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Abstract—The increasing need for continuously available soft-
ware systems has raised two key-issues: self-adaptation and
design evolution. The former one requires software systems to
monitor their execution platform and automatically adapt their
configuration and/or architecture to adjust their quality of service
(optimization, fault-handling). The later one requires new design
decisions to be reflected on the fly on the running system to
ensure the needed high availability (new requirements, corrective
and preventive maintenance). However, design evolution and self-
adaptation are not independent and reflecting a design evolution
on a running self-adaptative system is not always safe. We
propose to unify run-time adaptation and run-time evolution by
monitoring both the run-time platform and the design models.
Thus, it becomes possible to correlate those heterogeneous events
and to use pattern matching on events to elaborate a pertinent
decision for run-time adaptation. A flood prediction system
deployed along the Ribble river (Yorkshire, England) is used to
illustrate how to unify design evolution and run-time adaptation
and to safely perform runtime evolution on adaptive systems.

I. INTRODUCTION

Society’s increasing dependency on software systems is
driving the need for robust, dependable, and continuously
available systems. A very promising approach to the above
issue is to implement systems as Self-Adaptive Systems (SAS)
which include some self-adaptation facilities. SAS automati-
cally adapt themselves at runtime according to the execution
context in order to always provide the expected QoS [1].

In addition to their self-adaptation capability, SAS should
still be opened to design evolution, because of requirements
evolution, predictive or corrective maintenance. Recent re-
search efforts on Model-Driven Engineering (MDE) such as
Rainbow [2], ABCTool [3], Plastik [4] or DiVA [5] tackle the
design evolution issue by building a causal connection between
abstract design models and the running system. Thus, the
designer can refine and update the conceptual models and then
automatically synchronize them with the running system, thus
preventing developers to write by hand ad-hoc and platform-
dependent scripts [6].

However, applying such techniques (so called “mod-
els@runtime” [7]) to SAS raises a key-issue: how to ensure the
consistency between changes resulting from design evolution
and changes resulting from self-adaptation? Indeed, runtime
self-adaptations are triggered by platform events describing
the current state of the execution platform (memory levels,
CPU load, network bandwidth, etc.). For instance, a design
evolution corresponding to the addition of a new resource-
consuming functionality might breakdown a SAS self-adaption
decision to save resources.

The proposition of this paper is to unify design evolution
and runtime adaptation by monitoring both the design model
and the runtime platform in a homogeneous manner. It allows
the designer to correlate design events reflecting the design
evolution and runtime events reflecting the runtime self-
adaptation and thus to make relevant adaptation decisions. Our
monitoring framework combines three recent technological ad-
vances: EMF[8] to build and reason on models, WildCAT1 [9]
to define and organize the needed probes and Esper [10] to
express complex queries over occuring events. This monitoring
framework has been successfully used to perform evolution on
the flood prediction system deployed along the Ribble River.

The remainder of this paper is organized as follows. Section
II motivates this work through a toy and very intuitive case-
study. Section III presents the Wildcat framework and how
designer can use it to monitor runtime events, in the context
of dynamic adaptations, and the modifications of the design
model, in the context of design evolution. Section IV shows
how design and runtime monitoring are combined and outlines
how our approach was validated in the context of a sensor
network system deployed along the river Ribble (Yorkshire,
England) to carry out flood predictions. Section V discusses
related work and section VI concludes by presenting a set of
open research problems based on our experiment.

1http://wildcat.objectweb.org



II. THE NEED FOR MIXING RUNTIME AND DESIGN EVENTS

In this section, we propose to motivate the need for a
uniform management of runtime adaptations and design evo-
lutions with a very intuitive example. Let us consider a
distributed system composed of a set of nodes with limited
resources (memory, energy, CPU, etc), such as the flood
prediction system that will be further detailed in Section IV.
The distributed system includes a control loop to perform
self-adaptation and therefore to dynamically adapt itself to its
execution context, i.e. depending on runtime events such as
memory is low, energy is high, etc.

We assume that the requirements of the system have
changed. It should now integrate a new feature, realized by
several components and connections between these compo-
nents. The designer modifies the current architecture of the
running system, at the model level, with his favorite graphical
editor for example. Then, using a design-time validation tool,
the designer can check that this updated configuration ensures
well-formedness rules, etc. and generate the code of the new
components. Once all these design and implementation tasks
have been performed, the designer decides to commit these
changes to the running system. This is automatically per-
formed by the causal connection [5]: it transforms the changes
between the initial configuration and the new configuration (at
the model level) into a low-level reconfiguration script in order
to reconfigure the running system.

However, if the free memory of the running system is
currently low, the introduction of the component would causes
some problems: some components could not be instantiated
because there is not enough memory. In this simple example,
we can see that design events (e.g., adding a component) may
be highly dependent from runtime events (e.g., memory is
low).

In conclusion, design evolution is not independent from
the runtime. To fill the gap between design evolution and
runtime adaptation, our approach consists in monitoring design
and runtime events in an homogeneous way, so that design
evolution and dynamic adaptation activities can interact seam-
lessly. In the example above, we would like to specify that if
components are added in the architecture (a design event), the
memory (a runtime event) should be sufficient. Otherwise, the
design evolution should not be directly reflected to the runtime.
In Section IV, we will illustrate the aggregation of design and
runtime events in the context of the flood prediction system.

III. UNIFYING RUNTIME ADAPTATION AND DESIGN
EVOLUTION

WildCAT is a generic monitoring framework for developing
context-aware applications [9]. It allows monitoring large
scale applications by easily organizing and accessing sensors
through a hierarchical organization. This section presents the
meta-model of WildCAT to organize sensors, how it is used
to build Context-Aware Applications, and its extension to
monitor model evolution in Eclipse. We conclude this section
with a short discussion on the approach.

Fig. 1. WildCAT meta-model

A. WildCAT meta-model

The meta-model shown on Figure 1 allows developers
to describe monitoring models by defining several contexts.
Contexts are domain independant and can reprensent different
aspects of the execution context: local hardware resources,
the topology and performance of the network, geophysical
informations, user preferences, etc. Each context is the root
element of a hierarchy, similar to the Unix file system. We
use EMF Eclipse Modeling Framework [8] to design this meta-
model that defines the WildCAT main concepts.

A context is an oriented tree structure that contains two
types of nodes:

• Attribute, which holds some values. Attributes are the
leaves of the sensors tree (like files in a file system).
WildCAT proposes three kinds of attribute:

– Basic attribute holds static values. Their values do
not evolve unless programmatically modified.

– Active attribute or POJOAttribute represents
WildCAT sensors. In general, these attributes are
associated to probes linked to the environment or
the execution context (CPU, Memory, Thermometer,
Camera, etc).

– Synthetic attribute or Query Attribute holds the
results of expressions on other attributes. It can for
example aggregate and transforms the values pro-
vided by other attributes e.g., compute mean values
during 10 seconds.

• Resource, which contains sub-resources and attributes
(like folders in a file system).

– Basic resources allows the designer to structure the
monitoring model. For example, each node of a dis-



tributed system could be a basic resource, containing
sub-resources related to the memory, the CPU, etc.

– Symbolic links are special resources that refer to
another resource. Symbolic links are used to create
“short cuts” in the monitoring model in order to
access more rapidly to the important resources or
attributes, without navigating the whole tree. An
OCL constraint specifies that cycles are not allowed
(constraint similar to inheritance cycle in UML or
Java programs).

Based on this meta-model, the designer can graphically
represent a monitoring model as illustrated in the right part
of Figure 2. We use GMF2 to define the graphical syntax
of our meta-model. Then, using JET3, we generate the Java
code related to the integration of the WildCAT attributes and
resources in the system.

B. WildCAT at runtime

In this sub-section, we describe how we can use WildCAT
for monitoring runtime events. A typical hierarchy for runtime
monitoring is illustrated in Figure 3.

Fig. 3. Wildcat Runtime Hierarchy example

The system (Root resource) contains several nodes deployed
in a distributed environment. Each node is represented by
a basic resource (Second level). The resource of each node
(Memory, CPU and Network) is represented as a sub-resource
(Third level). Finally, each resource has some attributes de-
scribing its current status. For the Memory resource, the Total
and Free attributes hold respectively the total and the free
amount of available memory. The CPU resource is associated
with the basic attribute Load which holds the instant CPU
load (automatically updated) and the query attribute LoadAVG
which holds the CPU load average for the last 15 seconds. The
following code snippet shows how we create a basic attribute
using the Context API:

1 /*
2 * Creating a context named "System" through the

ContextFactory
3 */
4 Context ctx = ContextFactory.getDefaultFactory().

createContext("System");

2Graphical Modeling Framework [8]
3Java Emitter Template

5 /*
6 * Creating the "Total" attribute of the Memory

resource
7 */
8 ctx.createAttribute("self://Node1/Memory#Total");

Note that every missing resource in the current hierar-
chy is automatically added by the framework: the last code
line implicitly creates the Node1 resource, the Memory sub-
resource and the Total attribute. Query attributes such as
LoadAVG and BandwidthAVG are defined as queries to the
Esper framework [10], which is the WildCAT backend. Esper
is an open-source Complex Event Processing engine providing
interesting features such as events pattern matching, events
correlation, sliding windows and a SQL-like language to write
queries over triggered events. The code snippet below shows
how query attributes are created and attached to the hierarchy:

1 /*
2 * Creating a query attribute holding the CPU load

average for the last 15 seconds
3 */
4 QueryAttribute LoadAVG = new QueryAttribute(" s e l e c t avg

(value.load) as loadAVG from
5 WAttributeEvent( source = ’self://Node1/CPU#Load’).win:

time(15s)");
6 /*
7 * Attaching the query attribute "LoadAVG" to the

hierarchy
8 */
9 ctx.attachAttribute("self://Node1/CPU#LoadAVG", LoadAVG

);

Finally, information such as total memory, CPU load or
Network available bandwidth is easily retrieved thanks to
WildCAT sensors. WildCAT sensors are designed to be generic
probes since they are POJO (Plain Old Java Object) Attributes.
This powerful WildCAT feature allows developers to design
their own probes as Java classes and associate them to in-
formation source regardless of their nature (Network device,
Camera, Thermometer, etc).

C. WildCAT at design-time

To both use design and runtime events in an homogeneous
way, we extended WildCAT to monitor design evolution in the
Eclipse Modeling Framework (EMF). EMF is an open source
framework targeting Model-Driven Architecture development
and can be considered the standard in the Model-Driven
Engineering community.

Two problems must be solved in order to monitor the
evolution of a EMF model with WildCAT:

• Create listeners to capture the evolution of the design
model;

• Create a WildCAT hierarchy which only reflects the
relevant changes that can affect the design model.

An interesting feature of EMF is the notification framework.
EMF automatically provides notification functionality to the
model in case of changes in the model. It is possible to register
observers / listeners which are notified when the model is
modified. There are six types of event: ADD, REMOV E,
ADDMANY , REMOV EMANY , SET , UNSET which
are respectively raised when an element is added or removed in



Fig. 2. WildCAT Designer Snapshot

the model, when a collection of elements is added or removed
in the model or when an object property is set or unset.

A WildCAT POJO Attribute implements the EMF Observer
interface and is registered to all the resources (models) of
the opened editors in the Eclipse workbench. This way, the
observer is automatically notified when a designer modifies a
design model.

WildCAT hierarchies are built according to the concept of a
domain meta-model. In our case, we are interested in software
architectures made of components types with ports, component
instances with bindings, etc. A fragment of this hierarchy
is illustrated in Figure 4. Each meta-class of the domain
meta-model becomes a node in the WildCAT hierarchy. Each
node contains two sub-nodes: FACTORY and SET . The
FACTORY node contains two attributes specifying when
an instance of the corresponding meta-class is created or
deleted. The SET node contains as many attributes as there
are properties or references in the meta-class.

Fig. 4. System Architecture meta-model

D. Discussion

In this section, we have presented the meta-model of Wild-
CAT. This meta-model allows designer to specify monitoring
hierarchies. We illustrated how to define such a hierarchy
of sensors for monitoring runtime events, in the context of
self-adaptive systems. Based on an Event-Condition-Action
framework like Safran [11], these runtime events can trigger
reconfiguration scripts [6] in order to adapt the running system
depending on the context. We explained how we can monitor
architectural models with another WildCAT hierarchy, by
leveraging the mechanisms provided by EMF. We rely on an
existing “models@runtime” approach [5], [12], [13] to reflect
design evolution by reconfiguring the running system. The
way the connection between the design model and the running
system is realized is beyond the scope of this paper.

In the next section, we will use the runtime and the design
hierarchies in concert, in order to control when (i.e. in which
runtime context) design evolutions can actually be applied to
the running system. Using WildCAT, it is now possible to
make both activities interact in a seamless way thanks to a
unified monitoring.

IV. VALIDATION ON THE FLOOD PREDICTION SYSTEM

In this section, we show how we aggregate runtime (Sec-
tion III-B) and design (Section III-C) events during some
design evolutions. Our approach is applied on the real-life
Flood Prediction System (FPS) [14] in order to specify when
design evolutions can actually be reflected to the runtime
system. Since human lives depend on this system, it should
only be adapted when really needed or when no flood is likely
to appear.

In the first subsection, we briefly introduce the system. In
the second subsection, we detail several examples of design



evolution that use design and runtime events to specify when
these evolutions can actually be applied to the running system.

A. An Overview of the Flood Prediction System

The FPS is currently deployed on the Ribble River (York-
shire, England) in order to carry out flood predictions and
notify local authorities from possible dangers. The FPS is
composed of a set of nodes deployed along the river. Each
node contains some sensors (e.g. cameras to evaluate water
speed and depth, etc.), a battery, solar panels, as well as com-
munication equipments (e.g. WiFi and/or Bluetooth antenna).
All these equipments are controlled by software components,
which compute flood prediction level according to the values
provided by sensors, communicate the predictions to a central
node or to a nearby node, etc.

The requirements of the system [15], [14] specify three
relevant contexts:

• No flood: No flood is predicted in a close future. Most
of the sensors are disabled (only one camera is active),
the system uses low power consuming network protocols
(also less efficient), so that the solar panels can quickly
reload the battery;

• Flood predicted: A flood is likely to appear. Some nodes
indicates alarming values (e.g. water speed is increasing).
Some sensors are activated in order to provided more
accurate predictions;

• Flood: A flood is currently predicted. All the available
sensors are activated and the system uses efficient (also
power consuming) network protocols, so that local au-
thorities can be notified quickly, with accurate data.

The probes for monitoring the river and computing predic-
tions (with aggregation of runtime events) are organized into
a WildCAT hierarchy. Based on an Event-Condition-Action
rules engine like Safran [11], dynamic adaptations (activate
new sensors, use efficient networking algorithms, etc.) are
triggered by WildCAT events.

B. Design Evolution of the Flood Prediction System

In this subsection, we illustrate two design evolutions of
the Flood Prediction System whose application to the running
system is highly dependent on runtime events. The first one
illustrates a corrective maintenance, which aims at improving
the accuracy of the predictions. The second one is a design
evolution realized after the integration of a new physical
node (sensors, antenna, battery, solar panels, etc), in order to
deploy all the software components needed to administrate
the node (data processing, prediction algorithms, routing and
networking algorithms, etc).

1) A corrective maintenance: From the model, it is possible
to increase the sampling rate of the sensors (or decrease
this rate) after the system has been deployed, in order to
have more accurate predictions. The designer simply modifies
the corresponding attributes in the model. Then, using an
automatic causal connection [5], this change is automatically
reflected to the running system. This evolution is very simples:

no components are bound, added or removed, a set method is
simply invoked.

However, a significant augmentation of the sampling rate
will inevitably consume more energy and reduce the battery
level. If the sampling rate is augmented, the energy consump-
tion increases proportionally. This is why this design evolution
(performed on the model) should not be committed via the
causal connection if the battery level (monitored at runtime)
is currently low.

To realize this constraint mixing design and runtime events,
we define the following query in WildCAT:

1 s e l e c t * from pattern[
2 every B=WAttributeEvent( source l i k e ’FPS://Node%#

Battery’)
3 ->
4 every A=WAttributeEvent( source = ’System://

ComponentInstance/Attributes#Set’)
5 ]

A listener is registered on this query. Every time the
battery status change (e.g., from medium to low) in the
’FPS’ run-time context, and every time an attribute is
set in the ’System’ design context, the listener is noti-
fied by a call its update(EventBean[] newEvents,
EventBean[] oldEvents) method (an Esper API). Us-
ing the old and new events, the listeners checks if the aug-
mentation of the rate attribute is limited (less then 5% for
example) and if the battery level is not low. If this condition
is true, then the sampling rate is actually augmented on the
running system.

2) A new requirement: When a new node is physically de-
ployed on the river, because another node has been destroyed,
it is not yet controlled by the flood prediction software system.
All the components needed to get the date from the sensors,
to compute flood prediction, to send data to other nodes, etc.
are uploaded later.

In a graphical editor, the designer simply creates a compos-
ite component in the architectural model, which contains all
the software components for managing the physical sensors,
performing local predictions, sending the result, etc. Such a
design evolution has a great impact on the system: it introduces
some components and bindings and could only be reflected
to the running system if there is enough free memory, as
explained earlier.

Moreover, the introduction of these software components
would make the routing and networking algorithms to compute
new paths including the new node, thus disturbing the whole
system. Note that when a node is not yet controlled by
software components, it cannot be “seen” by the other nodes.
Such design evolutions should only be deployed when no
flood is predicted (running the algorithms will not disturb the
system), or when the accuracy of the prediction is low, so that
the integration of the new node can improve the accuracy after
routing paths have been established.

In order to check if this design evolution can be actually
reflected to the running system, we define the following query
in WildCAT:



1 s e l e c t * from
2 WAttributeEvent( source=’System://ComponentInstance/

Factory#add’) as addComponent ,
3 WAttributeEvent( source=’FPS://Prediction#noFlood’)

as noFlood ,
4 WAttributeEvent( source=’FPS://Accuracy#accuracyLow

’) as accuracyLow
5 where
6 addComponent.value and (noFlood.value or accuracyLow.

value) ;

V. RELATED WORK

As stated in the introduction, our approach is based on mod-
els@runtime techniques such as Rainbow [2], ABCTool [3],
Plastik [4] which aims at ensuring the synchronization between
a running system and its related design models. Rainbow and
Plastik focus on the development of SAS by ensuring that self-
adaptation does not conflict with static constraints developed
at design-time. Our tool is complementary: it checks that an
evolution of the design does not conflict with current self-
adaptation. The ABCTool enables design-evolution by syn-
chronizing an architecture model and its JEE implementation
but do not detect conflicts while applying design evolution on
a SAS.

Several works [16], [17] propose to monitor heterogeous
contexts enabling the exchange of relevant contextual informa-
tion across and between domains. However, our work differ in
that we provide a complete monitoring framework combining
several aspects such as CEP (Complex Event Processing).

VI. CONCLUSION

This paper describes how to unify design evolution and
runtime adaption of dynamically adaptive systems in order to
build consistent adaptation decisions. On the conceptual side,
our approach combines Complex Event Processing, Model
Driven Engineering and Context-aware systems. This results
in a monitoring framework able to deal with both design
evolution events and run-time platform events in a homoge-
neous manner. On the technical side, this framework alleviates
the tedious and error-prone handmade developments needed
to aggregate design and runtime events. The combination of
Wildcat’s probes with the Esper’s queries and the EMF’s
design events provides an efficient way to produce events
agregators. Applied on the flood prediction system deployed
along the Ribble river, our framework succesfully allows
designer to make consistent adaptation decisions.

In future works, we plan to extend our approach following
two main axis. On one hand, making explict the development
process using SPEM could help monitoring the various roles
and tasks. On the other hand, to take the most of the resulting
complex events, the monitoring framework must be connected
to an automatic decision-engine to support the automatic
detection of potential conflicts between runtime-adaptation and
design evolution.
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