
Dynamo + Astro: An Integrated Approach for
BPEL Monitoring

Luciano Baresi Sam Guinea
Deepse Group

Dipartimento di Elettronica e Informazione
Politecnico di Milano, Milano, Italy
Email: baresi|guinea@elet.polimi.it

Marco Pistore Michele Trainotti
Service Oriented Applications Group

Fondazione Bruno Kessler
IRST, Trento, Italy

Email: pistore|mtrainotti@fbk.eu

Abstract—In the literature, there exist several approaches for
monitoring the execution of BPEL processes. They concentrate on
different properties, adopt different languages, work at different
levels of abstraction, and assume different perspectives. Even
if the field is rather new, we do not think that this diversity
is a limitation of current solutions; rather it is intrinsic in the
problem itself. We claim that, instead of working on the definition
of the ultimate approach for BPEL monitoring, we should push
a cooperative approach based on the integration of different
solutions.

In this paper, we present a first step in this direction,
and describe a monitoring framework which is obtained by
integrating two well-known approaches, namely Dynamo and
Astro. This integration, which happens both for the language
used for expressing the properties to be monitored, and for the
architecture of the monitoring framework, allows to combine
the advantages of the two approaches and to obtain a general,
comprehensive solutions for BPEL monitoring.

I. INTRODUCTION

The conception of a software system as a composition of
services imposes new requirements to validation techniques.
Even if we think of BPEL (Business Process Execution Lan-
guage [1]), a widely known technology for creating workflow-
like assemblies of Web services, we must consider that service
providers are entitled to change their services freely without
notifying their users. This means that a service that originally
was “correct” could become “incorrect” during its evolution.
Besides this, a BPEL process is a highly distributed system
where the entire computing power belongs to the partner ser-
vices. The communication infrastructure may heavily impact
the actual correctness of the composition: when it is too slow,
or even broken, it may give the impression that services do
not work, or they do not react with the required quality of
service.

BPEL supports primitive forms of probing (e.g., timeouts)
and exception handling, but these features do not cover all
the different ways users would like to probe and control the
execution of their processes. This is why there exist many
—and quite diverse— proposals for monitoring the execution
of BPEL processes. They concentrate on different properties,
adopt different languages, work at different levels of abstrac-
tion, expose synchronous or asynchronous behaviours, and
they can even assume different perspectives (e.g., the user
is in charge of analysing the services it interacts with, or it

is the provider that studies what it offers). Even the authors
proposed their own monitoring solutions, with Dynamo [4],
[5] defined for the synchronous check of properties on single
process instances, and Astro [2], [3] that is more devoted to the
specification of properties that span sets or classes of process
instances. All these different characteristics clearly witness the
importance of the problem, but also the impossibility for any
single solution to take over the others.

Even if the field is rather new, we do not think that
this is a limitation of current solutions; rather it is intrinsic
in the problem itself. There are so many dimensions, and
alternatives, that a single solution can hardly address all of
them. We believe that interesting and complete solutions will
come from the integration of different solutions rather than
from augmenting existing ones. When a solution is good at
something (e.g., checking temporal properties), it must keep
its peculiarities; if it tries to embed too many things, the final
result is often messy. The cooperation of different solutions
helps get the positive aspects of the original proposals without
compromising their efficiency.

In this paper we present a first experiment in this direction,
and we describe a monitoring framework based on the inte-
gration of our two previous proposals Dynamo and Astro. The
integration we propose is at two levels: at the language level
and at the architectural level. The linguistic integration defines
a language for specifying monitoring properties which layers
the Astro language on top of the Dynamo language. The main
challenge is to avoid conceptual redundancy, and to provide
a solution that is as cohesive as possible. The architectural
integration is carried out by means of a simple event bus
that collects the relevant events on the process of interest and
forwards them to the correct analysers. The main challenge
here is to maximize code reuse, while at the same time
accomodate a solution that is efficient. The paper demonstrates
the high cohesion between the two approaches. Besides being
the previous approaches conceived by the authors, Dynamo
and Astro complement each other (see our analysis in [6])
and produce a novel and coherent solution for monitoring
BPEL process executions. In this novel approach, the users
can define constraints on single and multiple instances, on
punctual properties and on complete behaviours, and they can
also reason on both simple and composed properties.

The presentation is fully centered around a case study, which
we use to demonstrate the key features of the novel framework.
The case study in based on the process that guides the payment
of the solid waste tax in Italian municipalities [13]. Besides
this, we argue that the article is also interesting since it
presents a general solution that can be easily generalised and
applied to other approaches. In particular, the event bus helps
decouple the process and its analyser(s), but it also allows us
to fully control the distribution of the monitored events and
data.

The rest of the paper is organised as follows. Section II
introduces the case study used to illustrate the approach.
Section III defines our integrated approach. Section IV details
the implementation of our monitoring framework. Section V
presents some of the most prominent related work in the field,
while Section VI concludes the paper and presents some future
work.

II. SCENARIO

In this paper, we consider the process that guides the
payment of a specific municipal tax, the TA.R.S.U. (TAssa
sui Rifiuti Solidi Urbani, i.e., municipal solid waste tax).
The TA.R.S.U. is used to cover the costs of collecting and
disposing solid waste, and is calculated on the basis of the
size of the citizen’s house, and of the number of people living
in the house. The TA.R.S.U. process has been already used in
[13] to experiment the adoption of advanced SOA technologies
in a production context.

Figure 1 depicts the overall T.A.R.S.U. process. Due to lack
of space, we have simplified it with respect to the real process.
In particular, we only show the interactions the process has
with the its partner services (i.e., its Receive and Invoke
activities), while secondary BPEL activities (e.g., Assign) are
ignored. Each block represents a BPEL activity with three
different information: the type of activity (given in square
brackets), the remote operation being called (or the operation
on which the process receives a message), and the partnerlink
on which the activity operates (given in angular brackets).
In this scenario we have three remote partner services, and
therefore three partnerlinks. UT represents the “Ufficio Trib-
uti”, i.e., the tax office, which is responsible of computing
the amount of the taxes, as well as the penalties in case
of late or missing payments of some citizen; UR represents
the “Ufficio Ragioneria”, i.e., the accounting office, which
is responsible of registering the tax payments and, more in
general, of managing the budget of the waste management
procedures; and T represents the “Tesoriere”, i.e., the treasury,
which manages the collection of the taxes from the citizens.

The process is initiated by the Ufficio Tributi, which cal-
culates the amount of taxes the citizen must pay, and sends
a payment request to the TA.R.S.U. process ([RECEIVE]
startRegistration<UT>). The process then sends an asyn-
chronous registration request to the Ufficio Ragioneria
([INVOKE] requestRegistration<UR>). If the registration is
unsuccessful ([ON MESSAGE] registrationFailure<UR>)),
the Ufficio Tributi is notified about the failure and the process

aborts ([INVOKE] registrationFailure<UT>). If the registra-
tion is successful (ON MESSAGE] registrationAck<UR>),
the process notifies the Ufficio Tributi by sending it the
registration data ([INVOKE] registrationStart<UT>), and
routes the payment request to the Banca Tesoriere ([INVOKE]
requestPayment<T>), which can answer with a suc-
cess or a failure. If the request fails ([ON MESSAGE]
paymentFailure<T>), the process notifies both the Uffi-
cio Tributi ([INVOKE] paymentFailure<UT>) and the Uf-
ficio Ragioneria ([INVOKE] paymentFailure<UR>), and
terminates. If the request is successful ([ON MESSAGE]
paymentAck<T>) the payment is notified to the Uffi-
cio Tributi ([INVOKE] paymentNotification<UT>), and
registered both with the Ufficio Tributi and the Uf-
ficio Ragioneria ([INVOKE] registerPayment<UT> and
[INVOKE] registerPayment<UR>). The registration with
the Ufficio Ragioneria can fail, for instance if the due
amount and the paid amount do not coincide. In this
case ([MESSAGE ON] registrationFailure<UR>), the pro-
cess notifies both the Ufficio Tributi and the Banca
Tesoriere ([INVOKE] registrationFailure<UT> and [IN-
VOKE] registrationFailure<T>). If the registration is suc-
cessful ([INVOKE] registrationAck<UR>), the process sends
an acknowledgement to the Ufficio Tributi ([INVOKE]
registrationAck<UT>) and a receipt to the Banca Tesoriere
([INVOKE] accountantReceipt<T>).

A. Monitoring Requirements

While the TA.R.S.U. process is conceptually simple and
generic, its implementation is far from trivial, as shown also
in the above description. First it must account for a wide range
of non-nominal cases: for instance, the citizen may not be
able to fulfil his tax payment request; the payment may take
too long to complete; or errors may arise in the transfer of
personal data. All these failures are captured in the scenario
above, and reported to Ufficio Ragioneria, Ufficio Tributi and
Banca Tesoriere. This is however not sufficient: we need to
monitor and collect information on these failures also at the
level of the TA.R.S.U. process, in order to support a prompt
analysis and reaction. Moreover, it is almost never the case
that e-government processes handle citizens separately; for
practical reasons, tax payment requests are usually handled in
batches. For this reason, there is a need of collecting statistical
information on the failures, but also on the performance of
the system. We provide now some examples of monitoring
properties that are important in the TA.R.S.U. domain.

1) We need to monitor how often the whole procedure fails,
so to check that a reasonable success ratio is maintained
at runtime. (From now on we will call this property
AverageProceduralFailure).

2) We need to monitor the frequency with which the Ufficio
Ragioneria is first notified of a citizen that needs to be
recorded, but then the payment for that citizen fails. In
this case effort is wasted, and it is important to monitor
that such cases, while deemed possible, only take place
seldomly. (Property FrequencyPaymentFailure).

[RECEIVE]
startRegistration

[Pick]

[INVOKE]
requestRegistration

<UR>

[ON MESSAGE]
registrationFailure

[INVOKE]
registrationFailure

<UT>

[ON MESSAGE]
registrationAck

[INVOKE]
registrationStart

<UT>

[INVOKE]
requestPayment

<UT>

[INVOKE]
requestPayment

<T>
[Pick]

[ON MESSAGE]
paymentFailure

[INVOKE]
paymentFailure

<UT>

[INVOKE]
paymentFailure

<UR>

[ON MESSAGE]
paymentAck

[INVOKE]
paymentNotification

<UT>

[INVOKE]
registerPayment

<UT>

[INVOKE]
registerPayment

<UR>

[ON MESSAGE]
registrationFailure

[INVOKE]
registrationFailure

<UT>

[INVOKE]
registrationFailure

<T>

[ON MESSAGE]
registrationAck

[INVOKE]
registrationAck

<UT>

[INVOKE]
accountantReceipt

<T>

[Pick]

<UT>

<UR>

<UR>

<T> <T>

<UR>

<UR>

Fig. 1. TA.R.S.U. process.

3) We need to monitor the average time spent by the whole
process. (Property AverageTimeDuration).

4) We need to monitor the average time spent by one of the
actors in the process, e.g., the average time spent by the
Banca Tesoriere for handling the payment procedure.
This information is necessary to detect bottlenecks or
deviations from estimated completion time. (Property
PaymentAverageTime).

III. THE MONITORING APPROACH

The approach presented in this paper was born from the
conceptual fusion of two of our previous works: Dynamo and
Astro. Dynamo [4], [5] uses Aspect Oriented Programming
(AOP) [10] techniques to gather run-time data from a running
BPEL process, and WSCoL (Web Service Constraint Lan-
guage) to define the functional and non-functional properties
that need to be checked during execution. Astro [2], [3], on
the other hand, uses automatically generated and independent
software modules to check properties that are defined in RTML
(Run-Time Monitor specification Language).

This work is based on the comparison, undertaken in [6], of
the expressive power of the two approaches. The goal of the
fusion is to exploit the main advantages of both works, and
to minimize their weaknesses by combining the expressive
power of WSCoL and RTML. The result is characterized
by the following main features. (1) It is possible to define
fine-grained monitoring specifications thanks to the support
for what we call “basic events”. (2) The approach supports
the collection of both internal and external data, allowing
monitoring to consider context information when needed.
(3) It is possible to define rich “composite” properties that
take advantage of a Linear Temporal Logic. (4) A low de-
gree of performance overhead is guaranteed. Although basic
events are collected using AOP techniques, the actual analysis
is performed by independent software modules that run in

parallel to the process execution. This means that growing
complexity in our monitoring specifications does not lead
to higher performance costs. (5) The approach distinguishes
between instance and class monitors. The former are monitors
that check properties that are specific to a single BPEL process
execution (or instance). The latter consider all the process
executions that belong to the same process family (or class),
and are particularly useful in the computation of statistics. (6)
Monitors are automatically generated and deployed starting
from a declarative definition. The code generation produces
a state-transition system that evolves on the basis of events
collected at run time.

A. Basic Events

Basic events are the data that we collect at runtime, and are
used to evolve our monitor’s state. The definition of basic
events is heavily inspired by WSCoL. One reason is that
WSCoL ensures, by definition, a high level of granularity
in data collection. WSCoL (through the Dynamo framework)
collects data at the level of a single BPEL activity. Another
reason is that WSCoL provides advanced data selection and
computation mechanisms.

A basic event is defined by a declaration, a location, and
a property. The declaration defines the event’s name, its type
(see below), and its parameters, i.e., the run-time data needed
to execute the basic event’s property. We support two kinds
of parameters, and call them internal and external variables.
Internal variables consists of data that are collected from
within the process’ state, i.e., from the BPEL variables that
exist within the process. External variables, on the other hand,
are used to collect data that are not part of the executing pro-
cess, such as context information. The values of the external
variables are collected interacting with remote services that
provide a WSDL interface. The location consists of an XPATH
expression that selects a unique BPEL activity in the process

/* Basic events */
eb ::= ... any boolean or tick WSCoL formula ...
en ::= ... any numeric WSCoL formula ...

/* Instance-level boolean formulas */
b ::= eb | b Since b | Once b | n > n | ! b | b && b | ...

/* Instance-level numeric formulas */
n ::= en | count(b) | time(b) | n + n | n ∗ n | ...

/* Class-level boolean formulas */
B ::= And(b) | Once B | B Since B | N>N | !B | B&&B | ...

/* Class-level numeric formulas */
N ::= Count(b) | Sum(n) | Avg(n) | N + N | N ∗N | ...

Fig. 2. The WSCol and RTML grammars.

definition. This is the location after which the basic event will
be created. Finally, the property is given in an extended version
of the WSCoL language. A property can produce one of three
possible types: boolean, numeric, or tick.

Boolean properties are the typical WSCoL properties. In-
deed in Dynamo WSCoL was used to produce truth values
regarding a process’ functional or non-functional property.
Here the boolean values become the content of the basic
event. Numeric properties can either produce a numeric datum
using appropriate selection mechanisms on a complex BPEL
variable, or using one of WSCoL’s computation mechanisms.
Finally, tick properties are used to express the fact that a
given event has occurred. This is a new extension of WSCoL
and allows us to produce a “tick” when a certain boolean
property holds in a given location. When we define a tick
event we express two possible payloads: the payload that will
be attached if the property holds, and the payload that will be
attached if it does not. A payload can be a boolean value or
a number. We also provide a special keyword for stating that
there is an empty tick (TICK), and a keyword for stating that
no tick should be sent (NOTICK). Ticks also give us an easy
way to signal that the process has reached a given location.

B. Composite Properties

Composite properties, expressed in RTML, take basic events
and aggregate them into more complex properties. Notice that
even through events are collected at specific locations in a
process execution, composite properties are defined at the
process level. More precisely, RTML distinguishes between
instance and class monitor properties. Instance properties ag-
gregate events from the execution of a single process instance
(e.g., a single execution of the TA.R.S.U process). Class
properties aggregate events from the executions of all process
instance (e.g., a statistical property on all the executions of the
TA.R.S.U. process).

The language allows to obtain both logical and quantitative
information, and is based upon Linear Temporal Logic (see
Figure 2 for the integrated language’s grammar). Logical infor-
mation is obtained using the standard logical operators such as
&& (and), || (or), and ! (not), as well as those typical of Linear

Temporal Logic. With RTML it is possible to define properties
over the whole past history of collected events, using formulae
such as f1Sincef2 (formula f1 has been true since the last
instant formula f2 has been true) or Oncef (f has been true at
least once in the past). Numeric information is obtained using
built in functions such as count and time. Operator count is
used to count the occurrences of an event. Since RTML closely
integrates logical formulae and numerical functions, we can
use count to count the occurrences of a complex behavior, or
compare the values of multiple count operators using boolean
and relational operators. Operator time measures the time-
span for which a given boolean property stays true. We can use
time to calculate the time-span between two events estart and
eend by means of formula time(! eend Since estart), which
measures the duration of the interval starting whith event estart

and ending when ! eend becomes false. We can also compare
time-spans using relational and boolean operators. In addition,
RTML provides the standard numerical functions (+, ∗, and
so on), as well as comparison functions (=, >, and so on).

When defining a class monitor, RTML also provides addi-
tional class functions, such as And, Count, Avg, or Sum.
These functions aggregate data over many different process
instances. And, for instance, monitors whether a property is
true for all instances of a process. Count allows to count how
many times a certain event occurs in all the process instances
belonging to the same process class. Similarly, function Avg
and Sum calculate the average and the sum of a numeric
property evaluated across the different process instances.

C. Complete Examples

We can now provide complete specifications for the example
monitoring properties given in Section II-A. All four properties
define class monitors.

AverageProceduralFailure looks at the success ratio of the
entire process, and can be defined as:

Basic events:
efail = tick(($receipt/paymentID).length() == 16 &&

($receipt/paymentID).startsWith(

($input/lastname).substring(1, 3)+

($input/firstname).substring(1, 3)) ?

0 : 1)

Composite property:
Avg(efail?1 : 0)

In this case we associate process success with an analysis
of the content of the final receipt. We state that the receipt
must contain a payment identifier that is 16 characters long,
and that the identifier must start with a sub-string that is
the concatenation of the first three characters of the client’s
last name and the first three characters of the client’s first
name. The tick event is evaluated at location [INVOKE]

accountantReceipt.

FrequencyPaymentFailure looks at the frequency with
which a payment failure occurs, and can be defined as:

Basic events:
epayfail = tick(($paymentAck/acceptedAmount) ==

($requestPayment/requestedAmount) ? 0 : 1)

Composite property:
Avg(epayfail?1 : 0)

In this case we define the payment failure as an incongruency
between the amount requested and the amount acknowledged
by the Tesoriere. Other definitions are also possible. The tick
event is evaluated at location [ON MESSAGE] paymentAck.

AverageTimeDuration looks at the average response time
for the whole TA.R.S.U. process, and can be defined as:

Basic events:
estart = tick(true ? TICK : NOTICK)

eend = tick(true ? TICK : NOTICK)

Composite property:
Avg(time(! eend Since estart))

In this case we produce two tick events: one signaling the
beginning of the process, and one signaling its correct com-
pletion. The two tick events are obviously evaluated at two
different locations in the process. estart is evaluated at location
[RECEIVE] startRegistration, while eend is evaluated at
location [INVOKE] accountantReceipt.

PaymentAverageTime looks at the average time spent by
the Ufficio Ragioneria in the payment process, and can be
defined as:

Basic events:
estartpay = tick(true ? TICK : NOTICK)

eendpay = tick(true ? TICK : NOTICK)

Composite property:
Avg(time(! eendpay Since estartpay))

In this case we also produce two tick events: one signal-
ing that we have just completed our request to the Ufficio
Ragioneria to register the payment, and one signaling we
have just received the Ufficio Ragioneria’s response. The two
tick events are obviously evaluated at two different locations
in the process. estartpay is evaluated at location [INVOKE]

registerPayment, while eendpay is evaluated at location
[ON MESSAGE] registrationAck.

These properties illustrate the advantages of combining
Dynamo and Astro. On the one hand, Dynamo provides
the granularity needed to predicate on very specific run-time
data. For example, in AverageProceduralFailure Dynamo’s
data computation functions startsWith and substring
allow us to predicate on the receipt’s paymentID and on the
user’s first and last name. This level of granularity would
have been impossible solely with Astro, where basic events
consist of message exchanges. On the other hand, Astro
provides the mechanisms needed to define class properties.
For example, AverageProceduralFailure uses Astro’s Avg
function. Cross instance monitoring is potentially feasible with

Dynamo, although highly inefficient. First of all the approach
is synchronous with respect to process execution. Second,
in this particular example, historical data would need to be
collected and obtained as an external variable every time a
new instance of the process is run. Astro also provides the
functions we need to predicate on the time that passes between
two basic events (function time in AverageTimeDuration).

IV. ARCHITECTURE

The integrated framework revolves around ActiveBPEL, a
well-known open-source BPEL implementation. It consists of
two main components: the ActiveBPEL Admin Console and the
actual ActiveBPEL engine. Both are web applications deployed
in a standard tomcat container. The former allows managers
to see what processes have been deployed, deploy new ones,
and in general keep track of active processes. The latter, on
the other hand, is responsible for executing the processes.

Along side we have added three additional components:
the Basic Events Manager (BEM), the Composite Properties
Monitor (CPM), and the Monitoring Admin Console (MAC).
The BEM is responsible for gathering basic events from
executing processes, and for forwarding them to the CPM.
The CPM is the container for our Instance Monitor and Class
Monitor instances. Finally, the MAC is a web application
where managers can see the results of the monitoring activities.

A. Basic Events Manager

The Basic Events Manager is the main gateway between the
ActiveBPEL execution environment and the rest of the mon-
itoring framework. It is implemented using aspect-oriented
technology (i.e., AspectJ [9]), to guarantee an appropriate
degree of separation between ActiveBPEL and our own com-
ponents, and as a consequence between a process’ business
logic and its monitoring specifications. This makes it possible
to change the amount of monitoring we perform, depending
on the system’s lifecycle or on context information, without
having to touch the definition of the business logic. Such
a clear separation is also important from an architectural
standpoint, since it allows us to more easily keep up with
the continuous evolution of ActiveBPEL’s source code.

To fully understand how the BEM works, we must first
briefly explain how the ActiveBPEL engine works. Once a
process is deployed to the execution environment, ActiveBPEL
creates a tree-like representation of the process’ structure
(i.e., it creates one node per BPEL activity in the process).
We call these trees “definition” trees, since they contain the
definition/configuration of the activities in the process. Every
time the engine receives a message requiring the creation of a
new process instance, the “definition” tree is used to instantiate
what we call an “implementation” tree. Although there is al-
ways only one definition tree per deployed process, we have a
new “implementation” tree every time we instantiate a process.
Each implementation tree has access to the process instance’s
unique internal state, i.e., to the values associated with the
BPEL variables that exist in the process. This separation allows

Basic
Events
Spec

Basic
Events
Spec

Process
Definitions

Process
Instances

ActiveBPEL Engine

BPEL
Def

instantiation

Basic Events
Manager

Basic
Events
Spec

Instance
Monitor
Handler

Class
Monitor
Handler

Composite Properties Monitor

Composite
Properties

ActiveBPEL Admin Console Class
Monitor
Viewer

Instance
Monitor
Viewer

Monitoring Admin Console

WSCoL
Engine

Event Bus

EventEventEvent EventEventEvent

Fig. 3. Architecture of the integrated approach.

the system to minimize the amount of information that needs
to be replicated across “implementation” trees.

During execution, the engine takes advantage of the fact that
every node in the implementation tree implements a common
Java interface called AeActivityImpl. This means that all
the nodes in the tree implement a method called execute.
Therefore, the engine simply traverses the implementation tree
and calls method execute on each of the nodes it encoun-
ters. During the traversal, we use AOP to activate the code
for creating basic events. In practice, we activate additional
code after the engine calls method execute on nodes type
AeActivityReceiveImpl (for BPEL Receive activities)
or AeActivityReplyImpl (for BPEL Reply activities).
We also activate our AOP code when the engine performs
BPEL Invoke activities. However, to support both synchronous
and asynchronous invocations, ActiveBPEL implements In-
voke activities in a slightly different manner. This means we
need to add our code before AeActivityInvokeImpl
completes the execution of method objectCompleted. We
also inject code after the process is instantiated, and before the
process instance is terminated. These are important points of
execution for treating the process’ lifecycle.

The code injected into the normal execution gathers the
internal and external data that need to be packaged into a
basic event. In the first case, the data is obtained by accessing
the process’ internal state using ActiveBPEL’s own APIs.
In the second case, we use JAX-WS technology to call an
external Web service and gather the information we need.
Since the definition of a basic event contains a property,
the BEM contains a WSCoL Engine. Before sending off the
event, we also add meta-level information, such as the process
instance ID, the process’ name, the partnerLink on which the
interaction with the outside world is occurring (if possible),
and the name of the operation being called. Notice that most
of these information are retrieved from the “definition” tree.
When the event is ready, it is sent to the CPM and the process
instance is allowed to continue its execution.

+ getDescription() : String
+ getProperty() : String
+ getProcessName() : String
+ getValue() : String

<<interface>>
IMonitor

+ init() : void
+ evolve(message:BPELMsg) : void
+ terminate() : void

<<interface>>
IInstanceMonitor

+ init() : void
+ update() : void

<<interface>>
IClassMonitor

Fig. 4. Monitor Interfaces.

B. Composite Properties Monitor

The Composite Properties Monitor is a container for mon-
itor instances. Inside the container we have a Instance Mon-
itor Handler and a Class Monitor Handler, in accordance
with the two kinds of monitors supported in our approach.
The handlers are responsible for managing both a monitor’s
lifecycle (creation and termination) and its evolution. Each
monitor is a Java software module that is run in parallel to its
corresponding BPEL process, and is automatically generated
from a composite property. Each monitor implements the
IMonitor interface described in Figure 4. More precisely, in-
stance monitors implement interface IInstanceMonitor,
while class monitors implement interface IClassMonitor.

The methods in IMonitor are for gathering gen-
eral information from a monitor instance. getProperty
and getDescription return the composite property
being checked and a long description of the monitor.
getProcessName returns the name of the process the
monitor is associated to, and getValue gives the mon-

itor’s current (truth or numerical) value. The methods in
IInstanceMonitor and IClassMonitor, on the other
hand, are used to evolve a monitor’s state.

The lifecycle of an instance monitor is affected by three
kinds of events: the process creation event, basic events from
the BEM, and the process termination event. When the CPM
receives a process creation event it forwards it to the Instance
Monitor Handler, which creates all the instance monitors that
need to be associated with the new process instance. This
is achieved instantiating new IInstanceMonitors, and
calling method init on each one. When the CPM receives
a basic event it forwards it to the Instance Monitor Handler,
which in turn uses it to call method evolve on the right
instance monitor1, causing the monitor to update its truth
value. Finally, the arrival of a termination event causes the
Instance Monitor Handler to call method terminate on the
corresponding instance monitors, allowing them to gracefully
terminate.

The lifecycle of a class monitor is different. The Class
Monitor Handler only calls method init the first time a
process instance is created. This is because all subsequent
process instances that belong to the same process class are
associated to the same class monitors. Indeed, the class mon-
itors evolve every time a basic event for that process class
is received, regardless of the process instance that generated
it. When a basic event is received by the CPM, it is passed
to the Class Monitor Handler, which calls method update
on the corresponding class monitors. Class monitors can also
interact with the running instance monitors that are associated
with processes of the same class. This is useful when a class
monitor is responsible for collecting statistical data on all the
instances of a given BPEL process.

C. Monitoring Admin Console

The Monitoring Admin Console (see Figure 5 is a web appli-
cation where process managers can see how their monitoring
activities are proceeding. The console consists of two main
components: the Instance Monitor Viewer and the Class Mon-
itor Viewer. These components interact with the corresponding
handlers within the CPM to discover the current status of all
the running monitors. The viewers provide managers with a
high-level representation of the monitor truth values, as well
as with the low level details that are contained within the logs
created by the monitors.

V. RELATED WORK

In the field of service monitoring, many works concentrate
on BPEL processes. However there are also more general ap-
proaches, e.g. those that revolve around the concept of Service
Level Agreement (SLA), or those that revolve around WS-
Policy. Due to lack of space we provide a short presentation
of some of these approaches and classify them. More details
can be found in literature.

1The right instance monitor is chosen based on the arriving event’s Process
Instance ID.

Fig. 5. Monitoring Admin Console.

Regarding BPEL-based approaches, Spanoudakis et al. [11]
propose a framework for validating behavioural properties
expressed using the first order temporal logic language of event
calculus. The events are the exchange of messages between
the process and the systems it coordinates. The approach is
non-invasive, and monitoring is performed independently from
the process’ execution. Moser et al. [12] present VieDAME,
a non-intrusive approach based on AOP techniques. It is
pluggable with respect to different engines. It concentrates on
the evaluation and monitoring of simple QoS values such as
response time, accuracy, and availability. Complex properties
are not tackled in their approach.

Regarding more general approaches that revolve around
SLAs, we cite Skene et al.’s work on SLANG (language
for SLAs) [14]. The approach mitigates risk by associat-
ing penalties to anomalous behaviours, and by using meta-
modelling techniques clarify the terms of an SLA. This allows
different partied to defend their interests in the wake of critical
problems.

Finally, regarding approaches that deal with WS-Policy, we
cite Erradi et al.’s work on WS-Policy4MASC [8]. They pro-
vide a general-purpose language for defining policies within
WS-Policy. Designers can define the source of the monitoring
data (both internal and external to the service) and the modality
of monitoring (synchronous or asynchronous). The authors
provide a .NET implementation that requires the services and
process be run in the Microsoft Workflow Foundation toolset.

To conclude we present a table that compares the ap-
proaches we have cited (see Table I). We include Dynamo
with WSCoL and Astro with RTML, as well as the inte-
grated approach presented in this paper. The table follows
the taxonomy presented by Delgado et al. [7], with some
modifications/extensions of the metrics to adapt them to the
service-oriented context.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach for monitoring
BPEL orchestrations, which has been obtained by the integra-
tion of two previous approaches conceived by the authors,

TABLE I
COMPARISON OF MONITORING APPROACHES.

Approach Language Abstraction Properties Directives Timeliness

L
og

ic

H
L

/V
H

L

D
om

ai
n

Im
pl

em
en

ta
tio

n

Sa
fe

ty

Te
m

po
ra

l

Pr
oc

es
s

A
ct

iv
ity

E
ve

nt

Sy
nc

hr
on

ou
s

A
sy

nc
hr

on
ou

s

Spanoudakis et al. x x x x x x
Moser et al. x x x x x
Skene et al. x x x x x
Erradi et al. x x x x x x x x
Baresi et al. x x x x x
Pistore et al. x x x x x x x

Our Approach x x x x x x x x

namely Dynamo and Astro. The integration is both at the
language level —the new language combines in a suitable
way the WSCol specifications of Dynamo and the RTML
specifications of Astro— and at the architectural level —an
event bus is exploited to route events collected by Dynamo to
the property monitors implemented by Astro.

Although the linguistic integration is suitable, we believe it
can benefit from higher level abstractions or templates that
simplify the definition of complex properties (e.g., statisti-
cal properties). The architectural integration seems to place
the foundation for a general solution that can be applied
to other approaches. In particular, the event bus allows for
the integration of more monitoring engines (even non open-
source) that can collaborate in order to check complex, multi-
layered monitoring properties. To do so we have to separate
the definition of basic events with WSCoL from RTML in
a sharper manner, and allow basic events to be used by any
monitoring engine that is registered on the bus. We can avoid
performing integration at the linguistical level, and formalize
the nature of the basic events that are generated by the
infrastructure. In this case, the integration is performed solely
at the architectural level. In our future work, we intend to
push this idea, and to integrate other monitoring approaches
within our framework. Another line of future investigation is
to go beyond monitor, and to also consider reactions to the
deviations recognised by the monitors. Our intuition is that
a modular approach based on the collaboration of various
adaptation engines can help also in this case, and we are
working on the architecture of such an adaptation framework
and in understanding and defining the role of the “adaptation
bus” in this context.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreements 215483
(S-Cube Network of Excellence) and 216556 (SLA@SOI
Project).

REFERENCES

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services, Version 1.1.
BPEL4WS specification, May 2003.

[2] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time moni-
toring of instances and classes of web service compositions. In Proc.
ICWS’06, pages 63–71. IEEE Computer Society, 2006.

[3] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time moni-
toring of the execution of plans for web service composition. In Proc.
ICAPS’06, pages 346–349. AAAI, 2006.

[4] L. Baresi and S. Guinea. Towards dynamic monitoring of ws-bpel
processes. In Proc. ICSOC’05, LNCS 3826,pages 269–282. Springer,
2005.

[5] L. Baresi and S. Guinea. A dynamic and reactive approach to the
supervision of BPEL processes. In Proc. of the 1st conference on India
software engineering conference, pages 39–48. ACM New York, NY,
USA, 2008.

[6] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore. An integrated
approach for the run-time monitoring of bpel orchestrations. In Proc.
ServiceWave 2008, pages 1–12, 2008.

[7] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Transactions on Software
Engineering, 30(12):859–872, 2004.

[8] A. Erradi, P. Maheshwari, and V. Tosic. WS-policy based monitoring
of composite web services. In Proc. ECOWS’07, pages 99–108. IEEE
Computer Society, 2007.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An Overview of AspectJ. In Proc. of the 15th European
Conference on Object-Oriented Programming, LNCS 2072, pages 327–
353. Springer, 2001.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. In Proc.
ECOOP’97, LNCS 1241, pages 220–242. Springer, 1997.

[11] K. Mahbub and G. Spanoudakis. A framework for requirents monitoring
of service based systems. In Proc. ICSOC’04, pages 84–93. ACM, 2004.

[12] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and
service adaptation for ws-bpel. In Proc. WWW’08, pages 815–824.
ACM, 2008.

[13] M. Pistore, P. Braghieri, P. Bertoli, A. Biscaglia, A. Marconi,
S. Pintarelli, and M. Trainotti. ASTRO: Supporting the composition
of distributed business proce sses in the e-government domain. In At
Your Service - Service-Oriented Computing from an EU Perspective,
pages 183–211. MIT Press, 2009. To appear.

[14] J. Skene, D. Lamanna, and W. Emmerich. Precise Service Level
Agreements. In Proc. ICSE’04, pages 179–188, 2004.

