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1.  EXECUTIVE SUMMARY 

     This deliverable specifies the implementation and performance evaluation for the 

selected WP4 algorithm, contention based access (CBA), on the OpenAirInterface platform 

(http://www.openairinterface.org/).  

   The OpenAirInterface (OAI) platform is an open-source hardware/software development 

platform created at EURECOM for innovation in the area of digital radio communications. 

We elaborate the main OAI components, its overall configuration as well as its emulation 

process. We highlight the traffic pattern and the key performance indicators described in 

D3.5 and D3.6. We further present the efforts made toward a large-scale emulation, 

namely phy abstraction, and parallelism. 

  The contention based access method is proposed in [1], which is used to reduce to 

redundant signalling in regular scheduling. The general idea of CBA is that a UE sends a 

packet without dedicated resource allocated by eNB. Instead, a UE sends a packet on a 

common resource, i.e. multiple UEs contend for a resource to send packets. We explain 

the contention based access method, its software architecture, and its modifications to 

the LTE protocol stack in section 2.3. 

  The validation results for the implementation and performance evaluation of CBA are 

provided in two categories. Firstly, we present the signalling validation results for the 

implementation of CBA on the OAI platform. The signalling introduced by CBA is 

validated in RRC layer, MAC layer, and PHY layer, respectively. Secondly, we provides 

emulation results used to compare CBA with the regular scheduling method used in LTE, 

as well as the results aimed to evaluate the effects of different parameters (traffic pattern, 

backoff window size and number of CBA groups) on the CBA performance.  

http://www.openairinterface.org/


LOLA Project Nº 248993 WP5 
Validation Results for WP4 

Algorithms on Testbed 1 V1.0 

 

 
 Achieving Low-Latency in Wireless Communications Page 6 of 96 

2. TESTBED1 COMPONENTS AND CONFIGURATION 

    The testbed1 is design to experimentally validate the three fundamental objectives of LOLA 

[2]-[3]. In particular, it allows deriving the traffic model (WP3) for the selected realtime 

M2M/gaming applications (WP2) and validating the innovations in the access stratum L1/L2 

(WP4). The performance of the proposed contention-based random access method described 

in D4.2 will be tested over a mixed human and machine traffic models.  This testbed allows a 

repeatable and controlled set of experimentations for a large scale emulated network in 

laboratory environment. It fills the gap between the simulation and real experimentation by 

providing the baselines for protocol validation, performance evaluation and system testing. 

In this section, we will briefly explain the components and configuration of the testbed 1 

as well as the traffic model, KPI, network synchronization for accurate one-way delay 

calculation. Furthermore, we present the efforts made toward large-scale experimentation 

using realistic and efficient PHY abstraction method and software parallelism applied to 

the testbed 1. 

2.1.  OpenAirInterface platform and its Overall Configuration 

OpenAirInterface is an open-source platform for experimentation in wireless systems with 

a strong focus on cellular technologies such as LTE and LTE-Advanced. The platform 

comprises both hardware and software components and can be used for 

simulation/emulation as well as real-time experimentation. It comprises the entire 

protocol stack from the physical to the networking layer. The objective of this platform is 

to fill the gap between the simulation and real experimentation by providing the 

baselines for protocol validation, performance evaluation and pre-deployment system 

test. 

OpenAirInterface comprises a highly optimized C implementation all of the elements of 

the 3GPP LTE Rel 8.6 protocol stack for UE and eNB (PHY, MAC, RLC, RRC, PDCP, NAS 

driver). Apart from real-time operation of the software modem on a hardware target, the 

full protocol stack can be run in emulation. The OpenAirInterface emulation environment 

allows for virtualization of network nodes within physical machines and distributed 

deployment on wired Ethernet networks. Nodes in the network communicate via direct-

memory transfer when they are part of the same physical machine and via multicast IP 

over Ethernet when they are in different machines. In the first case the emulator can 

either be run with the full PHY layer or with PHY abstraction while in the latter case 

nodes interface at layer 2. The rest of the protocol stack (MAC and RLC) for each node 
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instance uses the same implementation, as would the full system. Each node has its own 

IP interface that can be connected either to an application or a traffic generator. The 

emulator also comprises a simple mobility model and channel models including path loss, 

shadow fading and stochastic small scale fading. 

The testbed 1 experimentation is performed on the top of OpenAirInterface emulation 

platform. The hardware platform is a laptop equipped with a quad-core CPU running OAI 

emulator and protocol stack using Linux on Ubuntu 12.04. We carried out one-way delay 

(OWD), jitter, and goodput measurements in the soft realtime mode for LTE operating in 

TDD frame configuration 3 for 5MHz bandwidth, in a simple cellular network topology 

composed of one eNB (enhanced-NodeB) and 6 UEs (User Equipment). The rest of the 

network including mobile core network, IP backbone, and application server are emulated 

in terms of additional latency as the purpose of the experiment is to measure the end-to-

end OWD in the data-plane. We make use of OAI scenario descriptor to layout the 

experiment such that the reproducibility is preserved and results can be regenerated. The 

simulation is run for 10 seconds (i.e. 1000 LTE TDD frames). We applied the traffic pattern 

of M2M application characterized by small and large constant sized packets with random 

inter-arrival times in uplink. The data rate is between 10 Kbps 20 kbps for most cases, 

and thus the RTT should be below 50ms to avoid any accident for realtime M2M 

application.  

2.2. Emulation Platform and Process (revisited) 

 

    Figure 1 shows the high level software architecture of the emulated platform itself and 

the main building blocks.  The user scenarios are described using baseline scenario 

descriptor and then encoded into xml format and dispatched across OpenAirInterface 

hardware platform according to some predefined rules. Then, the config generator block 

translates the high level scenarios into low level configuration files understandable for 

traffic/mobility generator, UE/eNB protocol stack, phy abstraction and emulation transport 

medium. The real applications are attached on top of some emulated UE/eNB and the 

remaining traffic pattern and mobility model will be generated automatically. The 

behavior of the wireless medium is modeled using a PHY abstraction unit which emulates 

the error events in the channel decoder and provides emulated measurements from the 

PHY in real-time [4]. The remainder of the protocol stack for each node instance uses a 

complete implementation as would a full-RF system. The Log generator is in charge of 

recording the emulator activities according to the user defined log level, while the packet 
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trace generator captures the frame (potentially extract on-the-fly the relevant field). The 

result generator produces the user defined test results using the outcome of log 

generator and packet trace generator [5]. 

 

 

The process of emulation has three phases, which are performed sequentially as follows:   

1. Input:  

a. Description of application scenario  

b. Initialization and configuration of all the blocks 

2. Execution: 

a. Protocols: PHY procedures, L2 protocols, traffic generator, and packet tracer 

b. Connectivity: PHY abstraction, channel model, and mobility model 

c. Emulation data transport: IP multicast, shared memory  

3. Output: 

a. Protocol validations and execution logs 

b. Performance evaluation metrics 

c. System testing   

2.3. Selected WP4 Algorithm 

Among the various applications provided by LTE, M2M and online gaming are the most 

promising applications. However, the regular mobile networks are designed for human-to-

human (H2H) communications, targeting the voice/multimedia transmissions with a 

continuous flow of packets, which are not suitable for such application characterized by 

low data rate delay-sensitive sporadic traffic. To enable an efficient and low latency uplink 

access for sporadic traffic, a contention based access (CBA) method is proposed in D4.2 

[1][6-7].  

 

Figure 1:  building blocks of OpenAirInterface Emulation Platform 
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The following subsections describe the idea of CBA, its software architecture and its 

integration with the testbed 1.  

2.3.1. General idea of contention based access 

  The main feature of contention based access is that UE is not assigned with dedicated 

resource. Instead, the resource is allocated for all or a group of UEs. A UE randomly 

selects its resource and sends a data packet on it. The procedure for CBA is shown in 

Figure 2. First, the eNB informs UEs about the resource allocation information for CBA via 

the scheduling grant (SG) information which cost 0.5ms provided that the CBA resource is 

available in each subframe. Then, after decoding the SG information which cost 3ms, the 

UE selects its resource block randomly and sends the data packet . The channel latency 

for this packet scheduling procedure is 7.5ms (not including the time waiting for the ACK 

information), which is much smaller than 22.5ms of the regular scheduling case. 

 

  

  As the CBA resources are allocated for all or a group of UEs, collision happens when 

multiple UEs within a group select the same resource. To address the problem of 

collision, 

in our method each UE sends its identifier, C-RNTI, along with the data on the randomly 

selected resource. The C-RNTI is of very small size, therefore it can be transmitted with 

the most robust modulation and channel coding scheme (MCS) without huge overhead. 

MU-MIMO detection is used at the eNB side to decode packets; the highly protected C-

RNTIs 

 
Figure 2: contention based access in LTE 
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from different UEs might be decoded even if they are sent on the same resource. If the 

C-RNTI of a UE are successfully decoded while its data payload is lost, dedicated resource 

is 

allocated for that UE by eNB. With the allocated resource, the UE sends its data packet; 

the latency for this procedure is 15.5ms as shown in Figure 3, which is less than latency of 

the regular scheduling case. 

 

 

 

2.3.2. CBA Software architecture(updated)  

The software architecture for CBA at the UE side is shown in Figure 4.  

• The UE uses the received RRC message to configure its MAC and PHY layers. With 

RNTI allocated for CBA transmission, the UE decodes the DCI 0 information to 

locate the resource allocated for CBA.  

• With the resource allocation information for CBA, the resource selection module 

randomly selects resource and passes the result to physical configuration module.  

• The physical configuration module sets the proper parameters for transmission 

using the cyclic shift information obtained from the RRC message and the results 

from the resource selection module.  

 

Figure 3: Contention based access with collision detection procedure 
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• Finally the transmission module sends the data and UCI information following the 

instructed configuration. 

Since the resource is not UE specific, collision may happen when multiple UEs select 

the same resource. If the UE does not receive the ACK information 8ms after the 

initial transmission, the UE starts a retransmission following the same procedure as 

described above.  

 

The software architecture for CBA at the eNB side is shown in Figure 5.  

• The eNB sends the CBA configuration information to UEs through the RRC 

message. In addition to that, the eNB also performs resource allocation for CBA, 

for which the related resource allocation information is sent with DCI 0 and the 

CRC parity bits of DCI 0 is scrambled by RNTIs allocated for CBA transmission.   

• As for the reception, the ACK information is sent to the transmission module for 

the correct received CBA packets such that it can be sent on the PHICH channel. In 

contrast to that, for the incorrect received packet (both data and control 

information are corrupted) the error information is sent the CBA resource 

allocation module so as to proper resource can be allocated for the UEs.  

 
Figure 4: CBA software architecture at UE side 
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• The successfully decoded C-RNTIs of the collided UEs are sent to regular 

scheduling module and hence the specific resource can be allocated for those UEs 

and signalled through the DCI 0 information.  

 

2.3.3. Implementation 

To implement CBA in the testbed 1, the following modifications to the LTE standard 

should be carried out. 

 

• RRC signaling to informs UE about CBA-RNTI (eNB side) 

The CBA-RNTI, which is used by a UE to decode the resource allocated information 

for CBA, is allocated by eNB during the RRC connection reconfiguration procedure 

for the data radio bearer (DRB) establishment. To implement this procedure, the 

CBA-RNTI has be added to the RadioResourceConfigDedicate information element. 

It should be mentioned that the CBA-RNTI is not UE specific. Instead, all UEs or a 

group of UEs have a common CBA-RNTI configured by RRC signaling. 

 
• Resource allocation for CBA (eNB side) 

 
Figure 5: CBA software architecture at eNB side 
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eNB allocates resource for CBA. With this resource allocation result, the eNB 

generates the DCI 0 information, which can be decoded by UEs to locate the CBA 

resource. 

 

• Locate the CBA resource (UE side) 

A UE uses its CBA-RNTI to decode the DCI 0 information to locate the resource 

allocated for CBA.  

 
• CBA data transmission (UE side) 

A UE sends the data packet on the allocated CBA resource informed by eNB. 

Moreover, to help eNB decode the packet sent on the CBA resource, a UE should 

inform eNB about the modulation and coding scheme (MCS) for the data payload. 

To do that, a UE sends MCS, C-RNTI along with the data in a subframe. The MCS 

for the bit stream of uplink MCS and C-RNTI (16 bits for C-RNTI and 4 bits for 

MCS) is fixed and known to eNB.  

 

• CBA data reception (eNB side) 

As the CBA data format is different from the legacy format,  a eNB should decode 

the CBA data in a special way. For the data sent on the CBA resource, the eNB 

should be aware of that part of payload is the  UL-SCH data while the other part is 

MCS and C-RNTI.  

 
• CBA HARQ procedure (eNB side) 

For a successfully received packet, the eNB sends the ACK in a standardized way 

(no modification is needed). For an erroneous packet, no NACK is sent by eNB.  

2.4. Application Traffic model (revisited) 

In the context of the LOLA project the OAI was extended with a program module for the 

integration of a traffic generator. The tool is part of the current open air interface source 

code tree, which can be downloaded at http://www.openairinterface.org.  

The tool is a module of the OpenAirInterface written in C programming language, which 

allows for the generation of random traffic patterns which are characterized by random 

processes of packet size and packet inter-arrival time with given probability density 

http://www.openairinterface.org/
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functions, auto-correlation functions and cross-correlation function. The respective 

modelling approach is commonly deployed for Video, Online-gaming and VoiP traffic 

patterns. The tool is optimized for low computational complexity.  

In the following we will describe the parameters used for two different test cases, namely 

online gaming and autopilot.  

2.4.1. OpenArena 

The first traffic source selected for the demonstration is OpenArena. The application 

representing the group online gaming is “Open Arena”. This game is an open source 

project derived from the game Quake3 Arena written and published by id-software. The 

traffic patterns of this application have been analyzed in D 3.3 in this project. The 

application traffic is encapsulated into UDP packets for network transmission. The 

application itself takes care about packet loss and reordering on its own. The traces for 

the derived traffic generator have been collected at the IP layer. An example is shown 

here in Figure 6 were the packet size of the downlink is depicted over the inter arrival 

time between two consecutive packets. It is clearly visible that the parameter inter arrival 

time has a very small spread while the according packet size may vary, for further reading 

please refer to D 3.3 of the Lola project. 

 

 
Figure 6: Packet Size vs Interarrival Time  (OA, DL) (source: D3.3) 

 

Detailed analysis showed that the traffic traces contained non neglect able long time 

correlations and also very long tailed ACF functions. In the following deliverable D3.5 of 

the Lola project we developed a new approach for a traffic model capable to reassemble 
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these values. It is capable of modeling not only the distributions of packet size and rate 

but also the autocorrelation functions between consecutive packets. The elements of the 

model used in the test are depicted in Figure 7. 

 
Figure 7: Online Gaming Network Traffic Model (Source D3.5) 

 

The parameterization of the main parameters for the model in case of Open Arena traffic 

is the following (Source D3.5):  

• Packet size PDF in the downlink direction: This PDF can be found in Fig. 8, 

D3.3. We modeled it by transforming a Gaussian distribution with zero mean and 

unit variance by a polynomial, as described above. The polynomial is g(x) = 

140+75x+40x^2-5.7x^3+1.6x^4+0.7x^5-0.31x^6, with values in Bytes.  

• Packet size PDF in the uplink direction: It can be observed in Fig. 9, D3.3. 

Since it is sharp and concentrated around its mean of 42 Bytes, with a standard 

deviation of 3.3 Bytes, it is modeled constant with its mean. 

• Packet inter-arrival time PDF in the downlink: It can be found in Fig. 8, 

D3.3. Since it is sharp and concentrated around its mean of 40ms with a standard 

deviation of 2.8ms, we model it as constant with its mean. 

• Packet inter-arrival time PDF in the uplink direction: It can be found in 

Fig. 9, D3.3. Since it is sharp and concentrated around its mean of 11ms with a 

standard deviation of 0.7ms, we model it as constant with its mean. 

• Packet size ACF the downlink direction: This ACF is shown in Fig. 30 in D 

3.5. It is induced by the FIR filter, which in this case has the coefficients of 

f(z)=0.41*delta(z)+0.083*exp(0.05*z)+0.047*exp(0.002*z) and a length of 500 taps. 

2.4.2. Autopilot 

The second traffic source selected in the demonstration setup is the Autopilot scenario. 

This traffic pattern represents an M2M application exchanging data between car and 

infrastructure. The scenario was defined in D 2.1 Chapter 4.1. The traffic pattern itself is 

discussed in D3.3 and a traffic model is presented in D3.5. 

The Autopilot scenario focuses on vehicle collision detection and avoidance (especially on 

highways) and urgency measures taken in case of accident. The scenario concerns mainly 
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the pre-crash sensing, warning and collision detection based on car telemetry in 

exchange with a backend system. The backend system is sending out notifications to all 

vehicles in the close surrounding of the actual event updating the customers about new 

hazards on the road. 

The latency requirements derived in D 2.1 were based on the average breaking distance 

at 100 km/h at normal road conditions combined with the reaction time for the other 

drivers in the close vicinity of the accident. The derived end to end delay resulted into 30 

ms as the total latency budget for the whole system. In the following we will refer to this 

value, for more details please see D 2.1, chapter 4.1.1 and 4.1.2. 

In contrast to the online gaming applications the M2M traffic patterns for the scenarios 

defined in D 2.1 could not be measured from real applications. Therefore we developed 

an M2M traffic frame work in D3.5 based on Markov chains representing the typical states 

of an M2M application. The actions identified in D 2.1 are: 

• The UE connected to a mobile network (ACTIVE state) 

• The client request Auto-pilot registration 

• The Auto pilot registration confirmed 

• The client sends data (GPS, speed, time) continuously every 20 (25) ms 

• The Application server sends the emergency signals (warning and actuator 

commands) when needed (the delay of these messages is critical). 

These states where transformed following the M2M traffic generation framework into the 

following states: 

• Automatic Driving System, 

• Collision Detection, 

• Collision Avoidance. 

The state diagram with the according state transmissions is depicted in Figure 8. 
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Figure 8: Autopilot Reference Model 

The parameters we used in the demonstration test are given in Table 1 (D3.5). 

Table 1: Parameters for M2M model Auto-pilot 

 

Traffic Avg. N POH PPL FKeepalive 

FHeartbeat 

FTrigger FEventThreshold 

Keep-alive 

(cars) 

50 50 1KB 10ms-100ms NA NA 

Keep-alive 

(server)     

50 50 1kB 1s NA NA 

Burst (server)  50 50 1-2 KB NA NA 10ms 

 

This traffic generation tool will be used for the upcoming results in the demonstration 

chapter. 

 

2.5. Key Performance Indicators (revisted) 

In order to quantify the improvements introduced in WP4 of the Lola project we use key 

performance indicators (KPI) discussed in D3.6. In the following we describe the KPIs 

selected for the demonstration setup and the implementation into the hardware setup 

itself. 

2.5.1. Generic Technical KPI Metrics for LOLA 

The following parameters reflect the technical KPI values based on 3GPP and IETF 

proposals and the input of WP4 in D 3.6 of the Lola project. These parameters are: 
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• One-way delay and loss, 
• Round-trip delay, 
• Delay variation. 

The first generic KPI is the one-way-delay (OWD). The OWD is defined as the time a 

datagram travels between a source A and a destination B. More details can be found in 

D3.6. 

The second parameter is the time a packet needs to travel from A to B and back. The 

value reflects the reaction time a certain setup provides to the applications. This is 

interesting especially in cases where the delay is not symmetric. 

The last parameter is the second order statistic of the delay parameter, the variation. A 

high variation indicates a high probability of large deviation from the mean value of the 

delay parameter, e.g., and outage due to buffer stalling. In a combination with the 

optimizations and implementations done in WP3, WP4 and WP5 the resulting technical 

KPI are:  

• KPI1: Average One Way Delay (Direction, Datarate, Users, Traffic Pattern) The delay is 
extended for the number of users of the application, the datarate and the traffic pattern 
used. 

• KPI2: Jitter of One Way Delay (Direction, Datarate, Users, Traffic Pattern) The delay is 
extended for the number of users of the application, the datarate and the traffic pattern 
used.  

2.5.2. Online Gaming KPI Metric for LOLA 

The application online gaming is a constant interaction of one gamer with a central server 

station. A generic technical KPI is not suited to capture the nonlinear impact in this 

interactions, e.g., a tresh hold of delay which if exceeded leads to an unplayable result for 

the human. 

Such scenarios can be covered by subjective quality measures, like Mean Opinion Score 

(MOS), Perceptual Speech Quality Measure (PSQM) and Perceptual Evaluation of Video 

Quality (PEVQ). The MOS is expressed as a single number in the range 1 to 5, where 1 is 

lowest perceived application quality, and 5 is the highest perceived application quality 

measurement. The MOS is generated by averaging the results of a set of standard, 

subjective tests where a number of candidates rate the experienced application quality of 

test scenario, e.g., test game, over the communications medium being tested, e.g., LTE 

with  and without the Lola improvements of WP4. A candidate is required to give each 

scenario a rating from 5 to 1, see D 3.6 for more details.  
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The mapping technical sound KPIs to so call mean opinion scores is based on such test 

runs with many candidates. The KPI we have selected for online gaming is based on a 

MOS score based on a mapping of evaluated MOS numbers onto a delay and jitter 

function: 

𝑀𝑂𝑆𝑔𝑎𝑚𝑖𝑛𝑔 = −0,00000587 ∗ 𝑥3 + 0.00139 ∗ 𝑥2 − 0,114 ∗ 𝑥 + 4,37, 

𝑋 = 0,104 ∗ 𝑅𝑇𝑇𝑎𝑣𝑔 +  𝐽𝑖𝑡𝑡𝑒𝑟𝑎𝑣𝑔. 

  

2.5.3. M2M KPI Metrics for LOLA 

The M2M scenario is differs from the online gaming given in the previous chapter. First in 

this application only machines exchange data, therefore a direct use of technical KPIs is 

possible. However the number of nodes is not neglectible small for the cell itself. In fact 

the expected nodes per cell in the current discussions in the standardization range up to 

10000 per cell. In D 3.6 we also identified the different operation states of an UE in the 

mobile LTE network as an important factor, e.g., if there are no pre allocated resources 

for a random M2M packet the LTE UE has to request these values causing additional 

delay, see D 3.5. for measurement results and D 4.2 for theoretical analysis and 

improvements. Based on these result the following metrics for the M2M KPIs have been 

selected: 

The generic metric is: 

 KPI_M2M_1 = IPTD(Number of Clients, Operation Mode, Activation), 

KPI_M2M_2 = IPDV(Number of Clients, Operation Mode, Activation), 

KPI_M2M_3 = IPLR(Number of Clients, Operation Mode, Activation). 

 

2.6. Precise Latency Calculation Methodology (revisted) 

The measurement of latency between different points in a distributed network is 

challenging as the measurement nodes need to measure at different network-places in a 

time synchronized way. A recording node must have the same clock as the others, and 

must be synchronized. As the delay in both directions is considered to be asymmetric and 

strongly varying, different nodes cannot estimate their clock offset by using round-trip 

time measurements. Any node must be driven by the same clock. This is possible by the 

use of the GPS system, which has an atomic clock time base accessible via GPS receivers 

offering an puls per second (PPS) output. The achievable precision by GPS timing is 20ns.  
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2.6.1. Network GPS synchronization  

The time synchronization of the measurement setup is based on GPS receivers. Each 

receiver is delivering an PPS impulse to an interface of the demonstration unit. Based on 

these impulses the system can be tuned to a precision of up to 100µs in time. It is 

therefore possible to do distributed simulations and demonstration on different PC 

without the risk of running async in the setup. 

The details of the setup are given in D 3.2 of the Lola project. And a possible 

implementation is shown in D 3.3. The possible precision of the setup is analyzed in D 3.2 

in detail and shows a performance of well below 100µs. 

The setup has been implemented to the Open Air Interface testbed. The PPS impulse of 

the units is distributed via cable to the serial interfaces of each PC. The test setup used is 

the one introduced in D 3.2 and depicted here in the following Figure 9. 

 

  

Figure 9: Detailed Test Setup 

 

2.7. Network Delay Model (updated) 

According to measurements described in the Annexes to this document, A.1 and A.2, the 

network delay model for an HSPA network may be extracted. 

For the backbone, the average two-way delays are those recorded at the firewall. Server 

processing delay needs to be subtracted for the 1st TCP packet (see Annex A.2). Then, the 

statistics is as follows: 
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Table 2: Two-way delay for the backbone 

Backbone 
delay 

1st TCP packet (without average 
server processing delay) 

2nd TCP 
packet 

test1 0.0270 0.0238 
test2 0.0267 0.0224 
test3 0.0252 0.0232 
test4 0.0270 0.0228 
test5 0.0257 0.0250 
test6 0.0267 0.0239 
test7 0.0277 0.0234 
test8 0.0279 0.0236 
test9* 0.0355 0.0197 
test10  -  - 

*For phone test9, the instance of 15s RTT for the 2nd packet due to several retransmissions is excluded from 

statistics. 

From Table 2 we may deduce that the average delay for the 1st TCP packet is around 

26.7ms, and for the second around 23.5ms. The statistics for phone test9 should be taken 

with precaution, since for this phone, due to the sporadic traffic pattern, we have much 

less packets recorded than for other phones, i.e. the sample is not large. The missing 

value for phone test10 is due to rebooting of the phone after the firewall tracing has 

started (filtering by its initial IP address was applied, see Annex A.2). 

For the core network (GGSN, proxy if used, firewall), the average two-way delay may be 

calculated by subtracting RTTs recorded at the firewall from those recorded at the Gn 

interface. Here, we have an extremely small statistical sample at the Gn interface, 

especially for phones test9 and test10 with sporadic patterns, and instances of 

retransmissions caught at the firewall (long trace), but not at the Gn (3-5 minutes trace), 

which may lead to negative values. Missing values for phone test10 are due to missing 

firewall RTT values explained above, and for phones test2 and test3 due to 

unsynchronized Gn trace recording at two branches (described in Annex A.2). 

Direct Tunnel functionality was deployed in the network, so the data in the user plane 

logically went directly from the RNC to the GGSN.  

Table 3: Two-way delay for the core network 
Core 
delay 

1st TCP 
packet 

2nd TCP 
packet 

test1 0.0048 0.0031 
test2  - -  
test3  -  - 
test4 0.0087 0.0063 
test5 -0.0045 0.0047 
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test6 0.0117 0.0037 
test7 0.0146 0.0033 
test8 0.0182 0.0091 
test9* -0.0175 -0.0014 
test10  - -  

*For phone test9, the instance of 15s FW RTT for the 2nd packet due to several retransmissions is excluded 

from statistics, as well as the value of 3.3s Gn RTT for the 1st packet. 

From the Table 3 we may deduce that the latency in the core is around several 

milliseconds, and larger values may be attributed to retransmissions and small sample at 

the Gn interface. 

For the access network, including the transport path between the RNC and GGSN, which 

is short in our case (RNC, SGSN and GGSN being physically close) and may be neglected, 

the average two-way delays are calculated for the TCP case by subtracting average RTTs 

recorded on the Gn interface from those recorded on phones. Again, the small sample at 

the Gn interface has influence, but not as much as for the statistics in Table 2, as the 

delays in the access network are much longer than in the core. Missing values for phones 

test2 and test3 are due to unsynchronized Gn trace recording at two branches (described 

in Annex A.2). 

For UDP, for comparison reasons, since there was no tracing at the Gn interface not at 

the firewall, the access network statistics is shown by subtracting average core two-way 

delay in Table 2 and average backbone two-way delay in Table 2 (server processing delay 

is mostly less than 2ms) from the average RTTs recorded on phones.   

The statistics is as follows: 

Table 4: Two-way delay for the access network 

Access 
delay 

1st TCP 
packet 

2nd TCP 
packet (main 
payload) 

UDP packet (without 
average core RTT 0.005s and 
average backbone RTT 
0.025s) 

test1 0.1168 0.1220 0.0880 
test2  -  - 0.0913 
test3  - -  0.1014 
test4 0.0743 0.1009 0.1090 
test5 0.1040 0.2011 0.2266 
test6 0.0693 0.1944 0.2498 
test7 0.0746 0.2020 0.2067 
test8 0.0966 0.1986 0.3183 
test9* 1.3145 0.4212 1.6865 
test10 1.3349 0.3333 1.5718 

*For phone test9, the instance of 3.3s Gn RTT for the 1st packet due to retransmission was excluded from 

statistics. 
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From the Table 4 we may deduce that the access network shows strong selectivity 

concerning latency towards specific traffic patterns. 1st TCP packet is around 70 B long, 

and the second carries the main payload of nominal length, according to modelled 

statistical distribution of packet size. 1st TCP packet bears the impact of accessing the 

network for long inter-arrival times (phones test9 and test10) i.e. phones that are often 

switched to the Idle state, and the impact of assigned traffic channel in UTRAN. 2nd TCP 

packet bears the impact of assigned traffic channel and the impact of packet length, as it 

carries the main payload. The UDP packet suffers from all impacts – the assigned traffic 

channel, going from Idle to RRC Connected state for phones test9 and test10, and packet 

length.  

 

Firstly, the phones with large inter-arrival times (test9 and test10) have largest delays. In 

TCP case, 1st packet delay shows the impact of accessing the network and assigned traffic 

channel, while the 2nd packet statistics shows the impact of assigned traffic channel 

(mostly common channels due to low throughputs) and packet length. Statistics for the 

UDP packet shows all these impacts. 

 

Further, statistics for the 2nd TCP packet, carrying the main payload (see Annex A.2), and 

for the UDP packet, shows the impact of packet length on latency – phones test5-test8 

with 1 kB packets have around 100 ms longer two-way delay than packets test1-test4 

with packets mostly smaller than 240 B in average. Group of phones test1-test8 is the 

group with rather faster traffic, and these phones never end-up in Idle state, so we may 

consider the influence of packet length almost independently from the influence of inter-

arrival time. 

 

2.8. Towards the Large Scale Experimentation 

2.8.1. PHY abstraction 

       PHY abstraction, also referred to as link-to-system mapping and link prediction, 

provides such an interface between system level simulators and link level simulators for 

the large scale system simulations. This interface is normally a metric representing the 

quality of an instantaneous physical link (channel) between the eNodeB (LTE acronym for 

base station) and the connected UEs (LTE acronym for mobile station) by taking into 

account other important parameters of the system. These parameters as shown in Figure 
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10 may include the knowledge about power and resource allocation to the specific UE, 

number of spatial layers, modulation and coding scheme (MCS), and mainly channel 

characteristics, i.e., path loss, shadowing, fading, interference etc. 

 
Figure 10: Link Abstraction in System Performance Evaluation 

PHY abstraction is rather trivial for the frequency flat channels as the simple averaging 

of channel qualities is sufficient for link quality mapping but for highly frequency selective 

channels the performance evaluation is not that trivial. This is mainly because of the 

smaller coherence bandwidth than that of the signal bandwidth giving rise to the multi-

state channel at the receiver [4].  

2.8.1.1. PHY Abstraction in OpenAnirInterface 

      In OpenAirInterface the required parameters for large scale system simulations are highly 

dynamic and can be generated either by the specialized tools already included in the 

simulator, i.e., openair traffic generator and openair mobility generator, or these parameters 

can be specified explicitly in great details for the specific scenarios and evaluations. The use of 

PHY abstraction in OpenAirInterface system simulator is explained in Figure 11.   
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Figure 11:PHY Abstraction in System Performance Evaluation in OpenAirInterface 

 

     It can be seen from the Figure 11 that there are two important steps in any evaluation 

using OpenAirInterface, parameterization and processing. It is important to note that 

parameterization is independent of the knowledge about the PHY abstraction. The output 

(channel realizations) from parameterization step is given to the processing where the 

comparison between using the full PHY and PHY abstraction is shown. It can be seen that in 

the case of PHY abstraction there is no coding, decoding or other complex operations involved 

from the transceiver chain at the physical layer (L1) only. The main purpose of the physical 

layer is to inform the higher layers about the status of the decodability of data packet. If the 

decoding is successful then the higher layers are notified about it. However in the case of 

using PHY abstraction this is achieved by predicting a link quality metric in terms of block error 

probability from the instantaneous channel realizations across all of the subcarriers. After the 

BLER is calculated using PHY abstraction, a random number between 0 and 1 is generated 

which is compared with this BLER for taking the decision on the successful or unsuccessful 

transmission. Then the outcome of this probabilistic experiment is passed to the higher layers 

which perform their tasks independent of the knowledge about the PHY abstraction.  

 

2.8.1.2. Abstraction Methods 
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     The most important step in PHY abstraction is to calculate the effective SINR in a way that 

it is able to transform the multi-state channel in to a single state channel. For this purpose two 

most studied link abstraction methodologies are the expected effective SINR mapping (EESM) 

and mutual-information based effective SINR Mapping (MIESM). In both of the two methods 

the basic scheme is effective SINR mapping which at first maps the varying SINRs of a 

codeword to an effective SINR (γeff) value which is then used to read the equivalent BLER from 

the AWGN performance curves of a particular modulation and code scheme (MCS).  

 γeff(β1,β2) = β1I−1 �
1
N
� I
N

n=1

�
γn
β2
�� (1) 

 

Where N is the number of channel symbols in a codeword and I(γn) is a mapping function 

which transforms SINR of each channel symbol to some “information measure” where it is 

linearly averaged over the codeword. Then these averaged values are transformed back to SNR 

domain. β1 and β2 are called calibration factors and they are there to compensate for different 

modulation orders and code rates.  

For the EESM the mapping function I(γn) is calculated using Chernoff Union bound of error 

probabilities, i.e.,  

 I(γn) = 1 − exp ( − γn) (2) 

 

 γeff(β1,β2) = −β1 ln �
1
N
� exp �−

γn
β2
�

N

n=1

� (3) 

For the mutual information based methods the approximations of mapping function and the 

reverse mapping functions come from the mutual information for discrete QAM constellation, 

i.e.  

 

IM1(γj) = log M1

−
1

M1
� ℰz1
x1∈χ1

log 
∑ exp �−�γj�x1 − x1

′� + z1�
2
�x1

′∈χ1
exp [−|z1|2]  

(4) 

where χ1 is the set of the QAM constellation points with |χ1| = M1 and z1 ∈ 𝒞𝒩(0,1).  

For the PHY abstraction γeff(β1,β2) can be calculated using (4), the respective information 

function for EESM and MIESM, and the received SINR expressions from (1), (2) and (3) for each 

of the LTE transmission modes. This γeff then can be used to obtain the BLER from the 

previously calculated AWGN performance curves corresponding to the specific MCS, i.e.,  

 

 BLER(γ, MCS) ≃ BLERA(γeff(β1,β2), MCS) (5) 

Where γ represents the N × 1 vector of γn and BLERA represents the AWGN block error rate 

obtained for specific MCS. If these values are not calibrated or wrongly calibrated then PHY 
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abstraction becomes unreliable as using false γeff for obtaining the BLER can result in either 

overestimation or underestimation of error probability. Therefore the adjustment factors are to 

be calculated very carefully. The selection of specific MCS depends on the quality of 

instantaneous channel. The eNodeB obtains the information about the quality of instantaneous 

channel from the uplink control information using the Channel Quality Indicator (CQI).  

2.8.1.3. Link Level Calibration 

In order to train and test the PHY abstraction for system level evaluations, first it had to be 

validated through link level simulator, therefore, we used Eurecom’s OpenAirInterface link level 

simulator and used both ESM methods for the calculation of γeff(β1,β2). For this paper we 

used ideal channel estimation with 8-tap Rayleigh channel model with the delay spread of 1e-6 

seconds. Further parameters for the link level simuator are given in Table 5.   

 

Table 5: Simulation Parameters for Link Level Simulator 

Transmission mode 1, 2, 6 

Transmission bandwidth 5 MHz 

FTT size 512 

Subcarrier spacing 15 KHz 

Useful subcarriers 300 

Subframe length 1 ms 

Cyclic shift Normal 

Physical resource blocks 25 

channel 8-tap Rayleigh Channel Model 

Delay spread 1e-6 second 

Channel estimation Ideal 

Decoder  Max-log Map 

MCS 0 – 22 

 

For each of the transmission mode and each of the MCS, we performed link level simulations 

for a large number of different channel realizations. We kept the channel constant during each 

of the channel realization and simulated the system for 10000 packetsor 5000 erroneous 

packets with random AWGN noise. From these simulations we saved the BLERm,MCS and other 

required parameters necessary for the link abstraction. The next important step is to calibrate 

the adjustment factors. The calibration of these factors should be performed with such a 

channel model which can provide it with high frequency selectivity that is why we chose 
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Rayleigh Channel model and then we performed this step over large number of channel and 

noise realization to find adjustment factors such that  

 (β1,β2) = (β1,β2) argmin [MSE] (6) 

 

 MSE = ��BLERA(γeff(β1,β2), MCS)− BLERm,MCS�
2

Nch

i=1

 (7) 

where MSE is the mean squared error, Nch is the number of different channel realizations, 

BLERA(γeff(β1,β2), MCS) is the predicted block error rate from the respective AWGN curve and 

from the γeff(β1,β2) calculated using (4) for both of the ESM methods, and BLERm,MCS is the 

error rate from the Nch channel realizations. To obtain the BLERtextA(γeff(β1,β2), MCS) we 

performed AWGN link level simulations for all MCS of LTE and stored these AWGN SNR-BLER 

performance curves to be used for the prediction of BLER during the optimization 

ofadjustment factors β1 and β2. These are shown in Figure 12.   

 
Figure 12: AWGN Link Performance Curves in LTE with 5 MHz Bandwidth for MCS 0 - 22 

2.8.1.4. Results  

After calibration we applied both of the ESM PHY abstraction techniques on the saved outputs 

of the link level simulations. In the following we provide the tables where we present the 

calibration factors with minimum MSE for both of the ESM PHY abstraction techniques and it 

can be seen that the MSE is very low for both techniques. Table 6, Table 7 and Table 8, 

present β1, β2 and MSE for both EESM and MIESM for MCS 0-22 for transmission mode 1, 2 

and 6 respectively. It can be seen that the optimal calibration factors for the MIESM and EESM 

are very much different than the unity. Therefore even for the case of MIESM, calibration is 

required to reach a good level of accuracy. Further these results show that if both of the ESM 

methods are calibrated correctly then the performance of both ESM methods becomes almost 

the same. Therefore one can use any one of the two techniques in the system level simulator 

with proper calibration.  
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Table 6 LTE Transmission Mode 1 - Calibration Factors and Mean Squared Error (MSE) Values for 

EESM and MIESM abstraction 

MCS  EESM  MIESM  

 𝛽𝟏  𝛽𝟐  MSE  𝛽𝟏 𝛽𝟐 MSE   

0  2.51867  2.49808  0.00391  1.11876  1.12934  0.00498   
1  0.48797  0.48677  0.01437  0.37201  0.37072  0.01334   
2  0.51811  0.51144  0.00526  0.37550  0.37219  0.00509   
3  1.15845  1.14284  0.00891  0.94532  0.93101  0.00862   
4  0.79600  0.79522  0.00578  0.57989  0.58077  0.00568   
5  0.77935  0.77683  0.00493  0.52590  0.52793  0.00475   
6  0.80905  0.79431  0.00708  0.54849  0.54037  0.00685   
7  0.80876  0.79535  0.00842  0.53399  0.52787  0.00750   
8  0.80563  0.81064  0.00919  0.51646  0.52099  0.00933   
9  0.84083  0.82789  0.00576  0.52998  0.52262  0.00483   
10  1.91969  1.85813  0.01039  0.64432  0.63280  0.01114   
11  1.95414  1.90448  0.00708  0.59618  0.58269  0.00781   
12  2.35630  2.26533  0.01159  0.48836  0.48043  0.00911   
13  2.48046  2.41211  0.01111  0.49270  0.48302  0.01071   
14  2.41703  2.37478  0.01093  0.36865  0.36376  0.00720   
15  2.99274  2.92132  0.01046  0.46138  0.45064  0.00684   
16  2.84205  2.87155  0.02203  0.40809  0.41069  0.03005   
17  5.27602  5.02621  0.03266  0.26393  0.25466  0.01751   
18  5.75658  5.42143  0.03246  0.29350  0.27973  0.01616   
19  6.48658  6.08509  0.03809  0.25203  0.24131  0.03036   
20  7.79768  7.18738  0.02389  0.37087  0.33508  0.02685   
21  7.78316  7.46862  0.06827  0.29065  0.27502  0.07025   
22  7.49917  7.51829  0.07799  0.26116  0.25681  0.11458   

Table 7 LTE Transmission Mode 2 - Calibration Factors and Mean Squared Error (MSE) Values for 

EESM and MIESM abstraction 

MCS  EESM  MIESM  

 𝛽𝟏  𝛽𝟐  MSE  𝛽𝟏 𝛽𝟐 MSE   

0  0.51505  0.51133  0.00469  0.71378  0.70281  0.00623   
2  0.72291  0.71876  0.00205  0.55335  0.55028  0.00204   
3  0.69201  0.68623  0.00354  0.48285  0.48147  0.00344   
4  0.72305  0.71997  0.00282  0.49984  0.50057  0.00250   
5  0.69175  0.68011  0.00263  0.49064  0.48318  0.00243   
6  0.74296  0.71927  0.00433  0.49418  0.48104  0.00383   
7  0.79333  0.76209  0.00280  0.53226  0.51240  0.00305   
8  0.79476  0.76746  0.00326  0.51416  0.49643  0.00258   
9  0.77145  0.72608  0.00322  0.47562  0.44854  0.00286   
10  1.79586  1.69821  0.00606  0.58539  0.55756  0.00413   
11  1.63912  1.57082  0.00369  0.41666  0.39708  0.00408   
12  1.90221  1.82649  0.00694  0.44454  0.42387  0.00691   
13  2.31685  2.17287  0.00871  0.39421  0.37011  0.00785   
14  2.66179  2.44757  0.00491  0.37893  0.34935  0.00330   
15  2.29127  2.17064  0.02918  0.27565  0.26303  0.03556   
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16  3.11592  2.86310  0.00963  0.44559  0.40529  0.00740   
17  4.46069  4.08881  0.01218  0.16501  0.15051  0.01651   
18  5.21514  4.62933  0.02739  0.22538  0.20013  0.04562   
19  5.96413  5.21403  0.02564  0.23530  0.20244  0.04945   
20  6.46220  5.54003  0.07693  0.20975  0.17879  0.07800   
21  7.60083  6.46778  0.06793  0.25174  0.21238  0.07145   
22  9.87314  8.17512  0.04159  0.32418  0.26681  0.04350   

 

Table 8 LTE Transmission Mode 6 - Calibration Factors and Mean Squared Error (MSE) Values for 

EESM and MIESM abstraction 

MCS  EESM  MIESM  

 𝛽𝟏  𝛽𝟐  MSE  𝛽𝟏 𝛽𝟐 MSE   

0  0.43114  0.42671  0.00391  0.71458  0.69798  0.00669   
1  0.57761  0.56792  0.00349  0.47890  0.46943  0.00347   
2  0.69824  0.69631  0.00221  0.53920  0.53792  0.00227   
3  0.70350  0.69631  0.00364  0.55563  0.54833  0.00386   
4  0.72077  0.71818  0.00285  0.49747  0.49825  0.00253   
5  0.71127  0.69330  0.00147  0.48994  0.47943  0.00173   
6  0.70513  0.68993  0.00390  0.46907  0.46111  0.00394   
7  0.80003  0.76490  0.00381  0.52612  0.50511  0.00321   
8  0.81582  0.77642  0.00311  0.52780  0.50203  0.00284   
9  0.78684  0.74239  0.00354  0.49624  0.46719  0.00402   
10  1.81199  1.73499  0.00551  0.45132  0.44134  0.01067   
11  1.80174  1.72851  0.00372  0.41129  0.39574  0.00192   
12  2.34708  2.19196  0.00706  0.46224  0.43891  0.00359   
13  2.59607  2.41612  0.00578  0.46088  0.43443  0.00632   
14  2.57389  2.38144  0.00385  0.39457  0.36445  0.00351   
15  2.81933  2.59327  0.00866  0.39905  0.36611  0.00594   
16  2.70396  2.53965  0.02087  0.35318  0.33006  0.02625   
17  4.93805  4.43685  0.01588  0.24389  0.21788  0.01424   
18  4.84900  4.46593  0.01656  0.18978  0.17297  0.01656   
19  6.80857  5.92575  0.01480  0.29295  0.25357  0.01200   
20  7.04470  6.27926  0.04026  0.27118  0.23895  0.05122   
21  9.33852  8.03885  0.01717  0.33666  0.28843  0.02017   
22  9.96321  8.28751  0.06238  0.35912  0.29355  0.05003   

2.8.1.5. System Level Validation 

Link level results show that our approach for the ESM PHY abstraction is very much accurate 

and any of the two methods can be used in system level simulators. Therefore we decided to 

implement EESM in the OAI system level simulator  for large scale evaluations. This system 

level simulator implements the full protocol stack for different transmission modes of LTE. We 

wanted to show that how the link abstraction can provide us with 1) low complexity and speed 

2) scalability 3) applicability and most importantly 4) accuracy. To show all these we performed 

system level simulations for different transmission modes both with full PHY and PHY 
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abstraction. The underlying scenario consists of a system with one eNodeB and two UEs. We 

specified the system scenarios through parameters file and ran the simulator for 500 frames. 

The important point for the system level simulations are,  

      Abstraction is only implemented for the downlink shared channel (DLSCH) and there is no 

abstraction for uplink (UL) and Control channels. Scheduler gives most of the resources to the 

user with better feedback CQI. Full Buffer traffic is produced and the eNodeB can select 

between MCS 0-22 for the downlink (DL) communication. During the simulations we calculated 

both the accumulated averaged throughput of system over given number of frames and also 

the execution time for the simulation. To show that using PHY abstraction is less complex and 

it speeds up the evaluation process we stored the execution time for system simulations of 

same scenarios with full PHY and PHY abstraction. We stored these times under Linux 

operating systems when there was no other application running but the simulation only. We 

found out that simulations with abstraction took extremely short time than that of with full 

PHY. The calculated speedup factor for PHY abstraction was found to be around 30 when 

compared to the time for full PHY. Table 9 shows the execution time for the simulation and it 

is clear from the results that PHY abstraction speeds up the process very drastically.  

Table 9: Simulation times different transmission Modes 

 Time in minutes and seconds   

Full PHY  PHY Abstraction   

 

TM 1   

Total time  2m26.602s  0m6.794s  

user CPU time  2m25.633s  0m6.480s  

system CPU time  0m0.924s  0m0.328s  

 

TM 2   

Total time  4m1.607s  0m9.085s  

user CPU time  3m59.079s  0m8.753s  

system CPU time  0m1.940s  0m0.364s  

 

TM 6   

Total time  2m19.320s  0m7.027s  

user CPU time  2m18.473s  0m6.752s  

system CPU time  0m0.824s  0m0.300s   

 

The next important thing to demonstrate is the realism of abstraction in system level 

evaluations. By realism we mean that the simulations with PHY abstraction should produce the 

results similar to the simulations with full PHY. This is shown by plotting the accumulated 

average throughput of the system over a given number of frames in Figure 13 - Figure 15 for 

transmission mode 1, 2 and 6 respectively. It is very clear that performance of both full PHY 

and PHY abstraction is very much close to each other and provide the same system 
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throughput. Another important aspect to note is that although we calibrated the adjustment 

factors with Rayleigh channel model but to show the applicability of PHY abstraction in diverse 

channel models we used different channel models for the simulations of these transmission 

modes. For example simulation for the TM 1 was performed with 8-tap Ricean channel, 

simulation for TM 2 with 8-tap Rayleigh channel and simulation for TM 6 with single tap 

Ricean channel. It is clear that the calibrated factors for Rayleigh channel are also applicable to 

other channel models thus giving rise to its applicability. In the end we shall like to discuss that 

although we performed these simulations with small number of users but still it shows the 

significant advantages of using PHY abstraction over full PHY. Further it can be straight 

forwardly inferred that in the case of more UEs in the system, the gains achieved from PHY 

abstraction will be even significant while maintaining the realism of evaluations.   

 
Figure 13: LTE Transmission Mode 1 - Accumulated average system throughput over given 

number of frames 

 
Figure 14: LTE Transmission Mode 2 - Accumulated average system throughput over given 

number of frames 
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Figure 15: LTE Transmission Mode 6 - Accumulated average system throughput over given 

number of frames 

 

2.8.2. Parallelism Methodology 

The previous profiling work described in Deliverable D5.2, showed that the sequential 

execution of the emulator seriously limits the expected scalability and efficiency, and thus limit 

the scalability of the OAI in-lab system validation platform. Therefore, in the first attempt, we 

parallelize its routines according to a logical separation which addresses four independent 

entities: emulation, eNB, UE and channel (section 3.4.1 of D5.2). While such architecture 

provides a reasonable gain compared to the sequential one, additional profiling work 

demonstrated that the hardware usage rate and the efficiency remains under the expectations. 

In fact, emulated nodes may present significant load imbalance which is directly reflected on 

the global performance of threads representing the nodes. Therefore, we rather consider 

smaller entities that we call “job” which represent different actions that must be performed by 

each emulated node. The following four job types are available for a given node: 

 
1. JOB1: Application traffic generator 
2. JOB2: PDCP operation  
3. JOB3: PHY/MAC procedures 
4. JOB4: Channel realization  

The emulator will rely on a pool of worker threads to execute the totality or a part of those 

jobs, which are controlled and synchronized by a master thread. By breaking down a node 

operations into different jobs and attribute jobs to different worker threads, significant  

improvement and the load balancing among the worker threads can be achieved. This is 
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because nodes are not directly associated with a given worker thread, and that if a node is 

overloaded, its load will be distributed to multiple worker threads.  

The architecture is based on a master-worker model as shown in Figure 16 [8], where the 

workers are continuously waiting for jobs to perform and the master is executing the 

simulation until reaching a block of instructions which is going to be parallelized. Such a block 

must have the following for loop form:  

 

An important requirement is that the parallel execution of the loop body must not affect the 

correctness of the simulation, for instance, it must be free of race conditions. At this point, the 

master creates as many jobs as node multiplicity (NB_UE_INST in the above example) and 

pushes them in the job queue. Each new job being pushed in the queue automatically 

activates a waiting worker to execute the job. The number of workers is fixed when the thread 

pool is created. The optimal value for it depends on the average number of jobs that can be 

executed in parallel on the one hand and the available computing resources on the other 

hand. Increasing this number does not always imply a faster execution. For example, if for 

some reason a particular periodic task (the effective example is do_UL_sig, the function which 

performs the uplink channel realization) is heavy and could not be parallelized, this task 

becomes the system bottleneck by implying a long idle time. In such cases, one worker is 

enough to reach the highest efficiency (see Figure 17), but for a drastic performance 

improvement, those constraints should be removed. 

for (UE_id=0;UE_id<NB_UE_INST;UE_id++) { example of a block to be split into jobs  
    do_DL_sig(r_re0, r_im0, r_re, r_im, s_re, s_im, eNB2UE, enb_data, ue_data, next_slot, 
abstraction_flag, frame_parms,UE_id); //Realization of downlink channel 
} 

 
Figure 16: parallel architecture for OAI 
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More generally, to fully leverage the master-worker architecture, the emulator and the protocol 

stack has to be analyzed to reveal any race conditions. 

To assess the current version, we found that the realization of the downlink channel 

(performed by the function do_DL_sig)  task is a good candidate to apply our method on, since 

it represents an important part of the computing overhead (around 50% according to the last 

profiling) and is the safest task as far as parallel execution is concerned. Representing this task 

through multiple parallel jobs, we achieved a noticeable speedup which varies between 1.67 

and 2.41. 

In the 3 tested scenarios, we gradually increased the node number and traffic load while 

varying the number of thread workers. We notice that the speedup increases with the number 

of nodes and traffic load. However, increasing the number of slaves (workers) does not 

produce the expected result even with a high number of nodes. As explained above, do_UL_sig 

task becomes the system’s bottleneck since it is heavy, sequential and periodic (about 5 slots 

per frame). A local speedup is realized each time that a do_DL_sig-job series is executed in 

parallel. However, this speedup is cancelled by the long idle time during which the master 

executes a do_UL_sig task and the job queue is empty. Furthermore, adding new threads 

brings more overhead due to their management and synchronization, which worsens the 

global performance. This is why we obtain the most efficient result with 2 threads (one master 

and one worker).  

 

Thus, the proposed parallelism model scales with the number of nodes and could allow 

us to experiment up to several tens of nodes while maintaining the real-time operation. 

 
Figure 17: Speedup obtained with parallel OAI for different scenarios 
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2.8.2.1. Discrete Event Generator 

The discrete event generator (DEG) enables more customized but high-level simulation control 

and therefore enhances the scalability potential of the emulator. In fact, in very large scale 

scenarios, it is even more important to dispose of more control and monitoring possibilities in 

order to experiment special cases. These new possibilities are introduced in the form of user-

defined events and the reconfigurability when targeting large-scale experimentation. The DEG 

consists of a Scheduler, an event consumer and an Event List for user-defined events as shown 

in Figure 18. Below, a simplified example of main function is shown, using DEG. 

 

The simulation events can be divided into two categories: 
• Regular events: periodic events which periodicity is always the same. For example: (i) time 

advancement or (ii) the event which triggers OTG (OpenAir Traffic Generator) state machine. These 
events are meant to ensure simulation progression and must not interfere with the simulation 
logic. Example (ii) does not affect OTG model nor triggers a packet generation. All what it does is to 
put into action OTG state machine. 

• User-defined events: Any other events such as a modification in OTG or OMG  model. These events 
are stored in a time-ordered event list. 

At each frame, the EMU process calls the event consumer, which extracts the events related to 

current frame from the event list, checks their content and executes the corresponding code. 

int main (int argc, char *argv[]) { 
    Mobility *mobility_frame_10; 
    Application_Config *application_frame_20; 
    //Here make modifications on the mobility and traffic new models 
    //mob_frame_10 -> ...  
    //application_frame_30 -> ... 
    schedule(ET_OMG, 10, NULL, mobility_frame_10); //schedule OMG model update for frame=10 
    schedule(ET_OTG, 15, NULL, application_frame_20);     
    schedule_end_of_simulation(FRAME, 100); 
 
    run(argc, argv);   
    return 0; //launch simulation 
} 

 
Figure 18: Discrete Event Generator 
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3. VALIDATION RESULTS  

3.1. CBA implementation validation 

    In this section, we demonstrate that modifications, which is required to enable CBA, to 

the LTE protocol stacks is implemented in our OpenAirInterface platform 

(http://www.openairinterface.org/).  

3.1.1. RRC layer  

     RRC layer is used to configure lower protocol layers including: PDCP, RLC, MAC and 

PHY layer. As mentioned in the last section, to enable CBA in LTE, the RRC layer at the 

eNB side should configure the CBA dedicated RNTIs for each UE such that a UE can use 

these RNTIs to decode the resource allocated for CBA transmission.  

     Firstly, we set the number of CBA group to 1 and number of UE to 6.  Figure 19 

shows that: (1) the eNB initializes four CBA RNTIs for possible use and the number of 

active CBA group is 1; (2) the eNB allocates the RNTI (fff4) to the six UEs in one group. 

Figure 20 shows after the RRC connection setup, every UE receives a CBA dedicated RNTI. 

It can be seen that the eNB correctly configure CBA dedicated RNTI for the five UEs in a 

CBA group and each UE in the CBA group successfully receives the configured CBA 

dedicated RNTI. 

 

 

 

 

    To improve the resource efficiency and provide better QoS, there can be multiple CBA 

groups in a cell, which is also implemented in our platform. There are various UE 

grouping methods: grouping based on UE’s location, grouping based on UE’s Qos 

requirement, grouping based on UE’s  channel quality, etc. Here we set the number of 

CBA group to 2, and we use a simple grouping method: UEs with even index are grouped 

[RRC][D][eNB 0] Initialization of 4 cba_RNTI values (fff4 fff5 fff6 fff7) num active groups 1 
[RRC][D][eNB 0] Frame 21: cba_RNTI = fff4 in group 0 is attribued to UE 0 
[RRC][D][eNB 0] Frame 38: cba_RNTI = fff4 in group 0 is attribued to UE 1 
[RRC][D][eNB 0] Frame 53: cba_RNTI = fff4 in group 0 is attribued to UE 2 
[RRC][D][eNB 0] Frame 79: cba_RNTI = fff4 in group 0 is attribued to UE 3 
[RRC][D][eNB 0] Frame 95: cba_RNTI = fff4 in group 0 is attribued to UE 4 
[RRC][D][eNB 0] Frame 118: cba_RNTI = fff4 in group 0 is attribued to UE 5 

Figure 19: RRC layer signalling to initialize and to configure RNTIs for CBA (eNB side) 

[RRC][D][UE 0] Frame 21: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 1] Frame 38: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 2] Frame 53: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 3] Frame 79: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 4] Frame 95: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 5] Frame 118: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 

Figure 20: RRC layer signalling to acknowledge the received RNTI for CBA (UE side) 

http://www.openairinterface.org/
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in the first CBA group while UEs with odd index are grouped in the second CBA group. 

Moreover, the number of UE is set as 4. 

     Figure 21 shows that the eNB allocates UE 0 and UE 2 to the CBA group 0 with RNTI 

fff4 while UE 1 and 3 is attributed to the CBA group 1 with RNTI fff5, which verifies our 

method. Figure 22 demonstrates the received RNTI in the two CBA groups: the UE 0 and 

2 receives RNTI fff4 for the CBA group 0 while UE 1 and 3 receives RNTI fff5 for the CBA 

group 1.  

  

 

 

 

 

 

3.1.2. MAC layer  

   The eNB uses the RRC layer signaling for CBA to configure its MAC layer such that 

resource can be allocated for CBA transmission. Here we set the number of CBA group to 

2 and number of UE to 3. From Figure 23, we can see that the MAC layer receives the 

RNTIs allocated for UE 0, 1, and 2, and 4.    

 

 

One of the main task for MAC layer is to perform resource allocation. Here we propose 

a simple resource allocation method for CBA. The general idea for this resource allocation 

scheme is that: the resource for CBA transmission is fixed and it is allocated between all 

the CBA groups; the ratio of resource allocated for one CBA group equals to the ratio of 

the number of active UE in this group to the number of active UE in all groups. The 

[RRC][D][eNB 0] Initialization of 4 cba_RNTI values (fff4 fff5 fff6 fff7) num active groups 2 
[RRC][D][eNB 0] Frame 21: cba_RNTI = fff4 in group 0 is attribued to UE 0 
[RRC][D][eNB 0] Frame 38: cba_RNTI = fff5 in group 1 is attribued to UE 1 
[RRC][D][eNB 0] Frame 52: cba_RNTI = fff4 in group 0 is attribued to UE 2 
[RRC][D][eNB 0] Frame 79: cba_RNTI = fff5 in group 1 is attribued to UE 3 
 

Figure 21: RRC layer signalling to initialize and to configure RNTIs for CBA with two groups (eNB 

side) 

[RRC][D][UE 0] Frame 21: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 1] Frame 38: radioResourceConfigDedicated reveived CBA_RNTI = fff5 for group 1 from eNB 0 
[RRC][D][UE 2] Frame 52: radioResourceConfigDedicated reveived CBA_RNTI = fff4 for group 0 from eNB 0 
[RRC][D][UE 3] Frame 79: radioResourceConfigDedicated reveived CBA_RNTI = fff5 for group 1 from eNB 0 

 

Figure 22: RRC layer signalling to acknowledge the received RNTI for CBA with two groups (UE 

side) 

[MAC][D][eNB 0] configure CBA groups 0 with RNTI fff4 for UE  0 (total active cba groups 2)  
[MAC][D][eNB 0] configure CBA groups 1 with RNTI fff5 for UE  1 (total active cba groups 2)  
[MAC][D][eNB 0] configure CBA groups 0 with RNTI fff4 for UE  2 (total active cba groups 2)  
[MAC][D][eNB 0] configure CBA groups 1 with RNTI fff5 for UE  3 (total active cba groups 2) 

 

Figure 23: Configure for MAC layer with CBA (eNB side) 
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pseudo code for the implementation for this resource allocation method is shown in 

Figure 24. 

 

 

     Here we set the CBA group to 2 and number of UE to 4.  Figure 25 shows the logs 

when the UE executing the second step in CBA resource allocation. It can be seen that  

• From frame 22 to 23, only one UE in CBA group 0 is connected to eNB, therefore 

the required resource block equals to total available resource block. 

• From frame 29 to 32, another UE in CBA group 1 is connected to eNB, therefore 

the required resource block for the CBA group 0 is 11, which is the half of the 

available resource block. 

• At frame 41, as there are one UE is each group, the required resource block for the 

CBA group 1 is also the half of the available resource block. 

• At frame 54, one more UE of CBA group 0 connects to eNB, therefore the required 

resource for CBA group is 15, which is about the 2/3 of the available resource. 

• At frame 55, since there are 2 UEs in CBA group 0 and 1 UE in CBA group 0, hence 

the required resource block for CBA group  is 7, which is about the 1/3 of the 

available resource.    

• At frame 83, another UE in CBA group 1 gets connected to eNB, therefore the 

number of UE in CBA group 0 and 1 are equivalent. As a result, the required 

resource block for CBA group 0 and 1 is 11, which is approximately half of the 

available resource.  

Input: total resource for CBA: NCBA 

Output: amount of allocated resource: Ni  

1. For the CBA group i, find the number of active of UE in this group Wi and 

calculate its weight ri: the ratio of the number of active UE in this group to the 

number of active UE in all groups. 

2. For the CBA group i, while there is remaining resource, calculate the required 

resource for this group as Ni: Ni=ri* NCBA 

3. Adjust the value of Ni to the nearest value which is supported in LTE resource 

allocate table.  

Figure 24: Resource allocation for CBA 
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     Figure 26 demonstrates the logs when performing the third step in CBA resource 

allocation. The allowed resource block size for CBA transmission is 

{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36,40,45,48,50,54,60,72,75,80,81,90,96 ,100}.  

We can find that: 

• From frame 22 to 23, the required resource block is 23, therefore 20 resource 

block is allocated for CBA group 0 with RNTI fff4, which yields 3 remaining 

resource blocks. 

• From frame 29 to 32, the required resource block is 11, therefore 12 resource 

block is allocated for CBA group 0 with RNTI fff4, which leaves 11 resource blocks. 

• At frame 41, the required resource block for CBA group 1 is 11. However, since 12 

resource blocks has been allocated to CBA group 0, therefore 10 resource blocks 

are allocated to CBA group 1, which leaves 1 resource block. 

• At frame 54, the required resource block size for CBA group 0 is 15, which is 

exactly one of the allowed resource block size. Therefore, 15 resource block is 

allocated.  

• At frame 55, the required resource block size for CBA group 1 is 7. Since the 

remaining resource block size is 8, therefore 8 resource block is allocated. 

[MAC][D][eNB 0] Frame 22, subframe 8: cba group 0 weight/granted_ues 1/1 available/required rb (23/23), num resources 1 

[MAC][D][eNB 0] Frame 22, subframe 9: cba group 0 weight/granted_ues 1/1 available/required rb (23/23), num resources 1  

[MAC][D][eNB 0] Frame 23, subframe 8: cba group 0 weight/granted_ues 1/1 available/required rb (23/23), num resources 1  

[MAC][D][eNB 0] Frame 23, subframe 9: cba group 0 weight/granted_ues 1/1 available/required rb (23/23), num resources 1 

. 

. 

. 
[MAC][D][eNB 0] Frame 29, subframe 9: cba group 0 weight/granted_ues 1/2 available/required rb (23/11), num resources 1  

[MAC][D][eNB 0] Frame 31, subframe 9: cba group 0 weight/granted_ues 1/2 available/required rb (23/11), num resources 1  

[MAC][D][eNB 0] Frame 32, subframe 8: cba group 0 weight/granted_ues 1/2 available/required rb (23/11), num resources 1  

[MAC][D][eNB 0] Frame 32, subframe 9: cba group 0 weight/granted_ues 1/2 available/required rb (23/11), num resources 1  

. 

. 

. 
MAC][D][eNB 0] Frame 41, subframe 8: cba group 1 weight/granted_ues 1/2 available/required rb (23/11), num resources 1  

. 

. 

. 
                 

 

 

 

                  

 

 

 

                  

                 

 

 

Figure 25: Logs for the second step operation in CBA resource allocation (eNB side) 
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•  At the frame 83, the eNB first allocates 12 resource block to CBA group 0 and 

then allocates 10 resource block to CBA group 1 though CBA group 0 and 1 both 

requires 11 resource blocks. 

 

 

The resource allocation message is sent by eNB through DCI 0. After decoding the 

resource allocation information with CBA dedicated RNTI, a UE has the CBA transmission 

opportunity. Figure 27 shows that a UE receives the CBA transmission opportunity from 

eNB 

 

 

 

 

[MAC][D][eNB 0] Frame 22, subframe 8: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/23/20/3), rballoc 173, nCCE (21/0) 

[MAC][D][eNB 0] Frame 22, subframe 9: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/23/20/3), rballoc 173, nCCE (21/0) 

[MAC][D][eNB 0] Frame 23, subframe 8: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/23/20/3), rballoc 173, nCCE (21/0) 

[MAC][D][eNB 0] Frame 23, subframe 9: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/23/20/3), rballoc 173, nCCE (21/0) 

. 

. 

. 
[MAC][D][eNB 0] Frame 29, subframe 9: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/11/12/11), rballoc 276, nCCE (21/0) 

[MAC][D][eNB 0] Frame 31, subframe 9: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/11/12/11), rballoc 276, nCCE (21/0) 

[MAC][D][eNB 0] Frame 32, subframe 8: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/11/12/11), rballoc 276, nCCE (21/0) 

[MAC][D][eNB 0] Frame 32, subframe 9: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/11/12/11), rballoc 276, nCCE (21/0) 

. 

. 

. 
[MAC][D][eNB 0] Frame 41, subframe 8: CBA 1 rnti fff5, total/required/allocated/remaining rbs (23/11/10/1), rballoc 238, nCCE (17/4) 

. 

. 

. 
[MAC][D][eNB 0] Frame 54, subframe 8: CBA 0 rnti fff4, total/required/allocated/remaining rbs (23/15/15/8), rballoc 298, nCCE (21/0) 

 

 

 

                 

 

 

 

                 

                 

 

Figure 26: Logs for the third step operation in CBA resource allocation (eNB side) 

[MAC][D][UE 0] frame 69 subframe 3 CBA transmission opportunity, tbs 81  
[MAC][D][UE 1] frame 73 subframe 3 CBA transmission opportunity, tbs 26  
[MAC][D][UE 0] frame 79 subframe 3 CBA transmission opportunity, tbs 65  
[MAC][D][UE 2] frame 80 subframe 3 CBA transmission opportunity, tbs 65  
[MAC][D][UE 1] frame 83 subframe 3 CBA transmission opportunity, tbs 26  
[MAC][D][UE 0] frame 89 subframe 2 CBA transmission opportunity, tbs 65  

 

Figure 27: UE gets the CBA transmission opportunity 
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3.1.3. PHY layer 

     PHY layer is configured by RRC layer with CBA dedicated RNTI. With this RNTI, a UE 

can decode the DCI 0 to extract the resource allocation information for CBA. Figure 28 

shows that each UE receives the DCI information for CBA transmission: UE 0 and 2 

receives the DCI destined for CBA group 0 with RNTI fff4 while UE 1 and 3 receives the 

DCI destined for CBA group with RNTI fff5.   

 

 

   After receiving  the resource allocation method, a UE can send the CBA on the 

allocated resource. Figure 29 shows that the packet used for CBA transmission is prepared 

at UE 0, 1 and 2.  

 

 

As the MCS for CBA transmission is not specified by eNB. Instead, a UE determine it 

MCS by itself. Therefore, to enable the CBA packet can be decoded by eNB, a UE should 

send its MCS used for CBA transmission. In addition to that, the UE’s C-RNTI is also sent 

in uplink, whereby the eNB can allocate resource for a UE whose C-RNTI is detected. To 

comply with the uplink signalling used in LTE, the control information is sent in UCI, 

which is originally used to send CQI report.  Figure 30 shows that each UE fills the UCI 

with its C-RNTI and MCS. 

 

 

    At the eNB side, as a eNB has the knowledge about the resource allocated for CBA 

transmission, therefore for these subframes where CBA resource is allocated a eNB tries 

 
[PHY][D][UE  2] frame 176, subframe 9: received DCI 0 with RNTI=fff4 (C-RNTI:367c, CBA_RNTI fff4) and format 0! 
[PHY][D][UE  3] frame 176, subframe 9: received DCI 0 with RNTI=fff5 (C-RNTI:a7a4, CBA_RNTI fff5) and format 0! 
[PHY][D][UE  0] frame 177, subframe 8: received DCI 0 with RNTI=fff4 (C-RNTI:bb02, CBA_RNTI fff4) and format 0! 
[PHY][D][UE  1] frame 177, subframe 8: received DCI 0 with RNTI=fff5 (C-RNTI:1346, CBA_RNTI fff5) and format 0! 
[PHY][D][UE  2] frame 177, subframe 8: received DCI 0 with RNTI=fff4 (C-RNTI:367c, CBA_RNTI fff4) and format 0! 
[PHY][D][UE  3] frame 177, subframe 8: received DCI 0 with RNTI=fff5 (C-RNTI:a7a4, CBA_RNTI fff5) and format 0! 
[PHY][D][UE  0] frame 177, subframe 9: received DCI 0 with RNTI=fff4 (C-RNTI:bb02, CBA_RNTI fff4) and format 0! 
[PHY][D][UE  1] frame 177, subframe 9: received DCI 0 with RNTI=fff5 (C-RNTI:1346, CBA_RNTI fff5) and format 0! 

 

Figure 28: PHY layer receives the CBA dedicated DCI (UE side) 

[PHY][N][UE 1] Frame 174, subframe 3: CBA data is prepared 
[PHY][N][UE 0] Frame 179, subframe 2: CBA data is prepared 
[PHY][N][UE 3] Frame 179, subframe 3: CBA data is prepared 
[PHY][N][UE 2] Frame 180, subframe 3: CBA data is prepared 
[PHY][N][UE 1] Frame 183, subframe 2: CBA data is prepared 

          
 

 
Figure 29: PHY layer prepares the date for CBA transmission (UE side). 

[PHY][I]   fill uci for cba rnti 1346, MCS 2 
[PHY][I]   fill uci for cba rnti a7a4, MCS 2 
[PHY][I]   fill uci for cba rnti 1346, MCS 2 
[PHY][I]   fill uci for cba rnti bb02, MCS 2 
[PHY][I]   fill uci for cba rnti bb02, MCS 2 
[PHY][I]   fill uci for cba rnti bb02, MCS 2 
[PHY][I]   fill uci for cba rnti 367C, MCS 2 

 

 
Figure 30: UE fills the UCI 
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to decode the packets on CBA dedicated resource blocks.  Figure 31 shows that the eNB 

is checking if a CBA packet is sent on the dedicated resource. 

 

 

   To decode date packet of a CBA packet, a eNB should first decode the control 

information for a CBA transmission. The control information includes MCS used for uplink 

transmission and the UE’s RNTI which can be used by eNB to extract UE’s identity such 

that dedicate resource can be allocated to it if possible. Figure 32 shows that the eNB 

decodes the UCI sent from UE 1 with C-RNTI 1346, UE 0 with C-RNTI bb02, UE 2 with C-

RNTI 367c, and UE 3 with a7a4.  

 

 

If there is a CBA transmission on the dedicated resource, the eNB will decode the 

packet. Figure 33 shows that the eNB receives the CBA transmission from UE 1 with C-

RNTI 1346, UE 0 with C-RNTI bb02, and UE 2 with C-RNTI 367c. 

 

 

[PHY][D][eNB 0][PUSCH 1] frame 173 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 2 with cba rnti fff4 mode PUSCH 

[PHY][D][eNB 0][PUSCH 1] frame 174 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 0 with cba rnti fff4 mode PUSCH 

[PHY][D][eNB 0][PUSCH 1] frame 174 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 1 with cba rnti fff5 mode PUSCH 

[PHY][D][eNB 0][PUSCH 1] frame 174 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 2 with cba rnti fff4 mode PUSCH 

[PHY][D][eNB 0][PUSCH 1] frame 175 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 0 with cba rnti fff4 mode PUSCH 

[PHY][D][eNB 0][PUSCH 1] frame 175 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 1 with cba rnti fff5 mode PUSCH 

[PHY][D][eNB 0][PUSCH 1] frame 175 subframe 3 Checking PUSCH/ULSCH CBA Reception for UE 2 with cba rnti fff4 mode PUSCH 

[PHY][D][eNB 0][PUSCH 0] frame 176 subframe 2 Checking PUSCH/ULSCH CBA Reception for UE 0 with cba rnti fff4 mode PUSCH 

[PHY][D][eNB 0][PUSCH 0] frame 176 subframe 2 Checking PUSCH/ULSCH CBA Reception for UE 1 with cba rnti fff5 mode PUSCH 

 

Figure 31 eNB attempts to receive CBA packets 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti 1346 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti a7a4 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti 1346 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti 1346 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti bb02 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti bb02 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti 367c 

[PHY][D][eNB] UCI for CBA : mcs 2  crnti 1346 

 
Figure 32: UCI decoding for CBA transmission (eNB side) 

PHY][I][eNB 0] Frame 173, Subframe 2 : received ULSCH SDU from CBA transmission, UE (1,1346), CBA (group 1, rnti fff5) 

[PHY][I][eNB 0] Frame 173, Subframe 3 : received ULSCH SDU from CBA transmission, UE (1,1346), CBA (group 1, rnti fff5) 

[PHY][I][eNB 0] Frame 174, Subframe 3 : received ULSCH SDU from CBA transmission, UE (1,1346), CBA (group 1, rnti fff5) 

[PHY][I][eNB 0] Frame 179, Subframe 2 : received ULSCH SDU from CBA transmission, UE (0,bb02), CBA (group 0, rnti fff4) 

[PHY][I][eNB 0] Frame 179, Subframe 3 : received ULSCH SDU from CBA transmission, UE (0,bb02), CBA (group 0, rnti fff4) 

[PHY][I][eNB 0] Frame 180, Subframe 3 : received ULSCH SDU from CBA transmission, UE (2,367c), CBA (group 0, rnti fff4) 

[PHY][I][eNB 0] Frame 183, Subframe 2 : received ULSCH SDU from CBA transmission, UE (1,1346), CBA (group 1, rnti fff5) 

[PHY][I][eNB 0] Frame 183, Subframe 3 : received ULSCH SDU from CBA transmission, UE (1,1346), CBA (group 1, rnti fff5) 

[PHY][I][eNB 0] Frame 184, Subframe 3 : received ULSCH SDU from CBA transmission, UE (1,1346), CBA (group 1, rnti fff5) 

 
Figure 33: CBA packet is received at eNB 
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  It would also be possible that a collision happens when multiple UEs select the same 

resource block. In this case, if the C-RNTI is detected by eNB, some dedicated resource is 

allocated for the collided UE such that the collides UE can send its scheduling request or 

data on the allocated resource. Figure 34 shows that collision is detected for UE 3, and 

the eNB allocate resource for UE3 to send it scheduling request (SR).  

 

 

 

3.2. Latency results 

   We have conducted three experimentations with one eNB and 6 UEs with on mobility 

in an area of 500x500. The traffic is generated by our oaisim traffic generator tool.  

  The following setup is common to all three experimentations. We use free space path 

loss exponent 2 with AWGN channel. 

     

     

[PHY][N][phy_procedures_eNB_RX] [eNB 0] Frame 93 subframe 3 : CBA collision detected for UE3 for group 1, set the SR for this UE  

[PHY][N][phy_procedures_eNB_RX] [eNB 0] Frame 103 subframe 3 : CBA collision detected for UE3 for group 1, set the SR for this UE  

[PHY][N][phy_procedures_eNB_RX] [eNB 0] Frame 223 subframe 3 : CBA collision detected for UE3 for group 1, set the SR for this UE  

[PHY][N][phy_procedures_eNB_RX] [eNB 0] Frame 233 subframe 3 : CBA collision detected for UE3 for group 1, set the SR for this UE  

[PHY][N][phy_procedures_eNB_RX] [eNB 0] Frame 243 subframe 3 : CBA collision detected for UE3 for group 1, set the SR for this UE  

 
Figure 34: Collision is detected and dedicated resource is allocated for CBA 

<TOPOLOGY_CONFIG>  

    <AREA>    

      <X_m>500</X_m> 

      <Y_m>500</Y_m>  

    </AREA> 

    <MOBILITY>  

      <UE_MOBILITY> 

 <RANDOM_UE_DISTRIBUTION> 

   <NUMBER_OF_NODES>6</NUMBER_OF_NODES> 

 </RANDOM_UE_DISTRIBUTION> 

 <UE_MOBILITY_TYPE>STATIC</UE_MOBILITY_TYPE>  <!-- STATIC -->  

      </UE_MOBILITY> 

      <eNB_MOBILITY> 

 <RANDOM_eNB_DISTRIBUTION> 

   <NUMBER_OF_CELLS>1</NUMBER_OF_CELLS> 

 </RANDOM_eNB_DISTRIBUTION> 

 <eNB_MOBILITY_TYPE>STATIC</eNB_MOBILITY_TYPE> 

      </eNB_MOBILITY> 

    </MOBILITY> 

  </TOPOLOGY_CONFIG> 
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 In this section, we evaluate the effect of different parameters on the CBA performance. 

There are three types of parameters that we investigate as shown in Figure 35: 

• Traffic pattern: There are various kinds of traffic generated by machine type 

communications (MTC). Here we investigate three type of traffic: SCBR (small 

constant bit rate), MCBR (medium constant bit rate), and BCBR (big constant bit 

rate). The SCBR traffic is related to the un-correlated traffics which are generated 

by different UEs in a large span of time, for example: periodical traffic from sensors 

(humidity, temperature, etc.) in a greenhouse. While the BCBR traffic accounts for 

the correlated traffic which are generated by different UEs in a small span of time, 

for example: event driven (ED) traffic generated by sensors in a security system. 

The MCBR traffic represents medium- related traffic generated by UEs in a medium 

span of time. It is obvious that, compared to the SCBR traffic, more collisions 

happens for BCBR traffic as more packets are generated by UEs simultaneously.  

• Backoff window size: Backoff is used UE to avoid collision. However, larger backoff 

counter increases the time a UE has to defer before a CBA transmission. Therefore, 

how to set an optimal backoff window size is not obvious.  

• Number of CBA group: Allocating UEs into larger number of group reduces the 

number of transmissions in one group. However, the resource for a group also 

<ENVIRONMENT_SYSTEM_CONFIG> 

    <FADING> 

      <FREE_SPACE_MODEL_PARAMETERS> 

 <PATHLOSS_EXPONENT>2.0</PATHLOSS_EXPONENT> 

      </FREE_SPACE_MODEL_PARAMETERS> 

      <SMALL_SCALE>AWGN</SMALL_SCALE> 

    </FADING> 

    <UE_FREQUENCY_GHz>1.9</UE_FREQUENCY_GHz> 

  </ENVIRONMENT_SYSTEM_CONFIG> 

<EMULATION_CONFIG> 

   <EMULATION_TIME_ms>10000</EMULATION_TIME_ms>  

   <PERFORMANCE_METRICS> 

     <THROUGHPUT>enable</THROUGHPUT>  

     <LATENCY>enable</LATENCY>               

     <OWD_RADIO_ACCESS>enable</OWD_RADIO_ACCESS>     </PERFORMANCE_METRICS> 

   <LOG>  <!-- set the global log level --> 

     <LEVEL>debug</LEVEL> 

     <VERBOSITY>medium</VERBOSITY> 

   </LOG>   

   <SEED_VALUE>0</SEED_VALUE>     

 </EMULATION_CONFIG> 
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becomes smaller, which increases collision. Here, we investigate its effect on CBA 

performance.  

It has to be mentioned that the frame format (FDD or TDD), and in case of TDD frame 

format, the TDD frame uplink configuration also has the effect on the CBA performance.    

 

3.2.1. Experimentation with different type of traffic 

We conduct our experiments with three types of traffic: SCBR (small constant bit rate), 

MCBR (medium constant bit rate), and BCBR (big constant bit rate). For the SCBR traffic, 

the main feature is:  

 

  For the MCBR traffic, its main feature is: 

 

For the BCBR traffic, its main feature is 

 

Figure 35: Parameters affecting CBA performance 

Transport Protoclo: UDP; 

IP : IPV4; 

Inter-departure time (IDT) distribution : FIXED; 

IDT_min:  uniform_dist((i+1)*30, 1000)) //i is index of UE 

Packet size (PS) distribution : FIXED; 

PS_min:  32; 

Transport Protoclo: UDP; 

IP : IPV4; 

Inter-departure time (IDT) distribution : FIXED; 

IDT_min:  uniform_dist((i+1)*30, 500)) //i is index of UE 

Packet size (PS) distribution : FIXED; 

PS_min:  64; 
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We can see that the average packet size increases from SCBR (32 bits) traffic to BCBR 

(128 bits). For the inter departure time (IDT), it is uniform distributed over a defined 

range. It is obvious that the BCBR traffic has the smallest IDT, which means more packets 

are generated for BCBR traffic. The traffic of UE can be set by the use of following 

configuration. 

 

 

Figure 36 shows the latency (average latency over the 6 UEs) comparison with CBA and 

regular scheduling under different type of traffic. We can see that the maximum latency is 

obtained when using BCBR traffic for CBA and regular scheduling. This is reasonable as 

there are more packets with BCBR traffic, therefore it takes more time to be scheduled by 

eNB for the regular scheduling time and it incurs more collisions for CBA which also 

increases latency. Moreover, we also find that the latency of CBA is less that of regular 

scheduling for SCBR and MCBR traffic, while it is larger than the latency of regular 

scheduling for the BCBR traffic. The reason for this phenomenon is that: For the SCBR and 

MCBR traffic, the collision rate is low (less than 5%) as the IDT is large for these two 

traffics. Therefore, CBA outperforms the regular scheduling as it reduces the redundant 

signalling in the regular scheduling. However, the collision rate becomes higher (20%) for 

the BCBR traffic as IDT is getting smaller. Hence, the latency of CBA becomes higher than 

the regular scheduling, which suggests that the performance of CBA is highly degrades 

when the collision rate is high. 

Figure 37 presents the delay jitter for CBA and regular scheduling with different types 

of traffic. We can see that the delay jitter increases from 6.8 ms to 20 ms for regular 

Transport Protoclo: UDP; 

IP : IPV4; 

Inter-departure time (IDT) distribution : FIXED; 

IDT_min:  uniform_dist((i+1)*30, 250)) //i is index of UE 

Packet size (PS) distribution : FIXED; 

PS_min:  128; 

<APPLICATION_CONFIG> 

    <PREDEFINED_TRAFFIC> 

      <SOURCE_ID>1:6</SOURCE_ID> <!-- valid formats are: -->                    

      <APPLICATION_TYPE>scbr (or mcbr, or bcbr)</APPLICATION_TYPE> 

      <DESTINATION_ID>0</DESTINATION_ID> <!-- valid formats are: --> 

        </PREDEFINED_TRAFFIC> 

  </APPLICATION_CONFIG> 
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scheduling when changing the traffic from SCBR to BCBR. In contrast, the jitter increases 

sharply from 10 ms to 39 ms when replacing the SCBR traffic with BCBR traffic. This is 

because, the collision rates is increased by the use of BCBR traffic, which hence enlarges 

the delay jitter. One thing has to be noted that the delay jitter for CBA is less that for the 

regular scheduling when using MCBR traffic.  

 

  Figure 38 demonstrates the goodput comparison with CBA and regular scheduling 

under different types of traffic. It can be found that the goodput of CBA is larger than 

that of regular scheduling for SCBR and MCBR traffic, while it is smaller than goodput of 

regular scheduling for SBR traffic. This is because of the latency comparison between CBA 

and regular scheduling that we explained in the last paragraph. In addition to that, we 

also find that though the latency for BCBR traffic is higher than that of SCBR and MCBR 

as shown in Figure 36, the goodput for BCBR is larger than that of SCBR and MCBR, 

which is also reasonable as the packet size of BCBR traffic is 128 bits (much larger than 

SCBR and MCBR packet).  

 

 

Figure 36: Latency comparison with different types of traffic 
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3.2.2. Experimentation with different backoff window size 

  With CBA, a UE sends its packet on the allocated CBA resource without redundant 

signaling incurred by regular scheduling. However, as the CBA resource is not UE 

dedicated, collision happens when multiple UEs use the same resource, which increases 

latency. To alleviate collision, backoff is employed for a CBA transmission. Concretely, a 

UE selects a backoff counter uniform distributed over [1, W] after a CBA transmission. This 

backoff counter is decreased by one every frame. A UE can trigger a CBA transmission 

when the backoff counter equals 0. We conduct experiments with different backoff 

 

Figure 37: Delay jitter comparison with different types of traffic 

 

Figure 38: Good comparison with different types of traffic 

SCBR MCBR BCBR
0

5

10

15

20

25

30

35

40

De
aly

 jit
ter

 (m
s)

 

 

CBA
Regular scheduling

SCBR MCBR BCBR
0

2

4

6

8

10

12

14

16

18

20

G
oo

dp
ut

 (K
bp

s)

 

 

CBA
Regular scheduling



LOLA Project Nº 248993 WP5 
Validation Results for WP4 

Algorithms on Testbed 1 V1.0 

 

 
 Achieving Low-Latency in Wireless Communications Page 50 of 96 

counter to investigate its effect.  The traffic used in our experiments is configured as 

following. 

 

 

     Figure 39 shows the latency comparison with different backoff counter window size. 

We can see that the latency increases 96 ms to 98 ms when the backoff window size 

increases from 0 to 20. This because though the collision rate decreases when backoff 

window size increases from 0 to 20, a UE has to wait more time before sending a packet 

which increases latency. In contrast to that, the latency decreases to 89ms when the 

backoff window increases from 20 to 40. This is also reasonable because the collision rate 

decreases, which reduces the latency.   

     Figure 40 compares the goodput of different backoff window size. The maximum 

goodput is achieved when the backoff counter equals 40, which is consistent with the 

result shown in Figure 39.  

    Using a larger backoff window reduces collision rate. However, a UE also has to wait 

longer time before transmission. Therefore, a good tradeoff between collision rate reduce 

and waiting time increase should be selected such that the latency can be minimized.  

Transport Protoclo: UDP; 

IP : IPV4; 

Inter-departure time (IDT) distribution : FIXED; 

IDT_min:  uniform_dist((i+1)*30, 250)) //i is index of UE 

Packet size (PS) distribution : FIXED; 

PS_min:  128 

<APPLICATION_CONFIG> 

    <PREDEFINED_TRAFFIC> 

      <SOURCE_ID>1:6</SOURCE_ID> <!-- valid formats are: -->                    

      <APPLICATION_TYPE>BCBR <APPLICATION_TYPE> 

      <DESTINATION_ID>0</DESTINATION_ID> <!-- valid formats are: --> 

        </PREDEFINED_TRAFFIC> 

  </APPLICATION_CONFIG> 
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3.2.3. Experimentation with different number of CBA groups 

     Another factor which may the performance of CBA is the number of CBA group. Here, 

we conduct experiments with different number of CBA groups to investigate its effect. 

The configuration for the traffic is as following.  

 

Figure 39: Latency comparison with different backoff window size 

 

Figure 40: Goodput comparison with different backoff window size 
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   Figure 41 compares the latency with different number of CBA group as well as regular 

scheduling. We can see that the latency increases from 53 ms to 61 ms as CBA group 

number increases from 1 to 6. This is because allocating UEs into 6 groups reduces the 

number of UE in one CBA group (from 6 to 1), which may reduce the collision rate. 

However, as the CBA resource is fixed, the resource allocated for one CBA group 

decreases when using 6 CBA groups, which in turn increase the collision rate.  

    Figure 42 demonstrates the goodput when setting number of CBA group. We can find 

that setting CBA group as 1 achieves the best goodput (12.4 Kbps) as it obtains the 

smallest latency which is shown in Figure 41.  

Therefore, how to set the number of CBA group is not so obvious. Using larger 

number of CBA group decreases the number of UE but also reduces the amount of 

resource in one CBA group. In contrast, using smaller number of CBA group increases the 

number of UE in a group and also increases the amount of resource in a group. To 

achieve the best performance of CBA, the number of CBA group should be carefully 

selected.  

 

 

 

 

 

 

 

Transport Protoclo: UDP; 

IP : IPV4; 

Inter-departure time (IDT) distribution : FIXED; 

IDT_min:  uniform_dist((i+1)*30, 250)) //i is index of UE 

Packet size (PS) distribution : FIXED; 

PS_min:  128; 

<APPLICATION_CONFIG> 

    <PREDEFINED_TRAFFIC> 

      <SOURCE_ID>1:6</SOURCE_ID> <!-- valid formats are: -->                    

      <APPLICATION_TYPE>BCBR <APPLICATION_TYPE> 

      <DESTINATION_ID>0</DESTINATION_ID> <!-- valid formats are: --> 

        </PREDEFINED_TRAFFIC> 

  </APPLICATION_CONFIG> 
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Figure 41: Latency comparison with different number of CBA group 

 

Figure 42: Latency comparison with different number of CBA group 
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4. CONCLUSION 

    In this deliverable we summarize the implementation and performance evaluation 

results of the contention based access (CBA) method on the OpenAirInterface (OAI) 

platform created by EURECOM. We elaborate the component, configuration and 

emulation process for the OAI platform. The idea of contention based access (CBA), its 

software architecture, and the modifications to the LTE protocol are also detailed.  

     We conducted extensive emulations to validate the implementation for the CBA 

method on the OAI platform. The signaling results in RRC, MAC, and PHY layer show that 

CBA is properly implemented on OAI. Concretely, the emulation results show that CBA 

works as following: (1) the eNB configures the CBA-RNTI through RRC signaling; (2) an UE 

receives this RRC message and configure it PHY and MAC layer; (3) the eNB allocates 

resource for CBA transmission; (4) an UE send a packet on the CBA resource; (5) the UE 

tries to decode CBA packets; (6) if a C-RNTI is received, dedicated resource is allocated 

for the related UE.   

     We also carried out different experimentation to compare CBA with the regular 

scheduling and to evaluate the effect of different parameters on the CBA performance. 

We find that when the traffic is sporadic (SCBR and MCBR) CBA outperforms the regular 

scheduling method. However, the performance of CBA degrades for the BCBR traffic 

whereby the traffic is intense and of large size. We also notice that the backoff window 

size and number of CBA group have great effect on the CBA performance. To achieve the 

best performance of CBA, the backoff window size and number of CBA group should be 

carefully selected. Specially, for the configuration of backoff window size, a goodput 

tradeoff between waiting time increase and collision rate reduce should be selected. As 

for adjustment of CBA group number, the suitable CBA number of group should 

decreases the collision rate for a CBA transmission.  
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5. ACRONYMS AND DEFINITIONS 

5.1. Acronyms 

Acronym Defined as 

3GPP 3rd Generation Partnership Project 

AP Auto-Pilot 

ENB Enhanced Node B 

CBA Contention-based Random Access  

DCI Downlink Control Information 

GW Gateway 

GPU Graphical Processing Unit 

LTE Long Term Evolution 

LTE-A LTE-Advanced 

IDT Inter-Departure Time 

MAC Medium Access Control 

M2M Machine to Machine  

MSC Message Sequence Chart 

OTG Openair Traffic Generator 

OA OpenArena 

OWD One-Way Delay 

PHY PHYsical (layer) 

PS Packet Size 

PDU Protocol Data Unit 

TF Team Fortress 

VB Virtual Bike 

UE User Equipment 

UCI Uplink Control Information 
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ANNEX A UDP AND TCP MEASUREMENT ON LIVE HSPA 

NETWORK (MTS/TUV) – DETAILED RESULTS FOR 

DELAY MODEL 

 

These following measurements are a follow-up to measurements performed within D3.5. These 

measurements are used to derive an accurate and realistic delay model for the mobile cellular 

system from terminal to the server including firewall, APN, and proxy. The measurements are 

performed for both TCP and UDP traffic. 

A.1 UDP measurements in MTS network 

A.1.1 Measurement setup 

Measurement setup is topologically the same as for measurements described in D3.5, as 

well as test phones (Huawei U8500). 

The 3G/HSPA network has been modernized meanwhile, and its configuration changed – 

besides the increase of channel elements and licenses for simultaneous HS users on the 

subject NodeB, the TTI in the uplink is reduced to 2ms (before it was 10ms). 

Serving NodeB, BGU44, is of following characteristics in this test case: 

• 256/256 CE UL/DL activated 

• eUL activated (and HSDPA) 

• two carriers, HS traffic going to both carriers 

• license for 32 simultaneous HSDPA users in each cell 

• 2ms TTI in UL 

 

All other setup parameters are the same as in Test case 3 of D3.5, and further. 

Trace recording was performed on phones (Shark application). Network cell statistics is 

gathered, as well as application reports from phones. 

Since there was no possibility to measure one-way delay, due to lack of synchronization 

between tracing points, the Traffic Generator application has been changed in such way 

that for every received UDP packet server application generates a “fake ACK”. Client 

application, upon receipt of “fake ACK”, calculates the “RTT” and records it in its report. If 
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the “fake ACK” does not arrive within 3 seconds, the application considers it lost and 

generates a new wait time and a new packet. Application report also contains the counter 

of sent and lost packets. As these fake ACKs are generated at the application layer, no 

“RTT” can be calculated through Wireshark without creating a custom dissector that 

would decode the data in the UDP packet. Such dissector was not developed, and thus, 

trace recording at other network interfaces was not performed.  

The “default” APN gprswap was used (uses proxy, Service Awareness, GGSN 1, CheckPoint 

firewall). 

This test case is intended to show the differences in the RTT compared to TCP case. Since 

the NodeB has been modernized, having more processing power and smaller TTI in the 

UL, the comparison with previously performed measurements (described in D3.5) is just 

illustrative. Both UDP and TCP measurements (described in A.2) are performed in order to 

dissect portions of RTT belonging to different parts of network, and get statistics to be 

used in testbed1. UDP measurements are given first, for later comparison. 

RTTs are expected to be smaller than for previous TCP cases in D3.5, for all traffic 

patterns, not only because of the upgrade, but also because of UDP characteristics. Being 

a connectionless protocol, UDP does not establish and maintain a session. There are no 

retransmissions of packets, so the actual traffic on the link is closer to the defined 

patterns and RTTs for “successful” packets are smaller. There is no ordering of packets, so 

there’s no processing of out-of-order packets nor drops that might occur in the core 

(service-aware GGSN features). UDP has a smaller header compared to TCP, thus having 

smaller packets for same data content, which can also influence the RTT. 

 

A.1.2 Measurement parameters 

 

All measurement parameters are the same as in test case 3 of D3.5, the only change is for 

time distribution for phones 9 and 10, and the transport protocol used - UDP. For 

emulated GPS Keep Alive messages, inter-arrival time distribution should be Uniform 

(1,60)s, but since it lead to frequent application failures in past measurements, Uniform 

(1,25s) is applied (as in cases 7-11 of D3.5), since it was checked empirically that this was 

the widest range for which application worked without interruption.  

The parameters are shown in the following tables: 

Server: 89.216.116.166 
Port: 1234 
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Table 10: Server IP address and port 

 

Name Telephone No Application/Protocol Settings 
test1 0641069123 OA, UL, UDP Gauss (0,04121;0,004497)kB, Uniform(0,069;0,103)s 
test2 0641069116 TF, UL, UDP Gauss (0,07473;0,013085)kB, Uniform(0,031;0,042)s 
test3 0641069117 OA,DL, UDP Gauss (0,16836;0,08381)kB*, Uniform(0,041;0,047)s 
test4 0641069118 TF, DL, UDP Gauss (0,23511;0,07748)kB*, Uniform(0,039;0,046)s 
test5 0641069119 M2M, BR, UL, UDP Constant(1)kB, Uniform(0,1;0,5)s 
test6 0641069120 M2M, BR, DL, UDP Constant(1)kB, Uniform(0,1;0,5)s 
test7 0641069121 M2M, AP, UL, UDP Constant(1)kB, Uniform(0,025;0,1)s 
test8 0641069122 M2M, AP, DL, UDP Constant(1)kB, Uniform(0,999;1,001)s 

test9 0641069115 M2M, TT(GPS Keep Alive), UL, UDP Constant(0,5)kB, Uniform(1;25)s** 

test10 0641069124 M2M, TT(GPS Keep Alive), UL, UDP Constant(0,5)kB, Uniform(1;25)s** 
* Gaussian distribution was taken as an approximate, since LogNormal generated packets of around 1028 bytes all the time in Test 
Case 1. See deliverable D3.5 for explanation. 
** No possibility for Uniform(0,00977;1)kB packet size distribution, Constant was taken instead; Time distribution should be 
(1,60)s, but due to application failures in previous test cases, (1,25)s was taken instead, as an empirical limit for smooth operation. 

Table 11: Simulation parameters for UDP test case 
 
Test Case 12 was performed 11.15-13.00 on May 15th, 2012. 

A.1.3 Measurement results 

Relevant notes on application behaviour are given in the following table. 

Name Application/Protocol Settings 
From 
time 

To 
time Remark 

test1 OA, UL, UDP 
Gauss (0,04121;0,004497)kB, 
Uniform(0,069;0,103)s 11:14 12:58   

test2 TF, UL, UDP 
Gauss (0,07473;0,013085)kB, 
Uniform(0,031;0,042)s 11:15 12:58   

test3 OA,DL, UDP 
Gauss (0,16836;0,08381)kB, 
Uniform(0,041;0,047)s 11:16 12:56 

Application restarted at 
11:20, was failing 11:21, 
11:35, 11:40, 11:42, 11:46, 
11:52, 11:55, 12:08, 12:23, 
12:31, 12:41, 12:45, 12:47, 
12:51  

test4 TF, DL, UDP 
Gauss (0,23511;0,07748)kB, 
Uniform(0,039;0,046)s 11:17 12:56 

Application failed at 11:19, 
11:35, 12:56 

test5 M2M, BR, UL, UDP 
Constant(1)kB, 
Uniform(0,1;0,5)s 11:17 12:58   

test6 M2M, BR, DL, UDP 
Constant(1)kB, 
Uniform(0,1;0,5)s 11:18 12:59   

test7 M2M, AP, UL, UDP 
Constant(1)kB, 
Uniform(0,025;0,1)s 11:16 12:58   

test8 M2M, AP, DL, UDP 
Constant(1)kB, 
Uniform(0,999;1,001)s 11:18 13:00   
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test9 
M2M, TT(GPS Keep 
Alive), UL, UDP 

Constant(0,5)kB, 
Uniform(1;25)s 11:13 12:57   

test10 
M2M, TT(GPS Keep 
Alive), UL, UDP 

Constant(0,5)kB, 
Uniform(1;25)s 11:15 12:57   

Table 12: Notes on application behaviour for UDP test case 

A.1.3.1 Phone RTT 

 

As mentioned above, the RTT measured by the client application on the phone is the 

period from the time the original UDP packet is sent to the time its corresponding “fake 

ACK” is received back.  

The statistics is calculated from application reports concerning generated packet size, 

time between packets and the calculated RTTs. Yet, a more thorough analysis was done 

through Wireshark revealing that for some phones “fake ACKs” are all of same data 

content, i.e. they do not refer to a specific packet, so delays affect RTT calculated by 

application – received “fake ACK” may be for some previous packet and there is no way 

application could determine that. Seems that the “fake ACK” is implemented depending 

on the length of the main packet, so phones test5-test10, with constant size packets, 

have same “fake ACK” data content through all two hours of testing, while other phones 

have a Gaussian distribution of “fake ACK” data content. 

Due to problems stated above, another approach was taken. RTTs cannot be calculated 

directly through Wireshark, but the traces are exported to Excel, and RTTs are calculated 

for series of values packet-“fake ACK”, for as long as we have an uninterrupted flow of 

successive pairs packet-“fake ACK”. As soon as we get two successive packets originated 

from the client, no RTTs are calculated, from that point on, since we later cannot 

determine which “fake ACK” belongs to which packet. Two successive client-originated 

packets mean that either the ACK for the first is really lost, either it is delayed more than 

3s (the application waits for the fake ACK 3s and then considers it lost, but it may arrive 

later). In this way, no delay longer than 3s is taken into account, but we may assume that 

this has no greater impact on results, due to large number of packet exchanged and 

small number of instances where delay is longer than 3s.  

If we compare data from application reports with time difference between client packets 

and returned server fake ACKs in Shark traces (beginning of traces), we may conclude 

that they match (a recorded UDP „fake RTT“ corresponds closely to the time difference 

between sending a packet and receiving a „fake ACK“ packet back). This proves that the 

client application processing delay is negligible, which is also exactly shown in the TCP 
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test case (A.2). As indicated, the application waits for the “fake ACK” and then generates a 

new packet with new wait time, so the traffic pattern does not follow size/time 

distributions exactly, but very closely, unlike in the TCP case. Packet size is nominal size 

plus UDP header. 

Anyhow, in the way of processing traces described above, the possibility of an error is 

reduced to zero (there are no retransmissions), but the statistical sample is significantly 

smaller, with no excessive delays taken into account (as the first instance of delay larger 

than 3s occurs, no further packets are taken into statistics, as explained above). 

In the following table, the statistics is given, with the number of samples (pairs packet-

“fake ACK”) that the statistics is calculated for: 

 

  test1 test2 test3 test4 test5 
Count of RTT 194 78 1021 1246 1314 
Average of RTT (ms) 118.08 121.37 131.44 139.07 256.63 
Max of RTT (ms) 2214.14 1928.25 2712.82 2838.57 2933.95 
Min of RTT (ms) 76.72 76.68 67.36 78.12 189.98 

 

  test6 test7 test8 test9 test10 
Count of RTT 531 1352 260 54 57 
Average of RTT (ms) 279.86 236.78 348.32 1716.55 1601.81 
Max of RTT (ms) 2082.35 2925.48 2963.14 2786.88 2883.28 
Min of RTT (ms) 221.04 193.37 188.63 150.20 152.46 

Table 13: Statistics for UDP phone RTT taken from Shark traces 

 

It is also interesting to see the average values next to traffic characteristics: 

 

    Traffic Average 
UDP phone 

RTT 
Name Settings 

Application/ 
Protocol 

Avg. packet 
size (bytes) 

Average time 
between packets 
(s) 

Max 
throughput 
(kbps) 

test1 
Gauss (0,04121;0,004497)kB, 
Uniform(0,069;0,103)s OA, UL, UDP 40 0.086 6.68 118.08 

test2 
Gauss (0,07473;0,013085)kB, 
Uniform(0,031;0,042)s TF, UL, UDP 75 0.0365 33.27 121.37 

test3 
Gauss (0,16836;0,08381)kB, 
Uniform(0,041;0,047)s OA,DL, UDP 170 0.044 94.32 131.44 

test4 
Gauss (0,23511;0,07748)kB, 
Uniform(0,039;0,046)s TF, DL, UDP 240 0.0425 117.39 139.07 

test5 Constant(1)kB, Uniform(0,1;0,5)s 
M2M, BR, UL, 
UDP 1024 0.3 80.00 256.63 
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test6 Constant(1)kB, Uniform(0,1;0,5)s 
M2M, BR, DL, 
UDP 1024 0.3 80.00 279.86 

test7 
Constant(1)kB, 
Uniform(0,025;0,1)s 

M2M, AP, UL, 
UDP 1024 0.0625 320.00 236.78 

test8 
Constant(1)kB, 
Uniform(0,999;1,001)s 

M2M, AP, DL, 
UDP 1024 1 8.01 348.32 

test9 Constant(0,5)kB, Uniform(1;25)s 

M2M, TT(GPS 
Keep Alive), UL, 
UDP 512 13 4.00 1.716.55 

test10 Constant(0,5)kB, Uniform(1;25)s 

M2M, TT(GPS 
Keep Alive), UL, 
UDP 512 13 4.00 1.601.81 

Table 14: Traffic characteristics vs. UDP phone RTT 

 

Comparing these statistics with results from Test Case 3 of D3.5, first we observe 

significantly lower RTTs. Average RTTs are multiple times smaller than in case 3, except 

for phones 9 and 10, with very sporadic traffic patterns, whose RTTs are of the same 

order in two test cases.  

These results are expected, as noted above, not only due to increase in processing power 

of the NodeB and TTI reduction to 2ms, but also because of UDP characteristics, 

compared to TCP case. However, sporadic traffic patterns of phones 9 and 10 still have 

rather same, large average RTTs of 1.7s.  

Smallest average RTTs are those of phones 1 and 2, around 120ms, then for phones 3 

and 4, around 130-140ms. 

It is clearly visible that traffic patterns of phones test5-test8 have more than 100ms 

longer RTTs, between 240ms and 350ms, than those of phone test1-test4. If we compare 

traffic parameters, we may deduce that this is due to the influence of packet length on 

RTT. Large packets have bigger RTTs. This will be confirmed in the TCP case as well. In 

this group of phones, we further see the influence of inter-arrival time – phone test8 with 

largest inter-arrival time, practically 1s constantly, has the biggest RTT, while phone test7, 

with smallest wait time gets the smallest RTT. 

These results again confirm that sporadic traffic patterns have large RTTs, for UDP as well, 

as they are given random-access channels, which are shared and have high access times.  

In addition, very long generated „wait time“ (time between packets), if larger than the 

value of corresponding inactivity timers (in this case, up to 22s), results in phone going to 

the Idle state. This means that for sending the next packet, phone must first establish the 

RRC connection again. This situation occurs with phones 9 and 10, and additional time is 
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being spent on signalling. Introducing the URA_PCH state in the network would help 

reduce this excessive signalling for phones with large inter-arrival times. 

In the end, just as an illustration, statistics from application reports is given: 

  test1 test2 test3 test4 test5 
Average of UDP RTT (ms) 346,76 397,93 224,62 233,85 343,82 
  test6 test7 test8 test9 test10 
Average of UDP RTT (ms) 345,75 325,99 384,05 1.658,19 1.682,22 

Table 15: Application report UDP RTTs, not valid due to “fake ACK” ambiguous 

implementation 

 

We may see that they are larger than those from Shark traces, except for phones with 

large inter-arrival times – test8, test9 and test10. From application reports, for instance 

for test1, we see that RTTs are mostly around 100ms, until the first packet is recorded lost 

(i.e. “fake ACK” delay was more than 3s). The RTT for the next packet is more than 1s, and 

then all RTTs are 250ms and higher, as the order is disrupted. As a result, phones with 

small inter-arrival times have larger RTTs in application reports than in Shark trace 

analysis, due to “fake ACK” implementation. On the other hand, for phones with large 

inter-arrival times average RTTs are alike, relative difference not being bigger than 5%, as 

individual RTTs are high themselves. Anyhow, values calculated from application reports 

are much smaller than in Test case 5 of D3.5. 

A.2 TCP measurements in MTS network 

A.2.1 Measurement setup 

 

Measurement setup is topologically the same as for measurements described in D3.5, as 

well as test phones (Huawei U8500). 

The network has been modernized meanwhile, and the NodeB configuration changed – 

besides the increase of channel elements and licenses for simultaneous HS users, the TTI 

in the uplink is reduced to 2ms (before it was 10ms). 

Serving NodeB, BGU44, is of following characteristics in this test case: 

• 256/256 CE UL/DL activated 

• eUL activated (and HSDPA) 

• two carriers, HS traffic going to both carriers 
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• license for 32 simultaneous HSDPA users in each cell 

• 2ms TTI in UL 

• HSPA+ and Dual Carrier functionalities activated (but phones do not support 

these features) 

 

All other setup parameters are the same as in Test case 3 of D3.5, and further. 

Trace recording was performed on phones (Shark application), at the Gn interface and 

within the firewall (Wireshark application). Firewall traces were taken by direct filtering by 

IP addresses of phones. Network cell statistics is gathered, as well as application reports 

from phones. 

The “default” APN gprswap was used (uses proxy, Service Awareness, GGSN 1, CheckPoint 

firewall). 

This test case is intended to show the differences in the RTT compared to UDP case, as 

well as to dissect RTT to portions belonging to different parts of the network, in order to 

provide delay statistics for testbed1. The NodeB has been modernized compared to D3.5 

measurements, having more processing power and smaller TTI in the UL.  

RTTs are expected to be smaller than for previous TCP cases in D3.5, for all traffic 

patterns, due to network upgrade.  

A.2.2 Measurement parameters 

 

All measurement parameters are the same as in Test case 3 of D3.5, the only change is 

for time distribution for phones 9 and 10. For emulated GPS Keep Alive messages, inter-

arrival time distribution should be Uniform (1,60)s, but since it lead to frequent 

application failures in past measurements, Uniform (1,25s) is applied (as in cases 7-11 of 

D3.5), since it was checked empirically that this was the widest range for which 

application worked without interruption.  

The parameters are shown in the following tables: 

 
Server: 89.216.116.166 
Port: 1234 

Table 16: Server IP address and port 
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Name 
Telephone 
No Application/Protocol Settings 

test1 0641069123 OA, UL, TCP Gauss (0,04121;0,004497)kB, Uniform(0,069;0,103)s 
test2 0641069116 TF, UL, TCP Gauss (0,07473;0,013085)kB, Uniform(0,031;0,042)s 

test3 0641069117 OA,DL, TCP Gauss (0,16836;0,08381)kB*, Uniform(0,041;0,047)s 
test4 0641069118 TF, DL, TCP Gauss (0,23511;0,07748)kB*, Uniform(0,039;0,046)s 
test5 0641069119 M2M, BR, UL, TCP Constant(1)kB, Uniform(0,1;0,5)s 
test6 0641069120 M2M, BR, DL, TCP Constant(1)kB, Uniform(0,1;0,5)s 
test7 0641069121 M2M, AP, UL, TCP Constant(1)kB, Uniform(0,025;0,1)s 
test8 0641069122 M2M, AP, DL, TCP Constant(1)kB, Uniform(0,999;1,001)s 

test9 0641069115 
M2M, TT(GPS Keep 
Alive), UL, TCP Constant(0,5)kB, Uniform(1;25)s** 

test10 0641069124 
M2M, TT(GPS Keep 
Alive), UL, TCP Constant(0,5)kB, Uniform(1;25)s** 

* Gaussian distribution was taken as an approximate, since LogNormal generated packets of around 1028 bytes all the time in Test 
Case 1. See deliverable D3.5 for explanation.  
** No possibility for Uniform(0,00977;1)kB packet size distribution, Constant was taken instead; Time distribution should be 
(1,60)s, but due to application failures in previous test cases, (1,25)s was taken instead, as an empirical limit for smooth operation. 

Table 17: Simulation parameters for TCP test case 

 

Test Case 14 was performed 10.27-12.00 on June 22nd, 2012. 

 

A.2.3 Measurement results 

 

Relevant notes on application behaviour are given in the following table. 

Name 
Telephone 
No 

Application 
/Protocol Settings 

From 
time 

To 
time Remark 

test1 0641069123 OA, UL, TCP 

Gauss 
(0,04121;0,004497)kB, 
Uniform(0,069;0,103)s 10:27 12:00   

test2 0641069116 TF, UL, TCP 

Gauss 
(0,07473;0,013085)kB, 
Uniform(0,031;0,042)s 10:27 12:00   

test3 0641069117 OA,DL, TCP 

Gauss 
(0,16836;0,08381)kB, 
Uniform(0,041;0,047)s 10:27 12:00 

Application failed at 
10:29,10:32, 
10:38,10:39,10:46,10:51,10:56, 
10:57,11:17,11:21,11:29,11:32, 
11:51,11:56 

test4 0641069118 TF, DL, TCP 

Gauss 
(0,23511;0,07748)kB, 
Uniform(0,039;0,046)s 10:27 12:00 

Application failed at 11:27, 
11:31. 

test5 0641069119 M2M, BR, UL, TCP 
Constant(1)kB, 
Uniform(0,1;0,5)s 10:27 12:00   

test6 0641069120 M2M, BR, DL, TCP 
Constant(1)kB, 
Uniform(0,1;0,5)s 10:27 12:00   

test7 0641069121 M2M, AP, UL, TCP Constant(1)kB, 10:27 12:00   
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Uniform(0,025;0,1)s 

test8 0641069122 M2M, AP, DL, TCP 
Constant(1)kB, 
Uniform(0,999;1,001)s 10:27 12:00   

test9 0641069115 

M2M, TT(GPS 
Keep Alive), UL, 
TCP 

Constant(0,5)kB, 
Uniform(1;25)s 10:27 12:00 

Application failed and 
restarted at 11:20. 

test10 0641069124 

M2M, TT(GPS 
Keep Alive), UL, 
TCP 

Constant(0,5)kB, 
Uniform(1;25)s 10:27 12:00 

Application failed at 11:17. 
Restarted at 11:21. Failed at 
11:30, restarted. 

Table 18: Notes on application behaviour for TCP test case 

 

A.2.3.2 TCP flow – phone, Gn interface and firewall 

 

In order to analyze the flow of TCP packets through subject interfaces more thoroughly, 

excerpts from Shark traces are given for the chosen phone i.e. traffic pattern – phone 

test9 is chosen, because of constant packet size, easy to follow, as well as because of 

large wait times resulting in large RTTs, distinguishing it along with test10 from other 

phones.  

Several packets exchanged between client at test9 and server are given in the following 

tables, seen by Shark application on the phone and Wireshark applications used to 

capture packets at Gn interface and the firewall. 

Same packets are marked with the same colour. Packets captured at the firewall are 

triplicated, as the same packet passes through the tracing point three times, which is 

interpreted by Wireshark as retransmissions, but eventually only one packet of the three 

exits to the backbone network. 
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Phone trace test9*: 

No. Time Source Destination Protocol Length 

The RTT to 

ACK the 

segment was Info 

353 10:43:03.038178 10.130.81.223 89.216.116.166 TCP 70   

40518 > search-agent [PSH, ACK] Seq=33025 Ack=1281 Win=5880 Len=4 TSval=163536 

TSecr=6668697 

354 10:43:04.926066 89.216.116.166 10.130.81.223 TCP 66 1,887888 

search-agent > 40518 [ACK] Seq=1281 Ack=33029 Win=16640 Len=0 TSval=6671308 

TSecr=163536 

355 10:43:04.926688 10.130.81.223 89.216.116.166 TCP 578   

40518 > search-agent [PSH, ACK] Seq=33029 Ack=1281 Win=5880 Len=512 TSval=163725 

TSecr=6671308 

356 10:43:05.075513 89.216.116.166 10.130.81.223 TCP 86 0,148825 

search-agent > 40518 [PSH, ACK] Seq=1281 Ack=33541 Win=16128 Len=20 TSval=6671324 

TSecr=163725 

357 10:43:05.076071 10.130.81.223 89.216.116.166 TCP 66 0,000558 

40518 > search-agent [ACK] Seq=33541 Ack=1301 Win=5880 Len=0 TSval=163740 

TSecr=6671324 

358 10:43:14.891318 10.130.81.223 89.216.116.166 TCP 70   

40518 > search-agent [PSH, ACK] Seq=33541 Ack=1301 Win=5880 Len=4 TSval=164721 

TSecr=6671324 

* Colour indicates individual packets at different tracing points. 

Table 19: Phone trace for phone test9, excerpt 

 

Gn trace test9**: 

No. Time Source Destination Protocol Length 

The RTT to 

ACK the 

segment was 

This is an ACK 

to the 

segment in 

frame Info 

6601 10:43:04.254811 10.130.81.223 89.216.116.166 

GTP 

<TCP> 106 26,567014 4983 

40518 > search-agent [PSH, ACK] Seq=5673 Ack=221 Win=2940 Len=4 

TSval=163536 TSecr=6668697 

6629 10:43:04.471333 89.216.116.166 10.130.81.223 

GTP 

<TCP> 102 0,216522 6601 

search-agent > 40518 [ACK] Seq=221 Ack=5677 Win=65 Len=0 

TSval=6671308 TSecr=163536 
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6630 10:43:04.471340 89.216.116.166 10.130.81.223 

GTP 

<TCP> 102    

search-agent > 40518 [ACK] Seq=221 Ack=5677 Win=65 Len=0 

TSval=6671308 TSecr=163536 

6645 10:43:04.613674 10.130.81.223 89.216.116.166 

GTP 

<TCP> 614    

40518 > search-agent [PSH, ACK] Seq=5677 Ack=221 Win=2940 Len=512 

TSval=163725 TSecr=6671308 

6646 10:43:04.626239 89.216.116.166 10.130.81.223 

GTP 

<TCP> 122 0,012565 6645 

[TCP Retransmission] search-agent > 40518 [PSH, ACK] Seq=221 Ack=6189 

Win=63 Len=20 TSval=6671324 TSecr=163725 

6647 10:43:04.626268 89.216.116.166 10.130.81.223 

GTP 

<TCP> 122    

[TCP Retransmission] search-agent > 40518 [PSH, ACK] Seq=221 Ack=6189 

Win=63 Len=20 TSval=6671324 TSecr=163725 

7552 10:43:15.652313 89.216.116.166 10.130.81.223 

GTP 

<TCP> 102    

[TCP ACKed lost segment] search-agent > 40518 [ACK] Seq=241 Ack=6193 

Win=63 Len=0 TSval=6672494 TSecr=164721 

7563 10:43:15.795232 89.216.116.166 10.130.81.223 

GTP 

<TCP> 122    

[TCP ACKed lost segment] search-agent > 40518 [PSH, ACK] Seq=241 

Ack=6705 Win=67 Len=20 TSval=6672508 TSecr=164910 

7599 10:43:16.114365 10.130.81.223 89.216.116.166 

GTP 

<TCP> 106 12,161088 6582 

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=6189 Ack=241 

Win=2940 Len=4 TSval=164721 TSecr=6671324 

**This trace is obtained by chronological merging of two traces from two branches of the Gn interface. 

Table 20: Gn trace for phone test9, excerpt 

 

 

FW trace test9***: 

No. Time Source Destination Protocol Length 

The RTT to 

ACK the 

segment was Info 

159350 10:00:50.307074 10.130.81.223 89.216.116.166 TCP 70   

40518 > search-agent [PSH, ACK] Seq=33025 Ack=1281 Win=5880 Len=4 TSval=163536 

TSecr=6668697 

159351 10:00:50.307081 10.130.81.223 89.216.116.166 TCP 70   

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=33025 Ack=1281 Win=5880 

Len=4 TSval=163536 TSecr=6668697 

159352 10:00:50.307086 10.130.81.223 89.216.116.166 TCP 70   

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=33025 Ack=1281 Win=5880 

Len=4 TSval=163536 TSecr=6668697 

159398 10:00:50.523587 89.216.116.166 10.130.81.223 TCP 66 0,216513 search-agent > 40518 [ACK] Seq=1281 Ack=33029 Win=16640 Len=0 TSval=6671308 
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TSecr=163536 

159399 10:00:50.523592 89.216.116.166 10.130.81.223 TCP 66   

[TCP Dup ACK 159398#1] search-agent > 40518 [ACK] Seq=1281 Ack=33029 Win=16640 

Len=0 TSval=6671308 TSecr=163536 

159400 10:00:50.523596 89.216.116.166 10.130.81.223 TCP 66   

[TCP Dup ACK 159398#2] search-agent > 40518 [ACK] Seq=1281 Ack=33029 Win=16640 

Len=0 TSval=6671308 TSecr=163536 

159434 10:00:50.665945 10.130.81.223 89.216.116.166 TCP 578   

40518 > search-agent [PSH, ACK] Seq=33029 Ack=1281 Win=5880 Len=512 TSval=163725 

TSecr=6671308 

159435 10:00:50.665952 10.130.81.223 89.216.116.166 TCP 578   

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=33029 Ack=1281 Win=5880 

Len=512 TSval=163725 TSecr=6671308 

159436 10:00:50.665958 10.130.81.223 89.216.116.166 TCP 578   

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=33029 Ack=1281 Win=5880 

Len=512 TSval=163725 TSecr=6671308 

159440 10:00:50.678488 89.216.116.166 10.130.81.223 TCP 86 0,012543 

search-agent > 40518 [PSH, ACK] Seq=1281 Ack=33541 Win=16128 Len=20 TSval=6671324 

TSecr=163725 

159441 10:00:50.678493 89.216.116.166 10.130.81.223 TCP 86   

[TCP Retransmission] search-agent > 40518 [PSH, ACK] Seq=1281 Ack=33541 Win=16128 

Len=20 TSval=6671324 TSecr=163725 

159442 10:00:50.678497 89.216.116.166 10.130.81.223 TCP 86   

[TCP Retransmission] search-agent > 40518 [PSH, ACK] Seq=1281 Ack=33541 Win=16128 

Len=20 TSval=6671324 TSecr=163725 

159458 10:00:50.745868 10.130.81.223 89.216.116.166 TCP 66 0,06738 

40518 > search-agent [ACK] Seq=33541 Ack=1301 Win=5880 Len=0 TSval=163740 

TSecr=6671324 

159459 10:00:50.745874 10.130.81.223 89.216.116.166 TCP 66   

[TCP Dup ACK 159458#1] 40518 > search-agent [ACK] Seq=33541 Ack=1301 Win=5880 

Len=0 TSval=163740 TSecr=6671324 

159460 10:00:50.745878 10.130.81.223 89.216.116.166 TCP 66   

[TCP Dup ACK 159458#2] 40518 > search-agent [ACK] Seq=33541 Ack=1301 Win=5880 

Len=0 TSval=163740 TSecr=6671324 

161474 10:01:02.166366 10.130.81.223 89.216.116.166 TCP 70   

40518 > search-agent [PSH, ACK] Seq=33541 Ack=1301 Win=5880 Len=4 TSval=164721 

TSecr=6671324 

161475 10:01:02.166375 10.130.81.223 89.216.116.166 TCP 70   

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=33541 Ack=1301 Win=5880 

Len=4 TSval=164721 TSecr=6671324 

161476 10:01:02.166380 10.130.81.223 89.216.116.166 TCP 70   

[TCP Retransmission] 40518 > search-agent [PSH, ACK] Seq=33541 Ack=1301 Win=5880 

Len=4 TSval=164721 TSecr=6671324 

*** Packets in FW trace are triplicated due to multiple passes through the tracing point, and are recognized by Wireshark as retransmissions. 

Table 21: Firewall trace for phone test9, excerpt 
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Looking at test9 phone trace, first we observe that after the initial TCP handshake 

procedure, and final client ACK, for each original packet of 512 bytes sent by the 

application, we see a 70B PSH,ACK packet from the client, ACKed with 66B packet 

from the server, then the 578B PSH,ACK packet containing the original (application) 

512B packet. Then follows the server’s 86B PSH,ACK response, followed by a 66B 

client ACK. This sequence is repeated for every packet sent by the application. 

Here, we distinguish several RTTs in the sequence. „First RTT“ recorded by 

Wireshark is the RTT to the receipt of server’s acknowledgement to the first 70B 

packet. In the phone trace table above we see that this RTT is 1.888s. „Second RTT“ 

of 0.149s in the phone trace table is for the server’s response to the 578B packet 

(main payload). The last RTT recorded in the sequence contains the application 

processing delay, since it is the time, recorded at the phone, between the receipt of 

server’s ACK and sending the client’s acknowledgement for the received ACK to the 

server. This last recorded RTT in the sequence should be ignored for the phone 

trace, since it represents delay within the phone, not the network delay. 

Looking at first two phone RTTs, we also see that the first RTT is much longer than 

the second one. This is, as explained in D3.5, due to network behaviour for long 

inter-arrival times between packets. In this case, the time between the last message 

exchanged between client and server (client ACK) for the previous packet and the 

first message for the current packet is around 24s – this exceeds the value of 

inactivity timer of the Channel Switching function in underlying WCDMA network 

plus round-trip time, so the UE goes into the IDLE state, and for sending the new 

packet it has to establish the RRC connection again. Going through the trace, we 

observe that for smaller inter-arrival times, this „first RTT“ is much smaller, since the 

UE maintains RRC connection. 

The RTTs recorded in the application report are in fact sum of these first two RTTs 

for each application packet, i.e. sequence of two TCP packets and two ACKs. The 

third RTT, as mentioned, is related to the phone and client application. 

The figure below (Figure A-1) depicts different RTTs recorded for a sequence of 

packets exchanged between client and server for one application packet. 
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For phone test9, we have the following statistics: 

  "First  RTT" "Second RTT" 

Average of The RTT to ACK the segment was (s) 1,5325 0,4395 

Max of The RTT to ACK the segment was (s) 6,4416 15,9085 

Min of The RTT to ACK the segment was (s) 0,2799 0,1371 

StdDev of The RTT to ACK the segment was (s) 0,8455 1,2074 

Table 22: Phone test9 RTT statistics by parts of TCP sequence 

Taking into account first and second RTTs all together (including the ACK in the TCP 

handshake), the statistics is as follows: 

  RTT 

Count of The RTT to ACK the segment was 373 

Average of The RTT to ACK the segment was (s) 0,9973 

Max of The RTT to ACK the segment was (s) 15,9085 

Min of The RTT to ACK the segment was (s) 0,1371 

StdDev of The RTT to ACK the segment was (s) 1,1909 

Table 23: Phone test9 RTT statistics for all packets together 

Time

Client Server

Phone
trace

RTT1

RTT2

RTT3

application
report RTT

pause between
packets

Time

70 B   PSH,ACK

578 B   PSH,ACK

66 B   ACK

66 B   ACK

86 B   PSH,ACK

 
Figure A-1: Different RTTs calculated in the phone trace, for a sequence of 

packets corresponding to one application generated packet 
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If we do the statistics on sums of first and second RTTs, i.e. on overall RTT for the 

application packet, excluding the ACK in the TCP handshake, we get the following: 

„Overall“ RTT statistics, Shark trace for test9 

Count of overall (sum) RTT 186 

Average of overall (sum) RTT (s) 1,9898 

Max of overall (sum) RTT (s) 17,9195 

Min of overall (sum) RTT (s) 0,4180 

StdDev of overall (sum) RTT (s) 1,4066 

Table 24: Phone test9 statistics for overall (sum) RTT of the TCP sequence 

These values correspond to the values recorded by the first application report (until 

11:16), including the exact number of packets: 

test9 RTT statistics from application report, until 11:16 

Count of RTT (ms): 186 

Average of RTT (ms): 1991,04 

Max of RTT (ms): 17921 

Min of RTT (ms): 419 

StdDev of RTT (ms): 1406,50 

Table 25: Phone test9 RTT statistics obtained from application report 

Shark trace does not go further, while the application created another report after 

re-establishing the TCP connection (application failed at 11:20, and was restarted). 

Maximum RTT recorded (15.9s) is due to several retransmissions of the packet (with 

main payload – 578B): there were 2 retransmissions after the original packet, and 

the RTT is calculated relatively to the departure of the first, original packet. 

It is interesting to see the statistics for client ACKs as well – they are a measure of 

application processing delay (time between server’s PSH, ACK arriving to the phone 

and client’s ACK leaving the phone): 

  Client ACK RTT (phone) 

Average of The RTT to ACK the segment was (s) 0,00063 

Max of The RTT to ACK the segment was (s) 0,00187 

Min of The RTT to ACK the segment was (s) 0,00027 

StdDev of The RTT to ACK the segment was (s) 0,00024 

 

We see that the application processing delay is negligible (<2ms). 

 

Looking at the Gn trace, we first observe that packet lengths are somewhat bigger, 

as on this interface we have TCP encapsulated into GTP i.e. few more headers 
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added (GTP, UDP, IP), 36 bytes long. Second, sequence and ACK numbers are 

altered (but not the timestamps TSval and TSecr). 

In lines 6601 and 7599 we see that RTT is calculated for PSH,ACK packets going 

from the client to the server, and these are the only two instances occurring in test9 

Gn trace. These RTTs should be ignored, as they are calculated in the wrong „place“, 

due to the loss of client ACK messages preceding these two client PSH,ACK 

messages. Instead of calculating RTT for client ACK, being lost, Wireshark calculated 

RTT for the succeeding PSH,ACK message having same Seq, Ack and TSecr numbers 

as expected ACK. Since the client ACK and the succeeding PSH,ACK message belong 

to two sequences of packets, there’s a pause between them (wait time in the 

application between generation of packets), which is consequently included into the 

false RTT. 

For the Gn interface, it is important to note that the Gn trace is obtained by 

chronologically merging two traces captured at two branches of the Gn interface 

(capturing was done on switches of these two branches). Laptops used for capturing 

were not synchronized. We see retransmissions that are not originated from the 

phone (lines 6630, 6647), ACKs to lost segments, server’s PSH,ACK messages 

interpreted as retransmission (line 6646). All this will be further analyzed in the 

section with Gn trace statistics.  Also, one should have in mind that these traces last 

only up to 5 minutes, unlike phone and FW traces. 

At this interface, the client ACK RTT may be of interest. As explained above, a 

sequence of packets exchanged for every application packet has three RTTs – two 

belong to server’s ACKs acknowledging client’s packets, while the last belongs to 

client’s ACK to server’s PSH,ACK message. This „third“ ACK was ignored for phone 

trace, containing processing delay in the phone, but at the Gn interface, this ACK 

contains two-way delay in the mobile network, from the Gn interface to the phone 

and back, including the processing delay in the phone. So, this RTT tells us about 

the mobile „pre-Gn“ network, including the access network delay, delay on the IuB, 

in the RNC, and on the way to the GGSN (RNC, SGSN and GGSN are physically 

close); while the other two tell us about the delay from the Gn interface to the 

server and back. 

The firewall (FW) trace follows the phone trace, only packets are triplicated, as the 

FW „bounces“ them through the tracing point three times. 
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Although we just saw that generated TCP packets do not follow the size/time 

distributions exactly, valid conclusions concerning latency statistics, as well as 

network behaviour, may be drawn, which will be shown in subsequent sections. 

 

A.2.3.3 Phone RTT 

A.2.3.3.1 RTT measured by TGen application itself (.txt reports) 

 

The delay statistics calculated from application reports is given in the following 

table. 

  test1 test2 test3 test4 test5 
Count of RTT (ms) 8787 10864 9836 10295 6155 
Average of RTT (ms) 501.00 428.14 437.34 442.83 558.89 
Max of RTT (ms) 3,509.00 4,513.00 8,922.00 3,284.00 9,088.00 
Min of RTT (ms) 429.00 351.00 351.00 357.00 466.00 
StdDev of RTT (ms) 92.35 192.86 233.04 154.56 343.17 
First packet RTT 3,509.00 418.00 379.00 425.00 511.00 

 

  test6 test7 test8 test9 test10 
Count of RTT (ms) 6303 8452 3425 336 326 
Average of RTT (ms) 534.35 548.63 577.30 1,971.15 1,914.85 
Max of RTT (ms) 6,984.00 5,606.00 7,595.00 17,921.00 7,319.00 
Min of RTT (ms) 462.00 469.00 476.00 419.00 420.00 
StdDev of RTT (ms) 168.26 249.79 363.67 1,112.66 776.10 
First packet RTT 6,984.00 4,533.00 2,267.00 443.00 1,275.00 

Table 26: RTT statistics taken from application reports 

 

As in previous test cases, phones with sporadic traffic (test9 and test10) have large 

RTTs (1.9-2.0s in average), while other phones have average RTTs spanning from 

428ms to 577ms. These RTTs, recorded by application, are not the image of network 

RTT, i.e. they do not represent the network response to a single packet sent by 

some time/size statistical distribution. They represent the overall RTT, sum of two 

RTTs for 4 TCP packets exchanged between client and server for one application 

packet of nominal size (according to packet size distribution). 

In is also interesting to see RTTs recorded for first packets in application reports, for 

all phones – they differ and are not related to traffic distributions, but are of rather 
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random nature, depending on current conditions and the ability of radio access 

network to assign resources in the very moment.  

For purposes of comparison, RTTs obtained from application reports in Test Case 3 

(TCP, D3.5) are given below: 

 test1 test2 test3 test4 test5 
Average of RTT (ms) 651.30 595.91 776.35 833.50 985.63 
  test6 test7 test8 test9 test10 
Average of RTT (ms) 788.72 863.19 871.38 1,758.76 1,897.47 

Table 27: Average RTTs from application reports in Test case 3 

 

We see that the upgrade of NodeB led to significantly lower RTTs for all traffic 

patterns except those of phones 9 and 10.  

 

A.2.3.3.2 RTT measured by Shark application on the phone 

 

The statistics taken from Shark traces captured on phones is given below: 

  Traffic Phone RTT 

Name Settings 
Application/ 

Protocol 

Avg. 
packet 
size 
(bytes) 

Average 
time 
between 
packets 
(s) 

Max 
throughput 
(kbps) 

Average 
phone 
RTT 
first 
packet in 
sequence 

Average 
phone RTT 
second 
packet in 
sequence 
(main 
payload) 

Average 
phone RTT 
(all 
packets) 

Average 
phone 
client ACK 
(processing 
delay) RTT  

test1 

Gauss 
(0,04121;0,004497)kB, 
Uniform(0,069;0,103)s OA, UL, TCP 40 0.086 6.68 0.3486 0.1489 0.2489 0.0012 

test2 

Gauss 
(0,07473;0,013085)kB, 
Uniform(0,031;0,042)s TF, UL, TCP 75 0.0365 33.27 0.3117 0.1138 0.2129 0.0010 

test3 

Gauss 
(0,16836;0,08381)kB, 
Uniform(0,041;0,047)s OA,DL, TCP 170 0.044 94.32 0.3091 0.1243 0.2184 0.0011 

test4 

Gauss 
(0,23511;0,07748)kB, 
Uniform(0,039;0,046)s TF, DL, TCP 240 0.0425 117.39 0.3100 0.1300 0.2203 0.0011 

test5 
Constant(1)kB, 
Uniform(0,1;0,5)s 

M2M, BR, 
UL, TCP 1024 0.3 80.00 0.3252 0.2308 0.2784 0.0012 

test6 
Constant(1)kB, 
Uniform(0,1;0,5)s 

M2M, BR, 
DL, TCP 1024 0.3 80.00 0.3077 0.2220 0.2653 0.0012 

test7 
Constant(1)kB, 
Uniform(0,025;0,1)s 

M2M, AP, 
UL, TCP 1024 0.0625 320.00 0.3169 0.2287 0.2731 0.0014 

test8 
Constant(1)kB, 
Uniform(0,999;1,001)s 

M2M, AP, 
DL, TCP 1024 1 8.01 0.3427 0.2313 0.2873 0.0011 

test9 
Constant(0,5)kB, 
Uniform(1;25)s 

M2M, 
TT(GPS Keep 
Alive), UL, 512 13 4.00 1.5325 0.4395 0.9973 0.0006 
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TCP 

test10 
Constant(0,5)kB, 
Uniform(1;25)s 

M2M, 
TT(GPS Keep 
Alive), UL, 
TCP 512 13 4.00 1.5562 0.3558 0.9713 0.0008 

Table 28: TCP phone RTT statistics from Shark traces 

 

Average phone RTT for one application packet (average by sums of two RTTs), as 

shown in previous section, is up to 2ms smaller than the RTT recorded by 

application, so this column is omitted. 

We notice that the average RTT for first packet in sequence is larger than the RTT 

for the second packet in sequence. We may also notice that in the group of phones 

with rather „fast“ traffic (test1-test8), largest RTTs for second packet (main payload) 

are recorded for phones test5-test8 whose generated packets are the largest 

(marked blue in Table 22). Packet size, as suspected, also influences the RTT (bigger 

packets have larger RTTs), but not as much as the increased wait time between 

packets.  

Concerning high average 1st TCP packet RTTs for phones test1-test7 and even test8, 

that have rather small inter-arrival time, explanation does not lie in packet size, as it 

is rather small (70B). Also, looking at TCP flow just as a series of packets and some 

times between them, no conclusion can be made, as the generated inter-arrival time 

(time between two application packets, i.e. last TCP packet in one sequence and the 

first in successive sequence) is sometimes bigger, sometimes smaller than the time 

(RTT) between two TCP packets in a sequence. Also, if we process the results from 

Test cases 7-11 of D3.5 in the same way, we see that they also show large RTTs for 

1st TCP packets, meaning this occurs regardless of core network features (different 

APNs). So, the place to look is some server processing for the first TCP packet, 

some wake-up time of the server, which will be further validated through Gn and 

firewall trace analysis, and explored in Section A.2.3.7.  

The influence of accessing the network for patterns with large inter-arrival times 

may also be seen comparing the traces of test9 and test10 with traces from Cases 

7-11 – network modernization led to smaller RTTs for 1st TCP packet of phones with 

large inter-arrival times. 

We may compare the TCP results, from Shark traces, with average RTTs for the UDP 

case, given in A.1.3.1. UDP results are given again for comparison reasons: 
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  test1 test2 test3 test4 test5 
Average of UDP RTT (ms) 118,08 121,37 131,44 139,07 256,63 
  test6 test7 test8 test9 test10 
Average of UDP RTT (ms) 279,86 236,78 348,32 1716,55 1601,81 

Table 29: UDP phone RTT 

 

First one should have in mind that the first TCP packet is only 70B long, and for 

large inter-arrival times, it takes on itself the influence of accessing the network. 

The second bears the influence of generated packet length and current network 

conditions. In UDP, the only packet sent bears all impacts. 

Second, UDP traces had to be processed manually, as explained in A.1.3.1, due to 

“fake ACK” ambiguous implementation, and the taken trace excerpt does not take 

into account long delays. 

Comparing the TCP and UDP RTTs, the following conclusions are drawn: 

• First TCP packet vs. UDP: UDP results are much smaller than those for first 

TCP packet (70B long), except for phones test9 and test10. This means that 

the 1st TCP packet suffers some impact that UDP packet does not. The reason 

should be sought in server processing for TCP case, as indicated earlier in 

this section. For phones test 9 and test10, TCP RTT is smaller, as here the 

influence of long packet accessing the network in UDP case dominates over 

small packet access plus server processing delay in TCP case. 

• Main payload TCP packet vs. UDP: For first 8 phones RTTs are of the same 

order, TCP RTTs being slightly smaller, and even pronouncedly smaller for 

phones test5-test8 with larger packets. The reason for this behaviour, TCP 

and UDP packets being similar in size, may lie in inter-arrival time, the access 

network, or server processing for UDP packets. Inter-arrival time for 2nd TCP 

packet is the last RTT, as the packet is sent immediately after the ACK for the 

1st is received, while for UDP packets wait time is the last “RTT” plus nominal 

wait time (see A.1.3.1). For phones test9 and test10, TCP RTTs are about 4 

times smaller, as expected due to access procedure UDP packets have to 

pass.    

 

A.2.3.4 RTT measured by Wireshark on the Gn interface (Gn RTT) 
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At this point, it is first important to have in mind that the Gn trace comprises only 

about 3-5 minutes of transmission, due to the large throughput at the interface, 

even with filtering, and the limitations of capturing methods used. As mentioned 

above, Gn trace is obtained from two branches of the Gn interface, with laptops 

that were not synchronized, by chronological merging of two traces (each 

containing several files). 

Further, trace from branch one lasts 5 minutes, and from branch two 3 minutes, 

with no time synchronization:  

Switch 1 trace: 10:40:21-10:45:00 
Switch 2 trace: 10:42:51-10:45:34 

Table 30: Duration of taken Gn traces 

 

Taking into account retransmissions that might occur between the GGSN and the 

RNC in the user plane (direct tunnel), buffering at both sides, as well as ordering of 

packets, possible drops of out-of-order packets etc, occurring at the GGSN due to 

Service Aware functionalities, these traces are not so straightforward for analysis. 

Also, computing abilities of laptops used may lead to packet drop i.e. disability to 

record a packet as the new one arrives too fast. 

For instance, for phone test9 we first have a lot of server’s PSH,ACK and ACK 

messages, covering the time span of 3 minutes, acknowledging packets that seem 

to never have passed (nor they are recorded further in the trace). Then there is a 

part with all packets present, but with some non-causal acknowledgements (first 

there is an ACK recorded, after comes the packet to which that ACK belongs, then 

again the ACK) – obviously, client’s packet must have passed or we wouldn’t have 

server’s response recorded. 

The situation is similar with all phones, in some traces we have only client’s packets 

recorded in the end, without server’s response-messages, but in the phone trace we 

see that these have arrived to the phone. 

As an illustration, message flow on the Gn interface follows. If we mark 5 TCP 

messages exchanged for 1 application packet as 1-1, 1-2, 1-3, 1-4 and 1-5, for the 

first application packet, and similarly 2-1..2-5 for the second etc, and take an 

excerpt from the Gn trace and corresponding messages from the phone trace, we 

get the following: 
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Phone trace 

No. Time Source Destination Protocol Length 

The RTT to 
ACK the 
segment 
was 

Packet-
message 
No. Meaning 

373 10:44:07.171453 10.130.81.223 89.216.116.166 TCP 70 
 

1-1 
 374 10:44:09.104961 89.216.116.166 10.130.81.223 TCP 66 1,933508 1-2 ack to 1-1 

375 10:44:09.105454 10.130.81.223 89.216.116.166 TCP 578 
 

1-3 
 376 10:44:09.246258 89.216.116.166 10.130.81.223 TCP 86 0,140804 1-4 ack to 1-3 

377 10:44:09.246889 10.130.81.223 89.216.116.166 TCP 66 0,000631 1-5 cl.ack to 1-4 

378 10:44:30.611513 10.130.81.223 89.216.116.166 TCP 70 
 

2-1 
 379 10:44:32.632058 89.216.116.166 10.130.81.223 TCP 66 2,020545 2-2 
 380 10:44:32.632741 10.130.81.223 89.216.116.166 TCP 578 

 
2-3 

 381 10:44:32.781653 89.216.116.166 10.130.81.223 TCP 86 0,148912 2-4 
 382 10:44:32.782364 10.130.81.223 89.216.116.166 TCP 66 0,000711 2-5 
 383 10:44:50.711871 10.130.81.223 89.216.116.166 TCP 70 

 
3-1 

 384 10:44:52.635451 89.216.116.166 10.130.81.223 TCP 66 1,92358 3-2 
 385 10:44:52.635976 10.130.81.223 89.216.116.166 TCP 578 

 
3-3 

 386 10:44:52.836603 89.216.116.166 10.130.81.223 TCP 86 0,200627 3-4 
 387 10:44:52.838364 10.130.81.223 89.216.116.166 TCP 66 0,001761 3-5 
 388 10:45:08.648419 10.130.81.223 89.216.116.166 TCP 70 

 
4-1 

 
389 10:45:13.423121 10.130.81.223 89.216.116.166 TCP 70 

 
4-1re 

4-1 
retransmitted 

390 10:45:15.089976 89.216.116.166 10.130.81.223 TCP 66 6,441557 4-2 
 391 10:45:15.090824 10.130.81.223 89.216.116.166 TCP 578 

 
4-3 

 392 10:45:15.746821 89.216.116.166 10.130.81.223 TCP 86 0,655997 4-4 
 393 10:45:15.747349 10.130.81.223 89.216.116.166 TCP 66 0,000528 4-5 
 

Table 31: Message flow in phone trace, example 

 

 

Gn trace 

No. Time Source Destination Protocol Length 

The RTT 
to ACK 
the 
segment 
was 

Packet-
message 
No. 

Interpreted 
by 
Wireshark 
as Meaning 

11855 10:44:07.982929 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
1-2 

ack to lost 
segment 

 
11865 10:44:08.125547 89.216.116.166 10.130.81.223 

GTP 
<TCP> 122 

 
1-4 

ack to lost 
segment 

 
11890 10:44:08.440116 10.130.81.223 89.216.116.166 

GTP 
<TCP> 106 

 
1-1 re 

 
11906 10:44:08.654951 89.216.116.166 10.130.81.223 

GTP 
<TCP> 102 0.2148 1-2 ack to 1-1   

11907 10:44:08.654957 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
1-2 

 

duplicate ack 
to 1-1 

11926 10:44:08.779399 10.130.81.223 89.216.116.166 
GTP 
<TCP> 614 

 
1-3 re 
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11938 10:44:08.858999 10.130.81.223 89.216.116.166 
GTP 
<TCP> 102 0.7335 1-5 ack to 1-4   

13765 10:44:31.503602 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
2-2 

ack to lost 
segment 

 
13783 10:44:31.658890 89.216.116.166 10.130.81.223 

GTP 
<TCP> 122 

 
2-4 

ack to lost 
segment 

 
13803 10:44:31.954486 10.130.81.223 89.216.116.166 

GTP 
<TCP> 106 

 
2-1 re 

 
13821 10:44:32.175137 89.216.116.166 10.130.81.223 

GTP 
<TCP> 102 0.2207 2-2 ack to 2-1   

13822 10:44:32.175141 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
2-2 

 

duplicate ack 
to 2-1 

13839 10:44:32.313296 10.130.81.223 89.216.116.166 
GTP 
<TCP> 614 

 
2-3 re 

 
13847 10:44:32.392942 10.130.81.223 89.216.116.166 

GTP 
<TCP> 102 0.7341 2-5 ack to 2-4   

15366 10:44:51.502930 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
3-2 

ack to lost 
segment 

 
15375 10:44:51.693472 89.216.116.166 10.130.81.223 

GTP 
<TCP> 122 

 
3-4 

ack to lost 
segment 

 
15395 10:44:51.948208 10.130.81.223 89.216.116.166 

GTP 
<TCP> 106 

 
3-1 re 

 
15416 10:44:52.174208 89.216.116.166 10.130.81.223 

GTP 
<TCP> 102 0.2260 3-2 ack to 3-1   

15417 10:44:52.174213 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
3-2 

 

duplicate ack 
to 3-1 

15428 10:44:52.346516 10.130.81.223 89.216.116.166 
GTP 
<TCP> 614 

 
3-3 re 

 
15430 10:44:52.446294 10.130.81.223 89.216.116.166 

GTP 
<TCP> 102 0.7528 3-5 ack to 3-4   

16505 10:45:09.934647 10.130.81.223 89.216.116.166 
GTP 
<TCP> 106 

 
4-1 

  
16622 10:45:13.032516 10.130.81.223 89.216.116.166 

GTP 
<TCP> 106 

 
4-1re 

 

retransmission 
from phone 

16634 10:45:13.241017 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 3.3064 4-2 

ack to 4-
1re   

16635 10:45:13.241022 89.216.116.166 10.130.81.223 
GTP 
<TCP> 102 

 
4-2 

duplicate 
ack 

 
16712 10:45:15.186744 10.130.81.223 89.216.116.166 

GTP 
<TCP> 614 

 
4-3 

  
16713 10:45:15.206761 89.216.116.166 10.130.81.223 

GTP 
<TCP> 122 0.0200 4-4 ack to 4-3   

16714 10:45:15.206770 89.216.116.166 10.130.81.223 
GTP 
<TCP> 122 

 
4-4 re 

 
16725 10:45:15.366161 10.130.81.223 89.216.116.166 

GTP 
<TCP> 102 0.1594 4-5     

Table 32: Message flow in Gn trace, example 

 

On the firewall, the message flow is the same as on the phone. 

We see from the tables above that at the Gn first we see the server’s ACK to an 

unseen message, after that passes the original message, and then we have the 

server’s ACK repeated, twice.  



LOLA Project Nº 248993 WP5 
Validation Results for WP4 

Algorithms on Testbed 1 V1.0 

 

 
 Achieving Low-Latency in Wireless Communications Page 82 of 96 

The explanation for non-causality may be found in the method of capturing. 

Analyzing the traces from two branches of the Gn interface, we notice that for 

majority of phones, packets from one phone went over both branches of the Gn. 

This was not the case in previous test cases, where normally we had ALL the traffic 

from several phones on one branch, and all the traffic from the other phones on 

the second branch. In order to obtain the full Gn trace for one phone, we merge 

two traces chronologically, and due to lack of time synchronization during capture - 

we get non-causal packets.  

Some packets interpreted as „retransmissions“ may also be the result of this traffic 

flow over both Gn branches for the same phone. The same packet may be traced on 

both branches – these are the interpreted „retransmissions“. Plus, we have true 

retransmissions occurring over one branch. Then, packets that seem never to have 

passed, probably passed before the capture on a corresponding branch – have in 

mind that 5 minutes trace from one branch and 3 minutes trace from the other do 

not overlap completely, not only according to start and stop times from two traces, 

but also because of the offset between two referent clocks.     

Therefore, the overall (merged traces) statistics taken from Gn traces is not valid for 

calculating average RTT. Parts of traces for individual phones may be taken (if 

possible – we only have few minutes of trace), with normal flow and correctly 

interpreted packets, to draw some valid statistics. 

By analyzing the separate traces from two branches, we may describe them as 

follows, in order to decide which statistics to take: 

Name Switch 1 trace Switch 2 trace 

Result for traces 
merged 
chronologically 

Statistics should be 
taken for 

test1 Only server messages Mixed messages May be used Switch 2 trace 

test2 Only client messages Only server messages Invalid. - 

test3 Only client messages Only server messages Invalid. - 

test4 Only server messages Mixed messages May be used Switch 2 trace 

test5 Only server messages Mixed messages May be used Switch 2 trace 

test6 Only server messages Mixed messages May be used Switch 2 trace 

test7 Whole trace. - To be used. 
Switch 1 trace 
(whole) 

test8 Only server messages Mixed messages May be used Switch 2 trace 

test9 Only server messages Mixed messages May be used Switch 2 trace 

test10 Only server messages Mixed messages May be used Switch 2 trace 

Table 33: Phone traffic occurring at different Gn branches 
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Then, the statistics for the Gn interface RTT is as follows: 

 

Traffic Gn RTT - statistics taken according to upper table 

Name Settings 

Avg.pac
ket size 
(bytes) 

Average 
time 
between 
packets 
(s) 

Max 
throughp
ut (kbps) 

Average Gn 
RTT 
first packet 
in 
sequence 

Average Gn 
RTT 
second 
packet in 
sequence 
(main 
payload) 

Average 
Gn RTT 
(all 
packets) 

Average Gn 
RTT for 1 
application 
packet 

Average 
Gn client 
ACK (Gn 
to phone 
and 
back) 
RTT  

test1 

Gauss 
(0,04121;0,004497)kB, 
Uniform(0,069;0,103)s 40 0.086 6.68 0.2318 0.0269 0.1298 0.2578 0.1284 

test2 

Gauss 
(0,07473;0,013085)kB, 
Uniform(0,031;0,042)s 75 0.0365 33.27 - - - - - 

test3 

Gauss 
(0,16836;0,08381)kB, 
Uniform(0,041;0,047)s 170 0.044 94.32 - - - - - 

test4 

Gauss 
(0,23511;0,07748)kB, 
Uniform(0,039;0,046)s 240 0.0425 117.39 0.2357 0.0291 0.1305 0.2607 0.0749 

test5 
Constant(1)kB, 
Uniform(0,1;0,5)s 1024 0.3 80.00 0.2212 0.0297 0.1266 0.2465 0.0729 

test6 
Constant(1)kB, 
Uniform(0,1;0,5)s 1024 0.3 80.00 0.2384 0.0276 0.1302 0.2647 0.0731 

test7 
Constant(1)kB, 
Uniform(0,025;0,1)s 1024 0.0625 320.00 0.2423 0.0267 0.1329 0.2661 0.0798 

test8 
Constant(1)kB, 
Uniform(0,999;1,001)s 1024 1 8.01 0.2461 0.0327 0.1381 0.2690 0.0726 

test9* 
Constant(0,5)kB, 
Uniform(1;25)s 512 13 4.00 0.6043* 0.0183* 0.3789* 0.8529* 0.1051 

test10 
Constant(0,5)kB, 
Uniform(1;25)s 512 13 4.00 0.2213 0.0225 0.1219 0.2205 0.0811 

*For phone test9 we have just a few packet sequences recorded properly. Average RTTs are larger due to one 
retransmission of first packet with 3.3s RTT – without it, for instance, the average RTT for the 1st packet would be 0.218s, 
and for one application packet would be 0.2366s i.e. of the order of other phones’ RTTs. 

Table 34: TCP Gn interface RTT statistics from Shark traces 

 

Again we see large RTT for first packets in sequence, and small RTTs for the second, 

with main payload, which supports the conclusion about significant server 

processing delay for the 1st TCP packet. Average RTTs for the 1st packet are of the 

same order, meaning there is no selectivity in the core and the backbone 

concerning traffic patterns. The same is with statistics for 2nd TCP packets. 
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Average client ACK RTTs suggest that the “backward” delay, to the phone and back, 

is less than or around 100ms. 

 

A.2.3.5 RTT measured by Wireshark on the firewall (FW RTT) 

 

The statistics for the RTT measured at the firewall is given in the following table: 

 

  Traffic FW RTT 

Name 

Avg. 
packet 
size 
(bytes) 

Average 
time 
between 
packets 
(s) 

Max 
throughput 
(kbps) 

Average FW 
RTT 
first packet 
in sequence 

Average FW 
RTT 
second packet 
in sequence 
(main payload) 

Average 
FW RTT (all 
packets) 

Average FW 
RTT for 1 
application 
packet* 

Average FW 
client ACK (FW 
to phone and 
back) RTT  

test1 40 0.086 6.68 0.2270 0.0238 0.1252 0.2500 0.1251 

test2 75 0.0365 33.27 0.2267 0.0224 0.1083 0.2485 0.0764 

test3 170 0.044 94.32 0.2252 0.0232 0.1237 0.2480 0.0782 

test4 240 0.0425 117.39 0.2270 0.0228 0.1246 0.2490 0.0749 

test5 1024 0.3 80.00 0.2257 0.0250 0.1243 0.2498 0.0815 

test6 1024 0.3 80.00 0.2267 0.0239 0.1250 0.2498 0.0750 

test7 1024 0.0625 320.00 0.2277 0.0234 0.1247 0.2500 0.0799 

test8 1024 1 8.01 0.2279 0.0236 0.1238 0.2511 0.0826 

test9 512 13 4.00 0.2355 0.1044** 0.1693 0.3393** 0.0821 

test10 512 13 4.00  - -  -  -  - 
* This is the average value for the sums of RTTs for the first and second TCP packet sent for one application packet. 
** As all values include retransmissions, in case of phone test9 large average RTT is due to a case of 3 retransmissions having 15s RTT – 
without this instance, the average FW RTT for the 2nd packet would be 0.0197s, and for the application packet would be 0.2554s, i.e. 
similar to other phones.  

Table 35: TCP firewall RTT statistics from Shark traces 

 

For capturing on the firewall, filtering by phone IP addresses was applied. Phone 

test10 got one IP address in the beginning of measurements, by which the filter was 

applied, but later was rebooted and got another IP address – this is the reason why 

we do not have the FW trace for test10. 
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Looking at maximum RTTs, large values (1s and more, up to 15s) are due to 

retransmissions, but these values occur in several instances, i.e. they do not 

influence much the average RTT. 

Also, we do not notice any increase in the FW RTT for the „second“ TCP packet, 

main payload, for phones with large packets, test5-test8, like we did for phone RTTs 

– the size of the packet does not influence the RTT in the backbone. 

Again, we see that the average RTTs for the 1st TCP packet are around 200ms larger 

than those for the 2nd TCP packet, which again implies some server processing 

delay. RTTs for the 1st packet are around 230ms, and for the 2nd around 25ms, again 

with no selectivity concerning traffic pattern. 

It is also interesting to look at duplicate ACKs – messages of 78B sent by server as 

a response to a retransmission from the client. The statistics for server’s „78B“ 

messages, i.e. server’s ACKs to retransmitted packets, is as follows: 

78B server's ack to 
retransmission test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 
FW RTT (s)  0.0208 0.0183 0.0259 0.0191 0.0233 0.0438 0.0242 0.0214 0.0526 - 

Table 36: Delay statistics for server’s ACKs to retransmitted packets 

 

Although we have a small sample for these messages, again we see that the RTT 

from the firewall is small, here between 18 and 52ms.  
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A.2.3.6 Comparison of RTT statistics at different points (phone, Gn interface, FW) 

 

  

 
Phone RTT 

Gn RTT   
FW RTT 

Name 

Average 
phone 
RTT 
first 
packet in 
sequence 

Average 
phone 
RTT 
second 
packet in 
sequence 
(main 
payload) 

Average 
phone 
RTT (all 
packets) 

Average 
phone 
client ACK 
(processing 
delay) RTT  

Average 
Gn RTT 

first 
packet in 
sequence 

Average 
Gn RTT 
second 

packet in 
sequence 

(main 
payload) 

Average 
Gn RTT 

(all 
packets) 

Average Gn 
RTT for 1 

application 
packet 

Average Gn 
client ACK (Gn 
to phone and 

back) RTT 

Average 
FW RTT 
first 
packet in 
sequence 

Average 
FW RTT 
second 
packet in 
sequence 
(main 
payload) 

Average 
FW RTT (all 
packets) 

Average 
FW RTT for 
1 
application 
packet* 

Average FW 
client ACK 
(FW to 
phone and 
back) RTT  

test1 0.3486 0.1489 0.2489 0.0012 0.2318 0.0269 0.1298 0.2578 0.1284 0.2270 0.0238 0.1252 0.2500 0.1251 

test2 0.3117 0.1138 0.2129 0.0010 - - - - - 0.2267 0.0224 0.1083 0.2485 0.0764 

test3 0.3091 0.1243 0.2184 0.0011 - - - - - 0.2252 0.0232 0.1237 0.2480 0.0782 

test4 0.3100 0.1300 0.2203 0.0011 0.2357 0.0291 0.1305 0.2607 0.0749 0.2270 0.0228 0.1246 0.2490 0.0749 

test5 0.3252 0.2308 0.2784 0.0012 0.2212 0.0297 0.1266 0.2465 0.0729 0.2257 0.0250 0.1243 0.2498 0.0815 

test6 0.3077 0.2220 0.2653 0.0012 0.2384 0.0276 0.1302 0.2647 0.0731 0.2267 0.0239 0.1250 0.2498 0.0750 

test7 0.3169 0.2287 0.2731 0.0014 0.2423 0.0267 0.1329 0.2661 0.0798 0.2277 0.0234 0.1247 0.2500 0.0799 

test8 0.3427 0.2313 0.2873 0.0011 0.2461 0.0327 0.1381 0.2690 0.0726 0.2279 0.0236 0.1238 0.2511 0.0826 

test9* 1.5325 0.4395 0.9973 0.0006 0.6043 0.0183 0.3789 0.8529 0.1051 0.2355 0.1044 0.1693 0.3393 0.0821 

test10 1.5562 0.3558 0.9713 0.0008 0.2213 0.0225 0.1219 0.2205 0.0811  - -  -  -  - 



LOLA Project Nº 248993 WP5 
Validation Results for WP4 

Algorithms on Testbed 1 V1.0 

 

 
 Achieving Low-Latency in Wireless Communications Page 87 of 96 

*For phone test9 we have just a few packet sequences recorded properly for the Gn interface, and one instance of 1st packet retransmissions influencing the average values. For the FW trace, 
large average RTT is due to a case of 3 retransmissions having 15s RTT – without this instance, the average FW RTT for the application packet would be 0.2554s, i.e. similar to other phones.  

Table 37: Comparison of RTT statistics at different points
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Another view of these results, for comparing purposes, is to align specific RTTs (for first 

packet in sequence, second, etc.) by tracing points. 

Name 

Average RTT for 
first packet in sequence 

Phone Gn FW 

test1 0.3486 0.2318 0.2270 

test2 0.3117 - 0.2267 

test3 0.3091 - 0.2252 

test4 0.3100 0.2357 0.2270 

test5 0.3252 0.2212 0.2257 

test6 0.3077 0.2384 0.2267 

test7 0.3169 0.2423 0.2277 

test8 0.3427 0.2461 0.2279 

test9 1.5325 0.6043 0.2355 

test10 1.5562 0.2213 - 

Table 38: Average RTT for 1st TCP packet in sequence, at different points 

 

For the first packet in sequence, we see that at the FW we already have around 230ms 

generated delay, regardless of the type of traffic. As mentioned before, in the section 

about the FW trace, analysis of other messages (second packet, „78B“ messages) leads us 

to a conclusion that the backbone itself generates around 20-50ms delay, while the rest 

may be attributed to server processing of the first packet in the sequence of TCP packets 

exchanged for one application packet. 

On the Gn interface, we notice that the delay is similar (for some phones somewhat less 

than at FW, but that’s because of small statistical sample at the Gn). Only for phone test9 

we have larger delay in the core, but as explained before, this is because of one 

retransmission of the first packet with 3.3s RTT (and there are just 7 sequences in the 

sample). 

Finally, looking at phone values, we see that the access part with the RNC generated 

around 100ms RTT, except for phones test9 and test10, where the access generated more 

than a second RTT. As explained before, this is due to the access network response to 

sporadic traffic, where these phones get random access channels, and even go to the Idle 

state. 

We may also compare this access delay with the Gn values for client ACKs (Table 28: TCP 

Gn interface RTT statistics from Shark tracesTable 28) – comprising the delay from the Gn 

to the phone and back – we see the match, a delay of around 100ms (70-130ms). 
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Name 

Average RTT for 
second packet in sequence (main 

payload) 

Phone Gn FW 

test1 0.1489 0.0269 0.0238 

test2 0.1138 - 0.0224 

test3 0.1243 - 0.0232 

test4 0.1300 0.0291 0.0228 

test5 0.2308 0.0297 0.0250 

test6 0.2220 0.0276 0.0239 

test7 0.2287 0.0267 0.0234 

test8 0.2313 0.0327 0.0236 

test9 0.4395 0.0183 0.1044 

test10 0.3558 0.0225 - 

Table 39: Average RTT for 2nd TCP packet in sequence, at different points 

 

For the second packet in sequence (carrying the main payload of nominal packet size), 

RTT at the FW is around 25ms, with the exception of phone test9 with 104ms, due to a 

triple retransmission with 15s RTT. At the Gn, average RTTs are generally of the same 

order (for test9, the Gn average is smaller due to a trace length of up to 5 minutes, not 

comprising the instance of 3 packet retransmissions that influenced the FW average). For 

phone RTTs, we notice a 100ms larger delay for bigger packets of phones test5-test8, and 

much larger delay for phones test9 and test10, with sporadic traffic, again indicating 

delay in the access for such traffic patterns. The delay in the access for 2nd packets, in 

case of sporadic traffic, is smaller than for 1st packets, as the 1st packets suffer the delay 

of accessing the network in case of Idle state, as explained before. 

 

Name 

Average RTT for 1 application packet 

Phone* Gn FW 

test1 0.5010 0.2578 0.2500 

test2 0.4281 - 0.2485 

test3 0.4373 - 0.2480 

test4 0.4428 0.2607 0.2490 

test5 0.5589 0.2465 0.2498 

test6 0.5344 0.2647 0.2498 

test7 0.5486 0.2661 0.2500 

test8 0.5773 0.2690 0.2511 

test9 1.9711 0.8529 0.3393 
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test10 1.9148 0.2205 - 
*for phone averages, results from application reports are taken 

Table 40: Average RTTs for one application packet at different points 

 

Looking at average values for the application packets (i.e. the average of the sum of RTTs 

for first two packets sent by the client, initial TCP packet and the packet with main 

payload), this 4-way delay in the access is around 200-300ms for test1-test8, and almost 

2 seconds for phones test9 and test10.  

A.2.3.7 Server processing delay 

 

In order to prove that the server processing delay for the 1st TCP packet in a sequence 

sent for one application packet is significant, around 200ms, as deduced from traces in 

previous sections, another round of measurements has been performed. Traffic traces 

were taken at the server side for TCP case, as well as phone traces. 

Processing of server trace was somewhat difficult, as on the server side the Network 

Address Translation (NAT) is performed. All packets coming from test phones are seen 

coming from one IP address (internal address of the NAT gateway), to internal server IP 

address, different from one specified externally, but going to one, specified, port, 

designating our server application. Packets from individual phones can be traced by their 

inner TCP data – Len, TSval, TSecr.  

The statistics was made for the whole communication of server application with 10 test 

phones, provided that if standard deviation is high, calculation by individual phones shall 

be done. 

 

The statistics for trace taken at the server is the following: 

Server trace, TCP Average RTT [s] Max RTT [s] Min RTT [s] St.dev. of RTT [s] 
Server processing delay for 
1st TCP packet 0.20051 0.29791 0.19019 0.00479 
Server processing delay for 
2nd TCP packet 0.00027 0.01809 0.00006 0.00023 
Network delay for client 
final ACK 0.14277 9.81529 0.05925 0.16034 

Table 41: Delay statistics for server-side trace, TCP 
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We see that the average delay of processing within the server for the first TCP packet 

sent for one application packet is around 200ms, with the standard deviation of only 4ms. 

This proves conclusions deduced in previous sections, that the server has some “wake-up” 

time for the first TCP packet, regardless of the traffic pattern of individual phones. 

From the table above, we also see that the processing delay for the second TCP packet is 

mostly less than 1ms. 

On the other hand, network delay for client final ACK varies a lot – this is the time 

between server’s PSH,ACK message acknowledging the main (2nd) packet, and the client’s 

final ACK, i.e. it contains delay on the route server-phone and back. 

 

For comparison reasons, a new round of UDP measurements was performed, with trace 

recording on the server and on phones. Server trace was processed in a similar way as 

described for TCP case, by applying a filter and exporting relevant records to Excel. 

Further, it was processed similar as explained for UDP measurements in A.1, manually 

calculating RTTs i.e. server processing delay. The results are as follows: 

Server trace, UDP Average RTT [s] Max RTT [s] Min RTT [s] St.dev. of RTT [s] 
Server processing 
delay for UDP 0.00045 0.04646 0.00012 0.00080 

Table 42: Delay statistics for server-side trace, UDP 

 

It is clear that in UDP case server processing mostly has small influence on RTT, being 

0.4ms in average with 0.8ms standard deviation, but there are some instances of high 

processing delay going up to 46ms. 

 

A.2.3.8 Conclusions 

 

Measurements in D5.3 were done in a modernized network, with enough resources, while 

measurements in D3.5 were performed in somewhat strained network. Main conclusions 

that can be taken from the analysis performed within D3.5 and D5.3 are as follows: 

• The size of inter-arrival time (wait time between packets) influences RTT most 

strongly. This influence is due to inherent properties of the radio access 

network: 
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− Sporadic traffic with low throughput gets FACH/RACH channels – these 

channels are shared, with a collision risk, offering high access times. 

− Very large inter-arrival time results in UE going to the Idle state. 

Network is loaded with excessive signalling as for every new packet UE 

has to establish the RRC connection again. 

• Packet size also influences the RTT, to a lesser extent. Large packets have bigger 

RTTs, and this influence is visible in the access part, while core network and the 

backbone do not show any. 

• Server processing delay is about 200ms for the first packet in a sequence of TCP 

packets sent for one application packet (server wake-up time). Client application 

processing delay is negligible, less than 2ms. 

• For the shown TCP flow: 

− Statistics for the first packet shows the influence of random access and 

RRC establishing for long inter-arrival times, and the influence of 

assigned access channel for shorter inter-arrival times, but does not 

show the influence of packet length, since the first packet is always 70 B 

long, while the main payload is in the second. If the first packet would 

be with main payload, average RTTs would be bigger for some phones. 

First packet RTTs also show server processing delay of avg. 200ms. 

− Statistics for the second packet shows the network delay once the UE is 

in RRC connected state (either Cell_FACH or Cell_DCH), i.e. shows the 

impact of assigned access channel, as well as the impact of packet 

length on delay. Packets are of nominal size plus TCP header. 

− Statistics for the client ACK may be taken for verification – for phone 

RTT, it is the server processing delay; for Gn and FW RTT, it represents 

two-way delay to the phone and back, of a small packet (66B), having in 

mind that this is the last message in sequence, so phones are for sure in 

the RRC Connected state 

• For UDP, packets are exchanged more closely according to the time/size 

distributions. Packet length is increased for UDP header, and time between 

packets is the last RTT, maximally 3s, plus generated wait time. RTT statistics, 

with small remarks (see A.1.3), shows all relevant effects of the network. 
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• Large number of UEs with M2M traffic, but also Online Gaming traffic, leads to 

3G/HSPA network accessibility degradation, affecting even voice services 

 

Relevant statistics (two-way delay) per parts of the network may be taken by looking at 

the difference of corresponding RTTs: 

• for the backbone – FW RTT minus server processing delay 

• for the GGSN, proxy, firewall – FW RTT minus Gn RTT 

• for the access, including RNC and internal transport network to the SGSN and 

GGSN – phone RTT minus Gn RTT, comparable with Gn RTT for client ACK (client 

ACK RTT represents latency for a small packet when in RRC Connected state); 

FW RTT for client ACK should be taken into account for verifying Gn RTT, since 

Gn samples are small 

 

Using HSPA network with enough resources, average two-way delay generated in 

different parts of the test path is as follows: 

• backbone – RTT mostly 23-25ms; not selective concerning packet length and time 

between packets 

• GGSN, proxy, firewall – few milliseconds, up to 8ms; not selective 

• access, including RNC and internal transport network to the GGSN – without server 

processing delay, 75-120ms for Online Gaming simulations and 0.1-1.3 s for M2M 

simulations; highly sensitive concerning time between packets, and sensitive to 

packet length   

 

A.2.3.9 Statistics to be taken for tuning up the testbed parameters 

 

Should the same TGen application with TCP be used for the testbed, TCP statistics is to 

be used for comparison. With some remarks (see A.1), UDP statistics, showing all relevant 

network impacts, should be used if other traffic generator application is applied. 
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A.3 Real M2M application – illustrative example concerning measurements 

performed in D3.5 and D5.3 

The example that follows is illustrative, stressing main problems with massive M2M 

deployment in HSPA network and proving the results obtained in D3.5, Test Case 2, low-

network-resources case. 

The subject real M2M application called BusPlus is an application deployed by public 

transportation company in Belgrade (GSP Belgrade). Telekom Srbija provided only the 

connectivity for this application, i.e. modems, without prior knowledge of the traffic 

patterns. Clients in buses send data on validated tickets and GPS position to the remote 

server, and the GSP company later uses this data for optimizing bus frequency on 

particular lines. 

After the deployment, degradation of certain KPIs was observed in the network, and 

investigation showed that this happened during the night in the cells covering bus 

garages. Although with different traffic pattern than those simulated in D3.5, the 

application led to degradation of same KPIs – mainly accessibility, affecting even voice 

accessibility, as in D3.5. 

The investigation showed small traffic, but with a lot of connections. The problem 

occurred at night in the vicinity of bus garages as drivers forgot to put the devices in 

offline mode, so all clients were sending GPS update info every 30s, and certain garages 

host around 300 vehicles. 30s is enough time for client UEs to go to the Idle state in this 

network. So what happened is that all these buses had to establish the RRC connection 

again for each message. This application is not latency-critical, but the influence on the 

network is huge. 

Even the modernized network (2ms TTI UL, more CEs in NodeB, more licenses for HS 

users) cannot support such massive number of connections and signalling. 

Figure Annex A-2 shows, side-by-side, graphs of HS accessibility for BusPlus application 

and for Test Case 2. BusPlus statistics is given on daily level, and Test Case 2 statistics on 

hourly level. From 1st of April, when GSP switched modems to 3G only, until 12th of April, 

when they were asked to switch to GSM, in order to protect voice service on 3G, a 

significant growth of HSDPA traffic in Erl was observed, showing huge number of 

connections, as well as the related downfall of HS accessibility.  
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Next, as in Test Case 2, this influenced even the voice service, which is shown in Figure 

Annex A-3. The CS Accessibility downfall with BusPlus is mainly due to congestion on 

signalling channels, not due to lack of HW&SW resources. CS services are degraded, even 

though voice has priority. In Case 2 of D3.5, low-resources refers to low number of CEs, 

low number of licenses for simultaneous HS users, etc, and this was the main reason for 

rejecting new users to enter RRC Connected state. 

 

 

For most critical cells optimization was done, reducing the number of codes assigned for 

HS traffic so the signalling channels could use them. This is a compromise between large 

number of connections of M2M users and HS traffic for throughput-demanding “regular” 

users. 

 

A significant rise in uplink interference due to large number of users was also observed 

with BusPlus, but the traffic increase was relatively low compared to Test Case 2 – during 

 

Daily statistics, BusPlus    Hourly statistics, Test Case 2 

Figure Annex A-2: HS Accessibility – real application vs. simulation 

 

Daily statistics, BusPlus    Hourly statistics, Test Case 2 

Figure Annex A-3: CS Accessibility – real application vs. simulation 
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simulation we had traffic patterns with higher datarate (Online Gaming plus M2M), while 

in BusPlus we had only a message every 30s.  
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