
S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.3

A Attached Papers

A.1 The Kaleidoscope of Fragmentation of Service Compositions

Authors:

Tilburg: Michele Mancioppi

USTUTT: Olha Danylevych

USTUTT: Dimka Karastoyanova

USTUTT: Frank Leymann

Tilburg: Mike P. Papazoglou

External Final Version 1, Dated November 30, 2009 29

The Kaleidoscope of Fragmentation of Service
Compositions∗

Michele Mancioppi1, Olha Danylevych2,
Dimka Karastoyanova2, Frank Leymann2, and Mike P. Papazoglou1

1 European Research Institute in Services Science (ERISS),
Tilburg University, The Netherlands

{m.mancioppi,mikep}@uvt.nl
2 Institute of Architecture of Application Systems,

University of Stuttgart, Stuttgart, Germany
{olha.danylevych,dimka.karastoyanova,leymann}@iaas.uni-stuttgart.de

Abstract. Service compositions enable the creation of value added ser-
vices by reusing existing ones. All the foremost modeling languages for
service composition are process-based, e.g. BPEL, BPMN and WS-CDL.
The fragmentation of a process-based service composition is the act of
dividing its elements (activities, data flows, control flows, message flows,
etc.) into fragments according to some criterion.
Fragmentation techniques greatly differ in which types of process-based
service compositions they are applicable to, why they are applied, how
they define the fragments, etc. The state of the art lacks consistent ter-
minology and definitions for the properties of the fragments of process-
based service compositions and the criteria for classifying the different
fragmentation techniques. This paper tackles this issue by investigating
classification criteria for fragments and fragmentation techniques based
on the “seven Ws” (why, what, when, where, who, which, and how),
which are then applied to some of the existing fragmentation approaches.

Key words: SOA, fragmentation, fragments, service composition

1 Introduction

By enabling the creation of novel, value added services through the reuse of
existing ones, service compositions are one of the cornerstones of Service Ori-
ented Architecture (SOA). The predominant paradigms of service composition
are service orchestration and service choreography (respectively orchestration
and choreography in short) [1]. Orchestrations are centralized. One service –
the orchestrator – executes the logic of the composition by invoking the other
services and aggregating their results. Choreographies are instead completely
decentralized. The participants in a choreography play their pre-defined roles
according to how proceeds the choreography enactment, i.e. the overall made of
the executions of the single participants.

∗The research leading to these results has received funding from the European
Community’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement n◦ 215483.

The majority of modeling languages for specifying service composition are
processes-based. A process-based service composition is specified as tasks (e.g.
invocation of services, manipulation of data), executed by actors, and sequenced
using constructs like control-, message- and data flows. Examples of process-
based modeling languages for service compositions are Business Process Execu-
tion Language (BPEL) [2] and Business Process Modeling Notation (BPMN) [3]
for orchestrations, and Web Service Choreography Description Language (WS-
CDL) and BPEL4Chor [4] for choreographies. Alternatives to process-based ser-
vice compositions are the declarative ones, e.g. orchestrations modeled with Dec-
SerFlow [5], and the rule-based one, e.g. [6]. This work focuses on process-based
service compositions, called service compositions in the remainder for brevity.

Service compositions must be changed over time to suit evolving requirements
and environments. One broad category of changes applied to service composi-
tions hinges on their fragmentation, i.e. creating fragments that group the service
composition’s elements (activities, control flows, data flows, etc.) according to
criteria like “each fragment contains all the activities performed by the same
actor”. Fragmentation of service compositions is instrumental for accomplish-
ing a variety of goals including, for example, enabling distributed execution of
service orchestration by dividing them in parts that are executed separately [7],
performing abstraction of models by removing their less significant elements [8],
and facilitate the reuse of existing fragments [9, 10].

Unfortunately the state of the art lacks consistent terminology and defini-
tions of what fragmentation and fragments of service composition are, and this
hinders the comparison, analysis and reuse of the available fragmentation tech-
niques. Our work tackles this issue by providing classification criteria for service
composition fragments and fragmentation techniques based on the seven “Ws”:
why, what, when, where, who, which, and how. The classification criteria are
then applied to two of the fragmentation techniques for service compositions
available in the literature, namely [11, 7].

The paper is structured as follows. Section 2 establishes the basic terminology
and definitions that are used throughout the work. Section 3 treats the criteria
for the classification of fragmentation techniques for service compositions, the
application of which is exemplified in Section 4. Section 5 discusses the related
work. Finally Section 6 concludes the paper by presenting our final remarks and
directions for future work.

2 Definitions

This section introduces the terminology that will be adopted in the remainder
of the paper.

The service composition paradigm (composition paradigm in short)
is the “type” of service composition, e.g. service orchestration or service choreog-
raphy. The abstraction level of a service composition can be either model or
instance. The model (also called “type” in the related work on Process-Aware
Information Systems [9]) is the specification of the structure of the service com-

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

Fig. 1: The running example

position, i.e. a workflow model. An instance is the execution of a model, and it
can be formalized as a “copy” of the executed model coupled with the history,
i.e. the sequence and timestamps of actions (execute activity, traverse control
flows, etc) that have been executed so far [9].

A modeling language, e.g. BPEL or BPMN, specifies the syntax of ser-
vice composition models and the semantics for the execution of their instances.
Modeling languages provide a number of constructs that can be combined in
the models. For example, BPEL specifies several types of activities, event han-
dlers, compensation handlers, etc. The constructs are instantiated as elements
that compose the model. For example, the activity Invoke Amazon WS is an
element of the service orchestration model Buy Books On Amazon. In other
words, a service composition model can be seen as an aggregation of elements
instantiated using the constructs provided by the adopted modeling language.

A subset of the elements of a service composition is called fragment. No
assumptions are made in the remainder about the elements that make up a frag-
ment and how they relate to each other, except that they are at least one (i.e.
fragments can not be empty). Fragmentation is the act of creating fragments
out of one service composition by applying a fragmentation technique. A frag-
mentation technique is a method to perform fragmentation according to some
fragmentation criteria, i.e. the rationale underpinning the fragmentation tech-
nique. The fragmentation criteria may be described in natural language, e.g. “the
resulting fragments group the activities according to who executes them”, or for-
mally, for example using Category Theory. Fragmentation technique combine the
following two steps:

Fragment Identification identifies which elements belong to which fragment;
Fragment Severing removes the elements comprised in a fragment from the

service composition, possibly substituting them in the service composition
with other elements that were not initially comprised herein.

Figure 1 depicts the running example of this paper: a process made of start
and end nodes, activities, fork and merge constructs, adapted from [11]. Fig-
ure 2 exemplifies the Fragment Identification and Fragment Severing phases of
a fragmentation of the running example. The Fragment Identification results in
the two fragments F1 and F2, delimited by the dashed lines. The fragmentation
criteria used to identify the two fragment are not relevant to the exposition,
and thus omitted. The Fragment Severing is divided in two steps. Step 1 divides
the two fragments by removing the control flow connecting m1 and f3. Step 2
adds an end node and a control flow to the fragment F1, and a start node and
a control flow to the fragment F2.

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

F1 F2

�

S
te

p
1

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

F1 F2

F
ra

g
m

e
n
t

Id
e
n
tifi

c
a
tio

n

d1

f1
a1

a2

f2

a3

m1
� � f3

a4

a5

f4
a6

a7

f5
a8

f6

a9

S
te

p
2

F
ra

g
m

e
n
t

S
e
v
e
rin

g

Fig. 2: Sample Fragment Identification and Severing of the running example

Not every fragmentation technique performs both Fragment Identification
and Fragment Severing. For example, Single-Entry Single-Exit (SESE) decompo-
sition performs only Fragment Identification, identifying the fragments without
actually applying any modifications to the service composition. Conversely, the
fragmentation technique for BPEL presented in [7] assumes that the fragments
have been previously identified (i.e. no Fragment Identification), and performs
the Fragment Severing so that the fragments can be executed in a distributed
manner while preserving the semantics of the original orchestration.

It should be noted that Fragment Identification and Severing are not neces-
sarily executed only once during a fragmentation, or in this order. A fragmen-
tation technique may perform several Fragment Identification phases in a row,
followed by a number of Fragment Severing ones, or any other appropriate com-
bination. The ordering of the Fragment Identification and Severing phases in a
fragmentation technique is called fragmentation lifecycle.

3 Classification Criteria for Fragmentation Techniques

This section presents the classification criteria we identify for fragmentation
techniques for process-based service compositions. They are formulated on the
basis of an extensive literature review. Each criterion is presented as one of the
following questions, each based on one of the seven Ws:

– What input is given to the fragmentation?
– Why is the service composition fragmented?

Classification
Criteria for

Fragmentation
Techniques

How is the fragmentation
performed

Optimality

Computational complexity

Configurability
Determinism

Automation

Fragmentation criteria

Which phases does the
fragmentation perform

Where is the fragmen-
tation performed in the
service composition

What output results from
the fragmentation

Overlap

Coverage

Interdependency

Granularity

Multiplicity
Cohesion

Unity
Self-containment

Well-formedness

Abstraction level

Modeling language

Composition paradigm

Who performs the frag-
mentation

When the fragmentation
is performed in the ser-
vice composition lifecy-
cle

Why is the service com-
position fragmented

What input is given to
the fragmentation

Self-containment

Well-formedness

Abstraction level

Modeling language

Composition paradigm

Fig. 3: The classification criteria for fragmentation techniques

– When the fragmentation is performed in the service composition lifecycle?
– Who performs the fragmentation?
– Where is the fragmentation performed in the service composition?
– What output result from the fragmentation?
– Which phases does the fragmentation perform?
– How is the fragmentation performed?

The overall list of the criteria and sub-criteria is presented in Figure 3. The
criteria What input, What output and How are further refined into sub-criteria,
e.g. the How criterion is divided into Automation, Determinism, etc.

Each criterion is investigated specifically in the remainder. For brevity and
generality we do not provide formal definitions based on a particular modeling
language, but the criteria are easily applicable to any given one.

3.1 What input is given to the fragmentation

The What input criterion investigates the characteristics of the service compo-
sitions in input to the fragmentation technique. The several interesting aspects
of the input service compositions are captured by the sub-criteria presented in
the remainder of the section.

The criterion Composition paradigm specifies the paradigm of service com-
position (e.g. service orchestration or service choreography, see Section 2).

Modeling language denotes which modeling language is used to specify the
service compositions (see Section 2).

The Abstraction level specifies whether fragmented service compositions
is a model or an instance (see Section 2).

Well-formedness reports whether the service composition is required to be
well-formed or not. The particular definition of well-formedness depends on the
adopted modeling language. Generally it implies that the service composition
satisfies all the syntactical constraints set by its modeling language.

Self-containment is when the service composition is sufficient in itself with
respect to its intended use. For example, an executable business process is self-
contained if and only if it contains all the data necessary for its execution.

3.2 Why is the service composition fragmented

The Why criterion specifies the goals that motivate the fragmentation of the
service composition. An exhaustive list of the motivations for fragmenting service
compositions is beyond the scope of this work, but some examples are:

Support the modeling: the fragmentation technique supports the modeling
of service compositions by, for example, enabling autocompletion during the
modeling [12] and facilitating the reuse of existing fragments [10].

Analysis: the fragmentation technique can be used to analyze the control- and
data flows in the service composition. For example, fragmentation of work-
flows can be used to prove their soundness [11].

Abstraction: the fragmentation technique is used to create an abstract, sim-
plified view of a service composition by identifying and removing some of its
elements that are not central to its logic [8].

Optimize non-functional characteristics: the service composition is frag-
mented so that its fragments can be executed in a distributed fashion achiev-
ing better Quality of Service (QoS) [13], e.g. in terms of completion time and
throughput.

3.3 When the fragmentation is performed in the service
composition lifecycle

The When criterion regards in which phases of the service composition lifecycle
the fragmentation takes place, e.g. Design or Execution. The particular lifecycle
to be considered depends on the fragmented service composition.

When the fragmentation takes place in the lifecycle is closely related with
the Abstraction level aspect of the criterion What input (see Section 3.1).
The fragmentations of service compositions at different abstraction levels occur
at different phases of the lifecycle. For example, consider the lifecycle for service
orchestrations proposed in [14], made of Design/Verification, Deployment, Exe-
cution/Monitoring and Evaluation. The fragmentation of a model can take place,

for example, in the Design/Verification and Deployment phases. Instead, the
fragmentation of an instance must take place during the Execution/Monitoring
and Evaluation phases.

3.4 Who performs the fragmentation

The fragmentation of a service composition may be performed by different ac-
tors. The value of the Who criterion is not necessarily a human, but it might
also be a system (e.g. an application server or a development tool) in case of
automatic fragmentation techniques (see the Automation sub-criterion of How in
Section 3.8).

The Who criterion is very connected with When (see Section 3.3) because the
available alternatives for the Who criterion are the actors involved in the service
composition lifecycle phases in which the fragmentation can be performed (e.g.
the business process designer at Design time).

3.5 What output result from the fragmentation

The outcome of a fragmentation is a number of fragments. Not all fragments
are the same. Their properties greatly vary across the different fragmentation
techniques. This section outlines the criteria to classify the properties of frag-
ments, which are exemplified using the fragmentations presented in Figure 4 (the
fragments are delimited by the dashed lines). The examples have been crafted
for exposition purposes and do not reflect the application of any particular frag-
mentation technique.

The criteria that characterize the properties of the fragments can be grouped
according to the type of the property they capture, namely: (1) properties of the
single fragments, and (2) properties of all the fragments cumulatively. The two
groups of criteria are discussed separately in the remainder.

Some of the criteria to classify the fragments are duplicated from the sub-
criteria of What input, namely Composition paradigm, Modeling language,
Abstraction level, Well-formedness, and Self-containment. The semantics
of the sub-attributes under What output is exactly the same as their homonyms’
under What input, except that they apply to the fragments instead of the service
composition. Their description is here omitted for reasons of space. With respect
to the division in properties of single fragments or of all fragments cumulatively,
criteria fall in the first category.

Criteria based on properties of the single fragments: These criteria for
classifying fragments regard their properties of each one considered separately.

Generally, unity is defined as “the state of being united or joined as a
whole” [15]. In the case of a fragment, Unity specifies whether it is still “physi-
cally” comprised in the service composition. Unity is preserved if the fragment
is an “high-lighted area” of the service composition (e.g. Figure 4a, Figure 4b
and Figure 4d). Otherwise, Unity is disrupted in fragmentation techniques that

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

F1

F2

F3

(a) Fragmentation example 1

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

F1 F2
F3

(b) Fragmentation example 2

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

F1 F2

(c) Fragmentation example 3

d1

f1
a1

a2

f2

a3

m1

f3
a4

a5

f4
a6

a7

f5
a8

f6

a9

F2

(d) Fragmentation example 4

a1

a2

a3

a4

a5

a6

a7

a8

a9

F1 F2

F3

F4

F5

F6

(e) Fragmentation example 5

Fig. 4: Possible fragmentations of the running example in Figure 1

create fragments that are independent from the original service composition,
e.g. if the fragments themselves are service composition models or instances (for
example Figure 4c). Fragmentation techniques that perform only Fragment Iden-
tification (see Section 2 and Section 3.6) preserve Unity. In fact, Unity can only
be disrupted through Fragment Severing.

Cohesion is a measure of how much the elements in the fragment “belong
together” [16]. Cohesion is a well-known concept in the Software field, and has re-
cently been under research scrutiny in relation with business processes, e.g. [16].
The cohesion of the different fragments is evaluated quantitatively, and it may
vary across the different fragments produced in one fragmentation. In this case,
classifications may represent the average of the cohesion.

Criteria based on properties of all the fragments cumulatively: The
following criteria focus on properties that arise from comparing the fragments
with each other and with the service composition.

Multiplicity specifies how many fragments result from the fragmentation.
For example, the values of the criterion Multiplicity may be specified as mul-
tiplicities in regular grammars (0, 1, more than 1, or a specified number n) or
ranges, e.g. between m and n, extremes included.

Not all fragments have the same size. The Granularity of the fragments
is quantitatively expressed as their size relative to the service composition’s.
Should the granularity of the different fragments vary, its average and standard
deviation could be used to provide an overview of the overall granularity of the
fragmentation.

Interdependency defines which kind of dependencies (if any) exist among
the fragments. Different fragmentation techniques are likely to define different
types of dependencies, e.g. control- and data dependencies [17] and coordination
protocols [7] in the case of fragmentation techniques for enabling distributed
execution of the service compositions.

The extent to which the fragments cumulatively comprise all the elements of
the original service composition is treated by the Coverage criterion. Full cover-
age is achieved if every element of the service composition is contained in at least
one of the fragments, and no fragment contains elements not originally present
in the service composition (e.g. Figure 4b). Partial coverage occurs when the
union of the fragments contains a proper subset of the elements of the service
composition (e.g. Figure 4a, Figure 4d and Figure 4e). The coverage is extended
if the fragments collectively contain every element in the service composition,
plus others that were not part of the service composition. An example of ex-
tended coverage has been presented in Section 2, where nodes and control flows
were added during the Fragment Severing to fragments whose union comprises
all the elements. Finally, the coverage is partial-extended if the fragments do not
collectively contain all the elements of the service composition, but others have
been added that are not part of the service composition. Note that “null” cov-
erage is not possible: it would mean that none of the fragments contains any of

the elements of the service composition, which is inconsistent with the definition
of fragment (assumed not to be empty) given in Section 2.

Finally, the criterion Overlap denotes the extent to which the fragments
share elements with each other. The alternatives are defined as pair-wise relations
between fragments. Full overlap is when the two fragments comprise exactly the
same elements. Since fragments are defined as sets of elements, full overlap is an
identity relation. Nesting is the case in which one fragment is a proper subset
of another, e.g. F2 and F3 in Figure 4a. Partial overlap is when two fragments
have in common at least one element, but neither fragment is a subset (proper
or improper) of the other, for example F1 and F3, and F2 and F3 in Figure 4b.
Finally, fragments that do not share any element are disjoint, for example F1

and F2 in Figure 4c. The classification of a fragmentation technique should list
all the cases that may occur in fragmentations. If all the alternatives listed above
are possible, the classification may report any for brevity.

3.6 Which phases does the fragmentation perform

The Which criterion specifies the fragmentation lifecycle (see Section 2). It is
outside the scope of our work to indicate how to specify fragmentation lifecycles,
but the general consensus appears to be on state diagrams.

3.7 Where is the fragmentation performed in the service
composition

The Where criterion treats the scope of the fragmentation, i.e. the regions of
the service composition that are processed during the fragmentation. When the
fragmentation takes into account the entirety of the service composition, its
scope is global, and partial otherwise.

Coverage and Where and related. On one hand, not all the elements processed
during a fragmentation end up in some fragments (i.e. global scope does not
imply full coverage). On the other hand, an element that is not processed cannot
be included in any fragment.

3.8 How is the fragmentation performed

The How criterion classifies the fragmentation techniques according to aspects
that pertain to the algorithms they employ.

Fragmentation criteria describes the rationale underpinning the fragmen-
tation technique (see Section 2). Fragmentation techniques that do not perform
fragment identification may leave the fragmentation criteria unspecified.

Automation refers to whether the fragmentation technique is manual, auto-
matic, or semiautomatic.

Determinism reports whether the fragmentation technique always produces
the same fragments as output given the same service composition in input.

Configurability is the capability of the fragmentation technique to be cus-
tomized in terms of scope, properties of the resulting fragments (e.g. upper- and
lower bounds for granularity), etc.

Computational Complexity is the evaluation of the complexity of the frag-
mentation technique according to the size of the input (i.e. the number of ele-
ments in the service composition). An example of computational complexity is
O(n), i.e. the fragmentation requires at most linear amount of time with respect
to n, i.e. the size of the input. Alternatively, complexity classes may also be
used as values, e.g. P, NP or EXP-TIME. The Computational Complexity can be
seen as a measure of the scalability of the fragmentation technique, defined for
example as “the ability to accommodate increasing input, to process growing
volumes of work gracefully, and/or to be susceptible to enlargement” [18].

Optimality specifies whether the fragmentation technique always results in
the optimal fragmentation (for some definition of optimum that is specific to the
technique) or in a sub-optimal one. The particular definition of optimum may
depend on several factors, like the intended use of the fragments and the type of
service composition, and it is situational to the goal of the fragmentation (and
thus related to the criterion Why, see Section 3.2). For example, our previous
work [17] investigates a fragmentation technique that is built on metrics for
achieving optimality of, among others, concurrency and message overhead during
the the distributed execution of the fragments.

4 Applying the Classification Criteria

This section exemplifies the application of the classification criteria defined in
Section 3 to two of the fragmentation approaches in the literature, namely [7, 11].
The approaches have been selected for their heterogeneity and the completeness
of the information that is available on them. The outcome of the classification
is presented in Table 1.

Fragmentation Technique 1: Khalaf [7] proposes a fragmentation technique
for BPEL models to enable their distributed execution while preserving the
original semantics. The fragments are assumed to have been previously identified
(i.e. no Fragment Identification), and the approach focuses on the Fragment
Severing.

The resulting fragments are self-contained, well-formed BPEL processes that
communicate with each other over message exchanges to realize the control- and
data-flow dependencies between the activities in original process. There is no
overlap between the fragments. The coverage is partial-extended: on one hand, el-
ements are added to the fragments to make them well-formed and self-contained.
On the other hand, the loops and scopes of the original BPEL process whose
activities are spread across multiple fragments are removed, and substituted by
coordination protocols.

Criterion Technique 1 Technique 2

What input

Composition paradigm Service orchestration Service orchestration

Modeling language BPEL Workflow Graph

Abstraction level Model Model

Well-formedness Yes Yes

Self-containment Yes Yes

Why Distributed execution Analysis

When Deployment or Execution
time

Modeling time

Who Human process designer
with tool support or a dis-
tributed process engine

Analysis tool

What output

Composition paradigm Service orchestration Service orchestration

Modeling language BPEL SESE workflow fragments

Abstraction level Model Model

Well-formedness Yes Yes

Self-containment Yes No

Unity No Yes

Cohesion Unspecified Unspecified

Multiplicity 2+ 1+

Granularity Variable Variable

Interdependency Message exchanges, coor-
dination protocols

Process Structure Tree

Coverage Full Partial

Overlap Disjoint Nested or Disjoint

Where Global Global

Which Fragment Severing Fragment Identification

How

Fragmentation criteria Unspecified Group adjacent elements in
fragments with one single
entry and one single exit

Automation Yes Yes

Determinism Yes Yes

Configurability No Fragment granularity

Computational complexity Unspecified Linear to the input’s size

Optimality Unspecified Unspecified

Table 1: Comparison of the fragmentation techniques presented in Section 4

Fragmentation Technique 2: Vanhatalo et al. [11] propose a fragmentation
technique to verify soundness of a business process model specified as a workflow.
The business process model is sound if it does not contain deadlocks or lacks
of synchronization. The fragmentation technique is deterministic and has time
complexity linear with respect to the size of the model (i.e. the number of its
elements).

The approach performs only Fragment Identification. In fact, the fragments
remain parts of the original process model, and thus unity is preserved. Each
resulting fragment has only one inbound and outgoing edge, i.e. control flows re-
spectively “entering” and “exiting” the fragment (hence SESE, for “single-entry,
single-exit”). Some of the disjoint fragments are connected through control-flow
constructs (thus interdependent). The fragments are well-formed, but are not
self-contained (for example, none of them contains start or end nodes). The cov-
erage is partial, because start- and end node are never included in any fragment
(though all the other elements are). The fragment vary in granularity, and their
overlap is either nested or disjoint.

The fragments are organized in the Process Structure Tree (PST), i.e. a
tree in which the fragments are nodes, and the “child of” relation is nesting (a
fragment is child of another in the tree is the first is nested into the latter in the
model). Parent and child fragments have dependencies because of the control
flows connecting them, because the control flows that enter and exit the child
fragment are part belong the parent. Therefore, the PST effectively plots the
dependencies between fragments.

5 Related Work

The nature of fragments, which we cover in the sub-criteria of What output, has
recently been investigated by Eberle et al. [19]. Their work suggests the Unity

property of the fragments, and it focuses on the local knowledge represented by
a fragment, suggesting that the fragments should be defined according to whom
performs their activities (which would be a fragmentation criterion according to
our terminology).

Fragmentation of service composition is akin to the practice of Software
Maintenance, to which the 7 Ws have been applied different extents. Why Soft-
ware Maintenance is performed has lead to the taxonomy of its different types
by Chapin et al. [20]. Buckley et al. [21] instead investigate the when, where,
what and how of Software Maintenance. Our work has several points of contact
with [21], in particular with respect to the “Time of change” (our When), the
“Artifact” (our What processes), and the “Granularity” (our Where).

Mens et al. [22] propose a taxonomies of model transformation in the scope
of Model-Driven Architecture (MDA). Given the fact that fragmentations can
be realized through transformations, it should not come as a surprise that our
works share a number of similarities. They define what is in input to and what in
output from a transformation (though in less detail than our What processes

and What output criteria), why is a transformation applied, some of the crite-

ria we list under How (namely Automation and Computational complexity),
and which mechanisms can be used for model transformation (e.g. graph trans-
formations and functional programming) (which can be seen as a combination
of our Determinism and Configurability). Additionally, they investigate the
success criteria (e.g. testability, verifiability, traceability and change propaga-
tion) and quality criteria (e.g. usability, usefulness, scalability and formality)
for transformation languages or tools. We have not studied yet these aspects of
fragmentation approaches, but the results of [22] appear to be readily portable
to our domain.

6 Conclusions

Fragmentation techniques are important tools for changing service compositions
in response to evolving requirements. However, the lack of a consistent taxonomy
for classifying the different fragmentation techniques and the properties of the
fragments they produce has hindered their comparison and reuse.

At the best of our knowledge, this work presents the first attempt to or-
ganically investigate the characteristics of fragmentation techniques for service
compositions and the properties of the resulting fragments. We have advanced
classification criteria based on the 7 Ws (why, what, when, where, who, which,
and how). They provide (1) a basis for classifying existing fragmentation tech-
niques, and (2) a “checklist” of what authors should explicitly specify about the
novel fragmentation approaches they introduce. We have also shown the appli-
cation the classification criteria to two the fragmentation techniques in the state
of the art.

The future work foresees an investigation of the precise definitions for the
different types of fragments (part, slice, partition, piece, segment, etc.) on the
basis of the classification criteria we have provided. Moreover, we would like to
perform a more extensive classification of the available fragmentation techniques
in the state of the art, which would facilitate the identification of research gaps
and possibilities. Finally, we are investigating how to adapt our criteria for the
merge of service compositions and their fragments.

References

1. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10)
(2003) 46–52

2. OASIS: Web Services Business Process Execution Language Version 2.0. OASIS
Standard, OASIS (April 2007)

3. OMG: Business Process Modeling Notation Version 1.2. OMG Recommendation,
OMG (February 2008)

4. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for modeling choreographies. In: ICWS, IEEE Computer Society (2007) 296–303

5. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In Bravetti, M., Núñez, M., Zavattaro, G., eds.: WS-FM. Volume
4184 of Lecture Notes in Computer Science., Springer (2006) 1–23

6. Pu, K.Q., Hristidis, V., Koudas, N.: Syntactic rule based approach to web service
composition. In Liu, L., Reuter, A., Whang, K.Y., Zhang, J., eds.: ICDE, IEEE
Computer Society (2006) 31

7. Khalaf, R.: Supporting business process fragmentation while maintaining opera-
tional semantics: a BPEL perspective. Doctoral thesis, University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information Technology,
Germany (March 2008)

8. Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: A slider ap-
proach. In: EDOC, IEEE Computer Society (2008) 325–331

9. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: CAiSE. Volume 4495 of Lecture Notes
in Computer Science., Springer (2007) 574–588

10. Ma, Z., Leymann, F.: BPEL fragments for modularized reuse in modeling BPEL
processes. Networking and Services, International conference on 0 (2009) 63–68

11. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow
analysis for business process models through SESE decomposition. In: ICSOC.
Volume 4749 of Lecture Notes in Computer Science., Springer (2007) 43–55

12. Betz, S., Klink, S., Koschmider, A., Oberweis, A.: Automatic user support for
business process modeling. In: Proceeding of the Workshop on Semantics for Busi-
ness Process Management at the 3rd European Semantic Web Conference 2006,
Budva, Montenegro (June 2006) 1–12

13. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web
services. In: OOPSLA, ACM (2004) 170–187

14. Decker, G., Kopp, O., Barros, A.P.: An introduction to service choreographies. it
- Information Technology 50(2) (2008) 122–127

15. Abate, F.R., ed.: The Oxford Dictionary and Thesaurus. Oxford University Press
(October 1996)

16. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Evaluating workflow
process designs using cohesion and coupling metrics. Computers in Industry 59(5)
(2008) 420–437

17. Danylevych, O., Karastoyanova, D., Leymann, F.: Optimal stratification of trans-
actions. In: ICIW, IEEE Computer Society (2009) 493–498

18. Bondi, A.B.: Characteristics of scalability and their impact on performance. In:
Workshop on Software and Performance. (2000) 195–203

19. Eberle, H., Unger, T., Leymann, F.: Process fragments. In: OTM. Volume 5870
of Lecture Notes in Computer Science., Springer (November 2009) 398–405

20. Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., Tan, W.G.: Types of software
evolution and software maintenance. J. of Software Maintenance 13(1) (2001) 3–30

21. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. J. of Software Maintenance 17(5) (2005) 309–332

22. Mens, T., Czarnecki, K., Gorp, P.V.: A taxonomy of model transformations. In
Bézivin, J., Heckel, R., eds.: Language Engineering for Model-Driven Software
Development. Volume 04101 of Dagstuhl Seminar Proceedings. (2004)

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.3

A.2 Optimal Stratification of Transactions

Authors:

USTUTT: Olha Danylevych

USTUTT: Dimka Karastoyanova

USTUTT: Frank Leymann

Published in:

• Proceedings of the 4th International Conference on Internet and Web Applications and Services.
ICIW 2009. May 24-28, 2009 - Venice/Mestre, Italy.

External Final Version 1, Dated November 30, 2009 45

Optimal Stratification of Transactions

Olha Danylevych, Dimka Karastoyanova, Frank Leymann
University of Stuttgart

Institut for Architecture of Applicationsystems
Universitaetstr. 38, 70569 Stuttgart, Germany

{olha.danylevych, dimka.karastoyanova, frank.leymann}@iaas.uni-stuttgart.de

Abstract

The performance of applications is influenced by the way
its operations are grouped into global transactions. This
in turns influences the performance of business processes
which utilize these applications as implementations of pro-
cess activities/steps. Stratified transactions, as produced by
the stratification approach presented in this paper, is a way
to manage a global transaction by combining the more ele-
mental transactions coordinated using the two-phase com-
mit protocol and queued transactions. The stratification ap-
proach can be applied for optimally fragmenting workflow-
based service compositions and support the out- and in-
sourcing scenarios. This paper formally models global
transactions and investigates the mechanisms for building
an optimally stratified transaction relying on formally de-
fined evaluation criteria. We investigate the applicability
of local search algorithms to the optimization of transac-
tion stratification. In particular we consider hill-climbing,
simulated annealing, and a novel hybrid method combining
both approaches.

1. Introduction

Service compositions are often implemented with
process-based approaches. In a Web Service environments
BPEL is the de-facto standard. Nowadays BPEL processes
are executed in a non-distributed fashion. Unfortunately,
this does not reflect the needs of distribution inherent to the
multi-organization scenarios that are pervasive in the cur-
rent practice of Service Oriented Architecture. Therefore,
distributed execution of business processes is a desirable re-
sult to be achieved.

In the literature there are approaches enabling the exe-
cution of parts of processes in a distributed environment.
Some of those approaches, such as [3], focus on the de-
sign and implementation of distributed process execution
engines. Others approaches, like [2], split the processes
into multiple partitions, relying on coordination protocols

to preserve the operational semantics of the global process.
Unfortunately, the available approaches do not yet address
issues like performance optimization. In fact, performance
is usually disregarded for the sake of reducing the complex-
ity of the scenarios to be dealt with.

In this work we present a method to achieve optimal dis-
tribution of work units deployed on different process en-
gines/nodes according to criteria such as response time and
concurrency. Our approach can be used in scenarios in-
volving out-sourcing, in-sourcing, optimization of process
and resource utilization (of both IT and human resources),
etc. We assume known IT infrastructure- and organizational
models. The

We model the overall process, called the global transac-
tion, as a workflow made of atomic tasks called basic trans-
actions. Inside the global transaction, the basic ones are
coordinated by the means of coordination protocols such as
the two phase commit (2PC) protocol [11]. However, 2PC
protocols are not suitable for long-running transactions be-
cause of their high-abort probability and the the inefficient
lock of resources, which are released only upon the proto-
col’s completion. The exclusive lock of resources results
in increased operational costs because of, for instance, the
reduced throughput of executed transactions. Additionally,
the high demands of 2PC protocols in terms of messages
exchanges impacts the efficiency of the overall process.

For the purpose of optimizing the performance of the
global transaction, we employ a stratification of basic trans-
actions. The rationale of the stratification is to split the
global transaction into groups of “smaller” transactions that
are combined to preserve the (non-functional) properties
and semantics of the global transaction, while improving
its performance. The result is a so-called stratified transac-
tion. In the general case, multiple stratified transactions can
be obtained from the same global transaction, each charac-
terized by a different trade-off in terms of overall execution
time, response time, cost, etc.

The contributions of this paper include: the formal rep-
resentation of the stratified transaction model, the stratifica-

2009 Fourth International Conference on Internet and Web Applications and Services

978-0-7695-3613-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIW.2009.79

493

tion algorithm, criteria to evaluate the effectiveness of the
stratification and an approach based on local search to opti-
mize it. The paper is structured as follows: Section 2 intro-
duces the formal model for resources, transactions and their
properties. Section 2.3 introduces dependence and strati-
fication graphs that are the backbones of the stratification
process. The criteria for the evaluation of the stratification
is treated in Section 2.5. The algorithms that can be used
for optimal stratification are presented and evaluated in Sec-
tion 3. Finally, conclusions and future work are presented
in Section 4.

2 Modeling Stratified Global Transactions

This Section presents our stratification approach and the
assumptions we rely on. We model basic transactions as
atomic entities characterized by properties such as execu-
tion time, recovery cost, invocation cost, etc. The prop-
erties of basic transactions are assumed to be known, and
they are tightly related to the properties of the resources it
manipulates. In the scope of our work, the term “resource”
is a generalisation abstracting databases, message-queueing
systems, application servers, and, more generally, the enter-
prise computing facilities. Similarly to the properties of the
basic transactions, the properties of the resources are also
known a-priori.

At run-time, basic transactions can be executed if and
only if the conditions related to some of their properties
are fulfilled, e.g. a basic transaction may be executed only
after a specified start time. Basic transactions communi-
cate with each other using mechanisms like, for instance,
message passing. However, the exact mechanisms realizing
this communication are outside of the scope of our work
and they do not influence our approach. Exceptions, e.g.
“server failure” and “internal failure”, may occur during the
execution of a basic transaction, leading to its failure. The
likelihood of the execution failure of a basic transaction is
represented by an abort probability. In the present work,
we assume that the abort probability is given.

In the global transaction, the basic transactions are re-
lated with each other through different kinds of dependen-
cies, such as data- and control dependencies. In our work
we abstract from the particular types of dependencies by
assuming that there is a inherent order according to which
the basic transactions have to be executed inside the global
transaction to respect these dependencies. This order is rep-
resented as a dependency graph, which we treat as a simpli-
fied control flow based on SPLIT and AND-JOIN con-
structs. As an assumption, we assume that there are no
cyclical dependencies in the global transaction.

Our stratification approach is applied at modeling time.
It adds an additional layer, called stratification graph, to
the structure of the global transaction, making it a strati-

fied transaction. The stratification graph is a hyper-graph
laid on top the pre-existing dependence graph connecting
the basic transactions. The nodes of the stratification graph
are strata that group basic transactions and internally coor-
dinate them using 2PC protocols. The edges of the stratifi-
cation graph represent connections between two strata. The
connections between strata come from the pre-existing de-
pendencies that connect the basic transactions comprised in
the different strata.

The strata communicate with each other using reliable
messaging mechanisms. Each stratum is associated with
a persistent message queue responsible for the consump-
tion of incoming messages. We assume that the messaging
middleware connecting the strata preserves the order of the
messages in the input queues of each stratum, and handles
run-time failures such a incorrect formatting and corruption
of messages.

When executing a stratified transaction, a stratum can
start if and only if all the required messages, implied by
the dependencies incoming to the basic transactions it con-
tains, are received. Intuitively, this corresponds to an AND-
JOIN rule in the dependence graph. The execution of stra-
tum completes as soon as all its basic transactions are done
and the 2PC coordination protocol is successful.

This Section is structured as follows: the properties of
the resources are modeled in Section 2.1). The model-
ing properties of the basic transactions is explained in Sec-
tion 2.2. The dependence graph connecting the basic trans-
actions is formalized in Section 2.3. Section 2.2 provides
a list of possible transaction properties (this list serves as
basis for further evaluation of stratification alternatives and
does not has the ambition to be complete). Stratification
graphs are modeled in Section 2.4. Finally, Section 2.5
evaluates our stratification approach in terms of message
overhead introduced by the coordination among and within
strata, the additional time costs because of the communica-
tion among strata, and a method to evaluate different prior-
itized criteria in the stratified transaction.

2.1 Properties of the Resources

We focus on two properties associated with resources:
type, e.g. messages queues or databases, and loca-
tion.Different granularities in the specification of the the
type of the resource can be used, for instance, to differenti-
ate among different kinds of databases (e.g. relational and
xml-based, or MySQL v5 and PostreSQL). The rationale for
the differentiation among different types of resources comes
from the observation that usually the synchronisation costs
(e.g. in terms of time and message overhead) for resources
of different kinds are higher than the ones for the resources
of the same type. The location of resources is expressed in
terms of the particular physical machines on which they are

494

deployed. The location is important because it is generally
cheaper to synchronize resources located on the same ma-
chine than to synchronize resources spread over different
locations.

Formally, Res = {r1, r2, ..., rm} denotes in the re-
mainder a set of resources. Let L be a set of all possi-
ble locations in the system1. The possible locations asso-
ciated to the resources in Res are described by the function
L : Res→ P(L).

2.2 Properties of the Basic Transactions

There is a number of properties of basic transactions that
could be taken into acount, such as but not limited to in-
vocation costs/recovery costs (transactions with high invo-
cation/recovery costs should not be combined with those
transactions with high abort probability), start time(the ear-
liest possible time for starting the execution of a basic
transaction, due time (the time by which a basic transac-
tion should be completed), expected average/max execu-
tion time, commit probability (the probability that the basic
transaction eventually commits), the abort probability (the
probability that the basic transaction is aborted when run,
for instance calculated using statistics or based on informa-
tion about reliability of the used resources). A detailed de-
scription of these properties can be found in [6]. For the
sake of brevity, in the remainder we focus on three proper-
ties of a transaction: costs related to the time of the execu-
tion and types and locations of the resources the transaction
uses.

Let T be the set of basic transactions comprised in the
global transaction.

Time costs. The function ϕ depicts the expenses of trans-
action the execution of which execution is completed at time
τ . Each transaction t is related to a time-cost function ft as
follows:

ϕ : T → C with C = {f : R+ → R+} (1)

Then ϕ(t)(τ) = ft(τ) returns the costs for the transaction
t if it has finished execution at time τ . Depending on the
urgency of the basic transaction, ft may be a polynomial,
exponential or step-wise defined function, e.g. a constant
until the due time and then exponential after the deadline is
met.

The set of resource types used by a basic transaction are
considered as a property of the latter; the same applies to the
locations of the resources. The rationale for this is that the
synchronisation costs grows with the amount of different
employed resource types, and with the number of different
locations of the resources. The property of a transaction to
manipulate a set of resource types AresTypes is described

1P(M) denotes the power set of M, empty set excluded.

as:
AresTypes : T → P(TypesRes) (2)

where TypeRes is the set of the resource types in the sys-
tem, andP(TypeRes) its power set. The functionAresLocs

denotes the property of a transaction defined as set of loca-
tions where the its employed resources are:

AresLocs : T → P(L) (3)

2.3 Dependence Graphs

The dependencies between the transitions in the set T =
{t1, ..., tn} are modeled as the dependency graphGa. A de-
pendency graph is a directed graph, whose nodeset contains
basic transactions in the system, and its edges in represent
the dependencies between the transactions. Formally:

Ga = (Va, Ea), with Va ≡ T and Ea ⊆ Va × Va
The dependency between the basic transactions tj and ti is
denoted by ti → tj .

∀ti, tj ∈ Va : ti → tj ⇔ e ∈ E with e = (ti, tj)

The dependence graph represents a partial order over the
basic transactions. The existence of the edge e = (ti, tj) in
the dependence graph means that the transaction ti has to be
executed and completed before the execution of tj can start.
Notice that the dependence graph might be disconnected,
i.e. there is no guarantee that given any two transitions,
there is a path connecting one to the other or vice-versa.

2.4 Stratification Graphs

The idea of stratification is to partition the basic transac-
tions into disjunct subsets, i.e. the strata. The strata are then
composed in the stratification graph that sits on top of the
dependence graph. Each stratum is a node in the stratifica-
tion graph. By definition, an edge between two strata exists
when there is at least one pair of basic transactions in them
that are connected in the dependence graph. In a nutshell,
each edge in the stratification graph corresponds to a set of
edges in the dependence graph. Each stratum is associated
with a persistent message queue that receives and manages
the messages incoming to the stratum.

Figure 1 presents a dependence graph partitioned into
strata, and its corresponding stratification graph. Let T =
{t1, t2, ..., tn} be the set of basic transactions in one global
transaction, and Ga = (Va, Ea) be the corresponding de-
pendence graph. The basic transactions are partitioned into
the strata S = {s1, s2, ..., sp} in order to fulfill the follow-
ing conditions:

∀i ∈ [1, |S|] : si ∈ P(T) with |si| 6= 0

⋃

i

si = T ∧ ∀i, j ∈ [1, |S|], i 6= j : si ∩ sj = ∅

495

Figure 1. An example of stratification.

Simply put, the conditions reported above mean that the
union of the strata gives the whole global transaction, and
the strata do not overlap.

The process of stratification consists in the mapping of
the dependence graph Ga to its stratification graph GS :

Stratification : Ga → GS

where the stratification graph is defined as:

GS = (S, ES ⊆ S × S)
where S represents the set of the strata.

In the remainder we consider as equivalent the stratum
and the corresponding set of basic transaction it contains.
The edges of the stratification graph GS built on top of the
dependence graph Ga = (Va, Ea) are constrained by the
following condition:

(si, sj) ∈ ES : (i 6= j) ⇔
∃ tx ∈ si ∃ ty ∈ sj : (tx, ty) ∈ Ea

It is generally possible to build multiple different strati-
fication graphs out of a given dependence graph, each one
corresponding to a different way of partitioning basic trans-
actions among the strata.

Acyclic structure stratification graphs. Stratification
graph is built on top of the dependence graph. The depen-
dence graph is acyclic and defines the execution order of
transactions. Given the fact that strata can be executed if
and only if all the dependencies of its basic transitions are
satisfied (see Section 2), in order to avoid deadlocks when
executing the stratified transaction, the stratification graph
must necessarily be acyclic.

Different strategies can be used to ensure that the strati-
fication graph is acyclic. These techniques are analogous to
the ones used for deadlock recognition and prevention. Get-
ting inspiration from deadlock prevention techniques, basic

transaction can be removed from a stratum on a cycle if it
is a “root” or “leaf”-transaction; two transactions tx and ty
can belong to the same stratum s if and only if all nodes on
the way from tx to ty belong to the same stratum s. These
mechanisms are described in detail in [6].

2.5 Evaluation of a Stratification

As reported in Section 2.4, it is generally possible to
partition the same global transaction in different stratified
transactions, each one characterized by a different stratifi-
cation graph. Different stratified transactions will represent
different trade-offs of distribution and concurrency, and will
require different overhead of coordination among strata.For
the sake of brevity, in the remainder we focus on the mes-
sage costs of the 2PC needed to coordinate the basic trans-
actions within a given stratum and the costs related to ex-
ceeding the deadlines of basic transactions. The interested
reader will find in [6] a number of other criteria such as
response- and execution time of the stratified transactions,
invocation- and recovery costs, message costs and degree of
concurrency.

Costs of 2PC-Messages. The “Costs of 2PC-Messages”
function estimates the impact in terms of message ex-
changes of the 2PC protocols that internally coordinate the
strata. It depends on the amount of messages needed, the
locations of involved resources and the variety of resource
types. The amount of messages needed for synchronisa-
tion depends on expected number of “rounds” (cycles) of
2PC protocols. We take the WS-AtomicTransaction [11]
2PC protocol as reference model. For the purposes of this
Section, adopting a different 2PC protocol matters only
in the average number of messages that are exchanged in
one execution. We call “round” a complete set of mes-
sages needed for synchronisation within a stratum. In
the throughout we assume that every round comprise four
message exchanges: “Prepare Commit”, “Acknowledge”,
“Commit/Abort”. Each round can be completed with ei-
ther a success (commit), or a failure (abort). In case of
an abort, a new synchronisation round is started. The ex-
pected amount of synchronisation rounds E(Roundss) de-
pends, among other things, on the number of basic transac-
tions comprised in the stratum s and their abort probability
pabort. The probability c that a 2PC synchronisation round
within a stratum is successful is calculated as the multipli-
cation of the success probabilities

Prob(ti successful) = 1− Probabort(ti)
associated to every basic transaction ti within the stratum.

The expected amount of synchronisation rounds for a
stratum is thus:
c := Prob(Roundss = 1) =

∏

ti∈s
Prob(ti successful)

496

Prob(Roundss = m) = (1− c)m−1 · c

E(Roundss) =
∑

j

Prob(Roundss = j) · j

While the costs of a 2PC protocol may also depend on its
configurations (e.g. the choice of the coordinator), further
refinement of this metric is beyond of scope of this paper.
By using the expected value of number of rounds we can
estimate the message complexity needed for running a 2PC
protocol. The amount f2PC of messages needed for the syn-
chronisation of one given stratum is calculated as:

f2PC : S → N , f2PC(sx) = 4 · |sx| · E(Roundsx)

Given a stratified transaction, the cost function C2PC

for the message exchanges in 2PC protocols because of the
stratification is defined as:

C2PC : GS → R

C2PC(GS) =
∑

si∈S
f2PC(si)·(FResTypes(si)+FResLocs(si))

Where FResTypes(s) and FResLocs(s) are defined as:

FResTypes(s) = |
⋃

tj∈s
AresTypes(tj)|

FResLocs(s) = |
⋃

tj∈s
AresLocs(tj)|

Timeliness Costs. The “Timeliness Costs” of each basic
transaction is defined on the time of its completion. Execu-
tions of basic transactions that complete later than the due
time cost more, for instance because of the extended lock-
ing of resources. The timeliness cost of the overall strati-
fied transaction is obtained by aggregating timeliness costs
of the single basic transactions. A stratum is completed
when all its basic transactions are successfully completed.
τfinish(s) denotes the time of the successful completion of
the stratum s.

TC : S → R+ , T imeCosts : GS → R+

TC(s) =
∑

ti∈s
ϕ(ti)(τfinish(s))

TimeCosts(GS) =
∑

si∈GS

TC(si)

Overall evaluation. The overall evaluation of a stratifica-
tion alternative is based on criteria such as the “Costs of
2PC-Messages” and “Timeliness Cost” criteria presented
in this work. For the purpose of the evaluation, the crite-
ria are weighted according to priorities that are provided
by the modeler. Different evaluation criteria may conflict
with each other, e.g. trying to reduce the “Costs of 2PC-
Messages” might lead to an increased “Timeliness Cost”

because of more coarse-grained strata. The input of cor-
rect priorities is paramount to the choice of the stratification
alternative. However, a methodolgy to correctly specify the
priorities is outside the scope of the present work. Given
the criteria E = {E1, E2, ..., Ek}, the overal evaluation is
defined as :

F(GS) =
∑

i

prio(Ei) · Ei(GS) , prio : E → R

3 Choosing the Optimal Stratification Alter-
native

The problem of finding the optimal stratification among
all the possible alternatives is a generalization of the well-
known problem of graph partitioning [9]. Likewise the
graph partitioning problem, the optimal stratification prob-
lem is (at least) NP-Complete.However, differently from the
graph partitioning problem, the optimal stratification prob-
lem aims at satisfying multiple conditions, i.e. the different
prioritized evaluation criteria. Therefore, the known mech-
anisms for the graph partitioning problem are not sufficient
for finding the optimal stratification. Appropriate mecha-
nisms should implement a more generic approach to sup-
port the multiple prioritized evaluation criteria. Besides the
evaluation criteria, the stratification might be subject to con-
straints (requirements) such as limitations to the amount of
basic transactions in each stratum, the amount of strata, the
number of edges in stratification graph, etc.

The application of evolutionary programming to achieve
optimal stratification is treated in [6]. In this work we fo-
cus on local search optimisation algorithms, namely hill-
climbing [10], simulated annealing [10], and a novel hybrid
approach combining the two. In general, methods of local
search are iterative and based on the idea that at each sin-
gle step one element of the search space (in our case one
of the stratification alternatives) is observed, evaluated and
checked whether it satisfies the end condition. If the current
element is not “good enough”, its “neighborhood” is cre-
ated by generating elements slightly different from the cur-
rent one (in our case, we might move few basic transitions
from a stratum to another). Using strategies such as “first
best” [10], a neighbor element is choosen for the next step
of the search. Hill-climbing is not applicable for the prob-
lems with many local optima. According to the particular
case in input, simulated annealing may either lose the focus
(and behave as a random search) or behave as hill-climbing.

In this paper we propose a hybrid approach (sketched
in Figure 2) for finding the optimal stratification that com-
bines the strengts of both hill-climbing and simulated an-
nealing. The hybrid approach works as hill-climbing in the
first phase. As soon as the search is trapped into a local
optimum (e.g. the algorithm does not leave a certain ele-
ment in a given number of iterations), a second phase based

497

Figure 2. A schema of the hybrid approach

on simulated annealing is executed instead. Simulated an-
nealing allows the search process to move out of the local
optimum. A calibration step is needed to configure the sim-
ulated annealing according to the current state of the search.
Simulated annealing is executed for a pre-configured num-
ber of steps, after which method moves into phase 1 (see
figure 2). The decision about the parameters n and m as
well as the congifuration of the SA phase and callibration
are essential for the results of the search.

To evaluate the effectiveness of the optimization ap-
proaches, we implemented a prototype to apply the strat-
ification approach and evaluated each of them on random
generated global transactions (see [6] for the details). The
hybrid approach showed the best results among the local
search algorithms in the case of dependence graph with
many edges (i.e. |E| ≈ |V |2). In this cases, hill-climbing
showed the worst results. This could be explained by the
size of the search space structure: the amount of possi-
ble stratification alternatives is higher as there are less de-
pendency edges, and thus there are more local optima hill-
climbing can get stuck into. In the case of dependence with
few edges (|E| ≈ O(|V |)) though, hill-climbing gives bet-
ter results than the other local search approaches. However,
the evolutionary programming gave the best results in all
test cases. The evolutionary algorithm always outperforms
local search methods if there are considerable computation
time/resources. However, if relatively good results are suf-
ficient and there are restrictions in computation resources
and time, the hybrid approach is a better recommendation.

4 Conclusions

In this paper we presented an approach, called stratifi-
cation, for fragmenting at modeling time a global transac-
tions composed out of basic transactions that use multiple
resources. The basic transactions are grouped into strata,
that are coordinated to preserve the semantics of the orig-
inal global transaction. Given the fact that multiple strati-
fications are generally possible, an optimal stratification is
calculated based on the properties of the transactions and
the resources they manipulate. Our stratification can be ap-
plied to service composition scenarios in a Web Service en-
vironment, increasing the concurrency and distribution of

basic transactions over multiple sites, as well as scenarios
involving out-sourcing and in-sourcing. Future work fore-
sees the application of the stratification at run-time, i.e. on
the fly, using execution statistics of the properties of transac-
tions and their resource to perform the optimization. While
in our existing work we deal with adaptation of processes
modeled as global transactions, the adaptation of stratified
transactions is still to be addressed. Furthermore, we envi-
sion the adoption of other optimisation approaches such as
tabu search, and to investigate the optimal prioritization of
evaluation criteria by experimenting with larger number of
stratified transactions.

Acknowledgments.

The research leading to these results has received fund-
ing from the European Community’s 7th Framework Pro-
gramme under the Network of Excellence S-Cube - Grant
Agreement no. 215483.

References

[1] The Open GROUP: Distributed Transaction Processing -
The XA Specification. X/Open Company Ltd, February
1992

[2] Khalaf R., Leymann F., Role-based Decomposition of
Business Processes using BPEL, Int’l Conf. on Web Ser-
vices, ICWS 2006, industry track, IEEE Computer Society,
Chicago, IL, USA, September 2006

[3] Martin, D., Wutke D., Leymann F.: A Novel Approach
to Decentralized Workflow Enactment. 12th IEEE Interna-
tional EDOC Conference (EDOC 2008). Munich, Germany,
September 15 - 19, 2008.

[4] Leymann, F., Transaktionsuntersttzung fuer Workflows. In-
formatik in Forschung & Entwicklung, 12(1), 1997.

[5] Leymann, F., Roller, D., Production Workflow. Concepts
and Techniques. Prentice Hall PTR. Upper Saddle River.
New Jersey 07458, 2000.

[6] Danylevych, O.: Stratifizierte Transaktionen, Diplomarbeit
Nr. 2663, Universitaet Stuttgart, Institut fuer Architektur von
Anwendungssystemen, Deutschland, 2008.

[7] Gray, J., Reuter, A. Transaction Processing: concepts and
techniques. San Francisco, California. Morgan Kaufmann
Publishers, 1993.

[8] Couloris, G., Dollimore, J., Kindberg, T., Distributed Sys-
tems. Concepts and design. Addison-Wesley Publishers
Limited, 1994.

[9] Garey, M. R., Johnson, D. S., Computers and Intractability;
A Guide to the Theory of NP-Completeness, W. H. Freeman
& Co. New York, NY, USA, 1990.

[10] Weicker, K. Evolutionäre Algorithmen. Teubner-Verlag,
2002.

[11] OASIS Consortium: WS-AtomicTransaction version 1.1.
OASIS Standard, April 2007

498

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.3

A.3 Towards Identification of Fragmentation Opportunities for Service Workflows with
Sharing-Based Independence

Authors:

UPM: Dragan Ivanovic

UPM: Manuel Carro

UPM: Manuel Hermenegildo

Submitted to:

• 2nd International Workshop on Principles of Engineering Service-Oriented Systems (PESOS 2010).

External Final Version 1, Dated November 30, 2009 52

Sharing-Based Independence-Driven
Fragment Identification for Service Orchestrations?

Dragan Ivanović1, Manuel Carro1, and Manuel Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM)
(idragan@clip.dia.fi.upm.es, {mcarro, herme}@fi.upm.es)

2 IMDEA Software, Spain

Abstract. In the evolving world of Service-Oriented Computing (SOC), frag-
mentation and merging of service compositions are motivated by a number of
design, performance and security concerns, such as composition reuse, dynamic
load balancing, cross-organizational boundary process execution and resource ac-
cess protection. The emphasis is on application of automatic design- and run-time
methods for fragmentation that can automatically identify and separate orchestra-
tion fragments while preserving correctness and semantics of the original, non-
fragmented, orchestration. While most of the current fragmentation approaches
are founded on control-flow-based transition view of orchestrations (e.g. using
Petri nets), we present an approach that takes into account the structure and use
of data comprising state of an executing orchestration, and employs sharing-based
independence analysis over orchestration components to identify fragmentation
opportunities. We illustrate applicability of the sharing-based approach on frag-
ment identification, with reflections on security and resource access control, and
show how the existing analysis tools for logic programs can be used as the under-
lying technology for this kind of analysis.

1 Introduction

Service-Oriented Computing (SOC) enables interoperability of functionally specialized
components with low coupling. In that context, service compositions are mechanism
for expressing business processes (i.e. wokflows) that include other services, and are
exposed as services themselves. Composition notations and languages, such as BPMN
[Obj09], WS-BPEL [JEA+07], XPDL [Wor08], Let’s dance [ZBDtH06] or DecSer-
Flow [vdAP06] allow process modelers and designers to view a composition from the
point of business logic and processing requirements related to parallelism and data flow.
The now fashionable service mash-ups are also tools for building (usually simplified)
customized orchestrations from known service components in a user-centric way.

? The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under the Network of Excellence S-Cube - Grant Agreement
n◦ 215483. Manuel Carro and Manuel Hermenegildo were also partially supported by Spanish
MEC project 2008-05624/TIN DOVES and project S-0505/TIC/0407 PROMESAS. Manuel
Hermenegildo was also partially supported by EU projects FET IST-15905 MOBIUS, FET
IST-231620 HATS, and 06042-ESPASS.

These service compositions, unlike the back-end worker services, are coarse-grained
software components that normally implement higher-level business logic, and allow
streamlining and control over mission-critical business processes inside an organization
and across organization boundaries. However, the centralized manner in which these
processes are designed and engineered does not necessarily reflect the desirable prop-
erties in their run-time environment. To enable distributed orchestration execution, op-
timize network traffic, ensure privacy, or create a basis of reusable orchestration compo-
nents, various fragmentation approaches have been proposed [WRRM08,BMM06,TF07].

This proposal focuses on the identification of fragments on the basis of a notion of
independence between orchestration activities. This is done by considering how these
activities handle resources such as data that represents the state of an executing or-
chestration (i.e. process variables), external participants (such as partner services and
external participants), resource identifiers, and mutual dependencies. The underlying
idea is that the fragments may adjust and vary the arrangement of orchestration activi-
ties, while preserving the essential properties, such as correctness and transactional in-
tegrity. A quantitative measure of independence of orchestration fragments can also be
related with the degree of cohesion and coupling of orchestration components.3 Greater
independence degree between fragments means lower coupling, and thus higher main-
tainability and easier evolution. Conversely, a greater dependence may lead to situations
where a change in an activity leads to changes in dependent / depended activities as
well.

Based on data representation of different resources, we concentrate on data indepen-
dence between orchestration activities, using techniques based on sharing and ground-
ness analysis [MH92,MS93,MH91], taking into account different resources, such as
variables holding the state of an running composition, references to external services,
and, in general, references to (maybe external) resources which induce some degree of
dependence between the identified fragments.

2 Overview of the Independence-Based Approach

Independence analysis, which we are formulating in this paper based on the notion of
sharing, is a general property that can be applied to both upper and lower layers of
software architecture, and consequently, to various parts of the service stack.4 We will
focus on the service composition layer, were we model the relationships between dif-
ferent entities used within a orchestration as data structures subject to sharing analysis,
and the orchestration activities as goals in a logic program [SS94].

Figure 1 gives an example of the idea behind the general approach. A part of a
orchestration (leftmost) between points 1 and 2 is a sequence of invocations of partner
services A and B. If these two activities do not access the same resources, we can isolate
two fragments (middle) guided by a notion of independence. These fragments can be
split with the certainty that no communication between them will be necessary.

3 Note that this is a general S.E. concept which still seems completely applicable to S.O.C.
4 In fact is a technique general enough to be applied to any phenomena which can be modeled in

a programming language, and has a plethora of applications in e.g. the field of programming
languages.

1

invoke A

invoke B

2

⇒

1

invoke A

2

+

1

invoke B

2

⇒

1

invoke A invoke B

2

Fig. 1. An illustration of sharing-based splitting

Our approach will ensure that independence between goals imply independence be-
tween the activities they stand for. We model control dependencies as a special case of
data dependencies on outgoing transition indicators from wokflow activities. The enti-
ties which have an impact on dependence and that we want to model typically include:

– Variables (e.g. in BPEL) that hold (part of) the state of the executing processes. This
is a classical case of data-based depenency found in many programming languages.
The analysis needs to take into account that these variables are usually complex
XML-like structures.

– Services used in the composition (partners in BPEL parlance). Accesses to partners
need to respect their business protocol, which can be as simple as a synchronous
request-reply cycle, or as complex as an asynchronous exchange of messages with
multiple stateful callbacks and conversations going on in the course of such ex-
change. We model dependencies on partner services by mapping these dependen-
cies to a to a sharing problem between new, invented variables that are appropri-
ately used in the model whenever the original orchestration accesses these external
services.

– Access to databases or other shared resources, either within local activities in the
composition, or within external (partner) services. We can map resource identifiers
and database connection specifiers to new logical variables referenced in activities
that use resources/databases.

2.1 Underlying Analysis Techniques

In our approach we use abstract interpretation-based [CC77,NNH05,Bru91] tools to
perform sharing-analysis in logic programs. Different abstract domains for sharing (and
freeness / groundness) have been designed over the years [MH91,LS02,BS92,HK03].
They differ on the accuracy of the approximation and on the resources (memory and
time) they require, but all of them produce program-point information which can later
be used to deduce dependencies which can be used to rewrite / annotate the program for
a variety of purposes —including, but not exclusively, parallel execution. The choice
of a domain impacts the accuracy and complexity of the analysis, and the behavior of

Orchestration
description

Intermediate
notation

Analysis
Results

Annotated
intermediate
description

Annotated
orchestration

Human-
readable

information

Translations Analysis

Annot-
ation Annotation

Analysis focus/objective

Sharing-based analysis in the intermediate notation

Fig. 2. Overview of the sharing-based fragmentation analysis and its possible outcomes and ap-
plications.

the domain operations can certainly be taken into account when encoding the original
orchestration in order not to loose precision and to capture as faithfully as possible
the original behavior. Selecting the right analysis domain and the right orchestration
encoding is a very interesting challenge which we plan to explore in a future, and in
which precision and complexity play relevant roles.

While the results of sharing / freeness analysis can be used for a variety of program
transformations and annotations, in this paper, and for illustration purposes, we will
mainly use its application to extract independence conditions, which were primarily de-
signed to determine the possibility of safe parallel execution. Even if our ultimate aim is
not necessarily performing parallel execution, the independence / non-interference con-
ditions which a syncronization-free parallel execution requires happen to be interesting
and applicable beyond parallelism, as we will see in Section 3.6. Notwithstanding, other
fragmentation approaches may find it valuable the direct use of sharing / freenes infor-
mation without the information filtering that applying them to dependency analysis and
later to annotations for parallelism unavoidable brings about.

2.2 The Big Picture

A picture depicting the overall scheme of our approach is shown in Figure 2. A or-
chestration description, in an adequate abstract or executable notation, is first translated
into an intermediate notation, which in our case is a logic program that we generate
so that it captures relevant information and is amenable to sharing / freenes analysis.
In our case these analyses are performed by the tools provided by the Ciao / CiaoPP
suite [HBC+08,HPBLG05].

The intermediate notation is an abstract model of a orchestration, which is more
concrete than e.g. Petri-net based orchestration models [OVvdA+07,vdAtHW03], as

for our purposes we need to faithfully capture some operations on data, sometimes of
certain complexity (see Figure 4), but maybe less concrete than an executable imple-
mentation in e.g. BPEL, since we do not necessarily need to completely mimic the
actual operational semantics. Depending on the focus and objectives of a particular
analysis (identification of fragments, security concerns, resource management) differ-
ent intermediate versions of the actual orchestrations can be generated.

The analysis stage operates on the intermediate notation and its results can be used
to either transform it into an annotated program (where e.g. independence between tasks
/ activities can be clearly seen) or, alternatively, be mapped back to a tool which can
manipulate the original orchestration code [KL06] or be presented in a format which
is easy for a designer or service engineer to understand and apply to the service design
being undertaken.

In this paper we focus on some of the steps in Figure 2. More concretely, we will,
by means of illustrative examples:

– Informally present how the translation from some not-yet-identified orchestration
language would proceed (by looking at the results of some translations) in order to
capture relevant information for some types of fragmentation purposes.

– Study how this intermediate representation can be analyzed and the results of this
analysis used to annotate the abstract version of the orchestration.

– Use this annotated orchestration version in order to identify fragments composed of
one or more activities which present independence, and interpret this independence
in the light of the purpose of the fragmentation.

As we previously discussed, other very interesting tasks, such as using sharing /
freeness analysis to detect directly fragmentation opportunities for several scenarios,
instead of going through the dependency / annotation path are left as future work.

It is worth noting that sharing / freeness analysis is non-trivial and doing it manually
is error prone and inefficient and, especially important, incompatible with the require-
ments of automated service adaptation and evolution. Automatic sharing analysis, on
the other hand, although hard and computationally intensive, can be employed auto-
matically on demand, and, if done through a correct analysis (which is for example the
case if using abstract interpretation) guarantees the safety of its results: although it may
sometimes miss an opportunity for split, being a conservative approximation it ensures
that any two asks inferred to be independent at runtime will definitely be so.

3 Sharing-Based Fragment Identification

Before we proceed to technical details, to illustrate the sharing-based approach to or-
chestration fragment identification, we take the example that is schematically displayed
in Figure 3. That is a simple example of a orchestration A that consists of five activi-
ties (A1...A5), one of which (A4) is a structured activity itself, with two sub-activities
(A4,1 and A4,2). The solid line arrows drawn between activities represent dependency
links akin to those found in BPEL’s flow construct. The mechanism of dependency
links is able to express a wide class of orchestration patterns, with some exceptions
[vdA03,vdABtHK00].

A : Orchestration

A1

A2 A3

A5

A4: foreach loop

A4,1 A4,2

T1

T1

T2

T4

T3

Z

W

AND

OR

Fig. 3. A orchestration example for sharing-based analysis. Arrows represent control flow depen-
dencies. The dashed lines are additional dependencies that exist in the alternative scenario.

Outgoing links (i.e. the transitions) from activity Ai are marked as Ti, and can have
Boolean true or false value. Join conditions for activities with more than one incoming
link can be arbitrary logical conditions over the incoming links, although the simple
AND and OR joins are the most common case. Circular dependencies are not allowed.

The arrows in the figure essentially depict control-flow dependencies. For a while,
we will ignore the dashed dependency lines marked with Z and W , and will come back
to them when we look at the impact of additional data dependencies on the analysis.
Each activity in the orchestration is responsible for setting its outgoing transition upon
successful completion. An activity with incoming dependencies can begin executing
only when the status of all incoming links is known. Thus, the links behave as three-state
logical variables. If the join condition for activity Ai is not met, either the orchestration
execution fails with an exception, or the failure is silently propagated by setting the
outgoing transition Ti to false. The latter case corresponds to BPEL-style dead path
elimination [KKL07].

The orchestration description in Figure 3 is translated into an intermediate notation
which is directly amenable to sharing analysis. Let us note that encoding full data de-
pendencies in Petri-net based approaches [MWL08,MaBP02] needs a very specific and
cumbersome encoding, as as done in [FMB00]. Indeed, encoding data dependencies in
Petri Nets is an area which has not received much attention, in contrast with data-flow
program analysis. Additionally, taking into account structured subactivities and com-
plex join conditions requires the introduction of several additional auxiliary nodes wich
hinder the understanding of the resulting model by e.g. an engineer.

3.1 Representing Orchestration in Intermediate Logic Program Notation

Since we are interested in modeling only those aspects of orchestration behavior that
are relevant for fragment identification based on sharing analysis, we can omit non-
substantial part of orchestration logic that does not influence data dependencies. We
model an orchestration as a Horn clause, with the body that is an ordering of individual

1 :- module(_, [a/2],
[assertions]).

3 :- entry a/2:
ground*var.

5

a([X], [Y,T5]):-
7 a_1([], [], [T1]),

a_2([], [], [T2]),
9 a_3([T1,T2], [X], [T3]),

a_4([T1], [X], [T4]),
11 a_5([T3,T4], [], [Y,T5]).

12 a_1(_, _, [[]]).
a_2(_, _, [[]]).

14 a_3(_, _, [[]]).
a_4(_, [[]], [[]]).

16 a_4(P, [[N|L]], [T4]):-
a_4_1([], [], [_T4_1]),

18 a_4_2([], [N], [_T4_2]),
a_4(P, [L], [T4]).

20 a_4_1(_, _, [[]]).
a_4_2(_, _, [[]]).

22 a_5(_, _, [[],[]]).

Fig. 4. Logic notation for the orchestration A in Fig. 3

activities. If an orchestration A has n > 0 activities, then the clause has the shape:

A← A1,A2, . . . ,An , (1)

where Ai, i = 1..n, stands for the logical goal associated with the ith activity, of the
form:

ai(Pi,Ri,W i) . (2)

Arguments of ai are lists of (logical) variables. Pi is the set of incoming transitions on
which Ai depends. Ri is the set of data inputs read by Ai, and W i is the set of values
computed by Ai. W i always includes Ti, the computed value of the outgoing transition
from AI . In the concrete (Ciao) Prolog notation, we represent Pi, Ri and W i with lists.

Ordering of activities in (1) needs to respect two constraints: (i) the link dependency
constraint, which mandates that an activity Ai cannot depend on outgoing transition of
any activity A j where j ≥ i (i.e. Tj 6∈ Pi); and (ii) the read-write dependency constraint,
which stipulates that an activity Ai cannot use as an input the result of any activity A j
where j ≥ i (i.e. X ∈W j⇒ X 6∈ Ri).

Since circular link dependencies are ruled out, at least one ordering that respects
the link dependency constraint can always be found and statically decided for a given
orchestration. In many cases, on top of that we can easily impose the read-write depen-
dency constraint when translating orchestration from a concrete orchestration language
into the intermediate logic program form. Here we show an approach when in the con-
crete language activities operate by updating values of named variables.

Suppose, for instance, that x is a symbolic name for a variable within the scope of an
orchestration that is read and/or written by its activities. In an ordering of activities that
respects the link dependency constraint, at any position i= 1..n, we model the value of x
after Ai with logical variable Xi that is either Xi−1 if Ai does not update x, or the updated
value Y ∈W i. We assume that X0 is a free variable unless it is a part of the message with
which the orchestration was invoked. To ensure the read-write dependency constraint,
when activity Ai reads the current value of X , we put Xi−1 into Ri.

For the goal A that corresponds to the whole orchestration, we use the format anal-
ogous to (2). Since orchestration is autonomous piece of code, we omit its P, and use
its R and W to model elements of the request and the response message, respectively.

Figure 4 shows the translation of the orchestration into the intermediate notation of
a logic program. The entry declaration declares that the predicate a/2 is the entry point

to the orchestration. Here, it takes tow arguments: an input message with data element
X, and the output message with data element Y together with the outgoing transition
(which comes from the final activity in the orchestration). The first two arguments are
ground on entry, and the latter two are var.

Lines 6-11 on Figure 4 describe the orchestration in terms of (1) and (2). In this case
we use ordering (A1,A2,A3,A4,A5), but we could have swapped lines 7 and 8 (A1 and
A2) and lines 9 and 10 (A3 and A4) at will without breaking the ordering constraints.

We also need to supply rules for individual activities, and these are given in lines
12-22 on Figure 4. For simple activities, the rule for ai is a fact where the first two
arguments are ignored (signified with an “_”, and the third (corresponding to W i) is a
list of ground terms for each computed value. Throughout translation, we use the empty
list symbol “[]” (or nil) when we need a ground term. That gives us the rules for a1,
a2, a3, a4,1, a4,2, and a5. We are allowed to ignore Pi and Ri, as well as to substitute
nil for computed values in W i because we are not concerned with modeling actual
computations, just with giving appropriate information for sharing-based independence
analysis.

Rules for structured activities, such as looping and branching, are slightly more
complex. Activity A4, which is a foreach construct, has a base-case rule that exits the
loop (line 15 on Figure 4), and a tail-recursive rule that involves activities A4,1 and A4,2
inside the body of the loop (lines 16-19). Shape of the rules depends on the original
semantics of the orchestration. For instance, if the body of the loop updated an orches-
tration variable with symbolic name z, then R4 would need to include value of z before
the loop, and W 4 would need to include the value of z after the loop, in order for the tail
recursion (line 19) to correctly thread the updates. If, however, z was local to the body
of the loop (as in the example discussed in Section 3.5), that would not be necessary.

3.2 Obtaining Annotated Orchestration

On the intermediate logical program representation of the orchestration from Figure
4, we apply several automated analysis algorithms from the CiaoPP analysis suite [].
First, the set sharing and freeness analysis (shfr) is performed to detect aliasing be-
tween different variables appearing in the program. Second, on the basis of sharing
analysis, we use the non-strict independent AND-parallelism analysis (nsiap) [] to in-
fer dependence or independence of goals on previous execution of other goals. Third,
we use the information given by the independence analysis and feed it to the of the
UUDG code annotation algorithm [CCH08] that inserts AND-parallelizing primitives.
The result is an annotated orchestration in form of a logic program, which is used as a
basis for fragment identification, explained in the following subsection.

The annotated version of the logic representation of the orchestration (Figure 4) is
shown on Figure 5. In the main body of the orchestration (lines 1-8), which used to
be just an ordering of n = 5 activity goals, there are some modified goals of the form
“Ai&>Hi” (start Ai in parallel as task Hi), as well as some additional goals of the form
“Hi<&” (wait for task Hi to finish). Another kind of annotation can be seen in the body
of the foreach loop (lines 11-14): “Ai&A j” (start Ai and A j in parallel, and wait for both
to finish), which boils down to “Ai&>Hi, A j&>H j, Hi<&, H j<&” [CCH07].

1 a([X], [Y,T5]) :-
2 a_2([], [], [T2]) &> H2,

a_1([], [], [T1]),
4 a_4([T1], [X], [T]4) &> H4,

H2 <&,
6 a_3([T1,T2], X, [T3]),

H4 <&,
8 a_5([T3,T4], [], [Y,T5]).

10 a_4(_, [[]], [[]]).
a_4(P, [[N|L]], [T4]) :-

12 a_4_1([], [], [_T41]) &
a_4_2([], [N], [_T42]) &

14 a_4(P, [L], [T4]).

Fig. 5. A digest of the annotated orchestration code from Fig. 4

2-3 4 5-6 7-8

A2

A1

A4

A3 A5

Fig. 6. Graphical representation of the parallelizing annotations for the orchestration.

These parallelizing annotations inserted by the UUDG algorithm are derived from
the independence analysis results (which are in turn derived from the sharing and free-
ness analysis), and are known to start activities as early as possible, and to wait for
their completion as late as possible, without breaking dependencies (up to relabeling
of local/remote tasks). The original idea of the parallelizing annotations is operational
parallelization of logic program execution, and indeed the annotations can be used to
inform runtime fragmentation in a distributed orchestration enactment milieu. Here,
we use the annotations as start and finish markers for safe reordering of orchestration
activities in the process of obtaining fragments.

The UUDG algorithm rearranges mutually independent activities to ensure earliest
start / latest finish, if such rearrangement does not break the dependencies. Because we
model all dependencies essentially as data dependencies (transitions are a special case),
the link and the read-write dependency constraints ensure that all compliant orderings
may differ only in relative ordering of mutually independent activities. Therefore, we
can conclude that the initial choice of ordering of activities in (1), as long as it complies
with the two constraints, does not have substantial impact on the annotations, because in
the fragmentation identification (next subsection) we do not distinguish between “start
Ai, start A j” and “start A j, start Ai”.

Figure 6 schematically shows the parallelization of a from Figure 5. The blocks cor-
respond to execution of activities, and the numbers correspond to lines of the annotated
code in Figure 5. The relative size of blocks is not significant, but how they overlap. The
bottom thread, starting with A1 corresponds to the body of a. First, A2 and A1 may be
executed simultaneously. After completion of A1, A4 is immediately scheduled for par-

A

A∗ A∗f

A f

Independence

analysis +

Annotation
Activity

rearrangement

Annotation

collapsing

Fragment

identification

Fig. 7. The fragment identification workflow

allel execution (line 4). The next action to perform is to wait for the termination of A2
which is needed to to start A3, since there is a dependency due to the shared transition
variable T2. Finally, A5 can start as soon as both A4 and A3 finish.

3.3 Static (Design-Time) Fragment Identification

We use the annotated version A∗ of the orchestration A for identifying fragments. As al-
ready mentioned, the annotation algorithm based on data-sharing dependencies [CCH07]
rearranges the initial representation by introducing parallelization primitives &>, <&, and
& that indicate the earliest possible start and the latest possible join of activities in the
orchestration, in a deterministic and optimal way under the detected dependencies. Here
we show a technique that manipulates these annotations to obtain a fragmented version
of an annotated orchestration.

At design time, we perform fragmentation typically to separate from the overall
orchestration a fragment of activities that fulfill some criterion, such as: activity type,
complexity, user preference, resources used, control or data dependencies, etc., or a
combination thereof. Whatever criteria is used, we assume that it generates a non-empty
subset A of activities from orchestration A. We can thus define fragmentation as the
problem of producing a fragmented orchestration:

A f ← F−,F,F+ , (3)

which is a dependency-safe rearrangement of activities in A, such that: (a) F contains
the minimal subset of A that includes all activities in A , and (b) goals related to any
activity that is not in F appear either in F− or F+, but not in both. F− or F+ can be
empty.

To achieve the goal of fragment identification, we follow the workflow shown on
Figure 7. We have already explained how the annotated orchestration is obtained, and
collapsing it back to the notation without annotations is simply a matter of converting
each “Ai&>Hi” into “Ai” and removing each “Hi<&”. Therefore, we will concentrate here
on rearranging activities in the annotated orchestration:

A∗← A∗1,A
∗
2, . . . ,A

∗
N (N ≥ n) (4)

where A∗i (i = 1..N) is either Ak, Ak&>Hk, or Hk<&, for some k = 1..n, to obtain its
fragmented version:

A∗f ← F∗−,F
∗,F∗+ (5)

When rearranging A∗ into A∗f , we must take care not to break dependencies. In
the sequence of N goals that constitute the body of A∗, it is safe to move a goal of the
form “Hk<&” to the left, but not past the corresponding “Ak&>Hk”. Indeed, the annotation
algorithm ensures that if “Hk<&” appears at position j in A∗, no goal to the left of j (i.e.
at a position i < j) depends on Ak. For the same reason, it is safe to move a goal of
the form “Ak&>Hk” to the right, but not past the corresponding “Hk<&”. Of course, if we
place “Ak&>Hk” next to “Hk<&”, we obtain an (immovable) “Ak”.

The algorithm to achieve (5) operates on a working copy of A∗, with i and j being
at each step the leftmost and the rightmost position of goals associated with activities in
A in the sequence. In the first phase, we move goals that are not associated to activities
in A to either side of F∗.

(i) For each “Ak&>Hk”, Ak 6∈ A , positioned to the left of i, with the corresponding
“Hk<&” positioned to the right of j, either move the former to position j, or move
the latter to position i.

(ii) Move each “Ak&>Hk”, Ak 6∈ A , positioned between i and j, rightwards as far as
possible towards position j.

(iii) Move each “Hk<&” positioned between i and j with the corresponding Ak 6∈ A ,
leftwards as far as possible towards position i.

In the second phase, we try to compact the goals associated to A , which include
“Ak” and “AK&>Hk” with Ak ∈A , and the corresponding “Hk<&”:

(iv) Going from left to right, move each “Hk<&” associated to A and positioned to the
right of i, leftwards as far as possible without passing another goal associated to A .

(v) Going from right to left, move each “Ak&>Hk” associated to A and positioned to
the left of j, rightwards as far as possible without passing another goal associated
with A .

After applying the above algorithm, the resulting A∗f can be separated into three
parts: goals at positions from 1 to i−1 constitute F∗−; goals at positions between i and j
constitute F∗; and goals at positions j+1 to N constitute F∗+. That means that F∗− or F∗+
can be empty. The final F−, F and F+, which constitute A f , are obtained by collapsing
F∗−, F∗ and F∗+, respectively.

The algorithm guarantees that all activities from A will be concentrated in F∗ and
F , but it may happen that some other activities need to be included in the fragment,
because otherwise the dependencies would be violated. In that case, the algorithm en-
sures that a minimal number of such activities is included. However, in extreme cases, it
may happen that the fragment is identical with the initial workflow (both F− and F+ are
empty), even if A is a proper subset of activities in A, and therefore fragmentation does
not have any effect. The reader can easily verify that is the case when A = {A1,A2,A5}.

The examples of fragmentation using this algorithm are shown in Table 1. The case
A = {A1,A5} illustrates inclusion of additional activities into the fragment, and these
activities in F that are not in A can themselves be seen as sub-fragments of F , as illus-
trated on Figure 8. We also see that the algorithm can produce more than one possible
fragmentation to choose from (e.g. the case A = {A2,A3}).

Another important point is that although the fragmented orchestration has the form
(3), that does not mean that this approach is limited to cases of sequential fragment

A F∗− F∗ F∗+
{A1} (empty) A1 A4&>H4, A2, A3, H4<&, A5

{A2,A3} [1] A1 A2, A3 A4, A5
{A2,A3} [2] A1, A4 A2, A3 A5
{A1,A5} A2 A1, A4&A3, A5 (empty)
{A3,A5} A2&>H2, A1, A4, H2<& A3, A5 (empty)
{A2,A4} A1 A2&A4 A3, A5
{A4} A2&A1 A4 A3, A5
Table 1. Examples of sharing-safe fragmentation of the annotated orchestration.

A2 A1 A5

A4, A3
F− F

A f :

Fig. 8. A schematic representation of fragment identification for A = {A1,A5}

execution. The ordering of activities in the intermediate logic representation (1), as we
said, is not an operational sequencing. In fact, if we are interested in parallelization
opportunities, we can see from the examples in Table 1 for A = {A2,A3} that the
fragment F consisting of A2 and A3 can be executed in parallel with A4, which is either
in F− (case [1]) or in F+ (case [2]).

The identified fragment can be formalized as a new, synthetic activity within the
orchestration, with its own rule following the structure of (1). For uniformity, we model
the goal corresponding to the fragment F using the form (2) for activity goals:

f (P f ,R f ,W f) , (6)

where P f and R f contain all incoming link dependencies and input data, respectively,
used by activities in F , and W f contains the computed values (including transitions)
from activities in F used by the rest of the orchestration. An example of how the frag-
ment is represented as a synthetic activity (or a sub-orchestration) in the intermediate
logic program form for the case A = {A2,A4} is shown on Figure 9.

1 a([X], [Y,T5]):-
2 a_1([], [], [T1]),

f([T1], [X], [T2,T4]),
4 a_3([T1,T2], [X], [T3]),

a_5([T3,T4], [], [Y,T5]).
6

f([T1], [X], [T2,T4]):-
8 a_2([], [], [T2]),

a_4([T1], [X], [T4]).

Fig. 9. Representing fragment as a synthetic activity.

1 :- module(_, [a/2],
[assertions]).

3 :- entry a/2:
ground*var.

5

a([X], [Y,T5]):-
7 a_1([], [], [T1]),

a_2([], [], [T2]),
9 a_3([T1,T2], [X], [Z,T3]),

a_4([T1], [X,Z], [T4]),
11 a_5([T3,T4], [], [Y,T5]).

12 a_1(_, _, [[]]).
a_2(_, _, [[]]).

14 a_3(_, _, [[],[]]).
a_4(_, [[]], [[]]).

16 a_4(P, [[N|L]], [T4]):-
a_4_1([], [], [W,_T4_1]),

18 a_4_2([], [N,W], [_T4_2]),
a_4(P, [L], [T4]).

20 a_4_1(_, _, [[],[]]).
a_4_2(_, _, [[]]).

22 a_5(_, _, [[],[]]).

Fig. 10. Modified example in the intermediate notation with additional data dependencies

1 a([X],[Y,T5]) :-
a_1([], [], [T1]) & a_2([], [], [T2]),

3 a_3([T1,T2], [X], [Z,T3]),
a_4([T1], [X,Z], [T4]),

5 a_5([T3,T4], [], [Y,T5]).

7 a_4(_, [[],_], [[]]) :- !.
a_4(P, [[N|L],Z], [T4]) :-

9 (a_4_1([], [], [W,_T4_1]), a_4_2([], [N,W], [_T4_2]))
& a_4(P, [L,Z], [T4]) .

Fig. 11. A digest of annotation results for a and a4 with additional data dependencies.

3.4 Dynamic (Run-Time) Fragment Identification

In a dynamic orchestration enactment scenario, the annotations can straightforwardly
inform the enactment engine(s) on opportunities for distributing execution of fragments
without violating control and data dependencies.. In practice, and if parallelism and
speedups is really sought, a very relevant information is the actual feasible degree of
parallelization — i.e., how many parallel activities can be launched in a give parallel
architecture before the associated overhead is too large.

In the annotated version of a in Figure 5, a1 and a2 are started in parallel (lines 2
and 3). As soon as a1 is finished, a4 is started, thus potentially running in parallel with
a1. Next, a3 is started as soon as a2 finishes, thus possibly running in parallel with a4.
Finally, a5 can be started after finish of both a3 and a4.

Fragmentation opportunities for a4 are even more straightforward, as the analysis
clearly indicates that both sub-activities a4,1 and a4,2, as well as the rest of the foreach
loop can be delegated to different orchestration enactment threads. In terms of a max-
imal number of fragments of a4 that are independent at any moment, it can be easily
verified that it is equal to 2N +1, where N is the length of the input list. Since at most
two activities of a can run simultaneously, the maximum number of basic (simple ac-
tivity) simultaneously executing fragments within a is thus 2N +2.

3.5 Additional Data and Conversational Dependencies

Since we have used data sharing to model control-flow dependencies, introduction of
the additional data dependencies between orchestration activities is straightforward and

does not require changes in the analysis itself. That is a major advantage over e.g. Petri
net based approaches [TF07], which have to be significantly restructured to take data
into consideration, for instance by moving towards colored Petri nets with special coor-
dination and data link mechanisms [KL06,LWC+02,DLC+07]. Of course, as a general
rule, adding data dependencies in general decreases opportunities for fragmentation.

To illustrate effects of additional data dependencies, we modify the example by
introducing the alternative scenario which includes two additional data dependencies
represented with dashed lines in Figure 3. We therefore assume that A3 calculates some
value Z that A4 uses, and, in the scope of the structured activity a4, we assume that A4,1
calculates some value W that A4,2 uses. The introduction of these dependencies in the
logic program representing orchestration is displayed in Figure 10.

Figure 11 shows the annotated orchestration with the additional dependencies. Op-
portunities for rearranging activities in A∗ are now much smaller, because essentially
the only thing we can do is to swap A1 and A2. Also, in the body of the foreach loop A4,
the two activities have to be put strictly in sequence A4,1, A4,2.

The same dependency mechanism can be used to ensure preservation of conversa-
tional protocol between the orchestration and its partner services under fragmentation.
To ensure sequencing of messages sent to or received from a partner, we can introduce
the appropriate ghost logical variables for the two unidirectional message channels,
which can be collapsed to a single bidirectional channel in case of strictly synchronous
messaging. Every message dispatch and reception is then modeled in the same way as
when modeling updating of an orchestration variable, by placing the appropriate input
ghost variable(s) into the R set of a messaging activity, and the corresponding “updated”
ghost variable(s) into its W set.

3.6 Applications to Resource Sharing and Security

In this section we want to highlight that the same techniques we have presented so
far (independence analysis based on sharing analysis) can be straightforwardly use to
uncover at least two situations which can hinder some cases of fragmentation.

On one hand, the use of shared external resources (such as, e.g., other services or
databases) being accessed out-of-order can make the resulting fragmented process not
to have the same behavior as the original one. While one may anyway want to assign
these accesses to different fragments, being aware of their existence is of utmost impor-
tance in order to explicitly synchronize their acesses. This, which is always cumbersome
for a human, can be automated with some ease when the fact that the same resource is
accessed in two different points. It is however more involved in the cases where a refer-
ence (e.g., a URL) to the accessed services is passed around as part of a data structure.
We want to note that passing data structures with many references around is the norm
in RESTful services. Detecting that this is the case (i.e., there is variable sharing in
two different points assigned to different fragments) can in principle be done with the
techniques we have proposed.

On the other hand, it is very possible that when fragmenting for e.g. outsourcing
one wants to prevent information leak: pieces of information which are handed over to
some party must not, in any case, be seen by some other party. The only wayt to ensure

that this is not the case is to make sure that there is no way for this to happen in the com-
position code. The possibility that this information leaking happens can be uncovered
by studying variable sharing as well: if the data structures which are sent to the different
fragments are determined as not having sharing, then information definitely cannot leak
from one party to the other using this data structure. If there is a possible sharing, the
composition control and data flow has to be studied more closely to determine if this is
the case.

4 Conlusions and Future Work

Sharing-based independence analysis can be used to detect fragmentation opportunities
in the context of orchestrations (service orchestrations). By representing a orchestration
in the intermediate notation of a logic program, we are able to apply analysis techniques
that detect data-sharing dependencies between orchestration activities, where the state
of the executing orchestration, resources accessed, and partners are modeled by logical
variables. Depending on the focus and objective of the analysis, such as reuse, security,
resource access control, etc., orchestration can be represented in different ways that
model specific notions of sharing.

In particular, the analysis can be used to identify orchestration fragments by us-
ing automatic parallelizing annotations on top of the dependency analysis. At design
time, such fragment identification can be user or design criteria driven to produce sets
of fragments arising from separating a selection of activities from a orchestration de-
sign. At runtime, fragment identification based on parallelization annotations informs a
distributed orchestration enactment system when to distribute execution of independent
orchestration parts.

Our future work will be aimed at correspondence between the original orchestra-
tions represented in frequently used abstract and executable notations (Petri net based,
BPEL, etc.), intermediate representation of a orchestration and the annotated results of
the analysis, with the goal to enable automated fragmentation analysis of orchestrations
in these notations and presentation of results in a form that is suitable for design and
implementation needs.

References

[BMM06] Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Towards Distributed
BPEL Orchestrations. ECEASST, 3, 2006.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

[BS92] N. Baker and H. Søndergaard. Definiteness analysis for clp(∇). Technical report
92/25, Univ. of Melbourne, 1992.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
ACM Symposium on Principles of Programming Languages (POPL 1977), pages
238–252, 1977.

[CCH07] A. Casas, M. Carro, and M. Hermenegildo. Annotation Algorithms for Unre-
stricted Independent And-Parallelism in Logic Programs. In 17th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’07),
number 4915 in LNCS, pages 138–153, The Technical University of Denmark,
August 2007. Springer-Verlag.

[CCH08] A. Casas, M. Carro, and M. Hermenegildo. A High-Level Implementation of
Non-Deterministic, Unrestricted, Independent And-Parallelism. In M. Garcı́a de la
Banda and E. Pontelli, editors, 24th International Conference on Logic Program-
ming (ICLP’08), volume 5366 of LNCS, pages 651–666. Springer-Verlag, Decem-
ber 2008.

[DLC+07] Xinguo Deng, Ziyu Lin, Weiqing Cheng, Ruliang Xiao, Lina Fang, and Ling Li1.
Modeling Web Service Choreography and Orchestration with Colored Petri Nets.
In Eighth ACIS International Conference on Software Engineering, Artificial In-
telligence, Networking, and Parallel/Distributed Computing, 2007.

[FMB00] F. C. Filho, P. Maciel, and E. Barros. Using petri nets for data dependency analysis.
In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC’2000), 8-11
October 2000, Nashville, TN, volume 4, pages 2998–3003, 2000.

[HBC+08] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, J.F. Morales, and G. Puebla.
An Overview of The Ciao Multiparadigm Language and Program Development
Environment and its Design Philosophy. In Jose Meseguer Pierpaolo Degano,
Rocco De Nicola, editor, Festschrift for Ugo Montanari, number 5065 in LNCS,
pages 209–237. Springer-Verlag, June 2008.

[HK03] J. M. Howe and A. King. Efficient Groundness Analysis in Prolog. Theory and
Practice of Logic Programming, 3(1):95–124, January 2003.

[HPBLG05] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–
140, October 2005.

[JEA+07] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charl-
ton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, Alejan-
dro Guı́zar, Neelakantan Kartha, Canyang Kevin Liu, Rania Khalaf, Dieter König,
Mike Marin, Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad Yend-
luri, and Alex Yiu. Web Services Business Process Execution Language Version
2.0. Technical report, IBM, Microsoft, BEA, Intalio, Individual, Adobe Systems,
Systinet, Active Endpoints, JBoss, Sterling Commerce, SAP, Deloitte, TIBCO
Software, webMethods, Oracle, 2007.

[KKL07] Oliver Kopp, Rania Khalaf, and Frank Leymann. Reaching Definitions Analy-
sis Respecting Dead Path Elimination Semantics in BPEL Processes. Techni-
cal Report 2007/04, Institut für Architektur von Anwendungssystemen, Univer-
sitätsstraße 38, 70569 Stuttgart, Germany, November 2007.

[KL06] R. Khalaf and F. Leymann. E Role-based Decomposition of Business Processes
using BPEL. In IEEE International Conference on Web Services (ICWS’06), 2006.

[LS02] Vitaly Lagoon and Peter Stuckey. Precise pair-sharing analysis of logic programs.
In Principles and Practice of Declarative Programming, pages 99–108. ACM
Press, 2002.

[LWC+02] Dongsheng Liu, Jianmin Wang, Stephen C. F. Chan, Jiaguang Sun, and Li Zhang.
Modeling workflow processes with colored petri nets. Comput. Ind., 49(3):267–
281, 2002.

[MaBP02] Massimo Mecella and Francesco Parisi Presicce an Barbara Pernici. Modeling E
-service Orchestration Through Petri Nets. In Technologies for E-Services, volume

2444 of Lecture Notes in Computer Science, pages 109–134. Springer Verlag, July
2002.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In International
Conference on Logic Programming (ICLP 1991), pages 49–63. MIT Press, June
1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

[MS93] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for
logic programs. Technical report 93/7, Univ. of Melbourne, 1993.

[MWL08] Daniel Martin, Daniel Wutke, and Frank Leymann. A Novel Approach to De-
centralized Workflow Enactment. In EDOC ’08: Proceedings of the 2008 12th
International IEEE Enterprise Distributed Object Computing Conference, pages
127–136, Washington, DC, USA, 2008. IEEE Computer Society.

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 2005. Second Ed.

[Obj09] Object Management Group. Business Process Modeling Notation (BPMN), Ver-
sion 1.2, January 2009.

[OVvdA+07] Chun Ouyanga, Eric Verbeekb, Wil M.P. van der Aalst, Stephan Breutel, Marlon
Dumas, and Arthur H.M. ter Hofstede. Formal Semantics and Analysis of Control
Flow in WS-BPEL. Science of Computer Programming, 67(2-3):162–198, April
2007.

[SS94] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, second edition, 1994.
[TF07] Wei Tan and Yushun Fan. Dynamic workflow model fragmentation for distributed

execution. Comput. Ind., 58(5):381–391, 2007.
[vdA03] W. van der Aalst. Don’t go with the flow: Web services composition standards

exposed. IEEE Intelligent Systems, Jan/Feb 2003.
[vdABtHK00] Wil M. P. van der Aalst, Alistair P. Barros, Arthur H. M. ter Hofstede, and Bartek

Kiepuszewski. Advanced Workflow Patterns. In CoopIS, pages 18–29, 2000.
[vdAP06] Wil van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly Declarative Ser-

vice Flow Language. In Frank Leymann, Wolfgang Reisig, Satish R. Thatte, and
Wil van der Aalst, editors, The Role of Business Processes in Service Oriented Ar-
chitectures, number 06291 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
2006. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[vdAtHW03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. Business
Process Management: A Survey. In Wil van der Aalst, Arthur ter Hofstede, and
Mathias Weske, editors, International Conference on Business Process Manage-
ment (BPM), volume 2678 of Lecture Notes in Computer Science. Springer Verlag,
2003.

[Wor08] The Workflow Management Coalition. XML Process Definition Language (XPDL)
Version 2.1, 2008.

[WRRM08] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change patterns
and change support features - Enhancing flexibility in process-aware information
systems. Data Knowl. Eng., 66(3):438–466, 2008.

[ZBDtH06] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter
Hofstede. Let’s Dance: A Language for Service Behavior Modeling. In OTM
Conferences (1), pages 145–162, 2006.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.3

A.4 Towards Runtime Migration of WS-BPEL Processes

Authors:

UniHH: Sonja Zaplata

UniHH: Kristian Kottke

UniHH: Matthias Meiners

UniHH: Winfried Lamersdorf

• To appear in: Proceedings of the 5th International Workshop on Engineering Service-Oriented
Applications. WESOA’09. In conjunction with ICSOC-ServiceWave. November 23, 2009. Stock-
holm, Sweden.

External Final Version 1, Dated November 30, 2009 70

Towards Runtime Migration
of WS-BPEL Processes⋆

Sonja Zaplata, Kristian Kottke, Matthias Meiners and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
[zaplata|3kottke|4meiners|lamersd]@informatik.uni-hamburg.de

Abstract. The decentralized execution of business process instances is a
promising approach for enabling flexible reactions to contextual changes
at runtime. Most current approaches address such process distribution
by physical fragmentation of processes and by dynamic assignment of
resulting static process parts to different business partners.

Generalizing that in order to enable a more dynamic segmentation of such
responsibilities at runtime, this paper proposes to use process runtime
migration as a means of logical process fragmentation. Accordingly, the
paper presents a general migration metadata model and a correspond-
ing basic privacy and security mechanism for enhancing existing process
models with the ability for runtime migration while still respecting the
intensions and privacy requirements of both process modelers and initia-
tors. In addition, the approach is conceptually evaluated by applying it
to WS-BPEL processes and comparing the results to the general concept
of process fragmentation.

1 Motivation

In todays networked business environments, cross-organizational collaborations
composing complementary services and thus realizing new, value-added products
gain increasing importance. As a technical representation of such business pro-
cesses, executable workflows allow for flexible, dynamic and loosely-coupled col-
laboration among several business partners. The Business Process Execution
Language for Web Services (WS-BPEL)[1] is currently one of the most relevant
practical approaches. It allows for distributing resources such as employees, ma-
chines and services, whereas process control flow logic is typically executed by
one single component at one single site [2].

However, due to the autonomy of participants, a single centralized process
management system to control the execution of cross-organizational processes is
often neither technically nor organizationally desired. As an example, required

⋆ The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

Partition 4

Partition 3Partition 2

Partition 1

Site A

Site B

Site D

Site C

(a) Process fragmentation

Site A Site B Site C Site D

Partition 1 Partition 2 Partition 3 Partition 4

(b) Process migration

Figure 1. Process decentralization variants

services and resources often cannot be accessed by a centralized process engine
because of technological differences or due to security policies [3]. Furthermore,
in some cases the location where a process fragment is executed is relevant
to perform the required functionality or is necessary for judicial reasons, e.g.
in the context of eGovernment. Related to this, other non-functional aspects
such as execution time, performance, navigation cost and capacity utilization
can be optimized by load balancing and thus improve flexibility and scalability
of participating systems [4]. If e.g. subsequent steps of a process are executed
at a remote site, large data transfers can be avoided [2] and potential errors
and resulting side effects can be handled more reliably, e.g. in the context of
transaction management and compensation of interrelated activity blocks.

Most current research in the area of service oriented architectures is ap-
proaching decentralization of control flow navigation by a physical fragmentation
of processes – splitting the overall executable process into several subparts which
are then distributed to a number of available process engines (cp. figure 1(a)).
In contrast to that, this paper proposes process migration as a means of logi-
cal fragmentation, fragmenting only the responsibilities for the execution of the
process into a set of sub-responsibilities while preserving the original structure
of the process description for all of the participating systems (cp. figure 1(b)).
Such migration is the most “natural” way of executing a distributed process
– as inherited by traditional human-based workflow management: A process is
described in subsequent steps which are passed from one workplace to another,
ensuring the specified task dependencies by sending the tasks to their respective
executor when all requisite conditions are satisfied. Logical fragmentation by
process migration has several advantages over physical process fragmentation:

• Process migration allows for fragmenting the responsibility to execute a pro-
cess at runtime – depending on the availability of business partners or other
contextual incidences. Furthermore, the granularity of fragmentation and the
range of distribution can be selected on the fly by each executing participant.

• Coordination and merging of multiple process fragments is not necessary in
the case of sequential execution. Global variables, scopes, errors and trans-

actions are easier to handle, because all these aspects of the process (i.e.
data and control flow) are available to all executing parties. Thus, there is
less communication and coordination overhead.

• Process migration is applicable to modern distributed systems including mo-
bile devices because it does not depend on a single centralized system and
allows for dynamic sharing of restricted resources [3,5].

However, process migration has also some drawbacks and still includes some
interesting challenges which this paper proposes to address. First, the process
description needs to implement a formal or technical model to communicate the
current state of the migrated process instance. To preserve interoperability, this
model should not require modifying the original business process [2]. Second, an
important motivation for physical process fragmentation is given by the resulting
separation of process fragments. If the process is to be fragmented for privacy
reasons, process migration lacks proper security mechanisms in order to protect
private information carried within the process. Third, if activities within the
process should be executed in parallel, process migration alone is not sufficient,
but rather process replication is needed in order to split up parallel tasks and
allow load-balancing by running them on different machines.

This paper presents an approach to enhance existing processes with non-
intrusive migration metadata and an overall system architecture to support run-
time process migration among cooperating process execution systems. Therefore,
we analyze which information has to be attached to the process at designtime
in order to execute the (logical) process fragments as it was originally intended
by the designer or the initiator of the process in whole. Furthermore, we present
an initial privacy mechanism to protect the migrating process instance against
unwanted changes and unauthorized access. Due to space limitations, parallel
execution will not be fully covered in this paper, but outlined briefly. Finally,
the approach presented here is applied to WS-BPEL and a respective prototype
implementation, before the paper concludes with a short summary.

2 Related Work

Distributed and decentralized process execution becomes increasingly important
and, consequently, many such approaches demonstrate the relevance of this re-
search (cp. [6] for a brief overview). A first possible solution for distributing
the control flow of a process is to change the service granularity. The activities
which should be outsourced are wrapped, encapsulated behind a new service
interface and the remaining process model is changed accordingly. A respective
approach for WS-BPEL processes is presented by Khalaf and Leymann [7] pro-
viding sophisticated concepts to split and distribute specific WS-BPEL elements
(e.g. scopes, loops and alternatives). Similarly, the approach of Baresi et al. [8]
proposes a distributed service orchestration in WS-BPEL based on partitioning
rules and process fragmentation by introducting corresponding invoke/receive
activity pairs. However, process fragmentation is carried out at design time and

is realized by weaving additional activities into the resulting fragments in order
to realize a standard-compliant communication between them at runtime.

Another general approach is to split the original process, deploy the resulting
parts at the desired system and induce choreography between the separated pro-
cesses. A choreography-based process management system targeted at dynamic
environments is represented by CiAN [9]. However, choreography and process
fragmentation need a joint preparation phase for the physical distribution of each
(sub-)process where all participating parties have to be available. Therefore, this
approach is more advantageous in case of a similar recurrent execution of the
same process than for spontaneous reactions to (unfrequent) ad-hoc changes.

As also criticized by Martin et al. [2] both solutions imply heavy changes in
the original process model and additionally require the introduction and mainte-
nance of new services. Thus, on the one hand, these unnecessary changes to the
original process model are not motivated by the original business process, but
by infrastructural constraints [2]. In consequence, the authors propose a non-
intrusive approach for process fragmentation and decentralized execution. Here,
fragmentation is achieved by transforming the orchestration logic represented
in WS-BPEL into a set of individual activities which coordinate themselves by
passing tokens over shared distributed tuple-spaces. Decentralized process exe-
cution has also been considered in Mentor [10] by partitioning a process based on
activity and state charts. Addressing more dynamic environments, the approach
of MobiWork [11] realizes mobile workflows for ad-hoc networks and is focused
on the allocation of tasks to mobile participants also using process fragmentation
to generate “sub-plans”.

However, all presented approaches support at most dynamic allocation and
assignment on the basis of a static fragmentation. All fragments and respon-
sible parties are determined either at design time or once after invocation but
mostly before executing the first activity of the process instance. Considering
long-running processes, this flexibility may not be enough in order to also allow
reactions to spontaneous contextual changes. In contrast, a dynamically con-
tinuable runtime segmentation implies that fragments and responsible parties
are determined dynamically according to the current context and with respect
to previous results and requirements of upcoming activities during the actual
execution of the process instance.

A way to address such dynamic behavior is based on runtime migration of
entire process descriptions. Migrating workflows as a basic concept for process
automation have been introduced by Cichocki and Rusinkiewicz [12] in 1997.
More recently, the framework OSIRIS [13] relies on passing control flow between
distributed workflow engines in order to execute service compositions. Process
data is kept in a distributed peer-to-peer-database system which can be accessed
from each node participating in the process execution. In Adept Distribution
[14] a similar approach to process fragmentation and decentralized execution
is presented which supports dynamic assignment of process parts to so-called
execution servers. The control of a particular process instance migrates from one
execution server to another and the next participant is dependent on previous

activities which are able to change the participant to execute the next partition.
Related to this, Atluri et al. [4] present a process partitioning algorithm which
creates self-describing subprocesses allowing dynamic routing and assignment.

Process migration has also particularly been applied to the area of mobile
process execution, e.g. by Montagut and Molva [5]. Their approach relies on
passing control flow between distributed WS-BPEL engines and addresses se-
curity on an application level by integrating a public/private process model in
order to access applications internal to mobile devices. However, such a solution
represents a choreography-like approach which only uses process migration in
order to hand-over control flow – and thus also has some of the aforementioned
disadvantages. The last example is the DEMAC middleware [3] which is able
to delegate process execution (in whole or in part) to other stationary or mo-
bile process engines. Its restriction to a proprietary process description language
is, however, an obstacle to migrate existing business processes and to integrate
standard process engines of external parties.

Complementing existing migration approaches, we therefore introduce a more
technology-independent migration model which can also be applied to existing
WS-BPEL processes. The following section presents a respective concept while
considering the above-mentioned requirements for logical process fragmentation.

3 Process Migration Model and Decentralized Execution

There are at least two ways for enabling a process instance to migrate to other
systems at runtime: One is to weave the migration information into the existing
process model (intrusive migration information). This can e.g. be realized by in-
serting migration activities or migration scopes which determine to invoke other
process engines using the remaining process description as an input parameter.
Alternative paths or loops can optionally specify the distribution to potential
migration partners and handle situations where migration fails. Although such
an approach could be realized by using the standard WS-BPEL constructs and is
thus compatible to existing systems, it only provides low flexibility as migration
activities have to be planned in advance (i.e. at design time). Furthermore, this
approach requires the original business process instance to be changed which of-
ten results in an unwanted mix of business logic and technical execution logic [2].
Compared to physical process fragmentation, there are thus only few advantages.

An alternative is to apply non-intrusive migration information. Technically
this can be realized by an additional document holding the migration metadata
or as a non-modifying annotation of the process description. Apart from the
advantage that business logic does not have to be modified, non-intrusive process
migration is possible after each activity and the decision about follow-up process
engines can be made dynamically at runtime. The general methodology of non-
intrusive process migration is depicted in figure 2. The development starts with
the original modeling of the underlying business process which produces a process
model, specified in an executable process description language such as WS-BPEL
(step 1). Optionally in step 2, this process model can now be enhanced by a

Assign-

ment and

process

execution

5.

Process

modelling

Generation of migration

meta data

Deploy-

ment

1. 2. 3.

Design time Runtime

PMi

Tool

support

Manual

config.

PMi + MMiMMi

Pi + Mi

Instan-

tiation

4.

Pi + Mi

M
ig

ra
ti

o
n

PM: Process Model

MM: Migration Metadata Model
P: Process Instance

M: Migration Metadata Instance

Figure 2. Process migration: methodology

migration metadata model which holds all information required for migration.
In the following, process model and migration model are deployed (step 3) and
can be instantiated by an application or a user (step 4). If required, parameters
are passed to customize the process (i.e. normal invocation parameters) or the
migration model. The latter is advantageous if the initiator is allowed to influence
non-functional aspects about the way a process is executed (e.g. if the user pays
for a higher service quality, the selection of migration partners is influenced
accordingly). After that, the resulting process instance is executed following the
guidelines of the associated migration metadata. However, if migration metadata
is omitted or migration is not supported, the unaffected process can still be
deployed and executed the usual (centralized) way.

The remainder of this section focuses on the second step of this methodology,
i.e. the identification and description of the migration metadata model (cp. sec-
tion 3.1) and the necessary enhancements to integrate basic privacy mechanisms
(cp. section 3.2). An architecture to deploy and execute the migratable process
is outlined in section 3.3.

3.1 Migration Model

The proposed migration model and its relationship to general process elements is
depicted in Figure 3. As a starting point, we assume a common minimal process
model consisting of a finite number of activities representing the tasks to be
fulfilled during process execution, and a finite number of variables holding the
data which is used by these activities. Activities can represent a specific task
(atomic activities) or a control flow structure as a container for other activities
(structured activities). Furthermore, variables can be specified on process level
(global variables) or at activity level (local variables). Optionally, variables can
contain an initial value which is assigned at design time.

A process description complying to these properties (e.g. XPDL [15] or WS-
BPEL) can be enhanced by migration metadata documenting the execution state
of the process (process state) and of each activity (activity state), such that the

Process

Structured

Activity

Atomic

Activity

Elements of the general

process model

Elements of the

migration model

Selection

Type

Current

Value

Variable

Name

Initial

Value

Process

State

Security

Policy

Fixed Participant or Role

Undefined

QoS and Context

Algorithm

Encrypted Session Key

inactive ready executing executed

finishedskipped expired inError

Activity Lifecycle State Model

Created Option Running Finished

Termin-

ated

InError

Trans-

ferring
Termin-

ating

Migratable Process Lifecycle State Model

Deleted

Suspen-

ded

1

1

1

*

1

0,1

1
1

0,1

1

1 *

11

0,1

0,1

1

*

*

1

1

1

1

0,1

1

1

StartActivity

1

1..n

Activity

State

1

1

ID

Activity

0,1

1

lo
c
a

l
v
a

ri
a
b

le
g

lo
b

a
l
v
a

ri
a

b
le

1

Log

Variable

Figure 3. Overview of the migration model

progress in processing the activities is well-defined and visible for every partici-
pating device at any time during execution. The process state can take a value
from the migratable process lifecycle model [3] as depicted in the upper right
corner of Figure 3. As long as an activity can be executed at the local process
engine, there is no need to search for another execution partner to accomplish
this task. Consequently, the process is not transferred before all of the currently
executed atomic activities are completed which preserves the process’s consis-
tency and integrity of its data. Avoiding to split up such atomic tasks, the safe
state Option defines a stable point to transfer a process during its execution. In
contrast, the process is regarded to be in the state Running if activities are in the
state executing. Other states are used for the administration of the process, e.g.
to keep it for logging purposes or to denote an error. The state of each activity
is represented by an element of the activity life cycle state model which is based
on the established lifecycle model presented by Leymann and Roller [16].

In addition to that, a set of activities can be referenced as startactivities
to mark the first activity to be executed after process migration. The model

allows for multiple startactivities in case the order in which the activities have
to be executed is irrelevant or the activities should be processed in parallel. The
indication of a start activity requires each activity to have a unique identifier
(ID) in order to describe a pointer to this activity. Besides the state of the
process and its activities, also the state of the variables have to be documented.
As process migration is unable to cope with applications which keep part of their
state externally, e.g. data stored in an external database, the current value has
to be copied and attached to the migration data.

Up to this point, basic migration metadata can be generated automatically,
i.e. by setting the process to the state created and all activities to inactive (cp.
first part of step 2 in figure 2). If variables have been specified with an initial
value, the given value is set as the current value of the variable.

However, the process modeler or the actual initiator often wants to influ-
ence the way the distributed process is executed. If the process is going to be
migrated, one of the most important questions is, where the execution of the
upcoming activity should be performed. Furthermore, additional data has to be
transported to enable security and traceability of the process. As this could be
determined by various (application-dependent) aspects, the following extensible
migration model elements can be specified by the process initiator (cp. Figure
3): The selection type determines which strategy is used to assign an activity to
a specific process engine. If the selection type is undefined (default) the process
engine which is currently working on the process instance decides about fur-
ther migrations. Thereby, it is able to shift processes to other engines which e.g.
have access to required resources or which operate at a better performance. In
contrast, the type fixed participant or role determines that a specific executing
entity (e.g. a human or a concrete process engine) or a subject of a defined group
of such entities (e.g. a process engine belonging to the role “bank”) has to exe-
cute the process or a specified set of activities. More dynamically, as proposed
by [14], the next participant can also be picked from a variable within the pro-
cess description itself. If no such entities should be specified, but the participant
should be selected as a result of a computation (e.g. picking the process engine
which can execute as much of the process as possible), the respective algorithm
is referenced. Finally, the selection can be based on specific quality of service or
context requirements such as current workload or geographical location. Asso-
ciated information about entities, algorithms or non-functional criteria can be
included as an additional entry in the migration metadata or can be referenced
(e.g. a URL). Attributes which are attached to process-level apply to all included
elements, i.e. activities and variables. However, such attributes can be overwrit-
ten by local attributes on activity-level. This allows for specifications such as
“all participants should be selected according to the quality-of-service aspect X,
but the performer of activity n must be the fixed participant P”. Finally, the
process modeler can specify which kind of additional data should be collected
during process execution, e.g. which participant has actually executed which
subset of the process. These requirements and respective collected data can be
described in the activity-related log.

Since procedures to allocate and select suitable participants depending on a
given set of tasks in decentralized environments have already been established
(e.g. [3,9]), the specification of selection algorithms is not part of this paper.
Instead, the next subsection focuses on the required privacy of critical process
parts to establish a basic model for the security policy of the presented migration
model.

3.2 Privacy and Security Considerations

During decentralized execution of a process, its entire information is generally
public to subjects which potentially belong to foreign organizations. This may
not be acceptable, because the process description often contains private data
(e.g. credit card information), private control flow information (e.g. existence of
customer complaints), or identities of persons and companies which must not
be revealed to or modified by other (external) parties. As another security risk,
malicious participants could try to modify parts of the process or the migration
metadata. To prevent such privacy and security threats, the access to process
data can be restricted to specified subjects or roles, as e.g. determined in the
above mentioned selection types fixed participant or role. However, process mod-
elers must be aware of the fact that applying such policies reduces the number
of potential migration partners and thus again may restrict flexibility.

Figure 4 shows the general idea of “masking” critical parts of a process de-
scription in order to ensure that only dedicated participants can execute sensitive
activities and access corresponding data. The approach assumes that potential
business partners can communicate with each other without being eavesdropped.
Thus, a basic cryptographic key infrastructure is required, such as PKI (Pub-
lic Key Infrastructure) or subject-related shared keys. However, encryption of
the actual process is more complex, primarily because most process description
languages (such as also WS-BPEL) allow for the definition of global variables
which can be referenced in several activities – and thus might belong to more
than one participant. In consequence, these parts cannot be directly encrypted
with the personal key of the authorized subjects. Alternatively, the encryption
of the different parts of the process (i.e. activities, variables or even the whole
process) uses different session keys which are only used once. A corresponding
security policy of such an element therefore contains a number of symmetric
keys (e.g. pk1 and pk2 in Figure 4). The procedure of key distribution is based
on a concept which is derived from broadcast encryption [17] where the same
encrypted content is sent to all receiving parties without the need for two-way
authentication or authorization. In the approach presented here, the keys nec-
essary for decryption are sent together with the protected content. These keys
prevent unauthorized access to the content, but are also themselves protected
by cryptography. In case of an existing PKI the entries are encrypted with the
public key pubi of the appropriate subject (cp. Figure 4) and can be unlocked
with the private key prvi. Accordingly, an entry for each authorized subject
is created and added to the migration meta data of the protected process ele-
ment. As the result of this step, only the legitimate receiver is able to obtain

Process

engine 1

321

1

54

Process

engine 2pk1 pk2

1

pk1

pk2

pub1

pub2

prv1

prv2

unlock

unlock

Figure 4. Process encryption and key distribution

the keys and decrypt the content and even encrypted global variables can be ac-
cessed by different authorized subjects using the same session key [18]. Neither
an additionally interaction between the process initiator and the subjects nor
an authentication is needed. As a positive side-effect, the use of unique session
keys also increases the resistance of the cryptographic approach to attacks.

To additionally ensure the integrity of the process description, the process
initiator is optionally able to generate a MAC (Message Authentication Code)
for each security-related process part. Each peer provider owning the appropriate
process key pki is thus also able to verify the integrity of this part. However,
after a participant has modified a part of the process it has to generate a new
MAC which confirms the integrity of this part. This possibility is indispensable
because variables have to be changed by the subjects during process execution.
In addition to the MACs, the process initiator can secure both the existence
and the correct sequence of the process parts by a digital signature. In case
of an existing PKI each subject can verify the correctness of the signature on
the basis of the initiator’s certificate, preventing e.g. a later modification of the
process sequence. To also prevent replay attacks, an additional timestamp can be
added to the signature. The integrity of the process description can be ensured
by storing the digital signatures and the MACs within the migration document
which finally has to be secured in a similar way as the process itself.

3.3 Execution

The architecture of a corresponding execution support is depicted in Figure 5.
Considering the first layer, all potential participants have to provide a compliant
interface in order to receive process descriptions from preceding process engines,
e.g. represented by a WSDL description. By encapsulating the existing platform
and exposing its functionality of cooperative process execution “as a service”,
the concept of process migration can be embedded into existing system infra-
structures. Thus, the interface can be realized by using e.g. a standard web
service which receives the process description (Pi) optionally supplemented with
migration data (Mi) as an input parameter and returns the identifier of the
process and the performer’s signature in order to acknowledge its receipt. The
service can furthermore be published at a public registry, so the service can be
found and invoked dynamically whenever a migratable process is initiated.

If security mechanisms have been applied, a simple privacy manager is re-
sponsible for decrypting and encrypting the process and relevant parts of the

Privacy

Manager

Migration

Manager
Selection

Algorithm

Process execution

Pi

Pi + Mi Pi + Mi

Pi + Mi

Process-as-a-Service

Interface

Pi

Pi + Mi

state state

Layer 1

Layer 2

Layer 3

Migration

components

Existing

components

Figure 5. Runtime migration support

migration data (layer 2). Encryption of protected process parts can be realized
by common procedures such as AES (Advanced Encryption Standard). In the
case of WS-BPEL which is described in XML syntax, the specifications Xml
Encryption and Xml Signature by the W3C can be utilized to tag encrypted
parts and ensure integrity of the migrating process description. However, con-
cerning the “masking” of processes, it has been found that encrypted parts are
often causing errors during process execution because the process engine tries
to interpret encrypted variables and activities but does not find expected con-
tent, e.g. encrypted variables do not match the expected data type. Thus, the
privacy manager is also responsible for exchanging non-assigned encrypted parts
by temporary dummy variables or activities. As encrypted process parts are not
required to actually execute the assigned parts as defined by the security policy,
this does not influence process execution at the local site.

The migration manager interprets the migration data as specified in section
3.1. It is responsible for passing the given process to the process engine, to up-
date process states, activity states and log files subsequent to execution, and,
if necessary, to determine the next process participant according to the given
selection type specified for the upcoming activity – potentially making use of
existing selection algorithms (layer 3). Considering the integration of the proto-
type system, it is desirable to completely avoid modifications on existing process
execution systems. However, it shows that the underlying process engine has to
implement an additional interface for receiving management instructions from
the migration manager and for generating events in case of state changes. As
most modern process engines already implement a general management inter-
face (such as e.g. the ActiveBPEL Management API), migration manager and
process engine can be sufficiently decoupled and the modification effort can be
limited to a respective adapter component.

4 Migrating WS-BPEL Processes

WS-BPEL is a block-structured XML-based process description language which
allows composing web services. According to the WS-BPEL 2.0 specification by
OASIS [1] it is essentially comprised of two kinds of activities: Basic activities
for web service interaction (invoke, receive, reply), basic control flow activities
(empty, wait, exit, throw, rethrow) and activities for data manipulation (assign).
Structured activities are used to compose the basic activities and define control-
flow dependencies between them (sequence, if then else, pick, flow, while, repeat
until, for each). Based on this characterization, the activities have been assigned
to the elements of the general model in figure 3. In addition, Table 1 shows the
result of the analysis which was performed in order to evaluate to which extent
WS-BPEL processes can be migrated at runtime. Furthermore, the table shows
a comparison to physical process fragmentation and summarizes the following
discussion on advantages and disadvantages of both approaches.

Considering atomic activities, it shows that WS-BPEL has a very interactive
character which makes the distribution of the control flow logic (both for mi-
gration and for fragmentation) more difficult. The invoke activity initiates the
invocation of a web service which is specified within the process description (or
references associated parts such as WSDL files) in either an abstract or a specific
way. Thus, migration of a process containing an unprocessed invoke activity is
not only possible, but even advantageous if the required service is not reachable
from the current system. In case of a synchronous service call (request-response
pattern) the receipt of the response message is part of the atomic activity. In
case of asynchronous messaging, sending an associated reply subsequent to a
migration is also not critical as the required information about the receiver (e.g.
its physical address) is logged. Nevertheless, receiving a reply (receive) requires
the specification of a specific participant because the sender of the reply has to
know where to send the message. Thus, flexibility of arbitrary distribution is –
in this case – limited both for migration and for physical process fragmentation.

The assignment of a variable (assign) is not a problem as the current value is
stored within the migration metadata. The same is true for wait, empty and exit
activities as these have a rather simple behavior. Notifications about faults are
also uncritical as in case of process migration all the relevant information for fault
handling (i.e. scopes, fault handler, compensation handler) are available to the
executing party. If required, the occurrence of faults can also be documented in
the log, e.g. if the control flow logic has to return to the failed activity when fault
handling is finished. Considering process fragmentation, other process fragments
may have to be notified in case of a fault, resulting in an increased coordination
overhead.

As indicated above, migration must not happen while an atomic activity
is in the state executing. However this does not apply for structured activities
which only act as a container for other activities. As a consequence, structured
activities such as sequence or while do not have to be finished in order to allow
the migration of the process instance. This is another advantage over physical
process fragmentation where e.g. loops often have to be distributed as a whole:

WS-BPEL elements Process migration Process fragmentation

Atomic activities invoke possible possible

reply possible (log) coordination required

receive fixed participant fixed participant

assign possible possible

wait, empty, exit possible possible

throw, rethrow possible (log) coordination required

Structured activities sequence possible possible

if then else possible unnecessary fragments

while, repeat until, for each possible coordination required

pick possible coordination required

flow coordination required coordination required

Other elements scope generally available coordination required

fault handler generally available coordination required

compensation handler generally available coordination required

Dead path elimination - automatically requires coordination

Privacy of process parts - artificial fulfilled

Splitting atomic activities - forbidden no known approach

Data replication - for parallel execution variables, scopes, events

Design time distribution - possible possible

Runtime distribution - during execution once after invocation

Table 1.Migratable WS-BPEL processes and comparison to the general concept
of process fragmentation

By storing the current value relevant for the evaluation of the loop condition in
the migration data, migration is even possible within iterations. If the condition
has to be evaluated only once (such as in the case of if then else) the selected
branch is determined by the process’s startactivity. In case of process fragmen-
tation, fragments and responsible parties are often determined at design-time or
at invocation-time. If a process’s transition condition restricting access to par-
allel or exclusive paths is evaluated at runtime, some of the process fragments
and their respective assignments of executors may never be used. Thus, process
migration is more efficient because it allows integrating the current state of vari-
ables at runtime in order to make its assignments. Related to this, the execution
of a necessary dead path elimination [16] requires further coordination if pro-
cess fragments are distributed physically. In case of process migration, the dead
path can be processed automatically by setting all upcoming activities (until
the next join condition) to the skipped state. As this information is hold in the
migration document, this does generally not involve communication with other
participants.

The pick activity waits for the occurrence of an event from a set of events and
then executes the activity associated with that event. If the process is fragmented

physically, this is a problematic issue. Either all the necessary data has to be
replicated (i.e. all event/reaction pairs) or the events have to be fragmented as
well. If the reaction to an event affects other fragments, additional coordination
is necessary. In case of process migration, this is not a problem as the whole spec-
trum of possible events and reactions is available to the responsible participant.
If, furthermore, other activities are temporarily suspended because of the event,
the activity states indicate where the execution must be continued. However,
each process participant has to subscribe to each required event as long as it
is responsible for the execution of the process instance. Thus, during migration
time, there is a remaining risk that some events may be not be noticed.

The flow activity contains activities which should be processed in parallel.
As long as the process is migrated to exactly one participant, migration within
the execution of a flow is uncritical as the states of each included activity are
well-defined. Nevertheless, the process cannot be transferred until all atomic
activities have reached a stable state and thus may have to wait for long-running
activities to be finished. Since the execution of parallel paths on a single machine
cannot be considered as “real parallelism”, a copy of the (entire) process can be
distributed to different participants which are each responsible for the execution
of one of the parallel paths. In order to synchronize parallel paths, there has
to be a defined meeting point. In consequence, distributed parallel execution
needs advanced coordination mechanisms for both migration and fragmentation.
However, using replication instead of fragmentation allows for a local detection
of shared variables and thus avoids unnecessary synchronizations.

Other interesting aspects discussed in Table 1 include privacy of process
parts, specification of fixed participants and distribution flexibility. As a draw-
back for process migration, privacy can only be realized by artificially masking
private process parts as proposed in section 3.2, whereas physical fragmentation
of the process makes such mechanisms unnecessary. In consequence, the effort
for developing migratable processes containing private parts is a little higher.
Nevertheless, process migration allows for more flexibility in selecting the most
suitable process engine at runtime while still allowing to respect the interests
of the process designer by determining specific participants or selection algo-
rithms. Thus, especially long-running distributed process instances benefit from
the possibility to adapt the execution of control flow to changing conditions.

5 Conclusion and Future Work

This paper focuses on distributed process execution involving multiple engines in
order to increase flexibility and to improve reactions to ad-hoc context changes.
As an alternative to physical process fragmentation, a concept for realizing logi-
cal process fragmentation on the basis of process migration has been presented.
Compared to physical fragmentation, process migration provides more flexibility
by allowing to distribute running process instances at runtime while respecting
the guidelines of the process modeler. On the other hand, privacy and security-
related issues have to be considered explicitly as also addressed in this paper.

Future work includes the evaluation of other practically-relevant process de-
scription languages and the implementation of respective migration managers. A
prototype system covering the proposed system architecture for XPDL and WS-
BPEL processes has already been developed and shows basic applicability of the
proposed concepts. Considering privacy support, WS-BPEL process designers
must still be careful not to mask multi-level scopes when these are also relevant
for public process parts. Therefore, a a tool to support process modelers when
applying security mechanisms would be useful to facilitate the development of
migration metadata and help process modelers to avoid unnecessary errors.

References

1. OASIS: Web Services Business Process Execution Language Version 2.0. Technical
report, OASIS (2007)

2. Martin, D., Wutke, D., Leymann, F.: A Novel Approach to Decentralized Workflow
Enactment. In: Enterprise Distributed Object Computing, IEEE (2008) 127–136

3. Zaplata, S., Kunze, C.P., Lamersdorf, W.: Context-based Cooperation in Mobile
Business Environments: Managing the Distributed Execution of Mobile Processes.
Business and Information Systems Engineering (BISE) 2009(4) (10 2009)

4. Atluri, V., et al.: A Decentralized Execution Model for Inter-organizational Work-
flows. Distrib. Parallel Databases 22(1) (2007) 55–83

5. Montagut, F., Molva, R.: Enabling Pervasive Execution of Workflows. In: Collab-
orative Computing: Networking, Applications and Worksharing, IEEE (2005)

6. Jablonski, S., et al.: A Comprehensive Investigation of Distribution in the Context
of Workflow Management. In: ICPADS 2001. (2001) 187–192

7. Khalaf, R., Leymann, F.: A Role-based Decomposition of Business Processes using
BPEL. In: IEEE International Conference on Web Services, IEEE (2006) 770–780

8. Baresi, L., Maurino, A., Modafferi, S.: Towards Distributed BPEL Orchestrations.
ECEASST 3 (2006)

9. Sen, R., Roman, G.C., Gill, C.D.: CiAN: A Workflow Engine for MANETs. In:
COORDINATION 2008, Springer (2008) 280–295

10. Muth, P., et al.: From centralized workflow specification to distributed workflow
execution. J. Intell. Inf. Syst. 10(2) (1998) 159–184

11. Hackmann, G., Sen, R., Haitjema, M., Roman, G.C., Gill, C.: MobiWork: Mobile
Workflow for MANETs. Technical report, Washington University (2006)

12. Cichocki, A., Rusinkiewicz, M.: Migrating Workflows. In: Advances in Workflow
Management Systems and Interoperability, NATO (1997) 311–326

13. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Scalable Peer-to-Peer Process
Management - The OSIRIS Approach. In: ICWS. (2004) 26–34

14. Bauer, T., Dadam, P.: Efficient Distributed Workflow Management Based on Vari-
able Server Assignments. In: CAiSE. (2000) 94–109

15. Norin, R., Marin, M.: XML Process Definition Language. Specification WFMC-
TC-1025, Workflow Management Coalition (2002)

16. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. PTR
Prentice Hall (2000)

17. Lotspiech, J., Nusser, S., Pestoni, F.: Broadcast Encryption’s Bright Future. Com-
puter 35(8) (2002) 57–63

18. Bertino, E., Castano, S., Ferrari, E.: Securing XML documents with Author-X.
Internet Computing, IEEE 5(3) (2001) 21–31

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.3

A.5 Executing Parallel Tasks in Distributed Mobile Processes

Authors:

UniHH: Sonja Zaplata

UniHH: Kristof Hamann

UniHH: Winfried Lamersdorf

Submitted to:

• Eighth International Conference on Pervasive Computing (Pervasive 2010).

External Final Version 1, Dated November 30, 2009 86

Executing Parallel Tasks in
Distributed Mobile Processes?

Sonja Zaplata, Kristof Hamann and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
[zaplata|hamann|lamersd]@informatik.uni-hamburg.de

Abstract. The practical relevance of business processes combined with
an increased use of mobile devices and networks have lead to new re-
search activities in the area of Mobile Business Process Management
(M-BPM). The distributed execution of such mobile processes allows for
running several parallel tasks on different (mobile or stationary) devices.
However, interdependencies with respect to the processes’ data (i.e. data
objects used in more than one parallel task) may lead to undesired results
or require advanced coordination and synchronization mechanisms.
In order to address such issues, this paper presents a multi-level concept
for supporting the execution of parallel tasks within distributed mobile
processes. It introduces a specific model based on data replication and
respective methods for detecting data dependency conflicts, assignment
of application-specific data classes, decentralized coordinated execution,
and synchronization of parallel process paths. In addition, it demon-
strates the applicability of these concepts both by formal verification
and practical integration of a respective prototype component into an
existing mobile process management system.

1 Introduction

According to the paradigm of Service-Oriented Computing, recurrent business
transactions as well as structured ad-hoc application tasks can be represented
by appropriate business process models. The technical implementation of such
executable structured business tasks is called a service composition or – more
generally – a process which involves software services as well as manual or inter-
active human (sub-) tasks specified in an operational and executable way.

The integration of mobile participants opens up new ways to enhance business
processes with functionalities which are either not available from stationary sys-
tems or simply uninteresting in a static environment. Examples for that include
context-based services providing information about location, the perception of
specific situations, or the usage of resources which are only accessible within a

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

Mobile BPMS

Stationary BPMS

with mobile clients

Distributed

(M)-BPMS

Traditional

stationary BPMS

Figure 1. Evolution of mobile business process management systems: Increasing
involvement of mobile process participants

local network. However, most mobile devices still have limited resources as, e.g.
restricted computing power, memory capacity, and energy resources. In conse-
quence, many mobile devices and applications are rather specialized and thus
highly heterogeneous [1,19].

Current research dealing with mobile business process management systems
can be classified into three main categories (cp. Figure 1): First appearances
are based on traditional workflow systems which are mostly centralized and in-
clude mobile clients as participants of single tasks only. More advanced mobile
systems allow for self-contained initiation and execution of whole business pro-
cesses by integrated lightweight mobile process execution engines [6]. However,
due to resource limitations and heterogeneity, latest approaches propose to exe-
cute more complex processes by involving several stationary and mobile devices
which are able to select the most appropriate process participant dynamically,
e.g. depending on required functionality and actual context [7,10,13,20].

Considering the advantageous distributed and decentralized execution of mo-
bile business processes, especially the simultaneous execution of several parallel
process paths offers new chances for resource-restricted mobile devices: Splitting
up a process into distributed paths which run on the most appropriate device
could increase performance by, e.g., load balancing or enhance the cooperation
between different devices with complementary capabilities. On the other hand,
dependencies within the processes’ data used in more than one parallel path may
lead to undesired results or require additional coordination and synchronization
mechanisms – a particular problem which is addressed in this paper.

An example for a process spanning several mobile devices is depicted in Fig-
ure 2. It shows an extract from a distributed mobile process which collects envi-
ronmental information. Because associated tasks are long-running, need different
resources (potentially provided by different types of devices), and are intercon-
nected they should preferably be processed in parallel. In detail, the first path
P1 involves input information collected manually by a mobile user (variable in-
formation). When the input is finished, the process variable finished is set and a
web service is invoked to process the input data and compute the result (variable
result). This service invocation costs some money which is withdrawn from the
budget available for executing the mobile process (variable balance). Activities
on the second path P2 require a device with sensors for automatically collecting
environmental information – such as positioning or temperature data (variable

A11: Perform

user interaction

A12: Set

finished:=true

R1

A14: Set

balance:=

balance - 1,50

true

......

P1

A01: ... A02: ...

Initial state of variables:

DOUBLE balance = 10,00

ARRAY information = {}

BOOLEAN finished = false

STRING result = " "

DOUBLE size = 0,00

OUT

A13: Call

computation

service

End state of variables:

balance = 16,9

information = {...}

finished = true

result = "..."

size = 42,0

A21: Collect

environmental

information

A22: Upload

collected

information

finished?

false

P2

A23: Set

balance:=

balance +

(size x 0,20)

OUT: Activity's output data (write)

IN: Activity's input data (read)

A24: Remind

user

+ R2 +

R3

information

OUT

finished

OUT

result

IN

information
OUT

balance

IN

balance

OUT

...

IN

...

OUT

IN

result

balance ...

OUT

information

OUT

size

IN

information

OUT

balance

IN

balance

size

IN

finished

Figure 2. Example: Distributed execution of parallel mobile process paths

information) – and access to a service for sharing this information. Depending on
the size of information uploaded to the service (variable size), the process owner
is rewarded with some money, which is added to the process’ budget (variable
balance). If the user interaction on P1 is still not finished when all the work of
P2 is done (variable finished), the responsible user should be reminded, e.g. by
sending a short message.

In such a scenario, it is advantageous to split the responsibility for the par-
allel paths and select the most suitable mobile device depending on its specific
capabilities and context at runtime. Such dynamic assignment can be realized
by a context-aware selection procedure such as presented in [7] or [10]. If, for
example, two suitable devices (e.g. a PDA and a wireless sensor) are chosen to
execute one of these paths respectively, the following observations can be made:

• Parallel process paths may contain data dependencies, i.e. process variables
defined in a global scope of the process are used within more than one parallel
path. While read/read access of such a variable is not critical, write/read
and write/write dependencies can lead to undesired results, e.g. lost updates.
For example, the value of the variable balance is considered correct only if
it holds the total amount of money considering data manipulations of both
paths at the end of the process.
• The question of correctness and thus the need for examining conflicts caused

by data dependencies is, in general, application-dependent. For example, let
us assume that the variable information is only used within the parallel
sections of the process and that, depending on the intentions of the pro-
cess designer, the variable must not be synchronized before the subsequent
activities directly using its values are finished.1

1 Alternatively, the information gathered in both paths could have also been modeled
as two independent variables; but in view of saving memory resources at least both
variants can be justified.

• In some cases, the interconnection of parallel process paths may be explicitly
intended. For example, the variable finished constitutes such an interdepen-
dency between both paths. If finished is set to true by P1, the reminder in P2

is omitted. Whether parallel paths should be notified at once or only within
a (given) period of time can have a considerable impact on the efforts for
runtime coordination, and is again application-dependent.

• In mobile environments costs of data transfer and restriction of wireless
communication range, coordination, and synchronization should be mini-
mal. This means, in particular, that models and mechanisms supporting the
execution of parallel process paths must explicitly consider that participating
devices may be temporarily unavailable.

On such a background, the specific contribution of this paper is to support the
correct execution of parallel process paths while respecting the desired behavior
of the process as well as the specific characteristics of mobility and distribution.
Accordingly, the rest of the paper is organized as follows: Section 2 analyzes ex-
isting approaches for parallel process execution. Based on that, Section 3 presents
concepts of an approach to support modeling, control flow distribution and ex-
ecution of parallel tasks in distributed mobile processes. Finally, these concepts
are evaluated – both formally and practically – in Section 4, before the paper
concludes.

2 Existing and Related Work

As motivated in Section 1 there are several approaches dealing with the manage-
ment of mobile process clients and management systems. This section reviews
them in more detail, especially regarding their support for parallelism. Further-
more, relevant preliminary work in the area of traditional concurrency control,
data replication, and synchronization is summarized.

Figure 3 gives an overview of selected mobile process management approaches
and summarizes their most important characteristics. First, approaches based on
systems realizing monolithic process engines for mobile devices (e.g. Sliver [6])
do not explicitly integrate concepts for coordination of parallel paths because
they do not consider executing these paths on different devices. In contrast, the
Exotica/FMDC workflow management system [2] enables mobile clients to down-
load single user tasks or simple sequential activity blocks in order to perform
them without being connected to the central workflow server. The respective
task and its data are replicated and locked until the mobile client reconnects. In
consequence, parallelism between multiple mobile users can only involve those
activities which do not share the same process variables. A choreography-based
workflow management system targeted to mobile environments is represented by
CiAN [20]. It supports distribution on the basis of process fragmentation and
provides basic mechanisms for control flow synchronization. Nevertheless, par-
allel execution containing data dependencies and synchronization of data flow
have not been explicitly considered. Related to this, the WORKPAD infrastruc-
ture [13] was designed to support human rescue teams in disaster scenarios, but

������� ��	�

���

�������� �������� ��������

��� ���

��� ���

��� ���

��� ��� ��� ��� ���

����� ���������	

�� 	������

��������������������

	��
����������������� �� ��� ��� ��� ��� ���

	��
�������������	������ �� ������������ ��� ��� ���

����������������� ��� ���
�������������� ���
������������� ��

��� �!�����"������ ��������� ��������� ���������

����������!��#���!
��������

�����������
����������
�������������

��������
����������

�������������
�����	������

������������
����������

������������������$!���%���������&

	������������������
��������
�� ��� ��� ��� ���

	������������������
������
�� ��� ������������ ������������ ������������

	� ��������������
������������������ ������������ �� �� ��

	� ���������������������������� �������������

Figure 3. Analysis of selected mobile business process management systems

still requires a central entity in order to coordinate mobile process participants.
The approach of MobiWork [7] realizes mobile workflows for ad-hoc networks
and is focused on the allocation of tasks to mobile participants. Parallel process-
ing has thus not been discussed yet. The last example is the DEMAC process
management system [9] which is able to delegate process execution (in whole
or in part) to other mobile or stationary process engines using the concept of
process migration. In case of parallel path execution, the process description can
optionally be duplicated and transferred to other devices in order to continue
execution of any of the parallel paths. But, nevertheless, data dependencies and
synchronization of process variables have not been considered here either.

As summarized by Figure 3, most of the approaches focus on basic models
and mechanisms to distribute and execute process control flow based on fragmen-
tation or replication. None of them explicitly considers data dependencies among
parallel process paths and thus integrates concepts for data synchronization and
data concurrency control.

Regarding distributed (non-mobile) workflow management systems, current
research concentrates on partitionizing processes to decentralize their execution.
In fact, these approaches primarily cover the Web Service Business Process Ex-
ecution Language (BPEL). Early systems take up the idea of replication and
enforce the exchange (and thus the synchronization) of data values subsequent
to each modification [15,18]. In most cases, these approaches most often assume a
stable network connection between participating systems and do not consider the
case of disconnected operations. In contrast to this straightforward idea, Martin
et al. transform a segmentated BPEL process into an executable workflow net,
which uses tuplespaces to synchronize shared variables [12]. A tuplespace is an
instance of shared memory and for this reason rather inappropriate to use in
mobile environments. The model of a so called pervasive workflow [14] can be
realized with multiple BPEL processes, but parallel access to shared data has
not been considered in this work. While Nanda et al. mention this problem in
their work about how to partition orchestrations, they do not handle it further as
they perceive such occurences as nondeterministic parallel programs [16], which
is true but insufficient. Other approaches avoid troubles in fobidding parallel
(write) access to shared variables [8] or in forbidding shared variables at all [3].

The main challenge for parallism in mobile processes is thus to deal with
dependencies resulting from concurrent access to shared data. Respective prob-
lems of data replication, dependencies, and concurrency have already been in-
vestigated thoroughly in the research area of transaction processing providing a
solid foundation for further research. Here, correctness is expressed as serializ-
ability, i.e. equivalency to any serial execution. For replicated data this criterion
is extended to one-copy serializability, determining that the concurrent execu-
tion of transactions on replicas is one-copy serializable, if it is equivalent to a
serial execution on non-replicated data [4].

So, a gap between both of these research areas is still open. Therefore, the
contribution of this paper is to propose a concept for supporting the correct
synchronization of distributed process data in the context of mobility. For that,
the following section presents an approach of using one-copy serializability to
develop a formal model of data flow dependencies as well as a problem-adequate
coordination algorithm for this class of systems.

3 Distributed Execution of Parallel Process Tasks

As shown in the previous section, the overall aim on executing parallel tasks in
distributed mobile processes is not only the correctness of the execution, but
moreover the minimization of coordination efforts in terms of message exchange
and ressource usage. Since serializability gives a generic view on correctness, the
basic idea presented in this paper is to find a serial execution being equivalent to
the actual execution, which is performed without coordination as far as possible.
Dependency conflicts will be introduced as access to variables which nevertheless
require the disadvantageous exchange of messages between involved devices.

The first level of this novel multi-level approach provides therefore a method
to help process designers to detect unintended dependency conflicts within the
process model already at design time. On the second level, data classes are in-
troduced to allow process designers to specify the intended data dependencies
more precisely and, thus, reduce the need for coordination between parallel paths
which involve this data. These two steps involving the process designer are op-
tional, but recommended in order to minimize coordination efforts at runtime
and with this to accelerate the overall execution time. The following levels de-
scribe parallel execution at runtime, presenting procedures for distributing and
synchronizing control and data flow as well as an optimistic approach to resolve
remaining dependency conflicts.

First, a formal model is developed as a foundation in order to analyze a
process’ behaviour. To ease understanding, the introduced abstract meta model
is limited to express the characteristics needed in this paper only.

3.1 Abstract Meta Model and Data Replication

To examine parallelism in more detail, the following generic meta model is intro-
duced. It represents relevant parts of the process structure and abstracts from
concrete process modeling languages and different ways to model parallelism.

Definition 1 (Precedences). Let Ai and Aj be activities of a process. If Ai

is connected to Aj so that Ai must be executed directly before Aj, then we write
Ai l Aj (direct precedence). l must not contain any cycles.2 The precedence
relation < is the transitive closure: < := l+

Definition 2 (Alternativity). Let Ai and Aj be activities of a process. If there
is a selective split, so that either Ai or Aj is executed, we write Ai ⊗Aj.

Definition 3 (Parallelism). Let Ai and Aj be activities of a process. We write
Ai ‖ Aj if not Ai = Aj ∨ Ai < Aj ∨ Aj < Ai ∨ Ai ⊗ Aj. The activities Ai

and Aj are called parallel to each other.

Definition 4 (Read and Write Sets). We define R(Ai) as the set of variables
which are read by activity Ai (input container) and we define W(Ai) as the set
of variables which are written by Ai (output container). V(Ai) := R(Ai)∪W(Ai)

Note that we call two activities to be parallel to each other although they are
potentially executed alternatively. This is required if it is not possible to de-
termine whether the activities will be executed parallel or alternatively, e.g. if
a transition condition which restricts access to parallel paths is evaluated at
runtime. Such control flow conditions are assigned to the according activity Ai.
Therefore the variables which are used in a condition are included in R(Ai).

Since mobile environments suffer from unreliable or expensive communica-
tion, it is suggestive to use data replication for allowing mobile devices to work
on a process as autonomously as possible. Figure 4 shows a process where each
parallel path Pi has its own replica Ri containing the data needed for the execu-
tion of the assigned activities. Splitting the control flow to parallel paths means
replicating the current process state and transferring the replicas to the selected
devices. While executing a parallel path, all read and write operations are thus
initially executed on the local replica and the replicas are only merged when the
control flow is finally synchronized. Consequently, during the parallel execution
there are multiple replicas containing different values of each variable.

3.2 Detecting Dependency Conflicts

Concurrent access to shared resources has to be controlled to avoid unexpected
behavior. In order to minimize coordination efforts for parallel process paths, it
is essential to determine under which circumstances processes need concurrency
control mechanisms for ensuring correct results. To evaluate the correctness of
process execution we assume an activity to be an atomic unit of work [11] and
thus a transaction. This allows to use classical transaction correctness criteria
as summarized in Section 2. Regarding the correctness criterion of one-copy
serializability, the concurrent execution of transactions on replicas is correct if
it is equivalent to a serial execution on a non-replicated data set [4]. Thus the
limiting factor is the need for an equivalent serial execution without replicas.

2 Loops can be realized with a block construct

However, while database management systems have to cope with transactions
in an unpredictable order, data access within processes mostly follows a fixed
process model. Therefore it is possible to analyze this model and to identify
potential conflicts a priori:

A trivial case is given if the output containers of all activities do not contain
variables used by other parallel paths, i.e. W(Ai) ∩ V(Aj) = ∅ for Ai ‖ Aj . The
activities’ output data is changed on the local replica respectively and at the end
of the parallel execution the modified variables are simply merged. The execution
is clearly equivalent to every possible serialization of the parallel activities.

A more difficult case appears if activities read variables which are modified
by an activity in another parallel path. As reads and writes affect only the local
replica, not every possible serialization is allowed. Figure 4 shows A3 reading y
which is also modified by the parallel activity A2. During the actual execution
(using the replicas), A3 reads the value of y which was written by A1. Accord-
ingly, the serial execution A1A2A3A4 is not equivalent since here A3 reads the
value of y which was written by A2. In real executions on replicas, this would be
only the case if A3 waits for a message from A2 containing the actual value of
y. Since one aim is to avoid messaging, such serial executions are preferred, in
which A3 appears before A2. This fact is expressed in the following definition:

Definition 5 (Read-Write Dependencies). Let AR and AW be activities of
a process. We write AR ≺ AW if AR ‖ AW and R(AR) ∩W(AW) 6= ∅.

Beyond the precedence relation <, the relation ≺ likewise affects the order
of activities in allowed serializations. To derive equivalent serial executions, we
use a dependency graph, which integrates both relations:

Definition 6 (Dependency Graph). A dependency graph is a directed graph
G = (V,E), whose vertices V represent the set of a process’s activities which
are actually executed and whose edges represent the dependencies between these
activities: E =≺ ∪ l.

Figure 5 shows the acyclic dependency graph of the process from Figure 4.
If the dependency graph does not contain any cycles, the topological order of
the activities indicates equivalent serializations (i.e. A1A3A2A4). Consequently,
there is no need for concurrency control if the dependency graph is acyclic.

A1 +

A2

A3

+ A4

x

y
z

x y

y z

x

y
z

OUT IN OUT

IN OUT

IN
R0 R1

R2

R1∪2

Figure 4. Usage of replication in a simple
process with concurrent access to y

A1 A3

A2 A4

Figure 5. Dependency graph
of the process in Figure 4

Respectively considering the example in Figure 2, the following read-write de-
pendencies can be identified: A13 ≺ A21, A14 ≺ A23, A22 ≺ A11, A23 ≺ A14,
R3 ≺ A12. We call the resulting cycles dependency conflicts:

Definition 7 (Dependency Conflict). A cycle in a dependency graph is called
dependency conflict. The set C contains all activities belonging to the cycle.

If a dependency conflict exists, read-write dependencies or precedences in
combination with read-write dependencies do not allow to build an equivalent
serial execution of the process. Therefore, with respect to serializability, the
distributed execution of parallel paths is not possible without communication
between the respective replicas.

Until now, we have omitted the case where parallel writes change the same
variable. Until the variable is not read on one of the paths later, the order of
write operations in the serialization is irrelevant. While other approaches assume
that W(Ai) ⊆ R(Ai) (compare [5] and traditional locks), our approach uses the
fact that processes clearly differentiate between input and output containers, i.e.
W(Ai)\R(Ai) 6= ∅ is allowed. In addition, writing the output container is atomic
since there is no concurrent access to the respective replica. Consequently, there
is no need for an artificial order of parallel writes unless there is a subsequent read
on one of these paths. In the latter case, there would be a read-write dependency
deciding the order of these operations.

Using these observations, process designers should analyze unintended de-
pendency conflicts already at design time, and, if possible, refactor the process
model as a first step to reduce coordination overhead at runtime. However, as
dependency conflicts can only be derived from the process model, also conflicts
could be detected which actually do not occur during runtime. This is primarily
the case if alternative paths contain conflicts. However, if at runtime the states
of all omitted activities are set to skipped and the new states are propagated to
relevant devices, the updated dependency graph ignores this kind of activities
and this dependency conflict does not appear anymore.

3.3 Data Classes

Due to its generality, serializability is a useful and reasonable correctness crite-
rion. However, in some cases it is too restrictive, which results in unnecessary
or even unwanted synchronizations. Since loosening serializability is application-
specific and the process model lacks semantical information, we introduce data
classes as a generic approach to express the process designer’s intentions. In-
spired from [21], data classes specify application-specific guarantees concerning
the consistence of the used data and differ in the method to deal with depen-
dency conflicts. In consequence, the process designer can select the most suitable
data class for potentially conflicting process variables in order to further reduce
the need for runtime coordination. In order to illustrate this idea, we briefly
introduce three possible data classes. In general, also many other data classes
are possible.

Serialized. This first and mandatory data class is the strongest class – lead-
ing to serializability by default for ensuring correct process execution if data
class selection is omitted. Accordingly, every dependency conflict that results
from variables of this data class has to be resolved by concurrency control.
Considering the example in Figure 2, the process variable balance is a possible
candidate for this data class.

To resolve a dependency conflict, a read-write dependency AR ≺ AW ∈ C
is chosen. The needed coordination is introduced by adding the new precedence
AW lAR to the process model. This new precedence can not cause a new cycle,
since otherwise AR < AW had to be hold. In fact, it is AR ≺ AW which is a con-
tradiction. After modifying the process model, read-write dependencies and the
dependency graph have to be recomputed, because it is now AW < AR instead
of AW ‖ AR. This procedure causes a synchronization between the considered
paths, leading to the fact that AR and AW cannot be executed in parallel any
more. The dependency conflict is suspended and the process can be executed ac-
cording to the adapted model. However, since adding such a precedence restricts
parallelism, it is recommended to perform conflict resolution as late as possible
in order to avoid unnecessary synchronizations which could e.g. appear in con-
junction with OR splits. Additional synchronizations are adapted to the actual
execution state of the process, so there is no need for other activities to finish
before processing a synchronization. We propose to use an optimistic approach
to resolve dependency conflicts in a distributed way (see Section 3.5).

Unsynchronized. In contrast to serialized, the data class unsynchronized
does not take care of any dependency conflict derived by variables of this class.
As a tribute to such a loss of serializability, lost updates can appear. Therefore,
the use of this data class is only acceptable under certain circumstances. The
process variable information would be an example for this data class. As the
variable is changed in both process paths independently but should not be used
after synchronization, dependency conflicts resulting from that variable can be
ignored without any need for additional concurrency control.

MaxAge. To conclude the discussion of data classes, we give an example for
a data class in between the two presented extrema. In some cases, serializability
can be omitted but the accessed data must not exceed a certain age. If, for
example, a weather service continuously updates the forecast for tomorrow, the
particular updates do not essentially differ. The process execution system can
realize this by checking the respective variables for changes on other replicas
if necessary, i.e. if the process contains a parallel write on this variable and a
given period of time has passed until the last check. Concerning the presented
example process, the variable finished is a possible candidate for this data class,
especially if it would be used more often within process path P2.

3.4 Control Flow Distribution and Synchronization

Considering runtime support for parallel process paths, the two main questions
to deal with are which devices execute the parallel paths and how do they ex-
ecute them. Since several approaches on chosing suitable devices with respect

to specified functional and/or non-functional requirements has been developed
[7,10], this section concentrates on the second question. If a participant has been
selected, it receives a newly created replica of the current state of the process.
A replica consists of four parts: the static process model, the execution state of
the activities, the values of the variables, and the precedences which were added
due to preceding conflict resolutions. To make sure that every device executes
only the intended path, the first activity on the according path is set as the
start activity. The process engine therefore proceeds executing the process at
this activity.

To check for to be resolved dependency conflicts, every device participating in
parallel execution generates and updates its own view on the dependency graph
from its local replica. Before executing an activity belonging to a dependency
conflict, an optimistic method to resolve the conflict is started (cp. Section 3.5).
This method also deals with meanwhile changes in the process model, that are
relevant for the current path but not have been propagated to the device yet.

Synchronizations between parallel paths have to be performed according to
the process model with respect to new precedences possibly inserted by concur-
rency control. To perform final synchronization, the respective parallel paths’
replicas have to be re-united by one of the participants. Since this can be re-
alized as an incremental procedure, the following strategy is proposed: As soon
as a device finishes executing a parallel path the replica is sent to a reachable
device processing another parallel path or to a predefined device determined in
advance. If a device holds more than one replica of the same process waiting at
the same synchronization point, the device merges the data.

So, synchronization involves merging every part of the replicas into a new
joint replica which is henceforth used. Since the static parts of the process model
are never changed, it is irrelevant which replica becomes the source for this data.
However, each replica changes the execution state of the activities processed by
the respective participant. Because every parallel path is processed on exactly
one replica, merging the execution states can be done without conflicts. In con-
trast, merging the values of the variables has to be done with respect to serial-
izability criteria (or the data class defining the respective correctness criterion).
By default, serialization of parallel activities is derived from the dependency
graph. For each variable, the activity executing the last write access in the se-
rialization has to be identified and the new joint replica adopts the value from
the replica which has executed this activity. Finally, the precedences added by
concurrency control are merged. All replicas are thus successively synchronized
in pairs until the replicas of all relevant paths are processed and process execu-
tion can be continued. Prevention of inconsistencies is ensured by the optimistic
conflict resolution as presented below.

3.5 Optimistic Conflict Resolution at Runtime

To resolve a remaining dependency conflict, the replicas of each parallel path af-
fected by that conflict have to correspond with the precedence AW lAR which
breaks the cycle. This coordination cannot be realized if a device moves into an

request(AW l AR)

ack(AW l AR)
request(AW l AR)

ack(AW l AR)

apply(AW l AR)apply(AW l AR)

RA RB RC

Figure 6. Message exchange for resolving a dependency conflict between three
replicas. RB starts the resolution which is confirmed by the other devices.

area without network coverage. An optimistic approach can deal with such a
situation by initially performing a local conflict resolution which can optionally
be rolled back later. Therefore it is assumed that other parallel paths have not
reached the conflict yet. It is furthermore assumed, that the notification about
the chosen conflict resolution will reach the affected parallel paths before they
start a conflict resolution on their own. Under the assumption that these opti-
mistic presumptions are fulfilled, the conflict resolution can be realized by locally
adding a new precedence which breaks the cycle. Thus, the following activities
are executed – presumed that their effects can be compensated if necessary.

Since such optimistic assumptions cannot be guaranteed in general, two par-
allel paths may start a conflict resolution independently by adding a new prece-
dence to their local replica. As this may lead to an inconsistent execution of the
process, the following two properties have to be checked: First, two optimistic
conflict resolutions must not produce a cycle of precedences. Second, the new
precedences must not affect activities which have been started or which have
already been executed. If at least one of these conditions does not hold for any
replica, optimistic conflict resolutions have to be canceled successively until both
properties apply. To ensure this, we propose a protocol which is partly based on
the two-phase commit protocol (cp. Figure 6). Because the properties can only
fail on replicas involved in the current dependency conflict, communication can
be restricted to these devices.

The protocol uses five types of message: If a parallel path starts the optimistic
conflict resolution, the message request(AW lAR) is sent to all devices affected
by the respective dependency conflict. This request represents a query to add
the precedence AW l AR. If the two consistency properties are fulfilled, the
receiver will add this tentative precedence to a local set PO and will answer with
ack(AWlAR), otherwise with nackω(AWlAR, BWlBR) as disagreement. The
last case includes a weight ω standing for the complexity of the work which has
already been executed (e.g. processing time) to identify which of the incompatible
optimistic resolutions should be aborted. This strategy minimizes the effort for
aborting and repeating activities which have already been executed. In case of
disagreement, the message cancel(AW lAR) is sent to all involved devices in
order to cancel the current optimistic conflict resolution, i.e. the receiver will
remove the precedence from PO. Only if all affected parallel paths confirm the

new precedence, the message apply(AW lAR) is sent to finalize the conflict
resolution by moving the precedence from PO to the permanent process model.

Whenever the control in the non-optimistic phase reaches an activity AW par-
ticipating in a dependency conflict C, execution is stopped until AW is conflict
free at least in the local view. In such a case, there is an activity AR satisfying
the read-write dependency AR ≺ AW ∈ C because either AR ≺ AW or ARlAW

must exist for AW to be part of a conflict. If there was AR l AW , the opti-
mistic conflict resolution would have been executed already at AR (or earlier)
and there is an activity AR with AR ≺ AW . Selecting this particular read-write
dependency for conflict resolution by adding the new precedence AW l AR is
advantageous, since the current device can prepare for the newly required syn-
chronization at AR without waiting for other devices and execute the following
activities optimistically.

While waiting for acknowledgments of the request to accept the new prece-
dence, the following activities can be executed if they are compensable: First, a
current replica backup is created in order to allow recovery if optimistic conflict
resolution fails. In order to avoid nested aborts in case of multiple subsequent
dependency conflicts, a process has to pause execution until the optimistic phase
is finished. For the same reason synchronizations are not to be performed in the
optimistic phase. Replicas which have been created at splits can be held back
until the optimistic phase is finished. In addition, execution of a parallel path
should be paused when reaching an activity which is part of a tentative prece-
dence because, otherwise, the probability of cancellation increases considerably.

4 Evaluation

This section demonstrates the correctness as well as applicability of the con-
cepts presented so far. The central criterion for correct process execution using
one-copy serializability is shown by formal verification in Section 4.1. Subse-
quently, relevant practical experiences with a prototype component supporting
parallelism for mobile processes are reported in Section 4.2.

4.1 Formal Verification of Correctness Criterion

In order to verify the soundness of the introduced concept we have to show
that every execution of an arbitrary process is correct with respect to one-copy
serializability. It should be noticed, that this type of correctness only affects
variables of the data class serialized, while variables of other classes follow other
correctness criteria which are not considered in the following proof.

Since one-copy serializability was introduced in the context of databases,
its formal background uses database logs (short log). A log is a partial ordered
set of operations on a database [4]. Every operation belongs to a transaction
Ti and reads resp. writes a variable x on a replica Ra. In the following, ri[xa]
resp. wi[xa] are used for such read resp. write operations. The partial order
reflects the order which exists in the involved transactions. Prior to any read

operation on a variable there must have been a write operation on this variable
on the same replica and conflicting operations must be ordered. Two operations
are conflicting if they access the same variable on the same replica and one of
these operations is a write. A one copy log is a special log, where only one replica
exists for every variable. A log with more than one replica is also called replicated
database log (rd log) for better distinction.

An execution of a process according to the introduced concept has therefore
to be translated into an rd log. The execution of the process has hence com-
pleted, so due to optimistic conflict resolution there are no more dependency
conflicts, i.e. the dependency graph has no cycles. Activities from non-executed
paths are in the state skipped and will therefore be ignored. However, activities
which execute read operations followed by write operations (and hence hold an
order of these operations) correspond to transactions of an rd log. Creation and
synchronization of replicas at splits resp. joins have to be treated as special
transactions. Splitting a replica is formally a transaction of reading the values
from the old replica and writing the values to two or more new replicas. Syn-
chronizing replicas is a corresponding transaction which reads the values of the
old replicas (i.e. for each variable x selects the replica holding the activity which
has written x most recent in the topological order of the dependency graph) and
writes them to a new replica. The order of these different types of transactions
is extended by the order given by precedences from the process model and fi-
nally constitutes the rd log. Without loss of generality, we assume that the first
transaction in a process initializes every variable with a default value. Hence, on
every replica each variable is written before it is read. Because of the serialized
access to variables on a replica, all conflicting operations are ordered and thus
the result of such a transformation is a valid log.

The following proof makes use of the fact that an execution is correct with
respect to one-copy serializability if it is equivalent to a serial execution on one
copy. According to Bernstein and Goodman this is true if two logs have the
same reads-from relation [4]. It thus has to be shown that for every possible
execution there is a serial one copy log, which has the same reads-from relation:

Definition 8 (reads-from). Two transactions Ti and Tj of a log L are in
relation Tj reads-x-from Ti if wi[xa] and rj [xa] are operations in L which hold
the order wi[xa] < rj [xa] and no wk[xa] falls between these operations. [4]

The reads-from relation is therefore an unambiguous mapping f : D → T ,
with D ⊆ T ×V , T being the set of transactions and V the set of variables. The
domain of this mapping is equal for all logs which contain the same transactions.
To proof equality of the reads-from relations f1 and f2 of two logs with the
same transactions it has to be shown that for every tuple (T, V) ∈ Dom(f1)
the equation f1(T, V) = f2(T, V) applies. Hence it has to be shown that every
Tj reads-x-from Ti existing in the first log also exists in the second log.

Theorem 1. Let L be an rd log according to the presented concept and let LS

be the one-copy log of the serial execution used at the synchronizations in the
actual execution. Then every Tj reads-x-from Ti in L also exist in LS.

Proof: Let Tj reads-x-from Ti in L. According to Definition 8, three properties
have to apply for Tj reads-x-from Ti in LS to be true:

1. There are operations wi[x] and rj [x] in LS . Proof: Because Tj reads-x-from Ti

in L, there are wi[xa] and rj [xa] in L and hence the according operations
wi[x] and rj [x] are in LS .

2. It is wi[x] < rj [x] in LS . Proof: Because Tj reads-x-from Ti in L, wi[xa] <
rj [xa] is in L. Hence, the process model must contain a precedence Ti < Tj

which generates this order. Since LS is derived from the dependency graph
of L, this order also applies to the corresponding operations wi[x] und rj [x]
in LS .

3. There is no wk[x] between wi[x] and rj [x] in LS . Proof: Let wk[x] be an
arbitrary write operation on x in LS . If k = i or k = j, the proposition is
obviously true. Therefore inequality is assumed. Three cases can be distin-
guished:
(a) Tk is executed parallel to Tj in L. Hence there is a read-write dependency

Tj ≺ Tk. Because LS is derived from the dependency graph, rj [x] is
before wk[x] in LS . Because wi[x] < rj [x] and rj [x] < wk[x], wk[x] is not
between wi[x] and rj [x] in LS .

(b) Tk is executed parallel to Ti and not to Tj in L. The writes wk[xa] and
wi[xb] are parallel but both before rj [xc] (since Tj < Tk with Ti < Tj

from 2. leads to a contradiction). Because Tj reads-x-from Ti in L, the
selected serialization implies Tk < Ti < Tj to be true for LS .

(c) Tk is not executed parallel to Tj and Ti in L. Hence Tk, Tj and Ti are
executed in a serial sequence in L. Because Tj reads-x-from Ti in L, it
is Tk < Ti or Tj < Tk in L. This order can be found in the dependency
graph. Because LS is derived from the dependency graph, wk[x] is before
wi[x] or after rj [x] in LS and therefore not between these operations.�

Theorem 2. Every execution with respect to the concept is correct in terms of
one-copy serializability.

Proof: Let L be the rd log of an arbitrary execution with respect to the concept.
According to Theorem 1 there is a serial one-copy log LS , which has the same
reads-from relation. According to [4], L and LS are therefore equivalent. Hence
L is correct in terms of one-copy serializability. �

4.2 Practical Experiences

Abstract prototype components of the presented models and mechanisms have
been realized and integrated into the existing mobile process management sys-
tem DEMAC (Distributed Environment for Mobility-Aware Computing) [9]. The
resulting test environment consists of an XPDL[17]-based process description
language, a corresponding execution engine, a supporting context management
system, and an underlying communication infrastructure for asynchronous mes-
saging. Figure 7 gives an overview of the integrated prototype architecture for
supporting distributed parallel paths by using system-specific adapters.

Process

modeling

tool

(M
o
b
ile

)
b
u
s
in

e
s
s
 p

ro
c
e
s
s

m
a
n
a

g
e
m

e
n
t

s
y
s
te

m

S
u

p
p
o

rt
 f
o

r
d

is
tr

ib
u
te

d

p
a
ra

lle
l
p
ro

c
e
s
s
 p

a
th

s

Design Time Runtime

Process

description

Process

description

Data

classes

Conflict detection

U
n
in

te
n

d
e
d

 d
a
ta

d
e
p
e

n
d
e
n

c
ie

s

Data

classes

In
te

n
d

e
d
 d

a
ta

d
e
p
e
n

d
e
n

c
ie

s

Context

management

(optional)

Formal

model

S
y
s
te

m
-s

p
e
c
if
ic

 a
d
a

p
te

r

(E
x
a
m

p
le

:
D

E
M

A
C

)

XPDL Adapter

Communication

Distributed

parallel execution

XPDL adapter

Process

instance

Data

classes

Process execution engine

Non-parallel

execution

Parallel executor

Formal

model

Data

classes

Conflict

detection

Coordination

Distribution

Non-parallel

execution

DEMAC process engine adapter
Context

adapter
Com.

adapter

Synchronization

Figure 7. Schematic overview of prototype components integrated into the over-
all DEMAC process management system

In this prototype environment, the process designer starts with modeling the
mobile process and thus produces a process description in XPDL format. Us-
ing the XPDL-adapter, the relevant parts of the process description are then
translated into the formal model as presented in Section 3. Consequently, the
process designer can test the developed process model for dependency conflicts
and solve unindented data dependencies already at design time (e.g. the conflict
resulting from process variable information). This design time conflict detection
also forms the basis for the assignment of data classes. As current process mod-
eling languages do not support this, data classes can be stored in an additional
data container. Hence, execution engines which do not support the data class
concept can simply ignore the container. As they have to ensure a serializable
execution, relaxing serializability can be realized as a fully backward compatible
procedure.

During runtime, the process description and its data classes are distributed
to available devices. To realize this, the DEMAC context management system
is responsible for selecting appropriate devices in order to execute the specified
tasks. Finally, the communication system of the existing mobile process manage-
ment system can be utilized for the communication with other (mobile) process
engines – provided that messages sent by a device are received in the same order
(single-source FIFO) and other relevant process participants can be addressed
and searched by a unique identifier (e.g. URL or UUID). It is further assumed
that devices become re-available in finite time.

The runtime behavior of the system was practically tested by realizing the
example process as presented in Section 1. Figure 8 summarizes six tested vari-

����

�� �

���������	
���

���

�� �

���������	
���

���

��

���������	
���

�	
�

��

���������	
���

�	
�

�

�	
�

������

������

���

�	
�

������

������

��������������������� ����
����������
��������������������������������
����������� �������

����������
�

�
��
�
�
��
�
��
��
��
�
��

�
�
�
��
�
�

����������������������������� �
��

���

��

��

��

��

��

�
�

��
�������

��

��

��

��

��

�
�

��
�
��

��

������ �!�����������

����
�������
���������""�����

����������� �� ��

�������������� �
��
������

��
����� ��������������!"������ �� #�$

��������$%�� �
��
�&�$�����"����'$����������#��������(#�$ ��

	��#�
�$������������������� �
��

��

��

��

��

��

��

��

��

�)&���*
��

��

��

��

��

��

��

��

��

��

������ �!�����������

����
�������
���������""�����

����������� �� ��

�������������� �
��
������

��
����� ��������������!"������ �� #�$

��������$%�� �
��
�&�$�����"����'$����������#������(#�$ #�$

%
��
�
�
��
�

�
&
�
�
��

�
�
�
��
�
�

����������������������������� �
��

���

��

��

��
������

��

��

���
����

��

��

��

��

��

��

��

������ �!����������� ��
��
+�

��

��

��
+�

��

��

��
+�

��

��

��
+�

���
�

����
�������
���������""�����

����������� #�$ #�$

�������������� �
��
����� ���&��,���!"�������'���������������������#�$��$�(� #�$ ��

��������$%�� �
��
�&�$���������'$����������#������(#�$ #�$

	��#�
�$������������������� �
��

��

��

�)&���*
��

��

���

��

��

��
������

��

��

��

��

��

��

��

������ �!����������� ��
��
+�

��

��

��
+�

��

��

��
+�

��

��

��
+�

��
�

����
�������
���������""�����

����������� #�$ #�$

�������������� �
��
����� ���&��,���!"�������'������������������#�"$�(� #�$ ��

��������$%�� �
��
�&�$�������� #�$ #�$

'
��
#
�
��
��

�
�
�
��

�
�
�
��
�
�

����������������������������� �
��

���

��

��

��

��

��

��

��
�������

��

��

��
�
��

��

��

��

������ �!����������� ��
��
+�

���
�

���������	
���(�������
���� ����
�������
���������""�����

�����������-�$�����.�� #�$ #�$

��������������-�"�$#��%���.�� �
��
������

��
����� ��������������!"������ #�$

��������$%��-�����,�'��(�
��
�&�$���������'�����(#�$

	��#�
�$������������������� �
��

��

��

��

��

��

��

��

��

�)&���*
��

��

��

��

��

��

��

��

������ �!����������� ��
��
+�

���
�

���������	
���(�������
���� ����
�������
���������""�����

�����������-�$�����.�� #�$ #�$

��������������-�"�$#��%���.�� �
��
������

��
����� ��������������!"������ #�$

��������$%��-�����,�'��(�
��
�&�$�����"����'$����������#������(#�$

Figure 8. Example scenario execution variants and test results

ants including a comparison of unsupported execution, serialized execution, and
execution with data classes. Each variant was tested under two conditions, i.e.
under a) both parallel paths could be executed immediately and under b) the
user interaction A11 was delayed.

As expected, the evaluation shows that variant 1 supports unrestricted par-
allelism, but produces wrong results (e.g. the value of balance does not consider
modifications on both paths). Variant 2 can be compared with the behavior
of distributed (non-mobile) workflow systems. Besides the variable information
(which results from quite arguable modeling), it produces correct results. Nev-
ertheless, parallelism is highly restricted: In case both paths are reachable and
parallel tasks are processed (variant 2a), this might still be acceptable. How-

ever, variant 2b shows that P2 is totally halted because it has to wait for results
processed by A11 – although (semantically) this is not necessary. Accordingly,
variant 2 also produces a relatively high number of coordination messages.

In contrast, the actual execution of variant 3, using the data classes as pro-
posed in Section 3.3, shows results and effects which are correct with respect to
serializability or at least to the intentions of the user. In case of variable infor-
mation, serialization is unwanted and thus relaxed. The correctness criteria of
variable finished is determined by its age. In case the data is older than 30 min-
utes, a more recent data value has to be fetched, but it does not matter if (and
by which activity) this variable has been modified, so R3 does not have to wait
for other activities to be finished. Although activities A11 and A21 are rather
longrunning (> 30 minutes), variant 3a does not require updating the variable,
because the value was included in the previous synchronization resulting from
precedence A14 l A23. In contrast, in variant 3b an additional request-response
pair of messages has been sent in order to get the latest value of this variable. As
to see, parallelism is restricted only in case the variable balance is read. However,
due to optimistic conflict resolution both parallel paths can proceed even in case
of (temporary) communication problems. Considering variant 3b, even all of P2

can be executed without waiting for “lazy” activities on P1. The applicability of
the presented concept can therefore also be confirmed by practical experiments.

5 Conclusion

This paper proposed a multilevel approach to realize distributed parallel process
execution with multiple mobile process participants. Optimistic conflict resolu-
tion and application-specific data classes have been applied in order to reduce
communication efforts and thus increase parallelism. Main benefits are a formally
proven model for correct execution of parallel process paths and a respective pro-
totype component which was integrated and tested in an existing mobile process
management system. In such a scenario, process management systems for dis-
tributed parallel process paths can use the generic meta model by attaching
a system-specific adapter. Furthermore, also (stationary) cross-organizational
business processes involving execution engines of different collaborating parties
can benefit from a loosely coupled distribution and synchronization strategy
without coordination overhead by sharing the intentions of the process designer
respectively.

References

1. Adelstein, F., Gupta, S.K.S., Richard III, G., Schwiebert, L.: Fundamentals of
Mobile and Pervasive Computing. McGraw-Hil (2005)

2. Alonso, G., et al.: Exotica/FMDC: Handling disconnected clients in a workflow
management system. In: Conf. on Cooperative Information Systems. pp. 99–110
(1995)

3. Baresi, L., Maurino, A., Modafferi, S.: Workflow partitioning in mobile informa-
tion systems. In: Proc. of IFIP TC8 Working Conference on Mobile Information
Systems. pp. 93–106. Springer, Boston (2004)

4. Bernstein, P.A., Goodman, N.: The failure and recovery problem for replicated
databases. In: Proc. of 2nd Annual ACM Symp. on Principles of Distributed Com-
puting. pp. 114–122. ACM (1983)

5. Davidson, S.B.: Optimism and consistency in partitioned distributed database sys-
tems. ACM Transactions on Database Systems 9(3), 456–481 (1984)

6. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL workflow
process execution engine for mobile devices. In: Proc. of Int. Conf. on Service-
Oriented Computing (ICSOC 2006). pp. 503–508. Springer (2006)

7. Hackmann, G., Sen, R., Haitjema, M., Roman, G.C., Gill, C.: Mobiwork: Mobile
workflow for MANETs. Tech. rep., Washington University (2006)

8. Kopp, O., Khalaf, R., Leymann, F.: Deriving explicit data links in WS-BPEL
processes. In: Proc. of the 2008 IEEE Int. Conf. on Services Computing (Vol 2).
pp. 367–376. IEEE Computer Society, Washington, DC, USA (2008)

9. Kunze, C.P., Zaplata, S., Lamersdorf, W.: Mobile processes: Enhancing coopera-
tion in distributed mobile environments. J. of Computers 2(1), 1–11 (2 2007)

10. Kunze, C.P., Zaplata, S., Turjalei, M., Lamersdorf, W.: Enabling context-based
cooperation: A generic context model and management system. In: 11th Int. Conf.
on Business Information Systems (BIS 2008). pp. 459–470. Springer (2008)

11. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. PTR
Prentice Hall (2000)

12. Martin, D., Wutke, D., Leymann, F.: A novel approach to decentralized workflow
enactment. In: Proc. of the 12th Int. IEEE Enterprise Distributed Object Com-
puting Conf. pp. 127–136. IEEE Computer Society, Washington, DC, USA (2008)

13. Mecella, M., et al.: WORKPAD: an adaptive peer-to-peer software infrastruc-
ture for supporting collaborative work of human operators in emergency/disaster
scenarios. In: Proc. of Int. Symp. on Collaborative Technologies and Systems
(CTS’06). pp. 173–180. IEEE Computer Society (2006)

14. Montagut, F., Molva, R.: Enabling pervasive execution of workflows. In: Proc.
of the 1st Int. Conf. on Collaborative Computing: Networking, Applications and
Worksharing. IEEE Computer Society, Washington, DC, USA (2005)

15. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From central-
ized workflow specification to distributed workflow execution. J. Intell. Inf. Syst.
10(2), 159–184 (1998)

16. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web
services. In: Proc. of the 19th Annual Conf. on Object-Oriented Programming,
Systems, Languages, and Applications. pp. 170–187. ACM, New York (2004)

17. Norin, R., Marin, M.: XML process definition language. Specification WFMC-TC-
1025, Workflow Management Coalition (2002)

18. Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system:
Flexible support for enterprise-wide business processes. In: Proc. 1st Int. Conf. on
Business Process Management (BPM ’03). pp. 371–379. Springer (2003)

19. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proc. of the
15th ACM Symposium on Principles of Distributed Computing (1996)

20. Sen, R., Roman, G.C., Gill, C.D.: CiAN: A workflow engine for MANETs. In: Proc.
of COORDINATION 2008. pp. 280–295. Springer (2008)

21. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst. 20(3), 239–282 (2002)

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.2.3

A.6 From Requirements to Executable Processes – A Literature Study

Authors:

UniDue: Andreas Gehlert

USTUTT: Olha Danylevych

USTUTT: Dimka Karastoyanova

Published in:

• Proceedings of the 5th International Workshop on Business Process Design. BPD 2009. September
7, 2009 - Ulm, Germany.

External Final Version 1, Dated November 30, 2009 106

From Requirements to Executable Processes – A
Literature Study

Andreas Gehlert1, Olha Danylevych2, Dimka Karastoyanova2

1University of Duisburg-Essen, Schützenbahn 70; 45117 Essen
andreas.gehlert@sse.uni-due.de

2University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart
{olha.danylevych | dimka.karastoyanova}@iaas.uni-stuttgart.de

Abstract. Service compositions are a major component to realize service-based
applications (SBAs). The design of these service compositions follows mainly a
process-modelling approach—an initial business process is refined until it can
be executed on a workflow engine. Although this process-modelling approach
proved to be useful, it largely disregards the knowledge gained in the require-
ments engineering discipline, e. g. in eliciting, documenting, managing and
tracing requirements. Disregarding the requirements engineering phase may
lead to undesired effects of the later service compositions such as lack of accep-
tance by the later users. To defuse this potentially critical issue we are inter-
ested in the interplay between requirements engineering and process modelling
techniques. As a first step in this direction, we analyse the current literature in
requirements engineering and process modelling in order to find overlaps where
the techniques from both domains can be combined in useful ways. Our main
finding is that scenario-based approaches from the requirements engineering
discipline are a good basis for deriving executable processes. Depending
whether the focus is on requirements engineering or on process design the inte-
gration of the techniques are slightly different.

Keywords: Requirements Engineering, Process Modelling, Use Cases, Process
Fragments

1 Introduction

Service compositions are the central element in service-based applications (SBAs) —
the new paradigm in software and service development. A service composition com-
bines a set of services according to a meaningful business goal. In the case of using a
process-based approach for service compositions the services are connected by con-
trol and data flow definitions. The underlying idea of such a process-modelling ap-
proach is to step-wise refine a process model until it contains all necessary informa-
tion to be executed, for instance, an executable BPEL process can be executed on a
BPEL engine (cf. bottom of Fig. 1).

2 Andreas Gehlert, Olha Danylevych, Dimka Karastoyanova

Fig. 1. Framework for Intertwining Requirements Engineering and Process Modelling Ap-
proaches.

One of the advantages of this approach is straightforward and of great practical
importance for the creation of SBAs: the same modelling paradigm (process model-
ling) can be used during the entire development process of the service composition.
This enables an automated support for the verification of the process model and its
translation from the initial process model to the executable one. This modelling proc-
ess, however, is a highly creative activity [e. g. 1], which can be difficult to control
and plan.

Another discipline, which heavily depends on modelling, is requirements engineer-
ing (RE). Requirements engineering techniques such as prioritisation allow explicitly
planning, managing and controlling modelling projects. In addition, agreement tech-
niques allow to reason about the agreements achieved by different stakeholders.
Lastly, tracing techniques allow documenting the origin and the destination of a re-
quirements artefact [cf. 2 for a recent review on techniques of the different RE activi-
ties]. So, there is a potential to use RE techniques to structure and manage the process
modelling activities.

Most interestingly, RE techniques, such as use cases based techniques share many
commonalities with processes since use cases contain scenarios. A scenario is a se-
quence of activities, which describe a typical system interaction. Therefore, scenarios
document parts of a process [3]. In particular, use case based techniques allow to
model use cases in isolation and to verify and integrate those individual use cases
later [4, p. 314]. Another argument for using RE techniques is based on empirical
findings. Nawrocki et al. found in [5] that use cases are significantly easier to under-
stand with respect to error detection than corresponding process models written in the
Business Process Modelling Notation (BPMN).

Use case based approaches do not make any assumptions about the technology of
the system to be built. Consequently, we are interested in answering the questions
how RE techniques can help to derive process models. The starting point for this
interaction is the idea to apply use case based RE techniques to derive isolated proc-
ess fragments. These fragments need to be integrated and subsequently translated into

From Requirements to Executable Processes – A Literature Study 3

an executable process modelling language. We are not only interested in the current
state of the art from the two disciplines—requirements engineering and process mod-
elling, but also to know what information can be captured by this approach and what
information need to be added manually (cf. top of Fig. 1).

The research question we are addressing here is how requirements engineering and
process modelling techniques can be combined to support the definition of executable
workflows. To answer this question, we analyse the interplay between requirements
engineering and process modelling techniques from a requirements and from a proc-
ess modelling perspective. This analysis is based on an extensive literature review of
both disciplines.

The paper is structured as follows: Section 2 reviews the related work in require-
ments engineering and process modelling to analyse existing approaches in both dis-
ciplines as well as approaches, which are bridging the gap between both disciplines.
Because of the focus on requirements engineering and process modelling respectively
in section 2 the interplay of the techniques of those disciplines differ slightly. In sec-
tion 3 we discuss the consequences of these differences and give pointers to possible
future work.

2 From Requirements to Executable Processes – Combining
Techniques

The state of the art in business process modelling encompasses a variety of notations
for modelling business process, ranging from declarative approaches like DecSerFlow
[6] to imperative/workflow-like approaches such as BPMN and the Business Process
Execution Language (BPEL). The process modelling notations have different levels
of abstraction—from technology-independent graphical modelling notations like
Event-Driven Process Chains (EPC) [7] or BPMN to executable process modelling
notations like BPEL.

However, the design of a process model is currently based on the step-wise refine-
ment of an initial business process. This refinement is a complex modelling activity,
which is difficult to manage and control. Although very similar approaches for model-
ling processes, managing and controlling those modelling activities are well under-
stood in the RE discipline, work has just started to use RE techniques for designing
business processes (cf. subsection 2.1). Those approaches apply use cases to develop
isolated scenarios, which are integrated later on to derive a process. This process must
than be further refined in order to be executable.

Approaches originated from the process modelling discipline translate use cases
into process modelling notations (e. g. EPCs or BPMN), integrate the resulting mod-
els and translate them further to executable process models (e. g. written in BPEL, c.f.
subsection 2.2). In addition, those approaches introduce relevant information, which
is currently not covered by traditional RE approaches such as constraints.

4 Andreas Gehlert, Olha Danylevych, Dimka Karastoyanova

2.1 Requirements Engineering Perspective

One accepted requirements engineering approach is the use case approach. A use
case is a structured description of the interaction between the system and its users.
According to Cockburn [3], a use case description contains a primary actor initiating
the use case, stakeholders influenced by the use case, the goal of the use case, guaran-
tees (e. g. post-conditions), which hold when the use case is executed, pre-conditions
and triggers determining when the use case is started, the main scenario and exten-
sions to this main scenario describing the different use case steps. Use cases are usu-
ally documented in textual forms with the help of use case templates.

A system specification based on use cases is then a set of such use cases. Using a
set of use cases for the system specification allows eliciting and documenting the
system’s requirements in decentralised teams. This comes at the cost of having a large
number of use cases, which must be carefully managed and integrated [8]. Although
UML use case diagrams [9] allow modelling the dependencies between different use
cases by means of use case diagrams, their degree of formality alone is not enough to
foster the integration of the embedded scenarios and, therefore, to derive a process
[4].

The use case elements of interest for this paper are scenarios. Scenarios describe a
sequence of steps, which lead to the fulfilment of the use case’s goal. Each scenario
can be extended by other scenarios in order to introduce alternatives and loops. Sce-
narios have particularly proven to be useful in requirements engineering projects
especially when abstract modelling fails or when interdisciplinary teams work in the
project [10, p. 38].

The scenarios embedded in the use case are usually expressed in natural language.
Although this fosters the communication with non-technical stakeholders, it is associ-
ated with the difficulty of using the provided information in an automated manner,
e. g. to automatically integrate scenarios or to automatically check scenarios for valid-
ity and consistency. One way to deal with this problem is to use a more formal nota-
tion to represent scenarios such as message sequence charts (MSCs). Automated sup-
port in deriving MSCs from textual use cases are for instance provided in [11].

Since their introduction in 1996 by the International Telecommunication Union
(ITU), MSCs have a long and successful history in the RE discipline [12]. Their for-
mal syntax and semantics allow verifying, transforming and integrating MSCs auto-
matically. In their recent paper Uchitel et al. [8, p. 101] describe three approaches to
integrate MSCs: the first approach is built on modelling the relations between the
individual MSCs in a high level message sequence chart (hMSC). The introduction of
hMSCs further allows re-using individual MSCs in different paths of the system’s
behaviour. Another approach is built on the component’s states embedded in the
MSC. Identical states in different MSCs are used for the integration. Lastly, a con-
straint-based approach [e. g. 4] can be used to integrate individual MSCs.

Each of those integration approaches comes with their distinct advantages and dis-
advantages. hMSCs for instance provide a good overview of the system and allow at
the same time to re-use scenarios in different parts of the hMSC. This approach fos-
ters the creation of many small scenarios, which are themselves difficult to under-
stand. The integration with the help of scenario states allows modelling larger chunks
of the system in one scenario but hinders scenario re-use and complicates the integra-

From Requirements to Executable Processes – A Literature Study 5

tion of the individual scenarios. Lastly, the constraint-based approach is most expres-
sive and allows the description of arbitrary combination of individual scenarios. Since
the constraints, however, are formulated in a formal language, they are difficult to
understand for non-technical stakeholders.

So far, we have demonstrated that the requirements engineering discipline provides
a tool-chain, which allows to elicit use cases in an informal manner, to derive more
formal scenarios based on this specification and to integrate individual scenarios
forming a coherent system specification (cf. Fig. 2). The missing element is a trans-
formation algorithm, which translates the integrated scenario into an executable proc-
ess model, e. g. into BPEL.

Fig. 2. Requirements Engineering Perspective of Deriving Process Models Based on Use Cases

Current transformation approaches such as [13-15] are based on an intermediate

format, e. g. EPC or BPMN, which are in turn transformed into BPEL code [e. g. 16].
These approaches are discussed in more detail below. Having the focus on require-
ments engineering it is important to note that the individual scenarios as part of the
requirements are integrated prior to their translation to a suitable workflow notation.
This issue will be elaborated in more detail below.

2.2 Process Modelling Perspective

An alternative way of deriving an executable process is to translate the individual use-
case scenarios to a process oriented language and to integrate the resulting process
fragments afterwards using process-merge technologies. Lübke [15] for instance pro-
vide algorithms, which transforms a textual scenario as part of a use case specification
into an EPC and integrates the resulting EPCs to a coherent model (cf. Fig. 3).

6 Andreas Gehlert, Olha Danylevych, Dimka Karastoyanova

Fig. 3. Process Modelling Perspective of Deriving Process Models Based on Use Cases

Having the focus on processes, the scenarios as part of the requirements are trans-
formed to processes and these processes are merged later on. In contrast to the re-
quirements engineering perspective discussed above, the merging activity is per-
formed to processes and not to scenarios. This difference is further elaborated in sec-
tion 3.

The approaches presented in [13, 15] are based on merging the resulting EPCs ac-
cording to their pre- and post-conditions, e. g. on the events initiating and finalising
an EPC process fragment. The difference between this work and the RE approach is
the point in time the use case is translated into a process model. While in RE ap-
proaches the scenarios are integrated first and translated afterwards into a process
model, the process oriented approaches translate use cases to process models first and
integrate them afterwards.

Although the two approaches seem to be similar in nature, merging process models
allow the elicitation and the usage of additional constraints on those process models.
This additional constrains guide the integration of the resulting process fragments,
hence, allowing a better control over those fragments.

Although not exhaustive, the following constraints, which are typically not consid-
ered during a use case analysis, are used in the process modelling literature:

 Quality of Service related requirements for the whole system such as availability of

the service composition.
 Operational properties like maximal costs for one process instance.
 Non-functional requirements of the single use cases, e. g. the use case A must be

performed in at most 30 minutes.
 Extended relations between use cases such as use case A must be executed two

times before use case B.

These constraints may also influence the process model itself. For instance, if use case
A must be executed 10 times before use case B (extended relation between use cases)
and the execution time for use case A should be small (non-functional constraint), the
process designer may decide to re-organise the process according to the multiple
instance pattern so that different instances of use case A can be executed in parallel to
save time and to fulfil the non-functional constraint.

From Requirements to Executable Processes – A Literature Study 7

Specification and modelling of constraints from requirements has been extensively
covered in the literature. Lu et al. [17] for instance classify constrains in strategic,
operational, regulatory and contractual constraints. Gagne and Trudel [18] treat the
specification of temporal logic constraints for process modelling using Allen’s inter-
val algebra [19]. Förster et al. [20] address the verification of process constraints
expressed as Business Rules.”

After the application of the constraints to the process fragments, there may still be
more than one process, which fulfils all constraints since the integration of the differ-
ent process fragments can be seen as combinatory problem. Process metrics help to
chose among the possible process models fulfilling all constraints.

The metrics to be adopted depend on the important properties of the process mod-
els. On the one hand these are metrics used for prediction of the Quality of Service for
a process-based service composition. This issue has been extensively treated, among
others, by Marzolla et al. [21] and Rud et al. [22]. On the other hand the metrics
evaluating “quality” of the model are also of interest. Such metrics may include the
cohesion and coupling metrics proposed by Vanderfeesten et al. in [23]. The authors
transform the well understood metrics from the software engineering discipline ([24])
to processes. Vanderfeesten et al. argue that the ratio of cohesion and coupling is an
important characteristic of execution quality and maintenance and, therefore, can be
used while choosing the most appropriate process model. Other metrics applicable
for the evaluation of process model alternatives are the modularity metric by Reijers
and Mendling [25], which is proven to be important for the understandability, and
cyclic complexity of processes [cf. 26].

The conceptual difference between many process modelling techniques (e. g. EPC
and BPMN) and executable process languages such as BPEL, which are mainly due
to a different expressiveness and a different paradigm (graph based vs. block based)
of the languages [27] lead to the need to refine processes. Process refinement has been
extensively covered by both industry and academia. The goal is to iteratively and
incrementally refine an abstract process model (e. g. the one obtained from use cases)
into an executable one with the help of one or more semi-automated model transfor-
mations.

Born et al. [28] for instance treat the application of technologies to business proc-
ess refinement, with the emphasis on goal-modelling and reuse or pre-existing busi-
ness process patterns and fragments.

Markovic and Kowalkiewicz [29] also address the alignment of business goals and
business processes using semantic technologies. They introduce a business goal on-
tology that is correlated to the already proposed business process ontology. High-level
business goals (e.g. “increase company competitiveness”) are hierarchical, can broken
down into sub-goals (e.g. “uncover technology trends”), and are then refined into
operational goals (e.g. “activate service”) that are claimed to be easily mappable to
concrete business process models.

8 Andreas Gehlert, Olha Danylevych, Dimka Karastoyanova

3 Summary and Conclusions

We have shown in the paper that current RE techniques allow to elicit, document,
verify and manage requirements, which are relevant for the design of processes. Use
case based approaches contain scenarios, which can be used as process fragments
when deriving processes. The key difference between RE approaches and process
modelling approaches is that RE approach always aim to elicit and document a set of
scenarios, which need to subsequently be integrated based on high level message
sequence charts, scenario states or constraints. The resulting integrated scenarios can
then be translated into process models (cf. subsection 2.1).

Approaches, which originate from the process modelling discipline, translate initial
use cases into EPC or BPMN models, integrate these process models and translate
them into executable process models. In contrast to RE approaches, the focus here is
on the constraints, which guide the integration of different process fragments and on
evaluation criteria, which help choosing between different process variants in case
more than one process model fulfils all given constraints (cf. subsection 2.2).

Having analysed the requirements engineering and process modelling perspective
we found a major difference: from the requirements engineering perspective the indi-
vidual scenarios are merged before they are translated to a process modelling nota-
tion. In the process modelling perspective, the individual scenarios are translated to a
process modelling notation and the resulting process models are merged. Although
this difference seems to be a minor issue, the resulting consequences are important:

 Merging Scenarios: Merging scenarios is a well understood and much elaborated

in the requirements engineering discipline. The overall process of designing execu-
table processes could benefit from this maturity.

 Merging Process Models: comes with a couple of advantages, which are mainly
due to the fact that process models are produced later in the process design life-
cycle. Process models (e. g. a BPEL process) contain, among others, activities
that perform message exchanges with (i. e. invocations of) other services (for in-
stance, the invoke, receive and reply activities in BPEL).
Moreover, the process models can be further annotated with Process Performance
Metrics (PPMs) that explain how to calculate/evaluate particular performance at-
tributes (e.g. completion time and average activity execution time). PPMs are not
necessarily defined on single process executions (e. g. completion time of one in-
stance), but their evaluation can span across multiple executions (e. g. average
completion time).
During the monitoring (either at run-time or post-mortem) of the execution of
business processes and fragments annotated with PPMs, data about the processes
are produced and aggregated by evaluating the PPMs.
Notice that this information is 'linked' to executable artefacts (e. g. the particular
process fragment in a Fragment Library owned by an enterprise), and not scenar-
ios. That is, the data collected by PPMs are not known at design time, but only af-
ter the use of fragments in “production” (e. g. using them to compose business
processes that are then run and monitored).
The availability of this 'run-time' information is very relevant for the creation of
merges of process fragments that are “optimal”, e. g. in terms of QoS. Moreover,

From Requirements to Executable Processes – A Literature Study 9

the additional information provides more flexibility during the process merge, al-
lowing the consideration of criteria that span beyond the design time knowledge of
the behaviour of the fragments, but also how they behaved at run-time (which is
often not foreseeable at design time: for instance, you can generally never say if a
process always terminates or not). Of course, this additional flexibility is not avail-
able while merging scenarios, because those data might not be available.
Finally, the data collected and aggregated from the PPMs during monitoring can
support the identification of which fragments in the business process should be ex-
plicitly modelled (for instance using activities and control flows), and which one
should instead be “masked” behind an external service. This is of course related to
the out- and in-sourcing of business process fragments. There is an entire branch of
BPM research, called (Business Process) Gap Analysis that deals with it, and
(among others) with the problem of identifying the right “granularity” for the ser-
vices.
Consequently, when choosing between the two alternatives the maturity of the sce-

nario integration activity (focus on requirements engineering) must be balanced with
the possibility of re-using more information (focus on process modelling). Which
approach is more effective cannot be answered on the basis of this literature review
and requires a future empirical evaluation.

There are a couple of deficiencies in both approaches, which are apparent from our
literature study:

 Missing information about services: Neither scenario based techniques nor tradi-

tional process modelling techniques capture information about the services used in
an executable process model or service composition. Weidlich at al. [30], for in-
stance, argue that the process designer and the requirements engineer should work
together when specifying the service interfaces and when discovering and selecting
the service. Although they do not provide a clear methodology, they speculate that
typical requirements engineering techniques such as use case visualisation, glossa-
ries and requirements tracing can foster this collaboration.
Vara and Sánchez [31] provide an alternative approach. They argue that process
modelling should be executed by a process expert as first step in the development
of SBAs. Once the process model is defined, the requirements engineer derives use
cases for each activity in the process model and, thereby, specifies the behaviour of
the service. However, the link between the process model and the use case is de-
scribed informally only and a clear methodology is missing.

 Different expressiveness of process modelling languages: As argued in [27], proc-
ess modelling languages and executable process languages have a different expres-
siveness, which leads to information loss or information deficits when transform-
ing conceptual process models into executable ones. While this problem can be
solved by annotating process models with the respective execution information [e.
g. 32], it remains unclear how this additional information affects the readability of
those models.

 Difficult translation from scenarios to process models: Because of the conceptual
differences between scenarios and process models, the translation between the two
worlds is difficult and not yet well understood.

10 Andreas Gehlert, Olha Danylevych, Dimka Karastoyanova

Consequently, the bridge between requirements engineering techniques and execu-
table workflows is not yet complete, e. g. it is not yet possible to develop and design
service-based applications based on traditional requirements engineering techniques.
This incompleteness results in manual and, consequently, error-prone and cost-
intensive model transformations.

Future research directions is fourfold: First, empirical research is needed to decide
in which situation a requirements centred and in which situations a process centred
perspective is beneficial. Second, requirements engineering techniques must be ex-
tended to cover important aspects for the service world such as quality of service,
service selection and compliance. Third, in the process world the translation between
process models and their executable counterparts need to be researched. Finally, the
translation between requirements engineering and process modelling notations should
be investigated in more detail.

Acknowledgements

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

References

1. Dresbach, S.: Modeling by Construction: A New Methodology for Constructing Models for
Decision Support. Lehrstuhl für Wirtschaftsinformatik und Operations Research, University
of Cologne, Germany (1995)

2. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. Conference
on the Future of Software Engieering (FOSE 2007), Washington, USA (2007) 285-303

3. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional (2000)
4. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. Proceedings of the

22nd International Conference on Software Engineering (ICSE 2000), Limerick, Ireland
(2000) 314-323

5. Nawrocki, J.R., Nedza, T., Ochodek, M., Olek, L.: Describing Business Processes with Use
Cases. In: Abramowicz, W., Mayr, H.C. (eds.): 9th International Conference on Business In-
formation Systems (BIS 2006) Vol. 85, Klagenfurt, Austria (2006) 13-27

6. Aalst, W.M.P.v.d., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Leymann, F., Reisig, W., Thatte, S.R., Aalst, W.M.P.v.d. (eds.): The Role of
Business Processes in Service Oriented Architectures, Vol. 06291, Dagstuhl, Germany
(2006)

7. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozeßmodellierung auf der Grundla-
ge Ereignisgesteuerter Prozeßketten (EPK). Veröffentlichungen des Instituts für Wirt-
schaftsinformatik (IWi). Universität des Saarlandes (1992)

8. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Transactions on Software Engineering 29 (2003) 99-115

9. OMG: UML 2.0 Superstructure Specification. (2003)
10. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenarios in System Development: Cur-

rent Practice. IEEE Software 15 (1998) 34-45

From Requirements to Executable Processes – A Literature Study 11

11. Miga, A., Amyot, D., Bordeleau, F., Cameron, D., Woodside, C.M.: Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications. In: Reed, R., Reed, J. (eds.):
0th International SDL Forum (SDL 2001), Vol. 2078. Springer, Copenhagen, Denmark
(2001) 268-287

12. ITU: Message Sequence Charts. International Telecomunication Union, Telecommunication
Standardization Sector (1996)

13. Lübke, D., Schneider, K., Weidlich, M.: Visualizing Use Case Sets as BPMN Processes. 3rd
International Workshop on Requirements Engineering Visualization (REV 2008), Barce-
lona, Spain (2008)

14. Ouyang, C., Dumas, M., Breutel, S., Hofstede, A.H.M.t.: Translating Standard Process
Models to BPEL. In: Dubois, E., Pohl, K. (eds.): 18th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2006), Vol. 4001. Springer, Luxembourg,
Luxembourg (2006) 417-432

15. Lübke, D.: Transformation of Use Cases to EPC Models}. 5. Workshop der Gesellschaft für
Informatik e.V. (GI) und Treffen ihres Arbeitskreises "Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten (WI-EPK), Vol. 224. CEUR Workshop Proceedings, Vi-
enna Austria (2006) 137-156

16. Ziemann, J., Mendling, J.: EPC-Based Modelling of BPEL Processes: A Pragmatic Trans-
formation Approach. International Conference on Modern Information Technology in the
Innovation Processes of the Industrial Enterprises (MITIP 2005) Genoa, Italy (2005)

17. Lu, R., Sadiq, S., Governatori, G.: On Managing Business Processes Variants Data &
Knowledge Engineering 68 (2009) 642-664

18. Gagné, D., Trudel, A.: A Formal Temporal Semantics for Microsoft Project based on Al-
len’s Interval Algebra. In: Abramowicz, W., Maciaszek, L.A., Kowalczyk, R., Speck, A.
(eds.): Business Process, Services Computing and Intelligent Service Management, Vol.
137, Leipzig, Germany (2009) 32-45

19. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the
ACM 26 (1983) 832-843

20. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.v.D.: Verification of Business Process
Quality Constraints Based on Visual Process Patterns. First Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering, 2007. TASE '07, Shanghai, China (2007) 197-
208

21. Marzolla, M., Mirandola, R.: Performance Prediction of Web Service Workflows. Third
International Conference on Quality of Software ArchitecturesSoftware Architectures,
Components, and Applications. Springer, Medford, MA, USA (2007) 127-144

22. Rud, D., Kunz, M., Schmietendorf, A., Dumke, R.: Performance Analysis in WS-BPEL-
Based Infrastructures. 23rd Annual UK Performance Engineering Workshop (UKPEW
2007), Edge Hill University, Ormskirk, Lancashire, UK (2007) 130-141

23. Vanderfeesten, I., Reijers, H.A., Aalst, W.M.P.v.d.: Evaluating Workflow Process Designs
using Cohesion and Coupling Metrics. Computers in Industry 59 (2008) 429-437

24. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans-
actions on Software Engineering 20 (1994) 476-493

25. Reijers, H., Mendling, J.: Modularity in Process Models: Review and Effects. 6th Interna-
tional Conference on Business Process Management. Springer, Milan, Italy (2008) 20-35

26. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A Discourse on Complexity of Proc-
ess Models (Survey Paper). In: Eder, J., Dustdar, S. (eds.): Business Process Management
Workshops, Vol. 4103. Springer, Vienna, Austria (2006) 117-128

27. Recker, J., Mendling, J.: On the Translation between BPMN and BPEL: Conceptual Mis-
match between Process Modelling Languages. In: Krogstie, J., Halpin, T.A., Proper, H.A.
(eds.): 11th International Workshop on Exploring Modeling Methods in Systems Analysis
and Design (EMMSAD 2006). Namur University Press, Namur, Belgium, Luxembourg,
Luxembourg (2006) 521-532

12 Andreas Gehlert, Olha Danylevych, Dimka Karastoyanova

28. Born, M., Brelage, C., Markovic, I., Weber, I.: Semantic Business Process Modeling: from
Business Goals to Execution-Level Business Processes. Forschungszentrum Informatik,
Karlsruhe (2008)

29. Markovic, I., Kowalkiewicz, M.: Linking Business Goals to Process Models in Semantic
Business Process Modeling. 12th International IEEE Enterprise Distributed Object Comput-
ing Conference, 2008 (EDOC 2008), Munich, Germany (2008) 332-338

30. Weidlich, M., Grosskopf, A., Lübke, D., Schneider, K., Knauss, E., Singer, L.: Verzahnung
von Requirements Engineering und Geschäftsprozessdesign. 1. Workshops für Require-
ments Engineering und Business Prcess Management (REBPM 2009), Kaiserslautern,
Deutschland (2009)

31. Vara, J.L.d.l., Sánchez, J.: Improving Requirements Analysis through Business Process
Modelling: a Participative Approach. In: Fensel, D., Abramowicz, W. (eds.): 11th Interna-
tional Conference on Business Information Systems (BIS 2008). Springer, Innsbruck, Aus-
tria (2008) 165-176

32. White, S.A.: Using BPMN to Model a BPEL Process. BPTrends (2005) 1-18

