
S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

Appendices

A An SLA-based resource virtualization approach for on-demand
service provision

External Final Version 1.0, Dated December 15, 2009 20

An SLA-based Resource Virtualization Approach For
On-demand Service Provision

Attila Kertesz
MTA SZTAKI

1518 Budapest, Hungary
P.O. Box 63.

attila.kertesz@sztaki.hu

Gabor Kecskemeti
MTA SZTAKI

1518 Budapest, Hungary
P.O. Box 63.

kecskemeti@sztaki.hu

Ivona Brandic
TU Vienna

1040 Vienna, Austria
Argentinierstr. 8/181-1

ivona@infosys.tuwien.ac.at

ABSTRACT
Cloud computing is a newly emerged research infrastruc-
ture that builds on the latest achievements of diverse re-
search areas, such as Grid computing, Service-oriented com-
puting, business processes and virtualization. In this paper
we present an architecture for SLA-based resource virtu-
alization that provides an extensive solution for executing
user applications in Clouds. This work represents the first
attempt to combine SLA-based resource negotiations with
virtualized resources in terms of on-demand service provision
resulting in a holistic virtualization approach. The architec-
ture description focuses on three topics: agreement negotia-
tion, service brokering and deployment using virtualization.
The contribution is also demonstrated with a real-world case
study.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks, Distributed Systems

General Terms
Design, Languages, Management, Experimentation

Keywords
SLA negotiation, Resource virtualization, Service Brokering,
On-demand deployment

1. INTRODUCTION
Grid Computing [16] has succeeded in establishing pro-

duction Grids serving various user communities all around
the world. The emerging Web technologies have already af-
fected Grid development; the latest solutions from related
research fields (e.g. autonomous computing, P2P, etc.) also
need to be considered in order to successfully transform the
currently separated production Grids and Service oriented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-580-2/09/06 ...$5.00.

Architectures to the Internet of Services [25]. Cloud Com-
puting [5] is a novel candidate that aims at creating this
synergy; therefore we consider a cloud-like architecture fo-
cusing on agreement negotiation, service brokering and de-
ployment using advanced virtualization techniques. Both
Grids and Service Based Applications (SBAs) already pro-
vide solutions for executing complex user tasks. The web
service model is based on three actors: a service provider, a
service requester and a service broker [29]. Solutions build-
ing on this model use well-established and widely used tech-
nologies [29] that enable the collaboration of these three
parties to fulfill service executions required by users. The
newly emerging demands of users and researchers call for
expanding this service model with business-oriented utiliza-
tion (agreement handling) and support for human-provided
and computation-intensive Grid services. Most of related
works consider either virtualization approaches [12] [24] [18]
without taking care of Service-Level Agreements (SLAs) or
concentrates on SLA management neglecting the appropri-
ate resource virtualizations [27] [6].

In this paper we propose a novel holistic architecture con-
sidering resource provision using the virtualization approach
and combining it with the business-oriented utilization used
for the SLA agreement handling. Thus, we provide an inte-
grative infrastructure for on demand service provision based
on SLAs. The main contributions of this paper include: (i)
presentation of the novel architecture for the SLA-based re-
source virtualization and on-demand service provision, (ii)
description of the architecture including meta-negotiation,
meta-brokering, brokering and automatic service deployment
and (iii) demonstration of the presented approach based on
a case study. In the following section we summarize related
works, in Section 3 we introduce the overall architecture and
define the participating components and list the general uti-
lization steps. In Section 4 the components of the three
problem areas are detailed, and Section 5 presents a case
study using the architecture. Finally Section 6 concludes
the paper.

2. RELATED WORK
Though cloud-based service execution is rarely studied

yet, some related works have already started to investigate,
how business needs and more dynamicity could be repre-
sented in the web service model. The envisioned framework
in [10] proposes a solution to extend this model by intro-
ducing and using semantic web services. The need for SLA
handling, brokering and deployment also appears in this vi-
sion, but they focus on using ontology and knowledge-based

27

Figure 1: SRV architecture.

approaches. Works presented in [23] [21] discusses incorpo-
ration of SLA-based resource brokering into existing Grid
systems. The Rudder framework [19] facilitates automatic
Grid service composition based on semantic service discov-
ery and space based computing. Venugopal et al. propose a
negotiation mechanism for advance resource reservation us-
ing the alternate offers protocol [31], however, it is assumed
that both partners understand the alternate offers protocol.

Regarding meta-brokering, LA Grid [26] developers aim
at supporting grid applications with resources located and
managed in different domains. They define broker instances,
each of them collects resource information from its neigh-
bors and save the information in its resource repository. The
Koala grid scheduler [11] was redesigned to inter-connect dif-
ferent grid domains. They use a so-called delegated match-
making (DMM), where Koala instances delegate resource
information in a peer-2-peer manner. Gridway introduced
a Scheduling Architectures Taxonomy [30], where Gridway
instances can communicate and interact through grid gate-
ways. These instances can access resources belonging to dif-
ferent Grid domains. Comparing the previous approaches,
we can see that all of them use high level brokering that del-
egate resource information among different domains, broker
instances or gateways. These solutions are almost exclu-
sively used in Grids, they cannot co-operate with different
brokers operating in pure service-based or cloud infrastruc-
tures. On the contrary, our proposed Meta-Broker can man-
age diverse, separated brokers.

Finally service deployment solutions are focusing on the
deployment process itself and do not leverage their bene-
fits on higher level. For example the Workspace Service
(WS) [12] as a Globus incubator project supports wide range
of scenarios involving virtual workspaces, virtual clusters
and service deployment from installing a large service stack
like ATLAS to deploy a single WSRF service if the Vir-
tual Machine (VM) image of the service is available. The
WS is designed to support several virtual machines – XEN
[3], VMWare, VServer – to accomplish its task. Then the
XenoServer open platform [24] is an open distributed archi-
tecture based on the XEN virtualization technique. It is
aiming at global public computing. The platform provides
services for server lookup, registry, distributed storage and
a widely available virtualization server. Also the VMPlants
[18] project proposes an automated virtual machine config-

uration and creation service which is heavily dependent on
software dependency graphs. This project stays within clus-
ter boundaries.

3. SLA-BASED RESOURCE VIRTUALIZA-
TION (SRV) ARCHITECTURE

In this paper we present a unified service architecture that
builds on three main areas: agreement negotiation, broker-
ing and service deployment using virtualization. We sup-
pose that service providers and service consumers meet on
demand and usually do not know about the negotiation pro-
tocols, document languages or required infrastructure of the
potential partners. First we introduce the general architec-
ture naming the novelties and open issues, then we detail the
aforementioned three main areas with respect to the shown
architecture. Figure 1 shows our proposed, general architec-
ture. Next we define the actors of the architecture:

• User: A person, who wants to use a service

• MN – Meta-Negotiator: A component that manages
Service-level agreements. It mediates between the user
and the Meta-Broker, selects appropriate protocols for
agreements; negotiates SLA creation, handles fulfill-
ment and violation.

• MB – Meta-Broker: Its role is to select a broker that is
capable of deploying a service with the specified user
requirements.

• B – Broker: It interacts with virtual or physical re-
sources, and in case the required service needs to be
deployed it interacts directly with the ASD.

• ASD – Automatic Service Deployment: It installs the
required service on the selected resource on demand.

• S – Service: The service that users want to deploy
and/or execute.

• R – Resource: Physical machines, on which virtual
machines can be deployed/installed.

The following detailed steps are done during utilization
with respect to the steps shown in Figure 2:

• User starts a negotiation for executing a service with
certain QoS requirements (specified in a Service De-
scription (SD) with an SLA) (step 1)

• MN asks MB, if it could execute the service with the
specified requirements (step 2)

• MB matches the requirements to the properties of the
available brokers and replies with an acceptance or a
different offer for renegotiation (step 3)

• MN replies with the answer of MB. Steps 1-4 may con-
tinue for renegotiations until both sides agree on the
terms (to be written to an SLA document)

• User calls the service with the SD and SLA (step 5)

• MN passes SD and the possibly transformed SLA (to
the protocol the selected broker understands) to the
MB (step 6)

28

Figure 2: Detailed steps during SRV utilization.

• MB calls the selected Broker with SLA and a possibly
translated SD (to the language of the Broker) (step 7)

• The Broker executes the service with respect to the
terms of the SLA (step 8)

• In steps 9, 10, 11 and 12, the result of the execution
is reported to the Broker, the MB, the MN, finally to
the User (or workflow engine)

• ASD monitors the states of the virtual resources and
deployed services (step a)

• ASD reports service availability and properties to its
Broker (step b)

• All Brokers report available service properties to the
MB (step c)

The previously presented sample architecture and the de-
tailed utilization steps show that agreement negotiation, bro-
kering and service deployment are closely related and each
of them requires extended capabilities in order to interop-
erate smoothly. Nevertheless each part represents an open
issue, since agreement negotiation, SLA-based service bro-
kering and on-demand adaptive service deployment are not
supported by current solutions in cloud-like environments.

4. REQUIREMENTS AND SOLUTIONS TO
REALIZE SRV

In this section we detail three main categories, where the
basic requirements of SRV-like systems arise. We place these
areas in the SRV architecture shown in Figure 1, and detail
the related parts of the proposed solution. We also empha-
size the interactions among these components in order to
build one coherent system.

In our proposed approach users describe the requirements
for an SLA negotiation on a high level using the concept of
meta-negotiations. During the meta-negotiation only those
services are selected, which understand specific SLA docu-
ment language and negotiation strategy or provide a specific
security infrastructure. After the meta-negotiation process,

a meta-broker selects a broker that is capable of deploying a
service with the specified user requirements. Thereafter, the
selected broker negotiates with virtual or physical resources
using the requested SLA document language and using the
specified negotiation strategy. Once the SLA negotiation is
concluded, service can be deployed on the selected resource
using the virtualization approach.

4.1 Agreement negotiation
As shown in Figure 1 to realize such a system we need to

provide the following means of negotiation:

• User – MN: the User supplies a general meta-negotia-
tion document

• MN – MB: they agree on specific negotiation docu-
ments containing specific negotiation strategy to be
used, negotiation protocols to be used (WSLA, WS-
Ag,) , terms of negotiation (e.g. time, price,), security
infrastructure to be used

• MB – B: they agree on a specific SLA written in a
specific SLA language (e.g. WSLA, WS-Agreement)
containing concrete SLA parameters like concrete ex-
ecution time, concrete price, etc.

• B – ASD: they agree on a specific service to be avail-
able on the ASD managed resources with the resource
constraints resulted from the higher level negotiation
– the service is going to be able to use the requested
resources without disruptions from other parties

• Furthermore we need on each level (MN, MB, B, ASD)
a negotiator which is responsible for generating and
interpreting SLAs.

Before committing themselves to an SLA, the user and
the provider may enter into negotiations that determine the
definition and measurement of user QoS parameters, and the
rewards and penalties for meeting and violating them respec-
tively. The term negotiation strategy represents the logic
used by a partner to decide which provider or consumer sat-
isfies his needs best. A negotiation protocol represents the
exchange of messages during the negotiation process. Re-
cently, many researchers have proposed different protocols
and strategies for SLA negotiation in Grids [22]. However,
these not only assume that the parties to the negotiation
understand a common protocol but also assume that they
share a common perception about the goods or services un-
der negotiation. In reality however, a participant may prefer
to negotiate using certain protocols for which it has devel-
oped better strategies, over others. Thus, the parties to a
negotiation may not share the same understanding that is
assumed by the earlier publications in this space.

In order to bridge the gap between different negotiation
protocols and scenarios, we propose a so-called meta-negotia-
tion architecture [4]. Meta-negotiation is needed by means
of a meta-negotiation document where participating parties
may express: the pre-requisites to be satisfied for a negotia-
tion, for example a specific authentication method required
or terms they want to negotiate on (e.g. time, price, reli-
ability); the negotiation protocols and document languages
for the specification of SLAs that they support; and condi-
tions for the establishment of an agreement, for example, a

29

1. <meta-negotiation ...>
2. ...
3. <pre-requisite>
4. <security>
5. <authentication value="GSI" location="uri"/>
6. </security>
7. <negotiation-terms>
8. <negotiation-term name="beginTime"/>
9. <negotiation-term name="endTime"/>
10. ...
11. </negotiation-terms>
12. </pre-requisite>
13. <negotiation>
14. <document name="WSLA" value="uri" .../>
15. <protocol name="alternateOffers"
16. schema="uri" location="uri" .../>
17. </negotiation>
18. <agreement>
19. <confirmation name="arbitrationService" value="uri"/>
20. </agreement>
21.</meta-negotiation>

Figure 3: Example Meta Negotiation Document

required third-party arbitrator. These documents are pub-
lished into a searchable registry through which participants
can discover suitable partners for conducting negotiations.
In our approach, the participating parties publish only the
protocols and terms while keeping negotiation strategies hid-
den from potential partners.

The participants publishing into the registry follow a com-
mon document structure that makes it easy to discover ma-
tching documents (as shown in Figure 3). This document
structure consists of the following main sections: Each docu-
ment is enclosed within the <meta-negotiation> ... </meta-
negotiation> tags. The document contains an <entity>
element defining contact information, organization and a
unique ID of the participant. Each meta-negotiation com-
prises three distinguishing parts, namely pre-requisites, ne-
gotiation and agreement as described in the following para-
graph.

As shown in Figure 3 prerequisites define the role a partic-
ipating party takes in a negotiation, the security credentials
and the negotiation terms. For example, the security ele-
ment specifies the authentication and authorization mecha-
nisms that the party wants to apply before starting the ne-
gotiation process. For example, the consumer requires that
the other party should be authenticated through the Grid
Security Infrastructure (GSI) [7]. The negotiation terms
specify QoS attributes that a party is willing to negotiate
and are specified in the <negotiation-term> element. As
an example, the negotiation terms of the consumer are be-
ginTime, endTime, and price. Details about the negotia-
tion process are defined within the <negotiation> element.
Each document language is specified within <document>
element. Once the negotiation has concluded and if both
parties agree to the terms, then they have to sign an agree-
ment. This agreement may be verified by a third party or-
ganization or may be lodged with another institution who
will also arbitrate in case of a dispute. Figure 4 emphasizes
a meta-negotiation infrastructure embedded into the agree-
ment negotiation, brokering and service deployment archi-
tecture as proposed in Figure 1. In the following we explain
the Meta-Negotiation infrastructure.

The registry is a searchable repository for meta-negotia-
tion documents that are created by the participants. The
meta-negotiation middleware facilitates the publishing of

Figure 4: Meta-negotiation in SRV.

the meta-negotiation documents into the registry and the
integration of the meta-negotiation framework into the ex-
isting client and/or service infrastructure, including, for ex-
ample, negotiation or security clients. Besides being as a
client for publishing and querying meta-negotiation docu-
ments (steps 1 and 2 in Figure 4), the middleware delivers
necessary information for the existing negotiation clients,
i.e. information for the establishment of the negotiation ses-
sions (step 4, Figure 4) and information necessary to start
a negotiation (step 5 in Figure 4).

4.2 Service brokering
In this subsection we are focusing on brokering-related as-

pects of the SRV architecture introduced in Section 2. Bro-
kers (B) are the basic components that are responsible for
finding the required services with the help of ASD. This task
requires various activities, such as service discovery, match-
making and interactions with information systems, service
registries, repositories. There are several brokering solutions
both in Grid [17] and SOAs [20], but agreement support is
still an open issue. In our architecture brokers need to in-
teract with ASDs and use adaptive mechanisms in order to
fulfill the agreement (further requirements and interopera-
tion is detailed in Section 4.3).

A higher-level component is also responsible for broker-
ing in our architecture: the Meta-Broker (MB) [14]. Meta-
brokering means a higher level resource management that
utilizes existing resource or service brokers to access various
resources. In a more generalized way, it acts as a mediator
between users or higher level tools (e.g. negotiators or work-
flow managers) and environment-specific resource managers.
The main tasks of this component are: to gather static and
dynamic broker properties (availability, performance, pro-
vided and deployable services, resources, and dynamic QoS
properties related to service execution), to interact with MN
to create agreements for service calls, and to schedule these
service calls to lower level brokers, i.e. match service de-
scriptions (SD) to broker properties (which includes broker
provided services). Finally the service call needs to be for-
warded to the selected broker.

30

Figure 5: Meta-Broker in SRV.

Figure 5 details the Meta-Broker (MB) architecture show-
ing the required components to fulfill the above mentioned
tasks. Different brokers use different service or resource
specification descriptions for understanding the user request.
These documents need to be written by the users to specify
all kinds of service-related requirements. In case of resource
utilization in Grids, OGF [1] has developed a resource spec-
ification language standard called JSDL [2]. As the JSDL
is general enough to describe jobs and services of different
grids and brokers, this is the default description format of
MB. The Translator component of the Meta-Broker is re-
sponsible for translating the resource specification defined by
the user to the language of the appropriate resource broker
that MB selects to use for a given call. These brokers have
various features for supporting different user needs, there-
fore an extendable Broker Property Description Language
(BPDL) [15] is needed to express metadata about brokers
and their offered services. The Information Collector (IC)
component of MB stores the data of the reachable brokers
and historical data of the previous submissions. This infor-
mation shows whether the chosen broker is available, or how
reliable its services are. During broker utilization the suc-
cessful submissions and failures are tracked, and regarding
these events a rank is modified for each special attribute in
the BPDL of the appropriate broker (these attributes were
listed above). In this way, the BPDL documents represent
and store the dynamic states of the brokers. In order to
support load balancing, there is an IS Agent (IS refers to
Information System) reporting to IC, which regularly checks
the load of the underlying resources of each connected bro-
ker, and store this data. It also communicates with the
ASDs, and receives up-to-date data about the available ser-
vices and predicted invocation times (that are used in the
negotiations). The matchmaking process consists of the fol-
lowing steps: The MatchMaker (MM) compares the received
descriptions to the BPDL of the registered brokers. This se-
lection determines a group of brokers that can provide the
required service. Otherwise the request is rejected. In the
second phase the MM counts a rank for each of the remaining
brokers. This rank is calculated from the broker properties
that the IS Agent updates regularly, and from the service
completion rate that is updated in the BPDL for each bro-
ker. When all the ranks are counted, the list of the brokers
is ordered by these ranks. Finally the first broker of the pri-
ority list is selected, and the Invoker component forwards
the call to the broker.

Figure 6: Interactions of the components of the
Meta-Broker during utilization.

As previously mentioned, three main tasks need to be done
by MB. The first, namely the information gathering, is done
by the IS Agent, the second one is negotiation handling and
the third one is service selection (illustrated in Figure 6).
They need the following steps: During the negotiation pro-
cess the MB interacts with MN: it receives a service request
with the service description (in JSDL) and SLA terms (in
MN document) and looks for a deployed service reachable
by some broker that is able to fulfill the specified terms. If
a service is found, the SLA will be accepted and the and
MN notified, otherwise the SLA will be rejected. If the ser-
vice requirements are matched and only the terms cannot be
fulfilled, it could continue the negotiation by modifying the
terms and wait for user approval or further modifications.

4.3 Service deployment and virtualization
Automatic service deployment (ASD) is a higher-level ser-

vice management concept, which provides the dynamics to
SBAs – e.g. during the SBA’s lifecycle services can appear
and disappear without the disruption of their overall behav-
ior.

Figure 7 shows the ASD’s related components to the SRV
architecture and their connections. To interface with a bro-
ker the ASD should be built on a repository (as an example
it can use the Application Content Service – ACS [9] – stan-
dard proposed by the OGF [1]). All the master copies of all
the deployable services should be stored in the repository.
In this context the master copy means everything what is
needed in order to deploy a service on a selected site – which
we call the virtual appliance (VA). The virtual appliance
could be either defined by an external entity or the ASD
solution should be capable of acquiring it from an already
running system. The repository allows the broker to deter-
mine which services are available for deployment and which
are the static ones. Thus the repository would help to define
a schedule to execute a service request taking into consid-
eration those sites where the service has been deployed and
where it could be executed but has not yet been installed
(it is also monitored by the IS Agent of the Meta-Broker
detailed in Section 4.2). If the deployed services are not
available, it checks whether any of the latter resources can
deliver the service taking into account the deployment cost.

The Workspace Service (WS), offers the virtualization ca-
pabilities – virtual machine creation, removal and manage-

31

Cloud or Grid

WS XEN
Domain0

XEN
Domainm

Servicei

...

Repository

VA1 VA2 VAn...

VAi

ServiceiASD

Broker

Figure 7: Service deployment in SRV.

ment – of a given site as a WSRF service. According to
the OGSA-Execution Planning Services (EPS) [8] scenarios,
a typical service broker has two main connections with the
outside world: the Candidate Set Generators (CSG), and
the Information Services. The task of the CSG is to offer
a list of sites, which can perform the requested service ac-
cording to the SLA and other requirements. Meanwhile the
information services should offer general overview about the
state of the SBA, Grid or Cloud. In most of the cases the
candidate set generator is an integral part of the broker thus
instead of the candidate set adjustments, the broker queries
the candidate site list as it would do without ASD. Then
the broker would evaluate the list and as a possible result
to the evaluation it would initiate the deployment of a given
service. As a result the service call will be executed as a
composed service instead of a regular call. The composition
will contain the deployment task as its starting point and
the actual service call as its dependent task. Since both the
CSG and the brokers heavily rely on the information system,
the ASD can influence their decision through publishing dy-
namic data. This data could state service presence on sites
where the service is not even deployed.

The selected placement of the ASD depends on the site
policies on which the brokering takes place. In case the site
policy requires a strict scheduling solution then either the
CSG or the information system can be our target. If there
is no restriction then the current broker can be replaced with
an ASD extended one. In case the candidate set generator
is altered then it should be a distributed, ontology-based
adaptive classifier to define a set of resources on which the
service call can be executed [28]. The CSG can build its clas-
sification rules using the specific attributes of the local in-
formation systems. Each CSG could have a feedback about
the performance of the schedule made upon its candidates.
The ASD extended CSG should have three interfaces to in-
teroperate with other CSGs and the broker. First of all,

the CSGs could form a P2P network, which requires two
interfaces. The first manages the ontology of the different
information systems by sharing the classifier rules and the
common ontology patterns distributed as an OWL schema.
The second interface supports decision-making among the
peers. It enables the forwarding of the candidate request
from the broker. The third interface lies between the bro-
ker and the CSGs to support passing the feedback for the
supervised learning technique applied by the CSGs. This in-
terface makes it possible for the broker to send back a metric
packet about the success rate of the candidates.

The brokers should be adapted to ASD differently depend-
ing on where the ASD extensions are placed. If both the
CSG’s and the broker’s behavior is changed then the bro-
ker can make smarter decisions. After receiving the candi-
date site set, the broker estimates the deployment and usage
costs of the given service per candidate. For the estimation
it queries the workspace service (WS). This service should
accept cost estimate queries with a repository entry (VA)
reference as an input. The ASD should support different
agents discovering different aspects of the deployment. If
only the broker’s behavior is changed, and the CSG remains
untouched, then the ASD would generate deployment service
calls on overloaded situations (e.g. when SLA requirements
are endangered). These deployment service calls should use
the workspace service with the overloaded service’s reposi-
tory reference.

Finally it is possible to alter the information system’s be-
havior. This way the ASD provides information sources of
sites, which can accept service calls after deployment. The
ASD estimates and publishes the performance related en-
tries (like estimated response time) of the information sys-
tem. These entries are estimated for each service and site
pair, and only those are published which are over a prede-
fined threshold.

Regarding component interactions, the ASD needs to be
extended with the following in order to communicate with
brokers: Requested service constraints have to be forced in-
dependently from what Virtual Machine Monitor (or hyper-
visor [3]) is used. To help the brokers making their decisions
about which site should be used the ASD has to offer de-
ployment cost metrics which can even be incorporated on
higher level SLAs. The ASD might initiate service deploy-
ment/decommission on its own when it can prevent service
usage peaks/lows, to do so it should be aware of the agree-
ments made on higher levels.

5. CASE STUDY
In this section we discuss a case study on the Maxillo

Facial Surgery Simulation (MFSS) in order to demonstrate
the utilization of the presented architecture. The MFSS ap-
plication facilitates the work of medical practitioners and
provides the pre-operative virtual planning of maxillo-facial
surgery. The application consists of a set of components
running on local and different remote machines. These com-
ponents may be organized as a workflow in order to simplify
the work of the end users [4]. The main steps of the simu-
lation are: (i) mesh generation is used for the generation of
meshes necessary for the finite element simulation; (ii) mesh
manipulation defines the initial and boundary conditions for
the simulation; (iii) finite element analysis is a fully parallel
MPI application usually running on a remote HPC cluster.
In the followings we describe step by step how MFSS can

32

Figure 8: MFSS workflow with meta-negotiation
specification.

be executed on the proposed architecture for the SLA-based
Resource Virtualization. MFSS application can be modeled
and executed using the Amadeus workflow tool, a QoS-aware
Grid modeling, planning, and execution tool [4], see Figure
8.

As depicted in Figure 8, meta-negotiation for the MGSe-
quence activity (used for mesh generation) is specified by
means of (a) negotiation terms, (b) security restrictions,
(c) negotiation protocols, (d) document languages and (e)
preconditions for the agreement establishment. Negotiation
terms are specified as begin time, end time, and price. In or-
der to initiate a negotiation, GSI [7] security is required. The
negotiation is performed based on the alternate offers pro-
tocol [32]. Therefore, the workflow application understands
only the alternate offers protocol, and negotiation with re-
sources which do not provide alternate offers protocol cannot
be properly accomplished. Additional limitation considers
document language used for the specification of SLAs. As
shown in Figure 8, QoS is specified using WSLA [13]. The
constraints shown in Figure 8 are transformed into a XML
based meta-negotiation document. Thereafter this docu-
ment is passed to the Meta-Broker. During the execution of
the workflow, the Meta-Broker receives the service descrip-
tion in JSDL and the SLA terms in the meta-negotiation
document. First a matchmaking process is started to select
a broker that is able to execute the job with the specified
requirements (resource requirements and agreement terms).
The broker with the best performance values is selected,
and the description and agreement is translated to the for-
mat understandable by the broker. Thereafter the broker
is invoked with the transformed descriptions. The selected
broker receives the descriptions and calls the ASD to de-
ploy a service on a Cloud or a Grid, taking into account the

cost requirements of the agreement, or chooses an already
deployed, idle computing service. The job is executed and
the results are returned to the workflow enactor. Finally the
ASD decommissions the service.

6. CONCLUSIONS
In this paper a novel architecture for SLA-based resource

virtualization with on-demand service deployment is intro-
duced. The solution incorporates three enhancements: a
meta-negotiation component for generic SLA management,
a meta-brokering component for diverse broker management
and an automatic service deployment for resource virtual-
ization on the Cloud. We have stated the essential require-
ments for building the target architecture and demonstrated
the utilization through a future case study. Our future work
aims at finalizing the presented components and interfac-
ing the architecture to commercial Clouds and production
Grids.

7. ACKNOWLEDGEMENTS
The research leading to these results has received fund-

ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube), and by the Vienna Science and Technology Fund
(WWTF) under agreement ICT08-018, FoSII – Foundations
of Self-governing ICT Infrastructures.

8. REFERENCES
[1] Open grid forum website. http://www.ogf.org, 1999.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows,
A. Ly, S. McGough, D. Pulsipher, and A. Savva. Job
submission description language (jsdl) specification,
version 1.0. Technical report, 2005.
http://www.gridforum.org/documents/GFD.56.pdf.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[4] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and
R. Buyya. Advanced qos methods for grid workflows
based on meta-negotiations and sla-mappings. In The
3rd Workshop on Workflows in Support of Large-Scale
Science, pages 1–10, November 2008.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 2009.

[6] M. Q. Dang and J. Altmann. Resource allocation
algorithm for light communication grid-based
workflows within an sla context. Int. J. Parallel
Emerg. Distrib. Syst., 24(1):31–48, 2009.

[7] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In CCS
’98: Proceedings of the 5th ACM conference on
Computer and communications security, pages 83–92,
New York, NY, USA, 1998. ACM.

[8] I. Foster, H. Kishimoto, A. Savva, D. Berry,
A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,

33

F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Reich. The open grid services architecture, version
1.5. Technical report, 2006.
http://www.ogf.org/documents/GFD.80.pdf.

[9] K. Fukui. Application contents service specification
1.0. Technical report, 2006.
http://www.ogf.org/documents/GFD.73.pdf.

[10] R. Howard and L. Kerschberg. A knowledge-based
framework for dynamic semantic web services
brokering and management. In DEXA ’04: Proceedings
of the Database and Expert Systems Applications, 15th
International Workshop, pages 174–178, Washington,
DC, USA, 2004. IEEE Computer Society.

[11] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema,
and M. Livny. Inter-operating grids through delegated
matchmaking. Sci. Program., 16(2-3):233–253, 2008.

[12] K. Keahey, I. Foster, T. Freeman, and X. Zhang.
Virtual workspaces: Achieving quality of service and
quality of life in the grid. Sci. Program.,
13(4):265–275, 2005.

[13] A. Keller and H. Ludwig. The wsla framework:
Specifying and monitoring service level agreements for
web services. Journal of Network and Systems
Management, V11(1):57–81, March 2003.

[14] A. Kertesz and P. Kacsuk. Meta-broker for future
generation grids: A new approach for a high-level
interoperable resource management. In Grid
Middleware and Services Challenges and Solutions,
pages 53–63. Springer US, 2008.

[15] A. Kertesz, I. Rodero, and F. Guim. Data model for
describing grid resource broker capabilities. In Grid
Middleware and Services Challenges and Solutions,
pages 39–52. Springer US, 2008.

[16] C. Kesselman and I. Foster. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann
Publishers, November 1998.

[17] K. Krauter, R. Buyya, and M. Maheswaran. A
taxonomy and survey of grid resource management
systems for distributed computing. Software: Practice
and Experience, 32(2):135–164, 2002.

[18] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and
R. J. Figueiredo. Vmplants: Providing and managing
virtual machine execution environments for grid
computing. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing,
Washington, DC, USA, 2004. IEEE Computer Society.

[19] Z. Li and M. Parashar. An infrastructure for dynamic
composition of grid services. In GRID ’06: Proceedings
of the 7th IEEE/ACM International Conference on
Grid Computing, pages 315–316, Washington, DC,
USA, 2006. IEEE Computer Society.

[20] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation
and policing in dynamic web service selection. In
WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers
& posters, pages 66–73, New York, NY, USA, 2004.

[21] D. Ouelhadj, J. Garibaldi, J. MacLaren,
R. Sakellariou, and K. Krishnakumar. A multi-agent
infrastructure and a service level agreement
negotiation protocol for robust scheduling in grid
computing. In Proceedings of the 2005 European Grid
Computing Conference (EGC 2005), February 2005.

[22] M. Parkin, D. Kuo, J. Brooke, and A. MacCulloch.
Challenges in eu grid contracts. In Proceedings of the
4th eChallenges Conference, pages 67–75, 2006.

[23] D. M. Quan and J. Altmann. Mapping a group of jobs
in the error recovery of the grid-based workflow within
sla context. Advanced Information Networking and
Applications, International Conference on, 0:986–993,
2007.

[24] D. Reed, I. Pratt, P. Menage, S. Early, and
N. Stratford. Xenoservers: Accountable execution of
untrusted programs. In In Workshop on Hot Topics in
Operating Systems, pages 136–141, 1999.

[25] N. G. G. Report. Future for european grids: Grids and
service oriented knowledge utilities – vision and
research directions 2010 and beyond. Technical report,
December 2006.
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3 eg fi-
nal.pdf.

[26] I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, and
S. Sadjadi. Looking for an evolution of grid
scheduling: Meta-brokering. In Grid Middleware and
Services Challenges and Solutions, pages 105–119.
Springer US, 2008.

[27] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska.
Experiences with gria – industrial applications on a
web services grid. In E-SCIENCE ’05: Proceedings of
the First International Conference on e-Science and
Grid Computing, pages 98–105, Washington, DC,
USA, 2005. IEEE Computer Society.

[28] M. Taylor, C. Matuszek, B. Klimt, and M. Witbrock.
Autonomous classification of knowledge into an
ontology. In The 20th International FLAIRS
Conference (FLAIRS), 2007.

[29] A. Tsalgatidou and T. Pilioura. An overview of
standards and related technology in web services.
Distrib. Parallel Databases, 12(2-3):135–162, 2002.

[30] T. Vazquez, E. Huedo, R. S. Montero, and I. M.
Llorente. Evaluation of a utility computing model
based on the federation of grid infrastructures. In
Euro-Par 2007 Parallel Processing, pages 372–381.
Springer Berlin / Heidelberg, 2007.

[31] S. Venugopal, R. Buyya, and L. Winton. A grid
service broker for scheduling e-science applications on
global data grids. Concurrency and Computation:
Practice and Experience, 18(6):685–699, 2006.

[32] S. Venugopal, X. Chu, and R. Buyya. A negotiation
mechanism for advance resource reservation using the
alternate offers protocol. In 16th International
Workshop on Quality of Service (IWQoS 2008), pages
40–49, June 2008.

34

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

B Adaptive scheduling solution for grid meta-brokering

External Final Version 1.0, Dated December 15, 2009 29

Acta Cybernetica 00 (0000) 1–19.

Adaptive scheduling solution for grid

meta-brokering∗

Attila Kertész†, József Dániel Dombi‡ and József Dombi‡

Abstract

The nearly optimal, interoperable utilization of various grid resources play
an important role in the world of grids. Though well-designed, evaluated and
widely used resource brokers have been developed, these existing solutions still
cannot cope with the high uncertainty ruling current grid systems. To ease the
simultaneous utilization of different middleware systems, researchers need to
revise current solutions. In this paper we propose advanced scheduling tech-
niques with a weighted fitness function for an adaptive Meta-Brokering Grid
Service, which enables a higher level utilization of the existing grid brokers.
We also set up a grid simulation environment to demonstrate the efficiency
of the proposed meta-level scheduling solution. The presented evaluation re-
sults show that the proposed novel scheduling technique in the meta-brokering
context delivers better performance.

Keywords: Grid Computing, Meta-Brokering, Scheduling, Grid Service,
Random Number Generator function

1 Introduction

Ten years ago a new computing infrastructure called the Grid was born. Ian Foster
et. al. made this technology immortal by publishing the bible of the Grid [1] in
1998. Grid Computing has become an independent research field since then: cur-
rently grids are targeted by many world-wide projects. A decade is a long time:
though the initial goal of grids to serve various scientific communities by providing
a robust hardware and software environment is still unchanged, different middle-
ware solutions have been developed (Globus Toolkit [2], EGEE [3], UNICORE [4],
etc.). The realizations of these grid middleware systems formed production grids
that are mature enough to serve scientists having computation and data intensive
applications. Nowadays research directions are focusing on user needs: more effi-
cient utilization and interoperability play the key roles. To solve these problems

∗This work was supported by the FP7 Network of Excellence S-Cube funded by the European
Commission (Contract FP7/2007-2013).

†MTA SZTAKI, University of Szeged E-mail: keratt@inf.u-szeged.hu
‡University of Szeged E-mail: {dombijd,dombi}@inf.u-szeged.hu

2 Attila Kertész, József Dániel Dombi and József Dombi

grid researchers have two options: as a member of a middleware developer group
they can come up with new ideas or newly identified requirements and go through
the long process of designing, standardizing and implementing the new feature,
then waiting for the next release containing the solution. Researchers sitting on
the other side or unwilling to wait for years for the new release, need to rely on
the currently available interfaces of the middleware components and use advanced
techniques of other related research fields (peer-to-peer, web computing, artificial
intelligence, etc.). We have chosen the second option to improve grid resource
utilization with an interoperable resource management service.

Since the management and advantageous utilization of highly dynamic grid
resources cannot be handled by the users themselves, various grid resource man-
agement tools have been developed, supporting different grids. User requirements
created certain properties that resource managers have learned to support. This
development is still continuing, and users already need to stress themselves to dis-
tinguish brokers and to migrate their applications, when they move to a different
grid. Interoperability problems and multi-broker utilization have emerged the need
for higher level brokering solutions. The meta-brokering approach means a higher
level resource management by enabling automatic and simultaneous utilization of
grid brokers. Scheduling at this level requires sophisticated approaches, because
high uncertainty presents at all stages of grid resource management. Despite these
difficulties, this work addresses the resource management layer of middleware sys-
tems and proposes an enhanced scheduling technique to improve grid utilization in
a high-level brokering service.

In the following sections of this paper we are focusing on a meta-brokering
solution for grid resource management and present an adaptive scheduling technique
that targets better scheduling in global grids. In Section 2 we introduce meta-
brokering in grids, in Section 3 we describe our proposed scheduling solution, and in
Section 4 we present our simulation architecture and the evaluation of our proposed
solution. Finally, in Section 5 we gather the related research directions and Section
6 concludes the paper.

2 The need for grid meta-brokering

Heterogeneity appears not only in the fabric layer of grids, but also in the middle-
ware. Even components and services of the same middleware may support different
ways for accessing them. After a point this variety slows down grid development,
and makes grid systems unmanageable. Most grid middleware systems have fixed
interfaces to access their components and propagate information flow. In case of
resource management most of the middleware systems provide access to static prop-
erties (number of CPUs, size of memory, etc.) and some also give dynamic ones
(number of waiting jobs, expected response time), but this data is usually outdated
due to timely periodic refreshing. As a result we can state that there is a high
uncertainty in current grids, which is not likely to change soon. Though the first
de facto middleware, the Globus Toolkit [2], did not have a resource broker that au-

Adaptive scheduling solution for grid meta-brokering 3

tomates resource selection, the currently used middleware systems have built-in or
supporting brokers [8]. The development of different brokers and grids has started
a separation process in the research and user community, too. Therefore one of the
major problems of current grids is grid interoperability. Focusing on the resource
management layer of grids an obvious solution would be to interconnect brokers
to create interoperability. Unfortunately current brokers do not have a common
protocol and uniform interface for intercommunication, though the OGF-GSA [10]
started to work on this issue. Once they standardize a solution we still would need
to wait till all the brokers implement it in order to establish interoperability. In
order to achieve this goal in a short term we have chosen to interconnect brokers
by a high-level resource manager: we introduced meta-brokering (first proposed in
[7]) that means a higher level utilization of the existing, widely used and reliable
resource brokers. Since most of the users have certificates to access more Grids,
they are facing the problem of grid selection: which grid, which broker should I
choose for my specific application? Just like users needed resource brokers to choose
proper resources within a grid, now they need a meta-brokering service to decide,
which broker (or grid) is the best for them and also to hide the differences of utiliz-
ing them. In this way the meta-brokering approach solves the grid interoperability
problem at the level of resource management by providing a uniform interface for
the users of all the grids they have access to.

Figure 1: Components of the Grid Meta-Broker Service

Figure 1 introduces the revised architecture of the Grid Meta-Broker Service
that enables the users to access resources of different grids through their own bro-
kers. In this way, this higher level tool matches resource brokers to user requests.
The system is implemented as a web-service that is independent from middleware-
specific components. The provided services can be reached through WSDL (Web
Services Description Language). In the following we give a brief summary of its com-

4 Attila Kertész, József Dániel Dombi and József Dombi

ponents and their operation. As the JSDL (Job Submission Description Language)
standard [5] proposed by OGF (Open Grid Forum [9]) is general enough to describe
jobs of different grids and brokers, we have chosen this to be the job description
language of the Meta-Broker. The Translator components of the Meta-Broker are
responsible for transforming the resource specification defined by the user to the
language of the appropriate resource broker that the Meta-Broker selects to use for
a given job. Regarding all the various job specification formats used by different
grid middleware systems not all job attributes can be expressed in each document.
Furthermore we revealed some useful scheduling-related attributes that are also
missing from JSDL. To overcome these limitations we specified MBSDL (Meta-
Broker Scheduling Description Language [6]). The main attribute categories are:
middleware constraints, scheduling policies and QoS requirements. This schema
can be used to extend JSDL with scheduling-related attributes. Besides describing
user jobs, we also need to describe resource brokers in order to differentiate and
manage them. These brokers have various features for supporting different user
needs. These needs should be able to be expressed in the users JSDL, and iden-
tified by the Meta-Broker for each corresponding broker. Therefore we proposed
an extendable BPDL (Broker Property Description Language [6]) – similar to the
purpose of JSDL –, to express metadata about brokers. The common subset of the
individual broker properties is stored here: the supported middleware, job types,
certificates, job descriptions, interfaces, monitoring features and dynamic perfor-
mance data. The scheduling-related ones are stored in MBSDL: fault tolerant
features (checkpointing, rescheduling, replication), agreement support, scheduling
policies (ranking by resource attributes) and QoS properties (e.g. advance reser-
vation, co-allocation, email notification). The union of these properties forms a
complete broker description document that can be filled out and regularly updated
for each utilized resource broker. These two kinds of data formats are used by
the Meta-Broker: JSDL is used by the users to specify jobs and the BPDL (Broker
Property Description Language) by administrators to specify brokers – both parties
can use MBSDL to extend their descriptions.

The Information Collector (IC) component of the Meta-Broker stores the data
of the reachable brokers and historical data of the previous submissions. This infor-
mation shows whether the chosen broker is available, or how reliable its services are.
During broker utilization the successful submissions and failures are tracked, and
regarding these events a rank is modified for each special attribute in the BPDL of
the appropriate broker (these attributes were listed above). In this way, the BPDL
documents represent and store the dynamic states of the brokers. All data is stored
in XML, and advanced XML-serialization techniques are used by the IC. The load
of the resources behind the brokers is also taken into account to help the Match-
maker to select the proper environment for the actual job. When too many similar
jobs are needed to be handled by the Meta-Broker an eager matchmaking may flood
a broker and its grid. That is the main reason why load balancing is an important
issue. In order to cope with this problem, there is an IS (Information System) Agent
component reporting to the Information Collector, which regularly checks the load
of the underlying grids of each connected resource broker, and store this data. This

Adaptive scheduling solution for grid meta-brokering 5

tool is implemented as separate web-service connected to the Information System
of the grids behind the utilized brokers. With the additional information provided
by this agent the matchmaking process can adapt to the load of the utilized grids.
Finally, the actual state (load, configurations) of the Meta-Broker is also stored
here, and it can also be queried by users. The continuous monitoring of grid load
and broker performances makes this grid service self-adaptive.

The previously introduced languages are used for matching the user requests to
the description of the interconnected brokers: which is the role of the Matchmaker
component. The JSDL contains the user request (this supposed to be an exact
specification of the user’s job) using the extended attributes, while the intercon-
nected brokers are described by their BPDL documents. The default matchmaking
process consists of the following steps to find the fittest broker:

• The Matchmaker compares the JSDL of the actual job to the BPDL of the
registered resource brokers. First the job requirement attributes are matched
against the broker properties stored in their BPDLs: this selection determines
a group of brokers that are able to submit the job. This phase consists of two
steps: first the brokers are filtered by all the requirements stated in the JSDL.
When none of the brokers can fulfill the request, another filtering process will
be started with minimal requirements (those ones are kept which are real
necessary for job execution). If the available brokers still can not accept the
job, it will be rejected.

• In the second phase the previous submissions of the brokers and the load
of the underlying grids are taken into account: The MatchMaker counts a
rank for each of the remaining brokers. This rank is calculated from the load
that the IS Agent regularly updates, and from the job completion rate that is
updated in the PerformanceMetrics field of the BPDL for each broker. When
all the ranks are counted, the list of the brokers is ordered by these ranks.

• Finally the first broker of the priority list is selected for submission.

3 Adaptive Scheduling for meta-brokering

In the previous section we introduced the Grid Meta-Broker and shown how the
default matchmaking is carried out. The main goal of this paper is to enhance the
scheduling part of this matchmaking process. To achieve this, we have created a
Decision Maker component and inserted it into the MatchMaker component of the
Meta-Broker (see Figure 1). The first part of the matchmaking is unchanged: the
list of the available brokers is filtered according to the requirements of the actual
job read from its JSDL. Then the list of the remaining brokers along with their
performance data and background grid load are sent to the Decision Maker in order
to determine the fittest broker for the actual job. The scheduling techniques and
the process are described in the following paragraphs.

The Decision Maker uses a random number generator, and we chose a JAVA
solution, which generates pseudorandom numbers. This generator produces exactly

6 Attila Kertész, József Dániel Dombi and József Dombi

the same sequence of random numbers for each execution with the same initial value.
This initial value is called the seed. The JAVA random number generator class uses
uniform distribution and 48-bit seed, which is modified by a linear congruential
formula[11]. The default seed is the current time in milliseconds since 1970. We also
developed a unique random number generator, which generates random numbers
with a given distribution. We called this algorithm as generator function. In our
case we defined a score value for each broker, and we created the distribution based
on the score value. For example the broker which has the highest score number has
the highest probability to be chosen. In this algorithm the inputs are the broker id
and the broker score, which are integer numbers (see Table 1).

Table 1: Inputs of the algorithm

BrokerID Score
3 2
4 3
5 1
6 2

The next step is to choose a broker and put it into a temporary array: the
cardinality is determined by the score value (see Table 2). After the temporary
array is filled, we shuffle this array and choose an array element using the JAVA
random generator. In the example shown in Table 3 the generator function chose
the broker with id 4.

Table 2: Elements in the temporary array

Broker ID 3 3 4 4 4 5 6 6
Array ID 1 2 3 4 5 6 7 8

Table 3: Shuffled temporary array

Broker ID 4 3 6 3 4 4 5 6
Array ID 1 2 3 4 5 6 7 8
Java Random generator: 5

To improve the scheduling performance of the Meta-Broker we need to send
the job to the broker that best fits the requirements and executes the job without
failures with the shortest execution time. Every broker has three properties that

Adaptive scheduling solution for grid meta-brokering 7

the algorithm can rely on: the successful counter, the failure counter and the load
counter.

• The successful counter represents the number of jobs which had finished with-
out any errors.

• The failure counter shows the number of failed jobs.

• The load counter indicates the actual load of the grid behind the broker (in
percentage).

We have developed four different kinds of decision algorithms. The trivial algorithm
uses only a random number generator to select a broker. The other three algorithms
take into account the previously mentioned broker properties. These algorithms
define a score number for each broker and use the generator function to select one.
To calculate the score value we build a weighted sum of the evaluated properties.
This number is always an integer number. Furthermore, the second and third
decision algorithms take into account the maximum value of the failure and load
counter. This means that we extract the maximum value of the properties before
multiplying them with the weight. The generator function of the third algorithm
chooses a broker which score number is not smaller than the half of the highest
score value.

After testing different kinds of weighted systems, we conclude that the most
useful weights are shown in Table 4) that represent the weights of the used decision
algorithms.

Table 4: The weights of the decision makers

Decision Maker Success weight Failed weight Load weight
Decision I. 3 0.5 1
Decision II. 4 4 4
Decision III. 4 4 4

During the utilization of the Meta-Broker, the first two broker properties (suc-
cessful and failure counter) are incremented through a feedback method that the
simulator (or a user or portal in real world cases) calls after the job submission is
finished. The third property, the load value, is queried by the Meta-Broker from
an information provider (Information System) of a Grid. During simulation this
data is saved to a database by the Broker entities of the simulator (described later
and shown in Figure 2). This means by the time we start the evaluation and till
we do not receive feedback from finished jobs the algorithms can only rely on the
background load of the grids. To further enhance the scheduling we developed a
training process that can be executed before the simulation in order to initialize
the first and second properties. This process sends a small number of jobs with
various properties to the brokers and set the successful and failed jobs number at

8 Attila Kertész, József Dániel Dombi and József Dombi

the BPDLs of the brokers. With this additional training method we expect shorter
execution times by selecting more reliably brokers.

4 Evaluation

In order to evaluate our proposed scheduling solution, we have created a general
simulation environment, in which all the related grid resource management entities
can be simulated and coordinated. The GridSim toolkit [12] is a fully extendable,
widely used and accepted grid simulation tool – these are the main reasons why
we have chosen this toolkit for our simulations. It can be used for evaluating VO-
based resource allocation, workflow scheduling, and dynamic resource provisioning
techniques in global grids. It supports modeling and simulation of heterogeneous
grid resources, users, applications, brokers and schedulers in a grid computing en-
vironment. It provides primitives for the creation of jobs (called gridlets), mapping
these jobs to resources and their management, therefore resource schedulers can be
simulated to study scheduling algorithms. GridSim provides a multilayered design
architecture based on SimJava [13], a general purpose discrete-event simulation
package implemented in Java. It is used for handling the interaction or events
among GridSim components. All components in GridSim communicate with each
other through message passing operations defined by SimJava.

Figure 2: Meta-Brokering simulation environment based on GridSim

Our general simulation architecture can be seen in Figure 2. On the bottom-
right part we can see the GridSim components used for the simulated grid systems.
Resources can be defined with different grid-types. Resources consist of more ma-
chines, to which workloads can be set. On top of this simulated grid infrastructure
we can set up brokers. The Broker and Simulator entities have been developed
by us in order to enable the simulation of meta-brokering. Brokers are extended

Adaptive scheduling solution for grid meta-brokering 9

GridUser entities:

• they can be connected to one or more resources;

• different properties can be set to these brokers (agreement handling, co-
allocation, advance reservation, etc.);

• some properties can be marked as unreliable;

• various scheduling policies can be defined (pre-defined ones: rnd – random
resource selection, fcpu – resources having more free cpus or less waiting jobs
are selected, nfailed – resources having less machine failures are selected);

• generally resubmission is used, when a job fails due to resource failure;

• finally they report to the IS (Information System) Grid load database by
calling the feedback method of the Meta-Broker with the results of the job
submissions (this database has a similar purpose as a grid Information Sys-
tem).

The Simulator is an extended GridSim entity:

• it can generate a requested number of gridlets (jobs) with different properties,
start and run time (length);

• it is connected to the created brokers and able to submit jobs to them;

• the default job distribution is the random broker selection (though at least
the middleware types are taken into account);

• in case of job failures a different broker is selected for the actual job;

• it is also connected to the Grid Meta-Broker through its web service interface
and able to call its matchmaking service for broker selection.

4.1 Preliminary testing phase

Table 5 shows the details of the preliminary evaluation environment. 10 brokers can
be used in this simulation environment. The second column denotes the scheduling
policies used by the brokers: fcpu means the jobs are scheduled to the resource with
the most free cpus, nfail means those resources are selected that have less machine
failures, and rnd means randomized resource selection. The third column shows the
capabilities/properties (eg: coallocation, checkpointing, ...) of the brokers: three
properties are used in this environment, subscript F means unreliability, a broker
having such a property may fail to execute a job with the requested service with a
probablity of 0.5. The fourth column contains the number of resources utilized by a
broker, while the fifth column contains the number of background jobs submitted to
the broker (SDSC BLUE workload logs taken from the Parallel Workloads Archive
[14]) during the evaluation timeframe.

10 Attila Kertész, József Dániel Dombi and József Dombi

Figure 3: Diagrams of the preliminary evaluation for each algorithm

Adaptive scheduling solution for grid meta-brokering 11

Figure 4: Diagrams of the preliminary evaluation for each algorithm with training
phases

12 Attila Kertész, József Dániel Dombi and József Dombi

Table 5: Preliminary evaluation setup.

Broker Scheduling Properties Resources Workload
1. fcpu A 8 20*8
2. fcpu B 8 20*8
3. fcpu C 8 20*8
4. fcpu AF 8 20*8
5. fcpu BF 8 20*8
6. fcpu CF 8 20*8
7. nfail AF B 10 20*10
8. nfail ACF 10 20*10
9. nfail BF C 10 20*10
10. rnd - 16 20*16

As shown in the table we utilized 10 brokers to execute our first experiment.
In this case we submitted 100 jobs to the system, and measured the makespan of
all the jobs (time elapsed from submission till the successful finishing, including
waiting time in the queue of the resources and resubmissions on failures). Out of
the 100 jobs 40 had no special property (this means all the brokers can successfully
execute them), for the rest of the jobs the three properties were distributed equally:
20 jobs had property A, 20 had B and 20 had C. Each resource of the simulated
grids has been utilized by 20 background jobs (workload) with different submission
times according to the distribution defined by the SDSC BLUE workload logs.

Figure 3 shows the detailed evaluation runs with the scheduling algorithms
Decision 1 (D1), 2 (D2), 3 (D3) and without the use of the Meta-Broker (randomized
broker selection – Rnd) respectively. Figure 4 shows the measured values with the
three algorithms with training (we submitted 10 jobs to each broker to set their
initial performance values). In Figure 5 we can see the averages of the tests with
the different algorithms. This illustrates best the differences of the simulations with
and without the use of the Meta-Broker.

After we have seen the diagrams of the preliminary evaluations we can state that
all the proposed scheduling algorithms (D1, D2 and D3) provide shorter execution
times than the random broker selection. In the main evaluation phases our goal
was to set up a more realistic environment and to experience with a higher number
of jobs.

4.2 Main testing phase

Table 6 shows the evaluation environment used in the main evaluation. The simu-
lation setup was derived from real-life production grids: current grids and brokers
support ony a few special properties: we used four. To determine the (propor-
tional) number of resources in our simulated grids we compared the sizes of current
production grids (EGEE VOs, DAS3, NGS, Grid5000, OSG, ...). We used the same

Adaptive scheduling solution for grid meta-brokering 13

Figure 5: Summary diagram of the preliminary evaluation

Figure 6: Simulation in the main evaluation environment

14 Attila Kertész, József Dániel Dombi and József Dombi

Table 6: Main evaluation setup.

Broker Scheduling Properties Resources Workload
1. fcpu A 6 50*6
2. fcpu AF 8 50*8
3. fcpu A 12 50*12
4. fcpu B 10 50*10
5. fcpu BF 10 50*10
6. fcpu B 12 50*12
7. fcpu BF 12 50*12
8. fcpu C 4 50*4
9. fcpu C 4 50*4
10. fcpu AF D 8 50*8
11. fcpu AD 10 50*10
12. fcpu ADF 8 50*8
13. fcpu ABF 6 50*6
14. fcpu ABCF 10 50*10

notations in this table as before.
In the main evaluation we utilized 14 brokers. In this case we submitted 1000

jobs to the system, and again measured the makespan of all the jobs. Out of the
1000 jobs 100 had no special property, for the rest of the jobs the four properties
were distributed in the following way: 30 jobs had property A, 30 had B, 20 had
C and 10 had D. The workload logs contained 50 jobs for each resource. In the
training processes 100 jobs were submitted to each broker prior the evaluations to
set the initial values. Figure 6 shows the graphical representation of the simulation
environment.

In the first phase of the main evaluation the simulator submitted all the jobs at
once, just like in the preliminary evaluation. The results for this phase can be seen
in Figure 7.

In the first phase we could not exploit all the features of the algorithms, because
we submitted all the jobs at once and the performance data of the brokers were
not updated early enough for the matchmaking process. To avoid this, in the last
phase of the main evaluation we submitted the jobs periodically: 1/3 of the jobs
were submitted in the beginning, then the simulator waited for 200 jobs to finish
and update the performances of the brokers. After this the simulator submitted
again 1/3 of all the jobs and waited for 300 more to finish. Finally the rest of
the jobs (1/3 again) were submitted. In this way the broker performance results
could be used by the scheduling algorithms. Figure 8 shows the results of the last
evaluation phase. Here we can see that the runs with training could not make too
much advantage of the trained values, because the feedback of the first submission
period compensates the lack of training.

Figure 9 displays the summary of the different evaluation phases. The depicted

Adaptive scheduling solution for grid meta-brokering 15

Figure 7: Diagram of the first phase of the main evaluation

Figure 8: Diagram of the second phase of the main evaluation

16 Attila Kertész, József Dániel Dombi and József Dombi

Figure 9: Summary of the evaluation results

columns show the average values of each evaluation runs with the same parameters.
The results clearly show that the more intelligence (more sophisticated methods)
we put into the system the higher performance we gain. The most advanced version
of our proposed meta-brokering solution is the Decision Maker with the algorithm
called Decision3 with training. Once the number of brokers and job properties will
be high enough to set up this Grid Meta-Broker Service for inter-connecting several
Grids, with the presented scheduling algorithms our service will be ready to serve
thousands of users even under high uncertainty.

5 Related work

Meta-brokering means a higher level solution that brokers user requests among
various grid domains. One of these promising approaches aims at enabling commu-
nication among existing resource brokers. The GSA-RG of OGF [10] is currently
working on a project enabling grid scheduler interaction. They try to define com-
mon protocol and interface among schedulers enabling inter-grid usage. In this work
they propose a Scheduling Description Language to extend the currently available
job description language solutions. This work is still in progress, up to now only
a partial SDL schema has been created. The meta-scheduling project in LA Grid
[15] aims to support grid applications with resources located and managed in dif-
ferent domains. They define broker instances with a set of functional modules:
connection management, resource management, job management and notification
management. These modules implement the APIs and protocols used in LA Grid
through web services. Each broker instance collects resource information from its
neighbors and save the information in its resource repository or in-core memory.
The resource information is distributed in the Grid and each instance will have a

Adaptive scheduling solution for grid meta-brokering 17

view of all resources. The Koala grid scheduler [16] was designed to work on DAS-2
interacting with Globus [2] middleware services with the main features of data and
processor co-allocation; lately it is being extended to support DAS-3 and Grid’5000.
To inter-connect different grids, they have also decided to use inter-broker commu-
nication. Their policy is to use a remote grid only if the local one is saturated. In
an ongoing experiment they use a so-called delegated matchmaking (DMM), where
Koala instances delegate resource information in a peer-2-peer manner. Gridway
introduces a Scheduling Architectures Taxonomy [17], where they describe a Mul-
tiple Grid Infrastructure. It consists of different categories, we are interested in the
Multiple Meta-Scheduler Layers, where Gridway instances can communicate and
interact through grid gateways. These instances can access resources belonging to
different administrative domains (grids/VOs). They pass user requests to another
domain when the current is overloaded – this approach follows the same idea as
the previously introduced DMM. Gridway is also based on Globus, and they are
experimenting with GT4 and gLite [3]. Comparing the previous approaches, we can
see that all of them use a new method to expand current grid resource management
boundaries. Meta-brokering appears in a sense that different domains are being ex-
amined as a whole, but they rather delegate resource information among domains,
broker instances or gateways. Usually the local domain has preference, and when
a job is passed to somewhere else, the result should be passed back to the initial
point. Regarding multi-grid usage, the existing grids are very strict and conserva-
tive in the sense that they are very reluctant to introduce any modification that
is coming from research or from other grid initiatives. Hence the solutions aiming
at inter-connecting the existing brokers through common interfaces require a long
standardization procedure before it will be accepted and adapted by the various
grid communities. On the other hand the advantage of our proposed meta-brokering
concept is that it does not require any modification of the existing grid schedulers,
since it utilizes and delegates broker information by reaching them through their
current interfaces. The HPC-Europa Project researchers also considered taking
steps towards meta-brokering [18]; currently we have an ongoing work together
with them to define a common meta-brokering model.

6 Conclusions

The Grid Meta-Broker itself is a standalone Web-Service that can serve both users
and grid portals. The presented enhanced, adaptive scheduling solution with this
Meta-Broker enables a higher level, interoperable brokering by utilizing existing
resource brokers of different grid middleware. It gathers and utilizes meta-data
about existing widely used brokers from various grid systems to establish an adap-
tive meta-brokering service. We have developed a new scheduling component for
this Meta-Broker called Decision Maker that uses weighted functions with random
generation to select a good performing broker to user jobs even under high uncer-
tainty. We have evaluated the presented algorithms in a simulation environment
based on GridSim with real workload samples. The presented evaluation results

18 Attila Kertész, József Dániel Dombi and József Dombi

affirm our expected utilization gains: the enhanced scheduling provided by the De-
cision Maker enables better adaptation and results in a more efficient job execution.

7 Bibliography

References
[1] Foster, I. and Kesselman, C. Computational Grids, The Grid: Blueprint for a New Com-

puting Infrastructure, pp. 15–52, Morgan Kaufmann, 1998.

[2] Foster, I. and Kesselman, C. The Globus project: A status report, pp. 4–18, In Proc. of the
Heterogeneous Computing Workshop, IEEE Computer Society Press, 1998.

[3] EGEE middleware technical website, http://egee-technical.web.cern.ch/egee-technical,
September 2008.

[4] Erwin, D. W. and Snelling, D. F. UNICORE: A Grid Computing Environment, pp. 825–834,
In Lecture Notes in Computer Science, volume 2150, Springer, 2001.

[5] Job Submission Description Language (JSDL), http://www.ggf.org/documents/-
GFD.56.pdf, September 2008.

[6] Kertész, A., Kacsuk, P., Rodero, I., Guim, F. and Corbalan, J. Meta-Brokering require-
ments and research directions in state-of-the-art Grid Resource Management, Technical
report, TR-0116, Institute on Resource Management and Scheduling, CoreGRID – Network
of Excellence, November 2007.

[7] Kertész, A. and Kacsuk, P. Grid Meta-Broker Architecture: Towards an Interoperable Grid
Resource Brokering Service, pp. 112–116, CoreGRID Workshop on Grid Middleware in
conjunction with Euro-Par 2006, Dresden, Germany, LNCS, Vol. 4375, 2007.

[8] Kertész, A. and Kacsuk, P. A Taxonomy of Grid Resource Brokers, pp. 201–210,
6th Austrian-Hungarian Workshop on Distributed and Parallel Systems (DAPSYS 2006),
Springer US, 2007.

[9] Open Grid Forum (OGF) website, http://www.ogf.org, September 2008.

[10] OGF Grid Scheduling Architecture Research Group, https://forge.gridforum.org/sf/pro-
jects/gsa-rg, September 2008.

[11] Knuth, Donald E. The Art of Computer Programming Volume 2., Section 3.2.1. Addison-
Wesley Professional, 1997.

[12] Buyya, B. and Murshed, M. GridSim: A Toolkit for the Modeling and Simulation of Dis-
tributed Resource Management and Scheduling for Grid Computing, pp. 1175–1220, Con-
currency and Computation: Practice and Experience, Volume 14, Issue 13-15, 2002.

[13] Howell, F. and McNab, R. SimJava: A discrete event simulation library for Java, In Proc.
of the International Conference on Web-Based Modeling and Simulation, San Diego, USA,
1998.

[14] Parallel Workloads Archive website, http://www.cs.huji.ac.il/labs/parallel/workload,
September 2008.

[15] Rodero, I., Guim, F. and Corbalan, J., Fong, L.L., Liu, Y.G. and Sadjadi, S.M. Looking for an
Evolution of Grid Scheduling: Meta-brokering, Coregrid Workshop in Grid Middleware’07,
Dresden, Germany, June 2007.

[16] Iosup, A., Epema, D.H.J., Tannenbaum, T., Farrellee, M. and Livny, M. Inter-Operating
Grids through Delegated MatchMaking, In proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC07), Reno, Nevada,
November 2007.

Adaptive scheduling solution for grid meta-brokering 19

[17] Vazquez, T., Huedo, E., Montero, R. S. and Llorente, I. M. Evaluation of a Utility Computing
Model Based on the Federation of Grid Infrastructures, pp. 372–381, Euro-Par 2007, August
28, 2007.

[18] The HPC-Europa Project website, http://www.hpc-europa.org, September 2008.

Received September 10, 2008

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

C Comprehensive QoS Monitoring of Web Services and Event-
Based SLA Violation Detection

External Final Version 1.0, Dated December 15, 2009 49

Comprehensive QoS Monitoring of Web Services and
Event-Based SLA Violation Detection

Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Wien, Austria
lastname@infosys.tuwien.ac.at

ABSTRACT
In service-oriented systems, Quality of Service represents an
important issue which is often considered when selecting and
composing services. For receiving up-to-date information,
non-functional properties such as response time or availabil-
ity can be continuously monitored using server- or client-
side approaches. However, both approaches have strengths
and weaknesses. In this paper, we present a framework that
combines the advantages of client- and server-side QoS mon-
itoring. It builds on event processing to inform interested
subscribers of current QoS values and possible violations of
Service Level Agreements. These events can trigger adaptive
behavior such as hosting new service instances if the QoS is
not as desired. We describe our QoS monitoring approach
in detail, show how it was integrated into the VRESCo ser-
vice runtime environment, and evaluate the accuracy of the
presented monitoring techniques.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.4 [Performance of Systems]: Measurement techniques

General Terms
QoS Measurement, Performance, Reliability

1. INTRODUCTION
In the past few years, Service-oriented Architecture (SOA)

and Service-oriented Computing (SOC) [9] have emerged as
a paradigm for addressing the complexities of distributed
applications, and have finally gained acceptance from both
industry and research. The overall idea is based on well-
established standards for loose coupling and platform-inde-
pendent interface descriptions. Web services represent the
most common realization of SOA that build on the main
standards SOAP and WSDL. Over time, several standards
and specifications have been introduced for different issues
in Web services research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’09, November 30, 2009, Urbana Champaign, Illinois, USA
Copyright 2009 ACM 978-1-60558-848-3/09/11 ...$10.00.

Quality of Service (QoS) plays a crucial role in service-
oriented systems, for instance during service selection. When
integrating external services into business processes, it is
important to consider the quality guarantees of the service
provider. Therefore, Service Level Agreements (SLAs) [4]
are used to define the expected QoS between service con-
sumer and service provider. In general, QoS attributes can
be classified as deterministic or non-deterministic. The for-
mer indicates that the QoS attribute is known before a ser-
vice is invoked (e.g., price, security, etc.), while the latter
includes all attributes that are unknown at service invoca-
tion time (e.g., response time, availability, etc.). For non-
deterministic QoS attributes, monitoring approaches can be
used to continuously measure current QoS values.

Conceptually, there are two main approaches for QoS mon-
itoring: Server-side monitoring is usually accurate but re-
quires access to the actual service implementation which
is not always possible. In contrast, client-side monitoring
is independent of the service implementation but the mea-
sured values might not always be up-to-date since client-side
monitoring is usually done by sending probe requests (i.e.,
test requests that are similar to real requests). In this pa-
per, we aim at combining the advantages of both approaches
which has been realized in the Vienna Runtime Environment
for Service-oriented Computing (VRESCo) [8]. Therefore,
we have linked an existing client-side QoS monitoring ap-
proach [14] together with server-side monitoring based on
Windows Performance Counters [18]. Furthermore, event
processing is used to integrate both approaches and provide
means to monitor SLAs. If SLA obligations are violated,
notifications are sent to interested subscribers using E-Mail
or Web service notifications.

The contribution of this paper is threefold: Firstly, we
present two approaches for monitoring QoS attributes of
Web services. Secondly, we show how these approaches have
been integrated into VRESCo, and how simple SLA obliga-
tions can be defined and monitored using event processing.
Thirdly, we evaluate the accuracy of the two monitoring ap-
proaches and discuss how combining them leads to a com-
prehensive QoS monitoring framework.

The remainder of this paper is as follows. Section 2 shows
our QoS model, and describes the client- and server-side
monitoring approach. Section 3 introduces the VRESCo
runtime, shows how QoS monitoring has been integrated
and how SLA obligations are monitored. Section 4 presents
the accuracy of the QoS monitoring approaches and briefly
discusses the usefulness of combining them. Finally, Sec-
tion 5 gives related work and Section 6 concludes the paper.

2. QOS MONITORING
In this section, we first briefly introduce the QoS model

we have used in our work. Then we present two conceptually
different monitoring approaches for Web services which we
have integrated into VRESCo.

2.1 QoS Model
There are several definitions of QoS in literature [6,12,19].

Figure 1 depicts our QoS model which consists of the four
categories Performance, Dependability, Security/Trust and
Cost/Payment. In the remainder of this paper we focus on
the first two categories since they can be measured automat-
ically, with a special emphasis on those attributes that are
currently measured by our approach.

QoSClass

Performance Dependability
Security and

Trust
Cost and
Payment

- Execution time
- Latency
- Response time
- Round trip time
- Scalability
- Throughput

- Availability

- Accuracy

- Robustness

- Security

- Reputation

- Price

- Penalty

- Reliable Messaging

Figure 1: QoS Model

Performance-related attributes of services can be mea-
sured over several service invocations (see Figure 2). We
consider the following attributes: Execution time qex rep-
resents the service invocation time at the provider. This
consists of the actual Processing time qpt and the Wrapping
time qw (i.e., time needed to wrap XML messages). Latency
ql defines the time needed for the client request to reach
the service. Response time qrt indicates the service invoca-
tion time at the service consumer (i.e., execution time plus
latency), while Round trip time qrtt measures the overall
time needed for the request at the service consumer (i.e., re-
sponse time plus wrapping time at the client). Throughput
qtp represents the number of service requests that can be pro-
cessed within a given time period, while Scalability qsc de-
fines performance behavior of a service when the throughput
increases. In general, these performance-related attributes
are measured on the level of service operations.

Dependability-related attributes address the ability of ser-
vices to avoid frequent and severe failures. In contrast to
performance-related attributes, they are measured on the
service-level. Availability qav represents the probability that
a service is up and running, while Accuracy qac defines the
ratio of successful service executions in relation to the to-
tal number of requests. More details about our QoS model
(including the formulas to calculate the attributes) can be
found in [13].

2.2 Client-side Monitoring
The first approach to address QoS monitoring is done

client-side using the QUATSCH tool [14]. The overall idea
is to send probe requests to the services that should be mon-
itored. The service invocation is thereby divided into the
time periods shown in Figure 2 that correspond to the QoS
attributes introduced above.

3.2 Service Layer

Consumer

qw ql ql qwqptqw qw

qrt

qrtt

qex
NetworkNetwork Provider Consumer

tp0 tp1 tp2 tp3tc0 tc1 tc2 tc3

Figure 3.2: Service Invocation Timeline

In the following, we describe each attribute in detail. For each timing-related attribute, we
present the formula to illustrate how one single QoS attribute value is calculated. However,
when monitoring QoS attributes in real-world environments, we usually take the average of n

measurements to get a better approximation of the attribute. Each formula is either consumer-
or provider-specific, therefore, we denote a formula representing a consumer-specific QoS
attribute with a parameter c in the definition.

Processing Time: Given a service s and an operation o, the processing time on the server is
defined as follows:

qpt(s, o) = tp2 − tp1 (3.1)

It denotes the time needed to execute an operation for a specific service request. The value
is calculated by using the timestamps tp1 and tp2 taken before and after the processing phase
on the server (see Figure 3.2 for details). The processing time does not include any network
communication and is, therefore, an atomic attribute with the smallest granularity.

Wrapping Time: The wrapping time of a given service s and an operation o is the time
needed to wrap and unwrap an XML message on both, the client- and server-side. We do
not consider the wrapping time as a QoS attribute on its own, however, it is needed to calcu-
late other QoS attributes. On the server-side, the wrapping time qwp is defined as follows:

qwp(s, o) = tp1 − tp0 + tp3 − tp2 (3.2)

On the client-side, the wrapping time qwc is defined as follows:

qwc(c, s, o) = tc1 − tc0 + tc3 − tc2 (3.3)

The actual wrapping time value is heavily influenced by the Web service framework (more
specifically the XML parser) and even the operating system itself. In [167], the authors even
split this time into three sub-values where receiving, (re-)construction and sending of a mes-
sage are distinguished. For our purpose it does not matter if the delay is caused by the XML

28

Figure 2: Service Invocation Times

The actual monitoring is done in three phases. In the pre-
processing phase, the WSDL files of the services are parsed
and stubs are generated. The performance measurement
code is thereby weaved into the stubs using aspect-oriented
programming (AOP). In the evaluation phase, the services
are executed by probing arbitrary values as input parame-
ters. If this is not successful, templates can be used to pro-
vide user-defined input. Finally, the result analysis phase
stores the results of the evaluation phase in a database.

The interesting part of the client-side monitoring approach
is that it is indeed able to accurately measure server-side at-
tributes such as execution time. In QUATSCH, this is done
using low-level TCP packet sniffing and analysis by leverag-
ing the TCP handshake (i.e., SYN and ACK packets) to
distinguish the different service invocation times [14].

2.3 Server-side Monitoring
The main drawback of the client-side approach is the fact

that monitoring is done by regularly sending probe requests
(e.g., every 5 minute). Single results should be handled with
caution since they represent only snapshots (e.g., the service
might be under heavy load when the probe request is sent).
Decreasing the monitoring interval might mitigate this prob-
lem to some extent but this must be done carefully since
short monitoring intervals (e.g., once every second) may fi-
nally affect the actual performance of the service.

Server-side monitoring addresses this problem by contin-
uously measuring QoS attributes. Since no probe requests
are needed anymore, the measured values represent “real”
service invocations. However, as said above, this technique
requires access to the actual Web service implementation
which is not always possible in practice.

Windows Performance Counters (WPC), especially the
counters regarding the Windows Communication Founda-
tion (WCF) [10], are part of the .NET framework and pro-
vide such server-side QoS monitoring for Web services [18].
WPC supports a rich set of counters that can be measured
at runtime. For our work, we focus on the following coun-
ters: Call Duration indicates the service invocation time
which resembles Execution Time in the client-side approach.
Calls Per Second defines how often a service has been in-
voked, while Calls Failed Per Second represents a similar
counter for unsuccessful service invocations. Other perfor-
mance counters (e.g., Transactions Flowed Per Second, Se-
curity Validation and Authentication Failures, etc.) could
also be integrated seamlessly.

As before, monitoring is done in user-defined intervals.
The different performance counter values are thereby aggre-
gated and averaged within an interval, and finally re-set at
the beginning of the next interval. For instance, if a service
has been invoked 3 times, the average response time of these
invocations is returned by the counter.

3. QOS/SLA INTEGRATION IN VRESCO
In this section, we show how the presented client- and

server-side monitoring approaches have been integrated into
VRESCo and how SLA monitoring can be achieved using
the event processing engine.

3.1 VRESCo Overview
Before describing the QoS integration in detail, we briefly

introduce the VRESCo service runtime environment [8].
The aim of this runtime is to address current SOC chal-
lenges and ease engineering of service-centric systems. More
precisely, VRESCo addresses service metadata, QoS-aware
service selection and service composition, dynamic binding
and mediation of services, and complex event processing.

Service
Client

SOAP

Services

measure

QoS
Monitor

VRESCo Client Library

Daios Mapping
Library

invoke

SOAP

VRESCo Runtime Environment

Registry
Database

Notification
Engine

Query
Engine

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
Service

O
R

M

La
ye

r

Ac
ce

ss

C
on

tro
l

Certificate
Store

Event
Database

Figure 3: VRESCo Overview

The architecture is depicted in Figure 3. The runtime
follows the “Software as a Service” concept and provides its
core functionality as Web services that can be accessed using
the client library or directly using SOAP. Services and asso-
ciated metadata are published in the registry database using
the publishing/metadata service, while the actual database
access is done using an ORM layer. The VQL query engine
provides type-safe querying of registry content, while the
access control layer is responsible for allowing only autho-
rized and authenticated users access to the VRESCo core
services. The event notification engine [7] can be used to in-
form interested subscribers if events of interest occur (e.g.,
new service is published, etc.), while all events are addi-
tionally persisted in the event database. As discussed later,
this event engine is leveraged for our QoS and SLA moni-
toring approach. Finally, the QoS monitor on the left-hand
side represents the QUATSCH monitor [14] that follows the
client-side monitoring approach. More information about
the VRESCo core services and the service mediation ap-
proach are not within the scope of this paper and omitted
for brevity. The interested reader is referred to [8].

3.2 QoS Integration
The overall architecture of our monitoring approach is

shown in Figure 4. The client-side monitor QUATSCH was
first integrated into VRESCo. Users can specify QoS moni-
toring schedules following the CRON time notation to define
which service (or service operation) should be monitored in
which time intervals. Since this is a client-side approach,
the monitor runs on a dedicated QUATSCH host as shown
in the middle of the figure. The actual monitoring is then

done using AOP and TCP packet analysis as described in
Section 2.2. Once the current QoS values have been mea-
sured, they are published into the VRESCo runtime. This
is done via the QoS Manager that receives the values and, in
turn, publishes them as corresponding QoS events into the
event notification engine.

The monitoring is done regularly based on the user-defined
monitoring schedules. The set of resulting QoS events rep-
resents the history of QoS information as collection of single
QoS snapshots. To make these values easily accessible, they
are aggregated by a QoS aggregation scheduler task on a reg-
ular basis, and finally attached to the corresponding service
(or service operation).

WPC
Monitor

Service Host

S1

QUATSCH Host

QUATSCH
Monitor Event

Engine

VRESCo Host

QoS
Manager

Mapping

QoS
Events

SLA Violation
Notifications

SLA Obligations Subscriptions

S
LA

 L
ay

er
Q

oS
 L

ay
er

Figure 4: Monitoring Approach

As already discussed, the client-side approach has both
strengths and weaknesses. Therefore, we decided to addi-
tionally integrate a server-side approach using WPC which
is an integral part of the .NET framework. Consequently,
the WPC-based approach is restricted to services imple-
mented in .NET. The WPC monitor runs on the same host
as the service (see Figure 4) and continuously monitors its
QoS attributes. The measured values are published into the
VRESCo runtime the same way as described before. For the
WPC-based approach the monitoring schedules are defined
in configuration files as shown in Listing 1. It defines which
service/operation should be monitored, together with the
monitoring and availability checking interval (in ms). The
first describes how often the counters are retrieved while the
latter is required since availability should be checked more
often than other QoS attributes to get meaningful results.

Listing 1: WPC Monitoring Configuration
<vresco . qosmonitor ing mon i t o r i ng in t e rva l=”60000 ”

a v a i l a b i l i t y c h e c k i n t e r v a l=”5000 ”>
<webserv i ce s>

<webserv ice wsdl=”ht tp : // l o c a l h o s t : 8 0 1 3 / s ?wsdl ”>
<ope ra t i on s>

<add name=”TestOperation ”/>
</ ope ra t i on s>

</ webserv ice>
</ webse rv i ce s>

</ vresco . qosmonitor ing>

In general, the two approaches are independent. How-
ever, some attributes can only be measured by one of the
approaches (e.g., latency and response time have to be mea-
sured from the client-side). Table 1 shows the QoS attributes
currently measured in VRESCo and depicts which approach
has been taken for which attribute. Throughput and Calls
Per Second seem to refer to the same QoS attribute. How-
ever, the first represents the maximum number of requests
that can be processed, while the latter indicates the number
of invocations that really occurred.

QoS Attributes Monitored by
Execution Time QUATSCH & WPC
Response Time QUATSCH

Latency QUATSCH
Availability QUATSCH & WPC
Throughput QUATSCH

Calls Per Second WPC
Calls Failed Per Second WPC

Table 1: QoS Attributes

It can be seen that two attributes are measured by both
approaches. For both Availability and Execution Time, the
WPC-based approach is usually more accurate since it does
not need to send probe requests, but represents the values of
real invocations. However, we decided to monitor using both
approaches since the measured values might be different. In
Section 4, we briefly discuss why this combination is useful
and give some concrete examples.

3.3 SLA Monitoring
QoS monitoring approaches, as introduced in the last sec-

tion, represent an essential foundation for SLAs, which de-
fine the expected QoS between service providers and con-
sumers. In this section, we describe the SLA monitoring
approach in VRESCo, and how clients can react to SLA vi-
olations. This approach is based on the VRESCo event
engine and is depicted in the top part of Figure 4. To
give a brief overview, simple SLA obligations can be at-
tached to services. This is done using the publishing service
that also allows to temporary start and stop SLA monitor-
ing. These obligations are then transformed to subscriptions
specified in the Esper Processing Language (EPL) [2] since
the VRESCo event engine is based on the open source en-
gine Esper. Those listeners can be directly attached to the
engine, which does the actual matching between subscrip-
tions and events. Finally, when such matches occur the sub-
scribers are notified about the corresponding SLA violation.

Frameworks such as WSLA [4] have been proposed for
defining complex SLAs, but they are rarely used in practice.
Therefore, we decided to provide a mechanism for defining
simple SLA obligations representing guarantees on the QoS
attributes of services, which are shown in Table 2.

First of all, obligations can be either attached to ser-
vice operations or revisions (in VRESCo, services can have
multiple revisions). Every obligation is valid only within
a given period of time after which it expires. The prop-
erty name represents the QoS attribute to monitor (e.g.,
response time), while logical operator and property value
are used to define threshold values (e.g., < 500 ms). Ag-
gregation functions (e.g., sum, max, avg, median, etc.) can
further be defined on multiple QoS events. Obligations also
define the notification mechanism and the address used for
violation notifications (e.g., E-Mail or WS-Eventing notifi-
cations). Finally, sliding window operators can be used to
define the time period to consider for the QoS events (e.g.,
the last 10 events or events within the last 5 minutes).

To give concrete examples, a simple SLA obligation could
define that the availability of revision 23 should be greater
than 0.99. This obligation is transformed to the following
EPL expression (please note that logical operators must be
inverted since subscriptions represent violation conditions):

Property Description
Id Identifier of the obligation

RevisionId Identifier of the service revision
OperationId Identifier of the service operation
Start Date Start date of the obligation
End date End date of the obligation

PropertyName QoS attribute to monitor
Aggregation Aggregation function on property

LogicalOperator Logical operator used for comparison
PropertyValue Threshold value used for comparison
ReactionType Notification mechanism to use

ReactionAddress Address of the subscriber
WindowType Type of the sliding window operator
WindowValue Value of the sliding window operator

Table 2: SLA Obligations

select * from QoSRevisionEvent where Revision.Id=23
and Property=’Availability’ and DoubleValue<=0,99

A more complex SLA obligation could define that opera-
tion 47 of service revision 11 should have an average response
time of less than 500 ms within the last 24 hours. Besides
the sliding window operator (win:time) this SLA obligation
uses univariate statistics on event streams (stat:uni and
average) which are provided by Esper:

select * from QoSOperationEvent(Revision.Id=11 and
Operation.Id=47 and Property=’ResponseTime’)\\
.win:time(24 hours).stat:uni(’DoubleValue’)
where average>=500

Once an SLA violation is detected, notifications are sent
using E-Mail or Web service notifications to the specified
address. The subscribers can then react accordingly, for in-
stance by rebinding to functionally equal services [8]. In this
regard, the SLA violation mechanism can also be used by
service providers to monitor if services perform as intended.
SLA violation notifications could then automatically trigger
to start new instances of this service and publish them into
VRESCo. Such scenarios and ways to define SLA penalty
models are part of our future work.

4. EVALUATION
To evaluate our approach, we compare the accuracy of

both monitoring approaches in terms of execution time and
availability as two exemplary values that can be measured
by both QUATSCH and WPC. Based on these findings, we
discuss why a combination of both approaches is useful and
highlight some of its advantages and disadvantages.

Our evaluation environment consists of a server hosting
VRESCo and a set of C#/.NET dummy services that have
a configurable execution time and a variable availability (3
downtimes of 30 min, 2 min and 10 min length, and sim-
ulated network problems with short interruptions between
19:00 and 19:20). Additionally, QUATSCH is hosted on a
VMWare image running on a different server in the LAN.

Figure 5 depicts the results of our monitoring experiments
where QUATSCH probes every 5 minutes whereas WPC
measures every minute. We further use soapUI [16] to sim-
ulate clients. The different measurement intervals are based
on the fact that QUATSCH sends real invocations to probe
a service, while WPC has lower overhead because it queries
performance counters provided by the operating system.

 999000

1000000

1001000

1002000

1003000

17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

M
ic

ro
se

co
nd

s

Time

Execution Time (WPC)
Execution Time (QUATSCH)

Simulated Execution Time

(a) Execution Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

A
va

ila
bi

lit
y

Time

Availability (WPC)
Availability (QUATSCH)

Simulated Availability

(b) Availability

Figure 5: Accuracy of WPC and QUATSCH

Figure 5(a) depicts the measured execution time over 4
hours. The results show that both approaches are pretty
accurate. The deviation from the simulated execution time
(1 sec) is less than 2 ms for most measurements. The values
for QUATSCH indicate that execution time can be indeed
measured from the client-side. Additionally, it can be seen
that WPC is more accurate because it represents the average
execution time of real invocations. The gap between simu-
lated execution time and average value measured by WPC
is 0.88 ms which is partly caused by internal processing of
the test services (e.g., threading, console output, etc.).

Figure 5(b) shows the simulated and measured availabil-
ity of the test services. It can be observed that WPC de-
tects downtimes faster than QUATSCH, which is due to the
shorter monitoring interval. WPC further divides this inter-
val into availability checking intervals (5 sec). Therefore, the
availability of one monitoring interval can also be measured
(e.g., at 18:31 and 20:02). In contrast to that, QUATSCH
cannot do this fine-grained distinction (i.e., availability is
either 0 or 1). As a result, QUATSCH does not recognize
the short downtime at 20:02. The same is true for the times-
pan between 19:00 and 19:20 where WPC is quite accurate
whereas QUATSCH does not detect this at all. It should
be noted that the same behavior can be observed when the
execution time in Figure 5(a) is varying.

Nonetheless, combining both approaches is still useful.
Firstly, some QoS attributes can only be measured from
the client-side (e.g., latency). Secondly, it is possible to
distinguish between client- and server-side view on some
QoS attributes (e.g., availability). For instance, if there is
no network connection on the QUATSCH monitoring host,
client-side availability decreases even if the service is run-
ning. However, this can be verified by the WPC approach.
Thirdly, bogus server-side measurements can be detected by
the client-side approach, by comparing measured QoS values
over a longer period of time. Fourthly, another dimension
to client-side monitoring could be added by integrating ac-
tually perceived QoS values on the client-side (in addition
to the measured values of the QUATSCH probe requests).
However, the combination of both approaches also has some
drawbacks. For instance, clients must agree to install mon-
itoring software which may not always be the case.

Finally, we have shown that the accuracy of the monitor-
ing approaches makes them suitable for SLA monitoring as
introduced in Section 3.3. As shown in our previous work [7],
the throughput of the VRESCo event engine is high enough
for the expected number of services (e.g., 2000 services with
the same monitoring intervals as above). Furthermore, since
SLA monitoring is based on events, it is easily possible to
subscribe to SLA violations and react adaptively if needed.

5. RELATED WORK
Several different QoS models have been proposed in lit-

erature (e.g., [6, 12, 19]). However, most approaches do not
discuss how QoS can be monitored. An overview of QoS
monitoring approaches for Web services is presented by Thio
et al. [17]. The authors discuss various techniques such as
low-level sniffing or proxy-based solutions. The prototype
system presented in their paper adopts an approach where
the SOAP engine library is instrumented with logging state-
ments to emit the necessary information for QoS measure-
ment. A major drawback of this approach is the dependency
on the modified SOAP library and the resulting maintenance
and distribution of the modified library.

QoS monitoring has been an active research area for years
which is not only focused on Web service technology. For
instance, Garg et al. [3] present the WebMon system that
aims at monitoring the performance of web transactions us-
ing a sensor-collector architecture. Similar to our work, their
approach correlates client- and server-side response times
which are measured by different components. In their work,
the question is whether to instrument the web server or the
web browser for doing the performance measurements.

There are many existing approaches for SLA monitoring
and violation detection (e.g., [1,5,11,15] just to name a few).
Skene et al. [15] introduce SLAng which is a general SLA
language not only focused on Web services, but targeted
to distributed systems and applications with reliable QoS
characteristics. The language is modeled in UML while the
syntax is defined using XML schema. The authors further
define a model for all parties and services involved in such
agreement. The actual constraints in the SLAs are then
defined using the Object Constraint Language (OCL).

Raimondi et al. [11] describe an SLA monitoring system
that translates timeliness constraints such as latency or avail-
ability of SLAs into timed automata, which are then used
to verify execution traces of services. Their approach uses
SLAng for defining SLAs and is realized as Axis handler.

Lodi et al. [5] describe a middleware that enables SLA-
driven clustering of QoS-aware application servers. Instead
of existing standards, they use XML for defining SLAs which
was inspired by SLAng. The architecture consists of three
components: The Configuration Service is responsible for
managing the QoS-aware cluster, the Monitoring Service
observes the application at runtime to detect violations of
SLAs, and the Load Balancing Service intercepts client re-
quests to balance them among different cluster nodes. If the
cluster is mainly idle or close to breach the SLA (e.g., the
response time converges to the upper bound), it is reconfig-
ured (i.e., add/release nodes).

Chau et al. [1] present a similar approach for modeling and
event-based monitoring of SLAs which is part of the eQoSys-
tem project. The SLA model refines the WSLA specifica-
tion: SLAs consist of multiple SLOs and use various metrics
that indicate different measurement aspects of a process.
Furthermore, action handlers can be defined to react when
SLOs are violated. Similar to our work, the SLA monitoring
approach is based on events. These events are assumed to
be emitted by the business process and contain a snapshot
of the current process state. In contrast to that, our QoS
events focus on the service- and operation-level. Further-
more, we additionally address how QoS attributes of Web
services can be monitored from client- and server-side.

6. CONCLUSION
Monitoring QoS attributes of Web services is an essential

aspect to enforce SLAs established among business partners.
In this paper, we have shown that a combination of client-
and server-side QoS monitoring can be beneficial regard-
ing the overall monitoring capabilities since both approaches
have strengths and weaknesses. These monitoring capabili-
ties combined with a powerful Web service runtime enable
an event-based detection of SLA violations for Web services,
while subscribers can react appropriately to such violations.
For future work, we plan to automatically react to SLA vi-
olations, such as deploying new service instances on-the-fly
or dynamically increase certain virtual machine capabilities
(that are often used to host Web services). Furthermore, we
envision to measure and publish the actual response times at
the client-side, in addition to the QUATSCH measurements
that rely on probe requests.

Acknowledgements
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 215483 (S-
Cube). Additionally, we would like to thank Alexander
Schindler for realizing the WPC-based monitoring approach.

7. REFERENCES
[1] T. Chau, V. Muthusamy, H.-A. Jacobsen, E. Litani,

A. Chan, and P. Coulthard. Automating SLA
Modeling. In Proc. of the 2008 Conference of the
Center for Advanced Studies on Collaborative
Research (CASCON’08), 2008.

[2] Esper, 2009. http://esper.codehaus.org/.

[3] P. K. Garg, K. Eshghi, T. Gschwind, B. R. Haverkort,
and K. Wolter. Enabling Network Caching of Dynamic
Web Objects. In Proc. of the 12th Int. Conference on
Computer Performance Evaluation, Modelling
Techniques and Tools (TOOLS’02), 2002.

[4] A. Keller and H. Ludwig. The WSLA Framework:
Specifying and Monitoring Service Level Agreements
for Web Services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[5] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini.
SLA-Driven Clustering of QoS-Aware Application
Servers. IEEE Transactions on Software Engineering,
33(3):186–197, 2007.

[6] D. A. Menascé. QoS Issues in Web Services. IEEE
Internet Computing, 6(6):72–75, 2002.

[7] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. Advanced Event Processing and
Notifications in Service Runtime Environments. In
Proc. of the 2nd Int. Conference on Distributed
Event-Based Systems (DEBS’08). ACM, 2008.

[8] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Invocation and Mediation in
VRESCo. Technical report, Vienna University of
Technology, 2009. http://www.infosys.tuwien.ac.
at/Staff/michlmayr/papers/TUV-1841-2009-03.pdf.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of
the Art and Research Challenges. IEEE Computer,
40(11):38–45, 2007.

[10] C. Peiris, D. Mulder, A. Bahree, A. Chopra,
S. Cicoria, and N. Pathak. Pro WCF: Practical
Microsoft SOA Implementation. Apress, 2007.

[11] F. Raimondi, J. Skene, and W. Emmerich. Efficient
online monitoring of web-service SLAs. In Proc. of the
16th ACM SIGSOFT Int. Symposium on Foundations
of Software Engineering (SIGSOFT’08/FSE-16), 2008.

[12] S. Ran. A Model for Web Services Discovery with
QoS. SIGecom Exchanges, 4(1):1–10, 2003.

[13] F. Rosenberg. QoS-Aware Composition of Adaptive
Service-Oriented Systems. PhD thesis, Vienna
University of Technology, June 2009.

[14] F. Rosenberg, C. Platzer, and S. Dustdar.
Bootstrapping Performance and Dependability
Attributes of Web Services. In Proc. of the IEEE Int.
Conference on Web Services (ICWS’06), Sept. 2006.

[15] J. Skene, D. D. Lamanna, and W. Emmerich. Precise
Service Level Agreements. In Proc. of the 26th Int.
Conference on Software Engineering (ICSE’04), 2004.

[16] soapUI, 2009. http://www.soapui.org/.

[17] N. Thio and S. Karunasekera. Automatic
measurement of a QoS metric for Web service
recommendation. In Proc. of the Australian Software
Engineering Conference (ASWEC’05), 2005.

[18] WCF Performance Counters, 2009. http://msdn.
microsoft.com/en-us/library/ms735098.aspx.

[19] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware Middleware
for Web Services Composition. IEEE Transactions on
Software Engineering, 30(5):311–327, May 2004.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

D Selecting Web Services Based on Past User Experiences

External Final Version 1.0, Dated December 15, 2009 56

Selecting Web Services Based on Past User Experiences

Philipp Leitner, Anton Michlmayr, Florian Rosenberg, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

lastname@infosys.tuwien.ac.at

Abstract

Since the Internet of Services (IoS) is becoming reality,
there is an inherent need for novel service selection mech-
anisms, which work in spite of large numbers of alternative
services and take the user-centric nature of services in the
IoS into account. One way to do this is to incorporate feed-
back from previous service users. However, practical issues
such as trust aspects, interaction contexts or synonymous
feedbacks have to be taken into account. In this paper
we discuss a service selection mechanism which makes
use of structured and unstructured feedback to capture
the Quality of Experience that services have provided in
the past. We have implemented our approach within the
SOA runtime VRESCO, where we use freeform tags for
unstructured and numerical ratings for structured user
feedback. We discuss the general process of feedback-based
service selection, and explain how the problems described
above can be tackled. We conclude the paper with an
illustrative case study and discussion of the presented
ideas.

1. Introduction

The term “Internet of Services” [1] (or IoS for short)
describes the unification of Web 2.0, Service-Oriented
Architectures [2] (SOA), Ubiquitous and Pervasive Com-
puting, Semantic Web Services and Mobile Computing that
we are currently experiencing. Soriano et al. define the
IoS as “the notion of a global, user-centric SOA enabling
a real Web of Services made up of a global mesh of
interoperable user-centric services” [3]. In such a global
network of human-provided and human-consumed services
there is an evident need for mechanisms which allow
(human) users to select services from a vast number of
alternatives. Besides actual functionality, the main factor

influencing the service selection process is the Quality of
Service (QoS) of the alternatives. However, in addition to
the software parts, services in the IoS often also contain
a physical part, which may be as or even more important
to the user than the technical service itself. For example,
considering a hotel booking service (which we will use as
a running example in the remainder of this paper), we can
safely assume that for the majority of users the technical
booking service is of much less relevance for the overall
satisfaction with the business transaction than the quality
of the hotel itself. Consequently, typical fine-grained QoS
metrics such as service response time are not enough to
capture the full user experience in the IoS. Instead, the
user needs quality metrics which describe the quality of the
business transactions in an end-to-end fashion. We refer to
this less formalized end-to-end quality metric as Quality
of Experience (QoE [4]).

The problem of QoE is that it is inherently hard to
quantify and measure automatically because of the physical
part mentioned above. However, the Web 2.0 trend of folk-
sonomies [5] provides a reasonable way to capture QoE
by incorporating human factors, and evaluate the quality
of services based on feedback from earlier transactions,
e.g., using numerical ratings. Additionally, folksonomies
often make use of the concept of emergent semantics [6]
(i.e., determining the semantics of resources through large
amounts of independent, publicly available metadata, such
as tags) to functionally describe resources.

The main contribution of this paper is the combination
of these two concepts into a service selection framework
for the IoS, which captures human-perceived QoE using
both freeform tags (unstructured feedback similar to Web
2.0 tags) and numerical ratings (structured feedback, i.e.,
ratings) to narrow down and rank available service al-
ternatives. Unlike current systems, unstructured feedback
is used to describe the satisfaction of users with a ser-
vice instead of its semantics. We explain how this leads
to practical challenges such as tag merging, preventing

spamming of service providers or including the context
of invocations, and show how these issues can be tackled.
Furthermore, we explain a system implementation based
on the VRESCO [7] SOA runtime which realizes these
ideas.

The remainder of this paper is structured as follows.
Section 2 gives an overview over the most important
related work. In Section 3 we introduce our approach to
feedback-based service selection. In Section 4 we explain
how the concepts presented in this paper are integrated
into the VRESCO SOA runtime. Section 5 describes the
implementation of our prototype tool, which is discussed
in Section 6. Finally, some concluding remarks and an
outlook on our future work are provided in Section 7.

2. Related Work

Web service discovery based on QoS and service se-
mantics has been a hot topic in research for some time [8],
[9]. Generally, these approaches have a similar scope to
our work in that they aim at allowing users to find not just
any service to fulfill a task, but the best one. However,
as argued in Section 1, we strongly feel that QoS alone
is too narrow to fully represent the experience of service
users in the IoS. The idea that technical QoS parameters
such as availability and response time are too limited to
capture the experience provided to end users has originally
been introduced by van Moorsel in [4]. This work also
concluded that “the relationship between system quality,
user experience (...) is hard to make concrete”, however,
no ideas are presented on how QoE can be estimated
in advance, which is essentially the scope of this paper.
Much research has already been conducted in the area of
collaborative tagging systems, e.g., in [10]. These works
do not apply the concepts of tagging to the area of services
engineering, but focus on general Web 2.0 systems such as
Del.icio.us1. However, these earlier works provided many
helpful insights which helped shape the contributions in
this paper. For instance, [10] was first to identify that
tagging is often used not only to classify information, but
also to rate it, a notion that we also use throughout our
work.

Combining Web 2.0 and SOA has been explored in [11].
This work introduces the concepts of service communities,
and discusses a prototype middleware to support Web
2.0 aspects such as tagging. Unfortunately, little technical
detail about this prototype is openly available. Generally,
our work bears some similarities to the idea of discov-
ering service semantics through tagging [12]. A concep-
tually similar approach is implemented in SOALive [13].
SOALive is a system for describing and discovering sit-

1. http://delicious.com/

uational enterprise services based tag clouds, which is
similar to the work we present. The main difference of
our work and these approaches is that we use tagging for
an entirely different purpose – in these works tagging is
used to describe what a service does, and not how well
it performs. In our work, the “what” aspect is handled
using the VRESCO metadata model, while feedback is
used purely to evaluate “how well” a service performs.

The idea of using past transactions for suggestion is
the foundation of recommender systems [14]. In a recom-
mender system people provide recommendations as input,
which the system aggregates and transforms to support the
selection of others. At the core, our system is a recom-
mender system for IoS services, therefore, our work faces
similar problems. One of these problems is “free-riding”
users, i.e., users which consume feedback from others
while not contributing themselves. Another one is the “vote
early and often” phenomenon [14], i.e., service owners
spamming the system by providing massive amount of
negative feedback for competitors and/or positive feedback
for their services. In our approach, we use the concepts of
trust to deal with the latter issue. The former problem is
not addressed directly, however, we argue that free-riding
becomes more and more irrelevant with increasing scale,
as demonstrated daily by many Web 2.0 platforms which
work perfectly on the notion of voluntary contributions
(e.g., Wikipedia2). An early recommender system for Web
service selection has been presented in [15]. However, this
system is only based on numerical ratings and seems there-
fore limited. A more advanced Web service recommender
system has been presented in [16]. The IC-Service system
presented there actively monitors Web service usage (using
a remote client which has to be incorporated into client
applications) and suggests Web services based on how
other applications use services in similar contexts. The
main difference between this work and ours is that they fo-
cus purely on implicit feedback (i.e., information that their
client application collects), while we use a more explicit
approach where users actively contribute feedback through
tags and ratings. A system based on explicit feedback is
discussed in [17], where explicit structured feedback from
clients is used to evaluate if service providers violate their
Service Level Agreements (SLAs), and an incentive system
is presented which motivates clients to report truthfully on
their perceived service quality.

In the database community the Skyline operator [18]
is a well-known concept to find the most interesting
alternatives in a large set of data points. This is related
to our work, however, the Skyline approach relies on a
well-structured set of dimensions to rank data (i.e., in
order to use the Skyline approach all services need to be

2. http://www.wikipedia.org/

ranked according to similar features). This is in line with
traditional QoS models, however, we argue that the IoS
is inherently less structured. In such a world the Skyline
approach is, unlike our work, not applicable.

3. Solution Outline

Feedback-based service selection considers the selec-
tion of services from a large number of alternatives based
on existing feedback from past user transactions. In our
approach we use two different types of feedback. Firstly,
we make use of unstructured feedback given as any number
of freeform strings (tags). This type of feedback is used to
characterize the QoE provided by a service in a very open
form. Secondly, we use numerical ratings between 1 and
5 as structured feedback to numerically rank services for
selection.

Nice
Far From Center

Good Breakfast

No Pool

Small RoomsRating: 4

Rating: 4

Rating: 1

Good Value for Money

Rating: 5

NiceInn Service: 3.5

Figure 1. Illustrative Example

Figure 1 depicts the type of feedback used in this paper
for an imaginary hotel booking service (NiceInn). There
is feedback from four different customers for the service.
The average numerical rating is 3.5 (on a scale from 1 to
5, with 5 being the best). However, much more interesting
is the unstructured feedback associated with the service
(visualized as tag cloud). From these tags more detailed
information about the service can be learned, such as
that three of four customers seemed rather satisfied, but
the rooms were considered too small, and there is no
pool. Clearly, these tags transport more fine-grained quality
information. Some of this additional information may be
unimportant for some future clients, but essential for others
(e.g., if a client searches for a hotel for a business trip she
may not care about there being a pool in the hotel, however,
for a client who wants to go on summer vacation the
pool might be a must-have). Note that in our model these
tags are used to capture quality rather than semantics or
functionality, even though some tags (like No Pool in the
example) could also be considered functional descriptions.

The high-level process of feedback-based service se-
lection is depicted in Figure 2. Generally, the process is

a positive feedback loop, i.e., successful executions of the
service selection process feed back into the system, which
in turn (in tendency) improve the overall performance of
the system. The selection process has five stages, which
are executed sequentially.

Define
Required

Func.onality

Define Non‐Func.onal
Constraints

Select
Service
Based on
Ra.ngs

Use
Service

Provide
Feedback

Figure 2. Service Selection Cycle

Firstly, the needed functionality is defined (e.g., being
able to book a hotel). This is outside the scope of this
paper. In our solution we mainly use the means provided
by the VRESCO system, however, other approaches such
as Semantic Web Services would be suitable as well.
Secondly, in order to reduce the number of alternatives
presented, non-functional constraints are defined. This is
done by defining which tags should and should not be
associated with the service to find (e.g., services should
have the tags Nice and Good Breakfast associated,
but not No Pool). Logically, this step is used to pre-filter
the number of alternative services using hard constraints on
the QoE of the service. Thirdly, a concrete service is picked
from the remaining alternatives. This step is supported us-
ing both the structured and unstructured feedback: services
are ordered based on average ratings given by users, and
tag clouds can be used to quickly get an impression of
what the general opinion of past users about the service
was, besides the hard constraints formulated in the second
step. When a concrete service is selected, it can finally
be consumed. Lastly, the user should herself contribute
back to the system and provide both tags and numerical
rating to characterize the perceived quality of the service.
In the following section we will explain how this cycle is
implemented and supported in the VRESCO system, and
how the challenges evident in such systems can be tackled.

4. Feedback Metadata and Extensions

We have integrated our feedback-based service selec-
tion model into the VRESCO (Vienna Runtime Envi-
ronment for Service-Oriented Computing) SOA runtime
environment. Details about VRESCO can be found else-
where [19], and will be omitted here due to space restric-
tions. In the following we will present how the metadata
necessary for feedback-based service discovery have been

Service Operation

Category Feature

*1

1
*

*1
1

1

Service
Revision

*
1

*

Identity
- url : String
- certificate : byte[]

Client
- name : String

InteractionTag
- tag : String

Rating
- rating : {1;5}

1
1

*

*
*

1 1

1

1 *

Trust
- trustFactor : decimal

ExtensibilityElement
- extension : string
- mustUnderstand : bool

Interaction
- begin : long
- end : long
- signature : byte[]

*

1

VRESCo M
etadata

Feedback M
odel

Figure 3. Service Feedback Metadata Model

implemented (grounded mostly on work presented in [20]),
and which extensions have been provided in order to deal
with real-world issues.

4.1. Basic Metadata Model

In [20], we have presented the general metadata model
for the VRESCO infrastructure. This paper introduced
the notion of Features and Categories, which are used to
represent and group activities in a domain, e.g., booking a
hotel. In VRESCO, features are semantically well-defined
activities in the domain, with clearly defined inputs and
outputs. In this paper we use Features to capture the
functional aspects of service discovery, i.e., the first step
in the cycle in Figure 2 is implemented by selecting a
concrete Feature from the VRESCO metadata model.

Figure 3 shows an outtake of the original VRESCO
metadata model (“VRESCO Metadata”), and the new data
items that we have added in order to capture structured
and unstructured user feedback (“Feedback Model”). Note
that we have simplified the model for clarity in this
figure. At the core, the idea is to capture Interactions of
Service Clients with concrete Service Revisions. For every
Interaction we store exactly one Rating and any number
of Interaction Tags. In our model we use the Rating as
structured feedback with defined semantics (i.e., the rating
is always a value between 1 and 5, 5 again being the
best), while the Interaction Tags serve as means for the
client to express additional feedback on the Interaction
in a less structured way. Any additional information can
be expressed using Extensibility Elements, which may
contain arbitrary information, usually encoded in XML.
Extensibility elements are (unlike rating and interaction
tags) not standardized, i.e., usually not every extensibility
element is interpretable for every client. The boolean
“mustUnderstand” flag is used to indicate how a client
should proceed when she receives an interaction with an
extensibility element that she cannot interpret. If the flag is
set to “true” the client ignores the interaction as a whole,

if it is set to “false” the client ignores the extensibility
element. Finally, begin and end date of the interaction are
stored (as UNIX timestamp) to allow clients to e.g., only
consider the more recent feedback.

4.2. Extensions

Using the model described above we are able to
represent the basic structured and unstructured feedback
necessary to implement a service selection process such
as the one described in Section 3. However, there are a
number of challenges associated with this basic model:

• Firstly, tagging systems such as the one described
above face the problem of redundancy in tags, i.e.,
many different tags with very similar or identical
semantics (e.g., Nice, Good, Very Well), which
is further amplified by varying spellings and typing
errors. In collaborative tagging systems the idea of tag
merging based on tag similarity has been proposed
to overcome this issue [21]. We provide two different
merging strategies (based on co-occurence and cosine
similarity) to define similarity of tags.

• Secondly, tagging systems are known to be suscepti-
ble to spamming of service providers [6]. We use a
trust model to represent the reliability of a feedback
source, in order to mitigate the influence of spam. On
this account it is also necessary to provide means to
verify the integrity of feedback (i.e., to verify that the
feedback has not been forged).

• Finally, the above model ignores the context [22] in
which a service has been used when it has been rated.
This may be problematic for services which are often
used in varying contexts, and exhibit a different QoE
depending on it (e.g., the QoE provided by a hotel
service may be totally different depending on whether
the service is used in the context of a business or
leisure trip). Therefore, we allow to annotate feedback
with context information, so that future users may
choose to incorporate only feedback which has been
collected in equivalent circumstances of usage.

In the following we will discuss our solutions to these
problems in more detail.

4.2.1. Tag Merging. To define similarity of freeform
tags a number of possibilities exist [23]. Most of these
similarity measures focus on how often tags have been
used to describe the same service (co-occurence) or on
the similarity of their usage patterns (cosine similarity). In
VRESCO, we allow system administrators to select from
three different tag merging strategies. The most basic one
is the none strategy (no merging at all). Co-occurence
merging considers all tags t1, t2 to be similar which have a

normalized co-occurce (nfreq(t1, t2)) greater than a user-
defined threshold. The co-occurence of two tags t1 and
t2 is defined as the number of times t1 and t2 have been
associated with the same service. We use the normalized
co-occurence (co-occurence divided by the total number of
times t1 and t2 have been used), because it is in [0; 1], with
nfreq(t1, t2) = 0 meaning that the tags are never used
together, and nfreq(t1, t2) = 1 meaning that the tags are
only used in conjunction. Finally, cosine similarity merging
considers tags to be similar if they have a cosine similarity
cossim(t1, t2) greater than a given threshold. We use the
definition of cosine similarity presented in [21]:

cossim(t1, t2) :=
v1 · v2

‖v1‖ · ‖v2‖
(1)

vi are vectors, with vt,t′ := freq(t, t′) (i.e., every
vector vi consists of the non-normalized distances to all
tags). vt,t (the distance of a tag to itself) is defined as 0.
‖v1‖ denotes the magnitude of v1.

The actual process of tag merging is implemented using
the following algorithm: for each tag we check if we
should merge it with any other tag in the database (i.e.,
if the similarity of those tags is higher than a given
threshold), and if both tags have been used more than
once (we explicitly exclude tags which have been used
only once, since we have too little information to merge
these tags). If this is the case we update all occurrences
of the tag which has been used less frequently with the
more popular one. After merging a tag, we recalculate its
similarity to every other tag. Consider for example the case
of co-occurence merging with a threshold of 0.2. In this
case, the two tags Good and Very Nice are merged if
and only if they are used together (i.e., describing the same
service) at least 20% of the time.

4.2.2. Trust Relationships. Another problem is spamming
of service providers. One approach to handle this problem
is to consider only feedback from trusted other users.
However, this would arguably hamper the usefulness of
the system, since too little feedback would be available to
most services. One compromise to prevent spamming on
the one hand and still incorporate a reasonable amount of
feedback is to propagate trust relationships in a “friend of
a friend” type of way.

A

A

B C

D F G

t(D,A) t(A,B)
t(A,C)

t(B,D)

t(B,F)
t(C,F)

t(F,G)

t(C,G)

t(B,C)

Figure 4. Example Trust Graph

Trust relationships between users in VRESCO are
weighted using a “trust factor”, a decimal value in [0; 1],
where 0 represents “no trust” and 1 “full trust”. Inher-
ently, the trust relationships between Service Clients form
a weighted, directed graph, which we refer to as trust
graph. Figure 4 sketches a small example trust graph, in
which trust is propagated using a simple algorithm: the
trust between two clients is the weighted length of the
unweighted shortest path (i.e., the path with the smallest
number of edges, ignoring edge weights) between these
two clients in the trust graph; if two or more equally long
shortest paths exist the one yielding a lower trust is used.
Client A trusts B with a trust factor of t(A, B), C with a
trust factor of t(A, C) and F with either t(A, B) · t(B, F)
or t(A, C) · t(C, F), depending on which is less. Note that
clients can explicitly assign a trust factor of 0 to essentially
block a user. Clients choose a threshold of trust factor up
to which they consider a client still trustworthy. Greater
trust thresholds prevent spamming with higher certainty,
however, this also leads to fewer interactions being used
for selection, decreasing the value of the feedback-based
service selection in general.

Trust relationships as described above inherently rely
on the system being able to guarantee that feedback has
not been forged (i.e., that a given feedback is indeed from
the user that it claims to be from, and that the feedback has
not been changed). We use digital signatures and OpenID3

to let users explicitly verify the feedback that they use for
their selection.

4.2.3. Context Information. The feedback metadata
model as depicted in Figure 3 allows for Extensibility
Elements, which incorporate more information about In-
teractions than the basic model of tags and rating. One
concrete usage of Extensibility Elements in our system
is to capture the context of Interactions. In our current
prototype we re-use the context model presented in [24]
for the VieCAR framework. In this model Activities can
be modeled, which represent the context in which action
has been carried out, e.g., booking a leisure trip. This
context information may be used to filter out Interactions
which are less relevant, e.g., if a client is searching for a
hotel service for a leisure trip interactions which have been
conducted in a leisure context are more likely relevant to
her than interactions in a business context.

For our prototype we have predefined a number of
different contexts for the travel case study as described in
Section 3. Currently, users can only select a context from
these provider-defined activities. Clearly, these predefined
contexts are scenario-dependent. As part of our future work
we therefore plan to improve on this facet by allowing

3. http://openid.net/

users to define their own contexts and how they relate to
existing ones, e.g., by refining existing contexts.

5. Prototype

We have implemented an end-to-end prototype system
as an ASP.NET application on top of the VRESCO SOA
runtime environment. The system is implemented in the C#
programming language, using .NET 3.5 and the Windows
Communication Foundation4 (WCF) framework.

Our application supports the service selection cycle as
described in Figure 2, i.e., the usage of the tool follows
the five central steps “Defined Functionality”, “Define
Constraints”, “Select Service”, “Use Service” and “Provide
Feedback”. Required functionality can be selected using
the VRESCO construct of Features. Non-functional con-
straints are defined by selecting tags describing qualities
that the service should or should not exhibit, while the
actual selection of a service is based on the rating given
by previous users. Finally, the system allows to invoke
a service and provide feedback. Note that obviously the
system supports only the invocation of the “technical” part
of a service, e.g., in the hotel scenario our application
supports the invocation of the hotel booking service, but
the feedback provided by the user should be based not
only on her experience with the booking service, but with
the hotel stay in general. Therefore, the last step “Provide
Feedback” may be executed significantly after the actual
technical invocation of the Web service.

Generally, the system makes heavy use of tag clouds.
Tag clouds are used to visualize unstructured user feedback
and to support Feature selection. For the actual invoca-
tion of selected Web services the prototype incorporates
the Dynvoker [25] framework, which is able to invoke
both SOAP-based and RESTful Web services. Dynvoker
allows to generate easy-to-use graphical user interfaces
from WSDL or WADL service descriptions. In Figure 5
we have depicted the interfaces to select non-functional
properties using tag clouds (Figure 5(a)) and to select
services using structured feedback (Figure 5(b)). Users
can select tags by dragging-and-dropping tags from the
tag cloud onto the “+” and “-” icons. Furthermore, our
prototype allows to manage user trust relationships (as de-
scribed in Section 4), by defining “buddies” and blocking
users. Tag merging following one of the three tag merging
strategies described in Section 4 has been implemented
as a server-side background process. This is because tag
merging is computationally expensive, and cannot be done
dynamically at request time. Therefore, the tag merging
strategy used cannot be selected by the user of the system,
but needs to be defined globally by a system administrator.

4. http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

6. Case Study

To illustrate the usefulness of our approach we will
now exemplify the usage of our system based on an
illustrative case study. For this, we will use feedback on
hotels gathered from TripAdvisor5. We collected feedback
on 40 popular hotels located in Vienna, which includes
data about roughly 1750 interactions.

Figure 5(b) shows the top 15 hotels ranked according
to their average numerical rating. This is akin to the
traditional Web 2.0 way of listing services based on
reviews. However, we can see that the difference of the
average rating among the top 10 is only marginal. From
this numerical ranking alone it is hard to judge which
hotel is actually the best to choose. We can now use
the unstructured feedback provided by previous users to
get a clearer picture. Figure 5(a) shows the tag cloud
visualization of the available feedback to the hotels. We
have now a more detailed control over which properties
we would like the service to exhibit. For instance, we
are able to define that a good location is important for
us, and that we want the hotel staff to be very friendly.
These properties are specified by selecting the tags good
location and friendly staff as required. The list
of matching hotels is now significantly shortened to 5
(arguably more relevant) services. Additionally, among
these 5 results, the difference in rating is more significant,
allowing us to make a more informed decision.

Merging Strategy Threshold # Distinct Tags
None – 1666
Co-Occurence 0.45 1590
Co-Occurence 0.20 1479
Co-Occurence 0.15 1469
Cosine Similarity 0.003 1591
Cosine Similarity 0.001 1503
Cosine Similarity 0.0005 1483

Table 1. Distinct Tags Per Merging Strategy

However, as we can see in Figure 5(a), there
are currently many tags with very similar semantics
(e.g., great location, excellent location and
good location), which are blurring the picture. This
can be resolved to some degree by enabling tag merging.
In Table 1 we have summarized how various tag merging
configurations influence the total number of tags contained
in the system. Note that the thresholds used for cosine
similarity are much lower than for co-occurence merging.
This is due to the fact that cosine similarity values are
by definition much lower than the co-occurence values
(the arithmetic mean of all co-occurence similarities in our
data set is 0.0532, and only 0.0011 for cosine similarity).
From Table 1 we can see that cosine similarity merging

5. http://www.tripadvisor.com/

(a) Non-Functional Property Selection Using Tag Clouds (b) Services Ranked by Structured Feedback

Figure 5. Prototype Screenshots

is in tendency more “conservative”, in the sense that tags
are merged less frequently. In our case study using co-
occurence merging with a threshold of 0.25 produces the
most useful results, leading to a rather clear tag cloud (see
Figure 6). For reasons of brevity we do not discuss the
consequences of including context information and trust
in this illustrative example.

Figure 6. Tag Cloud After Merging

To draw some conclusions from this illustrative ex-
ample, we can state that the general ideas of this paper
seem valid when applied to real-world data. We argue that
our approach significantly improves selection quality as
compared to e.g., UDDI specifically in scenarios where
the quality of services is not easily described using typical
QoS metrics such as response time alone. However, two
limitations should not be left undiscussed. Firstly, it is ob-
vious that our way of filtering for non-functional properties
is heuristic: just because no user ever used the tag clean
or a synonym to describe a hotel it does not necessarily
mean that it is dirty. However, this problem decreases
with an increasing number of interactions stored, which
means that our approach inherently relies on a certain
scale of the system (regarding number of users and service
alternatives). Secondly, when examining our example data
set it became obvious that most user feedbacks are rather
positive. In our sample, only about 1

10 of the tags can
be considered negative. After tag merging, some negative
tags are contained, but they are still relatively scarce as
compared to the positive ones.

7. Conclusion

The IoS is a global service ecosystem, with the two
most prominent features being the large scale and the
strong involvement of humans, also as service clients.
Therefore, novel service discovery methods are necessary
which take these characteristics into account. In this paper
we have presented one approach which satisfies these
requirements. We have explained the notion of QoE, and
how QoE can be modeled using feedback from past user
transactions. In VRESCO we have integrated a feedback-
based service selection mechanism, which uses simple
string tags to capture unstructured user feedback, and
numerical ratings for structured feedback. Additionally,
we use a trust model to prevent service providers from
spamming the system, and digital signatures to verify
feedback integrity. The context of interactions of users and
services is incorporated using an existing context model.
Finally, we allow to merge tags with similar semantics.
We detailed the implementation of an end-to-end prototype
system, and explained some aspects of the system based
on an illustrative example.

Our current implementation can be seen as a first step
towards a full selection infrastructure. To that end future
work has to be carried out in some directions. Firstly, we
plan to extend our model to incorporate implicit user feed-
back besides the explicit feedback discussed here. Such
implicit feedback includes monitoring of user behavior and
preferences. Secondly, more thought needs to be put into
the way context information is used. Currently, contexts
can either be “equivalent” or “not equivalent”, ignoring
the possibility of partially matching contexts. Finally, even
though the first experimental results as discussed in Section
6 are promising we still need to conduct some real-life
experimentation to further validate the ideas presented.

This is especially relevant to further “fine-tune” the various
parameters of the system (e.g., parameters for tag merging,
or the numerical values for trust levels as discussed in
Section 4).

Acknowledgements

The research leading to these results has received
funding from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement
215483 (S-Cube). We would like to express our gratitude
to Christoph Dorn, Daniel Schall, Florian Skopik, Josef
Spillner, Jordan Janeiro and Markus Jung for help on
various aspects of the paper.

References

[1] C. Schroth and T. Janner, “Web 2.0 and SOA: Converging
Concepts Enabling the Internet of Services,” IT Profes-
sional, vol. 9, no. 3, pp. 36–41, 2007.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Ley-
mann, “Service-Oriented Computing: State of the Art and
Research Challenges,” IEEE Computer, vol. 40, no. 11, pp.
38–45, 2007.

[3] J. Soriano, D. Lizcano, J. J. Hierro, M. Reyes, C. Schroth,
and T. Janner, “Enhancing User-Service Interaction through
a Global User-Centric Approach to SOA,” in Proceedings
of the Fourth International Conference on Networking and
Services (ICNS), 2008.

[4] A. van Moorsel, “Metrics for the Internet Age: Quality of
Experience and Quality of Business,” HP Labs, Tech. Rep.,
2001.

[5] A. Mathes, “Folksonomies – Cooperative Classification
and Communication Through Shared Metadata.” [On-
line]. Available: http://www.adammathes.com/academic/
computer-mediated-communication/folksonomies.html

[6] E. Michlmayr, “A Case Study on Emergent Semantics in
Communities,” in Proceedings of the Workshop on Social
Network Analysis, International Semantic Web Conference
(ISWC), 2005.

[7] A. Michlmayr, F. Rosenberg, C. Platzer, and S. Dustar, “To-
wards Recovering the Broken SOA Triangle – A Software
Engineering Perspective,” in Proceedings of the Interna-
tional Workshop on Service Oriented Software Engineering
(IW-SOSE’07), 2007.

[8] L.-H. Vu, M. Hauswirth, and K. Aberer, “QoS-based Ser-
vice Selection and Ranking with Trust and Reputation Man-
agement,” in Proceedings of the International Conference
on Cooperative Information Systems (CoopIS), 2005.

[9] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A QoS-
Aware Selection Model for Semantic Web Services,” in
Proceedings of the 6th International Conference on Service-
Oriented Computing (ICSOC), 2006.

[10] S. A. Golder and B. A. Huberman, “Usage Patterns of
Collaborative Tagging Systems,” Journal of Information
Science, vol. 32, no. 2, pp. 198–208, 2006.

[11] S. Tai, N. Desai, and P. Mazzoleni, “Service Communities:
Applications and Middleware,” in Proceedings of the 6th
International Workshop on Software Engineering and Mid-
dleware (SEM), 2006.

[12] H. Meyer and M. Weske, “Light-Weight Semantic Service
Annotations through Tagging,” in Proceedings of the 6th
International Conference on Service-Oriented Computing
(ICSOC), 2006.

[13] I. Silva-Lepe, R. Subramanian, I. Rouvellou, T. Mikalsen,
J. Diament, and A. Iyengar, “SOAlive Service Catalog:
A Simplified Approach to Describing, Discovering and
Composing Situational Enterprise Services,” in Proceedings
of the 6th International Conference on Service-Oriented
Computing (ICSOC), 2008.

[14] P. Resnick and H. R. Varian, “Recommender Systems,”
Communications of the ACM, vol. 40, no. 3, pp. 56–58,
1997.

[15] U. S. Manikrao and T. V. Prabhakar, “Dynamic Selection of
Web Services with Recommendation System,” in Proceed-
ings of the International Conference on Next Generation
Web Services Practices (NWESP), 2005.

[16] A. Birukou, E. Blanzieri, P. Giorgini, and N. Kokash,
“Improving Web Service Discovery with Usage Data,” IEEE
Software, vol. 24, no. 6, pp. 47–54, 2007.

[17] R. Jurca, B. Faltings, and W. Binder, “Reliable QoS Mon-
itoring Based on Client Feedback,” in Proceedings of the
16th International Conference on World Wide Web (WWW),
2007.

[18] S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” in Proceedings of the 17th International Confer-
ence on Data Engineering. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 421–430.

[19] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“End-to-End Support for QoS-Aware Service Selection,
Invocation and Mediation in VRESCo,” TUV-1841-2009-
03, Vienna University of Technology, Tech. Rep., 2009.

[20] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar, “In-
tegrated Metadata Support for Web Service Runtimes,” in
Proceedings of the Middleware for Web Services Workshop
(MWS’08), co-located with the 12th IEEE International
EDOC Conference, 2008.

[21] C. Cattuto, D. Benz, A. Hotho, and G. Stumme,
“Semantic Analysis of Tag Similarity Measures in
Collaborative Tagging Systems,” May 2008. [Online].
Available: http://arxiv.org/abs/0805.2045

[22] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on
Context-Aware Systems,” International Journal of Ad Hoc
Ubiquitous Computing, vol. 2, no. 4, pp. 263–277, 2007.

[23] G. Palla, I. J. Farkas, P. Pollner, I. Derenyi, and T. Vicsek,
“Fundamental statistical features and self-similar properties
of tagged networks,” New Journal of Physics, vol. 10, 2008.

[24] D. Schall, C. Dorn, S. Dustdar, and I. Dadduzio, “VieCAR
– Enabling Self-adaptive Collaboration Services,” in Pro-
ceedings of the 34th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), 2008.

[25] J. Spillner, M. Feldmann, I. Braun, T. Springer, and
A. Schill, “Ad-Hoc Usage of Web Services with Dynvoker,”
in Proceedings of the 1st European Conference Towards a
Service-Based Internet (ServiceWave), 2008.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

E Monitoring and Analyzing Influential Factors of Business Pro-
cess Performance

External Final Version 1.0, Dated December 15, 2009 65

Monitoring and Analyzing Influential Factors of
Business Process Performance

Branimir Wetzstein∗ Philipp Leitner† Florian Rosenberg† Ivona Brandic† Schahram Dustdar† Frank Leymann∗

∗Institute of Architecture of Application Systems
University of Stuttgart

Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

†Distributed Systems Group
Vienna University of Technology

Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract—Business activity monitoring enables continuous ob-
servation of key performance indicators (KPIs). However, if
things go wrong, a deeper analysis of process performance
becomes necessary. Business analysts want to learn about the
factors that influence the performance of business processes and
most often contribute to the violation of KPI target values, and
how they relate to each other. We provide a framework for per-
formance monitoring and analysis of WS-BPEL processes, which
consolidates process events and Quality of Service measurements.
The framework uses machine learning techniques in order to
construct tree structures, which represent the dependencies of
a KPI on process and QoS metrics. These dependency trees
allow business analysts to analyze how the process KPIs depend
on lower-level process metrics and QoS characterisitics of the
IT infrastructure. Deeper knowledge about the structure of
dependencies can be gained by drill-down analysis of single
factors of influence.

I. INTRODUCTION

Business Process Management (BPM) encompasses a set of
methods, techniques, and tools for modeling, executing and
analyzing business processes of an organization [1]. Recently,
BPM has been supported by a set of tools which have been
integrated in order to support the business process lifecycle in
a unified manner. Thereby, business analysts create a business
process model, which is then refined by IT engineers to an
executable model. The executable process model is deployed
to a process engine, which executes the process by delegating
tasks to humans and services. The execution of processes is
often based on a Service Oriented Architecture [2] (SOA). In
that case, the business process model is typically implemented
as a service composition, for example in WS-BPEL [3].

An important aspect of the BPM lifecycle is the continuous
supervision of business goals and timely measurement of
business process performance. This is typically supported by
business activity monitoring (BAM) technology, which enables
continuous, near real-time monitoring of processes based on an
eventing infrastructure [4]. Analysts define Key Performance
Indicators (KPIs) and their target values based on business
goals (e.g., “order fulfillment lead time < 3 days”). KPIs are
influenced by a set of Process Performance Metrics (PPM) [5],
which are metrics based on process runtime data (e.g., “number
of orders which can be served from inhouse stock”). PPMs are
on a different level of granularity than KPIs: a KPI measures the

success of the process as a whole, while a PPM captures only
a single facet of the process, which is usually not interesting
in isolation. Additionally, KPIs are influenced by technical
parameters, i.e., the Quality of Service (QoS) metrics of the
SOA (e.g., the availability of the process engine or the response
time of Web services).

Business Activity Monitoring provides useful information on
KPI achievement. However, the focus is set on the “what” rather
than the “why” question. When KPIs do not meet target values
the business analysts are interested in factors that cause these
deviations. Since KPIs potentially depend on numerous lower-
level PPMs and QoS metrics, these causes can be manifold,
and are rarely obvious even to domain experts. In this paper we
present an integrated framework for run-time monitoring and
analysis of the performance of WS-BPEL processes. Our main
contribution is the presentation of a framework for dependency
analysis, a machine learning based analysis of PPMs and QoS
metrics, with the ultimate goal of discovering the main factors
of influence of process performance (i.e., KPI adherence). These
factors are represented in an easy-to-interpret decision tree
(dependency tree). We present the general concepts of our
analysis framework, and provide experimental results based
on a purchase order scenario, identify cases when dependency
trees do not show expected results, and explain strategies how
these problems can be coped with.

The rest of the paper is organized as follows. In Section II
we present a scenario which we use for explaining our concepts
and for experimentation and explain the research issues that
this paper deals with in more detail. Section III explains
the main ideas of our framework for runtime monitoring
and dependency analysis. Section IV explains in detail the
monitoring of influential factors, which is then followed by the
description of the dependency analysis in Section V. Section
VI describes the implementation of our prototype based on the
scenario and experimental results, which are also extensively
interpreted. Section VII discusses important related work and
Section VIII finally concludes the paper and presents some
future research directions.

O
rd

er
 P

ro
ce

ss
in

g P
ro

ce
ss

in
g

B
an

ki
ng

S
up

pl
ie

r C
on

ta
ct

S
hi

pp
in

g

Check Availability in
 Warehouse NotifyReceive PO

CreditAuthorizeGetPaymentPrefs

Receive Delivery
 Notification

Cancel Process

Contact Suppliers

Receive Delivery
Notification Ship POPackage

Can Deliver?

Wait for Supplier?All available?

no

Fig. 1. Reseller Process Model in BPMN

II. SCENARIO

In this section we present a scenario which we use in the
following sections for explaining our concepts and which we
have implemented and used for experimentation purposes. We
have chosen a purchase order scenario consisting of a customer,
a reseller, its two suppliers, a banking service, and a shipping
service. The business process of the reseller is illustrated in the
BPMN diagram shown in Figure 1. The reseller offers certain
products to its customers. It holds a certain part of the products
in stock and orders missing products from suppliers if necessary.
The customer sends a purchase order request with details about
the required products and needed amounts to the reseller. The
latter checks whether all products are available in stock. If some
products are not in stock, they are ordered from suppliers. Note
that the second supplier is contacted only if the first (preferred)
supplier is not able to deliver. If the purchase order can be
satisfied, the customer receives a confirmation, otherwise the
order is rejected. The reseller waits, if needed, for the supplier
to deliver the needed products. When all products are in place,
the warehouse packages the products and hands them over to
the shipment service, which delivers the order to the customer,
and finally notifies the reseller about the shipment. In parallel
to the packaging and shipment, the payment subprocess is
performed. For that, the customer decides on the payment style
and gives its payment details. The reseller contacts a banking
service which authorizes the customer and credits the agreed
amount. From the point of view of the reseller, a typical KPI
is the order fulfillment lead time (duration from receiving the
customer order until shipment is received by the customer), as
defined in the Supply-Chain Reference Model (SCOR) [6].

Assuming that this process is implemented using WS-BPEL,
the KPI order fulfillment lead time is potentially influenced
by a number of technical and non-technical factors, such
as the response time and availability of Web services, the
customer, or the products ordered (Figure 2). In Table I, we have
provided an (incomplete) list of potential factors of influence
for the KPI from our scenario. Factors can include simple
facts from the business process instance, such as a customer

PPMs

Purchase
Order

Process

measured by

Order
Fulfillment
Lead Time

25% 75%

Customer,
Products,

Availability in
Stock, ...

QoS

Service
Availability,
Response
Times, ...

Fig. 2. KPIs, PPMs and QoS metrics

identifier, a product type, or information about which branch of
a process has been executed (e.g., whether the alternative branch
“ordering from external suppliers” needed to be executed). All
these facts are accessible from the process instance, therefore,
we have not given a calculation formula for these PPMs in the
table. However, PPMs on a different level of granularity are also
possible, such as the duration of a whole subprocess. Finally,
we have given a few simple examples of QoS metrics, which
may influence the KPI performance, such as the availability
of the process engine or single services that the process relies
on, or the response time of these services. A full discussion
of possible QoS metrics is out of scope of this paper. The
interested reader may refer e.g., to [7] for a more complete
description of possible QoS metrics and their measurement.
For completeness, we have also provided the possible range for
these example influential factors. Generally, factors of influence
can either be nominal values (i.e., take on one of a finite number
of predefined values), or numeric values (e.g., integer or real
values).

However, it is not obvious even to experts which of these
factors actually influence the KPI most, and what the structure
of the dependencies between factors of influence is (i.e., some
factors are in turn influenced by others, such as the duration of
the payment subprocess which is again influenced by service
response times). These questions are not answered sufficiently
by today’s BAM dashboards – they can only provide status

Name Type Calculation Formula Range

Customer ID PPM {Customer1, Customer2, . . .}
Product Type PPM {Product1, P roduct2, . . .}
Shipped from stock PPM {true, false}
Duration of Payment Subprocess PPM tend − tbegin [0;∞]

Availability Process Engine QoS #available
#checks

[0; 1]

Availability Banking Service QoS #available
#checks

[0; 1]

Response Time Banking Service QoS tend − tbegin [0;∞]

TABLE I
POTENTIAL INFLUENTIAL FACTORS OF KPI PERFORMANCE

information about KPIs, but do not allow further analysis of
the main causes for violations. Our approach supports this
kind of analysis, which we refer to as dependency analysis
(i.e., the analysis of dependencies of KPIs to PPMs and QoS
metrics). Furthermore, more detailed information about internal
dependencies between factors of influence can be gained
by drill-down analysis, i.e., recursively applying dependency
analysis to single factors of influence.

III. FRAMEWORK OVERVIEW

In this section we describe the concepts of our framework
for monitoring and analyzing factors of influence of business
process performance. A high-level overview of the main
components is given in Figure 3. In our framework we
distinguish three different layers.

Metrics
Database

WS-BPEL
Engine

Pricess
MonitorsPricess

MonitorsQoS
Monitor

Services

Extract &
Correlate

25%
50%

75%

BAM
Dashboard

Process
Analyzer

Pr
oc

es
s

Ru
nt

im
e

M
on

ito
rin

g
An

al
ys

is

Data Flow
Invocation

Publish/Subscribe
Channel

Monitoring
Tool

Fig. 3. Monitoring and Analysis Framework Overview

In the process runtime layer, a WS-BPEL business process
is defined and executed. The process can be executed in a

standard WS-BPEL compliant engine, as long as the engine is
able to emit the process information necessary for calculating
PPMs in form of process events.

In the monitoring layer, information about the running
business process and the services it interacts with is collected
in order to monitor KPIs, PPMs, and QoS metrics. Note that
we assume that the user has defined a set of potential influential
factors he wants to monitor for a KPI in order to ensure that
corresponding metric data is available later on for analysis. KPIs
and their potential infuential factors, consisting of both process
performance metrics (PPMs) and QoS metrics, are modeled as
part of a Process Metrics Definition Model (PMDM). Those
metric definitions are deployed to the corresponding monitoring
infrastructure components: QoS metric measurement directives
to a QoS monitor(s); event definitions needed for PPM
calculation to the WS-BPEL engine; and the whole PMDM
to the monitoring tool. During process execution time, the
QoS monitor and WS-BPEL process engine publish events
to a publish/subscribe channel which the monitoring tool is
subscribed to. The PPM and QoS metric values are calculated,
stored in the metrics database for later analysis, and displayed
in the BAM dashboard.

In the process analysis layer, the collected metrics informa-
tion is analyzed by the process analyzer component. When the
user is interested in performing a dependency analysis of KPIs,
i.e., analyze the influential factors, the process analyzer gathers
the needed metric data from the metrics database, prepares it
for data mining, and uses a decision tree algorithm to generate
a dependency tree which shows the influential factors of the
KPI. Outcomes of the analysis are again displayed in the
dashboard to the users of the system, who can use this resulting
information to optimize the business process.

IV. MONITORING OF INFLUENTIAL FACTORS

We distinguish in our approach between PPMs and QoS
metrics, which are supported by different monitoring mech-
anisms. PPMs are measured based on business events (e.g.,
OrderReceivedEvent) which are published by the WS-BPEL
engine and other involved systems as the process instances
are executed (Section IV-A). KPIs are specified over PPMs
by providing a predicate (boolean-valued function) over their

values which evaluates to true if the target value is achieved,
e.g., order fulfillment lead time < 2 days. QoS metrics are
used for measuring the IT characteristics of the involved
systems (e.g., availability and response time of Web service
operations) and are provided either by dedicated QoS monitors
or instrumentations of involved systems (Section IV-B).

A. PPM Monitoring

PPMs are metrics defined based on runtime events of
processes. In the following, we focus on runtime events of
WS-BPEL service orchestrations, but in general our approach
supports arbitrary events of information systems participating
in the business process.

PPM monitoring encompasses three phases: modeling,
deployment, and monitoring. In the modeling phase, PPM
definitions are specified in an XML file as part of the PMDM. A
PPM definition specifies the name, description, unit, data type,
and value calculation of the metric. When specifying PPMs we
can distinguish between atomic and composite metrics. Atomic
metrics are specified based on events which are published
by the WS-BPEL engine. The metric value calculation of
an atomic metric specifies how the value of the metric is
retrieved from process event data (e.g., timestamp or a process
data element). Composite metrics are calculated using diverse
functions (arithmetic, aggregation, relational) based on atomic
metrics and other composite metrics. When the PMDM is
to be deployed to the monitoring tool, we generate event
filters which subscribe to the events emitted by the process
engine. Most engines support an event publishing mechanism,
which in most cases is also to some extent configurable on
which events to publish. During process execution, the PPM
monitor receives events via event listeners which are subscribed
to the publish/subscribe channel which the process engine
uses for publishing events, and then calculates atomic metrics
using event filters. After calculation of an atomic metric, its
value is saved in the metrics database with a reference to the
corresponding process instance. This reference is needed for
later analysis. In the next step, all composite metrics which
use that atomic metric are calculated in a recursive fashion.

In the following, we explain the PPM monitoring concepts
based on a sample PPM from our scenario. Listing 4 shows a
definition of an atomic metric in the PMDM which retrieves
the information from a process variable on whether the supplier
can deliver ordered products. To define an atomic PPM the user
can use a set of predefined functions for measuring duration
of activities and between activities, count the occurrence of
activity executions, extracting the state of an activity or process,
or access process data variables. The parameters of these
predefined functions are linked to elements of process models
such as a process activity, a data variable, or the process itself,
and specify in addition the state of the process element when
it is to be measured (e.g., started, halted, completed). In our
example, we use a variable function which references an el-
ement containing that information in the corresponding process
variable orderItemsResponseMessage and the activity
orderItemsFromSupplier1 at which the variable value

� �
1 <ppm i d =” S u p p l i e r 1 c a n D e l i v e r ”>
2 <name>S u p p l i e r 1 c a n D e l i v e r</ name
3 <da taType>b o o l e a n</ da t aType>
4 <c a l c u l a t i o n>
5 <c a l c : v a r i a b l e a c t i v i t y =” o r d e r I t e m s F r o m S u p p l i e r 1 ”
6 v a r i a b l e =” o r d e r I t e m s R e s p o n s e M e s s a g e ” />
7 </ c a l c u l a t i o n>
8 <a t t a c h m e n t s>
9 <a c t i v i t y A t t a c h m e n t

10 parameterName=” o r d e r I t e m s F r o m S u p p l i e r 1 ”
11 x l i n k : t y p e =” s i m p l e ”
12 x l i n k : h r e f =” P u r c h a s e O r d e r P r o c e s s . b p e l # x p o i n t e r (
13 / / ∗ [@name=&qu o t ; o r d e r I t e m s F r o m S u p p l i e r 1&quo t ;]) ”>
14 <a c t i v i t y S t a t u s>comple t ed</ a c t i v i t y S t a t u s>
15 </ a c t i v i t y A t t a c h m e n t>
16 <v a r i a b l e A t t a c h m e n t
17 parameterName=” o r d e r I t e m s R e s p o n s e M e s s a g e ”
18 x l i n k : t y p e =” s i m p l e ”
19 x l i n k : h r e f =” l o a n A p p r o v a l P r o c e s s . b p e l # x p o i n t e r (
20 / / ∗ [@name=&qu o t ; o r d e r I t e m s R e s p o n s e M e s s a g e&quo t ;]) ”>
21 <v a r i a b l e P a r t>d e l i v e r y P o s s i b l e</ v a r i a b l e P a r t>
22 </ v a r i a b l e A t t a c h m e n t>
23 </ a t t a c h m e n t s>
24 </ ppm>� �

Fig. 4. Sample PPM Definition

is to be read (lines 5-6). In the attachments block the links
to corresponding WS-BPEL process elements are defined (lines
8-23). Thereby, we use XLink1 and XPointer2 to point to the
XML elements in the WS-BPEL file. For example, we reference
the activity with name orderItemsFromSupplier1 in the
PurchaseOrderProcess.bpel XML file (lines 12-13).
In addition, we specify that at the state completed of that
activity the corresponding event should be gathered (line 14).
Note that we neglect here that activities can be performed
several times per process instance if they are part of a loop;
in that case one would have to additionally specify in which
loop execution one is interested in.

When the PPM definition is to be deployed to the monitoring
tool, assuming the usage of the Apache ODE BPEL Engine3

(which we have also used for our scenario implementation),
an event filter for the events ActivityExecEndEvent
and VariableModificationEvent is generated. The
first event is published when the corresponding activity has
completed; it contains the process model name, the activity
name, and identifiers of the corresponding process instance
and activity instance. The second event is sent whenever a WS-
BPEL variable has changed and contains the process variable
data, the name of the process model, the name of the variable,
and a process instance identifier.

The task of an event filter is to calculate an atomic metric
as specified in the PPM definition based on received event
data. Therefore, it has to deal with event correlation and
process instance management. In the example above, for
each process instance, the event filter collects (potentially
more than one) VariableModificationEvent until it
receives an ActivityExecEndEvent, and then chooses
the last received VariableModificationEvent in order

1http://www.w3.org/TR/xlink/
2http://www.w3.org/TR/xptr-xpointer/
3http://ode.apache.org/

� �
1 <qm i d =” P O P r o c e s s A v a i l a b i l i t y ”>
2 <name>P O P r o c e s s A v a i l a b i l i t y</ name
3 <da taType>i n t e g e r</ da t aType>
4 <c a l c u l a t i o n>
5 <a v a i l a b i l i t y>
6 <e n d p o i n t>
7 h t t p : / / l o c a l h o s t : 8 0 8 2 / . . . / p o P r o c e s s ? wsdl
8 </ e n d p o i n t>
9 <t e s t F r e q u e n c y P e r M i n u t e>20</ t e s t F r e q u e n c y P e r M i n u t e>

10 <s t a r tT imePpm i d r e f =” P O P r o c e s s S t a r t e d T i m e ” />
11 <endTimePpm i d r e f =” PO Process Completed Time ” />
12 </ a v a i l a b i l i t y>
13 </ c a l c u l a t i o n>
14 </ qm>� �

Fig. 5. Sample QoS Metric Definition

to retrieve the most recent content of the needed process data
variable. Thereby, those events are correlated using the process
instance identifier which is part of both types of events. Note
that in case of non-BPEL events the correlation could not be
done based on the technical process identifiers (assigned by
the BPEL engine), but based on a business identifier such as
the purchase order identifier.

B. QoS Metrics Monitoring

The business processes we focus on in this paper are
implemented as service compositions running on top of a SOA.
Such processes have several dependencies on IT components
and their QoS characteristics, which potentially influence
business process performance. In our context there are three
possibilities of measuring QoS: (1) probing by a separate QoS
monitor, such as the one described in [7], (2) instrumentation of
the WS-BPEL engine, or (3) instrumentation of the WS-BPEL
process (evaluating QoS parameters using PPMs, e.g., response
times of Web services can be estimated through WS-BPEL
activity durations). In our scenario implementation, we use
an external QoS monitor for measuring the availability of the
process engine and partner Web services of the WS-BPEL
process. The QoS monitor polls the corresponding endpoints
and emits QoS events which contain information on their
availability at a certain point in time. Response time is estimated
based on the duration of the corresponding WS-BPEL invoke
activity.

Just like PPMs, QoS metrics are defined in the PMDM.
Listing 5 shows the definition of the availability metric for
the purchase order process from our scenario. Thereby, we
assume that availability is measured by an external QoS monitor
by polling the corresponding Web service endpoint with
a certain testFrequencyPerMinute. The QoS monitor
will thus emit 20 QoS events per minute specifying whether
the process was available. As the case for PPMs, an important
aspect in QoS metric definition is their correlation with process
instances. When a QoS metric is evaluated, it has to be assigned
to process instances and/or activity instances it affects. In this
context, there is a technical difference between an external
QoS monitor and the instrumentation approaches considering
the correlation of process instances and QoS events. As the
instrumentation is internal to the engine, it has access to the

context of the process instance. Thus, it is possible to write the
process instance (and if needed activity instance) identifier as an
attribute into the QoS event which can then be used to correlate
the QoS event with the process instance. For example, in case of
a response time measurement for an invoke activity, the engine
instrumentation can include the process instance identifier
and the activity instance identifier into the QoS measurement
event. In case of an external QoS monitor this is not possible.
Thus, in order to be able to correlate QoS measurements
with the affected process instances for our sample metric, we
specify in addition which QoS measurements (namely those
between the start time PO_Process_Started_Time and
completion time PO_Process_Completed_Time of the
process instance) are to be taken into account when calculating
the availability for a specific process instance.

V. ANALYSIS OF INFLUENTIAL FACTORS

The main idea of dependency analysis is to use historical
process instances to determine the most important factors that
dictate whether a process instance is going to violate its KPIs
or not. The input of this analysis are stored metric values of
process instances, which are available in the metrics database.
The output of dependency analysis is a decision tree that
incorporates the most important factors of influence of process
performance. We refer to this tree as dependency tree, because
it represents the main dependencies of the business process on
technical and process metrics, i.e., the metrics which contribute
“most often” to the failure or success of a process instance in
respect to a KPI.

A. Background

In our approach we use decision tree learning, a well-
established machine learning technique [8] for construction
of dependency trees. Decision tree classifiers are a standard
technique for supervised learning (i.e., concepts are learned
from historical classifications, in our case dependency informa-
tion is learned from monitoring of previous process instances).
Decision trees follow a “divide and conquer” approach to
learning concepts – they iteratively construct a tree of decision
nodes, each consisting of a test; leaf nodes typically represent
a classification to a category. In our case, only two categories
exist (KPI has been violated, or not). One big advantage of
decision tree algorithms in our context is their non-parametric
nature: decision trees need only a very limited set of parameters
(in the simplest case none) to work correctly, and can therefore
be expected to provide useful results from the first run, without
the need for extensive experiments with different parameter
sets. Therefore, learning of dependency trees is completely
automated and transparent to the user, allowing a business
analyst to carry out dependency analysis with good results
out of the box. We use the well-known C4.5 [9] and alternate
decision tree (ADTree) [10] techniques, since their quality is
well established in the community. For decision tree training
we use 10-fold cross validation [8] to avoid having to split
our historic process data into training, test and validation sets,
and to estimate the classification error of the decision tree.

The classification error allows the business analyst to measure
the quality of the dependency tree, i.e., how exact the tree
represents the actual structure of real-world dependencies.

B. Creation of Dependency Trees

The inputs and outputs of dependency analysis are sketched
in Figure 6. The analysis takes a set of historical process
instance metric values as input (training set), and produces a
tree representation of the internal dependencies.

Response Time
Banking Service

Customer IdKPI violated

> 210ms < 210ms

KPI fulfilled

= '1234'!= '1234'

KPI violated

Customer
ID

Response Time
Banking Service

Availability
Banking Service KPI

..........

1234

2548

312ms

148ms

0.98

0.98

.......... FAIL

SUCCEED

Decision Tree Learning

Fig. 6. Dependency Analysis Input and Output

The analysis consists of the following phases: (1) KPI
selection and optional adjustment of analysis parameters, (2)
creation of the training set, (3) decision tree learning, (4)
displaying the result tree in the dashboard. All phases but
the first one are performed automatically. In the first phase,
the user chooses a KPI (from the PMDM) he wants to
analyze. Optionally he can adjust the following parameters
(or alternatively use default values): the KPI target value
(and corresponding predicate); the analysis period and/or how
many process instances in that period should be analyzed (e.g.,
last 1000); a subset of metric types from the PMDM which
should be used as potential influential factors (default value:
all); the decision tree algorithm which should be used. In the
second phase, the creation of the training set is then performed
automatically as follows: for each process instance which has
begun and finished in the analysis period, the corresponding
PPM and QoS metric values are gathered from the metrics
database and used as attributes of a record of the training
set. The predicate of the KPI metric value is evaluated and
according to the result, the record is classified as ”KPI fulfilled”
or ”KPI violated”. An example training set is shown in Figure
6. Each row (record) contains the metric values (representing

potential influential factors) of a process instance, whereby the
last column specifies whether the KPI target value predicate
(order fulfillment time < target value) is fulfilled or violated
for that process instance.

As a result of decision tree learning a dependency tree
is constructed as shown in Figure 6 and displayed in the
dashboard. In this (simple) example, the most influential factor
is the response time of the banking service, since a delay in this
service generally leads to a violated KPI. However, even if the
banking services response time is acceptable (below 210 time
units in this example), the KPIs are still often violated if the
order is placed by the customer with the ID ’1234’. Business
analysts can use the dependency tree to learn about the “hot
spots” of the process, and inform themselves about possible
corrective actions if a process underperforms. For example,
considering the example in Figure 6, a business analyst can
take the corrective action to replace the “Banking Service”
against a service with better response time, if such a service
is available. However, note that the “first” metric used in the
dependency tree is not necessarily the most important one – to
find out about the most important metrics one needs to look at
the whole tree and find out which decisions lead to the most
failed process instances. For metrics which have been identified
as factors of influence, a further “drill down” analysis can be
performed. For this, one of the factors of influence (e.g., the
response time of the banking service) is selected, a target value
is specified, and another dependency analysis is launched. This
identifies the more detailed dependencies that influence this
specific factor of the overall process performance (e.g., one
could find out that way that the response time of the banking
service strongly depends on the type of the banking account).

VI. EXPERIMENTATION

In this section we describe our prototype implementation of
the framework and experimental results based on the example
scenario.

A. Experiment Setup and Implementation

We have implemented the scenario as presented in Section
II using a Java-based prototype. We use Apache ODE as our
business process execution engine. ODE is open source soft-
ware, and implements the WS-BPEL standard for Web service
orchestration. One of the features of ODE is that it can trig-
ger execution events (e.g., ActivityExecStartEvent),
which we use as process events as described in Section III. The
eventing features of ODE demand for a JMS implementation
to take care of the transportation of events to subscribers
(the monitoring tool in our case). We chose to use the open
source message queue Apache ActiveMQ4, however, any other
JMS implementation could be used as well. The purchase
order process has been implemented as a WS-BPEL process
which interacts with six Web services including the client
of the process. These Web services have been implemented
in Java using Apache CXF5 and simulate certain influential

4http://activemq.apache.org/
5http://cxf.apache.org/

factors. One can, for example, configure the response time,
availability, and outputs of a service over time and dependant
on business process data. The metrics database is implemented
as a standard MySQL6 database. Because of the limited size of
the scenario we did not use advanced features such as clustering
or load balancing. The Monitoring Tool for evaluation of PPMs
has been implemented in Java as described in [5]. We have
additionally implemented support for correlation of PPMs and
QoS metrics. The Dashboard component is implemented as
an standalone Swing application. The process analyzer is a
standalone Web service, which is accessible over a RESTful
interface. The foundation of this component is the WEKA
toolkit7, which implements many high-quality machine learning
schemes, including the decision tree based classifiers that we
used in this paper. We have transparently integrated WEKA into
our process analyzer component using the WEKA Java API.
Finally, we have implemented a simple QoS monitor, which
can non-intrusively check the availability of Web services
through periodic polling. This QoS data is again provided to
the monitoring dashboard through a RESTful interface. For
experimentation, we have deployed all these components on a
single desktop PC, mainly to prevent external influences such
as network latency to influence our experimentation results.
However, the scenario is designed in such a way that physically
distributed experiments can be run without any modifications.

B. Experimental Results

The procedure of experimentation is as follows. We create
a configuration which simulates certain influential factors and
define a set of potential influential metrics. We then execute the
process a certain number of times (100, 400, and 1000 times)
by triggering the process using a simulated client. During
execution, the process is monitored and metrics are saved in
the metrics database. We then perform dependency analysis of
the KPI and compare the result of the generated dependency
tree with our configured influential metrics. In the following
we present the results of two experimental runs. For both of
them, we have used the same configuration consisting of the
KPI Order Fulfillment Lead Time and a set of 31 potential
influential factors (a subset is shown in Table I).

For the first run, we have created a configuration which
simulates the following factors: (i) the warehouse availability
check (order in stock) returns a negative result for certain
product types based on certain probabilities; order in stock is
an important influential factor of the overall duration of the
process as it decides whether products have to be requested
from suppliers which increases the overall process duration
substantially (ii) supplier 1 has in average a higher than
expected supplier delivery time; (iii) average shipment delivery
time is high in relation to the overall duration of the process
instance. Based on this configuration, we expect the KPI to be
mainly influenced by order in stock, product type, supplier 1
delivery time, and shipment delivery time. Other metrics (in

6http://www.mysql.com/
7http://www.cs.waikato.ac.nz/ml/weka/

particular response times of services) also influence the KPI
value, but in a marginal way.

The generated decision tree is shown in Figure 7a. It has been
generated using J48 (the WEKA implementation of C4.5 [9])
based on 100 process instances. The most influential factor
is the shipment delivery time; if it is above 95 time units all
process instances lead to KPI violations (“red”), otherwise
they depend further on the order in stock metric and supplier
1 delivery time. The leaves of the tree show the number of
instances which are classified as “red” or “green”.

The dependency tree shows three of the four influential
factors we have configured. Interestingly, the fourth factor, the
product type, is not shown. The reason for this is that product
type directly influences order in stock, which again influences
the KPI value which is shown in the tree; as both metrics
influence the KPI value in the same way, only one of them
is shown in the tree. This particular result is unsatisfactory,
as it hides the root cause, namely product type in this case.
The user can deal with this problem using two approaches:
(i) he can drill down and request the analysis of the order
in stock metric. A second tree is generated which explains
when ordered products are not in stock as shown in Figure 7b.
This tree now clearly shows how the unavailability depends
on product type and ordered product quantity. (ii) The user
can also remove the order in stock metric temporarily from
the analyzed metric set. Now, the algorithm will search for
alternative metrics which classify the instances in a similar way
as order in stock. In that case, as shown in the experiments,
the algorithm finds and displays product type in the tree (not
shown in the figure).

Table II shows the more detailed results of the first ex-
perimental run. We have experimented with two algorithms:
J48 (based on C4.5 [9]) and ADTree (alternating decision
tree [10]). Both of them show very similar results concerning
the displayed influential metrics. Typically there is only one
or at most two (marginal) metrics which differ. For the same
precision (correctly classified instances in the training set, as
shown in the last column), the algorithms also generate trees
of about the same size. The usage of parameters has lead to
only marginal changes in our experiments (for example, J48
-U with no pruning). The only parameter that turned out useful
in our experimentation was the “reduced error pruning” (J48
-R) [8] as it reduced the size of the tree, loosing accuracy only
marginally. This parameter is useful as the experiments show
that the tree is getting bigger (column ”Leaves/Nodes”) with
the number of process instances. For example, J48 generated
for 400 instances a tree with 11 nodes, for 1000 instances a
tree with 18 nodes, while the precision improved only by 1%.
In particular, when the tree gets bigger, factors are shown in
the tree which have only marginal influence and thus make
the tree less readable; column “Displayed Metrics” shows how
many distinct metrics are displayed in the tree, the first number
thereby depiciting the number of expected metrics. In the case
of too many undesirable (marginal) metrics, one can try to
improve the result by simply removing those metrics from
the analyzed metric set and repeating the analysis. Finally,

Fig. 7. Generated Trees for (a) Order Fulfillment Time, (b) Order in Stock

concerning the analysis duration, in our setting on a standard
laptop computer a decision tree generation based on 1000
instances takes about 30 seconds.

Instances Algorithm Leaves/ Displayed Metrics Correctly
Nodes Expected/All Classfied

100 J48 4/7 3/4 95,0 %

100 ADTree 11/16 2/4 98,0 %

400 J48 6/11 3/4 97,8 %

400 ADTree 17/26 4/5 99,0 %

1000 J48 11/18 3/6 98,8 %

1000 J48 -R 6/11 3/4 97,9 %

1000 J48 -U 13/22 4/9 99,2 %

1000 ADTree 19/28 3/6 99,4 %

TABLE II
EXPERIMENTAL RESULTS

For the second run, we have created a configuration
which, among others, simulates QoS influential factors: (i)
the warehouse Web service and the shipment Web service are
unavailable with the probability of 15%; the BPEL process
contains fault handlers when trying to invoke partner services;
in case of unavailability it waits for a certain time frame and
retries; we have defined response time metrics (measured based
on process events) for each invoke-activity which ”include” the
retries in case of unavailability (ii) the warehouse availability
check (order in stock) returns now a negative result only with
the probability of 5%; (iii) shipment delivery time is still very
influential in relation to the duration of other activities of the
process. Based on this configuration, we expect the KPI to
be mainly influenced by the availability of warehouse Web
service and shipment Web service, order in stock, and shipment
delivery time.

The generated decision tree is shown in Figure 8a. It is a
J48 tree based on 1000 instances using reduced error pruning.

The tree shows the response time warehouse, delivery time
shipment, and order in stock as the main influential factors.
Completely missing, however, are the expected dependencies on
the availability of the warehouse Web service and the shipment
Web service. We suspect that availability of warehouse Web
service is hidden by response time warehouse, which could
be analyzed by drilling down. However, we take now another
approach and perform an analysis of the KPI only in relation
to availability metrics of all services involved in the process,
i.e., we remove all other metrics from the analyzed metric set.
Effectively, we analyze the impact of availability on the KPI.
The result is shown in Figure 8b. It clearly shows that (only)
availability of the shipment and warehouse Web services have
an impact on the KPI value, as expected.

Overall, we can draw the following conclusions from the
experiments. In general, the generated trees show the expected
influential metrics in a satisfactory manner. As expected,
the non-parametric nature of decision tree algorithms makes
dependency analysis produce suitable results “out of the box”.
We argue that this renders our approach suitable for non-IT
personnel. However, this claim has yet to be verified through
real-life evaluation. Concerning the influential factors displayed
in the tree, we have identified two problems: (i) as the tree gets
bigger it contains often more metrics than expected, i.e. metrics
which have only marginal influence and thus only “blur the
picture”; in that case one can try to tune the algorithm by using,
for example, reduced error pruning, or one can simply remove
those metrics from the analyzed metric set and repeat the
analysis; both techniques lead to more satisfactory results; (ii)
the tree does not show some of the expected metrics: we have
shown that this is often the case when there are “multi-level”
dependencies between metrics; in that case further analysis
(drill down) of lower-level metrics may help to find further
influential factors. While in the general analysis case, the user
does not need to have any special domain knowledge on metric
dependencies, in the drilldown case, we assume that the user
suspects that there could be further dependencies behind a

Fig. 8. Generated Trees for (a) All Factors, (b) Availability of IT Infrastructure

lower-level metric.

VII. RELATED WORK

There are several approaches that deal with monitoring of
service compositions. They differ mostly in monitoring goals,
i.e., what is monitored, and the monitoring mechanisms. IBM’s
approach integrates performance management tightly into the
business process lifecycle and supports it through its WebSphere
family of products [11]. Thereby, process metrics are modeled
and monitored based on events published by the Process Server
BPEL engine. Our approach is similar to IBM’s approach in
that we use process events published by the process engine. We,
however, also support monitoring of QoS metrics and automated
dependency analysis. Baresi et al. [12] deal with monitoring
of WS-BPEL processes focusing on runtime validation. The
goal is thereby not to monitor process performance metrics,
but to detect partner services which deliver unexpected results
concerning functional expectations. Traverso et al. [13] describe
a monitoring approach for WS-BPEL processes which supports
run-time checking of assumptions under which the partner
services are supposed to participate in the process and the
conditions that the process is expected to satisfy. The approach
supports also collecting statistical and timing information. All
of these approaches have in common that they concentrate only
on monitoring of business processes. In particular, they do not
deal with QoS metrics integration and dependency analysis.

When it comes to the analysis aspect of service composi-
tions, the idea of using dependency models for representing
dependencies among different impact factors is not new and
has been applied in connection with the monitoring of SLAs
of service compositions in [14]. This approach focuses on
dependencies of SLAs of overall service compositions on
SLAs of composed services and analyzes reasons for SLA
violations. Focusing on response time and cost metrics, the
dependency relations and the impacts factors are identified at
design time, and then later compared with monitoring results

during runtime. In our approach, we do not model dependencies
at design time, but solely construct the dependency model based
on monitoring results using data mining. Most closely related
to our work is the platform for business operation management
developed by HP [15], as it supports both process monitoring,
and analysis and prediction based on data mining. In [16] the
authors give an overview and a classification of which data
mining techniques are suitable for which analysis and prediction
techniques. Thereby, also decision trees are mentioned as one
possible technique, which is what we concentrate on in our
approach. The platform presented allows users to define and
monitor business metrics (not focused on WS-BPEL processes),
perform intelligent analysis on them to understand causes
of undesired metric values, and predict future values. Our
approach is different in that we focus on SOA-based WS-BPEL
processes, and explicitly integrate PPMs and QoS metrics for
analysis purposes. We deal only with decision trees, but provide
detailed experimental results. Another popular approach to
process analysis is process mining. Process mining techniques
operate on event logs provided by information systems and
perform different kinds of analysis on them, in particular
process discovery when there is no explicit process model
a priori [17]. In our approach, we also operate on monitored
“metric logs” during analysis phase, but focus on mining of
metric dependencies using decision tree algorithms.

VIII. CONCLUSIONS

In this paper we have presented a framework that performs
monitoring of both PPMs and QoS metrics of business
processes runnning on top of a Service-Oriented Architecture.
Besides providing up-to-date dashboard information about the
current process performance, the main goal of our framework
is to enable what we refer to as dependency analysis, i.e.,
an analysis of the main factors that influence the business
process and make it violate its performance targets. The result
of this analysis is represented as a decision tree. We have

presented experimental results which show that in general the
generated decision trees provide explanations in a satisfactory
manner, but in some cases further analysis has to be done.
In that respect, we have shown how drill-down functionality
and analyis based on different metric sets can influence the
analysis result. One important advantage of our approach is
that results are satisfactory without the need for extensive
experimentation and parameter adaptation, which lets our
approach seem feasible even for domain experts which are not
IT-savy.

Our future work includes extending the framework presented
here into various directions. Firstly, we plan to work on the
runtime prediction of the outcome of process instances (i.e.,
whether the KPI is going to be violated or not) while they
are still running. Basically, we can use the same techniques
as for dependency analysis (however, we will in addition
use regression trees). Secondly, we are working towards
making use of the dependency analysis in the area of process
adaptation – currently, dependencies are presented towards the
human business analyst, who is then incorporating the gained
knowledge back into the process, e.g., by exchanging service
bindings. We currently think about a more automated feedback
mechanism, which uses rule sets and predefined reactions to
incorporate dependency knowledge back into the WS-BPEL
process in a more automated way. One example would be
service selection: if the dependency model of a process shows
that the process outcome is sensitive to the response time of a
service, then an expensive high-quality service is selected; if
the response time is no important factor of influence a cheaper
service is selected. Finally, we still need to test our approach
in real-world settings, to further validate the claims that we
have stated in this paper.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 11, 2007.

[3] OASIS, Web Services Business Process Execution Language Version 2.0
– OASIS Standard, 2007.

[4] J.-J. Jeng, J. Schiefer, and H. Chang, “An Agent-based Architecture for
Analyzing Business Processes of Real-Time Enterprises,” in Proceedings
of the 7th International Conference on Enterprise Distributed Object
Computing (EDOC ’03). Washington, DC, USA: IEEE Computer
Society, 2003, p. 86.

[5] B. Wetzstein, S. Strauch, and F. Leymann, “Measuring Performance
Metrics of WS-BPEL Service Compositions,” in The Fifth International
Conference on Networking and Services (ICNS 2009), Valencia, Spain,
April 20-25, 2009. IEEE Computer Society, April 2009.

[6] S. Council, “Supply Chain Operations Reference Model Version 7.0,”
2005.

[7] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Performance and
Dependability Attributes of Web Services,” in Proceedings of the IEEE
International Conference on Web Services (ICWS ’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 205–212.

[8] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[9] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan-
Kaufmann, 1993.

[10] Y. Freund and L. Mason, “The Alternating Decision Tree Learning
Algorithm,” in Proceedings of the 16th International Conference on
Machine Learning (ICML ’99). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999, pp. 124–133.

[11] U. Wahli, V. Avula, H. Macleod, M. Saeed, and A. Vinther., Business
Process Management: Modeling Through Monitoring Using WebSphere
V6.0.2 Products. IBM, International Technical Support Organization,
2007.

[12] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL
Processes,” in Proceedings of the 3rd International Conference of Service-
Oriented Computing (ICSOC’05). Springer, 2005, pp. 269–282.

[13] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-Time
Monitoring of Instances and Classes of Web Service Compositions,”
in Proceedings of the IEEE International Conference on Web Ser-
vices(ICWS’06), 2006, pp. 63–71.

[14] L. Bodenstaff, A. Wombacher, M. Reichert, and M. C. Jaeger, “Monitor-
ing Dependencies for SLAs: The MoDe4SLA Approach,” in Proceedings
of the 2008 IEEE International Conference on Services Computing (SCC

’08). Washington, DC, USA: IEEE Computer Society, 2008, pp. 21–29.
[15] M. Castellanos, F. Casati, M.-C. Shan, and U. Dayal, “iBOM: A Platform

for Intelligent Business Operation Management,” in Proceedings of the
21st International Conference on Data Engineering (ICDE’05), 2005,
pp. 1084–1095.

[16] M. Castellanos, F. Casati, U. Dayal, and M.-C. Shan, “A Comprehensive
and Automated Approach to Intelligent Business Processes Execution
Analysis,” Distributed and Parallel Databases, vol. 16, no. 3, pp. 239–
273, 2004.

[17] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. on Knowl.
and Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

F Runtime Prediction of Service Level Agreement Violations
for Composite Services

External Final Version 1.0, Dated December 15, 2009 76

Runtime Prediction of Service Level Agreement
Violations for Composite Services

Philipp Leitner1, Branimir Wetzstein2, Florian Rosenberg3, Anton Michlmayr1,
Schahram Dustdar1, Frank Leymann2

1 Distributed Systems Group
Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040, Vienna, Austria

lastname@infosys.tuwien.ac.at

2 Institute of Architecture of Application Systems
University of Stuttgart

Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

3 CSIRO ICT Centre
GPO Box 664

Canberra ACT 2601, Australia
florian.rosenberg@csiro.au

Abstract. SLAs are contractually binding agreements between service
providers and consumers, mandating concrete numerical target values
which the service needs to achieve. For service providers, it is essen-
tial to prevent SLA violations as much as possible to enhance customer
satisfaction and avoid penalty payments. Therefore, it is desirable for
providers to predict possible violations before they happen, while it is
still possible to set counteractive measures. We propose an approach
for predicting SLA violations at runtime, which uses measured and esti-
mated facts (instance data of the composition or QoS of used services)
as input for a prediction model. The prediction model is based on ma-
chine learning regression techniques, and trained using historical process
instances. We present the architecture of our approach and a prototype
implementation, and validate our ideas based on an illustrative example.

1 Introduction

In service-oriented computing [1], finer-grained basic functionality provided us-
ing Web services can be composed to more coarse-grained services. This model
is often used by Software-as-as-Service providers to implement value-added ap-
plications, which are built upon existing internal and external Web services.
Very important for providers and consumers of such services are Service Level
Agreements (SLAs), which are legally binding agreements governing the quality
that the composite service is expected to provide (Quality of Service, QoS) [2]).
SLAs contain Service Level Objectives (SLOs), which are concrete numerical

target values (e.g., “maximum response time is 45 seconds”). For the provider
it is essential to not violate these SLOs, since typically violations are coupled
with penalty payments. Additionally, violations can negatively impact service
consumer satisfaction. Therefore, it is vitally important for the service provider
to be aware of SLA violations, in order to react to them accordingly.

Typically, SLA monitoring is done ex post, i.e., violated SLOs can only be
identified after the violation happened. While this approach is useful in that it
alerts the provider to potential quality problems, it clearly cannot directly help
preventing them. In that regard an ex ante approach is preferable, which al-
lows to predict possible SLA violations before they have actually occurred. The
main contribution of this paper is the introduction of a general approach to pre-
diction of SLA violations for composite services, taking into account both QoS
and process instance data, and using estimates to approximate not yet available
data. Additionally, we present a prototype implementation of the system and an
evaluation based on an order processing example. The ideas presented here are
most applicable for long-running processes, where human intervention into prob-
lematic instances is possible. Our system introduces the notions of checkpoints
(points in the execution of the composition where prediction can be done), facts
(data which is already known in a checkpoint, such as the response times of
already used services) and estimates (data which is not yet available, but can
be estimated). Facts and estimates can refer to both typical QoS data (e.g., re-
sponse times, availability, system load) and process instance data (e.g., customer
identifiers, ordered products). Our implementation uses regression classifiers, a
technique from the area of machine learning [3], to predict concrete SLO values.

The rest of the paper is structured as follows. In Section 2 we briefly introduce
an illustrative example which we will use in the remainder of the paper. In
Section 3 we detail the general concepts of our prediction approach. In Section 4
we described the implementation of a prototype tool, which we use for evaluation
in Section 5. Finally, we provide an overview of relevant related work in Section
6 and conclude the paper in Section 7.

2 Illustrative Example

To illustrate the ideas presented in this paper we will use a simple purchase
order scenario (see Figure 2 below). In this example there are a number of roles
to consider: a reseller, who is the owner of the composite service, a customer,
who is using it, a banking service, a shipping service, and two external suppliers.
The business logic of the reseller service is defined as follows. Whenever the
reseller service receives an order from the customer, it first checks if all ordered
items are available in the internal stock. If this is not the case, it checks if the
missing item(s) can be ordered from Supplier 1, and, if this is not the case, from
Supplier 2. If both cannot deliver the order has to be cancelled, otherwise the
missing items are ordered from the respective supplier. When all ordered items
are available she will (in parallel) proceed to charge the customer using the
banking service and initialize shipment of the ordered goods (using the Shipping

Service). We have borrowed this example from [4], please refer to this work for
more information.

In this case study, the reseller has an SLA with its customers, with an SLO
specifying that the end-to-end response time of the composition cannot be more
than a certain threshold of time units. For every time the SLO is violated the
customer is contractually entitled a discount for the order. Note that even though
our explanations in this paper will be based on just one single SLO, our approach
can be generalized to multiple SLOs. Additionally, even though we present our
approach based on a numerical SLO, our ideas can be also applied to estimation
of nominal objectives. However, SLOs need to adhere to the following require-
ments: (1) they need to be non-deterministic (following the definition in [5]), and
(2) they cannot be defined as aggregations over multiple executions. Requirement
(1) is not so much functionally important, but our prediction approach is not
very useful otherwise (e.g., for SLOs concerning security requirements). Require-
ment (2) is a limitation of our current approach, which we plan on working on
as part of our future work.

3 Predicting SLA Violations

In this section we present the core ideas of our approach towards prediction
of SLA violations. Generally, the approach is based on the idea of predicting
concrete SLO values based on whatever information is already available at a
concrete point in the execution of a composite service. We distinguish three
different types of information. (1) Facts represent data which is already known
at prediction time. Typical examples of facts are the QoS of already used services,
such as the response time of a service which has already been invoked in this
execution, or instance data which has either been passed as input or which
has been generated earlier in the process execution. (2) Unknowns are the
opposites of facts, in that they represent data which is entirely unknown at
prediction time. Oftentimes, instance data which has not yet been produced
falls into this category. If important factors are unknown at prediction time the
prediction quality will be very bad, e.g., in our illustrative example a prediction
cannot be accurate before it is known whether the order can be delivered from
the reseller’s internal stock. (3) Estimates are a kind of middle ground between
facts and unknowns, in that they represent data which is not yet available, but
can be estimated. This is often the case for QoS data, since techniques such as
QoS monitoring [5] can be used to get an idea of e.g., the response time of a
service before it is actually invoked. Estimating instance data is more difficult,
and generally domain-specific.

The overall architecture of our system is depicted in Figure 1. The most
important concept used is that the user defines checkpoints in the service com-
position, which indicate points in the execution where a prediction should be
carried out. The exact point in the execution model which triggers the check-
point is called the hook. Every checkpoint is associated with one checkpoint
predictor. Essentially, the predictor uses a function taking as input all facts

Facts
Database

Checkpoint
Predictors

Checkpoint

EstimatorsQoS
Monitors

Complex
Event

Processor

Prediction GUI

1745

Composition
Engine

Service C
om

position
M

onitoring &
 Prediction

QoS Data Instance Data

Estimates

Predictor
Manager

Hook

Prediction
Model

Prediction
Database

Fig. 1: Overall System Architecture

which are already available in the checkpoint, and, if applicable, a number of es-
timates of not yet known facts, and produces a numerical estimation of the SLO
value(s). This function is generated using machine learning techniques We refer
to this function as the prediction model of a checkpoint predictor. Facts are
retrieved from a facts database, which is filled using a number of QoS mon-
itors (which provide QoS data) and a Complex Event Processing (CEP)
engine (which extracts and correlates the instance data, as emitted by the pro-
cess engine). A detailed discussion of our event-based approach to monitoring is
out of scope of this paper, but can be reviewed in related work [4, 6]. Estima-
tors are a generic framework for components which deliver estimates. Finally,
the prediction result is transferred to a graphical user interface (prediction
GUI), which visualizes the predicted value(s) for the checkpoint. A predictor
manager component is responsible for the lifecycle management of predictors,
i.e., for initializing, destroying and retraining them. Additionally, predictions are
stored in a prediction database to be available for future analysis.

3.1 Checkpoint Definition

At design-time, the main issue is the definition of checkpoints in the composi-
tion model. For every checkpoint, the following input needs to be provided: (1)
The hook, which defines the concrete point in the execution that triggers the
prediction, (2) a list of available facts, (3) a list of estimates, and the estimator
component as well as the parameters used to retrieve or calculate them, (4) the
retraining strategy, which governs at which times a rebuilding of the prediction
model should happen, and (5) as a last optional step, a parameterization of the
machine learning technique used to build the prediction model. After all these

inputs are defined the checkpoint is deployed using the predictor manager, and
an initial model is built. For this a set of historical executions of the composite
service need to be available, for which all facts (including those associated with
estimates) have been monitored. If no or too little historical data is available the
checkpoint is suspended by the predictor manager until enough training data
has been collected. The amount of data necessary is case-specific, since it vastly
depends on the complexity of the composition. We generally use the Training
Data Correlation as a metric for evaluating the quality of a freshly trained model
(see below for a definition), however, a detailed discussion of this is out of scope
of this paper. After the initial model is built the continuous optimization of
the predictor is governed by the predictor manager, according to the retraining
strategy. Finally, the checkpoint can be terminated by the user via the prediction
GUI. We will now discuss these concepts in more depth.

Receive
Order

Check
Stock

Select
Supplier

Charge
Customer

[everything
available]

Order From
Supplier 1

Order From
Supplier 2

Cancel Order

Ship Order[no supplier
available]

C1 C3

 Facts: {Customer, OrderedProducts, ...}
 Estimates: {QoS_Supplier, QoS_Warehouse, ...}
 Unknown: {InStock, PaymentPrefs, ...}

 {Customer, OrderedProducts, InStock, QoS_Supplier, QoS_Warehouse}
 {QoS_Shipping, ...}
 {PaymentPrefs, DeliveryTimeShipment}

Get Payment
Prefs

Fig. 2: Illustrative Example With Possible Checkpoints

Hooks Hooks can be inserted either before or after any WS-BPEL activity (for
instance, an Invoke activity). Generally, there is a tradeoff to take into account
here, since early predictions are usually more helpful (in that they rather al-
low for corrections if violations are predicted), but also less accurate since less
facts are available and more estimates are necessary. Figure 2 depicts the (sim-
plified) example from Section 2, and shows two possible checkpoints. In C1 the
only facts available are the ones given as input to the composition (such as a
customer identifier, or the ordered products). Some other facts (mainly QoS
metrics) can already be estimated, however, other important information, such
as whether the order can be served directly from stock, is simply unavailable in
C1, not even as an estimate. Therefore, the prediction cannot be very accurate.
In checkpoint C3, on the other hand, most of the processes important raw data
is already available as facts, allowing for good predictions. However, compared
to C1, the possibilities to react to problems are limited, since only the payment
and shipping steps are left to adapt (e.g., a user may still decide to use express
shipping instead of the regular one if a SLA violation is predicted in C3). Finding
good checkpoints at which the prediction is reasonably accurate and still timely
enough to react to problems demands for some domain knowledge about influen-
tial factors of composition performance. Dependency analysis as discussed in [6]

can help providing this crucial information. Dependency analysis is the process
of using historical business process instance data to find out about the main
factors which dictate the performance of a process. When defining checkpoints,
a user can assume that the majority of important factors of influence need to be
available as either facts or at least as good estimates in order to achieve accurate
predictions.

Facts and Estimates: Facts represent all important information which can al-
ready be measured in this checkpoint. This includes both QoS and instance data.
Note that the relationship between facts and the final SLO values does not need
to be known (e.g., a user can include instance data such as user identifiers or
ordered items, even if she is not sure if this has any relevance for the SLO).
However, dependency analysis can again be used to identify the most impor-
tant facts for a checkpoint. Additionally, the user can also define estimates. In
the example above, in C1 the response time of the warehouse service is not yet
known, however, it can e.g., be estimated using a QoS monitor. Since estimat-
ing instance data is inherently domain-specific, our system is extensible in that
more specific estimators (which are implemented as simple Java classes) can be
integrated seamlessly. Estimates are linked to facts, in the sense that they have
to represent an estimation of a fact which will be monitorable at a later point.

Retraining Strategy: Generally, the prediction model needs to be rebuilt when-
ever enough new information is available to significantly improve the model.
The retraining strategy is used to define when the system should check whether
rebuilding the prediction model is necessary. Table 1 summarizes all retraining
strategies available, and gives examples. The custom strategy is defined using
Java code, all other strategies are implemented in our prototype and can be used
and configured without any additional code.

Strategy Retrains . . . Example

periodic . . . in fixed intervals every 24 hours
instance-based . . . whenever a fixed number

of new instances have every 250 instances
been received since the
last training

on demand . . . on user demand –
on error . . . if the mean prediction

error exceeds a given if ē > T
threshold

custom . . . if a user-defined whenever more than
condition applies 10 orders from customer

12345 have been received

Table 1: Predictor Retraining Strategies

Prediction Model Parameterization: A user can also define the machine learn-
ing technique that should be used to build the prediction model. This is done

by specifying an algorithm and the respective parameterization for the WEKA
toolkit4, an open source machine learning toolkit which we internally use in our
prototype implementation. In this way the prediction quality can be tuned by
a machine learning savvy user, however, we also provide a default configuration
which can be used out of the box.

3.2 Run-Time Prediction

At runtime, the prediction process is triggered by lifecycle events from the
WS-BPEL engine. These are events emitted by some engines (such as Apache
ODE5), which contain lifecycle information about the service composition (e.g.,
ActivityExecStartEvent, VariableModificationEvent, ProcessCompletion-
Event). Our approach is based on these events, therefore, a WS-BPEL engine
which is capable of emitting these events is a preliminary of our approach. When
checkpoints are deployed we use the hook information to register respective event
listeners. For instance, for a checkpoint with the hook “After invoke CheckStock”
we generate a listener for ActivityExecEndEvents which consider the invoke ac-
tivity “CheckStock”. We show the sequence of actions which is triggered as soon
as such an event is received in Figure 3.

JMS Queue
Event

Listener

Facts
Database

BPEL Lifecycle Event

Extract
Correlation Info

foreach
Fact

Retrieve
Fact

Fact Identifier,
Correlation Info

foreach
Estimate

Get Estimator
&

Invoke

Execute
Prediction

Predictor
Manager

Notify GUI
&

Prediction Manager

Prediction

Checkpoint
Predictor

Correlation Info,
Prediction

Fact Value

Prediction GUI

Process Data

Estimators
Fact Identifier,

Parameters

Estimate

Fig. 3: Runtime View On Checkpoint Predictors

After being triggered by a lifecycle event the checkpoint predictor first ex-
tracts some necessary correlation information from the event received. This in-

4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://ode.apache.org

CREDIT

_CARD
NOKIA 1 true 923 26

Payment
Type

Product
Type

Quantity InStock
QoS_

Warehouse
QoS_

Supplier

27953

Predicted
SLO

Regression
Model

Fig. 4: Black-Box Prediction Model

cludes the process instance ID as assigned by the composition engine, the in-
stance start time (i.e., the time when the instance was created) and the time-
stamp of the event. This information is necessary to be able to retrieve the correct
facts from the facts database, which is done for every fact in the next step (e.g.,
in order to find the correct fact “CustomerNumber” for the current execution the
process instance ID needs to be known). When all facts have been gathered, the
predictor also collects the still missing estimates. For this, for every estimate the
predictor instantiates the respective estimator component (if no instance of this
estimator was available before), and invokes it (passing all necessary parameters
as specified in the checkpoint definition). The gathered facts and estimates are
then converted into the format expected by the prediction model (in the case
of our prototype, this is the WEKA Attribute-Relation File Format ARFF6),
and, if necessary, some data cleaning is done. Afterwards, the actual prediction
is carried out by passing the gathered input to the prediction model producing
a numerical estimation of the SLO value. This prediction is then passed to the
prediction GUI (for visualization) and the prediction manager.

Note that the “intelligence” that actually implements the prediction of the
SLO values is encapsulated in the prediction model. Since we (usually) want
to predict numerical SLO values the prediction model needs to be a regression
model [3]. We consider the regression model to be a black-box function which
takes a list of numeric and nominal values as input, and produces a numeric
output (Figure 4). Generally, our approach is agnostic of how this is actually
implemented. In our prototype we use multilayer perceptrons (a powerful variant
of neural networks) to implement the regression model. Multilayer perceptrons
are trained iteratively using a back-propagation technique (maximization of the
correlation between the actual outcome of training instances and the outcome
that the network would predict on those instances), and can (approximately)
represent any relationship between input data and outcome (unlike simpler neu-
ral network techniques such as the perceptron, which cannot distinguish data
which is not separable by a hyperplane [7]). If a non-numerical SLO should be
predicted, a different technique suitable for classification (as opposed to regres-
sion) needs to be used to implement the prediction model, e.g., decision trees
such as C4.5 [8].

6 http://www.cs.waikato.ac.nz/~ml/weka/arff.html

3.3 Evaluation of Predictors

Another important task of the prediction manager is quality management of pre-
dictors, i.e., continually supervising how predictions compare to the actual SLO
values once the instance is finished. Generally, we use three different quality met-
rics to measure the quality of predictions in checkpoints, which are summarized
in Table 2. The first metric, Training Data Correlation, is a standard machine
learning approach to evaluating regression models. We use it mainly to evaluate
freshly generated models, when no actual predictions have yet been carried out.
This metric is defined as the statistical correlation between all training instance
outcomes and the predictions that the model would deliver for these training
instances. The definition given in the table is the standard statistical definition
of the correlation coefficient between a set of predicted values P and a set of
measured values M . However, note that this metric is inherently overconfident in
our case, since during training all estimates are replaced for the facts that they
estimate (i.e., the training is done as if all estimates were perfect). Therefore, we
generally measure the prediction error later on, when actual estimates are being
used. However, a low training data correlation is an indication that important
facts are still unknown in the checkpoint, i.e., that the checkpoint may be too
early.

Name Definition

Training Data Correlation corr =
cov(P,M)
σpσm

Mean Prediction Error ē =

Pn
i=0 |mi − pi|

n

Prediction Error Standard
Deviation

σ =

s Pn
i=0(ei − ē)2)

n

Table 2: Predictor Quality Metrics

This can be done using the Mean Prediction Error ē, which is the average
(Manhatten) difference between predicted and monitored values. In the definition
in Table 2, n is the total number of predictions, pi is a predicted value, and mi

is the measured value to prediction pi. Finally, we use the Prediction Error
Standard Deviation (denoted here simply as σ) to describe the variability of
the prediction error (i.e., high σ essentially means that the actual error for an
instance can be much lower or higher than ē). In the definition, ei is the actual
prediction error for a process instance (mi−pi). These metrics are mainly used to
give the user an estimation of how trustworthy a given prediction is. Additionally,
the on error retraining strategy triggers on ē exceeding a certain threshold.

4 Tool Implementation

In order to verify our approach we built a prototype prediction tool in the
Java programming language. Our core implementation is based on our earlier
work on event-based monitoring and analysis (as presented in [6] and [4]). Data
persistence is provided using a simple MySQL7 database and Hibernate8. We
have integrated two different approaches to QoS monitoring: firstly, QoS data
as provided by the event-based QoS monitoring approach discussed in [6], and
secondly, the QoS data provided by server- and client-side VRESCo [9] QoS
monitors [5]. In order to enable event-based monitoring we have used Apache
ActiveMQ9 as JMS middleware. Finally, as has already been discussed, we use
the open-source machine learning toolkit WEKA to build prediction models.
WEKA is integrated in our system using the WEKA Java API. In addition to the
actual prediction tool we have also prototypically implemented the illustrative
example as presented in Section 2, as a testbed to verify our ideas (this will
be discussed in more detail in Section 5). We have used the WS-BPEL engine
Apache ODE, mainly because of ODE’s strong support for BPEL lifecycle events.
We have also set up the necessary base services which are used in the example
(e.g., supplier services, banking service, stock service) using Apache CXF10.

� �
1 <cpd l : ch e ckpo in t s
2 xmlns :cpdl=” ht tp : //www. i n f o s y s . tuwien . ac . at /2009/ cpdl ”>
3

4 <checkpoint
5 name=” beforeGetPaymentPrefs ”
6 activityName=” getPaymentPrefs ” breakBefore=” true ”
7 p r e d i c t o r=”weka . c l a s s i f i e r s . f unc t i on s . Mul t i l ayerPerceptron ”>
8

9 <update type=” p e r i o d i c a l l y ” value=”5”/>
10 <c l a s s ppmRef=”ORDER FULFILLMENT LEAD TIME”/>
11 <f a c t ppmRef=”RESPONSE TIME WAREHOUSE”/>
12 <f a c t ppmRef=”ORDER INSTOCK”/>
13 < !−− more f a c t s −−>
14 <es t imate name=”getPaymentPrefsResponseTime” type=” i n t e g e r ”>
15 <e s t imato rC la s s
16 c l a s s=” at . ac . tuwien . i n f o s y s . branimon . VrescoQoSEstimator”/>
17 <argument value=”ResponseTime”/>
18 <argument value=” CustomerService ”/>
19 <e s t imatedF ie ld ppmRef=”RESPONSE TIME GETPAYMENTPREFS”/>
20 </ es t imate>
21

22 < !−− more est imates −−>
23 </ checkpoint>
24

25 <checkpo ints>� �
Fig. 5: Checkpoint Definition in XML Notion

7 http://www.mysql.com/
8 https://www.hibernate.org/
9 http://activemq.apache.org/

10 http://cxf.apache.org/

As discussed in Section 3, the main input for our approach is a list of check-
point definitions. In our current prototype, these definitions are given in a pro-
prietary XML-based language, which we refer to as CPDL (Checkpoint Defini-
tion Language). An exemplary excerpt can be seen in Figure 5. In the figure, a
checkpoint, which is hooked before the execution of the invoke activity “getPay-
mentPrefs”, is defined. A multilayer perceptron is used as prediction model. The
checkpoint will be retrained periodically every 5 hours, and will predict the SLO
ORDER FULFILLMENT LEAD TIME. Then a number of available facts and estimates
are specified. For estimates, an estimator class is given as a full qualified Java
class name, which implements the actual prediction. Additionally, a number of
arguments can be given to the estimator class. Finally, for every estimate a link
to the estimated fact needs to be specified. Note that we do not define facts
directly in CPDL. Instead, we reuse the model presented in [6], where we dis-
cussed a language for definition of facts using calculation formulae and XLink11

pointers to WS-BPEL processes (so-called PPMs, process performance metrics).
In CPDL, ppmRefs are identifiers which point to PPMs in such a model. The
complete XML Schema definition of CPDL is available online12.

5 Experimentation

In order to provide a first validation of the ideas presented we have implemented
the illustrative example as discussed in Section 2, and run some experiments
using our prototype tool. All experiments have been conducted on a single test
machine with 3.0 GHz and 32 GByte RAM, running under Windows Server 2007
SP1. We have repeated every experiment 25 times and averaged the results, to
reduce the influence of various random factors such as current CPU load or
workload of the process engine.

Instances Training [ms]

100 3545
250 8916
500 17283
1000 31806

(a) Training Overhead

Instances Prediction [ms]

100 615
250 630
500 631
1000 647

(b) Prediction Overhead

Table 3: Overhead for Training and Prediction

In Table 3 we have sketched the measured times for two essential operations
of our system. Table 3(a) depicts the amount of time in milliseconds necessary
to build or refresh a prediction model in a checkpoint. The most important
factor here is clearly the time necessary to train the machine learning model,
11 http://www.w3.org/TR/xlink/
12 http://www.infosys.tuwien.ac.at/staff/leitner/cpdl/cpdl_model.xsd

Receive
Order

Check
Stock

Select
Supplier

Charge
Customer

[everything
available]

Order From
Supplier 1

Order From
Supplier 2

Cancel Order

Ship
Order

[no supplier
available]

C1 C3

Get Payment
Prefs

C4 C5C2

16076

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

A
v
g

.
E

rr
o

r
[m

s
]

Mean Prediction Error

in Checkpoints

Error Standard Deviation

in Checkpoints

2158
1328 989 806

5030

2864

1541 1604 1516

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

E
rr

o
r

S
td

.D
e

v
.

[m
s
]

Fig. 6: Prediction Error in Checkpoints

e.g., to train the neural network in our illustrative example. This factor mainly
depends on the number of training instances available. In Table 3(a) it can be
seen that the time necessary for building the model depends linearly on the
number of historical instances available. However, even for e.g., 1000 instances
the absolute rebuilding time is below 32 seconds, which seems acceptable for
practice, considering that model rebuilding can be done sporadically and offline.
Additionally, when rebuilding the model, there is no time where no prediction
model is available at all. Instead, the new model is trained offline, and exchanged
for the last model as soon as training is finished. A more detailed discussion of
these factors is out of scope of this paper for reasons of brevity. In Table 3(b)
we have sketched the time necessary for actual prediction, i.e., the online part
of the system. As can be seen this overhead is constant and rather small (well
below 1 second), which seems very acceptable for prediction at run-time.

Even more important than the necessary time is the accuracy of predictions.
To measure prediction accuracy, we have realized five checkpoints in the illus-
trative example (see top of Figure 6): C1 is located directly after the order is
received, C2 after the internal warehouse is checked, C3 after eventual orders
from external suppliers have been carried out, C4 during the payment and ship-
ment process, and finally C5 when the execution is already finished. In each of
those checkpoints we have trained a prediction model using 1000 historical pro-
cess instances, and have specified all available data as facts. For not yet available

QoS metrics we have used the average of all previous invocations as estimate.
Missing instance data has been treated as unknown. We have used each of those
checkpoints to predict the outcome of 100 random executions, and calculated
the Mean Prediction Error ē and the Error Standard Deviation σ (both as de-
fined in Section 3). As expected, ē is decreasing with the amount of factual data
available. In C1, the prediction is mostly useless, since no real data except the
user input is available. However, in C2 the prediction is already rather good.
This is mostly due to the fact that in C2 the information whether the order
can be delivered directly from stock is already available. In C3, C4 and C5 the
prediction is continually improving, since more actual QoS facts are available,
and less estimates are necessary. Speaking in absolute values, ē in e.g., C3 is
1328 ms. Since the average SLO value in our illustrative example was about
16000 ms, the error represents only about 8% of the actual SLO value, which
seems satisfactory. Similar to ē, σ is also decreasing, however, we can see that
the variance is still rather high even in C3, C4 and C5. This is mostly due to our
experimentation setup, which included the (realistic) simulation of occasional
outliers, which are generally unpredictable.

6 Related Work

The work presented in this paper is complementary to the more established con-
cept of SLA management [10]. SLA management incorporates the definition and
monitoring of SLAs, as well as the matching of consumer and provider templates.
[10] introduces SLA management based on the WSLA language. However, other
possibilities exist, e.g., in [11] the Web Service Offerings Language (WSOL) has
been introduced. WSOL considers so-called Web service offerings, which are
related to SLAs. Runtime management for WSOL, including monitoring of of-
ferings, has been described in [12], via the WSOI management infrastructure.
In our work we add another facet to this, namely the prediction of SLA viola-
tions before they have actually occurred. Inherently, this prediction demands for
some insight into the internal factors impacting composite service performance.
In [13], the MoDe4SLA approach has been introduced to model dependencies
of composite services on the used base services, and to analyze the impact that
these dependencies have. Similarly, the work we have presented in [4] allows
for an analysis of the impact that certain factors have on the performance of
service compositions. SLA prediction as discussed in this paper has first been
discussed in [14], which is based on some early work of HP Laboratories on SLA
monitoring for Web services [15]. In [14], the authors introduced some concepts
which are also present in our solution, such as the basic idea of using prediction
models based on machine learning techniques, or the trade-off between early
prediction and prediction accuracy. However, the authors do not discuss impor-
tant issues such as the integration of instance and QoS data, or strategies for
updating prediction models. Additionally, this work does not take estimates into
account, and relatively little technical information about their implementation
is publicly available. A second related approach to QoS prediction has been pre-

sented recently in [16]. In this paper the focus is on KPI prediction using analysis
of event data. Generally, this work exhibits similar limitations as the work de-
scribed in [14], however, the authors discuss the influence of seasonal cycles on
KPIs. This facet has not been examined in our work, even though seasons can
arguably be integrated easily in our approach as additional facts.

7 Conclusions

In this paper we have presented an approach to runtime prediction of SLA
violations. Central to our approach are checkpoints, which define concrete points
in the execution of a composite service at which prediction has to be carried out,
facts, which define the input of the prediction, and estimates, which represent
predictions about data which is not yet available in the checkpoint. We use
techniques from the area of machine learning to construct regression models from
recorded historical data to implement predictions in checkpoints. Retraining
strategies govern at which times these regression models should be refreshed.
Our Java-based implementation uses the WEKA Machine Learning framework
to build regression models. Using an illustrative example we have shown that our
approach is able to predict SLO values accurately, and does so in near-realtime
(with an delay of well below 1 second).

As part of our future work we plan to extend the work presented here in
three directions. Firstly, we want to improve the usability of our prototype by
improving the GUI, especially with regard to the definition of checkpoints. Cur-
rently, this is mostly done on XML code level, which is clearly unsuitable for
the targeted business users. Instead, we plan to incorporate a template-based
approach, where facts and estimates are as far as possible generated automati-
cally. Secondly, we want to generalize the ideas presented in this paper so that
they are also applicable to aggregated SLOs, such as “Average Response Time
Per Day”. Thirdly, we plan to extend our prototype to not only report possible
SLA violations to a human user, but to actively try to prevent them. This can
be done by triggering adaptations in the service compositions, for instance using
BPEL’n’Aspects [17]. However, more research needs to be conducted in order to
define models of how possible SLA violations can best be linked to adaptation
actions, i.e., how to best define which adaptations are best suited to prevent
which violations.

Acknowledgements

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment 215483 (S-Cube).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 11 (2007)

2. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6) (2002)
72–75

3. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2 edn. Morgan Kaufmann (2005)

4. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Leymann, F., Dustdar, S.:
Monitoring and Analyzing Influential Factors of Business Process Performance.
In: EDOC’09: Proceedings of the 13th IEEE International Enterprise Distributed
Object Computing Conference. (2009)

5. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS Mon-
itoring of Web Services and Event-Based SLA Violation Detection . In: MW4SOC
2009: Proceedings of the 4rd International Workshop on Middleware for Service
Oriented Computing. (2009)

6. Wetzstein, B., Strauch, S., Leymann, F.: Measuring Performance Metrics of WS-
BPEL Service Compositions. In: ICNS’09: Proceedings of the Fifth International
Conference on Networking and Services, IEEE Computer Society (2009)

7. Haykin, S.: Neural Networks and Learning Machines: A Comprehensive Founda-
tion. 3 edn. Prentice Hall (2008)

8. Quinlan, J.R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial
Intelligence Research 4 (1996) 77–90

9. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-End Support for
QoS-Aware Service Selection, Invocation and Mediation in VRESCo. Technical
report, TUV-1841-2009-03, Vienna University of Technology (2009)

10. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web Services on Demand: WSLA-Driven
Automated Management. IBM Systems Journal 43(1) (2004) 136–158

11. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management applications
of the web service offerings language (wsol). Information Systems 30(7) (2005)
564–586

12. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastruc-
ture (WSOI) – A Management Infrastructure for XML Web Services. In: NOMS’04:
Proceedings of the IEEE/IFIP Network Operations and Management Symposium.
(2004) 817–830

13. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Monitoring Dependen-
cies for SLAs: The MoDe4SLA Approach. In: SCC ’08: Proceedings of the 2008
IEEE International Conference on Services Computing, Washington, DC, USA,
IEEE Computer Society (2008) 21–29

14. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: Intelligent Management of SLAs
for Composite Web Services. In: DNIS 2003: Proceedings of the 3rd International
Workshop on Databases in Networked Information Systems. (2003) 28–41

15. Sahai, A., Machiraju, V., Sayal, M., Moorsel, A.P.A.v., Casati, F.: Automated SLA
Monitoring for Web Services. In: DSOM ’02: Proceedings of the 13th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management,
London, UK, Springer-Verlag (2002) 28–41

16. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service
Prediction. In: ICSOC ’08: Proceedings of the 6th International Conference on
Service-Oriented Computing, Berlin, Heidelberg, Springer-Verlag (2008) 147–161

17. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestra-
tion Logic. In: ICWS 2009: Proceedings of 7th International Conference on Web
Services, Los Angeles, CA, USA, IEEE (2009)

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

G Daios: Efficient Dynamic Web Service Invocation

External Final Version 1.0, Dated December 15, 2009 92

W
eb

 S
er

vi
ce

s

72 Published by the IEEE Computer Society 1089-7801/09/$25.00 © 2009 IEEE IEEE INTERNET COMPUTING

S oftware systems built on top
of service- oriented architectures
(SOAs)1 use a triangle of three op-

erations — publish, !nd, and bind — to
decouple roles participating in the sys-
tem. Publish and !nd put requirements
on the service registry and the interface
de!nition language. To publish servic-
es, an expressive and extensible service
de!nition language must be available
and supported by the service registry.2
The bind operation, however, is inde-
pendent from the service registry and
is handled by the service consumer. In
a SOA, consumers must be able to con-
nect to any service they discover during
the !nd step. In addition, they must be
able to change this binding at any time
(speci!cally, at runtime) if the original

target service becomes unavailable or
if the !nd operation discovers services
delivering a more appropriate quality
of service level.

Currently, application developers
generate stubs (service access compo-
nents, which are typically compiled
from a formal service description
such as the Web Services Description
Language [WSDL]) to invoke services.
These stubs handle the actual invo-
cation but are speci!c to a service
provider. If the application invokes a
similar service from a different pro-
vider, it must regenerate the stubs be-
cause services from different providers
in the real world never look quite the
same. Even if the services provide sim-
ilar functionality, they usually differ

Systems based on the service-oriented architecture (SOA) paradigm must be
able to bind to arbitrary Web services at runtime. However, current service
frameworks are predominantly used through precompiled service-access
components, which are invariably hard-wired to a speci!c service provider. The
Dynamic and Asynchronous Invocation of Services framework is a message-
based service framework that supports SOA implementation, allowing dynamic
invocation of SOAP/WSDL-based and RESTful services. It abstracts from the
target service’s internals, decoupling clients from the services they use.

Philipp Leitner,
Florian Rosenberg,
and Schahram Dustdar
Vienna University of Technology

Daios: Ef!cient Dynamic
Web Service Invocation

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2009 73

Efficient Dynamic Web Service Invocation

in technical details (such as operations or the
data encoding used). It’s therefore dif!cult to
implement a SOA-based application using client
stubs without falling back to generating and
loading stubs at runtime (for example, using
re"ection facilities). We consider such a solu-
tion to be a workaround, which further demon-
strates the need for stubless service invocation
in SOA scenarios.

Our message-based Dynamic and Asynchro-
nous Invocation of Services (Daios) framework
lets application developers create stubless and
dynamic service clients that aren’t strongly

coupled to a speci!c service provider. Instead,
Daios’s dynamic interface offers a high degree
of provider transparency that lets applications
exchange service providers at runtime.

Dynamic Service Invocation
Dynamic binding isn’t easy with current Web
service client frameworks such as Apache Axis
2 or the Apache Web Services Invocation Frame-
work (WSIF). These frameworks rely on client-
side stubs to invoke services, which are usually
autogenerated at design time. (See the “Related
Work in Web Service Invocation Frameworks”

Related Work in Web Service Invocation Frameworks

The Apache Web Services Invocation Framework (WSIF;
http://ws.apache.org/wsif) was the !rst Java-based Web

service framework to incorporate dynamic service invocation.
The WSIF dynamic invocation interface is intuitive to use if the
client application knows the signature of the WSDL operation
to invoke. This is an unacceptable precondition for loosely cou-
pled service-oriented architectures (SOAs). Client applications
shouldn’t have to know service internals such as the concrete
operation name. In addition, WSIF provides notoriously weak
support for complex XML Schema types such as service param-
eters or return values. An application can use complex types
only if they’re mapped to an existing Java object beforehand,
which is frequently impossible in dynamic invocation scenarios.
These problems, together with the fact that the framework
hasn’t been under active development since 2003 and the rela-
tively bad runtime performance, render WSIF outdated.

The Apache Axis 2 (http://ws.apache.org/axis2) framework
incorporates more SOA concepts than WSIF. It supports cli-
ent-side asynchrony and works more on a document level than
the strictly RPC-based WSIF. Although Axis 2 is still grounded
on the use of client-side stubs, it also supports dynamic invoca-
tions through the OperationClient or ServiceClient
APIs. However, these interfaces expect the client application
to create the invocation’s entire payload (for example, the
SOAP body) itself. In that case, Axis 2 does little more than
transfer the invocation to the server. We expect a higher level
of abstraction from a Web service framework for construct-
ing SOA clients. Still, the Axis 2 SOAP and Representational
State Transfer (REST) stacks are well developed and high per-
forming. We therefore created an Axis 2 service back end as
part of our Dynamic and Asynchronous Invocation of Services
(Daios) prototype. The Axis 2 back end uses Daios’s dynamic
invocation abstraction, but the Axis 2 service stack performs
the actual invocation.

Similar problems arise with other recently introduced ser-
vice frameworks, such as Codehaus XFire (http://x!re.codehaus.
org) or XFire’s successor, Apache CXF (http://cxf.apache.org).

Ultimately, all of these client-side frameworks rely on static
components to access Web services, with little to no support
for truly dynamic invocation scenarios.

The Java API for XML-based Web services is the latest
Java-based Web service speci!cation. JAX-WS, described in
Java speci!cation request (JSR) 224,1 is the of!cial follow-up
to JAX-RPC.2 JAX-WS is implemented, for instance, in the
Apache CXF project, where it exhibits problems similar to
Apache CXF. Although the name change suggests that JAX-WS
is less RPC-oriented than its predecessor, the speci!cation still
focuses on WSDL-to-operation mappings, ignoring the messag-
ing ideas of SOA and Web services. JSR 224 doesn’t explicitly
discuss REST, despite its claims to generally handle XML-based
Web services in Java.

Shinichi Nagano and his colleagues introduce a different ap-
proach to dynamic service invocation.3 They bind static stubs
to generic instead of precise interfaces. Doing so lets them use
the same stubs to invoke any service with a similar interface,
thereby enabling looser coupling between client and provider.
This approach (unlike ours) can achieve static type safety. It has
considerable disadvantages, however. The concept is only fea-
sible for Web services de!ned using a formalized XML inter-
face (few REST-based services have such interfaces), and the
practical implementation of more generic interfaces is often a
hard problem, requiring a lot of domain knowledge. Creating
a generic framework that SOA clients can use in any problem
domain is therefore dif!cult using this approach.

References
D. Kohlert and A. Gupta, “Java API for XML-Based Web Services, Ver-1.

sion 2,” 2007; http://jcp.org/aboutJava/communityprocess/mrel/jsr224/

index2.html.

JSR-101 Expert Group, “Java API for XML-Based RPC, Version 1.1,” 2003; 2.

http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec10.

S. Nagano et al., “Dynamic Invocation Model of Web Services Using Sub-3.

sumption Relations,” Proc. IEEE Int’l Conf. Web Services (ICWS 04), IEEE CS

Press, 2004, p. 150.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

Web Services

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

sidebar for a more detailed discussion of these
and other current frameworks.) However, stubs
are invariably hardwired to a speci!c service
provider and can’t be changed at runtime. If
service providers are hardwired into the service
consumers’ application code, producers and con-
sumers can’t be considered loosely coupled. The
use of client stubs doesn’t follow the SOA ideas
because the developer performs both !nd and
bind. A client application relying on precom-
piled stubs can’t implement a SOA. We therefore
conclude that the SOA triangle is broken.2

In addition, Web service client frameworks
such as Apache Axis 2 and Apache WSIF of-
ten suffer from a few further misconceptions.
They’re often built to be as similar as possible to
earlier distributed object middleware systems,3
implying a strong emphasis on RPC-centric and
synchronous Web services. SOAs, on the other
hand, center on the notion of synchronous and
asynchronous exchange of business documents.

We de!ne several requirements for a Web
service invocation framework that supports the
core SOA ideas.

The !rst requirement is stubless service invo-
cation. Given that generated stubs entail a tight
coupling of service provider and service con-
sumer, the invocation framework shouldn’t rely
on static components such as client-side stubs
or data transfer objects. Instead, the framework
should be able to invoke arbitrary Web services
through a single interface using generic data
structures.

Second, a Web service invocation framework
should be protocol independent. Web service
standards and protocols are not yet fully settled.
Discussion continues about the advantages of
the Representational State Transfer (REST)4 ar-
chitecture compared to the more common SOAP
and WSDL-based5,6 approaches to Web services.
The framework should therefore be able to ab-
stract from the underlying Web service proto-
col and support at least SOAP- and REST-based
services as transparently as possible.

Third, the framework must be message driv-
en. Web services are often seen as collections
of platform-independent remote methods. The
framework must be able to abstract from this
RPC style, which usually leads to tighter cou-
pling, and follow a message-driven approach
instead. Additionally, the message-driven inter-
face should be as simple as possible to facilitate
the creation of complex messages.

Next, the framework should support asyn-
chronous communication. In a SOA, services
might take a long time to process a single request.
The prevalent request-response communication
style is unsuitable for such long-running trans-
actions. The framework should therefore support
asynchronous (nonblocking) communication.

Fifth, it must provide acceptable runtime be-
havior. The framework shouldn’t imply sizable
overhead on the Web service invocation. Using
the framework shouldn’t take signi!cantly lon-
ger than using any of the existing Web service
frameworks.

Unfortunately, current Web service frame-
works don’t fully live up to these requirements.

The Daios Solution
Given our requirements for a Web services in-
vocation framework, we designed the Daios
framework and implemented a system proto-
type. Daios is a Web service invocation front
end for SOAP/WSDL-based and RESTful servic-
es. It supports fully dynamic invocations with-
out any static components such as stubs, service
endpoint interfaces, or data transfer objects.

Figure 1 sketches the Daios framework’s gen-
eral architecture. It also shows where the gen-
eral SOA triangle of publish, !nd, and bind !ts
into the framework. The framework consists of
three functional components:

the general Daios classes, which orchestrate
the other components;
the interface parsing component, which pre-
processes the service description (for exam-
ple, WSDL and XML Schema); and
the service invoker, which uses a SOAP or
REST stack to conduct the actual Web ser-
vice invocations.

Clients communicate with the framework
front end using Daios messages (a Daios- speci!c
message representation format). The frame-
work’s general structure is an implementation
of the composite pattern for stubless Web ser-
vice invocation (CPWSI).7 CPWSI separates the
framework’s interface from the actual invoca-
tion back-end implementation and allows for
"exibility and adaptability.

Daios is grounded on the notion of message
exchange. Clients communicate with services
by passing messages to them. Services return
the invocation result by answering with mes-

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2009 75

Efficient Dynamic Web Service Invocation

sages. Daios messages are potent enough to en-
capsulate XML Schema complex types but are
still simpler to use than straight XML. Mes-
sages are unordered lists of name-value pairs,
referred to as message !elds. Every !eld has a
unique name, a type, and a value. Valid types
are either built-in types (simple !eld), arrays
of built-in types (array !eld), complex types
(complex !eld), or arrays of complex types
(complex array !eld). Such complex types can
be constructed by nesting messages. Users can
therefore easily build arbitrary data structures
without needing a static type system.

Invoking Services with Daios
Using Daios is generally a three-step procedure:

First, clients !nd a service they want to in-
voke (service discovery phase). The service dis-
covery problem is mostly a registry issue and is
handled outside of Daios.2

Next, the service must be bound (prepro-
cessing phase). During this phase, the frame-
work collects all necessary internal service
information. For example, for a SOAP/WSDL-
based service, the service’s WSDL interface is
compiled to obtain endpoint, operation, and
type information.

The !nal step is the actual service invocation
(dynamic invocation phase). During this phase,
Daios converts the user input message into the
encoding expected by the service (for instance,
a SOAP operation for a WSDL/SOAP-based ser-
vice, or an HTTP get request for REST), and
launches the invocation using a SOAP or REST
service stack. When the service stack receives
the invocation response (if any), it converts it
back into an output message and returns it to
the client.

Once a service is successfully bound, clients
can issue any number of invocations without hav-
ing to rebind. Service bindings must be renewed
only if the service’s interface contract changes or
the client explicitly releases the binding.

Most of Daios’s important processing occurs
in the dynamic invocation phase. For a SOAP in-
vocation, the framework analyzes the given in-
put and determines which WSDL input message
the provided data best matches. For this, Daios
relies on a similarity algorithm. This algorithm
calculates a structural distance metric for the
WSDL message and the user input — that is, how
many parts in a given WSDL message have no
corresponding !eld in the Daios message, where

lower values represent a better match. For !elds
in the user message with no corresponding !eld
in the WSDL message, the similarity is . Daios
invokes the operation whose input message has
the best (that is, lowest) structural distance met-
ric to the provided data. If two or more input
messages are equally similar to the input, the
user must specify which operation to use. If no
input message is suitable — that is, if all input
messages have a similarity metric of to the
input — an error is thrown. Here, the provided
input is simply not suitable for the chosen Web
service. Otherwise, the framework converts the
input into an invocation of the chosen opera-
tion, issues the invocation, receives the result
from the service, and converts the result back
into a message.

The back end used to conduct the actual
invocation is replaceable. The Daios research
prototype offers two invocation back ends. One
uses the Apache Axis 2 stack, the other uses
a custom-built (native) SOAP and REST stack.
Daios emphasizes client-side asynchrony. All
invocations can be issued in a blocking or non-
blocking fashion.

This procedure abstracts most of the RPC-
like internals of SOAP and WSDL. The client-
side application doesn’t need to know about
WSDL operations, messages, end points, or
encoding. Even whether the target service is
implemented as a SOAP- or REST-based ser-
vice is somewhat transparent to the client, al-
though for REST services, clients need to know

Service
registry

Interface
(WSDL) parser

XSD parser

SOAP stack
REST stack

Daios system

<<uses>>

<<wraps>>

<<uses>>

Framework/
front end

Service invoker

Find Publish

Bind

HTTP,
SOAP,

and so on

Daios
message

Service
consumer

Service
provider

Figure 1. The Dynamic and Asynchronous Invocation of Services
(Daios) framework’s overall architecture. The framework supports
the service-oriented architecture publish, !nd, and bind paradigm.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

Web Services

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

the endpoint address. Daios handles all of these
service details, so the client application can be
as generic as possible. The service client needs
to know only the names and types of manda-
tory service parameters (for example, WSDL
operation parameters).

For REST invocations, the user can specify
an example request instead of the WSDL inter-
face, or not give further details on the service

interface at all. If the user gives an example
request, Daios uses the example as a template,
which it !lls with the user’s actual input at
invocation time, and issues an HTTP post re-
quest with the !lled template as payload. If no
information about the service interface is given
(that is, neither WSDL description nor example
request), Daios issues an HTTP get request with
URL-encoded parameters.

Figure 2 shows the matching of Daios inputs
to a WSDL description and an example request.
Figure 2a shows a Daios message and a WSDL
message in RPC/encoded style with a structural
distance of 0 (a perfect match). Removing the
First_Name !eld from the Daios message in-
creases the structural distance to 1. Figure 2b
details how the framework !lls an example
template with user input provided as a Daios
message in a REST invocation.

Usage Examples
The message-based Daios client API is easy
to use. Figure 3 shows the Java code neces-
sary to invoke a SOAP/WSDL-based Web ser-
vice. The message in this example corresponds
to the structure depicted in Figure 2. Although
the target service uses nested data structures
(the registrations contain address data), Daios
doesn’t need any static components such as data
transfer objects. All necessary service and type
information is collected during the preprocess-
ing phase (lines 8 to 11). When the actual dy-
namic invocation is !red (lines 26 and 27), the
framework uses this information and converts
the user-provided input to a concrete Web ser-
vice invocation. The example in the !gure uses
a blocking invocation style, but Daios handles
asynchronous communication identically.

The client application doesn’t have to specify
operation name, endpoint address, or WSDL en-
coding style used. Daios abstracts this informa-
tion from the service internals and exposes a
uniform interface, allowing loose coupling be-
tween client and service.

Figure 4 (p. 78) exempli!es the invocation
of a RESTful Web service. In this !gure, a cli-
ent application is accessing the Flickr REST API
and retrieving a list of hyperlinks to the most
interesting photos.

Daios invokes RESTful and SOAP-based
services through the same interface (the code
necessary to access the service is practically
identical for both Web service types). The main

Daios message

Last_Name : String

Address

City : String

Street : String

Door : Integer

Web Services Description Language
(WSDL) operation
<wsdl:part name=“First_Name” type=“xsd:string”
 nillable=“true”>
<wsdl:part name=“Last_Name” type=“xsd:string”
 nillable=“true”>

<wsdl:part name=“Address” type=“addressType”>

<schema>
 <complexType name=“addressType”>
 <sequence>
 <element name=“City” type=“xsd:string”/>
 <element name=“Street” type=“xsd:string”/>
 <element name=“Door” type=“xsd:int”/>
 </sequence>
 </complexType>
</schema>

Representational State Transfer (REST) message

<?xml version=“1.0” encoding=“UTF-8” ?>
<ex:sendData
 xmlns:ex=“http://my.example.com/ns”>
 <ex:FirstName>Philipp</ex:FirstName>
 <ex:LastName>Leitner</ex:LastName>
 <ex:Occupation />
 <ex:Address city=“Vienna”>
 <ex:Door>225</ex:Door>
 <ex:Street>Karlspl.</ex:Street>
 </ex:Address>
</ex:sendData>

First_Name : String

(a)

Daios message

Last_Name : String “Leitner”

Address

City : String : “Vienna”

Street : String “Karlspl”

Door : Integer “225”

First_Name : String : “Philipp”

(b)

Example request

<?xml version=“1.0” encoding=“UTF-8” ?>
<ex:sendData
 xmlns:ex=“http://my.example.com/ns”>
 <ex:FirstName>myname</ex:FirstName>
 <ex:LastName>mylastname</ex:LastName>
 <ex:Occupation>myoccupation</ex:occupation>
 <ex:Address city=“mycity”>
 <ex:Door>1</ex:Door>
 <ex:Street>mystreet</ex:Street>
 </ex:Address>
</ex:sendData>

Figure 2. Matching Daios inputs to service interfaces. (a) A Daios
message and a WSDL operation with a structural distance of 0.
(b) When Daios receives an invocation, it !lls the template (example
request) with user input to produce a valid REST invocation.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2009 77

Efficient Dynamic Web Service Invocation

difference is that no interface de!nition lan-
guage similar to WSDL has yet been established
for RESTful services, so the user must specify
more service details for REST-based invocations
(the endpoint address in the example).

Evaluation
We evaluated our prototype against various
Web service frameworks: Apache WSIF, Apache
Axis 2, Codehaus XFire, and Apache CXF (see
the sidebar). We compared the frameworks
in terms of supported functionality, response
times, and memory consumption. For brevity,
we present only functional aspects and runtime
performance data in this article.

Table 1 (p. 79) shows how well the candidate
frameworks meet our requirements for a Web
service invocation framework. We present the
last of these requirements — acceptable runtime
behavior — later. Current service frameworks
fail to meet these requirements in some im-
portant respects. The core problem is that none

of them embraces SOA’s loosely coupled docu-
ment-centric approach. Rather, they’re based on
an RPC processing model, demanding explicit
knowledge of service internals such as WSDL
encoding styles, operation signatures, and end-
point addresses. Additionally, neither WSIF nor
XFire provide a fully expressive dynamic invo-
cation interface. User-de!ned (complex) types
are dif!cult to use over these interfaces if the
application doesn’t know the types at compile
time. Most interfaces support the REST style of
Web services, but they don’t support a transpar-
ent integration of SOAP and REST. The Daios
prototype solves all these problems. It exposes a
simple messaging interface with which applica-
tions can dynamically invoke arbitrary services
without knowing the service’s implementation
details (including whether the service is imple-
mented as a SOAP- or REST-based service), both
synchronously and asynchronously.

Figure 5 (p. 79) addresses the acceptable run-
time behavior requirement. The !gure compares

 // create a Daios backend1

 ServiceFrontendFactory factory = ServiceFrontendFactory.getFactory2

 (“at.ac.tuwien.infosys.dsg.daiosPlugins.”+3

 nativeInvoker.NativeServiceInvokerFactory”);4

5

 // preprocessing - bind service6

 ServiceFrontend frontend = factory.createFrontend(new URL(7

 “http://vitalab.tuwien.ac.at/”+“orderservice?wsdl”));8

9

 // construct input that we want10

 // to pass to the service11

 DaiosInputMessage registration = new DaiosInputMessage();12

 DaiosMessage address = new DaiosMessage();13

 address.setString(“City”, “Vienna”);14

 address.setString(“Street”, “Argentinierstrasse”);15

 address.setInt(“Door”, 8);16

 registration.setComplex(“Address”, address);17

 registration.setString(“First_Name”, “Philipp”);18

 registration.setString(“Last_Name”, “Leitner”);19

20

 // dynamic invocation21

 DaiosOutputMessage response = frontend.requestResponse(registration);22

23

 // retrieve result24

 String regNr = response.getString(“registrationNr”);25

 // ...26

Figure 3. A Daios SOAP invocation. The application constructs both a new service front end to the SOAP-
based Web service described by a Web Services Description Language contract and an input message in
Daios message format, and issues the invocation using a blocking request response invocation.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

Web Services

78 www.computer.org/internet/ IEEE INTERNET COMPUTING

the response times of the candidate frameworks
in simple SOAP-based Web service invocations.
Figure 5a shows the results for RPC/ encoded
invocations, and Figure 5b shows results for
document/literal invocations with wrapped pa-
rameters. We only evaluated RPC/encoded in-
vocations for Daios and WSIF. Axis 2, XFire,
and CXF don’t support this particular WSDL
encoding style. Apache WSIF is well behind in
both test cases; all other candidate frameworks
exhibit similar response times.

We also performed extensive tests using
different types of invocations (with binary or
array payload data), but the general result was
similar for all tests. Additionally, we’ve gath-
ered similar results for REST-based invoca-
tions. We therefore conclude that using Daios
doesn’t imply a relevant performance penalty
over Apache Axis 2, Apache CXF, or Codehaus
XFire, and that our prototype is signi!cantly
faster than Apache WSIF.

I ncreasingly, Web service implementations use
policies to describe the service’s nonfunctional

attributes, such as security policies, transaction-
al behavior, and reliable messaging. Often, these
implementations use the Web Services Policy
framework.8 We plan to add WS-Policy support
to our framework to support policy-enforced in-
teractions. Furthermore, we’ll extend our evalu-
ation of the Daios framework to a more extensive
real-life scenario to get a more accurate picture
of the implementation’s runtime performance
and usability in real business applications.

We recently released the !rst version of our
Daios prototype as an open source project us-
ing Google Code and are currently working on a
.NET port.

Acknowledgments
The European Community’s Seventh Framework Program
(FP7/2007-2013) helped fund the research leading to the re-
sults reported here under grant agreement 215483 (S-Cube).

 String myAPIKey = ... // get an API key from Flickr1
2

 // use the native backend3
 ServiceFrontendFactory factory = ServiceFrontendFactory.getFactory4
 (“at.ac.tuwien.infosys.dsg.daiosPlugins.”+5
 nativeInvoker.NativeServiceInvokerFactory”);6

7
 // preprocessing for REST8
 ServiceFrontend frontend = factory.createFrontend();9

10
 // setting the EPR is mandatory for REST services11
 frontend.setEndpointAddress(12
 new URL(“http://api.flickr.com/services/rest/”));13

14
 // construct message 15
 DaiosInputMessage in = new DaiosInputMessage();16
 in.setString(“method”, “flickr.interestingness.getList”);17
 in.setString(“api_key”, myAPIKey);18
 in.setInt(“per_page”, 5);19

20
 // do blocking invocation21
 DaiosOutputMessage out = frontend.requestResponse(in);22

23
 // convert WS result back24
 // into some convenient Java format25
 DaiosMessage photos = out.getComplex(“photo”);26
 // ... 27

Figure 4. A Daios Representational State Transfer (REST) invocation. The application creates a
Daios service front end to the Flickr photo service’s REST API and retrieves a list of the “most
interesting” photos.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2009 79

Efficient Dynamic Web Service Invocation

References
M.P. Papazoglou et al., “Service-Oriented Computing: 1.
State of the Art and Research Challenges,” Computer,
vol. 40, no. 11, 2007, pp. 38–45.
A. Michlmayr et al., “Towards Recovering the Broken 2.
SOA Triangle: A Software Engineering Perspective,”
Proc. 2nd Int’l Workshop on Service Oriented Software
Eng. (IW-SOSE 07), ACM Press, 2007, pp. 22–28.
W. Vogels, “Web Services Are Not Distributed Ob-3.
jects,” IEEE Internet Computing, vol. 7, no. 6, 2003,
pp. 59–66.

R.T. Fielding, 4. Architectural Styles and the Design of
Network-Based Software Architectures, doctoral disser-
tation, Information and Computer Science Dept., Univ.
of California, Irvine, 2000.
SOAP Version 1.2 Part0: Primer5. , World Wide Web Con-
sortium (W3C) recommendation, 2003; www.w3.org/
TR/soap12-part0.
Web Services Description Language (WSDL) Version 2.0 6.
Part0: Primer, World Wide Web Consortium (W3C) can-
didate recommendation, 27 Mar. 2006; www.w3.org/
TR/2006/CR-wsdl20-primer-20060327.

Table 1. Functional comparison of current Web service invocation frameworks (WSIFs).
Requirement Daios Apache WSIF Apache Axis 2 Codehaus

XFire
Apache CXF

Stubless service invocation

Simple types Yes Yes Yes Yes Yes

Arrays of simple types Yes Yes Yes Yes Yes

Complex types Yes No Yes No Yes

Arrays of complex types Yes No Yes No Yes

Protocol independence

Transparent protocol integration Yes No No No No

SOAP over HTTP support Yes Yes Yes Yes Yes

Representational State Transfer support Yes No Yes No Yes

Message-driven approach

Document-centric interface Yes No No No No

Transparent handling of service internals Yes No No No No

Support for asynchronous communication

Synchronous invocations Yes Yes Yes Yes Yes

Asynchronous invocations Yes No Yes No Yes

Simple API

Simple to use dynamic interface Yes Yes No Yes Yes

1,000

800

600

400

200

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Payload size (Kbytes)

In
vo

ca
tio

n
tim

e
(m

s)

1,000

800

600

400

200

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Payload size (Kbytes)

In
vo

ca
tio

n
tim

e
(m

s)

Daios
Apache WSIF

Daios
Apache WSIF
Apache Axis2
Codehaus XFire
Apache CXF

(a) (b)

Figure 5. Comparison of invocation response times. (a) RPC/encoded invocations and (b) document/literal invocations
with wrapped parameters. Only Daios and the Web Services Invocation Framework (WSIF) support RPC/encoded.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

Web Services

80 www.computer.org/internet/ IEEE INTERNET COMPUTING

P. Buhler et al., “Preparing for Service-Oriented Com-7.
puting: A Composite Design Pattern for Stubless Web
Service Invocation,” Proc. Int’l Conf. Web Eng., LNCS
3140, Springer, 2004, p. 763.
J. Schlimmer et al., “Web Services Policy Framework 8.
(WS-Policy),” joint speci!cation by IBM, BEA Sys-
tems, Microsoft, SAP AG, Sonic Software, and Veri-
Sign, 2006; www.ibm.com/developerworks/library/
speci!cation/ws-polfram.

Philipp Leitner is a PhD student in the Distributed System
Group at the Vienna University of Technology. His re-
search interests include general issues of distributed
computing, especially service-oriented computing,
service-oriented architectures, Web services, peer-to-
peer computing, and network management. Leitner has
a master’s degree in business informatics from the Vi-
enna University of Technology. Contact him at leitner@
infosys.tuwien.ac.at.

Florian Rosenberg is a PhD candidate in the Distributed

System Group at the Technical University Vienna.
His research interests include software composition,
service-oriented architectures, and software engi-
neering. Rosenberg has a master’s degree in software
engineering from the Upper Austria University of
Applied Sciences. Contact him at "orian@infosys.
tuwien.ac.at.

Schahram Dustdar is a full professor of computer science,
director of the Vienna Internet Technologies Advanced
Research Lab, head of the Distributed Systems Group of
the Information Systems Institute at the Vienna Uni-
versity of Technology, and honorary professor of infor-
mation systems in the Department of Computer Science
at the University of Groning, the Netherlands. His
research interests include service-oriented architec-
tures and computing, mobile and ubiquitous comput-
ing, complex and adaptive systems, and context-aware
computing. Dustdar has a PhD in business informatics
from the University of Linz, Austria. He’s a member of
the IEEE Computer Society and the ACM. Contact him
at dustdar@infosys.tuwien.ac.at.

PURPOSE: The IEEE Computer Society is the world’s largest association
of computing professionals and is the leading provider of technical
information in the !eld.
MEMBERSHIP: Members receive the monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, af!liate society
members, and others interested in the computer !eld.
COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 5 June 2009, Savannah, GA, USA

EXECUTIVE COMMITTEE
President: Susan K. (Kathy) Land, CSDP*
President-Elect: James D. Isaak;* Past President: Rangachar Kasturi;*
Secretary: David A. Grier;* VP, Chapters Activities: Sattupathu V.
Sankaran;† VP, Educational Activities: Alan Clements (2nd VP);* VP,
Professional Activities: James W. Moore;† VP, Publications: Sorel
Reisman;† VP, Standards Activities: John Harauz;† VP, Technical &
Conference Activities: John W. Walz (1st VP);* Treasurer: Donald F.
Shafer;* 2008–2009 IEEE Division V Director: Deborah M. Cooper;†
2009–2010 IEEE Division VIII Director: Stephen L. Diamond;† 2009
IEEE Division V Director-Elect: Michael R. Williams;† Computer Editor in
Chief: Carl K. Chang†

*voting member of the Board of Governors †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2009: Van L. Eden; Robert Dupuis; Frank E. Ferrante; Roger
U. Fujii; Ann Q. Gates, CSDP; Juan E. Gilbert; Don F. Shafer
Term Expiring 2010: André Ivanov; Phillip A. Laplante; Itaru Mimura; Jon
G. Rokne; Christina M. Schober; Ann E.K. Sobel; Jeffrey M. Voas
Term Expiring 2011: Elisa Bertino, George V. Cybenko, Ann DeMarle,
David S. Ebert, David A. Grier, Hironori Kasahara, Steven L. Tanimoto

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Director, Business & Product
Development: Ann Vu; Director, Finance & Accounting: John Miller;
Director, Governance, & Associate Executive Director: Anne Marie
Kelly; Director, Information Technology & Services: Carl Scott;
Director, Membership Development: Violet S. Doan; Director,
Products & Services: Evan Butter!eld; Director, Sales & Marketing:
Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036
Phone: +1 202 371 0101; Fax: +1 202 728 9614; Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380; Email: help@computer.org
Membership & Publication Orders:
Phone: +1 800 272 6657; Fax: +1 714 821 4641; Email: help@computer.org
Asia/Paci!c: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo
107-0062, Japan

Phone:
Email: tokyo.ofc@computer.org

IEEE OFFICERS
President: John R. Vig; President-Elect: Pedro A. Ray; Past President:
Lewis M. Terman; Secretary: Barry L. Shoop; Treasurer: Peter W.
Staecker; VP, Educational Activities: Teo!lo Ramos; VP, Publication
Services & Products: Jon G. Rokne; VP, Membership & Geographic
Activities: Joseph V. Lillie; President, Standards Association Board
of Governors: W. Charlton Adams; VP, Technical Activities: Harold L.
Flescher; IEEE Division V Director: Deborah M. Cooper; IEEE Division
VIII Director: Stephen L. Diamond; President,
IEEE-USA: Gordon W. Day

revised 5 Mar. 2009

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on May 13, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

H Dynamic Adaptation of the Master-Worker Paradigm

External Final Version 1.0, Dated December 15, 2009 102

Dynamic Adaptation of the Master-Worker Paradigm

Françoise André, Guillaume Gauvrit, Christian Pérez
IRISA / INRIA

Campus de Beaulieu, 35042 Rennes cedex, France
{Francoise.Andre, Guillaume.Gauvrit, Christian.Perez}@irisa.fr

Abstract—The size, heterogeneity and dynamism of the execu-
tion platforms of scientific applications, like computational grids,
make using those platforms complex. Furthermore, today there
is no effective and relatively simple solution to the programming
of these applications independently of the target architectures.
Using the master-worker paradigm in software components can
provide a high level abstraction of those platforms, in order to
ease their programming and make these applications portable.
However, this does not take into account the dynamism of these
platforms, such as changes in the number of processors available
or the network load.

Therefore we propose to make the master-worker abstraction
dynamically adaptable. More specifically, this paper characterizes
the master-worker paradigm on distributed platforms, then
describes a decision algorithm to switch between master-worker
implementations at run-time.

Keywords-dynamic adaptation; master-worker paradigm; soft-
ware engineering; grid computing;

I. INTRODUCTION

Distributed systems range from single computers with a
multicore processor to grids that aggregates many computer
clusters. They are usually composed of many computers of
various kind that are connected by heterogeneous networks.
Their size and heterogeneity makes them complex to program.
Besides, the variability of resources and their sharing among
users make these systems dynamic, especially computational
grids. Indeed, new computers may be added to the grid while
some may go to maintenance, and the workload as well as
the network load can vary significantly during the execution
of a task. Additionally, the applications developed for these
systems are increasingly complex and thus hard to design.
Today, there is no efficient and relatively simple solutions to
program applications for distributed systems regardless of the
target infrastructure.

These distributed systems are greatly used to run scien-
tific or engineering applications that need a large amount
of computing power. For instance in molecular biology to
fold proteins, or in avionics to study air flow. Many of these
applications are parametric ones, where different instances
of the same code are executed in parallel on varying pa-
rameters. These parametric applications can be well designed
by using the master-worker paradigm, hence the number of
master-worker software or middleware one can encounter like
SETI@Home [1], NetSolve [2] or DIET [3]. So, in this paper,
we focus only on master-worker software aimed to be run

on distributed systems. Some of these middleware are well
suited for low scale applications while others are a better fit
for high scale or highly dynamic infrastructures. Today, one
has to choose at design time between all these alternatives to
develop a master-worker application, and one cannot switch
easily between them when developing, even less at run time.

So, to deal with these difficulties, in the aim to ease the de-
velopment of parametric applications for distributed systems,
we study in this paper how to dynamically adapt the master-
worker paradigm, focusing on the creation of an algorithm
to decide when to adapt. Section II presents various master-
worker implementations. Section III describes a way to adapt
the master-worker paradigm. Then Section IV characterizes
master-worker applications on distributed systems to build
foundations for an algorithm to make adaptation choices,
which is described in Section V Finally, a conclusion ends
this paper.

II. MASTER-WORKER IMPLEMENTATIONS

The software or middleware implementing the master-
worker paradigm is usually composed of five parts: the master
sends tasks to compute to workers, monitors collect informa-
tion about the state of the hardware and software resources
which is stored in a database, and a scheduler selects to which
workers the tasks are to be sent according to their kind and
the informations stored in the database.

Many alternatives can be used to implement the master-
worker paradigm, each better fitted to different situations.

The obvious one is to hard-code the paradigm in the applica-
tion, with the scheduler and the database into the master. The
worker would be chosen according to the round-robin pattern,
that is one after the other, cycling. No monitor would be
used. One drawback of this approach is the poor separation of
concern; one other is that the dynamism of the grid or cluster
is not at all taken into account. However, this implementation
can be fast, simple to implement and well suited to software
to be run on private clusters (not shared) or for prototypes.

Another alternative is to use a framework, like NetSolve [2].
It is composed by a master, an agent and workers, as shown on
Figure 1, where each worker should be deployed on a different
computer. Here, the scheduler and the database are in the
agent, while the workers can monitor the speed and the load
of their computer as well as the latency and bandwidth of the
network between them and the agent. This information is sent

Agent

Workers

Master

Fig. 1. NetSolve

Master

MAMA

MAMA MAMA

MAMA

MA

LA

LALA
Worker

Fig. 2. DIET

to the agent just after the deployment of the workers. When
the master has to send a request, it asks the agent for a list
of workers able to compute the task, then the master tests the
delay to the workers and sends the request to the fastest one.

This kind of centralized implementation of the paradigm
solves the problem of the separation of concerns and it can in
part deal with the dynamism of the resources. Nevertheless,
this centralized architecture may not be well suited to large
distributed systems, like large grids.

DIET [3] is specifically developed for those large distributed
systems. As shown on Figure 2, DIET is composed by four
elements: masters, master agents (MA), local agents (LA),
and workers. The schedulers are only in the MAs, and the
monitors at the level of the workers. The agents should be
distributed according to the network topology, for example one
MA by grid and one LA by cluster. The LAs are used to relay
requests and information between MAs and workers. A LA
stores various local information useful to distribute requests.
However, the costs of this implementation can be significant
for software using very short tasks.

NINF [4] and Nimrod/G [5] can be cited among other
available frameworks.

The differences among these implementations makes them
fit differently to various situations. For example, when an
application with a dynamic behavior switches from short tasks
of about 10 ms, to longer tasks averaging 100 s, it might be
beneficial to switch from a simple and fast implementation like
round-robin to another one better able to distribute the work-
load, like NetSolve or DIET. However, this is not currently
feasible, unless if this logic is implemented in the application,
which breaks the separation of concerns. A better solution
would be to use an abstraction of these implementations of the

Master

W
o
rk

e
r

co
lle

ct
io

n

Worker

M
a
st

e
r-

w
o
rk

e
r

p
a
tt

e
rn

Worker

Worker

•
•
•

Fig. 3. The master-worker paradigm, in software components

paradigm and let it switch between different implementations
when needed.

III. SUPPORT FOR THE DYNAMIC ADAPTATION

In order to switch between master-worker implementations
at run-time, we use an abstraction of the paradigm, presented
in [6], well suited to its adaptation: a component-based col-
lection of workers. The principle of a collection abstracts
the paradigm from the distributed systems architecture, while
the use of software components provides the separation of
concerns needed to adapt the collection of workers. A software
component [7] is a software entity, with a well defined
behavior , that can be composed with other components using
ports (either sender or receiver) for communication between
them.

In [6], the authors suggest to represent each master and
worker in a component. The developers of the final application
could write it as if there would be only one master and one
worker connected together; where, in fact, worker components
are put together in a collection component, as shown on
Figure 3. The collection uses a master-worker pattern to handle
the communication between masters and workers and the dis-
tribution of the requests. A pattern can use any implementation
of the paradigm, like NetSolve or DIET.

Despite that the number of workers and the pattern can
be chosen when deploying the application, it was not studied
how to do it dynamically, when a need or opportunity arise to
change the configuration.

In the article [8], the authors study how to make this
collection of workers dynamically adaptable and suggest to
use the Dynaco [9] framework to adapt it. This framework
is to be integrated in the component to adapt; here, the
collection component. It divides the dynamic adaptation in
four major parts: the monitoring of constraints, the decision,
the planning and the execution. Thus, to use this framework,
one has to connect it to probes which gather the information
needed to make a decision and to plan the adaptation. This
information is gathered passively by an observer interface and
actively by a monitor interface. Then, one has to provide three
components to do the last three functions, as shown in the
Figure 4. The decider component decides when to adapt and
sends a strategy to the planner component when an adaptation
is needed. The planner component then breaks down the

Logic content
ex: worker collection

Modification controller

Dynaco

Decider
MC

Executor

MC
Planner
MC

Observer Monitor

S
e
rv

e
r

 i
n

te
rf

a
ce

s

 C
lie

n
t

in
te

rf
a
ce

s

Fig. 4. Dynaco

strategy into an action plan, which is a set of elementary tasks.
This plan is then sent to the executor component which can
adapt the collection according to the plan, using modification
controllers.

In our work, we focused on the decision part of the
adaptation, which will be presented in Section V But first,
Section IV studies what to monitor in order make adaptation
choices.

IV. CHARACTERIZATION OF THE MASTER-WORKER
PARADIGM ON DISTRIBUTED SYSTEMS

In this study, we assume that the implementation of the
paradigm is limited to one master, one worker collection
already deployed and one master-worker pattern. The decision
algorithm which has to choose when to switch between
master-worker patterns needs to monitor the master-worker
application and the distributed system in order to have enough
information to make its decisions. To discriminate the pertinent
parameters among all of the possible ones, we first have to
state why to adapt and what is to adapt.

The aims of the dynamic adaptation of the master-worker
paradigm are manifold. In our study, we focused to those
defined from an user point of view, in contrast to a computing
resources manager. Besides, since it is impossible to be
exhaustive, we studied only the following objectives:

• Maximize the execution speed of the application. It is
measured by the average number of executed requests by
second. We assume that every pattern ensure that every
request sent by the master is processed (i.e. there is no
starvation).

• Minimize the processing time of any request, indepen-
dently of the other requests. This objective should not be
confused with the preceding one. This objective enables
to consider the case where only some of the requests’
processing time are to be minimized.

• Respect a maximum time limit to process a request. This
objective enables to design “real-time” applications. It
is to the user to specify reasonable time limits, i.e. that
can be respected, otherwise the respect of this constraint
cannot be ensured.

Other objectives such as respect of a maximum cost or
minimizing the processing time of a pack of requests, can
be thought of, but they are not studied in this paper.

Now that we know why the application have to be adapted,
we have to define what is to adapt. Two parameters of the
worker collection can be adapted dynamically.

Firstly, the number of workers can be adjusted as the number
of simultaneous requests to be processed evolves with the time,
while keeping this number inside the boundaries delimited by
the hardware. Also, it can be adjusted when computers appear
or leave the distributed system.

Secondly, the master-worker pattern can be changed when
evolutions of the distributed system or the type of requests
being processed make a unused pattern more suitable to these
new conditions.

We focused on three representative patterns in our study:
round-robin, load-balancing and a modified version of DIET.
Experiments were done with these patterns on the platform
Grid’5000 1. Results are given in [10].

A worker is said to be free when it can handle a new request
sent by the master without affecting the possible other requests
being processed by the worker. A worker might only be able
to handle one request at the same time.

A function that estimate the extra cost in time due to the
pattern must be provided for each pattern, for the decision
algorithm. This function is called the extra cost function. It
can be implemented statically, which can be best suited to
simple patterns like round-robin or load-balancing, or by using
a learning mechanism, which would be better suited to more
complex patterns, like DIET.

a) Round-robin: This pattern distributes the number of
request equally among the workers.

To this end, the pattern keeps a list of workers in a ring and
each worker keeps a queue of requests. Each request sent by
the master is transmitted to the worker next to the last who
were sent one. Each request received by a worker is put in the
queue. The worker process the request in the incoming order
and can process one or many requests at a time (for example,
one by CPU core).

From the results of the experiments done by Hinde L.
Bouziane in her PhD thesis [10], the extra cost function can
be approximated by:
extraCost = a ·numberOfWorkers+b (in seconds), where
a ≈ 9.97 · 10−6 s and b ≈ 1.62 · 10−2 s.

b) Load Balancing: This pattern distributes the workload
equitably among the workers.

It handles a single queue of requests. When a request is
received by the master, it is added to the queue. When a request
comes to an empty queue, it is stored if there is no free worker,
else it is send randomly among the free workers. When a
worker send the result of a request, a request from the master’s
queue is sent back to it if the queue is not empty.

The extra cost function is the same than round-robin’s one
with a ≈ 1.46 · 10−5 s and b ≈ 1.62 · 10−2 s.

1Grid’5000: https://www.grid5000.fr (2008)

c) DIET: This pattern uses a request sequencing policy, it
uses a distributed architecture with many agents and has probes
to its disposal to estimate the workers’ processing speed.

We use a modified version of DIET, which differs from
the original by a scheduler which sorts the requests by the
estimated time to process the requests, when possible.

A single queue of requests is managed by DIET. If an
estimation of the time to process each request is available, the
queue is sorted in decreasing order of the estimated lengths
(we assume there is no starvation or that a priority mechanism
is used to avoid it). When a request is received by the master,
it is added to the queue. When a request comes to an empty
queue it is stored if there is no free worker; else a request
is sent to each free worker to estimate and compare their
processing speed, then the pending request is sent to the fastest
free worker. When a worker sends the result of a request, if
the queue is not empty, the master probes the workers to send
a request to the fastest one.

Our extra cost function would require further experimental
results to refine it and so is not detailed here.

For round-robin, no mechanism is provided to manage
requests having to be processed in a limited time. Whereas
for the Load balancing and DIET patterns, an estimation of
the time to process (in number of cycles) have to be provided
by each request if the user chooses to put to each request a
time limit to process it. Furthermore, in this case, every request
must have a time limit to avoid a starvation, and the queue is
then sorted by limit date to send the requests for them to be
executed in time.

In order to be able to decide to adapt, the application
needs to monitor itself and the distributed system. To this end,
we have to select relevant parameters for the adaptation. We
consider a potential parameter as useful if its modification can
generate a need to adapt, or if it can be used to describe the
state of the application’s part to adapt (here, the number of
workers and the master-worker pattern).

These parameters have to be measurable or known by the
application. The list follows:

Known parameters: They do not need to be measured.
They are composed of: the number of workers, the pattern
used and the number of requests being processed.

Direct parameters: They have to be measured. They are
those like “the time to process a request” or “the workload
of each workers” which are needed to compute the indirect
parameters; and “the number of workers” which can differ
from the known parameter, for example in case of a failure.

Indirect parameters: They are to be computed (for con-
ciseness we do not describe how do do it):
• The variability of the workload of the workers due to the

environment exterior to the workers,
• The variability of the processing power of the workers

due to the execution of requests,
• The variability of the time to execute request,
• The time to transmit a request (sending the request and

receiving the results) in function of the data’s size to

transmit, average bandwidth and average delay (from the
master to the workers),

• The heterogeneity of the network
• The maximum number of workers, depending on the

number of computers.

V. DECISION ALGORITHM TO CHANGE THE PATTERN

There are at least two ways to adapt the collection. The first
is to change the number of workers depending to the workload
and the available computing resources. This is not described
in this paper for the sake of conciseness. The second way is
to dynamically change the master-worker pattern. This paper
only deals with this later algorithm.

The decision algorithm is based on the description of the
behavior of the patterns, which depends on the state of the
pattern and the distributed system, and on a QoS objective.

It is designed to be generic: new patterns can be added
to the application without modifying the existing parts of the
algorithm implementation. In addition, the algorithm can be
adapted once the application is deployed, thanks to Dynaco
framework’s dynamic adaptability. To this end, the behavior
description of a pattern is independent from those of the other
patterns.

It is also designed to be added to a learning mechanism
which could tune its decisions according to the results of
preceding adaptations. However, such mechanism is not com-
pulsory.

The algorithm is a compromise between performance and an
ideal solution. Indeed, It does not aim to select the pattern the
best fitted to every situation. Instead, it aims to discriminate
a pattern among the best fitted in a short time. Moreover, it
is not always useful to select the optimal pattern among two
almost equivalent ones, as long as the inadequate ones are
filtered.

The principle of the algorithm is to compare the patterns
using a description of their behavior. This comparison is done
using positives scores, including +∞: the pattern with the
lowest score is the best fitted to the situation for the given
QoS.

The behavior of a pattern don’t have to be set for each QoS
objectives, but a pattern can only be used when its behavior
is set for the selected QoS objective.

The behaviors of the patterns are divided into elementary
behaviors for which a cost function is defined. Each of these
functions is based on a characteristic which is built from
parameters taken among those presented previously.

The aim is to provide functions representing approxima-
tively the extra cost due to each characteristic. In this sense,
there is no need to find the exact functions, knowing that
the weighting refines them. Furthermore, since the user might
want to use its application to compute very short tasks, it is
important for the computation of the indices to be fast, which
limits the possible complexity of the functions.

These functions can be discovered using simulations, by
monitoring the behavior of the pattern in controlled environ-
ment or by knowing how the pattern behaves.

We have identified nine characteristics such as the number
of workers, the number of requests being processed, the
heterogeneousness of the network.

For each of these characteristics an index is computed by
the cost function, that represents the extra cost resulting of the
characteristic.

Once the indices are computed, they are weighted and added
to make a score by pattern. Then the scores are compared;
the pattern with the lowest score is selected. If the difference
between this score and the score of the pattern currently used is
greater than 5% of the latter (that is, if the difference between
the scores is significant), then an adaptation is triggered. If all
the scores are infinites, there is no lowest score, so there is no
pattern selected and no adaptation triggered. In case of conflict
between patterns, one is to be arbitrary selected, the last used
might be a good choice to avoid the overhead of deploying a
new pattern.

We studied the behavior of the three patterns for the three
QoS objectives.

A. Simulations

To study the dynamic adaptation of the master-worker
paradigm, we made simulations and used experimental results
from work done in our project-team, published in Hinde L.
Bouziane’s PhD thesis [10].

To validate the decision algorithm, two engines were devel-
oped: one to simulate master-worker patterns on distributed
systems, the other to take decisions according to the algorithm.
The first one is used to simulate the behavior of the various
schedulers of the patterns and characteristics of the distributed
systems (like the computers workload). The second one offers
to simulate the evolution in the time of the parameters used in
the decision algorithm, in order to visualize adaptation choices
done by the algorithm.

To give a rough idea of the size of these simulators: they are
written in Java and range from 1200 to 1500 lines of code.
For its decision engine, the simulator of adaptation choices
uses the organization of the decision part of Dynaco (c.f.
Section III).

The first simulator is used to study the behavior of the
patterns by varying the workers workload, the time to process
requests, the measurement and prediction errors of compu-
tation time, in function of various distributions of random
numbers.

On top of the three presented patterns (one with and
one without probes for DIET), an optimal pattern, without
extra cost and without measurement and prediction errors, is
implemented. It is used to calibrate the indices, such that, as
written before, an index of 1 means a performance gap of
5% with an optimal pattern; the performance measure being
relative to the QoS objective.

For each objective, simulations can be done by varying the
value of one characteristic at a time. It enables to verify that
the patterns behave as expected and to ponderate the char-
acteristics by pattern or, if needed, to correct the behavioral
functions.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6

E
xt

ra
 c

os
t

Variability (normalized standard deviation) of
the time to execute requests

Round−robin
Load balancing

DIET

Fig. 5. Extra cost rate w.r.t. an optimal distribution of requests, due to the
variability of the time to execute requests

For example, Figure 5 shows the extra cost due to the
variability of the time to execute requests when the objective
is to maximize the application’s execution speed. It shows
clearly that this extra cost can be approximated linearly for
round-robin, by a function of equation y = 1.15 · x. We can
also notice that the extra cost tends to be linear for the load-
balancing pattern (y = 0.49 ·x), except for small values where
it is not efficient. For DIET, we notice that the prediction of
the time to execute requests (here with an average prediction
error of 8%) becomes efficient when the variability increase.
This shows that we can use the function y = 1.15/0.05 ·x for
round-robin, y = 0.49/0.05 · x for load-balancing and y = 0
for DIET.

This simulator has been used to validate, refine or correct
half of the nine characteristics. For the others, either they do
not need this work since their behavior is well known, as
for example “number of requests being processed” ; or the
simulator describes not precisely enough the exact behavior
of the pattern to be able to draw conclusions from it, which
is the case for the pattern DIET and the characteristic “the
number of requests being processed divided by the number of
workers”. This limitation can be lifted by doing complemen-
tary measurements of those used in Section IV

The second simulator is used to simulate which adaptation
choices are done and when they are done, when the char-
acteristics of the distributed system and the master-worker
collection evolve with time. Thus it can ensure the consistency
of the choices and their relevance. This simulator is to be used
in concurrence with the first one to check if the choices done
were the choices to be done. It can be used in a real test phase
to plan interesting test scenarios.

For example, it was used to validate the choice to require
to use a score gap of 5% between the current pattern and the
replacing one before to exchange patterns. It was also used to
compute the indices presented in Section V

VI. CONCLUSION

Today, it is still difficult to write applications for distributed
systems. Thus, we chose to use the master-worker paradigm
to get a high level abstraction of the system and to implement
it in software components in order to adapt it. Then, we
presented a framework to adapt the component-based master-
worker collection. We then focused on an algorithm to choose
when to change the master-worker pattern. To this end, we first
characterized the distributed system and the master-worker
collection, then we used this characterization to build the
decision algorithm, then we briefly presented the simulations
we used to validate it.

Through this paper, we described the process of designing
the dynamic adaptation of the master-worker paradigm. Using
the experimental plateform remains to be done in order to
completely validate our algorithm. Then, it would be possible
to use this design to build a framework for parametric and
distributed applications which take into account the dynamic
behavior of these applications and their execution environ-
ment.

In this study, we focused on the conception of algorithms to
decide when to adapt and which pattern to choose. However,
for the final conception of the global framework, it would
be interesting to better study how to switch between patterns
efficiently. It would also be appropriate to study the use of
several masters or several worker collections inside the same
application. In addition, it would be relevant to study ways to
specify the QoS objectives more formally, to enable the user
to have a better control over the dynamic adaptation.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube) and from the French National Agency for Research
project LEGO (ANR-05-CIGC-11).

REFERENCES

[1] D. Anderson, S. Bowyer, J. Cobb, W. S. D. Gbye, and D. Werthimer, “A
new major SETI project based on Project SERENDIP data and 100,000
personal computers,” in Astronomical and Biochemical Origins and the
Search for Life in the Universe. Bologne, Italie: IAU Colloquium 161,
1997, p. 729.

[2] Grid Computing and New Frontiers of High Performance Processing.
L. Grandinetti, Elsevier, 2005, ch. NetSolve: Grid Enabling Scientific
Computing Environments.

[3] P. Combes, F. Lombard, M. Quinson, and F. Suter, “A Scalable Approach
to Network Enabled Servers,” in Proceedings of the 7th Asian Computing
Science Conference, janvier 2002, pp. 110–124.

[4] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka,
“Ninf-G: A Reference Implementation of RPC-based Programming
Middleware for Grid Computing,” in J. Grid Computing, vol. 1, no. 1,
2003, pp. 41–51.

[5] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An Architecture
for a Ressource Management and Scheduling System in a Global
Computational Grid,” in High-Performance Computing, vol. 1, no. 1.
Chine: IEEE CS Press, USA, 2000, p. 283.

[6] H. Bouziane, C. Pérez, and T. Priol, “Modeling and executing Master-
Worker appplications in component models,” in 11th Int. Workshop on
HIPS, Rhodes Island, Greece, avril 2006.

[7] C. Szyperski, Component Software: Beyond Object Oriented program-
ming. Addison-Wesley Longman Publishing Co., Inc, 2002.

[8] F. André, H. L. Bouziane, J. Buisson, J.-L. Pazat, and C. Pérez, “To-
wards Dynamic Adaptibility Support for the Master-Worker Paradigm
in Component Based Applications,” in Corregrid Symposium, Rennes,
France, août 2007.

[9] J. Buisson, F. André, and J.-L. Pazat, “Supporting adaptable applications
in grid resource management systems,” in 8th IEEE/ACM International
Conference on Grid Computing, Chicago, USA, 19-21 September 2007.

[10] H. L. Bouziane, “De l’abstraction des modèles de composants logiciels
pour la programmation d’applications scientifiques distribuées,” Ph.D.
dissertation, École Doctorale MATISSE, février 2008.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

I A chemical metaphor to model service selection for composi-
tion of services

External Final Version 1.0, Dated December 15, 2009 109

A chemical metaphor to model service selection for composition of services

Claudia Di Napoli, Maurizio Giordano
Istituto di Cibernetica “E. Caianiello” - C.N.R.

Via Campi Flegrei 34, 80078 Pozzuoli, Naples - Italy
(c.dinapoli, m.giordano)@cib.na.cnr.it

Zsolt Németh
MTA SZTAKI Computer and Automation Research Institute.

P.O. Box 63, H-1518 - Hungary
zsnemeth@sztaki.hu

Nicola Tonellotto
Istituto di Scienze e Tecnologie dell’Informazione - C.N.R.

Via G. Moruzzi 1, 56124 Pisa - Italy
nicola.tonellotto@isti.cnr.it

Abstract

In the context of Internet of Services (IoS), Service Based
Applications are composed of a number of possibly inde-
pendent services that are available in a network and pro-
vided by many actors under different conditions (like price,
time to deliver, and so on). Service provision conditions may
change in time depending on provider policies, and as such
they cannot be statically advertised together with the ser-
vice description. In this paper we propose and investigate
the possibility to use the chemical computational model [1]
to address the problem of finding compositions of services
that satisfy time constraints coming from the structure of an
abstract workflow against the time availability associated
to each service component.

1. Introduction

Nowadays, many enterprises using the Internet have fun-
damentally changed the way they do business, they develop
new offerings that make the most of online channels. Many
services such as, but not limited to, shopping, music lis-
tening, movie renting, multiplaying, are available over the
Internet, changing our way of living. This change is seen
by many experts [9] as a web-based economic revolution,
where the Future Internet (FI) will embrace not just infor-
mation and content but also services and real world ob-
jects. In this new web-based service economy everything
becomes a service. This Internet of Services (IoS) relies

largely on a service-oriented architecture (SOA), a flexible,
standardized architecture that allows various applications to
be combined into interoperable services. The enterprises
take up the role ofservice providers, while the users ex-
ploit such services in combined ways to fulfill their needs.
These Service Based Applications (SBAs) are composed of
a number of possibly independent services, available in a
network, which perform the desired functionalities.

In this context, it becomes necessary to organize com-
positions of services on demand in response to dynamic re-
quirements and circumstances. It is likely that in service-
oriented systems more service providers can provide the
same functionality at different conditions, or even the same
provider can provide one functionality at different condi-
tions. These conditions refer to non-functional character-
istics of a provided service (like price, time to deliver, and
so on) that can change in time depending on both provider
policies and consumer’s needs. For example, the cost asso-
ciated to a service may vary according to market conditions
(driven by demand-supply mechanisms), or the time to de-
liver may vary according to the workload of the provider.
Given the dynamic nature of service non-functional charac-
teristics, they cannot be statically advertised together with
the service description, but they have to be specified by the
provider at the time a service is required.

The problem addressed in the present work is to se-
lect service instances that match the functional and non-
functional requirements of anabstract workflow, i.e. a
workflow that specifies only service functionality and their
dependence constraints, to find one or more, if any, in-

stances of the abstract workflow. The non-functional re-
quirements taken into account for the provision of a work-
flow are the time intervals [10, 13] during which each com-
ponent can be potentially delivered. We callservice bidthe
provision of a service in a fixed time interval. Only service
instances whose time to deliver is compatible with the time
constraints coming from the dependences occurring in the
abstract workflow should be selected to provide the actual
workflow. Of course, according to the number of service
instances available for each component, and to the time to
deliver of each instance, it will be possible to find zero or
more workflows. As it can be conceived, with a large num-
ber of workflow activities and a large number of potential
(dynamic) service offers, the problem can be of high com-
plexity even without optimization efforts.

Nature metaphors are especially useful when it is diffi-
cult to formalize or compute an exact solution – typically
in case of NP-hard problems, optimization, search prob-
lems, symbolic computation and so on. In many cases it
is not even necessary to find the optimal solution just be
reasonably close to it. By imitating nature processes, cer-
tain parameters are governed by nature laws that are known
to evolve towards equilibrium, energy minimum, living en-
tities may cooperate, share information, reproduce or die
and so on. If appropriate links are set up between the na-
ture processes and the computing problems, one may get a
self-evolving, self-coordinating system where each individ-
ual steps are primitive and potentially unpredictable while
the overall system evolves towards a known and expected
state.

An early example for nature inspired problem solving
is simulated annealing, first described by [12], [7]. In this
scenario controlled cooling of melted metal is simulated nu-
merically as crystals are formed: atoms can move randomly
from their initial positions while lowering temperature; by
random changes in position they can form crystals with
lower energy level than initially. By carefully establish-
ing relations to certain physical parameters in this model,
e.g. temperature, energy, position, etc. known NP-hard
optimization problems, like mapping[6], scheduling [14],
routing [8] have been solved by this heuristics.

We propose to use the chemical metaphor [1] to repre-
sent the problem of selecting service instances in order to
find workflows, if any available, that can be enacted to de-
liver a required application. In the chemical model of com-
putation, chemical reactions involve molecules (i) that are
within each others proximity (ii) and their actual conditions
(chemical properties, temperature, energy, etc.) enable the
reaction. In other words, the chemical matter transforms by
local interactions. Each such interaction (their precise loca-
tion, time and order) is a primitive and unpredictable step
but their overall effect governs the matter into a predictable
state.

Applying this metaphor to the problem of selecting ser-
vice instances in order to obtain a workflow to be enacted
allows to reduce the search space considerably. More-
over, by modeling the computation with chemical reactions
means that the problem solution is implicitly modeled as
an “evolving” system able to find more compositions when
new bids are available in the system. In fact, in the chemical
model of computation it is possible to change at runtime the
state of the system (in this case the number of bids avail-
able), so allowing new solutions to be found (because new
“reactions” may take place) in a way that simulate an adap-
tation of the system to different configurations that are not
planned in advance.

This paper is aimed at establishing a baseline formal
framework that will be used as a platform for modeling
chemical optimization methods. These future concepts are
outlined in the conclusions of the paper.

2. Problem formalization

It is assumed that SBAs are described in terms of user’s
requests specifying both the functionality of each compo-
nent of the application, and the dependence constraints oc-
curring among the components, i.e. the order of execu-
tion in which the components should be delivered. Such
a user request is expressed in the form of anabstract work-
flow (AW) [11], i.e. a Directed Acyclic Graph (DAG)
AW = (S, E) whereS = {Si, . . . , Sn} is a set of nodes in
the graph, andE ⊆ S × S is a set of directed edges in the
graph.

Each node represents a required functionality, i.e. a ser-
vice interface whose actual implementation can be provided
by one or more services instances that can be provided with
different non-functional characteristics. Each directededge
represents a data, or a control (or both) dependence between
the pair of nodes it connects.

In the current formalization, abstract workflows include
chains andbranches. A chain is a path in the DAG whose
nodes, except for the first and the last one, have just one in-
coming edge and one outgoing edge. The first node may
have more incoming edges, but just one outgoing edge,
while the last node may have more outgoing edges, but just
one incoming edge. A branch is a set of more than one dis-
tinct paths that share only the first and the last nodes we
refer to as respectively the branchsplit andjoin nodes.

Services whose non-functional characteristics match the
dependence constraints coming from the whole applications
have to be selected to obtain, from the abstract workflow,
the actual workflow to be enacted. We refer to an actual
workflow as aninstantiated workflow(IW), or just work-
flow.

In the present work, the only non-functional characteris-
tics taken into account for the provision of an actual work-

flow are the time intervals during which each component
can be potentially delivered. Only service instances whose
time to deliver is compatible with the time constraints com-
ing from the dependences occurring in the abstract work-
flow should be selected to provide the actual workflow. Of
course, according to the number of service instances avail-
able for each node in the graph, and to the time to deliver
of each instance, it will be possible to find zero or more
instantiated workflows.

3. The chemical computational model

Most algorithms are expressed sequentially even if they
describe inherently parallel activities. Gamma (General Ab-
stract Model for Multiset Manipulation) [4] aimed at re-
laxing the artificial sequentializing of algorithms. The ba-
sic data structure of Gamma is the multiset, i.e., a set that
may contain multiple occurrences of the same element and
that does not have any structure or hierarchy. Multisets are
affected by so called reactions. The effect of a reaction
(R, A), whereR andA are closed functions, on multisetM
is to replace inM a subset of elements{x1, ...xn} such that
R(x1, ...xn) is true, by elements ofA(x1, ...xn) [4]. This
model yields a multiset rewriting system where the program
is represented by a set of declarative rules that are atomic,
fire independently and potentially simultaneously, accord-
ing to local and actual conditions. There is no concept
of any centralized control, ordering, serialization, rather
the computation is carried out in an indeterministic, self-
evolving way. A Gamma program is inherently parallel. It
has been shown in [4] that some fundamental problems of
computer science (sorting, prime testing, string processing,
graph algorithms, etc.) can be expressed in Gamma.

γ-calculus is a formal definition of the chemical
paradigm from which all these chemical models can be de-
rived. The fundamental data structure of theγ-calculus
is the multisetM . γ-terms (molecules) are: variables
x, γ-abstractionsγ〈x〉.M , multisets(M1, M2) and solu-
tions 〈M〉 [2]. Note, that molecule is a synonym for
all γ-terms. Juxtaposition ofγ-terms is commutative
(M1, M2 ≡ M2, M1) and associative (M1, (M2, M3) ≡
(M1, M2), M3). Commutativity and associativity are the
properties that realize the ’Brownian-motion’, i.e., the
free distribution and unspecified reaction order among
molecules that is a basic principle in the chemical paradigm
[5].

γ-abstractions are the reactive molecules that can take
other molecules or solutions and replace them by other ones
by reduction. Due to the commutative and associative rules,
the order of parameters is indifferent; molecules, solutions
participating in the reaction are extracted by pattern match-
ing – any of the matching ones may react. The semantics
of a γ-reduction is(γ〈x〉.M), 〈N〉 →γ M [x := N] i.e.,

the two reacting terms on the left hand side are replaced by
the body of theγ-abstraction where each free occurrence of
variablex is replaced by parameterN if N is inert, orx is
hidden inM , i.e., it only occurs as a solution〈x〉 [5]. Re-
actions may depend on certain conditions expressed asC
in γ〈x〉⌊C⌋.M that can be reduced only ifC evaluates to
true before the reaction [2]. Reactions can capture multiple
molecules in a single atomic step.

Besides the associativity and commutativity, reactions
are governed by: (i) law of locality [5], i.e. if a reaction
can occur, it will occur in the same way irrespectively to
the environment; and (ii) membrane law [5], i.e. reactions
can occur in nested solutions or in other words, solutions
may contain sub-solutions separated by a membrane. The
γ-calculus is ahigher ordermodel, where abstractions –
just like any other molecules – can be passed as parameters
or yielded as a result of a reduction.

The γ-calculus shows some similarities with theλ-
calculus. Like theλ-calculus establishes the theoreti-
cal foundation for functional languages, theγ-calculus
plays the same role for languages realizing the chemical
paradigm. The Higher Order Chemical Language (HOCL)
[3] is a language based on the Gamma principles more
precisely, theγ-calculus extended with expressions, types,
pairs, empty solutions and names. HOCL uses the self-
explanatoryreplace... by... if... construct to express rules.
replaceP by M if C formally corresponds toγ(P)⌊C⌋.M
with a major difference: whileγ-abstractions are destroyed
by the reactions, HOCL rules are n-shot and remain in the
solution nevertheless, single-shotγ-style rules can also be
added.replace... by... if... is followed byin 〈...〉 that spec-
ifies the solution the active molecule floats in. Notable fea-
tures (extensions) of HOCL are: types,= that can be added
to patterns for matching; pairs in form ofA1 : A2 whereA1

andA2 are atoms; and naming that allows to identify and
hence, match rules, e.g.

let inc = replace xby x + 1 in 〈1, inc〉

that specifies an active molecule calledinc which cap-
tures an integer and replaces it with its successor, floating
in a solution together with an integer 1.

4. The chemical-based workflow

The core of the chemical model is a solution (that cor-
responds to a program) where molecules and other sub-
solutions float (shortly: molecules unless there is a need
for making difference.) Molecules may be active, repre-
senting the procedures or functions and passive, represent-
ing data. There are many ways to model a certain problem
in the chemical paradigm; which entity acts as an active
molecules and which entities are subjects of these actions

as passive ones. In this example we model all workflow
components and service bids as passive molecules whereas
the way how they are mapped and transformed are active
molecules. All these form the chemical solution that coor-
dinates the workflow composition.

An abstract workflow is represented by a set ofNodes
representing workflow service interfaces andEdges repre-
senting control/data dependencies between services in the
workflow.

A Nodeis defined as an embedded solution:

Nodei = 〈id : si, in : ni, out : mi, ...〉 (1)

where the attribute-value pairs have the following meaning:
the attributeid is a unique integer identifying the work-
flow node,in is the number of incoming edges in the node
(in-degree), andout is the number of outgoing edges (out-
degree) from the node. Other attributes not relevant to the
computation considered in the present work may follows.

A Edgeis defined as another embedded solution:

Edgel = 〈from : si, to : sj, ...〉 (2)

where attributeid is a unique integer identifying the work-
flow edge,from is the identifier of the node (source) orig-
inating the edge whileto is the identifier of the node des-
tination (sink) of the edge. Other, optional attributes may
follow: for instance a pairtype : datadep denote the edge
as a data dependence edge.

For example, in the chemical model the abstract work-
flow of Fig. 1 is represented by the set of solutions:

Node1 = 〈id : 1, in : 0, out : 2〉,
Node2 = 〈id : 2, in : 1, out : 1〉,
Node3 = 〈id : 3, in : 1, out : 1〉,
Node4 = 〈id : 4, in : 1, out : 2〉,
Node5 = 〈id : 5, in : 1, out : 1〉,
Node6 = 〈id : 6, in : 1, out : 1〉,
Node7 = 〈id : 7, in : 1, out : 1〉,
Node8 = 〈id : 8, in : 1, out : 1〉,
Node9 = 〈id : 9, in : 1, out : 1〉,
Node10 = 〈id : 10, in : 2, out : 1〉,
Node11 = 〈id : 11, in : 2, out : 0〉

(3)

note that node 0 and 11 are thestart andstop nodesof the
workflow since they have respectively no incoming and no
outgoing edges. Nodes 1 and 4 aresplit nodessince they
have more than one outgoing edges, while nodes 10 and 11
arejoin nodesas they ave more than one incoming edges.

In terms of node connectivity the abstract workflow of
Fig. 1 is represented by the following edge solutions:

Edge1 = 〈from : 1, to : 2〉,
Edge2 = 〈from : 1, to : 3〉,
Edge3 = 〈from : 2, to : 4〉,
Edge4 = 〈from : 3, to : 5〉,
Edge5 = 〈from : 4, to : 6〉,
Edge6 = 〈from : 4, to : 7〉,
Edge7 = 〈from : 5, to : 8〉,
Edge8 = 〈from : 6, to : 9〉,
Edge9 = 〈from : 7, to : 10〉,
Edge10 = 〈from : 9, to : 10〉,
Edge11 = 〈from : 10, to : 11〉,
Edge12 = 〈from : 8, to : 11〉

(4)

In Fig. 1 a chain is represented by the path:
Edge4, Edge7, while the pathEdge1, Edge3 is not a
chain since the first nodes1 has more than one out-
going edge. A branch is represented by the two
paths Edge5, Edge8, Edge10 and Edge6, Edge9 since
they share onlys4 as split node ands10 as join node.

For each service interfacesi a set of actual service im-
plementations are available,ei

1, . . . , e
i
mi

. Eachei can be
delivered in a time interval,∆tei = Tei − tei , that means
a service provider is willing to offer a service implemen-
tations by committing to provide its execution in the spec-
ified time interval. It is possible that a provider can offer
more than one time interval for the service it provides and
so it can provide more offers for the same service as soon
as more time becomes available.

This offer, we callbid, and it is expressed in the chemical
formalism by the solution:

〈ei : si, tei : Tei〉 (5)

where theei is a generic endpoint of servicei offered in the
time interval∆tei = Tei − tei .

For example in the workflow of Fig. 1 the service end-
points bids are represented by the atoms:

. . . ,
〈e3

1 : s3, te3
1

: Te3
1
〉,

〈e3
2 : s3, te3

2
: Te3

2
〉,

〈e3
3 : s3, te3

3
: Te3

3
〉,

〈e3
4 : s3, te3

4
: Te3

4
〉,

. . . ,
〈e6

1 : s6, te6
1

: Te6
1
〉,

〈e6
2 : s6, te6

2
: Te6

2
〉,

. . . ,
〈e8

1 : s8, te8
1

: Te8
1
〉,

〈e8
2 : s8, te8

2
: Te8

2
〉,

. . . ,
〈e9

1 : s9, te9
1

: Te9
1
〉,

. . .

(6)

e3
1 ∆t1,3

e3
2 ∆t2,3

e3
3 ∆t3,3

e3
4 ∆t4,3

e6
1 ∆t1,6

e6
2 ∆t2,6

endpointsS1

S3

S5

S8S7

S4

S2

S6

S9

S10

S11

e8
1 ∆t1,8

e8
2 ∆t2,8

e9
1 ∆t1,9

Figure 1. Abstract workflow and the associated bids

5. Selecting services using the chemical ap-
proach

As described in the previous section, the same service
interface can be provided by one or more endpoints with
different time intervals that can be associated to the same
or different providers. In order to obtain the workflows that
can be then enacted, a process to select the “right” services
takes place. This process is expressed in terms of molecules
reactions that occur when some conditions are satisfied. In
the case considered in this work the conditions concern the
compatibility of the time to deliver of each component with
the dependence constraints specified in the abstract work-
flow.

Instantiated workflows are created from the abstract
workflows by assigning certain service endpoints to their
nodes. Thus, apart form the abstract workflow in Eq. 3, Eq.
4 and the offered services in Eq. 6, a third sort of solution
is introduced, the instantiated workflow in the generic form
of

〈start : 〈ei : si〉, stop : 〈ek : sk〉,
node : 〈em : sm〉,
node : 〈en : sn〉,
. . . ,
tei : Tek〉

(7)

that represents a chain in the workflow where one end
node issi associated withei, the other end node issk as-
sociated withek, there are some intermediate nodes (if any,
sm in this case) listed and the corresponding time frame is

tei : Tek .

5.1. Instantiating elementary chains

In order to select the suitable service implementations to
obtain a workflow, first chains are considered. To this end
a rule is defined so that bids associated to nodes belong-
ing to a chain are linked together to form partial solutions
of the complete workflow if the corresponding time inter-
vals respect the dependence constraints (data/control depen-
dences) and time constraints. In this step a link in the ab-
stract workflow is turned into an instantiated workflow.

replace 〈id : si, in : ni, out : mi〉,
〈id : sj , in : nj , out : mj〉,
〈from : si, to : sj〉,
〈ei : si, tei : Tei〉,
〈ej : sj , tej : Tej 〉

by 〈id : si, in : ni, out : mi〉,
〈id : sj , in : nj , out : mj〉,
〈from : si, to : sj〉,
〈start : 〈ei : si〉, stop : 〈ej : sj〉, tei : Tej 〉

if mi = 1 ∧ nj = 1 ∧ Tei ≤ tej

(8)
The replace part of the rule matches five molecules: two
nodes and an edge connecting them; and two service bids
that match the specified interface.

The if part of the rule is the condition for applying the
rule, that is a conjunction the following sub-conditions:

1. (mi = 1), that issi (andei as well) has exactly one

Si Sj

ej
1 ∆t1,j

ej
2 ∆t2,j

. . .
ej
mj

∆tmj ,j

ei
1 ∆t1,i

ei
2 ∆t2,i

. . .
ei
mi

∆tmi,i

chain

endpoints

Figure 2. Composing chains

outgoing edge, i.e. it is neither the split (mi > 1) node
of a branch nor the terminal (mi = 0) node.

2. (nj = 1), that issj (andei as well) has exactly one
incoming edge, i.e. it is neither the join (nj > 1) of a
branch nor the initial (nj = 0) node.

3. (Tei ≤ tej), that is ei and ej are combined only if
the time intervals have a null intersection, i.e. the time
offers respect the execution order of the servicessi and
sj .

The by part of the rule is the resulted molecules. The
two nodes and the edge are catalysts they are necessary to
ignite the reaction but remain in the solution without any
changes. Note, that the captured service bids are elimi-
nated from the solution, i.e. they are already reserved by
some nodes but the nodes remain in the solution thus, they
may find other mappings if there are available and appropri-
ate bids. These alternative bindings would be combined by
chain and branch rules or selected by optimization methods.

Alternatively, it is also possible to define a rule for single
node instantiation as:

replace 〈id : si, in : ni, out : mi〉,
〈ei : si, tei : Tei〉,

by 〈id : si, in : ni, out : mi〉,
〈start : 〈ei : si〉, stop : 〈ei : si〉, tei : Tei〉

if mi = 1 ∧ ni = 1
(9)

5.2. Combining chains

Instantiated chain fragments can be combined together
by the following, namedchain rule.

replace 〈start : 〈el : sl〉, stop : 〈ei : si〉, tel : Tei , ω1〉,
〈start : 〈ej : sj〉, stop : 〈ek : sk〉, tej : Tek , ω2〉,
〈id : si, in : ni, out : mi〉,
〈id : sj , in : nj , out : mj〉,
〈from : si, to : sj〉,

by 〈id : si, in : ni, out : mi〉,
〈id : sj , in : nj , out : mj〉,
〈from : si, to : sj〉,
〈start : 〈el : sl〉, stop : 〈ek : sk〉,

node : 〈ei : si〉, node : 〈ej : sj〉,
tel : Tek , ω1, ω2〉

if mi = 1 ∧ nj = 1 ∧ Tei ≤ tek

(10)
The replace part of the rule matches five molecules: two
node atoms and an edge atom connecting them; the other
two molecules represent already instantiated chains of bids
that can be combined using he matched edge. The first
molecule is the generic chain on the left of fig.2, while the
second molecule is the right one in the same figure.

The if part of the rule is the same as that of Eq. 8.
The by part of the rule is the action. Note, that nodes

and edges are catalysts, again. The resulted molecule is a
chain that is a concatenation of the two captured ones. The
captured chain fragments are transformed by the reaction
and no longer are in the solution nevertheless, the rule in
Eq. 8 may generate other instances of the same molecules
yielding other possible combinations.

5.3. Condensing branches

Thebranch rulecombines all the chains of bids that rep-
resent partial solutions in the graph, to form new molecules
linked together by split and join nodes according to the ab-

stract workflow structure. Note, that this rule works simul-
taneously with the two chain rules: reactions are governed
by the availability of the appropriate molecules.

Thebranch ruleis:

replace 〈start : 〈ei1 : si1〉, stop : 〈ej1 : sj1〉,
tei1 : Tej1 , ω1〉,

〈start : 〈ei2 : si2〉, stop : 〈ej2 : sj2〉,
tei2 : Tej2 , ω2〉,

〈start : 〈ei : si〉, stop : 〈ek : sk〉,
tei : Tek , ω3〉,

〈start : 〈el : sl〉, stop : 〈ej : sj〉,
tel : Tej , ω4〉,

〈from : sk, to : si1〉,
〈from : sk, to : si2〉,
〈from : sj2 , to : sl〉,
〈from : sj2 , to : sl〉,

by 〈start : 〈ei : si〉, stop : 〈ej : sj〉,
node : 〈ei1 : si1〉, node : 〈ej1 : sj1〉,
node : 〈ei2 : si2〉, node : 〈ej2 : sj2〉,
node : 〈el : sl〉, node : 〈ej : sj〉,
tei : Tej , ω1, ω2, ω3, ω4〉,

〈from : sk, to : si1〉,
〈from : sk, to : si2〉,
〈from : sj2 , to : sl〉,
〈from : sj2 , to : sl〉

if Tek < ti1 ∧ Tek < ti2 ∧ Tj1 < tel ∧ Tj2 < tel

(11)

The replace part of the rule specifies (see fig.3): four
molecules representing chains to be connected, the two edge
outgoing from the split nodesk, and the two edge incoming
to the join nodesl. The four chain molecules are: the chain
including the split node, the left and right chains (or atoms)
representing the two branches originating from the split and
converging to the join node, and the chain including as first
node the join node of the branch, respectively.

The if part of the rule is the condition for applying the
rule that checks if the end time of the serviceek precedes
the start times of both the two branches, and if the start time
of el follows both the end times of the two branches.

Theby part of the rule is the action. The new molecule
is the result of combining the two branch chains with the
split and join nodes, more precisely with the chains the split
and join nodes belong to. Like before, edge molecules are
catalysts and remain in the solution for further reactions.

These rules constitute the core of the chemical composi-
tion mechanism. They can be considered as a ’single step’
in a procedure where the series of such steps form the self-
optimization process. How these steps are coordinated how-
ever, are future research work. The possibilities and direc-
tions are summarized in the next section.

6. Future Work and Conclusions

In this paper the chemical computation paradigm is used
to model workflow composition for Service Based Applica-
tions according to constraints coming from the execution
order of its components, and the time availability of the
providers able to provide the actual implementation of these
components.

The variability of the number of providers available to
provide the services, and their availability in time (that can
change for several reasons like the provider workload dis-
tribution, its market strategies in providing the service and
so on), makes it necessary to rely on approaches that allow
to find sub-optimal solutions based on some heuristics in a
reasonable time and to compute new solutions every time
conditions in the system changes.

Establishing a chemical model for workflow composi-
tion has three challenges. The first stage, baseline model
has been introduced in this paper. It is aimed at finding
an initial mapping between workflow activities and service
bids. In this phase the chemical reactions act like constraint
solvers: the carefully selected patterns and conditions can
significantly reduce the potential reactions and hence, the
search space. Further refinements can enhance complexity
reduction and quality improvement to the initial mappings.

The second challenge is how established mapping can
be improved. The environment is assumed to be highly dy-
namic where new bids may be added or existing bids may be
changed and the workflow system must be able to adapt to
the new conditions. If no changes occur in the chemical sys-
tem, the chemical solutions are inert and they represent the
calculated service compositions (results), if any. Inserting
new bids into the system re-activates it allowing the compu-
tation of new workflow compositions until a stable state is
reached again.

Differently from the standard approaches in the literature
for this kind of problems (Linear Programming, Constraint
Based Programming), the chemical approach behaves in an
evolutionary way since partial solutions are not discarded
and they can be reactivated to form new solutions when
the workflow configuration changes. In this way, it is also
possible that an existing mapping evolves into a more op-
timal one (according to some predefined criteria) with the
availability of new bids. The baseline model consists only
of constraints that enable or disable a reaction. This can
be refined by adding further properties that make a reac-
tion more likely or less likely, i.e. defining the chemical
affinity of the molecules. Dimensions that make a reaction
more likely can be the performance, reliability, availabil-
ity of the bids whereas the tendency of forming molecules
can be decreased by properties like price, waiting queue
length or quality of offered bids just to mention a few ex-
amples. It is possible to model in the chemical paradigm

Sk Sl

Si1 Sj1

Si2 Sj2

chain

ek
1 ∆t1,k

ek
2 ∆t2,k

. . .
ek
mk

∆tmk,k

endpoints

chain

el
1 ∆t1,l

el
2 ∆t2,l

. . .
el
mk

∆tml,l

Figure 3. Condensing branches

that certain molecules split and rebound with some others.
In such reactions it is evaluated whether the affinity of the
free molecules are higher than that of the bound ones; in
terms of optimization if the observed properties of the free
molecule are better than that of the bound one. Hence, dy-
namic changes induced by added bids can change exist-
ing molecules whereas it is also possible that two bound
molecules (mapped workflows) mutually split each other
and then recombine from the yielded molecules in a more
optimal way. The real research challenges in this phase are
(i) which parameters can and should be observed and mod-
eled as dimension of affinity; (ii) how the affinity functions
can be established and (iii) what decision mechanism is nec-
essary to evaluate the affinities, decide whether a certain re-
action is possible under certain criteria for optimization.

Third, the temporal behavior of reactions must be con-
trolled as well in order to reach a stable state in reasonable
steps. The research challenge here is to find a mechanism
that enables reactions without generating an unreasonably
complex solution space. Such mechanisms may include
chemical agents that neutralize, block or slow down pro-
cesses; considering energy levels that may enable or disable
certain reactions; or temperature that can affect the Brown-
ian motion of the molecules and the likelihood of their re-
actions.

In the present work, the baseline chemical model is pre-
sented to establish a chemical framework where more so-
phisticated experiments for optimization can be realized.

7 Acknowledgements

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

References

[1] J.-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the
chemical reaction model: Fifteen years after. InWMP ’00:
Proceedings of the Workshop on Multiset Processing, LNCS
2235, pages 17–44, London, UK, 2001. Springer-Verlag.

[2] J.-P. Banâtre, P. Fradet, and Y. Radenac. Principles ofchem-
ical programming. InFifth International Workshop on Rule-
Based Programming, RULE’04, Electronic Notes in Theo-
retical Computer Science, 2004.

[3] J.-P. Banâtre, P. Fradet, and Y. Radenac. Generalised mul-
tisets for chemical programming.Math. Struct. in Comp.
Science, 16:557–580, 2006.

[4] J.-P. Banâtre and D. Le Métayer. Programming by multiset
transformation.Commun. ACM, 36(1):98–111, 1993.

[5] J.-P. Banâtre, Y. Radenac, and P. Fradet. Chemical specifica-
tion of autonomic systems. InProc. of the 13th Int. Conf. on
Intelligent and Adaptive Systems and Software Engineering
(IASSE’04), 2004.

[6] P. Banerjee, M. Jones, and J. Sargent. Parallel simulated
annealing algorithms for cell placement on hypercube mul-
tiprocessors.IEEE Transactions on Parallel and Distributed
Systems, 1(1):91–106, 1990.

[7] V. Cerny. A thermodynamical approach to the travelling
salesman problem: an efficient simulation algorithm.Jour-
nal of Optimization Theory and Applications, 45:41–51,
1985.

[8] Y. Cui, K. Xu, J. Wu, Z. Yu, and Y. Zhao. Multi-constrained
routing based on simulated annealing. InICC ’03. IEEE
International Conference on Communications, pages 1718–
1722, 2003.

[9] DG Information Society and Media. Future internet 2020:
Visions of an industry expert group, May 2009.

[10] J. Eder, E. Panagos, and M. Rabinovich. Time constraints
in workflow systems. InIn Proc. of the 11 th International
Conference on Advanced Information Systems Engineering
(CAiSE99), Springer Verlag, LNCS 1626, pages 286–300.
Springer-Verlag, 1999.

[11] D. Hollingsworth. Workflow handbook 1997. Technical Re-
port TC00-1003, Workflow Management Coalition, 1995.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Opti-
mization by simulated annealing.Science, New Series,
220(4598):671–680, 1983.

[13] O. Marjanovic. Dynamic verification of temporal con-
straints in production workflows.Agile Development Con-
ference/Australasian Database Conference, 2000.

[14] A. YarKhan and J. Dongarra. Experiments with scheduling
using simulated annealing in a grid environment. InGRID
’02: Proceedings of the Third International Workshop on
Grid Computing, LNCS 2536, pages 232–242, London, UK,
2002. Springer-Verlag.

S-Cube
Software Services and Systems Network Deliverable # CD-JRA-2.3.4

J Execution of Scientific Workflows based on an Advanced Chem-
ical Coordination Model

External Final Version 1.0, Dated December 15, 2009 119

Execution of Scientific Workflows based on an
Advanced Chemical Coordination Model

Manuel Caeiro1 and Zsolt Nemeth2 and Thierry Priol3

1 CoreGRID Network of Excellence / University of Vigo, E.T.S.E. Telecomunicación
E-36310 Campus Universitario, Vigo, Spain

2 MTA SZTAKI Computer and Automation Research Institute, P.O. Box 63
H-1518 Budapest, Hungary

3 INRIA, Campus Universitaire de Beaulieu
F-35042 Rennes Cedex, France

Abstract. Scientific workflows are being developed to support experi-
mentation in an increased number of fields (e.g., astronomy, biology, nu-
clear physics, climate, geology). These workflows usually involve the man-
agement of large amounts of data and the realization of computational-
intensive tasks, requiring the use of numerous computational resources
(e.g., Grids). The work presented in this paper is based on the mod-
eling aspect of artificial chemistries and aimed at establishing a highly
abstract coordination model for distributed workflow enactment where
decentralized control, autonomy, adaptation to dynamic changes, fault-
tolerance, provenance, user steering are primary concerns. This paper
introduces a new scientific workflow execution system based on a chem-
ical coordination model where the notion of enactment is captured by
a nature metaphor and envisioned as a chemical reaction that evolves
autonomously according to local and actual conditions.

1 Introduction

A workflow is defined as a collection of coupled (computational) tasks intended to
be processed in accordance with certain data-flow and control-flow prescriptions
[1]. A workflow execution system is a computational system that performs the
assignment of tasks to resources, controlling their execution and maintaining
data-flow and control-flow dependencies.

In recent years, scientific workflows have been developed extensively [2] to
support experimentation in an increased number of fields (e.g., astronomy, biol-
ogy, nuclear physics, climate, geology). Distinguished features of these workflows
are the management of large amounts of data and the realization of computational-
intensive tasks, requiring the use of large amounts of resources (e.g., provided
by Grids). Therefore, a main point in scientific workflow execution systems is to
obtain reasonable performance from the numerous resources involved. Addition-
ally, several other important requirements, e.g. dynamic changes, fault-tolerance,
provenance, user steering must be taken into consideration in order to facilitate
the realisation of scientific experiments in an appropriate way [3]. To exploit the

potential of full dynamicity, concurrency and autonomy, all these must be carried
out at runtime and thus, enactment of scientific workflows requires a complex
coordination between activities of the workflow and entities of the distributed
system. Such a coordination comprises resource, service, data selection, handling
control and data dependencies of activities, possibly fault detection and recovery
in a large, highly dynamic, fault prone environment.

As in many cases, where the problem is complex and difficult to formalize, a
nature metaphor may inspire a heuristic solution. To model workflow enactment
we have considered a chemical analogy. Artificial chemistries are man-made sys-
tems that are similar to a real chemical system [4]. Dittrich et al. classify three
main axes of applying artificial chemistry: modeling, information processing and
optimisation. In this paper we explore the modeling aspect of an artificial chem-
istry based on multiset rewriting.

This paper introduces a new concept for workflow execution based on the
chemical coordination model. This model is completely concurrent and enables
to create programs without imposing any kind of sequentiality. Taking advantage
of this concurrent solution the foundation logic of a workflow engine is described.

2 The Notion of Chemical Computing

Gamma was proposed in [5] to capture the intuition of computation as the
global evolution of a collection of interacting elements (e.g., molecules). It can
be introduced intuitively through the chemical reaction metaphor. Programs are
conceived as chemical solutions involving a set of elements of different types that
can react in accordance with certain reaction conditions and actions. Compu-
tation proceeds by replacing the elements satisfying the reaction conditions by
the elements specified by the actions. The result of a Gamma computation is
obtained when a stable state is reached, namely, when no more reaction condi-
tions can take place. As an example, the computation of the maximum element
of a non empty set can be described by the reaction rule “replace x, y by x if
x>y“. The chemical computation of this reaction finishes when a stable state is
achieved and only the maximum element remains.

The Gamma formalism has been extended toward a higher-order model called
γ-calculus [6]. In this model of computation every element (including reaction
rules and actions) is considered as a molecule. Programs are made of Active
Molecules (AMs), embedding reaction rules and actions, and Passive Molecules
(PMs). AMs can capture AMs and/or PMs and produce new AMs and/or PMs
according to reaction rules. Higher-Order Chemical Language (HOCL) is a lan-
guage that evolved from the γ-calculus. HOCL enables to create computational
programs as solutions of AMs, involving reaction conditions and actions, and
PMs, representing data elements and resources.

3 A Workflow Execution System based on the Chemical
Coordination Model

In the workflow definition phase an application to be executed is decomposed
into a number of independent activities that are related to each other by data and
control dependency, i.e. it is transformed into the so called abstract workflow that
expresses the logic of the problem to be solved but it does not contain any specific
means how to be executed. Subsequently, abstract workflow is transformed into a
concrete workflow where each logical entity in the abstract workflow is assigned
(in other terms: mapped, scheduled) to resource entities (i.e., resources, services,
processes, etc.) that can enable the execution.

We envision workflow enactment, i.e. a procedure where an abstract work-
flow is mapped onto a concrete one dynamically and where the execution is
controlled, similarly to chemical reactions. There are resources and workflow
activities that may be matched in numerous combinations. Instead of picking
one possible enactment pattern in advance, as any a priori schedule would do,
workflow enactment in our model is a process that evolves in time. Properties of
resources and activities define the possible matchings just like chemical proper-
ties define the affinity of molecules to react. Actual conditions enable a certain
enactment step just like they define the potential of a reaction. If properties and
conditions are well defined, the outcome of the coordination is predictable and
controllable.

The entire chemical coordination takes place in a ”chemical solution” where
both workflow structure (activities) and resources are represented as chemical
matter that at the same time define their possible interactions.

3.1 The Molecules

– Task. This molecule represents a task to be realized. Tasks may require some
input Data Elements that have to be processed in order to produce some
output Data Elements. In addition, Tasks need to be assigned to appropriate
Resources for processing. In this way, Tasks may include information about
the required features of the appropriate Resources.

– Node. This molecule is introduced to support the management of complex
control- and data-flow prescriptions. Nodes can involve issues related to the
control flow, such as splits and joins, or related to the data flow, such as the
break down of a large data set into several smaller chunks of data. In this
way, Nodes may involve the management and processing of Data Elements.

– Activator. This molecule is introduced to enable the control flow processing.
The chemical paradigm is inherently concurrent and it does not impose any
sequentiality to the computation. Nevertheless, workflow execution usually
requires the management of sequences or other restrictions. In practice, Tasks
and Nodes need to capture an appropriate Activator (or set of Activators) in
order to be executed. In a similar way, they also generate new Activators to
pass the execution control to the next Tasks and/or Nodes. They are quite

similar to Tokens in Petri Net models, but they are not used to maintain
data elements.

– Data Element. This molecule represents a container of a piece of data used
during the workflow execution. Data Elements are processed by Tasks and
Nodes to obtain the intended outcomes and to manage the data-flow respec-
tively.

– Resource. This molecule represents an entity that is able to perform the com-
putation required by Tasks. Each Resource needs to include a description of
its capabilities and features enabling the matching of appropriate Resources
to Tasks.

3.2 The Execution States

Thus, the coordination is realized by the molecules and series of reactions in a
chemical solution. The exact number and exact properties of all the molecules is
assumed to be unknown. The solution may also contain control molecules that
influence reactions – sometimes their role is similar to catalysts. The state of
the computation is represented by the entire solution itself – it is a distributed
information system by nature.

Within this solution Tasks and Nodes are AMs (Active Molecules) hav-
ing specific reaction conditions and actions. They are able to capture other
molecules. PMs (Passive Molecules) are Activators, Data Elements and Re-
sources. Active molecules can have states (see Fig. 1):

– Disabled Active Molecules (DAMs). This state represents Tasks and Nodes
that cannot be processed and are waiting for appropriate Activators. When
a DAM reacts a matching Activator (or a set of Activators), a new En-
abled Active Molecule (EAM) is resulted. The DAM remains in the solution
(like a catalyst) and can generate a new EAM whenever it can react with
appropriate Activators.

– Enabled Active Molecules (EAMs). This state represents AMs that do not
have the appropriate input Data Element molecules. When an EAM finds
appropriate Data Element molecules, the reaction produces a Ready Active
Molecule (RAM) while the Data Elements remain in the solution.

– Ready Active Molecules (RAMs). This state represents a Task ready to be
executed, but that has not been assigned to any resource. These molecules
are waiting for an appropriate Resource. When a RAM finds such a Resource
the reaction generates a Initiated Active Molecule (IAM).

– Initiated Active Molecules (IAMs). This state represents activities that are
being executed by assigned Resources, carrying out the work described in
the corresponding Tasks. When the execution finishes IAMs are reacted to
generate Resources, Activators and Data Elements.

Figure 1 depicts states, state transitions and molecules. Notice that DAMs
and Data Elements are represented with a broader line to show they are cata-
lysts. Other molecules vanish in a reaction and new ones are generated.

Disabled
Task

Enabled
Task

Ready
Task

Initiated
Task

Activators
Data

Elements
Resources

Disabled
Node

Enabled
Node

Ready
Node

Fig. 1. State transitions for Tasks and Nodes

3.3 The Chemical Workflow Execution

This section introduces the whole proposal to support the workflow execution
based on the chemical computation model. The abstract model of computation is
depicted in Fig. 2. It is organized in four (separate) ”chemical“ sub-solutions for
the sake of explanation. Each sub-solution is devoted to maintain the molecules
that represent a certain state of execution. The molecules are transferred among
sub-solutions through additional reactions not represented in the figure to sim-
plify. The four sub-solutions contain molecules in accordance with the four states
described in the previous section.

The behavior of the system can be interpreted following the numbers inside
the circles in Fig. 2. It involves two main stages:

– The first stage involves the compilation of an abstract workflow descrip-
tion to produce the DAMs representing Tasks and Nodes. All the DAMs
corresponding to the same workflow description include the same workflow
identifier and version identifier. The workflow identifier is introduced to allow
the execution of several workflows in the same chemical solution. Meanwhile,
the version identifier is introduced to enable the execution of different ver-
sions of the same workflow, supporting the realization of dynamic changes
to the workflow descriptions. Note, that the workflow descriptions could be
in different workflow description languages. At this point, the key issue is
to support the translation from the workflow descriptions to the chemical
molecules.

– The second stage involves the execution of a workflow instance. Each in-
stance corresponds with some input Data Elements that are introduced in
the EAMs sub-solution. In addition, initial appropriate Activators have to be
introduced in the DAMs sub-solution in order to begin the workflow execu-
tion. Data Elements and Activators carry appropriate workflow and version
identifiers corresponding to the executed process. In addition, they carry an
instance identifier in order to distinguish between different instances of the

same process. Notice that Data Elements and Activators can be introduced
at any time.

After these two first states the workflow execution system evolves according
to the chemical principles and the state transitions described in the previous sec-
tion. Molecules can react if the three identifiers (workflow, version and instance)
match. In addition, the generated molecules, representing the different states
of Tasks and Nodes and the produced Data Elements and Activators, inherit
the same identifiers. This feature enables the execution of different workflow
processes and different instances of the same workflow in the same execution
engine.

Activities

Nodes

Enabled

Enabled

Enabled
Activities
Enabled
Nodes

Activities
Running

Ready
Activities

Enabled
Sub−solution

Ready
Sub−solution

Disabled
Sub−solution

Passive Molecule

Active Molecule

Activities

Disabled
Nodes

Disabled

Sub−solution
(Running)
Inititated

Parameters

1

5

 Parameters

COMPILE

Parameters7

Ready
Activities

6

Activators

Activators

Parameters

Nodes
Enabled

Activities
Enabled

Activators

Activators

Activities
Ready

Activities
Running

Nodes
Disabled

Activities
Disabled

2

Resources

Activities
Running

Legend: EXECUTE

3

4
Activators

7

7

Resources

Resources

Activators

Fig. 2. A chemical abstract model of computation to execute scientific workflows

3.4 Node Types to Support Control- and Data-flow

Node molecules are introduced to support complex control- and data-flow struc-
tures in the execution of scientific workflows. Similarly to business workflows,
scientific workflows involve the common types of behaviors described by the well-
known workflow patterns [7]. In addition, there are specific data operators such

as the SCULF one-to-one and all-to-all that deserve attention [8]. The processing
of these constructs can be appropriately performed in a chemical computation
model by using specific Nodes types. Next, some of the more relevant types are
described:

– AND-Split and AND-Join. They represent points where several tasks have to
be initiated and several threads have to be synchronized before the next task
can be performed, respectively. AND-Split looks for an input Activator and
produces as much output Activators as required by the AND operator. AND-
Join waits for the appropriate input Activators and produces one output
Activator that enables next task.

– OR-Split and OR-Join. OR-Split represents a point where one or more tasks
can be initiated. This connector waits for an input Activator and it pro-
duces one or more of several output Activators, based on the evaluation of
conditions associated with each of the outgoing branches. This requires the
creation of a corresponding Node EAM that has to be processed in the EAM
sub-solution as it requires the checking and evaluation of some specific Data
Elements. OR-Join involves an extra difficulty. In accordance with the pat-
tern description [7], the branch following the OR-join receives the thread of
control when either (i) each active incoming branch has been enabled in a
given case or (ii) it is not possible that any branch that has not yet been
enabled in a given case will be enabled at any future time. Hence, OR-Split
should generate an additional specific Activator to be captured by the OR-
join indicating the number of branches that have been effectively activated.

– Data one-to-one. This operator requires to combine the element produced
by two sources in a one to one fashion. This connector will generate a set of
corresponding Node EAMs as soon as it detects an appropriate input Acti-
vator. Each generated Node EAM will group a specific couple of input Data
Elements into a pair. It is a requirement that input Data Elements need to
be ordered. Each Node EAM will be related with elements at a specific posi-
tion, namely: pair 1, pair 2, pair 3, etc. The initial Activator needs to carry
the number of pairs of input Data Elements to be processed. If this number is
not known beforehand and the elements are produced by the sources dynam-
ically then new Activators have to be generated correspondingly, indicating
the number of elements generated at each time.

– Data all-to-all. This operator requires to combine the parameters produced
by several sources among them in all the possible combinations. In this case,
every time an (or a set of) input Data Element is produced a new Activator
has to be issued. The Node DAM should maintain an account of the number
of Activators produced from each input source. Each time it receives a new
Activator, it generates an appropriate number of Node EAMs of this type
that have to look for appropriate Data Elements to compose the appropriate
couples. Each Node EAM will look for a certain couple of input parameters
and will generate such couple as soon as it finds them.

Task A

Task B Task C

Task D

OR-split

OR-join

A.1

A.2 A.3

A.4

A.5 A.6

A.7

Fig. 3. Representation of an OR-Split and OR-Join construct with Tasks, Nodes and
Activators. The OR-Split node generates the Activator A.4 that informs to the OR-Join
node about the number of output Activators produced in the OR-Split.

4 Support of Dynamicity

Dynamicity is a main requirement in scientific workflows. Many times scientific
work evolves through the processing of different versions of the same experiment,
varying the task to be performed or the range of parameters to be used. The
chemical based execution system is focused on supporting these needs to a long
extent. Particularly, it is important to notice the following points:

– The distinction between Activators and Data Elements separates the man-
agement of the control flow from the data to be processed. This separation
enables to conceive a steering facility through the unique management of
Activators.

– Data Elements are never eliminated from the chemical solution. Both input
Data Elements and produced Data Elements are maintained in the solution
in order to enable the development of monitoring and provenance solutions,
that can capture such elements in order to provide appropriate information
about the execution. In addition, the maintenance of Data Elements facili-
tates the realization of re-runs from a specific point in the workflow process.

– New experiments can be initiated dynamically in parallel with the existing
ones. As DAMs representing Tasks and Nodes remain in the solution and it
is possible to maintain several active versions of the same process. Similarly,
it is possible to maintain several active instances of the same process.

5 Related work

During the last years, several scientific workflow execution systems have been
developed: Kepler [3], Triana [9], Taverna [10], etc. These systems are usually
proposed as a proof of concept as they are oriented to support concrete applica-
tions focusing on particular problems. They usually include a typical workflow
execution engine that takes the responsibility for the complete processing of
the workflow execution and the management of dependencies. In most cases,
their primary goals are neither concerned with the support of dynamicity nor of
implicit parallelism; they are programmed as other workflow engines, adopting
more-or-less sequential solutions.

More related with the solution proposed in this paper, there have been nu-
merous attempts to develop workflow engines based on the concept of Event-
Condition-Actions (ECA) rules. These attempts involve the management of a
set of rules that control the triggering of certain events and the satisfaction of
certain conditions, to activate new events or perform certain actions. Examples
are the Petri Net [11] and Event-driven Process Chains (EPCs) [12] formalisms.
Several workflow engines have adopted this approach in their design: [13], [14],
[15], [16]. The main difference between our proposal and these ones is that we
consider rules as first class entities that can be changed and modified. In these
systems, rules are statically programmed into more or less sequential programs.
Meanwhile, in our solution, rules are chemical molecules evolving naturally in
parallel.

6 Conclusions

This paper introduces a new workflow execution system based on the chemi-
cal computation model. It has been shown that the γ-calculus can address all
aspects of workflow modeling and enactment [17]. In the advanced model, pre-
sented in this paper, the notion of connectors is introduced in order to realize
more sophisticated workflow constructs, the data and control flow aspects are
separated and the states of the activities are introduced for better control of
the execution. Furthermore, the chemical coordination model allow capture and
modification of the active molecules themselves that enable a more dynamic and
flexible representation of the workflows.

The chemical model is not an out-of-box solution for workflow enactment;
many issues of workflow scheduling are not addressed directly. Rather, the model
is an abstract framework where various advanced enactment strategies can be
specified. As artificial chemistries have the modeling, information processing
and optimization aspects, in this work we explored the modeling potential of
the chemical metaphor with a future outlook for information processing and
optimization.

Acknowledgments. The work presented in this paper is partially supported by
CoreGRID Network of Excellence IST-2002-004265 and European Community’s
Seventh Framework Programme under grant agreement 215483 (S-Cube).

References

1. Fahringer, T., Qin, J., Hainzer, S.: Specification of grid workflow applications with
agwl: an abstract grid workflow language. In: CCGRID ’05: Proc. of the Fifth
IEEE Int. Symp. on Cluster Computing and the Grid, Washington, DC, USA,
IEEE Computer Society (2005) 676–685

2. Taylor, I., Deelman, E., Gannon, D., Shields, M.: Workflows for e-Science. Springer-
Verlag (2007)

3. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system.
Concurrency and Computation : Practice & Experience 18(10) (2006) 1039–1065

4. Dittrich, P., Ziegler, H., Banzhaf, W.: Artificial chemistries - a review. Artificial
Life 7(3) (2006) 225–275

5. Banâtre, J.P., Métayer, D.L.: Programming by multiset transformation. Commun.
ACM 36(1) (1993) 98–111

6. Banâtre, J.P., Fradet, P., Radenac, Y.: Programming self-organizing systems with
the higher-order chemical language. International Journal of Unconventional Com-
puting 3(3) (2007) 161–177

7. Aalst, W.M.P.V.D., Hofstede, A.H.M.T., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1) (2003) 5–51

8. Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.: Flexible and efficient work-
flow deployement of data-intensive applications on grids with MOTEUR. Interna-
tional Journal of High Performance Computing and Applications (2007)

9. Taylor, I., Wang, I., Shields, M.S., Majithia, S.: Distributed computing with triana
on the grid. Concurrency - Practice and Experience 17(9) (2005) 1197–1214

10. Oinn, T., Justin, M.A., Ferris, Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics Journal. online (June
16, 2004)

11. van der Aalst, W.M.P.: Formalization and verification of event-driven process
chains. Information & Software Technology 41(10) (1999) 639–650

12. Keller, G., Nttgens, M., Scheer, A.W.: Semantische prozemodellierung auf der
grundlage ”ereignisgesteuerter prozeketten (epk)”. Arbeitsbericht Heft 89, Institut
fr Wirtschaftsinformatik Universitt Saarbrcken (1992)

13. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Deriving active rules for workflow
enactment. In: Database and Expert Systems Applications. (1996) 94–115

14. Bae, J., Bae, H., Kang, S.H., Kim, Y.: Automatic control of workflow processes
using eca rules. IEEE Trans. on Knowl. and Data Eng. 16(8) (2004) 1010–1023

15. Zhang, G., Jiang, C., Sha, J., Sun, P.: Autonomic workflow management in the
grid. In: International Conference on Computational Science (3). (2007) 220–227

16. Fjellheim, T., Milliner, S., Dumas, M., Vayssière, J.: A process-based methodology
for designing event-based mobile composite applications. Data Knowl. Eng. 61(1)
(2007) 6–22

17. Németh, Z., Pérez, C., Priol, T.: Distributed workflow coordination: Molecules
and reactions. In: The 9th International Workshop on Nature Inspired Distributed
Computing, IEEE (2006) 241

