Grant Agreement number: ICT-2009-246633
Project acronym: R&D ACCESS
Project title: Access to Research Results on Semiconductor Design
Funding Scheme: CSA
Period covered: from 2010-11-01 to 2012-10-31
Name of the scientific representative of the project's co-ordinator¹, Title and Organisation:

Mr. Ivan Ring Nielsen, Director
Technoconsult ApS
Tel: +45 2212 5244
Fax: +45 4576 5708
E-mail: irn@technoconsult.dk

Project website² address: www.rd-access.eu

¹ Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.
² The home page of the website should contain the generic European flag and the FP7 logo which are available in electronic format at the Europa website (logo of the European flag: http://europa.eu/abc/symbols/emblem/index_en.htm logo of the 7th FP: http://ec.europa.eu/research/fp7/index_en.cfm?pg=logos). The area of activity of the project should also be mentioned.
4.1 Final publishable summary report

Executive Summary
The objective of the R&D ACCESS project is to identify R&D results on semiconductor design from FP7 projects and to provide these results to partners from outside the consortia. The R&D results are divided into four categories:

- Training and Education
- Intellectual Properties
- Design Tools
- Design Methodologies

The R&D ACCESS project provides a dissemination platform facilitating the access to project results generated in huge numbers of IP, NoE, STREP and CSA projects.

The key advantage of the R&D ACCESS consortium is that the partners are already leading their respective area of dissemination. This means that the dissemination platform is build on existing infrastructures that have proven their commercial as well as academic vitality. Combining these four platforms under a common ACCESS infrastructure with state-of-the-art web features like the use of taxonomy provide a unique dissemination forum for FP7 project results.

Market coverage
As a result of this integrating approach the initial service include information on more than 500 annual nanoelectronics training courses, 15.000 updated IP/SoC products and information on more than 140 design tools developed within European projects.

Another benefit from joining existing knowledge providers is the access to a common user database of nearly 40.000 subscribers.

Technical Approach
The project’s provisions include Training courses, Intellectual properties, Design tools and Design methodologies as further described below:

Training courses
The EuroTraining brokerage service integrated in R&D ACCESS has been around since 1995 and today it offers more than 500 training courses per year provided by 82 professional training providers in the area of nanoelectronics. This web service has more than 200.000 monthly hits. The training courses are promoted on a monthly basis to nearly 12.000 European training subscribers. Since its start EuroTraining has provided a total of 5.400 training courses.

Intellectual Properties
The IP service is based on a public web portal established in 1997 by partner Design & Reuse (D&R). D&R’s public portal provides added-value information in the field of electronic virtual components and has established its worldwide leadership as a B2B portal in this field. The portal contains 15.000 updated IP/SoC product descriptions and provides an ongoing client/provider matching activity. 150 companies have signed up a partnership agreement with D&R for providing their latest information to the market through D&R’s portal and taking the best benefit from its lead
service and B2B matching opportunities.

Design Tools
The Design tools service is based on the network established in 2002 by partner edacentrum. This network comprises more than 70 members working on different aspects of EDA tools comprising as well the very large EDA players (Cadence, Mentor Graphics and Synopsys) as well as a long list of minor specialised players. The EDA tools database gathers information from nearly 450 funded European projects.

Design Methodologies
Based on partner CEA-LETI’s long time recognition in understanding integrated circuit architectures, systems and signal processes a new service has been established collecting information on nanoelectronics design methodologies. CEA-LETI’s design department covers a very broad range of fields including SoC, MPSoC, NoC, SiP and FPGA design.

Project context and objectives
The objective of the R&D ACCESS proposal is to identify R&D results on semiconductor design from FP7 projects and to provide these results to partners from outside the consortia. The R&D results are divided into four categories:

1. Training and Education
2. Intellectual Properties
3. Design Tools
4. Design Methodologies

The R&D ACCESS project provides a dissemination platform facilitating the access to project results generated in huge numbers of IP, NoE, STREP and CSA projects from initially Area 3.2 of the FP7 programme. The access structure will support the dissemination and exploitation in as well industry (segmented in large enterprises and SMEs) as in academia. Initially the platform content will be collected from FP7 generated results, however, when the platform is implemented and routines for best practice have been established also relevant project results originating from e.g. FP6, ENIAC, ARTEMIS and national programmes will be invited to join the ACCESS platform.

All services offered will be gathered in the ACCESS platform, promoting the semiconductor design related training, IPs, Design Tools and Design Methodologies and attracting new knowledge providers. In order to make this information generally available it is based on a web system developed as an extension to already existing European services like EuroTraining, IP Design-Reuse and EDA network. Since these services will be improved and already have nearly 40.000 subscribers the new combined ACCESS platform is born with a tremendous user community. The awareness campaigns therefore concentrate on promoting this consolidated One-Stop-Shop offer, i.e. promoting the web site: www.rd-access.eu.

The R&D projects (the result providers) will get a central place for the presentation of the outcome of their R&D projects. The ACCESS dissemination platform will enhance the development of the European knowledge-based society in the field of micro- and nanoelectronics design with respect to e.g. SoC, MPSoC, NoC, SiP, FPGA, etc.
The proposal strongly builds on key building elements provided by recognized partners who are already leading such services in dedicated areas:

1. **Training and Education** are based on the training infrastructure established by partners COREP and TC in “EuroTraining”. This brokerage service has been around since 1995 and today it offers nearly 500 training courses per year provided by 82 professional training providers in the area of microelectronics and microsystems. This web service has more than 200,000 monthly hits. The training courses are promoted on a monthly basis to nearly 12,000 European training subscribers. Since its start EuroTraining has provided a total of 5,400 training courses.

2. **Intellectual Properties** are based on a public web portal established in 1997 by partner Design & Reuse (D&R) as well as D&R technology for packaging and exchanging IPs. Such dedicated portals are presently used in major Electronic system companies such as Alcatel Lucent, Ericsson, Cisco Systems, etc. D&R provides a dedicated portal for packaging and establishes a connection to the D&R public web portal for reaching maximum visibility. D&R’s public portal provides added-value information in the field of electronic virtual component and has established its worldwide leadership as a B2B portal in this field. The portal contains 15,000 updated IP/SoC product descriptions and provides an ongoing client/provider matching activity. 150 companies have signed up a partnership agreement with D&R for providing their latest information to the market through D&R’s portal and taking the best benefit from its lead service and B2B matching opportunities. Since 2002 D&R is also the Number One News provider in the IP/SoC field by editing twice a week an IP/SoC News Alert to 25,000 subscribers.

3. **Design Tools** are based on the network established in 2002 by partner ECN. This network comprises approximately 70+ members working on different aspects of EDA tools comprising as well the very large EDA players (Cadence, Mentor Graphics and Synopsys) as well as a long list of minor specialised players. edacentrum is an association dedicated to the promotion of research and development in the area of electronic design automation and is supported and partly funded by the German Ministry of Education and Research (BMBF). By encouraging cluster research projects and EDA networks, it bundles and reinforces the EDA expertise of universities and research institutes. Due to this encouragement ECN gathered information from nearly 450 different funded projects (both national and european). These consists of information like participating companies (nearly 1,500 companies), experts (nearly 12,500) or publications (over 6,800). In the database over 1,300 sessions from various national and international Conferences and Workshops are included. Furthermore ECN registered information on more than 140 design tools developed within these projects. EDA Experts can be found and contacted easily with the help of this database. ECN has direct access to more than 4,500 management and research experts in the EDA area who subscribed to the information service. Additionally ECN developed the concept for the DATE (Design, Automation and Test in Europe) platform, managed the implementation and is providing technical administration as well as webmaster services.

4. **Design Methodologies** are based on partner CEA’s long time recognition in understanding integrated circuit architectures, systems and signal processes. CEA has a strong design capability which allows complete control over architectures, mask design and more generally to supervise and optimise all technological developments conducted internally or with external partners. CEA’s design department covers a very broad range of fields including SoC, MPSoC, NoC, SiP and FPGA design. The dissemination infrastructure is based on CEA’s training department (INSTN) which provides access to 1,300 lecturers and specialists. Annually 7,000 trainees take advantage of INSTN’s dissemination programme.

The key advantage of the R&D ACCESS consortium is that the partners are already leading their respective area of dissemination. This means that the dissemination platform can be build on existing infrastructures that have proven their commercial as well as academic vitality. Combining these four
platforms under a common ACCESS infrastructure with state-of-the-art web features like the use of taxonomy provide a unique results dissemination forum for FP7 project results. The project set-up is shown in Figure 1:

![Project set-up](image)

Figure 1: Project set-up

The dissemination service creates added value by offering not only the access to the knowledge and material but also by offering packaging, delivering and IP brokerage resulting from European projects as well as demonstrating design platforms with specific design flows. The knowledge and design flows will be organized to suit as well large enterprises, SMEs and academia.

The service developed and implemented in R&D ACCESS will:

- Facilitate knowledge dissemination across Europe by means of a European RTD knowledge Infrastructure containing information on Training courses, IPs, Design Tools and Design Methodologies originating from Community funded research projects.
- Offer a one-stop shop with single sign-on for the dissemination of professional semiconductor design knowledge
- Provide access to an initial user community of nearly 40,000 European semiconductor designers.

The S&T impact

The impact of the service established comes clearly from the below key figures:
From 195 FP7 partners involved in 71 projects 48 partners are providing content to our service (25%) with the below distribution on subjects:

- 33 Training
- 6 IP
- 11 Tools
- 19 Methods

22 of these users are coming from industry (47%)

From 204 ENIAC partners involved in 18 projects 26 partners are providing content to our service (13%) with the below distribution on subjects:

- 15 Training
- 4 IP
- 16 Tools
- 0 Methods

19 of these users are coming from industry (73%)

From 177 ARTEMIS partners involved in 25 projects 28 partners are providing content to our service (16%) with the below distribution on subjects:

- 11 Training
- 4 IP
- 19 Tools
- 0 Methods

17 of these users are coming from industry (61%)

The top five European users are:

1. ARM Ltd.
2. Catalan Institute of Nanotechnology
3. Infineon Technologies AG
4. Robert Bosch AG
5. Cadence Design Systems GmbH

At M12 38 R&D community partners were contributing to ACCESS
At M24 71 R&D community partners were contributing to ACCESS
At M36 102 R&D community partners were contributing to ACCESS

25% of all FP7 project participants are making use of the R&D ACCESS service and 55% of the content providers are coming from industry. These figures indicate that the FP7 community is already well integrated in the R&D ACCESS service.

The 102 contributing partners (M36) are coming from 17 different European states
At M12 the platform contained 2,018 items (training, IP, tools and methods)
At M24 the platform contained 2,187 items (training, IP, tools and methods)
At M36 the platform contained 4,410 items (training, IP, tools and methods)

R&D ACCESS provides a unique one stop service offering access to research results originating from FP7, ENIAC and ARTEMIS (A Cordis like service, however with technical content).

Even when the individual project web sites dry out (typically few months after project completion) the R&D ACCESS service will maintain access to valuable results by means of training, IP, tools and methodologies.

Long time impact of R&D ACCESS depends on continuous support for service and maintenance. Otherwise the R&D ACCESS service will dry out as most other FP7 projects. However, it will still work as a demonstrator for how technical achievements from hundreds of projects can be organized and disseminated to a user community of nearly 40,000 designers (Even the CORDIS service would dry out if it was not regularly maintained!).
The project web site

Contact: Coordinator:

Technoconsult ApS
Att.: Ivan Ring Nielsen
Ager Alle 3
DK-2970 Horsholm
DENMARK
info@technoconsult.dk

Project partners:

Design And Reuse S.A.
Att.: Gabriele Saucier
Rue Ampere 12
FR-38000 Grenoble
France

COREP
Att.: Danilo Demarchi
Corso Trento 13
IT-10129 Torino
Italy

edacentrum GmbH
Att.: Andreas Vörg
Schneidersberg 32
DE-30167 Hannover
Germany

Commissariat à l’énergie atomique - LETI
Att.: Diego Puschini
17, rue des Martyrs
FR-38054 Grenoble Cedex 9
France
4.2 Use and dissemination of foreground

A plan for use and dissemination of foreground (including socio-economic impact and target groups for the results of the research) shall be established at the end of the project. It should, where appropriate, be an update of the initial plan in Annex I for use and dissemination of foreground and be consistent with the report on societal implications on the use and dissemination of foreground (section 4.3 – H).

The plan should consist of:

- Section A

 This section should describe the dissemination measures, including any scientific publications relating to foreground. Its content will be made available in the public domain thus demonstrating the added-value and positive impact of the project on the European Union.

- Section B

 This section should specify the exploitable foreground and provide the plans for exploitation. All these data can be public or confidential; the report must clearly mark non-publishable (confidential) parts that will be treated as such by the Commission. Information under Section B that is not marked as confidential will be made available in the public domain thus demonstrating the added-value and positive impact of the project on the European Union.
Section A (public)

This section includes two templates

- Template A1: List of all scientific (peer reviewed) publications relating to the foreground of the project.

These tables are cumulative, which means that they should always show all publications and activities from the beginning until after the end of the project. Updates are possible at any time.

<table>
<thead>
<tr>
<th>NO.</th>
<th>Title</th>
<th>Main author</th>
<th>Title of the periodical or the series</th>
<th>Number, date or frequency</th>
<th>Publisher</th>
<th>Place of publication</th>
<th>Year of publication</th>
<th>Relevant pages</th>
<th>Permanent identifiers(^3) (if available)</th>
<th>Is/Will open access(^4) provided to this publication?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

\(^3\) A permanent identifier should be a persistent link to the published version full text if open access or abstract if article is pay per view) or to the final manuscript accepted for publication (link to article in repository).

\(^4\) Open Access is defined as free of charge access for anyone via Internet. Please answer "yes" if the open access to the publication is already established and also if the embargo period for open access is not yet over but you intend to establish open access afterwards.
<table>
<thead>
<tr>
<th>NO.</th>
<th>Type of activities</th>
<th>Main leader</th>
<th>Title</th>
<th>Date/Period</th>
<th>Place</th>
<th>Type of audience</th>
<th>Size of audience</th>
<th>Countries addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Panel debate</td>
<td>Ivan Ring Nielsen</td>
<td>R&D in Europe teams up to master future system design</td>
<td>1-3 December, 2009</td>
<td>Grenoble, FR</td>
<td>Technical</td>
<td>400</td>
<td>EU</td>
</tr>
<tr>
<td>2</td>
<td>Article</td>
<td>Andreas Vörg</td>
<td>Eda-News</td>
<td>1/2010</td>
<td>Technical</td>
<td>900</td>
<td>EU</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Exhibition booth</td>
<td>Andreas Vörg</td>
<td>Display/booth at DATE</td>
<td>March 2010</td>
<td>Dresden, DE</td>
<td>Technical</td>
<td>600</td>
<td>EU</td>
</tr>
<tr>
<td>4</td>
<td>Poster presentation</td>
<td>Andreas Vörg</td>
<td>Poster</td>
<td>May, 2010</td>
<td>Hannover, 2010</td>
<td>Technical</td>
<td>100</td>
<td>EU</td>
</tr>
<tr>
<td>5</td>
<td>Conference</td>
<td>Ivan Ring Nielsen</td>
<td>Paper at EWME</td>
<td>May, 2010</td>
<td>Darmstadt, DE</td>
<td>Technical</td>
<td>100</td>
<td>EU</td>
</tr>
<tr>
<td>6</td>
<td>Conference</td>
<td>Ivan Ring Nielsen</td>
<td>Poster at NORCHIP</td>
<td>November, 2010</td>
<td>Tampere, FI</td>
<td>Technical</td>
<td>80</td>
<td>EU</td>
</tr>
<tr>
<td>7</td>
<td>Exhibition</td>
<td>Andreas Vörg</td>
<td>Poster at DATE</td>
<td>March, 2011</td>
<td>Grenoble, FR</td>
<td>Technical</td>
<td>600</td>
<td>EU</td>
</tr>
<tr>
<td>8</td>
<td>Poster presentation</td>
<td>Andreas Vörg</td>
<td>Poster</td>
<td>May, 2011</td>
<td>Dresden, DE</td>
<td>Technical</td>
<td>80</td>
<td>EU</td>
</tr>
<tr>
<td>9</td>
<td>Workshop</td>
<td>Ivan Ring Nielsen/Diego Puschini</td>
<td>ACCESS to innovation in semiconductor design</td>
<td>June, 2011</td>
<td>Grenoble, FR</td>
<td>Technical</td>
<td>25</td>
<td>EU</td>
</tr>
<tr>
<td>10</td>
<td>Workshop</td>
<td>Ivan Ring Nielsen/Diego Puschini</td>
<td>ACCESS to innovation in semiconductor design</td>
<td>June 2012</td>
<td>Grenoble, FR</td>
<td>Technical</td>
<td>120</td>
<td>EU</td>
</tr>
</tbody>
</table>

5 A drop down list allows choosing the dissemination activity: publications, conferences, workshops, web, press releases, flyers, articles published in the popular press, videos, media briefings, presentations, exhibitions, thesis, interviews, films, TV clips, posters, Other.

6 A drop down list allows choosing the type of public: Scientific Community (higher education, Research), Industry, Civil Society, Policy makers, Medias, Other ('multiple choices' is possible).
Section B (Confidential⁷ or public: confidential information to be marked clearly)
Part B1

The applications for patents, trademarks, registered designs, etc. shall be listed according to the template B1 provided hereafter.

The list should, specify at least one unique identifier e.g. European Patent application reference. For patent applications, only if applicable, contributions to standards should be specified. This table is cumulative, which means that it should always show all applications from the beginning until after the end of the project.

<table>
<thead>
<tr>
<th>Type of IP Rights⁸:</th>
<th>Confidential Click on YES/NO</th>
<th>Foreseen embargo date dd/mm/yyyy</th>
<th>Application reference(s) (e.g. EP123456)</th>
<th>Subject or title of application</th>
<th>Applicant(s) (as on the application)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁷ Note to be confused with the "EU CONFIDENTIAL" classification for some security research projects.

⁸ A drop down list allows choosing the type of IP rights: Patents, Trademarks, Registered designs, Utility models, Others.
Part B2
Please complete the table hereafter:

<table>
<thead>
<tr>
<th>Type of Exploitable Foreground⁹</th>
<th>Description of exploitable foreground</th>
<th>Confiden Click on YES/NO</th>
<th>Foreseen embargo date dd/mm/ YYYY</th>
<th>Exploitable product(s) or measure(s)</th>
<th>Sector(s) of application¹⁰</th>
<th>Timetable, commercial or any other use</th>
<th>Patents or other IPR exploitation (licences)</th>
<th>Owner & Other Beneficiary(s) involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>New integrated web service with access to innovations in semiconductor design</td>
<td>No</td>
<td>Web service Interfaces</td>
<td>Semiconductor or design</td>
<td>2012</td>
<td>N/A</td>
<td>All beneficiaries</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the table, please provide a text to explain the exploitable foreground, in particular:

¹⁹ A drop down list allows choosing the type of foreground: General advancement of knowledge, Commercial exploitation of R&D results, Exploitation of R&D results via standards, exploitation of results through EU policies, exploitation of results through (social) innovation.

¹⁰ A drop down list allows choosing the type sector (NACE nomenclature): http://ec.europa.eu/competition/mergers/cases/index/nace_all.html
The key exploitable foreground is an infrastructure for collaborative cluster of excellences (ACCESS platform) in form of a modular state-of-the-art Open Source CMS (Content Management System). It is based on an existing infrastructure of the project partners, however, extended through an evolutionary approach by dedicated interfaces to allow information exchange. As a result, the user is able to get an overview of the existing semiconductor design solutions that are spread over distributed and independent partner platforms without changing the ACCESS point. Projects are enabled to add or enrich their R&D results outside of their consortia to dissemination platforms that are connected through the ACCESS interfaces. R&D projects and centres of excellences are attracted to extend their dissemination by the new collaborative interface to reach the ACCESS platform.

The current platform combines the results from the sub-sites in Training, IP-blocks, Design Tools and Design Methodologies.

The service developed and implemented in R&D ACCESS will:

- Facilitate knowledge dissemination across Europe by means of a European RTD knowledge Infrastructure containing information on Training courses, IPs, Design Tools and Design Methodologies originating from Community funded research projects.
- Offer a one-stop shop with single sign-on for the dissemination of professional semiconductor design knowledge
- Provide access to an initial user community of nearly 40.000 European semiconductor designers.

The impact of the service established comes clearly from the below key figures:

<table>
<thead>
<tr>
<th></th>
<th>M12</th>
<th>M24</th>
<th>M36</th>
</tr>
</thead>
<tbody>
<tr>
<td>#FP7 partners identified</td>
<td>130</td>
<td>162</td>
<td>195</td>
</tr>
<tr>
<td>Of this ACCESS users</td>
<td>38</td>
<td>71</td>
<td>48</td>
</tr>
<tr>
<td>#ENIAC partners identified</td>
<td></td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>Of this ACCESS users</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>#ARTEMIS partners identified</td>
<td></td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Of this ACCESS users</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

- 38 partners involved in the FP7 programme were contributing with 2.018 items at M12
- 71 partners involved in the FP7 programme were contributing with 2.187 items at M24
- 48 partners involved in the FP7 programme were contributing with 3.489 items at M36. Additionally 26 ENIAC partners were contributing with 512 items while 28 ARTEMIS partners were contributing with 409 items.
4.3 Report on societal implications

Replies to the following questions will assist the Commission to obtain statistics and indicators on societal and socio-economic issues addressed by projects. The questions are arranged in a number of key themes. As well as producing certain statistics, the replies will also help identify those projects that have shown a real engagement with wider societal issues, and thereby identify interesting approaches to these issues and best practices. The replies for individual projects will not be made public.

A General Information *(completed automatically when Grant Agreement number is entered.)*

<table>
<thead>
<tr>
<th>Grant Agreement Number:</th>
<th>246633</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Project:</td>
<td>Access to Research Results on Semiconductor Design</td>
</tr>
<tr>
<td>Name and Title of Coordinator:</td>
<td>Ivan Ring Nielsen, Director</td>
</tr>
</tbody>
</table>

B Ethics

1. Did your project undergo an Ethics Review (and/or Screening)?
 * If Yes: have you described the progress of compliance with the relevant Ethics Review/Screening Requirements in the frame of the periodic/final project reports?
 No

Special Reminder: the progress of compliance with the Ethics Review/Screening Requirements should be described in the Period/Final Project Reports under the Section 3.2.2 'Work Progress and Achievements'

2. Please indicate whether your project involved any of the following issues (tick box):
 No

 RESEARCH ON HUMANS
 - Did the project involve children?
 - Did the project involve patients?
 - Did the project involve persons not able to give consent?
 - Did the project involve adult healthy volunteers?
 - Did the project involve Human genetic material?
 - Did the project involve Human biological samples?
 - Did the project involve Human data collection?

 RESEARCH ON HUMAN EMBRYO/FOETUS
 - Did the project involve Human Embryos?
 - Did the project involve Human Foetal Tissue / Cells?
 - Did the project involve Human Embryonic Stem Cells (hESCs)?
 - Did the project on human Embryonic Stem Cells involve cells in culture?
 - Did the project on human Embryonic Stem Cells involve the derivation of cells from Embryos?

 PRIVACY
 - Did the project involve processing of genetic information or personal data (eg. health, sexual lifestyle, ethnicity, political opinion, religious or philosophical conviction)?
 - Did the project involve tracking the location or observation of people?

 RESEARCH ON ANIMALS
 - Did the project involve research on animals?
 - Were those animals transgenic small laboratory animals?
 - Were those animals transgenic farm animals?
- Were those animals cloned farm animals?
- Were those animals non-human primates?

RESEARCH INVOLVING DEVELOPING COUNTRIES
- Did the project involve the use of local resources (genetic, animal, plant etc)?
- Was the project of benefit to local community (capacity building, access to healthcare, education etc)?

DUAL USE
- Research having direct military use
- Research having the potential for terrorist abuse

C Workforce Statistics

3. **Workforce statistics for the project:** Please indicate in the table below the number of people who worked on the project (on a headcount basis).

<table>
<thead>
<tr>
<th>Type of Position</th>
<th>Number of Women</th>
<th>Number of Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Coordinator</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Work package leaders</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Experienced researchers (i.e. PhD holders)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD Students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

4. **How many additional researchers (in companies and universities) were recruited specifically for this project?**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Of which, indicate the number of men:</td>
<td>2</td>
</tr>
</tbody>
</table>
D Gender Aspects

5. Did you carry out specific Gender Equality Actions under the project?
 - Yes [X]
 - No []

6. Which of the following actions did you carry out and how effective were they?

<table>
<thead>
<tr>
<th>Action</th>
<th>Not at all effective</th>
<th>Very effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and implement an equal opportunity policy</td>
<td>☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Set targets to achieve a gender balance in the workforce</td>
<td>☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Organise conferences and workshops on gender</td>
<td>☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Actions to improve work-life balance</td>
<td>☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Other:</td>
<td>☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
</tbody>
</table>

7. Was there a gender dimension associated with the research content – i.e. wherever people were the focus of the research as, for example, consumers, users, patients or in trials, was the issue of gender considered and addressed?
 - Yes - please specify
 - No [X]

E Synergies with Science Education

8. Did your project involve working with students and/or school pupils (e.g. open days, participation in science festivals and events, prizes/competitions or joint projects)?
 - Yes - please specify
 - No [X]

9. Did the project generate any science education material (e.g. kits, websites, explanatory booklets, DVDs)?
 - Yes - please specify
 - No [X]

F Interdisciplinarity

10. Which disciplines (see list below) are involved in your project?

 - Main discipline\(^\text{11}\): 2.2
 - Associated discipline\(^\text{11}\): []

G Engaging with Civil society and policy makers

11a Did your project engage with societal actors beyond the research community? (if ‘No’, go to Question 14)
 - Yes [X]
 - No []

11b If yes, did you engage with citizens (citizens' panels / juries) or organised civil society (NGOs, patients' groups etc.)?
 - No []
 - Yes - in determining what research should be performed
 - Yes - in implementing the research
 - Yes, in communicating /disseminating / using the results of the project

\(^\text{11}\) Insert number from list below (Frascati Manual).

ICT-2009-246633 Final report (R&D ACCESS)

17
11c In doing so, did your project involve actors whose role is mainly to organise the dialogue with citizens and organised civil society (e.g. professional mediator; communication company, science museums)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

12. Did you engage with government / public bodies or policy makers (including international organisations)

- [X] No
- [] Yes - in framing the research agenda
- [] Yes - in implementing the research agenda
- [] Yes, in communicating / disseminating / using the results of the project

13a Will the project generate outputs (expertise or scientific advice) which could be used by policy makers?

- [] Yes – as a **primary** objective (please indicate areas below - multiple answers possible)
- [] Yes – as a **secondary** objective (please indicate areas below - multiple answer possible)
- [X] No

13b If Yes, in which fields?

<table>
<thead>
<tr>
<th>Agriculture</th>
<th>Audiovisual and Media</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td>Consumers</td>
<td>Culture</td>
</tr>
<tr>
<td>Customs</td>
<td>Development Economic and Monetary Affairs</td>
<td>Education, Training, Youth</td>
</tr>
<tr>
<td>Energy</td>
<td>Enlargement</td>
<td>Enterprise</td>
</tr>
<tr>
<td>Environment</td>
<td>External Relations</td>
<td>External Trade</td>
</tr>
<tr>
<td>Fisheries and Maritime Affairs</td>
<td>Food Safety</td>
<td>Foreign and Security Policy</td>
</tr>
<tr>
<td>Fraud</td>
<td>Humanitarian aid</td>
<td></td>
</tr>
<tr>
<td>Human rights</td>
<td>Information Society</td>
<td>Institutional affairs</td>
</tr>
<tr>
<td>Internal Market</td>
<td>Justice, freedom and security</td>
<td>Public Health</td>
</tr>
<tr>
<td>Regional Policy</td>
<td>Research and Innovation</td>
<td>Space</td>
</tr>
<tr>
<td>Taxation</td>
<td>Transport</td>
<td></td>
</tr>
</tbody>
</table>
13c If Yes, at which level?
- Local / regional levels
- National level
- European level
- International level

H Use and dissemination

<table>
<thead>
<tr>
<th>14. How many Articles were published/accepted for publication in peer-reviewed journals?</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>To how many of these is open access(^{12}) provided?</td>
<td></td>
</tr>
<tr>
<td>How many of these are published in open access journals?</td>
<td></td>
</tr>
<tr>
<td>How many of these are published in open access repositories?</td>
<td></td>
</tr>
<tr>
<td>To how many of these is open access not provided?</td>
<td></td>
</tr>
<tr>
<td>Please check all applicable reasons for not providing open access:</td>
<td></td>
</tr>
<tr>
<td>- publisher's licensing agreement would not permit publishing in a repository</td>
<td></td>
</tr>
<tr>
<td>- no suitable repository available</td>
<td></td>
</tr>
<tr>
<td>- no suitable open access journal available</td>
<td></td>
</tr>
<tr>
<td>- no funds available to publish in an open access journal</td>
<td></td>
</tr>
<tr>
<td>- lack of time and resources</td>
<td></td>
</tr>
<tr>
<td>- lack of information on open access</td>
<td></td>
</tr>
<tr>
<td>- other(^{13}): ……………</td>
<td></td>
</tr>
<tr>
<td>15. How many new patent applications (‘priority filings’) have been made?</td>
<td>0</td>
</tr>
<tr>
<td>("Technologically unique": multiple applications for the same invention in different jurisdictions should be counted as just one application of grant).</td>
<td></td>
</tr>
<tr>
<td>16. Indicate how many of the following Intellectual Property Rights were applied for (give number in each box).</td>
<td></td>
</tr>
<tr>
<td>Trademark</td>
<td>0</td>
</tr>
<tr>
<td>Registered design</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>17. How many spin-off companies were created / are planned as a direct result of the project?</td>
<td>0</td>
</tr>
<tr>
<td>Indicate the approximate number of additional jobs in these companies:</td>
<td></td>
</tr>
<tr>
<td>18. Please indicate whether your project has a potential impact on employment, in comparison with the situation before your project:</td>
<td></td>
</tr>
<tr>
<td>- Increase in employment, or</td>
<td>- In small & medium-sized enterprises</td>
</tr>
<tr>
<td>- Safeguard employment, or</td>
<td>- In large companies</td>
</tr>
<tr>
<td>- Decrease in employment,</td>
<td>- None of the above / not relevant to the project</td>
</tr>
<tr>
<td>- Difficult to estimate / not possible to quantify</td>
<td></td>
</tr>
<tr>
<td>19. For your project partnership please estimate the employment effect resulting directly from your participation in Full Time Equivalent (FTE = one person working fulltime for a year) jobs:</td>
<td></td>
</tr>
</tbody>
</table>

\(^{12}\) Open Access is defined as free of charge access for anyone via Internet.

\(^{13}\) For instance: classification for security project.
Difficult to estimate / not possible to quantify

I Media and Communication to the general public

20. **As part of the project, were any of the beneficiaries professionals in communication or media relations?**

- [] Yes
- [X] No

21. **As part of the project, have any beneficiaries received professional media / communication training / advice to improve communication with the general public?**

- [] Yes
- [X] No

22. **Which of the following have been used to communicate information about your project to the general public, or have resulted from your project?**

- [] Press Release
- [] Media briefing
- [] TV coverage / report
- [] Radio coverage / report
- [X] Brochures / posters / flyers
- [] DVD / Film / Multimedia
- [] Coverage in specialist press
- [] Coverage in general (non-specialist) press
- [] Coverage in national press
- [] Coverage in international press
- [] Website for the general public / internet
- [X] Event targeting general public (festival, conference, exhibition, science café)

23. **In which languages are the information products for the general public produced?**

- [] Language of the coordinator
- [X] English
- [] Other language(s)

FIELDS OF SCIENCE AND TECHNOLOGY

1. NATURAL SCIENCES

1.1 Mathematics and computer sciences [mathematics and other allied fields: computer sciences and other allied subjects (software development only; hardware development should be classified in the engineering fields)]

1.2 Physical sciences (astronomy and space sciences, physics and other allied subjects)

1.3 Chemical sciences (chemistry, other allied subjects)

1.4 Earth and related environmental sciences (geology, geophysics, mineralogy, physical geography and other geosciences, meteorology and other atmospheric sciences including climatic research, oceanography, vulcanology, palaeoecology, other allied sciences)

1.5 Biological sciences (biology, botany, bacteriology, microbiology, zoology, entomology, genetics, biochemistry, biophysics, other allied sciences, excluding clinical and veterinary sciences)

2. ENGINEERING AND TECHNOLOGY

2.1 Civil engineering (architecture engineering, building science and engineering, construction engineering, municipal and structural engineering and other allied subjects)

2.2 Electrical engineering, electronics [electrical engineering, electronics, communication engineering and systems, computer engineering (hardware only) and other allied subjects]

2.3 Other engineering sciences (such as chemical, aeronautical and space, mechanical, metallurgical and materials engineering, and their specialised subdivisions; forest products; applied sciences such as...
geodesy, industrial chemistry, etc.; the science and technology of food production; specialised technologies of interdisciplinary fields, e.g. systems analysis, metallurgy, mining, textile technology and other applied subjects)

3. **MEDICAL SCIENCES**
 3.1 Basic medicine (anatomy, cytology, physiology, genetics, pharmacy, pharmacology, toxicology, immunology and immunoohaematology, clinical chemistry, clinical microbiology, pathology)
 3.2 Clinical medicine (anaesthesiology, paediatrics, obstetrics and gynaecology, internal medicine, surgery, dentistry, neurology, psychiatry, radiology, therapeutics, otorhinolaryngology, ophthalmology)
 3.3 Health sciences (public health services, social medicine, hygiene, nursing, epidemiology)

4. **AGRICULTURAL SCIENCES**
 4.1 Agriculture, forestry, fisheries and allied sciences (agronomy, animal husbandry, fisheries, forestry, horticulture, other allied subjects)
 4.2 Veterinary medicine

5. **SOCIAL SCIENCES**
 5.1 Psychology
 5.2 Economics
 5.3 Educational sciences (education and training and other allied subjects)
 5.4 Other social sciences [anthropology (social and cultural) and ethnology, demography, geography (human, economic and social), town and country planning, management, law, linguistics, political sciences, sociology, organisation and methods, miscellaneous social sciences and interdisciplinary, methodological and historical SIT activities relating to subjects in this group. Physical anthropology, physical geography and psychophysiology should normally be classified with the natural sciences].

6. **HUMANITIES**
 6.1 History (history, prehistory and history, together with auxiliary historical disciplines such as archaeology, numismatics, palaeography, genealogy, etc.)
 6.2 Languages and literature (ancient and modern)
 6.3 Other humanities [philosophy (including the history of science and technology) arts, history of art, art criticism, painting, sculpture, musicology, dramatic art excluding artistic "research" of any kind, religion, theology, other fields and subjects pertaining to the humanities, methodological, historical and other SIT activities relating to the subjects in this group]
2. FINAL REPORT ON THE DISTRIBUTION OF THE EUROPEAN UNION FINANCIAL CONTRIBUTION

This report shall be submitted to the Commission within 30 days after receipt of the final payment of the European Union financial contribution.

Report on the distribution of the European Union financial contribution between beneficiaries

<table>
<thead>
<tr>
<th>Name of beneficiary</th>
<th>Final amount of EU contribution per beneficiary in Euros</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Technoconsult ApS</td>
<td>Approx. 353.530 EUR</td>
</tr>
<tr>
<td>2. Design And Reuse SA</td>
<td>Approx. 267.454 EUR</td>
</tr>
<tr>
<td>3. COREP</td>
<td>Approx. 265.711 EUR</td>
</tr>
<tr>
<td>4. edacentrum</td>
<td>Approx. 284.078 EUR</td>
</tr>
<tr>
<td>5. CEA-LETI</td>
<td>Approx. 237.858 EUR</td>
</tr>
<tr>
<td>Total</td>
<td>Approx. 1,408,631 EUR</td>
</tr>
</tbody>
</table>