Grant Agreement N° 215483

Title: Models and Mechanisms for Coordinated Service Compositions
Authors: USTUTT, UOC, UPM, VUA, UCBL, TUW
Editor: Martin Treiber (TUW)

Reviewers: Harald Psaier (TUW), Manuel Carro (UPM)

Identifier: CD-JRA-2.2.2
Type: Deliverable
Version: 1.2

Date: 16 March 2009
Status: Final

Class: External

Management Summary

This deliverable describes the research roadmap and initial research work in the context of models and
mechanisms for coordinated service compositions. It provides the foundations for the research in the
WP JRA-2.2 by establishing a preliminary framework for QoS-aware adaptable service compositions.
We present initial research results in some areas of this framework, in particular on models of service
compositions, top-down development, and monitoring and adaptation of service compositions. The
work will be continued and extended in the follow-up deliverables.

Copyright © 2008 by the S-CUBE consortium — All rights reserved.

The research leading to these results has received funding from the European Community's Seventh Framework Programme
FP7/2007-2013 under grant agreement n° 215483 (S-Cube).

File name: CD-JRA 2.2.2.doc

S-Cube

Software Services and Systems Network Deliverable #CD-JRA 2.2.2

Members of the S-Cube consortium:

University of Duisburg-Essen (Coordinator)

Tilburg University

City University London

Consiglio Nazionale delle Ricerche

Center for Scientific and Technological Research

The French National Institute for Research in Computer Science and Control
Lero - The Irish Software Engineering Research Centre
Politecnico di Milano

MTA SZTAKI — Computer and Automation Research Institute
Vienna University of Technology

Université Claude Bernard Lyon

University of Crete

Universidad Politécnica de Madrid

University of Stuttgart

University of Hamburg

Vrije Universiteit Amsterdam

Published S-Cube documents

Germany
Netherlands
UK.
Italy
Italy
France
Ireland
Italy
Hungary
Austria
France
Greece
Spain
Germany
Germany

Netherlands

All public S-Cube deliverables are available from the S-Cube Web Portal at the following URL:

http://www.s-cube-network.eu/results/deliverables/

Final ExternalVersion 1.2, Dated 16 March 2009

S-Cube
Software Services and Systems Network Deliverable #CD-JRA 2.2.2

The S-Cube Deliverable Series

Vision and Objectives of S-Cube

The Software Services and Systems Network (S-Cube) will establish a unified, multidisciplinary,
vibrant research community which will enable Europe to lead the software-services revolution,
helping shape the software-service based Internet which is the backbone of our future interactive
society.

By integrating diverse research communities, S-Cube intends to achieve world-wide scientific
excellence in a field that is critical for European competitiveness. S-Cube will accomplish its aims by
meeting the following objectives:

* Re-aligning, re-shaping and integrating research agendas of key European players from
diverse research areas and by synthesizing and integrating diversified knowledge, thereby
establishing a long-lasting foundation for steering research and for achieving innovation at the
highest level.

* Inaugurating a Europe-wide common program of education and training for researchers and
industry thereby creating a common culture that will have a profound impact on the future of
the field.

* Establishing a pro-active mobility plan to enable cross-fertilisation and thereby fostering the
integration of research communities and the establishment of a common software services
research culture.

* Establishing trust relationships with industry via European Technology Platforms (specifically
NESSI) to achieve a catalytic effect in shaping European research, strengthening industrial
competitiveness and addressing main societal challenges.

* Defining a broader research vision and perspective that will shape the software-service based
Internet of the future and will accelerate economic growth and improve the living conditions
of European citizens.

S-Cube will produce an integrated research community of international reputation and acclaim that
will help define the future shape of the field of software services which is of critical for European
competitiveness. S-Cube will provide service engineering methodologies which facilitate the
development, deployment and adjustment of sophisticated hybrid service-based systems that cannot be
addressed with today’s limited software engineering approaches. S-Cube will further introduce an
advanced training program for researchers and practitioners. Finally, S-Cube intends to bring strategic
added value to European industry by using industry best-practice models and by implementing
research results into pilot business cases and prototype systems.

S-Cube materials are available from URL: http://www.s-cube-network.eu/

Final ExternalVersion 1.2, Dated 16 March 2009 iii

Contents

1 Introduction 3
2 Research Roadmap Overview 4
2.1 Lifecycle of Service Compositions 4
2.2 Summary of Research Objectives for QoS-aware Adaptable Service Compositions 5
2.3 Summary of Targeted Research Results 6
2.4 Relationship with Other Workpackages 7
2.4.1 WP IA-1.1 (Convergence knowledge model) 7
2.4.2 WP JRA-1.1 (Engineering Principles) 7
2.4.3 WP JRA-1.2 (Adaptation and Monitoring) 8
2.4.4 WP JRA-1.3 (End-to-End Quality Provision and SLA Conformance) . 8
2.4.5 WP JRA-2.1 (Business Process Management) 9
2.4.6 WP JRA-2.3 (Self-* Service Infrastructure and Service Discovery Support) 9
3 Service Composition Models 11
3.1 Service Models e 11
3.1.1 Biologically Inspired Service Models 11
3.1.2 Semantic Service Models 13
3.2 Formal Models for QoS-Aware Service Compositions 16
3.3 Transactional Web Services 17
3.3.1 Transactional behavior in composite Web services 17
3.3.2 Transactional WS Patterns 20
3.3.3 Validation 20
3.4 Service Coordination Models 21
3.4.1 Representation Formalisms 21
3.4.2 Towards Truly Distributed Service Networks 22
3.4.3 Initial Steps Towards Multi-Party BP Evolution: Replaceability and
Compatibilityo 23
4 Service Composition Approaches and Languages 25
4.1 Business Process Development using WS-CDL and WS-BPEL 25
5 Monitoring, Analysis, and Adaptation of Service Compositions 30
5.1 Monitoring and Analysis e 30
5.1.1 A Framework for Monitoring and Analysis of QoS-aware Service Com-
positions. L 31
5.1.2 Monitoring Performance of Service Compositions 31
5.1.3 Analysis of Factors Influencing KPIs 33
5.2 Adaptation 34
5.2.1 Adaptation dimensions 34
5.2.2 Classification of Adaptation Drivers 35
5.2.3 Adaptation Mechanisms 36

CONTENTS

6 Conclusions

38

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009)

Chapter 1

Introduction

The goal of work package JRA-2.2 is to establish the foundation of QoS-aware adaptable
service compositions. QoS-aware adaptable service compositions adapt as reaction to changes
in the QoS characteristics of SBAs. The QoS characteristics of an SBA are specified on all
three SBA functional layers. This means that the service compositions and their adaptation
are influenced by all these characteristics in a combination. The work in this WP is hence
relying on input and QoS requierements from the BPM and Service Infrastructure layers
and addresses them them throughout the service composition lifecycle, including modeling
and verification, execution, monitoring and adaptation. This deliverable presents the initial
roadmap towards organizing the research in this WP and first research results for models
and mechanisms of QoS-aware adaptable service compositions. The research work on the
foundations of QoS-aware adaptable service compositions will be refined and extended in the
follow-up deliverables.

The document organizes the discussion of the planned research work according to the life
cycle of service compositions, which is a part of the life cycle of SBAs in general. We first
deal with modeling of QoS-aware service compositions establishing formal models for service
compositions. We then show how QoS-aware adaptable compositions can be developed and
executed based on corresponding languages. Finally, we deal with monitoring and adaptation
of service compositions.

As we take into account the requirements from the business layer and requirements and
influences of the service infrastructure layer, we are closely collaborating with the other two
workpackages in JRA-2. An additional goal is to identify the potential contribution of this
work package to the engineering and design principles work package JRA-1, both by giving
input on engineering and design principles considering usage of our models and mechanims
for service compositions and providing those models and mechanisms.

The deliverable is structured as follows. In Section 2 we present the research roadmap of
the whole work package JRA-2.2 giving a short overview of the way we structure the work
according to service composition life cycle and the challenges we want to tackle. We also
discuss relations of our work to other work packages. In the following sections we then present
these challenges in more detail and present initial research results. Section 3 presents our first
results and findings on service composition models. Section 4 deals with service composition
languages and development approaches for service compositions. In Section 5 we present our
current work on monitoring, analysis, and adaptation of service compositions.

Chapter 2

Research Roadmap Overview

The subject of research in this work package are QoS-aware adaptable service compositions.
In this section, we will present how we organize the research work in this WP and identify
approaches and mechanisms needed to address the open issues in the field of service com-
positions and in the context of S-Cube. We will use this organization as a guideline for the
research work and refine it in the follow-up deliverables of this WP. We begin by describing
the established service composition lifecycle which will be used as a basis for the following
discussion on research challenges.

2.1 Lifecycle of Service Compositions

m
.
S =

Execition & Depl cymrent
Monitaring

Figure 2.1: Lifecycle of Service Compositions

In this document we use a simplified service composition life cycle containing four major
phases. This life cycle is not a complete one and is used for organizing the discussion; it by
no means reflects all possible life cycle definitions used in the SoC and BPM communities.
The life cycle will be adjusted to the research results produced by the integration activities
in S-Cube and the work in JRA-1, which deal with engineering principles for SBAs in an
integrated manner.

Service compositions follow four major phases during the course of their existence:

1. Modelling phase - a.k.a. build or design time (definition from the SOC and BPM
communities): during this phase the service compositions are created either automatically,
generated from another representation of the composition or developed from scratch

2.2. SUMMARY OF RESEARCH OBJECTIVES FOR QOS-AWARE ADAPTABLE
SERVICE COMPOSITIONS

by a service composition developer. The output is the executable representation of the
service composition.

2. Deployment phase - the executable service composition is made available for execution on
an execution environment. This phase includes configuration of the service composition.
The concrete steps to be performed and the information needed to configure the
composition depend on the service composition language used and on the execution
environment on which it is to be deployed.

3. Run time and monitoring: service compositions are executed during this phase. While
executed they are also monitored to allow tracking of the status of the composition, the
data and resources it utilizes, and process metrics. The monitoring data may also be
used for run-time analysis purposes, where analysis may be done during the execution of
the compositions or after that, using the so-called audit trail or execution history. The
analysis during the execution of service compositions may by used to support decisions
to adapt the composition or parts of it.

4. Analysis phase - during this phase the execution history of the service composition is used
for analysis. The analysis may involve process mining, fault pattern detection, resource
consumption and throughput analysis. All the results of the analysis phase can be used
for the purpose of improving/optimizing the quality of the service composition with
respect to various criteria. The result of the phase are recommendations for adaptation
of service compositions in general or per case (instance, e.g. a concrete customer order,
a specific item processing, etc.). The adaptation recommendations may be produced
and may be enforced during both the modelling and run time phases.

2.2 Summary of Research Objectives for QoS-aware Adapt-
able Service Compositions

We will explain the position of the service composition research in the scope of JRA-2 based
on the layering shown in Figure 2.2. The interactions with the other two work packages in
JRA-2 are also presented.

When using a top-down approach for developing service compositions, the modeling phase
comprises the creation of a service composition based on the input from the upper level in
the architecture of SBAs (the BPM layer). The input is provided in the form of business
process models in a notation and format specified in the work on the BPM work package. The
business process models comprise high-level orchestrations and choreographies, which must
be transformed into executable service compositions. Such preliminary approaches already
exist, based on existing service composition models, however the QoS-awareness (QoS not
constrained only to technical QoS but including also quality characteristics on process (process
performance metrics) and business layer (key performance indicators)) of such compositions
is not supported.

In the existing models for services and service compositions, QoS awareness in combination
with the creation of service compositions and their adaptation are not completely addressed.
The available languages for executable compositions also abstract away or consider in isolation
the QoS characteristics of the compositions as a whole and of the individual services. Validation
and verification of the service compositions exploiting the QoS characteristics are hence
hampered. The derivation of QoS characteristics for service compositions and the composed
services is not yet enabled, i.e. the following two kinds of transformation on conceptual level
are not yet addressed: (a) the transformation from the BPM level requirements (KPIs) to
the service composition requirements and (b) derivation of QoS characteristics of individual
service from the overall QoS description of the composition.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009))

2.3. SUMMARY OF TARGETED RESEARCH RESULTS

The service compositions generated or created manually based on the input from the
BPM level will be executed on a service composition execution environment. Due to the
identified partner expertise, the methodology and approaches will be shown to work for the
process based approach for service compositions and hence will be executable on a process
execution environment or a process engine. Nevertheless, we will identify the necessary
functions an execution environment must possess in order to execute QoS-aware adaptable
service compositions, regardless of the implementation technology. One major feature of
such an environment we intend to focus on is the support for monitoring and adaptation
mechanisms.

Monitoring of service compositions in turn will enable the analysis of service compositions
and is a necessary prerequisite for identifying the need for adaptation of service compositions.
For the purpose of monitoring, we will deal with monitoring across layers taking into account
key performance indicators (KPIs) on business level, process performance metrics (PPMs)
on service composition level, technical QoS metrics on service infrastructure level, and their
relations. On top of the monitoring framework, we will devise new analysis techniques which
enable dependency analysis between the metrics on the different layers. The monitoring
and analysis framework will be integrated with adaptation mechanisms. Mechanisms for
adaptation of service compositions will be identified and classified and will be demonstrated
for the process-based implementation approach. The triggers for the adaptation of service
composition will also be identified and classified and the respective subsequent adaptation
reactions on behalf of service compositions recommended. Thereby, we will in particular
deal with process fragmentation and pro-active adaptation based on monitoring and analysis
results.

2.3 Summary of Targeted Research Results

Currently we have identified the following major groups of research challenges, which will be
refined in the course of the project and in cooperation with the other WPs in S-Cube.
Formal Models and Languages for QoS-aware Service Compositions:

e Models of services and service compositions, including formal representation, incorpo-
rating QoS and behavioural features

e Languages for service compositions that reflect the above mentioned models

e Mechanisms for deriving QoS characteristics of compositions from QoS descriptions of
the individual services and vice versa

e Mechanisms for decomposition of business performance characteristics (KPIs) to QoS
characteristics of service compositions and services and vice versa

Monitoring and Analysis of QoS-aware Service Compositions:

e Mechanisms for monitoring performance characteristics of service compositions based
on both process performance metrics on process level, and QoS metrics on service
infrastructure level

e Mechanisms for cross-layer performance analysis and prediction, i.e., dependency analysis
between KPIs, Process Performance Metrics, and QoS Metrics

e Integration of monitoring, analysis, and adaptation mechanisms
Adaptation of QoS-aware Service Compositions:

e Adaptation mechanisms for service compositions to react to different triggers, including
those from the BPM and Service Infrastructure levels

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 6

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

e Mechanisms for pro-active adaptation based on monitoring and analysis results (in
particular based on prediction)

e Mechanisms for fragmentation of service compositions to improve reusability and flexi-

bility of SBAs

2.4 Relationship with Other Workpackages

In order to better understand how this deliverable is interrelated with other workpackages,
we give here an account of these dependencies as an inverse index: for each workpackage for
which we have identified a clear dependency / feedback, we state where in this deliverable that
dependency appears. We hope that this to result in a better cohesion between workpackages
and to contribute to an enhancement of collaboration and cross-fertilization possibilities.

2.4.1 WP IA-1.1 (Convergence knowledge model)

The present workpackage, as the rest of the S-Cube workpackage, contributes to the knowledge
model with terms, definitions, and interrelationships between them.

2.4.2 WP JRA-1.1 (Engineering Principles)

Service engineering differs from traditional software engineering mainly due to their focus
and aims [1, 2]. In particular, the focus of service engineering is shifted from engineering
applications to composing pools of services; the control of software (services) is passed from
their users to other owners (i.e. users of services do not have the control of them), and the
aims are redirected from quality of software (e.g. performance, security, maintainability) to
the ability to adapt to ever-changing requirements (e.g. flexibility, dynamicity).

These differences are reflected by a number of aspects that are crucial to communicate
the service development process and cross-cut all the layers in service-based applications,
including service compositions.

e Service aspect 1: Cross-organizational collaboration Cross-organizational collaboration is
especially critical since multiple roles collaboratively develop service-based applications.
The roles coexist in a service-based application rather than having an active-passive
relationship (e.g. outsourcer and supplier). Collaboration becomes white-box in that it
enters the details of a service development process that is now scattered across multiple
partner enterprises. This makes their relationship tighter but also demanding clearer
governance and agreements.

e Service aspect 2: Increased importance of identifying stakeholders Since cross-organizational
collaboration becomes more critical, the importance of clearly identifying stakehold-
ers increases accordingly. If stakeholders are identified at a very detailed level, the
interaction represented in a development process model also becomes more elaborated.
However, if stakeholders are identified at a too high level of granularity, the represented
interaction remains not fully specified. This leads to unclear responsibilities among
collaborating enterprises and thus decrease in trust and possibly in success. Because
the level of details matters, the identification of stakeholders directly decides the level
of detail expressed in a development process model.

e Service aspect 3: Increased effort at run-/change time

The main goal of SBAs is not only to deliver high quality but also agile and robust
services which are able to meet the ever-changing business requirements. Consequently,
much more development effort is shifting from design time to run-/change time. For

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 7

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

instance, components identification is often performed at design time in TSE; the service
engineering equivalent activity is service discovery, which is encouraged to be performed
at runtime and it is regarded as one of the major challenges in the service engineering
field.

These aspects are not only relevant to service composition but are also peculiar to
service engineering in general. By analyzing these aspects and visualizing them in a service
development process model, different service engineering approaches can be better interpreted
and investigated. From the perspective of the development process, these aspects are part
of the engineering knowledge that should be *explicitly *captured. This corresponds with
knowledge models, which define service oriented computing processes and modeling, presented
in S-Cube deliverable CD-JRA-1.1.2.

2.4.3 WP JRA-1.2 (Adaptation and Monitoring)

e Service composition inspired on biological models (Section 3.1.1) are also related with
adaptation, since fitness can be used to measure how well the evolution of a composition
interacts with the rest of the environment. The result of fitness functions can therefore
be taken into account by adaptation layers in order to decide about this adaptation.

e Timed automaton (used in Section 3.4.1 to represent orchestrations and choreographies)
include time constraints which restrict when state changes can happen. It is possible
to used these constraints to derive sound upper and lower bounds for clocks® in each
state of the system. Checking these bounds can be taken care of by actual code which is
generated in an at least systematic, if not semi-automatic way. This will help monitoring
mechanisms to trigger the appropriate adaptation / readjusting / alarm procedures in
case deviations larger than admissible are detected.

e The proposed approaches to monitor service compositions (Section 5.1) naturally need
to establish a link with the general, project-wide monitoring techniques, and use the
mechanisms therein proposed in order to assess the quality of the running compositions.

2.4.4 WP JRA-1.3 (End-to-End Quality Provision and SLA Conformance)

The Quality Reference Model (S-Cube deliverable CD-JRA-1.3.2) serves as classification
of QoS attributes for whole S-Cube framework and, in particular, for QoS-aware service
composition.

e The fitness notion of biologically-inspired models (Section 3.1.1) is a parameter which
can have a complex definition adapting to the different points of view of stakeholders.
In this respect, some definitions of fitness can be very similar to, or be greatly influenced
by QoS characteristics.

e The semantics of time constraints in Section 3.4.1 very similar to that of clocks in a
timed automaton does —and, in fact, the former can be mapped onto the latter. These
time constraints could be used to reflect some conditions (i.e., maximum or minimum
bounds) on one of QoS attributes presented in CD-JRA-1.3.2, time behavior.

e As mentioned previously (Section 2.4.3), lower and upper bounds on clocks can be used
to instrument the composition so that alarms are triggered. Alternatively, by measuring
how well a systems behaves (time-wise) with respect to its initial design, a degree of
conformance to this design can be worked out. This conformance can also be seen as a
measure of efficiency compliance (also in CD-JRA-1.3.2).

"Which customarily represent time.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 8

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

e The work on replaceability (Section 3.4.3) and interoperability (Section 3.4.3) also gives
an initial technique to automatically decide on replaceability, thereby linking directly
with the quality attribute presented in CD-JRA-1.3.2. While in the present state of
work only coarse qualitative (yes, no, perhaps) answers to replaceability are being given,
expanding our approach to also generate measures of replaceability is in progress.

e The service composition approach based on refinements from WS-CDL and WSDL to
WS-BPEL and WS-Policy (Section 4.1) explicitly takes into account QoS characteristics,
and therefore contributes to JRA-1.3 in maintaining end-to-end quality.

2.4.5 WP JRA-2.1 (Business Process Management)

e Some fitness measures of service compositions (Section 3.1.1) can in principle be defined
to approximate KPIs, and thus they can be used to measure the overall ability of some
service composition to fulfill business goals.

e The formalism in Section 3.4.1 represents quite closely a business process, and can be
intuitively understood as such by practitioners in the field. However it can also be used
to check for compliance and, to some extent, to guide realizations of service compositions
aiming at implementing such a business process.

e One challenge in the BPM area is to adequately represent transactions, which can be
trans-organizational and very complex. The proposals on transactions and transaction
patterns (Section 3.3.2) can be used, to some extent, to answer to this need and provide
a means to map these high-level goals onto to composition layer.

e The analysis and monitoring proposals put forward in Section 5.1 explicitly aim at taking
into account the different metrics (KPIs, PPMs) of the BPM layers and monitoring,
therefore implementing cross-layer monitoring.

2.4.6 WP JRA-2.3 (Self-* Service Infrastructure and Service Discovery
Support)

e Part of the actual data monitoring needed by Section 5.1 in order to ensure that some
service composition is faithful to its design has to be gathered from runtime characteristics
and the profile of the actual execution which are available only the infrastructure level.
This establishes a strong relationship between workpackages JRA-2.2 and JRA-2.3.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 9

2.4. RELATIONSHIP WITH OTHER WORKPACKAGES

Global Busi _ Servi X] _ Annotate Key Performance
° A:mﬂw_:mmm GRS SIS | Indicators EVENTS
Mapping P Adaptation
P Mapping from KPI _snmdwﬂm_wu Requ osts Artefacts:
W KPIs to PPMs Calculation - SVN Models
P Process Models - w:mm:mmm views on SVNs, Businesss
. Transactions, choreography and SLAs
(o] BPM -
) f -Mechanisms for
< Process Models n:oﬁmomﬂmu:mmm Annotate
[~ and orchestrations D m— PPMs, SLAs - modelling and transformation
- - analysis (simulation)
m BPMN + extensions -Monitoring
.-Adaptation
Mapping Refinement of PPM Monitori >nmv~m=omr P
PPMs Calculation Events efluests
5 — EVENTS
C wn
£ c
2 g2 -Models + PPM/QoS models
(@) S =B BPEL (Executable, abstract), - Languages (for definiton and executable)
“ .w z 5 BPEL4Chor (choreographies), BPEL + extensions - Mechanisms for adaptation
.. s 2k - Include fragmentation
N m Kl va Process model - Mechanisms for monitoring Change on the process
o 852 o -Architecture _.mn<m_"_ i
I &% H O >0 >0 PPMs, SLAs o classify. .
m =) Control flow, services, etc
T m m O dimensios
= i
5 Mapping from
o [
— Binding/invocation PPMs to QoS, PPM Manitori Adaptation EVENTS
of Services events Calculation Events Tequests

ﬂ Alternative 1

WP-JRA-2.3

Service QoS

Service QoS

Alternative 2 % adapt %

WP-2.3 Contains:

- concepts

- Mechanisms for service
adaptation and monitoring -
- Architecture

- Prototype

Services and Servic|
Infrastructure

Service QoS Service QoS
Impl. 1 Impl. 2
i . Discovery ESB + Grid (combined) E
Registry

Change on the service level:
MAY CONTAITN CHANGE of QoS of services

-change implementation, unchanged
interface

- change interface, change implementation —
influence on composition — how? Mechanisms to
define

- change implementation, fixed interface,
but changed functional properties - may
need to change the composition (UH)

-May consider adaptation of infrastructure or
adaptation of services because of change in
infrastructure

Figure 2.2: JRA-2 Layering

10

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009)

Chapter 3

Service Composition Models

3.1 Service Models

In this section, we discuss two different approaches for the modeling of services, (i) biological
inspired service models and (ii) semantic service models, that both can serve as foundation for
the service life cycle introduced in Section 2. Both models extend the current service model
with additional descriptions that provide means for additional meta information.

Biological inspired service models focus on dynamic aspects of services and study the
evolution of services. The goal is to understand factors that influence the service during
its life cycle and to analyze the impacts of service related changes in the context of service
ecosystems.

Semantic service models make use of rich meta data, like ontologies, to extend existing
service descriptions to allow for reasoning on services. With this additional, well structured
and semantically enriched data, adaptation processes can be supported, without the need for
human intervention on a technical level.

3.1.1 Biologically Inspired Service Models

Services are subject to changes during their life cycle. These changes, or adaptions, have
different causes, like the change of service requirements, change in the service usage, etc., as
discussed in [3]. We can observe various types of changes, for instance QoS changes, interface
modification or changes in the overall semantics of services [4]. These change processes can be
regarded as service evolution, since these processes have some similarities with the evolution
in a biological sense. As discussed in [5], there is no exact mapping of biological terms to
services. Instead we focus on a core set of concepts that we borrow biological evolution to
explain service evolution. Like in biology, we intend to consider services as individuals that are
able to reproduce itself in a service ecosystem. Unlike living beings, services do not actively
procreate, but depend on external mechanisms that allow the procreation of services. In the
context of service evolution, composition can be regarded as service procreation, since the
result of a service composition is a new service that exists within the service ecosystem. A
central aspect of services with regard to evolution is the notion of fitness. In a strict biological
sense fitness refers to the possibility of survival of an individual in a certain environment. If
we transform this idea to services, fitness defines the degree to which a service is adapted to
its environment and how well it is adopted by users. This degree of service fitness can be
defined with various metrics, an example is the classification by QoS attributes (response
time, availability, cost, provided data quality, etc.) [6]. A deeper discussion of the semantics
of the term evolution is out of the scope of this deliverable, for a detailed discussion about
the terms, the interested reader is pointed to [7].

Another aspect that requires extensive investigation concerns the environment in which
services operate [8]. We consider the environment as set of artifacts and stakeholders that

11

3.1. SERVICE MODELS

have impact on the service. In such environments, we can observe dependencies of services
on other elements of the environment, ecosystem respectively. From a business perspective,
we can observe KPIs that measure and evaluate how successful a service is and thus serve
as input for service fitness. From a technical perspective, we can observe two categories
of dependencies, (1) a service may depend on other services (e.g., a service calls another
service as part of a service composition) and (2) a service may depend on other resources
(e.g., database, computational resources). If these external - from a service point of view -
resources change, we can observe also impacts on the service itself.

As mentioned above, complementary to technical dependencies, services also depend on the
stakeholders interact in a service ecosystem [3]. Stakeholders are either persons or organizations
that have interest in service. An example is an organization (e.g., non government organization,
etc.) that offers information services to its customers. These stakeholders control the actual
life-cycle of services. In particular, in service ecosystems we can observe five interacting
stakeholders which we define as follows:

e Service developer. Service developers creates the service by implementing the service.
Thus, service developers control the source code of services and manage the development
of services.

e Service user. Service user define requirements that services must fulfill and use them.
Service users, service usage respectively, can be regarded as major indicator for the
fitness of a service.

e Service integrator. Service integrators integrate (external) services into service based
applications that are used by the end user.

e Service provider. Service providers are responsible for the actual offering of the service.

e Service broker. Service broker manage information that is available for services and
support the service discovery process. They provide access to repositories that store
service related information, like ontological description of services, etc.

The interaction process between the stakeholders is highly dynamic and may result in
changes of available resources. Note that we do not consider the different stakeholders as
mutual exclusive, for instance, a single organization can easily be service provider, service
integrator and service user at the same time. As briefly mentioned above, new requirements
for a service user can result in service interface changes which may have impact on other
services that use the service. These services may not be able to use the service, due to a new
interface. Another example is the addition of competing services to the ecosystem which also
may have consequences for the service usage.

To conclude, services change during their life cycle, because of changes in of service KPlIs,
requirements, implementation, etc. These changes originate from various sources, like service
user, service integrator, etc. In order to benefit from a biological service model, we envision
the use of various (historical) service related information as input to such a model. We intend
to use different (QoS) monitoring tools and put the data into the evolutionary service model.
Based on observations of the past, our ultimate goal is to learn from the past and make
predictions of the future service behavior.

The achieve this goal, we need expressive languages that are able to capture the dynamics
of services in service ecosystems, which we are going to study in the future. Such languages
must provide the means to define inter-dependencies between services and their required
resources. Especially run time changes of service quality characteristics and potential effects
of changes need to be described in such languages and integrated into a service model.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 12

3.1. SERVICE MODELS

3.1.2 Semantic Service Models

Semantically rich service models attempt to address the need for automated and dynamic
service discovery and composition by providing an elaborate description of the service behavior
which is machine-interpretable and machine-processable. Previous service models such as
WSDL [9] have been based on syntactic descriptions, essentially offering an invocation interface
while any other supplementary information is only human-understandable. Semantic Web
technologies provide us with languages and tools to replace these purely syntactic descriptions
with complete representations of what a service is supposed to do under any circumstances.

Semantic service models utilize ontologies and rule languages to express assertions for the
behavior of services, in addition to their inputs and outputs. For instance, OWL-S proposes
the addition of assertions, called preconditions, that must be satisfied prior to the service
execution in order to ensure success, as well as assertions that describe the state of the world
after a successful execution, called effects. Effects are closely related to outputs in the OWL-S
service model, by using the term result to refer to a coupled effect and output. Assertions
can be also expressed on the conditions under which a result occurs. The semantic service
models proposed by other Semantic Web services efforts such as WSMO [10] and SWSO
[11] are similar. In WSMO, assertions that must be satisfied prior to the service execution
are either called preconditions or assumptions, depending on whether they deal with the
information space or the state of the world, respectively. Also, conditions on results are called
postconditions.

Semantic service models such as the ones briefly outlined here succeed in capturing
constraints that deal with the state of the world before the execution of the service and the
state of the world afterwards. Thus, one can be informed of the conditions that must be
met before the execution of a particular service and the conditions that will be true after
a valid execution of that service. The resulting descriptions are far more elaborate than
syntactic descriptions while at the same time assertions are expressed using Semantic Web
rule languages, effectively making them machine-processable. Thus, the goal of automated
and dynamic service discovery and composition is much more feasible than before. However,
there are some issues that have not yet been addressed by any existing semantic service model.
We will address some of these issues in the rest of this subsection.

Augmenting Semantic Service Models with Invariants

In [12], it is argued that current semantic service models are inadequate because they are
incapable of describing more complex assertions, such as conditions that must be satisfied both
before and after service execution. Existing assertions such as preconditions, postconditions,
assumptions and effects refer either to the state before service execution or the state after.
For instance, we cannot express that a given predicate must have the same truth value both
before the service is executed as well as afterwards. To that end, a new kind of constraints,
named invariants, is introduced. Invariants serve a role similar to the integrity constraints
in databases, ensuring the consistency in service execution. A correct service execution is
achieved when preconditions and invariants are satisfied in a state before the service executes
and postconditions and invariants again are satisfied in a state after service execution. If
invariants are not satisfied both before and after service execution, then the resulting state is
inconsistent and we cannot assert that the service has executed correctly.

Invariants have yet to be integrated in any of the existing semantic service models, although
a similar kind of assertions, called execution invariants, that must be satisfied in every state
of a Web service execution have been briefly described in a deliverable by the WSMO working
group [13]. Due to their use in many application scenarios and their assistance in expressing
assertions that are common in Web services, it can be stated without doubt that they should
be included in a semantic service model.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 13

3.1. SERVICE MODELS

A service model that offers the ability to describe assertions that must be satisfied both
before and after service execution in addition to the usual preconditions and postconditions
can be used to create rich service specifications that can capture the behavior of the service
more accurately. However, this does not come without a cost. Adding a new set of conditions
makes specifications more complex and more vulnerable to a family of problems that appear
in formal specifications using the precondition/postcondition notation. These problems are
related to a well-known problem in the field of Artificial Intelligence, called the frame problem.

The Frame Problem

The frame problem may occur in any formal specification, simple or complex, and mainly
deals with finding a concise and succinct way of expressing that ”nothing else changes” except
for what is explicitly declared in the specification. Descriptions lacking frame axioms are
considered incomplete and may hinder the ability to formally prove properties of Web services
and their behavior. Let’s consider the example of a Web service that withdraws an amount of
money from a bank account associated with a credit card. We will only deal with a subset
of the service specification that deals with the daily withdrawal limit of the account. We
need to consider two different cases. If the daily withdrawal limit has been reached, the
use of the card should be banned for the day. If the limit has almost been reached, the
cardholder should be warned. These postconditions of the service, can be expressed as fol-
lows, using first-order predicate logic! (we use the variable WL to refer to the withdrawal limit):

withdrawalTotal’ (day, account) > dailyLimit(account) = ban(day, account)

withdrawalTotal’ (day, account) < dailyLimit(account)
daily Limit(account) — withdrawalT otal(day, account) < WL = warn(day, account)

withdrawalTotal’ (day, account) < dailyLimit(account)
daily Limit(account) — withdrawalT otal(day, account) > WL = —warn(day, account)

These postconditions, however, do not consider all possible cases for the included predi-
cates and as a result are incomplete. For instance, we need to ensure that all accounts not
associated with the current action remain unchanged. To explicitly state that everything
remains unchanged, except when stated otherwise, we need a set of new clauses. These clauses
are known in literature as frame axioms. The task of writing these clauses is not a trivial
one, mainly due to the inclusion of conditional axioms which leads to many different cases
that need to be examined separately in order to include a different set of frame axioms for
each one of them. For each of the postconditions state above, we need to add a set of frame
axioms shown here:

withdrawalTotal' (day, account) > daily Limit(account) = ban(day, account)
Va,ylx # day V y # account = ban/(x,y) = ban(z,y)]
Ve, ylwarn'(z,y) = warn(x, y)]

withdrawalTotal’ (day, account) < dailyLimit(account)

daily Limit(account) — withdrawalTotal(day, account) < WL = warn(day, account)\
Va,ylz # day V y # account = warn'(x,y) = warn(z,y)]

Vo, y[ban'(z,y) = ban(z,y)]

withdrawalTotal' (day, account) < dailyLimit(account)

LFor the sake of readability, we assume that all functions used in first-order logic statements in this section
are always defined.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 14

3.1. SERVICE MODELS

dailyLimit(account) — withdrawalT otal(day, account) > WL = —warn(day, account)\
Va,ylz # day V y # account = warn'(x,y) = warn(z,y)]
Va, y[ban'(z,y) = ban(z, y)]

It should be obvious from the example that stating frame axioms concisely and succinctly
is a complicated task with many different parameters that need to be taken into consideration
and is, in its essence, the frame problem. Moreover, the resulting specification, while being
complete, is also rather lengthy and computing formal proofs based on them is a more difficult
and error-prone task. If we advance even further, attempting to compose such specifications
that include frame axioms, in order to create a composite service specification that is consistent
will most certainly be a challenging task, since we may have to combine frame axioms with
opposite statements for the same predicates. Thus, it is apparent that a major step in our
attempt to create semantically rich service specifications should deal with addressing the
frame problem.

Addressing the Frame Problem

Through the example presented in the previous section, it is apparent that attempting to
completely state all frame axioms when devising Web service specifications is problematic,
especially when the original specifications contain many different conditions. The frame
axioms, as expressed in the example, offer a procedure-oriented perspective to the frame
problem, explicitly asserting what predicates each procedure does not change in addition to
those it changes. In [14], the authors identified this fact as the source of the frame problem
and aimed to replace the procedure-oriented with a state-oriented one, which we will explore
in this section.

Instead of declaring what predicates don’t change in each Web service specification, we
can reverse our viewpoint and declare, for each element of the service specifications we are
creating, which services may result in changing them. Thus, we don’t aim to write a set
of frame axioms for each individual Web service specification, but we create assertions that
explain the circumstances under which each predicate or function might be modified from one
state to another. These assertions, called explanation closure axioms or change axioms in [14],
provide a state-oriented perspective to specifications.

To be able to express the change axioms, a simple extension to the first-order predicate
logic is proposed, that adds a special predicate symbol, named Occur and a special variable
symbol named «. The semantics for these two additions are simple. Variable « is used to
refer to services taking part in the specification. Occur(«) is a predicate of arity 1 that is true
if and only if the service denoted by the variable o has executed successfully. Thus, a further
goal in our attempt to create a semantically rich service model is to integrate change axioms
in service descriptions.

In conclusion, it should be stated that semantically rich service models allow us to
thoroughly know and, in most cases, predict the service behavior under any circumstance.
This demands more expressive service specifications than ones limited to interface descriptions
and may lead to problems such as the frame problem described here, which have to be
addressed before one can harness the complete power that such service models can offer. It
should also be noted that the research goals proposed in this subsection deal mainly with the
functional properties (and, to some extent, the behavioral properties) that may be included in a
semantic service model. However, a complete service model should also include non-functional
properties which deal with security, performance and QoS aspects among others.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 15

3.2. FORMAL MODELS FOR QOS-AWARE SERVICE COMPOSITIONS

3.2 Formal Models for QoS-Aware Service Compositions

The goal of QoS-aware service compositions is to take into account QoS attributes of individual
services in the composition, and express the aggregate QoS attributes of the whole composition.
In this section we present a preliminary identification of some of the the problems around
QoS-aware service compositions, and give some comments on the ideas towards possible
solutions that are currently work in progress within the S-Cube project and which try to
seamlessly combine QoS and semantic concerns. The quality attributes that are addressed
by this approach can include the traditionally performance-related ones, such as execution
time and availability, or more general quality attributes in the business settings, such as cost.
Therefore, formal models for QoS-aware service compositions must take into account both
the functional behavior, or semantics, of a service composition (accomplishment of the data
processing task it is in charge of), and attainment of the expected quality standards.

The purpose of formal models of QoS-aware service compositions is twofold. They must
be sufficiently expressive to describe a wide class of service compositions and QoS attributes,
while being sufficiently constrained to ensure that standard reasoning tasks on such models
are, at least in common cases, decidable and reasonably efficient. Besides, the formal methods
in general have an advantage of having non-ambiguous meaning, as well as having inference
procedures about model instances that ensure soundness of the reasoning results.

However, the challenge of formulating a formal model that is well-suited for expressing a
wide class of QoS-aware service compositions, as well as for reasoning about them, is not trivial.
Although there is a multitude of general computation models based on different computation
paradigms, as well as a number of service-specific models based on abstract processes or
variants of first-order logic and constraints, none of them encompasses, to the best of our
knowledge, all concerns relevant for modeling of QoS-aware compositions, such as representing
QoS characteristics themselves, accounting for the dynamic nature of compositions, and ability
to handle both quality and semantic (behavioral) aspects.

One direction to devise formal QoS-aware service composition models, with the above
stated desirable properties, can be based on Description Logics (DL) enriched with constraints,
extending earlier work on propagation and resolution for service discovery [15]. The formalism
of DL [16] is well researched and widely used as the basis for many Web-centric reasoning
systems, including the Semantic Web [17] and reasoning on Web services [18]. The way in
which concepts are structured and described in DL is sufficiently similar to the use of classes,
inheritance, attributes and relations encountered in methods of Object-Oriented software
design [19], and should therefore be relatively familiar and intuitively intelligible to a wider
software engineering community. Yet, along with other advantages, DL does provide a formal
and sound basis on which reasoning on services and their QoS-aware compositions can be
safely performed.

In such a DL-based model, QoS attributes could be modeled as approximating functions
taking into account input data, e.g., as functions on the parameters on input messages. Such
data-aware QoS can potentially be applied not only to performance-related QoS dimensions,
but also to other quality dimensions, such as Quality of Information (Qol), Quality of
Experience (QoE), or in some cases even to Quality of Business (QoBiz), as outlined in
JRA-1.3.2.

Constraints can be used to further improve expressiveness of a DL-based model, without
compromising its decidability or excessively increasing the complexity of the resolution
procedure. For instance, constraints can be used to model numerical QoS requirements,
without having to deal with infinite domains directly at the level of DL. Another relevant
improvement can be the use of soft constraints for QoS modeling [20, 21]. The key idea here
is to allow more flexible constraint satisfaction, where inability to satisfy a constraint does
not lead to a failure, but rather incurs a penalty on the solution. Soft constraints can be used
for avoiding failures to discover good-enough solutions with minimal penalty when it is not

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 16

3.3. TRANSACTIONAL WEB SERVICES

guaranteed that solutions that satisfy all constraints (i.e. with zero penalty) can be found
(e.g., in the case of over-constrained problems).

Development of formal models for QoS-aware service composition has to be accompanied
by definition of a set of standard reasoning tasks within that framework, based on a critical
assessment of the existing mechanisms and frameworks. These tasks may include unified
QoS-aware service selection, matchmaking, and deduction of ad-hoc compositions to serve a
particular kind of query. Successful solution to the above outlined challenges would be a key
to practical usability of QoS-aware service composition models, and a foundation for further
advances towards defining specialized software components (possibly services themselves) in
charge of performing automated reasoning tasks for end-users or client services.

3.3 Transactional Web Services

Service oriented architecture (SOA) is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains. By making
resources in a distributed system available as independent composable services, SOAs reduce
complexity and increase flexibility. Composability of services allows organizations to create
(new) applications within their enterprise information systems just by aligning existing services.
Services in an SOA tend to have a “coarse grained” nature. That is, a service often encapsulates
a set of related business functions and consumes considerable computing resources.

Due to the inherent autonomy and heterogeneity of Web services, ensuring composite
services reliability remains a challenging problem. Therefore, using a service assembly requires
major efforts in order to deliver a coordinated collective result. Such coordination efforts
may be addressed solely in the process logic that assembles the services. However, according
to [22], transaction processing concepts are a superior option. By managing a group of
services, transaction processing concepts guarantee that the group of services achieves a
coordinated common, consistent, and mutually agreed outcome. For tightly-coupled systems,
such an approach for tackling coordination is common and ubiquitous. Extending the classical
control flow with a transactional flow (encapsulating a set of recovery mechanisms) is widely
accepted for ensuring composite services reliability. However, current approaches define
recovery mechanisms in and ad-hoc way while they have to respect consistency rules regarding
the control flow.

3.3.1 Transactional behavior in composite Web services

In the loosely coupled environment represented by Web services, long running applications
will require support for recovery and compensation, because machines may fail, processes
may be canceled, or services may be moved or withdrawn. Web services transactions also
must span multiple transaction models and protocols native to the underlying technologies
onto which the Web services are mapped. However, handling failures using the traditional
transactional model for long running, asynchronous, and decentralized activities has been
proven to be unsuitable. Advanced Transaction Models (ATMs) [23] have been proposed to
manage failures, but, although powerful and providing a nice theoretical framework, ATMs
are too database-centric, limiting their possibilities and scope [24] in this context (e.g. their
inflexibility to incorporate different transactional semantics as well as different behavioral
patterns into the same structured transaction). In the same time, workflow has became
gradually a key technology for business process automation [24], providing a great support for
organizational aspects, user interface, monitoring, accounting, simulation, distribution, and
heterogeneity. In our transactional CS model, we propose to combine workflow flexibility and
transactional reliability to specify and orchestrate reliable Web services compositions.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 17

3.3. TRANSACTIONAL WEB SERVICES

Transactional Web service model

A transactional service, tg, is a triplet t, =(ID € Object, E C States, T C Transition)
where ID is an object designating service ID, E is the set of its states and T is the set of
transitions performing the changes between states.

Each service can be associated to a life cycle statechart. A set of of states (initial, active,
canceled, failed, compensated, completed) and a set of transitions (activate(), cancel(), fail(),
compensate(), complete()) are used to describe the service status and the service behavior.
We distinguish between internal (intra-service) transitions (complete(), fail(), and retry())
and external (inter-services) transitions (activate(), cancel(), and compensate()). External
transitions are fired by external entities (other services, human actor,etc.). Typically they
allow a service to interact with the outside and to specify composite services orchestration.
The internal transitions are fired by the service itself (the service agent) and are invariably
defined. The internal service behavior is refined to express the service transactional properties.

The main transactional properties [25] of a Web service we are considering are retriable,
compensatable and pivot. A service ts is said to be retriable if it is sure to complete after finite
activations. ts is said to be compensatable if it offers compensation policies to semantically
undo its effects. s is said to be pivot if once it successfully completes, its effects remain and
cannot be semantically undone. Naturally, a service can combine properties, and the set of all
possible combinations is {r; cp; p; (r, cp); (r,p) }.

The requested transactional properties can be expressed by extending the service states
and transitions. For instance, for a compensatable service, a new state compensated and a
new transition compensate() are introduced (e.g., service in figure 3.1.b). Figure 3.1 illustrates
the states/transitions diagram of a retriable service (3.1.c) and states/transitions diagrams of
services combining different transactional properties (figures 3.1.d and 3.1.e).

activate() complete]) activate() complete() activate() complete()
initial | — g active initial ——» active — e completed initial — gu active -—4—p= completed
| | |

abori() cancel(} Tail(y abort() cancel() fail$) compensate]) abor(} cancell) fail() retry()
v y v v v \| v v y \
aborted | cancelled failed abarted’ | cancelled failed | | compensated aborted | cancelled | Tailed
(a) a pivot service (b)) a compensatable service (¢) a retriable service
activale() complete() activate() completei)
initial ———= active compleled initial — e active -g—p= completed
| |
il"l“‘l' cancell) fail() retry() abon(} caneel() fail(} retry() compensate(}
aborted . | cancelled failed aborted, | cancelled failed | | compensated
i) a retrizble and pivotl service {2} a retriable and compensatable service

B o Final state
State —® Transitio D i i
I'ransition for a pivot service

Figure 3.1: Services states/transitions diagrams according to different transactional properties
[26]

Transactional composite service model

A composite service is a conglomeration of existing Web services working in tandem to offer a
new value-added service [27]. It orchestrates a set of services, as a composite service to achieve a
common goal. A transactional composite (Web) service (TCS) is a composite service composed
of transactional services. Such a service takes advantage of the transactional properties of

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 18

3.3. TRANSACTIONAL WEB SERVICES

component services to specify failure handling and recovery mechanisms. Concretely, a TCS
implies several transactional services and describes the order of their invocation, and the
conditions under which these services are invoked.

Dependencies between services

A TCS defines services orchestration by specifying dependencies between services. They
specify how services are coupled and how the behavior of certain service(s) influence the
behavior of other service(s). A dependency from service sl to service s2 exists if a transition
of sl can fire an external transition of s2. A dependency defines for each external transition
of a service a precondition to be enforced before this transition can be fired. We distinguish
between “normal” execution dependencies and “exceptional” or “transactional” execution
dependencies which express the control flow and the transactional flow respectively.

The control flow defines a partial services activations order within a composite service
instance where all services are executed without failing, canceled or suspended.

The transactional flow describes the transactional dependencies which specify the
recovery mechanisms applied following services failures (i.e. after fail() transition). We
distinguish between different transactional dependencies types (compensation, cancellation
and alternative dependencies). Alternative dependencies allow to define a forward recovery
mechanisms. A compensation dependency allows to define a backward recovery mechanism
by compensation. A cancellation dependency allows to signal a service execution failure to
other service(s) being executed in parallel by canceling their execution.

Transactional Recovery Rules

We argue that the recovery mechanisms defined by the Transactional Models (TM) result
from more general recovery rules. The recovery mechanisms are just an interpretation of these
rules according to the structure and transactional semantics considered by the model.

We detect these rules by analyzing the recovery mechanisms defined by the Flexible
Transactions Model (FTM) [28]. The rational for choosing FTM is its relative complex
structure, its set of recovery mechanisms (TF considers both backward and forward recovery
through compensation and alternative respectively) and its use of transaction typing (retriable,
compensatable and pivot as in our transactional model).

A Flexible Transaction (FT) has to respect some structural rules ensuring its reliability:

e after a pivot sub transaction (that corresponds to a component service in our model),
a set of ordered alternative paths are possible such that the last one must be sure to
complete (that means all its sub transactions must be retriable).

e all sub transactions between two pivot sub transactions (or before the first pivot) must
be compensatable.

Respecting this structural rules ensures that a FT is recoverable through compensation
if it does not reach its first pivot, otherwise it will always terminate successfully. Indeed,
in the case of the failure of a sub transaction (which is compensatable), it is possible to
recover through compensation till the previous pivot and try another alternative. By making
abstraction over the structure constraints, we notice that these recovery mechanisms result
from the following more general recovery rules:

R1: when a sub transaction or a path fails, always try another alternative if possible,

R2: when one or a set of sub transaction fails causing the abortion of the whole transaction
or path, compensate the partial work done so far,

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 19

3.3. TRANSACTIONAL WEB SERVICES

However, the F'T model does not consider parallel executions. In order to take into account
this parallelism, we add the following rule in the vein of R2.

R3: when one or a set of sub transaction fails causing the abortion of the whole transaction
or path, cancel the running executions.

3.3.2 Transactional WS Patterns

The use of workflow patterns [29] appears to be an interesting idea to compose Web services.
However, current workflow patterns do not take into account the transactional properties
(except the very simple cancellation patterns category [30]). It is now well established that the
transactional management is needed for both composition and coordination of Web services.
That is the reason why the original workflow patterns were augmented with transactional
dependencies, in order to provide a reliable composition [31].

ol DC
< <
A A X
CRS CA
] o ®
4 4
PCC

(@) a composite service skeleton defined using ANDesplit, AND=join and XOR-split patterns

Sure to complete Sure lo complebe

. anicel]l Comp Ln\.JIL Activate (acell Compe -u.uu.
in case of failure CA in case of failure in case of failure CA —.-

Sure b complete {c) i composite service os Sure o comgleie
g Activation dependencies --— —p Tramsactional dependencies

Figure 3.2: Two composite services defined according to the same skeleton

To fulfill the above objective, we use workflow patterns to describe TCS’s control flow
model as a pattern composition. Afterwards, we extend them in order to specify TCS’s
transactional flow, in addition to the control flow they are considering by default. Indeed, the
transactional flow is tightly related to the control flow. The recovery mechanisms (defined by
the transactional flow) depends on the execution process logic (defined by the control flow).
Figure 3.2 illustrates this by considering an application dedicated to the online purchase of
personal computer. This application is carried out by a composite service. Services involved in
this application are: the Customer Requirements Specification (CRS) service used to receive
the customer order and to review the customer requirements, the Order Items (OI) service
used to order the computer components if the online store does not have all of it, the Payment
by Credit Card (PCC) service used to guarantee the payment by credit card, the Computer
Assembly (CA) service used to ensure the computer assembly once the payment is done and
the required components are available, and the Deliver Computer (DC) service used to deliver
the computer to the customer (provided either by Fedex (DCpeq) or TNT(DCryt)).

3.3.3 Validation

Several executions can be instantiated according to the same TCS. The state of an instance of
a TCS composed of n services is the tuple (z1,x2,...,2n), where xi is the state of service si

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 20

3.4. SERVICE COORDINATION MODELS

at a given time. The set of termination states of a TCS cs, ST'S(cs), is the set of all possible
terminationstates of its instances.

In order to express the designer’s requirements for failure atomicity, we use the notion of
Accepted Termination States ([32]). In other word, the concept of ATS represents our notion
of correction. An accepted termination state, ats, of a composite service cs is a state for which
designers accept the termination of cs. We define AT'S the set of all Accepted Termination
States required by designers.

An execution is correct iff it leads the CS into an accepted termination state. A CS reaches
an ats if (i) it completes successfully or (ii) it fails and undoes all undesirable effects of partial
execution in accordance with designer failure-atomicity requirements [32]. The execution of a
composite service can generate various termination states. A composite service is not valid if
it exists some termination states that do not belong to the ATS specified by the designers.

3.4 Service Coordination Models

As the adoption of SOA grows in enterprises and businesses, more and more complex infor-
mation systems are reworked or designed anew on the basis of the emerging service-oriented
paradigm. As a consequence, the complexity of the conversations that take place among ser-
vices provided by the different players increases accordingly, and connecting complex services
by “pairing” them on a one-to-one basis does not suffice any longer. Instead, supporting
complex, possibly long-lasting multi-party conversations involving a diversity of services
becomes critical.

Additionally, and unlike in the case of short-lived partnerships, adequately managing the
evolution of service-enabled systems that make it possible continuous multi-party conversations
becomes paramount. This includes dynamically replacing partners which take up roles in
a business protocol? and assessing how this impacts the overall conversation. Operations
exposed by services can not any longer be restricted to a single service provider and service
requester, but have to scope up to multi-party environments, where each service describes
how it can consume and produce messages in conversations involving an arbitrary number of
participants.

At the communication level, business protocols can be very flexible, ranging from con-
ventional inter-organizational point-to-point service interactions to fully blown dynamic
multi-party interactions of global reach within which each participant contributes its activities
and services.

This section will be devoted to giving a global overview of some joint work performed in
collaboration with WP-JRA-2.1. As not all parts of this piece of work have already been
accepted as formal publications, we think that restricting ourselves to attaching just these
accepted papers would give a partial view of this work which would fail to convey the ideas
behind it. Therefore, we have decided not to physically attach papers on this issue to the
present deliverable, and instead include a more complete set of papers in a later deliverable,
probably within WP-JRA-2.1.

3.4.1 Representation Formalisms

The research community is investigating the formalisms best suited to represent and reason with
multi-party environments.These are collectively called business protocol languages. Proposals
for business protocol languages range from adapted business process languages like BPEL-
light [33, 34], more formal approaches based on different calculus (e.g., m-calculus [35, 36]),
Deterministic Finite Automata (DFA, especially timed automata [37, 38]) and Petri-Nets [39].
Business protocol languages represent a bridge between business protocols seen from their

?Bearing in mind that the relation partner-to-role need not be a one-to-one mapping.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 21

3.4. SERVICE COORDINATION MODELS

order to:approve order,ps,{p1} ts:approve change,p2,{p1},t7<12 hours
prepared

order
approved
ti:prepare order,pi,{p2}

\7 t3:send order,pi,{p3},t2<2 hours

change
change proposed

approved . ibmit change,pr,{p2}.t2<12 hours |

tg:submit order,pi,{ps},ts<1 day

\
L \! order
- Xs refused order
start order sent
t4:order accepted,ps,{p1} canceled
te:reject order,ps,{p1},t1<2 hours
order order t1p:cancel order,pi,{ps,p2},t2>1 day
accepted ts:confirm order,pi1,{p2,p3}

confirmed

Figure 3.3: Purchase Order: an example of a business protocol [40].

structural point of view, i.e. how they should interoperate, and their functional aspect on the
other side, i.e. which tools / mechanisms can enable their interoperation. In other words, they
provide a hinge to link abstract views of business protocols and the languages and frameworks
used to implement them, by stating the needs of the format in a formalism closer to the latter.
Within the realm of the S-Cube project, this opens the possibility of acting as one of the bonds
between workpackages WP-JRA-2.1 and WP-JRA-2.2. These WPs will gear more towards
providing an extended definition of coordination as a concept and coordination protocols as
concrete instantiations, and classifying them accordingly. The rationale behind this decision
is that not only business protocols, but also choreographies of service compositions, which
are considered at the service composition level, can be viewed as coordination protocols. We
consider this to be part of the future research work.

Service invocations are often represented as point-to-point uni-cast/multi-cast message
exchanges, where messages are basic units of communication among services. One possible
formalism, which we have used in our present work in order to describe multi-party business
protocols for service networks, is a graph-based representation enriched with temporal con-
straints (see Figure 3.3), which permits us to give an intuitive and simple semantics to the
execution of runs (i.e., sequences of time-annotated message exchanges among the different
participants in a protocol). Accepted runs are those which are in an accepting state.

From this point of view, a business protocol can be seen as a graphical or formal vehicle
for representing conversations, where the conversation supported by a business protocol is the
set of all runs that are accepted by the business protocol. The temporal constraints in the
graph determine when the transition it is associated which can be traversed. Note that even
if the number of message exchanges in a run is customarily finite, the number of different
runs that can take place over the same business protocol may be infinite, since, for instance, a
particular message can be sent at infinitely many different times.

Such a graph-based representation makes it also easy to map business protocols to timed
automata [37], therefore making it possible to apply verification procedures developed for this
formalism on our framework.

3.4.2 Towards Truly Distributed Service Networks

One relevant question is up to which point a given (multi-party) business protocol can be
executed in a completely distributed fashion using only the means (i.e., partner interactions)
expressed in the protocol itself. In investigating this [40], we have introduced the requirement
that senders must generate their messages within the correct time windows and that all

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 22

3.4. SERVICE COORDINATION MODELS

participants have to acknowledge the termination of a protocol execution they are part of.
There exist another property - awareness that is additionally inferred and it appears sufficient
for explaining soundness. Transition awareness is related to the ability of participants to know
when some transition can be traversed; this needs additional knowledge on the associated
conditions. Similarly, a participant is said to be state-aware of a state if it is aware of every
time that the business protocol enters or leaves that state. Transition- and state-awareness,
which are mutually dependent, are the keys to participant soundness: if participants are aware
of the message-based transitions in which they are involved, they have enough understanding of
the protocol not to break it without the need of additional synchronization means. Therefore,
all participants can acknowledge when the protocol has terminated.

An additional relevant property of choreography business protocols, called time-soundness,
is related to the ability of protocols to avoid stalling caused by participants not generating
messages when they ought to. Service network protocols that are both time and participant
sound are called fully sound. Fully sound multi-party choreography business protocols rely
solely on message exchanges as the only means of communication and can be executed consis-
tently in a completely distributed manner, while guaranteeing termination. Our framework
allows the description of business protocols and verification of their temporal properties using
model checking of timed automata. Fully sound multi-party choreography business protocols
contribute towards a comprehensive theory of management of business protocols for service
networks.

3.4.3 Initial Steps Towards Multi-Party BP Evolution: Replaceability and
Compatibility

The communication among participants involved in a business protocol can be structured
either as orchestrations, which describe the local point of view of one of the participants
(the subject), or as choreographies, which provide a global view. Relating orchestrations and
choreographies is instrumental to frame the “big picture” of business protocol evolution: how
business protocol models can evolve in order to address new/updated requirements such as
changes to the behavior of partners, KPIs and QoS parameters to be met, and so on.

Most of our work on replaceability is driven, on one hand, by the need for every participant
(which has a role which can be exemplified by an orchestration) to send / accept the messages
needed by the business protocol (this is somehow related to the behavior of the participant)
and, on the other hand, to abide by the time constraints put forward by the choreography and
represented as constraints associated by transitions of the automaton modeling the business
protocol (see, again, Figure 3.3). This is a concern shared with the workpackage JRA-1.3,
where timing is one of the QoS attributes. Respecting these time constraints so that e.g.
partner replacements are ensured to be safe is a paramount issue in our work on replaceability,
and will be a crucial point when defining the protocol projection operators.

The Interoperability Problem

We are using as basis of our study of evolution of services in long-lasting multi-party conver-
sations the assumption of the existence of a series of primitives that cater for the evolution of
the associated business protocols. Two essential operations are the analysis of replaceability
and compatibility analyses. The former evaluates to what extent substituting a participant by
another in a business protocol impacts the interoperability with the set of all participants. The
latter assesses whether two or more business protocols can successfully interoperate with each
other. These analyses help to ascertain which changes can be applied to business protocols
while preserving backward compatibility. These operations have been already studied in the
literature [38] for two-party business protocols encoded as orchestrations. However, existing
analysis methods do not apply to multi-party business protocols, nor allow comparison between

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 23

3.4. SERVICE COORDINATION MODELS

Replaceability

s Replaceability Replaceability il
Replaceability of an Orches- of a Choreog- Replaceability
between Orches- - — - . . . between Chore-
trations reduces to| tration with a raphy with an ographies

< Choreography _ | Orchestration
~ - = —di - = =
" ~ reduces t0 g yme problem as
reduces to ~ S |
- — = = Compatibilit Compatibility - — = =
I—Compatibility 7 betwgen an }(I)r— between a I/Compatlblhty [
among Orches- chestration and Choreogra- among Chore-

trations phy and an ographies
(B - a Choreography Orchestration | 7~ — — — — — ‘
Compatibility

Figure 3.4: Replaceability and compatibility problems in the multi-party scenario.

choreographies and orchestrations. A classification of replaceability and compatibility scenarios
for multi-party protocols shows that they are more complex than conventional two-party ones,
giving rise to an extension of existing notions of replaceability and compatibility. Figure 3.4
shows a glimpse of the different possibilities.

We have introduced in our work so far, a theory and decision model to perform compatibility
and replaceability analyses of multi-party business protocols. The new proposed primitives
not only cater for uniform replaceability between orchestrations and between choreographies,
but also for mixed flavors of replaceability and compatibility between orchestrations and
choreographies, and, vice-versa. This is considered to be a novel research result in the scope
of S-Cube.

In the current work we propose an approach based on graph-rewriting rules to systemati-
cally extract the orchestration representing the point of view of one of the participants of a
choreography on the overall conversation, and base the replaceability and compatibility deci-
sions on that “artificial” orchestration by means of language inclusion in timed automata [37].
Our extraction process aims at optimizing the similarity between the initial choreography
and the resulting orchestration. That is, it tries to generate orchestrations that share as
much of the structure of the initial choreography as possible (by e.g. maintaining the same
states wherever possible). By doing this, we aim at decreasing (or removing) problems such
as incompatibilities or inconsistencies when running the services.

We have studied compatibility and replaceability between several combinations of orches-
trations and choreographies: replaceability between two orchestrations, compatibility between
an orchestration and a choreography (and vice-versa), replaceability of an orchestration with
a choreography and replaceability of a choreography with an orchestration. All these can be
reduced to the first case - replaceability between two orchestrations (see Figure 3.4). The rest
of the combinations (compatibility among orchestrations and compatibility among a number
of choreographies) are left to further research, since they are actually related to problems of
composition of business protocols.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 24

Chapter 4

Service Composition Approaches
and Languages

This section focuses on service composition approaches. In the work in this WP we intend
to deal with models for services and service compositions that include QoS and behavioural
information, corresponding languages for describing these models and possibly formal rep-
resentations. These will be used to develop novel approaches for service composition that
take into account (i) the interdependencies between the SCC layer and the BPM and Service
Infrastructure layer and (ii) the QoS-characteristics relevant to SBAs and help enable adapta-
tion of SBAs. Additionally, we intend to map some of the approaches to a concrete service
composition technology and improve this technology if necessary to be able to demonstrate
the feasibility of the chosen approaches. Our intention is also to investigate approaches
for coordination of service compositions, in particular for the out-sourcing and in-sourcing
scenarios. We shall concentrate on defining coordination models needed in service compositions
and their classification.

In this document we cover only some preliminary research results and approaches. As the
project work proceeds we shall improve these approaches and create additional once that cover
the QoS and Adaptation aspects of SBAs from the point of view of the Service Composition
layer and in a coordinated effort with the other WPs in S-Cube.

4.1 Business Process Development using WS-CDL and WS-
BPEL

The approach presented in this section can be considered a top-down approach since it starts
with gathering requirements for the top-level composite service and then refines it to an
executable service composition.

Motivation

In this section we briefly summarize a top-down modeling approach, published in [41], that uses
WS-CDL (Web Service Choreography Description Language) as the choreography description
language and WS-BPEL as the orchestration language. The WS-CDL description captures
the global model of all the participants and their service interactions. Using this global
WS-CDL model as input, the orchestrations in WS-BPEL for each partner are generated.
The motivation for using WS-CDL is based on the fact that it has been one of the first pure
publicly available choreography languages and BPEL did not provide support at the time of
implementing the approach. The novelty of this approach is the consideration of QoS from
initial choreography modeling in form of Service Level Agreements that will be mapped to
enforceable QoS policies in the orchestration layer.

25

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

Mapping Approach

As shown in Figure 4.1, the language constructs of WS-CDL can be mapped to BPEL allowing
a choreography description to be transformed into separate BPEL processes, one for each
partner in the choreography, including corresponding WSDL descriptions. We do not present
each transformation step in detail, therefore the interested reader is referred to [42, 41],
however, we give a brief overview of the required steps.

CHOREOGRAPHY LAYER ORCHESTRATION LAYER

WS-CDL to WSDL|Mapping
== iy — | WsDL
WS-CDL
e T Roe ~ —|—» | WS-BPEL

WS-CDL to BPEL|Mapping T

invokes

SLA (QoS) WS-Policy

T SLA|to Pdlicy Mapping
SLA Parameter < === === Policy Assertion

Figure 4.1: Modeling Approach

On the highest level of abstraction (the choreography layer), a number of models have
to be specified which can then be used to generate specific parts for each participant in the
business process on the orchestration layer.

This is achieved by transforming the models from the choreography layer to executable
code in the orchestration layer as depicted in Figure 4.1. The models of the choreography layer
include a choreography description in WS-CDL and one or more SLAs. The choreography
is used to describe the partners in the process and the message exchanges. The SLAs
define obligations and guarantees among the participants. They bridge the gap between the
choreography description and the SLAs. We have annotated the choreography with the SLA
references to allow a pairwise agreement on a specific SLA.

During the transformation, we map the WS-CDL choreography to a number of BPEL
processes (the amount depends on the number of participants) and we generate the WSDL
descriptions of the Web services each partner has to implement and provide to its business
partners. The importance of QoS in cross-organizational business processes makes it necessary
to consider these aspects from the beginning of the development process. Similarly, the SLAs
are transformed to WS-QoSPolicy statements (our extension to WS-Policy — very briefly
described below) that are directly attached to the corresponding partner links in BPEL to
allow an enforcement by a BPEL engine.

Mapping WS-CDL to WS-BPEL. The main goal of transforming WS-CDL to BPEL is
to allow the participants a rapid modeling and development process and generate relevant
BPEL and WSDL documents which can then be used as a basis to implement the private
(non-visible) business logic. The projection of such a global description to endpoint processes
whose interactions precisely realize the global description is called endpoint projection [43].

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 26

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

Generating WSDL Descriptions. The WSDL descriptions define a static structure which
can be extracted from the choreography without analyzing the choreography flow in detail.
The necessary element mapping from WS-CDL to WSDL can be seen in [42] (Table 2).
The knowledge from this mapping is then used to implement a WSDL generation, which
basically works as follows: We generate a new WSDL document for each roleType of the
choreography if the service interface is invoked somewhere in the choreography flow. The
main idea is to check if the roleType is referenced within a channelType and a variable for
this channelType exists that is used in an interaction with another partner. If this is the
case, the roleType is in use and a WSDL needs to be generated. For details on the algorithm
consult [42].

QoS /SLA Integration. The integration of QoS parameters in Web service based business
process development raises the need for appropriate techniques to consider QoS at the
choreography and orchestration layer. Considering QoS at the choreography layer can be
achieved by using SLAs which focus (among others) on performance and dependability aspects
of the underlying QoS model. In contrast, the integration of QoS at the orchestration layer
can be attained by the use of Web service policies. This section describes how WS-CDL and
BPEL can be extended to support QoS attributes.

As mentioned above, we use SLAs to integrate QoS at the choreography layer. For
the definition of the SLAs we decided to use WSLA as it seems to be more suitable than
WS-Agreement. For the actual integration, we extended WS-CDL with a construct which
holds SLA references.

In order to bring QoS aspects from the choreography to the orchestration layer, SLAs have
to be mapped to the corresponding Web service policies. However, the current WS-Policy
specification focuses on security (WS-SecurityPolicy) and reliable messaging (WS-RMPolicy),
whereas performance and dependability are not addressed. Hence, we had to extend the
WS-Policy framework by defining a WS-QoSPolicy. The WS-Policy Framework therefore
provides a grammar for the definition of domain-specific policies. The WS-QoSPolicy defines
assertions for all QoS attributes. The normative outline of the assertions is shown in Listing 4.1.
It defines type, unit, predicate, and value of the assertion. A concrete example for two
such policy assertions is illustrated in Listing 4.2.

<qosp: [QoS] Assertion
unit="xs:string”
predicate="tns:PredicateType”
value="xs:integer .| _xs:flow” />

Listing 4.1: WS-QoSPolicy Assertions

<wsp:Policy>
<wsp:All>
<qosp:ExecutionTimeAssertion unit="seconds”
predicate="Less” value="5"/>
<qosp:ThroughputAssertion unit="requests”
predicate=" GreaterEqual” value="1"/>
</wsp:All>
</wsp:Policy>

Listing 4.2: Assertion Example

Our extension of the WSLA schema restricts the SLA parameters to the pre-defined QoS

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 27

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

attributes introduced in the previous section. Therefore, the SLA can be directly mapped to
the WS-QoSPolicy which consists of the following two steps: Firstly, each SLA is mapped to
a policy and secondly, each SLA parameter is mapped to a policy assertion.

As each SLA may consist of one or more SLOs, we identified three different patterns:

1. One SLO is defined for each SLA parameter.
2. One SLO consists of multiple SLA parameters.
3. SLA parameters are defined in multiple SLOs.

Each of these patterns can be successfully mapped to an equivalent policy. In the first
case, one All operator is used to contain all policy assertions. For each SLO, exactly one
policy assertion will be generated. For example, an SLO SLOServiceExecutionTime defines
an SLA parameter which corresponds to the type ExecutionTime. This parameter will be
mapped to the corresponding policy assertion according to the WS-QoSPolicy.

The definition of a QoS policy and QoS/SLA mapping rules are the fundamental concepts
for considering QoS in Web service based business process development. Yet, the question
remains how to integrate the generated QoS policies in the orchestration layer. Regarding the
top-down modeling approach of Web services, two integration approaches can be differentiated:
Policies can either be attached to service descriptions (WSDL) or be integrated in BPEL
processes.

Attaching policies to WSDL descriptions following the WS-Policy Attachment [44] specifi-
cation has two main drawbacks. Firstly, service invocations are always subject to a policy,
even if the service consumer has no corresponding SLA. Secondly, the service provider cannot
differ between multiple policies for the same service since policies do not contain information
about the participating parties. Therefore, following the second approach the policies should
be integrated in BPEL processes.

Extensibility in BPEL is achieved by allowing elements from other namespaces. The
BPEL partnerLink element is the place to integrate the policy. For this integration, both
synchronous (request-reply) and asynchronous (callback) message exchange patterns have to
be considered. In contrast to the asynchronous case, the service provider has no additional
information about the service consumer in the synchronous case, because the partnerLink
has no service consumer specific details. Therefore, the policy has to be integrated at
the service consumer side as illustrated in Listing 4.3. Alternatively, one could leverage
WS-Policy Attachment to do the integration at the corresponding partnerLink.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 28

4.1. BUSINESS PROCESS DEVELOPMENT USING WS-CDL AND WS-BPEL

p
<process>

<partnerLinks>
<partnerLink name="POService”
partnerLinkType="ns1:POServiceLT”
partnerRole="POServiceRole”>
<wsp:Policy xmlns:qosp="..."7 xmlns:wsu=" ...
wsu:1d="xs:QName”
qosp:operation="...7">

</wsp:Policy>
</partnerLink>

<partnerLinks>

</process>

Listing 4.3: Policy Integration in BPEL

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009)

29

Chapter 5

Monitoring, Analysis, and
Adaptation of Service Compositions

In this Section we deal with the last three phases of the service composition lifecycle: monitor-
ing, analysis, and adaptation. In the context of adaptable QoS-aware service compositions, our
focus lies on monitoring, analysis, and adaptation based on QoS-related aspects. Monitoring
evaluates QoS properties of service compositions whereby both business-level metrics and
technical QoS metrics are considered. In the analysis phase explanations and predictions of
monitored QoS values are provided. Finally, based on analysis results, service compositions
are adapted and optimized.

5.1 Monitoring and Analysis

Momnitoring is the process of collecting relevant information from the execution data of service
compositions and involved services in order to evaluate properties of interest and report results
of that evaluation. Monitored properties can be based on functional aspects (e.g., correctness
properties) or non-functional aspects (e.g., QoS properties). While monitoring focuses on
reporting of values of monitored properties (what?) in a timely fashion, analysis is based
on monitoring results and tries to find explanations for monitored values (why?) or predict
future values.

In the context of adaptable QoS-aware service compositions, our focus lies on monitoring
and analysis of QoS-related aspects. We identify thereby following challenges:

e (Cross-Layer Monitoring: Current solutions to service composition monitoring mostly
focus and are constrained to one layer or very specific aspects, e.g., process metrics
as part of business activity monitoring, or QoS metrics as part of SLA monitoring
and do not integrate information from all layers and deal with their dependencies. As
service compositions implement business processes from the BPM layer, and at the same
time are based on technical QoS properties of Web services and IT infrastructure used,
monitoring and analysis of service compositions should take into account both business
related metrics and technical QoS metrics.

o Cause Analysis and Prediction: Besides monitoring of process and QoS metrics, one
is also interested in providing explanations and prediction of their values. Both cause
analysis and prediction should thereby be integrated into the monitoring framework and
provide quick responses in order to enable timely reaction and (pro-active) adaptation
of service compositions.

30

5.1. MONITORING AND ANALYSIS

5.1.1 A Framework for Monitoring and Analysis of QoS-aware Service
Compositions

Figure 5.1 shows a high-level overview of our framework for monitoring and analysis of service
compositions. In our framework we distinguish three different layers. In the process runtime
layer, a WS-BPEL business process is defined and executed. The process can be executed
in a standard WS-BPEL compliant engine, as long as the engine is able to emit the process
information necessary for calculating PPMs in form of process events, as expected in Business
Activity Monitoring (BAM). In the monitoring layer, information about the running business
process and the services it interacts with is collected in order to monitor PPMs, and QoS
metrics. The user defines a set of interesting PPMs and QoS metrics which are to be monitored
and should be available for later cause analysis. Based on these metric definitions, the QoS
monitor, the WS-BPEL engine, and all instrumented services, emit needed events into a
Complex Event Processing [45] (CEP) event cloud. A monitoring tool extracts and correlates
these events and calculates corresponding PPMs and QoS metrics. The evaluated metrics are
displayed in the BAM dashboard and are stored in the metrics database for later analysis.
In the process analysis layer, the collected runtime information is analyzed by the process
analyzer component. Outcomes of the analysis are again displayed in the dashboard to the
users of the system, which can use this resulting information to optimize the business process.

0]
S
-~
c
3
x WS-BPEL
(@ Services - Engine
]
S
h
: X /
Y.
Event Cloud
QoS
Monitor
() Extract &
£ Correlate
S A
= Complex
% Event
S 50% Processor
25% : ‘_\75%
BAM —
Dashboard Metrics
Database
2
g, Process
g Analyzer —» Data Flow
< ----> |nvocation

Figure 5.1: Monitoring and Analysis Framework Overview

5.1.2 Monitoring Performance of Service Compositions

Service Compositions implement business processes and at the same time they are based on
IT infrastructure and implemented in terms of Web services. This is why we can distinguish
between two different types of characteristics when monitoring the performance of service
compositions:

e Process performance characteristics: As service compositions implement business pro-

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 31

5.1. MONITORING AND ANALYSIS

cesses defined in the BPM layer, we can evaluate business process performance based on
service compositions. Process performance is not only related to time-based characteris-
tics (process duration, deadline adherence), but also to process cost and process quality.
Process Performance is assessed by measuring process performance metrics (PPMs).

e Technical QoS characteristics: A Service Composition run on IT infrastructure and
invokes other Web services for implementing their activities. Thus, its performance
depends on technical QoS characteristics such as availability, response time, and through-
put. These QoS characteristics have also to be measured, and are in particular important
for analysis purposes, as QoS characteristics influence process characteristics and vice
versa (e.g., availability of IT infrastructure influences directly process duration, and
indirectly also process cost, and process quality).

In the following, we explain how PPMs and QoS metrics are monitored in our framework.

PPM Monitoring

Process Performance Metrics (PPMs) are evaluated in our approach based on process events
emitted by a WS-BPEL engine or some other instrumented software system used in the service
composition [46]. Most WS-BPEL engines already support an event-publishing mechanism,
which in most cases is also to some extent configurable on which events to publish (via event
filters). Based on the PPM metrics that have to be monitored, we determine needed events
and their content and create event filters which filter those events from instrumented systems.
The monitoring tool subscribes to these events and evaluates them at process runtime as
they are received. Note that process events have to be correlated based on process instance
identifiers. In special cases, technical process instance identifiers which are part of each event
emited by a WS-BPEL engine, can be used. In the general case, however, business identifiers
are needed (e.g., order ID).

QoS Monitoring

QoS metrics are typically evaluated either by probing (e.g., invoking a service endpoint
for checking its availability) or by instrumentation. We focus on monitoring of the QoS
characteristics availability, response time, and accuracy (defined as 1 - # failed requests/#
total requests). In our approach, we use an external QoS monitor for measuring the availability
of the process engine and partner Web services of the WS-BPEL process. The QoS monitor
polls the corresponding endpoints and emits events which contain information on their
availability at a certain point in time. An approach to measuring response time and accuracy
of partner Web services of a process is to instrument the Web service invocation module of the
WS-BPEL engine. That means that as part of the execution of a WS-BPEL invoke activity,
QoS events are emitted which contain information on the measured QoS data (response time
and in case of accuracy whether the request was successful or failed).

Correlation of PPMs and QoS Metrics

If we want to find out the dependencies between PPMs and QoS Metrics (e.g., what was
the availability of the process engine while customer order X has been processed?), they
have to be correlated. The correlation, however, cannot be done based on process instance
identifiers, as QoS metrics are not measured specific to process instances. Assume the PPM
order fulfilment cycle time and its evaluation for a specific process instance, i.e., a specific
customer order. Assume also that we measure availability of process engine. The QoS monitor
collects availability data in a certain time period in which many process instances (customer
orders) are processed. However, as a specific order is processed in a certain time frame, we

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 32

5.1. MONITORING AND ANALYSIS

have to calculate the availability of the process engine in the very same time frame, because
outside of this time frame the availability of the engine has no impact on the PPM value of
that process instance. This is why we need to correlate these metrics based on time frames
(and not process instance identifiers).

5.1.3 Analysis of Factors Influencing KPIs

Besides just monitoring the metrics and providing their values in near real time, we are
interested in providing explanations of their values. When KPIs (key metrics in business
context with assigned target values) do not meet their target values, business users are
interested in finding out the causes and the most influential factors. In our case, we want to be
able to derive the most influential factors and dependencies of KPIs on process performance
and QoS characteristics.

The analysis approach assumes that a set of metrics (both PPMs and QoS metrics) is
monitored. A subset of this potentially big set of metrics is classified as KPIs by defining
target values for them. Typically, KPIs are based on high level PPMs (e.g., order processing
time), but also QoS metrics can theoretically be used as KPIs. Our goal is to find out which
of the QoS and process characteristics represented by the whole set of monitored metrics has
the most influence when KPIs violate their target values. The output of dependency analysis
is a decision tree that presents the most important factors of influence of process performance.
We refer to this tree as dependency tree, because it represents the main dependencies of a
business process KPI on technical and process metrics, i.e., the metrics which contribute
“most often” to the failure or success of a KPI of a process instance.

Response Time
Banking Service

>210ms <210ms

KPI violated

1="1234' ='1234'
. KPI fulfilled) KPI violated

Figure 5.2: Example Dependency Tree

An example dependency tree is shown in Figure 5.2. In this example, the most influential
factor is the response time of the banking service, since a delay in this service generally leads
to a violated KPI. However, even if the banking service response time is acceptable (below
210 time units in this example), the KPIs are still often violated if the order is placed by the
customer with the ID 1234’

Users can use the dependency tree to learn about possible corrective actions if a process
underperforms. For example, considering the example in Figure 5.2, the user can take the
corrective action to replace the “Banking Service” against a service with better response time,
if such a service is available. Of course, such a replacement could happen in a (semi-)automated
way, if the monitoring and analysis framework is integrated with adaptation mechanisms for
service compositions.

Our approach to dependency analysis is based on decision tree classification, a well-known
technique from the area of machine learning [47], to automatically learn dependency trees
from existing process instances. Decision tree classifiers are a standard machine learning
technique for supervised learning (i.e., concepts are learned from historical classifications, in
our case dependency information is learned from monitoring of previous process instances).
Decision trees follow a “divide and conquer” approach to learning concepts — they iteratively

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 33

5.2. ADAPTATION

construct a tree of decision nodes, each consisting of a test; leaf nodes typically represent a
classification to a category. In our case, only two categories exist (KPI has been violated, or
not). The process analyzer is flexible in the concrete algorithm that is to be used to construct
the decision tree (e.g., C4.5 [48], or alternating decision tree [49]) and the parameterization
(e.g., whether to use pruning [50] or not). However, data preprocessing (i.e., the process of
reformatting raw process data in such a way that it can be fed into the machine learning
algorithm) is done automatically after selecting a KPI which is to be analyzed.

5.2 Adaptation

The process-based service composition models are described in terms of the following entities:
the process logic containing control (activities or steps to be performed, their sequencing
and the transition conditions) and data flow; functions that implement the single activities
in the control flow (functions dimension). Some activities/steps of the process model in-
teractions with services, which implement the activities, hence the activities are assigned
service implementations either statically or declaratively (these may contain descriptions of
the functional and non-functional properties the services should have). This section starts
the discussion about the adaptation dimensions (?degree of freedom?) of processes (here the
term service compositions (SC) is used synonymously) followed by the outline of reasons and
motivation for the need of adaptation of the processes, i.e. the adaptation drivers. Finally
some adaptation mechanisms for SC are presented. This document will not present a complete
list of adaptation mechanisms; here, we identify and discuss three such mechanisms, namely
(a) fragmentation of service compositions, (b) service re-binding and (c) biological systems
related approaches for SC adaptation. Note: the classifications of adaptation drivers, the
process adaptation types and the mechanisms presented here are preliminary and will undergo
a refinement process in the later stages of the project, which will be reflected in the subsequent
deliverables.

Work done in this deliverable as well as the WP in general overlaps with the work of WP-
JRA-1.2. The definition of the overlaps is discussed in detail in the documents produced by
IA-3.1 and is out of the scope if this deliverable. The information provided in this document
will be refined in the later stages of the projects and will be described in the follow-up
deliverable document (CD-JRA-2.2.4).

5.2.1 Adaptation dimensions

We differentiate the following orthogonal classifications of process adaptation/change types
(details are presented next):

e Evolutionary changes vs. ad-hoc changes of the process. Evolutionary change/adaptation
is done on the process model and thus on all of the process instances of the process
model whilst an ad-hoc change is performed on single process instances.

e Adaptation of the process logic dimension. On this SC dimension tasks can be inserted,
deleted or substituted. Furthermore, depending on granularity of substitution one
may make coarse- or fine-grained changes of the process logic: there are adaptations
tackling changes on granularity of tasks vs. process-fragments. The transition conditions
guarding the transitions from one activity to the next may also be altered in terms of
using another expression or other variables for its calculation. Another element of the
process logic dimension is the data flow. Changes in the data flow may include: changing
the data flow connectors, if such are available in the SC language or meta-model or at
least the flow of data from one activity to the next and the data dependencies among
activities; changing the variables used 7 either the variables used or their data types;
changing the data manipulation specifications.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 34

5.2. ADAPTATION

e Adaptation on the functional dimension. The possible changes of service composition
that can be done on this dimension are related to the implementation of the activity in
the process model and the information available in the process model. The adaptation
of the functional dimension of SC does not alter the process logic structure (control
flow), but merely exchanges the information related to the service to be invoked. . Such
changes can be related to the binding information (i.e. transport protocol, formats and
location of the service to use) provided for the service to be invoked. In a Web Service
environment, this is the binding information containing the transport protocol, the
formats of the messages exchanged with the Web service and the location of the service.
The binding information may also be specified declaratively in terms of non-functional
properties and discovered during process execution. It is also possible to change the type
of service to be used as an implementation of a process activity, which is another change
type on this dimension. Such a change implies discovering the binding information for
the newly identified service type.

e Design time vs. runtime adaptation. Regarding the timing of adaptation (timely location
in the lifecycle of service composition) it might be performed during the design time
(aka modeling time) or runtime (execution time) of the process. Adaptation done during
the design (modeling) time allows for any change in the process logic as well as in the
functional dimension. Runtime adaptation has to be checked for correctness, since it
influences one or more process instances. Runtime changes may be of any of the kinds
specified in the adaptation types presented above. Depending on the required adaptation
type different mechanisms need to be devised.

e Proactive vs. reactive adaptation: adaptation done in order to avoid failures or adapta-
tion done as reaction to the identified failures.

5.2.2 Classification of Adaptation Drivers

The need and motivation for adaptation arises because of different reasons which we denote as
adaptation drivers. The adaptation mechanisms are the solutions needed to react to the need
for adaptation expressed by these adaptation triggers. In the following we briefly outline the
preliminary identified drivers and discuss some of them in more detail. For now we identify
the following critical drivers for SC adaptation: (i) changes in requirements produced by
requirements engineers, (ii) results of testing services associated to single process activities,
(iii) results of analysis and monitoring and (iv) identified failures of services meant to perform
process activities.

The need for adaptation of service compositions may be expressed in terms of recommen-
dations of requirements engineers. Service compositions have to satisfy a set of requirements
including business requirements expressed via Key Performance Indicators and metrics stated
in Service Level Agreements, as well as technical requirements as Quality of Services. Due
to the dynamics of the service landscapes and changes in the business environment new
requirements might be added or already existing ones might be modified. These requirements
might put new constraints on the functional and non-functional properties of the services
used in the compositions. The changes in set of requirements may imply the need for changes
in different dimensions the service compositions, which is in the scope of future work in this
WP. Requirements engineering changes may also result in adaptation during design time or
run time of service compositions, and may need to be enforced on the level of process model
or on some instances only.

Analysis on formal models triggers the adaptation during the design time whilst monitoring
and results of the analysis data gathered for monitoring may trigger both design time and
runtime adaptation.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 35

5.2. ADAPTATION

The testing phase of Service Based Applications in contrast to testing of classical software
applications might overlap with the execution phase of SBA. Service compositions (process
models and instances) may be adapted in order to avoid the errors identified by the e.g.
online testing of individual services. Parallel to the execution of the process instance it?s
not yet invoked services might be tested. If the online testing procedure identifies faults an
alternative service should be chosen by the middleware, based on the original service discovery
and selection requirements

5.2.3 Adaptation Mechanisms

The types of service adaptation to be used with service compositions depend on the flexi-
bility of the chosen modeling style and employed service composition language. In order to
accommodate certain types of adaptation the process modeling language should incorporate
corresponding mechanisms on the one hand, thus the need to employ additional mechanisms
would be discarded. On the other hand the support of adaptation functionality may be
enabled by the middleware, like for instance, support for dynamic binding to services. For
the cases where neither the service composition language, nor the middleware can enable a
particular adaptation type, a new technique must be developed and implemented in terms of
an adaptation mechanism.

The focus of this deliverable will be mainly on the initial overview of methods addressing
the fragmentation methods as well as mechanisms of re-binding services to process activities.
We will relate these mechanisms to the adaptation dimensions presented above and the
currently identified adaptation drivers. In the follow-up deliverables these approaches will be
further developed and others will be devised.

The adaptation through fragmentation supports the in- and out-sourcing scenarios. A
process fragment is identified might be replaced by a single service from some service provides
on the one hand. On the other hand one process might be split into several processes because
of e.g. new requirements like improved resource utilization, organizational optimization and
other requirements [51]. In order to support the process fragmentation additional coordination
mechanisms may be needed. Depending on the need for fragmentation and on the mechanism
and rules used for the fragmentation, different coordination protocols have to be created in
order to maintain the original logic of the non-fragmented process intact.

For that fact, the formal direction we are investigating to carry out the fragmentation
process and the coordination protocols can be based on temporal logic, helping to provide
reasoning mechanisms upon the coordination protocols. The formalism of temporal logic [52]
is well suited and enough expressive and widely used in the distributed real time systems
[53, 54].

One mechanism for adaptation on the functional dimension is the dynamic binding to
services during the process runtime: services assigned to the tasks may be exchanged in
reaction to an adaptation driver. The middleware takes care of discovery of the alternative
service satisfying the given requirements. In [55] the focus is on the modification of the
assignment of service implementations to process tasks during run-time. The paper presents
the mechanism for dynamic binding and substantiates how this mechanism can be used as a
reaction to adaptation drivers originating from requirement engineering, online testing and
due to identified service faults.

The work presented in [55] integrates knowledge from the areas of requirements engineering,
online testing and state-of-the-art adaptation mechanisms for service compositions. The paper
shows clearly that the dynamic binding strategy driven by pre-described service requirements
is beneficial over the static binding strategy (more on service binding strategies can be found in
[56]). The dynamic binding strategy is a mechanism that can be used when executing service
compositions to resolves automatically all service faults, e. g. due to unavailable service
implementations The mechanism requires leaving the choice of concrete service implementing

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 36

5.2. ADAPTATION

an activity open till the execution of the composition (which means that no binding information
is available during modelling). During process execution the discovery and selection of the
concrete service to implement the activity is delegated to the service middleware, the selection
criteria must be provided by the process itself. The mechanism has been implemented in
prototypes.

In contrast, the static binding strategy, however, requires a modification of the process
model and its redeployment, unless the so-called parameterized processes are used, where the
composition language is extended to enable overwriting the static binding during run time
[57]. The dynamic binding mechanism can be used to enable ad-hoc/instance-based changes
during composition run time and is a modification on the functional level of processes.

In addition, we have identified that requirements engineering and online testing procedures
only need to interact with the enterprise service registry and have no other influence on the
existing service middleware. While the online testing aims to remove faulty services from the
registry, the requirements engineering activity aims to add new and innovative services to it,
which lead to a better fulfilment of the SBA?7s requirements.

We are also able to identify future research for the integration of online testing and SC
modelling as well as the integration of requirements engineering with SC modelling. Online
testing techniques require a certain sequence of tests, e. g. the tester needs to know, which
service implementation to test first. This sequence depends heavily on the service compositions
in which the service implementation is used. In addition, so far we have considered only service
testing. However, it is also important to test the whole service composition (integration test).
Techniques need to be developed and integrated with adaptation techniques, which will be
addressed in the subsequent deliverables in this WP.

For the requirements engineering field, the most predominant problem is the mapping of
the requirements to service descriptions, e. g. requirements or goal descriptions using OWL-S,
WSMO or others. This mapping ensures that, for example, services identified as superior in
the requirements engineering activity, are actually given preference during service discovery
carried out by the middleware. In addition, process instances may be tailored to the so-called
context-factors, e. g. processes may be adapted to certain users or a certain device. These
context-aware SC adaptations require a tight integration of SC and requirements engineering
research.

Moreover, by leveraging the emerging wave of innovations in Web 2.0 that promotes a new
paradigm in which both providers and end-users (including non-expert users) can easily and
freely share information and services over the Web, we will provide techniques and concepts
for prediction in order to avoid unacceptable situation while composing services . These, allow
to reuse "good fragments” and customize shared information from past experiences instead of
developing composition tasks from scratch.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 37

Chapter 6

Conclusions

In this deliverable we have explored several lines of work, in different stages of development,
which we foresee can bring about advances in mechanisms for service composition. These do
not exclude each other, as they usually tackle different aspects of the overall composition
problem (e.g., quality of service, transactionality, semantics) and different approaches (e.g.,
biologically-inspired, formal models) and concerns common to all these approaches and aspects
(e.g., adaptation and monitoring).

Since the workpackage to which this deliverable contributes is placed at the center of
the software and services stack, it naturally interacts very heavily with the rest of the layers
and workpackages. This is the reason why core concerns (e.g., quality of service) of other
workpackages percolate this deliverable and why there are deliverable sections which explicitly
address topics which are also central issues for other workpackages (e.a., adaptation and
monitoring, in Chapter 5).

38

Bibliography

1]

[10]

[11]

[12]

W. T. Tsai, “Service-oriented system engineering: A new paradigm,” in Service-Oriented
System Engineering, 2005. SOSE 2005. IEEE International Workshop, Beijing, China,
2005, pp. 3— 6.

M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics and directions,”
in Proceedings of the Fourth International Conference on Web Information Systems
Engineering (WISE). 1EEE Computer Society, 2003.

M. Treiber, H.-L. Truong, and S. Dustdar, “Semf - service evolution management
framework,” Software Engineering and Advanced Applications, 2008. SEAA ’08. 34th
Euromicro Conference, pp. 329-336, Sept. 2008.

M. P. Papazoglou, “The challenges of service evolution,” in CAiSE ’08: Proceedings of
the 20th international conference on Advanced Information Systems Engineering. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 1-15.

G. Canfora, “Software evolution in the era of software services,” in IWPSE ’04: Proceed-
ings of the Principles of Software Evolution, 7th International Workshop. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 9-18.

Y. Ma and C. Zhang, “Quick convergence of genetic algorithm for qos-driven web service
selection,” Comput. Netw., vol. 52, no. 5, pp. 1093-1104, 2008.

R. T. Mittermeir, “Software evolution: let’s sharpen the terminology before sharpening
(out-of-scope) tools,” in IWPSE ’01: Proceedings of the jth International Workshop on
Principles of Software Fvolution. New York, NY, USA: ACM, 2001, pp. 114-121.

A. P. Barros and M. Dumas, “The rise of web service ecosystems,” IT Professional, vol. 8,
no. 5, pp. 31-37, 2006.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services Description
Language (WSDL) 1.1,” Mar 2001, http://www.w3.org/TR /2001 /NOTE-wsdl-20010315.

H. Lausen, A. Polleres, and D. Roman, “Web Service Modelling Ontology (WSMO),”
World Wide Web Consortium, 2005, W3C Member Submission. [Online]. Available:
http://www.w3.org/Submission/WSMO/

S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin,
S. Mcllraith, D. McGuinness, J. Su, and S. Tabet, “Semantic Web Services Ontology
(SWSO),” World Wide Web Consortium, 2005, W3C Member Submission. [Online].
Available: http://www.w3.org/Submission/SWSF-SWSO/

V. Alevizou and D. Plexousakis, “Enhanced Specifications for Web Service Composition,”
in ECOWS °06: Proceedings of the Furopean Conference on Web Services. Zurich,
Switzerland: ITEEE Computer Society, 2006, pp. 223-232.

39

BIBLIOGRAPHY

[13]

[14]

[28]

U. Keller and H. Lausen, “Functional Description of Web Services,” ESSI
WSMO Working Group, 2006, WSML Deliverable D28.1 v0.1. [Online]. Available:
http://www.wsmo.org/TR/d28/d28.1/v0.1/d28.1v0.1-20060113.pdf

A. Borgida, J. Mylopoulos, and R. Reiter, “On the Frame Problem in Procedure Spec-
ifications,” IEEE Transactions on Software Engineering, vol. 21, no. 10, pp. 785-798,
1995.

S. Benbernou and M.-S. Hacid, “Resolution and Constraint Propagation for Semantic
Web Services Discovery,” Distributed and Parallel Databases, vol. 18, no. 1, pp. 65-81,
July 2005.

F. Baader, C. Lutz, H. Sturm, and F. Wolter, “Basic description logics,” in The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003, pp. 43-95.

F. Baader, 1. Horrocks, and U. Sattler, “Description logics as ontology languages for
the semantic web,” in Festschrift in honor of Jérg Siekmann, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003, pp. 228-248.

F. Baader, C. Lutz, M. Mili¢i¢, U. Sattler, and F. Wolter, “A description logic based
approach to reasoning about web services,” in In Proceedings of the WWW 2005 Workshop
on Web Service Semantics (WS52005, 2005.

D. Calvanese and M. Lenzerini, “Reasoning on uml class diagrams in description logics,”
in In Proc. of IJCAR Workshop on Precise Modelling and Deduction for Object-oriented
Software Development (PMD, 2001.

S. Bistarelli, U. Montanari, F. Rossi, and F. Santini, “Unicast and Multicast Qos Routing
with Soft Constraint Logic Programming,” CoRR, vol. abs/0704.1783, 2007.

D. Hirsch and E. Tuosto, “SHReQ: Coordinating Application Level QoS,” in SEFM,
2005, pp. 425-434.

P. Hrastnik and W. Winiwarter, “T'wso — transactional web service orchestrations,”
in NWESP °05: Proceedings of the International Conference on Next Generation Web
Services Practices. Washington, DC, USA: IEEE Computer Society, 2005, p. 45.

A. K. Elmagarmid, Ed., Database transaction models for advanced applications. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992.

W. M. P. van der Aalst and K. M. van Hee, Workflow Management: models, methods and
tools, ser. Cooperative Information Systems, J. W. S. M. Papazoglou and J. Mylopoulos,
Eds. MIT Press, 2002.

S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz, “A transaction model for
multidatabase systems.” in ICDCS, 1992, pp. 56-63.

S. Bhiri, O. Perrin, and C. Godart, “Ensuring required failure atomicity of composite
web services,” in WWW, 2005, pp. 138-147.

B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elmagarmid,
“Business-to-business interactions: issues and enabling technologies,” The VLDB Journal,
vol. 12, no. 1, pp. 59-85, 2003.

A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, “Ensuring relaxed atomicity for
flexible transactions in multidatabase systems,” SIGMOD Rec., vol. 23, no. 2, pp. 67-78,
1994.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 40

BIBLIOGRAPHY

[29]

[35]

[36]

[37]

[38]

[41]

[42]

[43]

W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B. Kiepuszewski,
“Advanced Workflow Patterns,” in 5th IFCIS Int. Conf. on Cooperative Information
Systems (CooplS’00), ser. LNCS, O. Etzion and P. Scheuermann, Eds., no. 1901. Eilat,
Israel: Springer-Verlag, September 6-8, 2000, pp. 18-29.

W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl: yet another workflow language.”
Inf. Syst., vol. 30, no. 4, pp. 245-275, 2005.

S. Bhiri, C. Godart, and O. Perrin, “Transactional patterns for reliable web services
compositions.” in ICWE, 2006, pp. 137-144.

M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, and P. Muth, “Towards a cooperative
transaction model: The cooperative activity model,” in In Proc. of the 21st Int. Conference
on Very Large Databases, 1995, pp. 194-205.

J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Leymann, “BPEthht,” in BPM,
ser. LNCS, G. Alonso, P. Dadam, and M. Rosemann, Eds., vol. 4714. Springer, 2007,
pp- 214-229.

T. van Lessen, J. Nitzsche, and F. Leymann, “Formalising Message Exchange Patterns
using BPEL!" " in I[EEE SCC (1). IEEE Computer Society, 2008, pp. 353-360.

R. Milner, “Elements of interaction,” Communications of the ACM, vol. 36, no. 1, pp.
78-89, 1993.

A. Lapadula, R. Pugliese, and F. Tiezzi, “A Calculus for Orchestration of Web Services,”
in ESOP, ser. Lecture Notes in Computer Science, R. D. Nicola, Ed., vol. 4421. Springer,
2007, pp. 33-47.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,
vol. 126, pp. 183235, 1994.

J. Ponge, B. Benatallah, F. Casati, and F. Toumani, “Fine-Grained Compatibility and
Replaceability Analysis of Timed Web Service Protocols,” in ER, ser. LNCS, C. Parent,
K.-D. Schewe, V. C. Storey, and B. Thalheim, Eds., vol. 4801. Springer, 2007, pp.
599-614.

H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility Verification for Web
Service Choreography,” in ICWS. IEEE Computer Society, 2004, pp. 738-741.

M. Mancioppi, M. Carro, W.-J. van den Heuvel, and M. P. Papazoglou, “Sound Multi-
party Business Protocols for Service Networks,” in Proceedings of the Sizth International

Conference on Service Oriented Computing, ser. LNCS, vol. 5364. Springer-Verlag,
December 2008, pp. 302-316.

F. Rosenberg, A. Michlmayr, and S. Dustdar, “Top-Down Business Process Development
and Execution using Quality of Service Aspects,” Enterprise Information Systems, pp.
459-475, November 2008.

F. Rosenberg, C. Enzi, C. Platzer, and S. Dustdar, “Integrating Quality of Service
Aspects in Top-Down Business Process Development using WS-CDL and WS-BPEL,” in
Proceedings of the 11th Enterprise Computing Conference (EDOC’07), Annapolis, MD,
USA. IEEE Computer Society, 2007, pp. 15-26.

M. Carbone, K. Honda, N. Yoshida, and R. Milner, “Structured Communication-Centred
Programming for Web Serices,” in Proceedings of the 16th European Symposium on
Programming (ESOP’07), Barga, Portugal, 2007.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 41

BIBLIOGRAPHY

[44]

[45]

[46]

[52]

[53]

[54]

[56]

[57]

Web Services Policy Attachment, http://www-128.ibm.com/developerworks/
webservices/library /specification/ws-polatt/, W3C, 2004, uRL: http://www-
128.ibm.com/developerworks/webservices/library /specification/ws-polatt / (Last
accessed: May 9, 2007).

D. Luckham, The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional, May 2002.

B. Wetzstein, S. Strauch, P. Majdik, and F. Leymann, “Modeling and Monitoring
Process Performance Metrics of BPEL Processes,” University of Stuttgart, Germany,
Technical Report 2008/05, Juli 2008. [Online]. Available: http://www.informatik.uni-
stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl7id=TR-2008-05&engl=0

I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed. Morgan Kaufmann, 2005. [Online|. Available: /bib/private/witten/
DataMiningPracticalMachineLearningToolsand Techniques2ded-MorganKaufmann.pdf

J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan-Kaufmann, 1993.

Y. Freund and L. Mason, “The Alternating Decision Tree Learning Algorithm,” in
Proceedings of the 16th International Conference on Machine Learning (ICML ’99). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 124-133.

J. Mingers, “An Empirical Comparison of Pruning Methods for Decision Tree Induction,”
Machine Learning, vol. 4, no. 2, pp. 227-243, 1989.

R. Khalaf and F. Leymann, “Role-based Decomposition of Business Processes using
BPEL,” in International Conference on Web Services (ICWS 2006). TEEE Computer
Society, September 2006, pp. 770-780.

M. Y. Vardi, “Branching vs. linear time: Final showdown,” in TACAS 2001: Proceedings
of the Tth International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. London, UK: Springer-Verlag, 2001, pp. 1-22.

F. Wang, A. K. Mok, and E. A. Emerson, “Distributed real-time system specification and
verification in aptl,” ACM Trans. Softw. Eng. Methodol., vol. 2, no. 4, pp. 346-378, 1993.

M. P. Singh, “Distributed enactment of multiagent workflows: temporal logic for web
service composition,” in AAMAS ’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems. New York, NY, USA: ACM,
2003, pp. 907-914.

A. Gehlert, J. Hielscher, O. Danylevych, and D. Karastoyanova, “Online Testing, Re-
quirements Engineering and Service Faults as Drivers for Adapting Service Compositions,”
in Service Wave 2008, MONA+. Springer Berlin Heidelberg, Februar 2009.

F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana, Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, 2005.

D. Karastoyanova, F. Leymann, J. Nitsche, B. Wetzstein, and D. Wutke, “Utilizing
Semantic Web Service Technologies for Automatic Execution of Parameterized BPEL
Processes,” in XML Tage 2006. Unbekannt, September 2006.

S-Cube — CD-JRA-2.2.2 (Version: March 16, 2009) 42

