

Ship
Order

[no supplier
available]

C1 C3

Get Payment
Prefs

C4 C5C2

16076

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

A
v
g

.
E

rr
o

r
[m

s
]

Mean Prediction Error

in Checkpoints

Error Standard Deviation

in Checkpoints

2158
1328 989 806

5030

2864

1541 1604 1516

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

E
rr

o
r

S
td

.D
e

v
.

[m
s
]

Fig. 6: Prediction Error in Checkpoints

e.g., to train the neural network in our illustrative example. This factor mainly
depends on the number of training instances available. In Table 3(a) it can be
seen that the time necessary for building the model depends linearly on the
number of historical instances available. However, even for e.g., 1000 instances
the absolute rebuilding time is below 32 seconds, which seems acceptable for
practice, considering that model rebuilding can be done sporadically and offline.
Additionally, when rebuilding the model, there is no time where no prediction
model is available at all. Instead, the new model is trained offline, and exchanged
for the last model as soon as training is finished. A more detailed discussion of
these factors is out of scope of this paper for reasons of brevity. In Table 3(b)
we have sketched the time necessary for actual prediction, i.e., the online part
of the system. As can be seen this overhead is constant and rather small (well
below 1 second), which seems very acceptable for prediction at run-time.

Even more important than the necessary time is the accuracy of predictions.
To measure prediction accuracy, we have realized five checkpoints in the illus-
trative example (see top of Figure 6): C1 is located directly after the order is
received, C2 after the internal warehouse is checked, C3 after eventual orders
from external suppliers have been carried out, C4 during the payment and ship-
ment process, and finally C5 when the execution is already finished. In each of
those checkpoints we have trained a prediction model using 1000 historical pro-
cess instances, and have specified all available data as facts. For not yet available

QoS metrics we have used the average of all previous invocations as estimate.
Missing instance data has been treated as unknown. We have used each of those
checkpoints to predict the outcome of 100 random executions, and calculated
the Mean Prediction Error ē and the Error Standard Deviation σ (both as de-
fined in Section 3). As expected, ē is decreasing with the amount of factual data
available. In C1, the prediction is mostly useless, since no real data except the
user input is available. However, in C2 the prediction is already rather good.
This is mostly due to the fact that in C2 the information whether the order
can be delivered directly from stock is already available. In C3, C4 and C5 the
prediction is continually improving, since more actual QoS facts are available,
and less estimates are necessary. Speaking in absolute values, ē in e.g., C3 is
1328 ms. Since the average SLO value in our illustrative example was about
16000 ms, the error represents only about 8% of the actual SLO value, which
seems satisfactory. Similar to ē, σ is also decreasing, however, we can see that
the variance is still rather high even in C3, C4 and C5. This is mostly due to our
experimentation setup, which included the (realistic) simulation of occasional
outliers, which are generally unpredictable.

6 Related Work

The work presented in this paper is complementary to the more established con-
cept of SLA management [10]. SLA management incorporates the definition and
monitoring of SLAs, as well as the matching of consumer and provider templates.
[10] introduces SLA management based on the WSLA language. However, other
possibilities exist, e.g., in [11] the Web Service Offerings Language (WSOL) has
been introduced. WSOL considers so-called Web service offerings, which are
related to SLAs. Runtime management for WSOL, including monitoring of of-
ferings, has been described in [12], via the WSOI management infrastructure.
In our work we add another facet to this, namely the prediction of SLA viola-
tions before they have actually occurred. Inherently, this prediction demands for
some insight into the internal factors impacting composite service performance.
In [13], the MoDe4SLA approach has been introduced to model dependencies
of composite services on the used base services, and to analyze the impact that
these dependencies have. Similarly, the work we have presented in [4] allows
for an analysis of the impact that certain factors have on the performance of
service compositions. SLA prediction as discussed in this paper has first been
discussed in [14], which is based on some early work of HP Laboratories on SLA
monitoring for Web services [15]. In [14], the authors introduced some concepts
which are also present in our solution, such as the basic idea of using prediction
models based on machine learning techniques, or the trade-off between early
prediction and prediction accuracy. However, the authors do not discuss impor-
tant issues such as the integration of instance and QoS data, or strategies for
updating prediction models. Additionally, this work does not take estimates into
account, and relatively little technical information about their implementation
is publicly available. A second related approach to QoS prediction has been pre-

sented recently in [16]. In this paper the focus is on KPI prediction using analysis
of event data. Generally, this work exhibits similar limitations as the work de-
scribed in [14], however, the authors discuss the influence of seasonal cycles on
KPIs. This facet has not been examined in our work, even though seasons can
arguably be integrated easily in our approach as additional facts.

7 Conclusions

In this paper we have presented an approach to runtime prediction of SLA
violations. Central to our approach are checkpoints, which define concrete points
in the execution of a composite service at which prediction has to be carried out,
facts, which define the input of the prediction, and estimates, which represent
predictions about data which is not yet available in the checkpoint. We use
techniques from the area of machine learning to construct regression models from
recorded historical data to implement predictions in checkpoints. Retraining
strategies govern at which times these regression models should be refreshed.
Our Java-based implementation uses the WEKA Machine Learning framework
to build regression models. Using an illustrative example we have shown that our
approach is able to predict SLO values accurately, and does so in near-realtime
(with an delay of well below 1 second).

As part of our future work we plan to extend the work presented here in
three directions. Firstly, we want to improve the usability of our prototype by
improving the GUI, especially with regard to the definition of checkpoints. Cur-
rently, this is mostly done on XML code level, which is clearly unsuitable for
the targeted business users. Instead, we plan to incorporate a template-based
approach, where facts and estimates are as far as possible generated automati-
cally. Secondly, we want to generalize the ideas presented in this paper so that
they are also applicable to aggregated SLOs, such as “Average Response Time
Per Day”. Thirdly, we plan to extend our prototype to not only report possible
SLA violations to a human user, but to actively try to prevent them. This can
be done by triggering adaptations in the service compositions, for instance using
BPEL’n’Aspects [17]. However, more research needs to be conducted in order to
define models of how possible SLA violations can best be linked to adaptation
actions, i.e., how to best define which adaptations are best suited to prevent
which violations.

Acknowledgements

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment 215483 (S-Cube).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 11 (2007)

2. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6) (2002)
72–75

3. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2 edn. Morgan Kaufmann (2005)

4. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Leymann, F., Dustdar, S.:
Monitoring and Analyzing Influential Factors of Business Process Performance.
In: EDOC’09: Proceedings of the 13th IEEE International Enterprise Distributed
Object Computing Conference. (2009)

5. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS Mon-
itoring of Web Services and Event-Based SLA Violation Detection . In: MW4SOC
2009: Proceedings of the 4rd International Workshop on Middleware for Service
Oriented Computing. (2009)

6. Wetzstein, B., Strauch, S., Leymann, F.: Measuring Performance Metrics of WS-
BPEL Service Compositions. In: ICNS’09: Proceedings of the Fifth International
Conference on Networking and Services, IEEE Computer Society (2009)

7. Haykin, S.: Neural Networks and Learning Machines: A Comprehensive Founda-
tion. 3 edn. Prentice Hall (2008)

8. Quinlan, J.R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial
Intelligence Research 4 (1996) 77–90

9. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-End Support for
QoS-Aware Service Selection, Invocation and Mediation in VRESCo. Technical
report, TUV-1841-2009-03, Vienna University of Technology (2009)

10. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web Services on Demand: WSLA-Driven
Automated Management. IBM Systems Journal 43(1) (2004) 136–158

11. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management applications
of the web service offerings language (wsol). Information Systems 30(7) (2005)
564–586

12. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastruc-
ture (WSOI) – AManagement Infrastructure for XMLWeb Services. In: NOMS’04:
Proceedings of the IEEE/IFIP Network Operations and Management Symposium.
(2004) 817–830

13. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Monitoring Dependen-
cies for SLAs: The MoDe4SLA Approach. In: SCC ’08: Proceedings of the 2008
IEEE International Conference on Services Computing, Washington, DC, USA,
IEEE Computer Society (2008) 21–29

14. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: Intelligent Management of SLAs
for Composite Web Services. In: DNIS 2003: Proceedings of the 3rd International
Workshop on Databases in Networked Information Systems. (2003) 28–41

15. Sahai, A., Machiraju, V., Sayal, M., Moorsel, A.P.A.v., Casati, F.: Automated SLA
Monitoring for Web Services. In: DSOM ’02: Proceedings of the 13th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management,
London, UK, Springer-Verlag (2002) 28–41

16. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service
Prediction. In: ICSOC ’08: Proceedings of the 6th International Conference on
Service-Oriented Computing, Berlin, Heidelberg, Springer-Verlag (2008) 147–161

17. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestra-
tion Logic. In: ICWS 2009: Proceedings of 7th International Conference on Web
Services, Los Angeles, CA, USA, IEEE (2009)

Adaptation of Service-Based Systems based on
Requirements Engineering and Online Testing

Andreas Gehlert1, Andreas Metzger1, Dimka Karastoyanova2, Raman
Kazhamiakin3, Klaus Pohl1, Frank Leymann2, and Marco Pistore3

1 University of Duisburg Essen, Software Systems Engineering, Schtzenbahn 70,
45127 Essen, Germany,

{andreas.gehlert | andreas.metzger | klaus.pohl}@sse.uni-due.de
2 IAAS, University of Stuttgart, Universitaetsstr. 38, 70569 Stuttgart, Germany,

{dimka.karastoyanova | frank.leymann}@iaas.uni-stuttgart.de
3 FBK-IRST, via Sommarive 18, 38100 Trento, Italy,

{raman.kazhamiakin | marco.pistore}@fbk.eu

2

Abstract. Service-orientation offers high flexibility in composing ap-
plications from individual services. This flexibility allows dynamically
adapting service-based applications during run-time. Various goals for
such dynamic adaptations can be addressed, which include (1) aiming to
better achieve the users’ requirements (perfective adaptation), and (2)
repairing and preventing failures (corrective adaptation).
When building adaptive applications that address two or more such goals,
precautions must be taken to ensure that the interplay and the inter-
actions between the different types of adaptations are considered. For
instance, it is important to understand how the need for the corrective
adaptation of the SBA must to be aligned and synchronized with the op-
portunity for the perfective adaptation of the SBA, as otherwise this can
lead to conflicting adaptations. For instance, the corrective part could
aim at replacing a failed service A for a service B, while at the same
time the perfective part could aim at replacing service A with a service
C.
This paper introduces a framework to integrate and align perfective and
corrective adaptations, while addressing the problems raised by the inter-
actions between those two kinds of adaptation. The framework is based
on two techniques for performing perfective and corrective adaptations
respectively. The perfective adaptation technique is based on require-
ments engineering activities to identify new or improved services. The
corrective technique is based on online testing, which enables the predic-
tion of potential future failures of the SBA.
Based on the above techniques, this chapter investigates the interplay
and interaction between the two types of adaptation. We demonstrate
how perfective and corrective techniques can be integrated in a mean-
ingful way to support the overall adaptation requirements of the service-
based application, while avoiding the above problems. As a solution, we
propose exploiting an enterprise service registry, which restricts the ways
in which a SBA can be adapted. The integrated approach as well as its
building blocks are demonstrated through an application scenario from
the telecommunication domain.

3

1 Introduction and Overview

1.1 Motivation and Problem Statement

Organizations increasingly rely on the flexibility offered by service-based
applications (SBAs). This flexibility allows those applications to oper-
ate in a highly dynamic world, in which the level and quality of service
provisioning, (legal) regulations, as well as requirements keep changing
and evolving. To respond to those changes, service-based applications
need to modify their functionality and quality dynamically depending
on the usage situation, context, and deployment platform. In addition
those applications will need to react to failures of the constituent services
to ensure that they maintain their expected functionality and quality. In
such a dynamic setting, evolution and adaptation methods and tools be-
come key to enable those applications to respond to changing conditions.
Following the terminology defined by the S-Cube Network of Excellence
[33], we refer to evolution as the more traditional modification of a sys-
tem’s requirements, specification, models and so forth during design time
(“maintenance”), while we understand adaptation to refer to the modifi-
cation of a specific instance of a system during runtime. In this chapter,
we focus on adaptation of service-based applications and thus address
adaptive service-based applications.
The adaptation of an SBA can address various goals, such as (1) correct-
ing faults contained in the SBA (corrective adaptation [24, p. 43]), and
(2) adapting the SBA to new and yet unknown requirements (perfective
adaptation) [45, p. 493].
When building adaptive SBAs that address two or more such goals, pre-
cautions must be taken to ensure that the interplay and the interactions
between the different types of adaptations are considered. In fact, co-
ordinating those goals is considered one of the significant challenges in
self-adaptive software [41]. As an example, it is important to understand
how the need for the corrective adaptation of the SBA must be aligned
and synchronized with the opportunity for the perfective adaptation of
the SBA. Otherwise, this can lead to conflicting adaptations, which need
to be avoided. As an example, the corrective part could aim at replacing
a failed service A for a service B, while at the same time the perfective
part could aim at replacing service A with a service C.

1.2 Solution Idea

To demonstrate how conflicts between adaptation goals can be avoided,
we focus on the two adaptation goals introduced above: corrective and
perfective adaptation. More specifically, we exploit the following tech-
niques to determine the demand for an adaptation of the SBA (i. e., to
determine an adaptation trigger [41]):
Corrective adaptation based on online testing: Online tests of ser-

vices are performed during runtime (operation) of the SBA to deter-
mine possible failures of the SBA’s constituent services. A failure of
such a test constitutes a corrective adaptation trigger, which could
possibly be satisfied by replacing the failed service with an alterna-
tive service.

4

Perfective adaptation based on RE: Typically, enterprises have con-
tract relationships with other business partners. This fact is reflected
in the set of services that may be used in SBAs. These partner ser-
vices usually meet the requirements specified by the requirements
engineers in the enterprise. In some cases however, due to the dy-
namic nature of the service market, new relationships are established
with other (previously unknown) partners. If the newly introduced
service is better and/or more appropriate (e. g. cheaper or faster),
the requirements engineer could recommend the use of this new ser-
vice and thereby issue a perfective adaptation trigger.

Both of the above techniques share the characteristic that they are pro-
active in nature, i. e., both techniques lead to “predictive” adaptation
triggers. In the case of online testing, the failure of a service could point
to a problem of the SBA (which involves this service) in the future.
In the case of recommendations from RE, this provides the possibility
to improve the SBAs and to anticipate future requirements. Thereby,
both of those adaptation drivers, which are the core building blocks of
our proposed solution, share a fundamental commonality. This simplifies
addressing the problem of synchronizing the two adaptation goals.
In addition, to exploiting this commonality, a further key idea of our
approach is to use a central enterprise service registry. This registry con-
tains references to in-house services, e. g. those services provided by the
enterprise itself, and to external services, e. g. those services, that are
provided by external service providers. Only these services are allowed
to be used in the enterprise’s service-based applications. Every reference
to one of the service is accompanied by a service description (cf. Section 4
for more details). Since the enterprise service registry is a private registry,
it can be administrated solely by the enterprise’s administrators. On the
one hand this enterprise service registry constraints possible adaptation
and, therefore, reduces the flexibility of the SBA and, on the other hand,
allows us to use techniques (e. g. testing techniques), which require a
certain level of stability (cf. Figure 1).

1.3 Focus and Assumptions

In order to focus our chapter, we restrict ourselves to service compo-
sitions, which use the workflow-approach, i. e. we assume that a ser-
vice composition is described in terms of a control flow (sequence of
tasks), data flow (data exchange between tasks), exception handling and
services, which realise the functionality of the tasks. Therefore, service
composition descriptions are organized in two dimensions—control logic
and functionality.
To further constrain the scope of the chapter, we consider the exchange
of individual services as the only mechanism for performing adaptations
of SBAs. This means that we only adapt SBAs by changing the bindings
of services (or end points) to the workflow. This means, the modification
of the control or data flow structure is not addressed here and will be
part of the future work in the S-Cube project.
Finally, we assume that a SBA is a service composition (workflow) and
use both terms synonymously in this chapter.

5

1.4 Outline of the Approach

Figure 1 provides an overview of our approach. Below, we briefly illus-
trate how the two adaptation goals—perfective and corrective adaptation—
are addressed in this book chapter, and how we envision to avoid conflict-
ing adaptations. The remainder of this chapter will provide more details
on the individual techniques and their synchronisation:

Service Composition / SBAAdaptation

Adaptation
Request

Workflow
Engine

initiates

initiates

notifies

Online Testing

Requirements
Engineering

Service Bindings

1

8

43

Enterprise
Service
Registry

rebind

remove
service

add service

4

5

6

2

Key

adaptation trigger Information flow corrective adaptation perfective adaptation

7

Fig. 1. Overall Approach

Situation 1 – Corrective Adaptation: Assume that online testing
finds a fault in one of the SBA’s services, which can lead to an
overall system failure in the future (❣1 in Figure 1). In this case the
online testing activity initiates triggers an adpatation to exchange
this service (❣2). Based on this adaptation trigger, the actual adapta-
tion component of the SBA (❣3) needs to find an alternative service
(e. g., by searching the service registry) and has to notify the work-
flow engine to bind this alternative service to the service composition
in place of the failed service (❣4). To avoid using the failed service in
other SBAs of the enterprise, the online testing activity removes it
from the enterprise service registry (❣5).

Situation 2 – Perfective Adaptation: Assume that a new service
was discovered during requirements engineering and that this ser-
vice is cheaper than the previously used one (❣6). If the requirements
engineer decides to use this service in the SBA, s/he needs to add
it to the enterprise service registry (❣8) and to trigger an adaptation
(❣7). This adaptation trigger will eventually notify the workflow en-
gine (❣3) and similar to situation 1 the workflow engine rebinds the
new service to the service composition instead of the old one (❣4).

For the purpose of this chapter, we assume that an SBA is already run-
ning and, therefore, uses services from the enterprise service registry.

6

During this run-time phase, the online testing activity continuously tests
the SBA’s services for failures and if a failure is observed, the respective
service is removed from the enterprise service registry. The requirements
engineering activity continuously searches for new and innovative ser-
vices and if such a service is found, it is added to the enterprise service
registry. Since our approach requires that every service-based application
in the enterprise uses services from the enterprise-service registry, this
registry together with the workflow adaptability serve as tools to syn-
chronize the activities of the requirements engineer and the online tester.
For instance, it is not possible in our scenario that the online tester and
the requirements engineer concurrently replace services in the workflow.
Since there is only the possiblity to add or remove services to/from the
registry the state of the workflow cannot be inconsistent (cf. Section 7.3
for a detailled discussion).

1.5 Structure of Chapter

Following the structure of Figure 1, the remainder of this chapter is orga-
nized as follows: In Section 2 we present the relevant state of the art on
requirements engineering, monitoring, adaptation and testing on which
our research is built. In Section 3 we introduce the scenario, which we
use in the text to illustrate our results. Subsequently we describe the
requirements engineering (Section 4) and online testing techniques (Sec-
tion 5), which may trigger adaptation. In Section 6 we explain how the
two techniques interact with each other. This integration is then demon-
strated with the help of an example in Section 6.2. Section 7 contains
a critical discussion of our results. The conclusions are summarized in
Section 8.

7

2 Related Work

The state of the art discussion in this section is structured as follows: In
Section 2.1 we first discuss related work that addresses the problem of
synchronizing adaptations in the presence of more than one adaptation
goal. Section 2.2 describes the related work on requirements engineering,
which is relevant for Section 4 of this chapter. Sections 2.3 and 2.4 sum-
marize the related work on monitoring and online testing respectively,
which is relevant for Section 5 of this chapter.

2.1 Related Work on Multi-Goal Adaptation

In [41] Salehie and Tahvildari stress that ”coordinating [...] goals at differ-
ent levels of granularity is one of the significant challenges in self-adaptive
software.” As a result of the literature survey carried out in that paper,
the authors reach the conclusion that only very few approaches address
more than one goal of adaptation (or, self-* property). In addition, they
observe that most approaches that address more than one goal do not
systematically coordinate those goals. One concrete, architecture-based
approach that addresses multiple goals is introduced by Cheng et al. in
[13]. However, rather than addressing high-level goals, such as perfective
and corrective adaptation that are addressed in our approach, the au-
thors address conflicting situations between more fine-grained objectives,
such as performance and other quality of service characteristics.

2.2 Related Work on Requirements Engineering

Although Tropos was applied in the service domain, these applications
do not explain when to adapt a SBA. Aiello and Giorgini for instance
explore quality of service aspects using Tropos actor models [2]. The
authors use Tropos’ formal reasoning techniques in [18] to calculate the
fulfilment of a goal structure according to a given set of services. As
the approach by Aiello and Giorgini does not cover the adaptation of a
SBA, our approach is an extension to [2]. In another approach Penserini
et al. explore how Tropos can be used to develop SBAs. However, the
authors do not focus on adaptation. Another application of Tropos was
put forward by Pistore et al. in [36]. The authors explain how SBAs
can be developed by step-wise refining plans and complementing these
plans with a formal workflow definition. Since the focus of Pistore et al.
is on deriving service compositions, the authors do not cover adaptation
issues. The introduction to Tropos in [11] also contains a comparison of
goal models to chose the architecture of the software system [11, p. 373].
This comparison is limited only to choosing so called architectural styles
and, thus, does not explain adaptation.
A similar approach to ours was put forward by Herold et al. in [20].
The authors related existing components to goal models. This relation is
established by so called generic architectural drivers. These drivers en-
able the selection of existing components, which fit with the goals and

8

soft-goals of the goal model. Herold et al.’s approach focus on finding ap-
propriate components and refining the initial goal model with the help of
these components. However, the approach does not address adaptation.
Another RE approach, which is similar to ours, was put forward in the
Service Centric Systems Engineering (SeCSE) project [27]. In SeCSE
initial requirements are formulated as goal models [27, pp. 21] or use
cases [22,50,51,52], which are than translated into services queries [27,
p. 31]. These services queries are sent to a registry. The resulting services
are used to refine the initial set of requirements. However, in SeCSE the
focus was on changing the requirements according to the current service
provision but not on adapting existing SBAs.

2.3 Related Work on Monitoring for Adaptation

In order to detect events and situations that necessitate an adaptation
of a service-based application, the majority of adaptation approaches
from the service-oriented computing field resorts to exploiting monitor-
ing techniques. Monitoring provides a way to collect and report relevant
information about the execution and evolution of a service-based ap-
plication. Depending on the goal of a particular adaptation approach,
different kinds of events are monitored and different techniques are used
for this purpose.
In many approaches (e.g., [6,7,17,31]) the events that trigger the adap-
tation are failures. These failures include typical problems such as ap-
plication exceptions, network problems and service unavailability [6,31],
as well as the violation of expected properties and requirements. In the
former case fault monitoring is provided by the underlying platform,
while in the latter case specific facilities and tools are necessary. In [7]
Baresi et al. define the expected properties in the form of WS-CoL as-
sertions (pre-condiations, post-conditions, and invariants), which define
constraints on the functional and quality of service (QoS) parameters of
the service composition and its context. In [43] Spanoudakis et al. use
properties in the form of complex behavioral requirements expressed in
event calculus. In [17] Erradi at al. express expected properties as poli-
cies on the QoS parameters in the form of event-condition-action (ECA)
rules. When a deviation from the expected QoS parameters is detected,
the adaptation is initiated and the application is modified. In such a case,
adaptation actions may include re-execution of a particular activity or a
fragment of a composition, binding/replacement of a service, applying an
alternative process, as well as re-discovering and re-composing services.
In [42] Siljee et al. use monitoring to track and collect the information re-
garding a set of predefined QoS parameters (response time, failure rates,
availability) infrastructure characteristics (load, bandwidth) and even
context. The collected information is checked against expected values
defined as functions of the above parameters, and in case of a deviation,
the reconfiguration of the application is triggered.
Summarizing, all these works follow the reactive approach to adaptation,
i.e., the modification of the application takes place after the critical event
happened or a problem occurred.

9

The situation with reactive adaptation is even more critical for ap-
proaches that rely on post-mortem analysis of the application execution.
A typical monitoring tool used in such approaches is the analysis of work-
flow logs [1,19,32]. Using the information about histories of application
executions, it is possible to identify problems and non-optimalities of
the current business process model and to find ways for improvement by
adapting the service-based application. However, once this adaptation
happens, many workflow instances might have already been executed in
a “wrong” mode.

2.4 Related Work on Online Testing and Regression
Testing

The goal of testing is to systematically execute services or service-based
applications (service compositions) in order to uncover failures, i.e., devi-
ations of the actual functionality or quality of service from the expected
one.
Existing approaches for testing service-based applications mostly focus
on testing during design time, which is similar to testing of traditional
software systems. There are a few approaches that point to the impor-
tance of online testing of service-based applications. In [47] Wang et al.
stress the importance of online testing of web-based applications. The
authors, furthermore, see monitoring information as a basis for online
testing. Deussen et al. propose an online validation platform with an
online testing component [14]. In [12] metamorphic online testing is pro-
posed by Chan et al., which uses oracles created during offline testing
for online testing. Bai et al. propose adaptive testing in [3,5], where tests
are executed during the operation of the service-based application and
can be adapted to changes of the application’s environment or of the ap-
plication itself. Finally, the role of monitoring and testing for validating
service-based applications is examined in [10], where the authors propose
to use both strategies in combination. However, all these approaches do
not exploit testing results for (self-)adaptation.
An approach related to online testing is regression testing. Regression
testing aims at checking whether changes of (parts of) a system nega-
tively affect the existing functionality of that system. The typical process
is to re-run previously executed test cases. Ruth et al. [39,40] as well as
Di Penta et al. [15] propose regression test techniques for Web services.
However, none of the techniques addresses how to use test results for the
adaptation of service-based applications.
Summarizing, in spite of a number of approaches for online testing and
regression testing, none of these approaches targets the problem of proac-
tive adaptation.

An Initial Proposal for Data-Aware Resource Analysis
of Orchestrations with Applications

to Proactive Monitoring�

Dragan Ivanović1, Manuel Carro1, and Manuel Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM)
2 IMDEA Software, Spain

idragan@clip.dia.fi.upm.es, {mcarro, herme}@fi.upm.es

Abstract. Several activities in service oriented computing, such as monitor-
ing, automatic composition, and adaptation, can benefit from knowing ahead
of time future properties of a given service composition. In this paper we fo-
cus on how statically inferred cost functions on input data, which represent
safe upper and lower bounds for different cost measures, can be used to pre-
dict some runtime QoS-related values (to, e.g., validate compositions at design
time) and to compare actual and predicted resource usage at run-time in order
to take adaptive actions if needed. In our approach a BPEL-like orchestration
is expressed in an intermediate language which is in turn automatically trans-
lated into a logic program. Cost and resource analysis tools are applied to infer
functions which, depending on the contents of some initial incoming message,
return safe upper and lower bounds of some resource usage measure.

Keywords: Service Orchestrations, Resource Analysis, Data-Awareness, Moni-
toring

1 Introduction

Service Oriented Computing (SOC) [1] is a well-established paradigm which aims
at expressing and exploiting the computation possibilities of remotely interacting
loosely coupled systems that expose themselves using service interfaces whose de-
scription may include operation signatures, behavioral descriptions, security poli-
cies, and other features, while the implementation is completely hidden. Several ser-
vice interfaces can be put together to accomplish more complex tasks through the
so-called service compositions. Such composition is usually written using a general-
purpose programming language or some language specifically designed to express
SOC compositions [2–4]. Service compositions, in turn, can expose themselves as
full-fledged services.

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under the Network of Excellence S-Cube - Grant Agree-
ment n◦ 215483. Manuel Carro and Manuel Hermenegildo were also partially supported
by Spanish MEC project 2008-05624/TIN DOVES and project S-0505/TIC/0407 PROMESAS.
Manuel Hermenegildo was also partially supported by EU projects FET IST-15905 MOBIUS,
FET IST-231620 HATS, and 06042-ESPASS.

One key distinguishing feature of SOC systems is that they are expected to live
and be active during long periods of time and span across geographical and admin-
istrative boundaries. This makes it necessary to include monitoring and adaptation
capabilities at the heart of SOC. Monitoring checks the actual behavior of the sys-
tem and compares it with the expected one. If deviations are too large, an adaptation
(which may involve, e.g., rebinding to different services with compatible semantics
and better behavior) may become necessary. When deviations are predicted ahead
of time instead of detected when they happen, the system is performing proactive
monitoring. This is, of course, more complex but also more interesting and useful, as
it performs prevention instead of healing.

Monitoring usually requires snooping the actually delivered quality of service
(QoS) in order to detect (undesired) underperformance with respect to the planned
execution. However, comparing actual and expected QoS of a composition —even
assuming the composition does not change over time— is far from trivial. Clearly,
the more accurately one can calculate the expected QoS, the better predictions can
be made. In estimating QoS behavior, two factors, at least, have to be considered:

– The structure of the composition itself, i.e., what it does with incoming requests
and which other services it invokes and how (which is, initially, under the control
of the designer or, at least, completely known at any moment in time), and

– The variations on the environment, such as network links going down or external
services not meeting the expected deadlines, which are contingent and usually
out of control.

As an example, when predicting the total time spent in sending and receiving
messages one must take into account, on one hand, the number of service invoca-
tions in each direction (which depends on the structure of the composition) and, on
the other hand, the time sending and receiving every message takes, which is outside
the control of the composition.

Of these two sources of information, the latter has been extensively studied [5–
8], while the former has been, to our knowledge, less deeply explored. In particular,
certain characteristics of some SOC-oriented languages, like fault handling, different
patterns for message-based invocation, etc. have not been appropriately taken into
account: often, problematic constructs of the language under study were ignored.
Also, information such as the actual data received through a service invocation has
been recognized as relevant [9, 10] but has not been correctly addressed so far. As we
will see in Section 2, the actual message contents can greatly influence the runtime
behavior of a composition (e.g., reserving hotels for one person is, from the point of
view of spent resources, not the same as reserving for one hundred, since more mes-
sages are sent, more bandwidth is spent, etc.), which makes prediction techniques
that do not take run-time parameters into account potentially inaccurate.

In this paper we will focus on developing a methodology, based on previous expe-
rience on automatic complexity analysis [11–13], which can generate correct approx-
imations of cost functions measuring a variety of relevant execution characteristics
via translation to an intermediate language (Sections 3, 4, and 5). These functions
use (abstractions of) incoming messages in order to derive correct upper and lower

2

Provider

Maker 1

Maker K

Cancel
part req.

OK / not OK

Part req.
Cancel

OK / not OK

Fig. 1. Simplified hotel reservation system.

bounds which depend on the input data and which are potentially more accurate
that data-unaware approximations. In Section 6 we show how these functions can
be used to help monitoring make better decisions.

We want to note that correct data-aware cost functions can in general be applied
to any situation where a more informed QoS estimation is an advantage. In partic-
ular, QoS-driven service composition [14–16] can use them in order to select better
service providers given information on which kind of requests are expected. In a re-
lated setting, adaptation mechanisms can also benefit from such a knowledge [17].3

2 A Motivating Example

We illustrate with a simple example how actual data can be taken into account when
generating QoS expressions for service compositions.

Example 1 Figure 1 shows a simple hotel reservation system. The Client (e.g., a
browser maybe operated by a final user or by a travel agency) gets in touch with a
Booking Agency and requests N hotel rooms. The Booking Agency runs (or accesses) a
composite service which tries a number K of hotels until it either finds all N rooms,
or replies with a no rooms available message. Moreover, the service books rooms one
person at a time as they are available, and, if after scanning all the hotels, not enough
rooms are available, it revokes the reservations made so far by means of cancellation
messages. A hotel that reports that it has no more available rooms is excluded from
further search. We assume that one message is used to for each room query, one for
each confirm / reject reply, and one for each reservation revocation.

Note that it is unlikely that the whole process can be made as a single transaction
because the reservation system of the different hotels may very well be disconnected;
therefore it has to be instrumented at the level of composition.

We will assume that we are interested in the number of messages sent / received.
There are several reasons for this: in a real system, message exchange can carry a
sizable overhead, thus significantly affecting the actual execution time; it is possi-
ble that hotel reservation services take a toll on every message they answer; and the
Booking Service could also charge some amount of money per message.

3 Our related work on applying the derived cost functions to guide adaptation [17] involves
(re)binding of service candidates on that basis. Although the technique for deriving cost
bound functions is the same, we here focus on the different problem of application to
proactive monitoring.

3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3 4 5 6 7 8 9 10

Min. for Service 1
Max. for Service 1
Min. for Service 2

Max. for Service 2

Fig. 2. Upper and lower bounds for two services.

Assuming K ≥ N , the minimum number of messages that can be sent before re-
turning is 2N , corresponding to a successful reservation (N successful requests and
replies to the same hotel) while the maximum number of messages is 2K +3(N −1),
corresponding to the worst case unsuccessful reservation (N − 1 successful reser-
vations, plus one last unsuccessful reservation which triggers cancellation of the
N −1 successful reservations). Between these extremes, the maximum for a success-
ful reservation would be 2K +2(N −1) messages.

The analysis is not trivial, even for this very simple case, and depends, on one
hand, on the internal logic of the composition and on the other hand on the values
of N and K , which should be considered parameters for the composition, since it is
more likely that the hotels are listed in a separate registry, than hardwired into the
composition code.

Compared with probabilistic approximations, the following differences can be
pointed out:

– In the dataless formulation, the impact of loops and conditionals can at most
be estimated based on, for example, historical data. It cannot be used to actu-
ally give any guarantee, as the value for any QoS characteristic will be constant
regardless of the actual input values for K and N .

– Additionally, safe upper and lower approximations (e.g., bounds) cannot be usu-
ally obtained, as these probabilistic formulae only use a single number repre-
senting some type of average.

– In the case of QoS-aware matchmaking or rebinding, comparing two different
service compositions ignores the functional dependency that the QoS has on
the data. Figure 2 portrays the upper and lower bounds of two compositions for

4

Orchestration

Service
description

Intermediate
language

Logic
program

Analysis
results

Runtime
features &

instrumenta-
tionTranslation

Translation

Tr
an

sl
at

io
n

A
n

al
ys

is

Feedback

Fig. 3. The overall process.

some QoS as a function of a single input parameter. For same ranges of data
input one composition is preferable over the other, while in the central, shared
zone the information we have is not enough to decide. Knowing in which area of
the graph we are located is relevant in order to make the best matching choice.

We primarily aim at inferring functions counting a number of relevant events.4 To
this end, we follow the approach to resource-oriented analysis of [18, 19]. The funda-
mental idea is to specify how much every part of a composition contributes to the
usage of some resource, and derive cost functions based on that specification. A key
aspect is that, for operations which we cannot analyze (because they are external to
the composition process, such as database accesses) but whose cost we want to take
into account, the specifications of how much resources they consume can be made
through functions that take into account the actual data.

3 An Overall Description of the Analysis Process

Figure 3 shows the overall picture of the process we present. The orchestration de-
scription (which can be written e.g. in BPEL, although our approach should be valid
for other orchestration languages), together with meta-information usually con-
tained in the related WSDL document, is translated into an intermediate language
whose constructs are shown in Table 1.

The declarations in Table 1 describe namespace prefixes (used for qualified
names), XML-schema-derived data types for messages, and service port types. Be-
sides, the intermediate language allows declaring external services that are not ana-
lyzed, but have some trusted properties that are either results of a separate analysis
or a priori assumptions.

A BPEL process definition is translated into a service definition which associates
a port name and an operation with a BPEL-style activity that represents the orches-
tration body. The choice of activities in Table 1 is driven by the key features of the

4 Note that the technique we are building on was primarily applied to compute execution
steps, which are close to execution time.

5

Declarations and definitions
Namespace prefix declaration :- prefix(Prefix, NamespaceURI).
Message or complex type definition :- struct(QName, Members).
Port type definition :- port_type(QName, Operations).
External service declaration :- service(PortName, Operation,

{ Trusted properties }).
Service definition service(Port, Operation, InMsg[, OutMsg])

:- Activity .
Activities

Do nothing empty
Assignment to variable / part VarExpr <- Expr
Service invocation invoke(PortName, Operation, OutMsg, InMsg)
Terminating with a response reply(OutMsg)
Sequence Activity1, Activity2
Conditional execution if(Cond, Activity1, Activity2)
While loop while(Cond, Activity)
Repeat-until loop repeatUntil(Activity, Cond)
For-each loop forEach(Counter, Start, End, Activity)
Scope scope(VarDeclarations, Activities and Handlers)
Scope fault handler handler(Activity)

handler(FaultName, Activity)
Parallel flow with dependencies flow(LinkDeclarations, Activities)
Dependent activity in a flow float(Attributes, Activity)

Table 1. Elements of an abstract description of an orchestration in the intermediate language.

subset of BPEL we are concerned with. In particular, we restrict ourselves to orches-
trations that accept a single input message and terminate their work by either dis-
patching a reply or failing. That is by far the most common type of orchestration, al-
though extension to orchestrations that may accept several different input messages
is straightforward using the native non-determinism available in the target platform
(see below). Support for resource analysis of stateful service callbacks is a subject for
future work.

Next, the intermediate representation is translated into a logic programming lan-
guage (Ciao [20]) augmented with assertions [21] which allow expressing types and
modes (i.e., which arguments are input or output) as well as resource definitions and
functions describing resource consumption bounds. The type and mode assertions
help the analyzer to “understand” more precisely what the original program meant
—i.e., not to lose the information about data directionality that was present in the
original orchestration. Intuitively, the reason to do this is that since Prolog has a very
free view of types and a complex control strategy (including built-in backtracking), a
naïve, unannotated translation would generate a program exhibiting more possible
behaviors than those of the original BPEL program, and therefore the analysis results
would very likely lose precision. The logic program resulting from the translation is
fed to the resource consumption analyzer of the Ciao preprocessor (CiaoPP), which
is able to infer upper and lower bounds for the generalized cost / complexity of a
logic program [11, 12, 18, 19].

6

The results of the analysis (the cost functions) are fed back to service descrip-
tion, thus adding more information on the service, which can be stored in a registry
and used by cost-sensitive binding and matchmaking algorithms. The results are also
used to inform the infrastructure and monitoring parts of the SOC architecture on
the expected runtime features of the orchestration and thus help deployment, com-
pilation into object code, and run-time instrumentation.

An important observation regarding the translation is that, in general, we do not
need the generated logic program to be strictly faithful to the operational semantics
of BPEL: it has to reflect just the necessary part of the semantics that will ensure that
the analyzers will infer correct information (i.e., safe approximations), with minimal
precision loss due to the translation. However, in our case the translated program is
executable (although not operationally equivalent to the BPEL process) and mirrors
closely the operational semantics of the BPEL process under analysis.

4 An Outline of the Translation from BPEL to Logic Programs

In this section we will briefly describe the translation of BPEL process definitions,
via the intermediate language, to a logic program that is analyzed by existing tools. A
set of BPEL processes which form a (small) service network are taken as the input to
the process and the result is a single file with a logic program, where BPEL processes
are mapped onto predicates which call each other when the original BPEL processes
would invoke another service. In order for the final code to be amenable to analy-
sis, we currently restrict ourselves to a subset of BPEL, which notwithstanding we
consider rich enough to express an ample class of interesting real-life cases.

4.1 Restrictions on Input Orchestrations and Correspondence with BPEL

We restrict our analysis to orchestrations that follow a receive–reply interaction pat-
tern, where processing activities take place after reception of an initiating message
and finish dispatching either a reply or a fault notification. Another behavioral re-
striction is that we currently do not support analysis of stateful service callbacks us-
ing correlation sets or WS-Addressing schemes. In future work, we plan to relax both
restrictions by identifying orchestration fragments that correspond to the receive–
reply pattern, isolating them into sub-processes, and analyzing them in the same
way we now treat whole orchestrations.

The activity constructs in the intermediate language in Table 1 are inspired by
the key features of BPEL but are applicable to other abstract or executable orches-
tration languages. Some activity constructs (empty, assignment, sequence,. . .) are
commonly found in programming languages. The key constructs for modeling or-
chestration workflows are flow, float, scope/handler, and invoke.

In contrast to the structured workflow patterns expressed by UML activ-
ity/sequence diagrams, BPEL’s flow construct can express a wider class of con-
current workflows, where concurrency and dependencies between activities are ex-
pressed by means of precondition formulas involving tri-state logical link variables,

7

:- regtype ’acme->reservationData’/1.
’acme->reservationData’(’acme->reservationData’(A, B, C)):-

num(A), num(B), list(C, ’acme->personInfo’).

:- regtype ’acme->personInfo’/1.
’acme->personInfo’(’acme->personInfo’(A, B)):-

atm(A), atm(B).

Fig. 4. Translation of types.

with optional dead-path elimination. The float construct in the intermediate lan-
guage annotates an activity within a flow with a description of outgoing links and
their values, join conditions based on incoming links, and a specification of the be-
havior in case of a join failure.

The main purpose of scope constructs in BPEL is to introduce local variables,
fault, and compensation handlers. In our intermediate language, scope serves this
purpose, with the exception of compensation handlers, which we do not directly
support. Compensation handlers in BPEL contain logic that “undoes” effects of
a successfully completed scope. As such, a compensation handler is a pseudo-
subroutine attached to a scope, which must be explicitly invoked from a fault han-
dler or compensation handler of an enclosing scope. However, the BPEL specifica-
tion requires compensation handlers to operate on a snapshot of the scope’s vari-
ables made on successful completion of a scope, including each individual iteration
of loop body, which introduces considerable problems for the analysis as it is now. If
we ignore value snapshots, BPEL compensation handlers can be inlined at the place
of their invocation.

4.2 Type Translation and Data Handling

Services communicate using complex XML data structures whose typing informa-
tion is given by an XML Schema. The state of an executing orchestration consists of
a number of variables that have simple or complex types, including variables that
hold inbound and outgoing messages. For the purpose of simplicity, we abstract the
multitude of simple types in XML Schemata into just three disjoint types: numbers,
atoms, representing strings, and booleans.

WSDL message types and custom complex types from XML Schemata are trans-
lated into the intermediate representation and finally into the typing / assertion lan-
guage of Ciao. These type definitions are used to annotate the translated program
and are eventually used by the analyzer. Figure 4 shows an automatically obtained
actual translation for the hotel reservation scenario in Example 1. The type name
’acme->reservationData’ is a structure with the same name and with three fields:
two numbers and a list of elements of type ’acme->personInfo’. Each of these el-
ements is in turn a structure with two fields being an atom each.

Following BPEL, we use a subset of XPath as the expression language, which
allows node navigation only along the descendant and attribute axes, to ensure
that navigation is statically decidable based on structural typing only. The expres-
sion ’$req.body/item[1]/@qty’ in the intermediate language refers to the at-
tribute qty of the first item element in the body part of a message stored in variable

8

req. A set of standard XPath operators and basic functions is supported, including
position() and last().

To assist the analyzer in tracking component values and correlating the changes
made to them, we take the approach of statically decomposing lists and XML struc-
tures in an execution environment into their components, and passing them around
explicitly as predicate arguments from that point onwards. Unfolded structures no
longer need to be passed along with components, since they can be reconstructed
on demand. The resulting code is less readable for a human, but more amenable to
analysis.5

For instance, to access the third element of a list stored as an opaque object in a
variable, the list has to be decomposed into head and tail subcomponents, and the
process has to be repeated until the third element of the list is reached. From that
point, the list can be reconstructed on demand from the first three elements and the
remainder, and therefore need not be explicitly passed in predicate calls. However, if
the list is assigned (from an expression or by receiving a reply message), we cannot
guarantee any more that it has at least three elements, and therefore the list once
again becomes an opaque object. The same logic applies to other data structures
and their components.

4.3 Basic Service and Activity Translation

The basic idea of the automatic translation from the intermediate language is to keep
track of the functional dependency of the resulting response message on the input
message with which a service is invoked. Here we present the translation scheme
based on generation of clauses of a logic program [17] that can be automatically an-
alyzed for resource usage. An orchestration S is translated into a predicate:

s(x̄, y) ← �A�η0 (y)

where x̄ represents components of the input message, y stands for the response
message, and �A�η0 (y) is the translation of the orchestration body A with respect to
the initial service environment η0. An environment maps symbolic (sub)component
names (which denote message parts, nested XML elements and attributes, and
scalars) to logical terms. Each variable in the environment is either a scalar or a
tree-like structure where component nodes branch from structure nodes, up to some
depth of unfolding, as explained in the previous subsection. Unfolded structures in
an environment (the internal nodes) can always be recursively reconstructed from
their components (children nodes). Consequently, the entire environment can be
represented by the leaf nodes. When η appears in an argument position, it stands for
the list of leaf nodes in η. Leaf nodes of the initial environment η0 are the list x̄ of
input message components.

The translation operates on a non-empty sequence of activities, which we can
write as 〈A|C〉, where A is the first activity, and C is the continuation sequence, which

5 The alternative being writing in Prolog the counterparts for the supported XPath operations
and let the analyzers deal directly with them. In our experience, this introduces too much
precision loss, and therefore we opted for a more complex translation.

9

may be empty (ε). We write �A|C� to denote the translation of 〈A|C〉, and, as a short-
hand, �A� to denote translation of 〈A|ε〉. This allows us to normalize translation of a
sequence (Ai , A j) by extending the continuation:

�(Ai , A j)|C�η(y) �→ �Ai |〈A j |C〉�η(y) .

Activity reply(v) terminates the orchestration and sends the reply contained in
variable v in the current environment:

�reply(v)|C�η(y) ≡ y = η(v) .

Raising a fault with throw is translated into a logical failure (�throw|C�η(y) ≡
fail), which can be caught on backtracking by fault handlers. The empty activity is
ignored, so that �empty|C�η(y) �→ �C�η(y).

For any activity Ai , other than a sequence, empty, reply, and throw, the trans-
lation is a predicate call:

�Ai |C�η(y) �→ ai (η, y) ,

where clauses generated for ai depend on Ai , η, and C . First we look at the case when
Ai ≡ x<−e, i.e., the XPath expression e is evaluated and assigned to the environment
element x (a variable or its component). The generated clause has several segments:

ai (η, y) ← [e : E]η, [E/x]η
�
η ,�C�η� (y) .

where [e : E]η stands for evaluation of e into term E in the environment η, and [E/x]η
�
η

stands for mutation of η into η� as the result of assigning E to x. Likewise, in case of
an external service invocation, Ai ≡ invoke(p,o, v, w), the generated clause has the
form:

ai (η, y) ← spo(η(v),E), [E/w]η
�
η ,�C�η� (y) ,

where spo is the translation of a service implementing operation o on port type
p, variable v holds the input message, and variable w receives the reply. For Ai ≡
if(c, A j , Ak), two clauses are generated:

ai (η, y) ← [c?]η ,�A j |C�η(y)

ai (η, y) ← [¬c?]η,�Ak |C�η(y)

where [c?]η stands for code that succeeds if and only if the boolean condition c
evaluates to true. On the basis of if, we generate recursive clauses for the case
Ai ≡ while(c, A j):

ai (η, y) ← [c?]η ,�A j |〈Ai |C〉�η� (y)

ai (η, y) ← [¬c?]η,�C�η(y)

Note how reappearance of Ai in the first clause leads to a recursive definition
of the translation scheme. The above translation is however not circular, because
we already know that �Ai |C�η(y) ≡ ai (η, y). Other looping constructs, such as
repeatUntil and forEach reduce to while.

10

4.4 Translation for Scopes and Flows

The translation of scopes involves changing the environment on entry and exit, and
has to ensure the execution of a fault handler unless the body scope ends success-
fully. In Ai ≡ scope(D, A, H1, H2, . . . , HN), D denotes new variable declarations, A is
the body of the scope, and Hi are fault handlers. N +1 clauses are generated for ai ,
one for A and each of the handlers. Each of the clauses uses cut to prevent execution
of subsequent clauses in case that the scope body / handler attached to the clause
completes successfully. Since the process itself can be seen as a scope, and it nor-
mally needs a variable to hold the output message, in the intermediate language we
use an abbreviation:

service(p,o, x, y) ← A

for:
service(p,o, x) ← scope([y : ReplyType], (A, reply(’$y’))) .

The translation of a flow is done following the usual BPEL semantics [22], but
without operationally parallelizing the execution. Instead, we are interested in to-
tal resource consumption of a flow construct, irrespective of the actual number of
available threads. A float(D, A) construct appearing in the body of a flow uses at-
tributes D to annotate activity A with input link dependencies and output transition.
Links are internally declared as Boolean variables. The floating activities are ordered
so that the link dependencies are respected. As in BPEL itself, there can be no circular
link dependencies. After reordering, a flow effectively translates to a sequence, and
each float(D j , A j) is transformed into:

if(c j , (A j ,’$o’ <- ’true()’),Φ)

where c j is a join condition specified in D j , o is the name of the outgoing link,
and Φ covers the case when c evaluates to false. When the suppresJoinFailure

property is disabled, we simply have Φ ≡ throw(bpel : joinFailure). Otherwise,
Φ≡ ’$o’ <- ’false()’.

4.5 Accounting for Unavailable Code

So far we have assumed that the analysis operates on a static composition whose
code is available. The same approach can be easily extended to the case where we
have a collection of interacting compositions, with statically available code, whether
or not these compositions are expected to be deployed locally or remotely. However,
there are cases where such code may not be available such as, for example, when
some provider does not want to reveal which code is being run on its servers. In such
scenarios it is still possible to exploit the partial statically inferred resource usage
information to drive cost-sensitive adaptation [17].

Note also that code disclosure concerns may not present a problem for static
analysis. The analysis, while starting with an executable (e.g. BPEL) code, does not
actually act on such code directly, but rather on some abstraction in the intermediate
language which can hide some details. Providers may offer this abstract code in or-
der for third parties to check the complexity claims of the providers. By doing so they

11

:- struct(hotres:resRequest, [

part(body): struct(hotres:resData)]).

:- struct(hotres:resResponse, [

part(body): struct(hotres: resData)]).

:- struct(hotres:resData, [

child(hotres:personCount): number,

child(hotres:priceLimit): number,

child(hotres:person):

list(struct(hotres:persInfo))]).

:- struct(hotres:persInfo, [

attribute(’’:firstName): atom,

attribute(’’:lastName): atom,

child(hotres:hotelName): atom,

child(hotres:roomNo): number]).

:- port(hotres:agency, [

reserveGroup(struct(hotres:resRequest)):

struct(hotres:resResponse)]).

:- port(hotres:hotel, [

reserveSingle(struct(hotres:persInfo)):

struct(hotres:persInfo),

cancelReservation(struct(hotres:persInfo)):

struct(hotres:persInfo)]).

service(hotres:agency, reserveGroup, ’$req’, ’$resp’):-

[

’$resp.body/hotres:personCount’<-0,

’$resp.body/hotres:person’<-’$req.body/hotres:person’,

scope([i:number],

[’$i’ <- 1,

while(’$req.body/hotres:personCount>0’,

[

scope([p: struct(hotres:persInfo),

r: struct(hotres:persInfo)],

[’$p’<- ’$req.body/hotres:person[$i]’,

invoke(hotres:hotel, reserveSingle, ’$p’, ’$r’),

if(’$r/hotres:roomNo>0’,

’$resp.body/hotres:person[$i]’<-’$r’,

throw(hotres:unableToReserveGroup)),

handler(

[while(’$i>1’,

[’$i’<- ’$i - 1’,

’$p’<- ’$resp.body/hotres:person[$i]’,

invoke(hotres:hotel, cancelReservation,

’$p’,’$r’)]),

throw(hotres:unableToCompleteRequest)])

]),

’$i’ <- ’$i+1’,

’$req.body/hotres:personCount’ <-

’$req.body/hotres:personCount - 1’])])].

Fig. 5. Abstract representation of a group booking process

would increase the confidence of their clients without revealing more than strictly
necessary. In other cases, while even this code may not be available, the owner of the
service can provide sufficient information in the form of resource assertions which
describe the resource consumption behavior without disclosing code in the least.

5 An Example of Translation and Analysis

We will illustrate the process of analysis by using a description of an orchestration,
translating it into a logic program, and reasoning on the results of applying to it a
resource usage analysis.

We use a representation of a process that performs hotel booking, along the lines
(but slightly simplified, for space reasons) of the example used in Section 2. For com-
pactness, we present the abstract description of this orchestration in our internal
representation form instead of plain BPEL (Figure 5). This representation contains
information that is both found in the WSDL document (data types, interface descrip-
tions) and in the process definition itself (the processing logic).

The orchestration traverses the list of people to book a room for and tries to re-
serve a room in a hotel by invoking an external hotel service.6 If that is not possible,
or if a failure arises, a failure handler is activated that tries to cancel the reservations
that were already made before signaling failure to the client.

The translation of the orchestration produces an annotated logic program, some
of whose parts we present in Figure 5. Part (a) shows the translation of the entry
point of the service, along with an entry annotation that helps the analyzer under-
stand what the input arguments are. The input message is unfolded into the first
three arguments (A, B , C), and D plays the role ofω. Part (b) shows the translation of
the main while loop, and the second clause finishes the process by constructing the

6 This is a difference from Example 1: the orchestration does not query different hotels.

12

answer from the current value of the response variable. Part (c) shows the transla-
tion of the service invocation, with previous unfolding of the outgoing message, and
subsequent pruning of the response variable data tree.

:- entry ’service_hotres->agency->reserveGroup’/4
:{gnd,num}*{gnd,num}*{gnd,’list_of_hotres->persInfo’}*var.

’service_hotres->agency->reserveGroup’(A,B,C,D) :-
act_1(A, B, C, 0, 0, [], D).

(a) Translation of the entry point to the process.

act_4(A, B, C, D, E, F, G, H):-
----(this is act_4:while(’$req.body/hotres:personCount>0’)),
A>0, !, act_5(A, B, C, D, E, F, G, H).

act_4(_, _, _, D, E, F, _, ’hotres->resResponse’(D, E, F)).

(b) Translation of the main while loop.

act_7(A, B, C, D, E, F, G, H, _, _, _, _, M):-
----(this is act_7:invoke(hotres:hotel, reserveSingle, ’$p’, ’$r’)),
H=’hotres->persInfo’(N, O, P, Q),
’service_hotres->hotel->reserveSingle’(N, O, P, Q, R),
act_8(A, B, C, D, E, F, G, N, O, P, Q, R, M).

(c) Translation of an external service invocation.

Fig. 6. Translation into parts of a logic program.

The resource analysis finds out how many times some specific operations will be
called during the execution of the process. The resources we are interested in this
example are: the number of all basic activities performed (assignments, external in-
vocations); the number of invocations of individual room reservations (operation
reserveSingle at the hotel service); and the number of invocations of reservation
cancellations (operation cancelReservation at the hotel service). From the num-
ber of invocations it is easy to deduce the number of messages exchanged during
the execution of the process: a single reservation counts as two, and a cancellation
counts as one message. The results are displayed in Table 2, where the estimated
upper and lower bounds are expressed as a function of the initiating request.

We model processing of a single reservation failure with fault handling that inter-
rupts the normal (nominal) flow and triggers cancellations. We differentiate explic-
itly between the case with costs of fault processing included, which gives wider, more
cautious estimates, and the case in which the execution is successful (i.e., without
fault generation and handling). These two cases were obtained by means of different
translations which explicitly generated or not Prolog code corresponding to the fault
handling. The results in Table 2 correspond to best and worst case estimates from
Example 1 . The upper bound on number of messages with fault handling 3N − 1

13

With fault handling Without fault handling
Resource lower bound upper bound lower bound upper bound

Basic activities 2 7N 5N +2 5N +2
Single reservations 0 N N N

Cancellations 0 N −1 0 0
No. of messages 0 3N −1 2N 2N

Note: In the above formula, N stands for the value of the input argument
$req.body/hotres:personCount, taken as a non-negative integer.

Table 2. Resource analysis results for the group reservation service

corresponds to 2K +3(N −1) with K = 1, and the lower bound for the case without
fault handling is 2N .

6 Cost Functions for Monitoring

As briefly discussed in Section 1, the expected value of some QoS characteristics can
be derived from the value of some cost functions and the (expected) value of some
environment characteristics. In this section we will elaborate on that point and we
will sketch how the availability of cost functions can be used to perform proactive
monitoring.

6.1 QoS Metrics and Cost Functions

The precise cost function which is needed to express some QoS characteristic de-
pends on the QoS metric itself. For example, if bandwidth consumption is involved
in the measure of some QoS, then the number of messages and size of each message
is relevant, but the number of executed activities is not directly relevant (although
possibly related). However, the cost function by itself cannot in general convey all
the information necessary to represent a QoS function: some data which come from
the environment is needed. Therefore, and for some QoS metrics, an interval of lower
and upper bounds depending on the input data can be expressed as

QoS〈L,U 〉(n) = 〈costL(n)⊕envL , costU (n)⊕envU 〉 (1)

where the left and right components of the tuple are the expected lower and upper
bounds for the quality of service, costX (n) is some suitable analytically determined
cost / resource consumption function, envX represents the minimum and maximum
influence of the environment conditions on the QoS at hand, and ⊕ is an operation
which combines together the cost functions and the environment conditions.

For example, in case of the execution time of a single process, costX (n) can be
the number of activities executed, and envL and envU the maximum and minimum
time a single activity can take (which depends on the machine executing it, the exe-
cuting engine, the operating system, etc.), and ⊕ would be just multiplication. Since
costL(n) and costU (n) are, respectively, the lower and the upper bound, then if we

14

assume that envL and envU are also correct lower and upper bounds, the calculated
QoS will be a correct lower and upper bounds of the actual (runtime) QoS values.

Note that this generic scheme can admit variations: for example a more accurate
approximation of execution times can be inferred by assigning a different weight to
each type of activity. In this case, envX would actually be an array with a compo-
nent for the execution time for every type of activity, costX (n) would also be an array
counting how many times every type of activity is executed, and ⊕ would be the vec-
tor dot product.

6.2 QoS and Cost Functions During Composition Execution

Given some QoS characteristic which we assume fixed, Equation (1) relates it to a
cost function. It is always the case that the general cost function of a composition
is made up of several parts, each one referring to a structural part of the composi-
tion. As an example, the upper bound of the cost of an if-then-else construct in
terms of, for example, executed activities, is the upper bound of the condition plus
the maximum of upper bounds of the then and the else parts.

We can associate to every program point a measure of how much cost / resources
remain to be spent in the rest of the execution.7 For example, in the if-then-else
example before, once the if part is done, what remains is either the then or the else
part. In general this measure depends not only the point in the service composition,
but also on the values of the data at that moment: for example, in a loop, where the
same activity is executed several times, less “cost” is left until the end of the execu-
tion after every iteration, even in the same point of the composition. The difference
comes from the different state of the variables, and this is one of the reasons why
taking data into account is beneficial.

There is, therefore, a notion of “pending” QoS, which comes from using these
composition-point cost functions together with the environment characteristics: for
example, from the activities remaining to be executed and the expected time of ev-
ery activity, the remaining time to the completion of the service activation would
be a “pending” QoS. This is, of course, interesting from the monitoring point of view.
Assuming that a composition has been designed and approved on the basis of the ex-
pected lower and upper bounds of QoS (i.e., the required QoS adequately falls within
these bounds), then deviations of the environmental characteristics can be used to
predict more accurately what will be the QoS at some future point by dynamically
combining the cost / resource consumption functions (which we are assuming do
not change during service execution) with the actual environment conditions, which
may deviate from those initially assumed.

Figure 7 exemplifies such a situation. Let us assume we are interested on some
QoS metric of a composition, whose value must not go over some limit Max. There-
fore, we should use cost functions and environment characteristics representing safe
upper bounds: if the upper bound is smaller than some limit, then we have the guar-

7 In fact the initial cost is just a measure of how much it remains to be spend assuming that,
since the execution has not started, a total of 0 has been spent.

15

History

Quality

Max

A B C D

Initial prediction

Actual profile

Prediction after
observation B

Prediction after
observation C

Fig. 7. Actual and predicted QoS throughout history.

antee we need.8 Symmetrically, if we are concerned with a QoS attribute whose value
should not go below some minimum, we would use lower bounds instead. We desig-
nate four points (A , B, C , and D) in the execution of some composition and we will
focus on how monitoring at these points can be done proactively with the use of cost
functions. In Figure 7 the solid line represents the initial running QoS predicted tak-
ing into account the statically inferred cost functions and the expected environment
conditions. The dashed line represents the actual observed QoS.

At point B, the actual quality has deviated with respect to the predicted one.
Since the composition has not changed, and thus neither have the cost functions,
we can conclude that the deviation can only be due to a change in the environment
behavior (e.g., additional load on a server or a faulty network). A new prediction for
the future can be done by using the observed influence of the environment so far
and the existing cost function. This new prediction curve (densely dotted) still ends,
at point D, within the limits of the acceptable range Max. However, at point C a new
observation gives yet higher values for the QoS value and, therefore, for the influence
of the environment. Yet another function and associated plot curve (sparsely dotted)
can be constructed which predicts that it there is the possibility that the execution
finishes violating the QoS constraints. Therefore, at point C we can raise an alarm
and maybe trigger an adaptation procedure. Note that we in fact have detected a
problem before it actually appeared. In order for this technique to work in complex
service compositions with loops, different response times depending on invocations,
etc. it is necessary to take data into account from the beginning.

8 For completeness: if the upper bound ends up over the limit, but the lower bound does not,
there is a possibility that things go wrong. If the lower bound goes over the limit, we have
the guarantee that the execution is going to violate the initial restrictions. We will assume
we do not want to run any risk.

16

7 Conclusions and Future Work

We have presented a resource analysis for service orchestrations (which we instan-
tiate to the BPEL case) which is based on a translation to an intermediate program-
ming language (Prolog) for which complexity analyzers are available. These analyz-
ers can be customized to deal with user-defined resources, thereby opening the pos-
sibility of generating resource-consumption functions, some of them of interest for
SOC. Inferring these functions can be used as core technology for some approaches
to proactive monitoring, adaptation, and matchmaking.

We sketched the core of the translation process, which approximates the behav-
ior of the original process network in such a way that the analysis results (the cost
functions) are valid for the original network. We have sketched a mechanism to use
these functions, together with environmental characteristics, to predict the future
behavior of the system even when the environment deviates from its expected be-
havior.

Our translation is partial in the sense that some issues, like correlation sets, are
not yet taken into account. A richer translation which we expect will take into ac-
count of this (and other) issues is the subject of current work.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communications of
the ACM 46(10), pp. 24–28 (2003)

2. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F.,
Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process
Execution Language Version 2.0. Technical report, IBM, Microsoft, BEA, Intalio, Individ-
ual, Adobe Systems, Systinet, Active Endpoints, JBoss, Sterling Commerce, SAP, Deloitte,
TIBCO Software, webMethods, Oracle (2007)

3. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language for
Service Behavior Modeling. In: OTM Conferences (1). pp. 145–162. (2006)

4. van der Aalst, W., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Lan-
guage. In Leymann, F., Reisig, W., Thatte, S.R., van der Aalst, W., eds.: The Role of Business
Processes in Service Oriented Architectures. Number 06291 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl, Germany (2006)

5. Mukherjee, D., Jalote, P., Nanda, M.G.: Determining QoS of WS-BPEL Compositions. In:
ICSOC. pp. 378–393. (2008)

6. Wu, J., Yang, F.: A Model-Driven Approach for QoS Prediction of BPEL Processes. In: ICSOC
Workshops. pp. 131–140. (2006)

7. Buccafurri, F., Meo, P.D., Fugini, M.G., Furnari, R., Goy, A., Lax, G., Lops, P., Modafferi, S.,
Pernici, B., Redavid, D., Semeraro, G., Ursino, D.: Analysis of QoS in Cooperative Services
for Real Time Applications. Data Knowledge Engineering 67(3), pp. 463–484 (2008)

8. Fugini, M.G., Pernici, B., Ramoni, F.: Quality Analysis of Composed Services through Fault
Injection. In: Business Process Management Workshops. pp. 245–256. (2007)

9. Cardoso, J.: About the Data-Flow Complexity of Web Processes. In: 6th International
Workshop on Business Process Modeling, Development, and Support: Business Processes
and Support Systems: Design for Flexibility. pp. 67–74. (2005)

17

10. Cardoso, J.: Complexity analysis of BPEL web processes. Software Process: Improvement
and Practice 12(1), pp. 35–49 (2007)

11. Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on Program-
ming Languages and Systems 15(5), pp. 826–875 (November 1993)

12. Debray, S.K., López-García, P., Hermenegildo, M., Lin, N.W.: Lower Bound Cost Estimation
for Logic Programs. In: 1997 International Logic Programming Symposium, pp. 291–305.
MIT Press, Cambridge, MA (October 1997)

13. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: User-Definable Resource Usage Bounds
Analysis for Java Bytecode. In: Proceedings of the Workshop on Bytecode Semantics, Ver-
ification, Analysis and Transformation (BYTECODE’09). Electronic Notes in Theoretical
Computer Science. Elsevier - North Holland (March 2009)

14. Canfora, G., Penta, M.D., Esposito, R., Villani, M.: An Approach for QoS-Aware Service
Composition Based on Genetic Algorithms. In: GECCO ’05: Proceedings of the 2005 con-
ference on Genetic and evolutionary computation, New York, NY, USA, pp. 1069–1075.
ACM (2005)

15. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Mid-
dleware for Web Services Composition. Software Engineering, IEEE Transactions on 30(5),
pp. 311–327 (May 2004)

16. ping Chen, Y., zhi Li, Z., xue Jin, Q., Wang, C.: Study on QoS Driven Web Services Compo-
sition. In: Frontiers of WWW Research and Development - APWeb 2006. Volume 3841 of
Lecture Notes on Computer Science., pp. 702–707. Springer Verlag (2006)

17. Ivanović, D., Carro, M., Hermenegildo, M., López, P., Mera, E.: Towards Data-Aware Cost-
Driven Adaptation for Service Orchestrations. Technical Report CLIP5/2009.0, Technical
University of Madrid (UPM) (November 2009)

18. Navas, J., Mera, E., López-García, P., Hermenegildo, M.: User-Definable Resource Bounds
Analysis for Logic Programs. In: International Conference on Logic Programming (ICLP).
Volume 4670 of LNCS., pp. 348–363. Springer-Verlag (September 2007)

19. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach to the
Analysis of Object-Oriented Programs. In: 17th International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR 2007). Number 4915 in LNCS, pp. 154–
168. Springer-Verlag (August 2007)

20. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Morales, J., Puebla, G.: An Overview
of The Ciao Multiparadigm Language and Program Development Environment and its
Design Philosophy. In Pierpaolo Degano, Rocco De Nicola, J.M., ed.: Festschrift for Ugo
Montanari. Number 5065 in LNCS. Springer-Verlag (June 2008) pp. 209–237

21. Hermenegildo, M., Puebla, G., Bueno, F., López-García, P.: Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming 58(1–2), pp. 115–140 (October 2005)

22. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F.,
Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process
Execution Language Version 2.0. Technical report, IBM, Microsoft, BEA, Intalio, Individ-
ual, Adobe Systems, Systinet, Active Endpoints, JBoss, Sterling Commerce, SAP, Deloitte,
TIBCO Software, webMethods, Oracle (2007)

18

Configuring End-to-End Business Processes

using Multi-Dimensional QoS Criteria

Qianhui Liang1, Michael Parkin2
Mike Papazoglou2 and Willem-Jan van den Heuvel2

1 School of Information Systems, Singapore Management University

Singapore 178902, Singapore.
althealiang@smu.edu.sg

2 European Research Institute in Service Science,
Tilburg University. Tilburg, Netherlands.

{w.j.a.m.vdnHeuvel, m.p.papazoglou, m.s.parkin}@uvt.nl

Abstract. An important area of services research gathering momentum is the
ability of a service end-user (or client application) to take a generic business
process and configure it according to desired quality of service (QoS)
requirements. These QoS requirements may be manifold and be across different
logical layers of the application, from business-related to system infrastructure;
i.e., they are multidimensional. Configuring the generic process with the ‘best’
services to meet the multidimensional end-to-end QoS requirements of the user
from the many services that may be a functional match is a challenging task.

In this paper we propose a pull- or demand-driven approach where functionally
equivalent services that fit the generic business process are differentiated on the
basis of a variety of “best” or desirable QoS options as the situation demands.
The proposed approach considers the optimal choice of multi-dimensional QoS
variables using on heuristic algorithms that combine simulated annealing and
genetic algorithms and performs an experimental comparison of these
algorithms.

Keywords: Service Selection, Differentiated Services, Multi-dimensional QoS,
End-to-end QoS, Service Level Agreements.

1 Introduction

An important area of services research gathering momentum is the ability of a

service end-user (or client application) to take a generic business process and

configure it according to desired non-functional or quality of service (QoS)

requirements. Generic business processes like this – also referred to as process

skeletons, frameworks, fragments or templates – encapsulate generic know-how about

the structural and operational semantics of a particular business process. Their

generality refers to their capacity to be changed, tailored or parameterized to

enterprise-specific requirements and constraints. By using generic business processes

like this we can speed up the creation of composite processes, enable the evolution of

enterprise-specific solutions and guide the development of specific service

applications by capturing the minimum set of unified concepts, axioms and

relationships within the domain-specific problem. Well-known and widely used

generic process models include those from RosettaNet, eTOM and SCOR, and the

representation of these processes is usually in BPMN, BPEL or other similar notation.

Since the anatomy of a generic business process captures the ‘best practice’ for

achieving a desired business function, its basic structure and behavior are hard-coded

(i.e., requirements for the functional composition and integration of elements of that

process have already been solved). The tailoring of the generic process is usually

performed through configuring the business process with services differentiated by

the qualities of service (QoS) they offer. We call services that provide the same

functional interface but who offer different levels of service (due to different non-

functional characteristics) differentiated services.

Using differentiated services when configuring a generic business process into a

service-based application, or re-configuring an existing service-based application to

meet an agreed SLA, allows the end-user to create/configure the service-based

application according to meet a desired cumulative QoS for the end-to-end business

process. Cumulative QoS signifies a succession of services in possibly different

enterprises is either required to be or is successfully integrated into a service-based

application that meets the required end-to-end, total QoS for the entire process.

The QoS parameters of a differentiated service, either requested, advertised or

agreed (possibly in an Service Level Agreement, or SLA), may be for any logical

level of the service-based application, from the (highest) business-level application

layer to the (lowest) system-level infrastructure. This is depicted in Figure 1, which

illustrates in BPMN a generic end-to-end business process made up of logistics,

payment and billing processes (shown as rounded rectangles with dash-dotted

borders). These processes contain five component services (rounded rectangles with

solid borders) with QoS at two levels of the application: business-related QoS

properties, such as on time delivery deadlines and number of active orders, and

system-related QoS properties, like process cycle times and process throughput.

When a request, advert or agreement for a service contains multi-level QoS like this,

we refer to the QoS as multidimensional QoS.

A natural approach to differentiating services on the basis of a variety of “best”

available or desirable QoS options, either at selection time or when aggregated

services are (re)-configured due to a change in requirements, would be a pull- or

demand-driven environment. In this environment end-to-end services could be

configured or re-configured according to QoS parameters, service preferences and

requirements declared either by the end-user or contained in an agreed SLA. This

introduces a novel approach to demand-driven service selection for service-based

applications where they are tuned to satisfy end-user or SLA requirements while

correlating possibly multiple levels of QoS parameters.

In this paper we propose an approach to treat the on-demand cumulative QoS

service selection and configuration problem as an optimization of a utility function

that takes into account the relevant constraints specified by the user. The proposed

approach considers optimal choice of multi-dimensional QoS variables using the

heuristics of simulated annealing, genetic algorithms and a combination of the two.

!"#$%&'(!)*+%,,-&.

/)%"'%(0"#$%&'(

&*'-!+"'-*&

1%&2(0"#$%&'

&*'-!+"'-*&

3*.-,'-+,(4(15-00-&.

!6"+%(15-0$%&'(

7)2%)

8%&%)"'%(

15-00-&.(

9*+:$%&'"'-*&

1%&2;1< =%+%->%(.**2,

0-+?:0(&*'-!+"'-*&

=%+%->%(.**2,

)%+%-0'(+*&!)$"'-*&

/5").%(/)%2-'(

/")2

/)%"'%(@&>*-+%

1%&2(-&>*-+% =%+%->%(0"#$%&'

&*'-!+"'-*&

)%'"-6%)

0)->"'%

+:,'*$%)

!"#$%&'(%)%*+,-!

A !)*+%,,(+#+6%('-$%

A B-$%*:'(+*:&',

A <:$C%)(*D(+"66,

A B-$%,(*D(-&2->-2:"6(,'%0,

A E"-'F'-$%(C%'G%%&(%>%&',

A B-$%('*(+*$06%'-*&

A !)*+%,,('5)*:.50:'

A HHH

./#01%##'(%)%*+,-!

A 7)2%),("+?&*G6%2.%2

A B-$%('*(,5-00-&.

A <:$C%)(*D(2%6->%)-%,

A <:$C%)(*D()%':)&%2(*)2%),

A <:$C%)(*D(2%D%+'(*)2%),

A <:$C%)(*D(+*$06-"&+%(%>%&',(D*)(":2-'

A 7&('-$%(2%6->%)#(2%"26-&%

A 7&('-$%(0"#$%&'(2%"26-&%

!"#$%&'(<*'-!+"'-*&

Figure 1: Generic Business Process Example showing Multi-level QoS

In particular, the approach proposed in this paper formalizes a method for

optimizing the fitness of an end-to-end service aggregation by representing it as a

function over multiple quality dimensions which could be specified in an SLA

correlated with the provided QoS of all its component services. We also present a

formalization of the constraints associated with QoS parameters and distinguish

between hard and soft constraints.

Structure of this Paper: our framework for how the selection/configuration process

works is described in Section 2; Section 3 comments on related work in this area; the

problem of service selection using differentiated services is formalized in Section 4;

Section 5 presents the algorithms we used to evaluate our approach to service

selection; Section 6 explains a comparative performance and accuracy evaluation of

the algorithms; and, finally, Section 7 presents our conclusions and anticipated future

work in this area.

2 Operational Framework

This section explains the process of an end user configuring or re-configuring a

service-based application from their formulation of a request, and the role of the

request, algorithms and utility values they produce in this process.

Figure 2 shows how a request is processed in pseudo-flowchart notation. Note that

the generic business process and service metadata repository are assumed to exist

before the process starts. If we start with the end-user, which may be an application

reconfiguring an existing service-based application because it is failing to meet the

terms of an agreed SLA, they formulate a declarative request based on a pre-existing

specification of a generic end-to-end business process, as described earlier.

The formulation of such a request involves annotating the generic business process

with the end-users desired end-to-end multidimensional QoS requirements. This

request can be seen as a constraint on all possible combinations of services that are

compatible with the fixed functional composition and integration aspects of the

generic business process.

The end-user can create their QoS request for the configured application using

‘soft’ preferences or ‘hard’ constraints the application must conform to. An example

of a simple QoS preference for the configured system could be that the application

processes the order in the minimum amount of time. Simple examples of individual

constraints for the system could be that when a application receives an order it should

notify the customer before t1 time units have elapsed that the order has been processed

successfully (or not) or that an invoice is sent within t2 time units. Multidimensional

QoS requests contain multiple constraints and/or preferences, such as the generic

business process is configured to process at least 100 messages/sec (a system level

constraint), process orders at a rate of least 250 orders/hour with maximally 10

defective others (both business level constraints) and/or the application should be

configured with services that provide the highest amount of bandwidth possible with

the lowest associated processing time and overall cost (system and business level

preferences).

The completed multidimensional QoS request is passed to the quality measure

algorithm or algorithms to compute the utility value of the request (as shown in the

upper path in Figure 2). We use the concept of utility value, or the “measure of the

total perceived value resulting from an outcome” 1 , as it allows us to reduce

multidimensional QoS criteria to a single comparable value. Note the utility value is

opaque to the end-user; it has no meaning other than it can be used as a means for

comparing service configurations.

In parallel with the calculation of the desired utility value, the same request is used

to produce a set of utility values for all possible functionally correct permutations of

services using service QoS metadata, which could be stored in a UDDI repository or

similar service. (This is shown in the lower path in Figure 2.) The resulting set of

utility values is then processed and calibrated to determine the optimal matching set

of cumulative QoS to the utility value of the request (note that there may not be an

1 Oxford University Dictionary of Mathematics, Clapham & Nicholson, 2006

exact match, in this case the closest match will be used). The outcome of our

approach thus entails a set of QoS levels for the differentiated services in the end-to-

end process. In this way an existing service-based application may be (re-)configured

with the end-user’s desired (or closest possible to the desired) cumulative QoS

properties.

Figure 2: Operational Framework for Configuring a

Service-Based Application from an End-User Request

3 Related Work

Recently, research into the non-functional properties of (Web) services has been a

focus for the service science community. This has led to the creation of standards,

such as WS-Agreement [1], which allows the expression of a service’s non-functional

QoS, and an SLA to be agreed on the basis of these advertised details.

However, WS-Agreement does not solve the problem of finding a correct match

for the user’s requirements and a significant amount of work has taken place, mainly

in the semantic community, to develop ontologies and languages as models for

expressing and/or selecting a service’s QoS. An example of this approach is described

in [2].

Research effort has also taken place into considering a user’s satisfaction level with

a service and related business objectives in the form of a global utility function used

in the process of service discovery or composition. In both [2] and [3] possible

representations of the quality measure for a service aggregation (or request for an

aggregation) using Multi-attribute Utility Theory (MAUT) are studied. However,

neither [2] nor [3] address possible heuristics for improving the performance of

service selection with a proposed representation or model such as a generic business

process.

The algorithms we chose to optimize the problem of on-demand cumulative QoS

service selection and configuration problem (described in Section 5) have found

applications in many other domains. For example, simulated annealing has been used

in scenarios from test-data generation [4] to software clustering [5]. Genetic

algorithms have also had widespread use in areas from economics to software

engineering [6].

Since the generic business process/service-based application approach allows

systems to be built by integrating reusable components in an automatic manner, a

significant factor here is the speed of service selection based on multiple QoS

attributes. Little research has been carried out into this area when considering a large

search space (i.e., where there are many functionally compatible services for each step

in the generic business process) and [7], [8] and [9] only search for individual QoS

attributes where our work searches across many multidimensional QoS attributes.

Generality and variability in software systems has attracted much attention in the

domain of Domain Models and Product Line Architectures (PLAs) [10]. Product line

architectures constitute a special type of generic business process models that define a

group of common products that share a similar set of characteristics within a specific

market, e.g., the telecom or the transportation market [11]. In particular [12] describes

an algebraic approach to derive products from product lines, similarly to how we

would like to form service-based applications from service instances. However, work

in that area concentrates solely on product assembly using the functional

characteristics of product lines. Our work has a different focus as it concentrates on

multidimensional non-functional aspects, rather than the single dimension of

functional compatibility.

4 Problem Formalization

As described in the introduction, the objective of this research is to satisfy the

preferences and constraints of the users when configuring (or re-configuring) a

service-based application. In this section, we look at our formalization of the problem

of service selection for such systems. The formalization is centered on the non-

functional aspects of the system and we model both (soft) preferences and (hard)

constraints to maximize the usefulness of the system to its users.

The optimum solution of the problem – i.e., the “best” match to the preferences

and constraints of the end-user – is evaluated through a utility function, following the

approach described earlier. The value of our utility function is calculated by summing

the weighted dimensional utilities contributed by each dimension of each service,

which are calculated using the quality measures of the services along a particular

dimension.

First, let Q, D, S and T be non-empty sets of normalized quality levels in any

service quality dimension, quality dimensions being considered, services available

and tasks for the service-based application. Let (1) denote the range of the function on

services, where s[D] is the set of quality measures s of the quality dimensions D, and

let (2) signify a function that assigns a dimensional quality measure qs,d ! Q to each

quality dimension d ! D for each service s ! S and all its calls. If p is a partition of

tasks such that p " T, then the overall utility, Vb, of the proposed service-based

application using binding2 b is given by (3), where b(p) is given in (4).

From (3), we can see the overall utility is determined by three factors; the

dimensional quality measures of services and their calls (qs,d), how they affect the
dimensional utility of that dimension (fd), and their weightings (wd). We now discuss
qs,d and fd in more detail.

4.1 Quality Measures

qd,s, the quality measure of services and their calls, is calculated using cd,s, a one-

time, fixed initialization or registration cost associated to the called service, and kt,d,s,

a floating cost associated with the service call made by a generic business process

component service to another component service. We can identify two cases where

qd,s takes different forms:

Totally Ordered Quality Dimensions: for totally order quality dimensions, like

time and money, qd,s is obtained by summing the costs of all calls specified in the

binding plus the one-time cost associated to the called service. kt,d,s is calculated as a

sum of the associated service calls made by every task that uses the corresponding
service (t ! T, s ! b(p).t, p ! P). In this case, qd,s takes the form shown in (5), with !

allowing the same quality dimension to be normalized across all different services.

QoS-like Dimensions: we model these by summing the qualities of each
selected task-service match, as shown in (6). Here computes the
quality measure by taking into account two measures: the first is the value of kt,d,s
associated with the service call made by one of the tasks that use the
corresponding service (t ! T, s ! b(p).t, p ! P); the second is the measure cd,s

associated with the service. As is usual, we assume that is a polynomial-

complexity function.

2 A binding is defined as an assignment of one or more services to a task partition, according to

 (1)

 (2)

(3)

 (4)

 (5)

To give an example of how these quality measures work within the operational

framework, if we consider the network bandwidth quality dimension of a service, the

bandwidth is constrained by the total bandwidth of the server’s network interface and

the bandwidth of network at the client side. In this case, qs,d is the minimum of the

bandwidth quality of the server and the end-user invoking the service.

5 Algorithms

In this section we present three algorithms to select service implementations that

best satisfy an end-users non-functional requirements. In these algorithms we assume

the following:

• A representation exists for the service-based application to be built,

including a description of the tasks the application must perform and their

structural relationships;

• The necessary services to create the service-based application exist for

the generic business process and are available;

• We know the QoS preferences and constraints of the end user to be

satisfied.

With respect to their operation, each of the algorithms returns the collection of

services as a binding that can be used to form a system of a heuristically good (large)

enough utility to its users.

5.1 Simulated Annealing

Simulated annealing (SA) is the name for a class of algorithms that can be used to

find the global minimum or maximum of a function in a large, multidimensional

search space. We use an SA algorithm to perform a search in the set of bindings in

order to find a binding with the largest utility.

For reasons of space we do not describe the full details of the simulated annealing

approach here, for more information on the SA algorithm the interested reader is

directed to [13]. Much of our SA algorithm remains unchanged from that in [13],

however some problem-specific considerations we have taken into account include

the representation of the solution space, how local moves (from one binding to

another where the assignment to one task in the original binding is switched) are

performed, and the formalization of “best” solution (these are described in Section 4).

As an optimization we also preprocess the service metadata to remove services

instances from the search that have low average quality values or violate any of the

the service constraints. An alternative definition is that a binding is a “best” match between a
end-user requested QoS for a set of tasks and a QoS advertised by a service.

 (6)

constraints. The remaining services are passed to the SA algorithm. When the

algorithm completes, it outputs the best utility value and its associated binding (the

configured service-based application configuration) for the given request.

5.2 Genetic Algorithm

The second algorithm we present is a Genetic Algorithm (GA). As with the simulated

annealing algorithm, much of our implementation is standard and we do not present it

in detail; the interested reader is directed to [14] for a full treatment. However, within

this genetic algorithm our contribution is to use a context free grammar (CFG) to

represent the set of tasks and control structures in the service composition to encode

the genome.

We designed a CFG so we can represent the tasks and control tasks as a string,

similarly to how a genetic sequence is encoded. If t1, t2, …, ti, tj denote tasks in the

task set, we can represent the control structures in BPEL as terminal characters:

• Q : <sequence>

• I : <if>

• L : <elseif>

• E : <else>

• R : <repeatUntil>

• W : <while>

• F : <flow>

• P : <pick>

We also define A and O to represent logical “and” and “or” operators, and C, r and s

to represent constant values, relational operators and the starting value of the

algorithm. Assuming the rules of the grammar are as shown in (7) and Q, I, L, E, R,

W, F, P, A, O, C, r, tn, <, >, !, " are terminal symbols and e, cn, l, r, o and s are non-

terminal symbols.

The third rule from the bottom tells that the condition of enacting a task may be

recursively determined by logical combinations of a task satisfying certain Boolean

relations with a constant. This rule affects the conditional structure of <if>, <elseif>,

<else>, <repeatUtil>, <while> and <pick>, as shown in the second and fourth rule.

The second rule tells that a system can be configured for a) a single task, b)

recursively connecting tasks connected by sequential and parallel structures or c)

connecting a conditional expression and a task.

The fitness of the generation is defined to be the utility function value of the

individual service minus a penalty for any unsuitable QoS factors. It is shown in (8).

(7)

 (8)

dcd,",i the amount that the individual exceeds the upper or lower bound specified in

ith constraint, where i is the index to the constraint. Rmax and Rmin are the upper and

lower bounds of the constraint. g is the index to the current genome generation and

gmax is the maximum number of generations allowed. wg can be used to adjust the

weighting of the penalty. The penalty is determined by two factors: where the current

generation is in the evolution process and the amount of the ‘negative’ impact on the

service’s utility due to its unsuitability. Early in the genome’s evolution, g/gmax is

small and a smaller penalty will apply due to the native impact of the unsuitable

subpopulation. Later in the evolution process, g/gmax increases and a greater penalty

will be given due to the unsuitability. If the unsuitability of a service is only a small

amount over the threshold or the unsuitability is caused by a violation of one or a

small number of constraints, the penalty is relatively small.

5.3 Hybrid Algorithm

The hybrid algorithm appends a simulated annealing algorithm to the end of the

genetic algorithm. In this scenario, the simulated annealing algorithm attempts to

locate (local) optima based on the result from the final population in the genetic

algorithm. The purpose of such hybrid is to get the best of both worlds – i.e., the

accuracy of the genetic algorithm with the performance of the simulated annealing.

In the algorithm, the variables and their significance are explained in Table 1 and

the pseudocode for the hybrid algorithm presented in Figure 3.

Table 1: Variables used in the hybrid algorithm

Variable Explanation

Fitness A function that assigns a fitness score to a binding.

n The number of individuals in a population

R_C The threshold rate of the population individuals to apply crossover operation

R_M The number of individuals to apply mutation operation

Max_G The maximum number of generations allowed

Max_I
The maximum number of iterations allowed for hill climbing in the last

population

Max_R The number of reselections allowed for selecting a task partition for local move

6 Experimental Verification

This section describes the performance results of a comparison of implementations

of the three algorithms from Section 5. All experiments were performed on a

Windows XP PC with 512MB of RAM and a 2.86GHz Pentium P4 processor. The

algorithms used in the experiments were written using the Sun’s Java 6.

Before describing the experiment and its results the notation used in the analysis is

shown in Table 2. Most of the symbols have an intuitive meaning, but PH needs more

explanation since it is the number of possible execution paths in the generic business

process due to conditional branching. As a simplifying assumption for our initial

experiments, when a conditional branch appears in a generic business process we

assume an equal probability in taking any branch.

1: for each part p in task
partition P do {

2: With the most recent

knowledge, remove the

assignments that cannot be

part of the result to be

output

3: Generate n bindings
randomly and put them in G;

4: }
5: F*b = 0
6: for each binding b in G do {
7: Calculate Fb
8: If Fb > F*, F* = Fb;
9: }

10: for i=1 to Max_G do {
11: Probabilistically select (1

- R_C) bindings in G with a

probability of Fi/!k=1,n Fk

for the jth binding and add

them to Gnew

12: Probabilistically select

(R_C * n/2) pairs of

individuals from G and

produce two children from

each pair by applying the

crossover operator

13: Add all offspring to Gnew;

14: Randomly select (R_M * n)

bindings in Gnew and apply

the mutation operator;

15: G = Gnew;

16: for each b in G do {

17: L1:

18: Calculate Vb
19: V** = (V* = Vb)
20: }
21: }
22: for i=1 to Max_I do {

23: j=0;
24: L2:
25: Select one part p in P

randomly

26: Randomly select another

service S’ for p such

that <S’, p> ! M

27: Swap service assignment

S of tasks in p within b

with S’ and form b’

28: if b’ is feasible {
29: Compute Vb’
30: if Vb’ " V* {
31: if exp(Vb’–V*)/Tc >

rand(0,1) {

32: goto L3;
33: }
34: else {
35: L3:
36: V* = Vb’ and b = b’
37: }
38: }
39: else {
40: r = rand(0,1)
41: if (r < Rate) goto L3
42: }
43: i++
44: }
45: if (tc > Tn) {
46: tc *= coolingRate;
47: i=1
48: goto L2
49: }
50: if V* > V** {
51: V** = V* and b** = b*
52: }
53: Remove b from G
54: if G is not empty goto L1
55: Return binding b** and V

Figure 3: Pseudocode for the hybrid algorithm

Table 2: Symbols used in analysis of experiment results

Symbols Meaning

AV The average utility value of all the experiment runs for a particular

problem instance

N The number of component services in the end-to-end process

PH The total number of total execution paths in the end-to-end process

S The total number of service implementations matching the functional

request

T The average completion time (ms) for the algorithm

V The maximum utility value of all the experiment runs for a particular

problem instance

Table 3: Initial settings for each algorithm

Parameter Simulated Annealing (SA) Genetic Algorithm (GA)

Cooling rate 0.99 0.9

T0 100 10

Tn 1000 100

Rate 0.3 0.03

Max-iteration 10 10

Table 4: QoS constraints considered

To investigate the performance and accuracy of the simulated annealing and

genetic algorithms, our first experiment was to find the time to select the “best”

services for a requested configuration of the generic business process shown in Figure

1 from a set of functionally compatible services. The end-user request used in the

experiment was to configure the generic business process with the highest bandwidth

possible with the lowest associated processing time and cost. For the example shown

in Figure 1, the starting values for the algorithms were as shown in Table 3. The value

of S for this example is 5 (as there are five component services) and PH is 3 (as there

are three possible execution paths).

The calculation of the utility value for each functionally correct combination of

services is performed along the following dimensions; the minimum time, the

minimum time and cost and the minimum time and cost but highest bandwidth. These

QoS constraints are shown in Table 4. We investigated two cases where, for each

component service of the generic business process, the “best” service is chosen from

either five or ten service instances constrained by the QoS in Table 4. Table 5 shows

the results. In these results a higher value of utility here means the algorithm is more

accurate in finding the minimum/maximum preferences of the user. As can be seen,

we found the simulated annealing to be quicker than the genetic algorithm in both

cases. However, the genetic algorithm yields a higher (better) utility than simulated

annealing in both cases.

Dimensions A B C

Constraints Time Time+Cost Bandwith+Time+Cost

Table 5: Performance and accuracy with various numbers of services for 5 tasks

T V
N PH S

SA GA SA GA

5 3 5 24 33 8362 8998

5 3 10 1479 3726 5329 7380

To study the performance of the hybrid algorithm with respect to the simulated

annealing and genetic algorithms, we performed further comparison experiments in

more realistic settings that exhibit more complexity. These experiments used the same

QoS constraints as before, but instead of using the generic business process example

from Figure 1, we created datasets representing generic business processes as input to

the algorithms with each dataset containing different (random) numbers of component

services and conditional branches but with a constant number of services instances to

select the “best” from.

To compare the performance of the hybrid algorithm we calculated the ratio of the

time required to finish the simulated annealing and genetic algorithms and the hybrid

of the two. Tables 6 and 7 show the results of our comparison and show the ratio of

the corresponding results of two algorithms calculated using the running time, T,

maximum utility, V, and average utility, AV (calculated over 10 iterations of the

algorithms).

In general, we found that the hybrid of the simulated annealing and genetic

algorithms improved the utility value (i.e., the accuracy) and the hybrid finds the

utility value faster than the genetic algorithm. Of course, we found several abnormal

cases in our experiments; for example, with for 8 tasks and 81 functional matches (not

shown in these results) the time to complete the hybrid is more than that of the genetic

algorithm, but the hybrid’s utility value is much smaller (i.e., less accurate) than the

genetic algorithm’s value.

Table 6: Average result comparisons on time, utility

Ratio T Ratio V Ratio A
N PH S

HA/SA HA/GA HA/SA HA/GA HA/SA HA/GA

5 384 5 1.21 0.88 1.07 1.00 1.24 0.94

6 90 5 1.09 0.91 1.59 1.03 1.41 1.01

7 108 5 1.09 0.91 0.99 1.11 1.03 1.11

8 960 5 1.11 0.85 1.02 1.02 1.07 1.01

9 270 5 1.44 0.80 1.01 1.00 1.01 0.97

10 786 5 1.39 0.74 1.00 1.00 1.22 1.01

Table 7: Average result comparisons on time, utility

Ratio T Ratio V Ratio A
N PH S

HA/SA HA/GA HA/SA HA/GA HA/SA HA/GA

5 39200 10 1.77 0.75 1.42 1.05 1.38 1.02
6 504 10 1.05 0.82 1.54 0.94 1.71 0.91
7 65856 10 1.68 0.88 1.07 0.97 0.95 1.03
8 81 10 1.94 1.02 1.41 0.86 1.02 0.93
9 60 10 5.59 0.78 1.00 1.00 1.10 0.96

10 720 10 76.30 0.47 1.04 1.11 1.51 0.86

To surmise our results, our experiments have shown that, for our experimental

configuration and choice of parameters, the genetic algorithm is substantially more

accurate than the simulation algorithm, although it takes longer to achieve this

accuracy. The simulated annealing algorithm is faster, but has a much lower accuracy

than the genetic algorithm. The hybrid algorithm using the genetic and simulated

annealing algorithms shows the trade-off in performance and accuracy; it achieves

accuracy higher than running the simulated annealing algorithm by itself, yet has only

a small improvement in accuracy over that of running the genetic algorithm. The

results of the hybrid are understandable because genetic algorithm plays the more

significant role in the hybrid and, thus, the final result tends to the results of that

genetic algorithm. Regarding execution time, the hybrid is slightly more expensive

than both the simulated annealing and genetic algorithms.

7 Conclusions & Future Work

The ability of a service end-user to take a generic business process and configure it

according to desired quality of service (QoS) requirements constitutes an important

and challenging problem for services research. This paper presents a demand-driven

operational framework where users are enabled to configure generic business

processes and generate customized or differentiated services that are parameterized in

terms of multidimensional QoS information. This is a novel approach that goes well

beyond conventional approaches to configuring generic business processes according

to purely functional characteristics.

The proposed approach is based on a twin-track procedure where utility value is
calculated for any given user request and is compared with a large number of
potentially matching business processes that may satisfy the stated QoS requirements.
The approach is based on optimization techniques that operate on the fusion of two

proven algorithms (a simulated annealing algorithm, a genetic algorithm). The

approach has been explored and validated by an initial experimental implementation,

which will be fine-tuned and extended in the future and in particular will deal with

probabilistic data about execution paths which can be gathered from event logs.

This approach is generic in nature in that it applies equally well to different levels of

process granularity, for example, business processes within end-to-end aggregations,

component services within individual business processes, or even to activities within

component services.

The results in this paper are preliminary in nature and refinements and extensions are

needed in several directions. Initially, we wish to further validate our approach with

additional experiments to further calibrate the initial parameters of and the weights

attached to the simulated annealing and genetic algorithms in the hybrid algorithm.

Following this, we intend to develop a prototypical toolset to provide integrated

support all constituents of the operational framework we have outlined, and enable the

end-user to configure their generic business processes to optimally suit the problem at

hand.

References

1. A. Andrieux et. al. Web Services Agreement Specification (WS-Agreement).

Recommended Standard, Open Grid Forum, March 2007. Grid Resource Allocation

Agreement Protocol Working Group (GRAAP-WG).

2. Q. Liang, JY Chung, and S. Miller, “Modeling Semantics in Composite Web Service

Requests by Utility Elicitation”, Knowledge and Information Systems (KAIS) Journal,

2007.

3. Y.J. Seo, H.Y. Jeong, Y.J. Song, “A Study on Web Services Selection Method Based on the

Negotiation Through Quality Broker: A MAUT-based Approach”, ICESS 2004: 65-73.

4. N. Tracey, J. Clark, and K. Mander, “Automated Program Flaw Finding Using Simulated

Annealing”, Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA'98), March 1998.

5. Y. Zhang, M. Harman, and S. A. Mansouri, "The Multi-Objective Next Release Problem",

Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation

(GECCO'07), 2007.

6. J. J. Dolado, “A Validation of the Component-Based Method for Software Size

Estimation”, IEEE Engineering, 26(10):1006–1021, 2000.

7. P. A. Bonatti, P. Festa, “On Optimal Service Selection”, Proceedings of 14th International

Conference on the World Wide Web, 2005.

8. R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz, “Heuristics for QoS-

aware Web Service Composition”, In Proceedings of the IEEE Conference on Web

Services, 2006.

9. D. Menasce, E. Casalicchio, V. Dubey, “A Heuristic Approach to Optimal Service

Selection in Service-Oriented Architectures”, 7th ACM Int. Workshop on Software and

Performance (WOSP 2008). June 2008.

10. L. Trat, “The MT model transformation language”, Proceedings of SAC’06, ACM, 2006

11. S. Sendall and W. Kozaczynski, "Model Transformation - the Heart and Soul of Model-

driven Software Development", IEEE Software, 20(5) pp. 42-45, Sept/Oct 2003

12. A.W. Scheer, “ARIS- Business Process Frameworks”, Springer, Third Edition, 1999

13. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated Annealing”,

Science 220, pp 671-680. 1983.

14. M. Mitchell, “An Introduction to Genetic Algorithms”, The MIT Press. ISBN 0262631857,

1998.

A C M M I Based Configuration M anagement F ramework to M anage the Quality of Service Based
Applications

Sajid Ibrahim Hashmi, Stephen Lane, Dimka Karastoyanova
1
, and Ita Richardson

Lero The Irish Software Engineering Research Centre

University of Limerick, Ireland

{sajid.hashmi, stephen.lane, ita.richardson }@lero.ie

IAAS, University of Stuttgart, Germany
1

dimka.karastoyanova@iaas.uni-stuttgart.de
1

Abstract
Service Based Applications (SBAs) have highlighted new challenges related to Configuration Management (CM)

which is an important process for the assurance of end to end quality in software systems [1]. As far as the quality of

SBAs is concerned, configuration management remains an issue because of the loosely coupled and adaptive nature

of the corresponding applications. A smart configuration management approach will allow organizations to make

their IT resources more reliable and to utilize them to their maximum. In this paper, we propose a service-based

configuration management framework based on SEI-CMMI-SVC [6] which contributes to the S-Cube project

[reference] Implementing this approach will allow organisations to effectively manage the configurations of their

SBAs.

K eywords: Service Oriented Architecture, SBAs (Service Based Applications), Configuration Management (CM),

Quality Assurance, CMMI (Capability Maturity Model Integration)

1 Introduction
ecial

effort in terms of integration. Developers of such applications need to pay special attention to configuration in order

to ensure smooth operation. Managing the overall configuration of an IT system is important as the Enterprise

Management Associates has noted that 60 percent of service impacts are due to configuration problems [1]. There

are many issues related with poor Configuration Management (CM) of software configurations; such as system

related failures, failure of key services, deficiency in performance, reduction in employee productivity, all of which

consequently can cause serious business impact. These are some recommendations for efficient CM [2]:

1. Control configuration items and the way they change.

2. Use technology to help discover, record, and maintain configuration information.

3. Configuration management implementation must enable change, release, and problem management.

In service-oriented environments the heterogeneity of resources is dealt by virtue of providing any kind of

functionality or resource as a service with a stable interface. However this does not completely remove the need for

configuration of the resources, which has to be performed by any service provider of an SBA. The configuration of

service implementations and resources must therefore comply with the global requirements of the SBA and must be

met at the site of each of the distributed pieces of software. Any kind of local configuration management has

implications on the service quality and functional properties, which can have undesirable consequences.

1.1 I T Infrastructure
Organizations have business processes in place in order to meet their objectives; e.g. sales, administration, and

s one or

more services (e.g. application softwares or utilities). These services run on IT infrastructure which includes both

hardware and software, therefore it must be managed accordingly to meet organizational objectives [3]. Proper

management of IT infrastructure will ensure that the required services by business processes are available. CM is

part of this IT infrastructure which consists of procedures, policies, and documentation.

.

F ig. 1 I T Service Management

1.2 Software Quality Assurance
Software quality assurance is about identifying the right things to implement and test, and allocating and managing

resources in a way that minimizes risks when applications and services are deployed [4]. There are two types of

quality assurance activities: constructive and analytic quality assurance. As the name suggests the purpose of the

first one is to prevent fault injection while artifacts are created whereas the other one deals with cleaning artifacts

after they have been developed. In this research we aim to support constructive quality assurance because rework

often increases the associated cost and overhead of a software project.

CM is a quality enabling process which provides a logical view of services by identifying, maintaining, and

verifying the versions as well as the corresponding configuration items [2]. The objective of this research is to

create a CM framework that can contribute to the end-to-end quality assurance of SBAs. While there are many ways

to assure the quality of a software system, such as software testing, the use of CASE tools or the implementation of

software development best practices and process implementation, the CM process was chosen because having the

configurations of SBAs effectively managed would go a long way towards assuring their quality. In terms of end to

end quality, a CM process would allow developers more accurately develop and update the correct versions of

services. SBAs or other service consumers would also benefit from CM as they would see a new version numbers

when services get updated, this would then allow them to react to updates if necessary. A CM process for services or

SBAs would need to have some proactive element to inform consumers of new versions to prevent downstream

incompatibilities.

2 Background

2.1 S Cube
The objective of the S-Cube project is to create an integrated European research community in the area of software

and service engineering. It is based on an ideology that the engineering and management of SBAs is quite different

than traditional software applications as they are built by combining different services which may be provided by

third parties with whom there should be a service level agreement.

 Adaptation Evolution

Construction

Requirements

Engineering and

Design

Deployment &

Provisioning

Operation &

Management

Identify Adaptation

Needs

Identify Adaptation

Strategy

Enact Adaptation

I.T Service

Provision Business Processes

Organizational

Objectives

Service

Management

F ig. 2 S-Cube Reference L ife Cycle [10]

Figure 2 describes a reference lifecycle for SBAs which has been proposed by the S-Cube project [10]. It is

composed of two main cycles: the evolution cycle depicts classical application design; i.e. requirements engineering,

design, coding, and deployment while the adaptation cycle reflects the adaptation of SBAs. SBAs need to

accommodate many changes at run time and this two cycle approach allows a good balance between the design and

runtime operation. The operation and management phase belongs to both phases. Therefore, it must be efficient and

precise enough to meet the transition needs of the entire life cycle. By improving the CM process within operations

and Management, we aim to strengthen the entire life cycle of S-Cube.

2.2 Configuration M anagement
Software Configuration Management (SCM) is a Software Quality Assurance (SQA) process for managing different

configurations of configurable software items. (Galin, 2003). Many items change during a software products lifetime

and it is important to keep track of these changes for a number of important reasons. One reason for a good

configuration management process is to facilitate customer support. Customers may have different software versions

so it is important to know which version each customer is using in order to support them effectively. For customers

support queries it may be necessary to easily access various version of source code, design documents or support

documentation.

In component based development (CBD) software applications can be made up from several standalone components

[12]. In CBD, it is important to record the version of each component included in each application release. If the

versions of the components are changed then the version of the overall application should subsequently change. It is

important for software developers to record configuration changes in order to facilitate the quality assurance of the

entire software system. In traditional software systems configuration management can be achieved successfully if a

suitable process guideline or standard is followed. Once such standard for this area is IEEE 828:2005, the IEEE

standard for software configuration management plans [13 14] guide to

software configuration management can be followed.

2.3 C M M I-SV C

Capability Maturity Model Integration (CMMI) [5] models are a collection of best practices that help organizations

to improve their processes. This process improvement can be implemented by means of either Continuous or Staged

representations of CMMI. Continuous representation allows organizations to select a specific process area and

organization to earn a process maturity level when all the related process areas have been successfully implemented.

CMMI - SVC [6] is a CMMI assemblage that covers the activities designed to manage, establish, and deliver

services. It has been designed for service industry as a process improvement framework and its goals and practices

are relevant to any organization concerned with delivery of service. CMMI SVC includes 25 process areas split by

4 process categories. We make use of Expert Judgement [11] to utilize only those process areas and subsequent

practices which can support CM practices. We have opted for continuous representation of CMMI since our goal is

to improve the CM process instead of achieving a maturity level for the organizations; also this representation

allows more flexibility when using the model.

3 Research Methodology
We propose a CM framework specifically designed with the adaptation of SBAs in mind. The starting point for this

framework is the textbook description of the CM process as outlined in Galin [7]. This process description was

designed for traditional software development and has many deficiencies in relation to service-oriented

action items. Therefore, in order to solve this problem, practices from the CM and other supporting process areas

within CMMI- It is worth considering whether

or not to use the CMMI-SVC CM process area directly rather than using parts of it as an add-

process. However, since CMMI-SVC is targeted at general services and not specifically at Service-Oriented

Computing (SOC) or even software, all of its practices are not directly applicable to SOC. Therefore a suitable

methodology was to use the skeleton of a Traditional Software Engineering (TSE) CM process and supplement it

with software applicable practices from CMMI-SVC.

Figure 3 shows the configuration management activities identified by Galin [7], which form the starting point for

our proposed CM framework. Four levels of CM activities are defined which further contains set of certain action

items.

 Software

Change

Control
Grant Approval for Changes

Control and Assure Quality of Approved Changes

Document the Approved Changes

Mechanism to Prevent Simultaneous Changes in the

same Configuration Item

Release of

Configuration

Items &

Configuration

Versions

Approval release of new versions

Document the configuration of each released software

configuration version

Document the sites where software configuration

versions are installed

Secure the version source and documentation files

Provision of

Software

Configuration

Information

Services
Grant Approval for Changes

Control and Assure Quality of Approved Changes

Document the Approved Changes

Mechanism to Prevent Simultaneous Changes in the

same Configuration Item

Verification of

Compliance to

Software

Configuration

Procedures
Grant Approval for Changes

Control and Assure Quality of Approved Changes

Document the Approved Changes

Mechanism to Prevent Simultaneous Changes in the

same Configuration Item

F ig. 3 Configuration Management Activities [Galin]

3.1 Research Results

The Operations and Management phase is extended by us to accommodate the CM activities in it (refer to Figure

No. 4). We aim to strengthen the entire life cycle of S-Cube by improving the CM process within this phase. As part

of our research methodology, we identify the CM activities and all the corresponding action items in them. For each

action item, we find corresponding CMMI-SVC practices within its process areas which can support the

implementation of these actions items. This one by one mapping of CM supporting action items with relevant

CMMI -

3.2 The F ramework
In order to implement the four activities: Software Change Control, Release of Configuration Items (CI) and

Software Configuration Versions, Provision of CM Information Services, and Verification of Compliance to SCM

Procedures we map them against a set of CMMI process areas and practices in Tables 2 to 5. Some of the process

areas we map are from CMMI which is the basis for CMMI-SVC. Since services are also software applications,

CMMI practices are also appropriate. In our mapping, a process area or practice may be used multiple times to

implement different CM activities. Table 1 illustrates the first level of our framework; it displays the mapping

between the action items for Software Change Control and appropriate practices from CMMI-SVC and CMMI.

Action Items (from Galin) Relevant C M M I SV C
Process A reas

Cor responding C M M I Practices

Grant Approval for Changes Service System Transition

 Analyze Service System Transition

Needs (SP 1.1)

 Prepare Stakeholders for Changes

(SP 1.3)

 Strategic Service

Management

 Gather and Analyze Relevant Data

(SP 1.1)

 Configuration Management

 Requirements Management

 Establish change management

system (SP1.2)

 Manage Requirements Changes (SP

1.3)

 Maintain Bidirectional Requirement

Traceability

(SP 1.4)

 Identify Inconsistencies between

Project and Requirements (SP 1.5)

Control and Assure Quality of

Approved Changes
 Process and Product Quality

Assurance

 Objectively Evaluate Processes (SP

1.1)

 Objectively Evaluate Work Products

(SP 1.2)

 Resolution of Non-compliance

Issues (SP 2.1)

 Establish Records (SP 2.2)

Document the Approved

Changes

 Configuration Management Establish CM Records

(SP 3.1)

 Perform Configuration Audits (SP

3.2)

Mechanism to Prevent

simultaneous changes in the same

SCI by more than one team

 Configuration Management Track Change Requests (SP 2.1)

 Control Configuration Items (SP 2.2)

Table 1. Software Change Control

The first CM activity in the framework we have put forward is software change control. This is an important activity

which ensures changes to software systems are carried out with appropriate levels of governance. This prevents

unappropriated or unsafe changes form being made without approval; and this becomes particularly important in

SOC where changes to services may affect many downstream SBAs. In order to implement the action items of this

activity suitable practices were taken from the Configuration Management, Requirements Engineering, and Process

and Product Quality Assurance process areas of CMMI-SVC and CMMI. The Configuration Management and

Requirements Engineering processes areas provided practices for the steps required to implement software change

control, while the Process and Product Quality Assurance process area provided practices for quality assurance

during this process. The following are descriptions of the practices within these process areas can support the CM

process.

1. Analyze Service System Transition Needs is a practice used to to analyse the functionality of current and the

future service system, so that transition related issues can be identified and addressed.

2. Prepare Stakeholders for Changes prepares all the stakeholders to embrace change to avoid impairment of

service system transition.

3. Establishing Change Management System involves creating a change management system that includes

storage media, procedures, and tools for recording and accessing change requests. Grant for approval

should only be allowed when there is a procedure already laid down to accommodate the change.

4. Manage Requirement Changes analyzes the impact of changes, it is important to manage these additions

and modifications accordingly.

5. Maintain Bidirectional Requirement Traceability ensures that all desired changes have been completely

addressed. Requirement traceability also helps to maintain relationship between work products, design, and

test plans.

6. Identify Inconsistencies between Project and Requirements helps to identify any inconsistency in case part

or whole of the requirements are in collision with project plan and/or work products.

7. Objectively Evaluate Processes helps finding out the gaps between actual and performed software

processes; this information helps to identify if there are going to be any gaps associated with development

of new versions.
8. Resolution of Non-compliance Issues: is used while evaluating existing configuration items, those features

or requirements in the upcoming release can be identified which are not adherent to process, description,

procedures, or applicable standards.

9. Establish Records requires the maintenance of records for quality assurance reports, corrective actions, and

evaluation logs certainly helps during forthcoming releases to take benefit from.
10. Establish CM Records helps to remain integrity because separate record keeping of each configuration item

helps to recover previous versions which assist in identifying any kind of anomaly between current and

potential application baselines.

11. Perform Configuration Audits confirms that the resulting baseline would conform to existing standards.

12. Track Change Requests can be helpful because you can identify the corresponding effect a change or a new

requirement may have. It can also help you to identify a feasible set of requirements in the forth coming

baseline.

13. Control Configuration Items ensures that only those configuration items are in the baseline which is

necessarily approved.

The second activity in the framework as illustrated in Table 3 is the release of software configuration items and

software configuration versions. When new software versions are released it is important to record version details

and where versions are installed. This information is needed to assist with trouble shooting and diagnosing software

errors. With regard to services, the recording of installation sites is not usually an issue as they are usually installed

in one location with multiple applications accessing the same services. The release of software configuration items

and software versions have different implications depending on whether services or SBAs are being considered.

When new versions of services are released it is important to have access to details of previous versions in the event

that they need to be reverted to a previous version. This may be necessary of there is an incompatibility issue with a

service consumer. As an alternative to reverting back to a previous version it may be necessary to publish multiple

versions of the same service concurrently to satisfy all service consumers. When SBAs are considered a new

application version may be released by adding services or removing services from an existing SBA. Similarly an

SBA may get a new version if its component services are updated to a new version number. In either of these cases

it is important to record configuration details and document version releases after releases have been approved. The

documentation and source code for each release is and important resource for support and quality assurance

activities. This activity can be achieved in SOC using practices form CMMI-SVC activities such as Configuration

Management, Project Monitoring & Control, and Process and Product Quality Assurance.

Action Items (from Galin) Relevant C M M I SV C Process
A rea (s)

Cor responding C M M I Practice(s)

Approval release of new

versions
 Configuration Management

 Project Monitoring & Control

 Control Configuration Items (SP

2.2)

 Monitor Commitments

(SP 1.2)

 Conduct Progress Reviews

(SP 1.6)

 Conduct Milestone Reviews

(SP 1.7)

 Analyze Issues (SP 2.1)

 Take Corrective Actions

 (SP 2.2)

 Manage Corrective Actions

(SP 2.3)

Document the configuration

of each released SC version
 Process and Product Quality

Assurance

 Configuration Management

 Objectively Evaluate Work Products

(SP 1.2)

 Communicate and Ensure the

Resolution of Noncompliance Issues

(SP 2.1)

 Identify Configuration Items

(SP 1.1)

 Establish change management

system (SP 1.2)

 Establish Configuration

Management Records (SP 3.1)

Document the sites where

SC versions are installed
 Configuration Management

 Service Delivery

 Establish change management

system (SP 1.2)

 Prepare for Service System

Operations (SP 2.2)

 Service Delivery Receive and Process Service

Requests (SP 3.1)

Secure the version source

and documentation files
 Configuration Management Establish Configuration

Management Records (SP 3.1)

Table 2. Release of SC I and Software Configuration Versions

The following are descriptions of the CMMI practices used to implement the Release of SCI and Software

Configuration Versions activity.

1. Monitor Commitments identifies the commitments which are satisfied and document the results, and the

reason if they are not satisfied.

2. Conduct Progress Reviews performs project reviews at certain times to keep stakeholders informed about

the project status, so that issues and performance short falls within the baseline can be identified and

updated.
3. Conduct Milestone Reviews performs

surely help identifying and updating baseline for problematic features or requirements.
4. Analyze Issues identifies and solves issues where there is a deviation from a configuration baseline.

5. Manage Corrective Actions manages corrective actions until their completion to obtain the desired results.

6. Objectively Evaluate Work Products performs evaluation of work products against standards and

procedures. A clear evaluation criterion would help to maintain a perfect baseline.

7. Identify Configuration Items identifies configuration items and work products which are designated for

configuration management.

8. Prepare for Service System Operations makes sure that all configuration items and baseline is ready for

services to operate. Corrective actions must be performed repeatedly to ensure consistent service delivery.

9. Receive and Process Service Requests involves services requests being made through web and by person.

The next activity in the framework is the provision of software configuration management information. Action items

for this activity can be seen in Table 4. This activity supports the first two activities which are about the

documentation and control of configuration management. After taking the time to implement a CM process and

record data it is important to present this data as useful information for all the stakeholders in the software project. It

is important that this information is disseminated at appropriate times such as when milestone versions are released

or when major configuration changes take place. Practices for this activity have been taken from the Project

Planning and Project Management and Control process areas from CMMI-SVC.

Action Items (from Galin) Relevant C M M I SV C Process
A rea(s)

Cor responding C M M I Practice(s)

Information about the status

of changes

Configuration Management

Service System Development

Track Change Requests (SP 2.1)

Information about versions

installed at a site as well as

about the site itself

Service System Transition

Deploy Service System Components

(SP 2.1)

Service System Development Ensure Interface Compatibility

(SP 2.3)

Validate the Service System

 (SP 3.4)

Version history list

Configuration Management

Control Configuration Items

(SP 2.2)

Accurate copies of given

versions

Configuration Management Control Configuration Items

(SP 2.2)

Service Delivery Establish the service delivery

approach (SP 2.1)

Configuration Management Establish Configuration

Management Records (SP 3.1)

Supply copies of

documentation

Service System Development

Table 3. Provision of SC M Information Services

The following are the descriptions of each CMMI practice for the provision of SCM Information Services

configuration activity.

1. Deploy Service System Components installs the service systems in the delivery environment by ensuring

that deployed components are kept under configuration control.
2. Ensure Interface Compatibility ensures interface compatibility between component and human interfaces.

3. Validate the Service System ensures that it is suitable for use in the target environment and fulfils the

stakeholder requirements.

4. Establish the service delivery approach categorizes requests; assigns and transform responsibility for

monitoring the status of request and actions in response to such requests of service delivery.

Table 5 shows the action items for the fourth activity in the framework which requires the verification of compliance

to CM procedures that we have previously discussed. Procedure compliance verification is a straightforward activity

during the development of traditional software systems. An auditor can observe participants in a software

development activity and determine whether or not they are following the correct CM procedures. However, when

SBAs are considered it may not be possible to observe all the stakeholders in the development cycle, particularly

when a service is provided by a third party. In this case it may not be possible to ensure CM procedures are being

adhered to unless there is an arrangement setup between the service provider and the service consumer. However in

the case of SBAs it should always be possible for the application developers to manage and control the versions and

configurations of applications that are in their control.

Action Items (from Galin) Relevant C M M I SV C Process
A rea(s)

Cor responding C M M I Practice(s)

Audit compliance to SCM

procedures

Organizational Process Focus Monitor the Implementation

(SP 3.3)

Initiate updating and change

of SCM procedures

Organizational Innovation and

Deployment

Identify and Analyze Innovations

(SP 1.1)

Select Improvements for

Deployment (SP 1.4)

Table 4. Verification of Compliance to SC M Procedures

The following are the descriptions of each CMMI practice for the Verification of Compliance to SCM Procedures

configuration activity.

1. Monitor the Implementation ensures that organizational set of standard procedures and processes are

implemented and deployed accordingly.

2. Identify and Analyze Innovations identifies innovations that can improve and update SCM and other

relevant process areas.

3. Select Improvements for Deployment identifies updates and changes SCM procedures that will be based on

organizational quality and process performance objectives.

Our research results in the following figure:

 Adaptation Evolution

Construction

Requirements

Engineering and

Design

Deployment &

Provisioning

Operation &

Management

Identify Adaptation

Needs

Identify Adaptation

Strategy

Enact Adaptation

 Software

Change

Control
Service System Transition

Strategic Service Management

Configuration Management

Requirements Management

Process and Product Quality Assurance

Release of

Configuration

Items &

Configuration

Versions Configuration Management

Project Monitoring & Control

Process and Product Quality Assurance

Service Delivery

Provision of

Software

Configuration

Information

Services
Configuration Management

Service System Development

Service System Transition

Service Delivery

Verification of

Compliance to

Software

Configuration

Procedures
Organizational Process Focus

Organizational Innovation and Deployment

C
M

M
I

 S
V

C
 P

ractices

S-Cube life Cycle Activities

 CM Action Items

 CM Activities

CMMI SVC Practices

F ig 4. S-Cube L ifecycle with Detailed Operations and Management Phase

4 Case Study

4.1 Introduction

An S-Cube deliverable case study is presented [10] to support the implementation of our proposed framework. We

discuss its execution in a case study focusing on a complex and geographically distributed supply chain in the

automotive sector which has been offered by researchers of the companies 360Fresh and IBM [9]. In particular, we

had to elicit real business goals and domain assumptions from the case study as they were not made explicit.

Automobile Incorporation (Auto Inc), located in South East Asia, is a local branch of a large enterprise in the

automobile industry in Europe. Its incorporation comprises of a regional headquarter in Singapore, a manufacturing

factory in Vietnam, several regional distribution and logistics provider, and several warehouses located in different

countries in South East Asia. Auto Inc sells automobile products to retail customers in the surrounding countries.

Figure 3 illustrates the global business scope of the service network in our scenario. It highlights the main actors of

the case study and the interactions, concerning both material and information flow, that occur among them. We used

this figure as a basis to identify the basic business operations shown in the figure 5

F ig 5. The business scope of our service network

4.2 Case Design

As the figure 5 shows, our service network consists of multiple warehouses, scattered across different geographical

locations where finished products are stored from the manufacturing factory. Converting multiple warehouses into a

single global warehouse can be a better option as it can benefit us in the following ways: 1) reduce the cost, and 2)

minimize the overhead associated with management issues. The framework proposed in section 3 can benefit us in

order to address issues associated with merging multiple warehouses into a single one. In Table 2, we identified set

of CMMI practices which can help us to support the configuration management process; i.e. transition from a

multiple into a single warehouse. We may select set of certain practices depending on the situation.

C M M I - SV C Practices

Descr iption

 Analyze Issues (SP 2.1) Analysis of issues associated with merger

Counteractive measures to resolve the issues

Supervise the procedure
 Take Corrective Actions (SP 2.2)

 Manage Corrective Actions (SP 2.3)

 Establish change management system (SP 1.2)

A change management system must be there to

physically accommodate the change

Categorize and recognize the products

Maintain the record of finished and transferred

products

 Identify Configuration Items (SP 1.1)

 Establish Configuration Management Records

(SP 3.1)

 Prepare for Service System Operations (SP 2.2)

Set up for the operations once the change has been

made

Deal with incoming and outgoing orders/deliveries

Maintain the record of finished and transferred

products

 Receive and Process Service Requests (SP 3.1)

 Establish Configuration Management Records

(SP 3.1)

Table 5. Case Design

5 Conclusions

Services have made the world more connected; allowing producers, consumers, and other human resources to

communicate frequently across the globe. The service industry is a significant driver for the growth of worldwide

economy. So guidance on improving service management procedure can serve as a key contributor to the customer

satisfaction, performance, and profitability of the business. In this research, we have proposed a CMMI-SVC based

framework to manage the configuration of service based applications. The hypothesis is supported by means of a

case study to depict effectiveness of the approach that business can improve its CM process by means of our

ervices as

long as Service Level Agreements are met. Yet, this is not how it is done nowadays and remains a future research

issue for us. Another issue is that sometimes the providers of services in an SBA do not coincide with the SBA

provider and they may be discovered dynamically during execution. We intend to use configuration information for

the purpose of audit and for ensuring compliance between them.

6 Acknowledgements

Programme FP7/2007-2013 under grant agreement 215483 (S-Cube). It work was supported, in part, by Science

Foundation Ireland grant 03/CE2/I303_1 to Lero - the Irish Software Engineering Research Centre (www.lero.ie),

and grant PRTLI 4 to Lero Graduate School in Software Engineering.

7 References

Configuration Manager: A Continuous

[2] Configuration Management Best-Practice Recommendations, Sun Services White Paper, May 2007

[3] The ITIL Toolkit The ITIL Guide, ITIL - Office of Government Commerce, The Stationary Office, London,

United Kingdom, Typical Page. [http://www.itil-toolkit.com/itil-guide.htm]

[4] Software Quality Management for SOA: Enterprise quality managers take the helm, white paper, Published by

Hewlett-Packard

[5] Capability Maturity Model Integration for Services version 1.2, Technical Report CMU/SEI-2009-TR-001, ESC-

TR-2009-001

[6] Capability Maturity Model Integration for Services version 1.2, Technical Report CMU/SEI-2009-TR-001, ESC-

TR-2009-001

[7] Software Quality Assurance: From Theory to Implementation, Daniel Galin, Addison Wesley September 21,

2003

[8] Software Services and System Network, www.s-cube-network.eu
[9] J. Sairamesh, S. Zeng, B. J. Stee -chain

-Cube

on request.

[10] S-cube deliverables." [Online]. Available: http://www.s-cube-network.eu/results/deliverables

[11]A Guide to the Project Management Body of Knowledge (PMBOK Guide), Project Management Institute; 2000

ed edition

[12] Business component Factory, P. Herzum, O. Sims J. Wiley & Sons Inc., 2000.

[13] IEEE Std 828-2005 - IEEE Standard for Software Configuration Management Plans, IEEE Computer Society,

2005.

[14] A guide to Software Configuration Management, A.Leon, Artech House, Boston, MA, 1999.

